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Introduction

The current book follows the very successful and popular course C1511 that took
place at the International Center for Mechanical Sciences (CISM), Udine (Italy)
during 12–16 October 2015.

Although many fields in medicine have always needed accurate measurements
of local tissue properties, the need for training on hybrid experimental—compu-
tational methods for soft tissues appeared clearly after the successful Euromech
colloquium that took place at Saint-Etienne (France) in May 2012. Other meetings
about this topic were further organized in different international conferences,
including a one-day symposium during the World Congress of Biomechanics at
Boston in 2014. Several special issues were also published by important journals
(Journal of the Mechanical Behaviour of Biomedical Materials, Computer Methods
in Biomechanics and Biomedical Engineering journal, Strain) on related topics.

All these series of events, and especially the popular CISM C1511 course,
highlight the increasing number of researchers involved in characterizing soft tis-
sues biomechanics and this has been the main motivation for writing this textbook.

Indeed, it has become a common practice to combine video based full-field
displacement measurements experienced by tissue samples in vitro, with custom
inverse methods to infer (using nonlinear regression) the best-fit material parame-
ters and the rupture stresses and strains. Similar approaches also exist for charac-
terizing the material parameters of soft tissues in vivo, where advanced medical
imaging can provide precise measurements of tissue deformation under different
modes of action, and inverse methodologies are used to derive material properties
from those data.

Nowadays, these approaches offer important possibilities for fundamental
mechanobiology which aims at gaining better insight in the growth, remodelling
and ageing effects in biological tissues. It is well known that biological soft tissues
appear to develop, grow, remodel, and adapt so as to maintain particular mechanical
metrics (e.g. stress) near target values. To accomplish this, tissues often develop
regionally varying stiffness, strength and anisotropy. Important challenges in
soft tissue mechanics are now to develop and implement hybrid experimental–
computational method to quantify regional variations in properties in situ. For this,
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some kind of inverse approach is needed, where an experiment has to be simulated
and the material parameters are adjusted until the model matches the experiment.

Several important questions are raised by inverse approaches in soft tissue
biomechanics:

1. Experimental measurements on biological tissues present many practical and
theoretical difficulties. Experimental and numerical errors also increase the
uncertainty, as do inadequate constitutive models.

2. An inverse problem requires a computational model that can be solved
repeatedly with different material parameters. This requires a model that can be
solved quickly and reliably; these are not attributes one usually associates with
computational models of biological tissues.

3. Biological tissue mechanical behaviour exhibits special characteristics that may
affect the mechanical response and disturb material identification, such as vis-
coelasticity, multi-scale properties, variability of properties and remodelling.

4. Once the necessary experimental data and computational models are in place, it
is essential to implement an appropriate optimisation strategy to adjust the
material parameters to give the best match with the experimental results, and to
consider issues of uniqueness of the identified parameters. Where only a single
parameter is optimised, for example the stiffness of the material, it is relatively
easy to ensure that a global optimum has been found, but for complex models
with many parameters there are often many different parameter sets that will
produce equally good results.

5. The question of uniqueness can be tackled by increasing the quantity of
experimental data. To this purpose, tracking the full-field deformation of tissues
using optical measurements or medical imaging techniques becomes quite
commonplace but these novel measurement approaches have only been recently
applied to material identification of biological tissues and they still have to be
well calibrated and validated for them.

6. It has also been identified that in certain situations useful patient-specific results
can be obtained without precise knowledge of patient-specific properties of
tissues. This situation arises when computational biomechanical models can be
loaded kinematically or when structures under consideration are approximately
statically determinate. Problems that meet these requirements frequently arise in
image-guided surgery and modelling and analysis of thin-walled biological
organs.

The current textbook tentatively provides some background to address these
important questions.

In Chap. 1, the basics of tissue biology are presented, which permits under-
standing where mechanical properties of soft tissues come from. The link between
the microstructure and the macroscale properties of soft tissues are detailed and
illustrated on several types of tissues: tendons, heart valves. Finally, the different
experimental techniques available for characterizing these material properties are
presented.
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In Chap. 2, constitutive models for soft tissues biomechanics are introduced, first
by presenting the basics of continuum mechanics and hyperelasticity. After sum-
marizing other types of constitutive equations for soft tissues, we present recent
developments of experimental biomechanics and inverse methods aimed at quan-
tifying constitutive parameters of soft tissues. A focus is given to in vitro charac-
terization of hyperelastic parameters based on full-field data that can be collected
with digital image correlation (DIC) systems during the experimental tests.

In Chap. 3, we present in more details the DIC technique and its application to
the measurement of strain fields in soft tissues. Then the basics about the
finite-element (FE) method and the specificities of its use on soft tissues are pre-
sented. Finally, the combination of FE analyses and DIC measurements through
inverse problems to derive constitutive material properties is discussed in terms of
efficiency and uncertainty quantification.

In Chap. 4, we review vessel wall histology and summarize relevant continuum
mechanical concepts to study mechanics-induced tissue damage. Indeed, damage
and failure in soft tissues are important questions for which the use of hybrid
experimental–computational methods is still in its infancy. Specifically, modelling
vascular failure by a fracture process zone is discussed, such that initialization and
coalescence of micro-defects is mechanically represented by a phenomenological
cohesive traction separation law. Failure of ventricular tissue due to deep pene-
tration illustrates the applicability of the approach. Besides appropriate continuum
mechanical approaches, it is also shown that laboratory experiments that are sen-
sitive to constitutive model parameters and ensure controlled failure propagation are
crucial for a robust parameter identification of failure models.

In Chap. 5, we describe the main features of standard tests for a mechanical
characterisation of biological materials, like uniaxial, biaxial and shear tests. After
that, the inverse, mixed experimental/numerical methods are introduced as a tool to
create more freedom in the design of experiments and to make the transition from
ex vivo testing to in vivo testing possible. A short introduction to the algorithms
that can be used to minimise the difference between the experimental results and the
numerical results is discussed, followed by two practical examples related to skin.
The chapter finishes with a comparison between the advantages and disadvantages
of in vivo and ex vivo testing.

In Chap. 6, we show how patient-specific FE models of human soft tissues and
organs can be made compatible with the clinical constraints. We discuss more
specifically the question of calibrating the material properties in this context, with
choices that should be done between calibrations based on ex vivo or in vivo tissue
loadings. Computer-assisted maxillofacial surgery is used as an example.
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Chapter 1
Structural Building Blocks of Soft Tissues:
Tendons and Heart Valves

Himadri S. Gupta and Hazel R. C. Screen

Abstract Modelling the mechanical behaviour of soft tissues like tendon, ligament,
skin and cartilage requires a knowledge of the structural and mechanical properties
of the constitutive elements. These tissues have a hierarchical architecture from
the molecular to the macroscopic scale, and are composites of different molecular
building blocks. Here we first review the structure of the proteins and polysaccharides
comprising such tissues. We then consider the structure and mechanical properties
of two prototypical soft tissues: tendons and heart valves. An overview of their
structure is followed by a description of the known mechanical behaviour of these
tissues. Consideration is given to the role of different constituent components in
mechanical response, structural anisotropy and testing methods which can probe
mechanical deformation at multiple levels.

1.1 Structural Components of Soft Tissues

Connective soft tissues like tendon, cartilage, skin, ligament and arteries are required
to resist a range of mechanical loads as part of their normal physiological function.
These mechanical requirements exhibit considerable variation: for instance, tendon
is built to resist uniaxial loading, skin to provide a structural barrier against the
environment and against multidirectional loads, while cartilage provides frictionless
sliding and compressive resistance at the ends of bones [1]. These properties are
critically enabled by the structure and architecture of the extracellular matrix (ECM)
which is secreted by cells such as tenocytes and chondrocytes.

By themselves, the mechanical properties of cells (∼kPa) are far too low to enable
effective resistance to the typical loads of a few MPa that are experienced in vivo.
Cells must therefore secrete a range of biological macromolecules—both proteins and
polysaccharides—which self-assemble into fibrils, lamellae and fibre bundles to form
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the ECM. The structural diversity of the motifs formed [2] are the key which enable
such tissues—made out of mechanically relatively unimpressive components—to
achieve impressive adaptation and optimization to their in vivo loading regimes [3].

In this chapter, we first review the structure and properties of common molec-
ular building blocks of soft tissues. We then identify some common structural and
mechanical motifs that appear repeatedly, with different constituents, across bio-
logical materials. Finally, we describe the specific properties of two prototypical
soft tissues: tendons and heart valves, and relate how structure enables mechanical
behaviour, to the extent currently known.

1.1.1 Hierarchical Structure of Proteins

The most common proteins in soft tissues, by decreasing frequency of occurence,
are collagen, elastin and fibrillin. The proportions of these components can vary
considerably between the tissues of origin: skin, tendon, arteries, lungs and heart
valves. The primary structure of collagen-like and elastin-like proteins are distinct.
While collagens are characterized by a predominance of the repeating amino acid
triplet glycine-X-Y (where X and Y are either proline or hydroxyproline) elastin
contains 30 % glycine with the majority of other amino acids being valine, alanine or
proline [4, 5]. The secondary structure of collagens is a triple helix, while elastin-like
proteins consist of alpha-helices and beta-turns. In both, the covalent cross-linking
is through lysine residues.

Collagen: Collagens consist of triplets of polypeptide chains (known as α-chains),
with each chain characterized, at the level of primary structure, by a repeating of the
triplet (Gly-X-Y), where Gly stands for glycine and X- and Y- are most commonly
either proline or hydroxyproline. This characteristic repeat, together with the small
size of the glycine residue, results the chains forming a tight right-handed triple
helical conformation, with the glycine residue on the interior of the helix [6]. Over 29
different types of collagens are known, which can be divided (from a bioengineering
viewpoint) into fibril-forming and non-fibrillar collagens. The fibrillar collagens—
mainly Type I–III as well as smaller proportions of type V and IX—are structurally
the most significant contributors to the mechanics of soft tissues acting as stiff fibrous
units within tissues. Collagens may be classified as homotrimeric (where the three
α-chains are identical, as in Type II and III) or heterotrimeric (where not all the
α-chains are identical, as in Type I). These are denoted via the shorthand notation
[α1(I )]2α2(I ) (for Type I) and [α1(I I )]3 (for Type II). These fibrillar collagens
comprise a triple helical central region, typically around 1000 residues long (or 330–
340 (Gly-X-Y) triplets), with non-helical ends at the C- and N-termini. Collagen I
is the most commonly found variant in tendon and heart valves, the focus of this
chapter.
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At the nanometre length scale the individual tropocollagen molecules assemble
into insoluble fibrils, which are (for Type I collagen) typically in the 50–200 nm
diameter range. Fibril-associated collagens (FACITs) are found typically on the sur-
face of the fibrils. Collagen molecules typically aggregate in a highly regular manner
both axially (along the length of the tropocollagen helix) as well as laterally (side-
by-side packing of the helices). This results in a characteristic banding pattern with
a D = 65–67 nm pattern visible in electron or scanning probe microscopy as well as
in small-angle X-ray diffraction, which arises from the repeated staggered arrange-
ment of molecules. Adjacent tropocollagen molecules are laterally shifted by D, to
maximize contact between hydrophobic regions. Since the length of a tropocollagen
molecule is 300 nm, which is not an integral multiple of D, the lateral stagger leads
to regions of high and low electron density inside the array of tropocollagen mole-
cules comprising the fibril. The D-period is sensitive to hydration, with dry collagen
having a D-period of 65 nm and wet collagen 67 nm. There are about 234 amino
acids per D-period repeat [7]. In vertebrates, collagen fibrils are synthesized with
relatively short lengths (1–3µm) initially, and form much longer fibrils of unknown
length by the process of axial fusion. In certain tissues like skin, branched networks
of fibrils are also formed [8].

The fibril is often classed as the fundamental building block of tissues, and in
different tissue types, it further aggregates into fibres or bundles. At the scale above
individual fibrils, aggregation into fibre bundles, lamellae or fibres occurs depending
largely on the tissue type. In tendons, characteristic fibres of diameter of the order
of tens of microns are present [9], while in mineralized collagenous tissues lamellae
of fibrils in a plywood arrangement are characteristic [10]. Considerable inter-tissue
variation is present.

Elastin: Elastin is a stable, insoluble and rubbery protein [2, 4] which comprises
the bulk (>90 %) of elastic fibres in tissues like skin, ligament, arteries and lung.
The insolubility of elastin arises from extensive lysine cross-linking between adja-
cent elastin molecules. The mechanics of elastin networks is driven primarily by
entropic elasticity [11], as they are far more rubber-like in conformation compared
to collagen fibrils. Analogues of elastin are found in a range of phyla: lamprey car-
tilage and mussels have proteins which have similarities to elastin [4]. Tropoelastin
is the soluble precursor of elastin and contains two types of domains: hydrophobic
domains with nonpolar amino acids (glycine, valine, proline and alanine) [4] and
hydrophilic domains contain lysine and alanine. Hydrophilic domains are involved
in cross-linking of adjacent elastin molecules. Similar to the process of fibril forma-
tion, microfibrils of elastin are formed in the extracellular compartments adjacent to
the secreting cells and are rapidly cross-linked. Fibre diameters show some variabil-
ity: intervertebral disc and cartilage have thin fibres <1µm, while in the ligamentum
nuchae fibres of ∼1µm are comprised of subfibrils of 200 nm diameter [11]. These
fibres are arranged into larger scale lamellae, as seen in aortic media. Figure 1.1 from
[12] shows the differences in structure between the elastic fibrils in arteries and in
ligament.
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Fig. 1.1 Images of elastin fibres in aorta a and ligament b, taken with permission from [12]. The
top row a–b shows light microscopic images of stained (Verhoeff-Van Gieson) tissue; elastic fibres
are black while collagenous tissue is pink. Middle row c–d report transmission electron microscopy
images from the same tissues and the lowest row e–f shows scanning electron microscopy (SEM)
images. A thinner fibre diameter, and less ordered fibrous arrangement, is evident in the aorta

1.1.2 Hierarchical Structure of Polysaccharides

Polysaccharides consist of aldoses and ketoses, and are characterized by the general
formulae Cn(H2O)n . They include mono-, oligo- and polysaccharides. Monosaccha-
rides are the basic building blocks, an example of which is glucose (C6(H2O)6). They
can form disaccharides (with two monosaccharides) or oligosaccharides (between
three and ten), which are monosaccharides combined via a glycosidic linkage.
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Monosaccharide chains with more than ten monosaccharide units are denoted as
polysaccharides, and include widespread materials like starch, chitin or cellulose.

Polysaccharides can form fibres (as in chitin) but in soft tissues are more com-
monly found in gel-like phases coexisting with the stiffer protein-based fibrous net-
works of collagen and elastin. These will now be briefly described.

Chitin: Like proteins, polysaccharides can also display a hierarchical structure:
the chitin within the cuticle in arthropod skeletons, for instance, is comprised of α-
chitin fibrils in a protein matrix, aggregated into fibres and lamellae [2, 13]. Indeed,
at least five levels of hierarchy have been identified in chitinous tissues [14] which
serves as an example of a structural biomaterial with polysaccharide (chitin) fibres as a
principal building block. At the macroscopic scale, there are three layers to the cuticle:
a thin outer epicuticle, a calcified exocuticle, and a less dense endocuticle, which
have thicknesses of the order of a few hundred microns. The exo- and endocuticle
are comprised of lamellae of chitin fibres, which undergo a 180◦ rotation around
the axis perpendicular to the cuticle surface within each lamella. At this scale, a
second phase of fibres running perpendicular to the lamellae have been identified.
These fibres are found in pore canals which form a honeycomb-like structure together
with the lamellae [2, 13]. The fibres have diameters between 50 and 250 nm, and
are in turn comprised of 2–5 nm diameter chitin fibrils together with a mixture of
crystalline and amorphous calcium carbonate and an amorphous protein phase. The
fibrils comprise of several chitin molecules aggregated in an antiparallel manner and
wrapped by protein. The multiple hierarchical levels are shown in Fig. 1.2.

Glycosaminoglycans and proteoglycans: Glycosaminoglycans (GAGs) like
hyaluronic acid are large, unbranched polysaccharides which form a gel-like phase
coexisting with the fibrous proteins in soft tissues like tendon, cartilage and liga-
ment. They are typically highly hydrophilic with a negative charge density, and as
a result attract cations like Ca+2 or Na+. Hyaluronic acid (often abbreviated HA) is
a polysaccharide with molecular weight between 105 and 107 Daltons, containing
about 104 disaccharides. The building blocks of HA are N-acetyl-D-glucosamine
and D-glucoronic acid.

GAGs are most typically found in the form of proteoglycans, which consist of
a core protein chain with GAG chains branching off from the core. Proteoglycans
play an especially important mechanical role in resisting compression and shear in
tissues such as cartilage and the annulus fibrosus of the intervertebral disc, due to
their negative fixed charge density and consequent swelling pressure. In addition,
their hydrophilic nature increases the water content of the tissue, thus also increasing
osmotic pressure. Examples of PGs are aggrecan and decorin. Aggrecan is typically
about 400 nm in length, with chondroitin sulphate GAG chains branching off from
the core protein with a length of 40 nm and globular domains at the end (CITE).
It has a molecular weight of ∼225–250 kDa. Decorin is a much smaller PG, and
a member of the SLRP family. It has one GAG chain (either dermatan sulphate or
chondroitin sulphate).
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Fig. 1.2 Chitin fibre networks from crab cuticle and synthetic chitinous materials, image taken with
permission from [15]. Image a reports polarized light microscopic imaging (scale bar is 20µm). b
The cholesteric liquid crystal arrangement within a single lamellae, seen from electron microscopic
imaging of sections of cuticle, where fibres at different angles to the sectioning plane appear as
oblique or perpendicular to the plane (scale bar is 1µm). c Shows an image of (undecalcified)
cuticle, where a calcium carbonate phase is present along with the fibrils (scale bar is 0.2µm).
d An example of synthetic colloidal suspensions of colloidal chitin, imaged with polarized light
microscopy, with the banding characteristic of the lamellar structure shown (scale bar is 100µm)

1.1.3 Design Principles of Biological Materials

Structural organization of the fibre–matrix in different patterns The relatively
restricted set of biopolymers described in Sects. 1.1.1 and 1.1.2 of this chapter are
used by cells in soft tissues to build ECM with a wide range of mechanical properties
and structural motifs [2]: from the compressive and sliding resistance of cartilage,
to the fatigue resistance of tendon and heart valves or (considering biomineralized
tissues) the toughness of bone and related calcified tissues. Biologists may concern
themselves with questions relating to rates of cell secretion of ECM matrix, rates of
removal and turnover and whether these can be manipulated in synthetic or in vitro
conditions to build tissues in a biomimetic manner (the domain of tissue engineering).
However, the bioengineer may have equal if not greater interest in understanding how
these building blocks self-assemble to optimize certain mechanical properties.
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Broadly speaking, the types of ECM molecules described above are usually found
in fibre composite arrangements, implying fibrouse and gel/matrix phases, usually in
close spatial association (at multiple levels). Fibres are used to provide high stiffness
and strength, whilst matrix phases can both transfer forces between fibrils as well
as provide stability to the fibres and bind or stabilize the water phase. We will now
consider, from a structural perspective, fibre composite designs as found in several
soft tissues, and discuss which particular mechanical property will be optimized for
a given arrangement.

In Fig. 1.3a, the same fibre–matrix arrangement is shown in three different ori-
entations with respect to the loading direction. In the first, the fibres are parallel to
the loading direction, and as a result the material is expected to be stiff and exhibit
high elastic recovery. Conversely, if the load is applied perpendicular to the fibre
long axis, the soft and viscous matrix phase (which corresponds to the PG/GAG
rich interfibrillar material) will dominate the strain response, leading to less elastic
recovery and a more compliant material. Finally, when the fibres are at an angle to
the loading direction, the fibres will bear (approximately) the projection of the force
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Fig. 1.3 a Fibres (dark blue) inside a ductile matrix (light blue) mimicking the fibre composite
structure found in numerous soft tissues. If the loading direction is as indicated by the arrow, the
fibres will bear the tensile load in the left image (Voigt loading as in [16]), while very little load in the
centre image (Reuss loading as in [16]). In the middle image, depending on the degree of viscosity
and stiffness of the matrix, fibres will reorient toward the loading direction. b Left Finite length of
the fibres implies interfibrillar shear transfer through the matrix. Middle By having multiple fibre
orientations (as in skin or arteries), crack propagation can be hindered, as there will always be a
proportion of fibres which need to be fractured (with high breaking stress) for the crack to propagate.
Right A schematic of the fibre geometry as found in arteries, where resistance to circumferential
loading is most important. Cracks will be diverted from the initial direction to run in the “weak”
direction between fibres rather than across them
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onto the fibre axis, but may also be induced to rotate in the matrix toward the loading
direction. When the length of fibres is reduced (Fig. 1.3b1) the contribution of the
matrix to material mechanics is increased, as in this case the force is not borne end
to end (in the tissue) by the fibre, but is transferred (via shearing mechanisms [16])
through the viscous matrix. By controlling the degree of overlap of the fibres, as
well as the interfibrillar matrix spacing, the effectiveness of the shear transfer can be
controlled.

Whilst aligned fibres are beneficial in some tissues such as tendon, in many tissues,
loading is multidirectional, lending itself to fibre arrangements, such as Fig. 1.3b2.
Matted or plywood-like structures will achieve stiffness in multiple directions (as
there are always a proportion of fibres along the loading direction), and can limit the
extent of fibre reorientation. However, such an arrangement provides the additional
benefit that cracks cannot propagate easily through the material (incidentally, this is
true in both loading directions), because such a propagation will require reaching the
high tensile strength of an individual fibre, thus making the material tough.

These idealized structures are surprisingly close to the fibre–matrix architectures
found in soft tissues. Figure 1.3b1, for example, is a close match (at both the fibre
and fibril level [9]) for the structure of tendon. Similarly, Fig. 1.3b2 can be found in
both skin and arteries. In skin, the planar structure of the tissue and the requirements
for resistance to multidirectional loading mean that an isotropic fibre distribution
maximizes both strength and toughness. Fibre arrangement is a tradeoff—the tough-
ness brought about by multidirectional fibres against the need for tensile strength in
a certain loading direction—and hence in arteries, where high strength is required
(Fig. 1.3b3) an orientation of fibres in the circumferential direction provides increased
strength, but at the risk of damage propagation in that direction.

Fibre composite theoryThe shear transfer between fibres and matrix is a problem
that materials engineers have considered since at least the 1950s, initially in relation
to the paper-making industry through the work of Cox [16, 17]. The simplest model
which is presented in textbooks is the “shear-lag” model [16, 17]. This model attempts
to describe how effective a fibre is in increasing the stiffness of a (compliant) matrix
in which it is placed. It gives quantitative estimates of the minimum length needed
for the stress on the fibre to reach its maximum value (limited by the tensile strength
of the fibre); fibres which are shorter than this are clearly not as effective as they
could be in maximizing the stiffness of the ECM composite they are part of. This
concept is captured by the idea of the critical fibre length, which is the minimum
length necessary for all the force applied through the matrix to be transferred to the
fibre, and is given by lc = σr/τ where r is the radius of the fibre, σ is the maximum
tensile stress, and τ is the shear in the matrix.

In the shear-lag model, the ends of each fibre are free of normal stress, which
builds up progressively toward the centre of the fibre (Fig. 1.4b, c). As a result, the
contribution of the fibres to the maximum force is reduced. While in the case of
infinitely long fibres with a volume fraction V f , the elastic modulus is given by the
serial or Voigt expression

Ec = E f V f + Em(1 − V f ) (1.1)
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Fig. 1.4 Shear-lag model of fibre load transfer: Top row shows that when the fibre length no
longer extends across the entire specimen, some degree of interfibrillar load transfer through the
interfibrillar matrix is necessary. Middle Schematic of a single fibre (dark blue) in a matrix (light
blue), showing the shear τ acting across the length x of the fibre. In response to a far-field load
(arrows on the left and right of the schematic), a progressive build up of axial fibre stress (blue
line) occurs, with the ends of the fibre being free from axial stress. The shear stress (red line) is
maximum at the ends and (by symmetry) is zero at the centre of the fibre. If the fibre is long enough,
the maximum axial strength of the fibre can be reached in the middle region of the fibre

where f is for fibre, m is for matrix, and c is for composite.
In a composite with fibres of finite length a correction factor V f (z) < V f is nec-

essary [1]. Specifically, the modulus of the composite is

Ec = E f V f (z) + Em(1 − V f ) (1.2)

where z is a correction factor dependent on the shear modulus of the matrix G,
the elastic modulus E and the radius and length of the fibre. The correction factor
accounts for the imperfect bonding and progressive shear transfer across the length
of the fibre.
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Hierarchical organization and toughness As the soft tissues discussed here can
be considered fibre composites at different hierarchical levels, it is worth considering
how the fibre–matrix interaction changes across the hierarchy and the effect this may
have on toughness. In general, for soft tissues, it appears that at the lowest length
scale (fibrils in tendon, for example) the bonds between fibril and matrix is quite
strong, leading to homogeneous strain fields in low stress deformation. However,
at higher stress levels, when cracks or damage may appear in the material, weak
interfaces at higher length scales (such as between the fibres or fascicles in tendon)
play an important role in making the tissue notch-insensitive and as a result tough.

Another strategy to increase toughness [1] is the use of holes at different length
scales. Such an approach is more common in tissues such as wood and plant cells or
in bone, and will only be briefly discussed here. The idea is that holes can act to blunt
or deflect oncoming cracks, and create extensive tortuous crack paths. The reduction
of stress-concentrations caused by crack blunting will prevent further cracks from
occurring and is known as the Cook-Gordon crack stopping mechanism [1]. Natu-
rally, too many holes would weaken the material, so a balance has to be maintained.
It is worth noting that such “holes” (like the pore canals in cuticle or the vessels in
plant xylem) usually have a transport function (of water and nutrients) of their own.

Prestress and pre-strain: While the protein (and polysaccharide)-based fibres
described above are excellent in resisting tension, the presence of water in most
soft tissues is utilized to increase resistance to compression. First, the GAG/PG-
rich gel described in previous sections is hydrophilic and has a high negative fixed
charge density, as a result of which the water is stabilized within a gel-like phase
interpenetrated by a web of fibres in tension. The tissues may be considered as
fibre-linked containers, where the collagen (and other) fibrils restrain the swelling
pressure of the gel. As a result, the fibrils are in constant tension or a state of pre-
strain. The role of prestress and pre-strain has been well-established for arteries [18],
and is a critical component of fibril reinforced models for cartilage [19]. Alterations
in swelling pressure in the ECM due to reduction in fixed charge density are also
implicated in the reduction of the load bearing capacity of the nucleus pulposus of
the intervertebral disc [1].

1.2 Structure and Function of Tendons

1.2.1 Function of Tendons

Tendons are designed to transmit forces between muscles and bone [20]. Long ten-
dons remove the need to have muscles placed close to the joints. As a result of these
requirements, they need to be relatively inextensible (failure strains of around 10–
20 %), as well as absorb impact forces encountered during gait. Some tendons are
additionally elastic to enable storage of energy during locomotory gait. Ligaments,
in contrast to tendon, connect two bones, rather than bone to muscle, preventing large
torsion or twisting between joints.
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Fig. 1.5 Pie chart showing
composition of tendon with
approximate percentages of
different molecular
constituents

The main components of tendon and ligament are shown in Fig. 1.5. Collagen
(at 70–90 %) is by far the most plentiful constituent, while the next most abundant
components (proteoglycans and other glycoproteins) account for less than 10 % of the
tissue. A small proportion of elastin is also present. The range of glycoproteins present
can be quite diverse, including decorin, aggrecan, versican, fibromodulin, lumican,
tenascin-C [21], COMP (Cartilage Oligomeric Matrix Protein) and lubricin [22, 23].
However, decorin usually dominates in most tendons. Cells account for the remaining
10–15 %, highlighting that tendon like many connective tissues is a largely acellular
tissue [20, 24, 25].

The structure of tendon is in many ways a prototype of the hierarchical struc-
tures of other more complex soft tissues like arteries and heart valves. A schematic
of the structure is shown in Fig. 1.6, adapted from [26]. It is observed that tendon
can be considered an aligned fibre composite at multiple levels, and that a charac-
teristic motif of “stiff-fibres/ductile matrix” is observed at multiple levels from the

Fig. 1.6 Hierarchical architecture of tendon, adapted from [34]. Collagen aggregates, from the
molecular level of the tropocollagen molecule, up through the nanometre scale fibril, microscale
fibres to the mesoscale fascicle and entire tendon tissue
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nanoscale to macroscale. Interspersed inside the ECM composite are the tenocytes
(or ligamentocytes) [26, 27].

At the smallest scale, we have the tropocollagen molecules with diameter 1.5 and
300 nm length [28]. These are tightly cross-linked into microfibrils [29]; diameter
(∼3–4 nm) and fibrils (diameters between 20 and 200 nm depending on species,
maturity and tissue location), with increased collagen fibril area also a predictor
for age in tendons [30]. In between the fibrils is a proteoglycan-rich matrix, with
decorin among the PGs which bind to adjacent fibrils [31]. This fibril/matrix motif
repeats itself at the next higher level of fibres (10–50µm diameter) and fascicles
(50–400µm) where tendon cells (tenocytes) are interspersed in rows between fibres
and fascicles along the tendon [9]. At the tissue level, fascicles (visible to the eye)
are surrounded by interfascicular matrix or endotendon, and bound together to make
tendon [26].

Certain features of the fibre–matrix arrangement occur at multiple length scales:
for instance, crimped structures are visible both at the fibrillar level and the fibre
level. It is noted that tendon is poorly vascularized, and the blood vessels that are
present are between fascicles. The matrix between fascicles, which is termed the
interfascicular matrix (IFM), contains loose connective tissue matrix, with a higher
amount of collagen type III, elastin and proteoglycans such as lubricin [32]. Whilst
a generic tissue structure and composition has been presented, ligaments and ten-
dons differ somewhat in composition. In general ligaments have somewhat lower
collagen content, greater fraction of elastin and have a more weave-like structure
[33]. However, it is notable that tendons vary widely in composition in order to adapt
their mechanical behaviour to meet their functional need, emphasizing the exquisite
capacity for our tissues to utilize their complex hierarchical arrangements to adapt to
mechanical needs. Certain features of the fibre–matrix arrangement occur at multiple
length scales: for instance, crimped structures are visible both at the fibrillar level and
the fibre level. It is noted that tendon is poorly vascularized, and the blood vessels that
are present are between fascicles. The IFM contains loose connective tissue matrix,
with a higher amount of collagen type III, elastin and proteoglycans such as lubricin
[32]. Whilst a generic tissue structure and composition has been presented, ligaments
and tendons differ somewhat in composition. In general, ligaments have somewhat
lower collagen content, greater fraction of elastin and have a more weave-like struc-
ture [33]. However, it is notable that tendons vary widely in composition in order
to adapt their mechanical behaviour to meet their functional need, emphasizing the
exquisite capacity for our tissues to utilize their complex hierarchical arrangements
to adapt to mechanical needs.

