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The Square of Opposition: A Cornerstone
of Thought

Jean-Yves Béziau and Gianfranco Basti

Abstract We first describe how after having started in Montreux, Switzerland in 2007,
the congress on the square of opposition moved to the American University of Beirut in
Lebanon in 2012 after a stop at the University Pasquale Paoli in Corsica in 2010. We then
describe the square congress at the Pontifical Lateran University in the Vatican in 2014
and the resulting publications.

Keywords Fuzzy logic ¢ Interdisciplinarity ¢ Intuitionistic logic * Modal logic ¢ Para-
consistent logic * Square of opposition * Syllogistic

Mathematics Subject Classification (2000) Primary 00B25; Secondary 00A66, 03A05,
03B22, 03B45; 03B53

1 From Montreux to Beirut, via Corsica

The World Congress on the Square of Opposition—SQUARE—is an interdisciplinary
event. The idea of the SQUARE congress is to promote interdisciplinarity around a very
simple theory that everybody can understand, develop and apply.

The first congress on the square of opposition was organized in Montreux, Switzerland,
June 1-3, 2007, by the first author of this paper (hereafter JYB) at the time he was working
at the University of Neuchatel. Neuchatel is the town of Jean Piaget (1896-1980). He was
born there and his father, Arthur Piaget (1865-1952), was the first Rector of the University
of Neuchatel. Jean Piaget had the spirit of research since he was quite young. He started
by studying the mollusks of Lake Neuchatel. His studies then evolved up to vertebrates, in
particular rational animals. Interested in intelligence he naturally worked in logic including
the theory of opposition. Piaget was a strong promoter of interdisciplinarity. He coined the
word “transdisciplinarity”, that he thought was better, during a congress in 1970:

Finally, we hope to see succeeding to the stage of interdisciplinary relations of a superior stage,
which should be “transdisciplinary”, i.e. which will not be limited to recognize the interactions and
or reciprocities between the specialized researches, but which will locate these links inside a total
system without stable boundaries between the disciplines [29].

Inspired by Piaget, JYB organized two interdisciplinary events at the University of
Neuchatel where he was working. One in 2005 on symbolic thinking and one in 2008
on imagination. The 1st SQUARE was however not organized in Neuchatel but by the

© Springer International Publishing Switzerland 2017 3
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Fig. 1 Terence Parsons—I1st SQUARE in Montreux in 2007

banks of another lake, Lake Geneva, at the Hotel Helvétie in Montreux, a nice Hotel
where was previously organized the first World Congress and School on Universal Logic—
UNILOG—in 2005. Participants of the 1st UNILOG liked very much this location so it
was decided to organize again an event there. Moreover the SQUARE was developed in
the same spirit as UNILOG. In both cases the idea is not to construct a big totalitarian
system, but to promote exchange of ideas and openness of minds.

The 1st SQUARE gathered people from all over the world from many different fields.
Among speakers were Pascal Engel, Jan Woleriski, Laurence Horn, Peter Schroder-Heister,
Terence Parsons (Fig. 1), Sieghard Beller, Dag Westerstahl. There was a square jazz show
and the projection of the movie Salomé, a remake of the biblical story based on the square.
For the resulting publications see [12] and [13].

The 2nd SQUARE was organized in Corte, at the University of Corsica Pasquale
Paoli, June 17-20, 2010. The relation between Corsica and Switzerland is not necessarily
obvious. Let us however remember that Jean-Jacques Rousseau was asked to write a
constitution for Corsica and that JYB had lived in Corsica in his youth (cf. [4]). The
proposal to organize the event in Corsica was made at the final round square table in
Montreux by Pierre Simonnet, a computer scientist working at the University Pasquale
Paoli. He subsequently succeeded to convince his colleagues of this university to organize
the event there. They gave their full support, in particular Jean-Francois Santucci.
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Fig. 2 Jean-Louis Hudry, Pierre Simonnet, Pierre Cartier, JYB—2nd SQUARE in Corsica in 2010

For the opening of the event there was a lecture by the Rector of the Corsican
Academy, Michel Barat, a philosopher who had also been two times Great Master of
the Grande Loge de France (GLDF). Among speakers were Pierre Cartier (Fig.2), from
IHES, Bures-sur-Yvette, with Alexander Grothendieck, the most famous members of
Bourbaki of the second generation; Damian Niwinski from the Institute of Informatics,
Warsaw University, Poland, editor-in-chief of Fundamenta Informaticae; Pieter Seuren
from the Max Planck Institute for Psycholinguistics, The Netherlands; Stephen Read from
the School of Philosophical and Anthropological Studies, University of Saint-Andrews,
Scotland; Hartley Slater, from the University of Western Australia, Perth, Australia; Dale
Jacquette from the Department of Philosophy, University of Bern, Switzerland. For the
resulting publications of this event see [3] and [11].

The 3rd SQUARE happened at the American University of Beirut (AUB), Lebanon,
June 26-30, 2012. Why organizing such square event in this location, at a time where
the political situation was quite tense in the region (civil war in Syria, conflict between
Lebanon and Israel)? JYB knew about AUB through the famous logician David Makinson,
with whom he was in touch since many years, and who had been professor and chair of
the department of philosophy of AUB. Later on when JYB was as a Fulbright scholar at
UCLA (1994), the director of the Fulbright program was Ann Kerr the widow of Malcom
Kerr, who had been president of AUB (assassinated when in office in 1984). Then JYB
met Ray Brassier in September 2010 in Maastricht in Netherlands, who was at this time
the director of the department of philosophy of AUB. This was at the occasion of the
workshop Cutting the “Not”: Workshop on Negativity and Reflexivity at the Van Eyck
Academie organized by Tzuchien Tho. JYB gave there the talk “From classical negation
to paranormal negation” where he presented the square of opposition and then started to
talk with Brassier about the possibility to organize the SQUARE event at AUB. For the
preparation of the event JYB went a first time in Beirut in early 2012 where he met Wafic
Sabra, the director of the Center for Advanced Mathematical Sciences of AUB, a former
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Fig. 3 Ray Brassier, JYB, Wafic Sabra—3rd SQUARE in Beirut in 2012

student of the physicist David Bohm, with whom JYB had worked. CAMS decided also
to support the organization of the event (Fig. 3).

Besides the sponsorship of AUB, the 3rd SQUARE was sponsored by the French,
Swiss, Brazilian and Italian embassies in Lebanon. The Swiss ambassador, Ruth Flint,
offered a welcome cocktail with Swiss wine and cheese.The ambassador of Brazil, Paulo
Roberto Campos Tarrisse da Fontoura, organized a party at the Brazilian cultural center in
Beirut for the participants of the event. The program was very rich and varied with speakers
such as Musa Akrami from Islamic Azad University, Science and Research Branch of
Tehran, Iran; Oliver Kutz from the Department of Informatics, University of Bremen,
Germany; Mihir Chakraborty from the Department of Pure Mathematics of University
of Kolkata, India; Frangois Nicolas from Ecole Normale Supérieure d’Ulm, Paris; Claudio
Pizzi from the Department of Philosophy of the University of Siena, Italy; Saloua Chatti,
from the Department of Philosophy of the University of Tunis, Tunisia; Jean Sallantin
from LIRMM—CNRS Montpellier, France; Robert L. Gallagher from the Civilization
Sequence Program of AUB. For the resulting publications see [14] and [9].

2 The Square at the Pontifical Lateran University, Vatican

At the final round square table in Beirut, Raffaela Giovagnoli from the Pontifical Lateran
University (PUL), Vatican, proposed to organize the next edition of the event there. JYB
visited the PUL in February 2013 to meet the second author of this paper, Gianfranco
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Fig. 4 The entrance of the Pontifical Lateran University

Fig. 5 Bishop Enrico dal Covolo—Rector of PUL

Basti, who was at this time the Dean of the Faculty of Philosophy of PUL and the 4th
SQUARE happened at PUL, May 5-9, 2014 (Figs. 4, 5, 6 and 7).

The event was very successful with about 150 participants. The welcome address was
given in French by Bishop Enrico dal Covolo, Rector of the Pontifical Lateran University
(an English version can be found in the present book, cf. [19]).
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Fig. 6 On the /eft Gianfranco Basti, Dean of PUL Faculty of Philosophy discussing with the French
Ambassador Bruno Joubert at Villa Bonaparte, Embassy of France in the Holy See

Fig. 7 One of the numerous lecturers from all over the world Juan Campos Benitez, Benemérita
Autonomous University, Puebla, Mexico
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There was a cocktail at the Polish Embassy in Vatican with the Ambassador Piotr
Nowina-Konopka and another one at the beautiful Villa Bonaparte (former property of
Pauline Bonaparte, the sister of Napoleon Bonaparte) offered by the Embassy of France
in the Holy See, with his Excellency the Ambassador Bruno Joubert. The Polish cockatil
was organized by Katarzyna Gan-Krzywoszyniska who had been since the 1st SQUARE
one of the executive organizers of the SQUARE event. The French cocktail was organized
by Juliette Lemaire and Anne Hénault (University Paris Sorbonne).

There were many speakers including Wolfgang Lenzen from the Department of
Philosophy of the University of Osnabrueck, Germany; Rusty Jones from the Department
of Philosophy of Harvard University, USA; Henri Prade from IRIT—CNRS, Toulouse,
France; John Woods from Department of Philosophy of University of British Columbia,
Canada; Bora Kumova from Izmir Institute of Technology, Turkey; Frangois Lepage, from
the Department of Philosophy of the University of Montréal, Canada; John N. Martin from
the Department of Philosophy of the University of Cincinnati, USA; Patrick Eklund from
the Department of Computing Science of Umed University, Sweden; Lorenzo Magnani
from the University of Pavia, Italy; Marcin Schroeder from Akita International University,
Japan; Manuel Correia Machuca from the Department of Philosophy, Pontifical Catholic
University, Chile with whom it was decided to organize the 5Sth SQUARE in Easter Island,
November, 11-15, 2016.

3 New Investigations and Discoveries About the Square
of Opposition

In this book there is a large spectrum of papers showing pretty well the fruitful result of
cross-fertilization between various areas generated by the square. The papers published
here are part of the lectures present at the 4th SQUARE, others were published in a special
issue of Logica Universalis (cf. [10]).

As usual we have papers related with the history of the square such as the one by Manuel
Correia, “The proto-exposition of Aristotelian categorical logic” [18], about a common
source of the Apuleian and the Boethian square. The paper of Spencer Johnstone, “The
modal octagon and John Buridan’s modal ontology” [24], and Antonino Drago, “From
Aristotle’s square of opposition to the tri-unity’s concordance: Cusanus’ non-classical
arguing” [20] about God, are analyses related to the medieval period.

Then we have three papers which are at the same time reinterpretations of the square
from the point of view of modern logic and inputs for new developments, in the spirit
of the work of Lukasiewicz. The paper by Bora Kumova, “Symmetric properties of the
syllogistic system inherited from the square of opposition” [25], deals with the relations
between syllogistic and the square (compare with [28]), the one by Paul Weingartner,
“The square of opposition interpreted with a decidable modal logic” [35], is connected
with modal logic as is “Two standard and two modal squares of opposition” [30] by Jifi
Raclavsky.

We have more philosophical papers such as the one by Andrés Bobenrieth, “The many
faces of inconsistency” [15], investigating in particular the relation between the square
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and paraconsistent logic (a topic that has recently been developed in [1, 5, 6]). Raffaela
Giovagnoli and Philip Larrey’s paper, “Aristotle, Frege and Second Nature [23], deals with
some fundamental questions regarding rationality and conceptualization. In “There is no
cube of opposition” [7] JYB presents a critical analysis of the generalization of a square
of opposition to a cube of opposition discussing the question of generalization.

In the follow up we have some theoretical papers. The papers “The unreasonable
effectiveness of bitstrings in logical geometry” [33] by Hans Smessaert and Lorenz
Demey and “An arithmetization of logical oppositions” [32] by Fabien Schang are both
dealing with the binary systematization of the square. “Groups, not squares: exorcizing
a fetish” [16] by Walter Carnielli is focusing on the general structure beyond the theory
of opposition arguing that the square if just an artificial appearance of it (for more about
Klein group and the square, see [31]).

José David Garcia-Cruz in his paper “From the square to octahedra” [22] studies
various geometrical figures other than the square, in particular two octahedra improving
Colwyn Williamson comparative study of propositional logic and the traditional square. In
“Iconic and dynamic models to represent distinctive predicates: the octagonal prism and
the complex tetrahedron of opposition” [17] Ferdinando Cavaliere is opening the octagonal
perspective to the third dimension. Joseph Vidal-Rosset’s paper “The exact intuitionistic
meaning of the square of opposition” [34] is not about a variation of the square but about
the application of the square to one of the most famous variations of classical logic, i.e.
intuitionistic logic (similar study was recently developed by Francois Lepage [26]).

Finally we have three papers dealing with applications of the theory of opposition.
This first one, by Christoph Benzmiiller and Bruno Woltzenlogel Paleo, “The ontological
modal collapse as a collapse of the square of opposition” [2], is about Godel” proof of the
existence of God. The second one by Gert-Jan C. Lokhorst is about prudence, in Greek,
euboulos, using fuzzy logic: “Fuzzy Eubouliatic logic: A fuzzy version of Anderson’s
logic of prudence” [27]. The third one by Sascha Benjamin Fink is about mental states
and introspection using an octagon: “Why care beyond the square? Classical and extended
shapes of oppositions in their application to introspective disputes” [21].
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Welcome Address to the Participants of the IV
International Congress on: The Square of Opposition
Vatican City, PUL, May 5-9, 2014

Monsignor Enrico Dal Covolo

Distinguished Professors, esteemed researchers, dear Students,

It is a joy for me and for our University and for its Faculty of Philosophy, an honor, host
the fourth edition of the “World Congress of the square of the Opposition” that gathered
here over a hundred researchers and scholars, from all over the world, for 5 days of intense
work and fruitful debate.

First of all, I want to express my thanks to the Organizing Committee for this event.
To Prof. Jean-Yves Béziau of the Federal University of Rio de Janeiro, tireless promoter
and organizer of all the congresses on the Square. Their success is evident from the fact
that these Congresses, over the years, have seen increase their international fame and
their qualifying participation, producing every time, valuable specialized publications,
by Publishers and Scientific Journals of international relevance. A special thanks also
to Professor Katarzyna Gan-Krzywoszynska Katarzyna from the Adam Mickiewicz
University, in Poznan, Poland, who has closely collaborated with Prof. Beziau in the
organization of this event. To her I offer a special greeting, given that only a few
weeks ago, together with the Rector of the Mickiewicz University, Professor Professor
Bronistaw Marciniak, we signed an agreement for Academic Cooperation between our
two Universities. We can say that this Congress is also a first fruit of this collaboration.
My thanks go also to Prof. Gianfranco Basti, and to Prof. Raffaela Giovagnoli from our
Faculty of Philosophy, and of IRAFS (The International Research Area on Foundations
of the Sciences, www.irafs.org), who cooperated in the organization of this Congress,
together with the Events Office of our University.

For me, that I am, as well as Rector of this University, a professor and a researcher in
History of Latin Literature is particularly comforting to see how a theme that belongs to
the tradition of the Ancient and Medieval age, as the square of the logical opposition,
is able to pass through the centuries and the millennia, so to show its incorruptible
significance for logic, capable of coagulating around it scholars of various disciplines,
not only philosophers, logicians, and mathematicians, but also theologians, historians,
psychologists, and even scholars of arts and literature.

This is due to the particular nature of the discipline of logic, “the science that makes
sciences all sciences”, because it captures in the form of symbols and of relations among

© Springer International Publishing Switzerland 2017 13
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symbols the processes of thought and language in all their expressions, theoretical,
practical, aesthetic. In this way, it makes comparable and transparent to the inquiry
all languages, verbal and non-verbal, mathematical and humanistic, beyond cultural
differences, historical distances, convictions of faith, ideological preconceptions, and
language barriers.

Even though I am not an expert in this field, only by reading the abstracts of the many
interventions of this Congress, I was able to see once again the power that the instrument
of formalization of the philosophical and humanist thought has for the interdisciplinary
dialog and for the intercultural exchange. The Interdisciplinary dialog, for the relationship
between sciences and humanities; the intercultural dialog for the relationship between
the different religions and cultures in a global society. Our society so far, unfortunately,
knew the globalization only on the basis of the scientific, economic and the technological
exchange. Often, people do not realize that such a type of globalization was made possible
in the twentieth century, thanks to the formalization (symbolization and axiomatization) of
the logic of mathematical sciences, theoretical and applied, starting from the publication of
the Principia Mathematica of Alfred N. Whitehead and Bertrand Russell, at the beginning
of the twentieth century. They had applied to the entire corpus of mathematical sciences,
developed until then, the principles of the logistics of Gottlob Frege, thus inaugurating the
new discipline of the mathematical logic.

Thanks to it, together with the development, in the second half of the twentieth century
of science and technology of communications, which have worked as an enzyme for
the entire process, peoples belonging to different cultures and languages, which are very
different from the western ones, may acquire a scientific and technological competence—
basic and/or advanced—in the various scientific disciplines, in the times of a common
course of university degree. On the contrary, only until to the end of nineteenth century,
for obtaining the same result, much more years were necessary for learning, with another
language, another culture, another way of thinking, without the essential support of the
formalization that only can make fast and certain such a process. It was necessary, indeed,
firstly learning one or more western languages, secondly understanding some essential
aspects of western culture and civilization sometimes very far from the original culture
of the student, and, finally!, studying the discipline in question. A sort of frustrating
and tedious path to obstacles, generally lasting several decades, which then only a few
privileged people could afford. This frustrating learning path, unfortunately, still remains
today for those who want to study humanities of other cultures, with enormous waste of
resources, and consequent exclusion of traditions sometimes millenarians from the actual
debate.

In this way, it is likely to send lost authentic treasures of wisdom in all fields of human
knowledge, instilling into the common mentality the idea of an insurmountable cultural
relativism, philosophical, ethical and religious, that in fact marginalizes increasingly these
forms of knowledge, reducing them to folklore or curiosity for a museum. A loss that is
the more serious today, when the overwhelming development of sciences and technologies
would require that these contents of millennial wisdom be made easily available to
scientifically educated people—the young people before all—from the inside of this type
of education.
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It seems strange that in the face of such disaster for the reflection that is the more
enlightened, and less prone to succumb to the “politically correct” of the nihilism and of
the relativism, had not produced its antibodies. They, instead, and fortunately, have been
developed along two directions. At the beginning they were separated, but today are largely
convergent, for the good of all.

The first direction, better known to philosophers and to humanists, was, throughout
the twentieth century up to today, the birth and the development of the phenomenological
reflection, with the connected rebirth of the ontological reflection. Two strands of thought
largely overlapping, which oppose the false reductionism of scientism, and of his mentor,
the bad scientific divulgation that today became an educational problem on a global scale.

The second direction is perhaps less apparently “alternative” to the tyranny of the
technological-scientific one-way thought. On the contrary, it is the only one that can be
validly oppose it from the inside of the scientific formal languages, and that is virtually
underlying all the relations of this Congress.

In fact, simultaneously to the development and the application of the axiomatic method
in mathematical logic, for the groundbreaking work of a philosopher rightly entered in
the history of the thought of the twentieth century, even though but very little studied and
developed in Italy, Clarence 1. Lewis, a similar process of axiomatization of its own logic
of the various philosophical disciplines, the so-called “intensional logic” appeared. Until
that time the subject of study prevailing was the school of phenomenology. A process
that started by the axiomatization structures of modal logic common to most of them,
inaugurated by Lewis himself. He, in fact, with great foresight had guessed that, since the
publication of the first edition of the Principia, the mathematical logic, the formalized
“extensional logic”, could not apply if not partially, to the analysis of language and
philosophical humanist in general. Lewis, who was then a young doctor in philosophy,
opposed his “intentional logic” to the application of the extensional logic of the Principia to
the analysis of philosophical thought. The project started, on the other hand, immediately
after, with the publication and dissemination on a large scale due to Bertrand Russell,
of the Tractatus Logico-Philosophicus of the young Ludwig Wittengstein. A project that
will lead to the birth of the logical neo-positivism movement. A movement that, precisely
because it used a formal inadequate tool, which is not that of intensional logic and
logical philosophy in general, has often achieved disappointing results, characterized by
a substantial scientistic reductionism. This very limit was recognized by Wittgenstein
himself after years of isolation and spiritual retreat during the long period spent as
missionary of the Carinthian Alps, as a consequence of the trauma of his participation
in the World War I. Initially, he remedied by its magisterium in Cambridge and by
the theory of multiple “language games”, and more than once as in the Tractatus.
The language games, with their rules and logical methods necessarily different, but all
comparable, through the instrument of the analysis and the formalization of logic, favor the
development of different languages and of different disciplines, sciences and humanities.

On the other hand, Lewis, as the pragmatist philosopher he was, just realized the
immense potential that the axiomatic method of the Principia would have for the diffusion
of scientific knowledge. That is what has widely occurred along the twentieth century, and
still continues. “Philosophical logic” can reach important results, pace the “mathematical
logic”, by acquiring the axiomatic method. A work that Lewis himself begun with the first
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axiomatization of modal logic, and so, he is the pioneer of the so-called philosophical
logic. A discipline now developed as the elder sister of the mathematical logic, but with a
paradoxically sharpest decline, despite the name and not yet sufficiently developed in the
humanities, especially in Continental Europe, but rather in the field of computer science.

It is in fact the basis of the so-called “semantic revolution” in the computer science
and robotics. From this revolution revolution also arrived applications to consumer:
think to the so-called “semantic database” or to the capacity of the artifacts to interact
in common language with humans, by interpreting and sometimes anticipating the
intentions of the biological party. A process that is at the base of the now incipient
“third information revolution” of the Web3 or “semantic web”, that will overlap with
the current pervasive Web2 or “web interactive”, that is now a global phenomenon. A
phenomenon that, allowing the increasing automation of semantic tasks, is already leading
to more and more automation in the field of services, and not only of repetitive tasks
in the manufacturing industry it has been hitherto. This revolution, as it is now widely
attested even on newspapers and magazines of wide spread, is intended to disrupt deeply
not only our culture but also our economy and society as a whole in the coming decades. A
revolution which urgently requires critical contribution and address, which only an updated
philosophical reflection, ontological and ethical first, may offer.

The discipline of logic and philosophical logic give rise to the so-called “formal
philosophy”—in its various meanings, of “formal ontology”, “formal epistemology”,
“ethics formal”, “formal aesthetic”, and not only “formal logic” as it was in the past.
Unlike the “analytic philosophy”, the formal philosophy does not only use the philosophi-
cal logic to analyze the logic of philosophical disciplines and to assess their consistency. It
does much more. It formalizes the structures by giving rationality and expressivity to the
different philosophical conceptions, no matter how distant in space and time they are from
our own, and by making them all comparable, transparent to each other, but especially
available to enter in the contemporary debate for the common solution of problems. In
this way, each of us can appreciate the genius of a lot of solutions, especially of the past
and the most glorious humanistic traditions of all cultures, by creating an ideal agora, an
actual global aeropagus, in which we can invite past and present authors to discuss our
problems, in the absence of linguistic and cultural barriers, otherwise hardly to overcome,
given the current pluralism—Ars longa vita brevis, (to quote the ancients). I think I am
correct in saying that your International Congresses on the Square, including the present
that we are going to start, are an exemplification of this image and can be true and fruitful
for our scientific and humanistic culture.

In summary, the “globalization of humanism” was a great achievement which we can
reach today, using the formal languages of logic—better, the “logical”’—to play the role
that in antiquity and medieval ages of our European culture, the Latin played, whose
linguistic logic seized for excellence we are modestly fond. Not for nothing, in the
programs of the institutional program of our Faculty of Philosophy we have included well
three Latin courses and three courses of logic, which, as far as necessarily the introducers,
can form all of our students to have access to the treasures of the universal thought.
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For this, at the conclusion of my speech, I wish all of you a good job, with the hope, that
is a certainty, that this Congress will bring those fruits, for which not only its organizers,
but all the rapporteurs, spent their ingenuity.

M.E.D. Covolo (<)
Pontifical Lateran University, Rome, Vatican City, Italy
e-mail: segrettore @pul.it


mailto:segrettore@pul.it

Part 11
Historical Perspectives on the Square



The Proto-exposition of Aristotelian Categorical
Logic

Manuel Correia

Abstract The aim of this paper is to state that the oldest Western treatises on categorical
logic, the one attributed to Apuleius of Madaurus (I-II AD) and the other written by
Boethius (VI AD), follow a common plan rather than a common written source. I call this
common plan the proto-exposition of categorical logic as much as it can be reconstructed
in its formality. Its limits exceed those of Aristotle’s written works on logic, and both
Apuleius and Boethius suggest that Aristotle’s first disciples, Theophrastus and Eudemus,
play an important role in its arrangement. After remarking its main characteristics, I
describe its limits, by including indefinite terms in syllogistic premises, in connection with
three general rules or Axioms making decidable every categorical syllogism. Accordingly,
I analyze some study cases in order to distinguish strict conclusions from non-strict ones,
which represents a new discernment on existential-import discussion. Then, I remark the
importance of the concept of quantitative symmetry by showing how the three general
rules can assess the validity of classical hypothetical syllogistic. Thus, the paper presents
an extension of Aristotelian logic by taking its proto-exposition as starting point.

Keywords Aristotelian logic ¢ Ancient commentators ¢ Syllogistic ¢ Existential
import ¢ Indefinite terms

Mathematics Subject Classification Primary 03-02, Secondary 03B5

1 Introduction

According to Aristotle, categorical logic studies simple propositions. Simple propositions
are those in which something of something is affirmed or denied. He defines ‘something’
as a single thought, which is represented by one univocal name [7, 19b5], and [8, 24a16].!
He distinguishes between two syntactic forms: two-term propositions and three-term
propositions. For instance, “Socrates walks” is a two-term proposition, and “Socrates
is just” is a three-term proposition.> As such categorical logic opposes to hypothetical

'In the following pages I use the traditional abbreviation for Aristotle’s works [7, 8].

>The idea of substituting a name for a phrase is as ancient as the first written reports of Aristotelian
categorical logic. For instance, Boethius [14, 1176A] says: It may be that the parts of the proposition,
which we call terms, occur not only as names but as phrases. Often a phrase is predicated of a phrase, thus
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logic, which is the logic of compound propositions. Compound propositions are those in
which two or more simple propositions are related by a logical connective. Aristotle also
dedicated time to constitute this theory, even if he does not write on it.3

Even if Plato’s Sophist is the most likely source behind this early doctrine,* Aristotle
made an important theoretical advance by adding (i) a correction on Platonic denial,’
by introducing (ii) some semantic distinctions between privative, indefinite and negative
propositions,® and by systematizing (iii) a theory of syllogistic demonstration that has an
underlying theory of logical deduction, something that has been very much emphasized in
our days by John Corcoran in [17, pp. 73-118].

Aristotle’s theoretical effort in categorical logic was promptly arranged, systematized
and enlarged by his followers, the old Peripatetics, Theophrastus and Eudemus, giving
birth to a long tradition in logic. Their material is lost in a great extent,’ but it survives
partially in many sources: Cicero, Marius Victorinus, Alcinous, Apuleius, Alexander of
Aphrodisias, Boethius, Ammonius Hermeias, Philoponus, Stephanus, etc.8

In the following figure, I attempt to reconstruct this textual tradition, where some
doctrines of Theophrastus in his lost Prior Analytics are taken into account to testify
adoption or textual dependence.

2 The Proto-exposition in Ancient Logic

The short abridgement on categorical logic titled Peri Hermeneias, which is attributed to
Apuleius,” and Boethius’ De syllogismo categorico,'’ are the oldest textual references
where categorical logic takes the form of a self-contained theory. Obviously, the aim
of these treatises is not to comment on Aristotle’s logical texts, but to deal with a
topic on which they go further the limits of his logical writings. In a brief exam, they
distinguish between hypothetical logic and categorical logic, and they add some technical
complements to the theory: subalternation, conversion by contraposition, Theophrastus’
five indirect syllogistic moods of the first figure, the hypothetical and disjunctive syllogistic
moods, some general explanations as why variables are useful in logic, the significance of

“Socrates and Plato and other students investigate the essence of philosophy”. Here the phrase “Socrates
and Plato and other students” is the subject and “investigate the essence of Philosophy” is the predicate.

3Cf. Aristotle [7, 17a15 and 17a20-21], [8, 40b27, 45b19-20 and 50a39-50b1].

4Cf. [20, pp. 42-45].

SCf. [20, p. 44].

8Cf. [7, 19b19-30]. To explain this difficult passage, where Aristotle distinguishes between privative and
indefinite propositions, cf. [18, pp. 41-56].

Cf. [10, 31].

8The most complete and significant work on the ancient commentators on Aristotle is contained in the
Project Ancient Commentators on Aristotle, cf. [29, pp. 1-30].

9Bochenski [10].

10Boethius [15].
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dictum de omni et de nullo, the matters of proposition, the number of categorical and
hypothetical propositions, and so on. Apuleius also adds some Stoic elements.

On the other hand, it is a fact that these ancient treatises are very similar to one
another.!! However, it has been difficult to interpret this similitude. Some authors have
explained it by attributing textual dependence between Apuleius (if he is the author) and
Boethius, as Sullivan in [30, pp. 210-228]. But two problems remain: one is the objection
of a common written source from which both Apuleius and Boethius benefit. The other is
to response to the fact that both ancient treatises contain many differences too.'?

"Not only [6] is very similar to [15], but also Boethius’ two treatises on categorical logic [15, 16] are
shaped alike. To discuss the similitudes between Boethius’ two treatises, see [19, pp. 729-745].

12Eight differences can easily be grasped: (1) Unlike Apuleius, Boethius seems to be following a source
in which Peripatetic distinction between matter and form has been used. This is confirmed when he adds
that even though a house is built with splendid materials, if the form is not the correct, there will be
not a house at all. The priority of form over matter is a clue for [15] and Greek Aristotelian logic in
general. Unlike Boethius, Apuleius in [6] adopts the Stoic triple division of philosophy: moral, rational
and physical (cf. [6, I, 265, 1-4]), by saying that he now goes to dissert on the rational part and relates
the syllogism with the art of reasoning (ars disserendi) and not with the form of human reasoning, as
Boethius does. (2) The emblematic teaching concerning the square of opposition is also formally identical
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This is why Isaac’s hypothesis in [23, p. 27], is more convincing when he thinks of a
common plan rather than of a common written source. However, Isaac never described this
common plan. This common plan is what I have called the proto-exposition of categorical
logic, and I argue that it is what makes all the later explanatory accounts on categorical
logic similar to one another, for it gives them their formal structure. It is remarkable the fact
that Alexander of Aphrodisias in [4] supports the existence of this proto-exposition and its
influential role in ancient logic, by giving evidence that he is aware of it.'> Boethius in
[15] gives its most complete account:

in both authors, but Apuleius recognizes a square (“it is not out of place to form a square”, [6, V, 17-19]),
but not Boethius, as in his [5] and in his [12] he does not mention the word ‘square’, but the general
expression descriptio [12, p. 86], [12, 2, p. 152], [15, p. 21]. (3) There is an enormous difference in
style: [15] is serious, slow and sometimes protracted. On the contrary, [6] is agile, dynamic and sometimes
superficial. (4) The intentions of the authors: [15] works for the glory of Aristotle, Theophrastus, Eudemus
and above all Porphyry, but [6] praises Plato and Apuleius himself. (5) The doctrine of the matters of
proposition is an ancient doctrine intending to explain the way in which the predicate of a categorical
proposition relates to the subject. It was common to Alexander of Aphrodisias in [3, p. 192, 8], Syrianus
(cf. [12, 2, pp. 323, 5-6]), and it is a commonplace in Boethius [16, 29, 11ff], [12, p. 137, 15-16].
Ammonius even gives a report of it in his commentary on De Interpretatione (in [5, p. 88, 12-23]).
It is recalled by Boethius through the name of materiebus in [15, p. 32, 21], by translating the Greek
sentence hulai tes protaseos. However, Apuleius calls it the doctrine of significations (significationes)
and relates it to Aristotle’s Topics. In [6, VI, p. 182, 4-6], Apuleius lists the significationes, for he
says they are not innumerable (innumerae): the property, the genus, the difference, the essence and the
accident. These five significationes are transformed into necessary, impossible and contingent matters of
propositions already in Ammonius. 6. Unlike Boethius’ logical certainties, [6] contains some inaccuracies
in dealing with conversion by contraposition of particular negative propositions: it says ‘Some animal is
not rational’—‘Some non-rational (thing) is a man’, for this is equipollent to the former but it veils the
rule: ‘Some non-rational is not a non-man’: [6, VI, 5-9, p. 183]. It is true that here the critical apparatus
is complex, but later in [6, XII, p. 278, 25], Apuleius is again weak. 7. Latin technical terminology is
very different in both treatises: ‘to divide entirely truth and falsity’ (Boethius) stands for perfecta pugna
et integra (Apuleius [6, V]); negative proposition (Boethius’ negativa propositio) stands for abdicative
proposition (Apuleius’ abdicativa propositio), etc. 8. The way in which Apuleius and Boethius construe
the first mood of categorical syllogism (our traditional Barbara) is not one and the same. Apuleius follows
the fourth indirect syllogistic figure, while Boethius the first direct one (our traditional Barbara). In other
words, Apuleius poses the middle term in a prae-sub position, while Boethius in a sub-prae position. For
instance: Every man is a mortal animal. Every Greek is a man. Then, every Greek is a mortal animal (this
is Boethius’ position); on the other hand, we have: every man is a mortal animal. Every mortal animal is a
living creature. Then, every man is a living creature (this is Apuleius’ position).

131 owe this remark to Christina Thomsen Thornqvist [16, p. xxii]. She has said that this division procedure
is “closely paralleled” in [4, 45, 10 and ff.]. Surely, Alexander is the primal source to Ammonius’
commentary on [4, 35, 36 and ff.]) and Philoponus’ in [26, 40, 31 and ff.] The remark by Thomsen
Thorngvist in [16, p. xxii], was also noted by Lee [24, pp. 65-74].
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3 The Extension of Categorical Logic

The proto-exposition supposes 8 properties for categorical propositions: two- or three-
terms propositions, modal or non-modal, singular/universal subject, definite/indefinite
terms, quantity, quality, time, and matter. But it focuses mainly upon quantity and quality,
in the following way:

Quantity: Universal/Particular
Quality: Affirmative/Negative.
UA, UN, PA, PN (2 x 2 =4), which later will be known as A, E, I and O propositions.

The main feature of the proto-exposition of categorical logic is to leaving indefinite
terms outside from syllogistic premises. ‘Non-man’, ‘non-just’ are indefinite terms. They
were defined by Aristotle in [7, 16b9-11], and introduced to propositions by him in [7,
19b19-31], but in [8] indefinite propositions (e.g. “Every man is not-just”) are never
entering categorical syllogisms (cf. [8, I, 46]). Accordingly, this lack became traditional in
all expositions of categorical logic. However, this has changed, as much as we can today
introduce indefinite terms in premises and categorical syllogistic consistently. First, we
can extend the number of categorical propositions: from the 4 traditional types (A, E, I,
and O), we obtain 16 species (without permuting its subject and predicates) and 32 (with
permutation).
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A,p) | AG,-p) | ACs,p) | A(Cs,-p)
EG,p) | EG,-p) | ECGs,p) | E(s,-p)
[(s,p) | 1(G-p) | 1(Gs,p) | 1(s,-p)
OG,p) | OG,-p) | OCs,p) | OCs,-p)
A@,s) | A(,-s) | A(Cp,s) | A(p,-s)
E(@,s) | E(p,-s) | E(p,s) | E(-p,-s)
IL(p,s) L(p,-s) | I(p,s) | 1(-p,-9)
O@®,s) | O(,-s) | OCp,s) | O(p,-s)

M. Correia

Indeed, the traditional 4 propositional forms: A, E, I, O x2 (double predicative
order) x 4 (definite/indefinite subject and predicate) = 32 categorical forms.

Even if the logical possibility of categorical propositions to receive indefinite terms
either in their subject or in their predicate or in both is accepted in Aristotelian logic, the
consistent incorporation of indefinite terms in syllogistic had not been possible.'* But with
the help of the 3 Axioms described herein and with the understanding that each term of a
logical deduction (syllogistic or not) can be definite or indefinite, 256 syllogistic different
syllogistic figures come to existence. Indeed, there will be 4 possibilities in each premise,
and 4 in the conclusion. Thus, 4 x 4 x 4 = 64. Now, since there are 4 figures, 64 x 4 = 256.
Since the number of indirect figures is the same as the direct one, when the indirect figures
are added to these direct figures, the total amount is 512 syllogistic figures. Hence, the
number of possible syllogistic moods (i.e., valid and invalid) shall be calculated if the
number of syllogistic figures is multiplied by the number of variations in both the quantity
and the quality that every proposition of a syllogism can have. These are four variances (A,
E, I, O), since every proposition of the syllogism (the two premises and the conclusion) has
the same possibility of variation, we have 4 x 4 x 4 = 64. From here, 512 x 64 =32.768:

4Especially relevant here are [11, pp. 35-37], and [32, pp. 145-160]. However, the idea of extending
classical syllogistic was already in ancient schools of Logic: see for example [22, XI, 2] and [6, XIII].
Leibniz in his [25] takes the challenge of calculating the number of valid syllogistic moods by integrating
the singular and undetermined propositions (something that Aristotle does not consider but the tradition).
And in doing so Leibniz is following a long tradition of modern studies of Aristotelian syllogistic. In fact,
he cites a previous work by John Hospinianus (cf. [21, pp. 79-92]). Also the nineteenth and twentieth
centuries witnessed these studies. For example: J.C. Smith in [28], and O. Bird in [9].
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this is the number of all categorical syllogistic moods, either direct or indirect, with definite
or indefinite terms.!>

And when categorical conclusions are observed, as we have explained elsewhere,'® the
formal process to introduce indefinite terms in syllogistic depends on the following three
general rules or Axioms:

Axiom of Quantity: the predicate of a negative premise is universally taken and the predicate of an
affirmative premise is particularly taken. Hence, to take universally a term T in a proposition
(i.e. even if this term is the subject term) is equivalent to take particularly its correspondent
conjugate term non-T, and to take particularly a term T is equivalent to take universally its
correspondent conjugate term non-T.

Axiom of Particularity: from only particular premises no conclusion follows, and the conclusion of
a syllogism is particular if and only if this characteristic is present in one of the premises.

Axiom of Linkage: the quantity of both terms in the conclusion should be the same as that they
offer in the premises. The premises common term must be universally taken in one premise and
particularly taken in the other premise.

If these 3 Axioms are applied to syllogisms where any of the 32 with-indefinite-terms
categorical forms enters, not only the limits of the proto-exposition are exceeded, but also
the categorical syllogistic reaches its proper end. Indeed, the axiom of Quantity allows us
to define and calculate the quantity of every term in any premise-conclusion argument.
Moreover, the axiom of Linkage allows us to calculate with certainty whether the terms
in the conclusion have the same quantity as they have in the premises, and (ii) they allow
to detect whether the middle term is alternatively universal and particular. This is why the
three Axioms allow defining a logical consequence in general: an argument of the premise-
conclusion form is conclusive, if the quantity of the terms in the conclusion is the same as
the quantity of the very terms in the premises, and the middle term(s) is/are alternatively
universal and particular in the premises.

The three Axioms also are useful to distinguish between a strictly logic argument from
any restrictively valid argument. Indeed, if the middle term is alternatively universal and
particular in the premises, the argument will be strictly logic (i.e., it will not contain
problems with existential import). But, if the middle term is each time taken universally in
the premises, the argument will be restrictively valid, i.e., able to be valid if the problem
of existential import is resolved.

