
Chapter 6
Quality-Aware Predictive Scheduling
of Raw Perishable Material Transports

Xiao Lin, Rudy R. Negenborn and Gabriël Lodewijks

Abstract This paper proposes a new mathematical model for predictive scheduling

of perishable material transports with the aim of reducing losses of perishable goods.

The model is particularly designed for allocation of potatoes from several farms to

a nearby starch mill, which produces starch from a limited amount of potatoes each

day. Scheduling should determine how much amount of potatoes be sent from which

farm to the mill on each day. It is known that the quality of potatoes decreases over

time and as a result less starch is produced. A model predictive control approach is

proposed to maximize the production of starch. Simulation experiments indicate that

predictive scheduling can yield higher starch production compared to non-predictive

approaches.

Keywords Transport scheduling ⋅ Predictive control ⋅ Perishable products ⋅Kinet-

ics modeling

6.1 Introduction

Potatoes are one of the important sources of high quality starch, suitable for most

industrial and food engineering (Grommers and van der Krogt 2009). It is reported

that 6.9 million tonnes of potatoes are processed for starch in the year of 2014 in

Europe (Starch Europe 2016). However, potatoes cannot be stored for a long time as

the starch concentration drops and starch producing campaign is short in each year,

lasting only a few months. Due to the high water content, the transport of starch

potatoes is preferably limited from the field to nearby starch mills (DG Agriculture

and Rural Development 2010).

X. Lin (✉) ⋅ R.R. Negenborn ⋅ G. Lodewijks

Department of Maritime and Transport Technology,

Delft University of Technology, Delft, The Netherlands

e-mail: x.lin@tudelft.nl

R.R. Negenborn

e-mail: r.r.negenborn@tudelft.nl

G. Lodewijks

e-mail: g.lodewijks@tudelft.nl

© Springer International Publishing Switzerland 2017

M. Freitag et al. (eds.), Dynamics in Logistics, Lecture Notes in Logistics,

DOI 10.1007/978-3-319-45117-6_6

65



66 X. Lin et al.

The extraction of starch from potatoes is an important step in starch supply chains.

Usually a starch mill is located near potato farms, producing starch from potatoes

during the harvest time of each year. When a starch producing campaign starts, farm-

ers harvest potatoes and store them in their chambers, waiting to transport to the

mill for processing. During this waiting time, potatoes start to deteriorate, and starch

concentration starts to decrease. Therefore the scheduling of potato processing can

affect the total amount of starch produced. However, limited research has been done

on how to schedule the transport between farms and starch mills more effectively.

For other products, earlier research has been carried out. Grape harvesting

scheduling is investigated for decision-making on which vineyards should be har-

vested (Ferrer et al. 2008). A model is developed to schedule harvesting time for

grapes considering operation costs as well as quality of the grapes. Similarly, an or-

ange harvesting scheduling problem (Caixeta-Filho 2006) also considers the quality

of the products when deciding harvesting moments. In both of the studies, changes in

quality are described using historical data. Studies are also carried out for sugarcane

supply scheduling on mill sugar production (Gal et al. 2008; López-Milán and Plà-

Aragonés 2015). The first study takes into account variability of sugarcane quality

between areas. Historical data is used to identify regions based on different quality

of yields. The second study investigates sugarcane processing supply considering

an index of ripeness for deciding on harvesting moments, which affect the quality

of sugar in products. The definition of this quality index is however, not explained

explicitly.

Historical data can be useful in the scheduling of production processes. However,

it does not thoroughly reflect real-time quality. The objective of this research is to

show how real-time quality can impact the decisions for allocation and processing

of raw perishable material. In this paper we consider a case in which a starch mill

locates amongst several potato farms. Potatoes from the farms are sent to the mill

and from which starch is extracted. Starch degrades as potatoes are stored in cham-

bers. Therefore, the mill has to run all the time to maximize the production of starch.

The key feature of the approach we propose is that it considers real-time quality of

perishable goods instead of historical data to assist decision-making in fresh prod-

uct logistics scheduling. This paper illustrates that with the information of “quality,”

fewer losses can be achieved and producers can benefit more from effective schedul-

ing.