1.2.2 Specialized Regions of Tendon–Ligament

The osseotendinous junction is a mechanically crucial interface between tendon
and bone [35]. Owing to the very different mechanical properties of bone (∼20 GPa
Young’s modulus) and tendon (∼1–2 GPa), a functionally graded transition is needed
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between the two organs. It is clinically relevant as it is a potential weak point in
structure, and prone to injury. It is characterized by a linear increase in mineral con-
centration across the junction, a transition zone with type II collagen and a loss of
the predominant collagen orientation in tendon. Analogous structures include the
interface between muscle and tendon (where mechanical differences are less pro-
nounced), known as the myotendinous junction, characterized by an interdigitation
of muscle and collagen fibres.

1.2.3 Mechanical Properties of Tendon and Ligament

The mechanical properties of tendons and ligaments in tension (the most relevant
loading mode) can be considered in comparison with standard man-made materials
like metals or rubbers. Typical stress–strain curves for metals and rubbers are shown

Fig. 1.7 Comparison of the stress–strain curve of tendon, in tension, with that of metal (left) and
rubbers (right). In the lower graph, the three different strain regimes: toe, linear and yield are
indicated together with a brief description of the structural changes
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in Fig. 1.7a, with—in comparison—a typical stress–strain curve for tendon. It is
observed that the maximal deformation of tendons (∼10–20 %) is much larger than
the yield strain of metals (∼1 %) and much smaller than the ∼500 % failure strain
in rubbers. Characteristic features of the stress–strain curve in tendon are an initial
toe and heel region up to ∼4 %, a nearly linear increase of stress with strain from
∼4–12 % and a short yield and failure region thereafter. The tangent modulus in the
linear region is ∼1–2 GPa, much lower than ∼100 GPa range for metals, but larger
than the <1 GPa moduli in rubbers.

Considerable attention has been paid to understanding how the hierarchical struc-
ture described in the previous sections can lead to the aforementioned mechanical
behaviour, and a fairly complete understanding of at least the main mechanisms are
now known (reviewed in [36]). In the toe region, the tendon starts out in a macroscop-
ically crimped configuration (these crimps are visible under the light microscope).
The removal of these crimps plus alignment of collagen in loading axis occurs over
the toe region with nearly no increase in tissue stress. However, the initial nonlinear
increase of the stress just after the toe region (the heel region) involves smaller struc-
tural units in the hierarchy. Misof et al. [37] proposed the involvement of molecular
level vibrations, lateral to the force direction, by analyzing the changes in the X-ray
diffraction intensity arising from the lateral packing of the collagen molecules. In
their model, an lateral vibration in the gap regions of the tropocollagen molecules is
reduced in amplitude on deformation, explaining the alterations in X-ray scattering
intensity; this “rubber-like” contribution to the internal free energy thus influences
the stress–strain curve in the heel region.

In the linear region, the crimps (and smaller scale structural features) are straight-
ened and fully aligned with the loading direction so the fibres now are fully recruited
to bear the load [38]. In this region at the ultrastructural level, the consensus is that
some degree of inter- as well as intrafibrillar sliding, coupled with elongation of the
tropocollagen molecules, occurs [39, 40]. These mechanisms can be quantified by
analyzing peak shifts in X-ray diffraction patterns arising from meridional packing
of collagen molecules in the fibrils. The deformation remains regular, i.e. a similar
intra- and interfibrillar structural rearrangement occurs across the tissue over the fib-
rils. Recent data demonstrates that sliding also occurs between fibres and fascicles,
and the relative contributions of sliding through the different hierarchical levels of
the tissue can be modulated by altering the matrix composition and subsequently its
mechanical properties at different levels in the hierarchy. Finally, fibres pull apart
and fracture in the nonlinear and fracture region [34].

Given that tendon (and ligaments) are subjected to time-dependent loading over
most of their lifetime, it is of equal importance to understand the viscoelastic mechani-
cal behaviour. The simplest types of tests for understanding viscoelasticity are stress
relaxation (holding the tissue at a constant strain and monitoring the reduction in
stress) and creep (holding the tissue at constant load and measuring elongation).
Creep in tendon can be categorized into the initial rapid (primary) creep, followed
by a slower (secondary) creep and eventually by a very rapid tertiary creep which
leads to failure [41]. It is observed that creep behaviour changes with age; in partic-
ular, the duration of secondary creep and extent of sample elongation is much longer
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Fig. 1.8 a Cyclic loading of tendon leads to viscoelastic energy loss, measured by the hysteresis
(% of area between loading and unloading cycles). b The degree of hysteresis is lower in energy
storing versus positional tendons

in older tendons, likely due to an increase in intra- and interfibrillar cross-linking.
Another important parameter for viscoelastic behaviour is the energy loss during
cyclic loading (Fig. 1.8, left). The degree of hysteresis (area between the loading and
unloading curves) is a parameter characterizing the extent of energy loss. The degree
of hysteresis in cyclic tensile loading of tendon is dependent both on the age of the
tendon as well as the type of tendon. For example, energy storing tendons show a
smaller hysteresis than positional tendons (Fig. 1.8, right).

1.2.4 Hierarchical Analysis Techniques

The hierarchical structural elements (from fibrils at the nanoscale to fascicles at
the macroscale) affect the mechanics of tendon and related tissues in distinct ways.
Different experimental techniques—both mechanical as well as imaging-based, and
some combining the two—need therefore to be applied or developed to understand
the micro- and nanoscale mechanics. At the molecular and the nanoscale, methods to
probe mechanical deformation include X-ray diffraction (to measure helical pitch in
tropocollagen molecules) [43], Raman spectroscopy (to identify different functional
groups like amides in the protein and to observe stress-induced shifts) [44], small-
angle X-ray diffraction to measure the fibril D-period [39, 40, 42, 45, 46]. These
are generally employed to visualize sample strain response, whilst the tendon is
strained within an appropriately designed loading rig. Techniques like atomic force
microscopy and microelectromechanical-sensors (MEMS) have also been utilized
to deform individual collagen molecules and fibrils [47]. In addition, the use of
ab-initio molecular dynamics simulations for studying deformation of individual
collagen molecules as well as small aggregates of molecules (proto-fibrils) should
also be mentioned [48], with the proviso that the short timescales (of the order
of nanoseconds) in molecular dynamics necessarily make the mechanical testing
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timescales in such computational studies quite far from those used in most laboratory
tests as well as in in vivo testing.

These sub-micron scale mechanical test methods are complemented by high-
resolution imaging methods like electron microscopy in order to help correlate local
mechanics with tissue structure. Between the microscale and the macroscopic scale,
however, there are a lesser number of well-established methods for mechanical testing
linking structure to mechanics. Examples of techniques which have been applied
at this scale are confocal microscopy, digital light microscopy and photography,
usually in combination with mechanical testing methods. These are complemented
by standard biological imaging methods like histology and histochemistry combined
with light microscopy. At the macroscale, real-time mechanical testing methods
include image correlation techniques, photography and polarized light microscopy:
it is observed that there is some overlap of methods with the sub-mm scale mentioned
above, but the analysis is usually at a lower level of resolution and presents fewer
problems with interpretation.

We consider first the deformation at the macro- and microscale. Examples of use of
photography to image different stages of the tensile deformation of tendon are shown
in Fig. 1.9 from [9]. The change in the crimp structure (left) can be seen, as well as the
straightening of fibres in the linear region. The fractured, rough surface of the tendon
at rupture likewise indicates a sliding of fibres as they shear past one another as the
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Lower frames show video capture photos at progressively increasing strain levels. Data and figure
from [9]
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tendon fails. At one scale below this, confocal microscopy combined with in situ
testing of tendon samples can image the deformation of fibres and fascicles [9, 49]
within tendon as the samples are strained. By tracking cell displacement within the
tissue, or directly staining and visualizing collagen within samples, the fibre extension
and interfibre sliding can both be measured. It has been found that the fibre extension
is considerably less than interfibre sliding, indicating considerable shear between the
fibres [9]. Interestingly, some degree of hysteresis is observable at both the inter- and
intrafibre level [50]. We note that recently, a variant of notch-tensile testing used on
tendons to obtain the interfibrillar shear stresses has been developed. This is a novel
application of a macroscale test methodology to obtain fibrillar level mechanical
parameters [51], and confirms shear transfer between collagen units through the
tendon hierarchy.

At the fibrillar level, using small-angle X-ray diffraction (SAXD), the D-periodic
variation of the electron density along the axis of the fibril generates a set of Bragg
peaks along the orientation of the fibril. Use of high brilliance synchrotron radiation
enables rapid acquisition of SAXD frames, within a few seconds [39, 40, 42, 45,
46]. When a microtensile tester containing tissue in a fluid chamber is mounted in
a synchrotron SAXD beamline, concurrent application of mechanical test protocols
like uniaxial stretch to failure, stress relaxation or creep can lead to the simulta-
neous measurement of fibril strain with macroscopic stress and strain. Sasaki and
colleagues showed [40] that the majority of the changes in the X-ray diffraction
spectrum could be explained by elongation of tropocollagen molecules, rather than
intrafibrillar slippage of adjacent molecules or by increase of the gap (separation)
region between axially separated fibrils. However, both earlier [45] and later [39]
studies using similar methods have indicated that alterations in the gap/overlap ratio
(indicative of intrafibrillar sliding) is playing a role in tendon deformation, as seen
from changes in the relative intensities of different Bragg peaks in the SAXD spec-
trum. High strain rate deformation of tendon [52] found that intrafibrillar sliding and
damage preceded macroscopic failure, as well as identifying a maximum D-period
(for tendon collagen) of 68.4 nm below which all changes in fibrillar D-period were
reversible.

The viscoelastic nature of the extrafibrillar matrix was demonstrated by [53], who
showed that deformation in tendon could be modelled via assumptions of largely
elastic fibrils and largely viscous interfibrillar matrices. When the collagen cross-
linking was reduced, the situation reversed, with collagen fibrils now being much
more viscous than the matrix. A combination of synchrotron and confocal testing
of tendon during stress relaxation [42] was able to quantify the degree of fibrillar
and fibre relaxation at different levels of macroscopically applied relaxation strains
(Fig. 1.10). A two-level viscoelastic model, exhibiting the multiscale decay observed
in tendon, was used to explain the data (Fig. 1.11). Intriguingly, however, the magni-
tude of the fibrillar and fibre relaxation argue against the prior theory of significant
interfibrillar sliding. It is observed that the amount of fibrillar and fibre relaxation
are nearly the same, and are both much smaller the interfibre shear. Such a finding
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Fig. 1.10 Comparison of fibrillar and fibre strains and fibre shear during tensile deformation of
tendon, measured via SAXD and confocal microscopy. Data from experiments reported in [42]

Fig. 1.11 A model of interfibrillar sliding during stress relaxation in tendons, based on in situX-ray
diffraction and confocal microscopy. Image taken with permission from [42]

would suggest that the fibrils within a fibre are deforming largely as one group, with
little sliding between fibrils, and that a major contributor to sliding is the non-fibrous
matrix at larger structural levels. Such results have stimulated renewed investigation
into the viscoelastic properties of the IFM [54].
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1.2.5 Effects of Matrix Composition and Tendon Type

Whilst general data describing tendon composition and mechanics have been covered
thus far, recent data highlights the effect of matrix composition and tendon type. Ten-
don structure–function relationships can be investigated utilizing enzymatic digestion
or knockout models, to establish how altered matrix composition influences tendon
mechanics. Structurally, treatment of tendons in phosphate buffered saline (PBS) led
to 20 % increase in water content and 11 % loss of GAG, while chondroitinase treat-
ment led to 16 % increase in water content and 99 % loss of GAGs [56]. Interestingly,
the swelling of samples or removal of GAGs had little discernible effect on gross
tendon mechanics. However, the PBS swollen tendon samples showed significantly
increased levels of fibril sliding, an effect which was negated by the removal of the
GAG chains [55] (Fig. 1.12). More recently, biglycan and decorin knockout models
of mice have also been adopted to investigate the role of GAGs in tendon mechanics.
These have shown altered mechanical properties near the insertion site [57]. Whilst
tendon quasi-static mechanics are little affected by changes to protoeglycans, vis-
coelastic properties show a number of changes. Fatigue resistance is lowered after
GAG digestion, with more rapid stress relaxation as seen in Fig. 1.13a [58]. Whilst
no significant viscoelastic phase shift was observed in patellar tendons from decorin
knockout mice, it was noted that there was a tendency to increased stress relaxation
levels with a reduction in the decorin level, as seen in Fig. 1.13b [59]. Studies into the
effects of elastin have focused primarily on ligament, showing that removal of the
small elastin component in ligament increases the length of the initial toe region of the
stress–strain curve, suggesting that elastin primarily contributes to ligament function
within the low load region, whilst failure properties are governed by collagen fibre
failure [60]. Prior work on tendons and palmar aponeuroses showed a considerable
reduction in modulus and increased hysteresis in elastase treated samples, whilst
chondrotinase treatment appeared to reduce sample hysteresis [61].

Fig. 1.12 Increased inter- and intrafibre sliding on removal of proteoglycans (digestion with chon-
droitinase ABC) in tendons. Data from [55]
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Fig. 1.13 a Greater stress
relaxation in
chondroitinase-digested
tendon (main graph) versus
controls (inset). Image
reproduced with permission
from [58]. b Increased
percentage relaxation of
tendon with both strain level
and decorin removal (Dcn
−/− is decorin knockout).
Image reproduced with
permission from [59]

In recent years, structure-function studies in tendon have focused on the clear
functional differences between different tendons, looking to establish how struc-
tural variations are adopted to meet functional need. All tendons function to transfer
muscle force to the skeleton and position limbs (positional tendons) but some have
an additional role in locomotion, stretching to store energy which they can release
back into the system to improve the efficiency of movement (energy storing ten-
dons). Energy storing tendons, such as the Achilles tendon, or equine equivalent (the
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Fig. 1.14 Differences
between stress–strain curves
for energy storing and
positional tendons; lower
tangent modulus and
maximum failure strain are
observed in energy storing
tendons
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superficial digital flexor tendon—SDFT) [62, 63] are subjected to high strains and
elastic recoil in use, and show high incidences of tendinopathy, whilst the low strains
experienced by positional tendons make them less injury prone.

Energy storing tendons are less stiff and more extensible than positional tendons,
facilitating energy storage and protecting the tendon from damage when subjected
to large forces (Fig. 1.14) [64]. Furthermore, studies have additionally highlighted
how energy storing tendons are significantly more fatigue resistant than positional
tendons, enabling them to resist a greater degree of cyclic loading without damage
(Fig. 1.15) [32]. Adopting hierarchical analysis techniques, it is possible to investi-
gate the structural adaptations of energy storing tendons that facilitate these altered
mechanics.

Data have highlighted that fibril and fibre sliding is less apparent in energy storing
tendons, and that extension in these tendons adopts fascicle level sliding, mediated
by the IFM [64]. The IFM is rich in elastin and lubricin to facilitate sliding and recoil
behaviour (Fig. 1.16) [65], and levels of both of these proteins are higher in the IFM
of energy storing tendons, resulting in significantly more fatigue resistant IFM in
these samples [32, 54] (Fig. 1.17).

Fascicles within energy storing tendons are also helically arranged, providing
additional resistance to fascicle damage as energy storing tendons are subjected to
greater cyclical loads [66]. Interestingly, studies in ageing energy storing tendons
have highlighted how these functional specialisms are lost with ageing. The heli-
cal organization of fascicles is reduced, whilst the IFM becomes stiffer, perhaps
providing insight into the increased injury-risk seen in aged energy storing tendons
[67].
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Fig. 1.15 a Creep curves for fascicles from superficial digital flexor and common digital extensor
tendons (respectively SDFT and CDET) b and c Loading and unloading curves for the first 10
cycles for SDFT and CDET respectively. Data from [32]

Fig. 1.16 Elastic von Giesons stained SDFT and CDET tissue (a and b respectively), with elastic
fibres viewed as blue/black lines. SDFT exhibits elastin staining in the IFM (solid arrow) and a
little inside the fascicles (dashed arrows). Lower numbers of elastic fibres are evident in CDET. c
and d Immunohistochemical staining of lubricin in the IFM and within the fascicles of SDFT and
CDET, showing considerable lubricin staining in the IFM of SDFT
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Fig. 1.17 a Creep curves for the interfascicular matrix (IFM) from SDFT and CDET tendons b
and c Loading and unloading curves for the first 10 cycles for SDFT and CDET respectively [32,
54]

1.3 Heart Valves and Their Mechanical Properties

1.3.1 Types of Heart Valves

Heart valves enable the unidirectional flow of blood through the heart. There are four
valves: the mitral, aortic, pulmonary and tricuspid. The tricuspid valve is between
right atrium and right artery, the pulmonary valve between the right ventricle and
pulmonary artery, the aortic valve between the left ventricle and the aorta and the
mital valve between left atrium and left ventricle. Heart valves are passive structures,
which open and close in response to the surrounding haemodynamic environment.
The valve mechanics are reflective of the differences in pressures on the left and
right hand side of the heart, with an overall × eightfold higher baseline pressure on
the left side of the heart leading to more fatigue resistance in the aortic and mitral
valves.

An alternate series of valves opening and closing occurs over a cardiac cycle.
During the diastolic phase, the pressure in the ventricles is below atrial pressure.
As a result, the mitral and tricuspid valves open, allowing blood flow from atria to
ventricles. Concurrently, the aortic and pulmonary valves close to prevent a reverse
flow of blood into either the aorta or pulmonary artery. In the systole, the atrium
first contracts to push any remaining blood to ventricles. This is followed by ven-
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Fig. 1.18 a Photograph of an aortic valve b an unfolded valve opened to show the three coronary
leaflets. c An unfolded leaflet showing the curved shape and anisotropic structure

tricular contraction, pushing blood into circulation, at which point the mitral and
tricuspid valves close to prevent blood flowing back into the atria while the aortic
and pulmonary valves open.

The aortic valve, also known as the semilunar valve, is shown in Fig. 1.18. In the
aortic and pulmonary valve, three semicircular coronary leaflets are present, which
flex against the walls of the aorta as blood flows out of the heart, but coapt perfectly
as the valve closes to prevent backflow. By contrast, the mitral and tricuspid valves
are called the atrio-ventricular valves, owing to their location between the atria and
ventricle of both sides of the heart. The mitral valve has two primary leaflets, known as
anterior and posterior leaflets, whilst the tricuspid valve has three. In both valves, the
leaflets are corrugated, with the corrugations called scallops. The attachment of the
valve leaflets to the papillary ventricular muscles are via a special type of tendinous
structures known as chordae tendinae. The chordae tendinae are required to prevent
the valve leaflets from inverting under applied pressure (prolapse). The mitral and
aortic valves, being located on the high pressure side of the heart, are more prone
to damage and hence have been subjected to more attention from a bioengineering
standpoint. In contrast the tricuspid and pulmonary valves are on the low pressure
side of the heart and have a lower incidence of damage.
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1.3.2 Heart Valve Disorders

There are two main diseases or disorders which affect heart valve function: stenosis
and regurgitation. Stenosis is the narrowing of the valve opening, limiting the flow of
blood, and is usually a result of valve stiffening. The etiology may involve rheumatic
fever or congenital defects. Regurgitation is when the valve does not close prop-
erly, and can be caused by failure of chordae tendinae, enlargement of surrounding
heart structures, infections or Ehlers–Danlos syndrome. In general, these disorders
affect the highly loaded aortic and mitral valves, with the mitral valve commonly
regurgitating and the aortic valve often undergoing stenosis.

A stenotic aortic valve cannot flex out of the way as easily when blood is pushed out
of the heart, meaning the left ventricle must generate higher pressure with each con-
traction, leading to muscular thickening of left ventricle walls and eventual dilation
of the left ventricle and deterioration of systolic function. Congenital bicuspid aor-
tic valve formation occurs during pregnancy when two aortic leaflets fuse together.
It affects about 1–2 % of the general population and the altered valve mechanics
increases valve calcification rates. Mitral valve regurgitation is the most common
valve disorder. It usually occurs as a result of the chordae tendinae stretching over
time to the point at which they can no longer hold the mitral valve leaflets in place,
but allow them to invert or prolapse during systole.

1.3.3 Structure Function Relations in Aortic Valves

In aortic valves there is a consistent high pressure environment on both sides of the
valve. The valve undergoes high, multidirectional strains and must rapidly open and
close, necessitating flexion. Structurally, the valve is a corrugated trilayer structure,
as shown schematically in (Fig. 1.19). At the top, a collagen rich layer (fibrosa)

Elas n sheets

Collagen fibres

Proteoglycan 
layer

Fibrosa

Spongiosa

Ventricularis

Fig. 1.19 Schematic model of the layered structure of the aortic valve leaflet. The collagen fibrils
are shown as green rods, in a ridged/corrugated structure. The elastin fibres form a cross-linked
network at the base of the valve layer in the ventricularis
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Fig. 1.20 a An image of a sectioned mitral valve, where the chordae tendinae and leaflets are
clearly visible b Pentachrome stained cross-sections of mitral valves showing the different tissue
layers. The elastic fibres are shown in black, the collagen in yellow and the PG/GAG phase in blue
c Polarized light microscopy showing the different fibre texture and density in the ventricularis,
fibrosa and spongiosa. (Image reproduced with permission from [68]

contains a multidirectional set of collagen fibres providing tensile strength. In the
middle layer (spongiosa) a high proportion of proteoglycans allow other layers to
shear, enabling large flexion. In the bottom layer (ventricularis), the elastin-rich layer
provides considerable extension and recoil. The collagen fibres in the fibrosa form
coarse bundles which run across the width of the valve, providing the corrugations
that are characteristic of valve leaflets. Typically, the fibrosa is the thickest layer, as
shown in Fig. 1.20. Confocal microscopy of the different layers of the aortic valve
shows clearly the orientation differences as well as the degree of crimping (Fig. 1.21).

1.3.4 Structure Function Relations in Mitral Valves

The mitral valve structure is clinically important as it is more often repaired than
replaced, hence the need to design a correct annulus. During the cardiac cycle, there
is a significant pressure difference between the atrial and ventricular side of the
valve, and the mitral valve must open and close with little resistance, but not pro-
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Fig. 1.21 Confocal microscopy of aortic valve leaflet layers showing the corrugated fibrosa region
on the left and the underlying elastin-rich ventricularis on the right (Screen et al. unpublished work)

lapse against high pressure in the ventricle. During the heart beat, the annulus of
the mitral valve can change shape significantly, going from circular at ventricular
diastole to kidney shaped at peak systole. Structurally, the mitral valve is (in cross-
section) a four-layered structure, with looser, elastin-rich layers at either external
surface (ventricularis and atrialis) while the interior of the valve contains the colla-
gen rich fibrosa and proteoglycan-rich spongiosa. Smooth muscle cells, nerve fibres
and vascular channels are also present.

As seen in histological and microscopic images [69], mitral valves with dete-
riorated structure exhibit leaflet thickening and elongation of tendinous chords. In
cross-section, it is seen that floppy mitral valves show very few collagen fibres in the
central fibrosa region, significantly reducing the tensile resistance of the valve and
making it more prone to collapse.

1.3.5 Anisotropic Structure and Mechanical Implications

The shape and structure of heart valves, with multiple leaflets, each composed of
microscopically distinct layers, means that in order to understand the structure–
function relations in this complex tissue, a range of mechanical test methods must
be utilized. These can include uniaxial, biaxial and multiaxial tensile testing, with
either point loading or pressurized loading in addition to testing with flexion. These
will be briefly described in the following text:

Uniaxial mechanical properties In carrying out a uniaxial tensile test on a valve,
one must first define a principal axis of loading. Despite the complex curved shape of
each valve leaflet, two main directions can be defined, with respect to the position of
the valve in its native state (Fig. 1.22a). The first, along the direction perpendicular to
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Fig. 1.22 a Uniaxial mechanical test of aortic heart valve leaflet tissue in the circumferential
direction (blue) shows much higher stiffness, lower maximum strain and higher maximum stress
compared to radial direction (pink). b and c Increasing strain rate significantly increases stiffness,
reduces maximum strain and increases maximum stress. Inset: photograph of aortic valve, with
sample sections along the circumferential and radial direction indicated
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Fig. 1.23 a Schematic of
tensile deformation of heart
valves, showing three
distinct zones of deformation
with different tangent
moduli. b The proposed
collagen–elastin linkage
model of [71]. Figure after
[71]
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the blood flow, is called the circumferential direction, while the second, which follows
the main blood flow direction is called the radial direction. Tensile test curves from
the longitudinal and radial directions are shown in Fig. 1.22a. It is observed that the
maximum tangent modulus of the circumferential (C) sample is much larger than the
radial (R) sample. This difference is mainly because there is a greater proportion of
the collagen fibres along the loading direction in the C- than in the R-direction.

Both directions show strong strain rate sensitivity, with an increasing tangent
modulus with strain rate observed in each case (Fig. 1.22b, c). Tests are normally
carried out on strips running through the centre of the leaflet, but it is possible to cut
circumferential or radial strips across a leaflet, with data showing the middle strip is
stiffest in both cases [70].

To relate these mechanical data to the prior discussion on tendons, it is useful to
divide the stress–strain curve schematically into three regions as shown in Fig. 1.23a.
In the pre-transition phase, there is straightening of macro-crimp with elastin pro-
viding the main resistance to extension. In the middle (transition or heel region) the
collagen fibres are progressively recruited to bear load and oriented in the loading
direction. In the post-transition region (which is also closer to a linear stress–strain
curve than the previous two) there is elastic extension.

Scott and Vesely [71] have proposed a linkage between the elastin and collagen
fibres to enable recoil or return of the connective tissues in the heart valve. As per
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Fig. 1.24 Anisotropy of
stress–strain response to
biaxial deformation of aortic
heart valves leaflet (Screen et
al. unpublished work)
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the mechanisms sketched in Fig. 1.23b, the interfibre connections via rubbery elastin
linkages may enable the collagen bundles to return to their crimped state when
relaxed.

Biaxial mechanical properties Biaxial mechanical testing protocols of heart
valves, incorporating in-plane shear, have been described in [72]. Gripping is
achieved via sutures so as not to constrain deformation in either direction. To ensure
noncontact measurement of strain, marks are placed in a grid on the sample surface,
and the attachment to the valve is via hooks which insert into the side of the tissue.
Using a similar protocol, Screen et al. (unpublished) show that the local strain is
larger in the radial direction compared to the circumferential direction (Fig. 1.24).
Such a result is expected based on the predominant fibre orientation in the circum-
ferential direction increasing the stress and stiffness along this axis. Likewise, an
increased stress is observed in the circumferential direction.

Flexural mechanical properties Flexural mechanical tests on heart valves can
measure the flexural stiffness either by bending with the curvature direction or against
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it. Bending against curvature leads to larger stresses (0.70 ± 0.13 MPa) than bending
with curvature (0.50 ± 0.13 MPa) [73]. Bending with curvature is dominated by
tension in the ventricularis layer with little support from the fibrosa. This is because
the fibrous layer is on the concave inner surface of the valve, as a result of which
it is placed under compression when bending with curvature. Conversely, when the
valve is bent against curvature the fibrosa is placed under tensile loading, which it
can resist more effectively. Owing to the predominance of collagen in the fibrosa the
modulus is higher in this case.

Enzymaticdigestion testsAnalogous to the enzymatic digestion testing described
earlier for tendon, the removal of different ECM components of heart valves have
a significant effect on the mechanics [74]. Elastin digestion of heart valves results
in lowered modulus, increased extensibility in both circumferential and radial direc-
tions, and in each separate layer: fibrosa, spongiosa and ventricularis.

1.4 Conclusion

The hierarchical nature of connective tissues, together with the widely differing
mechanical properties of the constituent elements, make the assignment of material
parameters a challenging and scale-dependent problem. Methodologies to address
these will be discussed in companion chapters of this volume. Here we note that on the
experimental side, the use of multiscale analysis techniques (including microscopy
and spectroscopy) may provide quantitative information on the stiffness and strain
at different length scales, to be used together with modelling methodologies.
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Chapter 2
Hyperelasticity of Soft Tissues and Related
Inverse Problems

Stéphane Avril

Abstract In this chapter, we are interested in the constitutive equations used to
modelmacroscopically themechanical function of soft tissues. After reviewing some
basics about nonlinear finite strain constitutive relations, we present recent devel-
opments of experimental biomechanics and inverse methods aimed at quantifying
constitutive parameters of soft tissues. A focus is given to in vitro characterization
of hyperelastic parameters based on full-field data that can be collected with digital
image correlation systems during the experimental tests. The specific use of these
data for membrane-like tissues is first illustrated through the example of bulge infla-
tion tests carried out onto pieces of aortic aneurysms. Then an inverse method, based
on the principle of virtual power, is introduced to estimate regional variations of
material parameters for more general applications.

2.1 Introduction

A better understanding of many issues of human health, disease, injury, and their
treatment thereof necessitates a detailed quantification of how biological cells, tis-
sues, and organs respond to applied loads. Thus, experimental and computational
mechanics can, and must, play a fundamental role in cell biology, physiology, patho-
physiology, and clinical intervention. The goal of this chapter is to discuss some of
the recent developments of experimental biomechanics based on the use of digital
image correlation and inverse methods for quantifying the finite strain behavior of
biological soft tissues in terms of nonlinear constitutive relations. After a brief review
of these constitutive relations, two recent developments of the author’s experience are
presented to illustrate the potential of digital image correlation and inverse methods
in experimental biomechanics of soft tissues.
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2.2 Basic Constitutive Equations of Soft Tissues

This section presents the theoretical background for understanding the foundations
of constitutive models in soft tissues. This background is essential for the following
sections and for the other chapters of this book. The presentation of this background
follows the approach of a seminal paper from Millard [1].