50therwise, every proposition of a categorical syllogism can vary 16 times (4 per quantity and quality—
namely: A, E, I and O, which are multiplied by the 4 variations formed by definite or indefinite terms:
namely, definite subject and predicate, indefinite subject and predicate, defined subject and indefinite
predicate, indefinite subject and definite predicate indefinite, i.e., 16 X 16 X 16 =4.096. And given that
there are 8 figures (4 direct and 4 indirect), the total amount rises to: 32.768 syllogistic moods.

16 Alvarez and Correia [1, pp. 297-306].
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4 Examples

4.1 Strictly Valid Syllogisms

Let start with an AA-A syllogism of the fourth indirect figure'’:

Every Sis P
Every Pis Q
Then: Every S is Q

— Inthe conclusion: S is universally taken. Q is particularly taken (axiom of Quantity). In
the premises, S is universally taken (for it is in the domain of a universal quantifier). Q
is particularly taken (axiom of Quantity).

— And the middle term is universal in the minor premise and particular in the major
premise, fulfilling the function of being alternatively universal and particular in the
premises.

4.2 Non-strictly Valid Syllogisms

A syllogistic mood in Darapti is as follows:

Every SisP
Every Sis Q
Then, some Q is P

— In the conclusion, both Q and P, are particular (Q because of the particular quantifier
and P because of the axiom of Quantity).

— In the premises, P and Q are particular (axiom of Quantity).

— However, S is taken universally in both premises, which defines the first of the two cases
of syllogistic conclusions affected by existential import, which also affects to Felapton,
Fapesmo, Fesapo, and the AA-I and AE-O moods of the third indirect syllogistic figure.

171n this paper, categorical syllogisms are often referred to in the traditional arrangement made by Boethius
in yy. Here, at the beginning of Book 2, Boethius says that the expression ‘S is in every P’—which is the
way in which Aristotle arranges the premises in his Analytics- should be taken as ‘Every Pis a S’, without
difference. This remark by Boethius is essential to understand why traditionally Barbara has been arranged
in a sub-prae order: (“And then, let us show in few words what ‘to be in every’ and ‘not to be in every’
mean. Indeed, if something belongs to some genus, its entire species will be contained in it, and it would be
said that that species is in every, i.e. the genus. For example, let the genus animal be, and the species man.
Then, given that ‘man’ is less extensive than ‘animal’, it is said that <man >is in every animal. Certainly,
every man is animal. But if someone says in the reverse way, namely, that something is predicated of
something, there will be no difference. Because, it is in the same way as man is in every animal that
‘animal’ is predicated of every man.”) Boethius does not mention that Apuleius arranges the syllogism in
the way he avoids, namely, Omne iustum honestum. Omne honestum bonum. Omne igitur iustum bonum
est.
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Indeed, the three Axioms allow detecting that syllogistic conclusions affected by
existential import problem come from two cases of quantitative asymmetry: (a) the first
case (in green) is the one we have already described: the middle term is always universal
in the premises and it fails to be alternatively universal and particular. And (b) the second
case (in yellow) is that in which the subject or the predicate in the conclusion is less
extensive than their occurrence in the premise. The case in (b) affects all the subaltern
moods and also Bamalip and Baralipton. All of which is seen in the following figure:

DIRECT MOODS Subaltern Moods
1 | barbara celarent darii ferio AAI EAD | 6
2 | cesare camestres | festino baroco EAD | AED | 6
3 @ felapton disamis | datisi bacardo ferison 6
4 | bamalip calemes dimatis s} fresison AEQ 6
INDIRECT MOODS Subaltern Moods
1 | baralipton | celantes dabitis m frisesomorum EAQ 6
2 | AEE EAE IEO 0AO AEO | EAO | 6
3 | AAl AEO All AOO Al IEO 6
4 | AAA AEE 1Al IEOQ AAI AEO | 6
TOTAL NUMBER 48

4.3 Syllogisms with Indefinite Terms

Every S is non-P
No L is non-P
Then,no Sis L

— This is a valid AE-E mood in a prae-prae indirect figure, with indefinite middle term.

— L is universal in the conclusion (axiom of Quantity) and universal in the minor premise
(because it is under the domain of a universal quantifier). And S is universal in the
conclusion and universal in the major premise (being both under the domain of a
universal quantifier).

— The middle term, non-P, is particular in the major premise (hence, P is universal here)
and universal in the minor premise, and so P here is particular (axiom of Quantity).

The decision method is also able to detect valid syllogistic conclusions in those
syllogistic combinations where the traditional rules refuse validity. For example, the
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following combination OI-O makes a syllogism with a valid conclusion:

No non-S is a non-P
Some T is a non-S
Therefore, some T is not a non-P.

— T is particular in the conclusion (it is under the domain of a particular quantifier) as T
it is in the minor premise. And the term non-P is universal in the conclusion (axiom of
Quantity) and universal in the major premise (axiom of Quantity).

— The term non-S in the minor premise is particular (hence S is universal here) and
universal in the major premise (hence it is particular).

— Accordingly, the syllogism is conclusive.

It must be reminded that the three Axioms are not trivialities, for not every indefinite
categorical proposition can be transformed into a categorical proposition without indefinite
terms. Indeed, propositions like ‘Some non-P is a non-S, “No non S is a non P”, etc., are
not logical transformations of a simple and without-indefinite-term proposition. Indeed, if
every indefinite proposition could be converted into a definite proposition, the Axioms
would be useless and there would not be a problem with extending syllogistic with
indefinite terms. In that case, the questions by [11, 32, 27], on how to extend classical
syllogistic when introducing indefinite terms, would be vacuous demands, but they are
not. Certainly, these Axioms extend classical syllogistic, but also enrich logical analysis
by identifying a quantity in every syllogistic term.

The implicit law of syllogistic, which was neither in the proto-exposition nor in the
tradition, is the symmetry between the quantity of terms in the premises and their quantity
in the conclusion. However, the perfect syllogism is that in which the middle term is
besides alternatively universal and particular in the premises. For if the middle term is,
as explained, in both premises universally taken, or the symmetry between the terms in
the conclusion and their occurrence in the premises is lost, the syllogism will suffer the
problem of existential import, and it will be only restrictively valid. On the other hand, it
is obvious that if the middle term is particularly taken in both premises, there will be no
syllogism at all.

The three Axioms make a device for the analysis of syllogistic conclusions rather than
mechanical rules of syntactic manipulations of terms. It is supported by the fact that every
term in a syllogism has particular or universal quantity. This quantity term is not to be
confused with the quantity of the proposition, which is given by quantifiers. Terms reveal
quantitative and the Axioms reveal symmetry between the conclusion and the premises.
Any asymmetry produces a conclusion that must be qualified. Conclusions can be strict or
non-strict.

The Axioms open a new angle in categorical syllogistic, but also in conditional
syllogistic conclusions. Indeed, the so called inferential rules Modus ponendo ponens and
Modus tollendo ponens, as well as the two classical disjunctive syllogisms are conditional
or hypothetical syllogisms and, as such, they all follow the three Axioms. This is clear
when we apply the Axioms to disjunctive syllogisms, and then we accept the formula
of equivalence between disjunctive syllogisms and Modus ponendo ponens and Modus
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ponendo Tollens in the way Boethius taught in his De hypotheticis syllogismis [13]. Indeed,
Boethius in DHS [13] presents the following disjunctive syllogisms:

Itis a or it is b, but it is not a. Therefore, it is b.
It is not a or it is b, but it is a. Therefore, it is b.
It is not a or it is not b, but it is a. Therefore, it is not b.
It is a or it is not b, but it is not a. Therefore, it is not b.

In hypothetical logic no proposition has quantifier. Hence, If we leave aside the Axiom
of Particularity, the disjunctive syllogisms are the very expression of the two other Axioms,
namely the Axiom of Quantity and the Axiom of Linkage. Thus, in every valid disjunctive
syllogism there is quantitative symmetry: the middle term is always alternatively universal
and particular, and the term in the conclusion has the same quantity as the very term in
the premise. To calculate the quantity of the terms in any disjunctive syllogism, it must be
taken into account only two provisos:

1. The logical connective ‘or’ maintains the quantity of the terms in a propositional
formula.
2. The single indefinite term is always universal.

And since Boethius (DHS 11, 10, 3) agrees with the following equivalence:
Itis aoritis b=if it is not a, then it is b.

It will follow that the Axioms are also applicable to the Modus ponendo ponens and the
Modus ponendo Tollens, which is seen in the following:

Itis a oritis b, but it is not a. Therefore, it is b. If and only if:
If it is not a, then it is b. But it is not a. Therefore, it is b.

Itisnotaoritis b, butitis a. Therefore, it is b. If and only if:
It is a, then it is b. But it is a. Therefore, it is b.!8

It is not a or it is not b. But it is a. Therefore, it is not b. If and only if:
If it is a, then it is not b. But it is a. Therefore, it is not b.

It is a or it is not b, but it is not a. Therefore, it is not b. If and only if:
If it is not a, then it is not b. But it is not a. Therefore, it is not b.

The equivalences show that if the Axioms apply to categorical syllogistic they also
apply to disjunctive syllogistic and hypothetical syllogistic. This result gives unity to
Aristotelian logic, since both branches now, the hypothetical and the categorical, will be
governed by a unique set of Axioms.

18This equivalence shows that our modern formula “(p — q)” is equivalent to “ (—p v q)” was consigned
first by Boethius® DHS [13]. It is relevant to notice that Boethius says that the Greek material he used to
produce his treatise on hypothetical syllogistic was in Theophrastus and Eudemus.
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5 Conclusion

The so called proto-exposition of categorical logic includes a theory of opposition, a
theory of conversion and a theory of syllogistic reasoning. The two first parts have already
been treated in [1, 2]. Here I have emphasized some advantages that the set of three
Axioms (Quantity, Linkage and Particularity) offers to two-premise classical syllogistic
as a method of decision.

The first is its simplicity, for if the conclusion does not follow from only particular
premises (axiom of Particularity) the axioms of Quantity and Linkage are sufficient to
detect whether the syllogism is or is not conclusive: the only characteristics one has to
detect is (i) whether the middle term is alternatively universal and particular, and (ii) there
is a symmetry between the terms in the conclusion and the very terms in the premises.

The second advantage is the ability to detect problems with existential import and to
define them as cases of quantitative asymmetry. There are two cases to consider: since
the middle term cannot be particular in the premises, the first case is (i) when there
is asymmetry between the terms in the conclusion and the terms in the premises. And
the second case is (ii) when the middle term is always universal and not once universal
and once particularly taken. This asymmetry in (i) or this asymmetry in (ii) configures a
restrictively syllogistic conclusion.

The third advantage is the fact that indefinite terms can enter syllogistic consistently.
This is the first time a positive result is presented on this long overdue difficulty and it by
itself should call attention to modern logicians interested in logical conclusions.

The fourth advantage is the fact that hypothetical syllogistic and disjunctive syllogistic
are also governed by the set of three Axioms, a fact that gives unity to Aristotelian
logic and makes us reconsidering the old problem of whether categorical logic should
be subordinated to hypothetical logic or rather hypothetical logic should be subordinated
to categorical logic.
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The Modal Octagon and John Buridan’s Modal
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Abstract In this paper we will argue that the ontology implicit in John Buridan’s modal
octagon commits him to a form of contingentism. In particular, we will argue that Buridan
is committed to denying the validity of the Barcan and converse Barcan formulae.
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1 Introduction

There is a well known interpretive question raised by Aristotle’s discussion of the
assertoric syllogism. The question is: does Aristotle’s assertoric syllogism allow for empty
terms? While modern interpreters, often tracing their arguments back to Lukasiewicz’s
[6], have generally argued that Aristotle’s assertoric syllogism does not admit such terms,
the medieval interpreters of Aristotle believed Aristotle did and chose to allow them in
their own logical theorising. On the standard medieval view, for the proposition ‘Every
A is B’ to be true, in addition to every A being a B, there must also be some A’s in
existence. Likewise, the proposition ‘Some A is not B’ is true if either nothing is A or
there is something which is A and is not be B. The medievals observed that with these truth
conditions, one obtained a consistent interpretation of the square of opposition, that is to
say, an interpretation that validated all of the usual relationships between contradictory,
contrary, sub contrary and subalternate propositions, while allowing for the presence of
empty terms.

When the medievals took up the study of the syllogism some expanded the square of
opposition to cover modal propositions. In three manuscripts of John Buridan’s Summulae
de Dialectica, we find that Buridan extended the traditional assertoric square of opposition
to an octagonal structure designed to illustrate the relationships that exist between
propositions of necessity (de necessario) and propositions of possibility (de possibili).
These extensions raise similar questions, now in a modal context, to those raised by
the interpretation of assertoric terms in the square of opposition. How were existential
commitments to be understood in Buridan’s Octagon? Does Buridan’s modal logic allow
for possible objects? i.e. objects that currently do not exist, but will exist or might exist.

© Springer International Publishing Switzerland 2017 35
J.-Y. Béziau, G. Basti (eds.), The Square of Opposition: A Cornerstone of Thought,
Studies in Universal Logic, DOI 10.1007/978-3-319-45062-9_4



36 S. Johnston

As we shall argue, the answer to this is yes. But then, what is the ontological status of
these objects that can be A or can fail to be A etc, even if they do not exist? Our goal
in this paper is to use the modern debate between contingentism and necessitism to help
gain some clarity on the status of possible objects in Buridan’s ontology and answer this
question. We will argue that Buridan is committed to a kind of contingentism that can
be thought of in terms of modern possible worlds semantics with a suppressed existence
predicate.

This paper will proceed in three stages. First, we will introduce the requisite historical
information about Buridan’s modal logic to understand it and highlight some of the
philosophically and logically interesting parts of Buridan’s theory. Second, we will sketch
a semantic reconstruction of Buridan’s modal logic which is able to account for all of the
inferences in the Octagon of Opposition and the Treatise on Consequence using possible
worlds semantics. The full details of this system and the textual justification required
to show that it accurately reflects Buridan’s own remarks about modal logic are more
completely developed in [4]. We will use this formal system to help us articulate a clear
picture of Buridan’s modal logic. Finally, we will address how Buridan’s modal logic
conceives of possible objects. This will be done by situating Buridan’s modal logic within
the modern metaphysical debate about contingentism and necessitism. We will argue that
Buridan’s possible objects are contingentist in nature, being based on a logical system
where an ‘existence’ operation is implicitly assumed though not formally stated. We will
conclude with some future directions of research into Buridan’s logical theory.

2 Buridan’s Modal Logic

Buridan addresses modal logic in a number of his logical works. Our main focus in
this paper will be on Buridan’s Treatise on Consequences, as it contains a compact
and complete treatment of Buridan’s logic.! In the second book of the Treatise Buridan
develops the inferences that exist between single premise modal inferences, some of which
are captured in the modal octagon. In the fourth book Buridan combines the material in the
second book with the material in the third book to deal with modal syllogisms. Our goal
in this section is to provide a brief summary of Buridan’s theory of modality as presented
in Book Two of the Treatise on Consequences. Our aim in this section is to recall the
basics of Buridan’s modal theory and to sketch a modal system that is able to recapture
Buridan’s modal logic. For those who would like to see further details about the how the
modal system presented here relates to Buridan’s own remarks, they should consult [4].

! All English translations provided in this paper are due to Stephen Read and can be found in [8].
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For Buridan, a modal proposition is one that contains a modal term or adjective within
the proposition itself:

It should be noted that propositions are not said to be of necessity or of possibility in that they are
possible or necessary, rather, from the fact that the modes ‘possible’ or ‘necessary’ occur in them
[8, p. 95).2

Buridan’s point is a syntactic one. For a proposition to be modal, a modal term must
occur in the proposition. For example, the proposition ‘Every human is an animal’ is
(according to Aristotle) necessarily true, but the proposition is assertoric, because no
modal occurs in the proposition. Likewise, the proposition ‘Every human is necessarily
running’ is a proposition of necessity and it is false.

The next distinction that Buridan draws is between compounded and divided modals.
Buridan writes:

They are called ‘composite’ when a mode is the subject and a dictum is the predicate, or vice versa
... They are called ‘divided’ when part of the dictum is the subject and the other part the predicate.
The mode attaches to the copula as a determination of it [8, pp. 96-97].3

For Buridan, the standard form of a proposition is: quantifier, subject, verb, predicate.*

A composite modal proposition is one where the verb is not modalized,’ but either
the subject or the predicate (but not both) is a modal term. The non-modal term is called
the dictum of the proposition. In Latin the dictum is designated by using an accusative-
infinitive construction. In such a construction the main verb is placed in the infinitive and
the terms relating to that verb are placed in the accusative case. There are some challenges
with literally translating this into English and it is standard to use dependent clauses to
translate the dictum. For example, “That every B is A is necessary’ and ‘It is possible that
some B is A’ are examples of how such propositions are usually translated into English.

In contrast, a divided modal proposition does not contain a modal term, but occurs when
the mode is attached to the copula [8, p. 96]. This is best illustrated in English either by
the use of verbs like ‘can’ where the modality is a feature of the verb or by using modal
as an adverb. For example, the proposition ‘A human can run’ or ‘A person is of necessity
running’ are both divided modal propositions for Buridan. In what follows we will often
write e.g. ‘Every A is necessarily B’ for a divided modal proposition.°®

2Sed notandum est quod propositiones non dicuntur “de necessario” aut “de possibili” ex eo quod sunt
possibiles aut necessariae, immo ex eo quod in eis ponuntur isti modi “possibile” aut “necessarium” [1, p.
56].

3“Compositae” uocantur in quibus modus subicitur et dictum praedicatur uel econuerso. .. Sed “diuisae”
uocantur in quibus pars dicti subicitur et alia pars praedicatur. Modus autem se tenet ex parte copulae,
tamquam eius quaedam determinatio [1, p. 57].

4This order can be changed in various ways to create non-normal propositions, which will not be treated
in this work.

A verb is modalized if either the modality is a ‘feature’ of the verb e.g. ‘can’ or if the main verb is
modified by a modal adverb, e.g. ‘of necessity’.

OThis is ambiguous in English between ‘A is of necessity B’ and ‘A is necessarily-B” where the hyphen
indicates that the modality goes with the term, not with the verb. Unless we say otherwise, ‘A is necessarily
B’ should be read as a divided proposition.
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It should be observed that for Buridan, a divided modal proposition is negative if the
negation operation occurs in front of the modalized copula or between the modal and the
verb as in ‘Some B is necessarily not A’. According to Buridan:

Others are negative, and they are of two sorts. In some the negation occurs in the mode, in that it
precedes it, for example, “A human is not possibly an ass” and “No human is possibly an ass.” In
others the negation does not occur in the mode but follows it, for example, “A human is possibly
not white” and “God [p. 58] is necessarily not wicked.” Some are in doubt whether these last should
properly speaking be called affirmative or negative. But whatever they say, I believe they should
be called negative, both because the proposition “B is possibly not A” is equivalent to “B is not
necessarily A,” which is clearly negative, and because an affirmative proposition is not true if any
term supposits for nothing, but “A chimera is necessarily not an ass” is true, and consequently so is
“A chimera is possibly not an ass” [8, p. 96].”

For Buridan, a proposition is counted as negative when the negation occurs in front
of either the modal or the verb [9, pp. 38—-39]. Otherwise it is positive. This construction
is much more natural in Latin where it is perfectly grammatical and intelligible to write
something like ‘A non est B’. To capture this distinction we will use ‘B is non-A’ for when
the negation occurs after the verb and modifies the term. We will use ‘B is not A> when the
negation modifies the copula.

This distinction is important, because the truth conditions for negative and positive
propositions differ in a number of ways. In assertoric propositions, only positive proposi-
tions have ‘existential import’. As we have already remarked, if the proposition ‘Every A
is B’ is true then the term A must supposit for something, and everything that A supposits
for, B must also supposit for, that is to say everything that is A is also a B.

In contrast, a negative proposition is true if there is nothing which is true of the subject,
or to borrow Buridan’s terminology, the subject does not supposit for anything. To see the
difference, observe that for the proposition ‘A person is non-running’ to be true, there must
be some person who is not running. In contrast, the proposition ‘A person is not running’
is true even if there are no people in existence.

Buridan also points out that if two negations occur in the modality or the verb, or one
occurs in each, then the proposition is equivalent to a positive one. This is because, for
Buridan, necessity and possibility are duals in the usual way. He writes:

From any proposition of possibility, there follows as an equivalent another of necessity and from
any of necessity another of possibility, such that if a negation was attached either to the mode or to
the dictum or to both in the one it is not attached to it in the other and if it was not attached in the
one it is attached in the other, other things remaining the same [8, p. 99].%

7 Aliae sunt negatiuae, et illae sunt duplices. Quaedam sunt in quibus negatio fertur in modum, quia sic
praecedit ipsum ut: Hominem non possibile est esse asinum et: Nullum hominem possibile est esse asinum.
Aliae sunt in quibus negatio non fertur in modum sed sequitur ipsum, ut: Hominem possibile est non esse
album et: Deum necesse est non esse malum. Et aliqui dubitant utrum istae ultimae debeant simpliciter
loquendo dici affirmatiuae aut negatiuae. Ad quod, quidquid dicant aliqui, credo esse dicendum quod ipsae
sunt negatiuae, tum quia haec propositio“B potest non esse A” aequipollet isti “B non necesse est esse A”,
quae manifeste est negatiua, tum quia propositio affirmatiua non esset uera si aliquis terminus pro nullo
supponeret, et tamen haec ponitur uera: Chimaeram necesse est non esse asinum et, per consequens, ista:
Chimaeram possibile est non esse asinum [1, pp. 57-58].

8 Ad omnem propositionem de possibili sequi per aequipollentiam aliam de necessario et ad omnem de
necessario aliam de possibili, sic se habentes quod si fuerit apposite negatio uel ad modum uel ad dictum
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Buridan illustrates this with the following example ‘B is not possibly not A.” Buridan
observes that this is clearly equivalent to an affirmative proposition (‘B is necessarily A’),
and so Buridan says he will treat those propositions as affirmative.

Buridan’s analysis of divided modal propositions is one of the unique features of his
modal theory. Buridan tells us that:

It should be realised that a divided proposition of possibility has a subject ampliated by the mode
following it to supposit not only for things that exist but also for what can exist even if they do not
[8, p. 97).°

According to Buridan, in divided modal propositions of possibility, the subject is
ampliated to supposit for that which is or can be. When this is taken together with a
number of assumptions about equivalences between modal propositions, Buridan is able
to provide a uniform account of truth conditions for modal propositions. In particular,
Buridan assumes that:

Now, in the fifth chapter, I take it as Aristotle did and others do too, namely, that “necessarily”
and “impossibly not” are equivalent, and “necessarily not” and “impossibly” are also equivalent.
For in itself it seems clear that of everything that necessarily is, it is impossible that it not be, and
conversely, of everything that necessarily is not, it is impossible that it be. I also take “impossibly”
and “not possibly” to be equivalent, because a negation is implicit in the term “impossibly.” So
“B is not possibly A” and “B is impossibly A” are equivalent, and similarly, “B cannot be A” and
“B is not possibly A,” because “can be” and “is possibly” mean the same. Similarly, “Every B is
impossibly A” and “Every B is not possibly A” are equivalent, and “No B is possibly A” and “No
B can be A

Too, I take it that a universal affirmative contradicts a particular negative, and a universal negative
a particular affirmative in the same way, so that in the negative the negation governs the mode. For
example, “Every B is possibly A” contradicts “Some B is not possibly A”; similarly, “No B can be
A” [contradicts] “Some B can be A.” And similarly for other modes [8, pp. 98-99].1°

In Conclusion 2 of Book 2 he goes on to use these equivalences together with
the ampliation of the subject to provide a uniform treatment of modal propositions of
necessity. Buridan writes:

In every divided proposition of necessity the subject is ampliated to supposit for those that can be.
This conclusion seems clear. For otherwise those of necessity would not be equivalent to those of
possibility having a negated mode, since in those of possibility the subject is clearly granted to be

uel ad utrumque in una non apponatur ad illud in alia et si non fuerit apposite in una apponatur in alia, aliis
manentibus eisdem [1, p. 61].

Supponendum est quod propositio diuisa de possibili habet subiectum ampliatum per modum sequentem
ipsum ad supponendum non solum pro his quae sunt sed etiam pro his quae possunt esse quamuis non sint
[1, p. 58].

9Deinde, in quinto capitulo, supponam illud quod Aristoteles supponit et communiter alii, scilicet quod
aequipollent “necesse esse” et “impossibile non esse”, et etiam aequipollent “necesse non esse” et
“impossibile esse”. Quoniam per se uidetur esse manifestum quod omne illud quod necesse est esse ipsum
impossibile est non esse, et econuerso, et omne illud quod necesse est non esse ipsum impossibile est esse.
Suppono etiam quod aequipollent “impossibile” et “non possibile”, quondam in hoc nomine “impossibile”
implicatur negatio. Et ideo istae aequipollent: ‘B non possibile est esse A’ et: ‘B impossibile est esse
A’ et similiter: ‘B non potest esse A’ et: ‘B non possibile est esse A’ quia idem significat “potest esse”
et “possibile est esse”. Similiter istae aequipollent: ‘Omne B impossibile est esse A’ et: ‘Omne B non
possibile est esse A’ et: ‘Nullum B possibile est esse A’ et: ‘Nullum B potest esse A’ [1, pp. 60-61].
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so ampliated. So the proposition “B is necessarily A” is analyzed as “That which is or can be B
is necessarily A” and “Every B is necessarily A” is analyzed as “Everything that is or can be B
is necessarily A,” and similarly for negatives. This is clearly shown if this kind of ampliation is
granted for those of possibility [8, p. 100]."!

The rationale for this conclusion is straight forward. Given that Buridan accepts the
usual equivalences between propositions of possibility and necessity, one can argue that
e.g. ‘Every B is necessarily A’ is equivalent to ‘Every B is not possibly not A’, which
is equivalent to ‘No B is possibly not A’. A similar argument provides the equivalences
between ‘No B is A’ and ‘Every B is not A’. Similar arguments hold in the particular
cases. When we turn to a formal presentation of Buridan’s system, it is these conditions
that will form the basis for the truth conditions for the various modal propositions that
Buridan treats.

Before we turn to such a presentation, we should pause to reflect on Buridan’s treatment
of ampliation. On Buridan’s theory, ‘Some B is possibly A’ is equivalent to ‘That which is
or can be B is possibly A’. Likewise, ‘Some B is necessarily A’ is equivalent to ‘that which
is or can be B is necessarily A’. Why might we think this? According to Buridan this is a
general feature about the way these kinds of verbs ampliate their subjects. As an example,
consider the proposition, ‘Someone labouring was healthy’. Buridan tells us that this can
be true in different ways.'? This proposition is true if there is currently someone labouring
who was healthy at some point in the past. The proposition would also be true if there was
some person in the past who was labouring and was healthy at that or some other point in
the past. The case for future tensed propositions is analogous. This seems clear enough,
but what is interesting is that Buridan goes on to remark that:

Thus, because possibility is about the future and all that is possible, the verb ‘can be’ similarly
ampliates the supposition of the subject to everything which can be [8, p. 71]."

This could be one of the reasons that Buridan thinks the divided proposition of
possibility and necessity ampliate their subject.!* Buridan’s observation is based on this
connection between temporal and modal propositions. Roughly, we could think of this as
arguing that,

"Tn omni propositione de necessario diuisa subiectum ampliatur ad supponendum pro his quae possum
esse. Haec conclusio manifeste apparet. Quia aliter illae de necessario non aequipollerent illis de possibili
habentibus modum negatum, cum in illis de possibili subiectum manifeste concedatur sic ampliari. Ideo
ista propositio: ‘B necesse est esse A’ exponitur per: ‘Quod est uel potest esse B necesse est esse A’ et
ista: ‘Omne B necesse est esse A’ exponitur per: ‘Omne quod est uel potest esse B necesse est esse A’ et
simili modo de negatiuis. Et hoc clare patet si sit concessa huiusmodi ampliatio in illis de possibili [1, pp.
56-57].

12Buridan uses the term ‘causes of truth.’ It should be remarked that ‘causes of truth’ are not the medieval
analogue of truth conditions, although they are used in similar ways. See [2, p. 56, fn. 85].

B3Deinde, quia possibilitas est ad future et omnino ad possibilia, ideo similiter hoc uerbum “potest” ampliat
suppositionem subiecti ad omnia quae possunt esse [1, p. 27].

'4In modern terms we would express this as the following modal ‘bridge’ principle: F¢p — <¢, where F
is a future tense operation.
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1. Temporal terms ampliate their subject.
2. If something will be the case, then it can be the case.
3. Therefore: modal terms also ampliate their subjects.

Now, when we turn to the truth conditions for ampliated modal propositions, Buridan
offers the following gloss on these propositions:

It should be realised that a divided proposition of possibility has a subject ampliated by the mode
following it to supposit not only for things that exist but also for what can exist even if they do not.
Accordingly, it is true that air can be made from water, although this may not be true of any air
which exists. So the proposition ‘B can be A’ is equivalent to “That which is or can be B can be A’
[8, p. 97].°

What this means is that there are four ways for the proposition ‘Some A is possibly B’
to be true:

1. There is something which is A and is B.

2. There is something that is A and can be B (even though it is not B now).

3. There is something that can be A and is B (even though it is not A now).

4. There is something that can be A and can be B (even though it is not A or B now).

It is the final cause of truth that is most interesting here. What exactly are these sorts
of objects that Buridan is working with here? During his discussion of Buridan’s modal
logic, Hughes takes the following digression:

For a long time I was puzzled about what Buridan could mean by talking about possible but non-
actual things of a certain kind. Did he mean by a ‘possibly A’, I wondered, an actual object which
is not in fact A, but might have been or might become, A?...But this interpretation won’t do; for
Buridan wants to talk, e.g., about possible horses; and it seems quite clear that he does not believe
that there are, or even could be, things which are not in fact horses but which might become horses.
What I want to suggest here, very briefly, is that we might understand what he says in terms of
modern ‘possible world semantics’. Possible world theorists are quite accustomed to talking about
possible worlds in which there are more horses than there are in the actual world. And then, if
Buridan assures us that by ‘Every horse can sleep’ he means ‘Everything that is or can be a horse
can sleep’ we could understand this to mean that for everything that is a horse in any possible world,
there is a (perhaps other) possible world in which it is asleep. It seems to me, in fact, that in his
modal logic he is implicitly working with a kind of possible worlds semantics throughout [3, p. 9].

This suggestion by Hughes, that Buridan’s modal logic may be thought of as using a
kind of ‘possible-worlds’ semantics has been more fully explored in [4]. In this paper it
is shown that these semantics correctly track the single premise and syllogistic validities
and invalidities that Buridan claims are valid in the Treatise on Consequences. See [4, pp.
14—17] In this paper it is shown how to formalise Buridan’s divided modal logic using
variable domain KT and we will use the semantics below:

A Buridan Modal Model is a tuple:'®

M = (D,W,R, O, c,v) such that:

1Ssupponendum est quod propositio diuisa de possibili habet subiectum ampliatum per modum sequentem
ipsum ad supponendum non solum pro his quae sunt sed etiam pro his quae possum esse quamuis non sint.
Unde sic est uerum quod aer potest fieri ex aqua, licet hoc non sit uerum de aliquo aere qui est. Et ideo
haec propositio: B potest esse A aequiualet isti: Quod est uel potest esse B potest esse A [1].

16See [4, p. 10].
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D and W are non-empty sets. D is the domain of objects and W is a set of worlds.
R € W? which is reflexive.

0:W— P(D)."

v: W x PRED — P(D).

¢ : CONS — D.

Semantic Abbreviations Let P be a term, and Q either a term or the negation of a term.
Using the semantics we can define the following operations:

V'(w, P) = O(w) Nv(w, P)

V'(w,=P) = D\ (O(w) Nv(w, P))

M(w,Q) = {d € D : there is some 7 s.t wRz and d € V'(z, Q)}
Lw,Q)={d € D: forall zifwRzthend € V'(z,0Q)}

Here the idea is that the operations V’, M and L give the extension of a particular term
at a particular world. For example, V'(w, P) returns the extension of the predicate for the
objects that exist at w while M(w, P) and L(w, P) give the set of objects that are possibly
(respectively, necessarily) P at w.

It is then possible to define the modal categorical propositions that Buridan considers
in the following way:

Modal Categorical Propositions

MwEA a B ifandonlyif M(w,A) C L(w,B) and M(w,A) # @
W,WIZAéB ifand only if M(w,A) NM(w,B) = 0

W,WIZAgB ifand only if M(w,A) N L(w,B) # @

MwE A(L)B ifand only if M(w,A) € M(w,B) or M(w,A) = @
W,WIZAAL/ZIB ifand only if M(w,A) € M(w, B) and M(w,A) # @
9)1,w|=AAelB ifand only if M(w,A) NL(w,B) =@

W,WIZAAEIB ifand only if M(w,A) NM(w,B) # 0

MmwE Ang ifand only if M(w,A) € L(w,B) or M(w,A) = @

W,WIZAgB ifand only if M(w,A) € M(w,B) N M(w,—B) and M(w,A) # 0
9)1,w|=AgB if and only if SJI,W#AgB

W,WIZA?B ifand only if M(w,A) NM(w,B) N M(w,—B) # @
9)1,w|=AgB if and only if SJI,W#A?B

W,WIZAgB ifand only if M(w,A) NM(w,B) N M(w,—B) =0
9)1,w|=AgB if and only if SJI,W#AgB

MwEA ?B ifand only if M(w,A) £ (M(w,B) N M(w, —B)) or M(w,A) # @
9)1,w|=AgB if and only if SJI,W#A?B

"This is corrected. The original reads O : W — D [4, p. 10].
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M(w,A) C L(w,B), M(w,A) #) ———  M(w,A)NM(w,B) =10

\ (Le)

M(w,A)NL(w,B)=0 (Me)

M(w, A) C M(w/B) and M(w, A) # 0

M (w, B\#0 M(w, A) g M|(w, B) or M(w,A) =0
\ (Lo)
Mw,A)NM(w,B)#0 2o M(w,A) ¢ L(w, B) or M(w,A) =0
(Mi) - - - subcontrary (Mo)
Key: = contradictory — contrary —» subaltern

Fig. 1 Buridan’s modal octagon of opposition

As we have already seen, Buridan claims that such propositions give rise to an octagon
of opposition which is shown below in Fig. 1.8 It is shown in [4] that they do in fact
do this, and that the semantics given above, combined with a natural reconstruction of
Buridan’s assertoric syllogism, can be used to formalise all of Buridan’s divided modal
logic.

From this, we can see that a natural way to understand ‘Everything that is possibly A’ or
‘Something that is necessarily not B’ is to view these as quantifying over all of the objects
that exist at various possible worlds and are A or are not B.

3 The Ontological Implications of Buridan’s Modal Logic

With this possible worlds based analysis of Buridan’s modal logic in place, we now want
to answer the question, “What sorts of objects are Buridan’s possible objects?’ by looking
at where Buridan would stand on the debate between necessitism and contingentism.
Surprisingly, a number of Buridan’s remarks have bearing on this debate. Very briefly,
we can sum up the two positions with the following quote:

Call the proposition that it is necessary what there is necessitism and its negation contingentism.
In slightly less compressed form, necessitism says that necessarily everything is necessarily
something; still more long-windedly: it is necessary that everything is such that it is necessary
that something is identical with it [10, p. 3].

!8The Octagon pictured here can be found in [4, p. 11] and is a modified version of a diagram made by
Stephen Read.
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Our methodology for answering these questions is as follows. In [10] Williamson sets
out a number of arguments for necessitism and reflects on a number of consequences that
follow from rejecting necessitism. What we will do is see in which places Buridan goes
along with Williamson (or it seems like he would) and in which places he differs from
Williamson. The idea is that we will use Williamson’s Modal Logic as Metaphysics as
giving us a collection of criteria for identifying someone who holds to some flavour of
necessitism. We use Modal Logic as Metaphysics as this is one of the most recent and
most through defences of necessitism.

Our goal here is twofold. First, historically, by comparing Buridan’s views to this
modern question we will hopefully gain a somewhat better understanding of exactly what
Buridan was doing with his modal theory. Second, we will see how Buridan’s logic and
his theory connect to this interesting metaphysical debate and see how Buridan’s modal
logic relates to modern modal logic and modal metaphysics. In doing this we will also
have the opportunity to focus on a few features of Buridan’s modal logic that will help
us better understand Buridan’s position. In order to accomplish this, we will first sketch
some of the key features of necessitism. After doing this, we will look at the inferences
and principles that Buridan accepts and see if they commit Buridan to either necessitism
or contingentism or are consistent with both. We will argue that Buridan’s position on
a number of features of his modal language are not compatible with necessitism. In
particular, Buridan seems to be committed to denying the Barcan and Converse-Barcan
formulae. As we shall see, this places his modal logic in tension with necessitism but
leaves it consistent with contingentism.

3.1 Necessitism and Contingentism: The Case of Modal Logic
as Metaphysics

In his recent book, [10] Williamson offers a spirited, vigorous and insightful defence
of necessitism. As we have already remarked, this is the view that “it is necessary that
everything is such that it is necessary that something is identical with it” [10, p. 3].
Williamson offers a number of arguments for this position within his book and he identifies
a number of key principles that either follow from necessitism, imply it, or are required
for us to formulate the relevant distinctions between the two positions. The first distinction
we will need is the distinction between the predicative reading of a modal attribution and
the attributive reading of a modal attribution. According to Williamson:

Someone might object that it is absurd to postulate a non-concrete possible stick, because being
concrete is necessary for being a stick. But that is to mistake the intended sense of ‘possible stick’.
The objector reads ‘x is a possible stick’ as equivalent to something like ‘x is a stick and x could
have existed’. Call that the predicative reading. On this reading, it is trivially necessary that all
sticks are concrete.
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On the relevant alternative reading ‘x is a possible stick’ is simply equivalent to ‘x could have
been a stick’. Call that the attributive reading of ‘possible stick’...it is not necessary that all
possible sticks are sticks on the attributive reading [10, p. 10].1°

As Williamson later points out the necessitist will (unless context or other features of
proposition require a different reading) want to conceive of modal attributions following
the attributive reading. Not only does this help the necessitist avoid being confused with
other, less plausible theories (e.g. Meinongianism) [10, pp. 18-21] but it also avoids some
trivialising issues with the theory.

The next feature of this debate that is worth highlighting here is that the quantifiers used
in the formulation of necessitism and contingentism need to be understood as unrestricted
quantifiers that range over absolutely everything.

Both necessitists and contingentists can also use quantifiers with various restriction, and may
even regard such uses as typical of everyday discourse. In particular, necessitists can simulate
contingentist discourse by tacitly restricting their quantifiers to the concrete. Then they sound
like contingentists, saying ‘Concrete things are only contingently something’. But they just mean
that concrete things are only contingently something concrete. The restriction makes the words
express different claims from those they express when used unrestrictedly. The disagreement is
made explicit only when both sides use their quantifiers unrestrictedly. In what follows, our interest
is in the unrestricted uses [10, p. 15].

In what follows in our treatment of Buridan it will be important to establish that he
views the quantifiers in his modal theory as sufficiently non-restricted to not run afoul of
this issue. To see why this is an interpretive problem, say that we argue for the conclusion
that Buridan is a contingentist. One natural response would go, ‘you cite evidence X,Y and
Z showing that Buridan needs to reject necessitism, but it is consistent with what Buridan
says, that these quantifiers be read in a restricted way.” Interpretively, there is a helpful
warning here. I am not aware of any medieval discussions concerning anything quite like
the modern debates about unrestricted generality. Hence, it will not be clear what Buridan
thinks on the matter and as such, we will need to present some evidence about how Buridan
understands his modal propositions.

