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Foreword

In 1885, a German pediatrician, Theodor Escherich, first described the bacterium
Bacterium coli commune as a normal intestinal inhabitant of healthy children.
Although his research on this organism, subsequently named Escherichia coli in his
honor, is largely remembered for the description of this species as a nonpathogenic,
commensal intestinal inhabitant, he also reported in 1894 that B. coli was present in
the urine of young girls suffering from urinary tract infections and suggested that it
reached the bladder by the ascending route. This was the first description of B. (E.) coli
as a potential cause of disease and was followed by Escherich’s 1899 report that B. coli
was the cause of dysentery. The latter report was preceded by Kiyoshi Shiga’s 1898
report that the cause of dysentery was a bacterium that he called Bacillus dysenteriae,
which was subsequently named Shigella dysenteriae in his honor. Conradi described
a neurotoxin from lysates of this organism in 1903 which was later called Shiga toxin.

For several decades thereafter, no major advances were made in the study of
pathogenic E. coli until the 1944 proposal by Kauffman of a scheme for serological
classification of E. coli based on the O (somatic) antigen (a component of the lipo-
polysaccharide), the H (flagellar protein) antigen, and the K (acid polysaccharide
capsular) antigen. The importance of this typing scheme cannot be exaggerated
because it allowed the various strains of E. coli to be differentiated from one another.
The development of this scheme allowed a British pediatrician, John Bray, to report
in 1945 that antigenically homogeneous strains of Bacterium coli neopolitanum
were associated with summer diarrhea in infants.

Although the serotyping scheme of Kauffman facilitated the differentiation of
E. coli strains associated with disease from those strains not associated with disease,
the virulence mechanisms remained unknown for many years. In 1956, De and col-
leagues in India demonstrated that E. coli isolated from adults and children with
cholera-like illness caused fluid accumulation in ligated rabbit ileal loops.
In England, Smith and Hall showed in 1967 that E. coli strains isolated from the
stool of young animals with severe diarrhea could produce a heat labile (LT) and a
heat stable (ST) enterotoxin and demonstrated that these traits were genetically con-
trolled by plasmids. The development of tissue culture assays for LT and suckling
mouse assays for ST eventually allowed the identification of these strains, which



vi Foreword

were ultimately called enterotoxigenic E. coli (ETEC). Epidemiological studies in
the 1960s and early 1970s in Brazil by Trabulsi and colleagues and in Bengal by
Gorbach and Sack solidified the link between such strains and human diarrhea.
Definitive proof that such strains were human pathogens was derived from volun-
teer challenge studies in the 1970s. ETEC is now known to be among the most com-
mon causes of infant diarrhea in developing countries and is the dominant cause of
traveler’s diarrhea. In the late 1970s, the Falkow laboratory ushered in the era of
molecular pathogenesis by cloning the genes encoding LT and ST and developing
DNA probes to diagnose strains possessing these genes. These studies reported the
first virulence factor genes and diagnostic DNA probes for any microbial pathogen.
Factors responsible for adherence to the small intestinal mucosa were discovered
and characterized as fimbrial or fibrillar colonization factors (CFs or CFAs). More
recent studies have identified additional accessory virulence factors for ETEC, and
this continues to be an area of active research.

The serotypes recognized as ETEC differed from the first diarrheagenic E. coli
serotypes recognized by Bray. Because the LT and ST toxins were plasmid-
mediated, controversy arose in the field when some investigators claimed that
strains belonging to the “classic” serotypes but lacking LT and ST had simply lost
the plasmid-encoded virulence factors. This controversy was definitely resolved by
challenge studies conducted by Levine and colleagues in which strains belonging to
the classic diarrheagenic E. coli strains lacking LT and ST caused diarrhea in adult
volunteers. The mechanisms by which these classic diarrheagenic E. coli strains,
termed enteropathogenic E. coli (EPEC), caused diarrhea began to be elucidated by
Kaper and colleagues who described a package of plasmid- and chromosomally
encoded virulence factors that conspired to induce a so-called attaching-and-
effacing lesion of the small intestine. A key set of virulence factors, including a type
IIT secretion system, were shown to be encoded on a pathogenicity island called
locus of enterocyte effacement (LEE). The aggressive outbreaks among infants in
industrialized countries caused by EPEC have disappeared, but the pathogen contin-
ues to be an important cause of infant diarrhea in developing countries, particularly
in sub-Saharan Africa. Questions that continue to confront EPEC research include
the mechanism of its striking age-related pathogenicity, the contributions of its
multiple virulence factors toward secretory diarrhea, and which of its factors may
contribute to effective vaccine development.

In 1983, a new class of pathogenic E. coli was recognized from two landmarks
but at first seemingly unrelated, epidemiological reports. Karmali and colleagues
investigated an outbreak of hemolytic uremic syndrome (HUS) in Canada and
implicated E. coli strains of various serotypes that produced a cytotoxin active on
Vero cells. Concurrently, investigators from the CDC reported an outbreak of
bloody diarrhea (called hemorrhagic colitis) due to E. coli of an unusual serotype,
O157:H7, that was linked to consumption of fast-food hamburgers in the
USA. O’Brien and colleagues showed that such strains produced a phage-encoded
Shiga-like toxin that was the same as the verocytotoxin. Studies by Tzipori and col-
leagues showed that O157:H7 strains produced intestinal attaching and effacing
lesions in piglets that were similar to those produced by EPEC strains. O157:H7 and
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similar Shiga toxin-producing strains were termed enterohemorrhagic E. coli
(EHEC) or more broadly, STEC (Shiga toxin-producing E. coli) or VTEC (verocy-
totoxin-producing E. coli). EHEC have been responsible for numerous outbreaks of
disease in industrialized countries including an outbreak involving more than 8000
victims in Japan in 1996.

Enteroaggregative E. coli (EAEC) was first described in the Kaper lab in the
1980s. The pathotype was first recognized by its distinctive auto-aggregating phe-
notype in the HEp-2 adherence assay, and this phenotype was associated with diar-
rheal disease in some early studies in India and Chile. Subsequent work over many
years has implicated the organism as a cause of endemic diarrhea, traveler’s diar-
rhea, and possibly persistent diarrhea and growth faltering. Although pathogenesis
studies have described a large regulon of genes under the control of AraC/XylS
family regulator AggR, the extreme mosaicism of the EAEC pan-genome has
impeded efforts to generate a clear understanding of its role as a global pathogen.
Future studies will need to yield a better definition of what gene complement com-
prises a true EAEC enteric pathogen.

Additional classes, or pathotypes, of diarrheagenic E. coli have been described.
Strains that adhere to HEp-2 cells in a diffuse adherence pattern have been termed
diffusely adherent E. coli (DAEC) and reported to be associated with diarrheal dis-
ease in some epidemiological studies but unassociated with disease in other studies.
Adherent Invasive E. coli (AIEC) have been associated with Crohn’s disease, but no
unique virulence factors have yet been described for this pathotype. Host genetics,
microflora, and chronic inflammation are hypothesized to be involved in disease
associated with AIEC.

Enteroinvasive E. coli (EIEC) are taxonomically indistinguishable from Shigella
at the species level, but owing to the clinical significance of Shigella, a nomencla-
ture distinction is still maintained based on a few minor biochemical tests. Four
Shigella species and EIEC cause varying degrees of dysentery, but in most cases,
EIEC causes watery diarrhea that is indistinguishable from that due to other diar-
rheagenic E. coli. However, an important distinction is made with S. dysenteriae 1,
which produces Shiga toxin, unlike other shigellae and EIEC.

EIEC and shigellae invade the intestinal epithelial cells by virtue of a plasmid-
encoded type III secretion system and associated effector proteins, which allow the
organism to counteract initial host immune responses, mediate invasions, escape the
phagolysosome, rearrange host cytoskeleton, destabilize tight junctions, and spread
laterally among epithelial cells via actin-based motility.

In 2011, a large multi-country outbreak of hemorrhagic colitis and hemolytic-
uremic syndrome was caused by a strain of the unusual STEC serotype O104:H4.
Molecular studies of the strain revealed that it was a typical EAEC strain indigenous
to Africa but which had become lysogenized with a Shiga toxin-encoding phage.
Retrospective analyses of strain collections revealed that this organism had been
previously implicated in human infections, but had not been recognized as a lysog-
enized EAEC. Although the strain has not emerged as a global problem, it points up
the remarkable plasticity of the E. coli genome and suggests that the complete story
of E. coli epidemiology has yet to be written.



viii Foreword

While the great majority of pathogenic E. coli strains have been associated with
intestinal disease, E. coli also cause disease outside the intestinal tract, and such
extraintestinal E. coli have been called EXPEC. EXPEC is the major cause of
community-acquired urinary tract infections (UTI) and is the second most common
cause of neonatal meningitis. It is also a leading cause of adult bacteremia. In ani-
mals, avian pathogenic E. coli is an important cause of respiratory infections, peri-
carditis, and septicemia in poultry. In extraintestinal infections, the distinction
between pathogenic and nonpathogenic E. coli strains is not as clear as it is with
diarrheagenic pathotypes, since in the appropriate circumstances nearly any E. coli
strain may gain access to the bloodstream or the urinary tract. In addition to elucidat-
ing the pathogenesis of urinary tract infections, the study of uropathogenic E. coli
(UPEC) has produced several paradigms of bacterial pathogenesis. The first demon-
stration of molecular Koch’s postulates was reported with the cloning and mutation
of hemolysin produced by UPEC. The concept of pathogenicity islands was first
reported for UPEC, and classic studies of chaperone-usher assembly of fimbriae
were performed with this pathotype. The determination of the genome sequence of
UPEC strain CFT073 revealed the mosaic structure of pathogenic E. coli with only
39 % of predicted proteins shared by E. coli K-12, O157:H7, and UPEC.

Although the broad categories of pathogenic E. coli have provided a useful
framework to guide investigations, the sheer diversity of virulence factors and the
substantial variation within each pathotype greatly complicates the establishment of
“hard and fast” rules about this species. A sampling of pathogenic E. coli virulence
factor activities includes ADP ribosylation of Gs to activate adenylate cyclase and
ion secretion, depurination of 28S rRNA to inhibit protein synthesis, DNase I activ-
ity to block mitosis in the G2/M phase, disruption of mitochondrial membrane
potential, activation of guanylate cyclase resulting in ion secretion, activation of
Cdc42 and Rac thereby modulating actin cytoskeleton structure, and microtubule
destabilization. These virulence factors are frequently encoded on mobile genetic
elements such as plasmids, phage, transposons, and pathogenicity islands. Further
details and primary literature citations on these virulence factors and the history of
the discovery and recognition of the various E. coli pathotypes can be found in sev-
eral comprehensive reviews (see different chapters in the book).

The breadth of activities of virulence factors and the substantial genetic varia-
tion demonstrated by genome sequence studies greatly complicates the task of
determining which strains of E. coli may be pathogens and which are non-patho-
gens. The ongoing evolution of pathogenic E. coli, as demonstrated by the 2011
0104:H4 outbreak in Europe, makes it very difficult to have a static definition of
pathotypes. Future research efforts should more fully characterize the role of coin-
fections and host factors to gain a more comprehensive picture of disease due to
pathogenic E. coli.

In this book, Escherichia coli in the Americas, members of the Latin American
Coalition for E. coli Research (LACER) provide a comprehensive review of the dif-
ferent categories of E. coli including aspects such as virulence mechanisms, environ-
mental niche, host reservoir, disease outcomes, diagnosis, treatment, and vaccine
development. Over the past 50 years, several landmark studies in Latin America have
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yielded important insights into pathogenic E. coli such as the classic epidemiological
studies in Brazil by Trabulsi and colleagues and the studies in Chile that identified
EAEC as an important diarrheal pathogen. The lessons learned in Latin America
have widespread significance for the study of E. coli throughout the world, and the
information contained in this volume will be of value for a wide audience, from stu-
dents to experts, from molecular biologist to epidemiologist.

James B. Kaper, PhD
University of Maryland Medical School
Baltimore, MD, USA

James P. Nataro, MD, PhD

University of Virginia School of Medicine
Charlottesville, VA, USA

June 30, 2016
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Preface

In an interconnected and interdependent world, an outbreak caused by an infectious
agent in a country is of significant concern because it could result in a sanitary emer-
gency affecting other countries. Globalization has greatly impacted the American
continent at different levels, including opening markets and aiding nations to sell
their products outside of the country, increasing the real-time communication abili-
ties and allowing an emphasis on international cooperation, as well as many other
financial, cultural, and touristic benefits. However, this increased connectivity also
potentiates the risk of dissemination for emerging or reemerging infectious diseases.
In the case of Escherichia coli, a bacterium that is considered a benign as well as a
pathogenic organism, globalization has created a scenario in which a pathogenic
E. coli causes regional outbreaks that can quickly disseminate to other countries.
If such bacterial strains are resistant to one or more antibiotics, this becomes a global
health threat and alerts have to be in place to notify the authorities and the health
providers about such incidents. Globalization in the food chain supply and the distri-
bution of food products to different markets and populations increases the possibility
of a rapid spread of an infection caused by E. coli and other pathogenic organisms.
So there is need for rapid response and effort of the scientific community to identify,
diagnose, and understand the pathogenic E. coli responsible for the disease.

As such, the Latin American Coalition for E. coli Research (LACER) was created
in 2009, to promote and expand research efforts in the American continent, to sup-
port and expand the best science, to prepare the next generation of scientist-physicians
and research investigators, and to work together with the community to translate
scientific findings into products improving the well-being of the population. In 2016,
the LACER group consist of a multidisciplinary network of more than 60 interna-
tional research groups working on different aspects of pathogenic E. coli, including
but not restricted to epidemiology, pathogenesis, vaccine and therapeutic design and
testing, public health, surveillance, and clinical identification and treatment.

One major goal of the educational mission of LACER is to advance our under-
standing about this pathogen and disseminate such knowledge to the region and to the
world. Since its inception, some of the educational activities of LACER have included
workshops, symposiums, and minicourses for students, scientists, professors, and the

xi
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public in general, in different Latin American countries and the USA. In 2010, the
members of LACER decided to produce a book entitled Pathogenic Escherichia coli
in Latin America, which allowed leading investigators in the Latin American region
to discuss the mechanisms of E. coli pathogenesis as well as the methods of diagno-
sis, clinical management, host immune responses, animal reservoirs, and epidemiol-
ogy. In addition, the book discussed epidemiological and public health issues
regarding pathogenic E. coli in representative Latin American countries.

As the LACER science grew strong and contributions started getting recognized
in different forums and social media platforms, the membership, which has expanded
significantly, decided to produce a new book in which broader aspects of the patho-
gens’ lifestyles and the diseases they produce were discussed. The current book
entitled Escherichia coli in the Americas is a compilation of chapters by a large
number of E. coli experts in Latin America, the USA, and Canada. The book is
divided into three major areas: The first includes chapters describing individual
pathogenic E. coli strains and their different virulence mechanisms used to cause
disease. The second includes common mechanisms used by this bacterium to inter-
act with animal or plant hosts (human, animals, and food products) and to resist
killing by antibiotics, etc. The third includes chapters devoted to the diagnostics,
therapeutic interventions, and vaccine design.

Through the years, LACER members have created a special bond, and this group
has become more than just some people working together. It has resulted in unique
combination of talent, expertise, and collaborative attitudes that makes the group
stronger together than apart. Everyone involved in collaborative research at LACER
has a role to play in building our understanding about the always evolving E. coli,
and advancing technologies and methodologies to diagnose, treat, and prevent such
infections have a shared goal of protecting the public health.

Galveston, TX, USA Alfredo G. Torres, MS, PhD
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Chapter 1
Enterotoxigenic Escherichia coli

Roberto M. Vidal, Nayaret L. Chamorro, and Jorge A. Girén

Summary Pediatric diarrheal diseases continue to represent a significant health
burden in areas of the world with poor sanitation. Hundreds of thousands of deaths,
mostly in young children occur each year due to severe acute gastrointestinal disease
caused by diverse enteric pathogens. Enterotoxigenic Escherichia coli (ETEC) is a
leading cause of childhood gut illness and death in endemic areas. While the
epidemiology of ETEC infections is known for some regions of North, Central, and
South American countries, the actual impact in most of the continent is unknown.
Despite much research efforts of many investigators, safe and effective vaccines
against diarrheal disease caused by ETEC are not yet available. The major challenges
in developing such vaccines are the poor immunogenicity of the heat-stable
enterotoxin produced by the majority of strains and the array of antigenically diverse
colonization factors (CFs) that mediate gut colonization; however, while inducing
protective antibodies, they only protect against homologous strains. The use of new
multi-epitope fusion antigens consisting of chimeric CFs-toxin fusions lacking
toxicity has shown important and promising immunogenicity and protection. We
review here the current knowledge on ETEC, its epidemiology in the Americas, and
the most important vaccine strategies available.
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1 Diarrheagenic Escherichia coli

In the 1940s, it was established that some E. coli strains caused intestinal infections
and so were designated as enteropathogenic E. coli to distinguish them from fecal
commensal strains. E. coli is a Gram negative, facultative anaerobic bacterium that
lives in the human gastrointestinal tract as a member of the gut microbiota (Nataro and
Kaper 1998; Dubreuil 2012). E. coli is a beneficial organism that protects the epithe-
lium of other harmful bacteria by producing an acidic niche through the metabolism of
nutrients, provides the host a source of vitamins B and K, and constantly activates the
immune system. However, some strains have acquired mobile genetic elements (e.g.,
plasmids, pathogenicity islands, transposons, bacteriophages) that code for a myriad of
virulence factors that allow bacteria to cause a variety of diseases in healthy individu-
als, including watery diarrhea, dysentery, sepsis and meningitis, the hemolytic uremic
syndrome, and urinary tract infections (Kaper et al. 2004). As new information of
novel virulence determinants and serotypes identified in epidemic strains became
available, it was then possible to start separating diarrheagenic E. coli (DEC) strains
into different classes. Currently, based on the presence of defined virulence factors,
their epidemiology, and clinical manifestations of the disease DEC strains are classi-
fied into six pathogroups: enterotoxigenic E. coli (ETEC), enteropathogenic E. coli
(EPEC), enteroinvasive E. coli (EIEC), enterohemorrhagic E. coli (EHEC) or Shiga-
toxigenic E. coli (STEC), diffuse-adhering E. coli (DAEC), and enteroaggregative E.
coli (EAEC) (Nataro and Kaper 1998; Qadri et al. 2005; Dubreuil 2012). The plasticity
of the E. coli genomes and the ability of these organisms to mobilize and acquire for-
eign genetic elements allows the emergence of new epidemic strains, sometimes
hybrid strains, with hyper-virulent attributes. This was exemplified by the epidemics of
hemolytic uremic syndrome occurred in Northern European countries in the summer
of 2011 by an EAEC O104:H4 carrying the Shiga toxin genes (Rasko et al. 2011).

2 Global Significance of ETEC Infections

It is estimated that about 280 million cases of diarrhea occur annually in the world,
producing approximately 400,000 deaths, the majority of them in young children
(Steffen et al. 2005). For many decades, ETEC has led, along with Shigella,
Salmonella, and Rotavirus, the list of the most frequent diarrheal microorganisms in
endemic areas worldwide. In the realm of infectious diarrheal diseases, ETEC is
responsible for the highest attack rates of morbidity and lethality mainly in children
under 5 years of age, living under poor sanitation conditions in the developing
world. Recent data provided by the Global Enteric Multi-Center Study (GEMS)
showed that ETEC is one of the four main etiologic agents of moderate-to-severe
diarrhea in regions of sub-Saharan Africa and South Asia (Kotloff et al. 2013).
ETEC is also responsible for diarrhea in travelers (“the Moctezuma’s revenge”) and
military personnel deployed to endemic areas (Diemert 2006; Rodas et al. 2011a).
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Since the early 1970s, ETEC infections have been monitored in many countries
in the Americas, Southeast Asia, and the Indian subcontinent, particularly in those
countries visited by travelers and military personnel who are easy targets of
ETEC. The interest for studying the epidemiology of ETEC infections appeared to
have dimmed or perhaps shifted to other pathogens in the 1990s, particularly due to
the emergence of other DECs such as EPEC, STEC, and more recently EAEC. The
advent of more sophisticated molecular techniques accelerated the study of the
mechanisms of virulence of these E. coli pathogroups, gathering highlights and
shifted the interests of many researchers to these pathogens. Nevertheless, new and
old die-hard E. coli/ETEC researchers continued to study the prevalence of ETEC
infections among diarrheal cases in several countries of the American continent and
other regions of the world. While in some geographic areas ETEC has been dis-
placed by other DEC, such as EPEC or EAEC, it is clear that children continue to
die due to watery diarrhea-causing ETEC. Much has been learned from ETEC
research in the last 45 years or so however, children continue to die from ETEC
infections due to the lack of safe and effective vaccines against the diarrheal disease
caused by this important pathogen.

ETEC is a health burden associated mainly with poverty, and the lack of sanita-
tion, potable water, and sewage treatment in developing countries. The consump-
tion of contaminated food and water, and possibly person-to-person contact account
for the transmission and elevated number of diarrheal cases. The ability of the
organism to survive at room temperature for extended periods of time in cooked
food, raw vegetables, and in drinking and nondrinking water is an important factor
in the prevalence of this organism in the communities with poor sanitation.

The bacteria are transmitted by ingestion of contaminated food and water
(Curtis et al. 2000) with an infective dose is 10°~10'° colony-forming units (CFU)
(Nataro and Kaper 1998). Within a period of 14-50 h after ingestion, these bacte-
ria colonize the epithelial mucosa of the small intestine, producing secretory diar-
rhea without obvious signs of destroying or invading the epithelium or causing
inflammation. In addition to diarrhea, some patients may manifest other symptoms
such as headache, fever, nausea, and vomiting. The symptoms usually disappear
within the first 5 days without the need for antibiotic treatment. The lethal cases
are almost exclusively associated with children, due to severe dehydration and
lack of protective immunity.

3 Pathogenicity Mechanisms

3.1 Toxins and Adhesins

The main feature of the pathogenesis of diarrheal disease caused by ETEC is the
successful colonization of the surface of the intestinal mucosa and the hypersecre-
tion of water and electrolytes due to enterotoxic activity. ETEC overcomes the non-
specific immunological barriers present in the digestive tract and once on the
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intestinal epithelial surface, the bacteria multiply and secrete two potent enterotox-
ins, a heat-labile (LT) and a heat-stable (ST) toxins, responsible for secretory diar-
rhea. Generally, LT+/ST+, ST+, and LT+ strains can be found in nature, of which,
ST-producing strains are presumably more virulent than LT-only strains. ST is a
short non-immunogenic peptide and has two variants, STh produced by ETEC
strains isolated from humans and STp produced by ETEC isolated from humans and
pigs (Nataro and Kaper 1998; Dubreuil 2012). ST binds to the guanylyl cyclase
receptor in the intestinal surface and stimulates its action, increasing intracellular
levels of cyclic guanosine monophosphate (cGMP). This leads to the activation and
opening of the regulator of the transmembrane conductance of cystic fibrosis
(CFTR), which permits the exit of chloride ions and water to the intestinal lumen
(Dubreuil 2012).

LT is a holotoxin of the AB5 type (1 A and 5B subunits) (Spangler 1992). The B
subunit forms a pentameric structure and interacts with the mono-ganglioside GM;
receptor on intestinal epithelial cells, which facilitates the internalization of the
toxic A subunit-pentamer B complex in cell membrane lipid rafts. The complex is
then transported to the cytosol by retrograde transport through the Golgi apparatus
and the endoplasmic reticulum. Following, the subunit A which possesses ADP-
ribosyltransferase activity transfers an ADP-ribosyl residue from an NAD* mole-
cule to the o subunit of protein G, which regulates the activity of the adenylate
cyclase enzyme (Mudrak and Kuehn 2010). This leads to an increase in the intra-
cellular level of cyclic adenosine monophosphate (cAMP), stimulating cell kinases,
which phosphorylate and activate the CFTR channel, liberating chloride ions and
water to the intestinal lumen. The increase of intracellular cAMP activates protein
kinase A (PKA), which affects sodium absorption by means of the interchanger 3 of
Na*/H* (NHE3), allowing subsequent liberation to the intestinal lumen (Dubreuil
2012). The massive loss of electrolytes and water into the intestinal lumen produced
both by ST and LT is what is finally manifested as watery diarrhea in the host
(Dubreuil 2012). Notably, the B subunit is considered to be a potent mucosal adju-
vant. Both LT-A and LT-B elicit immuno-protective antibodies in humans, follow-
ing natural ETEC infections, and in animals after experimental challenge. Thus, it
is a suitable immunogenic candidate in ETEC vaccines. The ST, on the contrary, is
poorly immunogenic, and this is in part the reason why vaccines against ST-producing
ETEC have not been successful.

3.2 Nonclassical Toxins, Mucinases, and Metalloproteases

Several other potential virulence factors (e.g., EAST-1, EatA, LeoA, YghJ) have been
found in ETEC strains although none of them has been associated with disease in humans
(Gonzales et al. 2013b; Fleckenstein et al. 2014). A third toxin initially described in
EAEC namely the EAEC heat-stable toxin (EAST-1) was also reported in some ETEC
and other DEC strains. The ast gene encoding EAST-1 is found associated with mobile
elements, which explains its distribution among the several DEC. Similar to ST, EAST-1
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produces an increase in intracellular levels of cGMP, which presumably may produce an
additive effect in the watery diarrhea process (Fleckenstein and Sheikh 2014).

Some ETEC strains produce a proteinase called ETEC autotransporter (EatA), a
member of the family of self-exported proteins referred to as serine protease auto-
transporters of the Enterobacteriaceae (SPATE). EatA is a mucinase that degrades
MUC?2, the dominant mucin glycoprotein in the intestinal mucus layer, and it is also
capable of degrading EtpA, an ETEC two partner adhesin. EtpA is a novel flagella-
associated tip adhesin of some ETEC strains, which facilitates toxin delivery (Roy
et al. 2011; Kumar et al. 2014; Fleckenstein et al. 2014). EatA was found in 50 and
70 % of ETEC strains in Peru and Chile, respectively (Rivera et al. 2013; Del Canto
etal. 2011). Vaccination of mice with EatA showed protection against experimental
intestinal infection with an ETEC homologous strain (Kumar et al. 2014).

A cytoplasmic protein with GTPase activity was found to influence positively the
secretion of LT hence named Labile Enterotoxin Output (LeoA) (Fleckenstein et al.
2000). The gene coding for LeoA is present in a 46-kb pathogenicity island that also
carries the fia gene, which was found in 6 % of children ETEC isolates (Fleckenstein
et al. 2000; Gonzales et al. 2013b). The low frequency of leoA among ETEC strains
argues against a relevant role in pathogenesis.

The cytolysin A (ClyA) is a pore-forming protein initially described in E. coli
K-12. The clyA (also called sheA) gene is present in most pathogenic E. coli, includ-
ing ETEC, and it was suggested that ClyA could contribute to virulence of some
pathogroups. ClyA recognizes membrane-associated cholesterol as a receptor
(Ludwig et al. 2004). A survey of clyA among ETEC strains showed that more than
90 % of the isolates contained this gene (Turner et al. 2006).

A metalloprotease encoded by the chromosomal yghJ gene was found widely
distributed in DEC and Vibrio cholerae. Y ghJ] was reported to influence the ability
of ETEC to colonize the small intestine targeting degradation of MUC2 and MUC3
intestinal mucins (Luo et al. 2014). More investigation is required to elucidate the
role of these new potential virulence factors in the pathogenic scheme of ETEC.

3.3 Adherence Factors

The interaction of ETEC strains with and colonization of the epithelial mucosa in
the small bowel is mediated by at least 26 fimbrial adhesive structures collectively
called “coli surface antigens” (CS1-CS26) (Madhavan and Sakellaris 2015). Upon
the discovery of the first two ETEC fimbrial types in the late 1970s by Dolores
Evans, a Mexican researcher, they were originally called “colonization factor anti-
gens” (CFAs) (e.g., CFA/I and CFA/II) (Evans et al. 1975). The CFA/III was discov-
ered by T. Honda in ETEC serogroup O25 isolated in Japan (Honda et al. 1984). The
CFA/IV was found in ETEC isolates from traveler’s diarrhea by British investiga-
tors (Thomas et al. 1982; Thomas et al. 1985). It was later on realized that CFA/II
was composed of CS1, CS2, and CS3 and CFA/IV of CS4, CSS, and CS6, in differ-
ent permutations (Smyth 1982; Thomas et al. 1985; Levine et al. 1984). More
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curiously than interesting, the term CS was coined by ETEC researcher Cyril Smyth
(Smyth 1982). Currently, only CFA/I and CFA/III conserve the original designation
in recent reviews of ETEC adherence factors, while the remaining 24 CFs are
referred to as CSs. For historical reasons and to honor the researcher who first
described and named the first ETEC colonization factors in this chapter, we will
refer to all these fimbrial antigens collectively as CFs.

The genetic determinants dictating the production of CFs are generally harbored
in virulence plasmids although some are located in the ETEC chromosome
(Madhavan and Sakellaris 2015; Qadri et al. 2005). The stalk of the fimbrial CF
structure is generally composed of thousands of copies of one major fimbrial sub-
unit. For a handful of known CFs, a minor pilin subunit, which is located at the tip
of the filament, is responsible for receptor recognition on host cells. In the case of
CS3 and CS6, two major protein subunits (CS3A and CS3B, and CS6A and CS6B)
comprising the extracellular product have been found. The biochemical nature and
spatial distribution of the major and minor subunits determine fimbrial morphology
(Del Canto et al. 2012; Madhavan and Sakellaris 2015). An ETEC strain may
express one or more CFs in different combinations and their distribution varies
according to the geographic region of the world (Qadri et al. 2005). The most fre-
quent CFs in ETEC strains around the world are CFA/I, CS1, CS2, CS3, CS4, CS5,
CS6,CS7,CS14, CS17, and CS21. Nevertheless, over 50 % of the epidemic strains
analyzed worldwide lack any of the known CFs (Giron et al. 1995; Qadri et al.
2005; Del Canto et al. 2011; Rodas et al. 2011b; Del Canto et al. 2012; Madhavan
and Sakellaris 2015). This has been a major hurdle in the development of fimbrial-
based vaccines against ETEC because the vaccines tested so far are not protective
against heterologous strains producing different or unknown CFs. Thus, more
research is needed to identify new CFs in ETEC that are wrongfully called CF
negative.

A new highly prevalent CF has been described in ETEC strains. The meningitis-
associated temperature-dependent fimbriae (MAT) was reported in septicemic and
meningitis-causing E. coli strains growing at temperature below 37 °C (Pouttu et al.
2001). Although initially thought to be exclusive of these extra-intestinal E. coli, it
was later found that MAT are produced at 37 °C by all human and animal patho-
genic E. coli, including commensal strains. These fimbriae are encoded in the
genetic core of all E. coli; hence, it was suggested that MAT be renamed E. coli
common pilus (ECP) to better describe the wide distribution of this pilus among this
organism (Rendon et al. 2007). Blackburn et al. and others have shown that the ecpA
gene is certainly the most prevalent CF in all ETEC (Del Canto et al. 2011; Rivera
et al. 2013). ECP mediates bacterial attachment to human, animal, avian, and plant
cells through the EcpD tip adhesin and is involved in the development of biofilms
by various E. coli pathogroups, including ETEC (Rendon et al. 2007; Blackburn
et al. 2009; Garnett et al. 2012). The biological relevance of ECP, in the context of
ETEC diarrheal disease, remains elusive. However, the fact that ECP is expressed
along with other CFs and is highly prevalent among ETEC strains should not been
ignored as it is reasonable to assume that this synergy would increase the adhesive-
ness of the bacteria.
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Although CFs are known for over 40 years, the biochemical nature of the intes-
tinal receptors for the majority of them is unknown. Asialo-glycosphingolipids are
implicated as receptors for CFA/I-mediated adherence to Caco-2 cells and erythro-
cytes (Madhavan et al. 2016) and a sulfatide glycosphingolipid (SO3-3Gal-f1Cer)
was proposed as the receptor for CS6 (Jansson et al. 2009). In contrast, the receptor
binding moiety of some of the fimbriae of animal ETEC (e.g., K88, K99, F17G, F4)
have been elucidated and used successfully to achieve protection in pigs or calves
(Lonardi et al. 2013); (for further details, see Chap. 15). Finally, the long polar fim-
briae genes (Lpf) and their variants initially identified in Shiga toxin-producing
E. coli also have been described in other diarrheagenic pathogroups of E. coli
including ETEC strains (Torres et al. 2002; Toma et al. 2006).

3.4 Nonclassical Adhesins

In recent years, a group of non-fimbrial adhesins EtpA, Tia, TibA, TleA, and EacH
referred to as “nonclassical adhesins” was described and characterized mostly in the
prototypic strain ETEC H10407A (Fleckenstein et al. 2014). The distribution of the
genes encoding these potential adherence factors among ETEC strains varies
greatly. EtpA, a high-molecular-weight glycoprotein encoded on the efpBAC locus
harbored on the virulence plasmid of H10407 was suggested to participate in adher-
ence to cultured intestinal epithelial cells. Later on, it was reported that EtpA is a
flagellum tip-associated protein that allows bacterial interaction with cultured epi-
thelial cells and protects mice vaccinated with the glycoprotein or flagella (Roy
et al. 2009; Roy et al. 2008). Although this represents a novel mechanism of bacte-
rial adherence, it is not a generalized feature of ETEC strains. The etpABC locus
was found in about 20 % of ETEC strains from different geographic origins but not
in other DEC (Fleckenstein et al. 2006). However, etpA was detected in more than
70 % of Chilean ETEC strains studied (Del Canto et al. 2011).

The toxigenic invasion loci A and B encode two proteins, Tia and TibA, which
were suggested to be associated with adherence and invasion of cultured epithelial
cells by ETEC H10407A (Fleckenstein et al. 1996; Lindenthal and Elsinghorst
1999). TibA is an autotransporter glycoprotein that mediates bacterial attachment to
a variety of cultured human epithelial cells, autoaggregation, and biofilm formation
(Sherlock et al. 2005; Cote and Mourez 2011). While a series of reports on Tia and
TibA implicate them as adhesins/invasins, the invasion and possible damage to the
small bowel by ETEC strains in humans is not a feature of the pathology seen in
diarrheal cases. Further, the invasion rates of HI0407A in cultured epithelial cells
are far lower than those reported for intracellular pathogens: Salmonella enterica
serovars or Shigella. It is possible, however, that these proteins play perhaps a mar-
ginal role at some stage in the diarrheal process.

Recently, a homolog (97 % identity, 90 % coverage) of the temperature-sensitive
hemagglutinin (Tsh) autotransporter protein previously described in avian patho-
genic E. coli strains was reported in ETEC and called TleA (Tsh-like ETEC)
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(Gutierrez et al. 2015). When expressed in a nonadherent E. coli K-12 strain HB101,
TleA confers Caco-2 cell adherence properties. In addition, TleA showed mucinase
activity degrading leukocyte surface-exposed glycoproteins and mucin, suggesting
that it may contribute to the colonization of the intestine epithelium and modulation
of the immune response (Gutierrez et al. 2015).

Finally, it was suggested that the EacH protein contributes to bacterial adherence
and virulence; however, the eaeH gene is not ETEC specific since it is found in
other E. coli (Sheikh et al. 2014; Luo et al. 2014). While the significance of these
“nonclassical virulence factors” in the establishment or progression of ETEC diar-
rheal disease is not confirmed, it is apparent that some of these determinants might
play, in combination with the CFs, some synergistic role in the adhesive properties
of some ETEC strains. Comparative adherence studies, particularly in animal mod-
els, employing isogenic CF, EtpA, or EaeH mutants would help understand their
true contribution to bacterial attachment.

4 Epidemiology of ETEC Diarrheal Disease
in Latin America

Several epidemiological studies of diarrheal disease were conducted during the
period 1974-1987 in adult populations of students and tourists, as well as Peace
Corps volunteers working in Latin American countries, to determine the etiologic
causes of infection (Black 1990). In all, ETEC was the bacterial enteropathogen
most frequently identified, with a median of 42 % of the diarrhea episodes in travel-
ers; this was greater than those described for Africa (36%) and Asia (16 %).
Additionally, one of the first reports of acute diarrhea in the pediatric population in
Latin America was a study that evaluated the impact of oral rehydration in the treat-
ment of ETEC infections as recommended by the World Health Organization
(WHO) (McLean et al. 1981; Del Canto et al. 2011). This study was performed in
Fortaleza, Brazil from January 1977 to June 1978 and found that ETEC strains were
responsible for 27 % of the cases of diarrhea in children age 8-19 months old
(McLean et al. 1981).

In the next sections, we will summarize the latest epidemiological studies con-
ducted in America, the continent, with emphasis on the role of ETEC as a health
burden protagonist.

4.1 ETEC in Chile

During a study of epidemiological vigilance performed in the 1980s, 103 strains of
ETEC were collected from children under 5 years of age, who had diarrhea and
lived in a peripheral population in the city of Santiago, Chile (Del Canto et al. 2011).
The O somatic antigens were detected by serology and enterotoxins (LT and ST)
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and classical and nonclassical adhesins were identified by PCR. Ten and 2 % of the
strains harbored known CFs and known classical adhesins, respectively, while 73 %
had a combination of CFs and nonclassical adhesins. The most common surface
determinants found were EtpA (75 %), CS21 (73 %), CS3 (26 %), CS1 (13 %), and
CS2 (13 %). However, in spite of including nonclassical adhesins in the analyses,
16 % of the ETEC strains remained negative for any known adhesin (Del Canto
et al. 2011), suggesting the presence of unknown variants. A study conducted dur-
ing the period 1988-1989 in a low socioeconomic level peri-urban community in
Santiago, with access to chlorinated water, described a frequency of ETEC isolation
of 12.3 % in a cohort of 340 children (Levine et al. 1993). Interestingly, two subse-
quent studies performed in the pediatric population of the same semirural zone in
the years 2002-2003 (Vidal et al. 2004) and 2004-2005 (Vidal et al. 2005), found
isolation frequencies of ETEC of 3.1 % and 1.9 %, respectively. Clearly, the signifi-
cant reduction in ETEC burden was the result of the introduction of sewage water
treatment in the community.

4.2 ETEC in the Highlands of Bolivia

In a retrospective study involving 3943 cases of childhood diarrhea and 1026 chil-
dren without diarrhea, ETEC and EPEC came second at similar rates (~6 %) after
EAEC (11.2%). Diarrheal disecase due to EPEC, ETEC, and EAEC infections
peaked in the Bolivian winter months (April-September). All together, these DEC
had high levels of antibiotic resistance to tetracycline and sulfamethoxazole-
trimethoprim (Gonzales et al. 2013a).

In a 4-year investigation, 299 strains of ETEC isolated from children with diar-
rhea seen at local hospitals in the regions of La Paz and Albina Patifio in
Cochabamba, and from 55 children without diarrhea, were screened for toxin and
CF profiles. Climatically and socioeconomically, these are two very different
regions of Bolivia. Strains bearing LT or ST only were found 2-3-fold more fre-
quently than LT/ST producers among diarrheic patients. This latter group of strains
was most commonly found in children between 2 and 5 years of age while STh+
strains were found among younger children. Interestingly however, the severity of
disease was not related to toxin profile. In the 55 children without diarrhea, LT+
ETEC were more frequent than in the sick children, followed by ST+ and LT+/ST+
strains. In agreement with previous epidemiological studies, LT-only ETEC can be
found in children without diarrheal symptoms, which has suggested that perhaps
LT-only strains are less virulent than ST-only ETEC (Kotloff et al. 2013). However,
in this population, depending of the year of study, LT+ ETEC strains were associ-
ated as frequently as ST+ ETEC with more cases of diarrhea. The search for CFs
among the isolates revealed that CF+ strains were more common in diarrheal sam-
ples than in controls. CFA/I followed by CFA/II, CFA/IV, CS12, CS13, CS14, and
CS21 were the most common fimbrial genes found in strains from diarrheic
patients. Of note, CS17 was found in 2-6 % of the strains in diarrheic patients,
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depending on the year of study, but it was as frequent as CS14 in controls. It
remains to be determined if the csb gene, encoding the CS17 pilin, is related to
CS23 recently described in Chilean ETEC strains, which is 97 % identical to CS17
(Del Canto et al. 2012). Given the geographic vicinity of Bolivia and Chile, this
notion is not far-fetched. The new virulence factors clyA, eatA, tia, tibC, leoA, and
east-1 genes were found at varying frequencies in both study groups but were not
associated with diarrheal cases. The east-1 and tia genes were associated with LT/
ST strains while eatA was commonly found associated with ST strains (Gonzales
et al. 2013a). Further analysis by Multilocus Sequence Typing (MLST) of LT+
CS17+ ETEC strains revealed two major sequence types, 423 and 443. All strains
of the sequence type 423 had a single nucleotide polymorphism in the CS17 operon
and were resistant to erythromycin, penicillin, chloramphenicol, and oxacillin
(Rodas et al. 2011a).

4.3 ETEC in Colombia

In a handful of survey studies performed in different regions of Colombia, the fre-
quency of several DEC has been addressed. DEC pathogroups were sought by mul-
tiplex PCR in 108 diarrheal stool samples from children attending 6 hospitals in
Bogota, as well as in 76 food product (meat and vegetables) samples. Sixty-seven
samples positive for E. coli strains were isolated from stools of children with diar-
rhea, 16 from meat samples, and 12 from vegetable samples. As expected, various
DEC pathogroups were found at different ratios in diarrheic and food samples. Six,
3, 2, 1 of the clinical samples had EPEC, EAEC, ETEC, and STEC, respectively.
The combined results of diarrheal and food samples showed that 10 % had any
DEC. Eleven percent of the clinical samples had EPEC and 8 % of the food samples
had any E. coli pathogroup. No information was provided regarding the back-
ground E. coli pathogroups circulating in healthy children in this community
(Rugeles et al. 2010).

A recent study looked for E. coli pathogroups in cheese, pasteurized milk, unpas-
teurized juice, ground beef, and vegetables and found that 8 % of the samples had
DEC, among which STEC and ETEC were almost equally present in ground beef
(Amezquita-Montes et al. 2015).

A different study of diarrheal diseases performed in the Northern region of
Colombia, namely the cities of Cartagena and Sincelejo, involved 267 stool samples
from children less than 5 years of age with diarrhea collected during 2007. No
healthy controls were examined. Among them, 139 E. coli isolates were recovered,
28 from Cartagena, and 111 from Sincelejo. Twenty of the 139 (15 %) E. coli iso-
lates amplified any of the virulence genes sought. Overall, 7.5 % of the total diar-
rheic samples had DEC. ETEC was found in 7 % of the 139 E. coli isolates, mainly
in children below 2 years old. However, none of the associations of pathogens dis-
played statistical significance, attributed perhaps to the lack of healthy control group
for comparison (Gomez-Duarte et al. 2010).
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More recently, a case-control study (349 pairs) conducted to evaluate the asso-
ciation of DEC with diarrheal disease in children younger than 5 years of age, who
attended Napoleon Franco Pareja Children’s Hospital in Cartagena. A total of 349
pairs were matched; however, the ratio of 1:1 of cases and controls were not paired
for any variable. The stool samples from matched controls came from the same
hospital and from day-care centers in the vicinity of the hospital. DEC were found
in 7.4 % cases and in 3.4 % controls. ETEC was the most common pathogen when
comparing cases (4.9 %) versus controls (3 %) although these results do not appear
to indicate an association with disease. Most of the ETEC strains isolated from diar-
rheal cases were ST+ (9 of 17). In contrast, 7/8 control children had LT+ ETEC. The
presence of other E. coli pathogroups was negligible in this pairing system (Gomez-
Duarte et al. 2013).

Forty ETEC strains isolated from diarrheic children and controls originated from
the studies described above were assayed for the presence of various CFs and new
putative virulence factors. One half of the clinical ETEC strains had LT genes while
32 and 15 % of the isolates were ST+ or LT+/ST+, respectively. Longus gene was
detected in 50 % of the clinical ETEC strains in association with CFA/I or other CSs
in particular with ST+ ETEC. The CFA/I was present in 32 % of ST-only ETEC. CS5
and CS6 were found in 12 and 20 % of the strains, respectively. New putative viru-
lence factor genes irp2, fyuA, and eatA were present in 33 (82.5 %), 30 (75 %), and
29 (72.5 %) of ETEC isolates, respectively. Sixty percent of the strains had these
three genes. In contrast, strains carrying the tia-PAl-associated genes were uncom-
mon. Only 1 (2.5 %) strain was positive for the leoA gene while tia and tibA were
found in 7 (17.5 %) isolates. Forty-five percent of the strains carried efpA and etpB
virulence plasmid genes. Eighty percent of the ETEC strains were resistant to ampi-
cillin and trimethoprim-sulfamethoxazole. Strains resistant to ampicillin,
trimethoprim-sulfamethoxazole, cefazolin, and amoxicillin clavulanate were
detected in 67 %, 50 %, 15 %, and 5 % of the isolates, respectively. No resistance to
ceftriaxone, ceftazidime, cefepime, ciprofloxacin, and piperacillin/tazobactam was
detected among ETEC isolates. Based on multiple locus sequencing typing (MLST),
six clonal groups of ETEC clinical isolates were recognized in Northwest Colombia
indicating that highly diverse in terms of virulence factors, serotypes, and MSLT
types (Guerra et al. 2014).

4.4 ETEC in the Andes

The most recent studies of childhood diarrheal disease in the Andes region of South
America come from Peru and Ecuador. While ETEC continues to be responsible for
some attacks rates of diarrhea in children, some studies also have found ETEC asso-
ciated with illness in HIV patients (Garcia et al. 2010). A prospective, passive sur-
veillance cohort diarrhea study of 1129 samples from children 2 to 24 months of age
with diarrhea and 744 samples from control children living in the peri-urban com-
munities of Lima, Peru, conducted between September 2006 and July 2008 revealed
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the presence of ETEC equally in cases and controls (~5%). The most prevalent
ETEC toxin types in both groups of children were LT producers followed by ST+
and then LT+/ST+. As in other studies, a minority of children had mixed DEC infec-
tions. About half of ETEC isolates lacked CF as determined by monoclonal anti-
body screening. The most common CF found was CS6. In this cohort, a high
percentage of strains were resistant to ampicillin (71 %) and co-trimoxazole (61 %)
(Rivera et al. 2010).

A retrospective study of the prevalence of DEC in Peru was conducted employ-
ing E. coli strains isolated from 3284 pediatric patients. The samples came from
several communities, hospitals, and a cohort study. Samples of non-diarrheic chil-
dren were also included. The presence of EAEC, EPEC, ETEC, and DAEC varied
from 10, 8, 7, to 5 %, respectively. ETEC has found more frequently among 13-20
months-old children.

Gonzaga et al. reported an outbreak of co-infection with ETEC and norovirus
genotype 1 among crew members of a US navy ship in Lima, Peru. While the asso-
ciation of ETEC and norovirus has been reported before it was noted that such
outbreak was the first to occur on a navy ship in Peruvian waters docking in Lima
(Gonzaga et al. 2011).

In a separate study, the antimicrobial susceptibility and mechanisms of resistance
of 205 ETEC isolates from two cohort studies in children 24 months of age in Lima,
Peru revealed that ETEC from Peruvian children are often resistant to older, inex-
pensive antibiotics, while remaining susceptible to ciprofloxacin, cephalosporins,
and furazolidone. Fluoroquinolones and azithromycin remain the drugs of choice
for ETEC infections in Peru (Medina et al. 2015).

In Northwestern Ecuador, several case-control studies were conducted in 16
communities in the Canton Eloy Alfaro, province of Esmeraldas, between November
2004 and December 2010 to investigate the distribution of ETEC and EIEC across
the region. The data show that the source of infection may have been Borbdn, the
main commercial and population center of the region, from where ETEC and EIEC
spread to other communities at different time periods (Bhavnani et al. 2016).