2.2.1 Kinematics of Finite Deformation

Since the early 1940s there has been enormous progress in the development of a
theory of elastic materials subjected to large deformations. Significant theoretical
results, many confirmed by experiments, have projected considerable light on the
physical behavior of rubberlike materials such as synthetic elastomers, polymers
and biological tissue, in addition to natural rubber. The mathematical theory of elas-
ticity of materials subjected to large deformations is inherently nonlinear. The theory
of elasticity of materials for which there exists an elastic potential energy function is
known as hyperelasticity. Before presenting the constitutive equations for a hyper-
elastic solid, we begin with a sketch of the principal kinematical relations used to
describe the finite deformation of a continuum and with the Cauchy stress principle
and equations of kinetics. A body B = {Pk} is a set of material points Pk called par-
ticles. A reference frame is a set ϒ = {O, e} consisting of an origin point O and an
orthonormal vector basis e. The motion of a particle P relative to ϒ is described by
the time locus of its position vector x(P, t) relative to ϒ . This locus is the trajectory
or path of P in ϒ . A typical particle P may be identified by its position vector X(P)

in ϒ at some reference time t0. The domain κ0 of X, the region in Euclidian space
occupied by B at time t0 is called a reference configuration of B. Then, relative to ϒ

the motion of a particle P from κ0 is described by the vector function

x = χ(X, t) (2.1)

The domain κ of x, the region in Euclidian space occupied by B at time t0 is called
a current configuration of B. Hence, x denotes the place at time t in the current
configurationκwhich is occupied by the particlePwhose placewasX in the reference
configuration of B. The velocity and acceleration of a particle P relative to ϒ are
defined by

v(X, t) = ẋ(X, t) (2.2)

γ(X, t) = v̇(X, t) = ẍ(X, t) (2.3)
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We shall assumehenceforward that the body is a contiguous collection of particles,
we call this body a continuum. It is assumed that χ is a smooth one-to-one map of
every material point of κ0 → κ with

J = det F > 0, (2.4)

in which
F = ∂x/∂X = Grad x (2.5)

is called the deformation gradient. This tensor transforms the tangent element dX of
a material line L0 in κ0 into the tangent element dx of its deformed image line L in
κ. Hence,

dx = FdX (2.6)

Let ‖dx‖ = dl and ‖dX‖ = dL, where l and L are the arc length parameters for L
and L0 respectively. Then Eq.2.6 may be written:

λe = FE (2.7)

in which e = dx/dl and E = dX/dL are unit vectors tangent to L and L0 at x and X
and

λ = dl/dL (2.8)

is named the stretch, the ratio of the current length ds to the reference length dS of the
material element. These lengths are commonly called the deformed and undeformed
lengths, respectively. However it is not essential that the reference configuration be an
undistorted reference configuration, nor one that the body actually needs to occupy at
any time during its motion. It is seen that Eq.2.7 expresses the physical result that F
rotatesE into the direction e and stretches it by an amount 0 < λ < ∞. This is essen-
tially the substance of the more general and physically useful polar decomposition
theorem of linear algebra applied pointwise to the nonsingular tensor F

F = RU = VR (2.9)

The proper orthogonal tensor R characterizes the local rigid body rotation of a mate-
rial element. The positive symmetric tensors U and V describe the local deformation
of the element. They are called the right and the left stretch tensors, respectively. The
decomposition of the deformation gradient F into a pure stretch U at X followed by
a rigid body rotation R, or by the same rigid body rotation followed by a pure stretch
V at x is unique. Because U and V usually are tedious to compute, it is customary to
use their squares

C = FTF = U2 and B = FFT = V2 (2.10)

The corresponding positive symmetric tensors are respectively known as the right
and the left Cauchy–Green deformation tensors. It follows that U and V (C and B)
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have the same principal values λk (λ2
k) and respective principal directions μ and ν

are related by the rotation R
ν = R.μ (2.11)

The λk are the stretches of the three principal material lines, they are called the
principal stretches.

Formulae relating the respective material surface area and volume elements da
and dv in κ to their respective reference images dA and dV in κ0 may be easily
derived by application of

nda = J F−T .NdA and dv = JdV (2.12)

where n is the exterior unit normal vector to ∂P in κ and N is the exterior unit
normal vector to ∂P in κR.

The previous relation shows that det F is the ratio of the current (deformed) volume
to the reference (undeformed) volume of a material element. Therefore the deforma-
tion is isochoric if J = 1. It is evident on physical grounds that 0 < det F < ∞. The
material time rate of the deformation of a continuum is described by the velocity
gradient tensor L

L = Grad ẋ = ḞF−1 (2.13)

The symmetric part D and antisymmetric part W of L are the stretching and spin
tensors, respectively.

2.2.2 The Cauchy Stress Principle and the Equations
of Motion

The forces that act on any part P ⊂ B of a continuum B are of two kinds: a
distribution of contact force tn per unit area of the boundary ∂P of P in κ, and a
distribution of body force b per unit volume of P in κ. The total force F (P, t)
and the total torque T (P, t) acting on the part P are related to the momentum
and the moment of momentum of the material points ofB in an inertial frame � in
accordance with Euler’s laws of motion

F (P, t) =
∫

∂P
tn da +

∫
P

b dv = d

dt

∫
P

v dm (2.14)

T (P, t) =
∫

∂P
x × tn da +

∫
P

x × b dv = d

dt

∫
P

x × v dm (2.15)

The moments in Eq.2.15 are to be computed with respect to the origin in �. Note
that dm = ρ dv is the material element of mass with density ρ per unit volume in κ.
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The principle of balance of mass requires also that dm = ρR dV where ρR is the
density of mass per unit volume V in κR. Therefore one finds that the respective mass
densities are related by the local equation of continuity

ρR = Jρ (2.16)

Application of the first law of Euler to an arbitrary tetrahedral element leads to
Cauchy’s stress principle

tn = σ.n (2.17)

Hence the traction or stress vector tn is a linear transformation of the unit normal n
by the Cauchy stress tensorσ. Use of previous equations and the divergence theorem
yields Cauchy first law of motion

divσ + b = ργ (2.18)

The second law of Eq.2.15 together with Eqs. 2.17 and 2.18 yields the equivalent
local moment balance condition restricting the Cauchy stress σ to the space of
symmetric tensors

σ = σT (2.19)

The Cauchy stress characterizes the contact force distribution tn in κ per unit
current area in κ. But this is often inconvenient in solid mechanics because the
deformed configuration generally is not known a priori. Therefore, the engineering
stress tensor TR, also known as the first Piola-Kirchhoff stress tensor, is introduced
to define the contact force distribution tn ≡ TR.N in κ per unit reference area in κR.
Then for the same contact force dF (P, t), we must have

dF (P, t) ≡ tn da = σ.n da = TR.N dA = tN dA (2.20)

The vector tN is named the engineering stress tensor. We thus obtain the rule

TR = J σF−T (2.21)

relating the engineering and Cauchy stress tensors.
The corresponding stress principle and balance laws become

tN = TR.N (2.22)

DivTR + bR = ρR γR (2.23)

TRFT = FTT
R (2.24)



42 S. Avril

Hence the engineering stress TR generally is not symmetric. Equation bR ≡ Jb
identifies the body force per unit volume in κR, and Div denotes the divergence
operator with respect to X in κR, whereas div is with respect to x in κ.

Another stress tensor that will be useful is the second Piola-Kirchhoff stress
defined as

π = F−1TR = J F−1σF−T (2.25)

Thus far, the deformation of a continuum and the actions that produces it have
been treated separately without the mention of any special material characteristics
that the body may possess. Of course the inherent constitutive nature of the material
dictates its deformation response to action by forces and torques. For a specific
class of materials, the specific relationship between the deformation gradient F,
the rate of deformation Ḟ, and the stress σ, TR or π is described by an equation
known as a constitutive equation. In the next section, the principle of balance of
mechanical energy will be applied to derive the constitutive equation for a special
class of perfectly elastic materials called hyperelastic solids.

2.2.3 Hyperelasticity

Thermodynamics foundation The first law of thermodynamics tells that the time
rate of change of the internal energy E(P, t) for any part P ⊂ B of a body B is
balanced by the total mechanical power W (P, t) and the total heat flux Q(P, t).

Ė(P, t) = W (P, t) + Q(P, t) (2.26)

The second law of thermodynamics tells that the time rate of change of entropy
Ṡ(P, t) for any part P ⊂ B of a body B can be decomposed into exchanges of
entropy and production of entropy and that the latter can only be positive, or zero if the
transformation is reversible (no dissipation). If� denotes temperature, exchanges of
entropy at constant temperature (isotherm transformations will be assumed further)
may be written such as: Q/�. Finally, the second law of thermodynamics tells

Ṡ(P, t) ≥ Q(P, t)

�
(2.27)

Ė(P, t) − �Ṡ(P, t) ≤ W (P, t) (2.28)

P being an arbitrary tetrahedral element, and σ : D being the mechanical power
per unit volume, it may be written at any time t

ρ(ė − �ṡ) ≤ σ : D (2.29)
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where e denotes the local specific internal energy and s denotes the local specific
entropy. This equation points out that the work done by the stress would induce either
an increase of the specific internal energy or a decrease of the specific entropy. In
the case of elasticity, the transformation is reversible and it may be written

ρ(ė − �ṡ) = σ : D (2.30)

When the work done by the stress induces mostly an increase of the specific
internal energy (|�ṡ| << ė), we speak of enthalpic elasticity (in an isotherm trans-
formation, ė = ḣ where h would be the specific enthalpy). Enthalpic elasticity is
the elasticity of crystals where the deformation comes mostly from a change of dis-
tances between atoms. Elastic response of the crystalline solids is due to the change
of the equilibrium interatomic distances under stress and therefore, the change in the
internal energy of the crystal.

When the work done by the stress induces mostly a decrease of entropy (ė <<

|�ṡ|), we speak of entropic elasticity. Elasticity of soft biological tissues is composed
from the elastic responses of the chains crosslinked in the network sample. External
stress changes the equilibrium end-to-end distance of a chain, and it thus adopts a
less probable conformation, its entropy therefore decreases. Therefore, the elasticity
of soft biological tissues is of purely entropic nature.

Introducing the specific free energy φ = e + �s, and still assuming isotherm
transformations (�̇ = 0), it may be written

ρφ̇ = σ : D (2.31)

It is now the time to define what a hyperelastic solid is. A hyperelastic solid is a
material whose specific free energy depends only on the strain. It may be written

φ(X, t) = φ(F(X, t), X) (2.32)

The ψ = ρφ function is a strain energy density function. Then the constitutive
equation for a hyperelastic solid can be written

π = ∂ψ

∂E
= 2

∂ψ

∂C
(2.33)

TR = ∂ψ

∂F
= F

∂ψ

∂E
= 2F

∂ψ

∂C
(2.34)

σ = J−1 ∂ψ

∂F
FT = J−1F

∂ψ

∂E
FT = 2J−1F

∂ψ

∂C
FT (2.35)
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Isotropic compressible hyperelastic solids For an isotropic solid, the strain energy
function must be an isotropic scalar valued function of the principal invariants alone

ψ = ψ(C) = ψ(B) = ψ(I1, I2, I3) (2.36)

wherein, specifically,
I1 = tr(B) (2.37)

I2 = 1

2

[
I21 − tr(B2)

]
(2.38)

I3 = det(B) (2.39)

Note that Eq.2.35 may be rewritten such as

σ = 2J−1 ∂ψ

∂B
B (2.40)

Then, introducing the principal invariants

σ =
(

∂ψ

∂J
+ 2J−1 ∂ψ

∂I2
I2

)
1 + 2J−1 ∂ψ

∂I1
B − 2J−1 ∂ψ

∂I−1
B−1 (2.41)

where I−1 = I2/I3 = tr(B−1).

Isotropic hyperelastic incompressible solids The Cauchy stress on an incompress-
ible, hyperelastic material, is determined by F only to within an arbitrary stress
which is proportional to the identity tensor. Then the constitutive equation for an
incompressible, isotropic, hyperelastic material is given by

σ = −p1 + 2
∂ψ

∂I1
B − 2

∂ψ

∂I2
B−1 (2.42)

where p is an undetermined scalar of x. Note that I2 = I−1 for an incompressible
solid.

A particular type of strain energy functions may be written such as polynomials

ψ =
Nj∑
j=0

Ni∑
i=0

Cij(I1 − 3)i(I2 − 3)j (2.43)

whenNi = 3 andNj = 0 it is referred to as Yeoh strain energy function, whenNi = 1
andNj = 1 butC11 = 0, we have theMooney–Rivlinmaterial. The special casewhen
Ni = 1 and Nj = 0 is the neo-Hookean material.
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Another particular type which is meaningful for biological tissues may be written

ψ = μ0

2γ

[
eγ(I1−3) − 1

]
(2.44)

Isotropic hyperelastic nearly incompressible solids It is common for nearly incom-
pressible hyperelastic solids to assume a perfect decoupling between purely volu-
metric and purely isochoric effects, and then to decompose the strain energy density
function additively in two components: one depending only on volume changes and
the second one independent of volume changes

ψ = U(J) + ψ̄(Ī1, Ī2) (2.45)

σ =
(

∂ψ

∂J
+ 2J−1 ∂ψ

∂I2
I2

)
1

+ 2J−1 1

J2/3
∂ψ̄

∂ Ī1
B − 2J−1 1

J4/3/J2
∂ψ̄

∂ Ī2
B−1 (2.46)

where Ī1 = tr(B̄), Ī2 = 1
2

[
Ī21 − tr(B̄2)

] = tr(B̄−1), B̄ = F̄F̄T and F̄ = J−1/3F.

σ =
[(

∂ψ

∂J
+ 2J−1 ∂ψ

∂I2
I2

)
+ ∂ψ̄

∂ Ī1

∂ Ī1
∂J

+ ∂ψ̄

∂ Ī2

∂ Ī2
∂J

]
1

+ 2J−1 ∂ψ̄

∂ Ī1
B̄ − 2J−1 ∂ψ̄

∂ Ī2
B̄−1 (2.47)

σ =
[(

∂ψ

∂J
+ 2J−1 ∂ψ

∂I2
I2

)
− 2

3
J−1 ∂ψ̄

∂ Ī1
Ī1 − 4

3
J−1 ∂ψ̄

∂ Ī2
Ī2

]
1

+ 2J−1 ∂ψ̄

∂ Ī1
B̄ − 2J−1 ∂ψ̄

∂ Ī2
B̄−1 (2.48)

σ =
[(

∂ψ

∂J
+ 2J−1 ∂ψ

∂I2
I2

)
− 2J−1 ∂ψ̄

∂ Ī2
Ī2 − 2

3
J−1 ∂ψ̄

∂ Ī1
Ī1 + 2

3
J−1 ∂ψ̄

∂ Ī2
Ī2

]
1

+ 2J−1 ∂ψ̄

∂ Ī1
B̄ − 2J−1 ∂ψ̄

∂ Ī2
B̄−1 (2.49)
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Finally,

σ =
[

∂ψ

∂J
− 2

3
J−1 ∂ψ̄

∂ Ī1
Ī1 + 2

3
J−1 ∂ψ̄

∂ Ī2
Ī2

]
1 + 2J−1 ∂ψ̄

∂ Ī1
B̄ − 2J−1 ∂ψ̄

∂ Ī2
B̄−1

= ∂ψ

∂J
1 + 2J−1Dev

(
∂ψ̄

∂ Ī1
B̄ − ∂ψ̄

∂ Ī2
B̄−1

)

(2.50)

where Dev denotes the deviatoric tensor.
The Cauchy stress is then decomposed additively into a hydrostatic component

related to J and into a deviatoric component related to Ī1 and Ī2.

σ = −p1 + s (2.51)

where p = −∂U/∂J and

s = 2J−1Dev

(
∂ψ̄

∂ Ī1
B̄ − ∂ψ̄

∂ Ī2
B̄−1

)
(2.52)

Common models of isotropic hyperelastic nearly incompressible solidsThe com-
pressible version of a neo-Hookean material may be written

ψ = C10(Ī1 − 3) + 1

D
(J − 1)2 (2.53)

The compressible version of a Yeoh material may be written

ψ =
3∑

i=0

Ci0(Ī1 − 3)i +
3∑

i=0

1

Di
(J − 1)2i (2.54)

Another common model in compressible hyperelasticity is the Arruda Boyce
model. Although its formulation is based on a thermodynamical background, it is
not often used for biological tissues. The strain energy density may be written

ψ = μ

5∑
i=0

Ci

λ2i−2
m

(Ī i1 − 3i) + 1

D

[
(J2 − 1)

2
− ln(J)

]
(2.55)

where: C1 = 1
2 , C2 = 1

20 , C3 = 11
1050 , C4 = 19

7050 , C5 = 51
673750 .
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A more common model is the Ogden model, which may be written

ψ = 2μ

α2
(λ2α

1 + λ2α
2 + λ2α

3 ) + 1

D
(J2 − 1) (2.56)

where λ1, λ2 and λ3 are the principal stretches.

2.2.4 More Sophisticated Constitutive Models

The aim of this section is to introduce the basics for the following sections of this
chapter but also for the following chapters of this book. It is not rare that soft tissues
are modeled with constitutive equations including other features than the ones of
isotropic hyperelasticity. The main ones are summarized hereafter.

Anisotropic hyperelastic models Soft tissues may often present anisotropic effects.
The most common effect is a different stress–stretch curve when they are subjected
to uniaxial tension in two different directions. Very common models permitting to
represent these effects may describe the material such as a composite made of a
neo-Hookean matrix in which fiber families are embedded

ψ = C10(Ī1 − 3) +
N∑
i=1

k1i
2k2i

[
ek2i(λ̄

2
i −1) − 1

]
+ 1

D
(J2 − 1) (2.57)

where λ̄2
i = C̄ :(Mi⊗Mi) = C̄Mi.Mi.

Mi are vectors defining orientations of a fiber family in the reference configura-
tion. Although motivated by microstructural information, this type of models was
developed primarily to capture phenomenologically the anisotropic response of soft
tissues subjected to multidirectional tensile tests, which ultimately depends on con-
stituent fractions, fiber orientations, cross-linking, physical entanglements, and so
forth.

Irreversible effects When subjected to cycled uniaxial tensile tests (or other types
of testing), the loading unloading profile of biological tissues often presents an hys-
teresis on the first cycle. With repeated loading cycles the load-deformation curves
shift to the right in a load-elongation diagram and the hysteretic effects diminish. In
a load-time diagram the load-time curves shift upwards with increasing repetition
number. By repeated cycling, eventually a steady state is reached at which no further
change will occur unless the cycling routine is changed. In this state the tissue is
said to be preconditioned. Any change of the lower or upper limits of the cycling
process requires new preconditioning of the tissue. Preconditioning occurs due to
internal changes in the structure of the tissue. Hysteresis, nonlinearity, relaxation and
preconditioning are common properties of all soft tissues, although their observed
degrees vary.
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The difference between the loading and unloading response can be simulated
using an isotropic damage formulation. It consists in writing the strain energy in the
form of

ψ = (1 − d)ψ̄ + 1

D
(J2 − 1) (2.58)

where 1 − d is a reduction factor and d is a scalar damage variable defined in
0 ≤ d ≤ 1. When d = 0 the material is undamaged. The value d = 1 is an upper
limit in which the material is completely damaged and failure occurs. The evolution
of damage may be described by a function of a maximum equivalent strain defined

such as ζm = maxt∈[−∞,t]
√
2ψ̄(E(t) where E(t) is the Green–Lagrange strain tensor

for the pseudotime t of the deformation process. The evolution of damage can be
described with an exponential form

1 − d(ζm) = β + (1 − β)
1 − e−ζm/α

ζm/α
(2.59)

where α and β are material parameters.
Damage can also be modeled with the concept of softening hyperelasticity. In this

concept, instead of having a strain energy tending to infinity when the norm of the
stretch tensor tends to infinity, the stored energy is bounded [2].

More details about damage models are given in Chap.4 of this book.

Time dependent effects The hysteresis in the stress–strain relationship may also
show the viscoelastic behavior of soft biological tissue. The simplest model of vis-
coelasticity is the Kelvin model combining a linear spring and a dashpot. In analogy
to linear viscoelasticity in small strain, we can assume an additive free energy poten-
tial with the form ψ = ψ0 + ψv where ψ0 measures the energy stored in the elastic
branch (equilibrium) andψv measured the energy stored in the viscous branch, which
progressively disappears during relaxation.

In a viscoelastic material the history of strain affects the actually observed stress.
As well, loading and unloading occur on different stress–strain paths. The hysteresis
of most biological tissues is assumed to show only little dependence on the strain
rate within several decades of strain rate variation. This insensitivity to strain rate
over several decades is not compatible with simple viscoelastic models consisting for
instance of a single spring and dashpot element. With such a simple viscoelasticity
approach the material model will show a maximum hysteresis loop at a certain strain
rate whereas all other strain rates will show a smaller hysteresis loop. A model
consisting of a discrete number of spring-dashpot elements therefore produces a
discrete hysteresis spectrum with maximum dissipation at discrete strain rates. It
may be written as

ψ̄ =
∫ t

0

[(
1 −

N∑
k=1

gk(1 − e− t−τ
τk )

)
× dψ0

dτ

]
dτ (2.60)

where τk are the relaxation times and gk are the relaxation coefficients.

http://dx.doi.org/10.1007/978-3-319-45071-1_4
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It is widely accepted that soft connective tissues are multiphasic materials. They
are sometimes modeled as a mixture of two immiscible constituents: an solid hypere-
lastic matrix and an interstitial incompressible fluid. This type of models, sometimes
called poroelastic models, can particularly describe both the stress distribution and
interstitial fluid motion within the cartilage tissue under various loading conditions.
Moreover the interaction between the solid and the fluid phases has been identified to
be responsible for the apparent viscoelastic properties in the compression of hydrated
soft tissues.

Active models It is often assumed that in the presence of an actin-myosin complex
in the soft tissue, the total Cauchy stress can be split into two parts: σ = σp + σa,
where σp and σa denote passive and active stress respectively. The passive stress
results from the elastic deformation of the tissue and can be derived from the theory of
hyperelasticity. The active stress is generated in myofibrils or in smooth muscle cells
by activation and is directed parallel to the fiber orientation. Hence: σa = σaε ⊗ ε
where ε is the unit vector identifying the orientation. The mechanism for generating
σa involves internal variables.

2.2.5 Growth and Remodelling Models

Many experiments have shown that the stress field dictates, at least in part, the way
in which the microstructure of soft tissues is organized. This observation leads to the
concept of functional adaptation wherein it is thought that soft tissues functionally
adapt so as to maintain particular mechanical metrics (e.g., stress) near target values.
To accomplish this, tissues often develop regionally varying stiffness, strength, and
anisotropy.

Models of growth and remodelling necessarily involve equations of reaction dif-
fusion. There has been a trend to embed the reaction diffusion framework within
tissue mechanics [3, 4]. The primary assumption is that one models volumetric
growth through a growth tensor Fg , which describes changes between two fictitious
stress-free configurations: the original body is imagined to be fictitiously cut into
small stress-free pieces, each of which is allowed to grow separately via Fg, with
det(Fg) �= 1. Because these growths need not be compatible, internal forces are often
needed to assemble the grown pieces, via Fa, into a continuous configuration. This,
in general, produces residual stresses, which are now known to exist in many soft
tissues. The formulation is completed by considering elastic deformations, via Fa,
from the intact but residually stressed traction-free configuration to a current con-
figuration that is induced by external mechanical loads. The initial boundary value
problem is solved by introducing a constitutive relation for the stress response to the
deformation FeFa, which is often assumed to be incompressible hyperelastic, plus
a relation for the evolution of the stress-free configuration via Fg . Thus, growth is
assumed to occur in stress-free configurations and typically not to affect material
properties.
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Although the previous theory called the theory of kinematic growth yields many
reasonable predictions, Humphrey and coworkers have suggested that it models
consequences of growth and remodelling, not the processes by which they occur.
Growth and remodelling necessarily occur in stressed, not fictitious stress-free, con-
figurations, and they occur via the production, removal, and organization of different
constituents; moreover, growth and remodelling need not restore stresses exactly
to homeostatic values. Hence, Humphrey and coworkers introduced a conceptually
different approach to model growth and remodelling, one that is based on tracking
the turnover of individual constituents in stressed configurations (the constrained
mixture model [5, 6]).

2.3 Characterization of Hyperelastic Properties Using
a Bulge Inflation Test

After the introduction of basics about nonlinear finite–strain constitutive relations,
we now introduce approaches of experimental biomechanics and inverse methods
aimed at quantifying constitutive parameters of soft tissues.

2.3.1 Introduction

Traditional characterization of material constants in hyperelastic solids The
hyperelastic constants in the strain energy density function of a material determine
its mechanical response. For identifying these hyperelastic materials, simple defor-
mation tests (consisting of six deformation models—see Fig. 2.1) can be used. It is
always recommended to take the data from several modes of deformation over a wide
range of strain values.

Even though the superposition of tensile or compressive hydrostatic stresses on
a loaded incompressible body results in different stresses, it does not alter deforma-
tion of a material. Upon the addition of hydrostatic stresses, the following modes of
deformation are found to be identical: uniaxial tension and equibiaxial compression,
uniaxial compression and equiaxial tension, and planar tension and planar compres-
sion. It reduces to three independent deformation states for which we can obtain
experimental data.

For each of the three independent tests, the resultant force F can be expressed
analytically with respect to the applied stretch λ using the following formulas of
incompresssible hyperelasticity which are derived from the equations introduced
above:

1. in uniaxial tension:

F = 2S0(λ − λ−3)

(
∂ψ

∂I1
+ ∂ψ

∂I2

)
(2.61)
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Fig. 2.1 Schematic representation of independent testing modes for hyperelastic materials

2. in planar tension:

F = 2S0(λ − λ−3)

(
λ

∂ψ

∂I1
+ ∂ψ

∂I2

)
(2.62)

3. in equibiaxial tension:

F = 2S0(λ − λ−5)

(
∂ψ

∂I1
+ λ2 ∂ψ

∂I2

)
(2.63)

where S0 is the initial cross-sectional area of the sample.
The identification of thematerial constants is achieved by a least-squares fit analy-

siswhich consists inminimizing the sumof squared discrepancies between the exper-
imental values (if any) of F and the values predicted by the models. This yields a set
of simultaneous equations which are solved for the material constants.
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The identification of material constants is seldom achieved on cylindrical speci-
mens where analytical formulas can also be derived to perform again least-squares
fit analysis [7].

The bulge inflation test combined with digital image correlation As introduced
previously, traditional characterization of material constants in hyperelastic solids is
based on a least-squares fit analysis of F versus λ curves. In the tests, λ is usually
measured using traditional extensometry techniques being either based on tracking
the motion of the grips in the machine used to apply the deformation on the tissue,
sometimes based on tracking the motion of markers or dots drawn on the tissue itself.

Recently, it has become a common practice to combine video based full-field
displacement measurements experienced by tissue samples in vitro, with custom
inverse methods to infer (using nonlinear regression) the best-fit material parameters
and the rupture stresses and strains. These approaches offer important possibilities for
fundamental mechanobiology research as they permit to quantify regional variations
in properties in situ.

Here we present an illustrative example of the author’s experience where bulge
inflation tests are carried out on aneurysm samples for characterizing the regional
variations of hyperelastic constants across them.

2.3.2 Materials and Methods

Experimental arrangements The study deals with the characterization of aortic
tissues collected on patients having an ascending thoracic aortic aneurysm (ATAA).
In this reported example, an unruptured ATAA section was collected from a patient
undergoing elective surgery to replace his ATAA with a graft in accordance with
a protocol approved by the Institutional Review Board of the University Hospital
Center of Saint–Etienne. After retrieval, the specimen was placed in saline solution
and stored at 4 ◦C until testing, which occurred within 48 h of the surgery. Immedi-
ately prior to testing, the ATAA was cut into a square specimen approximately 45 ×
45mm. Any fatty deposits were removed from the surface of the tissue to ensure that
during mechanical testing the tissue did not slip in the clamps. An average thickness
was found for the sample by measuring the thickness of the tissue at a minimum of
five locations.

The specimen was clamped in the bulge inflation device, Fig. 2.2, so that the
luminal side of the tissue faced outward. Then a speckle pattern was applied to the
luminal surface using black spray paint. The samplewas inflated using a piston driven
at 15mm/min to infuse water into the cavity behind the sample. During the test, the
pressure was measured using a digital manometer (WIKA, DG-10). Images of the
inflating specimen were collected using a commercial DIC system (GOM, 5M LT)
composed of two 8-bit CCD cameras equipped with 50mm lenses (resolution: 1624
× 1236 px). The cameras were positioned 50cm apart at an angle of 30 ◦ with an
aperture of f /11. This produced a depth of field of 15.4mm which was sufficient to
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Fig. 2.2 Experimental setup and test sample a before testing and b after rupture

capture the deformation of the tissue up to failure. Images of the deforming sample
were collected every 3 kPa until the sample ruptured.

After rupture, the collected images were analyzed using the commercial corre-
lation software ARAMIS (GOM, v. 6.2.0) to determine the three-dimensional dis-
placement of the tissue surface. For the image analysis, a facet size of 21 px and a
facet step of 5 px were chosen based on the speckle pattern dot size, distribution,
and contrast. The selected parameters produced a cloud of approximately 15,000
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points where the three displacement values were calculated. Details about the error
quantification of the method may be found in the original paper [8].

Geometric reconstruction A deforming NURBS mesh was extracted by morphing
a NURBS template to the DIC point clouds. The template was a circular domain with
a diameter slightly less than that of the point cloud in the first pressure state. The
NURBS surface was parameterized as a single patch containing clamped knots of 20
divisions in each parametric direction, with 22 × 22 control points. Since NURBS
control points, in general, do not fall on the surface they describe, they cannot be
directly derived from the DIC clouds. Instead, the positions of the Gauss points were
obtained first using the moving least square method [9]. For each Gauss point, a set
of nearest image points in the DIC point cloud were identified based on their distance
to the Gauss point in the first pressure state. The radius of the neighboring region
was automatically adjusted to that it contained at least six image points. The position
of each Gauss point, yg , was computed using an affine interpolation

yg =
∑

y∈�g
wjyj∑

y∈�g
wj

(2.64)

where yj is the position vector for each image point in the neighborhood, �g, and wi

is the weighting function taken to be the inverse of the distance from yj to the Gauss
point. Using the same weights calculated in the first stage, the Gauss points in every
pressure stage were identified.

A global least squares problem was then formulated to compute the best-fit posi-
tions of the control points. The NURBS surface was represented as

x =
∑
i

Ni(u1, u2)Qi (2.65)

where Ni are the NURBS basis functions, Qi are the control points, and the pair of
knot variables, (u1, u2), represent a material point. The position of a modeled Gauss
point is then given by xg = ∑

i Ni(u1g, u2g)Qi. The position of the control points
were obtained by minimizing a weighted sum of ‖xg − yg‖2 over all Gauss points.
This procedure was applied to each pressure state.

The accuracy of this reconstruction method was previously assessed and showed
by [10].

Strain reconstruction Surface strains were computed in the local NURBS curvi-
linear coordinate system. The surface coordinates, uα, (α,β = 1, 2) induce a set
of convected basis vectors (a1, a2) where aα = ∂x

∂uα
and x(u1, u2) is the NURBS

representation given in Eq.2.65. The reciprocal basis
(
a1, a2

)
are computed such

that aα · aβ = δαβ . In the reference configuration, the basis vectors are denoted by
(A1, A2) and

(
A1, A2

)
.
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The surface deformation gradient tensor is

F = aα ⊗ Aα . (2.66)

It then follows that the surface Cauchy–Green deformation tensor, C, and the Green–
Lagrangian strain tensor, E, are given by

C = (
aα · aβ

)
Aα ⊗ Aβ (2.67)

E = 1

2

(
aα · aβ − δαβ

)
Aα ⊗ Aβ . (2.68)

The physical components ofC andE are computed by identifying a local orthonormal
basis (G1, G2) that is constructed in the tangent plane spanned by (A1, A2). The
physical components of the Cauchy–Green deformation tensor, Cαβ , and Green–
Lagrangian strain tensor, Eαβ , are Cαβ = G · C G and Eαβ = G · E G, respectively.