From a formal perspective, perhaps the most important feature of necessitism is its
commitments to the Barcan and Converse Barcan Formulae. Williamson writes:

The metaphysical disputes discussed in Chapter I between contingentism and necessitism turns out
to be intimately connected with some technical issues in quantified modal logic, over two principles
usually known as the Barcan formula and its converse. When those principles are interpreted in the
relevant way, they are typically accepted by necessitists, and rejected by contingentists. Indeed,
in some natural logical settings, each of them is equivalent to the central necessitist claim that
necessarily everything is necessarily something [10, p. 31].

What is important to observe is that, working in classical first order logic from
the validity of the Barcan Formula (BF), the Converse Barcan Formula (CBF), and
necessitation, it is possible to derive the necessitist claim that “necessarily everything is
necessarily something” [10, p. 38].

Throughout this book, Williamson holds that ‘concrete’ and ‘abstract’ are not best thought of as
contradictory pairs, i.e. that something is non-concrete if and only if it is abstract, but are better thought of
as contraries. See [10, p. 7].
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While there are other important features of necessitism that Williamson highlights, the
collection of quotes and thumbnail sketches of the view are sufficient for what will follow.
Williamson also points out a number of consequences that, he argues, the contingentist is
under pressure to adopt. The main one which interests us is the following:

The challenge to contingentists is to identify a fallacy in Barcan Marcus’s proof. .. They have a
natural line. Her proof involves the claim that =3Jy(x = y) strictly implies Ix—3Jy(x = y), in other
words:

®) O(=Fy(x =y) = I—~Iy(x = y))...

As we have seen, contingentists cannot accept (8) as a theorem, where (8) is the necessitation of
(ID[(=Fy(x = y) = Ix—Iy(x = y))]...thus a contingentist must either reject (11) as a theorem
or reject the rule of necessitation. .. First, suppose that the contingentist rejects (11) as a theorem.
But (11) is a theorem of standard non-modal first-order logic. It is simply an instance of ‘existential
generalization’, A — JxA. Thus the contingentist is under pressure to adopt some form of ‘free
logic’ in which that principle is not unrestrictedly valid [10, p. 39].

As we have already seen, Buridan does appear to be working in something that is
somewhat like a ‘free logic’. For Buridan, the truth of any particular affirmative proposition
requires that there be some object which is truly predicated of both the subject and the
predicate. As such, it is natural to think that Buridan would reject the move from —3Jyx =y
to dx—Jyx = y as the first is a negative proposition while the second is affirmative.
Williamson goes on to point out that by duality, the contingentist is also required to deny
the principle VvA — A, which Buridan also would deny.

As a brief foreshadowing of Buridan, it is worth observing that, in the eyes of at least
one metaphysician, there are analogues of the Barcan and Converse Barcan principles
identified by Buridan. In his book The Nature of Necessity, Plantinga observes that:

Jean Buridan once remarked that

(31) Possibly everything is F

does not in general entail:

(32) Everything is possibly F.

That is, he rejected

(33) necessarily, if possibly everything is F, then everything is possibly F.

His counter-example is as follows. God need not have created anything; hence it is possible that
(34) Everything is identical with God.

It does not follow from this, he says, that everything is possibly identical with God. You and I, for
example are not

[7, p. 58].

Sadly, Plantinga does not include references for where Buridan makes this remark and
it is not actually clear what passage in Buridan he has in mind. What seems likely here
is that he is extrapolating from a number of Buridan’s counter-examples in Book 2 where
Buridan starts from the assumption that God is the only one creating. We will have quite a
bit more to say about this counter-example of Buridan’s in what follows.



The Modal Octagon and John Buridan’s Modal Ontology 47

3.2 Quantification in Buridan

Before we turn explicitly to see how Buridan’s modal logic relates to necessitism and
contingentism, we should pause and think about how quantification works in Buridan’s
modal logic. As we already saw, there is a natural way that necessitists can express
contingentist questions speaking within their logical framework, namely by restricting the
quantification of their quantifiers.

Buridan’s logic also has very general resources that allow him to express various sorts of
restricted quantifiers. In particular, Buridan has a consistent way to cancel the ampliation
of various predicates. Up until this point, one may have thought that if an ampliative term
is present, or if the copula has ampliative force, then the there is no way to present a
narrower reading of the modal proposition. E.g. there may be no way to express the
idea that only those things that currently exist can be B. Throughout his writing in the
Treatise on Consequence Buridan uses the phrase ‘quod est X’ (that which is X) as a way
of making explicit the ampliation of a particular subject term when it may be ampliated by
its predicate. Elsewhere Buridan observes that ampliation is blocked in cases where ‘quod
est’ is used. He remarks that:

This conclusion has six parts. The first is clear because this construction, “B is A,” permits the
ampliation of the subject if the predicate is ampliative, for example, “A human is dead.” But the
[other] construction, “That which is B is A,” does not permit the ampliation of the subject, namely,
of “B”; for [B] is contracted and restricted to the present by the verb “is” in the present tense, which
precedes it. Thus if the predicate is ampliative, “B is A” has more causes of truth than “That which
is B is A,” and from many to fewer is not a good consequence [8, p. 83]... Note that a proposition
with the subject ampliated by the predicate should be analysed by a disjunctive subject combining
the present tense with the tense or tenses appropriate to the ampliation, for example, “B will be A”
as “That which is or will be B will be A,” and “A human is dead” as “The one who is or was a
human is dead,” and “The Antichrist can be a man” as “He who is or can be the Antichrist can be a
man,” 8, p. 84].20

There are a few important things to observe here. First, observe that Buridan is using
ampliation in its most general sense. He illustrates this by using examples of both tense
and modality. Second, the examples he discusses include cases where a predicate such as
‘dead’ causes the subject to ampliate, but Buridan also considers temporal and modal cases
where the predicate ferm does not have ampliative force, as in the case of ‘A’ or in the case
of ‘man’. Indeed, the expression ‘ampliated by the predicate’ seems to be used in a slightly
loser way here than we might expect. In the cases of ‘B will be A’, and ‘The Antichrist can

20Tsta conclusio habet sex particulas. Prima patet quia iste modus loquendi “B est A” permittit amplia-
tionem subiecti si praedicatum sit ampliatiuum, ut: Homo est mortuus. Sed iste modus loquendi “quod
est B est A” non permittit ampliationem subiecti, scilicet ipsius B; <contrahitur> enim et restringitur
ad praesentia per hoc uerbum “est”, praesentis temporis, quod praecedit ipsum. Ideo, si praedicatum sit
ampliatiuum, ista “B est A” habet plures causas ueritatis quam ista “quod est B est A”, et a pluribus
ad pauciores non erat bona consequentia...Notandum est quod propositio de subiecto ampliato per
praedicatum exponenda est per disiunctionem in subiecto temporis praesentis ad tempus uel tempora ad
quod uel ad quae fit ampliatio, ut: ‘B erit A’ ‘Quod est uel erit B erit A’ et: ‘Homo est mortuus’ ‘Qui est
uel fuit homo est mortuus’ et: ‘Antichristus potest esse homo’ ‘Qui est uel potest esse antichristus potest
esse homo’ et: ‘Rosa intelligitur’ ‘Quod est uel fuit uel erit uel potest esse rosa intelligitur’ [1, pp. 42—43].
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be a man’ the cause of the ampliation is not due to the predicate ‘A’ or ‘man’ respectively,
but is due to the presence of the modals ‘will’ and ‘can’ respectively.

How does this relate to quantification? In the following way. We have already seen
that, for Buridan, ‘Some A is B’ is true if there is an object of which we can say, ‘This
thing is A’ and “This same thing is B’. Thus, if the supposition of the subject term ranges
over everything that can fall under the subject, the quantification inherits the range given
by the ampliation of the subject and the predicate. As we have just seen, in the case of
temporal propositions, it quantifies over all things that were, if the ampliation is to the past.
Likewise, if the ampliation is modal, then it ampliates to the possible, as we have earlier
seen Buridan claim. What this suggests is that Buridan is intending his ampliation to range
over everything that falls under a particular class: Everything that was, everything that can
be etc. If one wishes to restrict such quantifiers, then on Buridan’s account one needs to
make use of the relevant restrictive clauses. Given this, it seems a fair extrapolation of
Buridan’s views that he intended the proposition to range over all of the relevant objects
in question.

Because of how Buridan uses his quantifiers, there is a way that Buridan could
mimic both necessitist and contingentist readings of various modal propositions. On the
contingentist reading (according to Williamson), ‘Every A is necessarily B’ states that
‘Everything that is concretely A is necessarily B’ while the necessitists would hold
that ‘Every A is necessarily B’ states that ‘Everything that is concretely A or is non-
concretely A is necessarily B’. Notice that all we have done here is made the range of the
quantification explicit in both cases. It is also instructive to notice the parallel with how
Buridan sets up his modal framework. These sorts of quantifiers give Buridan a way to
talk about either sort of quantification, regardless of which reading he would regard as the
correct reading of the proposition.

As such, it seems to me that it would be an unmotivated view of Buridan’s modal
logic to argue that he is implicitly restricting his quantification to only range over concrete
objects. For such a reading to be plausible, a gloss would need to be offered “although this
may not be true of any A which exists” which either restricts the range of the supposita
of air in this passage or argues that here Buridan means to only speak of concrete objects.
The second disjunct seems to go directly against what is said in the passage’! while the
first disjunct goes against the spirit of Buridan’s unrestricted ampliation of the subject.
As such it seem that a fair extrapolation of Buridan’s logic is to see him quantifying over
absolutely everything.?

2I'This assumes that ‘if something does not exist then it is not concrete’, a principle which seems to not be
ruled out by anything Williamson has said, and is in keeping with the spirit of non-concrete objects.

22 Again, it should be stressed that this is an extrapolation from Buridan’s views as presented in the Treatise
on Consequence.
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3.3 Predicative and Attributive Readings

As we have already seen the distinction between predicate and attributive readings of
the modal operations are rather important for understanding and formulating necessitism.
What is interesting to observe here is that, broadly speaking, Buridan’s ways of reading
the various terms within his modal logic are either attributive readings or do not fall under
either. As we have already seen, Buridan reads divided modal propositions as ranging
over the things that ‘can be A’ or ‘are necessarily B’. Formally, we treated these as

ranging over classes of object in the domain. For example recall that A LLI B is true
if and only if M(w,A) € L(w,B) and M(w,A) # @. Recall that M(w,A) is defined
as M(w,A) = {d € D : thereissomezstwRzandd € V’(z,A)} and analogously
for L(w, B). What is important to see here is that the formal readings offered match
Williamson’s gloss on the attributive reading, assuming that by ‘x could have been a stick’
he intends the modality ‘could’ to be read as a possibility and not as a counter-factual.
M(w, A) picks out the class of all objects that could have been A. Likewise L(w, A) picks
out the class of all objects that are necessarily A. The point here is that Buridan seems
to situate his discussion of modal logic within an attributive framework. Given Buridan’s
ampliative reading of the subject and his views about the expository syllogism, this is
not surprising. On Buridan’s account, the predicative reading of ‘x is a possible stick’,
namely ‘X is a stick and x could have existed’ is too narrow in its ampliative force. First,
such a reading does not cover the cases where x could have been a stick and x could
have existed. Second, this seems to be analysing the modal operations as a composition
of two disjunctions, which Buridan rejects in the Treatise on Consequence [1, pp. 56-57].
Buridan’s point was that we should not analyse ‘some stick can exist’ as ‘either there is
something that is a stick and it can exist or there is something that can be a stick and can
exist’.

3.4 Barcan & Converse Barcan

So we have already seen one major point where Buridan breaks with Williamson and
another where he is in step. How does Buridan’s logic fair on the Barcan and Converse
Barcan formulae? Near the end of Book Two of the Treatise on Consequences Buridan
propounds the following conclusion:

From no affirmative composite of possibility does there follow a divided one of possibility with the
mode affirmed, or conversely, except that from an affirmative composite with an affirmed dictum
there follows a divided particular affirmative [8, p. 110].2

23 Ad nullam compositam affirmatiuam de possibili sequi aliquam diuisam de possibili de modo affirmato
nec econuerso, praeterquam ad compositam affirmatiuam de dicto affirmato sequitur particularis affir-
matiua diuisa [1, p. 65].
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What this tells us is that ‘It is possible that ‘Some A is B” entails ‘Some A is possibly
B’, but that in the other cases there is no valid inference.?* From what we have already
seen, this makes sense. Reading, ‘It is possible that ‘Some A is B” as telling us that there
is some world where ‘Some A is B’ is true, we know from what Buridan has already said,
that this is only true if there is some object, say D, such that “This D is A’ and ‘The same D
is B’. But then, it is possible that ‘This D is A’ and it is possible that ‘This D is B’. As we
have already seen, it follows by an expository syllogism that ‘Some A is possibly B.” At
first glance, this might seem to look like Buridan endorsing the inference: <3x(Ax A Bx)
implies 3x < (Ax A Bx).?> However, this is actually not the case, and hinges on a unique
feature of Buridan’s modal logic. The operations M and L are rather difficult to express in

first-order modal logic. More to the point, 3x & (Ax A Bx) is not equivalent to A All B, as
the quantifier unduly restricts the admissible objects to the world at which the quantifier
is evaluated, and so gets the ampliation of the terms wrong. We can construct the relevant
counter-models as follows:

D = {a, b} W = {w,v,u}
O(w) = {a} O(v) = {a, b}
Vi(w,A) = {0} V'(w,B) =1{0}
V'(u,A) = {b} V'(u,B) ={a,b}

It is an easy exercise in first order modal logic to verify that A Azl B is true here while
(CA A OB) — O(A A B) is not. The problem is that the quantification used here does not
range over the specific world at which the formula is evaluated, but should range over all
of the objects at all of the worlds. So, at least here, it seems Buridan is not committed to
either of the Barcan Formulae.

In fact, Buridan’s account provides us with a few possible counter-examples to the
Barcan and Converse Barcan Formulae. A counter-example to the Barcan Formula is easily
seen to follow from Buridan’s consideration of the definition of possibility modals. Recall
that Buridan said: “Accordingly, it is true that air can be made from water, although this
may not be true of any air which exists [8, p. 97]”.26 Let us assume that this situation does
indeed obtain, there is some air that can be made from water. Let us assume further that

there is currently no water but that there will be. Then, we have A Azl W (reading A for air
and W for water) is true, but 3x & (Ax A Wx) is not true because no water currently exists.

For the Converse Barcan Formula, things are a little bit more tricky but Buridan will
reject it, given the following sorts of remarks:

As to whether the proposition ‘A horse is an animal’ is necessary, I believe it is not, speaking simply
of a necessary proposition, since God can annihilate all horses all at once, and then there would be
no horse; so no horse would be an animal, and so ‘A horse is an animal’ would be false, and so it
would not be necessary. But such [propositions] can be allowed to be necessary, taking conditional

24This is equally clear since, even if something can be A and can be B, it does not entail that something
can be A and B at the same world. i.e. (OA A OB) — (A A B) is not valid.

Z5There are some in the modern literature who have suggested Buridan may have implicitly endorsed this
principle, however for different reasons. See [5, pp. 158, 160, fn. 56].

26Unde sic est uerum quod aer potest fieri ex aqua, licet hoc non sit uerum de aliquo aere qui est [1, p. 58].
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or temporal necessity, analysing them as saying that every human is of necessity an animal if he or
she exists, and that every human is of necessity an animal when he or she exists [8, p. 141].%

Informally, what Buridan is pointing out here is that it is entirely possible for all objects
to cease existing. It is within the power of God to bring it about that no horses exist, or in
fact ever existed. More to the point, such objects also lose all of the properties that they
might have, upon ceasing to exist concretely. As such, it seems that Buridan allows for
objects to pass out of existence.

As is well known, we can use this to construct a counter-example to the Converse
Barcan Formula along the usual lines. Let us assume that some horse exists. Then, clearly
given what Buridan has said above, it is clearly possible that this horse does not exist and
hence, 3x & —=Ex, where Ex stands for ‘x exists’. However, since Buridan maintains that
horses (and objects more generally) lose their properties once they cease to exist, &3x—Ex,
will turn out to be impossible on Buridan’s view, as it would require the existence of a non-
existent object.

Hence, from what we have seen, while Buridan is does make use of an attributive
reading of the modal operations, he seems committed to rejecting both the Barcan and the
Converse Barcan formulae. With this in place, we have good reason to think that Buridan
would not accept the core tenets of necessitism, but would instead opt for some form of
contingentism.

4 Conclusion

Our aim in this paper was to argue that the ontology implicit in the octagon of opposition
and Buridan’s Treatise on Consequences is contingentist in nature. To advance this
conclusion we have argued that Buridan is committed to working in a sort of ‘free logic’,
where only affirmative categorical propositions have existential import, that he appears
committed to the rejection of the Barcan formula, and that from some of the remarks he
makes, he is also committed to the rejection of the Converse Barcan formula.

At this point there are two major questions that this work leaves open. First, the analysis
presented here crucially hangs on the point that Buridan’s modal logic does not implicitly
make use of the Converse Barcan formula. While there is a formal reconstruction of the
divided fragment of Buridan’s modal syllogism, [4, pp. 14—17] this work does not treat
composite modal propositions, and does not treat the most likely places where Buridan
could make implicit use of either formulae. While the remarks we have sketched above
would make it dubious that Buridan should accept their soundness, a complete formal

Y’Utrum autem haec propositio sit necessaria ‘Equuus est animal’, crederem quod non, loquendo
simpliciter de propositione necessaria quia deus potest simul adnihilare omnes equos, et tunc nullus
equus esset; ideo nullus equus esset animal, et sic ista esset falsa ‘Equus est animal’, ergo ipsa non
esset necessaria, quamuis tamen tales possint concedi necessariae necessitate conditionali uel temporali,
secundum tales expositiones quod omnis homo de necessitate est animal si ipse est et quod omnis homo
de necessitate est animal quando ipse est [1, p. 112].
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treatment of Buridan’s modal logic should be provided, both for its own interest, and to
remove all doubts on this point.

Second, we have not attempted to show what sort of contingentist Buridan is, or how
his approach to modal logic relates to other, modern contingentists. Given Buridan’s
nominalism, which includes a rejection of the necessary existence of propositions, this
suggests that Buridan’s logic would be unique and perhaps offer a different perspective
for philosophers who are not comfortable with the idea that propositions necessarily exist.
While this has not been undertaken in any detail here, I believe this would be interesting
and could prove fruitful.
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From Aristotle’s Square of Opposition
to the “Tri-unity’s Concordance”’: Cusanus’
Non-classical Reasoning

Antonino Drago

Abstract It is well-known that Cusanus (1401-1464) introduced the surprising notion
of the coincidence of opposites, which in fact shrinks Aristotle’s square of opposition
into a segment. Almost a century ago Cassirer suggested that Cusanus had looked for
a new kind of logic. Indeed, an accurate inspection of Cusanus’ texts shows that in
order to discover new names of God by means of coincidences of opposites, Cusanus
invented several names belonging to different kinds of non-classical logic—i.e. positive,
paraconsistent, modal and intuitionist—, which were formalised in the last century. When,
in his more important book, he invented an intuitionist name he implicitly reasoned about
it according to the intuitionist square of opposition so precisely that he was able to organize
his theories in a new way; it was based not on axioms- principles, but on the search for a
new method for solving a general problem. Moreover, he wanted to refer his reasoning not
to the square of opposition but to a new logical scheme, a “tri-unity of concordance”, for
which he suggested an original definition. Here this tri-unity is represented by means of a
geometrical figure.

Keywords Cusanus  Square of opposition * Non-classical logics

Mathematics Subject Classification Primary 03A05, Secondary 03B53, 03B22, 03B45,
03B20

1 Cusanus’ Philosophical Theology as a Logical Problem

Modern scholars gave various evaluations of the philosophico-theological works by
Cusanus (1401-1464)—referred to also as Nicholas of Kues, Nicolaus Cusanus and
Nicholas of Cusa.

Some scholars have evaluated negatively both the language and the contents of these
works. By mixing together dogmatic notions of Christian faith, pedagogical exhortations,
imaginative illustrations of new ideas, analogies and arguments, Cusanus’ writings seem
so obscure as to be considered inconsistent (Duhem [42, pp. 262-263]: tours de passe-
passe; results of an audace déraisonnable; Vansteenberg [70, p. 287]: broderies; Hopkins
[52, pp. 3-28]). In particular, some scholars have disqualified his celebrated notion of a
coincidentia oppositorum as a jonglerie de mots [42, p. 262], or as a jeu verbal, or jeu

mental [49, pp. 290 and 291].
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Other scholars have admired Cusanus’ writings. They recognized two merits in him:
not only that he surprisingly anticipated some subsequent achievements of modern science
[14, 66]; but that he also introduced, more or less effectively, the notion of the infinity into
Western thinking, also formulating lucidly the problem of human knowledge so that he was
the first scholar to investigate the method with which the mind thinks; for these reasons he
is often presented as the first modern Western philosopher [14, p. 10], [12, vol. I, Chap. 1].

In order to elucidate his thought some scholars studied the applications of his method to
mathematical problems; but no new result for a general interpretation was obtained [60].
However, about the relationship between theology and mathematics in Cusanus, a new
perspective was suggested two years ago by Albertson [1]. Here, however, it is the logical
aspects of his writings that will be examined.

According to a common opinion, the logical outlook of Humanism was a “purely
negative attitude, a mere rejection of Scholasticism” [8, vol. I, pt. IV, 36 A], [10, pp.
78-85]. Cusanus also opposed the representatives of Aristotelian logic, accusing them of
constituting an Aristotelis secta.' He never appealed to Aristotle’s square of opposition
and nor did he make use of the syllogism. However, he much appreciated logic: “. .. logic
is, as Aristotle said, a most exact instrument for pursuit both of the truth and the truthlike.
Hence when the intellect finds [what is true], it recognizes [it] and eagerly embraces [it].”
[32, Chap. I, p. 1282, no. 4]. Moreover, he appreciated Aristotle’s logical work, but only
as a particular way of reasoning, because it relies on the law of non contradiction; which
however is inadequate for thinking about God. About this point he lucidly wrote:

The Philosopher [Aristotle] certainly seems. .. to have come upon nothing which is sufficient [to
name God]. For not even reason [ratio] attains to what precedes reason; and even less can any
of the arts produced by reason furnish a way to what is unknown to all reasons. The Philosopher
held it to be most certain that an affirmation contradicts a negation and that both cannot at the
same time be said of the same thing, since they are contradictories. He said this on the basis of the
reason’s concluding it to be true ... [Instead he did not see] that that to which he gives the name
“first principle’ (primum principium) does not suffice for showing the way to the truth which the
mind contemplates beyond [the ratio] . ... in [this] manner Aristotle closed off himself a way for
viewing the truth ([31, Chap. 19, pp. 1149-1150, nos. 88-89]; I put the word ratio for Hopkins’s
“reasoning”)

Was Cusanus successful in suggesting a new way of logical thinking? About this point
I took seriously what Cassirer suggested almost a century ago:

When Cusanus’ theology abandons the scholastic logic, i.e. the logic... which undergoes the
principle of contradiction and of the excluded middle, yet it requires a new kind of mathematical
logic, which does not exclude the coincidence of the opposites; rather it needs of this opposition,
just of the coincidence of the absolutely great and the absolutely little, as a stable principle and
necessary vehicle of the proceeding knowledge. [14, p. 15]

Indeed the rejection of Aristotelian logic did not lead Cusanus to renounce rational
reasoning. About this point in his first important book he asked his friend to

ICusanus [24, p. 463, no. 6]. I quote here and in the following (except for few cases) from the translation
in English laguage by Jasper Hopkins. His site, http://jasper-hopkins.info/, includes almost all Cusanus’
books.
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receive... a mode of reasoning such as the following—a mode which great labor has
rendered very pleasure to me.” ([20], final proposition of the “Prologue”, p. 4, no. 1;
emphasis added); and moreover at the beginning of his most important book he asked his
conversant: “unless you are compelled by reason, you will reject as unimportant everything
you will hear from me.” [31, Chap. I, p. 1108, no. 2].

In fact, he introduced surprising novelties. First, he maintained that there exist two
faculties in our mind. The first one is ratio, which is regulated by the law of non-
contradiction and hence by the Aristotelian logic; in particular, it manages the building of
mathematics, a science praised by Cusanus because “... we have no certain knowledge
except mathematical knowledge”. (Cusanus 1440, p. 936, no. 44), precisely because the
above logical law perfectly applies to this field of knowledge.

But when [the critic of my writings] alleges that both the fundamental principle-of-knowledge
(which is enfolded in the principle “everything either is or not is [the case]”) and all inferences
are destroyed, he is misconceiving. For.... [Aristotle’s] logic and any [past] philosophical
investigation do not attain unto seeing [with the mind’s eye and with apprehension-by-the-intellect].
[24, p. 469, no. 14]

Indeed, Cusanus wanted to think about God by means of one more faculty, the
intellectus, which advances through intuitive and creative steps, called by him coniecturae,
a word grosso modo corresponding to conjectures, or surmises. As a whole, this is a
transcending process [transcessus].

He then parallels the capabilities of the two faculties of the human mind to the two
following kinds of vision; parallel to the ratio, the vision of what “is being sought (from
various inferences and in the manner of a tracker) by one who is wandering on the terrain”;
and parallel to the intellectus the vision of learned ignorance “which elevates someone, in
the way that a higher tower does” (Ibidem, p. 470, no. 16)

He claimed that this new way of reasoning according to the intellectus was the basis
of a new kind of theology, i.e. a new method of thinking God. Since he did not define his
way of reasoning in modern logical terms, I scrutinized his main philosophical writings in
order to extract those parts that are more meaningful in the light of logic, by exploiting also
the several kinds of non-classical logic which were formalized only some decades ago.’
I will prove that, although he did not present a rigorous logical method (Sects. 2 and 3),
he employed several kinds of non-classical logic—i.e. positive, paraconsistent, modal and
intuitionist—, which will be distinguished from classical logic by means of plain features
(Sects. 4, 5 and 6). His first result was that the series of his names for God prove to
be progressive in logical terms. Moreover it will be shown that his reasoning anticipated
most of the features of intuitionist logic: (i) the systematic use of innumerable doubly
negated propositions for which the double negated law fails (Sect. 6); (ii) the characteristic
reasoning through numerous ad absurdum arguments (Sect. 7); (iii) the application of

2An analysis in the light of non-classical logic was attempted in 1982. The author wanted to state the new
logical law followed by Cusanus; but he failed to formalize it correctly [74, p. 120]. An interpretation of
Cusanus’s coincidence of opposites through paraconsistent logic was given by Ursic [69]; it is different
from the one in the following Sect. 4. An attempt to define Cusanus’s logic philosophically was made by
Caramella [11]. I leave aside the several philosophical attempts to assimilate Cusanus’ logic to Hegel’s
dialectical logic because [46] decisively refuted them.
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the principle regulating this new way of reasoning, i.e. the principle of sufficient reason;
which was explicitly enounced by Cusanus; e.g.: “It is not the case that anything is created
unreasonably”?; (iv) as an alternative to the deductive organization of a theory a new kind
of organization (Sect. 8); and (v) the use of the square of opposition in non-classical logic,
obtained in a similar way to the modern ‘negative translation’ (Sect. 9).

However he wanted to refer his way of reasoning, not to the square of opposition, but
to a new logical structure, a “tri-unity of concordance”. In Sect. 10 I will show its main
logical features. A geometrical representation of it is offered.

No previous knowledge of specific notions of non-classical logic is required from the
reader. Rather, the reader has to take into account that new conclusions about Cusanus’
thinking will be obtained by overcoming the following five prejudices: (i) all non-classical
kinds of logic are deviant kinds of logic; (ii) doubly negated propositions belong to
primitive languages; (iii) ad absurdum proofs are always invertible into direct proofs;
(iv) the only systematic organization of a theory is the deductive one; (v) the principle
of sufficient reason is either a useless or a misleading principle.

2 Cusanus’ Logical Effort to Name the Infinite God

Before Western civilization generated mass rationalism and atheism, the existence of God
was an indisputable certainty. A basic problem was rather to find the appropriate way to
name Him, who is per se an unknowable Being. This was a logical problem inasmuch as
the ancient logic was a logic of terms.*

About the above problem nothing was suggested by ancient Greek logic beyond making
use of Aristotle’s square of opposition. Usually people attribute positive names to God,
hence they exploit the AffITrmo side of the square. In the history of mankind innumerable
names of God have been accumulated under the thesis A of the square of opposition (“All
S is P, where P stands for ‘God’). But such positive names lead directly to pantheism, i.e.
a primitive conception of religion; whereas the names according to thesis I (“Some S is
P”), by looking for specific objects or ideas that may represent God in some way (Truth,
Good, Love, etc.), lead to both idolatry and fetishism.

On the other hand, a minority theological school, called ‘negative theology’, named
God through negative words; for instance Infinite, Ineffable, Inaccessible, etc. However,
the nEgO side of the square of opposition is not suitable either. Indeed, thesis E (“No S is
P”) separates the faithful from God; it opposes man’s hopes (and rejects the incarnation
dogma of Christian theology); whereas thesis O (“Some S is not P”), is a trivial proposition
lacking any information about God.

3Cusanus [31, p. 1123, Sect. 9, no. 32]. Here and in the following the relevant negations will be emphasised
in order to make easier the recognition of a doubly negated proposition.

“I recall that a term in ancient logic is a word which functions as subject or predicate in a proposition.
Instead modern logic joins together propositions.
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Aware of these difficulties, others have conceived the names of God by means of
analogies. However, through them our mind can only produce vague allusions to the divine
beings.

The main problem of Cusanus’ philosophical theology was exactly that of solving the
problem of approaching knowledge of God by means of a suitable name. In an early period
of his life, Cusanus named God through positive names, then negative names (indeed he is
considered by most scholars as a prominent representative of negative theology) and also
analogies.

In the earlier works Cusanus remained within the general scholastic position that God is the
superior being or primum ens, but we can only know that He is. As to what He is, that remains
incomprehensible; and we are reduced to inadequate metaphors and analogies. [16, pp. 271-272]

Later, he lucidly illustrated in a booklet that previous names stress our insurmountable
distance from God [22, 23, nos. 6ff.]. Among the traditional names of God even the
Hebrew tetragrammaton was considered as inadequate by Cusanus [20, book I, Chap. xxiv,
p. 40, no. 75]. Indeed, any name cannot be the true name of God, since He, being the first
principle, cannot be defined otherwise than by Himself.

“Nevertheless, the mind’s acute gaze sees the Beginning more precisely through one
mode of signifying than another.” [31], Chap. 2, p. 1110, no. 6]. Hence, Cusanus stressed
that one can however discover a verbal expression which is less inadequate than all others;
he looked for more appropriate ways of conceiving the divine beings.°

Moreover, in the same booklet of the year 1445 he appears fully aware of the need to
find a new way of thinking God, because His name overcomes the ratio:

»

He “is not nothing” and “is not something”, “Because God is beyond nothing and something”
[22, 23, p. 303, no. 9] “He is not ineffable, though He is beyond all things effable... [, He]
is not [even] the foundation of the contradiction ... [because He] is prior of any foundation
[of contradiction too]...[; and] whatever can be said disjunctively or conjunctively, whether
consistently or contradictorily, does not befit Him.” (Ibidem, p. 303, no. 10)

Because, as Cusanus puts it, the ratio cannot perceive Him just as the sight cannot see
the light. (Ibidem, p. 304, no. 14)

Notice that in the above quotations reasoning through ratio is qualified by means of all
the operations of modern propositional and predicate logic, i.e. conjunctions, disjunctions
and of course negation; also the quantifiers are implicitly included inasmuch as he deals
with the existence of divine beings and the totality of beings in the world. Hence his
operative logical basis is complete. His logical tools well qualified his search for a new
method of reasoning about an essentially transcendent being.

5The date of this work can be located in one of the years between 1440 and 1445; hence the book may be
contemporary to Cusanus [20].

®He was moved to this aim by his belief that man is an imago Dei; hence, when a man approaches God, he
cannot be deceived in his expectations [20, book I, Chap. 1, I]; rather the problem is to discover the most
suitable intellectual method to name God.
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3 Cusanus’ Surprising Notion of the Coincidentia Oppositorum

In the first important book he illustrated a new idea he received when travelling back
from the East,” the coincidentia oppositorum, i.e. the coincidence of the opposites.® He
considered at the same time a term and its opposite, or even its negation [20, book I]. Here
Cusanus was aware of starting a totally new intellectual adventure in reasoning outside
Aristotle’s logic—in particular, his square of opposition and, in modern terms, outside
classical logic—when he claimed:

... the endorsement of this [method of a coincidence of opposites] is the beginning of the ascent
to the [new] theology . .. [which lead to ] leap higher [than Aristotle]. [24, Chap. 6, p. 463, no. 6]

It passed unrecognised that an authoritative scholar of mathematical logic, Beth,
suggested a similar logical process in his major book, although seen in the light of the
construction of “a principle”. [6, book I, Chap. 1, Sect 4. “Aristotle’s Principle of the
Absolute”, pp. 9-12].

A considerable number of arguments in speculative philosophy are based on a certain principle,
which is in most cases tacitly assumed. This principle has been applied with remarkably virtuosity
by Aristotle. [6, p. 9]

It follows from a plain consideration. Let x and y be in a relation (e.g. x presupposes y).
An absolute being X participates only partially in a relation with a finite being (in the above
example, because X is not presupposed by anything else); so that X has and has not this
relation (several instances of this principle, belonging to the theories of Aristotle, Newton,
Kant and Marx are listed). The previously emphasised proposition is then formalised in
mathematical logic; it is apparent that the formula includes a formal contradiction.

Beth adds the remark:

It will be clear that the unrestricted applications of the Principle of the Absolute must sooner or
later lead to incorrect conclusions. So Kant was undoubtedly right in observing that it cannot be
considered as constituting in itself a reliable instrument of proof. [However] Of course in special
cases conclusions drawn from the Principle of the Absolute may be correct. [6, pp. 11-12]

As a consequence, Cusanus’ coincidentiae oppositorum far from being an absurdity, or
a merely mystical way of speaking, is the best logical way to approach an absolute being,

"In this intellectual adventure he was supported by faith in the double nature of Christ, who being a true
man and a true God, represents the living reconciliation of the world of the natural beings and the world
of the divine beings; according to ancient thinking these two worlds are incommensurable, but according
to the Christian dogma of the incarnation they can be reconciled.

8According to Aristotle [2, Sect. 3, 9-10], there exist four kinds of oppositions: (i) between “relative terms”
(for ex., between the double and the half), (ii) between contraries (for ex., good and evil), (iii) between
terms expressing privation and possession (for ex., to be blind and sight), (iv) between an affirmative term
and its negation (for ex., sitting and not-sitting). The last opposition is a radical one, since in this case the
principle of the non-contradiction holds true. This principle was stated by Aristotle in the following terms:
“The same attribute cannot at the same time belong and not belong to the same object under the same point
of view”. [3, Pook lg, ¥t. 3]. In fact Aristotle declared that “the first principle” was the following: “It is
truly impossible that contrary determinations belong to the same object at the same time.” [4].
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although this way leads out of classical logic. We see that his challenge to the Aristotelis
secta, which knew only than classical logic, was surely well-founded and important.

In order to apply this notion in the best possible way Cusanus made use of the
mathematical technique of ancient times, proportions,” where magnitudes are compared
as greater or lesser than a given one. He first stressed that infinite beings do not obey
proportions; then, he suggested a new knowledge of God by joining the two endpoints
located at infinity; i.e. the coincidence of the two opposites, the absolute Maximum and
the absolute Minimum [20, book I, Chap. 4, p. 10]."°

In his next important book [21] he illustrated this new method. A coincidentia
oppositorum is not a mechanical process, but an inventive process, it is a coniectura
performed by the intellectus, the mind’s faculty distinct from the ratio.'' Cusanus’ aim
was to achieve through it as far as possible insights into the realm which stands beyond the
“walls of Paradise”, constituted by the law of non-contradiction of A and —A [26, Chap.
10, p. 700, no. 44]. As Cusanus puts it: “For the limit of every mode of signification that
belongs to names is the wall [constituted by the coincidence of the contradictories] beyond
which I see You” [26, Chap. 13, pp. 703-704, no. 52].

In order to better appreciate Cusanus’ thinking, let us compare it with the basic notions
of the ancient logic, i.e. Aristotle’s great logical achievements, both the syllogism and the
square of opposition.

He considered the syllogism in a new light.

. reason makes inferences—logically or reasonably—from an enfolding to an unfolding, doing
so by investigating one and the same thing in terms of differences. For example there is present
in the conclusion of a syllogism the same thing that is present in the premises; but it is in the
major premises in an enfolded way, in the conclusion as an unfolded way . .. Therefore the rational
domain encompasses the coincidence of the enfolding and unfolding. (Cusanus 1442, book II,
Chap. 1, p. 201, no. 78)

In a transcendent view a syllogism also proves to be a coincidence of opposites!

His coincidentia oppositorum, when understood as a concidentia contradictorum,
coalesces the opposite theses of the square of opposition, respectively A and E, I and
O; so that the square is now a mere ‘segment’ joining two theses only. They prove to be
separate because each of them represents a different quantifier; either ‘there exists’, 7, or
“for all’, V' (Fig. 1).

9Fearing that the comparison of two magnitudes produces an incommensurability, Eudox introduced into
geometry the mathematical technique of proportions, because it certainly avoids infinity.

!0Here one notices that Cusanus’ notion of minimum ambiguously means the least but also the zero, which
was never used by him.

Tn order to acquire mathematical notions from which he obtained intellectus’ conjectures about
God, Cusanus intensively explored the extrapolation at infinity—obtained by the ratio—of some finite
mathematical notions (e.g. a closed polygon whose number of sides grows to infinity is extrapolated to
a circle; then the intellectus conjectures these mathematical notions—polygon and circle—to conceive
metaphysical beings—God is at the same time polygon and circle—which he often invites the reader
to “see”). After claiming that his method was successful also in the mathematical problem of squaring
a circle, this application received disqualifying evaluations; for instance Regiomontanus wrote ridicula.
[45, p. 179, tn. no. 312], [60, pp. 50, 233]. However, after 1459 Cusanus’ thought no longer relied on
mathematical notions.
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Fig. 1 The square of opposition \a
stretched to a coincidence of
contradictories (A&(E=A))
entails
3
(I&O(=1)

Hence, the coincidence of opposites leads his mind beyond the walls of Paradise, where
the entire world is basically composed of either global entities or singular entities; no space
is left for a single negation operation.

In a chapter of one of his books [26, Chap. 10] he described the world he saw through
the coincidence of opposites, i.e. beyond the wall of the contradiction law. Cusanus stated
that in this world nothing is non-existent:

You [God] speak to nothing as if it were something, and You summon nothing to [become]
something, and nothing hears you, because that which was nothing becomes something.” [26, Chap.
10, p. 699, no. 42]

This description agrees with a kind of logic rejecting any negation.

Mathematical logic was born in the second half of the nineteenth century. Around the
year 1900 new kinds mathematical logic arose; but it was not before the ‘30s that they
were recognised as kinds of logic that were independent of classical logic. At present
there exists a mathematical logic representing the lack of negation. It is the positive logic,
which is less than minimal logic (which adds one more axiom), which in its turn is less
than intuitionist logic (obtained by adding one more axiom), which eventually is less than
classical logic (obtained by adding the law of the double negation) (Grize 1970, pp. 208—
210). Hence, Cusanus definitely abandoned positive and negative theologies, which both
make use of classical logic, in order to investigate a new kind of theology belonging to a
non-classical logic.

The above implicit way Cusanus appealed to positive logic represents a first way of
experiencing new intellectual situations according to non-classical logic. In the following
sections his experiences of three more ways will be illustrated.