4.5 Brazilian ETEC

The studies reported in the last 3 years on the epidemiology of diarrheal diseases, in
particular associated to ETEC infections, are too few to represent such a vast terri-
tory. A case-matched control study was conducted in a hospital in the city of Joao
Pessoa, State of Paraiba in the Northeast of Brazil, which included 2344 E. coli iso-
lates from 290 infants with diarrhea and 290 matched controls. Sixty-four percent of
the cases occurred during dry season. Ten percent of the E. coli isolates were ETEC,
25% EAEC, and 9.3 % atypical EPEC. ETEC was also found in 3 % of the matched
controls. It is clear from this study that EAEC is highly represented in this geo-
graphic region. It is important to note that these DEC were sought employing DNA
probes specific for virulence factors of the pathogens, as opposed to using multiplex
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PCR, which is currently widely used by many laboratories. It is also important to
point out that this method may not be 100 % reliable due to natural minor variations
that occur in gene sequences of the factors studied among field strains (Moreno et al.
2010). A study conducted in 23 “quilombola” communities with low socioeconomic
status located at 265 km (165 miles) North of the City of Espiritu Santo, Southeast
of Brazil, included 590 samples from 141 children with diarrhea (<10 years of age)
and from 419 healthy controls. A total of 1943 E. coli strains were studied for the
presence of DEC virulence factors by multiplex PCR. DEC were found in 253 chil-
dren below 5 years of age (45.2%) and among these isolates EAEC 21 %, DAEC
11.6 %, EPEC 9.3 %, and ETEC 2.7 % were found. Most of the ETEC strains were
LT+/ST+ (Lozer et al. 2013). As in the Northeast of Brazil, EAEC was the most
frequent DEC found while ETEC was the least frequent DEC.

4.6 ETEC Infections Among Travelers and Residents
in Central America

Tourists visiting Guatemala and Mexico are common “preys” of ETEC. Acute diar-
rhea is Guatemala’s second-leading cause of child morbidity and mortality, with
rates as high as 8-11 episodes/child per year (Cruz et al. 1992). A collection of
ETEC (CS6+ and STp+) isolates associated with travelers’ diarrhea in Antigua,
Guatemala and Cuernavaca, Mexico, were targeted for MLST. Strains with sequence
type 398 were commonly found in children living in Antigua and adult travelers to
this area. In addition, ETEC strains from travelers clustered within the 278 and 182
MLST types. The peak of diarrheal diseases due to bacterial pathogens in Mexico
and Central America normally occurs in the summer months while viral diarrheal
infections are prevalent in the winter months. A cohort study of US adult students
traveling to Cuernavaca followed during 1 year confirmed this notion and revealed
that the attack rate of ETEC infection increased by 7 % for each degree centigrade
increase in weekly ambient temperature (Paredes-Paredes et al. 2011). Infections by
ST+ ETEC in students staying in Mexico for at least 6 months put them at a greater
risk of developing persistent abdominal symptoms (Nair et al. 2014).

The significance of ETEC infections in Guatemalan children was studied by
(Torres et al. 2015). The study included children aged 6-36 months, with severe
diarrhea seen at the Hospital Roosevelt in the city of Guatemala. In addition, com-
munity cases were identified by passive surveillance during two consecutive years
in children living in the community of Santa Marfa de Jesds (SMJ), Sacatepéquez.
These community children were matched with non-diarrhea controls for age, gen-
der, and residence zone. CFs and toxins were sought by immunoassays. The peak of
ETEC infections was the summer rainy months of May—September. The authors
found that ETEC accounted for 26 % of severe cases of diarrhea in children requir-
ing hospitalization, 15 % of diarrhea in the community, and 29 % of travelers’ diar-
rhea. However, 10 % of the healthy controls also had ETEC. LT+ ETEC were the
most common among acute and persistent cases, followed by ST+ ETEC. Notably,
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65 % of the isolates had no detectable known CF, a result that is most likely attrib-
uted to the monoclonal antibody screening approach. Nevertheless, the most
commonly expressed CFs among community ETEC strains were CS6 (95 %), fol-
lowed by CS1+CS3 or CS2+CS3 in 7% and CS4+CS6 or CS5+CS6 in 6 % of the
strains. Importantly, this study highlights differences in the strains infecting resident
children as compared to ETEC strains infecting visitors.

In Nicaragua, 526 stool samples from 381 children with and 145 without diar-
rhea living in the city of Leon were screened for the presence of DEC types by
multiplex PCR. Although EAEC and EPEC were found in the diarrheic children,
only ETEC LT+/ST+ were significantly associated with diarrhea (Reyes et al. 2010).

4.7 ETEC in Mexico

It is no secret that authentic Mexican tacos, of course served in Mexico not in the
United States, taste yuammier with a coliform-rich green or red hot salsa. The ability
of fecal coliforms to withstand the low pH of and to survive and multiply in Mexican
salsas at room temperature at mobile street food stands accounts for high rates of
diarrheal episodes in the happy and loyal customers. Several studies conducted by
Teresa Estrada and others have documented the presence of ETEC, other DEC and
enteric pathogens in street food stands (Estrada-Garcia et al. 2009; Patzi-Vargas
et al. 2015). More recently, a series of reports conducted in the city of Pachuca,
Mexico, relate the significance of the presence of enteric bacteria in vegetables,
fruits, juices, and other eatable agricultural products. These studies reveal that toma-
toes, alfalfa sprouts, jalapeno and serrano papers can host DEC. ETEC was detected
in 12% of serrano and 2% of jalapeno peppers, and in 2-3 % of tomatoes, alfalfa
sprouts, and fresh raw beetroot juice available at local public markets in Pachuca
(Gomez-Aldapa et al. 2013; Gomez-Aldapa et al. 2014a; Rangel-Vargas et al. 2015).
A different study showed that ETEC, EIEC, EPEC, and STEC display similar growth
patterns on jalapeno or serrano peppers at 25 or 3 °C although growth after 12 days
of incubation was inhibited much faster at 3 °C (Gomez-Aldapa et al. 2014b).

Ready-to-eat cooked vegetable salads sold at a local restaurant in Pachuca were
screened for Salmonella and DEC by multiplex PCR and bacteriological techniques
(Bautista-De Leon et al. 2013). EPEC, STEC non-O157:H7, and ETEC (ST+) were
found in only 1.4 % of the samples screened. STEC non-O157 and ETEC strains
have been identified from raw foods in Mexico such as vegetable salads and carrot
juice (Castro-Rosas et al. 2012; Torres-Vitela et al. 2013).

In Mexico City, fecal samples from 1000 patients with acute diarrhea who
attended various hospitals were analyzed for the presence of enteric pathogens.
ETEC was found in 54 samples. These ETEC strains were multidrug resistant.
Eighty percent of them were resistant to rifaximin, 30 % to ampicillin, and
50-90% to fosfomycin, trimethoprim-sulfamethoxazole, neomycin, furazoli-
done, chloramphenicol, and ciprofloxacin (Novoa-Farias et al. 2016). In a differ-
ent study, ETEC isolates showed increased resistance over the years to
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ciprofloxacin and levofloxacin, compared to isolates in Central America. The ris-
ing minimal inhibitory concentration (MICs) of ETEC and other DEC justify the
need for continuous surveillance of susceptibility patterns worldwide and geo-
graphical-specific recommendations on the therapy of diarrheal diseases
(Ouyang-Latimer et al. 2011).

The prevalence of DEC was investigated in diarrheic children hospitalized in the
Southeast Yucatan peninsula. While DEC surpassed Salmonella and Shigella in
terms of frequency among the cases, the isolation of individual E. coli pathogroups
ranged in descending order DAEC>EAEC>EPEC>mixed DEC> ETEC. Ten per-
cent of the cases were infected with ETEC strains which also harbored the so-called
supplementary virulence genes, generally present in EAEC strains, such as aap
(dispersin), aatA (translocator), ast (EAST-1), pet (plasmid-encoded toxin), and cdt
(cytolethal distending toxin). The rationale for searching these genes in ETEC or
DEC is not clear since not all of these genes are true virulence factors, and their role
in pathogens other than EAEC is largely unknown. Nevertheless, as expected these
genes were present in 93 % of EAEC strains and at different percentages in the other
DEC categories. One-third of ETEC strains harbored ast (30 %) and aap (3 %)
(Patzi-Vargas et al. 2015).

The presence of Longus, a type IV pilus of ETEC (also known as CS21) (Giron
et al. 1994), was recently revisited in strains previously isolated from 5-year-old
children in Bangladesh and Mexico. One quarter of the strains carried the Longus
major pilus gene /ngA, but the LngA protein was only detected in 50 % of these
(Cruz-Cordova et al. 2014). In previous studies, the frequency of IngA+ in
Bangladeshi and Mexican ETEC strains was 6.5 % and 36 %, respectively (Qadri
et al. 2000; Gutierrez-Cazarez et al. 2000). It is apparent that over time there is a
shift and turnover of ETEC strains in these human populations.

The biochemical and genetic diversity of ETEC isolated from US subjects study-
ing in the cities of Cuernavaca or Guadalajara, Mexico during the summer months
was studied in a total of 166 strains. Most of the strains were ST+ followed by LT+/
ST+ and lastly LT+. Twenty-four clonal groups were identified by Random
Amplified Polymorphic DNA RAPD analysis, which indicates extensive genetic
diversity among ETEC strains that persist in this particular location (Ouyang-
Latimer et al. 2010).

S Current Status of the Development of Vaccines
Against ETEC

The development of an ETEC vaccine is a long needed and important primary pre-
vention strategy against diarrheal disease particularly for children who live in
endemic regions and travelers. Despite much research efforts of many investigators,
safe and effective vaccines against ETEC diarrheal disease are not available
(Fleckenstein et al. 2014; Madhavan and Sakellaris 2015). The major challenges in
developing such vaccine are the rich repertoire of CF antigenic mosaics present in
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ETEC and the poor immunogenicity of ST, which is a feature of the majority of
virulent strains. The ETEC vaccines developed in the past achieved some protection
against homologous strains but not heterologous strains. An array of vaccine formu-
lations, including formalin-killed organisms, attenuated E. coli and non-E. coli
strains used as vectors expressing the various CFs, pili-derived peptides, and pili-
based vaccines comprising most prevalent CFs combined with toxoid forms of ST
and LT has been tested for induction of anti-adherence and anti-toxicity antibody
response in animal models and human volunteers (Giron et al. 1995; Barry et al.
2006; Norton et al. 2015; Sincock et al. 2016). The use of new multi-epitope fusion
antigens consisting of chimeric CFs-toxin fusions lacking toxicity, promises to
achieve important immunogenicity and protection (Ruan et al. 2015; Rausch et al.
2016; Zhang and Sack 2015).

So far, the only ETEC vaccine available is one originally designed to prevent
cholera, which contains the recombinant B subunit of the cholera toxin (rCTB).
This preparation is trademarked under the name Dukoral® and provides 50-70 %
protection against diarrhea caused by ETEC strains that produce LT only and LT/
ST. This cross-protection is attributed to the striking structural, functional, and anti-
genic similarities that exist between CT and LT (Nataro and Kaper 1998; Sanchez
and Holmgren 2005). Ideally, an ETEC vaccine should contain a toxoid form of LT,
an immunogenic and nontoxic form of ST, and a cocktail of the most prevalent CFs.
This vaccine should be a one-dose oral vaccine and achieve long-term protection
against heterologous ETEC strains to attain wider coverage, and to protect young
children during the first 2-3 years of life. However, only a handful of the most fre-
quent CFs found worldwide has been evaluated as potential vaccines (Sanchez and
Holmgren 2005). The demonstrated relatedness between all nine fimbrial types of
the Class 5 family composed of CFA/I, CS1, CS2, CS4, CSS5, CS14, CS17, CS19,
and PCFO71 shall help in the formulation of a common antigen that elicits protec-
tive antibodies against all these CFs. Of high importance in attaining an ETEC
vaccine is the search for new CFs in the so-called CF-negative ETECs. Much has
been learned from these vaccination experiences in the last 45 years; however, chil-
dren continue to die mainly from ETEC and EPEC infections due to the lack of
protective vaccines.

For a current status and detailed analysis of ETEC vaccines in early and advanced
stages of clinical development and in the preclinical stage, we refer the reader to the
review by (O’Ryan et al. 2015). Novelties published in the last 2 years associated
with new vaccine studies, and new antigens are described in the Table 1.1.

6 Concluding Remarks

The epidemiological studies of gastrointestinal infections conducted in Latin
America in recent years have unraveled the most important causes of infantile diar-
rheal diseases in different settings. Importantly, these studies have revealed zone-
specific DEC and agree that in the realm of enteric infections, watery diarrhea due
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to ETEC continues to represent a serious health burden among young children in
low-income communities. Considering the different tools available to each
researcher to survey the presence of pathogens and their virulence factors, the stud-
ies provide important clues regarding the characteristics of the strains and the
dynamics of pathogens and of virulence factors among endemic strains. The reduc-
tion of ETEC infections in some regions correlates with improvement of the region’s
economy and sanitary conditions. The availability of clean drinking water has made
a marked impact in diminishing the rates of ETEC infections.

The epidemiological studies reviewed here vary substantially in design. For
example, differences in settings and populations of study such as inclusion of
matched case-controls, presence or absence of healthy controls, inclusion of hos-
pitalized cases versus community or cohort cases, retrospective versus prospec-
tive studies, or whether there was a history or not of antibiotics therapy in the
diarrheic children before or during the study. Not only these differences will
impact the outcome, but they also make it difficult to establish fair comparisons
between studies.

The implementation of standard protocols for the molecular diagnostic of E. coli
pathotypes and for characterization of their virulence factors shall yield a closer
approximation to the real prevalence of the different pathogens in the different set-
tings and in the case of ETEC, of the presence of classical and nonclassical anti-
gens. In all, these studies have unveiled to great extent the virulence characteristics
of ETEC strains identifying toxin profiles, CFs, in some cases antibiotic resistance
profiles, and age-associated attack rates of disease. The high detection rate of
LT+ETEC among healthy controls remains an enigma. It is possible that genetic
and nutritional host factors, the composition of the individual’s microbiota, and fit-
ness of the host immune system, play a modulatory role in determining the suscep-
tibility of diarrheal cases to infections by more virulent ST+ and LT+/ST+ ETEC.

While monoclonal antibodies against known CFs and multiplex PCRs employ-
ing primers specific for known fimbrial subunits have been very helpful to identify
known CFs in ETEC strains, these approaches miss identifying variants and new
CFs. The search for fimbrial subunits genes using PCR alone has the disadvantage
of potentially missing fimbrins, which under selective pressure of the immune sys-
tem, may exhibit certain-to-high degree of variability. Employing primers specific
for highly conserved chaperones or ushers of known fimbrial systems could expand
our knowledge of new CFs in the so-called CF-negative ETEC. For the same reason,
monoclonal antibodies could fail to detect detection epitopes in CF variants. The
use of pools of polyclonal antibodies against individual CFs or sets of fimbrial fami-
lies could help in this endeavor.

Most studies seeking CFs among ETEC, either by multiplex PCR or monoclonal
antibodies, have identified the most common CFs: CFA/I, CS1, CS2, CS3, CS4,
CS5, CS6, CS7, CS14, CS17, CS21, and ECP. Considering the biochemical, struc-
tural, and antigenic similarities shared between the members of the CFA/I family as
described in the text, the list can be reduced to six CFs namely, the CFA/I family,
CS3, CS6, CS7, CS21, and ECP. This shorter list could perhaps help in the develop-
ment of an ETEC CF-based vaccine with wider coverage. The studies also agree
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that the frequency of CFs among ETEC falls within 40-50 %. This does not mean
that the remaining strains do not produce fimbriae; we need to find them.

The plasticity of the E. coli genomes exemplified by the recent outbreaks of gut
illness due to emergent hybrid strains (e.g., STEC/EAEC, STEC/ETEC) (Nyholm
et al. 2015; Beutin and Martin 2012) should be a constant reminder of the need for
efficient surveillance systems and the importance of the preparedness to detect
hypervirulent variants in a timely manner.
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Chapter 2
Enteroaggregative Escherichia coli (EAEC)

Waldir P. Elias and Fernando Navarro-Garcia

Summary Enteroaggregative Escherichia coli (EAEC) is defined by the production
of the characteristic aggregative adherence pattern on cultured epithelial cells. This
pathotype is a food-borne emerging enteropathogen, responsible for cases of acute
and persistent diarrhea in children and immunocompromised patients in developing
countries, as well as in travelers returning from endemic areas. Growth and cognitive
impairment are linked to EAEC infections in children living in developing countries.
The pathogenesis of EAEC is characterized by abundant adherence to the intestinal
mucosa, elaboration of enterotoxins/cytotoxins, and induction of mucosal
inflammation. Several putative virulence factors associated with these three steps
have been identified and characterized, but none of them is present in all strains.
The virulence gene(s) that define virulent strains within this complex heterogeneity
is yet to be determined. An increasing attention to this pathotype emerged since the
massive outbreak caused by a hybrid hypervirulent Shiga toxin-expressing EAEC
strain with severe clinical consequences.
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1 General Concepts

1.1 Defining EAEC

The term aggregative adherence was coined by Nataro and colleagues when
examining the adherence properties of E. coli strains isolated in an epidemiological
study of childhood diarrhea in the city of Santiago, Chile (Nataro et al. 1987). The
isolates were tested for interaction with HEp-2 cells, and three adherence patterns
were described. In addition to the previously described localized adherence (LA)
pattern, the term “diffuse adherence” was distinguished into the truly diffuse adhe-
sion (DA) and the aggregative adherence (AA). Standard AA is defined as bacteria
adhering to each other, on the surface of epithelial cells as well as on the surface of
the coverslip in the absence of cells (Fig. 2.1). Such configuration resembles stacked
bricks forming heterogeneous aggregate or distributed in chains (Hebbelstrup
Jensen et al. 2014).

Strains expressing the AA pattern were then called “enteroadherent-aggregative
E. coli,” but this term was replaced by the current name of enteroaggregative E. coli,
or EAEC (Estrada-Garcia and Navarro-Garcia 2012). The AA phenotype is sine qua
non to classify an E. coli strain as belonging to the category of EAEC. Nowadays, the
most appropriate and updated definition of EAEC encompasses strains that produce

Fig. 2.1 Characteristic aggregative adherence (AA) pattern of EAEC on HEp-2 cells. EAEC pro-
totypical strain 042 was incubated with epithelial cells for 3 h and the preparation was stained with
May-Griinwald and Giemsa
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the AA pattern on HeLLa or HEp-2 cells (3 or 6 h adhesion assay) and are devoid of
virulence markers that define other types of diarrheagenic E. coli. An exception is for
strains presenting the AA pattern and other EAEC-specific genetic markers in com-
bination with the production of Shiga toxin (Stx), which defines the hybrid EAEC
and Shiga toxin-producing E. coli (STEC), discussed below.

Currently, EAEC is considered an emerging enteropathogen, responsible for
cases of acute and persistent diarrhea in children and adults worldwide, and devel-
opmental consequences in children living in developing countries (Hebbelstrup
Jensen et al. 2014). An increasing attention to this pathotype has arisen from the
massive outbreak caused by a hybrid hypervirulent EAEC strain (Stx2-expressing
EAEC) with severe sequelae such as the development of hemolytic uremic syn-
drome (Navarro-Garcia 2014).

1.2 General Epidemiology

Since its description in 1987, when EAEC was significantly associated with acute
diarrhea in children (Nataro et al. 1987), numerous epidemiological studies of the
etiology of diarrhea searched for EAEC in an attempt to clarify its role as diarrhea
agent. In the early years, the association between EAEC and persistent diarrhea
(=14 days of duration) in children was well supported (Cravioto et al. 1991).
However, the association with acute diarrhea in childhood was controversial.

In the following years, a large number of studies have reported the detection of
EAEC in cases of acute diarrhea in developing and developed countries, persistent
diarrhea in developing countries, and significant outbreaks worldwide. In fact, Huang
and colleagues demonstrated by a meta-analysis study of the literature between 1987
and 2006 that EAEC was statistically associated with acute and persistent diarrhea in
developed and developing countries, to diarrhea in HIV-infected patients in develop-
ing countries, and adults traveler’s diarrhea (Huang et al. 2006). Another recent
meta-analysis study of published articles between 1989 and 2011 showed association
of EAEC with acute diarrhea in children of South Asian populations (Pabalan et al.
2013). Thus, EAEC has been systematically identified as an emerging enteropatho-
gen, globally distributed (Estrada-Garcia and Navarro-Garcia 2012).

A high rate of asymptomatic young children carrying EAEC is still a trend
reported in several studies in the last years (Hebbelstrup Jensen et al. 2014).
Moreover, such persistent colonization has a link with growth impairment in chil-
dren from low socioeconomic status.

The linkage between EAEC and diarrhea in individuals living in developed coun-
tries became clearer in the last years. In the USA and Europe, EAEC has been fre-
quently isolated from cases of diarrhea from children and adults. In prospective studies,
EAEC was the major cause of diarrhea in children in the USA (Nataro et al. 2006).

Traveler’s diarrhea (TD) is the most frequent disease that affects individuals liv-
ing in developed countries when visiting middle and low incoming endemic areas.
EAEC has been systematically found among the most prevalent bacterial agents of
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traveler’s diarrhea since the definition of this category. The prevalence of EAEC in
TD varies from 19 to 33 %, depending on the geographic region visited (Mohamed
etal. 2011).

Studies linked EAEC with diarrhea in HIV-infected adults and children, a group
usually susceptible to significant cases of protracted diarrhea. EAEC was isolated as
the only enteropathogen in symptomatic patients presenting diarrhea for 30 days
(Polotsky et al. 1997). In addition, isolation of EAEC was similar in a case/control
study of HIV patients (Medina et al. 2010).

Several outbreaks of gastroenteritis caused by EAEC have been reported in low-
and high-income countries. Some of them involving very impressive numbers of
infected children or adults and associated with the consumption of contaminated
food. Outbreaks in the UK (Dallman et al. 2014), Japan (Itoh et al. 1997), and Italy
(Scavia et al. 2008) show the relevance of EAEC in developed countries. In one of
the Japanese outbreaks, 2697 schoolchildren were affected after consumption of
school lunches (Itoh et al. 1997). In Italy, the outbreaks were transmitted by unpas-
teurized cheese. EAEC was also responsible for outbreaks in developing countries
(Cobeljic et al. 1996).

1.3 Clinical Features

The most common symptoms reported in EAEC infection are watery diarrhea, often
mucoid, with or without blood and abdominal pain, nausea, vomiting, and low fever.
These signs and symptoms are often self-limited but some selected patients may
develop persistent diarrhea (>14 days). The diversity of clinical symptoms in this
pathotype infection may be due to heterogeneity between EAEC isolates, infectious
dose, genetic susceptibility factors in the host, as well as the immune response
(Harrington et al. 2006).

In order to better characterize the virulent properties of EAEC, studies with
human volunteers receiving oral inoculum of different EAEC strains were per-
formed (Mathewson et al. 1986; Nataro et al. 1992, 1995).

Nataro and colleagues evaluated four different EAEC isolated from different
geographic regions and different serotypes in volunteers (Nataro et al. 1995). In this
study, the volunteers ingested dose of 10! CFU and just EAEC 042 (serotype
044:H18) caused diarrhea in three out of five volunteers. EAEC 042 was isolated
from a case of childhood diarrhea in Peru. The clinical data obtained from the vol-
unteers who developed diarrhea suggested that EAEC 042 caused secretory diar-
rhea, with short incubation period, absence of fever, and leukocytes or blood in the
stool. Furthermore, the mucus found in the feces of two patients suggested larger
intestinal secretion induced by colonization by EAEC 042. These studies, as well as
others that demonstrate the virulence of EAEC for humans, have indicated that
EAEC is a heterogeneous category of diarrheagenic E. coli, including virulent
strains or not, what seems to depend on factors not yet fully understood.
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1.4 Histopathology

Studies in vitro, in vivo, and ex vivo, evaluating EAEC interactions with intestinal
cells from animals or humans, have tried to elucidate the pathogenesis of this
pathotype since its description in 1987. The first study about EAEC pathogenicity
in animal models employed ligated ileal loop of rabbit and rat intestines (Vial et al.
1988), showing that EAEC 042 and 17-2 strongly adhered to the mucosa and caus-
ing shortening of microvilli, hemorrhagic necrosis with edema, and mononuclear
infiltrates in the submucosa. Analysis by transmission electron microscopy revealed
no bacterial invasion and the microvilli architecture was preserved.

Other studies employing in vitro organ culture (IVOC) models have elucidated
the intestinal alterations induced by EAEC in fragments of human biopsies of duo-
denum, ileum, and colon (Hicks et al. 1996; Nataro et al. 1996). Cytotoxic effects in
the colon were observed, such as microvilli vesiculation, enlarged crypt openings,
and increased epithelial cell extrusion (Hicks et al. 1996). Also using IVOC, Nataro
and colleagues demonstrated strong adhesion of EAEC 042 to jejunal mucosa,
ileum, and more intensely to the colon, while 042 cured of the pAA2 plasmid lost
this ability (Nataro et al. 1996). All together, these data strongly indicated that EAEC
virulence was probable due to intestinal colonization, mainly to the colonic mucosa,
in the characteristic aggregative manner, with bacteria forming strong biofilm in an
increased mucus layer, followed by cytotoxic and pro-inflammatory effects.

1.5 Strain Heterogeneity

In the decades that followed its original description, EAEC strains have been char-
acterized in numerous studies around the world, highlighting the particular hetero-
geneity of this category in terms of serotypes, genetic determinants linked to
virulence and phylogenetic groups (Boisen et al. 2012; Chattaway et al. 2014bj;
Czeczulin et al. 1999; Jenkins et al. 2006). This heterogeneity together with the
fact that not all EAEC strains were able to cause diarrhea in experimental infection
of humans raises the idea that only a subset of EAEC strains, carrying a specific set
of virulence factors, has the capacity to cause diarrhea. This set of factors has not
been determined.

After demonstrating its pathogenicity in human volunteers, EAEC 042 became
genetically and phenotypically widely studied and considered the prototype strain
for EAEC. Major advances in understanding the pathogenesis of EAEC resulted
from data obtained with this strain whose genome has been sequenced (Chaudhuri
etal. 2010). Other EAEC strains have been also used as prototype in studies describ-
ing virulence factors and pathogenic mechanisms not present in EAEC 042. Despite
the variety of identified virulence factors, such as enterotoxins, cytotoxins, secreted
proteins, outer membrane proteins, and fimbriae (Table 2.1), the pathogenesis of the
diarrhea caused by EAEC remains unclear.
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Table 2.1 EAEC prototype strains and their main virulence factors

Prototype
strain
(serotype) Virulence factor Genes References
042 AggR —aggregative master | aggR Morin et al.
(O44:H18) regulator (2013)
Shf—Shigella flexneri shf Czeczulin et al.
homologue involved in (1999)
biofilm formation
VirK —Shigella flexneri virK Tapia-Pastrana
homologue Pet chaperone etal. (2012)
CapU—hexosyltransferase | capU Czeczulin et al.
homologue (1999)
ABC transporter system— | aatA Nishi et al.
dispersin transporter system (2003)
AAF/Il—aggregative aafABCD Elias et al.
adherence fimbria II (1999)
Pet—plasmid-encoded pet Eslava et al.
toxin (1998)
Pic—protein involved in pic Henderson et al.
colonization (1999a)
EAST-1—aggregative astA Savarino et al.
heat-stable toxin 1 (1991)
Dispersin—anti- aap Sheikh et al.
aggregation protein (2002)
Type VI secretion system aaiA-Y Dudley et al.
(2006b)
ETT2 Escherichia coli type |eprHIJK, etrA, eivH, Sheikh et al.
three secretion system 2 epaOPQRS, eivFGEACILJ (2006)
Air—enteroaggregative air Sheikh et al.
immunoglobulin repeat (2006)
protein
EilA —Salmonella HilA eilA Sheikh et al.
regulator homologue (2006)
Orf61 —hypothetical orf61 Chaudhuri et al.
plasmid-encoded hemolysin (2010)
Ag43—phase-variable agn43 Chaudhuri et al.
antigen 43 (2010)
Hral —heat-resistant hral Bhargava et al.
agglutinin 1 (2009)
17-2 (O3:H2) | AAF/I—aggregative aggABCD Nataro et al.
adherence fimbria I (1992)
55989 AAF/II—aggregative agg3ABCD Bernier et al.
(0104:H4) adherence fimbria IIT (2002)
C1010-00 AAF/IV —aggregative agg4ABCD Boisen et al.
(OR:H1) adherence fimbria IV (2008)

(continued)
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Table 2.1 (continued)

Prototype

strain

(serotype) Virulence factor Genes References

C338-14 AAF/V —aggregative Agg5ABCD Jonsson et al.

(0O55:H19) adherence fimbria V (2015)

C1096 Pil—type IV pilus PILMNOPQRSTUV Dudley et al.

(O4:HNT) (2006a)

IM221 AAF/I—aggregative aggABCD Mathewson et al.

(092:H33) adherence fimbria I (1986)

60A (ND) Hra2 —heat-resistant hra2 Mancini et al.
agglutinin 2 (2011)

OR O rough, NT non-typable, ND not determined

Due to the association of AA phenotype with high-molecular weight plasmids
carrying large number of plasmid-encoded virulence factors in EAEC, these plas-
mids are called aggregative virulence plasmids or pAA (Harrington et al. 2006).

From the pAA1 plasmid present in the prototype EAEC 17-2 (serotype O3:H2)
Baudry et al. (1990) isolated the CVD432 probe fragment, widely used for the
molecular diagnosis of EAEC. Plasmid pAAZ2, present in the EAEC 042, also has
approximately 100 kb of genetic information and encodes many well-characterized
virulence factors (Czeczulin et al. 1999).

AggR is a transcriptional activator and regulates the expression of various viru-
lence factors present in the chromosome and pAA2 plasmid of EAEC 042, defining
the AggR regulon (Harrington et al. 2006). At least 44 genes are regulated by aggR,
including the genes for AAF/II biogenesis, dispersin and its secretion system, Shf,
CapU, the aai type VI secretion system, and aagR itself (Morin et al. 2013; Dudley
et al. 2006b). Not all EAEC strains harbor aggR and, consequently, the pAA plas-
mid. Thus, the classification of EAEC was proposed into two subgroups, e.g., typi-
cal and atypical, taking into account the presence or absence of aggR, respectively
(Harrington et al. 2006). This classification defines two groups of strains, one of
them consisting of typical strains with higher pathogenic potential due to the pres-
ence of the AggR regulon and the pAA virulence plasmid (Estrada-Garcia and
Navarro-Garcia 2012). However, atypical EAEC strains are commonly isolated
from cases of diarrhea, as the sole pathogen (Huang et al. 2007; Jiang et al. 2002).
In one epidemiological study on the etiology of acute diarrhea in children from
Espirito Santo (Brazil), atypical strains were more frequent than typical strains
(Isabel Scaletsky, unpublished data). In addition, at least two outbreaks of diarrhea
were caused by atypical EAEC (Cobeljic et al. 1996), one of them affected more
than two thousand children (Itoh et al. 1997).
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1.6 Pathogenesis in Three Steps

EAEC ability to mediate diarrhea was clearly established through the volunteer
study with EAEC strain 042 (Nataro et al. 1995). However, this study and others
have left clear that the pathogenesis of EAEC is complex, and EAEC strains are
very heterogeneous.

Data accumulated from several studies have suggested three major features of
EAEC pathogenesis: (1) abundant adherence to the intestinal mucosa, (2) elabora-
tion of enterotoxins and cytotoxins, and (3) induction of mucosal inflammation
(Fig. 2.2). These stages of EAEC pathogenicity have been obtained from studies
in vitro in cell cultures, animal models, and patients infected with EAEC (Hicks
et al. 1996; Navarro-Garcia and Elias 2011). Heterogeneity is also found in EAEC
colonization, because once ingested, the location of infection in the gastrointestinal
tract has not been well defined. Studies done on endoscopic intestinal specimens
demonstrate that EAEC can bind to jejunal, ileal, and colonic epithelium (Nataro
etal. 1996). These findings were recently validated in fragments from terminal ileum
and colon that were excised from pediatric patients undergoing intestinal surgeries
and from adult patients that underwent colonoscopy treatment; such intestinal seg-
ments were used to define interaction with three EAEC strains. These bacteria colo-
nized ileal and colonic mucosa in the typical stacked-brick configuration. In both
regions, the strains were seen over a great amount of mucus and sometimes over the
intact epithelium. It was possible to see adhered bacteria to the intestinal surface and
with visualization of fimbrial structures that could be responsible for the adherence
process (Andrade et al. 2011). Although a great diversity of adhesins, toxins, and
proteins involved in EAEC pathogenesis has been described, the prevalence of these
virulence factors-encoding genes is highly variable and none of these have been
found present in all EAEC strains (Czeczulin et al. 1999; Jenkins et al. 2006).

1.6.1 Adherence

Adhesion to the intestinal epithelium is facilitated by fimbriae and is the first step in
the bacterial colonization of the gut. Several authors demonstrated that the AA pattern
is associated with the presence of fimbrial and afimbrial adhesins in EAEC strains
(Bhargava et al. 2009; Boisen et al. 2008; Czeczulin et al. 1997; Hicks et al. 1996).
However, the genes encoding these adhesion factors are found in low prevalence,
indicating a high diversity of adhesive structures responsible for the AA pattern. The
fimbriae bind to components of the extracellular matrix of intestinal epithelial cells
(Farfan et al. 2008; Izquierdo et al. 2014b), and the AA pattern is thought to emerge
from binding to the epithelial cell surface and binding to adjacent EAEC bacteria.
Abundant adherence of EAEC to the intestinal mucosa includes mucoid biofilm
formation. Biofilm formation is a potential important contributor in persistent infec-
tion by allowing the bacteria population to evade the local immune system and by
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Fig. 2.2 The 3-steps model of EAEC pathogenesis. Three major features of EAEC pathogenesis:
(1) abundant adherence to the intestinal mucosa, (2) elaboration of enterotoxins and cytotoxins,
and (3) induction of mucosal inflammation

preventing the transport of antibacterial factors, including antibiotics. Secretion of
excessive mucus has been described when the gut is colonized with EAEC and this
event is followed by the formation of biofilm (Hicks et al. 1996; Navarro-Garcia
et al. 2010). Biofilm formation is an important pathogenicity trait of EAEC and it is
present mainly in the colon and in the small intestine (Hicks et al. 1996).
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1.6.2 Toxins

Once the biofilm has been established, EAEC produces cytotoxic effects such as
microvillus vesiculation, enlarged crypt openings, and increased epithelial cell
extrusion (Harrington et al. 2000). It is thought that the secretion of toxins plays an
important role in secretory diarrhea, which is a typical clinical manifestation of
EAEC infection. Numerous putative EAEC virulence factors, such as Pet, EAST-1
and ShET]1 toxins, and Pic, have been associated to these cytotoxic effects.

1.6.3 Inflammation

EAEC is an inflammatory pathogen, as demonstrated both in clinical (Greenberg et al.
2002) and laboratory (Steiner et al. 1998) studies. It is clear that multiple factors con-
tribute to EAEC-induced inflammation, and further characterization of the nature of
EAEC pro-inflammatory factors will greatly advance the understanding of this emerg-
ing pathogen. The initial host inflammatory response to EAEC infection is dependent
on the host innate immune system and the type of EAEC strain causing infection. The
role of putative virulence genes and clinical outcomes is not well understood; how-
ever, the presence of several EAEC virulence factors correlate with findings indicat-
ing that levels of fecal cytokines and inflammatory markers in stools of adults and
children with diarrhea are elevated, including interleukin (IL)-1 receptor agonist,
IL-1p, IL-8, interferon (INF)-y, lactoferrin, fecal leukocytes, and occult blood (Jiang
et al. 2002). The IL-8 inflammatory response appears to be partially caused by flagella
(FliC) in a Caco-2 cell assay, as it was found that an aflagellated mutant of EAEC did
not produce the same inflammatory response (Steiner et al. 2000).

Besides the pathogenic EAEC mechanisms, host factors are also determinants of
EAEC inflammation. It was found that single nucleotide polymorphisms in the pro-
moter region of the gene encoding the lipopolysaccharide receptor CD 14 are associ-
ated with bacterial diarrhea in US and Canadian travelers to Mexico (Mohamed
etal. 2011). The CD14 gene encodes a crucial step in the inflammatory response to
bacterial lipopolysaccharide stimulation mediated by the innate immune system.
Thus, this study found that one SNP in the promoter region of the CD14 gene was
associated with an increased risk of EAEC-induced diarrhea. Patients with the
CD14-159 TT genotype were significantly associated with EAEC-induced diar-
rhea compared with healthy controls.

1.7 Main Virulence Factors

In the initial stage of EAEC colonization, the role of fimbrial and afimbrial adhesins
is fundamental. Five aggregative adherence fimbriac (AAF/I-AAF/V) have been well
characterized in EAEC (Boisen et al. 2008; Czeczulin et al. 1997; Nataro et al. 1992;
Jonsson et al. 2015). All AAF fimbriae are encoded by genes located in the pAA



2 Enteroaggregative Escherichia coli (EAEC) 37

plasmids, which regulated by AggR and their biogenesis follows the usher-chaperone
pathway. Also, a type IV fimbrial, called Pil pilus, is responsible for the AA pattern in
cultured epithelial cells and abiotic surface and it’s exhibited by an atypical EAEC
strain isolated in the outbreak in Serbia (Cobeljic et al. 1996; Dudley et al. 2006a).

Non-fimbrial adhesins, or outer membrane proteins with molecular weight
between 30 and 58 kDa, and associated with AA pattern have been described in
various EAEC strains (Bhargava et al. 2009). In addition, Hral and Hra2 are heat-
resistant agglutinins involved in autoaggregation, biofilm formation, and aggrega-
tive adherence phenotypes (Bhargava et al. 2009; Mancini et al. 2011). The presence
of agn43 gene, encoding the autotransporter protein antigen 43, was associated to
biofilm formation and autoaggregation in EAEC 042 (Chaudhuri et al. 2010). The
multifactorial characteristic of the AA phenotype is clear from studies with strains
expressing multiple adhesins. Furthermore, the low prevalence of genes encoding
these adhesins highlights the great diversity of adhesive structures in EAEC.

The dispersin protein (anti-aggregation protein) is an important EAEC virulence
factor that mediates the dispersion of EAEC along the intestinal mucosa (Sheikh
et al. 2002). Dispersin neutralizes the negative charge on the surface of the bacterial
cell and allows AAF/II fimbrial projection, leading to anti-aggregation and disper-
sal of bacteria in the intestinal wall. This protein requires an ABC-type transport
system encoded by the aatPABCD operon, which is present in the pAA2 plasmid
(Nishi et al. 2003).

As described before, EAEC produces cytotoxic effects evident during in vitro
and in vivo studies. Several putative virulence factors associated to those cytotoxic
effects have been identified and characterized in EAEC.

The first toxin described in EAEC was the enteroaggregative heat-stable toxin
1 (EAST-1), which is related to the heat-stable toxin (STa) of enterotoxigenic E. coli
(Savarino et al. 1991). EAST-1 activates adenylate cyclase inducing increased cyclic
GMP levels in enterocytes, generating a secretory response (Savarino et al. 1991).
EAST-1 is a 38 amino acids peptide (4.1 kDa) encoded by astA gene, which is
located in pAA2 of EAEC 042 (Czeczulin et al. 1999). Since STa toxin causes
secretory diarrhea, it was believed que EAST-1 was responsible for this effects in
EAEC-induced diarrhea. However, the presence of EAST-1 in EAEC 17-2 was not
sufficient to provoke diarrhea in volunteers (Nataro et al. 1995).

Another toxin encoded by a chromosomal gene in EAEC 042 is called ShET1
(Shigella enterotoxin 1), which is encoded by setAB located in the antisense strand
of pic (Henderson et al. 1999a; Navarro-Garcia and Elias 2011). ShET1 is an A:B
type toxin that causes accumulation of fluid in rabbit ileal loops. The enterotoxic
mechanism of ShET1 is independent of cAMP, cGMP, and calcium. However, the
precise mechanism of ShET1 action remains unclear.

Amongst the virulence factors produced by EAEC, the autotransporter proteins
have a relevant role in the EAEC pathogenesis. Initially, two autotransporter pro-
teins were identified in EAEC, comprising high-molecular weight proteins of
104 kDa for Pet and 109 kDa for Pic (Eslava et al. 1998; Henderson et al. 1999a).
Autotransporter proteins are currently assigned to the type 5 secretion system
(T5SS), which is described in detail in Chap. 10. Autotransporters contain three
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functional domains: the signal sequence, the passenger domain, and the translocation
unit. The signal sequence is present at the N-terminal end of the protein and allows
targeting of the protein to the inner membrane for its further export into the peri-
plasm (Jose and Meyer 2007). The passenger domain confers the diverse effector
functions. The translocation unit (also called the f-domain), located at the C-terminal
end of the protein, consists of a short linker region with an a-helical secondary
structure and a f-core that adopts a -barrel tertiary structure when embedded in the
outer membrane and facilitates translocation of the passenger domain (Jose and
Meyer 2007).

The serine protease autotransporters of Enterobacteriaceae (SPATE) members
constitute a group of exoproteins secreted through the T5SS by pathogenic enteric
bacteria of the y-proteobacteria. The passenger domains contain the protease motif
(GDSGSP) characteristic of all proteins of the SPATE group (Navarro-Garcia and
Elias 2011). SPATEs have been divided into class-1 and class-2 based on structural
differences and biological effects; the class-1 SPATEs are related to cytotoxic effects
on cultured cells, whereas most class-2 SPATEs exhibit a lectin-like activity with
preference to degrade a variety of mucins (Ruiz-Perez and Nataro 2014).

The plasmid and chromosomal EAEC SPATEs Pet and Pic are members of
class-1 and class-2, respectively. Originally, Pet and Pic were detected in an effort
to identify cytotoxins and enterotoxins secreted by EAEC. Analyses of culture
supernatants from strains that caused outbreaks of EAEC diarrhea in Mexican hos-
pitals showed two major proteins of 104 and 109 kDa, which are now known as the
secreted proteins Pet and Pic, respectively (Eslava et al. 1998; Henderson et al.
1999a; Navarro-Garcia et al. 1998). Interestingly, both proteins are related with
pathogenic features in the infection by EAEC: cytotoxicity and mucosal coloniza-
tion, including the bacteria-mucus biofilm.

It has been shown that Pet (104 kDa) of EAEC protein is required for inducing
dilation of crypt openings and rounding and extrusion of enterocytes in human tis-
sue explants (Henderson et al. 1999b). In an ex-vivo model of infection, Pet causes
raises in short-circuit current and decreases in electrical resistance of rat jejunum
while mounted in the Ussing chamber, and the enterotoxic effect is accompanied by
mucosal damage, increased mucus release, exfoliation of cells, and development of
crypt abscesses (Navarro-Garcia et al. 1998). The use of cultured epithelial cells to
understand the mode of action of this toxin showed that Pet is a cytoskeleton-
altering toxin, because it induces contraction of the cytoskeleton, loss of actin stress
fibers, and release of focal contacts followed by complete cell rounding and detach-
ment. Interestingly, Pet cytotoxicity and enterotoxicity depends on Pet serine prote-
ase activity (Navarro-Garcia et al. 1999). Furthermore, it was found that Pet requires
cytokeratin 8 as receptor to enter the eukaryotic cell and that trafficking through the
vesicular system appears to also be required for the induction of cytopathic effects
(Nava-Acosta and Navarro-Garcia 2013).

Pet is internalized by receptor-mediated endocytosis, through clathrin-coated
vesicles, and this internalization pathway was found to be an essential mechanism
because its inhibition prevents Pet internalization, and thereby the Pet-induced cyto-
toxic effect (Nava-Acosta and Navarro-Garcia 2013). An intracellular target,
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a-fodrin (all-spectrin), has been found for Pet. Pet binds and cleaves (between M!!%
and V%) epithelial fodrin in vitro and in vivo, causing fodrin redistribution within
the cells to form intracellular aggregates as membrane blebs (Canizalez-Roman and
Navarro-Garcia 2003). This mechanism appears to be a new system of cellular dam-
age identified for bacterial toxins, which includes the internalization of the protease
to finally allow specific a-fodrin degradation to destroy the cell (Canizalez-Roman
and Navarro-Garcia 2003). This was the first report showing cleavage of a-fodrin
by a bacterial protease.

Pic was identified as a second SPATE member in EAEC. In contrast to Pet, Pic-
encoding gene is localized in the EAEC chromosome (Czeczulin et al. 1999;
Henderson et al. 1999a). The pic gene has a unique characteristic among the auto-
transporter proteins since ShET1-encoding genes are oppositely oriented and in tan-
dem within the pic gene (Henderson et al. 1999a). Functional analyses of Pic have
shown that its serine active site is involved in mucinase activity, serum resistance,
and hemagglutination. Phenotypes identified for Pic suggest that it is involved in the
early stages of pathogenesis and most probably promotes intestinal colonization
(Henderson et al. 1999a). It has also been shown that Pic does not damage epithelial
cells (Gutierrez-Jimenez et al. 2008).

As we mentioned before, a hallmark of EAEC infection is the formation of
mucoid biofilm, which comprises a mucus layer with immersed bacteria in the
intestines of patients. Interestingly, an isogenic pic mutant was unable to cause
mucus hypersecretion, in contrast to the EAEC wild-type strain, which induced
hypersecretion of mucus, accompanied by an increase in the number of mucus-
containing goblet cells. Site-directed mutagenesis of the serine protease catalytic
residue of Pic showed that, unlike the mucinolytic activity, secretagogue activity
does not depend on this catalytic serine protease motif (Navarro-Garcia et al. 2010).

Using specific mutants in competition with the wild-type strain, the contribution
of several putative EAEC virulence factors to intestinal colonization of streptomycin-
treated mice was evaluated (Harrington et al. 2009). The data suggest that the dis-
persin surface protein and Pic promote colonization of the mouse. Interestingly, it
has been found that Pic targets a broad range of human leukocyte adhesion proteins,
such as CD43, CD44, CD45, CD93, CD162, and the surface-attached chemokine
fractalkine, all implicated in leukocyte trafficking, migration, and inflammation
(Ruiz-Perez et al. 2011). The ability of Pic to inactivate key proteins of all comple-
ment pathways is also a new finding, demonstrating its function in immune evasion.
Pic significantly reduces complement activation by cleaving C2, C3, C3b, and C4.
This is an important virulence mechanism in the context of systemic disease, such
as sepsis and hemolytic uremic syndrome, which may be caused by Pic-producing
E. coli and Shigella flexneri (Abreu et al. 2016). All these data strongly suggest that
Pic represents a unique immune-modulating bacterial virulence factor.

Besides Pic, another SPATE from class-2 and found in the hybrid EAEC/STEC
0104:H4 is SepA (Munera et al. 2014). Several SepA-hydrolyzed peptides were
described as specific substrates for cathepsin G, a serine protease produced by
polymorphonuclear leukocytes that was proposed to play a role in inflammation.
However, unlike cathepsin G, SepA degraded neither fibronectin nor angiotensin
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I and had no effect on the aggregation of human platelets. It was found that the gene
encoding the autotransporter protease SepA was most strongly associated with diar-
rhea among the EAEC strains as part of a case-control study of moderate to severe
acute diarrhea among children in Mali (Boisen et al. 2012).

SigA is another SPATE of class-1 also detected in EAEC/STEC O104:H4.
An initial report showed that the she PAI, which contains the pic (she) gene, also
contains a gene encoding a second IgA protease-like homologue, sigA. Functional
analysis showed that SigA is a secreted temperature-regulated serine protease capa-
ble of degrading casein. Performing similar experiments to those used with Pet
revealed that SigA is cytopathic for HEp-2 cells, suggesting that it may be a cell-
altering toxin with a role in the pathogenesis of Shigella infections. Indeed, it was
found that SigA binds specifically to HEp-2 cells and degrades recombinant human
all spectrin (a-fodrin) in vitro and also cleaves intracellular fodrin in situ, causing
its redistribution within cells (Al-Hasani et al. 2009).

Some pathogenicity islands (PAI) were identified in 042 EAEC strain harboring
distinct putative virulence factors (Chaudhuri et al. 2010). The presence of such
mobile genetic elements emphasizes the characteristic mosaic of the EAEC genome
(Chattaway et al. 2014b). The EAEC 042 pheU PAI encodes an important virulence
component, the type 6 secretion system (T6SS), extensively studied in many patho-
gens in the last years. Type 6 secretion system in EAEC 042 is encoded by the aai
cluster (AggR-activated island), which is composed of 25 genes (Dudley et al.
2006b). In EAEC 042, the T6SS secretes AaiC (Dudley et al. 2006b). The role of
the T6SS in the pathogenesis of EAEC has not been established. Also, the genes
encoding ShET1 (setAB) and the mucinase Pic (pic) are contained in a PAI called
she, which was initially identified in Shigella (Henderson et al. 1999a).