Wall stress reconstruction For an inverse membrane boundary value problem the
deformed configurations and boundary conditions are given as inputs to the FEmodel
and the wall stress is calculated. The balance equation that governs static equilibrium
is [11, 12]

1√
a

(√
atαβaα

)
,β

+ pn = 0 (2.69)

where a is det
(
aα aβ

)
, t is the Cauchy wall tension, p is the applied internal pressure,

n is an outward facing unit normal, and ( ),β indicates
∂

∂ uβ . Note that the Cauchy wall
tension t is directly related to the Cauchy stress, σ, through the current thickness of
the membrane, h, via tαβ = hσαβ = tβα.

The weak form of the boundary value problem reads

∫
�

tαβaα.δx,β da −
∫

�

pn.δx da = 0, (2.70)

where δx is any admissible variation to the current configuration�. The details of the
FE procedure for solving Eq.2.70 were presented in [13]. Briefly, the Cauchy wall
tension is regarded as a function of the inverse deformation gradient. The weak form
subsequently yields a set of nonlinear algebraic equations for the positions of control
points in the reference configuration. At the same time, the tension field in the current
state is determined. An auxiliary material model is needed to perform the inverse
analysis. The material model influences the predicted undeformed configuration;
however, due to the static determinacy of Eq.2.69, the influence is weak [13–16]. As
in a previous study [17], a neo-Hookean model was implemented. For computational
efficiency, the stiffness parameter of the model was set to unrealistically high values
to ensure a robust convergence.

To simulate the experimental boundary conditions the outermost edge of the spec-
imen was fixed. This boundary condition was applied directly to the control points
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on the outer boundary of the mesh. Applying any displacement-based constraint in
the inverse membrane analysis creates a boundary region in the solution where the
stresses are inaccurate [13]. To minimize the influence of boundary effect, the outer
ring of elements was excluded from further analyses. Since the influence region of
each control point spans three elements in each of the two parametric directions, the
outer three rings of elements were deemed to be the boundary region. By a retrospec-
tive comparison with the forward analysis reported the size of the boundary region
was confirmed [18].

Material property identification Using inverse membrane analysis, the stress was
calculated at every Gauss point. Combining the stress data with the local surface
strains calculated from Eqs. 2.66–2.68, the stress–strain response at every Gauss
point in the mesh is known. The local material properties at each Gauss point were
then identified by fitting the local stress–strain response to a hyperelastic surface
energy density. An anisotropic strain energy function was used, this anisotropy being
implemented on the principle of Eq.2.57. More specifically here, we used a modified
form of the strain energy density proposed by Gasser, Ogden, and Holzapfel (GOH)
[19] which may be written such as

w = μ1

2
(I1 − ln (I2) − 2) + μ2

4γ

(
eγ(Ik−1)2 − 1

)
(2.71)

where I1 = tr C and I2 = det C are the principal invariants of the Cauchy–Green
deformation tensor and Iκ = C :(κ1 + (1 − 2κ) M⊗M) is a compound invariant
consisting of isotropic and anisotropic contributions.

Litteraly, Eq. 2.71 models a composite material made a matrix reinforced with
fibers. In the compound invariantIκ, the unit vectorM = cos θ G1 + sin θ G2 defines
the orientation along which the tissue is stiffest while κ characterizes the degree of
anisotropy, varying from 0 to 1. When κ = 0 it would model a composite with all the
fibers perfectly aligned in the direction M and at κ = 1 the fibers would be perfectly
aligned in the perpendicular direction, M⊥. Finally, κ = 1

2 models the case where
fibers would have no preferential direction (isotropic). The parameters μ1 and μ2

are the effective stiffnesses of the matrix and fiber phases, respectively, both having
dimensions of force per unit length. The parameter γ is a nondimensional parameter
that governs the tissue’s strain stiffening response.

The second Piola–Kirchhoff wall tension, S, is written as

S = 2
∂w

∂I1
1 + 2

∂w

∂I2
I2C−1 + 2

∂w

∂Iκ
(κ1 + (1 − 2κ) M ⊗ M) . (2.72)

Substituting Eq.2.71 into Eq.2.72 one finds

S = μ1
(
1 − C−1

) + μ2 e
γ(Iκ−1)2 (Iκ − 1) (κ1 + (1 − 2κ) M ⊗ M) (2.73)

noting that the second Piola-Kirchoff wall tension is related to the Cauchy wall
tension via t = 1√

I2
F S FT.
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The values of the model parameters μ1, μ2, γ, κ, and θ were determined by
minimizing the sum of the squared difference between the stress computed from
the inverse membrane analysis and those computed using Eq.2.73. The nonlinear
minimizationwas solved inMatlab (MathWorks, v. 7.14)where themodel parameters
were constrained such that: μ1, μ2, γ > 0, 0 ≤ θ ≤ π

2 , and 0 ≤ κ ≤ 1. Due to the
boundary effect in the stress analysis the perimeter ring of elements were excluded
from the material parameter identification.

2.3.3 Results

Geometric reconstructionAbulge inflation test to failurewas performed on aATAA
collected from a male patient who was 55years old. The diameter of the aneurysm as
determined by pre-surgical CT scan was 55mm. The mean thickness of the sample
was 2.35mm. The pressure and DIC data during the bulge inflation tests were used
to generate a deforming NURBS mesh and identify the local stress–strain response
during the bulge inflation test. Using the pointwise stress–strain data, the spatial
distribution of the mechanical properties was identified.

Using the experimental DIC point cloud a deformingNURBSmeshwas generated
of the ATAA sample.

Local stress and strain response Fig. 2.3 shows the distributions of themagnitude of
the Cauchy wall tension, t, and Green–Lagrangian strain, E, at an applied pressure
of 117 kPa for a given ATAA sample. The distribution of wall tension and strain
remained similar throughout the inflation of the specimen. In general, at each Gauss
point both the normal strains and the planar shear strains were nonzero. To facilitate
plotting of the local stress–strain response, the axes of principal strain were identified
and the local stresses and strains were rotated into the principal strain axes. In [8], the
three components of the wall tension in the principal strain axes, t̃11, t̃12, and t̃22 were

1.70

1.40

1.10

0.90

0.90

0.80

0.70

0.60

(a) Wall Tension (b) Green-Lagrange strain

Fig. 2.3 Contours of the magnitude of the a wall tension (N/m) and b Green–Lagrange strain at a
pressure of 117 kPa. Adapted from [8]
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plotted against the principal stretches λ1 and λ2. As expected, the local stress–strain
response showed the nonlinear stiffening behavior that is common in arteries. The
shear stresses, t̃12, were much smaller than the normal stresses, t̃11 and t̃22. In a small
regionwhere rupture eventually occurred, the ATAA appeared to yield. The locations
of this localized yielding correspond to strain concentrations in zones where rupture
initiates (Fig. 2.3b).

Material property identification The proposed model for the elastic behavior of
the ATAA was able to fit the bulge inflation data well (0.81 < R2 < 0.99). Lower
values of the correlation coefficient were located in the small zone where rupture
eventually occurred. Excluding this region the minimum value of R2 was 0.96. The
experimental data (points) and model fits (lines) for three Gauss points were shown
in [8].

The distributions of the material parameters are plotted in Fig. 2.4. Clearly the
material parameters display a heterogeneous distribution.Theparameterμ1 displayed
the sharpest changes in value while the parameters μ2, κ, and γ changed more
gradually. Not surprisingly, the values of μ2 are an order of magnitude larger than
μ1 reflecting the difference in stiffness between the collagen fibers and matrix. The
values of κ are approximately 0.5 in the center suggesting an isotropic organization
of the collagen fibers. Towards the edges of the specimen the collagen fibers become
more aligned signaling that the sample is regionally anisotropic. In Fig. 2.4e, the angle
θ that defines the stiffest direction is plotted. Note that θ is defined locally relative
to the horizontal meshlines. Keep in mind that when the value of κ is approximately
0.5, there is no stiffest direction.
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This pointwise method was used to identify the distribution of material properties
of 10 human ATAA samples [18]. Our method was able to capture the varying levels
of heterogeneity in the ATAA from regional to local. The distributions of the mate-
rial properties for each patient were examined to study the inter- and intra-patient
variability. Future studies on the heterogeneous properties of the ATAA would ben-
efit from some form of local structural analysis such as histology or multi-photon
microscopy. The structural data and knowledge of the spatial trends should provide
the information necessary to move from merely measuring the local material prop-
erties to uncovering the links that exist between the underlying microstructure and
local properties.

2.4 Characterization of Hyperelastic Material Properties
Using a Tension-Inflation Test and the Virtual Fields
Method

In the previous section, it was shown that in some cases which are referred to as
isostatic, it may be possible to derive the stress distribution independently of the
material properties of the tissues.When strain distributions are also available, stress–
strain curves can be derived locally and the inverse problem turns into a semi-forward
problem [20], where the material parameters can be identified directly by fitting the
curves with a model.

In case of hyperstatic situations, it is not possible to derive the stress distribution
independently of the material properties of the tissues. A possible solution for the
identification of local material properties may still be found using the Virtual Fields
Method (VFM). The VFM is one of the techniques developed to identify the para-
meters governing constitutive equations, the experimental data processed for this
purpose being displacement or strain fields. It will be shown in this chapter that one
of its main advantages is the fact that, in several cases, the sought parameters can be
directly found from the measurements, without resorting to a FE software.

The VFM relies on the Principle of Virtual Power (PVP) which is written with
particular virtual fields.

2.4.1 General Principle

The PVP represents in fact the weak form the local equations of equilibrium which
are classically introduced in mechanics of deformable media. Assuming a quasi-
static transformation (the absence of acceleration forces) and assuming the absence
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of body forces, the PVP can be written as follows for any domain defined by its
volume ω(t) in the current configuration and by its external boundary ∂ω(t):

−
∫

ω(t)
σ : (Grad v∗)dω

︸ ︷︷ ︸
P∗
int

+
∫

∂ω(t)
tn.v∗ds

︸ ︷︷ ︸
P∗
ext

= 0 (2.74)

where σ is the Cauchy stress tensor, v∗ is a virtual velocity field defined across
the volume of the solid, Grad v∗ is the gradient of v∗, tn are the tractions across the
boundary (surface denoted ∂ω(t)), P∗

int is the virtual power of internal forces and P
∗
ext

is the virtual power of external forces.
A very important property is in fact that the equation above is satisfied for any

kinematically admissible (KA) virtual field v�. By definition, a KA virtual field
must satisfy the boundary conditions of the actual velocity field in order to cancel
the contribution of the resulting forces on the portion of the boundary along which
actual displacement are prescribed. It must be pointed out that this requirement is
not really necessary in all cases, but this point is not discussed here for the sake of
simplicity. KA virtual fields are also assumed to be C0 functions [21].

2.4.2 Example of Application of the Principle of Virtual
Power for Membranes

The PVPmay be a powerful tool to derive global or semi-local equilibrium equations
which eventually appear useful for the identification of material parameters. Here
we illustrate this for deriving a useful equation for a hyperelastic membrane. This is
purely for the sake of giving an example, but an infinity of other equations could be
derived.

Let us consider a membrane-like structure made of a hyperelastic prestressed tis-
sue. Themembrane is defined by a three-dimensional surface, namely defined by a set
of points M(ξ1, ξ2), where (ξ1, ξ2) are the surface parametric coordinates associated
with the local basis (g1, g2). Vector g1 points the direction of the maximum principal
curvature and vector g2 points the direction of the minimum principal curvature. The
thickness of themembrane is named h(ξ1, ξ2) andwe denoteκ1(ξ1, ξ2) andκ2(ξ1, ξ2)
respectively the maximum and minimum principal curvatures at (ξ1, ξ2).

There is no particular assumption related to the thickness of the membrane but
it is assumed that through-thickness shear is negligible. A third coordinate ξ3 is
introduced along the direction normal to the surface (through-thickness coordinate),
with ξ3 = 0 at the inner surface and ξ3 = 1 at the outer surface.
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Let us consider a quadrilateral patch across the membrane surface. This patch is
denoted n and we will apply the PVP on its volume. For that, the following virtual
field u∗ is defined across the given patch n:

u∗(ξ3) = (1/κ1
n − h)(1/κ2

n − h)(1/κ1
n + 1/κ2

n − 2h)

(1/κ1
n − (1 − ξ)h)(1/κ2

n − (1 − ξ)h)
nn (2.75)

where 1/κ1
n is the average radius of curvature on the outer surface along the

direction of the maximum principal curvature and 1/κ2
n is the average radius of

curvature on the outer surface along the direction of theminimumprincipal curvature.
The radii of curvature at any position ξ3 between the inner (ξ3 = 0) and outer (ξ3 = 1)
surfaces are then (1/κ1

n − (1 − ξ3)h) and (1/κ2
n − (1 − ξ3)h). Vector nn points the

direction normal to the surface.
The gradient of u∗ may be written as follows:

Grad u∗(ξ3) =
[
(1/κ1

n − h)(1/κ2
n − h)(1/κ1

n + 1/κ2
n − 2h)

(1/κ1
n − (1 − ξ3)h)2(1/κ2

n − (1 − ξ3)h)

]
g1n ⊗ g1

n

+
[
(1/κ1

n − h)(1/κ2
n − h)(1/κ1

n + 1/κ2
n − 2h)

(1/κ1
n − (1 − ξ3)h)(1/κ2

n − (1 − ξ3)h)2

]
g2
n ⊗ g2

n

−
[
(1/κ1

n − h)(1/κ2
n − h)(1/κ1

n + 1/κ2
n − 2h)

(1/κ1
n − (1 − ξ3)h)2(1/κ2

n − (1 − ξ3)h)

+ (1/κ1
n − h)(1/κ2

n − h)(1/κ1
n + 1/κ2

n − 2h)

(1/κ1
n − (1 − ξ3)h)(1/κ2

n − (1 − ξ3)h)2

]
nn ⊗ nn (2.76)

Plugging in and evaluating the integral expression for P∗
int (cf. Eq. 2.74)

P∗
int(t) = −h(t)(1/κ1

n(t) − h(t))(1/κ2
n(t) − h(t))(1/κ1

n(t) + 1/κ2
n(t) − 2h(t))∫ 1

0

[
σw
11,n(t, ξ3) − σw

33,n(t, ξ3)

(1/κ1
n − (1 − ξ3)h)2(1/κ2

n − (1 − ξ3)h)

+ σw
22,n(t, ξ3) − σw

33,n(t, ξ3)

(1/κ1
n − (1 − ξ3)h)(1/κ2

n − (1 − ξ3)h)2

]
An(t, ξ3)dξ3 (2.77)

where An(t, ξ3) is the area of patch n at radial position ξ3 and may be written

An(t, ξ3) = (1/κ1
n(t) − (1 − ξ3)h(t))(1/κ

2
n(t) − (1 − ξ3)h(t))�

1
n(t)�

2
n(t) (2.78)

where �1
n and �2

n are two angles defining the angular sector of patch n along the
directions of the maximum and minimum principal curvatures, respectively. Intro-
ducing the expression of An(t, ξ3) into Eq.2.77, we obtain
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P∗
int(t) = −h(t)(1/κ1

n(t) − h(t))(1/κ2
n(t) − h(t))(1/κ1

n(t) + 1/κ2
n(t) − 2h(t))

�1
n(t)�

2
n(t)

∫ 1

0

[
σw
11,n(t, ξ3) − σw

33,n(t, ξ3)

(1/κ1
n − (1 − ξ3)h)

+ σw
22,n(t, ξ3) − σw

33,n(t, ξ3)

(1/κ2
n − (1 − ξ3)h)

]
dξ3

(2.79)

Regarding the virtual work on the boundaries, shear stresses are null so only the
virtual work of the internal pressure needs to be considered

P∗
ext(t) = P(t)(1/κ1

n(t) − h(t))(1/κ2
n(t) − h(t))�1

n(t)�
2
n(t)

(1/κ1
n(t) + 1/κ2

n(t) − 2h(t)) (2.80)

so combining all the equations we have

P(t) = h(t)
∫ 1

0

[
σw
11,n(t, ξ3) − σw

33,n(t, ξ3)

(1/κ1
n − (1 − ξ3)h)

+ σw
22,n(t, ξ3) − σw

33,n(t, ξ3)

(1/κ2
n − (1 − ξ3)h)

]
dξ3

(2.81)

Finally the obtained equation is a generalized expression of the traditional Laplace
law commonly used in biomechanics of soft tissues [22].

2.4.3 Identification of Hyperelastic Parameters
Using the VFM

The principle of virtual power (PVP) has been used for the identification of material
properties since 1990 through the virtual fields method (VFM), which is an inverse
method based on the use of full-field deformation data [21, 23, 24]. The VFM
was recently applied to the identification of uniform material properties in arterial
walls [23].

The first step of the VFM consists in introducing the constitutive equations. In
the case of hyperelasticity, Eq. 2.74 becomes

−
∫

ω(t)

(
J−1F

∂ψ

∂E
FT

)
: (Grad v∗)dω +

∫
∂ω(t)

tn.v∗ds = 0 (2.82)

This equation being satisfied for any KA virtual field, any new KA virtual field
provides a new equation. The VFM relies on this property by writing Eq.2.82 above
with a set of KA virtual fields chosen a priori [25]. The number of virtual fields and
their type depend on the nature of the strain energy function. Two different cases can
be distinguished.
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• Case #1: the strain energy density function depends linearly on the sought para-
meters. Writing Eq.2.82 with as many virtual fields as unknowns leads to a system
of linear equations which provides the sought parameters after inversion.

• Case #2: the strain energy density function involve nonlinear relationswith respect
to the constitutive parameters. In this case, identification must be performed by
minimizing a cost function derived from Eq.2.82.

Let us illustrate this with the strain energy function of Eq.2.71. It provides a
membrane constitutive equation, i.e. it yields the tension and not the Cauchy stress
so the integrals will be written across a given surface ν(t) figuring a portion of the
membrane

− μ1

∫
ν(t)

1√
I2

(
B −

√
I21

)
: (Grad v∗)dν

− μ2κ

∫
ν(t)

1√
I2

eγ(Iκ−1)2 (Iκ − 1) B : (Grad v∗)dν

− μ2(1 − 2κ)

∫
ν(t)

1√
I2

eγ(Iκ−1)2 (Iκ − 1)
(
FM ⊗ MFT

) : (Grad v∗)dν

+
∫

ν(t)
tn.v∗dl = 0 (2.83)

The equation may be rewritten such as

μ1Aij + μ2κBij(γ) + μ2(1 − 2κ)Cij(γ, θ) = Lij (2.84)

where Aij, Bij, Cij and Lij can be evaluated directly from the experimental measure-
ments. Index i is for different possible choices of virtual fields and index j is for
different possible stages of the experiment for which deformations and loads are
measured.

Equation2.84 is an equation of the unknown material parameters for each choice
of virtual field i and at every stage j of the test. The equation is linear in μ1, μ2κ and
μ2(1 − 2κ) but it is nonlinear in γ and θ. The solution is found by minimizing a cost
function defined such as

∑
i

∑
j

(
μ1Aij + μ2κBij(γ) + μ2(1 − 2κ)Cij(γ, θ) − Lij

)2
(2.85)

This cost function can be minimized by the simplex method or using a genetic
algorithm in case of multiple minima. The chosen virtual fields and other details
about the experiments can be found in [23, 26] for applications to blood vessels.

A recent extension of the method was proposed for the inverse characterization of
regional, nonlinear, anisotropic properties of the murine aorta [27]. Full-field biaxial
data were collected using a panoramic-digital image correlation system and the VFM
was used to estimate values of material parameters regionally for a microstructurally
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motivated constitutive relation. The experimental-computational approach was val-
idated by comparing results to those from standard biaxial testing. Results for the
non-diseased suprarenal abdominal aorta from apolipoprotein-E null mice revealed
material heterogeneities, with significant differences between dorsal and ventral as
well as between proximal and distal locations, which may arise in part due to dif-
ferential perivascular support and localized branches. Overall results were validated
for both a membrane and a thick-wall model that delineated medial and adventitial
properties.

Whereas full-field characterization can be useful in the study of normal arter-
ies, we submit that it will be particularly useful for studying complex lesions such
as aneurysms. Indeed, many vascular disorders, including aortic aneurysms and
dissections, are characterized by localized changes in wall composition and struc-
ture. Notwithstanding the importance of histopathologic changes that occur at the
microstructural level, macroscopic manifestations ultimately dictate the mechanical
functionality and structural integrity of the aortic wall. Understanding structure–
function relationships locally is thus critical for gaining increased insight into con-
ditions that render a tissue susceptible to disease or failure.

2.5 Conclusion

In this chapter, after a brief review of the constitutive relations commonly used for
soft tissues, two recent developments of the author’s experience were presented to
illustrate the potential of digital image correlation and inverse methods in experi-
mental biomechanics of soft tissues.

The inverse problems, including the semi-forward problems [20], posed by the
identification of material properties in soft biological tissues are not the simplest
due to the complex microstructure of soft biological tissues, their finite range of
deformation, their inter-individual variability, their anisotropy, their point-dependent
nonlinear behavior, and their permanent functional adaptation to the environment.
Determining the mechanical properties of such tissues has nevertheless become a
field of intense research since stress analysis in the tissues has been shown to be
meaningful for medical diagnosis in a number of medical applications as for instance
in the context of vascular medicine, indicating the risk of rupture of an aneurysm
[28] or the risk of stroke [29].

The current chapter has focused on in vitro characterization. The in vivo identifi-
cation of soft tissues present other important issues. They suppose both the existence
of reliable experimental facilities for inducing a mechanical stimulus (natural blood
pressure variations, local external compression, shear waves [30]) and the existence
of imaging devices for measuring the response of tissues (Ultrasound Imaging [31],
Magnetic Resonance Imaging [32] or Optical Coherence Tomography [33]). In all
these situations where some elements of the response of soft tissues subjected to
mechanical stimuli are measured, the access to the mechanical parameters is never
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direct and inverse problems have to be posed and solved. The inverse problems
posed by the in vivo identification of soft tissues will be discussed more specifically
in Chaps. 5 and 6 of this book.
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Chapter 3
How Can We Measure the Mechanical
Properties of Soft Tissues?

Sam Evans

Abstract Measuring the mechanical properties of soft tissues presents three inter-
linked problems. First, we must carry out experimental measurements to quantify
the actual behaviour of the tissue. Second, we need to represent this by some kind
of mathematical model, which typically has to be solved using numerical techniques
such as the finite element (FE) method. Third, we need to find the parameter values
in the model that best match the experiment and to quantify the uncertainty in the
resulting material properties. Experimental measurements present numerous diffi-
culties in comparison with conventional engineering materials and care is needed in
the choice of test method, sample selection and preparation, calibration and inter-
pretation of the results. Typically an optical technique may be needed to measure
the deformation, such as digital image correlation (DIC). FE models of soft tissues
are inherently difficult to solve because of their extreme nonlinearity and the typical
stiffening behaviour with increasing deformation which leads to numerical instabil-
ities. Possible ways to reduce convergence problems and increase the reliability of
these models are discussed. The most common method to find the parameter values
that match an experiment is to use an optimisation algorithm to try to find the para-
meters that best match the experimental results. However this is slow and there is no
way of knowing whether the best parameters have been found or what range of other
values could also be compatible with the experiment. A better approach is to gen-
erate a statistical emulator that predicts the result of the model and then to evaluate
a wide range of parameter values in order to find the range of values that could be
compatible with the experiment. This gives revealing insights into the uncertainty of
the procedure and the validity of the final results.
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3.1 Introduction

Measuring the mechanical properties of soft tissues is a complex problem. A fun-
damental difficulty is to decide what the properties are that we want to measure.
Material properties in a quantitative sense are parameters in a mathematical consti-
tutive model (for example, Young’s modulus is a parameter in Hooke’s Law), and in
general we do not have good constitutive models that fully describe the behaviour
of soft tissues. Indeed it is possible that we will never have such models, since the
structure and behaviour of soft tissues is so complex; a model that fully describes a
tissue’s behaviour might have so many unknown parameters that it would be impos-
sible to measure them all. We therefore need to make an intelligent choice of a model
that will describe the behaviour of the material sufficiently well for the purpose we
have in mind, while having a minimum of parameters to measure, and then to bear
in mind that it will never be a precisely accurate representation of the behaviour of
the actual material. We will need to be aware of its limitations in using it and to be
careful to validate it as far as possible through experimental observations.

Having chosen an appropriate constitutive model, we then need to do three things.
First, we will need to carry out some experimental measurements, and this raises
a number of theoretical and practical challenges. Second, we need some kind of
mathematical model of the experiment, and for all but the simplest experimental
designs and constitutivemodels this is likely to require a numerical solution, typically
using FE techniques. Third, we need a way to extract the material parameters from
the combination of the experiment and the mathematical model, and if possible to
quantify the uncertainty in the results. This chapter will discuss each of these three
aspects and present some examples of possible techniques.

3.2 Experimental Measurements

There are several particular problems that must be considered when testing soft tis-
sues that do not arise when carrying out conventional tests on engineering materials.
For engineering materials the conventional test methods have evolved over many
years in order to address these problems, but the same approaches and solutions do
not typically apply when testing different materials and there are many things that
are taken for granted in testing conventional engineering materials but which must
be considered properly when testing soft tissues.

A fundamental problem in testing any biological material is that they are much
more variable than engineering materials (where a great deal of effort goes into
making them as consistent as possible) and so much more care is needed in selecting
samples tomake sure they are representative and carrying outmultiplemeasurements
and statistical analysis to assess their variability and its implications for the conclu-
sions that can be drawn. This is of course true for all biological measurements and
biologists have evolved methods to address these problems. It is highly informative
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for any engineer to spend time with biologists and see their approach to experimental
work. They take great care in selecting their subjects, often in terms of parameters
such as age, sex, body mass, activity levels, diet, and other factors that might be
expected to influence the results, and they will document these parameters for future
comparison as well as trying to make sure that groups to be compared are similar
or even matched between groups. It would not be expected that the same material
would have the same properties at different anatomical sites. Multiple samples are
always needed and it would be usual also to repeat the entire experiment at least once
and make sure that the results are consistent. Standards for testing metals typically
require a minimum of five samples and this is about the smallest number that can
give a reasonable sense of the variability of the material and hence the uncertainty
in the results. To obtain meaningful comparisons between biological samples much
larger numbers are needed, often tens or even hundreds of measurements to detect
small differences in variable populations, and an appropriate statistical analysis is
absolutely essential. Every factor that could conceivably have an influence is kept
constant between experiments, and the accuracy and repeatability of measurements
is checked thoroughly and regularly. This is also a useful exercise when using engi-
neering testing equipment, as even apparently accurate devices such as load cells can
frequently produce significant errors and other measurements such as the displace-
ment of a testing machine are often not calibrated and may be quite different from
the actual relative displacement of the grips or the ends of the sample.

Preparing samples of biological materials presents significant difficulties as it is
not easy to cut them accurately to a particular shape. Cutting forces cause significant
distortion and it is often unclear what is the unloaded free shape of the material
anyway. Methods such as indentation tests which do not require such preparation
can have significant advantages in this respect. Cutting materials which have large
scale structures such as fibres often significantly alters their properties and this also
is an argument for testing materials intact rather than cutting specimens from them.
A further issue to consider in preparing specimens is that the material is often inho-
mogenous and anisotropic and so the position and orientation of the specimen within
the sample must be carefully considered and defined.

A very important question to consider is the environment, both during the trans-
port, preparation, and storage of the specimens and during the actual testing. Soft
tissues are likely to be sensitive to temperature and hydration and also to factors
such as the concentration of electrolytes which may cause swelling or dehydration.
Preservation of samples is difficult as freezing or chemical fixation are likely to cause
significant changes in mechanical properties. For these reasons it is advantageous to
test tissues in situ in living subjects although this introduces other complications.

The choice of test configuration is also important. In metals, a tensile test will
effectively predict behaviour in compression, shear or other situations, since the
mathematical models that are used correctly describe what happens under different
types of loading. For soft tissues this is generally not the case; data from tensile
tests will not necessarily correctly predict behaviour in compression or vice versa.
Similarly the models that are currently used may not correctly describe what will
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happen under multiaxial loading. It is therefore a good idea wherever possible to test
in a similar loading configuration to the actual application (this is also the case for
some engineering materials such as polymers).

For some simple tests such as uniaxial tensile tests, it may be possible to calculate
the material properties directly from the load-displacement data, though this comes
at the cost of greater difficulties in preparing accurate, parallel specimens. For more
complicated geometries it will probably be necessary to use a computational model
to derive the material properties from the experimental data. Note though that even
for such apparently simple tests there may be complications. For example, Legerlotz
et al. [1] showed that in tensile tests on tendons the interior of the specimen slides
relative to the outside where it is gripped and it is difficult to obtain uniform tension
except in very long, thin specimens.

Tensile tests are widely used for engineering materials but have some limitations
for soft tissues. Gripping the specimens is difficult and many researchers resort
to measures such as freezing the specimens to the grips or using adhesives. The
fundamental problem is that the specimens are not only slippery but have a high
Poisson’s ratio and undergo large strains, so that as they are stretched they become
much thinner and slip out of the grips. Using wedge or pneumatic grips that will
tighten as the specimen contracts is much more effective than using screw clamps.
Clamping the specimen for a time before testing to squeeze out water can also be
helpful. Whichever of these measures is used, the grips will have an effect on the
properties and may cause a stress concentration and premature failure. This can be
alleviated by making specimens with wider ends but this may not be effective where
the material is very anisotropic.

Compression tests are challenging because the specimens must be short to avoid
buckling, but this leads to significant effects of friction between the specimen and
the platens. This constrains the ends of the specimen so they do not expand as much
as they would in pure compression, causing barrelling and inaccurate results. It is
possible to compensate for this by modelling the test but this requires assumptions
about the friction. Another type of compression test, often used for cartilage, confines
the specimen in a cylinder with porous platens that allow fluid to flow through them.
Theoretically this leads to 1D deformation and fluid flow and an analytical solution is
possible, although in practice there are again issues with unknown friction between
the specimen and the cylinder.

A more satisfactory alternative may be to use an indentation test, which is much
less sensitive to friction. For homogenous materials analytical solutions are available
[2]; for more complex materials it may be possible to estimate the properties at
different depths using different sizes or shapes of indenters [3]. Fundamentally only
a limited amount of information is available from the load-displacement curve and
this limits what can be learned from the test; using additional strain measurements
may allow more information to be extracted [4]. The test is sensitive to the stiffness
(for example the Young’s modulus) but insensitive to the Poisson’s ratio, which is
useful for measuring the stiffness but unhelpful if the Poisson’s ratio is also needed,
and it clearly has serious limitations for anisotropic materials. A major advantage of
indentation tests is that they require minimal specimen preparation and so they are
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often used for in situ tests on living tissue. A suction test where the tissue is drawn
into an aperture is similar to an inverted indentation test and shares many of the same
advantages and disadvantages [5].