4 Cusanus’ Second Way of Thinking the New Logical Situation:
Paraconsistent Logic

Since in classical logic all propositions follow from a contradiction and thus the entire
discourse is useless, logicians have maintained that a contradiction invalidates the entire
system to which it belongs. However, Cusanus opposed to his critics that his introduction
of the coincidence of opposites is not invalidating his discourse. (see for instance Cusanus
1442, book II, Chap. 1, p. 201, no. 78; [30, Sect. 13, p. 705, no. 55]).
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As a fact, in recent times some mathematical logicians have presented logical systems
which although including contradictions do not explode in the totality of propositions.
This kind of mathematical logic is called paraconsistent logic (see G. Priest, K. Tanaka, Z.
Weber, 2013).

The founder of paraconsistent logic, N.A. Vasiliev has obtained such a system from a
criticism to Aristotle’s square of opposition; instead of four theses, he stated the following
three propositions: “S is A”, “S is not A”, “S is and is not A”; he called the last one the
“indifferent judgement” and he considered it as the characteristic proposition of his logic
[5]. Indeed, the most simple way to deal with the paraconsistent logic is to consider three
values, i.e. true, false and true and false [63, Sect 3.5]. We recognise that the last value
precisely represents a coincidence of contradictories in the sense intended by Cusanus; in
fact Vasiliev recalled him [72, p. 332].

An inspection of Cusanus’ texts shows some instances of Vasiliev’s indifferent
proposition; each of them is marked by two asterisks *, one before and one after it.

For to the question whether God exists there can be no more unrestricting response than that. . . it
is not the case that * either He exists or that He does not exist and ... He both exists and does not
exist* [21, Sect. 5, p. 172, no. 21].

It is neither the case that * He is named or is not named nor the case He both is named and is not
named.* [22, p. 303, no. 10].

It not the case that *He is nothing or that He is not nothing; nor He both nothing and not nothing *.
[22, p. 303, no. 11]

Next you see that the contradictories are negated of the unnameable Beginning, so that * it is not
the case that is not and is not the case that is both is and is not,* and not is not the case that it either
is or is not. [28, no. 19]

Several scholars saw in Cusanus’ coincidence of opposites no more than a mystical
contemplation which is typical of an extreme Platonism. Instead, the above propositions
show that Cusanus’ way of thinking, although including coincidences of opposites, may
be formalised at least in paraconsistent logic.

Since I interpreted the paraconsistent logic by means of a simple technique of non-
classical logic, [37], I will come back to this kind of non-classical logic in Sect. 6, where
I will deal with the intuitionist logic.

5 A Third Way of Cusanus’ Dealing with the New Logical
Situation: The Modalities

Cusanus invention of God’s names through coincidences of opposites achieved a decisive
result when he invented the new name poss-est (= posse + esse, or posse and esse),
i.e. a word directly expressing a coincidence of opposites, here the two opposite aspects
pervading the complete world, i.e. possibility and actuality.'?

12These two words also recall the two opposite philosophies of the ancient times, Plato’s and Aristotle’s,
that Cusanus tried to reconcile by writing each of his several books according to either one [65, pp. 15ff.].
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. there [in the Possest] the being and the not being are not contradictory of each other.- nor do
any other opposites which either affirm or deny a distinct state of affairs.” [30, p. 928, no. 26]

In the last two years of his life, he worked on the previous name, Possest, so as to make
it independent of a coincidence of opposites.'* He obtained the two new names Posse and
Posse ipsum [33].

By including the word posse, the above names all belong to the well-known modal
logic. It is surely different from classical logic, although it was to some extent employed
also by Aristotle. Notice that by making use of negations negative theology does not
manifest any change in the kind of logic; instead, to call God by means of modal names
overcomes negative theology and introduces Cusanus into a new logical world, which is,
as we at present well know, non-classical.

Modal logic was formalized only a century ago. It is remarkable that four centuries
before this event, through the above names of God, Cusanus places modal logic above
classical logic, which is capable of naming God positive or the negative names alone.

Here we meet a deeply-rooted prejudice, according to which kinds of logic other
than classical logic should be considered “deviant kinds of logic” [51]. But in last
decades there have been great advances in these kinds of logic; they have prolifer-
ated, knowledge of each of them has greatly improved and they have been applied
to several fields, first of all to computer science; so that at the present time classical
logic—with its absolute distinction between true and false—appears to be an extreme
logic.

However, it is a hard task to formalize the above name in present modal logic.'* After
five centuries of logical progress, Cusanus’ modal names still constitute remarkable formal
problems. However the name Possest is rather an operation that translates from the modal
logic of the posse to the classical logic of the est; or equally, from the modal square
of opposition to the classical square of opposition. Recently a general translation from
modal logic to classical logic has been introduced [7, pp. xii, Sect. 2.4 and p. 120]. It
is accomplished by determining the value of a variable added in order to represent the
modality. Possest is the best linguistic expression for representing this translation, since it
determines the values (est) of the variable-modality (posse).

However, notice that the modal words “possible”, “necessary”, “must”, etc. are all in
an intuitive sense equivalent to double negations. For instance, the first word is equivalent
to: “It is not true that it does not exist ...” (—— 3x, which is not equivalent to “Being”,
or “Exists”). Hence, the above modal names may be all translated into doubly negated

3Cusanus did not suggest by which specific logical steps he achieved this name. One may suppose that
the public charge of pantheism made by Wenk [73] led Cusanus to stress as far as possible that God is not
the World, but is in the World; where the word “in” implies a modality to be discovered.

“Each of Cusanus’ new names of God implicitly, but also in an essential way, includes a universal
quantifier. Hence, in modern logic each of the above names properly belongs to predicate logic. But the
formalisation of the predicate calculus of modal logic is disputable [47]. In addition, the suitable quantifier
for God is dubious; it may be either total or existential. Moreover according to Cusanus’ philosophy the
main feature of God is, before existence or omnipresence, Oneness, to which no logical modern operator
corresponds.
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propositions.'> This fact allows us to consider modal names together with the doubly
negated names which will be considered in the next section.

6 The Fourth Way of Cusanus’ Dealing with the New Logical
Situation: The Double Negations of Intuitionist Logic

Two years after the book De Possest, Cusanus progressed to a new original name of God.
Again he devoted an entire book in which he both proposed and illustrated this new name:
De li non aliud (On the Not-Other). Most scholars have considered it to be Cusanus’ major
work on the subject of how to know God, although he excluded it from the collection of
his books (maybe in order to add further improvements to it or to revise all previous books
in the light of this one). It was printed in the year 1888 and eventually it received a first
critical edition in 1944 [17, pp. 203-204].

Here we have to overcome a second deeply rooted prejudice according to which only
primitive languages make use of double negations.'®

When presenting the above name, Cusanus declared that he had come to it after long
intellectual work:

It is that which for many years I sought by way of the coincidence of opposites—as the many books
which I have written about this speculative matter bear witness. [31, Chap. 4, pp. 1113-1114, no.
12; further positive qualifications are added in Chap. 19, p. 1149, no. 87]

Furthermore, he defined it as “the most precise” name [31, Chap. 2, p. 1110, no. 5]
(although subsequently he wrote books insisting on new names of modal kinds: posse,
posse ipsum).

However the name is not presented as a coincidence of opposites, but as anterior to the
same “other” [31, Chaps. 1-4];

It is seen prior to all positing or removing.” [31, Chap. 4, p. 1114, no. 12]; in other terms, the
negation does not exists before the not-other; thus, it is not obtained by negating the latter word.

. which I understand Not-Other ... cannot be expressed in different ways by different [words].
[31, Chap. 4, p. 113, no. 11] ... because God is not other than [any] other, He is Not-other,
although Not-other and other seem to be opposed. [31, Chap. 6, p. 1118, no. 21]

Indeed Cusanus emphasised that it is inappropriate to attribute a contradictory nature
to negation, other, with respect to its corresponding double negation, not-other:

. if someone had asked Aristotle, “What is other?” he surely could have answered truly, “It is
not other than other.” And, if the questioner had thereupon added, “Why is other other?” Aristotle
could rightly have answered as at first, “Because it is not other than other.” And thus, he would

I3 At present these intuitive equivalences are formalised by translating modal logic via the S4 model into
intuitionist logic [15, pp. 76ff.].

Horn [53, pp. 82ff] and [54, pp. 111-112]. For a long time linguists ostracised double negations; this
explains why the importance of DNPs was rarely noticed. In the following I will disregard an analysis of
the various kinds of doubly negated propositions, because I assume that the ancient philosophers used this
linguistic figure by intuition, i.e. by referring more to the intended semantic than to formal rules.
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have seen that not-other and other do not contradict each other as contradictories. [31, Chap. 19, p.
1150, no. 88]

He was so convinced that he had entered a non-Aristotelian kind of logic that he
persuaded even a revived Aristotle to agree with him.

The double negation in Not-Other makes manifest that Cusanus’ thinking did not
belong to Aristotle’s square of opposition, which includes at most single negations. Hence
Cusanus’ new name went beyond the scope of Aristotle’s square.

In addition, notice that this new name of God is presented by Cusanus as a double
negation which is not equivalent to the corresponding affirmative word Idem, i.e. “the
same”: “But notice that “Not-other” does not signify as much as does “same”.” [32, Chap.
14, p. 1304, no. 41] In fact, the nature of this name is not conclusive but explorative-
inductive, it well represents a coniectura produced by the intellectus.

PETER: I cannot mentally conceive what It [= the Not-other] is. / NICHOLAS: If you were able to
conceive it, then by no means would it be the Beginning-of-all-things, which signifies all in all. For
every human concept is a concept of some one thing. But Not-other is prior to [all] concept since
a concept is not other than a concept. Therefore, Not-Other may be called the Absolute Concept,
which is indeed seen mentally but which, notwithstanding, is not conceived. [31, Chap. 20, p. 1152,
no. 94]

So to Cusanus it was clear that he had left both ancient Greek thought and the dominant
Western thought; it is only in Eastern culture that one can find similar conceptions. What
one scholar wrote is fully justified: “It is possible to support the view that this name is the
most original one by Cusanus”. [58, p. 181].7

Among the names suggested by Cusanus, Non Aliud appears to be very important also
for reasons pertaining to modern logic.

First of all, notice that if the proposition P holds true, then it is equivalent to —=—P
and classical logic holds true; for instance, “I have five euro”, implies that “It is not the
case that I do not have five euro” since it expresses a well-verifiable fact. It is the reverse
implication which is here called into question.'® The name not-other is a double negation
lacking, as Cusanus stressed, a corresponding affirmative word, supported by verifiable
evidence; indeed, the content of either “the same” or “equal to everything” proves to be
idealistic for a man, because its verification requires an infinite number of tests (...
precise equality befits only God. ... [whereas in our world] equality between different
things is actually impossible.” [20, book II, Chap. 1, p. 58, nos. 91, 92].

7The great importance of this invention for the history of philosophy was emphasised by [59, p. 171]:
““Cusanus’ entire thought may be considered as a renewed and continual effort to link together the first
and the second hypotheses of Plato’s dialogue [Parmenides] through the very difficult task of thinking that
dizziness of the thought which is constituted by the One: from this viewpoint the Not-Other is nothing
other than one of the most original re-formulations that the history of the Western thought never knew of
the tremendous question put by the father of philosophy in his most enigmatic and troubling work, the
Parmenides.”

8For clarity’s sake, let us consider one more instance of such a proposition. A Court judges a defendant
“acquitted owing to insufficient evidence of guilt”; i.e. the Court did not collect sufficient evidence for
deciding either to send the man in prison or to give him the freedom. Since the above proposition is not
equivalent to the corresponding affirmative proposition (“innocent”), in this case the law of the double
negation fails.
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On the other hand, in order to verify the truth of the doubly negated name one has to
verify that, once a being is given as “other” than God, the difference between ‘“”’other”” and
God can be expressed with a “not”.

In sum, the most important feature of the name non aliud is to be a double negation
lacking an equivalent affirmative verbal expression, simply because no one can obtain
objective evidence of God’s positive existence. Without this evidence Cusanus maintains
that the most correct way to name Him is to have recourse to a double negation. Surely his
result belongs to a non-Aristotelian logic.

Let us again recall that ancient logic was a logic of terms. Since in classical logic the
terms all refer to reality, more or less idealized, the use of double negations without a
corresponding affirmative term was unjustified. (This explains the ancient tradition of the
dictum in all languages: “Two negations affirm”, which correctly represents the double
negation law of classical logic). Here, Cusanus’ innovation of the Not-other anticipated
the relevance of the double negations in the modern logical calculus of propositions.

A very remarkable fact is, that the above mentioned failure of the double negation
law has to be considered the most characteristic feature of intuitionist with respect to the
classical logic.19 Hence, the name Not-Other for God, owing to the failure of this law,
surely belongs to intuitionist logic.

Cusanus introduced this name Not-other not through a coincidence of opposites, but by
pondering on the definition. Let us recall that according to Aristotle

The definition is a discourse which expresses the essence. In such a case it is provided either a
discourse in place of a name, or a discourse in place of a discourse [; in this case the form of the
definition is the following one:] ... is.... [52, book vi]

On the other hand, Cusanus did not mean the definition in the sense of an identification
of the definiendum with the definiens; of course, the references of the definition are only
when one is dealing with beings of reality. Cusanus, however, meant a Socratic definition,
i.e. as an ad excludendum process: “we remove from the excellences of the cause the
defects we find in what is caused®. [19, p. 330, no. 5]. Remarkably, this proposition is a
doubly negated proposition which is not equivalent to the corresponding affirmative one
(which in Aristotle’s words is: “...to express the essence...”) for lack of operatively
based evidence of the latter proposition. I will call this kind of doubly negated proposition
a DNP.

Cusanus’ thought relied heavily on DNPs; an inspection of Cusanus’ texts shows that
each of them includes a lot of DNPs.?’ For reasons of space I quote some relevant

YPrawitz and Malmnaes [62], Grize [50, pp. 206-210], Dummett [43, pp. 17-26], Troelstra and Van
Dalen [68, pp. 56ff]. Notice also that according to modern logic the failure of the principle of the excluded
middle, which Cusanus sometimes referred to, is equivalent to the failure of the double negation law.

20Drago [38, 39]. Notice that sometimes a single word includes two negations; e.g. “in-variant” (which
does not mean ‘“constant”); moreover, the word “only” represents a double negation, because it is
equivalent to “nothing other than...”. In addition, sometimes one has to discover a covert negation
within a negated proposition. For example, there is only one way to resolve the paradoxical aspect of the
celebrated title of his first book, De docta ignorantia; it has to be completed by a second negative word:
Ignorantia docta [ex infinitis rebus] (An ignorance learnt by infinite beings) [20], Title; the same for the
title of the first chapter: “How it is that knowing is not knowing [the infinite beings]”). These two words
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instances only. The above mentioned proposition: “... we have no certain knowledge
except mathematical knowledge” (# mathematics is our certainty) is a DNP. Remarkably,
Cusanus defined both notions transcending the ratio, i.e. intellectus and coniectura,
through DNPs. The intellectus is “the otherness of the infinite Oneness” (# the identity
of finite Oneness) [21, book II, Chap. 16, p. 249, no. 167]. The same holds true for the
definition of its product: A surmise is a positive assertion that in the otherness shares not
in its totality the truth as it is [in itself] (# is a partial truth).”?! Hence, both definitions
belong to intuitionist logic. Also remarkable is the proposition reiterated in several books:
“For the intellect apprehends nothing which it has not found in itself.” (% what is found
in itself) [32, Chap. 29, p. 1332, no. 86].

In the previous section we remarked that modal logic may be considered equivalent to
intuitionist logic. Moreover, according to a previous work [37] one of Vasiliev’s indifferent
propositions may be translated into a DNP.?> Hence Cusanus’ names may be compared
within the intuitionist logic only. Since even at present time modal logic is not sharply
defined, [47] modal names are surely less precise than an intuitionist name (Also Cusanus
[31, Chap. 7, p. 1120, no. 23] stated: “If Not-other ceased..., [then] the actuality and
the possibility of the beings which Not-other precedes cease.”) Even less precise are the
indifferent propositions of paraconsistent logic. Hence, also according to the all above-
mentioned kinds of non-classical logic, the word “Non-Aliud” proves to be, as Cusanus
claimed, more accurate than the others. By means of this name Cusanus’ thinking was
decisively introduced into the realm of non-classical logic.

If the reader suspects that thinking through DNPs is cumbersome and therefore very
rare, he should consider that an analogy is also DNP, because it is equivalent to “It is not
the case that the two things at issue are not equal .. ..”.>* Hence, by including analogies,
names and adjectives of the modal kind and DNPs, natural language makes a great use—
contrary to the above mentioned prejudice—of propositions belonging to non-classical
logic.?*

(docta ignorantia) being a characteristic sentence of the scholars of so-called “negative” theology, one may
suspect that; when these scholars wrote merely negative propositions they often unwarily meant DNPs. It
is significant that also in modern mathematical logic it is called “negative translation” the translation of
formulas through double negations [68, p. 57].

211 preferred Vescovini’s translation [18, p. 234] of the words “Coniectura est positiva assertio in alteritate
veritatem uti est participans” to Hopkins’ one (Cusanus 1442, book I, Chap. 11, p. 190, no. 57).

22[37] I interpreted Vasiliev’s three propositions respectively as follows: =—P — P; =—P does not — P;
and =—P — P and ——P does not — P.

ZIncidentally, this fact proves that Augustine’s suggestion that God can be named through analogies
actually represents a unconscious way to escape from classical logic in order to introduce theology into
non-classical logic.

24In fact, some interpreters of his books, although ignorant of non-classical logic, were aware of this way
of Cusanus’ of conceiving logic. E.g. [67, pp. 147-151] illustrated the concept of “not-other” through
some typical characteristic features of reasoning in intuitionist logic. A similar penetrating insight is in
[9], who assumed infinity and conjecture as interpretative categories; the latter is the best representative
of DNPs in Cusanus’ thought. He rightly stressed that in the book Non Aliud “’theology is derived from
logic.” [9, p. 147].
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7 Cusanus’ Searching for a New Way of Reasoning: His Ad
Absurdum Arguments

In spite of his departure from Aristotle’s logic, Cusanus claimed to be reasoning in a
rational way when he was transcending the real world to obtain some features of the
metaphysical One. He claimed this point also in the title of Chap. 3 of one of his last
books, where he remembers how he developed his ideas: “The line-of-reasoning by which
reason pursues [wisdom]”. [32, Chaps. 2-5].

He never made use of the common tool for reasoning in ancient times, i.e. the syllogism.
He rather reasoned according to intuitive implications, such as “to be before to . ..”.>

Let us rather recall that the definitions of both coniectura and transcessus are two DNPs.
Since from a single DPN no affirmative proposition follows, they have to govern a number
of DNPs. Hence, Cusanus’ reasoning has to start from a DNP, —=—P, and then continue
through further DNPs. This chain of DNPs has to conclude in the only way intuitionist
reasoning can, i.e. an ad absurdum argument (AAA).

In point of fact each of Cusanus’ books' without assuming general axioms, but only
common knowledge, compose DNPs into units of reasoning, each one being a chain of
DNPs ending with an AAA (often revealed by the words “otherwise” in the argument, and
after by the word “therefore”).

For instance, in his first important book [20, book I] the 53 lines of the first section
include 20 DNPs. The mere sequence of these DNPs is enough to preserve the logical
thread of Cusanus’s text, provided that one implements them by adding a few connecting
propositions. In other words, the sequence of all DNPs circumscribes the logical content
of the text [38].

These 20 DNPs compose three AAAs. The first concerns the ability of our mind to
attain the truth (in the following two propositions I depart from Hopkins translation):

“...the inborn judgement faculty, satisfying the aim to know, ensures that this attraction is
not vain...”

«

. if the judgement was otherwise, it would be successful perchance [= not always], as when
sickness misleads the taste or an [false] opinion misleads reason”.

Two more relevant instances of AAA are the following ones:

Suppose someone sees how if Not-Other were removed, it is not the case that either the
other or nothing would remain, since Not-other is the Nothing[ness] of nothing. Then he sees that

in all things Not-other is in all things and nothing is nothing. [31, prop. vii, p. 1114]*

ZRemarkably, he is able to symbolize the notions and concepts; in Cusanus [31, Chaps. 15-16] he calls A
“what is signified by Not-other”. But this is not sufficient to prove he was reasoning. Nor is a coniectura,
being only one proposition, enough to prove that he is reasoning in any kind of logic.

26 A more subtle instance of an AAA is the following one (where I inserted some words to make it more
apparent): “NICHOLAS: Tell me, then, what is Not-other? [Do you accept the following absurdum:] Is it
other than Not-other? FERDINAND: [Absurd! Since it is] Not at all other. NICHOLAS: So [it is the same
than] Not-other.” [31, book I, p. 1109, no. 4].
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The loftiest level of the contemplative reflection is Possibility itself, the Possibility of all
possibility . .. For how would [intellect’s activity of contemplation] be possible without possibility?
([33, p. 1431, no. 17], Introductory statement; the insertion specifies Hopkins’ insertion “contem-
plation”. Notice that the question mark alludes to a negation: “No way.”)

Here we have to overcome a third logical prejudice. Although recently natural
deduction proved that one can reason in parallel in either classical or intuitionist logic,
[61] several logicians maintain that true reasoning belongs to classical logic only (Haack
1970, pp. 37-38). A more subtle version of this prejudice concerns the typical argument
pertaining to intuitionist logic, i.e. the AAA. It is currently maintained that such a proof can
be inverted into a direct proof, provided that the thesis is exchanged with the conclusion
[64, p. 15], [48]. But this exchange presupposes that the DNP which concludes an AAA
is translated according to the double negation law of classical logic into an affirmative
proposition. Hence, without this application of the classical law of the double negation the
AAA is not invertible.

In sum, in his books Cusanus several times reasoned rationally with ingenuity through
both DNPs and AAAs which are all governed by intuitionist logic. Cusanus dealt
exhaustively with each subject; an occurrence of an AAA is the most accurate mark of
this rational reasoning. I conclude that Cusanus’ new kind of theology includes rational
reasoning.

8 Cusanus’ Search for a New Way of Reasoning: His Use of a New
Model of Organisation of a Theory

In previous works I have shown that several important scientific theories—from S.
Carnot’s thermodynamics to Lobachevsky’s non-Euclidean geometry, to Einstein’s theory
of quanta, to Kolmogorov’s formalization of intuitionist logic—were organised by their
respective authors in a way that was alternative to the well-known deductive model [40].

Here we have to overcome a fourth prejudice which has been perpetuated by almost all
mathematicians admiring Euclid’s system and eventually elevated to an a priori premise
by Hilbert, i.e. there exists only one systematic organization of a theory, the deductive
one. This prejudice was contradicted in formal terms by Goedel’s theorems, stating that
this kind of organization is not able to represent even the simplest mathematical theory,
arithmetic [71, p. 356].

A comparative analysis of the original texts of the above mentioned scientific theories
suggests the following characteristic development [40]. A theory of such kind starts not
from axiom-principles, but from a universal problem which is unsolvable by common tools
(I call this alternative organization problem-based: PO).

The theory then looks for a new scientific method capable of solving the problem. It
then reasons through DNPs which are grouped into units of argument; each of these units
starts from a sub-problem which is then solved by means of an AAA; whose conclusion—
again a DNP works as a methodological principle for the next unit of argument. A final
AAA concerning the main problem concludes a doubly negated predicate ——T7, which in
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the intuitionist square of opposition—obtained by the ‘negative translation’ of the classical
one—represents thesis A.

At this point, the author, in the belief that he has collected enough argumentative
evidence, translates the above conclusion into the corresponding affirmative predicate
T representing the thesis A of the square of opposition of classical logic. The logical
formula of this translation of the universal predicate, i.e. the thesis A, formally implies the
translation of all the theses of the intuitionist square of opposition into the corresponding
theses of the classical square; and hence the translation of the entire intuitionist logic—
which governed the reasoning in the previous part of the theory—into the classical
one.

This author’s move appears to be justified by an application of the principle of sufficient
reason (PSR), which is formally represented by the same logical formula as the previous
translation from the intuitionist thesis A to the classical A; hence, it represents in the most
general terms, i.e. for all possible theories, the same previous translation.?’

From the new predicate the author then derives in classical logic all the relevant
consequences. Hence, this translation of both the final DNP and the logigcas a whole
amounts to a leap from a problem-based organization theory to a deductive organiza-
tion.

Although Cusanus was a cardinal who wrote on Christian dogmas, no theory of his
philosophical books is of the deductive kind, i.e. derived from some assured truths. The
common theoretical model of all these books is easily recognised. Rather than being based
on a few axioms-principles, each of his books looks for a new method able to solve a basic
problem—often the problem of which is the best name of God—through AAAs and the
application of the PSR.

E.g. in the above considered first instance of an AAA the first proposition is the
universal thesis ——T'; the subsequent rejection of the absurdum (“successful perchance’)
allows the author to state the corresponding 7: “Wherefore, we say that a sound, free
intellect knows to be true that which is apprehended by its affectionate embrace.” [20,
book I, Sect. 1, p. 5, no. 2]

Let us consider one more instance of this translation- It is constituted by the 20
“Propositions” which at the end of the book De Non Aliud summarise the entire content
of the theory. Also here, in order to solve the problem of naming God, Cusanus reasoned
through DNPs, which are linked together in three “units of reasoning”, each including
an AAA (in respectively the propositions VII, VIII and IX). In prop. IX these units
eventually conclude a universal intuitionist predicate. “Whatever the mind sees, it does
not see without Not-other.” The achieved universality leads the author to translate the
final predicate into the corresponding affirmative one. “Therefore, [the mind] sees . .. that
all things have from Not-other their names and quiddities and whatever else they have.”
Afterwards, from the new predicate he derives, according to classical logic, all possible
consequences, i.e. the subsequent eleven propositions.

270n the role played by this principle see my paper [40].
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When he translated from the universal predicate to the affirmative proposition, Cusanus
appealed only implicitly to PSR. But in the book De non Aliud he stated it twice: ...
for it is not the case that anything is created unreasonably.” [31, Chap. 9, p. 1123, no.
32]; « “Nothing is in vain” ([31], last of the 20 “Propositions™); but also in (Cusanus
1463, Chap. 11, p. 1404, no. 35) we have: “... nothing is done without a reason...”
These clear-cut enunciations are not surprising since, according to a metaphysical view,
the previous name for God, Posse = est, appears to be the most general expression of this
principle.

Here we meet a fifth prejudice which concerns the PSR. This principle is commonly
disqualified as a vague philosophical principle. Certainly, an unrestricted application of it
leads to fanciful consequences. But in some cases one obtains a plausible hypothesis which
can be tested with experimental data. Indeed, in history its validity was supported by e.g.
Enriques [36, 44] and it was exploited by several scientific theories; e.g. it was applied by
Markov when he founded the theory of the constructive mathematics.?

In conclusion, in his writings Cusanus introduced non-classical reasoning which
presents all the foundational features of an alternative organization of a scientific theory.
Hence he rightly claimed to have introduced an entirely new theoretical system, i.e. a third
kind of theology beyond positive and negative theology [20, book I, Chap. 24-26].

9 Cusanus’ Implicit Introduction of a Non-classical Square
of Opposition

In De Non Aliud Cusanus stressed that the new name, Not-other, characterises any being,
because one can define e.g. sky as ““. .. the sky [is] not other than the sky” [31, Chap. 1, p.
1109]. Hence, Cusanus changed each thesis of the square of opposition by inserting the two
words, “not other” before “P”; in this way he obtained a translation of Aristotle’s square
of opposition into a new one. In modern logic we have Kolmogorov-Goedel-Kuroda’s
‘negative translation’ of the classical logic into intuitionist logic. This translation adds
(according to some rules) a pair of negations to each predicate. In Kolmogorov’s version
one is “simultaneously inserting double negations before all subformulas of the predicate
(including the predicate itself)”.>” In comparison with it, Cusanus’s translation lacked the
addition of a double negation before the quantifiers (which were not distinguished as such
before the nineteenth century) (Table 1).

In sum, Cusanus’ intuitionist-like square of opposition is produced according to a
clever, although inadequate, translation. In any case, in the history of logic Cusanus was
the first to introduce a substantial part of the intuitionist square of opposition.

Z8Markov [57, p. 5]. In this case the application of the PSR was recognised by [43, p. 22]. It is remarkable
that Markov suggested restricting the application to a decidable predicate resulting from an AAA.

P Troelstra van Dalen [68, p. 59]. A second translation suggested by Goedel-Gentzen is performed by
adding two negations before each prime and in addition by substituting —V — for the existential quantifier
and by doubly negating the LEM (Ibidem, p. 57). A third translation, Kuroda’s one, “is obtained as follows:
insert —— after each occurrence of V and in front at the whole formula.” (Ibidem, p. 59).
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Table 1 Three squares of Aristotle’s Implicit
opposition square of KGGK’s translation of ~ Cusanus’
opposition it in Intuitionist logic translation of it
vV V- Vo= V- Vo= V-
i 3I- ——3 —-—=3= ——= 3I-

However, in Cusanus’s square the theses including the total quantifier are the same as
the intuitionist ones; whereas Cusanus’ thesis O is classical and also Cusanus’ thesis I is
stronger than the intuitionist one, as is shown by the table in [43, p. 29].

In conclusion, did Cusanus correctly reason according to intuitionist logic? The answer
is “yes” for propositional calculus, but it is “no” for predicate logic, which is the specific
logic for dealing with infinite beings, owing to the differences in the two kinds of square of
opposition. However, since Cusanus’ reasoning referred more to the existential predicate
applied to the divine beings, to the total predicate for their global features, the differences
of his square from the intuitionist one do not matter. Therefore, according to predicate
intuitionist logic the inadequacy of Cusanus’ logical translation does not invalidate his
way of reasoning.>’

10 The Search for Oneness in Pluralism: Defining the Tri-unity
of Concordance

Although he stated that “... when oneness proceeds into otherness, it stops at number
four.” [21, book II, Chap. 6, p. 212, no. 99] and saw the number four in a multitude of
activities of the mind [25, book II], he did not explicitly refer to the square of opposition.
Rather he, as a neo-Platonist and hence a henological metaphysician, saw Oneness as the
highest principle, capable of composing any multiplicity.>' According to Cusanus oneness
should be seen at the same time in God, in the intellectus, in the ratio and in senses
(Cusanus 1442, book I, Chaps. 5-9). Hence he wanted rather to characterize a logical
process culminating in a oneness.

By partaking of the One all things are that they are... Therefore, you have need of no other
consideration than that you seek out the identity that is present in the diversity of the things which
you are to investigate, i.e. that you seek out the oneness that is present in the otherness. For then you
will see, in the otherness of the contracted beings, the “modes”, as it were, of Absolute Oneness.
[21, book II, Chap. 1, p. 198, no. 71]

3Moreover, Cusanus also reasoned according to the modal square of opposition, because the last quoted
AAA is modal (see also [30, p. 916, no. 4, p. 928, no. 27]). However, the modal syllogism is not present
in his writings; actually, it was rejected by most Humanists [10, p. 81].

31Indeed he claimed e.g. to have obtained the concordance of both philosophers [30, p. 925, no. 21] and
theologians [30, p. 925, no. 21].
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But to what multiplicity does oneness refer? He was interested in a multiplicity which
can represent a totality, although in reductive terms. Surely, not a two-fold multiplicity
which represents a contraposition, but a threefold multiplicity, as in geometry a triangle
represents the minimal figure including space, the minimal polygon.>?

In the book De Li Non Aliud he achieved this logical aim at a linguistic level. Having
defined God as Not-other, he obtained a surprising name for the Tri-unity: “The not-other
is no other than the not-other”.3? ([31, Chap. 5, p. 1116, no. 18]; also in [32, Chap. 14, p.
1303, no. 40]) Through the threefold reiteration of the same words it expresses at the same
time three beings and oneness.

In De Non Aliud the Cardinal is asked why “the trine and one God is signified by “Not-
other”, when the not-other precedes all numbers [and hence, the number three and the
number one]” ([31, Chap. 5, p. 1116, no. 18]; I changed Hopkins’ “since” in “when”). He
believed that he had shown through an AAA that in this case the three is not different from
the one:

All things are seen from what has been said—seen on the basis of a single rational consideration. . .
the Beginning, which is signified by “Not-other”, defines itself. Therefore, let us behold its unfolded
definition: viz. that Not-other is Not-other than Not-other. If the same thing, repeated three times
is the definition of the First, as you recognize [it to be], then assuredly the First is triune—and of
no other reason than that it defines itself. If it did not define itself, it would not be the First; yet,
since it defines itself, it shows itself to be trine. Therefore, you see that out of the perfection there
results a trinity which, nevertheless, (since you view it prior to other) you can neither number nor
assert to be a number. For this trinity is not other than onenesss, and [this] oneness is not other than
trinity. For the trinity and the oneness are not other than the simple Beginning which is signified by
“Not-other”. [31, Chap. 5, pp. 11161117, no. 18]

The idea of this structure is expressed by Cusanus through the differences between the
three cases of a proposition, i.e. affirmative, negative and doubly negated:

Now it is evident that those who do not attain unto the fact that not-other is not the same and
that not-same is other cannot grasp the fact that [the three qualifications of both the trinity of God
and the mind, i.e.] Oneness, Equality and Union are the same in essence but are not the same one
another. ([29, book II, Chap. 8, p. 1023, no. 107]; see also [31, Chap. 5])

If we apply the same sentence structure to different affirmative words we obtain at
most a tautology and when we do the same to different negative words we obtain merely
nonsensical propositions. Hence, there exists no other verbal expression that includes both
features of trinity and unity. The double negations play an essential role in the human
mind in achieving close approximations to Tri-unitiy. Among them the Not-other is the
only suitable one.

One more reason for searching for tri-unity is that also the mind, which defines itself,
is tri-unitarian [25, Chap. 11, p. 574, no. 133]

32In his opinion, for this same reason God cannot be quaternary [20, book I, Chap. 20].

33Since in intuitionist logic three negations are equivalent to one, the complex of six negations is equivalent
to two negations; hence, we have remained within intuitionist logic.
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Just as the First Beginning of all things, including our mind, is shown to be triune,...so our
mind . .. makes itself to be the triune beginning of its own rational products. For only reason is the
measure of multitude, magnitude and of composition ... Therefore our mind is a distinguishing, a
proportioning and a combining beginning.” (Cusanus 1442, book I, Chap. 1, pp. 165-166, no. 6)*

Hence, Cusanus was interested in a one-three-fold logical structure expressing a
definition defining itself. This result coincides with the trinity of the three Persons of the
Christian God. But Flasch stressed that:

The structure [illustrated by Cusanus] matter-form-connection is a constraint for every mind;
it expresses the nature of the thought. On this solid ground Cusanus constructs his Trinitarian
philosophy, or more exactly this is his philosophy of the Trinity. This philosophy appears not as
if it wants to make comprehensible or plausible the Christian faith in the Trinity. It intends itself
as a proof which is immanent to each kind of logic and science, and even to whatsoever spiritual
activity. ([45, pp. 316-317]; emphasis added)

In sum, he wanted to refer to a concordance of the Tri-unity. Notice that in classical
logic this verbal expression is also a twofold oxymoron, because the three cannot be the
one and this contradiction cannot be considered a concordance.

Only in this light was Cusanus interested in the basic tool of ancient reasoning, the
syllogism. In a work before the De non Aliud he considered a particular syllogism where
the three propositions are all universal, each without alterity. Their roles are compared to
both the three Persons of the Trinity and the three faculties of the intellective soul (memory,
intellect and will; they are illustrated five pages later, in no.s 26ft.).

Therefore, in the oneness-of-essence of this syllogism of three propositions that are equal in all
respects there shines forth the essential oneness of the intellective soul—shines forth as in the
intellective soul’s logical or rational work. [27, 28, p. 846, no. 12]

Hence, Aristotle’s basic tool of the ratio, a syllogism, represents at best an analogy to
the triunity.

I close my long study by representing through a geometrical figure Cusanus’ thinking
about this logical structure—where I name the third person of the Trinity with a double
negation, Im-material (a word which seems to me to be more appropriate than the inane
affirmative Spirit, holy or not).

The figure represents the relationships among the three Persons by means of only
the basic logical operations employed by Cusanus in [31], i.e. either negations (#) or
double negations (— #). Notice that they are less numerous and very different from
the relationships—alternate/subalternate, contrary/subcontrary, contradictory—between a
pair of theses in Aristotle’s square of opposition. They, however, enjoy the self-duality
property for addition of double negations (Fig. 2).%

3By means of an independent analysis of the birth of modern science I put forward evidence that this
rational product is trinitarian in nature [41].

35The three Persons are characterized by Cusanus in the way started by Raymond Lull; for instance: the
lover, the loved and love; generating, generated and generation, etc.
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Fig. 2 A geometrical +

interpretation of Cusanus’ - -

Tri-unity. (<) and (—%)

not-other, () different Ii, Ii,

Not-Other

11 Conclusions

The following appraisal of Cusanus’ thinking written by Lanza del Vasto fifty years ago is
remarkable:

The conciliation of the opposites at the infinity is the subject of the philosophy of Nicholas of Cues
(De Docta Ignorantia). It is, in our opinion, the most important contribution to the Western thinking
after Aristotle and St. Thomas, since he lays the basis for a new logic, for a Novissimum Organon,
the Logic of the Infinity, according to which the principle of non-contradiction is changed into a
law of fusion and transformation. (By ignoring that the opposite extremes achieve a reconciliation
only at infinity and in God, and by having located their “synthesis” at the [superficial] level of
Becoming, Phenomenon, History, Hegel’s Dialectics remains a clever juggler’s trick exulting in
merely approximate abstractions). [55, p. 78]

It is well-known that a century ago Cassirer recognised Cusanus’ merit of being the
first to lead the human mind to conquer infinity [14, pp. 11ff.]. Now we can attribute to
him also the merit that Cassirer (and later Lanza del Vasto and Bonetti) merely hinted at,
i.e. the merit of having introduced a new logical rationality. Indeed, he was capable of
anticipating some kinds of non-classical logic. His consistency in such ways of reasoning
and his adherence to the alternative organization of a theory allowed him to anticipate
much of modern epistemology.

In retrospect, we see that more than three centuries elapsed before some scientists—
Avogadro, S. Carnot and Lobachevsky—reasoned through DNPs in a more precise way
than he did.*® However, they were favoured by their respective subjects, which, being

3Drago [40]. These theories are all of great relevance to the history of science: Avogadro’s was
the first accurate atomic theory; S. Carnot’s founded the first non-mechanistic theory of physics, i.e.
thermodynamics; Lobachevsky introduced the first non-Euclidean geometry. Their texts have been
analysed through their DNPs by some papers cited in [40].
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scientific in nature, offered much more experimental evidence than that at the disposal of
Cusanus.

One more interesting question is when in the history of science the idea of an alternative
organization of a theory, already employed by Cusanus, was eventually suggested. The
answer is D’ Alembert [34]. After him, in theoretical physics it occurred and was illustrated
by L. Carnot’s book of mechanics (Carnot in 1783, pp. 101-103); in mathematics it
occurred in the book on non-Euclidean geometry [35, 56]. Nonetheless, in the following
this alternative organization was for a long time ignored.