We adopt a system and control perspective to solve the scheduling problem. As

illustrated in Fig. 6.1, there are two parts of the model. The system part is our rep-

resentation of the real world, consisting of the amount and quality of potatoes in

each chamber of each farm. The controller part takes measurements from the system

and makes decisions on when and which farm shall be called to send potatoes to the

mill. This perspective enables us to demonstrate the performance of controllers with

different scheduling strategies.

The remainder of this paper is organized as follows. Section 6.2 describes the per-

ishable material system and its dynamics. Section 6.3 discusses different strategies

for controller design. Section 6.4 focuses on a case study, its results, and discussions.

Section 6.5 concludes this paper and provides directions for future research.
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Fig. 6.1 System and control perspective

6.2 System Design for Perishable Material Distribution

This section describes the details of the system, consisting of assumptions, farm and

quality dynamics and constraints.

6.2.1 Assumptions

In this study a few assumptions are made

∙ the farmers and transport of potatoes are assumed to be contracted; cost for pota-

toes and transport are therefore not considered explicitly in this study;

∙ the quality of potatoes decreases monotonically, and can be accurately measured

and predicted; the transport process does not affect quality of potatoes;

∙ quality measurements, decision-making, transport, arrival, and processing of pota-

toes happen during the same day.

6.2.2 System Dynamics

6.2.2.1 Farm Dynamics

The system consists of a set of farms F = {1,… , i,… ,F} with Si chambers Si =
{1,… , j,… , Si} on each farm, and a starch mill as components of the system. Each

day in a chamber j of farm i, hi,j(k) represents the amount of potatoes brought in

with the harvest, and ui,j(k) represents the amount of potatoes moved out for the
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Fig. 6.2 A chamber

Fig. 6.3 The mill

mill, where k ∈ T = {1,… , k,… ,T}. The amount of potatoes remaining in the

chamber is si,j(k), and qi,j(k) is the quality of them, as shown in Fig. 6.2. Each day

during the campaign potatoes from different chambers are transported to the mill,

and P(k) is the total starch production on that day, as shown in Fig. 6.3. Therefore

we have

si,j(k + 1) = si,j(k) − ui,j(k) + hi,j(k), i ∈ F , j ∈ Si, k ∈ T (6.1)

P(k) =
∑

i∈F ,j∈Si

ui,j(k)qi,j(k). (6.2)

6.2.2.2 Quality Dynamics

In food engineering, kinetic models are widely used to describe food quality

(Van Boekel 2008). The following equation represents the evolution of the quality

q(t):
dq(t)

dt
= −rqn(t), (6.3)

where variable n is determined by the type of reaction, and the coefficient r is deter-

mined by Arrhenius’ law, which describes the temperature dependence of chemical

reactions (Van Boekel 2008). The starch concentration of stored potatoes decreases

over time. According to an experimental study (Nourian et al. 2003), the degrada-

tion of the starch concentration follows a first-order kinetic model, with n = 1 and r
ranging from 0.02074 to 0.04735 in different storage temperatures. With q0 the ini-

tial quality when harvested, the remaining quality at continuous time t can then be

denoted as

q(t) = q0 exp(−rt). (6.4)

In this study, we use the discrete kinetic model as decisions are made at discrete time

steps. Let 𝜏 be the time interval between time step k and k+1. Note that quality at any
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time step k can be seen as an “initial quality” for time k+1 and that r is time-relevant.

Let R(k) = exp(−r(k)𝜏), we then have

q(k + 1) = q0 exp(−r(k + 1)𝜏) = q(k) exp(−r(k)𝜏)
= q(k)R(k). (6.5)

6.2.2.3 System State-Space Representation

To formulate a compact state-space representation of the system dynamics, let vector

𝐱(k) denote the state of the system, consisting of the amount of potatoes and the

quality of potatoes in all farms and chambers. In this research, the states of the system

are assumed measurable, so 𝐲(k) = 𝐱(k). Decision variables are collected in vector