An interestingmethod for testing tissues that are commonly under biaxial tension,
for example aneurysms, is to clamp a circular specimen around its edges and inflate
it with a fluid pressure applied to one side [6]. In its most sophisticated form, the
curvature and strain distribution can be measured using optical methods and the
curvature can be used to calculate the stress, allowing the full stress strain curve to
be mapped out locally across the tissue.

3.3 Strain Measurement

When testing materials, it is often necessary to use some kind of additional strain
measurement if accurate stiffness measurements are to be obtained. Accurate results
cannot be obtained from the machine displacement alone as this will include extra
deflections due to the load cell stretching, the frame of the machine itself deforming,
and the grips and the ends of the specimens deforming as well as the actual gauge
length to be tested. Often this can add several millimetres of extra deformation with
the result that the stiffness of the specimen may be severely underestimated. When
testing metals, this is usually done by attaching an extensometer to the specimen,
but these cannot normally be attached to soft tissue specimens and in any case
would be much too heavy. An optical method is best to avoid applying additional
loads to the specimen. Alternatives include simple camera systems, dedicated video
extensometers, motion analysis systems, and DIC. In all cases careful preparation
and calibration is essential as is careful camera setup. All these techniques rely on
good quality images.

An example of a camera-based system was presented by Screen and Evans [7].
A tendon sample was loaded in tension and held at a constant displacement while
monitoring stress relaxation. The cells were stained and the tendon was observed
using a confocal microscope. This produced a series of images (Fig. 3.1) which were
then thresholded to identify the cells which were tracked using aMatlab-based track-
ing programme. The cells were thus used as markers to track the deformation of the
tissue. In order to calculate the strain, the cell centroids were meshed with a trian-
gular Delaunay mesh and the strain was calculated using the usual FE mathematical
approach. This approach produced accurate displacement measurements of a modest
number of points and therefore a coarse strain measurement, which was sufficient
to demonstrate the very large inhomogeneities that were present but not enough to
show the full strain field in detail.

Another method that has some advantages is to use a commercial motion capture
system, with different lenses if necessary to work at a shorter distance with a higher
magnification. An example was presented by Mahmud et al. [8], where deformation
of the skin on the armwasmeasured using aQualisysmotion capture system.Markers
were punched from self -adhesive retroreflective tape and attached to the skin. It is
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Fig. 3.1 Typical confocal image of tendon under load, showing fibres and tenocytes [7]

possible to use quite a large number of markers to obtain more detailed displacement
measurements but this requires at least three cameras to avoid tracking problems.
The advantage of this approach is that it can measure movements at a relatively
high sampling rate with minimal postprocessing, using equipment that is commonly
available in biomechanics labs. The resolution ismuch better than the pixel resolution
of the camera, typically around 1/60,000 of the field of view.

If detailed strain measurements are needed, the best approach may be to use DIC.
Here a speckle pattern is applied to the surface (using face paint, for example) and this
provides distinctive patterns in subsets of pixels which can bematched in consecutive
images or between different cameras in order to track the movement of the surface
and calculate its location in three dimensions. Using commercial systems this is a
relatively quick and straightforward process which also gives subpixel resolution and
tracks the movement of a much larger number of points, typically many thousands,
allowing detailed strain calculations. While the technique can be very accurate, the
results depend on the quality of the speckle pattern, the calibration and the stability,
and focus of the cameras, and these aspects are critical if good results are to be
obtained.

It is possible to develop more complex optical measurement systems using DIC
or other techniques. For example, Genovese et al. [4] demonstrated a system for
indentation tests that combines panoramic DIC using a single camera and a conical
mirror with fringe projection to measure surface deflection. A limitation of all these
methods is that they onlymeasure strain at the surface and not inside thematerial, and
other techniques such as 3D DIC using ultrasound, tagged MRI [9] or elastography
may be valuable in the future although they are in their infancy at present.
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3.4 Nonlinear FE Modelling of Soft Materials

Havingmade some experimentalmeasurements of deformation in amaterial, we next
need a mathematical model to describe the experiment which we can use to identify
the values of the material parameters. In some simple cases it may be possible to
solve this model using an analytical solution, but in most cases a numerical solution
is required, generally using FE methods. This process is difficult, unreliable and
frustrating, and it is very helpful to understand in simple terms how the solution
algorithm works and how and why it goes wrong.

The basic concept of the FE method is that the unknown, continuous displace-
ment field is approximated by a piecewise continuous field, defined by a number
of discrete variables. The region to be modelled is divided into a set of subregions
(or elements) in which the displacement is approximated by a simple function of
the position, typically a linear or quadratic function although higher order approx-
imations are sometimes used. If we imagine for example that we wish to represent
the continuous displacement field shown in Fig. 3.2, we can approximate it by a
series of linear functions which are defined by the displacement at some known
points (called nodes), in this case at the ends of each linear section (or element). This
greatly simplifies the problem because now we only have to find the displacements
of the nodes and not the whole continuously varying displacement field. However it
is obvious that the quality of the results will depend very strongly on the quality of
the approximation and the assumptions that are made about how the displacement
will vary. If the number of elements is insufficient, then it will be impossible for the
approximated displacement field to properly match the true, varying displacement
and the results will be inaccurate. Since we are constraining the displacement within
each element to vary in a particular way, using a coarser mesh with fewer elements
always increases the stiffness and tends to underestimate the displacement. Where
there are localised variations in displacement or strain, we need to have a sufficiently
fine mesh to describe the true displacement field, otherwise the solution will be inac-
curate. On the other hand, increasing the number of elements greatly increases the
computational cost, so there is always a compromise between accuracy and solution
time. Fortunately St. Venant’s principle dictates that although a coarse mesh may

Fig. 3.2 A continuously
varying displacement field is
approximated by a series of
linear segments
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result in local inaccuracies, it should not greatly affect accuracy in regions further
away, and this means that an experienced modeller can refine the mesh in areas of
interest while using a coarser mesh elsewhere.

Having defined the mesh of elements and nodes that will be used to approximate
the displacement field, the next step is to calculate the actual displacements at the
nodes. This is defined by differential equations that describe the mechanics of defor-
mation, constitutive models that provide a mathematical description of the behaviour
of the material and boundary conditions that describe the loads and constraints act-
ing on it. Combining these produces a set of equations that must be solved in order
to approximate the solution. There are two fundamentally different approaches that
may be used to do this, explicit solution algorithms and implicit solution algorithms,
and it is valuable to understand the difference between them and the strengths and
weaknesses of the two approaches.

Having defined the mesh, the problem is to find the displacements of all the nodes
which will result in all the internal forces in the elements (due to the stress generated
by deformation of the material) being in equilibrium with each other and with the
external forces. Alternatively, for a dynamic problem it is necessary to find the out of
equilibrium forces and the resultant accelerations, velocities, and displacements. An
explicit solution uses the latter approach tofind aquasi-static solution, by applying the
loads and simulating themotionof thematerial until it eventually reaches equilibrium.
An implicit approach can be used for dynamic problems, but can also be used to find
a static solution directly.

The explicit solution algorithm is very simple. Starting with the initial displace-
ments of the nodes, we find the strain in each element, then use the constitutive
model to find the corresponding stress, then integrate the stress to find the force in
the element. The forces at each node are then summed, with the external forces, to
find the total residual force. The mass of the elements is assumed to be lumped at the
nodes (for example, for a square element a quarter of its mass might be assumed to
be lumped at each corner) and so the acceleration of each node can be found using
Newton’s Second Law. Multiplying the acceleration by a small time step we find the
change in velocity, which is then added to the velocity of the node, and multiplying
the velocity by a short time step we find the change in displacement. The process is
then repeated for a large number of time steps.

This approach has several advantages. It is easy to programme and requires only
a modest amount of memory to store the displacement, residual, acceleration, and
velocity vectors. It is also easily parallelised as most of the computational effort is
in calculating the stresses and forces in the elements, and this can be shared between
processors. It is often alsomore reliable than an implicitmethod in terms of producing
a solution, although there is no inherent way of knowing if the solution is correct.

A major disadvantage of the explicit approach is that it requires very small time
steps, otherwise it becomes unstable. Roughly speaking the time step must be shorter
than the time taken for a sound wave to travel across the smallest element, commonly
a fraction of a microsecond, and so a very large number of time steps are needed to
model even a short test. This means that explicit solutions are better suited for high
speed dynamic events such as impacts and can be very slow for quasi-static problems.
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To reach static equilibrium some damping is also needed; this is normally applied
through simplified and unrealistic models and the parameters are approximated by
trial and error. To obtain a fast quasi-static solution it is possible to increase the mass,
in order to increase the timesteps, and increase the damping to reduce the duration
of oscillation.

A further disadvantage of the explicit approach is that there is no inbuilt check
on the accuracy of the solution, and so although it often produces results there is
no easy way of knowing if they are correct. For nonlinear materials and contacts it
is possible to have localised oscillations and instabilities which may not be correct,
even if there is no large scale instability.

Implicit solution algorithms take other approaches to find a set of displacements
where there is static equilibrium. The general concept is illustrated in Fig. 3.3, which
shows the simplest possible FEmodel consisting of a single spring element with only
one degree of freedom. There is an internal force Fi in the spring and an external
force Fext is applied to it. The total force on the end of the spring is therefore
R = Fext − Fi . The problem is then to find the displacement x at which R = 0, or
at least is close to zero within an appropriate tolerance. The internal force could
be linearly proportional to the displacement, following Hooke’s Law, but it could
equally be nonlinear and not necessarily elastic; the graph shows a typical tensile
curve for a metal as an example.

If the spring is linearly elastic, the problem is simple: we calculate the initial
residual R and then find the appropriate displacement using Hookes Law as x =
k−1R. If we have more elements and more degrees of freedomwe can replace Rwith
a vector of residual components at each node and x with a corresponding vector of
displacements; then k is replaced with a stiffness matrix K which we can assemble
from the known stiffness of each element. Then the solution can be found as x =
K−1R (in practice the stiffness matrix is not actually inverted but various ingenious
algorithms are used to solve the system of equations directly and more efficiently).
This is the basis of the standard FE method and offers a fast and efficient solution
which has been very highly optimised.

Fig. 3.3 A simple FE model
consisting of a single
element. The graph shows
the residual force R as a
function of the displacement
x of the node
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Fig. 3.4 Newton–Raphson
method for solution of a
nonlinear FE problem.
Convergence is good where
the stiffness of the material
reduces

Although this method is fast and effective, it does not necessarily scale so well for
large problems as the explicit algorithm. The size of the stiffness matrix is propor-
tional to the square of the number of degrees of freedom (although it is symmetric,
so only half of it needs to be stored, and sparse with many zeroes which also allows
efficiencies of storage) and so for large problems with many elements it is slow to
assemble and requires a very large amount of memory. Solving the resulting system
of equations can also be time consuming for large problems.

For nonlinear problems, the usual approach is to use a Newton–Raphson method
as illustrated in Fig. 3.4. The initial residual is calculated, then the tangent stiffness
is used to find a better estimate of the solution and the process is repeated until it
converges on an adequately good solution (various convergence criteria can be used
but it is important to check that they are set appropriately to ensure an accurate
solution). This approach works well for materials that soften or in other words where
the stress decreases below the linear elastic value, for example metals that plastically
deform as shown. As long as the stress does not go above the maximum of the curve
(the ultimate tensile strength) then it should converge smoothly to a stable solution
as shown.

There are two situations where this approach will not work so well. The first,
which is not illustrated, is where the load-displacement curve is not smooth and
continuous but has sudden steps or changes of gradient. This occurs for example
with contact problems and it should be obvious that in this case it will be more
difficult to get reliable convergence. It is common to end up with a situation where
the algorithm oscillates in and out of contact and does not converge to a solution, or,
worse, diverges and fails.

The other situation which is fundamentally difficult is shown in Fig. 3.5, which
shows what happens with a material which becomes stiffer with increasing strain. In
this case the initial linear estimate of the stiffness will overestimate the displacement,
and then the force on the next iteration will be much too high. This in turn may result
in a huge underestimate on the subsequent iteration, an even larger overestimate on
the following one, the elements become excessively distorted and convergence fails.
Typically the excessive distortion of the elements results in parts of them turning
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Fig. 3.5 Where the stiffness
increases, the initial tangent
modulus results in an
overestimate of the
displacement and
convergence is very difficult

inside out, resulting in the negative Jacobian message which is familiar to anyone
who uses FE to model soft materials.

The way to work around this frustrating problem is to increase the load in a series
of very small increments, iterating until convergence on each increment before going
on to the next one. Hopefully the tangent stiffness does not increase too much on
each increment and excessive displacements and distortion do not occur. This is often
effective, especially when combined with algorithms that automatically reduce the
load increment and try again when convergence fails. However, it makes the process
extremely slow and frustratingly unreliable.

A useful way to reduce this problem, which is widely used, is to include a line
search, in which the displacement that is applied on each iteration is reduced to a
suitable fraction of that predicted by the Newton–Raphson algorithm. The fraction
of the displacement that is applied must be determined by trial and error, which
slows down each iteration, but hopefully greatly reduces the number of iterations
and increments that are needed. For any given iteration there is an optimum step
length which will give the biggest step towards the solution, but finding this by
trial and error is time consuming and usually we look only for a step length which
improves the solution and not for the exact optimum.

Another approach to the problem is to consider the solution as an optimisation
problem in which we seek to minimise the total strain and potential energy in the
structure. For the simple example we considered first, moving the node to the left
of the optimum will increase the potential energy, while moving it to the right will
increase the strain energy. The sum of the two is a minimum at the equilibrium point.
In general if we disturb a structure that is in equilibrium we will have to do work
on it by applying a force that moves it through some finite distance and so we will
increase the potential energy. The equilibrium position is therefore the position of
lowest energy.

Another way to look at this is to remember that the behaviour of a hyperelastic (or
elastic) material is defined by a strain energy function, which we then differentiate
with respect to the strain to find the stress and again to find the stiffness. If we
consider a structure made of such a material, we can differentiate the total energy to
find the residual force; to find the minimum energy we look for the point where the
differential is zero and hence the residual is zero.
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Fig. 3.6 Solution as optimisation. The node now has two degrees of freedom and can move in two
directions. The contours show the potential energy at different positions of the node. Moving the
node downhill in the direction of the potential energy gradient (which is the direction of the residual
force) moves it towards the solution, but there is a tendency to zigzag in ever smaller steps

Looking at the problem in this way opens up a whole range of solution algorithms
developed for optimisationproblems. In fact the conventionalNewton–Raphson tech-
nique is well known in optimisation but there are many other methods that can be
used.Anunusual aspect of the problem is that it is difficult to calculate the total energy
with sufficient accuracy to use it effectively in optimisation near the minimum due to
rounding errors and approximations in a numerical model. We therefore work with
the first differential (the residual vector) and possibly the second differential (the
stiffness matrix). Although the stiffness matrix can be useful it is very cumbersome
to calculate and store and it can be advantageous not to use it, especially for large
models.

A simple approach is to move the nodes in the direction of the residual force on
each iteration. This is called a steepest descent method as the nodes move in the
direction where the potential energy drops most steeply. A line search is needed to
work out how far to move in the chosen direction. The problem with this method can
be seen in Fig. 3.6: the nodemoves in a zigzag in decreasing steps that become smaller
and smaller as it approaches the solution, and so the solution is very slow. This can
easily be overcome using some combination of the current direction and the direction
on the previous step, which smooths out the zigzags, and this is called the conjugate
gradient method. Various formulae are possible to determine the new step direction
and some, such as the Hager–Zhang method [10] are proven to converge for smooth,
continuous functions even if they are nonlinear. Such methods offer the possibility
of much faster solution than an explicit solver for quasi-static problems while having
the same advantages of reduced memory requirements, efficient parallelisation, and
good scalability for large models.

Another very efficient method is to estimate the tangent stiffness matrix from the
actual changes in force and displacement on each iteration rather than recalculating
it every time. This is the Broyden–Fletcher–Goldfarb–Shanno (BFGS) method [11]
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which is used in software such as FEBio and can be very fast and effective when
combined with an efficient linear solver.

It is obvious that current solution methods for nonlinear FE models are far from
optimal and there is still considerable scope for further development before we have
a fast, reliable method that allows rapid analysis of soft tissue deformation. In the
meantime it is very helpful to have some understanding of how the algorithms work
if we are to persuade them to converge and give us reliable results. We have seen
that all these methods provide only an approximate solution to a specified tolerance
and it is very important to check this tolerance and make sure that it is tight enough
to give an accurate answer but not excessively tight resulting in overly long solution
times.

The following suggestions may be useful when struggling to get a nonlinear FE
model to converge:

• Reduce the load increments. Using smaller load increments (sometimes presented
as timesteps) is generally helpful. If there is automatic adjustment of the incre-
ments, understand how it works and use it to ensure that you have really small
increments for parts of the solution where convergence is difficult.

• Avoid excessive deformation. This is not particularly helpful if you are trying to
model a very large deformation, but in general the larger the deformation the greater
the convergence problems. If you do not know the exact load or material properties
then look at your model and make sure that the deformations you predict are not
unrealistically large. A model cannot be expected to converge if the deformation
is beyond what would be feasible in reality.

• A finer mesh can help. Often increasing the number of elements can help to reduce
the distortion of individual elements and therefore help convergence. This is par-
ticularly true for contact problems where having a large number of elements in
the contact region is usually helpful. Sometime the opposite occurs and a coarser
mesh converges better.

• Some material models work better than others. Simple models such as the neo-
Hookean and Ogden models often work well while more complex ones such as the
Gasser-Ogden-Holzapfelmodel are oftenmore difficult. Some, such as theArruda-
Boyce model, often seem to cause convergence problems. Changing the material
model, even to a special case of another model which produces mathematically
identical results, can often help convergence.

• Adjust the bulk modulus. For most hyperelastic models the bulk modulus is a
separate parameter and is often extremely sensitive. Realistic values often lead to
convergence problems as the volumetric stiffness is so much higher than the shear
stiffness. Reducing the bulk modulus somewhat can often give better convergence
without sacrificing significant accuracy in most cases. A value of the order or
1000 times greater than the shear modulus often works well. Experimenting with
changing the bulk modulus is often very useful when trying to solve convergence
problems.
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• Adjust contact parameters. Contact problems introduce discontinuities in the load
displacement curve and therefore cause problemswith all solution algorithms. The
contact penalty parameter is generally very sensitive and values that are too small
will cause interpenetration of the contact surfaces while values that are too large
cause convergence failure. Experimenting with different penalty parameters and
contact formulations is often a fruitful way to solve convergence problems.

3.5 Parameter Identification and Uncertainty
Quantification

Having carried out an experiment and successfully created a numerical model, the
next challenge is to find the parameter values in the model that match the experiment.
This is often done by varying the model parameters (typically the material parame-
ters) using some sort of optimisation algorithm to try to find the best match with
the experiment. This method is often known as inverse FE or FE model updating.
As an approach it suffers from two major problems: it is often necessary to run the
model a very large number of times, typically serially one after another, making the
process very slow, and there is no way of knowing whether the final parameter set is
the true optimum or what range of other values might be consistent with the exper-
iment. It is often found that a very wide range of values of some parameters may
be consistent with the experiment—for example, in an indentation test the stiffness
is very insensitive to the Poisson’s ratio of the material and so a very wide range of
values may produce nearly identical apparent stiffness. There are also uncertainties
and inaccuracies in the experiment, for example in the calibration of the equipment,
and ideally we would like to be able to define the range of possible parameter values
that could be compatible with the experiment so that we really know the accuracy of
our measurement/modelling/parameter identification process.

A third question which affects any measurement of soft tissue properties is that
we do not have well developed and reliable constitutive models that we know will
correctly describe their behaviour in any circumstances. We must therefore always
think about validation and testing that the chosenmodel and parameterswill correctly
predict behaviour under different types of loading.

A typical example of the inverse FE process was presented by Evans and Holt
[12], who used DIC to measure the deformation of skin under in plane traction and
modelled the experiment using a simple 2D FE model. The measured displacements
around the edges of the region of interest were used as boundary conditions together
with themeasured load. A stochastic optimisation approach was then used to identify
the material parameters that resulted in the closest match to the measured displace-
ment field. This required several thousand iterations using a specially developed
solver. It was possible to identify parameter values that fitted the measured behav-
iour very well, but there was considerable uncertainty and a wide range of parameters
that generated quite small errors. There was a strong interaction between the para-
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Fig. 3.7 Typical response curvewhenmatching amodel to an experiment.As thematerial parameter
is varied, the error increases or decreases to a minimumwhen the best match is obtained. The points
show the results of individual simulations, which could be assumed to follow aGaussian distribution
around an underlying smooth curve due to numerical error

meters, such that if one changed then the optimum value of the others also changed,
and there was a large range of parameter values that produced similar results with
a fairly small error and could potentially be compatible with the experiment. There
is thus a large uncertainty in the measured material properties, and this is typical
of this type of approach. We need to remember this when using material properties
generated by such methods.

The combination of numerical inaccuracies such as rounding errors, a finite con-
vergence tolerance and other computational factors also means that there is some
error in the results. Of course there may also be systematic errors such as increased
stiffness of the model due to an excessively coarse mesh. This noise makes it dif-
ficult to identify the global optimum accurately when looking only at local results.
Figure3.7 shows a generic response curve that we might expect from such an exper-
iment. The error is plotted as a function of a single parameter and the numerical
results follow a smooth curve with some random noise superimposed. It is clear that
if we just look at the data points, especially locally around the optimum, it would
not be easy to identify exactly where the true optimum is. The point with the lowest
error is not in fact the minimum of the underlying curve. We can obtain a far bet-
ter understanding of the data if we take advantage of our prior knowledge that the
response should be a smooth curve. If we fit such a curve to the data we can easily
identify the global optimum. Better still, we can then predict the result for any other
parameter value without having to solve the model again and this could allow us to
evaluate many more combinations of parameters very quickly to see if they could be
compatible with the experimental results. We can also predict and evaluate the effect
of numerical inaccuracies.

This approach has been well developed in the field of climate modelling, among
others, using a Bayesian statistical framework to develop a mathematical model of
the response on the assumption that actual model results are normally distributed
about an underlying smooth curve [13]. The model or emulator can be developed
from a few hundredmodel runswith parameters chosen to give a good spread over the
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expected space, and these runs can be carried out in parallel as the parameters used
do not depend on previous results as would be the case when using optimisation
algorithms. Having made an emulator that predicts the results of the model, it is
then possible to evaluate many thousands of parameter combinations and see which
ones are compatible with the experimental results, including the uncertainty in the
experimental measurement, numerical uncertainty in the computational results and
experimental variables or unknowns such as precise alignment of the test fixtures and
coefficients of friction. This gives a full understanding of the parameter space, the
range of combinations of parameter values that could be correct, and the sensitivity of
the results to each parameter. This showswhere additional measurements are needed,
or changes to the experimental method, in order to properly assess the effects of
certain parameters.

3.6 Summary

We have seen that there are many potential errors and uncertainties in developing
models of the behaviour of soft tissues. Variation between specimens, measurement
errors in experiments, experimental tolerances such as specimen and fixture dimen-
sions and alignment, and experimental unknowns such as friction coefficients all
play their part. A major uncertainty arises from the use of constitutive models that
we know are simplistic and inaccurate; this means that if we fit the model to match
the way the material behaved in a particular experiment, we cannot reliably gener-
alise to predict the behaviour in different circumstances. The material parameters
themselves are difficult to measure accurately and published data is often subject
to large and unknown uncertainties. Finally there is often significant numerical and
computational error in using FE methods, as well as a frustrating lack of speed or
reliability. However, if these factors are known and appreciated, it is possible to use
these methods to start to gain real insights into the behaviour of soft tissues and to
produce useful practical predictions. Experimental methods, modelling algorithms,
and parameter identification techniques are all promising areas of researchwithmany
opportunities for fruitful development andwe can expect great advances in the future.
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Chapter 4
Damage in Vascular Tissues and Its Modeling

T. Christian Gasser

Abstract The present chapter reviews vessel wall histology and summarizes rele-
vant continuummechanical concepts to study mechanics-induced tissue damage. As
long as the accumulated damage does not trigger strain localizations, the standard
nonpolar continuum mechanical framework is applicable. As an example, a damage
model for collagenous tissue is discussed and used to predict collagen damage in
the aneurysm wall at supra-physiologic loading. The physical meaning of model
parameters allow their straight forward identification from independent mechani-
cal and histological experimental data. In contrast, if damage accumulates until the
material’s stiffness looses its strong ellipticity, more advanced continuum mechan-
ical approaches are required. Specifically, modeling vascular failure by a fracture
process zone is discussed, such that initialization and coalescence of micro-defects
is mechanically represented by a phenomenological cohesive traction separation
law. Failure of ventricular tissue due to deep penetration illustrates the applicabil-
ity of the model. Besides appropriate continuum mechanical approaches, laboratory
experiments that are sensitive to constitutive model parameters and ensure controlled
failure propagation are crucial for a robust parameter identification of failure models.

4.1 Introduction

Understanding damagemechanisms of soft biological tissue is critical to the sensitive
and specific characterization of tissue injury tolerance. Such knowledge may help
improving clinical treatment planning by accurately assessing the rupture risk of
Abdominal Aortic Aneurysms (AAAs) or the vulnerability of carotid plaques, for
example. In addition, design optimization ofmedical devices critically depends on the
proper understanding of short-term and long-term damage effects on the interaction
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of such devices with the biological tissue. Relating tissue chemical morphology to
engineering concepts like constitutive models, i.e., histomechanical modeling is one
promising way to better understanding tissue damage.

Mechanical force is transmitted from the macroscopic (tissue) length scale down
to the atomistic length scale, and different microstructural constituents are loaded
differently. Consequently, raising the macroscopic load leads to local stress concen-
trations in the tissue, and, if high enough, starts damaging it at specific spots. For
example, micro-defects like breakage and/or pull-out of collagen fibrils gradually
develop, which in turn weakens/softens the tissue. In healthy tissues at physiological
stress levels, healing continuously repairs such defects in order to maintain the tis-
sue’s structural integrity. For example in bones, osteoclasts remove damaged tissue
which is then newly formed by osteoblasts. However, at supra-physiological stress
level or for diseased tissues, healing cannot fully repair such micro-defects and the
tissue continues to accumulate weak links, which in turn irreversibly diminish its
strength. If the damage level, i.e., the numbers of defects per tissue volume exceeds
a certain threshold, micro-defects join each other, and form macro-defects. Finally,
a single macro-defect may propagate and finally rupture the tissue.

Despite increasing experimental and analytical efforts to investigate failure-
related irreversible effects of soft biological tissue, the underlying mechanisms are
still poorly understood. There is still no clear definition of what damage is, and con-
ventional indicators of mechanical injury (such as visible failure and loss of stiffness)
may not identify the tissue’s tolerance to injury appropriately. Micro-defects locally
weaken the material and a Kachanov-like [1] damage parameter can only represent
damage of inert material, but neglects all biological aspects of tissue damage. Con-
sequently, a more complete definition of damage in a biological tissue is needed, and
“a description of the mechanical and physiological changes that result in anatomical
and functional damage” [2] defines more broadly damage of soft biological tissues.
Clearly, damage mechanisms and specific injury tolerance is closely related to the
individual tissue type.

This chapter adresses only the passive mechanical aspects of vascular tissue. Its
first section outlines general consequences of damage and failure on the solution
of (initial) boundary value problems. The second section reviews tissue histology
with focus on the collagen in vessel walls. Then, a histologically motivated constitu-
tive model for collagenous soft biological tissue for supra-physiological stress states
is introduced. Finally, a continuum mechanics concept for strain localization prob-
lems is reviewed, and representative examples demonstrate the proposed modeling
approaches.
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4.2 Continuum Mechanical Consequences
of Damage—The Basics

Local damage diminishes local tissue stiffness, and, if massively enough, defines a
strain softening material. For a strain softening material the stress decreases with
increasing strain, such that the tissue’s stiffness matrix is no longer positive defi-
nite. This changes the fundamental physics of the underlying mechanical problem,
which is demonstrated by a simple rod under tension shown in Fig. 4.1. The rod
of cross-section A is made of a material with a strain-dependent Young’s modulus
E(ε). Here, the strain ε = u′ = ∂u/∂x depends on the displacement u, and the nota-
tions ü = ∂2u/∂t2 and u′′ = ∂2u/∂x2 are used. Equilibrium along the axial direc-
tion, i.e.,−ρAdxü − A[σ]x + A[σ]x+dx = 0, leads, with the Taylor series expansion
[σ]x+dx = [σ]x + [E(ε)d2u/dx2]xdx + O(2), to the governing equation

ü − cu′′ = 0 with c = E(ε)

ρ
, (4.1)

withO(2) denoting second-order terms. Most important, the parameter c renders the
physics of the problem, i.e., for c < 0 the problem is hyperbolic, while for c > 0 it is
elliptic. Consequently, for E(ε) > 0 waves can propagate along the rod, while this is
prohibited for E(ε) < 0, i.e., at strain softening conditions. For themultidimensional
small strain case the 1D condition E(ε) > 0 relates to the strong ellipticity condition.
This condition states that �ε : C : �ε > 0 for all possible strain increments �ε,
where C denotes the (nonconstant) elasticity tensor [3]. For finite strain problems a
similar condition holds [4, 5].

4.2.1 Strain Localization

Following [6], strain localization is considered in a rod of length L that is discretized
by n finite elements of equal lengths. The rod’s material follows the bilinear stress

Fig. 4.1 Forces acting on
the material point of a rod
under tension
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Fig. 4.2 Development of a
strain localization in a rod of
material with bilinear
stress–strain properties and
discretized by n finite
elements. In the upper part
of the figure different
loading states are sketched
and related to labeled points
in the stress strain curve
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versus strain law as shown in Fig. 4.2. First, the stress increases linearly (at the
stiffness E) until it reaches the elastic limit stress Y , and then it decreases linearly
(at the softening h) until it is stress-free.

The rod’s right end is pulled to the right, at the gradually increasing displacement
�0. In response to that, the load F in the rod gradually increases to the maximum
load F = Fmax (state (b) in Fig. 4.2), where all finite elements are strained equally
ε = �/L . Further increase in � causes a reduction of the load F and the solution
bifurcates. Specifically, a single element (the one with the (numerically) smallest
cross-section; in Fig. 4.2 this element is filled grey) follows the strain softening path,
while all the other finite elements elastically unload (state (c) in Fig. 4.2) until the rod
is completely stress-free (state (d) in Fig. 4.2). Consequently, the grey finite element
in Fig. 4.2 accumulates the total strain, i.e., it developed a strain localization.