Why was such an important result not recognized for so long? Unfortunately, (1) in all
his books Cusanus did not circumscribe his results, so that to most scholars these results
seemed ill-founded. (2) He excluded from the list of his books the most advanced one, De
non Aliud. (3) Since at first sight Cusanus’s language appears to be that of a neo-Platonist,
the interpreters of his thinking tried to determine the continuity or the discontinuity
of Cusuanus’ thinking with Plato’s philosophy, although the latter philosophy in turn
presents significant difficulties. Such studies were unsuccessful because, as we saw, neither
Possest nor Non-Aliud are concepts; these names introduced Cusanus to an essentially new
philosophy with respect to Plato’s. (4) He misled the interpreters in some ways. Initially he
relied on mathematics (numbers and geometry). Several scholars exhausted their energies
in interpreting this aspect of his works, although they did not achieve useful or clear
mathematical results. (5) On the other hand, his real achievement was in logic, as we
saw in the above. Yet he presents a logical tool which is disputable, i.e. the coincidence of
opposites. At present we recognize in it no more than an introductory and inaccurate tool
for obtaining DNPs. (6) It may have been due to the inadequacy of his logical tool that in
the last three years of his life Cusanus abandoned the De Non Aliud and tried to develop a
more manageable notion of posse. (7) Each of his last books, the Compendium and the De
Apice Theoriae, was apparently planned to illustrate the framework of his research; yet,
the reader cannot recognize in these books a single thread linking together all the previous
books.

If one adds the above five common prejudices illustrated in the above, it is easy to
understand why Cusanus’ writings were so difficult to understand for almost five centuries
and even after the different kinds of non-classical logic had been formalized. Even at the
present time they possess a logical novelty (the triunity) that remains unexplored.

Acknowledgement I am grateful to Prof. David Braithwaite for having revised my poor English and to
an anonymous referee for an important suggestion.
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Reinterpretations of the Square



Symmetric Properties of the Syllogistic System
Inherited from the Square of Opposition

Bora 1. Kumova

Abstract The logical square 2 has a simple symmetric structure that visualises the
bivalent relationships of the classical quantifiers A, I, E, O. In philosophy it is perceived as
a self-complete possibilistic logic. In linguistics however its modelling capability is insuffi-
cient, since intermediate quantifiers like few, half, most, etc cannot be distinguished, which
makes the existential quantifier I too generic and the universal quantifier A too specific.
Furthermore, the latter is a special case of the former, i.e. ACI, making the square a logic
with inclusive quantifiers. The inclusive quantifiers I and O can produce redundancies in
linguistic systems and are too generic to differentiate any intermediate quantifiers. The
redundancy can be resolved by excluding A from I, i.e. 2I=I-A, analogously E from O, i.e.
20=0-E. Although the philosophical possibility of ACT is thus lost in %I, the symmetric
structure of the exclusive square >Q remains preserved. The impact of the exclusion on
the traditional syllogistic system S with inclusive existential quantifiers is that most of
its symmetric structures are obviously lost in the syllogistic system 2S with exclusive
existential quantifiers too. Symmetry properties of S are found in the distribution of the
syllogistic cases that are matched by the moods and their intersections. A syllogistic case
is a distinct combination of the seven possible spaces of the Venn diagram for three sets,
of which there exist 96 possible cases. Every quantifier can be represented with a fixed
set of syllogistic cases and so the moods too. Therefore, the 96 cases open a universe of
validity for all moods of the syllogistic system S, as well as all fuzzy-syllogistic systems
"S, with n-1 intermediate quantifiers. As a by-product of the fuzzy syllogistic system and
its properties, we suggest in return that the logical square of opposition can be generalised
to a fuzzy-logical graph of opposition, for 2<n.
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1 Introduction

The logical square of opposition, in short the square €2, is an ancient construct of Aristotle
[1] that depicts all possible relationships among the four classical quantifiers, universal,
existential and their negations. It visualises the consistency of the relationships in terms
of philosophical possibilities. An immediate application of the square are the well known
categorical syllogisms, in all 256 possible combinations within the four syllogistic figures.
We will refer to the 256 moods as the syllogistic system S.

The square and the syllogistic system have been extensively analysed in the history
of logic, however mostly separately from each other. Especially the square has become
increasingly controversial in pragmatical discussions and has therefore been extended to
various forms of n-polytopes [24]. However, such extensions were mostly not reflected on
the syllogistic system, not until modern logic emerged in the century of Frege [12]. For
instance, reduction of a syllogism, by changing an imperfect mood into a perfect one [30].
Conversion of a mood, by transposing the terms, and thus drawing another proposition
from it of the same quality [22, 23]. Unfortunately, such extensions on the syllogistic
system were in turn not reflected back on the square.

Initial generalisations of quantifiers were introduced in linguistics [25], at a time, where
computing became popular in science, along with discussions about the possibility of
artificial intelligence [37]. Cardinalities of quantifiers have forced logicians to rethink
[2] about related logics, such as intermediate quantifiers, like several, few, many, most
in syllogisms [31]. Fuzzifications of quantifiers [8, 40] and cardinality-based fuzzy quan-
tifications [7, 11], have enabled approximate reasoning [40], fuzzy-logical generalisations
of syllogisms [27, 41] and eventually their reflections on the square [26, 31].

In order to be able to algorithmically calculate precise truth values of syllogistic
moods [18], for any fuzzy-logical generalisation of the syllogistic system, first properties
and dynamics of fuzzy-moods need to be well understood, such as varying validities,
symmetries and equalities. Some of them have already been discussed partially in the
literature, for instance, validity of moods with classical quantifiers using diagrammatic
proves [29, 36]. Such approaches are the closest to our algorithmic calculations of truth
ratios for moods [18]. Further, symmetry and equality of moods analysed based on
Aristotle’s heuristics and geometric properties [34], validity of moods with intermediate
quantifiers using axiomatic [27] or algebraic approaches [38]. Eventually, such findings
about a fuzzy syllogistic system should help in verifying the logical consistencies of the
used quantifiers by using their reflections on extended versions of the square.

Promising is that most of the empirically obtained truth values for the 256 moods are
close to our algorithmically calculated truth ratios [18]. For instance philosophical studies
confirm that syllogistic reasoning does model human reasoning with quantified object
relationships [14]. For instance in psychology, studies have compared five experimental
studies that used the full set of 256 syllogisms [6, 28] about different subjects. Two settings
about choosing from a list of possible conclusions for given two premisses [9, 10], two
settings about specifying possible conclusions for given premisses [15], and one setting
about deciding whether a given argument was valid or not [16]. It has been found that the



Symmetric Properties of the Syllogistic System Inherited from the Square of Opposition 83

results of these experiments were very similar and that differences in design appear to have
had little effect on how human evaluate syllogisms [6].

Inference logics like modus ponens or modus tollens, are some simplified derivations
from syllogisms [35]. Since they have no quantities any more, they cannot capture any
fuzzy-quantified propositions. Whereas fuzzy-quantified syllogisms can formalise the
whole range of linguistic quantities and thus can provide more powerful inferences. Ones
the capabilities of inferencing with fuzzy-syllogistic systems "S are fully revealed, they
may become a preferred tool for approximate reasoning in artificial intelligence.

After formalising the square of opposition, we provide formalisations for the syllogistic
system, its properties and a fuzzy syllogistic system. Finally, we introduce a fuzzy-logical
square of opposition and its generalisation, the fuzzy-logical graph of opposition.

2 Logical Square of Opposition

The square reflects symmetric relationships between quantifiers that seam to be consistent
in terms of philosophical possibilities, but prove to be impractical in engineering, as some
of the possibilities develop redundancies, with which distinctive decision making is not
possible.

The square 2 consists of four quantifiers ¢ € {A, E, I, O}, two affirmative A:ALL and
I:SOME, their negations, E:ALL NOT and O:SOME NOT respectively, and all possible six
relationships amongst them (Fig. 1):

Q = {(A, E, L O)lea(Av I)v RCr(Av E)s Rcd(As O)s Rcd(Es I)s Rsa(Es O), RSC(L O)}

Euler Venn Venn Euler
Universal Universal
Affirmative @ Negative

AllS are P, NoSsP

@ SaP-< ~SeP
in case S=P \ / in case S=P
Lincluding 4 ‘ / \ \‘ 0O including E

SiP « =SoP

Particular ptndvicidy Som) SRRTCLR ‘ Particular

Affirmative @ . ‘c‘e\y Negative
\\d/

Fig. 1 The square of opposition 2 with Euler and Venn diagram representations of the quantifiers with

all Gergonne relations [13]
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where Ry, is subaltern, R, is contrary, R.q is contradictory, Ry is subcontrary and only Ry,
is unidirectional, R, Req, Ry are bidirectional (Fig. 1).

Set-theoretic visualisations of the quantifiers [33] help understanding the logical cases
every quantifier encapsulates and help identifying overlapping partial equalities among
them (Table 1). These logical cases, to which we will refer later in the text as syllogistic
cases, form the essential data for our algorithmic calculations of truth ratios for the
syllogistic moods. Although Venn diagrams are more popular in the literature, because
they provide a more compact representation, we prefer Euler diagram, as we can visualise
every logical cases of a quantifier in a distinct diagram. Logical cases of quantifiers are
sometimes referred to as states [3].

Depending on different pragmatical considerations, the cases (c) of I and O are further
separated in the literature (Table 1). Some consider them as invalid [5] and some include
them as valid [39] for a given domain. Since case (c) of I is equivalent to proposition A,
A becomes a special case of 1. Similarly, since case (c) of O is equivalent to proposition
E, E becomes a special case of O. We will refer to existential quantifiers that include
the universal cases as inclusive and to those that exclude the universal cases as exclusive
quantifiers.

Table 1 Logical case of inclusive and exclusive quantifiers represented in Euler diagrams and space
diagrams

Quantifier Logical case/disjoint space®
v Proposition ® (a) (b) ©)

A ALL S are P @ 0] 9]
OO
E ALL S are NoT P? @ (0] 9]
®© v @
I SOME S are P @ @ @
OO ©
O SOME S are NOT P @ @ @ @ @

#Logical cases are in the first row of every quantifier, equivalent disjoint spaces are in the second row
"We will use ALL NOT interchangeably with No. Whereas the quantifier “NOT ALL” is not
interchangeable with No [4]!

“For the quantifier I and O, we exclude the case of equality S=P. Otherwise the syllogistic system of two
sets would reduce down to a system of one set; in general from n to (n—k), for all k equal sets

7
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3 Categorical Syllogisms

A categorical syllogism can be defined as a logical argument that is composed of two
logical propositions for deducing a logical conclusion, where the propositions as well as
the conclusion consist each of a quantified object-property relationship.

3.1 Syllogistic Propositions

In general, a proposition is a statement that can specify multiple objects and properties.
Since a property itself may recursively become an object with properties, we will denote
a property as well as an object. Additionally, we will use further terms interchangeably,
object, propositional variable and set.

A syllogistic proposition has a fixed structure, consisting of one object and one
quantifying property:

Syllogistic proposition : & = S{P

where S and P denote sets, such that S is categorised on P with v = {A,E, I, O}.

3.2 Syllogistic Figures

A syllogism consists of two premising propositions and one concluding proposition. The
first proposition specifies a quantified relationship between the objects M and P, the second
proposition between S and M, the conclusion between S and P (Table 2).

Below triple is a more general definition of a categorical syllogism, without distinguish-
ing figures:

Syllogistic figures : (Urj U Y3F) = (P, P,, P3)
= (MU P, Py M}, {SU>M, My, S}, SysP)

where ®; and ®, denote the first and second premising propositions and $; denotes the
concluding proposition.

Table 2 Syllogistic figures F Figure (¥, W, ¥3F)*
Syllogism 1 2 3 4
@, = First Premise MYP PUYM MVYP PYM
@, = Second Premise SYM S¥YM MUS MVUS
&5 = Conclusion SvYpP SvP SYP SvP
AW = {A,E,1,0,U}; F ={1,2,3,4}
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Since the propositional operator {» may have 4 values, 64 syllogistic moods are possible
for every figure and 256 moods for all 4 figures in total. For instance, AAA1 constitutes
the mood MAP, SAM-SAP in Fig. 1.

3.3 Syllogistic Moods and Cases

Syllogistic moods are well known as categorical syllogism, whereas syllogistic case and
truth ratio are relative new concepts for syllogisms [18].
Syllogistic moods ({r; r2r3F) can be defined with the following tuple constructor:

Syllogistic mood of propositions : (U1 {3F) = (P D, P3F, 1)

where t = [0, 1] denotes the truth ratio of the mood in figure F={1, 2, 3, 4}.

For three sets, there are 7 possible distinct spaces, which can be easily identified in the
Venn diagram (Table 3). From these 7 spaces, in total 128 combinations can be generated,
out of which, only 96 are valid for the above quantifier restrictions (Table 1) and only these
allow us to uniquely distinguish the space combinations that are matched by every mood

Table 3 Sample syllogistic cases A;

Syllogistic case
Binary code

Aj = 8,8,8384858¢8;" Euler diagram Space diagram®

Agg=1111111¢ ’A @
3
w Venn Diagram? . 8 8 84 85 86 5
1101101 .
@ ©L VO O
1110000 @@@ .ﬂ lE I

Binary coding and alternative diagrams of sample combinations for the 7 possible distinct spaces,
generated from set relationships between M, S, P

“Binary coding of all possible distinct space combinations Aj, j = [1, 96] that can be generated for three
sets

PEvery circle of a space diagram represents exactly one distinct sub-set of MU P U S

¢8; = 0: space i is empty; 8; = 1: space i is not empty; i = [1,7]

4A Venn diagram depicts all possible intersections for any given number of sets, while every set is drawn
within a single closed area, where some spaces may be empty. Whereas Euler diagrams never show-empty
spaces

Agg

'Y
I
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Table 4 Sample syllogistic moods, their truth cases, truth ratios and sample interpretations

Mood
Y Yo 3F AAAL AAIl EEIl, 2, 3,4 AAI2
t: 0110010 t: 0001101
t: 1010010 t: 0010101
t: 1110010 t: 0011001
Cases A; t:0100101 t: 0011101
£ 1110000 £ 0001100
f: 0011100

Truth ratio t

1t/(1t+0H) =1 .0°*

3t/(3t+1 £)=075

4t/(4t+26)=0.67

Interpretation 0] AtleastPNS # @ ismissing  AtleastPNS # @ is
of false missing
cases®
ALL primates are ALL NOT are {Turks. ALL birds can fly
Example mammals Christian}
ALL humans are ALL NOT are {Orientals, ALL raptors can fly
primates Turks}
{ALL, SOME} SOME Orientals are Muslim SOME: raptors are
humans are birds
mammals
Interpretation Concluding with All four examples that can be Since at least bats are
of Example ALL is true, loaded into the four moods raptors, but no birds,
probably without are possibly more true than concluding with
exception; false, however possibly not MOST is possibly
concluding with fully true more true

SOME is true only
for the possible ALL
case in SOME

At=true case; f=false case
The conclusions of the examples assume that PN S # @ is given with a value of the truth ratios equal to

t of the mood

(Table 4):

Distinct space combinations : Aj = {818,8384858687|Impsm e MApePAsES

—m,p,s €8 U U3 U8y U85 U3¢ U8}

where A; with j=[1,96] are all possible combinations A; of §; with i=[1, 7], whereby
every A;j is the union of distinct spaces, such that at least one element from every set
M, P, S must be in the union [43]. The distinct spaces §; are named in (Table 3). These
combinations A; are exactly all those matched by propositions and conclusions of the 256
moods. The union of all A;, with j=[1,96], is the universe of all possible truth cases of
all 256 moods. Therefore we refer to these 96 combinations as syllogistic distinct cases.
Every mood matches some of the cases according following rules:

Syllogistic mood of cases : Yo Ps? = {k:1ﬂ2j=1 2 Aje O — Aje D4}
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true: Ay"=8,846- true/false: A19=8,8¢6, true: Az=68,848¢67 true: Ayz=6,8¢8;
true: Au=6,046, true: Ayp=06:648667 true: Ag=816,67

true: Ag=8,6,0667 true: A74=8,6,646, true: Aze=6,62640607

Fig. 2 10 syllogistic cases Al of the mood IAI4 in S and of >/'TA'I4 in 2S

where @2 is the set of cases, out of the universal set of all cases A;, j=[1,96], that
satisfy the proposition @y on all spaces of every case Aj = §;8,8384858+87. The cases
that represent the premiss of the mood, are then calculated by intersecting the cases of the
propositions ®*; N ®2,. Out of this set of premising cases ®*; N ®*,, the concluding
proposition ®3 determines now the true A* and false A cases of the mood:

True syllogistic cases : A' = A € (CIJAl N CIJAZ) ANA e D3 — Aje LN

False syllogistic cases : AT = A € (®4 NP2 A A ¢ O3 — A ¢ L

where A' and A" is the set of all true and false matching cases of a particular mood,
respectively. Since every quantifier 1\ always matches a fixed number of syllogistic cases
and any particular combination thereof in a mood ;> 3* results in the equal set of
cases, this set of cases remains fixed for every particular mood.

For instance, the two premisses ®; and @, of the mood IAI4 of the syllogistic system S,
match the 10 Sy]lOgiStiC cases @Ag, =A'= {A4, Ao, Ag7, Aoa, Agz, A, Aeg, A4, Aug,
A76}, which are all true for the conclusion @3 as well. Thus the mood has no false cases
A" = @ (Fig.2).

3.4 Truth Ratios of a Mood

The truth ratio of a mood is calculated by relating the amounts of the two sets A' and Af
with each other. Consequently the truth ratio t becomes either more true or more false:
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Truth ratio : t € {t', T}
More true truth ratio : t € {|Af| < |AY — 1 —|AT/(JAY + |AT]) = [0.545, 1]}
More false false ratio : t° € {|AY] < |Al| = |AY/(|AY + |Af]) = [0,0.454]}

where |A'| and |Af| are the numbers of true and false syllogistic cases, respectively. A
fuzzy-syllogistic mood is then defined by assigning an Aristotelian mood {/;{3F the
structurally fixed truth ratio t:

Fuzzy-syllogistic mood : ({r; 2 Y3F, 1)

The truth ratio identifies the degree of truth of a particular mood, which we will asso-
ciate further below in fuzzy-syllogistic reasoning with generic vagueness of inferencing
with that mood.

For instance, the two premisses ®; and ®, of the mood IAO3, match 10 syllogistic
cases, of which nine are true for the conclusion @3 A" = {Ay, Asy, Agz, Ass, Asg, Ag7,
Aes, A7s, Avg} and one is false AT = {Ao}.

4 Structural Analysis

Our objective is to analyse the whole syllogistic system S of 256 moods, in order to reveal
pure structural properties of the system and the moods. For that purpose, we will not
consider any semantic interpretations on the moods and we will not apply the elimination
rules of Aristotle.

4.1 Assumptions

Following assumptions allow us to perform a pure structural analysis of the system S:

» C(lassical existential quantifiers: Universal cases included in I and O (Table 1a)

e Inclusive moods: All 256 moods considered, no mood elimination rules or heuristics
applied

* Horizontal propositions: Major-minor proposition hierarchy not interpreted

» Set-theoretic: No distinction between the propositional variables subject and predicate

* Syllogistic cases: 96 distinct space combinations assumed to be the universal set of all
possible set-theoretic truth cases of the 256 moods

* Normalised truth values: Truth ratios of moods in t = [0, 1]
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4.2 True Syllogistic Moods

24 moods are discussed in the literature since ancient times, to be the only true ones out
of the 256 moods. Based on different restrictions that can be made for the value rages
of the quantifiers, different numbers of valid moods can be obtained. Accordingly the
mood AAO4 is considered to be conditionally true. However, our algorithmic approach
calculates the very same 24 true moods, plus AAO4, namely anasoy [18], without any
additional conditions for AAO4 [19], but the above assumptions (Table 1) for all moods.
Everyone of these 25 moods matches only true cases, but no false cases (Appendix 2):

Syllogistic subsystem of true moods : S; = {($; P, P3, )|t = 1.0};|S;| = 25

The number of total cases matched by any mood in S, varies from 1 to 11.

4.3 Properties of the Syllogistic System

The algorithmic approach [18] enables revealing various structural properties of the
syllogistic system. Some of them are presented here.

4.3.1 Equality

Out of the 256 moods there are 136 distinct moods, in terms of identical true and false
cases matched per mood and equal truth ratios. In that sense 256 — 136 = 120 moods are
redundant. For instance, the 25 true moods can be reduced to 11 distinct moods (Fig. 3).
For instance, AAA1=AAIl, AAO4=AAI4 or EIO1=EIO2=EIO3=EIO4.

4.3.2 Point-Symmetry

All moods are pairwise point-symmetric in terms of the syllogistic cases they match and
in terms of their truth ratios.

Pairs have equal propositional quantifiers, but shifting concluding quantifiers. Almost
all moods, i.e. 250, shift from O to A, in total 63 pairs, or from I to E, in total 62 pairs.
Thus, the observed point-symmetry of moods is as follows:

Point-symmetric mood : (Y yOF*, 1) = (YU AF?, 1 = 1 — v); (Y1 IF, 1)
= (W1EFY v =1 - 1)
where A denotes that the moods match mutually equal cases. However, only for the

following eight moods the quantifiers shift reverse, from A to O in AAA14=AAO1* and
from E to I in EAE14=EAIl1%, EAE24=EAI2%, AEE2*=AEI2* and AEE4*=AEE4%.
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1001100
1001101
1010001

AOO2

AEE2:4
AEO2:4

1010101
1010100 1011001
1011100

1011101

EIO1:2;3:4

AAI3 AO3:4

0000111 0100011 0001010 EAOI:2 0011010
0100111 1000011 0101010 EAEl2 0111010
1000111 1100001 0001011; 0101011 1001010 1011010
1100101 1001011; 1101001 1101000 1111000

1101011 1111019

Fig. 3 Set-theoretical relationships between syllogistic moods that are true in case of inclusive existential
quantifiers. The inclusive syllogistic system S; of true moods

Interesting is that these exceptional moods occur only amongst the fully true T = 1.0
moods.

Because of the above mood equalities, half of the 136 distinct moods, 68 moods, have
68 such point-symmetric counterparts (Appendix 2). For the 25 fully true and 25 fully
false moods one can define a point-symmetric syllogistic subsystem:

Point-symmetric syllogistic subsystems : S; = S™,

Syllogistic subsystem of false moods : Sy = {(®; D, D3, T)|T = 0.0}; |So| = 25

where —1 in the exponent denotes point-symmetry, in terms of point-symmetric moods.
Equal moods in S; have their point-symmetric counterparts in Sy. Thus distinct moods in
Sy are also 11.

The same symmetry exists for the remaining 206 moods in the interval (0,1), this time
however without any exceptional quantifier shift (Appendix 1):

Point-symmetric syllogistic subsystems : S ¢.545) = S_1[0,454,0); [S1,0.545]]

= |Si.454.0)| = 103

Out of the 206 moods in the range (0,1), 114 are distinct. Half of them 57 are in S, and
half in S.

Interesting is that from the above subsystems, only moods in S; are partially point-
symmetric amongst each other (Fig. 3), respectively for Sy. However, this partial symmetry
is week, as it is observed only on the number of syllogistic cases of the moods and their
relationships, but not on the distinct space combinations of the cases.
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Since the truth ratio t assigns every mood a vagueness, even before introducing fuzzy-
quantifiers to the Aristotelian syllogistic system, we refer to S as the fuzzy-syllogistic
system. Note that the truth ratio is a structural property that is constant, as long as the
above assumptions hold.

4.3.3 Case Distribution

The 96 syllogistic distinct cases span the universal set, in which every mood matches a
fixed number of cases. The distribution of these matches over the whole 256 moods shows
interesting symmetric properties, which seam to be reflections of the above discussed
symmetries.

Every mood has 0 to 65 true and O to 65 false distinct cases. The sum of all true and
false cases matched per mood varies from 1 to 73 cases, out of the total possible 96 cases.
For instance, mood AAA1 has only 1 true and O false case, in total 1 case, whereas mood
OIAL1 has 6 true and 65 false cases, in total 71 cases. Hence the truth ratio of AAA1 is
t = 1.0, fully true, and that of OIA1 is T = 0.084, which is almost false.

For instance, mood OOQO2 with 61 true and 11 false cases has truth ratio t = 0.847,
which is mostly true, and its point-symmetric counterpart OOA?2 with 11 true and 61 false
cases has truth ratio T = 0.153, which is mostly false. With 72 cases in total, they match
exactly 75 % of the universe.

Further details about case distributions and properties of the subsystems S(j 545 and
Sp0.454,0) Will be provided elsewhere, since that discussion requires considerably more
space.

5 Fuzzy Syllogistic System

The basic fuzzy syllogistic system consists of 256 moods that has constant truth ratios in
[0, 1]. It can be further fuzzified, by introducing fuzzy-logical propositions, which can be
model with fuzzy sets or fuzzy quantifications. By using fuzzy quantifiers we construct a
fuzzy-quantified syllogistic system, in which some symmetric properties of the classical
syllogistic system degrade, already with crisp sets. Here we discuss initial steps of an
approach for gradually fuzzifying quantifiers towards a fuzzy-quantified syllogistic system
and discuss the resulting fuzzy-logical square of opposition.

5.1 Fuzzy Quantification

Some of the symmetric properties of the syllogistic system are due to the inclusive
existential quantifiers I and O (Table 1 logical cases a). Also, it is these cases that introduce
the logical system redundancy, enable abduction of A as well as I from A and abduction
of E as well as O from E, thus make the logical system undecidable on these cases. Most
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Table 5 Logical cases of exclusive existential quantifiers represented with Euler diagrams and disjoint
spaces

Logical case/disjoint space®
Quantifier y ~ Proposition ® (a) (b) (©)

€D

2] ONLYSOME S are P 0] @ @
N SN
2 Q) ©
(0] ONLYSOME S are NoTP @

VW ® ©

#Logical cases are in the first row of every quantifier, equivalent disjoint spaces are in the second row

engineering systems cannot decide with such properties. Especially linguistic systems can
decide the more effectively, the finer the quantifier granularities are adapted to semantics
and pragmatics [17].

We start by fuzzifying the existential quantifiers I into I and O into 2O (Table 5):

I =1— A = “SOME are, but not ALL” = “ONLYSOME are”; |’I| = [1,|A| — 1]
20 = O —E = “SOME are NOT, but not ALL”

= “ONLYSOME are NOT”; |?0O| = [1, |A| — 1]

The value range of exclusive existential quantifiers exclude |A|, whereas inclusive
quantifiers include |A|. Based on the exclusive quantifiers *I and 2O, we elaborate now
the smallest possible fuzzy-syllogistic system "S, n=2. The exponent n determines the
granularity of distinct quantifiers, i.e. n=2 affirmative and 2 negative. With increasing
number of quantifiers 2<n, the granularity of the total quantifier value range increases,
which may be associated with further linguistic quantifiers, like, few, several, most, many
(Table 6). Sometimes these are referred to as intermediate quantifiers. Since I encapsulates
A, the two are not distinct. Analogously, E and O are not distinct.

Because the universal quantifiers A and E are equal in all systems S and "S, 1<n, we
do not need to distinguish them with an exponent.

5.2  Fuzzy Syllogistic Moods

Moods 21 U3 F of the fuzzy-syllogistic system 2S are constructed analogously and with
the same propositions (®; P, PsF), but they match less truth cases and get different truth
ratios T:

Fuzzy syllogistic mood of propositions : 2({; Y 3F) = 2(®; D, P3F, 1) € 2S
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Table 6 Value ranges of affirmative fuzzy quantifiers® of n fuzzy-syllogistic systems "S

Syllogistic System Fuzzy quantifier
Aristotelian S A =ALL I=SoME(including A)
Fuzzy S A=ALL I=SOMK=ONLYSOME (excluding A)
3 A=ALL 3/2[=MosT 3/1I=SEVERAL
S A=ALL 43 1=MosT 4/21=HALF 4/'[=SEVERAL
5 A=ALL %*=MANY® 53I=MoST 5/2I=SEVERAL S/ =FEW
S A =ALL %SI=MANY ®‘I=MosT ©*I=HALF ©?I=SEVERAL %'I=FEw
S A=ALL VIl VI

“Negative quantifiers are arranged analogously

®Column breadths are not drawn proportional to the overall value range or to oilier quantifiers or systems
“Discussions of relationships between linguistic quantifiers, for instance whether MANY>MOST or
MANY <MOST, does not effect the system syntax, but its semantics and therefore is left to linguistics

*AEE2;4

A3 1010100
"0A03

JAO3
20AI3

2AAAL
0001011; 0101011
10010115 1101001,
1101011

Fig. 4 Set-theoretical relationships between syllogistic moods that are true in case of exclusive existential
quantifiers. The exclusive syllogistic system S, of true moods

where 2y = {A,E,’L,20}. For instance, the mood IAI4 in S with inclusive
existential quantifier I, becomes 2/MAM4 in 2S with the exclusive existential
quantifier 2/11, The conclusion ®; of the mood, does not match the case Agq any
more. Thus the mood has one false case A' = {A4} and 9 true cases, A' =
{A4, Aro, DAoa, Auz, Ass, Agr, Ngg, Aga, Age}, @23 = AU AT (Fig.2).

The fuzzy syllogistic system %S has 11 true fuzzy syllogistic moods, of which some are
equal. Thus they produce 5 distinct groups of moods (Fig. 4, Appendix 3 °S)):

True : 2S;; |*S| = 11

The remaining 245 moods of %S can be categorised in terms of truth ratio ranges into
further four subsystems:

¢ MORETRUE: %S(1 05); |*S1.05| = 70
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» HALFTRUEHALFFALSE: *Sgs; |*So.5| = 16
e MOREFALSE: Zg(o.s,o); IZS(O.S,O)I =119
» FALSE: %Sy; |>So| = 40

The linguistic terms that we use to express the vagueness of the subsystems may be
used analogously for the subsystems of S [19].

5.2.1 Truth Ratio Distribution

It is interesting to observe that 16 moods that are true in S, become false in 2S and that two
moods that are false in S become true in 2S.

OAI3 limano and IAO3 nomali are two moods that are false in S, i.e. OAI3, IAO3 ¢ S,
OAI3,1AO3 € Sy 1), but turn true in S, i.e. 20AI3, 2IAO3 € *S; (Fig. 4, Appendix 3 *S)).

Out of the 16 moods that become false in %S (Appendix 3 %Sy o.g9)), five moods, ?2EAOL1,
2EA02, 2AAIlL, 2AEO2, 2AEO4 all turned to zero. These moods were true in S, but turned
to 100 % false, only by excluding the universal cases from the existential quantifiers, i.e.
they would become true only with universal cases. In fact, if we replace in these moods
21 with A and 20 with E, we get EAE1, EAE2, AAA1, AEE2, AEE4, which are all true
moods, found both, in %S as well as in S and all have a single syllogistic case. Thus this
scenario exemplifies clearly that inclusive existential quantification can turn some moods
to true, whereas without universal cases the moods would remain fully false.

This observation can be generalised, such that the truth ratios of many moods with
existential quantifiers decrease, whereas some increase, amongst which limano and nomali
even increase to 100 % true.

5.3 Properties of the Fuzz-Quantified Syllogistic System

In general, the number of equal moods per truth ratio increases from S to 2S, point-
symmetry vanishes (Appendix 1), more moods hit a lower truth ratio and the total number
of matched syllogistic cases decreases, which includes more false cases than true cases.

Every mood has 0 to 40 true and O to 48 false distinct cases. The sum of all true and
false cases matched per mood varies from 1 to 54 cases, out of the total possible 96 cases.

For instance, the moods 0002=00A2"" now become 20002 with 40 true and 8 false
cases gets truth ratio T = 0.833, which is close to 0002, and 200A2 with 6 true and 42
false cases gets truth ratio T = 0.125, which is close to OOA2. With 48 cases in total, both
match exactly 50 % of the universe. Most point-symmetric counterparts in S do not even
preserve the same number of total cases in %S, like these two moods do.
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5.4 Generic Fuzzy-Syllogistic Systems

We have defined the Aristotelian syllogistic system S as fuzzy-syllogistic, as moods have
truth ratios that can be interpreted as degree of vagueness in inferencing with them. Further
we have defined the fuzzy-quantified syllogistic system 2S, in which the philosophically
possible universal cases are excluded from the existential quantifiers. In further steps
towards generic fuzzy-syllogistic systems "S, 2<n, the value range of the existential
quantifiers of 2S are further partitioned, in general into n-1 partitions, each representing a
fuzzy-existential quantifier (Table 6).

The systems S and %S constitute the basic generic syllogistic systems, in terms of
truth rations. Truth ratios are calculated from syllogistic cases and those are based on
the set-theoretical logical cases (Table 1, case b and c). All fuzzy-existential quantifiers
[*/=11,"/!1] of ™S are valid on exactly these same logical cases. Therefore, the truth ratio
1 of any particular mood ?(®; ®, ®3F, 1) € %S is equal in the same mood with all further
partitioned n-1 existential quantifiers "(®; &, P;F, t) € "S.

For instance, the truth ratio T = 0.888 of the mood 2IAI4 is equal for all moods with
any further partitioned I, like 3/2IA%14, 3/'1A%14, 3/2IA'14, 3/'TA'14 or */°IA%14, /*1A°14,
S31A%14 etc.

For instance, the truth ratio T = 1 of the mood 2/!OA'I3 is equal for all moods with
any further partitioned O or I, like *20A%14, /1 0A%14, 320A'14, 3/'OA'14 or */°0A°14,
6/40A%14, FOA’14 etc.

6 Extensions to the Square of Opposition

In order to verify the consistency of the quantifier relationships of the various fuzzy-
syllogistic systems "S, 1<n, we now present extensions to the Aristotelian square of
opposition £2.

6.1 Fuzzy-Logical Square of Opposition

The quantifier relationships of the fuzzy syllogistic system S imply the same visual
structure like the original square of opposition (Fig. 1), however without universal cases in
the existential quantifiers.

We will denote the fuzzy-logical square of opposition with >Q and refer to it in short as
the exclusive square:

2Q = {(A,E,’,>0)[Ru(A, ’T), Ri:(A, E), Rea(A, 20), Rea(E, 21), Ry (E, 20), Ry (*1,20)}

where 2Q has two affirmative quantifiers. In the same manner we have identified %S as
the smallest possible fuzzy syllogistic system, we identify the exclusive square 2§ as the
smallest possible fuzzy-logical square.
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6.2 Fuzzy-Logical Graph of Opposition

For every further partition of the existential quantifiers (Table 6), we will extend the
classical square analogously step-wise and eventually generalise the exclusive square 2Q
to a fuzzy-logical graph of opposition "€2.

Our first extension of 2§ is *Q (Fig. 5), which verifies the logical quantifier relation-
ships of 2S. Following new relationships emerge in 3Q:

* Subaltern: Any existential quantifier is subaltern to the universal quantifier, so is any
smaller existential quantifier to any greater one.

* Subcontrary: Any existential quantifier is subcontrary to any negative existential
quantifier.

The structure of "$2 (Fig. 6) is obtained, by simply replicating the new relationships of
3Q, for every further partitioning existential quantifier. The relationships are analogous to
those of Buridan or Celaya [24].

contrary

21: Most 20: MostNot
¥ SEVERAL 0: SeveraLNoT

subaltern

subaltern

subcontrary

Fig. 5 3-quantified fuzzy-logical graph of opposition 32 with three fuzzy existential quantifiers and
traditional relationships
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n/n+2: index n+2 of existential quantifier, in "Q with n quantifiers

Fig. 6 n-quantified fuzzy-logical graph of opposition "2 with n — 1 fuzzy existential quantifiers and
traditional relationships



98 B.I. Kumova
7 Discussion

We have used the fuzzy-logical graph of opposition "2 for verifying possible logical
relationships between the quantifiers of the fuzzy-syllogistic systems "S. Generalisations
to the classical square of opposition, are not new in the literature. We shall discuss one
similar approach that appears to be related to ours.

In some recent work, the validity of fuzzy syllogism have been analysed based on the
concept of intermediate quantifiers and 105 moods have been heuristically identified as
valid [32], structurally [27] and algebraically [38] validated and verified on a generalisation
of the square of opposition [26]. For instance, fuzzy-quantified derivations of the mood
AAIl, like AAT1, AAK1, AAP1 (T=most; K=many; P=almost all) are reported to be
valid. However, according our truth ratio calculations that are based on the above quantifier
definitions (Table 1), the mood AAI in S has T = 1, but turns false in S, i.e. 2AAIl has
1 = 0. The mood turns false in >S, because the only syllogistic case of the mood is
0100101 and that is true only for the A case of the inclusive quantifier I, the very one that
is excluded in 2I (Table 1 logical cases a for I). As we have discussed above, this mood has
t© = 0O in all systems "S, 1<n. Since the cardinalities of the fuzzy-quantifiers T, K, P are all
smaller or equal than 2I,i.e. T < K < P < 21, none of those moods can be true according
to our calculations.

In general, according to our calculations, any mood of any system "S is true, only if
it has at least one premising universal quantifier. Otherwise moods have truth ratios in
T<l.

The same authors verify their intermediate quantifiers visually on different shapes of
generalised squares of oppositions, which are all very similar to each other and partially
similar with our fuzzy-logical graph of opposition "2. Only few differences are worth
mentioning:

e Number of quantifiers are constant at five; whereas "2 has a finite number n of
quantifiers.

* Contradictory and subcontrary are defined only between some specific quantifiers;
whereas in "2, every quantifier has either contradictory or subcontrary relations to all
smaller contrapositive quantifiers, which is a derivation from the basic fuzzy-logical
negation [40], e.g. =*/"~10 = "/"2[y/"31y... UL

* The quantifier Some is used; whereas Some is explicitly not used in any graph "€2, as
Some has a historically rooted pre-defined value-range in the Aristotelian square that
covers all philosophically possible values (Fig. 1).
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8 Conclusion

We have analysed the classical syllogistic system S in terms of 96 syllogistic cases, which
span the universal value range of all moods of all systems "S and in which moods match
some of them either true or false. We have identified equal moods in terms of cases and
truth ratios, point symmetry in terms of cases and truth ratios and the symmetric case
distributions. We have presented the point symmetry of the subsystems S; = S™!; and
Sq,0.545) = S—! [0.454,0)- The symmetric structures are obviously not only due to the square
2, but also caused by the combinatorial ordering of the premising propositional variables.

We have discussed the properties of the smallest possible fuzzy syllogistic system %S
and revealed why the symmetric structures of S almost vanish in 2S. We have introduced
the smallest possible fuzzy syllogistic square of opposition >Q and suggested an approach
for generalising it to a fuzzy-logical graph of opposition "2 with 2n fuzzy quantifiers.

Currently we are testing the feasibility of the generic system "S on fuzzy-syllogistic
ontologies [20] and fuzzy-syllogistic reasoning with such ontologies [21, 42].

Appendix 1: Distinct Groups of Moods in S and %S

The Aristotelian syllogistic system S consists of 136 distinct groups of moods, in terms of
equal truth ratios (Fig. 7). One can observe the fully point-symmetric distribution of the
values around T = 0.5. Truth ratios as well as the number of moods in the groups are
symmetric.