Analysis of the genome of EAEC strain 042 indicated the presence of genes
encoding a type 3 secretion system at glyU tRNA locus (Chaudhuri et al. 2010),
which in other pathogens is associated with the translocation of effectors proteins
directly into the cytoplasm of eukaryotic cells (see Chap. 10). This system is named
ETT2 (Escherichia coli type 3 secretion system 2) and presents high similarity to
that found in enterohemorrhagic E. coli and Salmonella. The possible ETT2 effec-
tors are located at selC tRNA locus, which harbors the eipBCD, eicA, and air genes.
The bacterial surface protein Air is involved in adherence and aggregation of EAEC
042 (Sheikh et al. 2006). The functionality of ETT2 and the role of possible trans-
located effectors in EAEC pathogenesis remain elusive.

1.8 Diagnostic

The AA pattern demonstrated in adhesion assays using HeL.a or HEp-2 cells is still
considered the gold standard test for the identification of EAEC since a common
genetic determinant for all strains of this pathotype has not yet found (Hebbelstrup
Jensen et al. 2014). However, this technique is costly, time consuming, and requires
infrastructure restricted to reference laboratories. Therefore, molecular diagnostic
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techniques have been developed as an alternative to detection of the AA pattern,
which started with the development of a DNA probe (CVD432), initially described
as a cryptic fragment of the pAA1 plasmid of EAEC strain 17-2. This probe has
been widely used in diagnosis and epidemiological studies showing high specificity
but variable sensitivity (20—-89 %) when compared to the detection of the AA pat-
tern. Later, CVD432 was characterized as part of the aatA gene, which is part of the
dispersin-secretion system operon (Nishi et al. 2003). Thus, CVD432 probe is prop-
erly called aatA or AA probe. As aatA is a pAA-borne gene, its detection excludes
the majority of atypical EAEC.

There are several reports in the literature on the development of multiplex PCR
for simultaneously detection of all diarrheagenic E. coli pathotypes. However, those
detecting EAEC use only one or two pAA markers, excluding the detection of atypi-
cal EAEC (Panchalingam et al. 2012). Some authors have proposed the diagnosis of
EAEC only based on multiplex PCR, detecting either the plasmid or plasmid and
chromosomal markers (Andrade et al. 2014a). Recently, the detection of aatA aggR
and aaiG/aaiC has been proposed as an alternative for sensitive and specific molec-
ular detection of EAEC, covering the detection of both typical and atypical sub-
groups (Andrade et al. 2014a; Boisen et al. 2012; Panchalingam et al. 2012).

1.9 Transmission

There is no evidence for an animal reservoir of EAEC; therefore, humans are gener-
ally accepted as the reservoir. The transmission of EAEC is often associated with
food-borne sources or by contaminated water (Jiang et al. 2002). Food-borne out-
breaks have been described (Itoh et al. 1997). Risk factors for EAEC infection
include travel to developing countries, ingestion of contaminated food and water,
poor hygiene, host susceptibility, and possibly immunosuppression (Estrada-Garcia
and Navarro-Garcia 2012). Another route of transmission of EAEC is food han-
dling. A study of Mexican tabletop sauces identified 44 % of sauces containing
viable EAEC (Adachi et al. 2002).

1.10 Treatment

The oral rehydration therapy is the prime recommendation for the cases of self-
limited acute diarrhea caused by EAEC. Antibiotic therapy is indicated only in cases
of persistent diarrhea, and should be considered case by case. When required, anti-
microbial sensitivity evaluation tests are indicated since multidrug resistance has
been often reported in EAEC strains isolated from patients from different geographic
regions (Hebbelstrup Jensen et al. 2014). Alternative treatments, employing the use
of zinc and nitazoxanide, have been recently proposed for treatment and prevention
of diarrhea based on clinical and laboratorial evidences (Bolick et al. 2013).
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2 Recent Advances

2.1 Intestinal Inflammation

Several lines of evidence suggest that EAEC infection is mildly inflammatory in
nature. Epidemiological reports have documented elevated fecal lactoferrin, IL-8,
and IL-1p among infected infants in developing countries and adult travelers to
India and Mexico (Steiner et al. 1998; Greenberg et al. 2002). Travelers to Mexico
who developed symptomatic illness due to EAEC infection excreted high concen-
trations of fecal IL-8, compared to travelers who did not develop diarrhea due to
EAEC infection (Jiang et al. 2003). Steiner and colleagues have shown that EAEC
strain 042 induces IL-8 release from non-polarized Caco-2 intestinal epithelial cells
(IECs); the pAA plasmid was required for the full inflammatory effect (Steiner et al.
1998). These investigators also reported that a mutation in the gene encoding flagel-
lin (fliC) abrogated IL-8 release, implicating flagellin as the major pro-inflammatory
stimulus (Steiner et al. 2000). However, it has been reported that significantly more
IL-8 was detected in feces of travelers infected with EAEC strains harboring the
plasmid-borne aggR or aafA genes, compared with those infected with virulence
factor-negative EAEC (Jiang et al. 2002). In a search to identify additional factors
that could account for the IL-8 release from epithelial cells infected with EAEC
strain 042, it was found that polarized T84 intestinal cells release IL-8, even when
infected with 042 mutated in the major flagellar subunit FIliC. IL-8 release from
polarized T84 cells was found to require the AggR activator and the AAF fimbriae,
and IL-8 release was significantly less when cells were infected with mutants in
AafB, the minor pilin subunit of AAF/II (Harrington et al. 2005). In addition to
IL-8, intestinal epithelial cells infected with EAEC 042 have been shown to upregu-
late the following genes: IL-6, tumor necrosis factor (TNF)-a, growth-related gene
product (GRO)-a, GRO-y, intercellular adhesion molecule (ICAM)-1, granulocyte-
macrophage colony-stimulating factor (GM-CSF), and IL-la. These cellular
responses are primarily mediated by flagellin (FliC) of EAEC (Harrington et al.
2005). It is clear that multiple factors contribute to EAEC-induced inflammation,
and further characterization of the nature of EAEC pro-inflammatory factors will
greatly advance the understanding of this emerging pathogen.

2.2 Growth Impairment in Developing Countries

EAEC persistent diarrhea has been linked to malnutrition and decreased physical
and cognitive development in children (Guerrant et al. 2008). Interestingly, in this
study the population, even asymptomatic patients infected with EAEC, exhibited
growth retardation compared to uninfected controls (Steiner et al. 1998). Thus, it
seems that EAEC effects on growth shortfalls in children could also be due to its
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persistence in human intestine, with subclinical symptoms, inducing chronic inflam-
mation in the absence of diarrheal disease (Steiner et al. 1998). Pathogenic EAEC
infection is characterized by release of cytokines from the intestinal mucosa and
lactoferrin, revealing the inflammatory potential of these strains in damaging the
intestinal epithelium and reducing its absorptive function, leading to nutrient deple-
tion and malnutrition. In turn, malnutrition further facilitates infection and perpetu-
ates the cycle of infection, malnutrition, and developmental deficits, increasing the
burden of the disease (Guerrant et al. 2008). Given the high rate of asymptomatic
excretion of EAEC in a large number of countries in the developing world, under-
standing its potential role in malnutrition and growth retardation is a high priority.

2.3 Animal Models for EAEC Pathogenesis

Researchers have been trying to develop animal models to reproduce human diarrhea
and immunological responses at the site of EAEC infection. Development of such mod-
els could allow the evaluation of pathophysiology, treatment, and prototype vaccines.

Adult CD-1, Balb/c, and C3H/HelJ mice, treated with streptomycin, have been
used to study intestinal colonization (Harrington et al. 2009). These murine models
are suitable to quantify intestinal colonization, verify histological alterations, and
determine immunological mediators in fecal contents although mice do not develop
enteritis symptoms. Using these models, Harrington and colleagues demonstrated
the role of autotransporter Pic in promoting mucus secretion and colonization
(Harrington et al. 2009).

A murine model to assess EAEC infection malnutrition cycle was developed
using neonatal and weaned C57BL/6 mice (Roche et al. 2010). Although mild
histological effects in the colonic epithelium were seen, growth impairment could
be assessed in both groups and in weaned mice, infection was persistent with
stool shedding. Undernutrition in both groups of mice intensified infection and
growth impairment was dependent on bacterial burden and challenge dose.
However, this model has some limitations, due to the early age of the animals.
For that reason, the same approach has been applied to infect nourished and mal-
nourished weaned 24-day-old C57B1/6 mice and similar results were obtained
(Bolick et al. 2013). This model was adapted to investigate the role of zinc in
preventing EAEC pathogenesis. Weight loss, stool shedding, mucus production
and, more importantly, diarrhea, were observed when mice fed a zinc-free and
protein source defined diet, pretreated with antibiotics and then orally challenged
with EAEC 042.

A novel model for studying EAEC disease has been developed with human fetal
intestinal xenografts in severe-combined immunodeficient (SCID) mice (Boll et al.
2012). The successful transplants allowed the study of intact and functional human
intestinal tissue infected with EAEC 042, showing severe tissue damage and infil-
tration of polymorphonuclear cells, with pathogenesis strongly related to AAF/II
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expression. This model can address the investigation of the role of specific viru-
lence factors and the interaction of EAEC with human intestinal mucosa. However,
some limitations of the model include the restriction to fetal human tissue, the lack
of intestinal microbiota in the xenografts, and interaction of innate and adaptive
immunity.

2.4 Urinary Tract Infection

In the last years, a growing number of reports have shown a linkage between EAEC
and urinary tract infection (UTI). Some studies investigated the presence of typical
virulence factors of EAEC in strains causing extraintestinal infections (Abe et al.
2008; Herzog et al. 2014). Others demonstrated the presence of uropathogenic
E. coli (UPEC) markers in EAEC collections (Chattaway et al. 2014a). These findings
clearly indicate the potential for some EAEC strains to cause UTL.

Indeed, Olesen and colleagues reported a community-acquired UTI outbreak
caused by EAEC (Olesen et al. 2012), which does not fulfill the extraintestinal E.
coli (ExPEC) criteria. This multiresistant strain was characterized as belonging to
the serotype O78:H10, multilocus sequence type ST10, and the phylogenetic group
A (Olesen et al. 2012). This was the first time that EAEC was implicated as an agent
of an outbreak of extraintestinal disease. Subsequently, the uropathogenic proper-
ties of this EAEC O78:H10 strain were investigated showing that these properties
were conferred by specific virulence factors of the EAEC, such as the AAF/I fimbria
(Boll et al. 2013). Recently, EAEC was also implicated as a causative agent of one
case of urosepsis (Herzog et al. 2014).

2.5 The Hybrid 0104:H4 STEC/EAEC Strain

An outbreak caused by E. coli of serotype O104:H4 spread throughout Germany in
May 2011 (Navarro-Garcia 2014). This was the largest outbreak by a pathogenic E.
coli strain, with 3128 cases of acute gastroenteritis, 782 cases of hemolytic uremic
syndrome (HUS), and 46 deaths. All these cases were officially attributed to a new
clone of STEC and most of the victims became infected in Germany or France. The
phenotypic and genotypic characterization of the E. coli O104:H4 indicated that the
isolates from the French and German outbreaks were common to both incidents.
Fenugreek seeds imported from Egypt, from which sprouts were grown, were
implicated as a common source. However, there is still much uncertainty about
whether this is truly the common cause of the infections, as tests on the seeds did
not allow the detection of any E. coli isolate of serotype O104:H4.

This large outbreak was caused by an unusual STEC strain, which is more similar
to an EAEC of serotype O104:H4. A significant difference, however, is the presence
of a prophage encoding the Shiga toxin, which is characteristic of STEC strains
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(Rasko et al. 2011). This unique combination of genomic features, associating charac-
teristics from both EAEC and STEC, represents a new pathotype. Since typical EAEC
is isolated primarily from humans, the origin of this outbreak may not be zoonotic.

Due to the special features and high pathogenicity of this hybrid clone, one provoca-
tive question is what makes this E. coli O104:H4 outbreak strain so dangerous. One
explanation is that this hybrid strain with EAEC features but with a phage coding for
Shiga toxin type 2 is a better colonizer of the gut due to its aggregative phenotype. The
enhanced adherence of this strain to intestinal epithelial cells might facilitate systemic
absorption of Shiga toxin and could explain the high frequency of cases progressing to
HUS. Thereby, it is believed that EAEC of serotype O104:H4 is by itself an emerging
serovar that has acquired an original set of virulence factors (Frank et al. 2011).

EAEC strains of serotype O104:H4 contain a large set of virulence-associated
genes regulated by AggR. These include the pAA plasmid genes encoding the AAF,
which anchor the bacterium to the intestinal mucosa and induce inflammation, as
well as a protein-coat secretion system (Aat), that secretes the protein dispersin
(Navarro-Garcia 2014). Thus, a switch of pAA together with the type of the aggre-
gative adherence fimbriae could be an additional explanation for the higher viru-
lence of this outbreak strain. Indeed, the outbreak STEC O104:H4 strain is similar
to the EAEC O104:H4 strain 55989, isolated in the late 1990s, from a patient in the
Central African Republic with persistent diarrhea, and to the EAEC O104:H4 strain
HUSECO041 that was associated in 2001 with very few HUS cases in Germany.
Interestingly, the EAEC O104:H4 strain HUSECO041 carries the plasmid encoding
AAF/III fimbriae (also present in the EAEC strain 55989). In contrast, outbreak
EAEC O104:H4 isolates acquired a new plasmid, encoding AAF/I fimbriae, and
lost the plasmid encoding AAF/III fimbriae (Rasko et al. 2011).

Other interesting features that might also contribute to the higher virulence of
this outbreak strain include that EAEC strains of serotype O104:H4 produce a vari-
able number of SPATEs implicated in mucosal damage and colonization. This new
serovar contains Pic, SigA, and SepA (Rasko et al. 2011). Rasko and colleagues
speculate that the combined activity of these SPATEs together with other EAEC
virulence factors accounts for the increased uptake of Shiga toxin into the systemic
circulation, resulting in the high rates of HUS (Rasko et al. 2011). Indeed, a recent
study showed that SPATEs but not pAA are critical for rabbit colonization by Shiga
toxin-producing E. coli O104:H4 (Munera et al. 2014). However, it has been also
shown recently that the presence of the pAA plasmid in the EAEC/STEC O104:H4
strain promotes the translocation of Stx2a across an epithelial cell monolayer
(Boisen et al. 2014). Interestingly, Ec55989 contains three copies of pic, which are
conserved in the German outbreak strain. In addition, there is a fourth pic gene pres-
ent in the EAEC plasmid of the outbreak strain. The outbreak strain also encodes
SigA that cleaves the cytoskeletal protein spectrin, inducing rounding and exfolia-
tion of enterocytes (Al-Hasani et al. 2009), and SepA, associated with increased S.
flexneri virulence, but with unknown function in EAEC.

The ability of STEC to cause severe disease in humans is mainly associated
with the production of one of the two Shiga toxin groups, Stx1 and Stx2, with
similar biological activity but different immunogenicity. The EAEC/STEC hybrid
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clone produces the Shiga toxin 2 (Stx2). An interesting finding that highlights
Stx2 is its epidemiological association with severe diseases in humans (Friedrich
et al. 2002).

Two remarkable features of EAEC O104:H4 have to be highlighted: it is the
agent of a massive outbreak and the high proportion of cases developing HUS. This
complication was diagnosed in a 22 % of the cases, while historical rates of HUS
after O157:H7 infection typically range from 6 to 15% (Frank et al. 2011). It is
challenging to know why the outbreak strains are so virulent, given that EAEC are
human-specific pathogens and that few animal infection models mimic human
disease. Interestingly, the lack of the pAA plasmid abolished the capacity of an
outbreak strain (C227-11) to adhere to viable colonic tissue harvested from the
cynomolgus monkey Macaca fascicularis (Boisen et al. 2014). However, C227-11
adhered in an aggregative manner and forms heavy biofilms with a thick mucus
layer upon interaction with the monkey colonic tissue.

2.6 Vaccine Development

A few studies in the last years tried to use aggregative adherence fimbriae (AAF) as
candidate vaccine antigens. AAF/I and AAF/II structural genes (aafA and aggA,
respectively) were coupled to the gene encoding nontoxic B subunit of Shiga toxin
(StxB). The recombinant polypeptides elicited immune response in subcutaneously
immunized Balb/C, and the antibodies generated inhibited the adherence of proto-
type EAEC strains to HeLa cells and protected the immunized mice against a lethal
dose of Shiga toxin (Oloomi et al. 2009).

The use of the polysaccharide part of LPS has been evaluated as a vaccine target
against EAEC belonging to the serogroup O111. However, LPS is not appropriate
for human use due to its high level of toxicity. As an alternative, polysaccharide of
O111 LPS was conjugated with cytochrome C or recombinant B subunit of the heat-
labile toxin (LT). These two different approaches induced systemic and mucosal
antibodies in rabbit and in mice, which were able to inhibit the adhesion of all cat-
egories of O111 E. coli to HEp-2 cells serogroups (Andrade et al. 2014b). Although,
this approach protects against one O-antigen, it does not represent the vast diversity
of circulating EAEC serogroups.

A combined formalin-killed whole-cell vaccine candidate, consisting of a mix-
ture of EAEC (strain 17-2), EPEC, STEC, enterotoxigenic E. coli (ETEC), and
enteroinvasive E. coli (EIEC), was also proposed as vaccine (Gohar et al. 2016).
Balb/C mice were immunized subcutaneously, eliciting humoral immune response
to each pathotype. In addition, the specific antibodies were protective when mice
were challenged intraperitoneally with the respective immunizing bacteria. Although,
such approach is based in a subcutaneous immunization, which is not common in
endemic areas, and only antibodies against EAEC 17-2 were generated.
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3 Advances on EAEC in the Americas

3.1 Recent Epidemiological Information

A few studies about the etiology of diarrhea in the Americas have been published
between 2013 and March 2016, including children and adults hospitalized with diar-
rhea or with diarrhea in the community (Table 2.2). The studies that searched only for
viruses and/or parasitic enteropathogens were not included. When searched in the stud-
ies, EAEC strains were found as the most prevalent diarrheagenic E. coli pathotype.

In Mexico, Patzi-Vargas and colleagues determined the prevalence of bacterial
enteropathogens in 831 children with acute diarrhea (Patzi-Vargas et al. 2015).
Diarrheagenic E. coli was the most common bacterial enteropathogen and the pre-
dominant pathotypes were diffusely adherent E. coli (35%) and EAEC (24 %).
EAEC was more frequent in children between 6 and 24 months old than in those
younger than 6 months of age. In addition, all diarrheagenic E. coli strains were
searched for supplementary virulence genes (SVG) mainly associated with
EAEC. Dispersin (aap), dispersin-translocator (aatA), EAST-1 (astA), plasmid-
encoded toxin (pet), and cytolethal distending toxin (cdt) were higher in diarrhea-
genic E. coli than non-diarrheagenic E. coli strains and 98 % of EAEC-infected
children harbored strains with SVG; 85 % carried the aap-aatA gene combination
and 33 % of these carried astA. Diarrheagenic E. coli carrying SVG was a cause of
moderate to severe bacterial diarrhea in that population.

EAEC was found in 13 % of rural Panamanian children (Jimenez Gutierrez
et al. 2014). In Brazil, coinfections of EAEC and norovirus were detected in 24.1 %
of fecal samples from hospitalized diarrheic children (Amaral et al. 2015). In
another study from Brazil, EAEC was the most frequent pathotype found in cases
and controls (10 %) although without statistical differences between the two groups
(Dias et al. 2016). A large study in Bolivia (3943 cases and 1026 controls) showed
that EAEC was the most prevalent pathotype found in 11.2% of the children
(Gonzales et al. 2013).

3.2 Adhesins

Advances in the comprehension of EAEC binding mechanisms to the human intes-
tinal tissue have been achieved by characterizing the structure, binding characteris-
tics, and immunogenicity of AAF fimbriae. These approaches are necessary in order
to develop efficient blocking strategies. Since AAF/II is the main adhesive structure
of EAEC 042, much of the data is based on recent studies characterizing receptors
for its pilin and its molecular structure.

Adhesion of EAEC 042 to extracellular matrix proteins (fibronectin, laminin,
and type IV collagen) was demonstrated in vitro. Also, purified AafA bound fibro-
nectin in a dose-dependent manner (Farfan et al. 2008). Since the major cellular
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receptor of fibronectin is integrin aSp1, Izquierdo and colleagues evaluated the
participation of this receptor in the fibronectin-mediated adherence of EAEC
strain 042 to intestinal cells (Izquierdo et al. 2014a). They identified the complex
AafA/fibronectin/integrin a5p1 and showed that EAEC strain 042 has the ability
to bind directly and indirectly to integrin a581; the indirect binding is mediated by
AAF/1I and fibronectin. Subsequent studies confirmed the binding to laminin and
showed the involvement of the major subunit of AAF/II fimbriae (AafA) in the
binding to cytokeratin 8, indicating a role of CK8 as a potential receptor for EAEC
(Izquierdo et al. 2014b).

New atomic resolution insights on the structure of AAFI and AAF/II was
achieved by X-ray crystallography and nuclear magnetic resonance structures
(Berry et al. 2014). The major pilin subunits (AggA and AafA) assemble into linear
polymers by donor strand complementation, where a single minor subunit (AggB
and AAfB) is inserted at the tip of the polymer by accepting the donor strand from
the terminal major subunit. The minor subunits are conserved while the major sub-
units display large structural differences. In spite of that, both AAF recognized
fibronectin as receptor. All together, these data reinforce the role of fibronectin,
cytokeratin 8, and laminin as receptors for AAF.

3.3 Hybrid EAEC/STEC Strain

Rapid genome sequencing and public availability of these data from the EAEC/
STEC outbreak strain allowed the identification of an O-antigen-specific bacte-
riophage tail spike protein encoded in the genome (Scholl et al. 2012). These
authors synthesized this gene and fused it to the tail fiber gene of an R-type pyo-
cin, a phage tail-like bacteriocin, and expressed the novel bacteriocin such that
the tail fiber fusion was incorporated into the bacteriocin structure. The resulting
particles have bactericidal activity specifically against E. coli strains that produce
the O104 lipopolysaccharide antigen, including the outbreak strain. This
O-antigen tail spike-R-type pyocin strategy provides a platform to respond rap-
idly to emerging pathogens upon the availability of the pathogen’s genome
sequence (Scholl et al. 2012).

Recently, Carbonari et al. (2014) reported the first isolation of an EAEC O104:H4
strain associated with an acute diarrhea case in Argentina (Carbonari et al. 2014).
The identified E. coli strain was susceptible to all antimicrobials tested and harbored
the aggR, aaiC, pAA plasmid, IpfO113, rfbO104, fliCH4, and terD genes. Although
serotype EAEC O104:H4 rarely spreads and sporadic cases have been reported,
global concern increased after the large-scale outbreak in Europe in 2011. The find-
ing of EAEC O104:H4 reinforces the need for improved methodologies for the
detection of all E. coli pathotypes (Carbonari et al. 2014).
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More recently, Ross et al. (2015) studied the role of long polar fimbriae (Ipf) Ipf]
and Ipf2 operons encoded in E. coli O104:H4 (Ross et al. 2015). Isogenic IpfAl and
IpfA2 major fimbrial subunit mutants were assessed their ability to adhere to intes-
tinal epithelial cells. The AlpfAl showed decreased adherence in both cell systems
while the AlpfA2 only showed a decrease in adherence to polarized Caco-2 cells.
Additionally, it was found that the AlpfAl was unable to form a stable biofilm and
in an in vivo murine model of intestinal colonization, the AlpfA I had a reduced abil-
ity to colonize the cecum and large intestine. Further, in competitive assays the
presence of the wild-type O104:H4 facilitates increased adherence of the AlpfAl to
levels exceeding that of the wild type in the in vitro and in vivo models. Thus, these
data demonstrated that Lpf1 is one of the factors responsible for O104:H4 intestinal
adhesion and colonization (Ross et al. 2015).

4 Conclusions

In conclusion, much progress has been made in recent years towards understand-
ing the pathogenesis and epidemiology of EAEC. It has been consistently shown
that EAEC is a globally important pathogen, affecting both children and adults,
unlike other diarrheagenic E. coli pathotypes that are only prevalent in developing
countries or agents of sporadic outbreaks. The role of EAEC as an agent of urinary
tract infections was also demonstrated recently, indicating its relevance as a
pathogen of extraintestinal infections, another peculiar characteristic of EAEC.
The ability of a strain of EAEC O104:H4 in acquiring the Stx phage generated a
highly virulent pathogen that was responsible for the largest outbreak of diarrhea
and HUS reported to date. This hybrid EAEC/STEC was detected in strains of
other serotypes but related to small HUS outbreaks or cases of bloody diarrhea.
Another advance in the knowledge of the pathogenesis of EAEC was the close
relationship between growth and cognitive impairment in malnourished children
and EAEC as the agent of repeated cases of diarrhea or even in asymptomatic
colonization. New challenges concerning EAEC research reside in the definition
of which set of virulence genes define the virulent strains within the complex
heterogeneity of this pathotype; the choice of immunogenic antigens with pan-
protection coverage for these heterogeneous strains; and the comprehension of all
mechanisms and bacterial factors involved in the intestinal inflammation process
induced by EAEC.
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Chapter 3
Typical Enteropathogenic Escherichia coli

Isabel C.A. Scaletsky and Ulysses Fagundes-Neto

Summary Enteropathogenic Escherichia coli (EPEC) is a leading cause of infantile
diarrhea in developing countries. EPEC colonizes the small intestine and causes
attaching-and-effacing (A/E) lesions, a phenotype encoded on the locus of enterocyte
effacement (LEE) pathogenicity island. LEE encodes the components of a type III
secretion system, various effector molecules, and the intimin gene (eae). Typical
EPEC strains contain, in addition to eae, the EPEC adherence factor (EAF) plasmid,
which encodes the bundle-forming pili that mediate localized adherence to epithelial
cells, whereas atypical do not possess this plasmid. The exact mechanism of diarrhea
production is not fully understood. Diagnosis of EPEC is now based on molecular
methods to detect virulence characteristics. EPEC-induced diarrhea is self-limiting,
and oral rehydration is effective.
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1 Definition of EPEC

The term EPEC was first used in 1955 by Neter et al. (1955) to describe a number of E.
coli strains epidemiologically related to a series of outbreaks of infantile diarrhea in the
1940s and 1950s (Bray 1945; Robins-Browne 1987). Originally defined by serotype,
EPEC are now defined as those having the ability to cause diarrhea, the ability to pro-
duce a histopathology on the intestinal epithelium known as the attaching and effacing
(A/E) lesion, and the inability to produce Shiga toxins (Nataro and Kaper 1998).
Typical EPEC strains of human origin causing infectious diarrhea possess a large viru-
lence plasmid known as the EPEC adherence factor (EAF) plasmid, which encodes
localized adherence on cultured epithelial cells mediated by the bundle-forming pilus
(BFP), while atypical EPEC do not possess this plasmid (Nataro and Kaper 1998).

2 Clonal Lineages of EPEC

The majority of typical EPEC strains fall into well-recognized O serotypes. Classic
EPEC O serogroups include 055, 086, O111, 0114, O119, O127, and O142. The
most common H antigens associated with EPEC are the H6 and the H2 antigens. A
less common EPEC type is H34, and a number of typical EPEC strains are nonmo-
tile in conventional tests and classified as H—. Typical EPEC strains belonging to
nonclassic serotypes have also been reported (Trabulsi et al. 2002). Based on multi-
locus enzyme electrophoresis analysis of allelic differences among housekeeping
genes, typical EPEC strains have been subtyped into two major lineages, previously
designated EPEC1 and EPEC2 (Whittam and McGraw 1996). The EPEC1 includes
widespread serotypes such as O55:H6 and O119:H6, whereas EPEC2 consists of
serotypes with more limited occurrence such as O111:H2 and O114:H2. Based on
a whole-genome phylogeny and analysis of type III secretion system effectors, typi-
cal EPEC strains have been demonstrated to cluster in three main phylogenomic
lineages, designated EPEC1, EPEC2, and EPEC4 (Hazen et al. 2013).

3 Epidemiology of EPEC Infection

3.1 Incidence

EPEC strains were first identified as the cause of outbreaks associated with infantile
diarrhea in the United States and the United Kingdom (Bray 1945; Neter et al. 1955;
Robins-Browne 1987). After that period, EPEC strains were rarely detected in these
countries, but they became a major cause of infantile diarrhea in numerous develop-
ing countries (Nataro and Kaper 1998). The prevalence of EPEC infection varies
between epidemiological studies based on differences in study populations, age,
distributions, and methods used for detection and diagnosis (Ochoa et al. 2008). In
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addition, geographic region and socioeconomic class may also contribute to the
epidemiology of EPEC-induced diarrheal disease (Maranhdo et al. 2008). The
occurrence of diarrhea due to typical EPEC decreases with age, and infections in
adults are rarely reported. This apparent resistance in adults and older children has
been attributed to the loss of specific receptors with age or development of immu-
nity (Nataro and Kaper 1998).

For many decades, studies conducted worldwide have shown that typical EPEC
serotypes were strongly associated with diarrhea in children <1 year of age, mainly
in poor children of urban centers (Nataro and Kaper 1998). The association with
diarrhea was particularly strong in infants less than 6 months of age. Studies in
Brazil, Chile, Mexico, and South Africa have shown that 30-40 % of infantile diar-
rhea were caused by typical EPEC serotypes (Ochoa et al. 2008). However, the epi-
demiology of EPEC infection has shifted. In numerous developing countries, where
the prevalence of EPEC infection had been high until the 1990s, recent studies have
not identified a significant association between typical EPEC and infantile diarrhea.
In the meantime, the proportion of atypical EPEC strains has increased and outnum-
bered typical EPEC strains, and atypical EPEC strains have also been associated
with childhood diarrhea in both developing and developed countries (Ochoa et al.
2008; Hu and Torres 2015). In Brazil, 92 % of EPEC isolates collected from chil-
dren between 2001 and 2002 were atypical (Franzolin et al. 2005), compared to
38 % in a 1998—1999 study (Scaletsky et al. 2010). A 5-year study of children under
12 years of age in Thailand found that 71.8 % of EPEC isolates were atypical strains
(Ratchtrachenchai et al. 2004). Likewise, 39.9 % of EPEC strains isolated from chil-
dren with diarrhea in Iran were typical, while the remaining 61.7 % were atypical
(Bakhshi et al. 2013). Studies from Norway (Afset et al. 2003) and Australia
(Nguyen et al. 2006) also suggest that atypical isolates are more commonly found
among persistent cases of diarrhea than typical isolates. However, other studies still
report typical being more prevalent than atypical EPEC as a cause of diarrhea
(Alikhani et al. 2006). Recent estimates from the Centers for Disease Control and
Prevention (CDC) on food-related illness in the United States listed only four hos-
pitalizations as a result of EPEC infection (CDC 2013).

Opverall, the importance of EPEC as a cause of diarrhea has declined in published
literature of the last several decades (Ochoa et al. 2008). The reasons for such
decrease probably comprise better control of hospital infections, improvements in
public health measures such as active interventions, therapy sanitary conditions, and
control of hospital infections (Trabulsi et al. 2002). Based on a systematic review of
pediatric diarrhea etiology using 266 studies published between 1990 and 2002,
EPEC are still among the most important pathogens (Ochoa and Contreras 2011).
Likewise, in 2014 a European multicenter prospective quarterly point-prevalence
study of community-acquired diarrhea (EUCODI) showed that EPEC is highly preva-
lent during both the first with a median prevalence of 8.8 % in the community setting,
9.1 % in the outpatient setting, and 15.6 % in the impatient setting (Spina et al. 2015).
However, there are important regional and temporal variations. In a recent study of
hospitalized patients with diarrhea in India, EPEC was responsible for 3.2 % of 648
diarrhea samples in children younger than 5 years of age (Nair et al. 2010).
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3.2 Reemergence

The occurrence of severe disease outcomes associated with typical EPEC has
reemerged. The recently completed Global Enteric Multicenter Study (GEMS) was
a prospective, population-based case-control study involving seven sites in Africa
and Asia with the goal of identifying the etiology, burden, and associated mortality
related to acute moderate-to-severe diarrhea in children less than 5 years of age
(Kotloff et al. 2013). Based on GEMS data, typical EPEC was significantly associ-
ated with moderate to severe diarrhea in children under 2 years of age in Kenya,
whereas atypical EPEC was not associated with this type of diarrhea (Kotloff et al.
2013). Overall, typical EPEC was not strongly associated with cases of moderate to
severe diarrhea, but when present, it was associated with an increased risk of death
in infants (Kotloff et al. 2013).

3.3 Transmission and Reservoirs

Transmission of EPEC follows a fecal-oral process through contaminated surfaces,
weaning fluids, and human carriers (Levine and Edelman 1984). Although rare, out-
breaks among adults seem to occur through ingestion of contaminated food and
water; however, no specific environmental reservoir has been identified (Nataro and
Kaper 1998). The infective dose in adult volunteers is high, at 108-10'° organisms
(Levine et al. 1978), while the infective dose to cause disease in children is unknown.
EPEC outbreaks have been reported to show a seasonal distribution with peaks dur-
ing the warm months (Nataro and Kaper 1998; Behiry et al. 2011). Humans are the
only known reservoir for typical EPEC, with symptomatic and asymptomatic chil-
dren and asymptomatic adults being the most likely source (Nataro and Kaper 1998).

4 Phenotypes Characteristic of EPEC

4.1 Localized Adherence to Epithelial Cells

Typical EPEC strains adhere to HeLa, HEp-2, and other cell lines and to organ cul-
tures in vitro in a distinctive three-dimensional microcolonies pattern, the so-called
localized adherence (LA) phenotype (Fig. 3.1a) (Scaletsky et al. 1984; Nataro and
Kaper 1998). A similar adherence pattern has been seen in tissue biopsies of EPEC-
infected humans (Rothbaum et al. 1982). The LA phenotype is mediated by the
plasmid-borne type IV fimbriae commonly known as bundle-forming pilus (BFP)
(Girén et al. 1991). EPEC adherence is inhibited by various sugar moieties, includ-
ing galactose, N-acetylgalactosamine, N-acetyllactosamine, and fucosylated oligo-
saccharides and gangliosides from milk. These saccharides could be moieties of host
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Fig. 3.1 Photomicrography and electron-micrograph of the small bowel biopsy of infant infected
with typical EPEC Ol11ab:H2 (Fagundes-Neto et al. 1995). (a) Adherent bacteria seen in the
small bowel biopsy of patient (arrow). (b) Effacing of the microvilli and membrane cupping, with
pedestal formation at the sites of bacterial attachment. (¢) Bacteria are seen in the interior of the
enterocyte. (d) Light microscopy of biofilm formation by typical EPEC O111 on an abiotic surface
(Photo courtesy of Heloisa H. Nascimento)

cell glycoproteins that serve as EPEC receptors. EPEC also bind to phosphatidyl-
ethanolamine, as a component of cell membrane (Nougayrede et al. 2003).

4.2 Attaching and Effacing Lesion

A hallmark phenotype of EPEC is the ability to produce attaching and effacing (A/E)
lesions (Moon et al. 1983). This phenotype is characterized by effacement of intes-
tinal epithelial-cell microvilli and intimate adherence between the bacterium and the
epithelial cell membrane (Fig. 3.1b). Directly beneath the adherent bacterium,
marked cytoskeletal changes are seen in the epithelial cell membrane, particularly
the formation of an actin-rich, cup-like pedestal, at the site of bacterial contact. The
AJE lesions are observed in model EPEC infections with cultured cells and mucosal
explants as well as in intestinal biopsies from EPEC-infected infants or animals
(Nataro and Kaper 1998).
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4.3 Invasion of Epithelial Cells

Intracellular EPEC have been observed both in tissue culture and in small intestinal
biopsies from an EPEC-infected infant (Nataro and Kaper 1998) (Fig. 3.1c). Two
studies have reported that O111:NM strains contain plasmid sequences that confer
invasiveness upon E. coli K12 strains containing the clone fragments (Fletcher et al.
1992; Scaletsky et al. 1995). Sequences homologous to these cloned genes were
present in only a minority of EPEC strains. Despite their invasive potential, EPEC
are considered to be extracellular pathogens.

4.4 Autoaggregation/Biofilm Formation

Typical EPEC have the ability to form tight, spherical, bacterial auto-aggregates when
cultured in liquid culture (Nougayrede et al. 2003). Like LA, autoaggregation requires
BFP (see Sect. 5.2). Typical EPEC also form biofilms on abiotic surfaces under static
conditions (Fig. 3.1d), or on a flow through continuous culture system, and a model
of EPEC biofilm formation has been proposed (Moreira et al. 2006). Transposon
mutagenesis analysis identified adhesive structures such as type 1 pili, antigen 43,
BFP, and the EspA filament (see Sects. 5.2 and 5.3) as participants in bacterial aggre-
gation during biofilm formation on abiotic surfaces (Moreira et al. 2006).

5 EPEC Virulence Factors and Genomics

5.1 The EAF Plasmid

Typical EPEC strains harbor a 50-70 MDa virulence plasmid known as the EPEC
adherence factor (EAF) plasmid (Baldini et al. 1983), which varies in sequence
among different EPEC strains but is somewhat conserved (Nataro et al. 1987).
Curing of the EAF plasmid from EPEC abolishes the LA and the autoaggregation
phenotypes, and leads to attenuated virulence in volunteers (Nataro and Kaper 1998).
The self-transmissible EAF plasmid pMAR?2 is found among strains of the EPEC1
lineage and contains an intact transfer region, unlike pB171, which is more common
among EPEC?2 strains (Tobe et al. 1999; Brinkley et al. 2006). Two loci important for
pathogenicity have been located on the EAF plasmid: the bfp gene cluster encoding
BFP (Girdn et al. 1991) and the per locus, encoding a transcriptional activator called
plasmid-encoded regulator (Per) (Tobe et al. 1999). Between pMAR?2 and pB171,
the bfp and per loci share 99 % sequence similarity (Brinkley et al. 2006), and both
BFP and PerA have been shown to contribute to virulence in human volunteers
(Bieber et al. 1998).

Comparative genomics of the EAF plasmids from diverse EPEC phylogenomic
lineages demonstrated significant plasmid diversity even among isolates within the
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same phylogenomic lineage (Hazen et al. 2015). In some instance, EPEC isolates
have likely lost their ancestral EAF plasmid and have acquired another EAF plasmid
originating from a different lineage of E. coli Also, the EAF plasmids have under-
gone genetic modifications, including recombination of the bfp genes and other
genes on the plasmid (Hazen et al. 2015). In addition, global transcriptional analy-
ses of the EPEC1 prototype isolate E2348/69 and its EAF plasmid-free (JPN15) and
AperABC mutants demonstrated that plasmid genes other than perABC influence
the expression of a number of both plasmid and chromosomal genes under viru-
lence-inducing conditions (Hazen et al. 2015).

5.2 Bundle-Forming Pilus

Typical EPEC strains produce a type IV pilus, the bundle-forming pili (BFP) which
is responsible for the LA phenotype, and also contributes to antigenicity, autoag-
gregation, and biofilm formation (Girén et al. 1991; Bieber et al. 1998; Vuopio-
Varkila and Schoolnik 1991; Moreira et al. 2006; Hyland et al. 2008). An operon of
14 genes contained on the EAF plasmid is necessary for expression of the BFP, with
bfpA encoding the major structural subunit (bundlin) (Stone et al. 1996). The bfp
genes are highly conserved among EPEC1 and EPEC2 strains, but some O128:H2
and O119:H2 EPEC strains that contain part of the bfpA gene have the rest of the bfp
genes cluster deleted. Adjacent to the deleted region is an IS66 element, which is
proposed to play a role in the deletion of the bfp operon in these strains (Bortoloni
et al. 1999; Teixeira et al. 2015).

5.3 The LEE Pathogenicity Island, the Type III Secretion
System, and Translocated Proteins

The locus of enterocyte effacement (LEE) is a 35-kb pathogenicity island of EPEC
containing genes required for the formation of A/E lesion (McDaniel et al. 1995).
The EPEC LEE is organized into five operons (LEE] to LEES) (Elliott et al. 2000;
Deng et al. 2004; Dean and Kenny 2009; Croxen et al. 2013). The LEE1, LEE2, and
LEES3 operons encode components of a type III protein secretion system (T3SS), and
the global regulators Ler (LEE-encoded regulator), GrlA (global regulator of LEE
activator; formerly called Orf11), and GrIR (Grl repressor; formerly called Orf10)
(Barba et al. 2005). LEE4 encodes T3SS-secreted proteins EspA, EspB, and EspD
(EPEC-secreted protein) that are also components of the translocation apparatus by
which other effector proteins are translocated into the cell. LEES encodes the adhe-
sin intimin and its translocated receptor the Tir (see Sect. 5.4) (Kenny et al. 1997).
In addition to Tir, the EPEC genome contains other six LEE-encoded effector
proteins translocated into the cell (Map, EspF, EspG, EspZ, EspH, and EspB), and
they interfere with different aspects of the cell physiology (Deng et al. 2004; Dean



66 I.C.A. Scaletsky and U. Fagundes-Neto

and Kenny 2009; Croxen et al. 2013). Map, mitochondrial-associated protein, stim-
ulates formation of membrane filopodia and epithelial barrier disruption as well as
mitochondrial dysfunction. Multifunctional properties have also been reported for
EspF and EspG, both of which affect aquaporin localization, leading to diarrhea.
Like Map, EspF localizes to mitochondria and has been shown to disrupt tight junc-
tions, while EspG alters host cytoskeletal components through its interaction with
tubulin. The EspZ protein promotes host cell survival, whereas EspH affects filopo-
dium formation, participates in actin signaling during pedestal formation and acts as
a RhoGEF inhibitor. Both EspH and EspB are capable of inhibitingphagocytosis of
EPEC by macrophages (Santos and Finlay 2015).

In addition to the LEE effectors, the prototype EPEC strain E2348/69 encodes at
least 23 non-LEE (Nle)-encoded effector genes (Deng et al. 2004; Santos and Finlay
2015), many of which are involved in dampening the host immune response. NleB,
NleC, NleD, NleE, and NleH have all been shown to inhibit NF-Kf activation
through a variety of different mechanisms. In addition to immunomodulatory func-
tions, Nle effectors such as EspJ have anti-phagocytic properties, while NleA alters
host protein secretion and tight junction integrity and inhibits vesicle trafficking.
NleH is capable of modulating apoptotic responses (Santos and Finlay 2015).

5.4 Intimin and Tir

Intimin is a 94-kDa protein encoded by the eae gene and required for intimate
adherence of EPEC to host cells at the sites of A/E lesions (Nataro and Kaper
1998). The N-terminus of intimin is highly conserved, whereas the C-terminus is
highly variable (Frankel et al. 1994). Differences in the C-terminus of intimin
have been used as a basis for classification into several distinct subtypes [repre-
sented by the Greek letters to o through € (zeta)] (Lacher et al. 2006, 2007). The
a subtype is expressed by EPECI strains while subtype P is associated with
human EPEC2 strains. The N-terminus of intimin anchors the protein in the
EPEC outer membrane, whereas the C-terminus extends from the EPEC surface,
binds to the translocated intimin receptor, Tir (Kenny et al. 1997). Intimin-Tir
interaction leads to intimate adherence and pedestal formation beneath adherent
bacteria (Kenny et al. 1997). Tir has also been shown to inhibit NF-kB activity
through tumor necrosis factor alpha (TNF-a) receptor-associated factors
(Ruchaud-Sparagano et al. 2011).

5.5 Lymphostatin

Typical EPEC strains encode a large surface protein, lymphocyte inhibitory factor
(LifA), which inhibits the expression of multiple lymphokines and inhibits lympho-
cyte proliferation (Klapproth et al. 2000). Related genes efal (a nearly identical
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chromosomal locus from an enterohemorrhagic E. coli [EHEC] serogroup O111
strain) and toxB (a locus with significant homology found on the EHEC serotype
O157:H7 plasmid) were implicated in adhesion to epithelial cells (Nicholls et al.
2000). There is evidence indicating that Efal/LifA contributes to epithelial cell
adherence in vitro (Badea et al. 2003) and is required for intestinal colonization of
mice by the related A/E pathogen Citrobacter rodentium (Klapproth et al. 2004).

5.6 EspC

EspC is a large (110 kDa) protein that is encoded in a 15-kb chromosomal island
specific to EPECI strains, and unlike proteins secreted by the T3SS, EspC secretion
is mediated by the type V secretion system (Nataro and Kaper 1998; Vidal and
Navarro-Garcia 2008). EspC acts as an enterotoxin, causing cytopathic effects on
epithelial cells, including cytoskeletal damage (Navarro-Garcia et al. 2004). EspC
cytotoxicity depends on its internalization and functional serine protease motif
(Vidal and Navarro-Garcia 2008). EspC has been shown to enter intestinal epithelial
cells through a cooperative mechanism involving both the T5SS and the T3SS
(Vidal and Navarro-Garcia 2008). EspC confers enhanced lysozyme resistance to
EPEC and purified EspC has been shown to interact with and degrade hemoglobin
(Drago-Serrano et al. 2006) and to hydrolyze other proteins such as pepsin, factor
V, and spectrin (Salinger et al. 2009). In addition, oligomerization of EspC gives
rise to rope-like structures that serve as a substratum for adherence and biofilm
formation as well as to protect bacteria form antimicrobial compounds (Xicohtencatl-
Cortes et al. 2010).

5.7 Other Toxins

Some EPEC strains harbor the astA gene which encodes for the enteroaggregative E.
coli (EAEC) heat-stable enterotoxin 1 (EAST1) (Yamamoto et al. 1997; Dulguer
et al. 2003). A recent study reported that 11 of 70 (16 %) typical EPEC strains tested
harbored an intact astA gene (Silva et al. 2014). EPEC strains of serotype O86:H34
produce cytolethal distending toxin (CDT) (Nataro and Kaper 1998). The mechanism
of action of this toxin involves chromatin disruption, which leads to G2/M-phase
growth arrest of the target cell and ultimately cell death (Lara-Tejero and Galan 2000).
The significance of EAST1 and CDT toxins in EPEC pathogenesis remains unknown.

5.8 Other Fimbriae

Some EPEC strains possess other fimbriae or pili in addition to BFP. Type 1 fimbriae
of EPEC have been found to be antigenic in volunteer studies; however, do not have
a role in adherence to epithelial cells in vitro (Nataro and Kaper 1998). Two other
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EPEC surface structures, rod-like fimbriae and fibrillae, have been characterized and
have been suggested to be involved in the interaction of EPEC with host cells (Girén
etal. 1993), but the role of these fimbriae in EPEC pathogenesis, has yet to be under-
stood. In addition, some EPEC strains have conserved fimbrial genes encoding
homologs of the long polar fimbriae (LPF) (Tatsuno et al. 2006). The Ipf region
(IfABCDE) in typical EPEC encodes predicted proteins with about 60 % homology
to the LPF of Salmonella, but initial studies have indicated that LPF is apparently
not necessary for adherence and A/E lesion on human biopsies (Tatsuno et al. 2006).
A number of polymorphisms within the I[pfA genes have been recently identified
among EPEC strains (Torres et al. 2004). The E. coli common pilus (ECP) has also
been shown to act as an accessory adherence factor in EPEC, playing a role during
cell adherence and/or in bacterium-bacterium interactions (Saldafia et al. 2009).
However, the significance of ECP to EPEC pathogenesis has not been determined.

5.9 Flagella

A study has suggested that flagella may also be involved in EPEC adherence to epithe-
lial cells (Girén et al. 2002). EPEC mutants with mutations in the flagellar gene fliC
were markedly impaired in their ability to adhere and form microcolonies. Furthermore,
purified EPEC flagella and anti-flagellum antibodies were both effective in blocking
the adherence of several EPEC serotypes (Girén et al. 2002). However, another study
could not confirm a role of flagella in EPEC adherence (Clearly et al. 2004).