Next we introduce the averaged (smeared) strain

ε̄ = �/L = h

L
[(n − 1)ε + ε∗] = 1

n

[
(n − 1)σ + Y

k
+ Y − σ

h

]
, (4.2)

all over the rod. Here, ε = σ/k and ε∗ = Y/k + (Y − σ)/h denote the strain in the
n − 1 non-localized and in the one localized finite elements, respectively. In order
to derive this relation, the equilibrium, i.e., equal stress σ in all finite elements, was
used. Relation (4.2) is linear and can be inverted to express the stress versus averaged
strain response
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σ = ε̄hkn − Y (h + k)

h(n − 1) − k
. (4.3)

Most importantly, Eq. (4.2) depends on the number n of finite elements, i.e., on the
used discretization. Figure4.3 illustrates this dependence.

4.2.2 Dissipation

The dissipation for complete failure relates to the energy per reference volume that
is dissipated until the force diminishes and reads

D =
ε̄1∫

0

σdε̄ = Y 2

2k
+

ε̄1∫

ε̄0

σdε̄ = Y 2

2n

(
1

h
+ 1

k

)
. (4.4)

Here, ε̄0 = Y/k and ε̄1 = Y (h + k)/(hkn) denote the strains at the elastic limit and
at zero stress (complete failure), respectively. This relation can also be derived by
taking the dissipation of the localized element Y 2(1/k + 1/h)/2 and weighting it
according to the volume ratio, i.e., by 1/n.

Again, the total dissipation depends on the number n of finite elements used to
discretize the rod. Most surprisingly, the dissipation vanishes for n → ∞, i.e., the
continuum solution of the problem. This was already indicated in Fig. 4.3a (case
n = 10 000), where loading and unloading pathes were practically identical. This
is an obviously nonphysical result (How can an inherently dissipative process like
damage have no dissipation?) and direct consequence of localization. Specifically,
for this (non-regularized) case the material volume that is affected by the localization
tends to zero, such that also the dissipation vanishes. It is emphasized that this is not
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Fig. 4.3 Stress–strain response of a rod discretized by n number of elements and using non-
regularized (a) and regularized (b) approaches. The case uses an initial elastic stiffness E = 10MPa
and a elastic limit Y = 1 MPa. Localization is induced by linear softening h = 1 MPa (a), and the
regularized linear softening h = 1/n MPa (b), respectively
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a problem of the finite element model but the hypothetical entity of a nonpolar
continuum yields vanishing localization volume [7]. In contrast to the volume, the
localization defines a surface, which area remains finite, i.e., for the above discussed
rod problem, the localization area is equal to the rod’s cross-sectional area A.

4.2.3 Regularization

For every material, the material’s microstructure prevents from a vanishing localiza-
tion volume. For example in collagenous tissues at tensile failure, the length of the
pulled-out collagen fibers introduces an internal length scale, which in turn leads to
a finite localization volume. Such an internal length scale can also be introduced in
the model to prevent from a vanishing localization volume. The simplest solution is
to relate the softening modulus h to the finite element size according to hreg = h/n.
Consequently, the regularized averaged strain and the regularized dissipation (i.e.,
regularized versions of Eqs. (4.2) and (4.4)) read:

ε̄reg = 1

n

[
(n − 1)σ + Y

k
+ Y − σ

h/n

]
; Dreg = Y 2

2n

(
1

h/n
+ 1

k

)
. (4.5)

The stress versus regularized strain is shown in Fig. 4.3b, and it is noted that the
regularized dissipation of the continuum problem Dreg n→∞ = Y 2/(2h) yields the
physically correct result. Despite such a regularization fully resolves the 1D problem,
it leads to stress locking for general 3Dproblems that is discretized by an unstructured
FE mesh. More advanced approaches will be discussed in Sect. 4.5 of this chapter.

4.2.4 Experimental Consequences

Experimental tensile testing into the strain softening region forms at least one local-
ization (failure) zone, which is schematically illustrated in Fig. 4.4. Consequently, the
data, that is recorded in the softening region (i.e., post the localization) is dependent on
themarker positions,whichwere used to calculate the averaged strain ε̄ = (l − L)/L .
Here, l and L denote the spatial and referential distances between two markers, see
Fig. 4.4. Markers that are close to the localization zone (case (a) in Fig. 4.4) yield a
rather ductile response, while markers that are far away from the localization zone
(case (c) in Fig. 4.4) show much more brittle test results. Case (c) shows even snap-
back, i.e., average strain and force decrease with failure progression. In such a case
neither force-control nor clamp displacement-control can ensure stable failure pro-
gression, and other control mechanism are needed.
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Fig. 4.4 Tensile experiment to complete tissue failure. Averaged strains ε̄ are computed from three
different sets of markers, i.e., ε̄i = (li − Li )/Li i = 1, 2, 3 with l and L denoting deformed and
undeformed distances between markers, respectively. To the right the schematic averaged strain
versus stress curves that are associated with the three different sets of marker positions are shown

Summary Mechanical damage triggers micro-defects, which diminishes tissue
stiffness. Continuous accumulation of damage may lead to coalescence of micro-
defects and the formation of strain localization. A strain localization is triggered as
soon as the strong ellipticity condition is violated, and requires regularized compu-
tational models paired with properly controlled experimental designs.

4.3 Histology of the Vessel Wall

A sound histological understanding is imperative for themechanical characterization
of vascular tissue. The vessel wall is composed of intima, media, and adventitia (see
Fig. 4.5), layers that adapt to their functional needs within certain physiologic limits.

The intima is the innermost layer of the artery. It comprises primarily a single
layer of endothelial cells lining the arterial wall, resting on a thin basal membrane,
and a subendothelial layer of varying thickness (depending on topography, age, and
disease).

The media is the middle layer of the artery and consists of a complex three-
dimensional network of Smooth Muscle Cells (SMCs), elastin and bundles of colla-
gen fibrils, structures that are arranged in repeating Medial Lamellar Units (MLU)
[8]. The thickness of MLUs is independent of the radial location in the wall and the
number of units increases with increasing vessel diameter. The tension carried by
a single MLU in the normal wall remains constant at about 2 + 0.4 N/m [8]. The
layered structure is lost towards the periphery and clear MLUs are hardly seen in
muscular arteries.
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Highly dispersed collagen 
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Fig. 4.5 Histomechanical idealization of a young and normal elastic artery. It is composed of three
layers: intima (I), media (M), adventitia (A). The intima is the innermost layer consisting of a single
layer of endothelial cells, a thin basal membrane and a subendothelial layer. Smooth Muscle Cells
(SMCs), elastin, and collagen are key mechanical constituents in the media arranged in a number
of Medial Lamellar Units (MLUs). In the adventitia the primary constituents are collagen fibers
and fibroblasts. Collagen fibers are assembled by collagen fibrils of different undulations that are
interlinked by ProteoGlycan (PG) bridges

The adventitia is the outermost layer of the artery and consistsmainly of fibroblasts
and ExtraCellular Matrix (ECM) that contains thick bundles of collagen fibrils. The
adventitia is surrounded by loose connective tissue that anchors the vessel in the
body. The thickness of the adventitia depends strongly on the physiological function
of the blood vessel and its topographical site.
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4.3.1 The Extracellular Matrix

The ECM provides an essential supporting scaffold for the structural and functional
properties of vesselwalls. TheECMmainly contains elastin, collagen, and proteogly-
cans (PGs) [9] and their three-dimensional organization is vital to accomplish proper
physiological functions. The ECM, therefore, rather than being merely a system of
scaffolding for the surrounding cells, is an active mechanical structure that controls
the micro-mechanical and macro-mechanical environments to which vascular tissue
is exposed.

While elastin in the ECM is a stable protein having half-life times of tens of
years [10], collagen is normally in a continuous state of deposition and degradation
[11] at a normal half-life time of 60–70 days [12]. Physiological maintenance of the
collagen structure relies on a delicate (coupled) balance between degradation and
synthesis. Fibroblasts, myofibroblasts, SMCs, and other cells perceive changes in
the mechanical strains/stresses and adjust their expression and synthesis of collagen
molecules in order to account for the changes in theirmicro-mechanical environment.
In parallel, collagen is continuously degraded bymatrixmetalloproteinases (MMPs).

4.3.2 Collagen and Its Organization

Collagen determines the mechanics of the vessel wall at high loads, i.e., loading
states that are of primary interest when studying mechanics-induced accumulation
of damage. Collagen fibrils, with diameters ranging from fifty to a few hundreds of
nanometers are the basic building blocks of fibrous collagenous tissues [13]. Clearly,
the way how fibrils are organized into suprafibrilar structures has a large impact
on the tissue’s macroscopic mechanical properties. Already 60years ago Roach and
Burton [14] reported that collagen mainly determines the mechanical properties
of arterial tissue at high strain levels. Since that time a direct correlation between
the collagen content and the tissue’s stiffness and strength has become generally
accepted. Earlier observations indicated that the collagen-rich abdominal aorta was
stiffer than the collagen-poor thoracic aorta [15, 16] and later regional variations
of aortic properties were specifically documented, see [17] for example. Numerous
further references were provided by the seminal works of Fung [18] and Humphrey
[19]. Besides the amount of collagen fibers in the wall, also their spatial orientation
[13] (and their spread in orientations [20]) are critical microstructural parameters
with significant implications on the tissue’s macroscopic mechanical properties.

Collagen is intrinsically birefringent and Polarized Light Microscopy (PLM) pro-
vides an idealmethod for its detection and analysis [21–23]. Combinedwith aUniver-
sal Rotary Stage (URS), PLM allows a quantitative analysis of collagen organization
in the vessel wall [24–26]. Figure4.6 shows a histological image of the AAA wall
and illustrates a large mix bag of azimuthal alignment. Extinctions within the larger
collagen fibers (see Fig. 4.6b) arose from the planar zigzag structure of collagen fib-
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(a) (b)

Fig. 4.6 Polarized Light Microscopy (PLM) image taken from the Abdominal Aortic Aneurysm
(AAA) wall. a Typically observed collagen organizations in the AAAwall, showing a large mix bag
of azimuthal alignment. The horizontal sides of the images denote the circumferential direction. The
collagen that is oriented perpendicular to the linear polarized light defines the extinctions seen in
the image. Picrosirius red was used as a birefringent enhancement stain and the images were taken
at crossed polars on the microscope. b Segmented portion of a single collagen fiber of diameter d
that is formed by a bundle of collagen fibrils. Extinctions at distances of δ denote the wavelength
of the collagen fibrils that form the collagen fiber

rils [27, 28]. The quantitative analysis of such images provides the 3D collagen fiber
orientation density function ρexp(θ,φ), where θ andφ denote azimuthal and elevation
angles, respectively. Specifically, these angels are defined by (in-plane) rotation and
(out-of-plane) tilting of the URS until an individual collagen fiber lies perpendicular
to the light ray of the PLM [24]. Finally, the experimentally identified collagen fiber
orientations may be fitted to a statistical distribution, like the Bingham distribution
[29]

ρ(θ,φ) = c−1 exp[κ1(cos θ cosφ)2 + κ2(cosφ sin θ)2], (4.6)

where κ1 and κ2 denote distribution parameters to be identified from experimental
data. In addition c serves a as normalization parameter, such that

∫ π/2
φ=0

∫ 2π
θ=0 ρ cos

φdφdθ = 1 holds, i.e., the total amount of collagen fibers remains constant. Further
details are given elsewhere [26] and Fig. 4.7 illustrates the collagen fiber distribution
in the AAA wall, for example.

4.3.3 Proteoglycans

Proteoglycan (PG) bridgesmay provide interfibrillar load transition [30, 31], a neces-
sity for a load-carrying collagen fiber. Specifically, small proteoglycans such as
decorin bind noncovalently but specifically to collagen fibrils and cross-link adja-
cent collagen fibrils at about 60nm intervals [30]. Reversible deformability of the
PG bridges is crucial to serve as shape-maintaining modules [30] and fast and slow
deformation mechanisms have been identified. The fast (elastic) deformation is sup-
ported by the sudden extension of about 10% of the L-iduronate (an elastic sugar)
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Fig. 4.7 Bingham distribution function (red) fitted to the experimentallymeasured fiber orientation
distribution (light-blue) in the Abdominal Aortic Aneurysm (AAA) wall. Least-square optimization
of Eq. (4.6)with experimentalmeasurements taken fromPolarizedLightMicroscopy (PLM) defined
Bingham parameters of κ1 = 11.6 and κ2 = 9.7

at a critical load of about 200 pN [32]. The slow (viscous) deformation is based on
a sliding filament mechanism of the twofold helix of the glycan [30], and explains
the large portion of macroscopic viscoelasticity seen when experimentally testing
collagen.

PG-based cross-linking is supported by numerous experimental studies showing
that PGs play a direct role in inter-fibril load sharing [30, 33–35]. This has also
been verified through theoretical investigations [36–38]. However, it should also be
noted that the biomechanical role of PGs is somewhat controversial, and some data
indicates minimal, if any, PG contribution to the tensile properties of the tissue [36,
39, 40].

Summary At higher strains collagen fibers, and their interaction with the ECM, are
the dominant load-carrying structures in the vascular wall. Specifically, the amount
and organization of these structures dominate vessel wall’s stiffness, strength, and
toughness. Consequently,mechanical failure of soft biological tissues is often closely
related to rupture, pull-out or plastic stretching of collagen fibers.

4.4 Irreversible Constitutive Modeling of Vascular Tissue

Constitutive modeling of vascular tissue is an active field of research and numerous
descriptions have been reported. A phenomenological approach [41–45] may suc-
cessfully fit experimental data, but it cannot allocate stress or strain to the different
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histological constituents in the vascular wall. Structural constitutive descriptions [20,
46–52] overcome this limitation and integrate histological and mechanical informa-
tion of the arterial wall.

Specifically, one class of models, histomechanical constitutive models say, aims
at integrating collagen fiber stress σ and orientation density ρ according to Lanir’s
pioneering work [46]. This powerful approach assumes that the macroscopic Cauchy
stress σ is defined by a superposition of individual collagen fiber contributions, i.e.,

σ = 2

π

π/2∫

φ=0

π/2∫

θ=0

ρ(φ, θ)σ(λ)dev(m ⊗ m) cosφdφdθ + pI, (4.7)

where m = FM/|FM| denotes the spatial orientation vector of the collagen fiber. In
Eq. (4.7) the collagen fiber’s Cauchy stress σ(λ) is related to its stretch λ. In addition,
the term pI denotes the hydrostatic stress with p being a Lagrange parameter that is
independent from the tissue’s constitution but is defined by the problem’s boundary
conditions.

Equation (4.7) is numerically integrated by spherical t-designs, i.e.,
∫
ω(•)dω ≈

(4π/ lint)
∑lint

l=1(•)l , where lint denotes the total number of integration points. A spher-
ical t-design integrates a polynomial expression (•) of degree ≤ t exactly [53], and
further details regarding the numerical integration are given elsewhere [54].

4.4.1 An Elastoplastic Damage Model for Collagenous Tissue

Exposing biological soft tissue to supra-physiologicalmechanical stresses rearranges
the tissue’s microstructure by irreversible deformations. Damage-related effects
(such as, for tendon and ligament [55, 56] and for vascular tissue [57–59]) and
plasticity-related effects (such as, for skin [60], tendon and ligament [55, 61, 62]
and vascular tissues [59, 63]) have been documented. These observations triggered
the development of models that account for damage [64–66], plasticity [67, 68], and
fracture [69–73]. Most commonly a macroscopic (single scale) view of tissues is
followed, which cannot account for the (experimentally observed) localized struc-
tural rearrangement of collagen fibrils at supra-physiological mechanical stress. For
example, in tendon tissue spatial micro-failure (most likely collagen fibril rupture) is
seen already at 51 ± 12% of the ultimate tissue strength [74], which might even have
been preceded by damage from intra-fibrillar sliding [75]. In contrast to a macro-
scopic metric, histomechanical modeling according to Eq. (4.7) naturally integrates
localized damage of individual collagen fibers.

Modeling assumptions Vascular tissue is regarded as a solidmixture at finite defor-
mations, where collagen fibers are embedded in an isotropic matrix material. An ori-
entation density function ρ(M) = ρ(−M) defines the spatial alignment of collagen
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Fig. 4.8 Schematic load-carrying mechanisms of a collagen fiber assembled by a number of colla-
genfibrils. Load transition across collagenfibrils is providedbyProteglycan (PG)bridges.Antiparal-
lel anionic glycosaminoglycan duplex binds non-covalently to the collagen fibrils at the proteglycan
protein (P)

fibers with respect to the reference volume, see Sect. 4.3.2. Specifically, ρ(M) defines
the amount of collagen that is aligned along the direction M with |M| = 1, see
[20, 46].

A particular collagen fiber is assembled by a bundle of collagen fibrils, and the
model assumes that all such collagen fibrils engage simultaneously at the straighten-
ing stretch λst, i.e., no continuous engagement (as it has been suggested elsewhere
[47, 49, 52]), has been regarded. Beyond λst, collagen fibrils are stretched and inter-
fibrilar material is sheared, see Fig. 4.8. Specifically, the mechanical properties of
the PG bridges determine sliding of collagen fibrils relatively to each other.

Sliding of the PG bridge becomes irreversible as soon as the overlap of the glycan
chains decreases below a critical level (see [30] and references therein), which in turn
causes irreversible (plastic) deformations that are observed in macroscopic exper-
imental testing of vascular tissues, for example. At increasing stretch, PG bridges
slide apart (rupture), and the loss of cross-links weakens (damages) the collagen
fiber. PG filament sliding represents a slow (viscous) deformation mechanism [31],
and the loss of PG bridges is regarded as a gradual and time-dependent process.

The above-discussed deformation mechanism of a collagen fiber motivates the
introduction of a ‘stretch-based’ constitutive concept, where irreversible (plastic)
sliding of the collagen fibrils not only defines the fiber’s irreversible elongation but
also its state of damage. Consequently, plastic deformation of the collagen fiber is
directly linked to fiber damage.

Kinematics The assumed affine deformation between matrix and collagen fibers
directly relates the total fiber stretch λ = √

M · CM = |FM| to the matrix deforma-
tion. Following multiplicative decomposition, the total stretch λ = λelλst is decom-
posed intoλst, a stretch that removes fiber undulation, andλel that elastically stretches
the fiber.
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Constitutive model of the collagen fiber The model assumes that collagen fibers
(andfibrils) havenobending stiffness, and at stretches belowλst thefiber stress is zero.
Exceeding λst, a linear relation between the effective second Piola-Kirchhoff stress
S̃c and the elastic stretch λel holds, i.e., S̃c = cf〈λel − 1〉 = cf〈λ/λst − 1〉, where cf
and λ denote the stiffness of the collagen fiber and its total stretch, respectively. The
Macauley-brackets 〈•〉 have been introduced to explicitly emphasize that a collagen
fiber can only carry tensile load.

Considering incompressible elastic fiber deformation, the effective first Piola-
Kirchhoff stress reads P̃c = cf〈λ2

el − λel〉, which reveals the constitutive relation
using work-conjugate variables. Within reasonable deformations, this relation shows
an almost linear first Piola-Kirchhoff stress versus engineering strain εel = λel − 1
response, which is also experimentally observed [76, 77].

The state of damage of the collagen fiber is defined by an internal state (damage)
variable d, such that the second Piola-Kirchhoff stress of the collagen fiber reads

Sc = (1 − d)S̃c = (1 − d)cf〈λ/λst − 1〉. (4.8)

The damage variable d reflects the loss of stiffness according to slid apart (broken)
PG bridges.
Plastic Deformation. Plastic deformation develops at large sliding of PG bridges,
i.e., as soon as the overlap between the glycan chains of a PG bridge decrease below
a critical level [30]. The proposed model records plastic deformation by a monotonic
increase of the straightening stretch λst 0 ≤ λst < ∞, where λst 0 denotes the straight-
ening stretch of the initial (not yet plastically deformed) tissue. The initial straight-
ening stretch λst 0 is thought to be a structural property defined by the continuous
turn-over of collagen and determined by the biomechanical and biochemical envi-
ronment that the tissue experiences in vivo. Following the theory of plasticity [78,
79], we introduce an elastic threshold Y that classifies the following load cases,

S̃c < Y elastic deformation,
S̃c = Y plastic deformation,
S̃c > Y to be ruled out.

⎫⎬
⎭ (4.9)

At quasi-static loading conditions an ideal plastic response is considered with
Y = Y0 reflecting the elastic limit (in an effective second Piola Kirchhoff setting) of
the collagen fiber. In contrast, time-dependent plastic loading is thought to induce
a hardening effect, i.e., Y = Y0 + H , where H reflects the increase of resistance
against collagen fibril sliding due to the slow (viscous) sliding mechanism of the PG
bridges. Consequently, a viscoplastic behavior of the collagen fibers is considered,
and (for simplicity) the first-order rate equation

H = ηλ̇st (4.10)

defines the viscous hardening, with η denoting a material parameter.
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Table 4.1 Material and
structural parameters used for
computing a tensile test of
tissue from the Abdominal
Aortic Aneurysm (AAA) wall

Collagen fiber orientation

Bingham parameters κ1 = 11.6 ; κ2 = 9.7

Matrix material properties

neoHookean parameter c = 0.02 MPa

Collagen fiber properties

Straightening stretch λst 0 = 1.08

Collagen fiber stiffness cf = 0.23 MPa

Elastic limit Y0 = 0.063 MPa

Hardening viscosity η = 0.2 MPa s

Damage property a = 50.0

Damage accumulation. As detailed above, larger irreversible (plastic) deformation
of the collagen fiber causes failure of PG bridges, which in turn weakens the collagen
fiber. The mechanical effect from ruptured PG bridges, i.e. the loss of stiffness of the
collagen fiber is recorded by the damage parameter d, where an exponential relation

d = 1 − exp[−a(λst/λst 0 − 1)2] (4.11)

with respect to the plastic deformation (reflected by λst/λst 0) is considered. Equa-
tion (4.11) has the properties d(λst/λst 0 = 1.0) = 0.0 and d(λst/λst 0 → ∞) = 1.0,
and a denotes a material parameter. Specifically, small and large values of a define
ductile and brittle-like failure of the collagen fiber, respectively.

Details regarding the numerical implementation of this model are given
elsewhere [50].

Basic model characteristics A single finite element was used to investigate basic
characteristics of the constitutive model. To this end constitutive parameters (listed
in Table4.1) were manually estimated from in vitro tensile test data of the AAAwall,
and the histologically measured collagen orientation distribution was prescribed, see
Sect. 4.3.2.

The model captures the strongly nonlinear stiffening at lower stresses (toe region
up to 50 kPa), where the initial straightening stretch λst 0 allows to control the tran-
sition point from a matrix-dominated to a collagen-dominated tissue response, see
Fig. 4.9.

By increasing the load beyond the toe region, a slightly nonlinear relation between
the first Piola-Kirchhoff stress and stretch is observed, before collagen fibers gradu-
ally exceed their elastic limit, which in turn defines a concave stress–stretch response,
see Fig. 4.9. Again, gradually exceeding the collagen fibers’ elastic limit defines a
smooth transition from a convex to a concave curve, a response typically observed
in experimental testing of vascular tissue.

Significant plastic deformation is required before the ultimate first Piola-Kirchhoff
strength of about 0.18 MPa is reached. A further increase in stretch causes mater-
ial instability, i.e., loss of ellipticity, and the deformation localizes. As outlined in
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Fig. 4.9 Macroscopic constitutive response of Abdominal Aortic Aneurysm (AAA) wall tissue
under uniaxial tension. Solid black curves denote tension responses along the circumferential and
longitudinal directions, respectively. The grey curve illustrates the response from in vitro experi-
mental stretching of a singleAAAwall specimen along the longitudinal direction. The test specimen
used for experimental characterization of AAA wall tissue is shown at the top right

Sect. 4.2, in the strain softening region the results strongly depend on the test spec-
imen’s length. Here, neither the computational model used an internal length scale
nor the experimental setup allowed controlled failure progression, such that these
curves contain no constitutive information in the strain softening region. Influence
of the strain rate and model response to cyclic loading are detailed in [50].

Summary Damage of vascular tissue can involve several interacting irreversible
mechanisms. The presented model considered a coupling between plastic elongation
and weakening of collagen fibers, irreversible mechanisms that can be explained by
the deformation of PG bridges. The mechanical complexity of vascular tissue leads
to descriptions that require many material parameters, which naturally complicates
inverse parameter estimation—especially if parameters are mathematically not inde-
pendent. A constitutive descriptionswithmodel parameters of physical interpretation
are particularly helpful for a robust model parameter identification.

4.5 Failure Represented by Interface Models

As shown in Sect. 4.2.1 of this chapter, stretching a rod until the strong ellipticity
condition is violated, causes strains to localize within a small (infinitesimal) volume.
For such a case the nonpolar continuum yields nonphysical post localization results.
However, the cross-sectional area, within which strain localizes, remains finite. Con-
sequently, introducing a failure surface, within which all inelastic processes take
place, successfully resolves this issue. Such defined failure surface is then equipped
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with constitutive information, i.e., a cohesive traction separation law defines the trac-
tion that acts at the discontinuity as a function of its opening, i.e., the opening of
the fracture. Such an approach goes back to the pioneering works for elastoplastic
fracture in metals [80, 81], and for quasi-brittle failure of concrete materials [82].

4.5.1 Continuum Mechanical Basis

Discontinous kinematics As illustrated in Fig. 4.10, ∂�0 d denotes a strong dis-
continuity embedded in the reference configuration �0 of a body. The discontinuity
separates the body into two sub-bodies occupying the referential sub-domains �0+
and �0−. The orientation of the discontinuity at an arbitrary point Xd is defined by
its normal vector N(Xd), where N is assumed to point into �0+, see Fig. 4.10.

The discontinuous displacement field u(X) = uc(X) + H(X)ue(X) at a referen-
tial position X is based on an additive decomposition of u(X) into compatible uc

and enhanced Hue parts, respectively [83, 84]. Here, H(X) denotes the Heaviside
function, with the values 0 and 1 for X ∈ �0− and X ∈ �0+, respectively. Note that
both introduced displacement fields, i.e., uc and ue are continuous and the embedded
discontinuity is represented by the Heaviside function H.

Following [85–87], we define a fictitious discontinuity ∂�d as a bijective map
of ∂�0 d to the current configuration. Specifically, ∂�d is placed in between the
two (physical) surfaces defining the crack, see Fig. 4.10. Therefore, we introduce an
average deformation gradient Fd at Xd according to

Fd(Xd) = I + Grad
(

uc + 1

2
ue

)
= I + Grad uc + 1

2
ue ⊗ N, (4.12)

Fig. 4.10 Discontinuous
kinematics representing the
reference configuration
�0 = �0+ ∪ �0− ∪ ∂�0 d
and the current configuration
� = �+ ∪ �− ∪ ∂�d of a
body separated by a strong
discontinuity. The associated
three deformation gradients:
(i) Fe = I + Grad uc +
Grad ue, (ii) Fd =
I + Grad uc + ue ⊗ N/2
and (iii) Fc = I + Grad uc
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where the factor 1/2 enforces the fictitious discontinuity ∂�d to be placed in the
middle between the two (physical) surfaces defining the crack. Based on the defor-
mation (4.12), the unit normal vector n to the fictitious discontinuity is defined by

n = NFd
−1

|NFd
−1| , (4.13)

which can be interpreted as a weighted push-forward operation of the covariant
vector N.

Consequently, the introduced kinematical description of a strong discontinuity
requires three deformations, as illustrated in Fig. 4.10, i.e., (i) the compatible defor-
mation gradientFc = I + Grad uc (with det Fc = Jc > 0), whichmaps�0− into�−
as known from standard continuum mechanics; (ii) the enhanced deformation gradi-
ent Fe = I + Grad uc + Grad ue (with det Fe = Je > 0), which maps�0+ into�+,
and finally, (iii) the average deformation gradient Fd = I + Grad uc + ue ⊗ N/2
(with det Fd = Jd > 0), which maps the referential discontinuity ∂�0 d into the (fic-
titious) spatial discontinuity ∂�d. Finally, any strain measure directly follows from
the introduced deformation gradients, see elsewhere [86] for example.

Cohesive traction response We assume the existence of a transversely isotropic
(note that these type of models are denoted as isotropic elsewhere [88]) cohesive
potentialψ(ud, n, δ) per unit undeformed area over∂�0 d, which governs thematerial
dependent resistance against failure in a phenomenological sense [88]. The cohesive
zone’s properties are assumed to be dependent on the gap displacement ud = ue(Xd),
the current normal n and a scalar internal variable δ. Finally, the cohesive potential
is subjected to objectivity requirements, i.e., ψ(ud, n, δ) = ψ(Qud, Q-Tn, δ), where
Q is an arbitrary proper orthogonal tensor, i.e., QT = Q, det Q = 1.

The model is complemented by the introduction of a damage surface φ(ud, δ)
in the gap displacement ud space and Karush–Kuhn–Tucker loading/unloading δ̇ ≥
0,φ ≤ 0, δ̇φ = 0 and consistency δ̇φ̇ = 0 conditions are enforced.

Based on the procedure by Coleman and Noll [89] the cohesive traction T and
the internal dissipation Dint take the form

T = ∂ψ

∂ud
, Dint = −∂ψ

∂δ
δ̇ ≥ 0. (4.14)

An efficient application of a cohesive model within the FE method requires a
consistent linearization of the cohesive traction T with respect to the opening dis-
placement ud. In order to provide this, we introduce Cud = ∂T/∂ud, Cn = ∂T/∂n,
Cδ = ∂T/∂δ, which describes the cohesive zone’s stiffness with respect to gap dis-
placement opening, rotation and growing damage.

Variational formulation In order to provide the variational basis for a quasi-static
FE model, we start with a single-field variational principle [90], i.e.,

∫
�0

Grad δu :
P(F)dV − δ�ext (δu) = 0, where P(F) and δu denote the first Piola-Kirchhoff stress
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tensor and the admissible variation of the displacement field. The integration is
taken over the reference configuration �0, where dV denotes the referential volume
element. In addition, the contributions from external loading, i.e., body force and
prescribed traction on the von Neumann boundary, are summarized in the virtual
external potential energy δ�ext (δu).

According to the introduced displacement field, its admissible variation reads
δu = δuc + Hδue.Consequently,Grad δu = Grad δuc + HGrad δue + δd(δue ⊗ N),
which defines the two variational statements

∫
�0

Grad δuc : P(F)dV − δ�ext
c (δuc) = 0,

∫
�0+

Grad δue : P(F)dV + ∫
∂�0 d

T · δuedS − δ�ext
e (δue) = 0,

⎫⎪⎬
⎪⎭ (4.15)

where δ�ext
c (δuc) and δ�ext

e (δue) are external contributions associated with the
compatible and enhanced displacements, respectively.

After some manipulations and a push-forward of Eq. (4.15), we achieve its spatial
version [91],

∫
�−

sym(grad cδuc) : σcdv + ∫
�+

sym(grad eδuc) : σedv − δ�ext
c (δuc) = 0,

∫
�+

sym(grad eδue) : σedv + ∫
∂�d

t · δueds − δ�ext
e (δue) = 0,

⎫⎪⎬
⎪⎭(4.16)

where dv and ds are the spatial volume and surface elements, respectively.Moreover,
σc = J−1

c P(Fc)FT
c and σe = J−1

e P(Fe)FT
e denote the Cauchy stress tensors and t =

TdS/ds is the Cauchy traction vector associated with a fictitious discontinuity ∂�d.
The spatial gradients in (4.16) are defined according
to grad c(•) = Grad (•)Fc

−1, grad e(•) = Grad (•)Fe
−1 and sym(•) = ((•) +

(•)T)/2 furnishes the symmetric part of (•).
The consistent linearization of the variational statements can be found elsewhere

[70, 86].