The fuzzy-syllogistic system 2S consists of 70 distinct groups of moods, in terms of
equal truth ratios (Fig. 8). However neither truth ratios nor the number of moods in the
groups are symmetrically distributed around T = 0.5 any more.
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Fig. 7 136 distinct groups of moods of S, sorted in ascending order of truth ratio t (inclusive logic)
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Fig. 8 70 distinct groups of moods of S, sorted in ascending order of truth ratio t (exclusive logic)

Table 7 In case of inclusive existential quantifiers, true moods of S;, and their point-symmetric
counterparts in Sy, showing numbers of true cases t and false cases f of their truth ratios t

Si: True 1.0 Sp: False 0.0

Moods Moods

ingroup Yo ysF T t f ingroup Yy sF T t f
2 AAAT; AAIL 1.000 1 0 2 AAOI; AAEL 0.000 0 1
2 AAO4; AA4 1.000 1 0 2 AAA4; AAE4 0.000 0 1
4 AEO2;4; AEE2;4  1.000 1 0 4 AEA2;4; AEI2;4 0.000 0 1
4 EAEL;2; EAOL;2 1.000 1 0 4 EAIL;2; EAAL;2 0.000 0 1
1 AAI3 1.000 4 0 1 AAE3 0.000 0 4
2 EAO3;4 1.000 5 0 2 EAA3;4 0.000 0 5
1 AOO2 1.000 9 0 1 AOA2 0.000 0 9
2 Alll;3 1.000 10 O 2 AIEL;3 0.000 0 10
2 1AI3;4 1.000 10 O 2 1AE3;4 0.000 0 10
1 OAO3 1.000 11 0 1 OAA3 0.000 0 11
4 EIO1;2;3;4 1.000 11 0 4 EIA1;2;3;4 0.000 0 11

Appendix 2: Moods with Inclusive Existential Quantifiers

In case of inclusive existential quantifiers 25 moods are 100 % true, i.e. have truth ratio
t = 1.0, because they have only true cases t. 25 moods are 100 % false, i.e. have truth
ratio T = 0.0, because they have only false cases f (Table 7). Some moods are equal in
terms of their syllogistic cases, as they match exactly the same cases out of the possible 96
cases. For instance, AII1 has 10 cases and AII3 has the very same cases.
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Table 8 In case of exclusive existential quantifiers, true moods of 2S, and false turned moods in 28[0,0.39],
showing numbers of true cases t and false cases f of their truth ratios t

2S,: Remained/turned true 1.0 28[0,0.39]: Turned false in [0,0.89]
2y P rsF T t f 2Py PrsF T t f
2AAAL 1.000 1 0 A4 0890 8 1
2/'EA'E1;2 1.000 1 0 2E'O1;2 0.800 8 2
2A'E'E2:4 1.000 1 0 2ENT'03:4  0.667 4 2
2AA'T42AA' 04 1.000 1 0 2'EA'03:4  0.800 4 1
21TAN3;2/10A03;2/MTAT03;2/10A3  1.000 6 0 2IEA'01;2 0.000 0 1

2Al0'02 0750 6 2

2AA3 0750 3 1
False in S, ZAATL 0000 0 1
Yo F B t f ZAl 0700 6 3
OAI3 0.909 10 1 2AT'3 0500 3 3
IAO3 0.900 9 1 2A'E'02:4 0.000 0 1

Everyone of the 25 true moods has a point-symmetric counterpart, in terms of the
particular cases they match. For instance, AOO2 has 9 cases and AOA2 has the very same
cases, but for AOO2 all cases are true, whereas for AOA2 all those cases are false.

Appendix 3: Moods with Exclusive Existential Quantifiers

In case of exclusive existential quantifiers 9 moods remain 100 % true and two >/'IA'O3
and >/'OA'I3 turn 100 % true. 16 moods turn false with truth ratios t ranging in [0, 0.89]
(Table 8). Some moods become equal in terms of their syllogistic cases. For instance,
2/MAE, 2T0A'03, Z11AN03 and 2YOA!3 reduce all to the very same 6 cases.

The syllogistic system with exclusive existential quantifiers shows considerably less
symmetric properties in terms of syllogistic cases and truth ratios.

Acknowledgements Thanks are due to Mikhail Zarechnev for developing applications that generate
various data sets of the fuzzy syllogistic systems S, 2S and °S, for analysis purposes.
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The Square of Opposition Interpreted
with a Decidable Modal Logic

Paul Weingartner

Abstract In connection with Aquinas modal interpretation of the square of opposition
the paper interprets the 24 syllogistic modes by a decidable modal logic. Those 15 modes
which are not making existential presuppositions are theorems of it right away whereas
the other 9 modes are theorems when adding the possibility of the antecedent.

Keywords Decidable many-valued logic ¢ Decidable modal logic * Relevant logic ¢
Syllogistics
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In his short article De Propositionibus Modalibus Thomas Aquinas interpreted the
square of opposition with the help of modalities. He observed that all the essential relations
of the square, contradictions in the diagonal, contraries, subcontraries and subalternities,
are preserved if one puts the following modalities into the four corners (see Fig. 1):

In this paper it will be shown that the 24 syllogistic modes can be interpreted in this
way by a decidable modal logic in such a way that those 15 which do not make existential
presuppositions are valid in this modal logic and the remaining ones are valid if one adds
the premise that the antecedence is possible. This modal logic is based on the 6-valued
propositional logic RMQ which has relevance properties and was constructed in order
to avoid paradoxes which come up if two-valued classical propositional logic is applied
outside logic and mathematics, i.e. to empirical sciences.'

1 The Underlying System RMQ

1.1 RMQ Has Properties of Relevance

The underlying system RMQ was developed with the intention to construct a propositional
logic which contains its own semantics and obeys some important criterion of relevance.

"Weingartner [7-9]. Thomas Aquinas [4].
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Fig. 1 Modalities in four necessary necessary-not
corners

possible possible-not

This relevance criterion was developed together with Gerhard Schurz’ in order to
avoid different types of paradoxes in the domains of scientific explanation, disposition
predicates, scientific confirmation, verisimilitude, Quantum Physics and Deontic Logic.

The common cause of these paradoxes are principles of CPC (Classical Propositional
Logic) that contain irrelevant elements (such elements that can be replaced by any others
or can be reduced to others) in the conclusion or in the consequence class. The relevance
criterion has two parts, a replacement part RC and a reduction part RD. The main idea
of the first part of the relevance criterion called replacement criterion (RC)—is to forbid
those parts of a consequence (conclusion) of a valid inference which can be replaced (on
one or more occurrences) by any arbitrary part (wff) salva validitate of the inference.

For example the classically valid principle of addition p — (p V g) allows to introduce
a new sentence g which has nothing to do with the premises and can be replaced by
any other sentence (wff) salva validitate of the inference. It is important to realize that
this principle is the chief cause for the following paradoxes in different domains: Hesse’s
paradox of confirmation, Goodman’s paradox, paradox in the definition of verisimilitude,
Ross paradox.

Similarly, the classical valid ex falso quodlibet principle =p — (p — ¢q) is the
chief cause for the disposition paradox and also for the paradoxes of Derived Obligation
and Commitment.> We do not think that the mentioned paradoxes are a special type of
paradoxes just in this domain. On the contrary, the underlying cause is much more general.
It consists of some very tolerant properties of Classical Logic concerning valid inferences
which are properties of irrelevance in the sense that something which can be replaced
(in the consequence-class) by anything arbitrary cannot be relevant. The second part of
the relevance criterion is a reduction criterion (RD) which reduces redundant repetitions,
double negations, splits complex wffs into smallest conjuncts.

The system RMQ has two concepts of validity, a weaker one (material or classical
validity) and a stronger one (strict validity). All the theorems of classical 2-valued
propositional logic (CPC) are materially (classically) valid in RMQ. Those of CPC which
obey a certain relevance restriction are strictly valid in RMQ. The so restricted system is
called RMQ* and avoids most of the well-known paradoxes in different areas where CPC
is applied.

2Schurz and Weingartner [3].
3This has been shown in Weingartner [6].
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1.2 The Modal Logic Contained in RMQ

The modal logic contained in RMQ has two kinds of necessity and two kinds of possibility,
14 different modalities altogether (7 positive and 7 negative ones). It derives from a
similar 6-valued matrix-calculus.* Although both systems do not have strong necessitation
(i.e. if = p then = Lp) the system SS1M contains all theorems of CPC as strictly
(necessarily) valid, whereas RMQ allows as strictly valid only those theorems of CPC
which (approximately) satisfy the criteria RC and RD (for avoiding the well-known
difficulties), yet including all the important traditional principles of CPC. The modal
system contained in RMQ is similar to the modal system 7 (of Feys or von Wright)
concerning many theorems, except necessitation for all CPC-valid formulas. It also
includes Brouwer’s system B, though without necessitation w. r. t. all CPC-valid formulas.

1.2.1 Modal Theorems of RMQ

N Lp<e -M-p

(2) Mp < —L-p

(3) L-p <& —Mp

4) —Lp s M—p

(5) LLp & —MM—p

(6) MMp < —LL—p

(7) LL-p <& —MMp

8) —LLp <& MM—p

O Lp=p
(10) p= Mp
(11) LLp = Lp = MLp = p = LMp = Mp = MMp
(12) L(p—q) = (Lp —> Lq)
(13) L(pnrq) & (Lp A Lg)
(14 M(pAq) = (Mp AMg)
(15) (LpvLlg) = L(pVq)
(16) L(p — q) = (Mp — Mgq)
(17 L(pVvq = (LpV Mgq)
(18) [L(p—>q) Apl=q
(19) [L(p > q) A—q]l = —p
(20) [L(p > g AL(g— 1] = L(p—>r)
21 L(p — q) = L(—g — —p)

4Weingartner [5]. This system was called there SS1M.
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1.2.2 Comparison With Other Modal Systems

RMQ is well comparable to the Modal System 7. Although T has a strong rule of
necessitation which is not valid in RMQ, many of the main theorems of T are strictly
valid in RMQ, too. Thus all theorems (1)—(10) of 1.2.1 are theorems of T. Furthermore,
theorems (12)—(14), (16), (17) and (20) are theorems of 7. T and RMQ behave also similar
concerning important invalid wffs. For example in both systems (p — gq) V (¢ — p) is
valid, but (p = ¢) V (¢ = p) is invalid. Moreover, (p A g) — (p — ¢) is valid in T and
materially valid in RMQ, but (p A q) = (p — ¢) is invalid in both.

Concerning the modal system S4, RM does not have the reduction theorem LP — LLp
of S4, which is also valid in S5, because it is a task of RMQ to distinguish two kinds of
necessity, a stronger one and a weaker one; analogously RMQ distinguishes between two
kinds of possibility, a stronger and a weaker one. Nevertheless, RMQ has the same number
of different modalities as S4 (7 positive and 7 negative ones). But in RMQ they can be
ordered into one line of strict implication (cf. theorem (11) above), whereas in S4 this is
not possible and the non-modal proposition p is deductively connected only with Lp and
Mp, but not with any other modality. Concerning modal system S5, the axiom which leads
form S4 to S5, Mp — LMp, is materially, but not strictly, valid in RMQ.

1.2.3 The Modal Logic of RMQ Contains the Syllogistic

This Modal Logic with the theorems of 1.2.1 and which is exactly defined in Sect. 1.2.1
below contains the whole Syllogistic with all 24 modes by a simple straightforward
interpretation: The four sentence-types A, E, I, O of the Square of Opposition are
represented by the modal square of opposition; i.e. the A and E sentence by necessary
and the I and O sentence by possible.

1.3 Definition of the System RMQ

The system RMQ can be defined as the set of all formulas, which satisfy the matrix M =<
T,F, =, VvV, A, —,L>whereT = {1, 2, 3}, F = {4, 5, 6} and the operations —, V, A,
—, L are defined as follows:

p —p pVgqg 123456
1 6 1 111111
2 5 2 122212
3 4 3 123133
4 3 4 121445
5 2 5 113455
6 1 6 123556
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PAg 123456 p—>q 123456 Lp

1 123456 1 123556 1
2 223466 2 113555 3
3 333656 3 121455 6
4 446456 4 123133 6
5 565556 5 122212 6
6 666666 6 111111 6

p<q=dfl(p—q) A(g—p)
RMQ obeys the usual interdefinability between necessity (L) and possibility (M):Mp =
df—L—p. Hence, the matrices for all the 7 positive modalities in RMQ are as follows:

p —p LLp Lp MLp p LMp Mp MMp
1 6 1 1 1 1 1 1 1
2 5 6 3 1 2 1 1 1
3 4 6 6 6 3 1 1 1
4 3 6 6 6 4 1 1 1
5 2 6 6 6 5 6 4 1
6 1 6 6 6 6 6 6 6

As it follows from the definition, every well-formed formula (wff) of RMQ is
unambiguously determined by a particular matrix, according to the definition in 1.3,
possessing either 6 or 36 or 216 ..., etc (in general 6",n = 1,2,...) values. And any
such particular matrix represents some well formed formula (wff) of the system RMQ.

Observe further that in a representation of CPC by matrices (truth tables) A -~ B
coincides with (valid) A — B; and for the representation of CPC by RMQ, A - B coincides
with (valid) A — B (material implication) since all valid formulas of CPC are materially
valid in RMQ (see 1.4 (6)).

1.4 Properties of the Underlying System RMQ

(1) RMQ is a 6-valued matrix system (3 values for truth, 3 for falsity) and so it contains
its own semantics. Every well-formed formula of RMQ is unambiguously determined
by a particular matrix which contains 6" values for n(n = 1,2,...) different
propositional values.
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(2) RMQ is motivated by two relevance criteria called replacement (RC) and reduction
(RD), which avoid difficulties in the application of logic (see (6) and (7) below).’

(3) RMQ is consistent and decidable.

(4) RMQ has the finite model property.

(5) RMQ has two concepts of validity: a weaker one (classically valid which is identical
with materially valid) and a stronger one (strictly valid). All theorems of two-valued
Classical Logic (Classical Propositional Calculus CPC) are at least classically valid,
that is materially valid, in RMQ. Only a restricted class of them are strictly valid in
RMOQ.

(6) The validity of a proposition is decided by calculating the highest value (cv) in its
matrix. If cv = 3 the proposition (formula) is classically valid, that is materially
valid. If cv = 2 the proposition (formula) is strictly valid.

(7) The strictly valid theorems of RMQ avoid a great number of well-known paradoxes
in the domain of scientific explanation, law statements, disposition predicates,
verisimilitude, . ..etc.6

(8) The strictly valid theorems of RMQ avoid the well-known difficulties when logic is
applied to physics; especially those with commensurability, distributivity and with
Bell’s inequalities.”

(9) RMQ is closed under transitivity of implication, and under modus ponens.

(10) RMQ also contains a modal system with 14 modalities, where Lp (necessary p) has
the matrix: 1 3 6 6 6 6. MP = —L—p (possible p).

1.5 Theorems of RMQ
1.5.1 Conventions

If — is the main connective, then — means that the formula (wff) is only materially valid
(cv = 3); = means that the formula is at least strictly valid (i.e. valid with L in front;
cv < 2);(p = q) = dfL(p — q). Also wifs of which the main connective is Vv
(disjunction) may be only materially valid, i. e. if their cv = 3.

SFor an exact formulation of these criteria see Weingartner [7] Sect. 2 and [9] Sect. 2.
See Weingartner [7] Sect. 4.3 and [8] Sect. 2.4.
7See Weingartner [7] Sects. 2.1, 2.2 and 4.2, 4.4. and [8] Sect. 2.
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1.5.2 Theorems of CPC Which Are only Materially Valid (But Strictly Invalid)

in RMQ
1 —=p—>(p—9 Ex falso quod libet
2 —-p—=1Ip— (@@nr—9q)] Ex falso quod libet
B) (p—> —=p) —>[p— (@nr—9q) Ex falso quod libet
@ p—>pVvy Redundant Element(s)
5 p—1IpVvign—qg)] Redundant Element(s)
® p—=>[pArqg) Vv(pA-—g)] Redundant Element(s)
(N p—>(@q—p Adding premise
® (pArg) — (p<q Conjunction and implication
9 (prg — (p— 9 Conjunction and implication
(10) (pAgq) — [(p A1)V (g A—r)] Conjunction and disjunction
(A1) [pA(@vnr]<[(prg) Vv (pAr)] Distribution
(12) [(pvg A(pVvr)]<|[pVv(gnr)] Distribution
(13) pvip—9q intuitionistically invalid cv = 3
(14) (p—=>qVv(p——g intuitionistically invalid cv = 3
15 (p—=>qVv(-p—9q intuitionistically invalid cv = 3

With the exception of the last three (13)—(15), the principles (CPC theorems) (1)—(10) are
separated as classically valid bunt irrelevant by the Replacement Criterion RC: it is easily
seen that at least one occurrence of the variable g (or p or r) in the consequent can be
replaced by any variable salva validitate (veritate) of the CPC-theorem. The equivalence
p <> ¢ in CPC-theorem (8) has to be split into two implications (p — g Ap — ¢q) in order
to apply RC.

The direction — of (11) and (12) is forbidden by the Reduction Criterion RD. The
last three (13)—(15) cannot be designated that way because the main connective is not an
implication, but a disjunction.

However, for the system RMQ the form of the wff is not essential because the decision
whether the wff is materially valid or strictly valid is determined by the cv of the matrix
(cf. 1.4(6) above) which represents the wff. Thus, it can easily be checked that all the above
listed principles (1)—(15) of CPC are (only) materially valid, but not strictly valid in RMQ.

1.5.3 Basic Theorems of CPC Which are Strictly (or Necessarily) Valid (Valid
with L in Front) in RMQ

The main theorems which are strictly valid, are recognisable by their main connective =.
We shall denote that subsystem of RMQ which contains only theorems which are strictly
valid in RMQ by RMQ*.
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1 (pAg & (@ADp)
2 (pvag & (@Vp

B [pA@ADn] & [(pAg AT

4 p=p

S p& —p

6 pAg=p

7 pnrg=gq

@ pvp=p

©® [(p—>9 Apl=gq
10) [(p > @ A —q]l = —p
an (p - q = (=g —> —p)

(12) [(p =9 Ar"(@—>1]=(p—7

(13) [(pVva A-pl=qg

P. Weingartner

Commutation
Commutation
Association

Double negation
Simplification
Simplification
Simplification
Modus ponens
Modus tollens
Contraposition
Hypothetic syllogism
(transitivity of —)
Disjunctive syllogism

De Morgan’s law
De Morgan’s law

14 (pAgqg) = —(=pV —q)
15 (pv g = —(=p A —q)
16) (—p A =g = —(pV q) De Morgan’s law
A7) (—=p Vv =9 = —=(p A q) De Morgan’s law
18) [(pAg vV (pADn] =IpA(gVr) Distribution
19 [pv@an]=1Ipvaeg A (pVvr) Distribution
200 [(pAg@ V(PA—q]=p
Qh [p—=>(@Anl=Up—>qn(p—r)]
22 [(p—=>nvVvi@—->nl=pArqg —r1]
23) [r—>(p— 9] = I[(rnAp —d]
(24) —(p A —p) Principle of non-contra-

diction strictly valid
25 pv -y Principle of excluded

middle or tertium non

datur strictly valid

Those distribution laws which are strictly (or necessarily) valid (i.e. valid with L)

are just the ones which must hold in a logic applicable to empirical sciences including
Quantum Physics.

2 Syllogistics and the Square of Opposition Interpreted
with the Modal Logic of RMQ

2.1 Historical Remarks: Aristotle

In his book on interpretation Chap. 12 Aristotle describes the modalities by saying which
are contradictory and which are contrary opposites. He does not order them into a modal
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square of opposition but lists all modes (ibid. 22a ff.): “possible to be and not possible to
be cannot be said truly of one and the same thing because these statements are opposites.
And possible not to be and not possible not to be cannot be said truly at the same time of
one and the same thing...”

He continues in Chap. 12 first by stating equivalences, for example: not possible to be
is necessary not to be. Then by stating implications, for example: what is necessary not
(the case) is (implies) what is not necessary (ibid. 22b). Many laws of Modal Logic are
described in Chap. 13.8

2.2 Historical Remarks: Thomas Aquinas

Before Thomas Aquinas states the Modal Square of Opposition he begins to explain what
a model proposition is and what a modus is. We quote the beginning part of this text since
it is interesting in his formal and linguistic character and contains the essential part of
Tarski’s truth condition (Tarski’s biconditional):

“Since the modal proposition gets its name from ‘modus’, to know what a modal proposition is we
must know what a modus is. Now a modus is a determination of something effected by a nominal
adjective determining a substantive, e. g. ‘white man’, or by an adverb determining a verb. But it
is to be known that modes are threefold, some determining the subject of a proposition, as a white
man runs, some determining the predicate, as ‘Socrates is a white man’, or ‘Socrates runs quickly’,
some determining the composition of the predicate with the subject, as that Socrates is running
is impossible, and it is from this alone that a proposition is said to be modal. Other propositions,
which are not modal, are said to be assertoric (de inesse).

The modes which determine the composition are six: ‘true’, ‘false’, ‘necessary’, ‘possible’,
‘impossible’ and ‘contingent’. But ‘true’ and ‘false’ add nothing to the signification of assertoric
propositions; for there is the same significance in ‘Socrates runs’ and it is true that Socrates runs
(on the one hand), and in “Socrates is not running” and “it is false that Socrates is running” (on the
other). This does not happen with the other four modes, because there is not the same significance in
‘Socrates runs’ and ‘that Socrates runs is impossible (or necessary)’. So we leave ‘true’ and ‘false’
out of consideration and attend to the other four. Now because the predicate determines the subject
and not conversely, for a proposition to be modal the four modes aforesaid must be predicated and
the verb indicating composition must be put as subject. This is done if an infinitive is taken in
place of the indicative verb in the proposition, and an accusative in place of the nominative. And
it (the accusative and infinitive clause) is called ‘dictum’, e. g. of the proposition ‘Socrates runs’
the dictum is ‘that Socrates runs’ (Socratem currere). When then the dictum is posited as subject
and a mode as predicate, the proposition is modal, e. g. ‘that Socrates runs is possible’. But if it be
converted it will be assertoric, e. g. ‘the possible is that Socrates runs’.

Of modal propositions one kind concerns the dictum, another concerns things. A modal
(proposition) concerning the dictum is one in which the whole dictum is subjected and the mode
predicated, e. g. ‘that Socrates runs is possible’. A modal (proposition) concerning things is one in
which the mode interrupts the dictum, e. g. “for Socrates running is possible’ (Socratem possibile
est currere). But it is to be known that all modals concerning the dictum are singular, the mode
being posited as inherent in this or that as in some singular thing. But . .. modals concerning things
are judged to be universal or singular or indefinite according to the subject of the dictum, as is the
case with assertoric propositions. So that ‘for all men, running is possible’ is universal, and so with

8For studies of Aristotle’s Modal Logic cf. Bochenski [1, 2].
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the rest. It should further be known that modal propositions are said to be affirmative or negative
according to the affirmation or negation of the mode, not according to the affirmation or negation of
the dictum. So that . . . this modal ‘that Socrates runs is possible’ is affirmative, while ‘that Socrates
runs is not possible’ is negative.”

Thomas Aquinas then states the difference between modality de dicto and modality
de re and the respective forms of such modal propositions. Finally he distinguishes four
orders: The first, he says, is possibile est esse and its equivalent forms; the second possibile
est non esse (and equivalences) the third impossibile est esse (and equivalences) the fourth
necesse est esse (and equivalences).

Then he gives the description of the modal square of opposition: The fourth order is
contrary to the third, the first order is subcontrary to the second, the third is contradictory to
the first and the fourth contradictory to the second, finally the first is subaltern to the fourth
and the second to the third. Before he gives the picture for the modal square of opposition
(see Fig.2) he cites a verse used for teaching logic in medieval times that explains the
Latin words in the four squares: “Primus amabimus, edentulique secundus. Tertius illiace,
purpurea reliquus.”

4 3
2 : o
E Purpurea [liace £,
=
. o
S| Non possibile est non esse contrariae Non possibile est esse =3
=
% Non contingens est non esse Non contingens est esse g
| Impossibile est non esse Tmpossibile est esse g
wn
® | Necesse est esse Necesse est non esse
G &
@ £ & Q
] e R <
= ? S =
- —
3]
= X =
< <
el & Q% <
= > % =}
w & . ©n
Q@
2
3 1 z
= Amabimus Edentuli =
= =y
s} Possibile est esse subcontrariae Possibile est non esse o,
% Contingens est esse Contingens est non esse g
8‘ Non impossibile est esse Non impossibile est non esse s
< Non necesse est non esse Non necesse est esse ¢

Fig. 2 Square of opposition

“Thomas Aquinas, De Propositionibus Modalibus 719-721 [4]. Translation by Bochenski [2], 29.09.
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2.3 Syllogistic A, E, I and O: Propositions Interpreted in the Modal
Logic of RMQ

The interpretation is very simple. A and E propositions are interpreted with necessity, /
and O propositions with possibility. We use only propositional logic. The subject-predicate
relation in the A and E proposition we interpret with an implication; the subject-predicate
relation in the / and O proposition we interpret with a conjunction. The propositions
containing subject term middle term and predicate term are represented by the propositions
D, g, r as follows:

Proposition containing the subject term .. P
Proposition containing the middle term
Proposition containing the predicate term ... r

The translation of the A, E, I, O propositions into modal propositions of RMQ are as
follows:

SaP =df L(p—r)
SeP =df L(p— —r)
SiP =df M(pAr)
SoP =df M(pA-r)

2.4 The Syllogistic Modes Are Theorems of the Modal Logic
of RMQ

Since RMQ including its modal logic is decidable every syllogistic mode interpreted in
the way explained above is decidable too or follows from RMQ. “Follows” or “logically
follows” means in RMQ just that the representative implicational proposition gets the value
cv = 3, or if it strictly follows the value cv = 2. The syllogistic mode is decidable by
showing that its matrix in RMQ gets a cv = 3 or < 3 cf. Sect. 1.4, (6).

In fact all 24 syllogistic modes get a cv = 1, i. e. are strongly true in RMQ. This holds
for the 15 syllogisms which do not make existential presuppositions (when interpreted in
First Order Predicate Logic) straightforwardly, and for the remaining ones if one adds the
premise that the antecedence is possible.
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1st Figure:
Lg— ) AL(p = q) = L(p — 1)
L(q — =) AL(p = q) = L(p — =)
L(g — r)/\M(p/\q)—l>M(p/\r)
L(g — =) AM(p A q) = M(p A=)
Llg—r)AL(p — q)/\Mp—l>M(p/\r)
L(q — =) AL(p — g) AMp = M(p A —r)

2nd Figure:
L(r > —q) AL(p — q)—l>L(p—> —r)
Lir—q)AL(p— —uq)—l> L(p — —r)
L(r —» —q) /\M(p/\q)—l>M(p/\—-r)
L(r — q) /\M(p/\—-q)—l> M(p A —r)
L(r - —q) AL(p — q) /\Mp—1>M(p/\ =r)
L(r — q) AL(p —> —q) /\Mp—l>M(p/\—-r)

3rd Figure:
L(g — r)/\L(q—)p)/\Mq—l>M(p/\r)
L(g — —r) AL(g — p) /\Mq—1>M(p/\ =r)
M(gAr)ALg —>p)—l>M(p/\r)
L(g — r)/\M(q/\p)—1>M(p/\r)
M(g A —r) A L(g —>p)—1>M(p/\—-r)
L(g — —r) AM(q A p) N M(p A —r)

4th Figure:
M(rAq) AL(g —>p)—l>M(p/\r)
L(r = —q) AM(g N p) N M(p A —r)
L(r — q) AL(q — p) = L(p=r)
L(r — q)/\L(q—>p)/\Mr—1> M(pAr)
L(r — q) AL(g — —p) /\Mp—l>M(p A =)
L(r — —uq)/\L(q—>p)/\Mq—l> (pA-r)

Barbara
Celarent
Darii
Ferio
Barbari
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Cesare
Camestres
Festino
Baroco
Cesaro

Camestrop

Darapti
Felapton
Disamis
Datisi
Bocardo

Ferison

Dimaris
Fresison
Camenes
Bamalip
Camenop

Fesapo

P. Weingartner
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Two Standard and Two Modal Squares
of Opposition

Jiri Raclavsky

Abstract In this study, we examine modern reading of the Square of Opposition by
means of intensional logic. Explicit use of possible world semantics helps us to sharply
discriminate between the standard and modal (“alethic’) readings of categorical statements.
We get thus two basic versions of the Square. The Modal Square has not been introduced in
the contemporary debate yet and so it is in the centre of interest. Some properties ascribed
by medieval logicians to the Square require a shift from its Standard to Modal version.
Not inevitably, because for each of the two squares there exists its mate which can be
easily confused with it. The discrimination between the initial and modified versions of the
Standard and Modal Square enable us to separate findings about properties of the Square
into four groups, which makes their proper comparison possible. The disambiguation so
achieved leads to the solution of various puzzles often mentioned in recent literature.

Keywords Modal logic * Modal Square of opposition * Possible world semantics ¢
Square of opposition

Mathematics Subject Classification Primary 03B45 - Secondary 03B60 - 03B65 - 03C80

1 Introduction

Does “All chimeras are creatures” entail “Some chimeras are creatures”? Which of the
two statements has existential import? These are examples of several persistent and
controversial questions related to the Square of Opposition which are addressed in this
paper. Rather than the classical (traditional) reading of the Square, the starting point of
the present investigation is the Standard Square of modern logic textbooks. Only a few
enrichments to it are made when utilizing intensional logic which is capable to fix e.g.
partiality failures related to existence issues.

The main contribution of our investigations consists in a disambiguation of the
prevailing discourse about the Square.! We show a rival of the modern reading of the

'Needles to remind the present reader of the recent wave of scholars, papers, books and events organized
by J.-Y. Béziau which are focused on Squares, Hexagons and other figures displaying oppositions (cf. [3]).

© Springer International Publishing Switzerland 2017 119
J.-Y. Béziau, G. Basti (eds.), The Square of Opposition: A Cornerstone of Thought,
Studies in Universal Logic, DOI 10.1007/978-3-319-45062-9_8
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Standard Square, we call it modified modern reading. Not in the former, but in the latter
Square the entailment of “Some non-self-identical objects are non-self-identical objects”
from “All non-self-identical objects are non-self-identical objects” holds, the particular
statement is thus not false because of existential import. The modified modern reading
of the Standard Square simply treats another quadruple of sentences than the unmodified
modern reading. Gottschalk’s pioneer modern work on the Square [13] seems to contain
this second kind of Square.

But another progress must be made because there remain questions unanswered by
the first attempt just mentioned. We will thus expose two readings of the Modal Square of
Opposition, i.e. the Square deploying modal versions of categorical statements. Altogether,
we thus treat a tetrad of related Squares. This move is required because some categorical
sentences and puzzles involving them implicitly presuppose modality. (Of course, our
results are also applicable for the case of explicit modality.) For example, if “All chimeras
are creatures” is meant as a necessary (de dicto) statement, then in every world a chimera
exists, it is a creature; this holds also in at least one world and the entailment of “Some
chimeras are creatures” thus holds.

The Modal Square of Opposition comes in two versions, the modern reading and the
modified modern reading. The latter one has been met already by medieval logicians. We
will find e.g. that contrariety and subcontrariety do not hold in it. This Square is thus not
a simple projection of the modified modern reading of the Standard Square in which the
two relations hold.

The Modal Square of the modern reading is the most novel one. Not only because of
this, most findings stated in this paper focus, directly or less directly, on this Square. We
find, for example, that subalternation is nearly valid in it, the exception only being made
by void properties which are ignored even by some contemporary metaphysicians.

The present paper is organized as follows. We begin, Sect. 2, with a brief introduction
to the logic convenient for our purposes, viz. Transparent Intensional Logic. In Sect. 3,
we expose modern reading of the Standard Square, stating familiar and also some less
familiar facts. The modified modern reading of the Standard Square is exposed in Sect. 4,
where we compare it with Gottschalk’s Square. This Section is followed by a short Sect. 5
which treats the modified reading of the Modal Square. Section 6 concerns modal reading
of categorical statements and is preparatory for Sect.7 in which we expose the modern
reading of the Modal Square. The conclusions close the paper in Sect. 8.

2 A Brief Introduction to Transparent Intensional Logic

2.1 Semantic Scheme, Constructions, Type Theory, Deduction

Pavel Tichy’s Transparent Intensional Logic (TIL) which we use here for its convenience
is a substantial modification of Church’s typed A-calculus [8]. Rivalling the well-known
system by Montague, the most important applications of TIL are in semantics of natural
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language (propositional attitudes, subjunctive conditionals, modalities, verb tenses, etc.).?
There are many reasons why to adopt TIL: as a framework, it is rather huge and so
is capable to treat many phenomena not only in logical analysis of natural language as
suggested in this paragraph or Sect. 2.2.

The semantic scheme employed in TIL involves the level of hyperintensions the need
for which was repeatedly argued in recent literature’:

* expression E expresses:
* construction C, i.e. meaning explicated as hyperintension; E denotes, C constructs:
* intension/extension, i.e. explication of denotation.*

Constructions are structured abstract entities of algorithmic nature (for their careful
description and defence see esp. [34]). They have an ‘intensional principle of indi-
viduation’: every object is constructed by infinitely many equivalent, but not identical
constructions. For instance, the number eight is constructed e.g. by multiplying four by
two or the square root of sixty four, which are two distinct, yet congruent constructions.
Every construction C can be specified by i. the object O constructed by C, ii. the way how
(by means of which subconstructions) C constructs O.

Constructions are usually written by familiar A-terms such as:

“x” | “ | “[FX]” | “AX[FX]”.

Note thus that constructions—not usual set-theoretic entities—are direct semantic values
of TIL A-terms. The behaviour of four basic kinds of constructions can be described in a
simplified way as follows. Dependently on valuation v,

1. the trivialization X v-constructs directly the entity (a non-construction or construction)
X;
ii. the variable x; v-constructs the kth object in the sequence (a part of v) of objects of the
type the variable ranges over;

iii. the composition [C Cy ...Cy] (where C, Cy, ..., C, are any constructions) v-constructs
the value (if any) of the n-ary function (if any) v-constructed by C at the argument (if
any) v-constructed by Cy, ..., Cy;

iv. the closure Ax; ...x,C v-constructs the n-ary function from (strings of) values of
X1,...,X, to the corresponding results of C.

2For applications of TIL see esp. [12, 25, 34, 35]. For simplicity reasons, I will entirely suppress temporal
parameter below.

30ne of several reasons for adoption of hyperintensions is this. According to possible world semantics
(PWS), the meaning of all true mathematical sentences is one and the same, viz. the proposition true in
all possible worlds. Consequently, the argument “Alice believes that 8 = 8. Therefore, Alice believes that
2% 4 = /64 is evaluated as valid, which is intuitively not, Alice cannot be omniscient. Obviously, there
is a structuredness issue which is relevant to the invalidity of such arguments. Semantic theory of TIL
solves the paradox of omniscience by discriminating between the proposition true in all possible worlds,
which is not the meaning but denotation of the sentences, and its infinitely many constructions differing in
their structure.

4Of course, it may happen that a construction is denoted by an expression which expresses a higher-order
construction of the denoted construction. Moreover, expression can lack denotation or even meaning.



122 J. Raclavsky

Constructions of well-known binary logical or mathematical operations will be written in
infix manner. Constructions of form [C w] will be abbreviated to C,,. Brackets will often be
omitted; sometimes, they will be eliminated with help of so-called dot convention, whereas
the dot indicates the left-hand bracket and the corresponding right-hand bracket should be
imagined as far right as it is consistent.

TIL utilizes an instance of Tichy’s type theory, which is a substantial modification of
Church’s simple theory of types [8]. Let base B be a non-empty class of pairwise disjoint
collections (sets) of primitive objects, e.g.

B = {t,0, 0},

where ¢ is the type of individuals, o is the type of (two) truth-values and w is the type
of possible worlds. The hierarchy of (first-order) types is defined inductively as follows
(where ;) is any type):

i. Any member of B is a type over B.
ii. If &, ..., &, & are types over B, then (§§; ...&,)—i.e. the collection of all total and
partial n-ary functions from &y, ..., &, to £—is a type over B.

Tichy [34] ramified his simple type theory to enable non-circular quantification over
constructions. But this feature of TIL will not be, with some exceptions, used here
for simplicity reasons. Nevertheless, the typing of constructions used below is in full
conformity with Tichy’s late type theory (cf. [34], Definition 16.1).

For logical analysis of natural language expressions we utilize both extensions and
intensions over Bry. Intensions are (total or partial) functions from possible worlds;
they are of type (§w), which will be abbreviated to “£,”. They comprise propositions,
properties, etc. Intensions are chosen for denotation of expressions whose reference varies
across the logical space, e.g. “(be) dog”, “the U.S. president”, “It rains in Paris”.

Now let us list types of some main objects we discuss below (“/” abbreviates “v-
constructs an object of type”; “X, Y/£” abbreviates “X/&, Y/£”):

» /€ (an object belonging to the type &, briefly: a £-object; below, & is usually ¢)

* U/(0€) (the universal £-class); 8/ (0f) (the total empty £-class)

* p,qlo, (a proposition); let P and Q be any constructions of the propositions P and Q

* f, g/(0§), (aproperty of £-objects; its extension in W is of type (0§); let F and G be any
constructions of &-properties F' and G

* w/w (a possible world)

» V&/(0(0£)) (the class containing the universal £-class); 35/(0(0£)) (the class containing
all nonempty &-classes)

o ¥, d*/x; (a k-order construction)

¢ 1, 0/o (the truth values True, False); o/o (a truth value)

* =/(00) (the classical negation); A, V, —/(000) (the classical conjunction, disjunction,
material conditional); boldface will be suppressed

o =%, £8 /(&) (the familiar relations between £-objects); “¢” will be usually suppressed
even in the case of other functions/relations

o C/(0(0§)(0§)) (the familiar relation between &-classes)

* N/((0€)(0§)(0§)) (the familiar operation on £-classes).
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The expressions “Fido is a dog” and “There is a dog” are analysed in TIL as expressing
the propositional constructions (i.e. constructions of o,-objects) Aw[Dog, Fido] and
Aw.3Ax[Dog,, x], where Fido/: (the individual); Dog/(ot),, (the t-property).

Tichy [32, 33] proposed also a system of deduction for his simple type theory. Sequents
of the system are made from matches. The match x:C means that the variable x v-constructs
the same &-object as the (compound) construction C. Deduction rules are made from
sequents. Definitions can be viewed as certain rules of form - x:C < x:D, where “&”
indicates interderivability of the matches written on its sides. Let “C < D” abbreviate “I-
x:C & x:D”. A simple example of definition: @ <4 Ax0 (note that classes are construed
as characteristic functions).

2.2 Fixing Partiality; Properties of Propositions and Their
Constructions

Partial functions adopted in TIL enable us to aptly model partiality phenomena such as
empty descriptions or gappy propositions but also results of existential import.

Partiality of functions usually causes abortiveness of constructions. A composition [C
x] is v-improper, i.e. v-constructing nothing at all, if the function constructed by C is not
defined for the value of x.

Adoption of partial functions and improper constructions has a strong impact on
the logical theory, since most classical laws do not hold (cf. [26]). They have to be
amended. De Morgan Law for exchange of quantifiers, for instance, must be protected
against the case when the extension of the property F or G is a partial class (i.e. a
characteristic function undefined for some arguments), which would cause v-improperness
of [[fiwx]—=[gwx]] and then invalidity of the law’:

=VYax[fux]!=[gwx]! & Fdx.=[[fiux]!—[gwx]!].

“[...w...]!" abbreviates “[True™,, Aw’[...w’...]1]” which serves as a ‘definiteness
operator’. The total notion of truth of propositions involved in it is definable by

[True™,, p] <4 Aho.[p, =olAlo=1],

where True'™/(00,,),, (the property of propositions).® We will return to improperness and
the role of ! in existential import in Sect. 3.4.

The second important feature of our logical framework is the fact that properties of
constructions of certain objects correspond to (‘supervene on’) properties of those objects.
We may therefore simply speak about properties of objects without a strict need to speak
also about properties of constructions of those objects (in consequence of this, the reader is
assumed to compile appropriate definitions of notions applicable to constructions herself).

50n the right side of <>, ! can be omitted. Below, we will also use ! even if it is not inevitable.

6Compare it with [Truep” w Pl <4 [pw = 1]. To the two notions of truth there correspond two notions of
falsity. Cf. [27] for analysis of truth in TIL.
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To illustrate, the truth™ of a proposition P makes all constructions of P true*; truth of
constructions is thus easily definable with help of truth of propositions:

[True?™*,, ¥] & 4 [True™, 2c4],
where True? T*/ (0*1)w (the property of k-order constructions). The construction of form
2C (called “double execution”) v-constructs the object, if any, v-constructed by what is

v-constructed by C.
For another important example:

[p |=” q] <:>df VAW[pw! d q»v!]