𝐮(k), denoting the amount of potatoes to be transported from each chamber to the

mill on day k. The amount of remaining potatoes in the chambers is denoted by 𝐬(k).
The qualities of the potatoes are given by 𝐪(k). Vector 𝐡(k) represents the amount of

potatoes harvested on day k, which is considered as disturbances of the system 𝐝(k).
The element of matrix 𝐇 (with the size of F ∗ T) on row i, column k is 1 if there is

harvesting for farm i, day k; and 0 otherwise. The state-space form of this system is

𝐱(k + 1) = 𝐀(k)𝐱(k) + 𝐁𝐮(k) + 𝐂𝐝(k)

=
[
𝐈 0
0 𝐑(k)

] [
𝐬(k)
𝐪(k)

]
+
[
−𝐈 0
0 0

] [
𝐮(k)
0

]
+
[
𝐈 0
0 0

] [
𝐡(k)
0

]
(6.6)

𝐲(k) = 𝐱(k) (6.7)

where

𝐀(k) =
[
𝐈 0
0 𝐑(k)

]
(6.8)

𝐑(k) =
⎡
⎢
⎢⎣

R1,1(k) ⋯ 0
⋮ ⋱ ⋮
0 ⋯ RF,S(k)

⎤
⎥
⎥⎦

(6.9)

𝐱(k) = [𝐬T(k),𝐪T(k)]T (6.10)

𝐬(k) = [s1,1(k), s1,2(k),… , si,j(k),… , sF,S(k)]T (6.11)

𝐪(k) = [q1,1(k), q1,2(k),… , si,j(k),… , sF,S(k)]T (6.12)

𝐮(k) = [u1,1(k), u1,2(k),… , ui,j(k),… , uF,S(k)]T (6.13)

𝐡(k) = [h1,1(k), h1,2(k),… , hi,j(k),… , hF,S(k)]T (6.14)

𝐝(k) = 𝐡(k) (6.15)
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6.2.3 Constraints

There are a number of constraints among the system variables that need to be sat-

isfied. First, the amount of potatoes ui,j(k) transported is nonnegative and no more

than potatoes in the chamber. Second, the mill limits the daily processing capacity.

Therefore we have

0 ≤ ui,j(k) ≤ si,j(k), (6.16)

∑

i∈F

∑

j∈Si

ui,j(k) ≤ c(k). (6.17)

6.3 Controller Design

The controller takes measurements of the system and makes decisions on what ac-

tions to take to control the system, which, in this paper, is when and from which farm

potatoes shall be transported to the mill for processing (as illustrated in Fig. 6.1). We

consider three different control strategies

∙ 1: Quality-unaware controller: scheduling without any knowledge of quality;

∙ 2: Quality-aware controller: with information of quality of the day;

∙ 3: Predictive quality-aware controller: considering quality over a prediction hori-

zon.

The difference between these strategies is the amount of information regarding qual-

ity of the goods the controller uses. Because the degradation rate of quality can easily

be affected and thus differs from place to place, it is expected that controllers that

use the knowledge of quality can yield better performance.

6.3.1 Quality-Unaware Controller

The quality-unaware controller does not apply any form of optimization and ran-

domly, repeatedly picks a farm on each day, and starts the transport with the most

recently harvested potatoes on that farm until the daily capacity is reached, as is

shown in Algorithm 1.

Algorithm 1 Quality-unaware controller 1
1: ui,j(k) ← 0 for each i ∈ F and j ∈ Si
2: repeat
3: Randomly pick a farm i ∈ F
4: Take away potatoes most recently harvested, ui,j(k) ← ui,j(k) + si,j(k)
5: until si,j(k) ≥ c(k) − ui,j(k) (the daily capacity reached)
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Algorithm 2 Quality-aware controller 2
1: Take measurements 𝐪(k) for all the stored potatoes

2: Solve the optimization problem (6.18)–(6.22) to get values for 𝐮(k), that maximize the starch

production of the day

6.3.2 Quality-Aware Controller

The quality-aware controller takes daily measurements of the quality and amount

of potatoes in each chamber. It then chooses to transport potatoes that have the best

quality first as shown in Algorithm 2. This controller maximizes the daily production

of starch by solving the following optimization problem:

max
𝐮(k)