4.5.2 Formulation for the Cohesive Material Model

In order to particularize the transversely isotropic cohesive model introduced in
Sect. 4.5.1, we restrict our considerations to the class of models ψ = ψ(ue ⊗ ue, n ⊗
n, δ) and apply the theory of invariants [92]. Hence, the cohesive potential can be
expressed according to ψ = ψ(i1, i2, i3, i4, i5, ζ), where i1, . . . , i5 are invariants,
which depend on the symmetric tensors ue ⊗ ue, and n ⊗ n [91].

As a special case the isotropic particularization

ψ(i1, ζ) = t0
2ζ

exp(−aδb)i1 (4.17)



104 T.C. Gasser

is used. Here, i1 = ue · ue is the first invariant, t0 denotes the cohesive tensile strength
and the nonnegative parameters a and b aim to capture the softening response from
failure progression.

In addition, we define a damage surface φ(ue, δ) = |ue| − ζ = 0 in the three-

dimensional gap displacement space and assume ζ̇ = ˙|ue| for the evolution of the
internal (damage) variable ζ ∈ [0,∞[. A proof of nonnegativeness of the dissipation,
i.e., Dint ≥ 0, of the introduced cohesive model is given elsewhere [91], and the
underlying cohesive traction and associated stiffness measures read,

T = cue, Cue = cI, Cn = 0, Cδ = −γue, (4.18)

where the two scalars

c = t0
ζ
exp(−aζb), γ = c

ζ
(1 + abζb) (4.19)

uniquely describe the cohesive law at a certain state of damage δ.

Initialization criterion. The proposed FE implementation of themodel assumes that
the cohesive zone increases dynamically during the computation. In particular, the
cohesive zone model is activated within a finite element if the initialization criterion
Cinit > 0 is satisfied. Herein, we use a Rankine criterion

Cinit = n · σn − t0
ds

dS
, (4.20)

where n denotes the perpendicular direction to the discontinuity in the spatial config-
uration. The formulation of the cohesive potential ψ with respect to reference area,
see Sect. 4.5.1, motivated the introduction of the area ratio ds/dS in criterion (4.20).

Summary The introduced model for tissue failure postulates the existence of a
cohesive fracture process zone, a discrete surface (discontinuity) that represents ini-
tialization and coalescence of micro-cracks. A phenomenological traction separation
law specifies the failure mechanics, i.e., how the traction across the discontinu-
ity decreases with increasing crack opening. Such defined discontinuity has been
embedded in the continuum, which effectively allows post-localization analyses.

4.6 Applications

4.6.1 Organ Level Simulation of Abdominal Aortic
Aneurysm Rupture

The elastoplastic damage model for collagenous tissue detailed in Sect. 4.4 was
deployed to simulate AAA inflation until structural collapse, i.e., until a quasi-
static solution of the problem could no longer be computed. The observed structural
collapse might also have caused material instability, i.e., loss of strong ellipticity
[93, 94]. However, this was not further investigated.
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Modeling assumptions The AAA has been segmented from Computed
Tomography-Angiography (CT-A) images (A4clinics Research Edition, VASCOPS
GmbH), where deformable (active) contour models [95] supported an artifact-
insensitive and operator-independent 3D reconstruction. The aneurysm was seg-
mented between the renal arteries and about two centimeters distal the aortic bifur-
cation. The geometry was meshed by hexahedral finite elements, and the structural
analysis was carried out in FEAP (University of California at Berkeley). Blood pres-
sure was applied as a follower load, and all nodal degrees of freedom were locked
at the aneurysm’s bottom and top slices. No contact with surrounding organs was
considered, and further modeling details are given elsewhere [50].

Load case (a) increased the blood pressure at 10 mmHg/s until structural collapse
was experienced. In contrast, load case (b) assumed a cyclic pulsatile blood pressure
between 280 mmHg and 120 mmHg and at a frequency of one Hertz. Note that the
investigated aneurysmwas rather small, such that unrealistically high blood pressures
were required to trigger AAA rupture.

Results Load Case (a). The development of the maximum principal Cauchy stress
and the plastic deformation (in terms of the averaged straightening stretch λst =
(1/ lint)

∑lint
l=1 λst l) during inflation is illustrated in Fig. 4.11. The low loading rate of

10 mmHg/s caused localized plastic deformation and led to a rather brittle failure

Fig. 4.11 Maximum principal Cauchy stress (top row) and plastic deformation (bottom row) of an
Abdominal Aortic Aneurysm (AAA) at inflation according to Load Case (a). FE predictions were
based on material properties given in Table4.1
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Fig. 4.12 Plastic deformation of an Abdominal Aortic Aneurysm (AAA) at cyclic inflation accord-
ing to Load Case (b). AAA is shown at diastolic pressure, where n denotes the number of inflation
cycles. FE predictions were based on material properties given in Table4.1, and plastic deformation
is expressed by the straightening stretch

response. Finally, a single region of concentrated plastic deformation (and tissue
damage) developed prior the structure collapsed.

LoadCase (b). The development of the plastic deformation (in terms of the averaged
straightening stretch λst) during cyclic inflation is illustrated in Fig. 4.12, where n
denotes the cycle number. The high loading rate of ±320 mmHg/s spread plastic
deformations all over the aneurysmatic bulge. Above 15 load cycles the numerical
convergence of the problemwas poor and the computationwas terminated. Plastically
deformed wall segments that could have been buckled during deflation, or the highly
distorted mesh could also have caused such poor numerical convergence.

4.6.2 Model Parameter Estimation from in Vitro Tensile Tests

Cohort and specimen preparation Tissue samples from the AAA wall (n=16;
approximately 10mm times 20 mm) and the Thoracic Aortic Aneurysm (TAA)
wall (n=27; approximately 15mm times 30 mm) were harvested during open sur-
gical repair at Karolinska University Hospital, Stockholm, Sweden. Bone-shaped
test specimens were punched-out from the dissected tissue patches using a custom-
made pattern blade, see Fig. 4.13a. Test specimens from the AAA wall and from the
TAA wall were aligned along the longitudinal and circumferential vessel directions,
respectively. The length of the test specimens varied from 10 mm to 30 mm, and in
order to improve specimen fixation in the testing machine, pieces of sand paper were
glued to each end of the specimen (Super-adhesive glue, Loctite), see Fig. 4.13b.
During specimen preparation the tissue was kept hydrated at any time. For the his-
tological analysis, samples (taken from one part of each AAA test specimen and
after the mechanical testing) were fixed, embedded in paraffin, sliced at a thickness
of 7.0 µm and stained with picrosirius red to enhance the birefringent properties of
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4 30

(a) (b) (c)

Fig. 4.13 Preparation of uniaxial test specimens. a Dimensions (in millimeters) of the pattern
blade that was used to punch out test specimens from tissue patches. Typical specimens from the
human Thoracic Aortic Aneurysm (TAA) wall (b) and from the porcine interventricular septum (c).
Dimensions shown by the rulers are given in centimeters

collagen. The use of material from human subjects was approved by the local ethics
committee and further detail regarding the cohorts is given in [96, 97].

Testing equipment and protocols Prior to failure testing, the test specimen’s cross-
section A at the neck, i.e., where the specimenwas expected to rupture,wasmeasured.
Mechanical testing was performed with conventional testing systems (MTS for the
AAA samples and Instron for the TAA samples). The load-displacement property of
the test specimen was recorded during a displacement-controlled uniaxial tensile test
at an elongation rate of 0.1 mm/s. During tensile testing, the test specimens remained
entirely in Ringer solution at 37 ± 0.5 ◦C, and a load cell recorded the force that was
applied to the specimen. Further details are given elsewhere [96, 97]. The ultimate
first Piola-Kirchhoff strength Pult = Fult/A was calculated, where Fult denotes the
measured ultimate tensile load.

Identification of collagen fiber orientation and thickness Collagen fiber orienta-
tions were identified from PicroSirius red stained histological slices. Measurements
were taken with a BX50 polarized light microscope (Olympus) that was equipped
with a URS (Carl Zeiss GmbH), as detailed in Sect. 4.3.2.

Numerical model, parameters estimation For each bone-shaped test specimen, a
plane-stress FE model with 96 Q1P0 mixed elements [98] was generated. The model
was equipped with the elastoplastic constitutive model for collagenous tissue (see
Sect. 4.4), and the specimen-individual collagen orientation was considered. The FE
models were used to estimate the set {cm,λst 0, cf, a} of material parameters for each
wall sample. (For theAAAwall samples, the parameter cm that determines thematrix
materialwas fixed to 0.012MPa, i.e., a value reported in the literature [52].) The phys-
ical meaning of model parameters allowed their straight forward manual estimation.
Specifically, parameters were alternated until FE model predictions matched the
recorded stress–stretch curves in a least-square sense. Since the constitutive model is
not suitable to predict strain localization, the strain softening region was disregarded.
Finally, it is noted that a small amount of viscous hardening (η = 0.0001MPa s, see
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Fig. 4.14 Stress–stretch
properties of a single
Abdominal Aortic Aneurysm
(AAA) wall specimen that is
loaded along the axial vessel
direction. Recordings from
in vitro experiment is
overlaid by FE predictions.
Colored-coded images
illustrate the Cauchy stress in
tensile direction at two
different stretch levels.
Stretch is averaged over the
length of the tensile
specimen
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Sect. 4.4) was required to stabilize the FE model, which virtually did not alter the
quasi-static result.

Typical results For all cases the applied FE models provided good approximations
to the recorded stress–stretch curves, see the representative plot in Fig. 4.14, for
example. By increasing the load beyond the toe region, a slightly nonlinear relation
between the first Piola-Kirchhoff stress and stretch was observed. Then the collagen
fibers gradually exceeded their elastic limit, which led to a concave stress–stretch
response. Gradually exceeding the collagen fibers’ elastic limit defined a smooth
transition from a convex to a concave curve, and significant plastic deformation
accumulated before the ultimate strength Pult was reached. A further increase in
stretch caused material instability (see Sect. 4.2), which is not covered by the applied
constitutive model.

The Cauchy stress in tensile direction at two different deformations is shown in
Fig. 4.14a, b. The irreversible overstretching of the tissue homogenizes the stress in
the neck of the specimen (not seen for the selected color coding inFig. 4.14). ForAAA
wall samples the highest Cauchy stress σult= 569(SD 411) kPa appeared in the neck
of the specimen and was recorded at a stretch of 1.436(SD 0.118). For TAA samples
a stress of σult= 1062(SD 736) kPa was reached at a stretch of 1.514(SD 0.214).
Identified model parameters are summarized in Table4.2, and further details are
given elsewhere [96, 97].
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Table 4.2 Numerically estimated constitutive parameters of Abdominal Aortic Aneurysm (AAA)
and Thoracic Aortic Aneurysm (TAA) wall specimens

Specimen κ1 κ2 cm MPa λst0 cf MPa Y0 MPa a MPa

AAA 1 15.1 13 0.012 1.03 63 12.0 45

AAA 2 20.9 19.1 0.012 1.06 33 4.9 40

AAA 3 16.1 14.2 0.012 1.03 28 3.5 10

AAA 4 8 5.7 0.012 1.03 70 6.4 30

AAA 5 10.5 8.4 0.012 1.03 24 4.4 17

AAA 6a 10.4 7.7 0.012 1.10 25 1.8 10

AAA 6b 10.4 7.7 0.012 1.05 30 3.9 20

AAA 7 9 6.4 0.012 1.01 31 3.1 7

AAA 8 15.6 12.6 0.012 1.01 77 19.2 15

AAA 9 13.4 10.6 0.012 1.02 24 5.1 20

AAA 10 9.5 7.7 0.012 1.00 151 16.8 8

AAA 11a 8 6.3 0.012 1.01 73 9.8 17

AAA 11b 8 6.3 0.012 1.01 27 4.5 10

AAA 12 11.2 9.5 0.012 1.04 55 4.7 23

AAA 13 11.2 10.8 0.012 1.00 14 2.9 7

AAA 14 10.6 8.7 0.012 1.01 45 8.1 60

TAA BAV 1 27.6 25.1 0.05 1.23 7 1.4 20

TAA BAV 2 6.6 4.5 0.06 1.4 24 2.94 25

TAA BAV 3a 24.2 21.4 0.06 1.37 10 2.5 10

TAA BAV 3b 24.2 21.4 0.1 1.12 4.3 1.2 2

TAA BAV 4 27.3 23.5 0.04 1.22 3.2 1.27 10

TAA BAV 5 27.6 23 0.5 1.04 15 3 10

TAA BAV 6 27.1 24.3 0.12 1.11 4.8 1.1 3

TAA BAV 7 28.7 24.6 0.02 1.02 7.2 2.8 10

TAA BAV 8 28.1 22.7 0.17 1.24 7.7 3.5 4

TAA BAV 9 29 21.7 0.1 1.3 10 3.1 2

TAA BAV 10 28.7 23.7 0.13 1.32 13 4 4

TAA BAV 11a 28 23.8 0.06 1.3 10 3.6 7

TAA BAV 11b 28 23.8 0.1 1.17 9 2.2 7

TAA BAV 12 27 23.4 0.07 1.32 7 3.37 5

TAA BAV 13a 30.9 12.2 0.07 1.18 4.9 1.9 5

TAA BAV 13b 30.9 12.2 0.13 1.12 5 2.4 5

TAA TAV 1 12.7 10.6 0.05 1.2 5 0.47 20

TAA TAV 2 28 21.9 0.06 1.21 1.8 0.26 20

TAA TAV 3 23.7 20.1 0.03 1.15 3.6 0.75 5

(continued)
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Table 4.2 (continued)

Specimen κ1 κ2 cm MPa λst0 cf MPa Y0 MPa a MPa

TAA TAV 4a 26 22.9 0.07 1.28 3.4 0.85 4

TAA TAV 4b 26 22.9 0.1 1.2 1.6 0.7 17

TAA TAV 5 26.2 23.3 0.07 1.12 4.5 2 7

TAA TAV 6 26.9 23.4 0.04 1.1 2 0.65 0.4

TAA TAV 7 25.9 23.4 0.1 1.23 7 2.3 10

TAA TAV 9 26.5 24 0.04 1.17 9 2.9 10

TAA TAV 10 27.3 24.3 0.1 1.1 2.1 0.9 4

TAA TAV 11 29.2 23.9 0.1 1.17 3.1 0.99 4

Collagen orientation is given by theBinghamdistribution parametersκ1 andκ2 (see Eq.4.6), and the
other parameters inform the irreversible constitutive model for vascular tissue detailed in Sect. 4.4.
TAA wall data is separated into samples taken from patients with bicuspid (BAV) and tricuspid
(TAV) aortic valves, respectively

4.6.3 Ventricular Tissue Penetration

Tensile testing Pig hearts (n=12) were taken from the butchery and bone-shaped
specimens aligned in cross-fiber direction were prepared, see Fig. 4.13c. In total 64
specimens were prepared, using the preparation techniques detailed in Sect. 4.6.2.

Tensile testing was performed with a conventional MTS systems, where speci-
mens were loaded at a prescribed elongation rate of 0.2mm/s until they failed. Then
the ultimate first Piola-Kirchhoff strength Pult = Fult/A was calculated, where A
denotes the initial cross-sectional area at the specimen neck. The studied myocar-
dial tissue withstood a first Piola-Kirchhoff stress in cross-fiber direction of Pult =
0.0326(SD 0.0159) MPa, and further details are given elsewhere [73].

Modeling the bulk material In addition to direct failure-related energy dissipation
(like collagen fiber breakage) also viscoelastic energy dissipation at the crack tip
could be an important factor of failure propagation in vascular tissue, i.e., similar
to observations made in rubber-like materials [99]. Consequently, ventricular tissue
has been modeled as a viscoelastic material.

We assume an additive decomposition of the free-energy function� = �vol(J ) +
�iso(F, t) into volumetric �vol and isochoric �iso contributions, where F = J−1/3F
denotes the unimodular part of the deformation gradient F, with J = detF and t
being the time. In order to capture the non-linear mechanics of cardiac tissue, the
polynomial free-energy

�∞
iso = c1(I1 − 3) + c2(I1 − 3)2, (4.21)

wasused,where the invariant I1 = trCof themodified rightCauchy-Green strainC =
F
T
F = J−2/3C was introduced. This form of the constitutive relation has originally

been proposed for rubber-like materials [100] and is frequently used in biomechanics



4 Damage in Vascular Tissues and Its Modeling 111

(b)(a)
Circular penetrator Fibrous tissue

Fig. 4.15 a Electron microscopy image taken from ventricular tissue penetration experiments
[104]. Image illustrates a splitting mode (mode-I) failure together with remaining deformations at
the penetration site. b Idealized failure mode of ventricular tissue due to deep penetration. Crack
faces are wedged open by the advancing circular punch defining a splitting mode (mode-I) failure
(The punch advances perpendicular to the illustration plane.)

to describe the mechanics of the aneurysm wall, for example [101, 102]. For the
present study, the parameters c1 = 10.0 kPa and c2 = 7.5 kPa were estimated form
the myocardial tissue in cross-fiber direction [73].

In order to equip the formulation with rate-dependent properties, the constitutive
model (4.21) was extended to viscoelasticity, and the isochoric free-energy

�iso =
{
1 +

k∑
k=1

βk[1 − exp(−t/tk)]
}

�∞
iso (4.22)

was considered. Here, βk and tk are Prony series parameters defining the tissue’s
rate-dependency. The model can be regarded as a generalized standard viscoelastic
solid with k linear viscoelastic Maxwell elements [3].

This study considered two sets {βk, tk}of constitutive parameters. Set I represented
properties of themedial layer of arteries used in the literature [103], andSet II doubled
the rate-effects by doubling the βk parameters of Set I.

Cohesive model of myocardial tissue splitting Experimental penetration of biax-
ially stretched myocardial tissue indicated that crack faces were wedged open by
the advancing punch [104], see Fig. 4.15. Such a splitting failure was modeled by
a fracture process zone and captured by a traction separation law. Specifically, a
triangular traction separation law related the traction t and the displacement at the
interface. The cohesive strength of the interface was set to t0 = 32.6 kPa, i.e., the
tissue strength identified from tensile testing in cross-fiber direction. Two different
fracture energies G0 = 6.32 Jm−2 and G0 = 12.64 Jm−2 were used to investigate
their influence on the punch force-displacement response.
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FE model of deep penetration A single penetration of biaxially stretched myocar-
dial tissue [104] was modeled, where a punch of 1.32mm in diameter penetrated
a 10.0mm by 10.0 mm tissue patch (ABAQUS/Explicit (Dassault Systèmes)), see
Fig. 4.16(left). A cohesive zone was introduced in the middle of the domain, i.e.,
where tissue splitting was expected, and symmetry conditions of the problem were
considered.

The investigated domain was discretized by 8120 hexahedral finite elements
(b-bar formulation [6]), where the mesh was refined at the site of penetration. A
penalty contact formulation [105] (with automatic adaptation of the penalty parame-
ter) was used to model the rigid and frictionless contact problem.

The numerically predicted Cauchy stress in cross-fiber direction at the crack
tip is shown in Fig. 4.16 (right), while Fig. 4.17 presents the influence of model

 10.0 mm

   1.32 mm

 2
.5

 m
m

Cohesive zone

Symmetry plane

Fig. 4.16 Left FE model to investigate myocardial penetration by an advancing circular punch.
Numerically predicted crack tip deformation and tissue stress during the crack faces are wedged
open by the advancing circular punch
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Fig. 4.17 Penetration force-displacement response of myocardium against deep penetration.
a Impact of the fracture energy of the cohesive zone. b Impact of the viscoelasticity of the bulk
material
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parameters on the penetration force versus displacement properties. Specifically,
Fig. 4.17a illustrates that the energy release in the fracture process zone has almost
no impact, while rate-dependent effects of the bulk material massively influence the
penetration force versus displacement properties, see Fig. 4.17b. Compared to the
experimentally recorded data [104], the FE predictions were too soft with the peak
penetration force being about 2–4 times lower.

4.7 Conclusions

Vascular biomechanics is critical in order to define new diagnostic and therapeutic
methods that could have a significant influence on healthcare systems and even on
the life style of human beings. Despite continued advances in computer technology
and computational methods, such simulations critically depend on an accurate con-
stitutive description of vascular tissue. For many vascular biomechanics problems,
robust modeling of damage accumulation and even tissue failure is required.

The present chapter summarized relevant continuum mechanical concepts and
discussed parameter identification for suchmodels. As long as the accumulated tissue
damage does not trigger strain localization, such problems can be studied within the
standard nonpolar continuummechanics.However, if damage accumulation results in
strain localization, the nonpolar continuum fails and tailored continuum approaches
are needed. In addition, parameters for such failure models need to be identified
from appropriate experimental setups at controlled failure progression. Failure in
conventional engineering materials like steel has successfully been studied within
Linear Fracture Mechanics (LFM) and related concepts. However, such concepts
assume a sharp crack tip, which is not seen in failure of vascular tissue. Here, the
crack tip is bridged by collagen fibers and other tissue ligaments bridge andmotivates
the application of cohesive failure models.

Difficulties to identify model parameters from experimental data increase with
increasing number of parameters. However, at the same time a large number of
constitutive parameters is needed to account for the complex elastic and irreversible
mechanics of vascular tissues. Consequently, the application of constitutive models
with parameters of physical meaning is recommended, such that tailored experiments
can be designed, from which a subset of parameters can estimated independently.
In addition, the experimental design should support parameter identification [106],
i.e., experimental readings should be (i) sensitive to the model parameters and (ii)
provide enough experimental information for a robust identification.

Thepresent chapter regardedvascular tissue as an inert andpassivematerial,which
is clearly not the case. Like other biological tissues, the vascular wall responds to
its mechanical environment and predictions based on passive constitutive models,
i.e., suppressing tissue remodeling and growth, can only cover a limited time period.
Understanding the tissue’s inherent properties to adapt to mechanical environments
might improve vascular biomechanics predictions in the future.
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Chapter 5
Mechanical Behaviour of Skin: The Struggle
for the Right Testing Method

Cees Oomens

Abstract This chapter describes the main features of standard tests for a mechanical
characterisation of biological materials, like uniaxial, biaxial and shear tests. After
that, the inverse, mixed experimental/numerical methods will be introduced as a tool
to create more freedom in the design of experiments and to make the transition from ex
vivo testing to in vivo testing possible. A short introduction to the algorithms that can
be used to minimise the difference between the experimental results and the numerical
results will be discussed, followed by two practical examples applied to skin. The
chapter finishes with a comparison between the advantages and disadvantages of in
vivo and ex vivo testing.

5.1 Introduction

The author’s lectures at CISM in October 2015 had the same title as the present
chapter. The subtitle: “the struggle for the right testing method” was meant to be
a teaser for the students and defined a red line through the research at Eindhoven
University of Technology in the last 30 years on testing methods for soft biological
materials. Indeed is was a tortuous road to arrive where we are now and this road
was presented chronologically during the CISM school. For this chapter, a different
approach is chosen.

Skin is used as an example of soft biological tissues for which the proper mechani-
cal tests had to be designed. All the difficulties associated with mechanical character-
isation of soft biological materials, such as highly nonlinear, viscoelastic, anisotropic
behaviour that may change over time (short term as well as long term through age-
ing), variation at different body locations and between individuals are encountered
when working on skin. In addition skin is a heterogeneous material in the sense that
it consists of different layers with varying dimensions and properties (ranging from
a few µm’s to the mm scale). It is difficult to make tissue samples with appropriate
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shapes for testing, to prepare and preserve the tissue and to fix it to grips of testing
equipment. Last but not least in vivo skin is under pretension and it is difficult to
account for this.

The good news is that human skin is accessible for noninvasive, in vivo measure-
ments and a plethora of tests have been developed to measure in vivo skin properties.
Unfortunately, many of these test are not really meant to measure parameters in
constitutive equations, but are phenomenological and descriptive and only used in
comparative studies (for example the effect of ageing or a certain pathology on skin
properties). Data from these experiments are not suitable to be used as parameters
in constitutive models. Or in other words: the outcome of the descriptive tests leads
to a set of structural properties rather than material properties. However, material
models are indispensable for simulations related to healthcare problems or for devel-
opment of personal care devices. To be able to determine parameters in constitutive
equations in an in vivo setting an inverse analysis has to be applied involving rather
complicated (numerical) models to analyse the experiment.

The outline of the present chapter is as follows. In Sect. 5.2 the features of standard
tests are described and a few examples are given where this technique is applied for ex
vivo mechanical characterisation of skin. Section 5.3 explains how inverse methods
work and this is illustrated with a few examples where this technique is applied for
in vivo determination of the mechanical properties of skin. In Sect. 5.4 both methods
will be compared and the pros and cons will be discussed.

5.2 Standard Tests for Ex Vivo Material Testing

Figure 5.1 shows some schematic drawings of standard tests to characterise materials.
For a uniaxial test (Fig. 5.1a) a long slender dogbone shaped bar is clamped in a
mechanical testing machine. The dogbone shape reduces clamping effects in the
long slender part of the bar. If the material has homogeneous properties and the
bar is indeed a long slender structure, with a length much higher than the cross-
sectional dimensions, stretching of the bar will lead to a uniaxial stress state in
the bar. The stress can be derived by dividing the measured force by the cross-
sectional area. Usually the length change of the bar is measured with a contactless
measurement system in the middle section of the bar (avoiding effects of slipping in
the clamps) and sometimes the reduction of the cross-sectional area is measured, so
the Poisson’s ratio can also be derived from the test. This all works quite well for
homogeneous, isotropic, stiff materials and for small deformations. In mechanical
and civil engineering, for technical materials, this test is standardised and if performed
well is a good way to determine material properties. The stress as well as the strain
state can be derived directly from the measurements and the material properties:
Young’s modulus and Poisson’s ratio can be determined easily.

The biaxial test in Fig. 5.1b is based on a similar idea. A square sample is clamped
in a testing machine enabling to stretch the material in two directions independently.
The clamping system is designed such that the square sample remains a square
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Fig. 5.1 Examples of standard tests a uniaxial extension b biaxial test c shear test

after it is being stretched. However, when the sample has anisotropic properties, the
forces in the two directions will be different and anisotropic material properties can
be derived. Like in the uniaxial test, for homogeneous material samples the stress
and strain field is constant in a large part of the sample at a certain distance of
the clamps, and can be measured directly, independent of the material properties
of the used sample. From this stress and strain field the material parameters can be
derived easily. One of the problems encountered in this type of test is the required
uniformity in a part of the sample. The biaxial deformation is obtained using hooks
that penetrate the skin. These hooks are usually attached to strings or slender bars
that are stiff in tension, but can bend very easily to accommodate movement in
the direction perpendicular to the pulling direction. The penetration locations lead
to stress and strain concentrations around the hooks, which may lead to tearing of
the tissue and a partly inhomogeneous strain field in the sample. This means that
specimen design and attachment significantly affect the uniformity of the strain field
produced in biaxial tests [1].

A final example is the shear test that is used for viscoelastic materials and fluids.
The sample is placed between a plate and a cone or between two plates. The cone
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is rotated. This can either be with a constant rotation speed, a rotation to a certain
degree and then held constant (relaxation test) or using a harmonic oscillation. For
small deformations at each time point the shear strain rate is approximately the same
in the entire sample and can be determined from the cone rotation. The torque on
the lower plate is measured and the viscosity of the fluid can be derived. Usually the
test is performed at a large range of strain amplitudes to find the linear region and
for a very large range of frequencies. This frequency range can often be extended
by performing the experiment at different temperatures and using time-temperature
superposition to create a master curve over a very large range of frequencies. Typical
outcomes are storage and loss modulus as a function of frequency [2].

These are just three examples of standard tests to characterise materials, but there
are many more. For most of these tests standards are defined on how to perform the
test properly. What is common in all the standard tests is the possibility to derive the
stress as well as the strain directly from the experiment, independent of the type of
material that is being tested.

For many technical materials it is relatively easy to make test samples according
to the agreed standards, but for most biological materials this is much more difficult.
Below a number of reasons are given why standard tests for biological materials are
difficult

• To create a sample it has to be taken out of a body. If it concerns human tissue it
is either left over material of surgery or post mortem material. An other option is
to use tissue from animals. In all situations the material is taken out of the body,
so it loses part of its integrity, the pretension found in the living system is (partly)
gone or difficult to maintain, the tissue is no longer supplied with blood and will
start to deteriorate quickly. However, when isolated and preserved in a proper way
the negative effects of making samples of biological materials can be reduced
considerably and the parameters may change, but the physical behaviour will be
similar to the behaviour in vivo. Also during testing the physical and chemical
environment of the material has to be controlled (humidity, temperature).

• It is extremely difficult to make samples according to the standards (e.g. a dogbone
shape of a soft biological material). The amount of material available is usually
small or very small. Clamping is a big issue.

• Often the material has inhomogeneous properties, so the assumption in standard
tests that the stress strain field is homogeneous is not a valid assumption.

• Especially for soft biological materials the samples can be stretched to very high
deformations, they behave highly nonlinear and viscoelastic so the strain and strain
rate history play an important role.

Despite the difficulties given above, standard tests are done quite often because
they are well defined and they constitute the only way to gain a good understanding
of the physical behaviour of the material and to define constitutive equations. Some
of the above problems can be circumvented or partly solved using mixed numer-
ical/experimental or inverse methods. These inverse methods are the only way to
determine in vivo material parameters of biological materials. This method will be
discussed in the next section.
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5.3 Inverse Methods for In Vivo Material Testing

The biggest difference between standard testing and what is referred to as inverse
methods is the use of numerical (usually FE) models to describe or simulate the
experiment. Material parameter estimation is then a process of performing a large
number of FE simulations with different parameter sets to “fit” the simulation to the
experimental data. The biggest advantage of this method is the enormous freedom
that is created to design experiments alleviating some of the difficulties encountered
in standard tests. The method is schematically summarized in Fig. 5.2.