[t | d*] <4 [Pt E™ 244
where " /(00,0,) (in fact, =7 is the relation C between classes of worlds); | /(0% %)
(the relation between constructions), which is preferred of the two notions. Below, we will

steadily omit brackets of “[c* = d*]” as well as proper indication that the constructions
flanking [ are introduced, using their trivializations, as constructions per se.

3 Modern Reading of the Standard Square of Opposition

3.1 Categorical Statements

Within TIL, the four familiar categorical statements, each being a propositional construc-
tion, are captured with help of “!”:

Abbreviated form Full form Usual verbal expression
A Aw.YAx.[F,x]'—[G,x]! “Every F is G.”

E Aw Y Ax.[F,x]!'— —[G,x]! “No Fis G”

1 Aw.AAx[F,x]'A[G,x]! “Some F is G.”

(0] Aw.AAx.[F,x]'A—[G,,x]! “Some F is not G.”

Each abbreviated form is definable by its full form, e.g.
A,, & g VAx[F,x]'—[G,x]!

Each full form construction is the logical analysis of the respective verbal expression.
Below, we will sometimes loosely speak also about those verbal expressions as categorical
statements. Moreover, we will often speak about categorical statements with help of the
expressions “A”—“0".

For the reason discussed in the end of Sect. 3.4, some authors formalize O-statements
with help of — and V. In our construal, which takes an advantage of !, the ‘negation first’
forms of O- (etc.) statements are equivalent (because of the law of quantifier exchange) to
the non-‘negation first” ones:

Aw. AAx[F x]!A—[Gx]! & Aw.—VYVAx[F,x]!—[G,x].
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The four categorical statements can equivalently be rephrased using generalized quantifiers
All, Some and No, adding here also the nameless [2] quantifier NotAll”:

([Af,] 8] Saf Vax.[fux'— [gwx]! (btw. <[ £, S gwD)
[[Nofw] gw] <=>df ka-[fwx]!% = [gwx]! (btw. < [fwm gw] = ﬂ)
[[Some f,] g,] Sar Ax.[fwx]IALgyl! (btw. < [fuN gu] # 9)
[[NotAll f,,] g1 <df =VAx.[fux]!—[gwx]! (btw. & =[f, < gw))

where All, Some, No, NotAll/((0(0§))(0€)). We thus have e.g. “All Fs are Gs” with
the meaning Aw[[All F,,] G,,].

3.2 The Modern Reading of the Standard Square

As is well known, noteworthy logical relations between couples of categorical statements
are often couched in the square while its edges and diagonals represent relations obtaining
between statements written in its vertices. The modern reading of the Square does not fully
preserve the classical construal, thus the only important relation is contradictoriness; the
square is then rather a big “X”8, see Fig. 1 below.

“Every F is G.” “No Fis G.”
AwVAz.[Fy z]! = [Goy 2! Aw VAz.[Fy z]! =[Gy ]!
A @ ° K
1 vo rrrrrrrrrrrrrrrrrrrrrrrr ov (0]
“Some F'is G.” “Some F' is not G.”
Aw. AN [Fop ]! A [Go 2]! Aw. AN [Foy ]! A =[G ]!

Fig. 1 The Standard Square in its modern reading

7 Adopted from [23, 24]. The definitions of All and Some are borrowed from [32] where Tichy showed
also concise proofs of various relations between constructions involving them. Further remarks: definienda
suggested in brackets are usual in the topic of generalized quantifiers; common construal of generalized
quantifiers as (binary) relations between classes presupposes Schonfinkel’s reduction (‘currying’) which
is not generally valid in the logic utilizing partial functions.

8Cf. [16].
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—— —— Contradictoriness The relation holds
—— — Subalternation = ------ The relation holds with an exception
e— —e Contrariety ~  ooooes The relation does not hold

o— —o Subcontrariety
Legend.

3.3 Contradictoriness and Equivalences

The notion of contradictoriness is definable by
[Contradictory P Q] <4 VAw.—[P,!<> Q, '],

where Contradictory/(0o,0,) (the relation between propositions).9 Y (or 3) is here of
type (00,) and can be written also as “[J” (or “”).

Usual formalization of relations in the Square—according to which P and Q are
contradictories iff —(P <> Q), contraries iff P 1 Q, subcontraries iff PVQ, Q is subalternate
to P iff P—~(Q—ignores modality, which obfuscates the non-trivial reasons why the
relations do not generally hold in the modal interpretation of the Square (cf. Sects.7.3
and 7.4).

Let us add that two well-known equivalence relations not diagrammed in the above
Square, viz. contraposition (e.g. “Every F is G” < “Every non-G is non-F"") and obversion
(e.g. “No F is G” & “Every F is non-G”), are fully confirmed on this reading. For
that sake, one utilizes the function Non- of type ((0§).,(0£),), while [[Non- f], x] <4
_'[fw x]‘l()

3.4 Problems of Existential Import

As is well known, the Standard Square is constructed in the modern reading only to
preserve contradictories (and contrapositions and obversions), whereas subalternation and
(sub)contrariety'! are omitted because of existential import. The ‘term’ F has existential
import in a statement P of which it is a subconstruction iff P is not true for there is no F'
in W; we then say that P lacks existential import iff F' can have no existential import in it.

Suppose that there is no F in W. The (intuitive) /- and O-statements are then in natural
sense false in W, F has existential import in them (however, cf. the modal reading below).
But A- and E-statements are on the modern reading true in W, not false, because the

Recall that this concept can be utilized for an apt definition of contradictoriness between propositional
constructions.

10122, 24]. This definition does not blur the (Aristotle’s) difference between ‘infinite’ (“non-") and “finite’
(—) negation because ‘infinite’ negation is definable rather by [[Non”- Sl x1 4 —[fiux]!.
11 Abbreviating thus “contrariety and subcontrariety”.
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modern logic explicates the (intuitive) A- and E-statements as lacking existential import.
In a consequence of this,

AFIand E F£ O.

From this, invalidity of subalternation and (sub)contrariety follows.

To preserve subalternation and (sub)contrariety would require strange existential
assumptions such as that only affirmative statements have existential import, which was
recently embraced by Parsons [19, 20]. Not only that such proposal gives up the logical
basis of the modern reading, it also contradicts our intuition. For instance, “All chimeras
are creatures” or “All ogres are ogres” are usually understood as true, thus lacking
existential import, i.e. not entailing existence of chimeras or ogres. For another intuitive
fact, “Some women are not mothers” naturally entails existence of women, having thus
existential import, which is likewise abandoned on Parsons’ construal.

Now let us explain how partiality relates to existential import. Suppose that [F,, x]
v-constructs nothing (is v-improper). Then, e.g. the construction Aw.YAx.[F,x]—[G,x]
is false because — does not receive an argument, Ax.[F,.x] —[G,x] thus v-constructs a
partial, not the universal, class and so V returns O to it.

There are two possible causes why [F,, x] v-constructs nothing: i. the property F is not
defined for the given world W; ii. F,, v-constructs a partial class which is not defined at
W for the value of x—the property F is inapplicable to it. If F is not defined for other
values of x, it is an example of existential import as well. Both causes of failure are fixed
by employing ! because [F,, x]! v-constructs O on such v.

The v-improper construction [F,, x] is a subconstruction of all constructions A-0. If
not containing !, each of them would be false on such v. Thus, e.g. O would not be
contradictory to A. Contradictoriness would then only be preserved if O and E were in
‘negation first’ forms, i.e. O being Aw.=YAx.[F,,x]—[G,x], not Aw.IAx.[F,,x]A—[G,,x].
This ‘negation first” form of O-statements was already proposed by Aristotle in De
Interpretatione ([1], see e.g. [20]), but it is doubtful whether it was for the same reason we
suggest here.

3.5 Subalternation, Contrariety and Subcontrariety

In the classical construal, the proposition Q is subaltern of P iff Q must be true if P is true
and P must be false if Q is false. Using TIL,

[Subaltern Q P] <, VAw[P,,!—> Q,!].12

The definiens clearly shows the relationship of subalternation to entailment from single
statements: these relations are identical because [Subaltern Q P] < P " Q.

Since on the modern reading A £ I and E £ O, subalternation does not generally
hold. The lack of subalternation invalidates contrariety and subcontrariety because the left
conjuncts of their definiens assume A | I and E = O.

12Subaltern, Contrary, Subcontrary/(oo,, 0,,) (the relations between propositions).
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In the classical construal, two propositions are contraries iff they cannot both be true
but can both be false. As Sanford [29, p. 96] noticed, the second condition (i.e. the
second conjunct) in the definiens cannot be omitted, as many recent authors do, because
contradictions would be contrary as well. Thus,

[Contrary P Q] <4 YAw[P,,!—>—Q '] A AAw[—P,,!A—0,,].

Classical example: A and E. On the modern reading, there is no example because
Al —E.B

In the classical construal, two propositions are subcontraries iff they cannot both be
false but can both be true. Again, the second condition cannot be omitted [29, p. 96]
because contradictions would be subcontrary. Thus,

[Subcontrary P Q] <4 VAw[—=P,!— Q,!1 A IAw[P,IAQ ']

Classical example: —I and O. On the modern reading, there is no example because
E £ —A.

3.6 The Modern Reading of the Standard Square
and Truth-Conditions

To understand semantic behaviour of the categorical statements of the Square, it is useful
to rethink their truth-conditions. Firstly realize that each categorical statement of the
modern reading attributes something to the class C; which is v-constructed, on a particular
valuation v, by the construction C; which is the body of that kind of statement. Every
categorical statement is of form Aw.Q;C;, where Q; is the corresponding quantifier, i.e. V,
—3, 3, or —V.'* The truth-condition of a categorical statement consists in a certain quality
attributed to C;. For instance, an A-statement is true iff the particular class C4 v-constructed
by Ax.[F,, x]'—[G,, x]! is identical with U; the truth-condition is thus C, =U.

Each quantifier can be defined utilizing the corresponding truth-condition. The univer-
sal quantifier V, for instance, is nothing but the only class which includes U, viz. {U}; and
it is thus definable accordingly. Here is a list of such definitions and their more common
set-theoretic versions written in ordinary notation:

Statement Truth-condition Quantifier definition Alternative definition
A Ci=U V] ©4lc=U] vV =4 {U}

E Cr=0 [—3 ] &4 [c= 0] —3 =4 {0}

1 C#0 @] ©4lc# 0] 3 =4 PU0}
o Co#U [=V ] 4 [c#1] =V =4 P(U)-{U}

13F is a natural abbreviation of Aw.—[True™™ E]. Analogously for —A , —=I , =0 .
“We will treat the compound symbols of quantifiers as simple. Their obvious definitions see below.
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The nature of truth-conditions of categorical statements yields an illuminative explana-
tion why subalternation and (sub)contrariety are invalid on the modern reading. Suppose
there is no F in W. Then,

CA=U,CE=U,C1=@,C0=@

(if there is an F in W, we usually get another quadruple of classes). This quadruple
evidently preserves contradictoriness. However, it does not preserve subalternation and
(sub)contrariety because these relations are dependenton A = I and E = O. ButA I
would hold if C4 were U and C; were also U, which would match the inclusion of {U} to
P(U)—{@} (cf. the first and the third row of the above table). Analogously for the case of
E E 0.

4 Modified Modern Reading of the Standard Square

4.1 The Standard Square of Opposition: Two Readings

We are going to put forward the modified modern reading of the Standard Square,
according to which not only contradictoriness but also subalternation and (sub)contrariety
hold. Yet it does not employ all four standard categorical statements.

Without noticing its difference from the unmodified modern reading, the modified
reading seems to be suggested already by Gottschalk [13, p. 195] as the Square of
Quaternality (cf. also [7], pp. 315-316). In recent literature, the confusion persists because
the modified reading is often introduced without a proper notification.'>

4.2 The Modified Modern Reading of the Standard Square

We have seen above that, on the modern reading of the Standard Square, the four standard
quantifiers apply to heterogeneous collection of four, not necessarily distinct classes C4—
Co v-constructed by four distinct constructions. On the modified modern reading, however,
the vertices are ‘decorated’ by a more tight class of constructions with one and the same
body, namely one construction v-constructing one particular class C.

Below, we write simply the (schematic) constructions Aw.¥YC, Aw.—3C, etc. because
the particular form of the construction of C does not matter—provided Aw.Q;C is still a
categorical statement (at least in a weaker sense). We may label the schematic statements
by “A’”-“0’"”. Realize that it may happen that e.g. A’ =A (the case when C is Aw.[F,, x]!
— [Gy, x]!).

15 A rare example of their distinguishing as Apuleian Square and the (Gottschalk’s) Logical Quatern can
be found in [30, p. 294].
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Aw VC Aw.—3C

A/.—CE/

I' o o O

Aw.3C Aw.~VC

Fig. 2 The Standard Square in its modified modern reading

In comparison with the categorical statements displayed in the above Sect. 3.6, we have
a distinct quadruple of statements, but with similar truth-conditions:

Statement schema  Truth-condition

A ¥YC Cc=U
Aw.—3C c=0
AwdC C#0
Aw.—VYC C#U

As indicated in our diagram below, all classical rules including subalternation and
(sub)contrariety hold in this Square. They are confirmed for obvious reasons such as V C 3,
which justifies Aw.YC | A w.3C and subalternation of Aw.3C to Aw.¥YC thus holds. See
Fig. 2.

Though it may contain statements such as Aw.3Ax.[F,x]!—[G,x]! which are not
frequently expressed in ordinary language, the modified reading is natural if we consider
possible quantified forms of one basic statement, e.g.:

Aw.VAx.[F,x]'—[G,x]! Normal categorical statement, viz. A
Aw.—3AAx.[F,x]!'—[G,x]! Unusual categorical statement
Aw.AAx.[F,x]'—>[G,x]! Unusual categorical statement

Aw. =Y Ax.[F,x]!'—[G,x]! Equivalent to normal categorical statement O

Here are two examples where such Square is useful. Firstly note that the interpretation
of I-statements as containing — instead of A is inevitable for explanation why e.g. “All
non-self-identical objects are non-self-identical objects” entails the statement “Some non-
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self-identical objects are non-self-identical objects” while the latter statement is considered
true despite the nonexistence of non-self-identical objects. An analogous explanation can
be provided for “All chimeras are creatures” entailing “Some chimeras are creatures”,
though a more convenient explanation reads the two statements as modal ones (cf.
Sects. 5.1 and 5.2 below).

4.3 Gottschalk’s Square and Duality

In [13], Gottschalk proposed Theory of Quaternality, which is a model of many possible
Squares of Opposition. A particular form employing standard quantifiers resembles our
modified reading. Gottschalk introduced it as the Square of Quaternality for Restricted
Quantifiers employing statements

(VxeF)(Gx), (YxeF)—(Gx), (Ax€ F)(Gx), (Ix€ F)—(Gx),

where F is a nonempty class. He considered it to be the Square in the traditional form [13,
p.- 195].

However, this claim might be challenged: x€F is a condition on which x is G or non-G;
all formulas thus contain an implicit — with the condition as its antecedent. For example,
his /-statement of his Square is in fact Ix((Fx) — (Gx)), not Ax((Fx)A(Gx)) of the modern
reading. Note also that Gottschalk’s Square is not the Square of our modified reading
because the very same instance of his Square contains 3x((Fx) — —(Gx)) which differs
from 3x((Fx) — (Gx)) of the corresponding modified reading.

Gottschalk [13, p. 193] and lately e.g. Brown [7] and Westerstahl [37] studied the
Square with help of the notion of duality. From an input categorical statement one derives
the other three as indicated in the following table:

¢ (the original statement)

Contradual of ¢ By ‘negation’ of ¢’s variables

Dual of ¢ By exchange of ¢’s dual constants (V for 3, Vv for A, =< for =)
Negational of ¢ By exchange of ¢’s dual constants and ‘negation’ of ¢’s variables

The theory aptly describes relations between statements Aw.YC, Aw.—3C, Aw.3C,
Aw.=VYC of our modified reading.

However, Gottschalk’s (contra)duality work only for the modified reading, not for
the modern reading of the Square. For instance, the contradual of Vx((Fx) — (Gx)) is
Vx(—(Fx) — —(Gx)), not the familiar Vx((Fx) — —(Gx)).
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Brown [7], Westerstahl [37, 38], D’ Alfonso [9] suggested in fact a remedy to this
problem by proposing another notion of dual. This way they returned their attention from
Gottschalk’s modified to non-modified reading of the Square. They explicitly introduced
“inner negation” (“post-complement”) which places — properly inside a formula. The dual
of Q(F,G) is then its outer and inner negation (here Q is a generalized quantifier as a binary
relation). Adapting definitions from [7, 9]:

Outer negation —Q(F.G) =4 (PUHHO(F,G)
Inner negation O(F,—G) =4 O(F, U-G)
Dual (Q(F,G))l =4 =Q(F,—G)

5 Modified Reading of the Modal Square of Opposition

5.1 Two Readings of the Modal Square

We are going to introduce two readings of the Modal Square of Opposition, i.e. the Square
whose vertices are ‘decorated’ by modal (‘alethic’) categorical statements. Each modal
operator Mi—i.e. O, =<, <, or mO—involved in such statements is a ‘predicate’ for
propositions, i.e. quantifier for worlds; each is of type (0o,) (a class of propositions).
In modal (de dicto) categorical statements, the operators are applied to propositions
constructed by categorical statements. The two Modal Squares differ analogously as the
Standard ones: one of them uses quadruple of statements with the same body, while the
other does not.

5.2 The Modified Reading of the Modal Square

We begin with the modified reading which deploys statements of form Aw.M;C, whereas P,
a categorical statement, is a construction of P.'® In each particular quadruple of statements
projected on the vertices, the propositional construction P is one and the same. This
modified reading of the Modal Square seems to be nothing but a type-theoretic variant
of the modified reading of the Standard Square.

Analogously to the modified reading of the Standard Square, this reading is natural
when one considers various modal (de dicto) versions of one given statement. But it is even

16This reading of the Square as concerning modal and even deontic notions can be found in Leibniz (cf.
[14]), however, it was known already in the thirteenth century [15, 36]. In modern era, it was met by
Gottschalk [13, p. 195] and Blanché [6], see also [10].
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more natural, cf. e.g. the following particular example (accompanied by the traditional
medieval terminology):

“Necessarily, all horses are animals” necesse est esse
“Not possibly, all horses are animals” impossibile est esse
“Possibly, all horses are animals” possibile est esse

“Not necessarily, all horses are animals”  possibile non est esse

In the following table, the four schematic statements—which can be labelled “AM>_
“O'™”_are arranged together with their truth-conditions and related definitions of modal
quantifiers. Let L (as “logical space”) be the universal class of possible worlds, an object
of type oy, i.e. the necessarily true proposition; in such context, @ is the empty class of
worlds, i.e. the necessarily false proposition.!” See Fig. 3.

Statement schema Truth-condition Quantifier definition Alternative definition
Aw—=OP P=0 [—10 ])] <:>df [{J= ﬂ] -5 =daf {0}
Aw. O P P#0 [Cp] ©ulp# 9] & =4 PL)—{0}
Aw.—0OP P#L [=0Opl &4 [p#LI] -0 =4 P(L)—{L}
Aw.OP Aw.~OP
AIM @ o /M
pMYS o O'M
Aw. QP Aw.—~OP

Fig. 3 The Modal Square in its modified modern reading

17(Schematic) statements such as Aw.CIP are analytic—they are constructions constructing constant
propositions, which is apparent from their ‘bodies’ (e.g. OOP) which contain no free possible world
variables.
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5.3 Subalternation, Contrariety, Subcontrariety

The modified reading of the Modal Square is isomorphic to the modified reading of the
Standard Square and it may seem that not only contradictoriness, but also subalternation
and (sub)contrariety hold.

Subalternation indeed holds. To demonstrate its validity, we may utilize the following
way of reasoning: < is P(L)—{@}, thus O (i.e. {L}) is subclass of <; consequently,
Aw.OPE Aw. P, which justifies the subalternation of Aw. <P to Aw.OP.

Nevertheless, (sub)contrariety does not hold. The reason is that truth or falsity of
modal statements is stable across the logical space. For instance, the A- and E-statements
“Necessarily, all horses are animals” and “Not possibly, all horses are animals” are in
no world both false; contrariety is thus lost. Quite analogously for subcontrariety: the /-
and O-statements ‘“Possibly, all horses are animals” and “Not necessarily, all horses are
animals” are in no world both true.

6 Modal Reading of Categorical Statements

6.1 Requisites

The novel modern reading of the Modal Square proposed below is based on the assumption
that in ordinary discourse we often understand categorical sentences such as “Every F
is G.” as expressing a certain necessary connection between F and G. (The statements
are thus analytic, i.e. necessarily true or necessarily false.) This connection is sometimes
made explicit by inserting “by definition” or even “necessarily”, e.g. “Every horse is, by
definition, an animal.”. Tichy [32, Sect.42] suggested reading such sentences as talking
about so-called requisites. We will adopt and extend his proposal.

Tichy defined the notion of requisite and essence for both individual ‘concepts’, called
offices, and for properties; the two notions differ not only in type. Essence is everything
that is necessary for an object to become such and such; essence is a certain collection of
requisites. A requisite is thus one of conditions, i.e. a property, an object must possess to
become such and such. For example, (BE) WINGED is a requisite of the individual office
PEGASUS, it is thus a property an individual must possess in W to be Pegasus in W.

In the case of properties, requisites are particular ‘subproperties’ of a property. For
example, (BE AN) ANIMAL is one of many requisites of (BE A) HORSE. Below, we will
employ just this notion of requisite. It is definable by

[Requisite g f] <4 OAw.VAx.[f, x]! = [g 7]!,

where Requisite/(0(0§),,(0€),,) (the relation between &-properties). Note that entailment
of a proposition Q from a proposition P, i.e. in fact PCQ, is a medadic case of entailment
between properties (in every world W, the extension of F' C the extension of G). Thus,

[Entails f g] < [Requisite g f1].
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Utilizing the preceding definition, we get two modal categorical statements in their two

equivalent forms'3:

‘Intensional” form Form with explicit modality Usual expression
AM Aw[Requisite G F ] Aw.O Aw.VAx.[F ,x]!'—[G,x]! “Necessarily, every F is G.”
oM Aw.—[Requisite G F ] Aw.© Aw AAx[F ,,x]! A-[Gx]! “Possibly, some F is not G.”

6.2 Potentialities

The second notion needed for investigation of the modal version of the Square must be
comparable with the notion of requisite. Let us call this novel, but not entirely unfamiliar
notion “potentiality”. To explain, an individual who possesses the property (BE A) HORSE
has to be an animal; but the property (BE A) HORSE admits the individual being white or
fast, etc. The properties (BE) WHITE, (BE) FAST are thus mere potentialities of the property
(BE A) HORSE.

On our definition, a property G is a potentiality of F if there is at least one possible
world in which at least one individual F possesses G:

[Potentiality g /] < <CAw.Ax.[f,, x]!Algy A]!,

where Potentiality/(o(0§),(0£),,) (the relation between &-properties).
We complete the quadruple of modal (de dicto) categorical statements:

‘Intensional” form Form with explicit modality Usual expression
™M Aw|[Potentiality G F] Aw. OAw.AAx[F,x]'A[G,x]! “Possibly, some F'is G.”
EM Aw.—[Potentiality G F] Aw.OAw Y Ax.[F,x]'— —[G,x]! “Necessarily, no F is G.”

6.3 On the Relationship of Requisites and Potentialities

Let us briefly compare the notions of requisite and potentiality. Here are convenient
examples of true modal categorical statements:

“Being an animal is a requisite of being a horse.” An AM _statement
“Being non-self-identical is not a potentiality of being a horse.” An EM_statement
“Being black is a potentiality of being a horse.” An ™M -statement

“Being winged is not a requisite of being a horse.” An OM -statement

'8 Analogously as above, statements such as Aw[Requisite G F] are analytic—they are constructions
constructing constant propositions, which is apparent from their ‘bodies’ which (normally) contain no
free possible world variables.
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We can realize that a property which is a non-requisite of the property (say) (BE A)
HORSE is either its mere potentiality—it is e.g. the property (BE) BLACK—, or it is a
property no horse can ever instantiate—it is e.g. the property (BE) NON-SELF-IDENTICAL.
On the other hand, the property (BE) NON-SELF-IDENTICAL is a non-potentiality of the
property (BE A) HORSE; it can never be instantiated and it is thus also a non-requisite of
properties such as (BE A) HORSE. Note also that many requisites, e.g. (BE AN) ANIMAL,
(BE) FOUR LEGGED, of a property such as (BE A) HORSE are its potentialities because
it is fulfilled that there is at least one world in which at least one horse possesses the
property; potentialities which are not requisites of a given property can be set apart as pure
potentialities.

There is a remarkable connection of the notions of requisite and potentiality with the
notions of essential and accidental property. A property is essential forlaccidental for an
individual iff in every world W/at least one world W, the individual instantiates the property
in W. A property is essentiallaccidental iff in every world W/at least one world W, there
is an individual who instantiates the property in W.!° Now a requisite/potentiality G of a
property F is definable as an essential/accidental property for every bearer of F.

7 Modern Reading of the Modal Square of Opposition

7.1 Modern Reading of the Modal Square

In the modern reading of the Modal Square, we ‘decorate’ vertices of the square by the
modal versions of standard categorical statements, i.e. by AY—I™ 20 Each statement is of
form Aw.M;P;, where P; is A, E, I, or O. See Fig. 4.

Abbreviated form  Statement schema Truth-condition

AM Aw.0OP,4 P,=L
EM Aw. =< Py Pe=0
™ Aw.OP; P, #0
oM Aw.=0OPy Po#L

9For an exhaustive study of such notions see [22] from which we borrow our definitions.

20 After finishing my paper, M. Duzi—who is also using Tichy’s logic—reminded me that she proposed
the essentials of the modal modern reading of the Square in her presentation [11]. She also proposed
to call properties concepts, which leads to the quadruple of statements about their two basic relations;
schematically: “The concept F is subsumed by/compatible with the concept G/non-G”.
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Aw.[Requisite G F| Aw.—[Potentiality G F']
“Necessarily, every F is G.” “Necessarily, none F is G.”
Aw.OAMwNVAZ[F oy z]! =[G ]! Aw.OAw VA [Foy z]! = =[G ]!
AM @ * pM
| |
\ \
[ [
\ \
[ [
\ \
\ \
\ \
\ \
\ \
| |
\ \
™ *o ,,,,,,,,,,,,,,,,,,,,,,,, O* oM
Aw|[Potentiality G F| Aw.—[Requisite G F|
“Possibly, some F'is G.” “Possibly, some F' is not G.”
Aw. QAw. INz[Fy ]! A (G ]! Aw. QAw. INz[F oy z]! A =[Gy ]!

Fig. 4 The Modal Square in its modern reading

7.2 Usual Lack of Existential Import

Using our modal reading of categorical statements, we immediately resolve the well-
known puzzle concerning existential import and (especially) A- and O-statements. On
natural reading, “Every griffin is a creature” has no existential import and is true in every
W, since it amounts to true saying that a certain property is a requisite of another property.
The sentence “Some griffin is not a creature” is false in every W and has likewise no
existential import regardless of the existence of griffins.

It might then seem that modal categorical statements never have existential import.
The exception from this rule concerns mainly /-statements employing properties which
have no instance in any possible world, being thus empty in the whole logical space.
For example, the /-statement ‘“Possibly, some non-self-identical individual is G” is false
because of existential import of the term “non-self-identical individual”. Properties such as
(BE) NON-SELF-IDENTICAL, (BE A) HORSE WHICH IS NOT HORSE, (BE A) BACHELOR
WHO IS MARRIED etc. can be called void properties.”’ Admittedly, they can be called
‘contradictory beings’.

Because of ‘contradictory beings’, some modal O-statements have existential import
as well, consider e.g. “Possibly, some non-self-identical individual is not G”. This may

2ICf. [22], where void properties are defined and related to accidental, essential and partly essential
properties. However, there is only a partial correspondence of the quadruple of those properties with the
Square studied below because requisites and potentialities are not essential or accidental properties, but
kinds of properties essential for or accidental for (cf. Sect. 5.3).
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seem a bit odd: one might object that e.g. the property (BE AN) ANIMAL is not a property
of any particular non-self-identical individual and so the A-statement “Necessarily, every
non-self-identical individual is an animal” is false and the O-statement “Possibly, some
non-self-identical individual is not an animal” is consequently true, i.e. without existential
import. In that case, however, the A-statement must be understood as involving A, rather
than the usual —. Though it might seem a little bit puzzling, both properties (BE
AN) ANIMAL and (BE A) NON-ANIMAL are requisites of the property (BE) NON-SELF-
IDENTICAL, yet no non-self-identical individual possesses them.

Because of the lack of existential import, weakened modes of syllogisms—e.g. Darapti:
“All H are G, “All H are F”, “Therefore, some F are G’—are valid on this modal
interpretation, only with few exceptions containing ‘contradictory beings’. There is a
hypothesis, not examined here, that medieval logicians, who accepted the weakened
modes, purposely ignored these ‘contradictory beings’ because the properties simply have
no possible instances.

7.3  Subalternation

Similarly as on the modern reading of Standard Square, subalternation does not generally
hold because AM £ IM and EM £ OM. The invalidity of AM 1M and EM = O™ is
caused by ‘contradictory beings’.

For an example consider the A-statement “Necessarily, everybody who shaves all and
only those who do not shave themselves is a barber”. It is true because the ‘F-property’
is a requisite—even an essence—of the property (BE A) (Russellian) BARBER. The A-
statement does not entail its corresponding /-statement ‘“Possibly, somebody who shaves
all and only those who do not shave themselves is a barber” which is false because
such barber cannot exist; (BE A) (Russellian) BARBER is thus not a potentiality of the
‘F-property’.?? In other words, if ‘F-property’ is not a potentiality of the respective ‘G-
property’, subalternation of /-statement to the respective A-statement does not hold.

To show invalidity of subalternation in the case of E- and O-statements, consider
the true E-statement “Necessarily, no non-self-identical individuals are self-identical
individuals” (while G = non-F’) and the corresponding O-statement ‘“Possibly, some non-
self-identical individuals are self-identical individuals” which is false (of course, unless
we use the ‘if-reading’ of the sentence as in the end of Sect. 4.3).

7.4 Contrariety and Subcontrariety

Similarly as in the modified modern reading of the Modal Square, contrariety and
subcontrariety do not generally hold. To see it, consider an instance of the above definiens

22Cf. [28].
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of contrariety, Aw.VAw[AM \——=EM 11 A IAw[-AM IA—=EM 1. If AM is true, there
is no W in which it would be false. The right conjunct cannot be satisfied, contrariety of
AM to EM does not generally hold. Analogously for the case of subcontrariety.

With our modal reading of the Square, we are ready to understand also the puzzling
fact noticed by Sanford [29, p. 95]: contrary statements cannot be both false if one of them
is true in all circumstances. For instance, “All squares are rectangles” is a necessary A-
statement thus the respective E-statement “No squares are rectangles” is necessarily false.
This affects also subcontrariety because the truth of A transfers to I, analogously for E
and O. On our approach, it is clear that this feature is peculiar to statements which are
equivalent (in a synchronically given language) to their modal versions, e.g. “All squares
are rectangles” < “Necessarily, all squares are rectangles”, “No squares are round” <
“Necessarily, no squares are round”’, whereas in the Modal Square (sub)contrariety does
not hold.

7.5 On the Modal Hexagons of Opposition

To remind the reader, Gottschalk [13, p. 195] introduced and investigated Modal
(‘Alethic’) Hexagon of Opposition with two new modal quantifiers U and Y.?* The
Hexagon was independently discovered and developed by Blanché [6] who defined the
quantifier Y already in [5, p. 370]. Here are definitions of the respective two notions and
truth-conditions of statements involving them:

Statement schema Truth-condition Quantifier definition Alternative definition
Aw.UP P=LvP=40 (Upl &4 [Op]v[=< p U=4{L,0}
Aw.YP P#LAP#D [Y pl €4 [ pIA[=0p] Y =4 P(L)—{L, 0}

The modal quantifier U is well known in philosophy as analytic or non-contingency
[4, 6, 10, 13]. The modal quantifier Y can aptly be called (purely) contingent ([5, 6, 13];
see [17], cf. also [21, 31]). Here are analogous names for familiar modal quantifiers: C0—
necessary; =<>—impossible; O—possible; ~O—nonnecessary.

Obviously, there are two readings of the Modal Hexagon: either with statements of
form Aw.M;P;, or Aw.M;P. Both Hexagons inherit properties of the Squares involved in
them. For instance, in the modified reading diagrammed below, subalternation holds but
(sub)contrariety does not. This is neglected by the most recent writers (admittedly, they
assume the weakened (sub)contrariety which is satisfied also by contradictory statements,
cf. Sect. 3.5 above, see Fig. 5).

23We keep here the original notation though it clashes with our previous use of “U”.
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Fig.
its modified modern reading

8

To

J. Raclavsky

5 The Modal Hexagon in

Conclusions

repeat the main ideas of this paper, there are two modern readings of the Standard

Square of Opposition:

i.

ii.

the well-known Square of modern logic textbooks, for which subalternation and
(sub)contrariety do not hold; see Sect. 3;

the less known Square encountered already by Gottschalk; on this modified
modern reading of the Square, all classical relations, including subalternation and
(sub)contrariety hold; see Sect. 4.

We compared the two Squares, reviewing even some familiar facts. We showed that certain
confusions or strange claims occurring in the literature can be explained as results of a shift
from 1i. to ii. For instance, the entailment of “Some ogres are ogres” from “All ogres are
ogres” holds in ii. but not in i.

But there are also two modern readings of the Modal Square of Opposition, they employ
modal versions of categorical statements:

iii.

iv.

the Modal Square known already to medieval logicians is nothing but another form of
the Square ii.; contradictoriness and subalternation hold in it; but rigidity of truth or
falsity of modal categorical statements invalidates contrariety and subcontrariety; see
Sect. 5;

the novel Modal Square which is a certain modal version of the well-known non-modal
Square i.; see Sect. 7.

Again, some confusions occurring in the literature were easily disentangled by pointing
mainly to shifts from some standard to some modal Square.
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As regards the Square iv., subalternation does not hold in it only because of existence
of rare properties, called ‘contradictory beings’, which cannot be instantiated. Admittedly,
one might dismiss these properties as non-properties thus subalternation would generally
hold. Common modal (de dicto) categorical statements employed in iv. lack existential
import. An exclusion of ‘contradictory beings’ would then lead to validity of weakened
forms of syllogisms (e.g. Darapti) without an exception. (Sub)contrariety is invalidated
for the same reason as in iii., i.e. because of analytic character of the modal (de dicto)
statements—if true, they cannot be possibly false (and vice versa) as the definition of
(sub)contrariety requires.

The Square iv. is interesting as an interpretation also because pre-modern tendencies to
adopt some form of essentialism. The shift from i. to iv. can thus nicely explain oppositions
when we shift from ordinary discourse about contingent things to discourse in which
fixed meaning relations plays a role, e.g. in ‘mythological’ discourse [18, p. 409], cf. the
examples with chimeras or ogres. Future work on the topic may focus on modal syllogistic
utilizing mainly both Modal Squares, enriching the investigation by combinations with
non-modal or modal de re statements.>*
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Part IV
Philosophical Perspectives on the Square



The Many Faces of Inconsistency

Bobenrieth M. Andrés

Abstract To think about inconsistencies involves reflecting on several basic notions
widely used in order to talk about human knowledge and actions, such as negation,
opposition, denial, assertion, truth, falsity, contradiction and incompatibility, just to name
the more perspicuous ones. All of them are regularly used in natural language and for
each one several definitions or conceptions have been proposed throughout the history
of Western thought. That being so we tend to think that we have a good enough
intuitive understanding of them. Yet a closer examination shows many ways in which
“contradiction” and related words can be understood. Thus, a more precise definition
would help to clarify their meaning and assist us to use them in a more appropriate manner.
In this paper I will try to clarify these notions and thus make a terminological proposal.
The general background will be the reflexion on paraconsistency. A main purpose will be
to show that the confusion between contraries and contradictories—although they were
clearly distinguished in the original square of opposition—is very common and it paves
the way to the rejection of all forms of “inconsistencies” without making distinctions, and
also to the wrong assumption that regarding all the main aspects the effects of contrary
opposition are equivalent to the ones of contradictory opposition.

Keywords Inconsistency ¢ Contradiction ¢ Contrary ¢ Incompatibility ¢ Negation ¢
Paraconsistency

Mathematics Subject Classification Primary 03B65, Secondary 03B53

1 Contradictories and Contraries

In order to study ‘contradiction’ and ‘contradictory’ together we could take ‘contradictori-
ness’ as a generic term embracing both of them, which also may include ‘contradict’. And
from this broad perspective we can see two main ways to characterize it: one is based on
the notion of negation or denial and the other is based on the interplay between true and
false. The first points out the structural antagonism determined by the use of negation or
by the act of denial, so it can be called a «syntactic characterization» considering that it
emphasizes the role played by one (or some) linguistic element(s). The second deals with
the truth-values and uses them in order to specify one form of opposition, so it can be
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called a «semantic characterization». Moreover, to form a contradiction in the first sense
the main requirement would be to know how to use the rule (or rules) of negation within
that language, while in the second it would be based on the meaning of the utterances
involved.

An interesting question is how we can have the definition of contradictories without an
immediate reference to contradiction. The obvious place to look at is the traditional view,
beginning with the definition given by Aristotle, that two statements are contradictories
when they cannot both be true and cannot be both false, and contraries when they cannot
both be true but can both be false. And if we want to enquire about the justification for
the difference between the two situations, the usual explanation uses the famous “square
of opposition”, which—it is important to remember—is “a post-Aristotelian device” [4, p.
75]. Let’s see how it works.

If we have two statements that seem to be «opposite», how do we know if they are
contraries or contradictories? Well, we check if they are general (universal, if preferred)
or particular, and also if they are affirmative or negative. Thus, if we have two general
statements, yet being one affirmative and the other negative, we have two good candidates
for contraries. But there is something else that is required: they must be talking about
the «same thing». Here there is a main problem: The traditional approach would point
to the fact that we are talking about a logical structure that is based on terms and their
combinations—‘All S are P’ (A), ‘Some S are P’ (I), ‘No S are P’ (E) and ‘Some S are not
P’ (O)—, thus in order to see if the statements are talking about the same thing, we have
to start checking if they are using the same terms. But that is not enough because we are
dealing here with statements (or propositions, if preferred) and not with sentences, so it
is necessary to check if they are actually uttered and how they are uttered, in order to see
that the uses of the terms in both statements are exactly the same. Finding out this can be
difficult, in the case of contraries we have to check if the terms are used in the same sense
when used in the positive and in the negative statements, but it is much more difficult in
the case of contradictories, in which we have to check not only that, but also if nothing
changes when they are used in universal and particular statements.

The situation here is similar to the one that we encounter with the definition of
contradiction based on negation, yet even worse. There we saw that we will be able to
say that we have a contradiction only when we have the conjunction of one categorical
statement (without any denotational problem) and its negation. Here we will have
contradictories only when we have two categorical statements (without any problem with
respect to denotation) of which one has to be general and the other particular and one has
to be positive and the other negative, and also they have to use the same terms in the same
sense and context.

It is important to stress that, in this definition of contradictories, the feature that one
statement is the negation of the other is something that is not present in the definition and
also is not used as an assumption; rather, it is something that is «inferred» or «proved».
This is clearly stated in an important dictionary of logic, which first says that “the sentences
A and O are contradictory, E and I are also contradictory, A and E are contrary” [8, p.
189] and later introduces this feature in terms of predicate logic [8, p. 190]. So, it does not
start using negation, as was the case in the definition of contradiction, but instead it starts
with a definition that does not refer to negation and later on establishes that among two
proposition that fit into the definition one has to be the negation of the other. In my view,
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this expresses as its best the difference between the characterization based on negation and
the one based on the opposition of truth-values. If we start with one definition, then we
arrive at the other notion. In the classical view that is always the case, but I think it is
worth examining that transition in detail.