6 Regulation of Virulence Factors

The expression of EPEC virulence factors is regulated by Per (plasmid-encoded
regulator) which activates the transcription of several genes in the chromosome and
on the EAF plasmid. Per activates ler (for LEE-encoded regulator), the first gene in
the LEE] operon, which in turn activates the additional LEE operons (LEE2, LEE3,
LEFE4, and LEEYS), and the LEE genes espF, espG, and map (Elliott et al. 2000; Deng
et al. 2004; Dean and Kenny 2009). The Ler protein is a distant homolog of H-NS
(for histone-like nucleoid-structuring protein), a nucleoid-associated protein that is
frequently involved in the response of enterobacteria to environmental stimuli.
Additionally, Ler controls genes located outside the LEE, such as espC and nleA
(Elliott et al. 2000). It has also been shown that quorum sensing controls expression
of the EPEC LEE (Sperandio et al. 2002). Regulation of LEE] by quorum sensing in
turn increases the expression of the LEE3 and LEE4 operons via Ler. Additional
regulators include the integration host factor (IHF), Bip, a tyrosine-phosphorylated
GTPase, the Fis (factor for inversion stimulation), and GadX, which is a member of
the AraC transcription factor family (Dean and Kenny 2009). Two novel LEE-
encoded regulators have been identified, GrlA (global regulator of LEE activator)
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and GrIR (Grl repressor), that have roles in ler expression (Barba et al. 2005). GrIR
and GrlA are positive and negative regulators, respectively, required for the expres-
sion of several LEE-encoded genes (Barba et al. 2005).

7 EPEC Pathogenesis

The early and later events in EPEC adhesion and pathogenesis have been proposed to
occur in distinct stages, including initial adherence to the host cell, signal transduc-
tion, and intimate attachment with pedestal formation (Fig. 3.2) (DeVinney et al.
1999; Donnenberg and Kaper 1992; Nougayrede et al. 2003; Torres 2006). In the
earliest stage and under correct environmental conditions, EPEC express BFP, inti-
min, and the T3SS/translocon apparatus. Next, EPEC adhere to the surface of the
intestinal epithelium via BFP and EspA filaments, and the T3SS injects the bacterial
translocated intimin receptor (Tir) and effector proteins (EspB, EspD, EspF, EspG,
and Map) directly into the host cell (Dean and Kenny 2009). The effectors activate
cell-signaling pathways, causing alterations in the host cell cytoskeleton and resulting
in the depolymerization of actin and the loss of microvilli. Finally, bacteria intimately
adhere to host cell by intimin-Tir interactions, causing a cytoskeletal rearrangement
that result in pedestal-like structure. Tir promotes cytoskeletal reorganization through
interaction with WASP (Wiskott-Aldrich syndrome protein) (Campellone et al. 2002)
and other proteins, leading to the effacement of the microvilli and the production of
pedestals (Goosney et al. 2001; Dean and Kenny 2009). The translocated effectors
disrupt host cell processes, resulting in loss of tight-junction integrity and mitochon-
drial function, leading to both electrolyte loss and eventual cell death.

8 Diagnosis of EPEC Infection

Traditionally, EPEC strains were identified by O:H serotyping, but serotype designa-
tion is no longer a necessary trait for a strain to be considered EPEC. The majority
of EPEC strains fall into well-established O:H serotypes (Nataro and Kaper 1998).
EPEC strains often have been distinguished from other E. coli strains by their ability
to adhere to epithelial cells in vitro in the so-called localized adherence (LA) pattern
(Scaletsky et al. 1984). The fluorescent-actin-staining (FAS) assay, originally
described by Knutton et al. (1989), uses fluorescein iso-thiocyanate (FITC)-or rho-
damine-conjugated phaloidin to detect the actin accumulates under EPEC adhesion
pedestals. Many clinical laboratories; however, do not have tissue culture facilities,
and thus neither the HEp-2 assay nor the FAS test can be routinely used for diagnosis
in these settings. For this reason, genotypic tests for detection of EPEC are the pre-
ferred method of identification and generally involve DNA probe hybridization or
polymerase chain reaction (PCR) targeting EAF, eae, and bfpA (Nataro and Kaper
1998). A 1-kb region of the E2348/69 EAF plasmid, pMAR?2, called the EAF probe,
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was the first molecular diagnostic tool for EPEC also developed in oligonucleotide
and PCR versions (Nataro and Kaper 1998). A DNA probe to detect the presence of
the eae gene encoding intimin has been developed ((Nataro and Kaper 1998). Several
probes and primers also have been developed to identify the bfpA gene encoding
bundling (Nataro and Kaper 1998), but may fail to identify all bfpA-positive EPEC
strains as multiple alleles of bfpA have been identified (Blank et al. 2000), suggesting
that some current PCR methods may fail to identify all bfpA-positive EPEC strains.

9 C(linical Considerations of EPEC Infection

Diarrheal disease by EPEC varied from subclinical to fatal infection (Torres 2015).
EPEC causes primarily acute diarrhea, although many persistent cases, lasting more
than 2 weeks, have also been reported (Levine and Edelman 1984; Nataro and Kaper
1998; Fagundes-Neto and Scaletsky 2000). Recently, EPEC infection was associated
with a 2.8 fold elevated risk of death among infants in Kenya (Kotloff et al. 2013).

In addition to profuse watery diarrhea, vomiting, dehydration, and low-grade
fever are common symptoms of EPEC infection (Nataro and Kaper 1998; Goosney
et al. 2001). Furthermore, EPEC infection may lead to severe malabsorption of
nutrients, and even evolve to lactose intolerance and food allergy, resulting in nutri-
tional aggravation and persistence of diarrhea (Fagundes-Neto and Scaletsky 2000).
Edema, neutrophil infiltrate, and reduced enzymatic activity in the intestinal mucosa
have been found following EPEC infection (Arenas-Hernandez et al. 2012).
Correction of the fluid and electrolytes losses should be properly replaced as the first
stage of the treatment. Correction of nutritional imbalance with lactose-free formula
or breast milk may be insufficient for some severe cases, and total parental nutrition
may be required (Fagundes-Neto and Scaletsky 2000).

Persistent infections may require the use of antimicrobials; however, multiple
antibiotic resistance is common for EPEC. Antibiotic-resistant EPEC has been
related by reports of multidrug-resistant EPEC strains from diverse parts of the
world (Subramanian et al. 2009; Scaletsky et al. 2010; Mitra et al. 2011; Croxen
etal. 2013). EPEC displays resistance to a range of antibiotics, including penicillins,
cephalosporins, and aminoglycosides (Subramanian et al. 2009). A study of 149
EPEC strains isolated from children in Brazil found that resistance was more com-
mon among typical EPEC strains than among atypical EPEC strains (Scaletsky et al.
2010). In addition, a conserved conjugative plasmid carrying antibiotic resistance
was identified among typical strains of serotypes O111:H2, 066:H6, O127:H6, and
O119:H6 (Nwaneshiudu et al. 2007; Scaletsky et al. 2010). Other therapies such as
bismuth subsalicylate, specific bovine anti-EPEC milk Igs, and also zinc (Croxen
et al. 2013; Patel et al. 2010) have also proven useful.

There are no vaccines currently available to prevent disease due to EPEC. Antibodies
against EPEC O antigens and outer membrane proteins have been found in breast milk
(Costa-Carvalho et al. 1994; Cravioto et al. 1991), and protection from mother to infant
can be transmitted through colostrum IgA (Carbonare et al. 1997; Loureiro et al. 1998).
Antibodies from maternal colostrum and serum samples have been shown to recognize
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BFP, intimin, EspA, and EspB (Tacket et al. 2000; Parissi-Crivelli et al. 2000. Therefore,
several candidate vaccines based on EspB (Quintana Flores et al. 2002; De Souza
Campos Fernandes et al. 2003), BFP (De Souza Campos Fernandes et al. 2003), and
intimin (Stakenborg et al. 2006) have been explored. Recently, bacterial ghosts devoid
of cytoplasmic contents but expressing all EPEC surface components were constructed
and used in vaccination challenge experiments with mice (Liu et al. 2012). Vaccinated
mice showed 84-90% protection in control mice (Liu et al. 2012). Homologous
rechallenge with wild-type EPEC resulted in a reduced severity of disease but had no
effect on incidence of diarrhea (Donnenberg et al. 1998).
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Chapter 4
Atypical Enteropathogenic Escherichia coli

Tania A.T. Gomes, Denise Yamamoto, Monica A.M. Vieira,
and Rodrigo T. Hernandes

Summary The atypical enteropathogenic Escherichia coli (EPEC), a subgroup of
EPEC, has the ability to cause histopathologic attaching and effacing lesions in
eukaryotic cells, but lacks the virulence-associated EPEC adherence factor plasmid.
The aEPEC strains may harbor virulence markers of other Diarrheagenic E. coli
pathogroups as well as of extraintestinal pathogenic E. coli strains. This observation
led to the assumption that aEPEC strains comprise a very heterogeneous group with
diverse additional virulence mechanisms that altogether can modulate the disease
outcome or their occurrence in asymptomatic subjects. While the prevalence of
typical EPEC strains has declined in the last decade in most geographic areas
studied, aEPEC strains are considered emerging enteropathogens that have been
detected worldwide. In addition, the detection of aEPEC in different animal species,
as well as in food and environmental samples, suggests that at least some aEPEC
infections may be zoonotic. Herein, we review the recent achievements in the
knowledge of the virulence properties, genetic background, and epidemiology of
aFEPEC infections in the America. Despite the recent advances, the need of
discriminating between strains that can cause diarrhea and those that promote
asymptomatic infections is a current motivation for further studies in the field.
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1 General Concepts About aEPEC

Subclassification of the enteropathogenic E. coli (EPEC) pathogroup as typical
EPEC (tEPEC) and atypical EPEC (aEPEC) was possible after the development of
molecular and cellular biology methods and of tissue culture assays that provided a
great amount of information about EPEC virulence factors (Kaper et al. 2004).

A remarkable feature of tEPEC and aEPEC infections comprises the formation
of a characteristic histopathological lesion known as attaching and effacing (AE). In
addition, both EPEC groups lack the genes encoding Shiga toxins (Stx), found in
Shiga toxin-producing E. coli (STEC), and the heat-labile (LT) and heat-stable (ST)
toxins characteristic of enterotoxigenic E. coli (ETEC) (Kaper et al. 2004). The
main difference between the two groups is that aEPEC lack the virulence-associated
EAF (EPEC adherence factor) plasmid (pEAF), which encodes a type IV pilus
known as bundle-forming pilus (BFP) (Trabulsi et al. 2002). The ideal methods to
differentiate between tEPEC and aEPEC are the detection of BFP production and of
the BFP-associated adherence phenotype (localized adherence), since some aEPEC
strains may carry a defective bfp operon, resulting in positive reactions with the
bfpA gene (Trabulsi et al. 2002; Abe et al. 2009).

Several studies conducted over the last 20 years revealed a decreasing frequency
of tEPEC and the increasing rates of aEPEC in many developing countries, as
reviewed in Ochoa et al. (2008), Hernandes et al. (2009), and Hu and Torres (2015).
Such shift in the prevalence of tEPEC and aEPEC was observed earlier in developed
countries (Trabulsi et al. 2002). However, in some less developed areas (Africa and
Asia), tEPEC are still one of the most important enteropathogens (Rajendran et al.
2010; Kotloff et al. 2013; Santona et al. 2013; Ben Salem-Ben Nejma et al. 2014;
Langendorf et al. 2015; Odetoyin et al. 2016).

One of the first phenotypic characteristics identified in the tEPEC infections was
the ability to produce compact bacterial microcolonies on the surface of infected
enterocytes. This phenotype was reproduced in assays performed in vitro, employ-
ing HeLa and HEp-2 cells with 3 h of bacteria-cell interaction, and was termed
localized adherence (LA) (Trabulsi et al. 2002). As aEPEC lack BFP production,
such isolates are not able to produce LA and their in vitro adherence phenotype to
epithelial cells is usually defined in assays performed in extended periods (6 h) of
bacteria—cell interaction (Trabulsi et al. 2002). In such assays, the adherence pat-
terns of most aEPEC strains were classified as the localized adherence-like (LA-like)
pattern, being this adherence phenotype characterized by formation of loosen
microcolonies as compared to those observed in the LA pattern (Trabulsi et al.
2002). Besides LA-like, many aEPEC isolates adhere to HeLLa/HEp-2 cells in unde-
fined patterns or are non-adherent (Abe et al. 2009; Scaletsky et al. 2009; Gomes
et al. 2011). In addition, some aEPEC can produce the aggregative (AA) or diffuse
(DA) patterns of adherence, which comprise phenotypic markers essential for the
diagnosis of enteroaggregative E. coli (EAEC) and diffusely adherent E. coli
(DAEC), respectively (Vieira et al. 2001; Abe et al. 2009).
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The AE lesion is characterized by bacteria intimately adhering to the epithelial
cells promoting microvilli destruction and formation of pedestal-like structures that
are rich in F-actin and other cytoskeletal elements (Kaper et al. 2004). The virulence
factors necessary for the establishment of the AE lesion are encoded by a chromo-
somal pathogenicity island (PAI) called the Locus of Enterocyte Effacement (LEE)
(Kaper et al. 2004). The LEE region harbors genes that encode intimin (an adhesive
protein), its translocated receptor Tir (translocated intimin receptor), as well as
structural components of a type III secretion system (T3SS), regulators (Ler, GrlA-
Global Regulator of LEE-Activator, GrIR-Global Regulator of LEE-Repressor),
translocators (EspA, EspB, EspD), chaperones (CesAB, CesD, CesD2, CesF, CesT),
and effector proteins (EspG, EspZ, EspH, Map, EspF) (Croxen et al. 2013).

Ler (LEE-encoded regulator), GrlA, and GrlR are regulatory proteins encoded
by genes located in the LEE region that control the expression of important LEE-
virulence genes. The Ler protein is a positive regulator of the LEE genes (Kaper
et al. 2004) and of genes located elsewhere, such as nleA, Ipf, and espC (Torres et al.
2007; Roe et al. 2007). On the other hand, Ler negatively regulates several other
genes like the gfc operon (Abe et al. 2008), which encodes proteins necessary for
capsule biogenesis. The GrlA and GrIR encode proteins that regulate positively and
negatively the ler expression, respectively (Deng et al. 2004).

Since aEPEC strains lack pEAF, many isolates are not submitted to the regula-
tory processes orchestrated by proteins encoded in the plasmid-encoded perABC
operon. However, several studies have provided evidence that some aEPEC strains
may possess a defective version of the pEAF (Bortolini et al. 1999; Teixeira et al.
2015). These defective plasmids usually bear a deletion in the bfp operon, but still
harbor the perABC genes. In tEPEC, the PerA protein is responsible for the activa-
tion of bpf operon expression while PerC induces the expression of ler, which, in
turn, activates the expression of LEE genes (Croxen et al. 2013; Wong et al. 2011).
The PerC or GrlA proteins can independently activate ler expression and, conse-
quently, the expression of LEE genes (Bustamante et al. 2011). Recently, a study
focusing in the interaction of aEPEC with the host concluded that the absence of Per
proteins in the regulatory cascade of virulence genes can produce a delay in AE
lesion formation by this pathogen, and probably interferes with the ability of such
strains to promote disease (Bueris et al. 2015).

By sequencing two aEPEC strains of serotypes O8:HNM and O119:H6, Gartner
and colleagues demonstrated that their LEE region exhibited a genetic organization
analogous to that found in the tEPEC prototype E2348/69 strain (Gértner et al.
2004). Additionally, the authors demonstrated that genes encoding the T3SS are
highly conserved, while genes encoding effector proteins show major differences.
In another study, the same research group sequenced two additional strains of sero-
types 026:K60 and O128:H2 and compared the data among all four strains studied
(Miiller et al. 2009). Altogether, they confirmed that although the LEE core is con-
served, striking differences were found between the 5’ and 3’ flanking regions,
probably reflecting the different lines of evolution in the aEPEC history.

For the subversion of actin dynamics, the prototype tEPEC strain E2348/69
recruits Nck to the site of bacterial adhesion in a Tir phosphorylated Y474-dependent
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mechanism. Nck activates the neural Wiskott-Aldrich syndrome protein (N-WASP)
triggering actin polymerization via activation of the Arp2/3 complex (Wong et al.
2011). In contrast, Tirgygec (enterohemorrhagic E. coli [EHEC] O157:H7) lacks an
Y474 equivalent and utilizes the T3SS-translocated effector protein EspFy/TccP
(Tir-cytoskeleton coupling protein), which binds IRTKS/IRSp53 and the GTPase-
binding domain (GBD) of N-WASP, and stimulates Nck-independent actin polym-
erization (Wong et al. 2011). To date, two variants of the fccP gene were described:
tccP (carried on prophage CP-933U/Spl4) and tccP2 (carried on prophage Sp4/
CP-933M). It has been reported that aEPEC strains may carry tccP and/or tccP2,
thus demonstrating that aEPEC strains may use both Tir-Nck and Tir-TccP path-
ways to induce actin polymerization (Ooka et al. 2007). Interestingly, by analyzing
a collection of aEPEC, Rocha and colleagues (2011) demonstrated that one non-
adherent aEPEC strain of serotype O88:HNM, when transformed with a TccP
expressing-plasmid, acquired the ability to adhere to and to induce actin-accumula-
tion in HeLa cells, an indirect measure of the ability to form AE lesions.

Intimin, a 94 kDa-outer-membrane protein, is one of the most important EPEC
colonization factors, which mediates the intimate adherence to the host (Kaper et al.
2004). The polymorphism found in the C-terminal region of the eae gene allowed
the description of at least 35 distinct intimin subtypes (Hernandes et al. 2009).
Studies evaluating the prevalence of these subtypes have shown that intimins classi-
fied as betal, epsilonl, and theta appear as the most frequent among aEPEC strains
(Gomes et al. 2004; Abe et al. 2009; Contreras et al. 2010; Xu et al. 2016).

A previous study demonstrated that an aEPEC strain, carrying intimin subtype
omicron, could invade epithelial cells in vitro in an intimin-dependent pathway,
since an isogenic eae mutant was noninvasive (Hernandes et al. 2008). Further,
studies pointed out that the invasive phenotype can be observed in one of three
aEPEC strains harboring intimin subtype betal (Pacheco et al. 2014), as well as in
aEPEC with uncommon intimin subtypes, such as tau and upsilon (Yamamoto et al.
2009). Of note, invasion is not considered a common virulence feature of aEPEC
(Croxen et al. 2013; Pacheco et al. 2014).

Several studies have found aEPEC genes associated with adhesive structures of
other DEC pathogroups as well as of extraintestinal pathogenic E. coli, probably
suggesting that this pathogroup can employ different adherence strategies in addi-
tion to the Tir—intimin interaction (Gomes et al. 2004; Tennant et al. 2009; Scaletsky
et al. 2010; Gomes et al. 2011; Hernandes et al. 2011). A summary of the adhesin-
encoding genes found in aEPEC strains and their occurrence are presented in
Table 4.1.

So far, the only adhesin originally described in aEPEC is the locus of diffuse
adherence (LDA), an afimbrial adhesin identified in an aEPEC strain of serotype
026:H11. A cloned 15-kb genomic region from this strain confers the diffuse pat-
tern of adherence on HEp-2 cells, when expressed in E. coli K-12 (Scaletsky et al.
2005). In addition to aEPEC serotype O26:H11, genes related with the lda operon
were reported in some aEPEC of the following serotypes: O26:HND, O157:HNM,
and ONT:H18 (Scaletsky et al. 2010).
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Table 4.1 Adhesin-encoding genes in aEPEC isolates

No. of aEPEC
Adhesin Target Studied | Positive | % References
Type 1 pilus fimH 57 57 100.0 | Afset et al. (2006)
Curli csgE 57 57 100.0 | Afset et al. (2006)
Hemorrhagic coli pilus hepA 71 70 98.6 | Hernandes et al.
(2011)
E. coli common pilus ecpA 71 61 85.9 | Hernandes et al.
(2011)
E. coli laminin-binding elfA 71 51 71.8 | Hernandes et al.
fimbriae (2011)
Long polar fimbriae IpfA 100 59 59.0 | Gomes et al. (2011)
Porcine A/E-associated paa 100 42 42.0 | Gomes et al. (2011)
adhesin
EHEC factor for adherence | efal/lifA 107 32 30.0 | Vieira et al. (2010)
IrgA homologue adhesin lha 100 29 29.0 | Gomes et al. (2011)
Antigen 43 agn43 57 12 21.1 | Afset et al. (2006)
ToxB protein of EHEC toxB 126 17 13.5 | Scaletsky et al.
(2009)
Afimbrial adhesin of the Dr | afaBC 99 8 8.0 | Gomes et al. (2004)
family
F1845 daaC 99 7 7.0 | Gomes et al. (2004)
Locus for diffuse adherence | ldaH 126 6 4.8 | Scaletsky et al.
(2009)
P fimbriae papC 99 1 1.0 | Gomes et al. (2004)
S fimbriae sfaDE 99 1 1.0 | Gomes et al. (2004)

Little information is available regarding how the environmental intestinal condi-
tions can influence aEPEC infection of enterocytes. In a study focused in evaluating
how the intestinal environmental conditions could modulate the aEPEC interactions
with the host, Romao and colleagues demonstrated that the presence of 5 % of CO,
significantly enhanced the number of bacteria associated with the epithelial cells
(Romaio et al. 2014). Previous studies showed that a 5% CO,-containing atmo-
sphere enhanced protein secretion by the EPEC T3SS (Haigh et al. 1995). The find-
ings of Romdo and colleagues (Romao et al. 2014) support the role of the
T3SS-translocon as an additional aEPEC adhesin (Hernandes et al. 2013).

The ability of aEPEC strains to adhere to abiotic surfaces (polystyrene and glass)
has also been demonstrated (Culler et al. 2014; Nascimento et al. 2014). One study
employing aEPEC serotype O55:H7 implicated the non-fimbrial adhesin curli as the
structure mediating binding to these surfaces at 26 °C, while the common type 1
pilus (T1P) was associated with the same phenotype in assays performed at 37 °C
(Weiss-Muszkat et al. 2010; Hernandes et al. 2013).

Non-LEE effectors (Nle) are additional T3SS-dependent effector proteins
encoded by genes organized outside the LEE region, in at least six chromosomal
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PAIs, or in prophage elements (reviewed in Wong et al. 2011 and Vossenkdmper
et al. 2011). Although they are not necessary for AE lesion formation, it is believed
that these effectors enhance the bacterial virulence.

Since the beginning of 2000, many Nle effectors have been identified and char-
acterized in EHEC, EPEC, and Citrobacter rodentium prototype strains, with Cif
(Cycle inhibiting factor) being the first Nle identified (Vossenkdmper et al. 2011).
After the description of the first Nle effector, many others were functionally charac-
terized and shown to disturb host cells cytoskeleton and tight junctions and to mod-
ulate or prevent the host inflammatory response (reviewed in Vossenkdmper et al.
2011; Wong et al. 2011; Raymond et al. 2013).

Until now, only two Nle effectors, Ibe and EspT, have been functionally described
and characterized in aEPEC (Buss et al. 2009; Bulgin et al. 2009). Ibe was identified
in aEPEC strain 3431-4 (Buss et al. 2009) as a protein that interacts with the
C-terminal domain of the host protein IQGAP1 and appears to enhance membrane
ruffles and N-WASP activation, which consequently increases actin polymerization
and bacterial pedestal formation (Buss et al. 2009). Although the EspT virulence
mechanism was identified in aEPEC strain E110019 (Bulgin et al. 2009), which was
responsible for a diarrheal outbreak in Finland in 1987, this effector is not com-
monly found among aEPEC strains (Arbeloa et al. 2009). EspT modulates actin
dynamics (Bulgin et al. 2009) leading to membrane ruffling, and has also been asso-
ciated with cell invasion (Bulgin et al. 2009) and induction of macrophages to pro-
duce interleukins IL-8, IL-1p, and PGE2, via NF-kB and Erk/JINK pathways.

One of the first studies to investigate the occurrence of the T3SS-dependent non-
LEE effectors genes in aEPEC demonstrated that nleC and nleF are the most fre-
quent among the genes tested; however, a vast repertory of this class of effectors
was detected in different frequencies (Afset et al. 2006). Despite the occurrence of
several non-LEE effector-encoding genes, a case-control statistical analysis identi-
fied that nleB and nleE genes, which are located in a pathogenicity island termed
PAI-O122, were more prevalent among aEPEC strains from patients than from con-
trols, suggesting an association of these virulence factors with the diarrheal disease
(Afset et al. 2006). Although in Brazil, the nleB and nleE genes could not be indi-
vidually detected in association with diarrhea (Scaletsky et al. 2009; Vieira et al.
2010; Salvador et al. 2014), in one of these studies, aEPEC harboring a complete
PAI-O122 (efalllifA, sen, pagC, nleB, and nleE) were observed more frequently
among aEPEC strains obtained from diarrheic patients than from controls, showing
a positive association with diarrhea, despite the occurrence of incomplete versions
of this island in both tEPEC and aEPEC strains (Vieira et al. 2010).

The presence of six Nle-encoding genes (cif, espl/nleA, nleB, nleC, nleD, and
nleE) was investigated among 107 EPEC strains (44 tEPEC and 63 aEPEC) isolated
from 71 diarrheic and 36 non-diarrheic children in Brazil (Salvador et al. 2014). The
Nle genes nleC, cif, and nleB were more prevalent among tEPEC than aEPEC
strains; however, a larger number of different n/e-genes combinations were observed
among the aEPEC. To note, none of the Nle-encoding genes investigated were sta-
tistically associated with diarrhea (Salvador et al. 2014).
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By employing phylogenetic analysis to evaluate 196 aEPEC strains from seven
countries, Ingle et al. (2016) gathered bacterial strains into three distinct groups,
showing a variability of Nle genes combinations among these lineages. As previ-
ously suggested, the diverse repertoire of the Nle genes found among distinct
aEPEC serotypes may suggest that different isolates can employ distinct strategies
to promote damage to the host and cause disease (Wong et al. 2011). The Nle effec-
tors, functions, and occurrence among aEPEC strains are listed in Table 4.2.

The autotransporter (AT) proteins are a family of secreted proteins, which are
associated with bacterial adherence, aggregation, invasion, biofilm formation, and

Table 4.2 Non-Lee-encoded effectors detected in aEPEC

Non-Lee-encoded
effector

Modifications promoted in the host cell

Studies showing the
distribution in aEPEC

Inhibition of cell detachment and modulation of cell death

Cif Blocks the cell cycle Salvador et al. (2014),
Ingle et al. (2016)
NleD Inhibits AP-1 activation via JNK cleavage, Salvador et al. (2014),
leading to reduction of the apoptosis Ingle et al. (2016)
NleF Binds to caspases to inhibit apoptosis Bugarel et al. (2011),

Ingle et al. (2016)

NleH1 and NleH2

Block apoptosis by Bax-inhibitor binding

Bugarel et al. (2011),
Ingle et al. (2016)

EspO, EspOl, and
EspO2

Impair RhoA activation by EspM2, preventing
cell detachment

Ingle et al. (2016)

Modulation or prevention of the host inflammatory response

NleE Impairs IkB degradation to prevent NF-kB Vieira et al. (2010),
translocation to the nucleus and, consequently, | Bugarel et al. (2011),
impairs the production of pro-inflammatory Salvador et al. (2014),
cytokines Ingle et al. (2016)

NleC Metalloprotease that inhibits NF-kB activation | Salvador et al. (2014),

Ingle et al. (2016)

NleB, NleB1, and
NleB2

Inhibit NF-kB activation in response to TNF
stimulus

Vieira et al. (2010),
Bugarel et al. (2011),
Salvador et al. (2014)

Nlel/NleG and
NleG2-3

Mimicry the human U-box E3 ubiquitin ligase
that interacts with E2 ubiquitin, essential step
of ubiquitination signaling. May be involved
with immune response suppression

Bugarel et al. (2011),
Ingle et al. (2016)

NleH1 and NleH2/
OspG

Sequester ribosomal protein S3 (RPS3),
inhibiting p65 NF-kB subunit recruitment for
immune response

Bugarel et al. (2011),
Ingle et al. (2016)

NleD

Contributes to inhibition of IL-8 production
in vitro

Salvador et al. (2014),
Ingle et al. (2016)

Inhibition of phagocytosis

Espl

Inhibits phagocytosis of opsonized bacteria by
FcR and C3

Ingle et al. (2016)

(continued)



84

Table 4.2 (continued)
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Non-Lee-encoded
effector

Modifications promoted in the host cell

Studies showing the
distribution in aEPEC

NleH1 and NleH2/
OspG

Reduces phagocytosis and opsonophagocytosis

Bugarel et al. (2011),
Ingle et al. (2016)

Cytoskeleton modulation

EspG2 Disrupts microtubules, assembles a GTPase— Ingle et al. (2016)
kinase signaling complex to inhibit organelle
membrane trafficking

EspL Binds to Annexin 2 and induces F-actin Ingle et al. (2016)
aggregation at the bacterial interaction site

EspM, EspM1, Activate RhoA GTPase, promoting stress fiber | Arbeloa et al. (2008),

EspM2, and formation, pedestal formation, disruption of Ingle et al. (2016)

EspM3 cell polarity, and cell detachment

EspT Activate Cdc42 and Racl GTPases, inducing Arbeloa et al. (2009),
membrane ruffles and lammelipodia, leading to | Pacheco et al. (2014)
bacterial internalization

EspV Induces cellular rounding, leading to formation | Arbeloa et al. (2011),
of dendrite-like structures; induces nucleus Ingle et al, (2016)
condensation

NleA/Espl Inhibits protein exportation from ER to Golgi Salvador et al. (2014),
and induces tight junction disruption Ingle et al. (2016)

Ibe Regulates Tir phosphorylation, enhancing the Buss et al. (2009),
pedestal formation Liebchen et al. (2011)

TccP/EspFu Binds to N-WASP inhibitor releasing the Ooka et al. (2007),

catalytic domain that activates the Arp2/3
complex, leading to actin recruitment
underneath of adherent bacterium

Whale et al. (2007),
Ingle et al. (2016)

Unknown functions

EspK

Bugarel et al. (2011),
Ingle et al. (2016)

EspN

Ingle et al. (2016)

EspW

Ingle et al. (2016)

EspR, EspS, EspX, and EspY families, NleK, and OspG1 were not identified in aEPEC strains

toxicity in Gram-negative bacteria (Henderson et al. 2004). The structure of these
proteins has three functional domains: the amino-terminal leader sequence, the
secreted mature protein (passenger domain), and a carboxyl-terminal domain that
forms a beta-barrel pore to allow secretion of the passenger protein (Henderson
et al. 2004). In a recent study, the prevalence of the following AT-encoding genes
was investigated in tEPEC and aEPEC strains: aida-1, cah, eatA, ehaA, ehaB, ehaC,
ehaD, ehal, epeA, espC, espl, espP, pet, pic, sab, sat, and tibA (Abreu et al. 2013).
The ehaC gene, associated with biofilm formation in EHEC strains, was the most
prevalent AT-encoding gene found among aEPEC, and its occurrence was signifi-
cantly higher in aEPEC than tEPEC (Abreu et al. 2013). The same study showed
that other genes associated with biofilm formation in EHEC, such as ehdA,
ehaB, and ehaD, were detected in several of the strains tested, followed by espC.
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The EspC protein, which is secreted from bacteria by the type five secretion system
(T5SS) and injected into the host cell by the T3SS, has an IgA protease-like activity
and, once in the host cytoplasm, can degrade fodrin and focal adhesion protein,
leading cell to death (Navarro-Garcia et al. 2014).

Among several AT virulence factor-encoding genes found in aEPEC strains
(Abreu et al. 2013), the only genes that were functionally analyzed in the aEPEC
virulence process were pic (protein involved in intestinal colonization) and pet
(plasmid-encoded toxin). The pic gene was first identified in the EAEC chromo-
some and was later found in a high molecular weight plasmid of one aEPEC strain
(Abreu et al. 2016). By employing an aEPEC mutant in the pic gene, this study
demonstrated that Pic shows several virulence properties, such as agglutination of
rabbit erythrocytes, cleavage of mucin, degradation of components of the comple-
ment system, and colonization of mice intestines with intense mucus production
(Abreu et al. 2016). Additionally, it has been shown that some aEPEC strains are
able to secret Pet to the extracellular environment. Pet induces cell damages compa-
rable to those induced by this protein when produced by strains of the EAEC patho-
group, where it was originally described (Ruiz et al. 2014).

2 Recent Advances in aEPEC Research

The identification of virulence genes among aEPEC strains has demonstrated that
these strains harbor virulence markers of other DEC pathogroups as well as of
E. coli strains that cause extraintestinal disease (extraintestinal pathogenic E. coli).
This observation led to the conclusion that aEPEC strains, in fact, can comprise a
very heterogeneous group with several additional virulence mechanisms and pheno-
typic characteristics (Hernandes et al. 2009).

Facing this complex genetic virulence background, recent studies have tried to
decipher how truly pathogenic aEPEC strains interact with and damage the host. In
recent years, some advances have been made in the understanding of the initial steps
of the aEPEC interaction with the host. The observation that an aEPEC isogenic inti-
min-mutant strain remained adherent to HeLa cells in a T3SS-dependent mechanism
provided strong evidence about the contribution of the T3SS-translocon in the bacte-
ria—cell interaction (Hernandes et al. 2013). More recently, the flagellar cap protein
FliD of an aEPEC strain (serotype O51:H40) was shown to bind unknown receptors at
the Caco-2 intestinal cells microvilli (Sampaio et al. 2016). In addition, an anti-FliD
serum and purified FliD were able to reduce the adherence of the aEPEC strain studied
as well as that of tEPEC, EHEC, and ETEC prototype strains to this cell lineage
(Sampaio et al. 2016). It has also been shown that the flagellin (F1iC) of another aEPEC
strain (serotype O26:H11) binds fibronectin, probably reinforcing the bacterial interac-
tion with cellular fibronectin (Moraes et al. 2015). However, the role of T3SS and fla-
gella in the aEPEC colonization in vivo remains to be studied. Furthermore, although
the prevalence of Pic in aEPEC strains is not a common finding, this AT-protein appears
to mediate colonization of mice intestines (Abreu et al. 2016).
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In recent years, two research groups have used advanced techniques of genomic
analysis to investigate a large collection of aEPEC strains and provided information
which extended the knowledge on the aEPEC genomic diversity (Hazen et al. 2013;
Ingle et al. 2016). Based on whole-genome phylogenetic analysis, Hazen and col-
leagues (2013) observed that 35% of the aEPEC were placed into the EPECI,
EPEC2, or EPEC4 lineages, which are distinct EPEC lineages that probably acquired
the LEE region and pEAF independently. Such evidence suggested that at least
some tEPEC may have lost pEAF during the transit in the host, originating aEPEC
strains. In fact, studies performed in adult volunteers, trying to demonstrate the role
of tEPEC as an intestinal pathogen, had previously revealed the pEAF segregation
during the development of the infectious processes (Levine et al. 1985). Curiously,
in a study performed by Hazen et al. (2013), some AE E. coli strains (including
aEPEC strains) did not fit any of the known genomic AE-producing E. coli lineages,
suggesting that these bacterial populations are closest to other E. coli pathogroups
(Hazen et al. 2013). These unclassified aEPEC strains could represent commensal
E. coli strains that received the LEE region by horizontal transfer along with supple-
mentary virulence factors-encoding genes that turned them into true pathogens.

Although several advances have been made in the knowledge of the genome of
aEPEC, and the role of several proteins have been reported in in vitro studies, a
major difficulty faced in order to detect the truly pathogenic isolates within this
heterogeneous group of strains is the absence of an animal model of diarrhea.
Despite the fact that the AE lesion comprises an important step in the pathogenesis
processes of aEPEC infections, the absence of animal models hampers the identifi-
cation of specific genes or genes combinations that could enhance the virulence of
aEPEC isolates and their ability to cause diarrheal disease.

3 Atypical EPEC in America

A comparison of the prevalence of EPEC strains among different geographic areas
and periods of time has been hampered by the diverse identification techniques
(serotyping, adherence patterns, and the presence of the eae or conserved LEE
genes) employed in different studies. Variations in the features of the populations
studied and lack of discrimination between tEPEC and aEPEC in some studies have
also hampered such analysis.

Several studies conducted over the last 20 years in different regions of the world
revealed a decreasing frequency of tEPEC and the increasing rates of aEPEC, espe-
cially in developing countries, where aEPEC has been considered an emerging
pathogroup (Cohen et al. 2005; Ochoa et al. 2008; Hernandes et al. 2009). However,
such increase in prevalence may also reflect the refined EPEC discrimination between
tEPEC and aEPEC (Trabulsi et al. 2002; Hernandes et al. 2009; Hu and Torres 2015).

The frequency of aEPEC strains in distinct parts of the world has been previ-
ously reviewed (Ochoa et al. 2008; Hernandes et al. 2009; Hu and Torres 2015) and
was updated in Table 4.3. Epidemiological studies developed in Latin America have
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Table 4.3 Atypical enteropathogenic E. coli in humans
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‘ % of aEPEC in (population studied)

Country ‘ Diarrheic cases ‘ Asymptomatic cases References

America

Brazil 1.6 % (304 adults and NT Liebchen et al.
children) (2011)

Brazil 12.1 % (200 children) 14.7 % (150 children) | Nunes et al. (2012)

Brazil 11.3% (141 children up | 7.9 % (419 children up | Lozer et al. (2013)
to 10 years old) to 10 years old)

Brazil 3.2 % (400 adults and NT Assis et al. (2014)
children)

Brazil 8.0 % (200 children 8.5% (200 children Dias et al. (2016)
<5 years) <5 years)

Mexico 4.5% (831 children) NT Patzi-Vargas et al.

(2015)

Peru 5.8 % (936 children 9.4 % (424 children Contreras et al.
2-12 months of age) 2-12 months of age) (2011)

USA 4.3 % (823 patients 3.4% (411 patients Nataro et al. (2006)
0-60 years) 0-60 years)

USA 3.9 % (206 children NT Foster et al. (2015)
<12 years old)

Other countries

China

6.1 % (1418 diarrheic
patients)

2.2 % (640 healthy
carriers)

Xu et al. (2016)

Germany 6.9 % (1981 diarrheic NT Hardegen et al.
patients up to 98 years) (2010)

India 3.8 % (394 children 5.6 % (198 children Rajendran et al.
<5 years) <5 years) (2010)

India 1.0 % (296 children) 5.0 % (100 children) Ghosh and Ali

(2010)

Italy 2.5% (160 infants NT Amisano et al.
mean age (2011)
272+ 148 days)

Italy, Angola, and Italy 7.0 % (402 NT Santona et al. (2013)

Mozambique children <5 years)

Angola 3.7% (270
children <5 years)
Mozambique 1.9 % (377
children <5 years)

Libya 0.08 % (243 childrenup | NT Alietal. (2012)
to 12 years)

Niger 0.05 % (4020 children NT Langendorf et al.
<5 years) (2015)

Niger 1.6 % (126 children*5 NT Odetoyin et al.
years and their (2016)
mothers)

Tunisia 2.4 % (124 children 0% (54 children 4-60 | Ben Salem-Ben

3-60 months)

months)

Nejma et al. (2014)

NT not tested
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shown that the scenario has changed from the 1980s, when tEPEC prevailed over
aEPEC. In the United States, a recent study has reported the presence of aEPEC in
diarrheic children in a frequency similar to those found in many Latin American
countries (Foster et al. 2015).

Remarkably, the role of aEPEC strains in diarrheal disease is not clear because
in many regions this pathogroup has been detected in similar frequencies in both
diarrheic and non-diarrheic subjects (reviewed in Hernandes et al. 2009; Hu and
Torres 2015; Dias et al. 2016). Barletta and colleagues (2011) observed that there
are significant statistical differences between the bacterial load of EPEC isolated
from stool samples in children with and without diarrhea. Another study on diar-
rheic children in Dhaka, Bangladesh, evaluated the amount of PCR amplicons of the
eae gene. Although in this region stool samples frequently carried multiple entero-
pathogens, these results showed that the eae gene load was significantly higher in
diarrheal cases than in controls (Taniuchi et al. 2013). The authors, then, hypothe-
sized that such differences could determine a correlation between bacterial load and
establishment of disease. Unfortunately, a similar analysis has not been performed
with aEPEC strains from diarrheic and asymptomatic subjects to verify such poten-
tial correlation. Nonetheless, while tEPEC strains affect mostly very young children
(up to 1 year of age), aEPEC have been found in diarrheic patients of several ages
and in adult patients with HIV-AIDS (Gomes et al. 2004; Nunes et al. 2012; Lozer
and Souza 2013; Assis et al. 2014, Dias et al. 2016).

The analysis of the genetic background of aEPEC strains also has indicated that
subgroups of strains could be authentic pathogens with pathogenicity being deter-
mined by specific virulence genes or group of genes more frequently associated with
disease. Recent genomic studies on tEPEC isolated from patients presenting differ-
ent clinical symptoms have identified genes that are more frequently associated with
isolates from lethal or non-lethal symptomatic patients than with isolates from
asymptomatic patients (Donnenberg et al. 2015; Hazen et al. 2016). In a very recent
study performed in several regions of China, the authors analyzed the distribution of
intimin subtypes among aEPEC strains and found a statistically significant differ-
ence in the distribution of the intimin-encoding gene subtype f1 (eae-f1) between
diarrheal patients and healthy carriers (Xu et al. 2016). Another case-control study,
conducted in Osaka, Japan, found 1 or y1 intimin subtypes to be significantly asso-
ciated with diarrheic disease (Wang et al. 2013). However, further studies are still
required for a complete understanding of whether the several virulence determinants
could lead to the establishment of disease and modulate the disease severity.
Furthermore, it is important to point out that host and environmental traits can inter-
fere in the excretion of diarrheal pathogens by asymptomatic subjects. The intestinal
microbiota, the mucus layer, mucosal immunity, innate immune responses, and
immune status of the host are significant aspects to be considered to explain the pres-
ence of aEPEC in these individuals (reviewed in Levine and Robins-Browne 2012).

Although many studies have isolated aEPEC from acute diarrhea, a few studies
have also implicated this pathogroup as cause of persistent diarrhea and some aEPEC
strains have been associated to bloody diarrhea (reviewed Hernandes et al. 2009; Hu
and Torres 2015). Despite the difficulty in incriminating specific strains with diarrhea,
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aEPEC strains have been implicated in diarrheal outbreaks in distinct parts of the
world (reviewed in Ochoa et al. 2008; Hernandes et al. 2009; Hu and Torres 2015). A
widespread outbreak caused by aEPEC strains of serotype O111:H9 in Finland
involved more than 600 individuals, while in an outbreak in the United States, an
aEPEC strain of serotype O39:NM was recovered from more than 100 adults. aEPEC
was also involved with an outbreak affecting infants at a daycare center in Japan, in
which four aEPEC isolates (serotype O55:NM) with identical Pulsed Field Gel
Electrophoresis patterns were detected in distinct patients (Yatsuyanagi et al. 2002).
Furthermore, a waterborne diarrheal outbreak commiting teenager students in Japan
was described (Yatsuyanagi et al. 2003), where seven out of 41 diarrheic patients car-
ried aEPEC isolates of serotype ONT:H45. In addition, a recent foodborne outbreak
was reported, in which an aEPEC strain of serogroup O127a:K63, which was resis-
tant to quinolones and extended spectrum cephalosporins, affected 112 adults in
China (Hao et al. 2012), and aEPEC strains of serotype O51:H7 seemed to be specific
among diarrheal patients in another epidemiological study in China (Xu et al. 2016).

A large diversity of aEPEC serotypes has been described worldwide, mainly
when considering nonclassical EPEC serogroups (Trabulsi et al. 2002; Hernandes
et al. 2009). More than 100 different aEPEC serogroups (O types) have been identi-
fied (Hernandes et al. 2009). The O-typeable strains reported so far belong to >4200
different serotypes, including many nonmotile and H non-typeable strains (Trabulsi
etal. 2002; Hernandes et al. 2009). In addition, ~81 % of the aEPEC strains belonged
to nonclassical EPEC serogroups and over 20 % of strains of nonclassical EPEC
serotypes are O non-typeable.

While tEPEC are rarely found in animals and their reservoirs encompass only
humans (Trabulsi et al. 2002), various aEPEC strains have been isolated from sev-
eral healthy and diarrheic animal species (reviewed in Hernandes et al. 2009) and
from the environment. Although there is no confirmation of direct transmission from
animals to humans, animal aEPEC strains belonging to serogroups implicated in
human diarrhea have been detected (e.g., 026, 0103, 0119, 0128, 0142, and O157)
(reviewed in Hernandes et al. 2009; Kolenda et al. 2015). In addition, serotyping and
molecular methods, such as Multilocus Sequence Typing (MSLT) or Pulsed Field
Gel Electrophoresis (PFGE), have shown that domestic and wild animals and the
environment are potential sources of aEPEC for human infections in several regions,
including many Latin American countries, the United States, and Canada (Nakazato
et al. 2004; Krause et al. 2005; Morato et al. 2009; Bentancor et al. 2010; de Almeida
et al. 2012; Otero et al. 2013). These findings suggest that a large variety of animal
species may define important aEPEC reservoirs (Table 4.4). Therefore, it is plausible
to propose that some aEPEC strains could potentially be a zoonotic pathogen.

Some more refined techniques have enabled the investigation of environmental
sources such as food as being the origin of aEPEC infection in humans. By analyzing
aEPEC strains isolated from diarrheic patients and raw meats in China, it was identi-
fied that some strains from both origins shared identical serotypes, were clustered
together by PFGE analyses, and harbored identical eae alleles (Xu et al. 2016). These
results suggested that raw meats are reservoirs of aEPEC presenting eae-0 in China
and could be transmission vehicles for diarrheic diseases. Otero and colleagues
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Table 4.4 Atypical Enteropathogenic E. coli from animals, food, and environment

Sample origin (number of

Country sample studied) % of aEPEC in sample References
Americas
Argentina Dogs (450) and cats (149) 2.4 % in diarrheic dogs Bentancor et al.
either with or without (2007)
diarrhea
Argentina Chicken-derived products 20.0 % Alonso et al.
(1057) (2012)
Brazil Cats (300) 5.0% Morato et al.
(2009)
Brazil Diarrheic (65) and 50.8 % (diarrheic); de Almeida et al.
asymptomatic (36) dogs 41.7 % (asymptomatic) (2012)
Brazil Different free-ranging wild 19.4% Iovine Rde et al.
mammals (36) (2015)
Canada Wild animals (593) 10.1% Chandran and
Mazumder (2013)
Canada Foods, animals at slaughter, 4.0 % Comery et al.
and retail meats (450) (2013)
Canada Forest-dominated watersheds |26.4 % Chandran and
Mazumder (2015)
USA-Mexico Domestic dogs (358) and 3.6 % dogs; 4.9 % Jay-Russell et al.
Border coyotes (103) coyotes (2014)
USA Norway rats from five sites in | 38.0 % Firth et al. (2014)
New York city (133)
USA Dairy cattle (100) 32.0% Singh et al. (2015)
Other countries
Bangladesh 46 different natural aquatic 13.8% Akter et al. (2013)
locations (552)
Belgium Free-ranging wild cervids 3.8% Bardiau et al.
(133) (2010)
France Cattle slaughtered in six 4.8% Bibbal et al.
French abattoirs (1318) (2015)
France French shellfish-harvesting 13.8% Baliere et al.
areas and their watersheds (2015)
(English Channel coast) (505)
Ireland Bovine, farm soils, hide, and | 5.2% Monaghan et al.
carcass (2700) (2013)
Spain Bulk tank milk (388) 14.7 % Otero et al. (2013)

(2013) obtained evidence that aEPEC from ewes’ milk and contaminated water pre-
sented phylogenetic relationships with human isolates, as detected by MSLT and
PFGE, and therefore could be the source of human infections in farms in Spain.
Numerous aEPEC strains have also been recovered from pasteurized milk, meat
samples, and vegetables (Table 4.4), indicating that animal and human stools, carry-
ing aEPEC, contributed to the dissemination of aEPEC strains to the environment.
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Despite the recent advances in the knowledge of the genetic background and
pathogenicity of aEPEC, and the information generated by epidemiological studies
conducted mainly in American countries, the need of discriminating between strains
that can cause diarrhea and those that promote asymptomatic infection is a current
motivation for further studies in the field.
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Chapter 5
Enterohemorrhagic (Shiga Toxin-Producing)
Escherichia coli

Marta Rivas, Isabel Chinen, and Beatriz E.C. Guth

Summary Enterohemorrhagic (Shiga toxin-producing) Escherichia coli (EHEC/
STEC) is a zoonotic food- and waterborne pathogen that can cause human infections
ranging from asymptomatic carriage or mild diarrhea to hemorrhagic colitis (HC)
and hemolytic uremic syndrome (HUS). The isolates belong to a large number of
O:H serotypes, and O157:H7 is the most prevalent serotype associated with large
outbreaks and sporadic cases of HC and HUS in many countries. Advances on the
knowledge of microbial pathogenesis, pathophysiology of the associated diseases,
epidemiology, and risk factors have contributed to the development of several
strategies trying to prevent food and environment contamination, and consequently
transmission to humans. However, prevention of EHEC (STEC) infection has been
difficult because of the broad spectrum of contaminated sources and the limited
effectiveness of the different interventions used. The availability of effective vaccines
to reduce carriage in livestock as well as for preventing human disease is a pending
challenge. Specific targeted therapies against this pathogen group are another area of
concern. A new risk scenario has emerged in the last decades due to the bacterial
evolution that gave rise to the emergence of hypervirulent O157 clones with a
worldwide distribution and other EHEC (STEC) strains with unusual combinations
of pathogenic features, such as the O104:H4 strain. Because of the severity and the
long-term sequelae of EHEC (STEC)-associated illnesses, they have a high social
and economic cost for both the affected families and the health system. Therefore, all
efforts should be directed to reduce the burden of these diseases.
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1 General Concepts About EHEC (STEC)

Enterohemorrhagic (Shiga toxin-producing) Escherichia coli (EHEC/STEC) com-
prise a group of zoonotic food- and waterborne pathogens whose hallmark is the
ability to produce one or more cytotoxins of the Shiga toxin (Stx) family (Melton-
Celsa 2014). The clinical manifestations related to EHEC (STEC) infections can
range from symptom-free carriage or mild diarrhea to more severe clinical presenta-
tions like hemorrhagic colitis (HC) and a life-threatening syndrome known as
Hemolytic Uremic Syndrome (HUS), affecting mainly infants and children (Tarr
et al. 2005). Although the incidence of EHEC (STEC) infections varies over the
world, the importance and impact of HC and HUS outbreaks on public health is
enormous, being responsible as the main cause of acute renal failure in children in
many countries (Tarr et al. 2005; Rivas et al. 2006a).