Let us assume an experiment is designed to determine material parameters of
some tissue. The input of the experiment comprises natural or essential boundary
conditions and is represented by a column u

u =

⎡
⎢⎢⎣

u1

u2

:
uN

⎤
⎥⎥⎦ (5.1)

where N is a discrete, finite number of applied loads or displacements (these can be
functions of time). The output of the experiment is represented by the column m with
length M (typically M �= N ). The column m may contain displacements, forces,
velocities or any relevant field information that is measured in the experiment. A
numerical model, usually a FE model, is developed which gives a proper description
of the experiment. Some constitutive model for the materials used in the FE model
has to adopted a priori (this can be based on results of standard testing for example)
and implemented in the FE code. The unknown parameters in this model are stored
in a column θ = [θ1, ...., θP ]T , where P is the number of parameters. Also an initial

experiment

Finite Element Model

Es ma on Algorithm

Fig. 5.2 Schematic drawing of a mixed numerical experimental or inverse method (adapted from
[3])
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estimate θ0 of the material parameters has to be available. The input u, boundary and
initial conditions applied in the experiment, is also used as input for the FE simulation.
The end result is a calculated output h. The relation between the parameters θ and
the measurement m is written as

m = h(u, θ) + ξ (5.2)

where ξ is an error column.
The contribution to the error column ξ can be categorised in two classes

• Measurement errors caused by the limited accuracy of the measurement system.
As a consequence the measured response m is not exactly equal to the actual
response.

• Modelling errors resulting from a constitutive model which is not correct or too
simple or specimen geometry and/or boundary conditions that are not exact. Due
to the presence of modelling errors it is not possible to find a parameter set for
which the model predictions are exactly the same as the measured response, even
in the absence of measurement errors.

Measurement errors can be taken into account in the parameter estimation process.
For modelling errors this is much more difficult.

Minimization procedure
In this section, a short theory of the inverse method is given, largely based on [4].
This thesis was focussed on metals, but the theory has also been used a lot for
biological materials. The aim of the inverse method is to find an estimation algorithm
to determine the set of parameters θ for which the model response h(θ) is in closest
agreement with the measurements m. In many applications a quadratic objective
function is defined of the following form:

J (θ) = [m − h(u, θ)]TV [m − h(u, θ)] + [θ0 − θ ]TW [θ0 − θ] (5.3)

In Eq. 5.3 the matrix V is a symmetric weighting matrix that accounts for the differ-
ence in accuracy of the entries of the column m. The second term with the positive
weighting matrix W accounts for the difference between current and initial parame-
ters and expresses the confidence in the a priori estimates. The column m may contain
properties with different dimensions (e.g. forces and displacements) and large dif-
ferences in measurement accuracy. Using statistical properties of the measurement
error, for example the mean and covariance given by

E{ξ} = 0 ; E{ξξ T } = � (5.4)

with E{.} the expected value operator and � the covariance matrix. An often used
choice for V = �−1 and W = 0 leading to a dimensionless J and an objective
function where accurate measurements are weighted stronger than inaccurate mea-
surements. This estimator is known as a Gauss–Markov estimator. If the error dis-
tribution of the measurement noise is available, the maximum likelihood estimator
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can be applied to use this extra information. This estimator chooses the parameter
set which maximises the probability of obtaining the measurement set that was actu-
ally obtained. In case the noise has a normal distribution, the maximum likelihood
estimator equals the Gauss–Markov estimator [5].

In some cases prior information about the parameter values is available. Then
Bayesian estimators can be applied to include this extra information. In these estima-
tors the parameters are considered to be random variables. In a technical application,
due to the manufacturing process, different batches of materials can have different
properties. In that case parameters for a batch can be seen as a random variable and let
us assume that these parameters have a mean θ0 and covariance matrix P0. Then to
estimate parameters using this information would be included in a Bayesian estima-
tor to determine new parameters for this particular batch. In that case Eq. 5.3 could be
applied using V = �−1 and W = P0. In this way the prior probability distribution
of the parameters can be regarded as a mathematical way to express the confidence
in the initial parameter estimates. In a biological context one could imagine that ex
vivo studies help to generate a priori knowledge about material parameters that can
be used as initial parameters for in vivo studies.

There are many methods available to minimise J . In this chapter we focus on
the Gauss–Newton algorithm. A necessary condition at a local minimum of J (θ) is
given by [

∂ J (θ)

∂θ

]T

= 0 (5.5)

For a point in the parameter space to be a true(local) minimum, the second derivative
of J has to be positive definite. Equation 5.5 results in a set of P nonlinear equations
for the P unknown parameters

HT (θ) V [m − h(θ)] + W [θ0 − θ] = 0 (5.6)

with:

H(θ) = ∂h(θ)

∂θ
(5.7)

Since the model based response h(θ) is a nonlinear function Eq. 5.6 has to be solved
iteratively. For this we assume that an estimate of the optimal parameter set is avail-
able. This set is denoted by θ i with i the iteration counter. The (a priori unknown)
optimal set is given by θ LS . In that case

θ LS = θ i + δθ i (5.8)

Substitution of (5.8) in (5.6) leads to:

HT (θ i + δθ i )V [m − h(θ i + δθ i )] + W [θ0 − θ i − δθ i ] = 0 (5.9)



126 C. Oomens

By assuming that the error θ i is small the following iterative scheme can be derived
to update the estimate θ i :

θ i+1 = θ i + δθ i (5.10)

δθ i = K−1
i

[
HT

i V [m − hi ] + W [θ0 − θ i ]] (5.11)

K i = HT
i VH i + W (5.12)

In the neighbourhood of the optimal solution this scheme has quadratic convergence.
If the initial estimate of the parameters is further away from the optimal solution,
convergence is lower or the scheme may diverge. To improve convergence properties
further away from the optimal solution several modifications of this scheme are
proposed [6].

The iterative procedure is continued until the change in the parameter updates is
smaller than a critical value √

δθ
i T

δθ
i
< δθ (5.13)

where:

δθ
i T = [δθ i

1, ..., δθ
i
P ] (5.14)

δθ
i
1 = |θ i

j |(
|θ i

j | + δ j

) j = 1, ...., P (5.15)

Here, δθ is an arbitrary small number that is used as a critical value and δ j is introduced
to avoid numerical problems when θ i

j is nearly zero.
In the iterative scheme the sensitivity matrix H i must be determined for each new

estimate θ i . Usually an analytical differentiation of h(θ i ) is impossible, because
there is no explicit expression available. Therefore often the matrix is determined
numerically, e.g. using a forward difference scheme

Hi
k j ≈ hk(θ

i + �θ j e j ) − hk(θ
i )

�θ j
(5.16)

where e j is a P-dimensional column. The jth entry is one and all other entries are
zero and �θ j is a small variation of parameter j. Two types of error play a role in this
process: the truncation error and the round off error. The truncation error originates
from neglecting higher order terms in a Taylor series expansion

hk(θ
i + �θ j e j ) − hk(θ

i )

�θ j
= ∂hk

∂θ j
+ 1

2

∂2hk
∂θ2

j

�θ j + . . . (5.17)
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The truncation error is on the order of

εt ≈ �θ j

∣∣∣∣∣
∂2hk
∂θ2

j

∣∣∣∣∣ (5.18)

On the other hand, if �θ j is too small, the influence of round off errors becomes
important

εr ≈ εh
|hk(θ i )|

δθ j
(5.19)

with εr the round off error and εh the relative error in hk(θ
i ) which depends on the

accuracy of the forward analysis. Minimising the sum of the truncation and round
off error leads to the following optimal choice for the step size �θ

opt
j :

�θ
opt
j =

√
εh

|hk |
|∂2hk/∂θ2

j |
= √

εhθ
c
j (5.20)

and:

θ c
J =

√
εh

|hk |
|∂2hk/∂θ2

j |
(5.21)

In the absence of information to calculate θ c
j often θ i

j is used, [7].
A very practical book for engineers that may be used for implementation of min-

imisation schemes is “Numerical Recipes” by [7]. For further reading on parameter
estimation the textbook of [8] can be recommended.

In the sequel two examples will be discussed which have been used for an in vivo
characterisation of human skin. For an extensive treatment the reader is referred to
the original papers [9–11].

Example 1
Meijer et al. [10] developed an in vivo method to determine the anisotropic and
nonlinear properties of the skin. The method was based on placing an oval ring at the
inside of the lower arm of volunteers. The ring was glued to the skin, thus defining
the domain that was analysed and defining essential boundary conditions at the edge
of the domain. Within the domain two pads were glued to the skin which could be
used to stretch the skin. See Fig. 5.3.

On the skin between the pads small markers were attached used to measure the
inhomogeneous displacement field of the skin when the pads were moved to stretch
the skin. The marker displacements and the force applied to the pads were used as
experimental output for the column m. The constitutive model was based on [12]
and accounted for large strains and an in-plane fibre distribution. The estimation
procedure was a least squares procedure similar to the one discussed above.

The result of the estimation procedure was disappointing. In simulations in which
an “experiment” was defined with known material properties and the procedure was
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skin

pad marker 

finite element mesh 

Fig. 5.3 Schematic drawing of experimental setup to determine anisotropic properties of skin and
the FE mesh that was used (adapted from [10])

used to find those parameters everything worked fine. This means that in principle
the setup and protocol should enable a proper parameter estimation. In practice it
appeared that the stiffness of the fibres was not determined very accurately because
the global level of strain was not high enough in the experiment for various reasons.
A bigger problem was the constitutive model that was used to describe the skin. The
authors came to the conclusion that the model errors for this application were too big,
resulting in large residuals after the estimation process, which were not completely
random.

Example 2
One of the tests that is used very often for in vivo characterization of skin is the
suction test. In most applications the test is only used for comparative studies and
not to determine parameters in a constitutive model. Diridollou et al. [13] already
pointed out that without constitutive modelling the results are purely descriptive.
The test works with a chamber that is placed on the skin usually fixed with adhe-
sive tape. The contact area with the skin is a ring with an aperture in the middle,
with varying diameters. By applying a partial vacuum (relative under pressure) in
the chamber of the device, the skin is sucked into the chamber via the aperture and
the displacement of the skin as a function of the pressure is used to derive material
properties. By controlling the pressure history, time dependent aspects can also be
taken into consideration. [9] extended the method by combining it with ultrasound.
Later optical coherence tomography [11] was used to measure displacements of dif-
ferent skin layers. This allowed them to combine the method with subject specific FE
modelling and to determine material parameters in a constitutive model. Figure 5.4a
shows a schematic drawing of the suction device. The device was filled with water
and combined with an ultrasound system to measure the local skin thickness and the
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Fig. 5.4 Overview of the suction method a schematic drawing of the device b OCT image of
deformed skin c ultrasound image of deformed skin d deformed FE mesh during suction e sensitivity
analysis of two layer skin model (adapted from [9, 11])

bulging of the skin in the aperture during suction. Figure 5.4a. A stepwise decrease
of the pressure in the chamber uplifted the skin to a maximum of 1.5 mm. Measure-
ments were performed on the left forearm of 10 subjects (age 19 to 24 years old) in
a climate controlled room at 22 ◦C and 50 % humidity. To analyse the experiment
a patient specific axi-symmetric FE model was developed (thickness of the skin
was based on the ultrasound measurement). A small part of the model is shown in
Fig. 5.4d in deformed state.

In a first study, Hendriks et al. [9] used a one layer model for skin. Skin was
assumed to behave like an isotropic hyper-elastic material described by a Mooney
type of material model based on the following strain energy function:

W = C10(I1 − 3) + C11(I1 − 3)(I2 − 3) (5.22)

with C10 and C11 material parameters and I1 and I2 the first and second invariant of
the left Cauchy–Green tensor B = F · FT and F the deformation gradient tensor.
A large spread in data between the individual test persons was found, but in general
the inverse method worked well and unique solutions were obtained for the material
parameters. A part of the large spread in results was due to fact that these were
very sensitive for the thickness of the skin that was used in the model and with the
ultrasound system used the error was rather high. Furthermore, although the fat has
a very low stiffness the subcutaneous layers do influence the results and this was
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not accounted for in the model, nor was the skin anisotropy and the multilayered
structure.

In an attempt to include the layered structure of skin, Hendriks et al. [11] com-
bined suction with Optical Coherence Tomography (OCT) a technique with a better
resolution than ultrasound enabling to measure thickness changes of individual layers
(Fig. 5.4b). In this case, it was possible to measure thickness changes of the epider-
mis/papillary layer and the dermis. Both layers were seen as individual layers in the
FE model with different material properties. The constitutive model for both layers
was neo-Hookean.

Although the authors managed to find mechanical properties for the individual
layers, this was not easy. Why this was the case is illustrated with the contour plot of
Fig. 5.4e. The plot shows the cost function for different combinations of the stiffness
of the dermis and the stiffness of the epidermis. Although a minimum seems to be
found near point M in the figure the small gradient along the dotted line makes it very
difficult for an automatic minimization algorithm to find a converged solution. The
good news is, that in the range of parameters that was studied only one minimum
was found, which often is not the case.

These were only two examples of in vivo tests to characterise skin. Hopefully they
illustrate how difficult it is to design proper in vivo tests for biological materials. In
the next section we will reiterate on the pros and cons of both in vivo and in vitro
testing and we will end with a procedure that may alleviate some of the problems.

5.4 In Vivo Versus Ex Vivo Testing

It is worthwhile at this stage to have a look again at the title of this chapter. Which
method is the best suitable method to mechanically characterise biological tissues?
Several arguments can be given for in vivo testing. It is the only way to obtain subject
specific properties or properties at different locations of the body. To study effects of
ageing, pathology or to individualise medical treatments or personal care devices in
vivo studies are indispensable. A big advantage is that for in vivo studies preservation
or isolation is not necessary and in case of skin, studies can be noninvasive, because
skin is very accessible.

On the other hand there are also a number of obvious disadvantages. Because
samples are not isolated and have no well-defined geometry the analysis of the
experiment is much more complicate compared to standard testing and in most situ-
ations can only be done by means of FE simulations. This immediately implies that
inverse analysis is necessary to find material parameters. Skin is readily accessible
for in vivo studies, but for deeper tissues this is much more complicated. Although
techniques are being developed that allow stiffness evaluations in deeper layers like
Magnetic Resonance Elastography (MRE) and Ultrasound Elastography (UE), also
requiring an inverse analysis of wave equations there is still a long way to go before
a full characterisation with these techniques is possible. Until the present day they
are limited to small deformations and a limited range of frequencies and usually
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very simple constitutive equations are being used. Moreover, the resolution of these
methods is not high enough to for examples determine the mechanical properties of
individual layers in the skin. To derive constitutive equations, fully appreciating the
complexity of the material behaviour, in vivo testing is not the obvious solution. This
requires a thorough study of the microstructure of tissues and much more focussed
tests.

Clearly there are some advantages to ex vivo test. Although more difficult than
for technical materials indeed also for biological materials it is easier to define very
well-controlled tests, isolating some of the aspects of the constitutive behaviour.
There is more freedom to define different loading histories (small strain versus large
strain, creep and relaxation tests, large frequency range in harmonic testing, testing
at different environmental conditions and tests up to failure). By isolating different
aspects of loading (shear, indentation, uniaxial and biaxial stretch, torsion) and com-
bining this with studies on the microstructure and how the microstructure changes
during loading it is better possible to formulate the physics of the behaviour and
derive the proper constitutive equations. It was already mentioned that preservation
and storage is an issue, but in the last two decades knowledge on how to do this has
benefitted enormously from the developments in tissue engineering. Despite this ex
vivo testing requires that samples are taken out of their natural environment and the
structural integrity may be disrupted and loss of pretension is a problem. Another
problem is the availability of the tissues.

Combining ex vivo and in vivo testing is the best option possible. Ex vivo testing
is indispensable to really understand the full constitutive behaviour of biological
materials. These tests should be used to define the physics, translate that into a
correct mathematical framework and this framework should be implemented in either
commercial or freely available FE packages. Ex vivo experiments will also define
the range in which the material parameters can be found. Then in vivo tests can
be designed and modelled by means of the FE packages available and material
parameters can be measured using inverse methods. The parameters from ex vivo
studies can be used as initial estimates. This enables to define methods that can be
used at different parts of the body or once fully established to follow behaviour over
time.

One point should be mentioned at this stage which is quite important. The above
suggests that a complete description of the constitutive equations has to be defined
before a subject specific procedure can be done. Apart from the fact that it is impos-
sible to obtain a full description of the constitutive behaviour it is also not necessary.
Always the first thing to do is to define the purpose or objective of the model. Why do
you need a model of the behaviour? Which question do you want to answer and which
level of sophistication do you need to answer that question? In the end this defines
the procedure that you need. Sometimes this means that a descriptive mechanical
test is sufficient in other cases it means that a very sophisticated model is required.
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Chapter 6
Soft Tissue Finite Element Modeling
and Calibration of the Material Properties
in the Context of Computer-Assisted Medical
Interventions

Yohan Payan

Abstract This chapter aims at illustrating how patient-specific models of human
organs and soft tissues can be implemented into FE packages. First is addressed
the question of the generation of patient-specific FE models compatible with the
clinical constraints. Then is discussed the calibration of the material properties, with
choices that should be done between calibrations based on ex vivo or in vivo tissues
loadings. The example of computer-assisted maxillofacial surgery is addressed and
results based on patients’ data are provided.

6.1 Introduction

Computer-Assisted Medical Interventions (CAMI) is now a mature domain, with pio-
neering works dating from the 1980s. Researchers, clinicians and industrial partners
have developed CAMI applications by building links with classical domains such as
Computer Science, Robotics, Image Processing and Mathematics. The connection to
Biomechanics is more recent and began with the study of bony structures. This was
motivated by the fact that the pioneering CAMI devices were dedicated to orthope-
dics, where bones are the main anatomical structures of interest and were assumed
to be nondeformable with a 3D shape easily reconstructible from Computed Tomog-
raphy (CT) imaging. The main idea for such biomechanical modeling was to define
a theoretical and numerical framework that provided information about the mechan-
ics of the bones after a clinical treatment or a surgical intervention. For example, a
patient-specific FE model of the femur could be designed to estimate the internal
stresses generated by a hip prosthesis and therefore to help limit fracture risks. In
these continuous biomechanical models, bones were usually considered as linear
elastic material that underwent small deformations, which permitted easy calcula-
tion of numerical solutions. More recently, CAMI has addressed a larger spectrum of
clinical domains such as cardiology, neurosurgery, maxillofacial surgery, urology, or
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abdominal surgery. For these applications, biomechanics faces a new challenge since
the involved tissues are required to move and be deformed by stresses generated by
clinical actions. Moreover, soft tissues are difficult to model accurately since they
typically exhibit complex, patient-specific, time dependent, nonlinear, inhomoge-
neous, and anisotropic behavior. Most of the corresponding biomechanical models
need to include large deformation effects and visco-hyperelastic constitutive laws.
Such models are very computationally demanding which explains why most of them
are limited to preoperative use, since the simulations often require many minutes
or hours to compute. This chapter aims at illustrating soft tissues modeling in the
context of maxillofacial surgery where FE models of the facial tissues have to be
developed to predict the impact on facial aesthetics depending on the bone reposi-
tioning maxillofacial surgery plan. The following questions will be addressed:

1. “How to generate a patient-specific FE model in a framework compatible with
the clinical constraints?”

2. “How to calibrate the material properties for the modeled soft tissues?”

6.2 Computed-Assisted Orthognatic Surgery

6.2.1 Clinical Context

Orthognathic surgery (the “surgery to create straight jaws”, see [1]) involves a wide
variety of surgical procedures performed to reposition maxilla, mandible and the
dento-alveolar segments to achieve facial and occlusal balance. This may be neces-
sary due to congenital abnormalities, growth disturbances, or trauma. Such correc-
tions are largely achieved by osteotomies, surgical techniques by which parts of the
jaw(s) are cut to create separate fragments, which can then be moved to new positions
while preserving their blood supply (Fig. 6.1). Correction of these abnormalities gen-
erally normalizes patients’ dental occlusion and temporo-mandibular joint function,
and results in improvement in functions such as chewing, speaking, and breathing,
while often enhancing facial aesthetics. A model of the patient face used to simulate
the morphological modifications following bone repositioning could greatly improve
the planning of the intervention, for both the surgeon and the patient.

6.2.2 Patient-Specific Biomechanical Model of the Human
Face

Various models of the face soft tissue were proposed in the literature. Whereas the
first works were based on discrete models such as mass-spring models [2–6], many
continuous FE models were then proposed in the literature [7–11]. Building an FE
model of an organ requires an accurate observation of the anatomy of that organ
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Fig. 6.1 A patient with a mandibular dysmorphosis (left) and the planned bone cuttings (right)
[14]

with a description of the various structures that constitute the organ. In particular, a
focus should be given to the mechanical differences that can be observed in terms
of constitutive behavior, from one substructure to another one. Facial tissues are
composed of a complex interweaving of muscular fibers, fat, glands, and mucosa
[12]. The facial skin structure is basically made of three layers: the epidermis, the
dermis, and the hypodermis. The epidermis is a superficial 0.1 mm thick layer, mainly
composed of dead cells. The underlying dermis layer, which is much thicker (0.5
to 4 mm), is composed of elastin fibers mainly responsible for the global elastic
behavior of the skin. Finally, the hypodermis layer, mainly fat tissues and mucosa,
can slightly slide over the bones of the skull and jaw. The muscular structure (mostly
flat muscles contained in the hypodermis layer) that connects these skin layers to
the skull is extremely complex, with insertion points, orientations and interweaving
fibers allowing great facial dexterity (mimics, expressions, lip gestures for speech
production). A “generic” 3D FE model of the face was implemented in the ANSYS
software [10, 13, 14]. The volume defined by the facial tissues located between the
skull and the external skin surface of the face was manually meshed, as regularly
as possible, with an eight-node hexahedra-dominant mesh representing the three
layers of dermis and sub-dermis tissues with muscle courses identified inside the
corresponding elements (Fig. 6.2). The mesh is symmetrical with respect to the mid-
sagittal plane. Contacts are added to formulate inter-lip and lip/teeth collisions. In
the framework of computer-assisted maxillofacial surgery, a model of each patient is
required. A 3D mesh adapted to each patient’s morphology must therefore be defined.
Most of the existing FE face models are built from patient CT scans using automatic
meshing methods. However, these methods usually lack robustness because of the
complex geometry and topology of the face soft tissues, and the time needed to
generate such meshes is generally several days, which is not compatible with clinical
use. In addition, these models are limited in terms of biomechanical modeling. Indeed,
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Fig. 6.2 Generic FE model: dermis and hypodermis fixed to the skull (center), course (left), and
action (right) of the muscular fibers [10]

the unstructured organization of the elements does not allow one anatomical structure
to be distinguished from another within the mesh. The face soft tissues are thus
modeled as a single entity, without distinctions between dermis layers, fat, muscles,
and mucosa. To overcome these limitations, our group has proposed a methodology
called the Mesh-Match-and-Repair algorithm [15, 16] consisting first, in manually
defining a structured 3D mesh, in order to build one “generic” model of the face.
Emphasis is given to the design of the generic mesh, so that the elements inside the
mesh can be associated to anatomical entities (dermis layers, fat, muscles, mucosa).
Specific mechanical properties can therefore be explicitly given to such substructures.
The next step of our methodology consists of matching the generic model to each
patient’s morphology, using an automatic elastic registration method: a structured FE
model of each patient is then automatically generated (Fig. 6.3). Figures 6.1, 6.2, 6.3,
6.4 and 6.5 illustrate an example of the predictions provided by a FE model adapted
to the geometry of a patient. The bone repositioning planned by the surgeon (Fig. 6.1)
is put as an input to the model by imposing the corresponding displacements to the
nodes that are supposed to be attached to the mandible, chin, and maxillary segments
(Fig. 6.4). The results provided by the simulation can therefore be compared with the
actual outcome of the surgery (Fig. 6.5).
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Fig. 6.3 Registration
generic model to the
morphology of the patient.
Left generic model (blue)
and 3D reconstruction of the
patient’s morphology
(yellow). Right Result of the
elastic registration [10]

Fig. 6.4 Predictions of the
skin deformations due to the
planned bone repositioning
[10]

Fig. 6.5 Postoperative data
(left) and comparison with
the predictions provided by
the model (right)



138 Y. Payan

6.3 Calibration of the Material Properties

The example provided in Figs. 6.1, 6.2, 6.3, 6.4 and 6.5 needs the facial soft tissues
material properties to be calibrated to run the simulations. This can be done assuming
mean generic values for such parameters (e.g., through ex vivo testing) or trying to
fit the actual behavior of patient’s soft tissues (in vivo measurements).

6.3.1 Generic Ex Vivo Calibration of the Material Properties

Some years ago, our group has proposed to characterize the mechanical behavior of
the human cheek. For this, an indentation experiment was provided, by measuring
the mechanical response of cheek tissues removed from the fresh cadaver of a 74-
year-old female [17]. The experiment was run less than 24 h after death, in order to
limit tissue deterioration. The method consists in exerting a calibrated pressure onto
the material and simultaneously recording the corresponding deformations (Fig. 6.6).
The indentation experiment itself does not provide the constitutive law of the material.
Indeed, the measurements only give the nonlinear relationship between the local force
applied to the external surface of the body and the resulting displacement. To get the
constitutive law from this indentation experiment, i.e., the global relationship that

Fig. 6.6 Indentation on a cheek specimen and the corresponding axisymmetric FE analysis [17]



6 Soft Tissue Finite Element Modeling and Calibration … 139

can be assumed between strain and stress inside the body, an optimization algorithm
based on an “analysis by synthesis” strategy was elaborated. It consisted in

1. assuming a given constitutive law,
2. building a FE analysis (FEA) of the indentation experiment,
3. comparing the simulations provided by this FEA with the indentation measure-

ments,
4. using this comparison to propose a change of the constitutive law that should

make the FEA simulations and the measurements closer,
5. starting again until the comparison carried out in 3. gives satisfactory results.

Among the various strain-energy functions which can describe the nonlinear
mechanical response measured during our indentation experiment (see Chap. 1 for
the background on hyperelasticity), we have proposed to use the incompressible two
parameter Yeoh strain-energy function [17]. Such a constitutive law was used to
obtain results such as those shown in Fig. 6.4.

6.3.2 In Vivo Calibration of the Material Properties

Regarding the question of mechanical properties, it is now undoubtedly established
that the constitutive behavior of human soft tissues are patient-specific and cannot
be obtained by a generic value deduced from any standard ex vivo measurements.
Indeed, it has clearly been shown [18–20] that the mechanical behavior of soft tissue
can differ significantly between in vivo and ex vivo conditions, for a number of
reasons, including the vascularization of the tissue. The various excitation methods
range from suction to ultrasound with a variety of devices in each category. Aspiration
is probably the most widely used technique. Starting from the pioneering work by
Grahame and Holt [21], several authors proposed suction cups differing mostly in
the way the aspirated height is measured (optically [22], using ultrasound [23]) or by
their ability to accurately measure the dynamic response. Other excitation methods
include indentation [19, 24] using a hand-held or robotic indenter, and torsion [25]
or ballistometer [26] which consists of striking the tissue with a known mass and a
known force. Ultrasound measurement [27, 28] is another method linked with the
emerging field of elastography. Aspiration is probably the most widespread method
because it is noninvasive and proved to be quite reliable. However, most of the papers
rarely address the important issue of sterilization to any great depth of detail whereas
such sterilization can be very important in case of the aspiration of human living
tissues. In such a perspective, a sterilizable device has been developed (Fig. 6.7),
called Light Aspiration device for in vivo Soft TIssue Characterization (LASTIC),
based on the aspiration technique and originally introduced by Schiavone et al. [29]
while quantifying the human brain behavior. LASTIC is a 33×34 mm2 metal cylinder
composed of two compartments. The lower one is an airtight chamber, open at
the bottom by a 10 mm diameter circular aperture and closed at the top by a glass
window. The upper compartment holds the electronic part consisting of a miniature

http://dx.doi.org/10.1007/978-3-319-45071-1_1
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Fig. 6.7 Principle of the in vivo aspiration method [29]

2 megapixel digital camera and a LED used as a light source. The aspiration chamber
is connected to a programmable syringe pump that can generate a negative pressure
(measured by a manometer) which deforms the tissues on which LASTIC is laid on.
This deformation is imaged by the camera via a 45◦ inclined mirror which provides
a view of the tissue from the side. The height of the tissue deformation is segmented
on the recorded image. Measuring the deformation height corresponding to several
steps of increasing negative pressures can give an estimation of the behavior of
the tissues. Like for the indentation experiment (Fig. 6.6), the deformation/pressure
measurements are then processed through an inverse FE analysis to estimate the
tissues constitutive laws.

To be able to improve the planning of the outcome of an aesthetic or maxillofacial
surgery, it is necessary to estimate the stiffness of the facial soft tissues in several
places. Four locations with presumably different tissue thicknesses and different
amounts of fat and muscle were consequently chosen: the cheek, the cheekbone, the
forehead, and the lower lip. To study the possible variations between subjects, the
stiffness estimation was performed on a group of 16 healthy subjects, eight males

Fig. 6.8 LASTIC’s two compartments. The lower part is the aspiration chamber with the mirror
and the upper part contains the camera that images the deformation [29]
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Fig. 6.9 Facial tissues equivalent Young moduli (kPa) measured at four locations [30]

and eight females, of different ages and body mass indexes. LASTIC was used to
estimate the stiffness of the soft tissues at these four locations for these 16 subjects
(Figs. 6.8 and 6.9).

Significant intra-subject differences in tissue stiffness are highlighted by these
estimations. They also show important inter-subject variability for some locations

Fig. 6.10 Face deformations due to the activation of the orbicularis oris peripheral muscle [31]
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even when mean stiffness values show no statistical difference. This study stresses the
importance of using a measurement device capable of evaluating the patient-specific
tissue stiffness during an intervention. The corresponding constitutive parameters
can therefore be entered into our ANSYS environment to simulate face deforma-
tions due to bone repositioning. With a dedicated Usermat functionality of ANSYS,
a transversely isotropic material was implemented to model muscle contraction [31].
The activation is accounted for by adding an active stress to the Cauchy stress in
the direction of fibers. An additional isochoric term is included in the strain-energy
function, to account for lateral normal stiffness. Figure 6.10 illustrates such muscle
action with the deformations induced by the activation of the orbicularis oris periph-
eral muscle which is a sphincter muscle running around the lips and responsible for
lip protrusion [32, 33].

6.4 Conclusion

This chapter aimed at illustrating the design of a patient-specific FE model of soft
tissues in a clinical context. Assistance to orthognathic surgery was chosen as an
example with the use of a biomechanical model of facial soft tissues including skin
layers and muscular structures. The idea was to use such a model to predict the
aesthetic and functional consequences of maxillary and mandible bone repositioning.
The chapter has focused on the two main difficulties in elaborating such a model,
namely

1. how to generate structured patient-specific FE models in a time scale that remains
compatible with the clinical constraints

2. how to calibrate the mechanical parameters of these models.

Ex vivo and in vivo calibrations were both addressed. However, if the constitutive
laws based on such calibration processes are important, it should be acknowledged
that this importance is relative if boundary conditions are not sufficiently accurately
taken into account. Indeed, as was shown in [34], changes in such boundary condi-
tions (the displacements assigned to some nodes attached to the bony surfaces in our
case) can have a much larger influence than any changes in the constitutive behavior
of facial soft tissues. This point is consistent with the recent observations of [35] who
mentioned, in the case of a brain FE model deformed by nodes’ imposed displace-
ments, the “unimportance of constitutive models in computing brain deformation for
image-guided surgery”.
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