J(𝐱(k),𝐮(k),𝐝(k)) =
∑

i∈F

∑

j∈Si

qi,j(k)ui,j(k) (6.18)

subject to

𝐱(k + 1) = 𝐀𝐱(k) + 𝐁𝐮(k) + 𝐂𝐝(k) (6.19)

𝐲(k) = 𝐱(k) (6.20)

0 ≤ ui,j(k) ≤ si,j(k) (6.21)

∑

i∈F

∑

j∈Si

ui,j(k) ≤ c(k) (6.22)

6.3.3 Predictive Quality-Aware Controller

A predictive quality-aware controller considers predicted quality over a prediction

horizon. Therefore the optimal decision for these days can be made at the begin-

ning of each day to maximize the total production. The controller is designed in a

model predictive control fashion (Camacho and Bordons 2013; Rawlings and Mayne

2013): only the decisions for the first day are implemented and rest discarded. New

optimization is carried out at the next day. These iterations go on until the end of the

experiment. The optimization problem solved by the controller is then
1

max
𝐮̃(k)

J(𝐮̃(k), 𝐮̃(k), ̃𝐝(k)) =
N

p
−1∑

l=0

∑

i∈F

∑

j∈Si

qi,j(k + l)ui,j(k + l) (6.23)

1
Because the simulation is finite, on the last several days (from the day T − N

p
+ 2 to day T), the

prediction horizon based on current date exceeds the length of the simulation, resulting in errors.

To solve this, the controller reduces the prediction horizon if it exceeds the length of the simulation.



72 X. Lin et al.

Algorithm 3 Predictive quality-aware controller 3
1: Take measurements and predictions for all the stored potatoes within the prediction horizon l
2: Solve the problem (6.23)–(6.27) to find the optimal solutions for 𝐮̃(k)
3: Implement the decision 𝐮(k)

subject to

𝐱(k + l + 1) = 𝐀𝐱(k + l) + 𝐁𝐮(k + l) + 𝐂𝐝(k + l) (6.24)

𝐲(k + l) = 𝐱(k + l) (6.25)

0 ≤ ui,j(k + l) ≤ si,j(k + l) (6.26)

∑

i∈F

∑

j∈Si

ui,j(k + l) ≤ c(k + l) (6.27)

where 𝐱̃(k) = [𝐱T(k+1),… , 𝐱T(k+N
p
)]T is the vector consisting of all system states

over the prediction horizon. Similarly, 𝐮̃(k) and ̃𝐝(k) are [𝐮T(k+1),… ,𝐮T(k+N
p
)]T

and [𝐝T(k + 1),… ,𝐝T(k + N
p
)]T, respectively. Using this controller, only the first

step of the decisions are implemented on the system, i.e. u(k). The procedure of this

controller is described in Algorithm 3.

6.4 Experiments

In this section, the potential of the three different control strategies is illustrated on

scenarios randomly generated to simulate the variability of potato quality and the

changing rate of it. Potatoes stored in one farm are assumed to have the same deteri-

oration rate, which may be affected by local temperature and other conditions in the

chambers. To simulate the impact from the variability of external conditions, we gen-

erate the deterioration rate from normal distributions. Results of the quality-aware

controller and predictive quality-aware controller with different prediction horizons

are compared to the quality-unaware controller to prove the improvements of con-

sidering quality information in scheduling.

6.4.1 Simulation Setup

Each simulation considers one scenario, in which all three strategies are imple-

mented. We consider 10 simulations altogether. In each simulation, different strate-

gies are performed. In order to set up different scenarios, some of the variables are

nondeterministic, following some distributions. Other variables remain determinis-

tic.
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Deterministic variables The sets of farms and chambers, the length of the simulation

in days, initial amount of potato storage, amounts and dates of harvesting on each

farm remain the same. Variable si,1(1) represents the initial storage of farm i, which

is placed in the first chamber of each farm. Potatoes of new harvest are placed in

other empty chambers for simplification. We consider three times of harvest for each

farm. Together with the original storage the number of chambers Si for each farm i
is therefore 4. The maximum daily capacity c(k) is assumed constant. Moreover, we

let

F = 5,
T = 60,
s1,1(1) = 4400, s2,1(1) = 4300, s3,1(1) = 4400, s4,1(1) = 4500, s5,1(1) = 4200,
hi,j(k) = 400𝐇(i, k), i ∈ F , k ∈ T

c(k) = 800, k ∈ T .