HUS was originally defined as a combination of microangiopathic hemolytic
anemia, thrombocytopenia, and acute renal failure. Recently, the definition of HUS
has come to include documented hemolysis rather than anemia, platelet consump-
tion rather than thrombocytopenia, and signs of renal damage rather than renal fail-
ure (Ardissino et al. 2014). There is no specific treatment for HUS, and patients are
generally given supportive care for water imbalance, anemia, hypertension, and
renal failure. The frequency of patients dying during the acute phase of disease is
still 1-2% (Mele et al. 2014), and almost 30 % of patients develop long-term renal
damage (Spinale et al. 2013).

The discovery and history of the emergence of this E. coli pathotype had recently
been reviewed (Kaper and O’Brien 2014). It is fascinating that more than 30 years
after its first association with a human disease, our knowledge on EHEC (STEC)
epidemiology, virulence properties, pathogenesis, host interactions, and molecular
evolution is continuously evolving.

Escherichia coli O157:H7, linked to the first outbreak of HC in the United States
in 1982 (Riley et al. 1983) and responsible for outbreaks and sporadic cases of HUS
in several countries (Rivas et al. 2006a; de Souza et al. 2011; Vally et al. 2012;
Terajima et al. 2014), is the prototype of this group of pathogens originally named
enterohemorrhagic E. coli (EHEC), and nowadays still represents one of the most
important and prevalent serotypes responsible for the more severe cases of disease
worldwide. However, knowledge that more than 400 E. coli serotypes can harbor stx
genes has led to a more general classification of the group as Shiga toxin-producing
E. coli (STEC), but epidemiological studies carried out all over the world have dem-
onstrated that only a proportion of them have been implicated in human disease. In
addition to O157:H7, some other serogroups as 026, 045, 0103, O111, O121, and
0145 have been recognized as responsible for the majority of the serious cases of
infection (Gould et al. 2013; Terajima et al. 2014).

In EHEC (STEC) infections, the most significant virulence factors are the Shiga
toxins (Stx). Stx family comprises several toxins, related to Stx from Shigella dys-
enteriae, sharing similar structure and biological activity. Another common charac-
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teristic present among these toxins is that the szx operon is usually found within the
sequence for an inducible, lysogenic, A-like bacteriophage (Melton-Celsa 2014).
Albeit these similarities, a high degree of diversity has been identified among these
proteins, and therefore, in E. coli two major toxin subfamilies Stx1 and Stx2 are
classified, and each is composed by several variants. Although the nomenclature of
these variants was rather confusing as several systems had been proposed, a consen-
sus has been reached in more recent years and a sequence-based nomenclature has
been developed for detection and subtyping of stx genes (Scheutz et al. 2012).
According to this scheme, members of the Stx1 subfamily include Stx1a, Stx1c, and
Stx1d; whereas Stx2a, Stx2b, Stx2c, Stx2d, Stx2e, Stx2f, and Stx2g belong to the
Stx2 group. More than sequence differences, it has been recognized that some of the
variants are of clinical relevance as they have been associated with more severe
cases such as HC and HUS, while others have been related to uncomplicated diar-
rhea or are probably not produced by strains causing human disease. In this respect,
those producing Stx2a, Stx2c, or Stx2d have been reported to be more pathogenic
than those strains producing Stx1 variants alone or both Stx1 and Stx2 (Scheutz
2014). On the other hand, the variants Stx2e, Stx2f, and Stx2g are rarely involved in
human disease. In fact, Stx2e is responsible to cause edema disease of swine, a seri-
ous neurological disorder that is frequently fatal, whereas Stx2g and Stx2f have
been mainly detected in animal reservoirs (Persad and LeJeune 2014).

A considerable amount of data exists to explain the stronger association of Stx2
with more severe diseases. Earlier studies had proposed differences in cytotoxicity
among Stx1 and Stx2. It has been observed that while Stx1 is more toxic to mam-
malian cell lines, such as Vero cells, Stx2 is more potent in animal models. It had
been shown that only Stx2-treated mice developed renal complications and death,
and similar observations were seen in nonhuman primate models (Baboons) in
which treatment with Stx2 caused HUS, while equal doses of Stx1 had no effect
(Siegler et al. 2003). Moreover, comparison of the effects of the two toxins also
showed different pro-inflammatory responses and different timings of organ injury.
Stx1 induced a stronger and earlier pro-inflammatory response in baboons, while
the Stx2 response was gradual and delayed by several days (Stearns-Kurosawa et al.
2010). Another study, also using a nonhuman primate model, showed that both Stx1
and Stx2 affected kidney function, and although Stx2 inflicted more severe damage
to the kidney than Stx1, the damage caused on the kidney by Stx1 was significant
(Stearns-Kurosawa et al. 2013). In parallel, a differential susceptibility of endothe-
lial cells to Stx1 and Stx2 has been described (Bauwens et al. 2011), but the real
basis of these differences is not well understood. It has been suggested that holo-
toxin stability, enzymatic activity, and receptor affinity may be related to the dif-
ferential toxicity of Stx1 and Stx2.

These toxins are characterized by an AB; structure with one enzymatically active
A subunit non-covalently linked to a pentamer of B subunits responsible for the
globotriaosylceramide (Gb3) binding. The Stx-Gb3 interaction leads to the internal-
ization of the toxin which is transported via the retrograde pathway to the Golgi
apparatus, endoplasmic reticulum, and nuclear membrane. An active Al fragment
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of the A subunit is retro-translocated into the cytoplasm where it binds to the large
ribosomal subunit and inhibits protein synthesis by cleaving off a single adenine
residue from the 28S rRNA. The action of Stx on target cells goes beyond the inhibi-
tion of protein synthesis. Further, it is well-known that the toxin also acts on cell
signal transduction and immune modulation (Lee et al. 2013). The damage caused
to the ribosome by Stx induces a ribotoxic stress response that is both pro-
inflammatory and pro-apoptotic (Jandhyala et al. 2012). Indeed, the mechanisms of
Stx1 and Stx2-induced apoptosis in various cell types have been extensively studied
(Cherla et al. 2003). Recently, Basu and Tumer (2015) reviewed the participation of
B subunits and the potential role for the Al subunits in the differential toxicity of
Stx1 and Stx2. Bentancor et al. (2013) studied the ability of the machinery of
eukaryotic cells to recognize stx, sequences and to produce biologically active
Stx2 in Vero cells transfected with a plasmid-encoding Stx2. Their results support
the hypothesis that in the context of the inflammatory response of the colon during
the EHEC (STEC) infection, phagocyte cells (macrophages/neutrophils) could
incorporate stx, genes and produce active toxin as alternative source of Stx2.

The colon is the primary site of histological lesions caused by EHEC (STEC),
and when the tissue is swollen, increases the Stx passage through the intestinal bar-
rier, and the development of HUS is linked to the cytotoxic action exerted by Stx
when passing from the intestine to the systemic circulation. Schiiller (2011)
reviewed the Stx interaction with the human intestinal epithelium and proposed that
Stx uses different routes of translocation through the human intestinal epithelium in
the early stages of infection: (1) Gb3-independent transcytosis, possibly enhanced
by EHEC (STEC) infection; (2) paracellular transport during neutrophil (PMN)
transmigration; (3) induction of Gb3 expression by EHEC (STEC) infection, retro-
grade transport, and Stx release after cell death; (4) Gb3-dependent translocation by
Paneth cells; and (5) transcytosis by M cells. Sandvig et al. (2014) showed that the
different steps of transport used by Stx have specific lipid requirements that confer
specificity to Stx action.

Different studies have shown that kidney and brain are the most affected organs
in HUS patients, due to the high sensitivity of the endothelial cells and renal micro-
vasculature to Stx by the elevated expression of Gb3. Renal or neurological sequelae
are consequences of irreversible tissue damage during the acute phase. Moreover,
the tumor necrosis factor (TNF-a), mainly released by monocytes/macrophages,
increases the expression of Gb3 in endothelial cells, and Stx is also able to increase
and extend renal injury favoring endothelium interaction with leukocytes and plate-
lets. Edema and detachment of endothelial cells of the basement membrane is seen
in the histopathological examination of renal glomeruli and also formation of
microthrombi of platelets rich in fibrin, causing the injury known as thrombotic
microangiopathy (TMA). In addition to the direct effects of Stx on the renal epithe-
lium and endothelium causing cell injury, the toxin induces an extensive inflamma-
tory response and promotes the release of pro-inflammatory cytokines such as
interleukin-1 (IL-1), TNF-a, and IL-6 in human renal epithelial cells and increases
the expression of chemokines, cytokines, and molecules of adhesion in epithelia and
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endothelium, which contribute to renal injury observed in HUS. Stx2 also induces
the increase of IL-8 and monocyte chemoattractant protein-1 (MCP-1) and
fractalkine/CX3CL1 in human endothelial cells, promoting adhesion and leukocyte
chemotaxis (Zoja et al. 2010).

Other virulence factors, such as lipopolysaccharide (LPS), are necessary for the
full development of HUS. It is known that the joint action of Stx and LPS increases
the production of nitric oxide (NO) and reduces levels of catalase. Gémez et al.
(2013) have demonstrated that Stx induces an oxidative imbalance, evidenced by
renal glutathione depletion and increased lipid membrane peroxidation. The
enlarged production of reactive oxygen species by neutrophils could be one of the
major sources of oxidative stress during Stx intoxication. The authors concluded
that Stx generates a pro-oxidative state that contributes to kidney failure, and exog-
enous anti-oxidants could be beneficial to counteract this pathogenic pathway.

On the other hand, one should consider that the differences in virulence observed
among EHEC (STEC) isolates may also be associated to a diversity of Stx expres-
sion. As the production of Stx relates to the level of phage production, considerable
information about the characteristic and behavior of stx phages, the factors involved
in their induction and dissemination, has contributed to our understanding on how
phage variability may affect pathogenesis and disease (reviewed in Kriiger and
Lucchesi 2015). Moreover, the effect of some antibiotics on stx phage induction and
Stx production presents adverse clinical consequences and directly impacts thera-
peutic approaches (McGannon et al. 2010). As such, studies on novel strategies
trying to detect conditions that repress phage induction will certainly contribute to
diminish the risk of development of HUS (Keen 2012).

The importance of Stx in the development of disease is unquestionable, but a
diverse array of additional virulence factors, including adhesins, other toxins, and
proteases, are involved in the establishment and maintenance of an infection.

The ability to colonize the host intestinal epithelium is considered a key step in
pathogenesis. The presence of locus of enterocyte effacement (LEE), a chromo-
somal pathogenicity island (PAI), encoding a type III secretion system (TTSS), an
outer membrane protein called intimin, and effector proteins responsible for the
characteristic attaching-and-effacing (A/E) lesion is pathognomonic of disease
related to EHEC (STEC). The A/E lesion is a histopathologic alteration character-
ized by the effacement of microvilli and the formation of pedestal-like structures in
a process driven by the actin polymerization. The loss of the absorptive capacity of
microvilli probably contributes to the diarrhea induced by these bacteria. Both
O157:H7 (Wick et al. 2005) and non-O157 EHEC (STEC) strains (Karmali et al.
2003; Wickham et al. 2006) contain a variable repertoire of virulence determinants,
including a collection of non-LEE encoded effector (nle) genes that encode translo-
cated substrates of TTSS. The TTSS facilitates the persistence, host-to-host spread,
and virulence of EHEC (STEC). However, although LEE has been linked to EHEC
(STEC) strains belonging to major serotypes causing more than 80 % of HC and
HUS cases in Europe (ECDC 2015a) and the United States (CDC 2013), it has been
noticed that possession of LEE is not a mandatory condition for the occurrence of
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exacerbated infections, as some LEE-negative strains are also capable of causing
outbreaks and sporadic cases of HUS (Paton et al. 1999; Karch et al. 2005;
Bielaszewska et al. 2011). Thereafter, an increasing number of adhesins composed
by several fimbrial proteins, as well as different members of autotranporter proteins
(AT) family, have been identified in EHEC (STEC) strains, some of them exclu-
sively among LEE-negative strains, which were demonstrated to be involved in
adherence to human epithelial cells as well as in biofilm formation (McWilliams
and Torres 2014).

Besides Shiga toxins, the contribution of other toxins as the cytolethal distending
toxin V (CDT-V) and subtilase cytotoxin (SubAB), produced by some particular
serotypes, in the development and pathogenesis of HUS has been addressed
(Bielaszewska et al. 2005; Paton and Paton 2010). Amaral et al. (2013) compared
the effects of SubAB with those caused by Stx2 on primary cultures of human glo-
merular endothelial cells (HGEC) isolated from fragments of human pediatric renal
cortex. Both toxins decrease the cell viability, but Stx2 caused a necrosis signifi-
cantly higher than that induced by SubAB. Stx2 increased apoptosis in a time-
dependent manner, while SubAB increased apoptosis at 4 and 6 h but decreased at
24 h. Pre-incubation of HGEC with C-9, a competitive inhibitor of Gb3 synthesis,
protected HGEC from Stx2 but not from SubAB cytotoxic effects. These data pro-
vide evidence of how SubAB could cooperate with the development of endothelial
damage characteristic of HUS pathogenesis.

In addition, a plasmid-encoded enterohemolysin (EhxA), which is a pore-
forming cytolysin, has been identified at high frequencies among several EHEC
(STEC) strains, and frequently associated with diarrheal disease and HUS. Despite
EhxA contributing to disease by damaging the membrane of erythrocytes and other
cells, its role in the hemolytic anemia of HUS patients has not been ascertained.
Nevertheless, the enterohemolytic phenotype has been used as a good marker in the
identification of EHEC (STEC) (Beutin et al. 1989).

The zoonotic character of EHEC (STEC) infections is well-established. Bacteria
are largely distributed in the gastrointestinal tract of a wide diversity of animal spe-
cies, normally as asymptomatic carriers. Several ruminant animals, especially cat-
tle, are considered as the main natural reservoir, but other livestock species, domestic
and wild mammals, birds, and fishes, have also been implicated in EHEC (STEC)
carriage. The role of animals as reservoirs for infection or as spillover hosts has
recently been reviewed (Persad and LeJeune 2014). As consequence, the transmis-
sion routes of EHEC (STEC) to human can occur either by the food chain, direct
contact with animals or their environment, or by person-to-person spread. Infections
have also been caused by drinking or swimming in contaminated water (Launders
et al. 2013; Luna-Gierke et al. 2014). The panel of foods implicated as vehicles of
EHEC (STEC) transmission is highly diverse. The main risk factors for EHEC
(STEC)-associated human infections identified in earlier case-control and
population-based studies were dietary behaviors and beef consumption. However,
in recent years, other risky exposures have also emerged, like the consumption of
fresh produce and sprouts, responsible for important outbreaks of HUS in several
countries in the last 10 years (Beutin and Martin 2012; Rivas et al. 2014).
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Therefore, several interventions targeting EHEC (STEC) related to animal han-
dling, from farm to slaughter, as well as the implementation of food safety throughout
production, processing, and distribution of fresh produce have been developed in
past years looking for the improvement of the microbiological quality of foods.

The search for effective pre-harvest food safety practices for application to live
cattle to reduce the contamination with E. coli O157 and other EHEC (STEC)
strains of both foods of bovine origin, and related environmental contamination, has
been reviewed by Besser et al. (2014). Different interventions, like feed ingredients,
probiotics, and vaccines, have been identified with significant impact on E. coli
0157 cattle shedding. But the authors concluded that the impact of these potential
interventions remains insufficient due to their limited efficacy, practical difficulties
with their implementation, and inconsistency in their results, leading to limited
uptakes by producers. Also, the peri- and post-harvest interventions in the control of
EHEC (STEC) in beef and in the agro-food chain were compiled by Moxley and
Acuff (2014) and Duffy and McCabe (2014), respectively.

Since EHEC (STEC) does not cause disease in cattle, or triggers a local and
protective immune response in the gastrointestinal tract, the goal of the EHEC
(STEC) eradication from the bovine reservoir designing vaccines or other practices
is not an easy task. Vaccines targeting a number of STEC O157-specific antigens
have been tested in animal challenge studies. Some products have demonstrated
efficacy to reduce the prevalence of cattle O157 shedding, but their efficacy to con-
trol the transmission in the environment during the natural exposure is doubtful
(reviewed by Smith 2014).

Another strategy to decrease human-associated diseases involves the vaccination
of the affected population, especially children. There are two possibilities: (1) a vac-
cine to control or prevent EHEC (STEC) infections; (2) a vaccine to prevent the
systemic complications due to Stx action.

Because no licensed vaccine or effective therapy is presently available for human
use, Mejias et al. (2014) recently developed a novel immunogen based on the B
subunit of Stx2 and the enzyme lumazine synthase from Brucella spp. and they
demonstrated the protection of mice against Stx2-associated damage by maternal
immunization with the BLS-Stx2B chimera. Szu and Ahmed (2014) reviewed the
human EHEC vaccines that have been studied clinically, in particular against E. coli
O157. The LPS O157 conjugated to the recombinant exotoxin A of Pseudomonas
aeruginosa (rfEPA) has shown to be safe and induced high levels of anti-LPS, IgG
antibodies, with bactericidal activity in adults and children (2-5 years old). On the
other hand, a similar construct using the B subunit of Stx1 as the carrier protein
elicited both bactericidal and toxin-neutralizing antibodies in mice.

There is a general agreement that patients with EHEC (STEC) infections should
not be treated with antibiotics due to a higher risk of developing HUS as certain
antibiotics induce expression of the Stxs. Recently, Agger et al. (2015) performed a
systematic review in order to clarify the risk associated with the antibiotic treatment
during acute EHEC (STEC) infections and in chronic carrier states. Among the ten
clinical studies, four found an increased risk of HUS, four found no effect, and two
found a reduced risk of HUS. In vitro and clinical studies suggested that DNA syn-



104 M. Rivas et al.

thesis inhibitors should be avoided, and certain protein and cell wall synthesis inhib-
itors reduced the toxin release from EHEC (STEC) isolates. The authors proposed
that antibiotic treatment with protein and cell wall synthesis inhibitors could be
considered when specific criteria (patient group, serotype, virulence profile, and
duration of disease) are met. There are new therapeutic developments designed to
limit Stx receptor generation or to prevent toxin binding, trafficking, processing, or
activity within the cell (reviewed in Melton-Celsa and O’Brien 2014).

The identification of EHEC (STEC) strains of risk to public health is a challenge
for diagnostic laboratories. A concept of molecular risk assessment (MRA) was
developed by Karmali et al. (2003) and Coombes et al. (2008) as an aid to assess the
role of genomic islands in contributing to the public health risk associated with dif-
ferent EHEC (STEC) strains, especially those found in foods, animals, or the envi-
ronment. In this context, PCR-based methods could be used for identification of
LEE-encoded effector and non-LEE-encoded effectors (nle) as an approach to
define human virulent EHEC (STEC) types. Karmali et al. (2003) proposed a clas-
sification of STEC serotypes into five seropathotypes (A to E), taking into consid-
eration the reported frequencies in human illness and associations with HC and
HUS outbreaks. Seropathotype A (O157:H7 and O157:NM) is considered the most
virulent and is related to the highest incidence in human disease and frequently
involved in outbreaks. Seropathotype B (composed by 026:H11; O103:H2;
OI111:NM; O121:H19; and O145:NM) is associated at a lower frequency with
severe human disease and uncommonly involved with outbreaks. Seropathotype C
(05:NM; 091:H21, 0104:H21, O113:H21, and others) and D show a low incidence
in human illness and are rarely associated with outbreaks, whereas seropathotype E
is composed by many serotypes with no implication in human diseases so far dem-
onstrated. Further, Coombes et al. (2008) identified 14 new nle genes in non-O157
STEC strains, grouped within three PAIs that correlated independently with out-
break and HUS potential for humans. Moreover, the authors showed an nle gene
dosing effect in non-O157 STEC, where strains associated with severe human dis-
ease have an increased number of nle genes. Bugarel et al. (2010) have developed a
low-density macroarray designed for simultaneous detection of genes encoding Stx;
and Stx; (stx; and stx,), intimin (eae), enterohemolysin (esxA), and six different nle
genes derived from genomic islands OI-71 (nleF, nleHI-2, and nleA) and OI-122
(ent, nleB, and nleE). The nle genes were found to be closely associated with certain
serotypes and intimin genotypes in typical EHEC strains, including the new emerg-
ing EHEC (STEC) strains. The presence of eae, ent/espL2, nleB, nleE, and nleH-2
genes is a clear signature of EHEC (STEC) strains with high virulence for humans.
Brandt et al. (2011) developed a PCR binary typing system (P-BIT) that could be
used to aid in risk assessment and epidemiological studies of EHEC (STEC). They
examined the distribution of 41 gene targets among O157 and non-O157 EHEC
(STEC) isolates and found that P-BIT provided 100 % typeability for isolates, gave
a diversity index of 97.33 % (compared with 99.28 % for Xbal pulsed-field gel elec-
trophoresis [PFGE] typing), and produced 100 % discrimination for non-O157
STEC isolates. The authors identified 24 gene targets that conferred the same level
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of discrimination and produced the same cluster dendrogram as the 41 gene targets
initially examined. The P-BIT clustering identified O157 from non-O157 isolates
and identified seropathotypes associated with outbreaks and severe disease. Using
the MRA concept for screening EHEC (STEC) collections, an increasing number of
emerging EHEC (STEC) types were detected (Bugarel et al. 2010). Internationally,
the number of reported human diarrheal cases associated with non-O157 EHEC
(STEC), including those leading to HUS, is rising rapidly, mainly due to increased
surveillance for these pathogens.

However, the usefulness of the MRA concept changed dramatically in 2011.
From May to July 2011, a large-scale outbreak was observed in several European
countries, mainly affecting northern Germany, comprising 3842 cases of human
infection, 855 (22.3 %) HUS cases and 53 fatalities, and involving an emerging
enterohemorrhagic E. coli O104:H4 strain (Askar et al. 2011). This EHEC (STEC)
strain presents an unusual virulence pattern that combines the production of Stx2a
with enteroaggregative adherence, which is encoded by genes of the pAA plasmid
and chromosomally carried genes of enteroaggregative E. coli (EAEC) strains
(Bielaszewska et al. 2011). This new type of EHEC was designated enteroaggrega-
tive hemorrhagic E. coli (EAEHEC), since it shares virulence markers of both
EAEC and EHEC strains. An important lesson to learn from the EAEHEC O104:H4
infection outbreak was that LEE and the nle genes, the current MRA approach to
define human virulent EHEC (STEC) types, can be substituted by EAEC plasmid-
encoded aggregative adherence mechanisms to enable Stx2-producing EAHEC to
cause HC and HUS in humans (Beutin and Martin 2012).

After the 2011 outbreak and the fact that of all confirmed EHEC (STEC) infec-
tions in the European Union during 2007-2010, more than 85 % of the isolates were
not fully serotyped, a Panel on Biological Hazards (BIOHAZ) was asked by the
European Food Safety Authority (EFSA 2013) to review the seropathotype concept
of Karmali et al. (2003) and the scientific criteria regarding pathogenicity assess-
ment. The BIOHAZ Panel concluded that the seropathotype classification does not
define pathogenic EHEC (STEC) nor does it provide an exhaustive list of patho-
genic serotypes. The panel pointed out that there is no single or combination of
marker(s) that defines a pathogenic STEC. Strains positive for szx, gene, and eae
(intimin) or aaiC (secreted protein of EAEC) plus aggR (plasmid-encoded regula-
tor) genes, are associated with a higher risk of more severe illness than other viru-
lence gene combinations. Recently, de Boer et al. (2015) have described a rapid
screening algorithm, including both molecular and conventional methods, to deter-
mine the pathogenic potential of STEC. The purpose was to discriminate infections
with less-virulent EHEC (STEC) from those with clinical relevance and risk for
public health.

During the investigation of the large outbreak reported in Germany in 2011,
Whole Genome Sequencing (WGS) was applied for the first time in an epidemiol-
ogy public health problem. The application involved the use of rapid, bench-top
DNA sequencing technology, open-source data release, and prompt crowd-sourced
analyses. In less than a week, these studies provided the draft genome of this new
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EAEHEC hybrid and its unusual antibiotic resistance (Brzuszkiewicz et al. 2011).
Afterwards, numerous advances in the use of WGS applied to research in different
aspect of EHEC (STEC) were published (Eppinger et al. 2011; Jenkins et al. 2015).

A real-time evaluation of WGS for routine typing and surveillance of EHEC
(STEC) was communicated by Joensen et al. (2014). The bioinformatics analysis
using web-tools for species determination, multilocus sequence typing (MLST),
determination of phylogenetic relationship, and a specific detection of E. coli viru-
lence genes were described (Center for Genomic Epidemiology. http://www.
genomicepidemiology.org). WGS demonstrated to be a robust method for assigning
stx subtypes and for a real-time clustering of isolates in agreement with epidemiol-
ogy, enabling discrimination between sporadic and outbreak isolates. Dallman et al.
(2015) described the validation of the WGS approach as a molecular typing tool for
surveillance of O157 in the United Kingdom and demonstrated that it can be used in
real-time to provide the highest strain-level resolution for outbreak investigation.

There is an international agreement for the implementation of WGS for diagno-
sis and typing in Public Health due to the additional improvement in bioinformatics
tools and the easy use in laboratories. However, WGS implies great changes.
Regarding technology, new equipment would be needed for laboratories, and also
for sequence analysis. Other major change is the way in which diagnostics and typ-
ing must be modified. It is recognized that the transition is a great challenge for the
organizations and a concern to balance the benefits of applying new and powerful
WGS approaches with the risk of implementing these new technologies too quickly
(Joensen et al. 2014; ECDC 2015b).

2 Recent Advances in EHEC (STEC) Research

2.1 Emergence of New EHEC (STEC) Strains

The profile of the EHEC (STEC)-associated diseases has changed in recent decades,
and different factors have contributed to the emergence of new strains causing spo-
radic cases and outbreaks with different epidemiological characteristics and wide-
spread epidemics.

2.1.1 Emergence of a New EHEC (STEC) 026:H11 Clone in Europe

In Europe, EHEC (STEC) 026:H11 is the most common non-O157 serotype, being
in some countries the most common cause of childhood-HUS. Previously, EHEC
(STEC) O26:H11 strains isolated from humans harbored szx,, and rarely associated
with stx,, However, a new highly virulent stx,,-positive E. coli O26:H11 clone has
been circulating in Europe since the mid-nineties (Bielaszewska et al. 2013). This
clone was also observed in Latin America (Rivas et al. 2006b) and in the United
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States (Brooks et al. 2005). By MLST analysis, the O26:H11 strains were divided
into two phylogenetic groups: ST21 (stx, alone or associated with stx,,), associated
with less-severe disease, and ST29 (new stx, clone), with an increased virulence and
disease severity. Recently, Delannoy et al. (2015) studied 23 E. coli O26:H11
strains, isolated from pediatric patients in France during the period 2010-2013.
From the strains, 69.6 % belonged to the new clone, but 12 strains with negative
results for both plasmid and chromosomal genetic markers exhibited a ST29 geno-
type and related CRISPR (clustered regularly interspaced short palindromic repeat)
arrays, and seven strains harbored the stx,y gene. By WGS, the evolutionary phylo-
genetic relationship of EHEC (STEC) O26:H11/H™ has been investigated on
European strains. Using the 48 phylogenetically informative single-nucleotide
polymorphisms (SNPs), four distinct clonal complexes (CCs) were observed and
the highly virulent German O26:H11 stx,, clone was identified in a single CC, dif-
ferent from the former described strains (Bletz et al. 2013). Ison et al. (2016) dif-
ferentiated stx-positive strains from stx-negative strains to infer the phylogenetic
relationships of 178 E. coli O26:H11 bovine strains. The cattle stx-negative strains
displayed synonymous SNP genotypes with the stx,-positive, ST29 human strains,
meanwhile the stx;, ST21 human and cattle strains clustered separately, demonstrat-
ing the close phylogenetic relatedness of these stx-negative cattle strains and human
clinical strains.

2.1.2 Emergence of EHEC/EAEC and Other Hybrid Strains Worldwide

Since the large outbreak associated with EAEHEC O104:H4 strain, attention has
been focused on this new E. coli pathotype. Other O104:H4 strains with different
PFGE macro-restriction profile, AAF type, antibiotic resistance, plasmid profile,
virulence gene sets, or SNPs on the genomic level have been described, such as the
HUSECO041 strain causing HUS in Germany in 2001, two French strains isolated in
2004 and 2009, and five additional strains causing HUS in France in 2011. As was
previously proposed, it can be assumed that several O104:H4 EHEC lineages
emerged from O104:H4 EAEC ancestors which differ in their genetic background
(Mellmann et al. 2011). Like the enteroaggregative E. coli 55989 strain, isolated in
Central Africa in the late 1990s, the German HUSECO041 isolate, the European out-
break strain, and the two French O104:H4 isolates belonged to ST678 and carried
wzXo104, fliCus, aggR, IpfA, pic, sepA, and sigA, and stx-A/B2 genes (Monecke et al.
2011). The European outbreak strain harbored an extended-spectrum-lactamase
gene, blaCTX-M-15, an additional lactamase gene (blaTEM-1), and other antibiotic
resistance genes. Analysis of the genome sequences showed that HUSEC041 was
positive for blaTEM-1, while the 2004 and 2009 French isolates lacked blaTEM-1
and other resistance genes. Ferdous et al. (2015) have described the isolation of E.
coli O104:H4 strains in 2013, from a patient with HUS and a second individual
showing only gastrointestinal complaints. They demonstrated that the EAEHEC
0104:H4 Stx2a-positive strains were highly similar to the 2011 outbreak strain in
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their core genome, showing that this clone is still circulating and a proper surveillance
is necessary to prevent further outbreaks with these potentially pathogenic strains.
The emergence of EHEC/EAEC O104:H4 suggests that either certain EAEC
serotypes might be more susceptible to acquire EHEC determinants or that there are
certain EHEC/EAEC ancestors which successfully adapted to survival-specific
selection conditions. In this context, other EHEC/EAEC strains of different sero-
types were previously described associated with human disease. During an HUS
outbreak in France in 1996, an O111:H2 strain was characterized as stx,- and AAF-
positive, and eaeA- and ehxA-negative, being the first EHEC/EAEC hybrid described
(Morabito et al. 1998). Few years later, an O86:NM [H2] strain with stx, and AAF
marker genes, but no eae, was isolated in 1999 from a pediatric patient with HUS
and bloody diarrhea in Japan (Iyoda et al. 2000). In 2011, an O111:H21 strain asso-
ciated with a household outbreak in Northern Ireland was detected. The strain har-
bored the stx,. gene and the type V aggregative AAF fimbriae, but was eae-negative
with a low level of resistance to ampicillin. It belonged to ST40, a sequence type
comprising other E. coli pathotypes (STEC, EAEC, enteropathogenic E. coli
[EPEC], and non-pathogenic E. coli). Genome sequencing revealed that the clonal
complex, pAA plasmids, and phage encoded-stx genes were different in comparison
with the O104:H4 outbreak strain (Dallman et al. 2012). Prager et al. (2014) screened
about 2400 strains of the EHEC collection from the German National Reference
Centre for Salmonella and other Bacterial Enteric Pathogens (NRC), corresponding
to the period 2008-2012, for the presence of stx,, stx,, eae, and ehxA genes. Among
268 eae-and ehxA-negative strains, two strains exhibited both EHEC and EAEC
marker genes and were stx,- and aatA-positive. One strain, isolated from a bloody
diarrhea patient in 2010 and serotyped as O59:H-[fliCy,o], harbored stx,,, belonged
to ST1136, and exhibited genes for type IV aggregative AAF fimbriae, and with
resistance towards sulfonamides, streptomycin, and trimethoprim/sulfonamide. The
iha, IpfAoss, IpfAois, and irp2 genes, frequently associated with EHEC, and aggR,
aap, setla, setlb, pic, sigA, and iucA genes in general related to EAEC were
detected. The astA gene was not detected. The second strain isolated from a patient
with diarrhea in 2012, harbored stx,,, was typed as Orough:H2 and belonged to
ST26. In Argentina, Carbonari et al. (2015) screened a total of 36 stx,-positive, eae-
and ehxA-negative non-O157 STEC strains, isolated from HUS and diarrhea cases,
for the AraC-like regulator AggR. Nine (25 %) EHEC/EAEC O59:H-[fliCy;o] strains
were identified, isolated from 8 HUS and one bloody diarrhea cases. The first 059
isolate corresponded to a HUS case from 2005. The stx.,, iha, Ipfoss, Ipfois, aatA,
aap, sigA genes were detected. The presence of type IV aggregative AAF fimbriae
was established by the amplification of the agg4A fimbrial subunit gene. The strains
showed low toxicity on Vero cells and were resistant to streptomycin and trime-
thoprim/sulfonamides. By Xbal-PFGE, nine patterns were established, with 86.7 %
similarity. A high clonal relationship (>85 %) with the EHEC/EAEC O59:H-[fliCy;9]
German strain was established. Tozzoli et al. (2015) reported an outbreak caused by
an EHEC/EAEC O127:H4 strain in Northern Italy in 2013. The analysis of 76 fecal
samples from children and school staff was performed. Five Stx2-producing EAEC
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0127 strains were isolated. By WGS, the strain was characterized as O127:H4 and
ST678. It possessed the stx,, gene and other EAEC virulence genes such as aggR,
aap, aat, aaiC, sigA, pic, and astA. The stx,-phage was inserted in wrbA site and was
highly similar to that of the O104:H4 outbreak strain. Nyholm et al. (2015) have
sequenced the whole genome of three (2 humans and 1 bovine) EHEC (STEC)/
ETEC strains harboring both stx and est genes. They concluded that virulence genes
of different E. coli pathogroups can coexist in strains of different phylogenetic lin-
eages and the finding of novel hybrids is a challenge for the traditional diagnostic of
E. coli infections.

2.1.3 Emergence of Hypervirulent EHEC (STEC) O157 Strains
of Clade 8

Manning et al. (2008) showed that both outbreaks, in the United States in 1993 and
Japan in 1996, had low rates of hospitalization and HUS in comparison with the
2006 North American spinach outbreak. Phylogenetic analysis identified 39 SNP
genotypes in a broad collection of STEC O157 and allowed to separate the isolates
into nine distinct clades. Patients with HUS were significantly more likely to be
infected with strains of clade 8, which have increased in frequency over the past 5
years. It has been suggested that enhanced severity related to clade 8 strains may be
explained by the overexpression of some genes, particularly stx, (Neupane et al.
2011). Moreover, Kulasekara et al. (2009) examined the genome of TW 14359, the
strain associated with the spinach outbreak in the United States, and they compared
it to the genome of two other sequenced prototype strains (EDL933 and Sakai).
They found seven coding sequences postulated as putative virulence factors that
could be responsible for the high virulence of this strain. Lineage-specific polymor-
phic assay (LSPA-6), derived from octamer-based genome scanning by selecting six
loci that are biased in their allelic distribution among E. coli O157 strains (Yang
et al. 2004), allows the description of lineages I, II, and I/II that have a different
distribution among different hosts and different geographical regions (Yang et al.
2004; Manning et al. 2008; Hirai et al. 2014; Mellor et al. 2015). Also, several stud-
ies have shown a marked difference on lineages distribution between human isolates
and strains from the cattle reservoir (Whitworth et al. 2010; Franz et al. 2012). LI/I
predominates in both clinical and bovine isolates in Argentina and Australia (Mellor
et al. 2012). Pianciola et al. (2014) have described the almost exclusive circulation
of E. coli O157 strains belonging to the hypervirulent clade 8 (>90 %) and also the
presence of putative virulence factors in higher frequencies than those reported in
Neuquén Province, Argentina, a region with one of the highest HUS incidence
worldwide. Recently, the same group has demonstrated a high prevalence of EHEC
(STEC) O157 clade 8 in human strains with the exclusive presence of LSPA-6 lin-
eage I/Il in strains from other regions of Argentina. This particular scenario may be
originated in a similar situation in the bovine reservoir, with only slight differences.
This homogeneity in EHEC (STEC) O157 genotypes detected in human and bovine
strains contrasts with results reported in other countries (Pianciola et al. 2016).



110 M. Rivas et al.

2.2 Advances in the Knowledge of LEE-Negative EHEC
(STEC) Strains Associated with Human Disease

EHEC (STEC) O113:H21 is a LEE-negative strain prevalent in the environment,
which has been isolated from foods and animals and also from patients with severe
disease. Feng et al. (2014) have described a PCR microarray and stx subtyping PCR
to characterize 65 strains isolated from various sources (environment, food, and
clinical infections) and geographical locations (Argentina, Brazil, Canada, and the
United States, among others). All the strains carried only Stx subtypes associated
with human infections, suggesting that the environmental strains have the potential
to cause disease. Most of the O113:H21 strains were closely related and belonged
to the same ST223 clonal group, but CRISPR analysis showed a great degree of
genetic diversity among the O113:H21 strains. In recent years, another LEE-
negative EHEC (STEC) strain serogrouped as O178 have been isolated from cattle
and food of bovine origin in South America and Europe. Miko et al. (2014) charac-
terized 74 German and Argentinean E. coli O178 strains from animals, food, and
humans and studied their serotypes, stx-genotypes, and 43 virulence-associated
markers by a real-time PCR-microarray. Most (n=66) of the strains belonged to
serotype O178:H19 and were mainly isolated from cattle and food of bovine origin,
but one strain was isolated from an Argentinean patient with HUS. Genotyping the
STEC O178:H19 strains by PFGE revealed two major clusters: Cluster A-strains
(n=35), including the HUS-strain, carried genes associated with severe disease in
humans (stx,,, Stx,, ehxA, saa, subag,, IpfAo113, terE combined with stx,,, espP, iha),
and cluster B-strains (n=26) showed a limited repertoire of virulence genes (stxa.,
pagC, IpfAoiis, espP, tha). Based on these results, the authors recommended that
EHEC (STEC) O178:H19 strains should be considered with respect to their poten-
tial to cause diseases in humans.

2.3 EHEC (STEC) in the Environment

Lascowski et al. (2013) reported the frequency and characteristics of EHEC (STEC)
in 1850 treated and untreated drinking water samples, collected in 41 municipalities
in the north of Parand State, Brazil, in the period February 2005-January 2006. A
total of 12 isolates, 11 from untreated water and one from treated water, were posi-
tive for stx,/stx, (5), stx; (2), and stx, (5). All stx,-positive isolates presented the
StXgactivaable SUDLYPE, Were eae-negative, but carried other virulence genes such as
ehxA (100 %), saa (100 %), IpfAoi1s (75 %), iha (42 %), subg (25 %), and cdtV (8 %).
Multidrug resistance was identified in 25 % of the isolates. The strains belonged to
seven distinct serotypes and PFGE revealed the presence of two clusters and two
clones in the region. The authors concluded that the analysis of the drinking water
supplies for pathogenic E. coli, as EHEC (STEC), may be useful to prevent water-
borne outbreaks. Tanaro et al. (2014) reported the isolation of E. coli O157:H7 from
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311 surface water samples exposed and not exposed to runoff from corrals, near 48
cattle feedlots, distributed in the Province of Entre Rios, Argentina, in the period
April 2009-July 2011. By multiplex PCR, 70.5 % of the exposed surface water
(ESW) samples were rfbg;s,-positive, and 62 E. coli O157 and 32 EHEC (STEC)
O157:H7 strains were isolated. In the non-exposed surface water (NESW) samples,
60.0 % were rfbg,s,-positive, 9 E. coli O157, and 6 EHEC (STEC) O157:H7 strains.
Although no significant differences were found, these results showed that the ESW
tended to be more contaminated with EHEC (STEC) O157:H7 than NESW.

These findings highlight the relevance of the persistence of EHEC (STEC) in the
environment as a result of the extensive livestock farming, and the risk that patho-
gens contained in feedlot runoff may reach recreational waters and also contaminate
produce through irrigation, increasing the potential dissemination of O157 strain
and the subsequent risk for humans. Matheus-Guimaraes et al. (2014) have deter-
mined the ability of 14 O157 and 8 non-O157 strains, isolated from bovine hide and
carcass, to interact with biotic and abiotic surfaces. Biofilm formation assays
showed that four O157 and two non-O157 strains were able to adhere to glass, and
only one O157 strain to polystyrene. The data suggested that STEC strains can have
different factors involved in the biofilm production on diverse surfaces. The ability
of non-O157 LEE-negative strains to form biofilm highlights an industrial and
health problem that cannot be ignored. Moreover, the detection of an O157 EHEC
(STEC) strain that is able to form biofilm on different surfaces and adhere to and
invade human cells indicates an important ability to persist in the environment and
to interact with the host.

3 EHEC (STEC) in Latin America

3.1 Surveillance of EHEC (STEC) Infections Tends
to Integrate Food Chain Surveillance Systems

In general, there are different types of food-borne surveillance systems, including
event-based surveillance, indicator-based surveillance, and integrated food chain
surveillance. Each country must determine the most appropriate structure for their
surveillance system based on their available resources. In America, there are differ-
ent implemented surveillance systems, depending on the country. The industrialized
countries show integrated food chain surveillance systems established according to
national regulations and including different networks that work together with stan-
dardized protocols. Integrated food chain surveillance is viewed as the optimal prac-
tice for conducting continuous risk analysis for food-borne diseases, but also
requires significant ongoing resources and greater multidisciplinary collaboration
compared to the other systems (Ford et al. 2015).

Different authors have described the surveillance implemented in the United
States and Canada, demonstrating how the surveillance system has the capability to
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help assess the magnitude of the food safety problem, define priorities for action,
establish transmission pathways and food sources, provide different control options,
define targets along the food chain, and measure the success of food safety interven-
tions (Havelaar et al. 2007; Gaulin et al. 2014; Whitney et al. 2015).

In the United States, E. coli O157:H7 infections became nationally notifiable in
1995. Since 2000, all EHEC (STEC) infections that cause human illness are notifi-
able to the Nationally Notifiable Diseases Surveillance System (NNDSS). The
Foodborne Diseases Active Surveillance Network (FoodNet) monitors the inci-
dence of laboratory-confirmed infections caused by nine pathogens commonly
transmitted through food, including O157 and non-O157. In 2014, 690 cases of
non-0157 EHEC (STEC) and 445 cases of O157 were notified, with incidence rates
of 1.43 and 0.92/100,000 population, respectively. Among 546 (79 %) serogrouped
non-O157 isolates, the top O-groups were 026 (31 %), 0103 (24 %), and O111
(19 %). Compared with the 2011-2013 period, the incidence of EHEC (STEC)
0157 infections was lower, while the incidence of non-O157 infections increased.
In 2013, a total of 87 cases of post-diarrheal HUS were reported among children
aged <18 years (0.79 cases per 100,000). Of these, 46 (53 %) occurred in children
aged <5 years (1.55 cases per 100,000) (Crim et al. 2015).

In Canada, EHEC (STEC) infection has been classified as a notifiable disease
since 1990. FoodNet Canada’s (formerly known as C-Enter Net) is the comprehen-
sive and integrated surveillance system that focuses on active surveillance of human
cases of illness, coupled with monitoring possible sources of illness in food, ani-
mals, and water. In 2013, 470 E. coli O157 cases occurred (1.34 cases/100,000
populations), with 245 hospitalizations and 8 fatalities. For each E. coli O157 case
reported to Canada’s National Surveillance System, it is estimated that there are
approximately 20 cases in the community (Government of Canada 2015).

3.2 Surveillance and Epidemiology of EHEC (STEC)
Infectious Diseases in Latin America

In Latin America, the EHEC (STEC) surveillance systems are different in each
country, and they were implemented according to priorities in public health and
resources. In recent years, the countries have enhanced their strategies, working in
agreement with different partners (other countries, PAHO, WHO, CDC, PulseNet,
Sanger Institute). The need to respond to different epidemiological situations at
national, regional, and international levels motivated countries to get an improve-
ment in diagnosis and subtyping. Furthermore, since national surveillance systems
for EHEC (STEC) have improved, an increased report in number of clinical cases
and etiologic agent detection was observed.

The report of EHEC (STEC) infectious diseases and HUS cases is different in
each country. In general, the report relies primarily on syndromic surveillance
through the food-borne diseases surveillance System (Argentina, Bolivia, and
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Paraguay) and/or through the acute diarrheal surveillance system (Argentina, Brazil,
Chile, Costa Rica, Paraguay, and Peru). The official notification of HUS is manda-
tory in Argentina, Bolivia, Brazil, Chile, and Paraguay. Countries like Uruguay and
Costa Rica do not have a formal surveillance system for HUS and EHEC (STEC)
infections. In general, the syndromic surveillance is reinforced with laboratory-
based surveillance through their National Networks. Depending on the laboratory
capacity, resources, and infrastructure, molecular methods for EHEC (STEC) detec-
tion were implemented at different levels, in each country. Mostly, the preliminary
results in local laboratories are still generated by isolation and phenotypic methods
(serotyping, enterohemolysin detection, among others) and then strains are submit-
ted to the National Reference Laboratory (NRL) for further confirmation (by PCR,
MLVA, PFGE). The NRLs participate in the Network’s External Quality Assurance
System (EQAS; National Food Institute, Denmark / Global Foodborne Infections
Network) for quality assurance evaluation for food-borne pathogens diagnosis and/
or more specifically in the Quality Assurance for EHEC (STEC) diagnosis and sub-
typing (Staten Serum Institute, Denmark). Additionally, countries are evaluated for
EHEC (STEC) subtyping by PFGE through the PulseNet Latin America and the
Caribbean (PNALC) QAQC program (certification and proficiency testing) estab-
lished according to the requirements of PulseNet International (PNInt).

In Argentina, post-diarrheal HUS is endemic and the prevalence is the highest
worldwide. Data on human EHEC (STEC) infections are gathered through different
strategies: (1) the National Health Surveillance System collects data of HUS cases,
and since 2000, the report is mandatory and must be immediate and individualized;
(2) the Sentinel Surveillance System through 25 HUS Sentinel Units; (3) the
Laboratory-based Surveillance System through the National Diarrheal and Foodborne
Pathogens Network; and (4) the Molecular Surveillance through the PNALC. Over
the last 10 years, around 400 HUS cases were reported annually. In the period of
2010-2015, the median of incidence was 8.4 cases per 100,000 children <5 year of
age and the lethality was between 2 and 5 %. Most (36 %) of the cases were children
<5 years old and 56 % were female (Ministerio de Salud 2016. http://www.msal.gov.
ar/index.php/home/boletin-integrado-de-vigilancia). In 2015, 337 HUS cases were
notified and 190/257 (73.9%) EHEC (STEC) infections were confirmed at
LNR. O157:H7 (56.3 %) was the predominant serotype, with the stx,./stx,./eae/ehxA
genotype, followed by O145:H-[fliCyps] (13.4 %), stx,./eaelehxA. Recently, an indi-
rect diagnostic of antibodies against EHEC (STEC) O157, O145, and O121 by
ELISA, using glycoconjugates (glyco-iIELISAs), was implemented, representing an
improvement in the diagnostic, especially in those cases where the isolation was not
possible (Melli et al. 2015).

In general, HUS cases are sporadic; however, some outbreaks are reported
through the surveillance system of HUS and associated diseases. In the period
2013-2015, 27 outbreaks of bloody diarrhea and HUS, associated with O157 and
non-O157 STEC strains (24 in families, 2 in kindergartens, and 1 in the community),
were identified. The first detection of hybrid strains (Carbonari et al. 2015) was a
laboratory finding, and the NRL was forced to modify the screening workflow for a
broader molecular characterization to enhance the sensitivity in the diagnosis.
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In Chile, the clinical surveillance of HUS and laboratory-based surveillance for
EHEC (STEC) infections are mandatory at national level and establish to send the
isolates to the Instituto de Salud Piblica as NRL for further confirmation. In the
period 2007-2013, 599/2425 (24.7 %) of the strains received were confirmed as
EHEC (STEC). The predominant serotypes were O157:H7 (52.7%), O26:H11
(24.9%), and O26:H- (7.3%). The majority of cases were from the Regién
Metropolitana (74.0 %), 52.2% were males and the most affected group corre-
sponded to children aged 14 years old (Ministerio de Salud 2014. http://www.
ispch.cl/sites/default/files/STEC.pdf).

In Uruguay, the report of HUS cases is included in food-borne diseases out-
breaks or public health events of national significance and become immediate noti-
fication. The incidence of HUS is approximately 5/100,000 children <5 years old,
with 12—-15 new cases annually. Among 43 children with clinical diagnosis of post-
diarrheal HUS studied (2002-2013), in seven cases EHEC (STEC) strains of differ-
ent serotypes and genotypic profiles (O157:H7, stx,/eae,/ehxA, O26:HI1,
stx /eaeg/ehxA, O26:H—, stx|/stx,/eaeg/ehxA, OI111:H-, stx,/stx,/eae,,/ehxA,
O145:HNT, stx,/eaep,/ehxA, and ONT, stx,/eae/ehxA) were recovered. In one case,
a co-infection (0O26:H11/0145:HNT) was detected (Varela and Schelotto 2015). In
2012, extra-intestinal O157:H7 infections in two elderly women were reported for
the first time in Uruguay. The strains were characterized as stx,/eae,,/ehxA/fliCy;/fimA
of phage type (PT) 39 and stx,/stx,/eae, /fliCy/fimA of PT40 (Gadea et al. 2012). In
2010-2011, a descriptive study was conducted to determine etiology and clinical
manifestations of acute diarrhea in children up to 5 years of age from high socioeco-
nomic level households. Out of 59 diarrheal cases, two 026 and one O153 EHEC
(STEC) strains were detected. A child infected with EHEC (STEC) 026
stx,/stx,/eaey/ehxA strain, who had bloody diarrhea, developed a complete HUS
after 20 days, requiring dialysis in the acute stage (Varela and Schelotto 2015).

In Brazil, EHEC (STEC) infections are important public health issues in some
regions, but in general the incidence is relatively low (Guth et al. 2010). The HUS
surveillance is mandatory at national level and the EHEC (STEC) surveillance is
performed through monitoring diarrheal diseases, targeting mainly the detection of
diarrhea outbreaks. Furthermore, each state could have the own regulations with
specific programs to reinforce the national surveillance. The HUS Laboratory
Network consists of five Sentinel Laboratories and the Instituto Adolfo Lutz is the
NRL, to which all strains are submitted for further characterization and subtyping.
Human infections are linked mostly to sporadic cases of non-bloody diarrhea asso-
ciated mainly with non-O157 strains. However, HUS cases associated with O157 as
well as non-O157 infections have been described in Sdo Paulo State. Almost half
(46 %) of patients were <2 years old and female (61.5 %). EHEC (STEC) strains
were isolated from 3/7 patients, and serotypes O26:H11 (stx,/eae/ehxA), O157:H7
(stxya/stxyJeaelehxA), and O165:HNM (stx,./stx,/eae/ehxA) were identified (de
Souza et al. 2011). The results of the indirect diagnosis by LPS antibodies-ELISA
showed that seven sera yielded positive signal for O157 LPS-antibodies and 2 for
O111 LPS-antibodies (de Souza et al. 2011). In the Rio de Janeiro State, from a total
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of 1154 strains received in the period 2013-2015 by NRL for Enteric Diseases at the
Instituto Oswaldo Cruz (FIOCRUZ), 42 (3.6 %) were confirmed as non-O157
EHEC (STEC). The origin of the strains was human (24), foods (2), environment
(1), and animal (15) (Rodriguez, personal communication).

InBolivia, the surveillance has been improved through a South-South Cooperation
Project with Argentina. In 2/3 HUS cases notified in 2014-2015, O157/stx, and
026/stx; strains were isolated from children <2 years old. Also, 30 EHEC (STEC)
0157 and non-O157 strains were detected in ground beef during sampling proce-
dures at retail stores, conducted in 2010-2013 by the Red de Laboratorios Oficiales
de Andlisis de Alimentos (RELOAA), in La Paz, Cochabamba, Tarija, Sucre and
Santa Cruz Departments. The highest detection rate (56.6 %) was in La Paz and El
Alto. All O157:H7 strains (n=9) were stx;,/stx,,/eae/ehxA, except one that was stx,,.
The non-O157 isolates were O8:H19 stx,/saa/ehxA, O91:HNT stx,/saalehxA,
0126:H27 stx,/saa, and ONT:H28 stx,/saal/ehxA (1, each one), while 18 strains
were not serotyped. (Damiani and Montiveros, personal communication).

In Paraguay, the HUS notification is mandatory, immediate, and individualized.
The EHEC (STEC) infections are gathered by the laboratorial surveillance of diar-
rheal and food-borne diseases (Ministerio de Salud y Bienestar Social, 2015. http://
vigisalud.gov.py/wp-content/uploads/2015/12/GNVNPY.pdf). In 2013-2015, ten
HUS cases without EHEC (STEC) isolation were notified. However, strains were
detected in eight sporadic diarrhea cases and characterized as 026 stx/stx,/eae,
ONT:HNT stx,/eae, ONT:HNT stx,, and ONT:HNT stx,/stx,, ONT:-HNT stx,
(Weiler, personal communication).

In Costa Rica, EHEC (STEC) infections are not notifiable in the surveillance
system. However, the Centro Nacional de Referencia de Bacteriologia (CNRB) of
Inciensa has implemented a differential diagnostic protocol for pathogens associ-
ated to diarrheal cases, mostly involved in outbreak or dead. Through this strategy
in 2013-2015, 11 EHEC (STEC) strains O157:H7/stx,/eae (2), O145/stx,/eae (3),
non-0O157 stx,/eae (4), and non-O157 stx1 (2) were isolated from sporadic child-
hood diarrheal cases. The CNRB also receive for confirmation purposes strains iso-
lated from water and food from the Laboratory Network and from animals submitted
by the Laboratorio Nacional de Servicios Veterinarios (LANASEVE) depending on
the Servicio Nacional de Sanidad Animal (SENASA, Ministerio de Agricultura).
Throughout sampling procedures in four exporting food plants, performed by the
Direccién de Inocuidad de Productos de Origen Animal (DIPOA), using the USDA/
FSIS guidelines, 18 non-toxigenic O157:H7, three O157 stx,/stx,, one O157 stx,,
and one non-O157 stx; strains were detected (Bolafios and Duarte, personal
communication).

In Peru, the surveillance of EHEC (STEC) infections is performed through the
monitoring of acute diarrheal diseases. The Instituto Nacional de Salud as NRL has
implemented molecular protocols for laboratorial-based surveillance. Four O157:H7
strains genotyped as stx, (2), stx;, and stx,/stx, were isolated from diarrheal cases
attended in Lima in 2014. One HUS case was reported in Lambayeque without
EHEC (STEC) isolation (Zamudio, personal communication).
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3.3 Technologic Improvement of Latin America Laboratories
for the Integration of the Region in the Worldwide EHEC
(STEC) Surveillance

Laboratory-based surveillance for detection of EHEC (STEC) is a key in the sur-
veillance of associated diseases, globally. Actually, the international trends indicate
that just the improvement of the national surveillance is not enough and it is essen-
tial to get a worldwide coverage. Collaboration and data sharing between organiza-
tions and countries is required due to the international dimension of food-borne
pathogens and food trade in particular.

Reference Laboratories of Central and South America participate regionally in
the Global Foodborne Infections Network (GFN) that give support in diagnosis
capability and improve the response capacity of food-borne diseases. As part of
PNLAC, NRLs contribute to the molecular surveillance of food-borne pathogens, in
the framework of PNInt.

In the PNALC Regional Database, there are 498 PFGE patterns, corresponding to
985 STEC O157 strains isolated in 1988-2015 in five countries (Argentina, Chile,
Cuba, Paraguay, and Uruguay). A high genetic diversity among the strains of differ-
ent countries (63.1%) is observed, and certain PFGE patterns highly related are
detected in specific countries. Interestingly, there are strains with identical patterns
circulating in Argentina and Chile. PNALC offers to the countries the possibility to
join efforts, working with standardized protocols under a quality control system that
let to participate actively in the worldwide surveillance. The network is continually
working trying to get harmonization between countries in the implementation and
performance of novel technologies. At present, the vision of PNInt is the worldwide
use of WGS in all public health laboratories to identify, characterize, and subtype
foodborne bacterial pathogens, replacing existing phenotypic and molecular methods
as support of food-borne disease surveillance and thus reach the reduction of the
burden of these diseases. This proposal includes mainly the use of wg-MLST as strat-
egy for sequence analysis. Because of the public health risk, the first approach on
wg-MLST was a pilot project on Listeria and now continues with EHEC (STEC). For
this strategy, it is needed to build an allele database stored in a unique engine server.
Standardized protocols, validation, and nomenclature designation are in progress in
order to work on the harmonization of the strategies among the countries globally.

All members of PNInt, including PNLAC, agree to transition to WGS. The situa-
tion in countries of Latin America could be briefly described in three items, (1) the
wide range of capability. The first steps in training were done by courses/workshops
in the framework of PNALC in collaboration with the Wellcome Trust Sanger Institute.
Moreover, some countries are in the stage of equipment acquisition or installation
(Paraguay and Venezuela), and others have already implemented WGS, but the cur-
rent use is just for research, no for routine surveillance (Argentina, Chile, Colombia,
Meéxico, and Peru); (2) the availability of resources to WGS is variable among coun-
tries and maybe it is the major weakness to overcome; (3) some barriers, like bioinfor-
matics capacity for analysis and storage, and connectivity issues should be improved.
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At present, Argentina is participating as external laboratory, in a Pilot Project of
WHO/FDA for WGS implementation to support public health surveillance, in the
framework of the Genome TRAKR Project. Because of the endemic situation of
HUS and EHEC (STEC) infectious diseases in the country, a specific project was
included. In order to determine the concordance between routine tests and WGS
results regarding detection and characterization issues for diagnosis and discrimina-
tion and relationships among strains for outbreak and clade detection, the LNR has
run 16 EHEC (STEC) O157:H7 strains of different clades, sources, and different
date of isolation. The obtained sequences had comparable coverage and genome
size and passed QC assessment, and they were accessible at NCBI (BioProject
PRINA282762). An agreement with previous results, mainly regarding identifica-
tion, characterization, outbreak, and clade detection, was observed. By WGS, addi-
tional information like other virulence factors, ST and phylogenetic tree, could be
analyzed (Chinen et al. 2015).

4 Conclusions

Advances on the knowledge of pathogenesis, virulence determinants, and risk fac-
tors have contributed to the development of several strategies trying to prevent food
and environment contamination, and consequently transmission to humans. The
uses of new techniques, like WGS typing, has been useful in surveillance, diagnosis,
and epidemiological studies, as well as the discovery of emerging genotypes and
identifying the genetic differences between human pathogenic and nonpathogenic
EHEC (STEC) strains.
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Chapter 6
Diffusely Adherent Escherichia coli

Mario Meza-Segura and Teresa Estrada-Garcia

Summary Diffusely adherent Escherichia coli (DAEC) were the last diarrheagenic
E. coli pathogroup (DEC) to be recognized. DAEC pathogroup encompasses a
heterogeneous group of E. coli strains, harboring genes encoding for Afa/Dr
adhesins that are capable of causing diarrhea illness in otherwise healthy individuals.
Afa/Dr family includes Afa, Dr, and F1845 adhesins that are encoded by the
afaldraldaa operons, respectively. Afa/Dr adhesins bind to cell receptors human
decay-accelerating factor (hDAF) and carcinoembryonic antigen cell adhesion
molecules (hCEACAMs), inducing receptor clustering and finger-like cell
projections, resulting in bacteria embedding without complete internalization.
DAEC infection also causes damages on epithelial cells, including loss of microvilli
structure, impaired enzyme activities of functional brush border-associated proteins,
and loss of adherens junctions, in an Afa/Dr-dependent fashion. Diarrhea prevalence
studies among Latin American children have confirmed that DAEC diarrhea illness
susceptibility is age-related and DAEC-diarrhea risk increases with children’s age.
DAEC was the most prevalent DEC identified from children with acute diarrhea
attending a hospital rehydration unit and an Emergency Room service in Mexico
and US, respectively. In adults, DAEC was identified in travelers’ diarrhea patients
who visited Latin America and from HIV-positive patients with diarrhea from Peru.
Recently, DAEC strains carrying virulence genes associated with pathogenesis, M
cell translocation, angiogenesis, and genotoxicity were isolated from patients with
inflammatory bowel disease and colorectal cancer. DAEC is a bacterial pathogen
that induces unique alterations on epithelial cells, resulting in diarrhea illness and
epithelia damage that may also contribute to the development of other intestinal
diseases.
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1 General Concepts

Diffusely adherent Escherichia coli (DAEC) strains are defined by the presence of a
characteristic diffuse adherence (DA) pattern on HelLa and HEp-2 epithelial cells
(Scaletsky et al. 1984; Nataro et al. 1985). DA pattern consists of bacteria being uni-
formly adhered all over the entire surface of epithelial cells (Fig. 6.1a). Based on the
expression of adhesins, two groups of DAEC strains were identified, Afa/Dr DAEC
and AIDA-I DAEC; moreover, these adhesins are responsible for the DA phenotype.
Nonetheless, not all E. coli strains exhibiting the DA pattern carry Afa/Dr or AIDA-I
adhesins (Scaletsky et al. 2002c). Further characterization of DAEC strains express-
ing AIDA-I adhesins revealed that these isolates also harbor the virulence gene
encoding for intimin (eae) that defines strains belonging to the atypical enteropatho-
genic E. coli (EPEC) pathogroup (Beinke et al. 1998; Servin 2014). Although
afal/dra-positive uropathogenic E. coli (UPEC) strains have been identified, these
adhesins are not among the main virulence factors involved in UPEC pathogenesis
(Flores-Mireles et al. 2015). In contrast, Afa/Dr DAEC strains have been associated
with acute diarrhea in children, particularly in children >6 months of age and with
persistent diarrhea (Baqui et al. 1992; Levine et al. 1993; Germani et al. 1996; Spano
et al. 2008; Ochoa et al. 2009a; Lozer et al. 2013; Mansan-Almeida et al. 2013; Patzi-
Vargas et al. 2015). Consequently in 1998, DAEC was recognized as the sixth class
of diarrheagenic E. coli (Nataro and Kaper 1998). Therefore, DAEC pathogroup
encompasses a heterogeneous group of E. coli strains, harboring genes encoding for
Afa/Dr adhesins that are capable of causing diarrheal illness in otherwise healthy
individuals.

Fig. 6.1 DAEC adhesion to epithelial cells: (a) Diffusely Adherent pattern on HeLa cells. (b)
Transmission electron microscopy showing finger-like projections extending from the surface of
HEp-2 cells induced by C1845 infection. Taken from Arikawa et al. (2005) and Cookson and
Nataro (1996)
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The Afa/Dr family of adhesins includes fimbrial (Dr, F1845) and afimbrial
adhesins (Afa) that attach to the Dr blood group antigen, a component of the Cromer-
related blood complex, inducing hemagglutination (Nowicki et al. 2001). After Afa/
Dr adhesins bind to their cell membrane receptors, the human decay-accelerating
factor (hDAF) and the human carcinoembryonic antigen cell adhesions molecules
(hCEACAMs), they induce receptor clustering and activation of signaling path-
ways, promoting structural modifications on the intestinal barrier and inducing pro-
inflammatory responses (Servin 2014).

2 DAEC Virulence Factors and Pathogenesis

DAEC pathogenesis initiates as most pathogens with the adhesion to intestinal epi-
thelial cells. Ex vivo experiments have shown that DAEC strains adhere to human
small intestine, exhibiting a better adherence to M cells micro-folds than to microvilli
of Peyer’s patch-associated epithelium (Yamamoto et al. 1992). Moreover, DAEC
has also the ability to colonize human undifferentiated crypt cells and differentiated
enterocytes (Kerneis et al. 1991). DAEC attachment onto the target host cells induces
finger-like projections extending from the surface of infected epithelial cells (Caco-2
or HEp-2), thus embedding the bacteria without complete internalization in the cell
(Fig. 6.1b). DAEC embedding occurrence may provide protection against host-medi-
ated defense mechanisms and antibiotics, as well as resistance to intestinal clearance
by peristalsis (Yamamoto et al. 1994; Cookson and Nataro 1996).

Afa/Dr adhesins expressed on DAEC outer membrane are responsible for both,
DA pattern on epithelial cells and adherence to the intestinal epithelium. This family
encompasses fimbrial and afimbrial adhesins. The former are filamentous append-
ages, while the latter are composed of non-covalently bound subunits exhibiting a
capsule-like appearance (Duguid et al. 1955; Goldhar 1996). Afa/Dr adhesins are
exported across the cytoplasmic membrane via a general secretory pathway (GSP)
and then escorted to the surface via a periplasmic chaperone/usher machinery. The
periplasmic chaperone facilitates subunits folding and their delivery to the usher (an
outer-membrane pore-forming protein), which acts as an assembly platform for sub-
units polymerization (Fig. 6.2) (Zav’yalov et al. 2010).

Afa-I, Afa-II, Afa-1II, Afa-V, Afa-VII, Afa-VIII, and Dr-2 afimbrial adhesins, as
well as Dr and F1845 fimbrial adhesins, constitute the Afa/Dr family (Table 6.1).
Most of these adhesins have been identified in E. coli strains isolated from human
urinary tract infections or diarrhea cases, with the exception of Afa-VII, which has
only been found in E. coli isolates from bovine feces (Lalioui et al. 1999). F1845
adhesin was first identified in an E. coli strain (C1845) isolated from a child with
persistent diarrhea (Bilge et al. 1989). To date, only the genes encoding for Afa-I,
Afa-II, Afa-III, and Afa-V have been identified in E. coli strains isolated from diar-
rheal cases (Table 6.1) (Servin 2014).
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Fig. 6.2 General genetic organization of afa/dra/daa operons and assembly of Dr and Afa-III
adhesins: afa/draldaa operons include five genes: A, B, C, D, E, encoding for a transcriptional
regulator, a chaperone, an usher, an invasion, and an adhesin structural subunit, respectively. afa-
3/daa operons are also regulated by F subunits encoded on divergent transcriptional units. Once D
or E subunits are produced, they are transported to the periplasm via the general secretory pathway.
The periplasmic chaperon facilitates subunits folding and their delivery to the usher, which trans-
ports subunits through the outer membrane and acts as an assembly platform for their polymeriza-
tion. D subunit is localized at the tip of the E subunits structure. Dr fimbriae and Afa-III adhesin
suggested structures are illustrated. Dr fimbriae is a rigid structure, while Afa-III seems to be
flexible due to its fine filaments

Afa, Dr, and F1845 adhesins are encoded by the afa/dra/daa operons, respec-
tively. All these operons contain at least five different genes with a conserved distri-
bution and function, A, B, C, D, and E, encoding for a transcriptional regulator, a
chaperone, an usher, an invasion, and an adhesin structural subunit, respectively
(Fig. 6.2) (Servin 2014). afa/dra/daa A, B, C, and D genes are highly conserved,
while among most members of this family the E gene is less conserved; except for
afaE-3 and draE, which have a 99 % homology and a 98 % identity (Labigne-Roussel
and Falkow 1988; Le Bouguenec et al. 1993; Garcia et al. 2000). Therefore, most
AfaE/DraE/DaaE subunits are antigenically diverse (Labigne-Roussel and Falkow
1988). It has been shown that afa-3 and daa, two of the best characterized Afa/Dr
adhesin operons, are regulated by afaF/daaF gene products, harbored in divergent
transcriptional units (Bilge et al. 1993; Garcia et al. 1994). Although Afa adhesins
were initially described as afimbrial proteins, nuclear magnetic resolution studies
revealed that Afa-III has a fimbrial structure made of several AfaE subunits and
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Table 6.1 General characteristics of Afa/Dr adhesins

Isolated
Adhesin | Operon | Type |Identified cellular receptor(s) | from Reference strain
AfaE-1 afa-1 A/F* | DAF, CEA D, UTI KS52
AfaE-Il | afa-2 A DAF D, UTI A22
AfaE-1Il | afa-3 A/F DAF, CEACAMI, CEA, D, UTI A30
CEACAMG6
AfaE-V | afa-5 A DAF, CEA D, UTI AL 851
AfakE-VII | afa-7 A Unknown BO 262 KH 89
AfaE- afa-8 A Unknown B, BO, 239 KH 89,
VIIL PO, UTI | Al 862
Dr dra F DAF, CEACAMLI, CEA, UTI IH11128
CEACAMBG, collagen type-4°
Dr-1I dra-2 A DAF UTI EC7372
F1845 daa F DAF, CEACAMI, CEA, D, UTI C1845
CEACAMG6

DAEC diffusely adherent E. coli, B blood, BO bovine, D diarrhea, PO porcine, UTI urinary tract
infections, A afimbrial, F’ fimbrial, DAF decay-accelerating factor, CEA carcinoembryonic antigen,
CEACAM carcinoembryonic antigen-related cellular adhesion molecule

*AfaE-I has been reported as both, an afimbrial (Labinge-Roussel et al. 1984) and a fimbrial adhe-
sin (Keller et al. 2002)

*Only Dr recognized collagen type-4 (Carnoy and Moseley 1997)

capped by one AfaD subunit (Anderson et al. 2004). Afa adhesin fine fibrillar struc-
tures may be collapsed onto the bacterial surface explaining why they were initially
described as afimbrial adhesins (Fig. 6.2).

3 Host Cell Receptors for Afa/Dr Adhesins

3.1 Human Decay-Accelerating Factor

The human cell surface decay-accelerating factor (hDAF, CDS55) is recognized by
most members of the Afa/Dr family, with the exception of Afa-VII and Afa-VIII,
receptors which have not yet been characterized (Nowicki et al. 1993, 2001; Lalioui
et al. 1999). Afa/Dr-hDAF recognition seems to be species-specific, since these
adhesins do not recognize guinea pig, rat, mice, or pig DAF receptors (Hudault et al.
2004). The hDAF is a 70 kDa glycoprotein; the recognition region contains four
short complement control protein repeat (CCP) domains (of ~60 amino acids each),
followed by a 67-amino acid middle region, rich in serine/threonine/proline (STP),
amino acids heavily O-glycosylated, and the cell membrane bound region formed by
a carboxyl-terminal glycosylphosphatidylinositol (GPI) anchor (Lublin 2005). The
physiological function of hDAF is to control the complement-cascade amplification
through a direct interaction with membrane-bound C3b or C4b molecules, resulting
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in the inhibition of the downstream complement cascade, known as the decay-accel-
erating activity. hDAF is expressed on the surface of peripheral blood cells, endothe-
lial cells, and epithelial cells (Lublin 2005). Afa/Dr adhesins bind to CCP-2 and
CCP-3 epitopes dissimilar to those recognized by complement molecules (Nowicki
et al. 1993; Guignot et al. 2000; Selvarangan et al. 2000; Hasan et al. 2002). Binding
of Afa/Dr adhesins to hDAF receptor induces hDAF clustering around adhering
bacteria, a process requiring c-Src kinase activation and the presence of hDAF
CCP1 domain ( Guignot et al. 2000; Bétis et al. 2003a, b; Queval et al. 2011)
(Fig. 6.3).

Infection of human epithelial T84 cell monolayers with DAEC C1845 or UPEC
IH11128 (Dr positive strain) induces interleukin (IL)-8 secretion through hDAF-
dependent activation of ERK1/2, P38, and JNK; members of the mitogen-activated
protein kinases (MAP kinases) (Bétis et al. 2003a). IL-8 secretion results in poly-
morphonuclear leucocyte (PMNL) transepithelial migration, which induces tumor
necrosis factor (TNF)-a and IL-1f production, cytokines that upregulate hDAF
expression and clustering around adhering bacteria (Bétis et al. 2003a, b). Moreover,
DAEC strains isolated from patients increase the production of IL-1f, IL-6, IL-8,
IL-10, IL-12, and TNF in CaCo-2 cells when compared with a commensal E. coli
isolate (Patzi-Vargas et al. 2013). It has been shown that most of these cytokines
upregulated hDAF expression on epithelial cells (Andoh et al. 1996, 1997).

3.2 Human Carcinoembryonic Antigen-Related Cell Adhesion
Molecules

Some Afa/Dr family members bind to human carcinoembryonic antigen-related cell
adhesion molecules (h\CEACAM), a group of mammalian immunoglobulin-related
glycoproteins, involved in intercellular adhesion and regulation of cell signaling
activities (Table 6.1) (Berger et al. 2004; Kuespert et al. 2006). The hCEACAM:s are
expressed on epithelial, endothelial, and hematopoietic cells and have been impli-
cated in inflammation, immune responses, angiogenesis, apoptosis, cancer, and in
cell recognition by virus and bacterial pathogens (Kuespert et al. 2006; Beauchemin
and Arabzadeh 2013). Afa-I and Afa-V adhesins only bind to hCEA, while AfaE-III,
Dr, and F1845 each can bind to hCEACAM1, hCEA and hCEACAMG6 (Berger et al.
2004; Korotkova et al. 2006). The hCEACAM1 and hCEACAM3 are anchored via
transmembrane domains, whereas hCEA and hCEACAMG6 through a GPI linkage
(Beauchemin and Arabzadeh 2013). F1845, AfaE-III, and Dr adhesins also induce
recruitment of hCEACAMI1, hCEACAM3, hCEA, and hCEACAMS6 receptors
(Guignot et al. 2000; Berger et al. 2004). Furthermore, bacteria binding to hCEA and
hCEACAMS6, but not hCEACAM1, promotes cell membrane finger-like extensions
around the attached bacterium (Fig. 6.3). Finger-like extensions are mediated by
actin-binding proteins ezrin/radixin/moesin (ERM) (Berger et al. 2004). It has been
reported that at least AfaE-I, AfaE-V, DraE, and DaaE adhesins can bind simultane-
ously to both hDAF and hCEA receptors (Korotkova et al. 2006).
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Fig. 6.3 DAEC infection. (a) hDAF and hCEACAMs receptors on the surface of intestinal epithe-
lial cells are recognized by Afa/Dr adhesins (1). DAEC infection elicits IL-8 secretion resulting in
migration of polymorphonuclear leucocytes (PMNL) (2). PMNL migration induces TNF-o and
IL-1p cytokine production (3), that upregulate hDAF expression. hDAF and hCEACAMs cluster-
ing is induced accompanied by lipid rafts (LR) mobilization (4). DAEC infection causes damages
on epithelial cells, including loss of microvilli structure (5), impaired enzyme activities of func-
tional brush border-associated proteins, and loss of adherens junctions (AJ) (6). In addition, the
secreted autotransporter toxin (Sat) induces damages on epithelial cells and alters tight junction
(TJ) integrity (7). Bacterial type 1 pili and flagellin trigger a secondary IL-8 production after bind-
ing to PMNLs and TLRS, respectively (8). On the other hand, enterocyte cells elicit protective
responses against DAEC infection, including the release of microvilli tips underneath attached
bacteria (9), secretion of antimicrobial peptides (AMP) (9), release of neutrophil extracellular traps
(NETs) (11), and expression of MICA molecules that may activate innate immune responses
against infection (12). However, infection of PMNL with DAEC reduces their phagocytic capacity
and induces apoptosis (13). (b) Undifferentiated epithelial cells are invaded by DAEC. The process
of internalization requires lipid rafts integrity and dynamic unstable microtubules (14). Two
hypotheses have been proposed. The first one suggests that AfaD/DraD invasin subunits recognize
the membrane-bound a5f1 integrin and trigger bacteria entry. The second hypothesis proposes an
AfaE/DraE-mediated internalization through hDAF or hCEACAM interaction. Once inside,
DAEC forms inclusions in which they are able to survive for at least 72 h (15)
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4 Afa/Dr DAEC Invasion Capacity

DAEC strains have a low level invasive capacity of human non-polarized epithelial
cells expressing Afa/Dr adhesin receptors (Goluszko et al. 1997; Jouve et al. 1997,
Guignot et al. 2001), whereas they are not able to invade intact human-polarized
intestinal cell monolayers, except when intercellular junctions are disrupted (Guignot
et al. 2001; Plancon et al. 2003; Kansau et al. 2004). The process of internalization
into non-polarized epithelial cells requires lipid rafts integrity (Selvarangan et al.
2000; Guignot et al. 2001, 2009; Kansau et al. 2004; Korotkova et al. 2008) and
dynamic unstable microtubules (Goluszko et al. 1997; Guignot et al. 2001, 2009;
Korotkova et al. 2008). Once inside, DAEC forms inclusions in which they are able
to survive for at least 72 h (Plangon et al. 2003).

Different authors have attempted to elucidate the processes by which DAEC
strains invade epithelial cells. However, this process remains controversial and at
least two hypotheses have been proposed. The first one implies that AfaD/DraD
invasin subunits recognize the membrane-bound a5f1 integrin and that this interac-
tion is sufficient to trigger bacterial entry via a zipper-like mechanism, which is
independent of Afa/Dr-induced F-actin mobilization, but dependent of cholesterol
(Jouve et al. 1997; Guignot et al. 2001; Plancon et al. 2003; Kansau et al. 2004). In
accordance, recruitment of 1 integrin, lipid rafts, and caveolin has been observed
during hDAF-Afa/Dr interaction (Kansau et al. 2004). The second hypothesis pro-
poses that AfaD/DraD invasin subunits are not required for bacterial adhesion or
internalization. Instead, hDAF or hCEACAM receptors independently promote bac-
teria DraE-mediated internalization, dependent of lipid rafts integrity, microtubules,
and phosphatidylinositol 3-kinase (PI3K) activity, but once more independent of
F-actin (Goluszko et al. 1997; Selvarangan et al. 2000; Das et al. 2005; Korotkova
et al. 2008; Guignot et al. 2009).

On the other hand, it seems that the presence of both AfaD and AfaE subunits is
necessary for the invasion process (Fig. 6.3). In as much as only when AfaD and
AfaE were coupled (AfaDE) and attached to glass beats, it was possible to reproduce
all the previously described events: attachment, 1 integrin clustering beneath cell-
associated beads, and invasion (Cota et al. 2006). Furthermore, these authors reported
a low affinity of AfaDE for a5f1 integrin when compared with surface proteins of
truly invasive bacteria; explaining the low level invasive capacity of Afa/Dr bacteria
(Cota et al. 2006).

5 Virulence Factors

5.1 Flagella

DAEC infection induces high levels of IL-8 secretion in epithelial cells (Arikawa
et al. 2005; Bétis et al. 2003a, b; Patzi-Vargas et al. 2013). However, diffusive adhe-
siveness itself is unlikely to be sufficient to promote this effect (Arikawa and
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Nishikawa 2010). Several studies documented that DAEC mobile strains induce high
levels of IL-8 secretion (Arikawa and Nishikawa 2010; Tanimoto et al. 2013). In line,
purified flagella from Afa/Dr DAEC was able to induce IL-8 production in a TLR5
fashion. Because TLRS is exclusively found on the basolateral membrane of polar-
ized epithelial cells, motile DAEC isolates must loosen tight junctions (TJ) for fla-
gella to reach TLRS and trigger signaling that results in the induction of IL-8 (Arikawa
and Nishikawa 2010; Tanimoto et al. 2013). Furthermore, DAEC strains that increased
FITC-dextran paracellular passage and altered transepithelial resistance (TER) of
infected epithelial cells also induced high levels of IL-8 secretion (Tanimoto et al.
2013). This suggests that DAEC possess supplementary factors, in addition to Afa/Dr
adhesin and flagellin, which can induce high levels of IL-8 secretion.

5.2 Sat

F1845-independent alterations of TJ proteins, occludin and ZO-1, were observed in
Caco-2/TC7 cell monolayers infected with C1845 strain, in conjunction with an
increase in paracellular permeability without a decrease of TER (Peiffer et al. 2000a).
Similar results were observed with polarized epithelial Caco-2/TC7 cells infected
with Afa/Dr UPEC IH11128 (Guignot et al. 2007). Overall, these experiments sug-
gested that Afa/Dr-hDAF interaction was not sufficient for inducing structural and
functional TJ lesions. Caco-2/TC7 cells infected with bacteria transfected with a
putative virulence factor identified in IH11128 strain exhibited similar alterations
than when infected with IH11128 strain (Guignot et al. 2007). Sequence homology
analysis revealed that the putative virulence factor is the secreted autotransporter
toxin (Sat). In addition to Sat effects on TJ integrity, other effects as vacuolating
cytotoxin activity, and impairment of brush border-associated sucrase-isomaltase
(SI) and dipeptidyl peptidase IV (DPP IV) enzyme activity on epithelial cells, have
been described (Peiffer et al. 2000b, 2001; Dautin 2010).

Sat belongs to the family of serine protease autotransporters of Enterobacteriaceae
(SPATE), which includes a variety of virulence toxins such as Pet, Pic, EspC, SigA,
SepA, Tsh, and EspP (Dautin 2010). Sat-induced disassembly of TJs-associated pro-
teins is dependent on its serine protease motif (GDSDSG), as for Pet and EspC
(Dautin 2010). Alterations of TJs-associated proteins are more pronounced when
cells are infected with E. coli strains expressing both Sat and the Dr adhesin, sug-
gesting that the delivery of Sat at the vicinity of the cell membrane could allow more
efficient binding of Sat (Guignot et al. 2007). Sat has also enterotoxic activity in
rabbit ileal loops, hence induced a pronounced fluid accumulation, villous necrosis,
submucosal edema and polymorphonuclear lymphocytes (PMNL) infiltration, to a
similar extent than those effects produced by heat-labile toxin (LT) of enterotoxi-
genic E. coli (ETEC) (Taddei et al. 2005). Prevalence of the sat gene among DAEC
strains was significantly higher than in other pathogroups (Taddei et al. 2003). In two
independent studies, a 46 % sat prevalence was observed among DAEC strains col-
lected from children with diarrhea compared with a 16 % and 18.9 %, respectively,
in DAEC strains from asymptomatic children (Guignot et al. 2007; Mansan-Almeida
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et al. 2013). Moreover, sat has also been identified in C1845 (F1845) and AL 851
(AfaE-V) reference strains; both strains were isolated from stools of children with
diarrhea (Guignot et al. 2007). Therefore, it seems that sat is more prevalent among
pathogenic DAEC strains.

5.3 Other Virulence Factors

In addition, it has been reported that some DAEC strains collected from children
with diarrhea carry genes homologous to those encoding for certain molecules of
EPEC and enterohemorrhagic E. coli (EHEC) type three-secretion system (T3SS),
and moreover, some of these DAEC strains actually can produce EspA, EspB, and
EspD homolog proteins (Beinke et al. 1998; Kyaw et al. 2003; Mansan-Almeida
et al. 2013). In line, some DAEC strain also induced the formation of pedestals and
extended surface structures, accompanied by accumulation of actin and tyrosine-
phosphorylation of proteins underneath the attached bacteria (Beinke et al. 1998).
DAEC strains harboring genes encoding for type 1 pili have been described (Lopes
et al. 2005; Prorok-Hamon et al. 2014). It has been demonstrated that some DAEC
strains elicit a late IL-8 production by PMNL (through activation of Src and the
MAPK), in a type-1 pili-dependent manner (Sémiramoth et al. 2009). Curli fimbriae
as well is present in some DAEC strains. Curli has been associated with higher rates
of E. coli invasion to epithelial cells, increased E. coli virulence in mice models, and
induction of inflammatory responses mediated by TLR1/TLR2 (Barnhart and
Chapman 2006; Ttikel et al. 2009; Mansan-Almeida et al. 2013). Furthermore, curli
was more frequently expressed in DAEC strains isolated from adults with diarrhea
(59.2%) than from asymptomatic carriers (6.7 %) (Mansan-Almeida et al. 2013).
Finally, the presence of other virulence factors genes in DAEC strains has been docu-
mented: including toxins (astA), siderophores (fyuA, irp2, iuc, and iroN), transport
systems (shu and modD), and intra-macrophage survival factors (hfrA and dsbA)
(Blanc-Potard et al. 2002; Kyaw et al. 2003; Lopes et al. 2005; Mansan-Almeida
et al. 2013; Prorok-Hamon et al. 2014; Patzi-Vargas et al. 2015).

6 Host Cell Responses Against DAEC Infection

Enterocyte cells elicit protective responses against pathogens to prevent intestinal
infections. The most immediate responses include the secretion of antimicrobial
peptides and inflammatory mediators. Intestinal epithelial cells express gut antimi-
crobial components in a cell differentiation-dependent manner, as lysozyme,
a-antitrypsin, PR-39, and cecropin P1 (Bernet-Camard et al. 1996a). Production of
antimicrobial components by host cells correlates with C1845 bacteria damages,
characterized by bacteria flattening, multiple surface bundle, and a significant
decrease of viable bacteria after 3 h of incubation (Bernet-Camard et al. 1996a).
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Furthermore, it has been reported that after infection with DAEC strains, the actin
network of intestinal cells is disassembled, releasing microvilli tips underneath
attached bacteria (Bernet-Camard et al. 1996b). Releasing of microvilli tips corre-
lates with cell differentiation status, since it is not observed when bacteria are incu-
bated with undifferentiated cells. Detached vesicles made of microvillus membranes
allow the extrusion of brush border-colonizing bacteria and probably inhibit the
adhesion of luminal bacteria to epithelial cells (Shifrin et al. 2013).

DAEC infection of epithelial cells induces IL-8 secretion, promoting neutrophils
chemotaxis to the infection site (Bétis et al. 2003b; Arikawa and Nishikawa 2010;
Tanimoto et al. 2013). In turn, neutrophils play an important role in bacterial elimina-
tion, as it has been described for the release of neutrophil extracellular traps (NETs),
composed of a nuclear DNA backbone associated with antimicrobial peptides, his-
tones, and proteases, which entrap and kill pathogens as for C1845 DAEC strain
(Brinkmann and Zychlinsky 2012; Marin-Esteban et al. 2012). On the other hand,
DAEC strains diminish PMNL phagocytic capacity and induce their apoptosis (Brest
et al. 2004). C1845-infected PMNL, even in the absence of apoptotic markers, are
removed by macrophages, a process that may be involved in the resolution of DAEC
infection and reduction of inflammation responses (Sémiramoth et al. 2010). AfaE-I
and AfaE-III adhesion to hDAF induces the expression of the major histocompatibil-
ity complex (MHC) class I-related molecules A (MICA) by intestinal epithelial cells
(Tieng et al. 2002). MICA are rapidly recognized by the NKG2D receptor, which is
expressed on the surface of NK cells, y0 T cells, and CD8+ off T cells (Bauer et al.
1999). Thus, it is possible that MICA expression induced by DAEC infection may act
as a danger signal enhancing innate immune responses against pathogens.

7 DAEC Detection

Because EPEC and Afa/Dr negative E. coli can as well produce a DA pattern on
HEp-2 and HeLa cells, consequently cell adhesion assays are unsuitable for identifi-
cation of DAEC strains harboring Afa/Dr adhesins (Hernandes et al. 2009; Scaletsky
et al. 2002c¢).

Therefore, we will only discuss molecular methods targeting genes or operon
regions of the afa and daa operons. As for most molecular DEC characterization
studies, DAEC identification was initiated by the use of DNA probes (Bilge et al.
1989). During the years, several probes were developed, drb a 260-bp fragment cod-
ing for AfaE-I adhesin of UPEC KS52 as well as two daaC probes: a 300-bpl Pst1
fragment from daa operon, cloned into plasmid pSS1, and ~390-370-bp PsI frag-
ment, cloned into plasmid pSLMS852 (Bilge et al. 1989; Smith et al. 1994; Scaletsky
et al. 2002a). The specificity of the latter daaC probe was questioned very soon,
since it was reported that 93 % of 86 molecularly characterized enteroaggregative E.
coli (EAEC) strains also hybridized with this probe (Smith et al. 1994). Snelling and
colleagues reported as well that daaC probe (pSLM852) cross-hybridizes with a
sub-set of EAEC strains, including some test and reference strains, including 042 the
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prototypical EAEC strain (Snelling et al. 2009). The authors revealed that the cross-
hybridization is due to 84 % identity at the nucleotide level, between the daaC locus
and the fimbriae II cluster gene, aafC, present in some EAEC strains. Alongside, the
419 bp DNA fragment homologous to daaE probes that identifies F1845 fimbria is
not as well suitable for Afa/Dr adhesin identification since the prevalence of F1845
fimbria among E. coli isolates from stool is rare (Campos et al. 1999).

On the other hand, specific sequence probes MO30, S109, and S111 for C1845
strain were developed by DNA subtraction analysis between C1845 and K12 E. coli
strains. It has been shown that the MO30 probe is highly prevalent among Afa/Dr
strains including UPEC and DAEC, but did not hybridized with any ETEC, EAEC,
or EPEC isolates (Blanc-Potard et al. 2002; Escobar-Pdaramo et al. 2004).

PCR methods are more specific than DNA probes for DEC identification
(Scaletsky et al. 2002a; Meraz et al. 2008). In recent years, single and multiplex
PCR methods have been developed for DEC identification, including DAEC
(Lépez-Saucedo et al. 2003; Meraz et al. 2008; Patzi-Vargas et al. 2013).

8 Recent Advances in DAEC Research

Recently, it was reported that DAEC strains carrying the long polar fimbriae (Ipf)
gene and the polyketide synthase gene complex (pks) are common in inflammatory
bowel disease (IBD) and in colorectal cancer (CRC) (Prorok-Hamon et al. 2014).
Lpf was first described in EHEC as a protein involved in translocation across M
cells of the follicle-associated epithelium and has been shown to be an important
factor for intestinal colonization and persistence (Chassaing et al. 2011). The pks
pathogenicity island is responsible for producing colibactin, a genotoxin that cause
double-stranded DNA breaks and has been associated with CRC and tumor induc-
tion in a CRC mouse model (Arthur et al. 2012; Buc et al. 2013). In addition, other
studies describing DAEC direct or indirect effects over epithelial cells may as well
support the role of DAEC strains in IBD and CRC development. Infection of epithe-
lial cells with DAEC C1845 strain induces loss of the adherent junction (AJ)-
associated E-cadherin and cytokeratin 18 (Cane et al. 2010). In turn, loss of
E-cadherin has been implicated in a cellular mechanism called epithelial to mesen-
chymal transition (EMT), a process heavily related to carcinoma progression in
which epithelial cells are converted into motile cells (Thiery 2002). Hif-1a is over-
expressed by the F1845-hDAF interaction and Hif-1a activates EMT mechanism,
through the MAPK and PI3K signaling pathways (Cane et al. 2010). Hif-1a induces
as well the expression of IL-8, vascular endothelial growth factor (VEGF) and
Twist] mRNA that has been also implicated in controlling the EMT mechanism
(Cane et al. 2010; Lander et al. 2011). Moreover, infection of epithelial cells with
Afa-1 and F1845-positive DAEC strains also induces upregulation of VEGF expres-
sion, through the activation of a Src protein kinase and Erk and Akt signaling path-
ways (Cane et al. 2007; Prorok-Hamon et al. 2014). On the other hand, abnormal
expression of specific hCEACAMSs, the other receptors of Afa/Dr adhesins, has been
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related to cancer progression (Beauchemin and Arabzadeh 2013). Overall, DAEC
infection of epithelial cells induces several pathways involved in angiogenesis and
cell migration, essential steps for cancer development and growth (Beauchemin and
Arabzadeh 2013).

9 Epidemiology

After DAEC strains were first described, it was important to establish their role in
diarrheal illness, but this was controversial particularly because ingestion of DAEC
isolates by adult volunteers did not result in illness (Scaletsky et al. 1984; Nataro
et al. 1985; Mathewson et al. 1986; Tacket et al. 1990). Furthermore, some early
descriptions indicated that DAEC strains were as frequently isolated from stool
samples of diarrhea patients and controls (Levine et al. 1988; Gomes et al. 1989;
Kang et al. 1995). Levine and colleagues, after conducting a cross-sectional cohort
study of DEC strains prevalence in children, using molecular methods of detection,
revealed both that the relative risk (RR) of DAEC infection increased with age and
the difference in rate isolation between cases and controls was significant (Levine
et al. 1993). Furthermore, in a study of children (<10 years of age) with diarrhea and
controls, it was documented that DAEC strains were significantly more frequently
isolated in the 2—6 years old group of children with diarrhea than in controls matched
by age (Germani et al. 1996).

9.1 Inthe Americas

DEC history has always been closely related with Latin America and US scientists,
since over the years several DEC epidemiological studies have been conducted and
some pathogroups were first associated with diarrhea in children from Latin America,
so DAEC is not the exception (Nataro and Kaper 1998). Although most studies that
will be described here are from countries of the American continent, when relevant,
studies from other regions will be discussed.

9.2 DAEC Age-Related Diarrheal Illness

Akey study of DAEC illness associated with age was conducted in a low socioeco-
nomic peri-urban community of Santiago, the capital of Chile (Levine et al. 1993).
In this cross-sectional cohort study of 340 children from age birth to 47 months, it
was observed that DAEC pathogenicity appeared to increase with age, while in the
youngest age group (0—11 months), the RR of DAEC infection was 1.1; among
subsequent age groups, the RR increased steadily reaching the highest RR value of
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2.1 in children >48 months of age (p=0.05). Similarly, two studies of DEC molecu-
lar epidemiology, conducted in low socioeconomic level communities of Brazil,
revealed only after age stratification a significant correlation between DAEC and
diarrhea among children >12 months old and 2-3 years of age, from the Northeast
and Espiritu Santo regions, respectively (Scaletsky et al. 2002b; Lozer et al. 2013).
Similarly, in a study of DEC prevalence in children with and without diarrhea
attending the emergency room (ER) of a Hospital in Espiritu Santo, Brazil, DAEC
was significantly more often found in patients than controls (P <0.05), particularly
among children >1 year of age (P=0.01) (Spano et al. 2008).

An age-related susceptibility study of infection of rotavirus and bacterial patho-
gens was conducted in peri-urban communities of Lima, Peru (Ochoa et al. 2009a).
Of the 992 infants that were followed up during 13 months, the most common patho-
gens in diarrheal samples were DEC (31 %), Campylobacter (18.6), and rotavirus
(17.2); DAEC was the third pathogen more frequently isolated from diarrhea sam-
ples among infants >6 months of age (Ochoa et al. 2009a). In accordance, an age-
specific diarrhea association with DAEC was observed in this study.

A 4-year longitudinal study of bacterial pathogens causing diarrheal illness in
children >5 years old was conducted in Mexico, and a total of 831 children were
included, with most of them requiring treatment at the rehydration unit of a public
tertiary hospital in Merida, Yucatan (Patzi-Vargas et al. 2015). DEC were the main
bacterial agents identified among these children (28 %), followed by Salmonella
(12 %) and Shigella (9 %), while Campylobacter was only identified in 5 % of sam-
ples. DAEC was the most prevalent pathogroup, the number of DAEC-diarrhea epi-
sodes tend to rise as children age increased, and DAEC was significantly associated
with illness in children >6 months of age. Likewise, Spano and colleagues, after
testing E. coli isolates with specific DNA probes designed to detect all six patho-
groups, reported that DAEC was the most frequent pathogroup among children with
diarrhea of a Pediatric Hospital in Espiritu Santo, Brazil (Spano et al. 2008).