Nondeterministic variables Qualities of potatoes differ from farm to farm. The dete-

riorating rate of the potatoes is influenced by time and temperature. In each scenario

these variables are randomly set from certain distributions. On the first day of the ex-

periment, the qualities of potatoes already in first chambers of each farm qi,1 follow

normal distributions with Ei and di as the expectations and standard deviations. In

the other chambers, the qualities are 0 until newly harvested potatoes come in. The

kinetics variables also follow normal distributions with 𝜇i and 𝜎̄i as their expecta-

tions and standard deviations. The kinetics variables after the first day of simulation

follow normal distributions with the kinetics value of the previous day as the expec-

tation, and 𝜎i as the variables. So the deterioration rate of potatoes in one chamber

does not change largely in a short period of time. The quality of potatoes harvested

on farm i and stored in chamber j have the quality qi,j on that day, and starts deteri-

orating afterwards. We then have

qi,j ∼ N(Ei,j, di,j),
ri,j(1) ∼ N(𝜇i,j, 𝜎̄i,j),
ri,j(k + 1) ∼ N(ri,j(k), 𝜎i,j).

We consider the length of simulation 60 days for the length of starch production cam-

paign is around 2 months. The simulations consider controller 1, 2, and 3 with

prediction horizons varying from 2 to 60 days, so that we can compare the perfor-

mance of controllers with different amount of quality information. An example of the

quality deterioration on one farm is shown in Fig. 6.4. The harvesting of this farm

happens on day 3, 13, and 23.
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Fig. 6.4 An example of the

deterioration of the quality in

different chambers of one

farm

Table 6.1 Performance of different controllers

Controller 1 2 3 5-day 3 10-day 3 30-day 3 60-day

Mean (%) 100.0 109.9 111.6 112.3 114.1 114.9

Deviation 0 0.0324 0.0360 0.0387 0.0460 0.0574

6.4.2 Results

In this paper, we take the average of starch production of 10 scenarios. We normalize

the results so that they are shown in percentages. Table 6.1 compares the performance

of the different controllers regarding the mean and standard deviation of the results.

Controller 1 yields 100 % production, while 2 has an increase of production by

9.9 %. The predictive controller with 5 day’s prediction produces 11.6 % more starch

compared with 1. With quality prediction of 60 days, the controller has the highest

production by an increase up to 14.9 % compare with 1.

Figure 6.5 shows that as the prediction horizon increases, the controller yields

higher production. The horizontal axis is different prediction horizons used by the

controller, and the vertical axis is the relative production of starch compared to con-

troller 1. Note that the first and second point in the figure represent controller 1 and

2. We can immediately see the impact that information of quality brings. Besides,

the predictive controller is able to obtain higher production from information of fu-

ture quality. Moreover, the performance of the controller is better when using longer

prediction horizons. When the prediction horizon covers the length of the campaign,

the scheduling is optimal.
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Fig. 6.5 Profit gained

compared to quality-unaware

controller

6.5 Conclusions and Future Research

This paper investigates the impact of accurate quality information on starch produc-

tion control. We consider a transport scheduling problem with perishable items. A

predictive scheduling approach is developed for raw material distribution consider-

ing the perishing nature. A model is established to describe the system of several

potato farms and a starch mill. Quality decreasing is described using kinetic models

and is assumed to be accurately predicted over a certain amount of days. The ob-

jective is to maximize starch production. The predictive, quality-aware scheduling

strategy is performed using a model predictive control approach. The performance

of the controller is compared with the performance of a quality-unaware controller

and a nonpredictive, quality-aware controller. It is illustrated that the information of

current as well as predicted quality can be used to improve decision-making with the

model predictive control method.

Further research will include uncertainties and accuracy of quality information.

Different commodities as well as other stages of supply chains will be investigated.

Our detailed vision for the future research can be found in previous publication (Lin

et al. 2015).
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