9.3 DAEC Prevalence

Most recent reports of DAEC identification from E. coli strains isolated from stool
samples of children and adults worldwide have employed PCR methods in addition
to specific DAEC probes (Servin 2014). Together, these studies have clearly revealed
the importance of selecting the proper afa or daa target genes, in order to establish
a real DAEC prevalence among E. coli strains; this has been distinctly exemplified
in studies conducted in countries of the American continent.

9.4 Children

Studies of DAEC prevalence in stools of children with diarrhea have shown diverse
frequencies, from zero to less than 1 %, in investigations conducted in Costa Rica,
Colombia and Brazil, and from 9 to 15% in studies from Mexico and Peru,



6 Diffusely Adherent Escherichia coli 139

respectively (Pérez et al. 2010; Rugeles et al. 2010; Ochoa et al. 2011; Benevides-
Matos et al. 2015; Patzi-Vargas et al. 2015). In the three studies where DAEC was
negligibly identified, daaE was used as target gene for PCR-DAEC identification,
whereas in the Peruvian and Mexican study, daaD and afaC genes were used,
respectively. The daaE gene encodes for the F1845 fimbria, which has already been
shown to be rarely present among E. coli strains isolated from stools of children and
adults, worldwide (Campos et al. 1999; Rajendran et al. 2010; Mansan-Almeida
et al. 2013; Shabana et al. 2013; Benevides-Matos et al. 2015). Furthermore,
afaE/daaE genes are the less conserved among Afa/Dr adhesin operons, whereas
both afaCD/daaCD genes are highly conserved (Servin 2014). Of note, from the
3100 E. coli strains isolated in the Mexican study, only 2 (0.06 %) strains simultane-
ously harbored genes encoding for afaC and EAEC genes (Patzi-Vargas et al. 2015).
The Peruvian study that analyzed E. coli isolates of children stools collected from a
variety of clinical settings and regions clearly revealed that DAEC prevalence was
dependent on these parameters (Ochoa et al. 2011). DAEC overall prevalence was
4.8 % in isolates from children with diarrhea, but it was as low as 1.7 % in HIV chil-
dren, and as high as 15 % in hospitalized children with acute diarrhea.

In the United States, where it has been shown that most childhood diarrheal dis-
eases are caused by pathogens not recognized in routine clinical testing, few studies
have been conducted searching for DEC. In a Cincinnati Hospital, enteric pathogens,
including DEC, were sought out in 1327 children <5 years old (ER patients and
inpatients) with diarrhea and in 555 matched control children (Cohen et al. 2005).
DEC were isolated significantly more often from patients attending the ER than
from control subjects; among the 563 ER patients, DAEC (13 %)>typical EAEC
(9 %)>aEPEC (6 %) were more frequently identified (Cohen et al. 2005). A similar
study was conducted at a Tennessee hospital; of the 206 children (<12 years of age)
with diarrhea and/or vomiting, only 12 (5.8 %) patients were positive for DEC, 8 for
tEAEC and 4 for aEPEC; noteworthly, DAEC was not identified using the daaE
primers (Foster et al. 2015). Together, these results suggest that in the US DEC may
be an important unrecognized cause of diarrhea in children. Thus, health authorities
should encourage more studies of DEC prevalence in children with diarrhea, and
DAEC should be characterized by PCR techniques using primers for afaC or daaD
genes.

9.5 Adults

In general, studies of diarrhea illness among adults are scarce worldwide, with the
exception of diarrhea studies among adult travelers from industrialized countries
visiting less developed areas of the world, known as travelers’ diarrhea (TD). Stool
specimens from 350 Spanish travelers with diarrhea, some returning from Central
and South America, were examined for intestinal pathogens (Vargas et al. 1998).
DEC identified by PCR techniques were the most prevalent pathogens among TD
patients (107, 30.5 %) and DAEC (9.1 %) was the third most prevalent pathogroup,
just after ETEC (15.7 %) and EAEC (13.4%). In a TD study, E. coli strains were
recovered from 162 stools of 54, 39, and 69 patients returning from Guatemala,
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Mexico, and India, respectively. DAEC strains carrying afa/dra genes were impli-
cated in 11% of the cases and it was found in approximately equal frequency
(~11%) in each study site (Meraz et al. 2008). Mansan-Almeida and colleagues
collected E. coli strains from Brazilian children and adults with and without diar-
rhea, DAEC strains harboring afa/dra adhesin genes were similarly detected in chil-
dren cases and controls, 16.5% and 19.6 %, respectively. DAEC was significantly
(p<0.01) more often recovered from adults with diarrhea (18.8 %) than from con-
trols (4.2 %) (Mansan-Almeida et al. 2013). Further characterization of DAEC iso-
lates for the presence and expression of virulence genes revealed a significant
association with diarrhea (p<0.05) of Sat and curli fimbriae, among children and
adult strains, respectively; suggesting that DAEC strains causing diarrhea in chil-
dren and adults constitute two different populations (Mansan-Almeida et al. 2013).

9.6 HIV

HIV studies conducted among children and adults with diarrhea confirmed that
DAEC strains constitute two different populations. Two independent studies were
conducted among Peruvian HIV-positive adults and children with and without diar-
rhea. In both studies, DEC was sought out by use of a melting curve analysis and
RT-PCR during the same period of time, daaD was the target gene for DAEC iden-
tification (Garcia et al. 2010; Medina et al. 2010). In the adult study, 184 subjects
were included (mean age 35.6 years): HIV-positive patients and controls, with and
without diarrhea. DEC, particularly ETEC, was more common among patients with
diarrhea (42 % vs. 20 %, P<0.05), while DAEC was only present in HIV-positive
patients with diarrhea (10.1 %) (Garcia et al. 2010). In contrast, in the children study,
DAEC was not identified, even after children were stratified by age, in any of the 140
HIV-positive children with and without diarrhea (Medina et al. 2010). So, it will be
important to determine if DAEC strains isolated from HIV adult patients with diar-
rhea harbor or express curli.

9.7 Antibiotics Resistance

Most cases of diarrhea exhibit mild symptoms and resolve quickly without antibi-
otic therapy. However, patients should be treated if they are debilitated, particularly
with malignancy, immunosuppressed, have chronic disease, such as diabetes, or are
extremely young or old. Treatment is also advised for those cases who relapse and
for those with severe or prolonged symptoms (Casburn-Jones and Farthing 2004).
Currently, quinolone antibiotics are the treatment of choice. Nonetheless, fluoroqui-
nolones are not approved for pregnant women and children, where azithromycin is
also a good option (Casburn-Jones and Farthing 2004).
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Although antimicrobial therapies are successful to ameliorate the course of illness
with many intestinal pathogens, the emergence of antibiotic-resistant strains has cre-
ated the necessity of analyzing these strains to develop effective treatments. Different
studies have reported that most DAEC strains isolated either from children with diar-
rhea or asymptomatic children, were resistant to several antibiotics such as: ampicillin,
cotrimoxazole, tetracycline, nalidixic acid, chloramphenicol, ciprofloxacin, kanamy-
cin, ofloxacin, sulfonamide, cephalotin, and streptomycin, including an important pro-
portion of multidrug-resistant strains (resistance to three or more antibiotics), drugs
commonly used to treat pediatric diarrhea (Le Bouguenec et al. 1993; Souza et al.
2009; Ochoa et al. 2009b; Patzi-Vargas et al. 2013). On the other hand, some authors
have reported susceptibility to ceftazidime, gentamicin, lomefloxacin, trimethoprim-
sulfamethoxazole, and azithromycin (Lopes et al. 2005; Patzi-Vargas et al. 2013).
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Chapter 7
Escherichia coli in Animals

Analia L. Etcheverria, Paula M.A. Lucchesi, Alejandra Kriiger,
Adriana B. Bentancor, and Nora L. Padola

Summary Escherichia coli is the most widely studied bacterium over the world. It
is well-known that E. coli is the predominant non-pathogenic microbiota of warm
blood species; however, some strains have developed the ability to cause severe
diseases. Taking into account the diversity in American countries, this chapter
examines the complex situation of puzzling intestinal pathogenic E. coli, also called
diarrheagenic, (enteropathogenic E. coli, Shiga toxin-producing E. coli,
enterotoxigenic E. coli, enteroaggregative E. coli, enteroinvasive E. coli, diffusely
adherent E. coli), and extra-intestinal E. coli (uropathogenic E. coli, neonatal
meningitis-associated E. coli, avian pathogenic E. coli, sepsis-associated E. coli,
mammary pathogenic E. coli, endometrial pathogenic E. coli, and necrotoxigenic E.
coli) in animals. In addition to E. coli-associated animal diseases, the role of carriers
and reservoirs is presented, including the last regional references from synanthropic
and wild animals. Findings of the last 5 years are discussed and data of the eco-
epidemiology of E. coli is also included. Considering the concept of One Health,
which recognizes that health of humans is connected to health of animals and the
environment, the strategies to diminish illness in human population cannot exclude
control and vigilance of pathogenic strains in animals. However, in E. coli control,
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strategies distinguish between those strains that produce animal illness and those
that affect humans and have an animal reservoir. The different proposed ways to E.
coli control are also discussed.

1 General Concepts

Escherichia coli is a Gram-negative rod that constitutes the intestinal microbiota
of animals and humans. However, some strains can cause fatal diseases in humans,
mammals, and birds. E. coli strains are classified in three distinct groups: com-
mensal strains, intestinal pathogenic E. coli strains (InPEC), and extra-intestinal
pathogenic E. coli (EXPEC) strains, based on genotypic and phenotypic traits
(Lyhs et al. 2012).

Genes encoding virulence factors are responsible for the different genome
sizes of E. coli since commensal and pathogenic strains differ by a million base
pairs that correspond to a flexible gene pool (Croxen et al. 2013). These genes
are located on genetic mobile elements such as transposons, insertion sequences,
bacteriophages, and plasmids, resulting in horizontal gene transfer and within-
species genetic variability, which can lead to the differential colonization of
hosts (Fig. 7.1). Therefore, it is important to examine health effects across spe-
cies to understand the animal and public health and to help implement treatment
and preventive programs included in the concept One Health (Bidaisee and
Macpherson 2014). Further, it is also important to assume the role of the animals
in the spread of zoonosis, because if transmission to people is interrupted, the
presence of an animal reservoir would remain a continuous risk to people
(Ferens and Hovde 2011).

2 Intestinal Pathogenic E. coli

Intestinal pathogenic strains are known as diarrheagenic E. coli and are grouped
into six pathogroups according to virulence factors and diseases they can produce
(Hussain 2015): enteropathogenic E. coli (EPEC), enterohemorrhagic E. coli
(EHEC) [a subgroup of Shiga toxin-producing E. coli (STEC)], enterotoxigenic E.
coli (ETEC), enteroaggregative E. coli (EAEC), enteroinvasive E. coli (EIEC), and
diffusely adherent E. coli (DAEC). There are two other emerging pathogroups:
adherent invasive E. coli (AIEC) and enteroaggregative enterohemorrhagic E. coli
(EAHEC) (Clements et al. 2012).

In broad terms, ETEC is the InPEC pathogroup most related to animal disease
because it is the causative agent of neonatal diarrhea in farm animals. EPEC and
STEC are also often isolated from diarrheic and healthy animals, but their role in
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Fig. 7.1 This cartoon aims to highlight the genetic mobility of virulence factors carried by
pathogenic E. coli strains, which are able to acquire, or lose, factors to adapt to new environments.
Although the presence or absence of specific virulence factors is useful for classification of patho-
genic E. coli strains, it is important to keep in mind the versatility of E. coli and their constant
evolution

animal disease remains controversial. However, cattle constitute a major carrier of
EPEC and reservoir of STEC, which are important human pathogens. EAEC,
DAEC, and EIEC are less known in animals (Kolenda et al. 2015).

2.1 Enteroaggregative E. coli

This pathogroup, firstly described in Latin America, can be classified into typical
and atypical EAEC based on the presence or absence (respectively) of the aggR
gene that encodes a protein which regulates several genes linked to EAEC virulence
(Okhuysen and DuPont 2010). Animals are not an important reservoir of typical
EAEC for human infection, but due to the diversity of EAEC strains, they cannot be
definitely excluded (Croxen et al. 2013). Uber et al. (2006) characterized 32
Brazilian EAEC strains from animals with diarrhea (calves, piglets, and horses) and
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compared them against human EAEC strains. They identified both typical and
atypical EAEC among human strains, but those isolated from animals were all
atypical, and they could not find a relationship between human and animal EAEC
strains. In addition, in a survey of healthy cattle and pigs in Peru, no EAEC strains
were detected using a PCR specific for the aggR gene (Rivera et al. 2012). In Brazil
(Pufio-Sarmiento et al. 2013), EAEC isolates that were aggR-positive were identi-
fied among E. coli isolated from dogs with and without diarrhea, and from one cat
without diarrhea, and most isolates showed the characteristic aggregative adherence
pattern. Companion animals could either be reservoir for human strains of EAEC or
accidental hosts of EAEC since they live in close contact with humans (Hebbelstrup
Jensen et al. 2014). Experimental infections in rabbits and rats (ileal loop models)
cause lesions similar to those observed in children; therefore, their pathogenicity to
these animals should be considered. EAEC has been isolated only rarely from ani-
mal sources, and whether animals truly are potential reservoirs of EAEC is not
conclusive (Hebbelstrup Jensen et al. 2014).

2.2 Enteroinvasive E. coli

There is scarce information about this pathogroup in animals. Few studies have
been focused on the detection of EIEC, and furthermore, most of them informed
negative results for EIEC markers, although performed in several animal species
and countries (Pufio-Sarmiento et al. 2013; Chandran and Mazumder 2014).
Negative results for EIEC could be due to a low proportion of the analyzed colo-
nies representing this pathogroup, or, on the other hand, to the use of conven-
tional methods to screen E. coli, as these strains are frequently late lactose
fermenters.

2.3 Diffusely Adherent E. coli

This heterogeneous group is a diarrheagenic E. coli pathogroup also linked to
urinary tract infections in humans (Croxen et al. 2013; Servin 2014). The direct
transmission from animals to humans has not been evidenced. Furthermore,
methods for DAEC identification are not fully developed because of the
occurrence of cross-reactivity of some assays, and the presence of some adhesins
both in DAEC and other E. coli pathogroups (Servin 2014). There is scarce infor-
mation about its presence and role in animal disease. In a study performed in
different farms in Peru (Rivera et al. 2012), DAEC was not detected among E.
coli isolated from rectal swabs from healthy cattle and pigs, using a multiplex
PCR that detects the daaD gene.
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2.4 Enteropathogenic E. coli

EPEC strains cause infantile diarrhea by colonizing the intestinal epithelium and
then producing effacement of absorptive microvilli from small intestinal entero-
cytes, leading to attaching and effacement (A/E) lesions. EPEC can also present
a mechanism of initial binding to host epithelial cells mediated by a type IV pilus
encoded in the EPEC adherence plasmid. Depending on the presence or absence of
these pili, these strains are classified as typical and atypical, respectively (Hussain
2015). Atypical EPEC (aEPEC) have been considered an emerging pathogen in
developed countries, producing endemic diarrhea in children as well as outbreaks,
although recent data suggests that aEPEC are more prevalent than typical EPEC
(tEPEC) in both developing and developed countries (Santona et al. 2013).

The aEPEC strains have been found in a variety of animal reservoirs including
bovines, rabbits, monkeys, dogs, birds, and cats, while the main reservoir for tEPEC
are humans (Croxen et al. 2013).

EPEC may cause intestinal diarrheal disorders in animals. However, healthy
chickens may carry EPEC strains, suggesting that chicken could be a reservoir of
these bacteria. In Argentina, aEPEC was isolated from 12 % of live animals (cloa-
cae), and with variable prevalence from eviscerated carcasses, washed carcasses,
and water from chillers at different stages of the slaughtering process. The isolates
presented a wide variety of serotypes, some of which had been reported in other
animal species (02:H40, O8:H19, and O108:H9), while O45:HS8 had been previ-
ously isolated from children (Alonso et al. 2016).

In wild birds from Canada, Chandran and Mazumder (2014) have found 15 % of
prevalence of EPEC, while in urban feral pigeons from Peru, EPEC represented
5.8% of E. coli isolates (Caballero et al. 2015) and was detected in 12 % of feral
pigeon droppings from Brazil (Silva et al. 2009). tEPEC were isolated from 11 of
18 diarrheic alpacas in Peru, while the remaining were only eae positive (aEPEC),
suggesting that alpacas harbor potentially pathogenic strains that might cause clini-
cal and fatal intestinal disorders in young animals (Luna et al. 2012).

Jay-Russell et al. (2014), in Mexico, isolated aEPEC strains from 3.6 % of dog
and 4.9 % from coyote samples belonging to 14 different serotypes. In Brazil, the
E. coli pathogroup most prevalent in dogs and cats was EPEC. The ONT:H16
serotype was predominantly found in isolates from dogs with diarrhea, although
EPEC 088:H25, ONT:HS, ONT:H6, and ONT:H12 were also isolated from dogs.
In Argentina, Bentancor et al. (2010) isolated aEPEC O157:H16 and tEPEC
O157:H45 from household dog samples. Interestingly, the aEPEC O157:H16
serotype appears to be part of a large clonal group that is prevalent worldwide
(Feng et al. 2012).

Considering calves as reservoirs for human pathogenic E. coli, EPEC were found
more often in healthy than in diarrheic animals with 14.6 % of strains isolated from
healthy and 7.5 % isolated from diarrheic animals (Kolenda et al. 2015). In Peru,
EPEC were detected more frequently in cattle (18 %) than in pigs (5 %) and mainly
from cattle younger than 24 months of age than in older cows (21 % vs. 13 %)
(Rivera et al. 2012).
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In calves, EPEC appears not to be the main diarrheagenic pathogen, since it is
shed during a short period of time, resulting in a low prevalence. Epidemiological
studies in cattle from Brazil have demonstrated that 1.4-42.5 % of diarrheic cattle
eliminated EPEC (Coura et al. 2014). However, EPEC plays an important role as
causal agent of colibacillosis, and its incidence and impact on morbidity/mortality
of newborn calves might be relatively high (Bartels et al. 2010).

In sheep from Brazil, EPEC isolates that carry genes associated with diarrhea in
humans were detected. Thus, Maluta et al. (2014) using markers recently associated
with disease demonstrated that EPEC strains similar to those pathogenic for humans
are present in the sheep intestinal microbiota, underlining the potential for food-
borne transmission.

Croxen et al. (2013) suggested interspecies transmission as a means for human
infection with aEPEC and rabbits as a possible animal reservoir. In rabbits, natural
EPEC infection causes profuse watery diarrhea that can be mucoid or bloody,
accompanied by anorexia, dehydration, and lethargy.

Very little is known about the occurrence of EPEC in synanthropic rodents.
In Argentina, Blanco Crivelli et al. (2013) characterized aEPEC from Rattus rattus
and Rattus novergicus captured in the urban area of Buenos Aires city and suggested
that synanthropic animals could be natural reservoir of EPEC.

2.5 Enterotoxigenic E. coli

ETEC strains are an important cause of diarrhea in farm animals, such as calves
and piglets, but they are very rare or absent in horses, rabbits, and poultry. The
main virulence factors of ETEC strains are enterotoxins and adhesins, but other
less characterized factors have also been described in some strains of this patho-
group. During infection, ETEC first adhere to small intestinal epithelium and then
secrete the enterotoxins that disturb enterocyte function. Host specificity (e.g. spe-
cies and age) of ETEC can be mostly explained by differences in expression levels
or presence of adhesin receptors (Gyles and Fairbrother 2010). The adhesins most
frequently found in ETEC from pigs are F4 (K88), F5 (K99), F6 (987P), F18, and
F41 fimbriae, and afimbrial adhesins such as AIDA-I. Among ETEC from calves
and lambs, the most important adhesins are F5 (K99) and F41. Differential expres-
sion of some adhesin receptors on the intestinal epithelium between adult and new-
born animals can explain why certain types of adhesins are mostly associated to
diarrhea in young animals than in adults. However, there are also uncharacterized
adhesins which may play a role in ETEC pathogenesis, since some ETEC strains
which produce enterotoxins but lack recognized fimbria have been described
(Gyles and Fairbrother 2010).

Enterotoxins secreted by ETEC comprise two major classes: heat-stable (ST) and
heat-labile toxins (LT). ST comprises the STa (or STI), STb (or STII), and EAST]1
(related to STa) subtypes, and LT includes the LT-I and LT-II subtypes (Gyles and
Fairbrother 2010). Like ETEC adhesins, most enterotoxins are encoded by plasmids.
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In pigs, studies performed in Argentina identified different combinations of
ETEC virulence genes among E. coli from non-diarrheic pigs. One of the stud-
ies, with 7-15 day-old piglets, reported a higher proportion of E. coli isolates
carrying only one detected ETEC virulence gene, such as the toxins STb or LT,
or the adhesins P987, F4, or F18 in comparison to isolates carrying a toxin gene
along with an adhesin encoding gene (STb/F18 profile) (Alustiza et al. 2012). A
study with pigs from different production stages assessed the presence of ETEC
by PCR targeting the genes eltA (LTa) and estI (STa) and showed that 15.2 % of
the animals were carriers of E. coli with either one or both toxin genes (Moredo
et al. 2015). The highest percentage of animals positive for ETEC was observed
in the farrowing phase (66 %). Although not searched in the screening, the sub-
sequent characterization of the isolates showed that a high proportion of them
were estll positive (encoding STb) (97.5 %) and 16 different virulence profiles
were detected among the 40 ETEC isolates. Among them, genes encoding adhes-
ins F5, F6, F18, and AIDA-I were identified. Some of the isolates carried the
gene encoding the EAST1 toxin and others the stx2e gene, thus showing the
presence of ETEC/STEC hybrid strains. In Brazil, Cruz Junior et al. (2013)
found no difference between diarrheic (n=30) and non-diarrheic newborn pig-
lets (n=30) regarding the frequency of ETEC carriage. They detected genes cod-
ing for F41, 987P (F6), and LT, but only two isolates harbored an adhesin plus
the enterotoxin gene.

Andrade et al. (2012) characterized E. coli isolated from diarrheic and non-
diarrheic calves with 660 days of age and found ETEC only in animals without
diarrhea. They also identified isolates that carried only the F41 encoding gene in
both groups of animals. A longitudinal study of calves in Brazil found a low fre-
quency of ETEC with no association with diarrhea (Coura et al. 2015). These
authors reported the presence of ETEC [virulence profile STa F5 (K99)] in diar-
rheic calves up to 16 days of age (with the exception of one calf). No significant
differences in ETEC prevalence between healthy and diarrheic calves (of less
than 10 days of age) were reported by Picco et al. (2015) in Argentina. In that
study, the genes for the adhesins F5, F17, and F41 were detected, F17 being the
most prevalent gene (alone or in combination with other genes). The only entero-
toxin gene observed was the one encoding STa (alone or in combination with
adhesin-encoding genes), and several isolates were positive for the presence of
adhesins but negative for enterotoxins.

In a study performed on E. coli isolated from fecal samples of lambs (7-10 days
of age) in the same country, 48 % of the animals carried estA-positive strains of
which all were negative for F41 and K99 genes and only two carried the F17 gene
(Aragdo et al. 2012).
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2.6 Shiga Toxin-Producing E. coli

STEC are zoonotic pathogens that cause the vascular endothelial damage observed
in patients with hemorrhagic colitis (HC) and hemolytic uremic syndrome (HUS)
by production of Shiga toxins (Stx1 and Stx2), encoded by stx/ and szx2 genes,
respectively. Another typical virulence factor is intimin (eae gene), which is required
for intimate bacterial adhesion to epithelial cells inducing a characteristic histo-
pathological A/E lesion, governed by locus of enterocyte effacement (LEE). Strains
lacking eae are named as LEE-negative STEC and have been also associated with
severe disease in human. In this group, the overall genome content, phage location,
and combination of potential virulence factors are variable. An autoagglutinating
adhesin (Saa), encoded by a plasmid, could be involved in the adhesion of these
strains that do not carry eae (Padola and Etcheverria 2014). Additional plasmid-
encoded virulence genes associated to STEC are an enterohemolysin (ehxA), a
catalase-peroxidase (katP), an extra-cellular serine protease (espP), a zinc metallo-
protease (stcE), a subtilase cytotoxin (subAB), among other proteins with adherence
and colonization functions.

Regarding serotypes, and due to the importance of serotype O157:H7 in human
disease, it is common to divide STEC serogroups in two major categories, O157 and
non-0O157, cattle and other animals being the reservoirs for both categories.

Cattle are the natural reservoir of STEC, but other ruminant species such as
sheep, goats, and deer may also act as reservoirs, shedding these bacteria through
their feces, spreading and maintaining these pathogens among cattle herds and the
environment. Animals could maintain STEC carriage in the absence of continuous
exposure or require frequent re-exposure to STEC from environmental sources with
potential interspecies and intraspecies infection (Etcheverria and Padola 2013;
Persad and LeJeune 2014).

In Argentina, the country with the highest worldwide incidence of HUS, 545
STEC isolates obtained from 4824 samples from cattle, foods (hamburger and
minced meat), and environment of farms were characterized. There were serotypes
shared between cattle and foods (O8:H19, O91:H21, O113:H21, O117:H7,
0130:H11, O157:H7, O171:H2, and O178:H19) and also between cattle and the
environment (O8:H19, O26:H11, and O145:NM). Among calves, the profiles
stxl/eaelehxA and stx2/eaelehxA, and stx2 were the most frequent, and these three
profiles also predominated among environmental STEC strains (Etcheverria and
Padola 2013). In addition, a considerable proportion of the STEC isolates from
cattle in Argentina showed to carry stx-subtypes associated with severe disease in
humans (Kriiger et al. 2011).

Several studies informed variable prevalence of STEC ranging from 22 to 67 %
in cattle from Argentina. Ferndndez et al. (2012) found STEC-positive animals in
25 %, 43 %, and 58 % of newborn, milk-fed, and growing dairy calves, respectively.
The presence of STEC in newborn calves less than 24 h old suggested that they are
exposed to this bacterium quickly after birth and play an important role in vertical
STEC transmission. Low prevalence of STEC O157 was detected in milking cows
(0.2 %) and calves (0.8 %).
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STEC O130:H11 and O178:H19 were the most prevalent serotypes isolated from
dairy cows (Ferndndez et al. 2010), from beef abattoirs (Masana et al. 2011), and
from feedlot cattle (L6pez et al. 2012) from Argentina. Both serotypes have been
isolated from HC and HUS cases in several countries. With regard to STEC strains
belonging to the O26:H11 serotype, they were detected in different animal catego-
ries, and noticeably, an important proportion of these strains carried the stx2a sub-
type (with no other szx-subtype), differing from those circulating in Europe or USA
(Kriiger et al. 2015).

In Brazil, Freitas Filho et al. (2014) detected a prevalence of 1.9% of
O157:H7 among dairy calves, while in USA, STEC O157 was found on almost
all cattle farms, with the organism being shed intermittently by most animals
(Persad and LeJeune 2014).

Regarding the association of STEC carriage and diarrhea in cattle, the studies are
controversial. While Kolenda et al. (2015) performed a systematic review and meta-
analysis finding no association between STEC and diarrhea, Coura et al. (2015)
found statistical association between diarrheic animals carrying E. coli stxI/eae in
their feces at 2 and 4 weeks of age and E. coli stx2 at 5 weeks of age, suggesting that
STEC could cause diarrhea in calves older than 2 weeks.

Transmission of STEC to small ruminants occurs through the same pathway as
in cattle, but the site of STEC colonization may be different since tropism for the
recto-anal junction (RAJ), as occurs in cattle, has not been described for all small
ruminants (Persad and LeJeune 2014).

STEC (0157 and non-O157) have been isolated from other captive and wild
non-domesticated ruminant species, including llamas, moose, alpacas, antelopes,
and yaks. These animals can transmit STEC to humans directly by contact at petting
zoos or indirectly through fecal contamination in water sources, vegetable fields,
recreational areas, or on meat (Persad and LeJeune 2014).

Species of deer, including red deer (Cervus elaphus), fallow deer (Dama dama),
and roe deer (Capreolus capreolus), have also been identified as capable of shed-
ding STEC. Persad and LeJeune (2014) reviewed that in elk (Cervus canadensis)
STEC serogroups O103 and O146 were detected and the prevalence in elk feces was
found to be higher than in mule deer.

Several studies have been conducted to detect STEC in Alpacas from Peru. Luna
etal. (2012) detected STEC in 45.5 % of alpaca samples, while Silvera et al. (2012)
isolated seven strains eae and four s#x2 in alpacas without diarrhea, and two strains
eae and stxl, one stx2/eae and, one stx/ and five stx2 in alpacas with diarrhea.
STEC O157 was not detected in these studies.

Swine also play an important role as carrier of STEC strains. Some STEC strains
can produce Stx2e, the subtype related to porcine edema disease. The toxin binds
epithelial and endothelial cells, impairing blood vessels, leading to edema, ataxia,
and death. Risk factors, including dietary changes and the introduction of pigs to
new herds, have been suggested for edema disease onset. In Argentina, Colello et al.
(2016) conducted a study through the pork chain production, suggesting a vertical
transmission of STEC. At farms, 2.8 % of samples were stx positive; at slaughter,
4.08 % of carcasses were stx positive; and at boning rooms, 6 % of samples were stx
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positive, detecting that isolates carried stx//stx2 genes, stx2e, and some of them
only stx2. Regarding stx2e, its prevalence decreased from pigs at farms to pork
meat. In Brazil, from 800 samples collected, E. coli were identified in 561 samples,
with 16.0 % carriers of stx/, 17.3% of stx2, and 8.0 % of eae (Assumpgao et al.
2015). Several studies have been conducted to isolate O157:H7, reporting preva-
lence up to 10 %. In the United States, this prevalence usually is less than 2 %. A study
in Canada described an outbreak of STEC O157:H7 infection linked to consump-
tion of pork, highlighting the risk associated (Trotz-Williams et al. 2012).

The published data on the prevalence of STEC in horses and donkeys indicate that
they are no major reservoirs of STEC and may instead be spillover hosts (Roug et al.
2013). Regarding birds, the STEC prevalence levels are low, although their potential
to transmit STEC to other birds and contaminate the environment is a serious risk
(Persad and LeJeune 2014). In recent years, the population growth of feral pigeons
has increased public health concern, because they could represent a reservoir of trans-
missible pathogens. In Peru, 0.98 % of feral pigeons were carrier of STEC (Caballero
et al. 2015), while in Brazil a STEC frequency of 4.6 % was found in birds.

Since the middle of the twentieth century, pets are more frequently considered as
“family members” within households. However, cats and dogs still can be a source of
human infection due to various zoonotic pathogens (Chomel 2014). Household pets
have been confirmed as carriers of STEC in metropolitan areas. Bentancor et al.
(2007) evaluated household dogs and cats from Buenos Aires city with and without
diarrhea and all STEC isolates recovered from dogs harbored the szx2 sequence. The
major serotype was O178:H19, followed by O91:H16, O91:H21, O157:NM, and
O8:H19. Two STEC isolates belonging to the serotypes O91:H16 and O8:H19 were
recovered from one dog fecal sample. Puppies up to 2 years of age presented signifi-
cantly higher infection prevalence than older pets. None of the strains possessed the
subAB, eae, or saa genes and only one strain of serotype O8:H19 carried the ehxA
gene. Besides, an O91:H21 strain from dog was confirmed to carry the subtype stx2d,
formerly mucus-activatable toxin. Furthermore, all those dog STEC strains showed
cytotoxic activity on Vero cells. Cats evaluated by Bentancor et al. (2007) showed
a higher prevalence of STEC than dogs, and all of the isolates were eae-positive
belonging to the serotypes O22:H8 and O8:H19. Besides, O8:H19 strains carried the
ehxA gene and expressed the enterohemolytic phenotype. O8:H19 strains had been
previously isolated from three clinical cases of HUS in that country, but did not match
the strains isolated from pets. Noticeably, circulating O22:HS strains from cat, bovine,
and hamburger showed 100 % similarity among them (Bentancor et al. 2011).

It is important to note that the proportion of STEC carriers increased when the
evaluated household pets were related to HUS cases. Moreover, one O145:NM
strain was isolated from a healthy household cat, which was related to a HUS case
(Rumi et al. 2012). STEC carriage in pets related to a HUS case was detected up to
15 days from their first isolation (Bentancor 2016).

Most of the STEC serotypes isolated from pets in Argentina were previously
recovered from cattle and/or associated with cases of severe illness in humans.
A great proportion of the strains identified were closely related to strains of the same
serotype isolated from cattle, meat, or humans in the same or in distant geographical
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areas. Among 61 O178:H19 STEC strains from Argentina and Germany, three
Argentine strains from dogs showed high similarity (94.4—100 %) to strains from
cattle and food of bovine origin, although no epidemiological relatedness according
to space-time pattern was identified (Miko et al. 2014).

Blanco Crivelli et al. (2012) showed the first worldwide finding of STEC in R.
rattus and reported STEC non-O157 circulating in different synanthropic rodent spe-
cies from Argentina. None of the strains belonged to the O157 serogroup, which is the
most frequently associated with HUS. However, the STEC O174:H21 isolated from
R. rattus belongs to one of the four prevalent non-O157 serogroups in Argentina.

Rabbits have also been used as a possible animal model to study STEC infection
in humans, since they demonstrate enteric and renal lesions when challenged with
STEC (Persad and LeJeune 2014).

3 Extra-Intestinal Pathogenic E. coli

ExPEC cause diseases in animals, although it is difficult to confirm whether strains
from animals have the potential to cause human disease. These strains can produce
urinary tract infections, newborn meningitis, sepsis, septicemia, airsacculitis in
poultry, mammary and endometrial infections and they have been isolated from
poultry, cattle, swine, dogs, cats, horses, and wild animals (including rats and birds)
(Bélanger et al. 2011; Kunert Filho et al. 2015).

According to the diversity of clinical signs and the different virulence factors,
ExPEC is divided in pathogroups: uropathogenic E. coli (UPEC), sepsis/newborn
meningitis associated E. coli (NMEC), avian pathogenic E. coli (APEC), sepsis-
associated pathogenic E. coli (SePEC), mammary pathogenic E. coli (MPEC),
endometrial pathogenic E. coli (EnPEC) (Kunert Filho et al. 2015), and necrotoxi-
genic E. coli (NTEC) (Croxen and Finlay 2010).

In animals, EXPEC cause diseases, and also it is important to take into account
the antimicrobial resistance of these strains, because it can increase the incidence of
animal and human infections and complicates their treatment (Bélanger et al. 2011).

3.1 Mammary Pathogenic E. coli

E. coli are one of the causes of mastitis worldwide and no association with
human disease has been reported for strains that cause bovine mastitis (Bélanger
et al. 2011). A mammary pathogenic E. coli (MPEC) pathogroup has been sug-
gested by Shpigel et al. (2008) for strains that cause mastitis in dairy animals,
but they can also be included in the more general EXPEC pathogroup. Recent
studies by Kempf et al. (2016) intended to identify genomic characteristics that
could support the hypothesis of MPEC as a distinct pathogroup. They observed
a poor content in virulence genes of mastitis strains, which became clustered
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with a non-pathogenic E. coli strain and differed from strains belonging to
InPEC and ExXPEC pathogroups. However, they could not find genotypic traits
specific for mastitis isolates. In accordance to Kempf et al. (2016), Bentancor
and Gentilini found few virulence-associated genes in 25 MPEC isolates from
Argentina (unpublished data).

The existence of differences in disease presentation and severity, the diversity of
MPEC, and the fact that dairy cows are highly inbred point to the hypothesis that
MPEC carry different combinations of virulence genes that could explain differ-
ences in disease (Shpigel et al. 2008). In a study of different Brazilian mastitis iso-
lates, the fimH gene was detected in all the isolates, in different combinations with
other virulence genes and it was concluded that more than one factor participates in
the pathogenicity of these strains (Fernandes et al. 2011).

There are also some studies aimed to identify characteristics that could dif-
ferentiate MPEC isolates associated to transient mastitis from those of persistent
mastitis. Dogan et al. (2012) found that both transient and persistent isolates
(from USA and The Netherlands) had a high genetic heterogeneity, and they
could not identify genes that could characterize each group of isolates.
Interestingly, these authors found an association between the presence of /pfA and
increased epithelial invasion of bovine mammary epithelial cells. In addition, Ipf
gene has been also identified in some E. coli isolates from bovine mastitis in
Chile (Cartes Lillo 2014).

3.2 Avian Pathogenic E. coli

This section highlights some characteristics of APEC; for further details, see Chap.
9. APEC comprise those E. coli strains that cause extra-intestinal infections (coli-
bacillosis) in avian species (Mellata 2013) and are considered a major pathogen
within the poultry industry.

APEC is a heterogeneous group, and the mechanisms of virulence that define
APEC are not completely elucidated. APEC have multiple virulence genes involved
in different steps of infection and/or fitness, such as those encoding for factors asso-
ciated to adhesion, iron acquisition, serum resistance, virulence regulation, and
other virulence traits (Kunert Filho et al. 2015).

The prevalence of different virulence-associated genes has been evaluated in sev-
eral studies. Plasmid-carried genes (such as cvi/cva, iroN, iss, iucD, and tsh) have
been frequently detected, but with variable prevalence in APEC strains collected in
Brazil (Cunha et al. 2014). Interestingly, Prioste et al. (2013) isolated E. coli strains
from 46 of 87 cloacal fecal samples obtained from asymptomatic Guaruba gua-
rouba, and 61 % of the isolates harbored at least one of the genes commonly reported
in poultry (irp2, iucD, iss, vat, cvilcva, tsh, and astA). Additionally, Saviolli et al.
(2016) recovered some E. coli strains from samples of free-ranging frigates, appar-
ently healthy, in Brazil, that had a combination of five genes regarded as minimal
predictors of virulence for APEC (iroN, hlyF, ompT, iss, and iutA).
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Although a proper diagnosis of avian colibacillosis requires isolation and
identification of E. coli from birds with clinical suspicion of disease, the diversity
among APEC strains hinders a clear identification of an avian E. coli isolate as a
pathogenic. In recent years, big efforts were made to define APEC and determine
molecular markers for its identification by genotyping methods. However, and
taking into account that an isolate cannot be clearly defined as APEC based
solely on genotypic profile, confirmation of virulence in animal models is sug-
gested (Mellata 2013).

3.3 Uropathogenic E. coli

This section highlights some characteristics of UPEC; for further details, see Chap. 9.

E. coli is the most common uropathogen in dogs and cats (Chew et al. 2011).
Urinary tract infections (UTI) are common in dogs, but bacterial UTIs in cats are
relatively uncommon (Chew et al. 2011). In Chile, a study of 48 clinical records of
dogs and cats with UTI showed that E. coli was the most frequent bacterium iso-
lated from urine samples, and similar results were reported in Brazil by Carvalho
et al. (2014). In The United States, Wong et al. (2015) identified E. coli in 58.1 %,
57.7 %, and 49.3 % of 1636 aerobic bacterial isolates recovered from urine samples
from dogs with uncomplicated UTI, complicated UTI, and pyelonephritis,
respectively.

Although previous studies had reported that sfa, cnf, hly, and pap genes are fre-
quently found in canine UPEC, Wells et al. (2013) showed that 89 out of 159 (52 %)
E. coli strains isolated from canine patients in USA did not possess any of these
genes. In Argentina, Cundon et al. (In Press) characterized UPEC in 69 dogs and in
15 cats. They detected combinations of pap1/2, pap3/4, sfa, and cnfonly in 12 % out
of 84 strains and did not found Aly.

Osugui et al. (2014) identified E. coli as the etiologic agent of UTI in 7/14 (50 %)
and 36/86 (42 %) of urine samples from cats and dogs in Brazil. This study showed
that fimH was present in all isolates, while the iha, sfa, cnfl, and hlyA genes were
present only in strains belonging to phylogenetic group B2. In Argentina, Cundon
et al. (In Press) also found sfa and cnfl in UTI strains belonging to phylogenetic
groups AO and EXPEC B2 and D from felines and canines, and in accordance with
Osugui et al. (2014), was absent in B1.

Recently, Liu et al. (2015) characterized 74 UPEC strains isolated from cats in
four geographic regions of USA. The study showed B2 as the predominant phylo-
genetic group and extremely diverse profiles of virulence-associated genes.
However, among strains belonging to phylogenic group B2, some genes, such as
hlyD, hlyA, cnfl, and iroN, were frequently detected.

Swine can be also affected by UPEC strains. Urinary infections affect mainly
adult animals (Kunert Filho et al. 2015).
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3.4 Endometrial Pathogenic E. coli

Most cattle are affected by ascending infections after parturition. In some cows,
bacteria persist in the uterine lumen and can favor the development of postpartum
uterine diseases such as metritis and endometritis (Kassé€ et al. 2016).

E. coli is one of the pathogens commonly isolated from samples of cattle with
metritis and endometritis; however, its role in the pathogenesis is still poorly under-
stood (Bicalho et al. 2012; Wagener et al. 2014). In a study of 374 lactating cows
from farms in Nueva York, Bicalho et al. (2010) found that 33.4 % of the samples
were positive for E. coli. Molecular characterization of E. coli isolates showed that
six virulence-associated genes (fimH, astA, cdt, kpsMII, ibeA, and hilyA) were sig-
nificantly associated with the incidence of metritis and endometritis. In particular,
fimH was highly prevalent in E. coli-infected cows and was an important predictor
of uterine disease. In a later study, Bicalho et al. (2012) evaluated the virulence fac-
tors present in the uterus of cows at three different stages of lactation and observed
a strong association of fimH with metritis and clinical endometritis in the first days,
but not at later stages of lactation, suggesting that E. coli is likely among the first
bacteria to colonize the intrauterine environment, potentially inducing changes that
will favor colonization by other pathogens.

A study from Canada evaluated the prevalence of E. coli in the uterus of postpar-
tum dairy cows before the onset of postpartum metritis and showed that cows posi-
tive for intrauterine E. coli were three times more likely to have subsequent
postpartum metritis compared with bacteriologically negative cows. In addition, the
hral and kpsMTII genes were also associated with greater odds of postpartum
metritis (Kass€ et al. 2016).

3.5 Sepsis-Associated Pathogenic E. coli and Neonatal
Meningitis E. coli

In some circumstances, E. coli strains can traverse the intestinal epithelial barrier
and adapt to extra-intestinal conditions. It is considered that SePEC strains must
have several factors that enable them to invade the host by an entry point, resist
bactericidal host effects, persist and multiply in the blood, and other extra-intestinal
sites (Fecteau et al. 2009). However, they are not characterized by a particular viru-
lence factor or group of factors. SePEC virulence factors detected in calves and pigs
are variable among strains and include F17, P and S fimbrial adhesins, colicin V,
CNF1 or CNF2, CDT (Gyles and Fairbrother 2010).

E. coli septicemia occurs more frequently in newborn animals. It is the cause of
neonatology morbidity and mortality, and it is responsible for significant economic
losses in animal production (Kunert Filho et al. 2015). E. coli have been reported as
the predominant organism isolated from septicemic calves and neonatal pigs (Gyles
and Fairbrother 2010).
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Neonatal bacterial meningitis and bacterial sepsis are often linked. E. coli is also
reported to be the most common bacterial isolate in calves and foals with meningi-
tis. The income of the bacterium into the meninges is poorly understood. Some E.
coli virulence factors may be important to resist defense mechanisms, reach the
cerebrospinal fluid, and replicate (Fecteau et al. 2009).

3.6 Necrotoxigenic E. coli

Necrotoxigenic E. coli (NTEC) are responsible for various diseases of humans and
animals, including urinary tract infection, septicemia, and diarrhea. NTEC possess
cytotoxic necrotizing factors (CNF1, CNF2 or CNF3) (Orden et al. 2007), as well
as a cytolethal distending toxin (CDT). Some or all of these pathovars can also
express other virulence factors such as intimin (Croxen and Finlay 2010). The sub-
group of NTEC known as NTEC-2 has broad distribution among production ani-
mals and produces the variant of CNF (CNF-2) whose gene is located on a plasmid
known as Vir.

4 Control

For control of E. coli infections, it is necessary to distinguish between those strains
that produce animal illness and those that affect humans via the food chain being
animals their reservoirs. Vaccines and antibiotics have been essential in the control
of infectious disease for many years. However, for several diseases, there are no
effective vaccines or antibiotics available.

4.1 InPEC Control

Control of STEC may prevent human illness by reducing the presence of these
pathogens throughout the beef production chain. There are several strategies to
reduce the shedding of STEC in cattle feces, such as vaccination, probiotics (as
Direct Fed Microorganisms-DFM), and bacteriophages, among others. While it is
broadly shown that cattle are carriers of STEC O157 and non-O157, most of studies
attempting to control cattle as reservoir have been directed towards O157. Thus, the
effects of possible interventions on STEC non-O157 must be deduced from the
available information on STEC O157:H7 control (Gill and Gill 2010). While post-
harvest pathogen-reduction strategies have been largely successful at reducing
direct food-borne illness, these processing interventions have not been perfect.
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Research into pre-harvest pathogen reduction controls and interventions has
grown in the last years. Strategies that specifically target food-borne pathogenic
bacteria, as STEC, in the animal at the farm level have great potential to improve
food safety and decrease human illnesses (Sargeant et al. 2007).

Vaccination of cattle, the major reservoir for STEC, could be an effective public
health control against a serious disease, although studies that do not account for
nonlinearity in cross-species transmission may substantially underestimate the effi-
cacy of interventions against zoonotic pathogens (Hurd and Malladi 2012).

There is a systematic review that concluded that vaccination of cattle has effi-
cacy as a pre-harvest intervention (Snedeker et al. 2012). As reviewed by Callaway
et al. (2013), some vaccines had been developed, one based on type III secreted
proteins (TTSP), other using EspA, intimin, and Tir, involved in STEC adherence.
Several studies have demonstrated that vaccinating cattle using TTSP decreases the
probability of detecting STEC O157 from cattle feces (Wisener et al. 2015). Other
study suggested that TTSP and SRP (siderophore receptor and porin protein) vac-
cines significantly reduce fecal prevalence of E. coli O157 in cattle. However, espe-
cially for the SRP vaccines, there have still been relatively few trials published.
Future research would be of interest, particularly in feedlot or research settings
where cattle are at production density (Snedeker et al. 2012). Systemic vaccination
with E. coli O157 BGs (bacterial ghosts) provides protection in a bovine experi-
mental model (Vilte et al. 2012). Rabinovitz et al. (2012) found specific antibodies
in colostrum which were transferred efficiently to newborn calves by feeding colos-
trum from cows immunized with EspB, the C-terminal 280 amino acids of y-Intimin
(y-Intimin C280), and inactivated Stx2 proteins fragment. This can be an alternative
to protect calves’ early colonization by STEC O157:H7 and a possible key source of
antibodies to block the colonization and toxic activity of this bacterium.

Commercial vaccines have been available and have been proved to significantly
reduce O157 in cattle digestive systems by 50—75 % on average, with some cattle
showing reductions as high as 98 %. Currently, there are two vaccines commercially
available directed against E. coli O157—Canada’s Econiche® and America’s
Epitopix SRP®. Both are under limited licensing in the USA, but Econiche® has
been fully licensed in Canada (Zuraw 2013).

Probiotics as DFM have been used as potential pre-harvest interventions for the
reduction of food-borne bacterial pathogens such as O157. As for the competitive
strategies, the use of probiotic bacteria as competitive microbiota has shown prom-
ising results in controlling STEC. Probiotics can interfere with pathogenic strains
by producing metabolites that are inhibitory to STEC O157:H7 and non-O157.
Some strains of E. coli can produce colicins that are inhibitory in vitro to DEC
strains. Several authors have identified bacteria with potential ability to exclude
STEC O157:H7 from the gastrointestinal tract of cattle (Etcheverria et al. 2006;
Sargeant et al. 2007).

Many studies have reported that supplementing with Streptococcus faecium the
diet of animals that are infected with E. coli O157:H7 reduces its shedding in feces.
However, more effective reduction in E. coli O157:H7 shedding can be obtained by
treatment with multiple probiotic bacteria consisting of Enterococcus faecium,
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Lactobacillus acidophilus, L. casei, L. fermentum, and L. plantarum. Reduction in
E. coli O157:H7 shedding by ruminants decreases the contamination chances of
meat and other food products, thereby decreasing the potential for E. coli O157:H7
outbreaks. Probiotic cultures based on diverse bacterial strains (Lactobacillus gal-
linarum, Streptococcus bovis, S. faecium or a mixture of S. faecium, L. acidophilus,
L. casei, L. fermentum and L. plantarum, Propionibacterium freudenreichii, among
others) reduced E. coli O157:H7 shedding in cattle (Callaway et al. 2013). Studies
have also indicated that cultures of Lactobacillus acidilacti and Pediococus could
directly inhibit E. coli O157:H7, likely through the production of organic acids and
low pH (Rodriguez-Palacios et al. 2009).

Regarding phages as an alternative strategy for control, it has been examined for
use in two different approaches to reduce E. coli O157:H7, within the gut of cattle
before slaughter, and as a hide or environmental decontaminant (Ricke et al. 2012).
Phage products for use as a hide spray have been released into the marketplaces
(Finalyse®). Bacteriophages have been used to control experimentally inoculated
food-borne pathogenic bacteria in cattle gastrointestinal tracts (Callaway et al.
2013). Other authors have concluded that a continuous phage therapy can be an
effective method to reduce E. coli O157: H7 carriage (Rozema et al. 2009).

The most important factor, in the case of newborn animals, to take into account
when preventing ETEC infections, is an early and sufficient colostral supply. The
protective value of colostrum against diarrheal diseases of the newborn caused by
ETEC can be increased essentially by maternal immunization. Several vaccines are
used mainly for parenteral application containing protective antigens (virulence fac-
tors—fimbrial adhesins with or without LT enterotoxins). Colostral antibodies
would block virulence factors and propagation of bacteria in the intestine. Similar
effects can be expected in the case of passive immunization, e.g., the oral applica-
tion of polyclonal or monoclonal antibodies (Zhang 2014).

To prevent diarrheal disease due to ETEC in pigs, there are several important
tools as management techniques and good farming practice. There are some factors
that must be taken into account as strategies to prevent diarrheal disease. These fac-
tors include weaning age and weight, weaning diet, overstocking, and contaminated
environment from earlier stocks. Vaccinations against neonatal diarrhea due to
ETEC have been very successful, especially since the most prevalent adhesins (K88,
K99, 987P) and toxin (LT) became standard components of the vaccines. Some
researchers demonstrated the efficacy of live oral vaccines applied before weaning.
Commercial vaccines for sows contain killed E. coli F4, F5, F6, and/or F41 fim-
briae, either purified or as inactivated E. coli expressing these fimbriae with or with-
out the LT toxoid (Cox et al. 2014). There is a commercial vaccine introduced in
Brazil in 2011 containing naturally avirulent E. coli bacteria that express F4 fim-
briae, but do not produce toxins. Clinical studies have demonstrated significantly
reduced colonization of pigs’ intestines after challenge (Cox et al. 2014).

Some approaches, including treatment with antibiotics, passive administration
with specific antibodies, dietary supplementation including prebiotics, and probiot-
ics, along with vaccine development, to control post-weaning diarrhea have been
attempted. These prevention approaches, as an alternative for vaccination, have
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shown some promise, but cost-effectiveness or concerns of environmental risk make
them less favorable or not practical (Zhang 2014). Regarding the use of probiotics
in ETEC control, some studies have found that the use of a mixture of the L. casei
culture with maltodextrins promoted a significant reduction of a pathogenic E. coli
into the jejunum of gnotobiotic pigs. Other study has reported that the use of spores
of Bacillus licheniformis together with B. cereus var. toyoi has resulted at effective
reducing of diarrhea, mortality, and weight loss in weaned pigs. The selection of
probiotic E. coli strains against E. coli K88 is effective in preventing diarrhea in
piglets when fed in conjunction with raw potato starch and in reducing the negative
effects of ETEC in a piglet challenge model (Krause et al. 2010).

For the immunization to mastitis, a vaccine containing an E. coli O111:B4
(named J5) and S. Typhimurium Re-17 was employed. The immunization with this
vaccine was capable of diminishing the number of clinical cases and improved milk
production (Gentilini et al. 2013).

4.2 ExPEC Control

Because of the extensive use of antibiotics, there is an increased population of
strains that developed antibiotic resistance. Reducing the animal reservoir as source
of ExPEC using vaccines to replace or reduce antimicrobials could diminish losses
due to EXPEC and limit the spread of these pathogens to humans (Bélanger et al.
2011).

The prevention and control of APEC infections include the control of
environmental contamination and environmental parameters such as humidity and
ventilation. APEC are frequently resistant to a wide range of antibiotics; neverthe-
less, antibiotic therapy is widely used. Vaccines containing killed, attenuated viru-
lent bacteria showed protection against infection with the homologous strain, but
are less efficient against heterologous strains. There are some subunits, and recom-
binant vaccines used to immunize chickens against colibacillosis (Kunert Filho
et al. 2015). There is a commercial vaccine (Poulvac®) that contains a live aroA-
deleted E. coli strain that showed reduction of incidence of lesions typical of coli-
bacilosis (pericarditis, perihepatitis, airsacculitis) and a significant reduction of
mortality due to E. coli O78 infections. Another mutant of E. coli serovar O78 has
been produced using an allelic exchange procedure. Its administration via various
routes, such as spray and eye drop for chickens as well as in ovo-inoculation, evoked
an effective immune response that protected against a virulent wild-type E. coli O78
strain (Nagano et al. 2012).

Freitag et al. (2008) investigated the viability of bacteriophage therapy to combat
canine and feline E. coli UTIs by testing the activity of naturally occurring bacterio-
phages on UPEC. They found that most of UPEC are susceptible to bacteriophages,
being this a promising strategy as therapeutic agents for treatment of canine and
feline E. coli UTIs.
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Chapter 8
Escherichia coli in Food Products

Lucia Galli, Victoria Brusa, Ricardo Rodriguez, Marcelo Signorini,
Juan M. Oteiza, and Gerardo A. Leotta

Summary Foodborne diseases, as a result of the consumption of food contaminated
by diarrheagenic E. coli (DEC), have been recognized as one of the most prevalent
health issues worldwide. Certain pathogroups are typically transmitted by
contaminated food and water; however, their prevalence in food is restricted to
outbreaks and research studies in certain regions. These bacteria are affected by a
multiplicity of limiting factors present in food, e.g., temperature, pH, water
activity, food processing, and intrinsic microorganism factors such as injury and
inoculum. Emerging intervention processing techniques are receiving good
attention because of their potential for food quality and safety improvement.
During the last decade, some of these technologies —high-pressure processing,
high-pressure homogenization, pulsed electric field, ultraviolet light, intense light
pulses, ultrasound, radiation, ozone and organic acids, among others—have been
tested to control DEC in food. Food safety must be principally ensured by a more

L. Galli * V. Brusa * G.A. Leotta (<)

Facultad de Ciencias Veterinarias, IGEVET —Instituto de Genética Veterinaria “Ing.
Fernando N. Dulout” (UNLP-CONICET LA PLATA), Universidad Nacional de La Plata,
La Plata, Argentina

e-mail: luciagalli@hotmail.com; toibrusa@hotmail.com; gerardo.leotta@gmail.com

R. Rodriguez
Instituto Nacional de Tecnologia Agropecuaria (INTA), Hurlingam, Argentina
e-mail: rodriguez.ricardo@inta.gob.ar

M. Signorini
CONICET —Estacion Experimental Agropecuaria INTA, Rafaela, Argentina
e-mail: marcelo.signorini@gmail.com

J.M. Oteiza

Laboratorio de Microbiologia de los Alimentos, Centro de Investigacion y Asistencia
Técnica a la Industria (CIATI AC)-CONICET, Centenario, Argentina

e-mail: juano@ciati.com.ar

© Springer International Publishing Switzerland 2016 173
A.G. Torres (ed.), Escherichia coli in the Americas,
DOI 10.1007/978-3-319-45092-6_8


mailto:luciagalli@hotmail.com
mailto:toibrusa@hotmail.com
mailto:gerardo.leotta@gmail.com
mailto:rodriguez.ricardo@inta.gob.ar
mailto:marcelo.signorini@gmail.com
mailto:juano@ciati.com.ar

174 L. Galli et al.

preventative approach, such as product and process design and the application of
the Good Hygiene and Manufacturing Practices and the Hazard Analysis Critical
Control Point principles. Epidemiological studies provide invaluable information
to define more effective management strategies. In this context, risk analysis tools
have proven effectiveness to reduce foodborne diseases through the design,
development, implementation, evaluation, and communication of control measures
to protect the public health. To achieve a strategic control of E. coli infections, a
multidisciplinary approach through stages of the agro-food chain is required to
generate evidence-based risk management measures. Only in this way will it be
possible to protect the health of consumers.

1 General Aspects

Food security exists when all people, at all times, have physical, social, and
economic access to sufficient, safe, and nutritious food that meets their dietary
needs and food preferences for an active and healthy life (FAO 2001). Food safety
refers to all those hazards, whether chronic or acute, that may make food injurious
to the health of the consumer. Quality includes all attributes that influence a prod-
uct’s value to the consumer, including negative attributes such as spoilage, con-
tamination with filth, discoloration, off-odors, and positive attributes such as the
origin, color, flavor, texture, and processing method of the food (FAO/WHO 2003).
It is well known that the best alternative to minimize microbial growth and loss of
food quality during processing and storage is the combined action of limiting fac-
tors of microbial growth. This approach allows the harmonization of better food
sensory quality with safety and supports new trends in food production and food
processing.

Food production is evolving toward the integration of local production and
industrial exportation, including quality assurance systems. Ensuring the microbio-
logical quality of food is one of the aspects related to public health. In this sense,
the One Health Initiative is interesting because it involves human, animal, and envi-
ronmental health (http://www.onehealthinitiative.com). Food safety and quality are
essential in the food chain production. To accomplish these premises in a strategic
way, a multidisciplinary approach is required to generate evidence-based risk man-
agement measures.

We consider it essential for diseases caused by DEC to start by addressing the
agro-food chain concept based on foodborne disease epidemiology. In this way, we
can go into more depth about concepts related to DEC pathogroups, DEC and food
microbial ecology, and the intervention strategies to reduce E. coli in food. Second,
we summarize the specific regulations for DEC in America, including microbiologi-
cal criteria and official methodologies to detect and isolate DEC. Finally, we inte-
grate the control of E. coli foodborne disease determinants, considering quantitative
risk assessment.


http://www.onehealthinitiative.com/
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2 Epidemiological Tools

Contaminated food is a major health concern, especially in developing countries. While
it is difficult to assess the incidence of foodborne disease, different estimates consider
that at least one-third of the population is affected annually in developed countries.
However, as not all the cases are reported to the epidemiological surveillance systems,
the real incidence is undoubtedly higher. In developing countries, the problem is even
worse, because foodborne disease data are rarely available (Cherry et al. 2014).

Foodborne diseases are caused by the consumption of food contaminated with E.
coli and have been recognized among the most prevalent worldwide (Cherry et al.
2014; Majowicz et al. 2014). Considering their significant impact on public health, it is
necessary to identify and adopt risk management measures to reduce the incidence rate.
However, such identification should take into account the scientific information avail-
able so that risk managers can be sure about the efficacy of the adopted measures.

Epidemiology is the science that can provide valuable information to define the
most appropriate risk management measurement to reduce the exposure to food-
borne pathogens (Silman and Macfarlane 2002). Epidemiologists try to identify the
factors that increase the probability to get sick. Once these factors are identified, it
is possible to design targeted intervention strategies. Sources of information for this
epidemiological approach include (a) epidemiologic surveillance systems, (b) out-
break studies, and (c) quantitative risk assessment.

2.1 Epidemiologic Surveillance

Epidemiologic surveillance collects information used for planning, implementing,
and evaluating public health interventions and programs. Surveillance data are used
both to determine the need for public health action and to assess the effectiveness of
programs (Ammon and Makela 2010). Traditionally, reportable disease data have
been the main source of information to describe the burden of specific pathogenic
causes of diarrheal disease in the population. However, such data capture only a
fraction of the true number of cases. Most American countries do not have reliable
data on the occurrence of diarrhea caused by E. coli. This is because epidemiologi-
cal surveillance systems are not sufficiently consolidated and, if present, surveil-
lance is syndrome specific (e.g., diarrheal diseases) and it is rarely possible to
determine the etiological agent involved in clinical cases. Thus, it is difficult to
obtain updated and reliable data on the incidence of E. coli diarrheal cases, and even
more difficult to estimate the prevalence of different E. coli groups. However, some
American countries have consolidated epidemiologic surveillance systems from
which it is possible to estimate the impact of E. coli diarrhea.

Shiga toxin-producing E. coli (STEC) strains can cause different illnesses. The
Public Health Agency of Canada registers Canadian STEC infections through the
National Notifiable Database. Using these data, the incidence rate of STEC infection
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was estimated in four cases/100,000 populations per year (Thomas et al. 2006).
However, the true incidence rate is likely to be 10-47 times greater because most
STEC infection cases are not reported (Smith et al. 2013).

An estimated 63,153 E. coli O157:H7 infections occur in the United States
annually, resulting in an estimated 2138 hospitalizations and 20 deaths (Painter et al.
2013). According to the Centers for Disease Control and Prevention (CDC), the inci-
dence of E. coli O157:H7 infection is approximately 1.06 cases/100,000 population.

In Argentina, the Epidemiologic Surveillance System of Communicable Diseases
is mostly syndrome specific (Boletin Integrado de Epidemiologia 298). For that
reason, only the incidence of diarrhea is informed, but data about the etiologic agent
are scarce. However, a specific surveillance system collects information from
Sentinel Units which record hemolytic uremic syndrome (HUS) cases. In Argentina,
HUS is the principal pediatric cause of acute renal failure, the second cause of
chronic renal failure, and is responsible for 20 % of kidney transplants in children
and adolescents (Rivas et al. 2011). Annually, between 300 and 500 new HUS cases
are reported, with an average annual incidence rate of 1.1 cases/100,000 inhabitants
and 8.4 cases/100,000 children under 5 years of age (Boletin Integrado de
Epidemiologia 298).

In view of the absence of epidemiologic surveillance systems, Majowicz et al.
(2014) calculated the global annual number of STEC infections resulting in HUS
cases. In America, the estimated STEC infection incidence rate was approximately
58.7 cases/100,000 inhabitants, and the estimated HUS incidence rate was 0.17
cases/100,000 inhabitants. Although these data are underreported and have some
limitations, the study provided a global estimate of the impact of STEC infection on
public health.

2.2  Outbreak Studies

Epidemiological reports of foodborne outbreaks are mostly case—control or
retrospective cohort studies. In the case of STEC infection, cases are identified
together with patients without the disease (controls). Cases and controls are then
compared to identify the source of infection, considering their exposure to differ-
ent foods (Silman and Macfarlane 2002). These studies might be complex to per-
form for various reasons, namely, undefined cohorts, small number of cases,
difficulty to find controls comparable with cases, and susceptibility to biases
(recall bias) (Gaulin et al. 2012).

The prevention of E. coli infections is challenging because resources are limited
and linking individual illnesses to a particular food is rarely possible, except during
an outbreak (Painter et al. 2013). To prevent foodborne illnesses, it is crucial to
prioritize the limited food safety resources across a large number of foods. In this
sense, outbreak studies are the only way to associate a foodborne disease with a
particular food, and results could help to establish a rank of foods mostly implicated
in the transmission of E. coli. However, most American countries lack specific
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resources to conduct case—control studies during an outbreak and, consequently,
they are not able to define a food management strategy to reduce the impact of food-
borne diseases.

In the period 1998-2008, 206 E. coli outbreaks were reported in the United
States, 186 of which were due to E. coli O157:H7. Transmission was through the
consumption of meat (33.0-41.3%), leafy vegetables (19.3-31.5%), and dairy
products (6.7-9.8 %). Interestingly, the foods identified in outbreaks of E. coli
non-O157 (six in the same period) were fruits and beef (Painter et al. 2013). Another
study evaluating E. coli O157:H7 outbreaks in the US during 2003-2012 arrived at
similar conclusions. Beef, leafy vegetables, and dairy products (milk and cheese)
were the foods associated with the transmission (Heiman et al. 2015). The propor-
tion of female patients was higher in outbreaks attributed to fruits (67 %) and leaf
vegetables (65 %), and lower in those attributed to meats other than beef (31 %). E.
coli infections were evenly distributed among women and men in outbreaks attrib-
uted to beef and dairy. These data would indicate a gender-specific food preference
and, consequently, a differential risk of exposure (Heiman et al. 2015).

Beef, particularly ground beef, continues to be the major source of E. coli 0157
outbreaks (Torso et al. 2015), likely because cattle are the main reservoir for this patho-
gen. However, outbreaks attributed to leafy vegetables, dairy products, fruits, and other
meats were more severe than outbreaks attributed to beef, probably due to a change in
strain virulence and host susceptibility by patient age and sex (Heiman et al. 2015).

Although E. coli O157 outbreaks occur throughout the year, most of them are
reported during summer. However, such seasonality varies by food category. Beef-
associated outbreaks occur mostly in summer and leafy vegetable-associated out-
breaks during fall. Cattle shed the largest number of E. coli O157 organisms in their
feces during the summer months, coinciding with a higher prevalence of E. coli
O157 on hides in processing plants. On the other hand, leafy vegetable-associated
outbreaks exhibit another pattern of presentation, which could be the result of sum-
mertime applications to seedlings of irrigation water, soil amendments, or fertilizers
that might contain more E. coli O157:H7 organisms than in other seasons (Heiman
et al. 2015). Additionally, washing prewashed spinach before consumption might
not decrease the risk of illness, because E. coli O157:H7 can persist on vegetables
for long periods after waterborne contamination, and the available sanitation meth-
ods are not completely effective at removing organisms (Wendel et al. 2009).

In Argentina, although the magnitude of outbreaks has been lower compared
with the United States (Torso et al. 2015; Wendel et al. 2009) and Canada (Gaulin
et al. 2012), the national surveillance system has reported the appearance of spo-
radic numerous cases (Rivas et al. 2011). E. coli O157:H7 was the strain most com-
monly isolated from human HUS cases (74.6 % of the noticeable cases). The
frequency of non-O157 E. coli isolation was as follows: O145 [H27; H-; NT]
(13.6 %), O121 [H19] (2.2%), 026 [H2;11; NT] (1.4 %), O174 [H8; 21; 28; H-]
(1.0 %); other serotypes, 7.2 %.

The improvement of national epidemiologic surveillance systems and outbreak
studies enhance the understanding of the epidemiology of E. coli infections and
help national health systems to monitor appropriately changes in the frequency of
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the main serogroups, which cause diseases over time (Brooks et al. 2005).
Strengthening public health systems to prevent and control foodborne diseases
requires timely reporting of suspected and confirmed E. coli cases. Further, it
requires high indices of suspicion for foodborne diseases, accurate diagnosis, and
commitment to maximize the available information through timely application of
molecular subtyping (Wendel et al. 2009).

3 Diarrheagenic E. coli Pathogroups in Food

DEC strains are an important cause of intestinal disease in the developing world.
They mainly affect children and are now recognized as emerging enteropathogens
in the developed world. Certain DEC pathogroups are transmitted typically by con-
taminated food and water; however, their prevalence in food items that are pro-
duced, consumed, and sometimes exported worldwide has not been well investigated.
This diagnosis would provide epidemiologically important information, especially
with respect to routes of spread. Nevertheless, the current methods of detection are
expensive and labor intensive for routine detection.

In Mexico, 5162 food items and beverages consumed throughout the Sinaloa
state were tested for their microbiological quality. The prevalence of DEC strains
was low (1.08 %), with dairy products being the most contaminated food items
(2.8 %), followed by meat derivatives, seafood, and fish. On the other hand, DEC
strains were not present in beverages and ice samples. Among the DEC pathogroups
detected in food items, EPEC was the most prevalent (78.5 %), followed by EAEC
(10.7 %), STEC (8.9 %), and ETEC (1.7 %) (Canizalez-Roman et al. 2013).

In Colombia, food product samples consisting of pasteurized milk, unpasteur-
ized fruit juice, ground beef, cheese, and vegetables obtained at four retail stores
were also analyzed for their microbiological quality. The prevalence of intestinal E.
coli contamination was low (2.1 %); ground beef and cheese samples were the only
contaminated food items, being EPEC, ETEC, and STEC the DEC pathogroups
detected (Amézquita-Montes et al. 2015).

Water could be one of the principal vehicles of food contamination. In Peru,
DEC strains were found in 33 % of the drinking water samples analyzed in rural
areas (Gil et al. 2014).

Unpasteurized juice has been associated with foodborne outbreaks for many
years. In Mexico, microbiological quality analyzed in fresh beetroot and carrot juice
samples was poor (Gomez-Aldapa et al. 2014). DEC strains were detected in 9 and
8.9% of the samples analyzed, respectively. ETEC, EIEC, aEPEC, STEC were
among the DEC identified and, in some samples, two different pathogroups were
simultaneously isolated. Some critical points identified in contamination included
no washing and/or disinfection in raw materials, cross contamination during juice
preparation, and bad storage conditions.

The consumption of ready-to-eat (RTE) salads has increased worldwide, with the
concomitant increase in the number of outbreaks caused by food-borne pathogens,
including DEC. In a Mexican study, among the 130 salad samples analyzed, 6.2 %
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were contaminated with DEC strains, mainly EIEC, ETEC, and non-O157 STEC
strains (Castro-Rosas et al. 2012). In another recent study, DEC strains (STEC,
EPEC, and ETEC pathogroups) were identified in 8 % of nopalitos (tender cactus)
salad samples tested. Interestingly, all isolated strains exhibited multidrug resis-
tance, demonstrating for the first time this kind of profiles in the samples analyzed
(Gémez-Aldapa et al. 2016).

Other studies focused their attention on fresh produce usually consumed as RTE
(coriander, parsley, spinach, lettuce, alfalfa sprouts, and tomatoes). The authors
described the presence of ETEC strains in tomatoes, alfalfa sprouts, coriander, and
parsley, with prevalence rates of approximately 4 % through 0.3 % (Feng and Reddy
2014; Gémez-Aldapa et al. 2013; Rangel-Vargas et al. 2015). STEC strains were
detected in tomatoes, alfalfa sprouts, and spinach, with prevalence rates of 6%
through 0.5 % (Feng and Reddy 2014; Gémez-Aldapa et al. 2013; Rangel-Vargas
et al. 2015). About 9% of the spinach isolates presented STEC O157:H7 and
026:H11. E. coli O157:H7 was not detected in any STEC-positive samples from
tomato and alfalfa sprouts. EPEC strains were found in tomatoes and alfalfa sprouts,
with prevalence rates of approximately 4 % (Gomez-Aldapa et al. 2013; Rangel-
Vargas et al. 2015). EIEC strains were isolated in 1 % of saladette-tomato samples
(Gémez-Aldapa et al. 2013).

Meats of animal origin could potentially act as transmission vehicles for
STEC and other DEC strains. In a study conducted in the USA in E. coli isolates
collected from 2002 to 2007 under the national retail meat program resistance
monitoring system, 17 STEC (16 from ground beef, 1 from pork chop) and 11
aEPEC (5 from chicken breast, 4 from ground beef, 2 from pork chop) strains
were detected (Xia et al. 2010). In Canada, following a similar program, 17
aEPEC strains were identified; six were coclassified as aEPEC-ETEC and two as
aEPEC-EXPEC (Comery et al. 2013). This study emphasized the high degree of
E. coli genome plasticity and ongoing evolution that could give rise to novel E.
coli pathogens.

Studies of STEC prevalence in minced beef samples performed in Argentina by
Brusa et al. (2013) found STEC O157:H7 isolated from 12.2 % of raw ground beef
samples and 1.7 % of butcher environmental samples, whereas STEC non-O157 was
isolated from 14.4 % of raw ground beef samples and 6.7 % of environmental sam-
ples. In another study, 8 % of ground beef samples analyzed from butchers located
in Buenos Aires was EPEC-positive (Srednik et al. 2014). Hamburgers have also
been implicated in numerous outbreaks. In an Argentinean survey of poultry shops,
the proportion of EPEC-positive samples among chicken hamburgers was greater
than that of STEC-positive ones, while in butcheries, STEC was predominant
(Alonso et al. 2012).

In Brazil, the occurrence of DEC strains was investigated in raw kibbeh and
chilled shrimp samples. From 70 raw kibbeh samples analyzed, two strains belong-
ing to the O125:H19 and O149:H8 serotypes were positive for the stx;. genetic
sequence (Peresi et al. 2016), whereas the EPEC and ETEC pathogroups were
detected on the surface of two chilled shrimp samples (Barbosa et al. 2016).
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4 Diarrheagenic E. coli and Food Microbial Ecology

Knowledge of the ability of DEC to make its way into and persist in foods and under-
standing of its behavior will result in better control interventions. DEC is differen-
tially affected by a multiplicity of limiting factors present in food, e.g. temperature
(T°C), pH, water activity (a,,), food processing (preservatives, dehydration, cooking),
and intrinsic microorganism factors (injury and inoculum). In this context, microbial
ecology of food can be defined as the study of the interaction among chemical, physi-
cal, and structural attributes of food, factors, and process technologies and the corre-
sponding microbiota that constitute the microbial population, in this case DEC
organisms (Fig. 8.1) (Rodriguez 2006). Based on the frequency and severity of food-
borne illnesses, most of the information available on DEC food microbial ecology
refers to STEC as the most significant pathogroup causing foodborne diseases.

4.1 Food Processing Factors Affecting DEC

The main factors affecting the development and survival of microorganisms in food
are listed in Table 8.1. They were classified based on a modification of the classical
categorization of Mossel (IFT 2002) and adapted to include emerging food preser-
vation processes. Most of these factors interfere with the stability of the cell internal
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Table 8.1 Main factors Type Main factors
involved in food microbial
ecology

Intrinsic pH

Water activity

Redox potential

Nutrients

Viscosity

Microstructure

Natural antimicrobials

Processing | Temperature(Pasteurization,
sterilization)

ITonizing radiation
High hydrostatic pressure (HHP)

Antimicrobial additives (organic acid,
nitrites, sorbates)

Packaging (modified atmospheres,
vacuum)

Extrinsic Storage temperature (chilling, freezing)

Environmental gaseous atmosphere

Environmental humidity

Implicit Microorganism (physiology, injury)

Natural microbiota (competition,
synergism)

environment of the microorganism represented by variables such as intracellular
pH, osmolarity, DNA integrity, and cell membranes. When these interferences occur
in a limited range of internal physiological variables, energy-dependent homeo-
static mechanisms are triggered in vegetative cells that attempt to restore normal
physiological values. This is of fundamental importance in the design of safe food
preservation processes, cleaning programs, and sanitation of surfaces and equip-
ment used in the food industry. In terms of DEC organisms, as any other bacteria
present in food, pH, a,, and 7° are the three main factors that affect microbial
growth (Aertsen and Michiels 2004).

Studies on the thermal sensitivity of E. coli O157:H7 in ground beef showed that the
pathogen does not have an unusual heat resistance. However, the presence of fat protects
the bacteria (Line et al. 1991). D values (time required for a 1-log reduction for a micro-
organism) at 57.2, 60, 62.8, and 64.3 °C of 270, 45, 24, and 9.6 s were found, respec-
tively. D values for lean (2.0 % fat) and fatty (30.5 % fat) ground beef of 4.1 and 5.3 min
at 57.2 °C, respectively, and 0.3 and 0.5 min at 62.8 °C were found, respectively.

Foodborne pathogens must pass through an acidic gastric barrier with pH values
as low as 1.5-2.5 to cause infections in humans. These have been studied in STEC,
where different mechanisms designated as acid tolerance and acid resistance have
been determined (Montville and Matthews 2013). Induction of acid resistance in E.
coli can also increase tolerance to other environmental stresses, such as heat,
radiation, and antimicrobials agents.
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The a,, value for total bacterial growth inhibition depends on the availability of
free water by cellular enzymes, the presence of defense mechanisms, as well as the
solute employed to reduce a,. Whereas bacteria stop developing at a,, values of
0.90, DEC does at 0.95. The most direct way to reduce a,, in food is by partial dehy-
dration by drying.

Microorganisms can be damaged or injured by effect of sublethal levels of heat,
ionizing radiation, weak acids, and sanitizing agents. Such injury is characterized
by a reduced resistance to certain selective agents or increased nutritional require-
ments of certain agents. Another less widespread aspect related to the physiologi-
cal state of cells that can contaminate food is the phenomenon called viable
nonculturable cells (VNCC) which has been described in DEC. This differentiation
of vegetative cells, “dormant” viable cells but not “cultured” by the usual tech-
niques of counting, is a survival strategy of these bacteria. Their morphology
changes, rods shrink and become spherical, being very different from the corre-
sponding vegetative cells. They can take anywhere from days and weeks to reach
the state of VNCC. These cells can be recognized by staining techniques and meta-
bolic activity in response to certain specific substrates. Moreover, some foodborne
pathogens that have been in nutrient culture media can become VNCC when sub-
jected to refrigeration temperatures, certainly having strong implications for the
safety of refrigerated food products.

4.2 Biofilm Formation

Microbiologically, biofilm formation is defined as communities of microorganisms
growing embedded in an exopolysaccharide matrix and adhered to an inert surface, a
living tissue or a food. Biofilms can be found in any ecological niche and are of particu-
lar importance for the food industry in general and for perishable foods in particular. In
essence, if bacteria are present, any surface that combines abundant moisture and nutri-
ents is liable to the formation of biofilms. The development of genomics and pro-
teomics has enabled to identify genes that are expressed differentially when bacteria
are forming biofilms. This opens the possibility of identifying control strategies to bio-
films using suppressive substances or enzyme inactivation of molecules that facilitate
communication among bacterial communities. Although biofilms may have a single
type of microorganism, either a pathogen or a spoiler, several bacterial species are
much more commonly present. The different kinds of bacteria forming a biofilm can
communicate through a cell—ell signaling mechanism known as quorum sensing.

Biofilm allows bacteria to survive in unpredictable scenarios and under conditions
of stress, such as changes in temperature, pH, drying, ultraviolet rays, among oth-
ers. In their mature state, biofilm cells use energy for exopolysaccharide production,
which in turn is used as a nutrient. Biofilm bacteria can be 100 times more resistant
to antibiotics and up to 300 times more resistant to some sanitizing agents. DEC
adhesion to various surfaces has been extensively demonstrated (Fig. 8.2)
(Rodriguez 2006).
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Fig. 8.2 Escherichia coli attached to polyethylene film (SEM, x11,000)

The development of biofilms protects microorganisms and hinders removal of
processing equipment, packaging, and food preservation. They are a structured way
to provide homeostasis, a real network to develop special functions in cooperation
with the cells that form the colonized niche, and finally a great protection against
antimicrobial agents. At the level of the industry, it is important to consider the
design and engineering of processing equipment and surfaces that are in contact
with food to prevent the formation of biofilms by making the initial adsorption pro-
cess more difficult. Quorum sensing plays a fundamental role in the formation of
biofilms of pathogens and spoilage microorganisms; it improves the access to nutri-
ents and micro-favorable niches, providing a unique response that protects against
adverse environmental conditions. For this reason, different mechanisms are being
investigated and novel compounds to block attachment are being used.

5 Intervention Strategies to Reduce E. coli in Food

Emerging processing techniques are receiving good attention because of their
potential for food quality and safety improvement. During the last decade, some of
these technologies have been tested to control pathogenic E. coli in foods because
they can inactivate microorganisms at ambient or near ambient temperatures, thus
avoiding the deleterious effect of heat on flavor, color, and the nutrient value of
foods.
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5.1 High-Pressure Processing

It is also called high hydrostatic pressure processing, pascalization, or high-pressure
pasteurization. HHP subjects liquid and solid foods, with or without packaging, to
pressures between 100 and 800 MPa. Microbial inactivation associated with high-
pressure processing (HPP) may be related to one or more factors including cell
membrane perturbation, protein denaturation, and biochemical and macromolecular
changes (inhibition of DNA, RNA, or protein synthesis). The application of pres-
sures in the range of 300-700 MPa at ambient temperature within a few minutes
should result in an inactivation of STEC O157:H7 and non-O157 (including the
“big six” serogroups: 0103, O111, 026, 0145, 0121, O45) in different beef types,
fruits, drinks, and produce (Zhou et al. 2016).

5.2 High-Pressure Homogenization

It involves the pumping of liquid through a homogenizing valve at high pressure
over 100 MPa. It produces high turbulence and shear along with compression,
acceleration, and pressure drop, resulting in the breakdown of particles. The effects
on bacterial cells are not well known, but the sudden pressure drop probably dis-
rupts microorganisms by torsion and shear stresses, and mostly by cavitation shock
waves resulting from imploding gas bubbles. The use of high-pressure homogeni-
zation (HPH) was studied by Brifiez et al. (2006), who evaluated its effect to reduce
E. coli O58:H21 in orange juice and E. coli O157:H7 in orange juice and whole and
skimmed milk.

5.3 Pulsed Electric Field

This technology consists in the application of short duration (1-100 ps) pulses of
high voltage (5-80 kV cm™) to a food placed between two electrodes. Destruction
of microbial cells is the result of electroporation of cell membranes. Pulsed electric
field (PEF) has been reported to inactivate E. coli O157:H7 in different fruits and
drinks (Mosqueda-Melgar et al. 2008; Ait-Ouazzou et al. 2013).

5.4 Ultraviolet Light

Treatment with Ultraviolet light (UV) radiation could be an attractive alternative
technology to thermal pasteurization that can be applied to inactivate harmful
microbes in food. It produces a nonionizing radiation with germicidal properties at
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wavelengths in the range of 200-280 nm. UV-C light inactivates microorganisms by
damaging their DNA due to the dimerization of thymine bases. Different works
have been recently conducted to analyze the effect of UV on STEC O157:H7 and
non-O157 in different fruits, drinks, and produce (Oteiza et al. 2010).

5.5 [Intense Light Pulses

It is a nonthermal method for food preservation that involves the use of intense and
short duration pulses of a broad spectrum to ensure microbial decontamination.
Intense light pulses (IPL) employ a flash lamp filled with inert gas, such as xenon,
that emits high-frequency pulses of broad-spectrum radiation containing wave-
lengths from 180 to 1100 nm. The lethal effect of pulsed light can be attributed to
its rich broad-spectrum UVC content. This technology is also known as pulsed
light, high intensity broad spectrum pulsed light, pulsed white light, pulsed UV
light, and intense light pulses. IPL has been reported to inactivate E. coli O157:H7 in
different fruits, vegetables, and drinks (Rajkovic et al. 2010).

5.6 Ultrasound

Ultrasound (US) treatments involve the application of sound waves of 20 kHz to
foods in a liquid medium; these sound waves locally generate high pressures and
temperatures, with the consequent lysis of microbial cells through intracellular cav-
itation. Destruction of E. coli O157:H7 cells has been studied in foods such as
drinks and vegetables (Afari et al. 2016). In addition, Luna-Guevara et al. (2015)
studied US efficacy to remove enterotoxigenic E. coli (ETEC) in tomatoes.

5.7 Radiation

One or more of three types of irradiation, namely, electron beam, X-ray, and gamma
rays (Cobalt 60 and Cesium 137) have been approved for use with as many as 40
different foods to control microbial contamination in about 60 countries (Li et al.
2015). They are referred to as ionizing radiations. Microorganisms are inactivated
primarily due to DNA damage, which destroys the reproductive capabilities and
other functions of the cell. Different works have been conducted to analyze the
effect of irradiation to control STEC O157:H7 and non-O157 in several foods
(Trinetta et al. 2011).
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5.8 Ozone

Probably, chemical agents are one of the most common interventions studied to
minimize the transmission of STEC in foods. The FDA has approved the use of
ozone (0O3) as an antimicrobial agent for the treatment, storage, and processing of
foods in gas and aqueous phases. It inactivates microorganisms through oxidization.
The control of E. coli O157:H7 has been studied in drinks, vegetables, and fruits
(Trinetta et al. 2011).

5.9 Organic Acids

The mechanism of inactivation by weak organic acids lays down in the ability of
a nondissociated form of organic acid to penetrate through the cell membrane and
to dissociate inside the cell, resulting in decreased intracellular pH value. Beside the
decrease in intracellular pH, the perturbation of the membrane functions by organic
acid molecules might be also responsible for microbial inactivation (Rajkovic et al.
2010). Organic acids can be applied as sprays, washes, or dipping solutions, depend-
ing on the food product to be decontaminated and on the infrastructure of the pro-
cessing plant. Several studies have shown the effectiveness of different organic
acids in the inactivation of E. coli O157:H7 in different foods (Mohan and Pohlman
2016; Fransisca and Feng 2012).

5.10 Other Emerging Processing Techniques

Among them, we can mention infrared heating to inactivate E. coli O157:H7 in ham
(Ha et al. 2012); ohmic heating to control E. coli O157:H7 in juices (Park and Kang
2013); cold atmospheric plasma to inactivate E. coli O157:H7 in apples, cantaloupe,
melons, and lettuce (Critzer et al. 2007); and electrolyzed oxidizing water and hot
water to reduce E. coli O157:H7 and 026, 0103, O111, and O145 in beef carcasses,
meat and meat products (Kalchayanand et al. 2012), seeds and sprouts (Zhang et al.
2011), and strawberries and broccoli (Hung et al. 2010).

5.11 Hurdle Technology

The use of novel technologies alone is often insufficient to achieve adequate STEC
inactivation in several foods. According to FDA regulations, novel technologies
must accomplish at least a 5-log reduction of the pathogen of interest in order to be
used as an alternative to pasteurization (FDA 2015). Sometimes, the use of two or
more preservation factors applied simultaneously, known as hurdle technology, can
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fulfill the requirements for a specific food product. Today, a number of novel
technologies are good candidates for use in combination, and preliminary results
have shown important effects on reducing STEC in foods. The use of multiple
preservation techniques incorporating mild treatments can result in an enhanced
preservative action by having an additive or synergistic effect on microbial
inactivation (Tawema et al. 2016).

Food producers recognize that applying preharvest interventions with postharvest
technologies for a “multihurdle” approach is the most effective way to minimize
food contamination. Continued efforts in developing multiple hurdle or sequential
intervention treatments will likely provide the greatest advances in minimizing the
transmission of STEC through foods.

6 Regulation, Microbiological Criteria, and Methodologies
to Detect and Isolate Diarrheagenic E. coli

The microbiological testing of finished food products alone is insufficient to
guarantee their safety due to reasons concerned with sampling, methodology, and
randomized distribution of microorganisms. Food safety must principally be
ensured by a more preventative approach, such as product and process design and
the application of the Good Hygiene Practices (GHP), the Good Manufacturing
Practices (GMP), and the Hazard Analysis Critical Control Point (HACCP)
principles (European Commission 2011).

Microbiological results cannot be expressed in absolute terms because samples
are a portion of the batch of the food produced. Therefore, standards and stan-
dardized methodologies must be applied rigorously to guarantee them.
Microbiology laboratories should use official methodology and adopt a quality
management system. For example, ISO/IEC 17025:2005 specifies the general
requirements for the competence to carry out tests and/or calibrations, including
sampling, and is used to develop their management system for quality, adminis-
trative, and technical operations. It includes testing and calibration using stan-
dard, nonstandard, and laboratory-developed methods. Moreover, all
methodologies and techniques used in food microbiology require validation,
including conventional and rapid methods (AOAC International, BraCVAM, and
Health Canada, among others). However, results should be interpreted according
to microbiological criteria.

Microbiological criteria may be used to formulate design requirements and to
indicate the required microbiological status of raw materials, ingredients, and end-
products at any stage of the food chain as appropriate. These criteria should be
applied by regulatory authorities and/or food business operators to distinguish
between acceptable and unacceptable food. To establish a microbiological criterion,
consideration should be given to the evidence of actual or potential hazards to
health; the microbiological status of the raw material(s); the effect of processing on
the microbiological status of the food; the likelihood and consequences of microbial
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contamination and/or growth during subsequent handling, storage, and use; the
category(s) of consumers concerned; the cost/benefit ratio associated with the appli-
cation of the criterion; and the intended use of the food (FAO 1997).

The International Commission on Microbiological Specifications for Foods
(ICMSF) has written extensively on the principles of controlling microbial haz-
ards in foods (ICMSF 2011). These s-ame principles apply to the control of micro-
organisms associated with spoilage as well as general indicators of GHP/
GMP. Some microbiological tests provide information regarding general contami-
nation, incipient spoilage, or reduced shelf life. For instance, coliform counts have
been widely used as universal indicators of hygiene, but in many products (e.g.,
meat or poultry, vegetables), Enterobacteriaceae will inevitably be present and the
apparently high coliform counts do not necessarily indicate hygienic failure or
consumer risk ICMSF 2011).

E. coli is used to indicate recent fecal contamination or unsanitary processing.
However, the presence of a low content of generic E. coli is inevitable in several
products, and this is the reason for a limit of tolerance when counting this group of
bacteria in some foods, such as meat or poultry. Generic E. coli is considered a low
risk microorganism group and identified as an indirect hazard (ICMSF 2011).

Sampling plans become increasingly more stringent with increased severity. The
following terms are used: n=the number of sample units to be analyzed; c=the
maximum number of sample units allowable with marginal but acceptable results
(i.e., between m and M); m=concentration separating good quality or safety from
marginally acceptable quality; M =concentration separating marginally acceptable
quality from unacceptable quality or safety.

The ICMSF proposes the following sampling plan for generic E. coli: (a) risk
is reduced (n=5, c=3), (b) no change in risk (n=35, c=2), and may increase risk
(n=5, c=1). Several counting methods for generic E. coli (Feng et al. 2013) and
different microbiological criteria according to food products are used. For exam-
ple, the E. coli test results for a chicken slaughter establishment will be accept-
able if they are not above 100 cfu/mL, marginal if above 100 cfu/mL but not
above 1000 cfu/mL, and unacceptable if above 1000 cfu/mL (FSIS 2014). The
European Commission (EC) Regulation No 2073/2005 on microbiological
criteria for food products establishes the criteria for E. coli in several foodstuffs,
namely, minced meat (n=5, c=2, m=50 cfu/g, M =500 cfu/g) and meat prepara-
tions (n=5, c=2, m=500 cfu/g, M=5000 cfu/g). E. coli O157:H7 is the DEC
most often implicated in illnesses worldwide (Majowicz et al. 2014); since the
infectious dose estimated for this serotype is 10—100 cells (Feng et al. 2015), the
ICMSF considered O157:H7 as a severe hazard for consumers, proposing the
following sampling plan according to food handling and consumption condi-
tions: (a) reduced risk (n=15, ¢=0), (b) no change in risk (=30, c=0), and may
increase risk (n=60, c=0) (ICMSF 2011).

Microbiological criteria must be updated constantly considering the emergence
of pathogens that affect the health of consumers. For example, the first E. coli
O157:H7 outbreak in 1993 in the US was associated with undercooked hamburgers
from a fast food chain; it prompted the Food Safety and Inspection Service (FSIS
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1996) to declare this microorganism as an adulterant in ground beef and initiated
a screening program at raw ground meat processing plant level and at retail outlets.
In order to lower the incidence of E. coli O157:H7 disease, the FSIS increased the
amount of ground beef samples analyzed from 25 to 325 g (n=5, ¢=0), making the
laboratory methodology more stringent, and introduced a more sensitive laboratory
test for recovery of E. coli O157:H7 based on immunomagnetic separation. The
detection of this bacterium improved and a low amount of E. coli O157:H7 could be
isolated. The number of recalls dropped and remained controlled until 2002. Then,
HACCEP plans and other mitigation strategies taken by FSIS to reduce the preva-
lence of E. coli O157:H7 were reassessed, such as sanitary procedures of dressing
and interventions with antimicrobials (USDA 2013). Presently, the FSIS uses the
most rigorous sampling plan for raw ground beef and trimmings (n =60, c=0) (FSIS
2014). In addition, the FDA performs E. coli O157:H7 search and monitoring in
different food matrices in the US (http://www.fda.gov/Food). Due to food trade
requirements, particularly meat, many countries of America, such as Argentina,
Brazil, Canada, Chile, Mexico, Colombia, Costa Rica, Nicaragua, and Uruguay also
perform those procedures (USDA 2016). These countries have the analytical capac-
ity to detect, isolate, and characterize E. coli O157:H7. In Argentina, the Argentine
Food Code (AFC) not only complies with international trade requirements, but also
contains several microbiological criteria that include the absence of E. coli
O157:H7 in several food products (http://www.anmat.gov.ar/alimentos/normativas_
alimentos_caa.asp). The microbiological methodologies recommended for the
detection and isolation of E. coli O157:H7 in the AFC are USDA MLG 5.09, BAM-
FDA 2011, and ISO 16654:2001.

Due to the increase of cases and outbreaks associated with the consumption of
food products contaminated with STEC non-O157, food safety agencies focus
their efforts in the search of strains most frequently identified in clinical infections
from food. At present, several official protocols are used to find STEC in meat
products, including only some serogroups, such as 026, 045, 0103, 0104, O111,
0121, O145, and O157 (USDA MLG 5B.05:2014, BAM-FDA 2011, ISO/TS
13136:2012). Consequently, commercial and noncommercial RT-PCR tests are
based on the detection of stx and eae genes and the STEC serogroups (Auvray et al.
2009; Brusa et al. 2015).

The USDA developed validated protocols for the detection, isolation, and
characterization of STEC 026, 045, 0103, O111, O121, and O145 from ground
beef and trimmings (USDA MLG 5B.05). In addition, the FDA proposed a standard
for DEC detection and isolation from foods, which is the only one together with
EHEC that considers ETEC, EPEC, and EIEC strains. The Bacteriological
Analytical Manual describes a methodology for O157:H7 isolation and identifica-
tion, and a different one for the rest of DEC, including STEC non-O157 strains
(BAM-FDA 2011). In the past, the FDA regulatory position focused only on
O157:H7; however, the presence of any pathogenic STEC in products regulated by
the agency is of concern, so it is essential to isolate, do additional testing and dis-
cern EHEC from STEC strains that have not been implicated in illnesses and may
not be pathogenic.


http://www.fda.gov/Food
http://www.anmat.gov.ar/alimentos/normativas_alimentos_caa.asp
http://www.anmat.gov.ar/alimentos/normativas_alimentos_caa.asp
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The same as with E. coli O157:H7, sanitary control agencies of the countries
that sell trimming and/or raw ground beef to the USA and other destinations, offi-
cially implemented the analysis of STEC non-O157 according to the country of
destination. Many countries of America have the analytical capacity to detect, iso-
late, and characterize STEC non-O157. In Argentina, the National Commission on
Foods recently approved new microbiological criteria in the AFC for food products
consumed in Argentina, specifying the absence of STEC non-O157 as a target for
the prevention of prevalent serogroups in the country. These microbiological crite-
ria were established for raw ground beef, RTE food, sausages, and minimally pro-
cessed fruits and vegetables. The serogroups included in the proposed AFC
modification are 0145, 0121, 026, O111, and 0103, whereas the microbiological
methodologies recommended in AFC are USDA MLG 5B.05, BAM-FDA 2011,
and ISO/TS 13136: 2012.

All official methodologies to find E. coli O157:H7 and STEC non-O157 in food
products contain the following general steps: (1) enrichment in selective broth, (2)
screening, (3) immunomagnetic separation (IMS), (4) isolation in selective and dif-
ferential agar, (5) confirmation by biochemical and serological tests, and (6) identi-
fication of virulence factors. A summary with all these official methodologies is
presented in Table 8.2.

During food processing, the technological processes applied, such as freezing,
can cause injury and stress in bacterial cells. The enrichment step is necessary to
stimulate the growth of potentially stressed STEC cells by increasing their number,
and further dilute the effects of inhibitors and competitive background bacteria that
may be present in the sample (Wang et al. 2013). The selective agents and inhibitors
must be in adequate quantities to curb the proliferation of competitive background
bacteria, allowing the growth of stressed STEC cells. In addition, STEC heteroge-
neity determines that selective enrichment broths for some serogroups can inhibit
the development of others (Feng et al. 2015). A single genetic marker that can sepa-
rate pathogenic and nonpathogenic E. coli strains has not yet been identified.
However, most STEC strains frequently associated with severe disease in humans
correspond to specific somatic antigens (O-Ag) and possess stx and eae genes.
These genotypic virulence characteristics have been used to develop screening
methods based on molecular detection strategies (Andreoletti et al. 2013). Negative
samples by the screening test can be reported as negative. Updated information
about the virulence profile of strains isolated from cases and outbreaks is necessary
to identify other virulence markers that should be searched for in food through the
screening test. Although many unofficial PCR assays have been developed, refer-
ence methods are subject to extensive validation processes to ensure their results.
Rapid STEC screening and isolation methods in food samples have been developed
as a result of the public health impact of some STEC serogroups and the available
standards for their search in food products, namely, immunoassa