Let me put things in a somehow different way. If we start just considering the four kinds
of statements (A, E, I, O), it is quite a legitimate question to ask which one is the negation
of the other. We are not dealing with negation as a sentential operator, as was before, so we
are not going to find ‘it is not the case that’ attached to any sentence. So taking the most
relevant case, if we start with ‘All S are P’, which is its negation: ‘No S are P’ or ‘Some
S are not P’? Intuitively there are good reasons to think that is the first one: they are the
same kind of statements, i.e., general statements, and, secondly, one is asserting that there
is a property applicable to all members of a kind of objects, and the other is saying that
for no member of that kind that property is applicable. For example, what can be «more
opposite» to ‘all men are mortal’ than to say ‘no men is mortal’? If we say ‘some men are
not mortal’ it is clearly opposite, but it is an opposition limited to some cases, but in the
first option it is an opposition for all cases.

The answer from the traditional conception refers to the definition given by Aristotle for
contraries and contradictories. Two statements that we know cannot both be true, then they
can be either contraries or contradictories. We need more to be able to distinguish between
them: we need to know if they may be both false or if they cannot be both false. In the
first case they will be contraries and in the second contradictories. And then the argument
would be that in this second respect there is a radical difference between contradictories
statements, while the contraries are equal. Thus, contradictories are different not only in
one but in two respects, and the conclusion would be that there is a stronger opposition
between them.

But here a question arises: how can we know that two statements cannot be both false.
Without any doubt that is a very complicated question that involves several philosophical
problems, but here I would want to focus on one point. A possible response could be that
we can know that two statements cannot be both false in the same or in a similar way as we
can know that two statements cannot be both true, whatever that might be. So there is no
reason to emphasise the difficulties just in one instance. In fact, my response would be that
even accepting, for the sake of the discussion, that knowing that two statements cannot be
both false is comparable with knowing that they cannot be both true, it is a quite different
thing to accept that knowing that two statements cannot be both false is comparable with
knowing that they may both be false. The former requires a very strong justification while
the second could be more easily grounded, to start with the default assumption that any
statement may be false. So, around the question about what negates a statement—regarding
its contrary and its contradictory—, it is worth asking why we should restrict ourselves to
consider something as a denying statement only when strong prerequisites are fulfilled
if we can have weaker prerequisites available. Once again the classical option ends up
restricting its own applicability.

Let us go back to the claim that knowing that two statements cannot be both false is
comparable to knowing that they cannot be both true. If we inquire about what kind of
knowledge that would be, a common answer is that we can know that based on «logical
grounds», and actually in the traditional conception it is often stated that only in virtue
of logical grounds can two statements be considered contradictory—in a «technical»
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sense—.! This would generally mean that for some pair of statements we can know that
is «logically impossible» for them to be both true, and the same for the case of being
both false. This, again, points to an important philosophical problem with a long-standing
tradition. But here we can concentrate on what might be the basic form of the argument,
which could be based on the «standard» definition of logical possibility, for instance:

Where ¢ is a proposition, it can be understood as: (1) ¢ is logically possible; its negation entails a
contradiction. [ ...] [5, p. 706] [entry written by Ruth Barcan Marcus].

From that the next step would be to change possible for impossible and say that a
statement is logically impossible if it entails a contradiction.” Then, the argument will
be restated saying that we can know that two statements cannot be both true, or—along
side—both false, because it would be logically impossible for them to be both true, or
both false; which, following closely the proposed definition, would mean: a statement that
asserts that they are both true (false) will entail a contradiction. So we are back to the
notion of contradiction and the ground for establishing that two statements cannot be both
be true (false) is by knowing that a statement that denies that would entail a contradiction.
Recapitulating, we start with a definition for contradictories that does not make use of
the notion of contradiction but when we want to understand it, we have to appeal to that
notion. It does not look as if we have gone very far, but at least we are talking of something
“entailing a contradiction” rather than “being a contradiction”, and also what entails that
contradiction is not the original statements but something that is said about them. We are
one level up. This shift of level happened when we started talking about what we need to
know about a pair of statement in order to be able to apply to them the given definitions
of contradictories or contraries, but still what implies the contradiction is in a different
level than the contradictory or contrary statements. So contradictory statements are such
not because they together entail a contradiction—which could be the case—but because a
contradiction will follow from the denial of what is said about them.

It is noteworthy that this act of appealing to a contradiction holds not only in relation
to contradictories, but also to contraries. Furthermore, that is also the case for what are
traditionally called ‘subcontraries’ (I vs. O), whose definition—in similar terms—would
be: two statements that cannot both be false but can both be true (cf. [4, p. 75]). There
we have again a ‘cannot be both ...’ condition. So the notion of contradiction is involved
not only in the understanding of contradictories but also of contraries and subcontraries,
the only difference is that for contradictories the ‘cannot be both. ..’ clause is used twice
while for the other it is only used once. However, if we examine that other side, that
is, when it is said that two statements ‘can be both false’ (for the case of contraries) or
‘can be both true’ (for subcontraries), facing the question about how we can know that,
one plausible option would be to keep the same line of «logical ground» and say that it
would be logically possible for them to be both true (false). Following the definition of
logical possibility previously quoted, that can be understood as saying that two statements

IFor example the glossary in Sainsbury says:
“contradictories: two propositions are contradictories iff it is logically impossible for both to be true
and logically impossible for both to be false.” [13, p. 394]

2“What is logically impossible involves some kind of contradiction, [...]” [13, p. 15].
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can be both true (false) because the negation of the statement that says it will entail a
contradiction. It has to be pointed out that here we are not making claims about the logical
possibility of each statement separately, which would be something like: one statement is
logically possible because its negation entails a contradiction, a claim that could be later
conjoined with a similar claim about the other statement; what interests us here is not
whether a statement is logical possible in absolute terms but relative to the other one. That
is the point of the three definitions of opposition: to link two statements through an internal
correlation between their truth and/or falsity.

So following this appeal to «logical possibility», the notion of contradiction becomes
the key aspect of the whole square of opposition, but—as I said previously—the
contradiction appears here in a different level; the definition of contradictories has not
being made reducible to term of contradiction, but instead its meaning has been explained
by appealing to the eventuality of a contradiction being entailed at a different level.

There is something that has to be mentioned here. That is the question of the existential
import of categorical propositions® or as it is also called existential commitment.* It
has lead to a modern clarification or correction with respect to the traditional square of
opposition, which in a general formulation can be presented like this:

For these relations to hold [contradictories, contraries, subcontraries, subalterns], an underlying
existential assumption must be satisfied: the terms serving as subjects of propositions must be
satisfied, not empty (e.g., ‘man’ is satisfied and ‘elf’ empty). Only the contradictory opposition
remains without that assumption. Modem interpretations of categorical propositions exclude the
existential assumption; thus, only the contradictory opposition remains in the square. [1, p. 875
(entry written by Ivan Boh)])

But it also can be presented in a way in which the relations of contraries and
subcontraries hold for non-empty subject terms (for example in Marciszewski [8, p.
190 f.]), but that restriction is not added for contradictories. So, in these versions the
relation of contradictories still applies even to statements that talk about objects that
do not exist (even though, Strawson [15] qualified this point’). Anyhow, the notion of
contradictories stands as a grounding relation in the square of oppositions.

3That is the denomination in Church [3].
4This is used sometime by Strawson [15, pp. 164 ff].

3Strawson [15, pp. 164 ff.], examining the question about the interpretation of the system of traditional
logic, especially by means of modern predicate logic, addresses the problem of existential import and
says that in the case of the particular statements (/ and O) the only reasonable solution is that they do carry
existential commitment, but for the case of the universal (A and E) he present it as a dilemma: “Either the A
and E forms have existential import or they do not. If they do, one set of laws has to be sacrificed as invalid;
if the do not, another set has to go. Therefore no consistent interpretation of the system as a whole, within
the prescribed limits is possible.” (Strawson [15, p. 165]) He develops the dilemma in a more formal way
maintaining that one option is to take the A and O statements just in terms of their standard formalization
in the predicate logic, respectively ‘~(3x)(fx. ~ gx)’ and ‘~(Ix)(fx.gx)’, and the other is to conjoin these
formalizations with “an assertion of the existence as far as the first ‘term’ is concerned (‘(3x(fx)’)” [15, p.
165]. Then he shows that in the first option the rule for contradiction still holds, but the rules for contraries
and subcontraries do not hold, while in the second option the rule for contraries is preserved but not for
subcontraries and contradictories. Yet, to me what I think is more interesting is his conclusion about the
later: “A and O are no longer contradictories, but only contraries; since, while both cannot be true for a
given example, both may be false, in the case where the positively existential component of A is false.
Similarly, E and I are only contraries.” [15, p. 166]
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From a wider perspective, this development brings in the concern about the content
of the statements involved in the different types of opposition, since it makes explicit
underlying existential assumptions and the need of satisfying them in order to be able to
apply the standard definitions of those types. And that links us with a different way of
addressing the question about how can we know that two statements cannot be both false
(or true) that will not just be based on the notion of logical impossibility. This option would
have to take on board concerns about the content of the statements in order to consider
them as being in one kind of opposition or another. Roughly speaking, that is tantamount
to using other available information about the statements, different from their inner logical
structure, in order to justify the claim that they cannot be both false (or true). This may
open the door to invoke other kinds of impossibilities: metaphysical, epistemological,
rational, scientific, mathematical, psychological, etc., in order to sustain the claim that
two statements cannot be both true (or false), and, thus, paving the way to consider them
as contraries or contradictories.

An unlimited number of questions can arise about these other types of impossibilities,
but here I want to put forward just two. First, what role will the notion of contradiction play
within them? If we take again a standard definition of those different types of possibility
involved, we frequently find expressions like ‘consistent with metaphysical necessities’,
‘consistent with scientific laws’, ‘consistent with what is known’, and so on (cf. [5,
p. 706]). Consequently, the definition of each type of impossibility would have to be
articulated in terms of ‘inconsistent with . . . ’, but then the question about what is meant by
inconsistent becomes fundamental. There is no doubt that the notion of inconsistency has
always been closely associated with the notion of contradiction, so in order to understand
how these other types of impossibilities work we will have to examine the link between
inconsistency and contradiction. That would be looked at in the next section.

The second question that is relevant here is the following: If by appealing to these other
types of impossibilities we establish that two statements cannot be both true and cannot be
both false, is that enough reason to consider them contradictories? (mutatis mutandis for
the case of contraries). At first sight, nothing in the definition for contradictories prevents
that, but it could be argued that the definition has its context, and in this case it is the context
of the logical relation between terms within categorical statements and the oppositions that
can be established based on that; so any relation of opposition established using different
grounds cannot be properly considered contradictories, in this precise sense. In short, to
be contradictory is a logical relation and has to be based on logical grounds. A different
argument could be that the only way we can establish that two statements cannot both
be false is by means of logical constraints, then, despite any other information that we
might use, if we effectively establish that two statements are contradictories, that has to be
based—in one way or other—on logical grounds. So, either there are not contradictories or
they are contradictories for logical reasons. The result of both arguments may be that it is
only in virtue of logical constraints that two statements can be considered contradictories.
I will address this question on its due course.

I would like to close this section by considering whether this appeal to other types of
information can also affect the conception based only on logical impossibilities. As we
saw there, the key element was the notion of some statements ‘entailing a contradiction’.
Now we can ask if it is possible for those other kinds of information to be involved in that
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situation. Again, the «definitional» attitude would say that entailment is a logical notion
and contradiction has to be understood as ‘the conjunction of a statement and its negation’.
But then we will only be able to say that two statements are contradictories just in the case
that the negation of the assertion that states that they cannot be both true and both false will
entail a statement compounded of the conjunction of a statement and its negation. And this
does look like a set of prerequisites that can be easily or—at least—frequently fulfilled.
On the other hand the aim could be to enlarge the applicability of the notion of logical
impossibility, and that could be done by replacing that strict understanding of ‘entailing a
contradiction’ with something that could be pictured as being closer to ‘an inconsistency
will follow’; hence, other relations of consequence between statements will have to be
considered, as well as inconsistency as a wider notion. In that context, the non-logical
information about the related statement would have an important role to play.

In this section we have encountered the notion of inconsistency twice. It can be seen
as a bridge between strict logical notions and more general questions. So it seems that is
about time to examine it closely.

2 Inconsistency

In the case of the notions of inconsistency and “inconsistent” there is not one standard
definition that can be easily recognized as such, which makes it quite different to what
happens with contradiction (which, as we have seen, is normally understood as the
conjunction of one statement and its negation) and contradictories (two statements that
cannot be both true and cannot be both false). This may have many consequences, but
the most apparent is that the terms inconsistency or inconsistent tend to be used more
«loosely» than the others, even in contexts where terminological precision is highly
appreciated. A common way of dealing with this problem is to try to specify some
meanings of the terms and then stick to them. This is usually done by focusing on
the application of the adjective ‘inconsistent’ to different nouns, and then the kind of
inconsistency would be mainly determined by the notion to which it is applied; yet
sometimes this is not enough, so another adjective or adverb is used to make precise the
intended meaning of ‘inconsistent’. In this section, concentrating on logical notions, we
will see how this may work.

In contemporary logic it is an established tradition to talk about two senses for
consistency: a syntactic and a semantic sense. Their definitions can be found in many
places. About the first type of consistency there is little variance, since the definitions are
usually structured in terms of the non-derivability of a contradiction (understood as what I
have presented as the standard definition).

Then, focusing on sentences and/or statements I think it is still possible to give a
definition that could express the standard notion of syntactic consistency; something like
this:

Def. CONSY: A set of statements [sentences] is syntactically consistent if for no statement

[sentence] is it the case that the conjunction of that statement [sentence] and its negation is derivable
from that set of statements [sentences] using the accepted rules of derivability.
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In the case of semantic consistency there is more variation. To keep things separated and
for other reasons that will emerge later, I think we can have two definitions of semantic
consistency running in parallel. Following the structure of def. CONSY, they can be
formulated thus:

Def. CONSEIL: A set of statements [sentences] is semantically consistent (sense 1) if for no
statement [sentence] it is the case that both that statement [sentence] and its negation are logically
implied by the set of statements [sentences].

Def. CONSE2: A set of statements [sentences] is semantically consistent (sense 2) if they can all
be true under at least one interpretation.

At this point, we can go back to the original problem in this section, i.e., the notion
of inconsistency and/or inconsistent. We have three definitions articulated in terms of
different ways of being consistent, so we can have the same number of definitions for
the opposite situations:

Def. INCONSY: A set of statements [sentences] is syntactically inconsistent if there is a statement
[sentence] for which it is the case that the conjunction of that statement [sentence] and its negation
is derivable from that set of statements [sentences] using the accepted rules of derivability.

Def. INCONSEI: A set of statements [sentences] is semantically inconsistent (sense 1) if there is a
statement [sentence] for which it is the case that both that statement [sentence] and its negation are
logically implied by the set of statements [sentences].

Def. INCONSE2: A set of statements [sentences] is semantically inconsistent (sense 2) if they
cannot all be true under any interpretation.

As I have anticipated, here there is no general definition of inconsistency but only def-
initions of what is to be an ‘inconsistent set of” statements or sentences; so ‘inconsistent’
is just an adjective applied to those entities. That restriction comes from the way in which
the definitions of ‘consistent” were given.

3 Contradict and Contrary

So far we have been talking about names and adjectives, but what about verbs? There
is no definition for them in philosophical or logical dictionaries, so we are only left
with language dictionaries. Searching through them we find ‘contradict’ in any English
dictionary, we find ‘contrary’ as a verb in very few dictionaries (while it is always found
as name, adjective and adverb), and we find no verb that would share the root with
inconsistent. The definitions that NSOED gives are these:

contradict [ ... ] [obsolete]1 v.t. Speak against; oppose in speech; forbid. 116-m18. 2 v.t. & i. Deny
a statement made by (a person); affirm the contrary of (a statement etc.). 116. 3 Of a statement,
action, etc.: be contrary to, go counter to. 116. (NSOED [10, p. 496])

contrary [ ...] 1 vt. Oppose, thwart; contradict; do what is contrary to. obs.[olete] exc.[ept] dial.[ect,
dialectal, -ly] ME. [obsolete]2 v.i. Act, speak, or write in opposition. IME-116. (NSOED [10, p.
498])
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Out of the five given meanings, three are presented as obsolete, but—what is more
important—both meanings for ‘contrary’ (as a verb) are obsolete, a fact confirmed by
any native English speaker. So if we want to talk about the action of stating the contrary
of any statement, or to refer to what the contraries do to each other, we are only left
with the second definition of ‘contradict’ in its second part: “affirm the contrary of ...”.
Furthermore, if we want to talk about the action of saying the contradictory, or what the
contradictories do to each other, we have to use again the second definition of ‘contradict’
stressing its first part “deny a statement ...”, or use the third definition, but then “be
contrary to” appears again. Summing up, if we have two statements and we want to say
that they cannot be both true nor both false, we will say they ‘contradict each other’,
but if we want to say that they cannot be both true but may be both false, we cannot
say, without being archaic, that they ‘contrary each other’. The normal option is to use
the available word: ‘contradict’, which would fit perfectly in the definition given by
dictionaries. Nevertheless, it sounds awkward—particularly after all these pages analysing
definitions—to say that ‘contraries contradict each other’, but normally we do not talk
about these notions in general, but use them as referred to specific statements, and then
it is quite frequent to hear that ‘statement x contradicts statement y° when the relation
of opposition between them is not that of the contradictories but of contraries. Even in
expressions like ‘statement x states the opposite to statement y’, the ambiguity will still
be there; a less ambiguous option would be ‘statement x states the contrary to statement
y’, but then ‘contrary’ (as an adjective) has a wide range of meanings (cf. NSOED [10,
p. 497 £.]). A more precise option would be ‘statements x and statement y are contraries’,
but there the diversity of meanings of ‘contrary’ could be involved and it may not be clear
enough that the intended meaning is the one given in the square of oppositions.

It seems that the situation is the same in all the languages that use the Latin roots to refer
to these traditional oppositions.® And even in German where there is a duality between the
German and the Latin roots, and the Latin terms are used in the context of the square of
opposition, somehow as a «technical term», the ambiguity is still present in the usual terms
used for what in English would be ‘contradict’.”

®For example in Spanish, ‘contradecir’—the equivalent to contradict—is defined in the «canonical
dictionary», this way:

“contradecir (Del. lat. contradicere, -onis) Decir uno lo contrario de lo que el otro afirma, o negar lo
que da por cierto.” (Real Academia Espafiola: Diccionario de la Lengua Espaiiola. Madrid: Epasa-Calpe,
1992, p. 556).

It is almost the same as in NSOED definition 2, (translated it would be: “to say the contrary to what
someone else asserts or to deny what he takes as true”). So both cases are clearly stated there.

7In the context of the square of opposition ‘kontradiktorishenGegensatz’ and ‘kontrirenGegensatz’ are use
for ‘contradictory opposition” and ‘contrary opposition’, respectively [cf. Die Philosophie (Mannheim:
DudenVerlag, 1985) p. 151]. Meanwhile, the verb ‘widersprechen’ is the term that normally will be used
to translate ‘contradict’ and the noun ‘Widerspruch’ for ‘contradiction’, but also the term ‘Gegensatz’ is
commonly used to express the confrontation between two statements, so it can be translated as ‘opposition’
but also as ‘contrariety’ as well as ‘contradiction’ (cf. Waibl, E./Herdina, P.: German Dictionary of
Philosophical Terms, vol. 1 German-English. Miinchen: K. G. Saur/London: Routledge, 1997, p. 99).
Similarly with related words as the verb ‘entgegengesetzten’, the adjective ‘entgegengesetzt’, and the noun
‘Entgegensetzung’. In fact, Hegel used ‘Gegensatz’ for what is known as his ‘antithesis’ (cf. ibid.).
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The situation is quite peculiar: we have several names and adjectives—contradiction,
self-contradiction, contradictories, contradictory, contrary, contraries, inconsistency,
inconsistent—and some of them can be understood in different senses, as we have seen,
but we have one verb—contradict—that can express the actions or interactions related with
them. I think that this yields to a layout that generates important conceptual confusions.
Mainly, when the word ‘contradict’ is used to describe the interaction between two
elements, it can lead to the assumption that these elements are contradictories or together
they would constitute a contradiction, which in several cases is not correct because they do
not fulfil the two conditions that are required to have a proper contradiction. In sum, this
preponderance of the verb ‘contradict’ encourages several «loose» uses of the notion of
contradiction and/or several «analogical» uses of it and the other terms. Acknowledging
this can have far-reaching consequences, some of which I will try to point out in what
follows.

4 Some References to Previous Works

We have studied different definitions of the main notions related to inconsistency, so we
can now turn to study the relations among them. Although it is generally accepted that
they are all closely related, it is not so easy to find proposals that explicitly deal with
their interaction. In the spirit of examining accounts that can be considered as defending
the classical view, I think that Strawson and Sainsbury are two authors that can be quite
helpful, and I cannot touch on the subject without making some very short comments about
their proposals.

In Strawson’s first book, published 50 year ago, there is an entire chapter devoted to the
subject, and he uses it as a gateway to the whole of logic; his analysis points out several
problems that, in my view, are at the heart of the problematic concerning inconsistencies.
Even though it is rare to see references to this text in recent discussions of these issues,
with the important exception of Horn 1989, we ought to take it into account.

Sainsbury is a contemporary author that has been especially concerned with paradoxes
and with the challenge posed to the classical position by paraconsistent logic, particularly
Priest’s proposals [11, 12]. He has also written [13] a general introduction to logic where
he addresses the relations among the main notions related to inconsistency. Although in
that text he does not mention paraconsistent logic or dialetheism, his presentation touches
on some of the points that we will be dealing with, so it deserves attention. However,
the definition of contradiction given by Sainsbury is the one that Slater [14] uses when
criticizing paraconsistent logic.

In the next section, I will present a terminological proposal, which, trying to reap what
has been studied so far, will seek to arrange together what, in my view, are the main
elements surrounding the issue of inconsistency.
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5 Terminological Proposal

As we have seen there are many definitions of the notions related with contradictoriness.
So far I have only presented notions that assume classic logical principles as a general
framework, but even in that case there are differences in relation to which term is the
appropriate one for each distinguishable situation. If we were to examine the uses in natural
languages, sciences, legal theory, etc., we will surely find even wider differences. I do not
think it is possible to establish a framework that would be able to settle the whole matter,
particularly due to the tendency for «analogical uses» of such words. Every new context
may yield other uses of the same words, and nothing can prevent that. However, I would
like to present a way of using these words that may help to prevent some confusion, which
can be instrumental in avoiding the extrapolations from one notion to another or others.

Let me start with the basic case: the relation between two statements. There are
two general dualities that seem to me the most relevant: inconsistent/consistent and
opposite/non-opposite. They do not coincide. My proposal is to consider these terms as
follows: Two statements are inconsistent if they cannot both be true, two statements are
consistent if they can both be true; two statements are non-opposite if they can both be
true and can both be false, otherwise they are opposite. In all these definitions what is
considered is only the two statements and their mutual interaction. The next step is to
bring in the traditional definitions: two statements are contrary if they cannot both be
true but may both be false, two statements are contradictory if they cannot both be true
neither can both be false, and two statements are subcontrary if they can they both be true
but cannot both be false. In all this, the only new term is ‘non-opposite’, but it could be
replaced by a longer phrase like ‘two statements that are not opposite to each other’.

Putting these notions together, we will have that two inconsistent statements can be
either contrary or contradictory, while two consistent statements can be either subcontrary
or non-opposite, but two opposite statements can be contrary, contradictory or subcontrary.
That is why these dualities do not coincide: subcontraries are on the side of opposite, but
also on the side of consistent; in other words, the duality inconsistent/consistent has two
in each side, while opposite/non-opposite has three in the first and one in the second.

Then, contraries would be the generic name for both statements that are contrary,
contradictories for the ones that are contradictory, subcontraries for the ones that are
subcontrary, and opposites for the ones that are opposite. Instead of ‘contraries’ one could
also use contrary statements and, similarly, contradictory statements and subcontrary
statements. Unfortunately this does not work so well for the other two notions; yet
searching for a name we may say that two statements that are inconsistent conform to
an inconsistency, but I do not see a generic name for them, apart from ‘inconsistent
statements’; the case of ‘consistent’ is worse because to say that two statements that are
consistent conform to a «consistency» sounds awkward, so we are left just with consistent
statements.

As you can see the aim is to capture as much as possible of the traditional terminol-
ogy. Contraries, contradictories and subcontraries, conform to three traditional form of
opposition, so here they are seen as ‘opposite statements’. The only difference with those
traditional denominations may be in the relation of subalternation, which traditionally
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is explained in the context of the «square of opposition» saying that the true of the
‘superaltern’ (can be A or E) implies the truth of the ‘subaltern’ (I and O, respectively),
but not conversely (cf. [1, p. 875]). The fact that they are explained in that context may
lead to think that they are considered as ‘opposite’; however, that is more a relation
of consequence than a relation of opposition. Taking a traditional example, to say that
‘all men are mortal’ and ‘some men are mortal’ are «opposite sentences», seem to go
very much against the normal use of the term. Let us compare this with the other cases:
two subcontraries, like ‘some men are mortal’ and ‘some men are not mortal’, can be
considered as opposite, but not as inconsistent, while two contraries, like ‘all men are
mortal’ and ‘no man is mortal’, are clearly opposite and inconsistent, and also two
contradictories, like ‘all men are mortal’ and ‘some men are not mortal’. On the other hand,
the superaltern and subaltern statements can both be true, and the same is the case for two
subcontrary statements, so to them applies the given definition of ‘consistent statements’.

Here it is important to remind ourselves that I am using the given generic definition
of contradictory, contrary and subcontraries, and not the ones with the specifications of
the square of opposition, so there is no restriction about being universal and particular
and also not in the subject-predicate relation. For example, ‘Mr. X went to the right’ and
‘Mr. X went to the left” would be contraries, despite being both particular statements, and,
in parallel, ‘object Y is animate’ and ‘object Y is inanimate’ would be contradictories
(assuming that every object has to be either animate or inanimate). It is difficult to
find an example of subcontraries where both are general statements, but consider: ‘all
ambidextrous people can use their right hand skilfully’ and ‘all ambidextrous people can
use their left hand skilfully’; then, ruling out the case of a mental or physical disease or
any other particular physical limitation, and assuming that all human beings in normal
physical conditions can at least use one of their hands skilfully, we can say that those two
statements can be both true but cannot be both false.

Now lets compare this with the definitions that we studied in last chapter. Apart
from those generic definitions, this proposal is based on the second of the semantic
definitions of consistency (def. CONSE2) and also the second of the semantic definitions
of inconsistency (def. INCONSE2). So it is convenient to examine how it fit, with the other
definitions. In a standard situation, both contradictories and contraries—defined in the
traditional way—fulfil the condition stated in the other semantic definition of inconsistency
(def. INCONSEL1), i.e., they will logically imply a statement and its negation. That
also holds for the case of contradictories without negation presented by Sainsbury. The
converse (if for any case where def. INCONSEL applies, then def. INCONSE2 also
applies) is a little more complicated; the question is, in other words, whether given that
a pair of statements logically imply a statement and also its negation, from that it would
follow that they cannot both be true. Using the standard notion of logical implication the
first part may be understood as follows: if those two statements are true, then there is
a statement that is true and also its negation is true. But classically a statement and its
negation cannot both be true, so in principle there is never such a statement, consequently,
by modus tolens, the two statements cannot be true. This fits with def. INCONSE2 and
with the definition of ‘inconsistent’ that I have used.

Considering def. INCONSY, it all depends on the rules of inference. Nevertheless,
in classical logic, up to first order predicates level, in virtue of its completeness, if
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we can apply def. INCONSE1 we can also apply def. INCONSY, and also vice versa,
due to soundness. Then, if we start with two statements that fulfil def. INCONSE2,
then—as we have seen—they would fulfil def. INCONSEI, and then they will also fulfil
def. INCONSY; and similarly in the opposite direction. Outside the domain of classical
elementary logic that assurance is not there. Consequently, in each case it will depend
on which rules of inference are maintained and what kind of semantics is used. But that
does not affect the heart of my proposal, rather quite the contrary. For in those other
situations we will have two or three parallel definitions of ‘inconsistent’, and different
senses in which two statements can be considered as inconsistent, and then the task would
be to find out if they coincide for all cases or not. Moreover, considering that for each
definition of ‘inconsistent’ there is a corresponding definition of ‘consistent’, so the duality
inconsistent/consistent would still be there, yet instantiated by each of the different senses,
if they differ.

So far I have been explicitly dealing with the case of two statements, but considering
that some definitions are in terms of ‘set of statements’ then the extension is straightfor-
ward. A set of statements is inconsistent if they cannot all be true (where ‘inconsistent
triad’ is just a particular case), consistent, if they can all be true. The other duality
can be expressed like this: a set of statements that contains non-opposite statements,
if they together can all be true together and can all be false, otherwise it contains opposite
statements. That works well for more than two statements, but also for two statements.
As I said that two statements are inconsistent, I can also say here I say that they together
constitute an ‘inconsistent set’; I said two statements are non-opposite, here that together
they constitute ‘a set of non-opposite statements’, and the same for ‘consistent’ and
‘opposite’.

In the case of ‘contrary’, ‘contradictory’ and ‘subcontrary’, although they seem to be
more linked to their origin in the case of two statements, they may well be extended to
more than two. Then we can say that a plural number of statements are contrary if they
together cannot all be true but may all be false, contradictory if they together cannot all
be true neither can they all be false, and subcontrary if they together can all be true but
cannot all be false. However, to keep with the tradition, I think the names ‘contraries’,
‘contradictories’ and ‘subcontraries’ should be reserved for the case of two statements,
but they constitute a specific case within ‘contrary statements’, ‘contradictory statements’
and ‘subcontrary statements’. We may say that a set of statements is contrary if it contains
contrary statements, and similarly for contradictory and subcontrary; yet for the first two
the name commonly used is ‘inconsistent set’, which for me is fine as far it is kept in mind
that it can contain either contrary or contradictory statements, or both. In the case of a set
containing subcontrary statements this could be also described as a ‘set containing opposite
statements that are also consistent’, but ‘subcontrary set’ seems better. Finally, for a set that
contains contrary, contradictory and subcontrary statements the best denomination seen to
be ‘set containing opposite statements’, because there is nothing shorter that could be
similar to ‘inconsistent set’.

Now, if for a single statement we were going to use the names ‘contrary’, ‘contra-
dictory’ and ‘subcontrary’, then the obvious question would be: ‘contrary to what?’ (and
similarly for the other two cases). If it is to another statement, then they together would fit
in what I have said so far in this section, but if the answer is ‘to itself’. One possibility is
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that it is statement compounded of two contradictories, contraries, or subcontraries. The
first case could be designated as ‘two contradictory statements stated together’, which
mutatis mutandis can be extended to the other two. However, the standard definition of
‘contradiction’ is the conjunction of one statement and its negation, which has to be
preserved for the aim of capturing as much as possible of the normal uses of the terms.
But that does not cover all the cases of ‘two contradictory statements stated together’ (i.e.,
when one statement is the negation of the other), and then the question is what do we
do with the others. The problem is in Sainsbury’s and Strawson’s texts, the first was not
explicit about it, and the second accept a ‘wider sense’ of contradiction that covers even
contraries. My proposal is to use the denomination ‘contradiction without negation’ for
the conjunction of two contradictory statements such that neither of them is the negation
of the other, which may sound odd but will make explicit the possibility of having two
contradictories conjoined without one being the negation of the other. This preserves
the difference between the syntactic and semantic characterization (thus overcoming the
objections against the tendency of assuming that both characterizations always coincide),
without breaking the normal association of ‘contradiction’ with ‘contradictories’ and
‘contradictory statements’. Furthermore, ‘inconsistent statement’ would be the generic
term that would cover ‘two contrary statements stated together’ and ‘two contradictory
statements stated together’.

The latter would have a particular status because although it will cover the case of
‘contradiction without negation’, which is an explicit conjunction, it would remain as
the appropriate denomination when the two statements are stated together without a
conjunction. Furthermore, an advantage of this scheme is that the name ‘contradiction’
(without qualification) would remain linked with the notion of negation, but then it could
refer to different types of negation, depending on how that notion is defined in each system,
so we can have contradictions with classical, intuitionistic and paraconsistent negations—
just to mention the more relevant for my purposes—, but that would also be the case for
any other characterization of negation. Then, a contradiction with classical negation, which
can be called ‘classical contradiction’, would be placed side by side with the ‘contradiction
without negation’, both belonging to the type of ‘two contradictory statements stated
together’. However, when other types of negations were to be used, then it would have
to be examined if for all cases a statement and its negation (using the other type of
negation) cannot both be true and cannot both be false; if that is the case, then that other
contradiction would also be placed in the group of ‘two contradictory statements stated
together’, otherwise, we will have to see if they constitute an inconsistent statement (i.e.,
they cannot be both true) or if something else is the case.

The other possibility is when the statement to which ‘contradictory’, ‘contrary’ and
‘subcontrary’ is applied is not a compound statement. That takes us to the discussion on
atomic statements, where several reservations related to the term ‘self-contradiction’ can
be raised. There is not much to add here, apart from two comments. First, possible names
would be ‘self-contradictory statement’, ‘self-contrary statement’ and ‘self-subcontrary
statement’, yet the first two could be called ‘self-inconsistent statement’; which now can
be seen as based on the present terminological proposal. Moreover, I said that it may
be better to use the denomination ‘internally inconsistent statement’, because it makes
more explicit where the inconsistency comes from, or at least where it does not come
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from. Second, the case of a ‘self-subcontrary statement’, that is, not being a compounded
statement, seems to me unfeasible. I presented several reservations about the feasibility of
a proper ‘self-contradictory atomic statement’, and showed how in many cases what we
may have is at the most a ‘self-contrary statement’, and the point was that it could be seen
that the atomic statement was somehow stating together two characterizations that could
not be both true (like in ‘that bachelor is married’), but the difficult part is whether they
cannot both be false. The case of subcontraries is particular because we will have to have
the difficult part, yet excluding the easy one. I cannot see any case in which this may hold.
However, this is not the same as saying that there cannot be any ‘subcontrary predicates’,
a matter that will be addressed next, because if there is any subcontrary predicates the
point would still be if it is possible to apply them together conforming a single atomic
statement. If I am right, that yields an interesting consequence for my schema, that is,
the duality opposite/non-opposite does not seem to be of much use in the case of atomic
statements, since the possibility of a ‘single consistent and opposite statement’ does not
seem relevant, apart from the case of a statement compounded by subcontraries, case in
which such a description is much better.

All the definitions that I have given are presented in terms of statements, but they
can be extended to sentences, propositions and formulae. Such an extension depends on
accepting that it is possible to apply to these entities both the syntactic and semantic
characterizations, that is, if one accepts that it can be properly said about two sentences,
propositions or formulae, that they cannot both be true and/or cannot both be false, and
also that one is the negation of the other. Moreover, if the case of two is accepted then
one would have to analyse whether there would be any additional problems for the case
of more than two and for the case of just one, which would allow us to generalize the
definitions in terms of sets of sentences, propositions or formulae. In the background
of such extensions would be the whole problematic around truth-bearers, which I have
mentioned but somehow bypassed. The main reason for that has been that I think that it
would distract the attention from the main issues that I wanted to address here, and I do
not think it is necessary to assume a fixed position about that polemic in order to approach
them. Nevertheless, let me say (just to be open about it, even though the reader probably
has already noticed) that I am in favour of the thesis of the statements as the truth bearers.
Yet, that polemic in general does not interest me as much as a more specific one: what can
be ‘contradiction bearers’, but now we can use a more generic designation: ‘inconsistency
bearers’; that is, the issues around which elements or items can be inconsistent with each
other (or even with themselves). Considering that only two of the three given definitions
of inconsistency are directly based on the notions of truth and falsity, then, in order to deal
with the other definition, i.e., the syntactic one, the discussion about inconsistent bearers
would not be restricted to what it is covered by the polemic about truth bearers. Moreover,
it would also have to deal with the notions of contrary and contradictory terms. So it seems
to me that they are two different discussions, although closely related. In addition, it is not
that only one affects the other but it can be both ways. Actually, as we have seen, Strawson
uses considerations about ‘what can be inconsistent with what’ as a step in his argument
for the thesis that statements are the true bearers.

Going back to the proposed definitions, as I have said, they are articulated in terms of
statements, but they can be extended to sentences, propositions and/or formulae as long
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as one considers that any of these entities can be true or false, but also if one thinks that
negation is an operation among them (these options may run independently). There we will
have ‘inconsistent sentences’, ‘inconsistent propositions’ and/or ‘inconsistent formulae’,
and mutatis mutandi for the other definitions. They can also be extended to ‘inconsistent
beliefs’ and similar, as long as it is accepted that two beliefs cannot both be true (false)
and/or that one belief is the negation of another.

Let us focus now on the more general terms. I have used ‘contradictoriness’ as
embracing terms for both ‘contradiction’ and ‘contradictory’, which may also take in
‘contradict’ but without including its use for contrary statements. Above I said that ‘two
statements that are inconsistent conform an inconsistency’, and also proposed ‘opposites’
as a denomination for two opposite statements. Considering that I have distinguished three
notions of ‘inconsistent’, it has to be explained how that affects these denominations.
About the term ‘inconsistency’ I think that the best thing to do is to acknowledge two main
uses of it: as the name for the relation between inconsistent elements, and, by extension,
as the generic name for elements that are inconsistent. It does not seem to me that these
two uses lead to much confusion because if necessary it can be established in which of the
two senses the term is used; however, I think that the first use is more precise, while for the
second it may be better to say ‘inconsistent elements’ (or whatever one is talking about).
Regarding the plural case, ‘inconsistencies’ allow us to talk about more than one instance
of the relation of being inconsistent, but it may also be used as a generic name for several
inconsistent elements. This duality does not seem harmful because whenever we have one
side we will have the other. In all these options the key element is the term ‘inconsistent’,
so these variations depend on to which kind of element it is applied; however, there is a
more substantial diversity that comes from the different senses in which the term can be
understood: one syntactic and two semantic. Even though, in each case it is possible to
replace ‘inconsistent’” for ‘syntactically inconsistent’ or ‘semantically inconsistent’ (and,
if necessary, differentiating somehow between the two semantic senses), it is important
to ask to which sense the term inconsistency is going to be applied; my answer is to
all of them: whenever there are elements that are inconsistent, in any of the described
senses, one may say that there is an inconsistency. They are three different senses and
none of them has prominence over the others. It may be useful in each particular case
to elucidate which is the relevant sense, but in order to address them in general the
best option is to use ‘inconsistency’. Furthermore, if one wants to talk about the issues
related to the situation characterized by one or several elements being inconsistent with
another(s), again ‘inconsistency’ seems also to be appropriate, possibly articulated in
expressions like ‘the question of inconsistency’ and similar. Thus, at the very abstract level,
we have ‘inconsistency’ as the generic term, and ‘contradictoriness’ and ‘contrariness’
as species.

So far I have presented my terminological proposal for names and adjectives, so it is
time to address the verbs. As we saw, ‘contradict’ is the term normally used to designate
the interaction between contradictory statements (sentences, ... ), but it is also used for
contrary statements; even more, it is also used for the relation between one statement
and its negation. I have said that these diverse uses of the same term contribute greatly to
generate confusion among these uses. Consequently, it would be very helpful to distinguish
these meanings by using different terms, but I do not think that is possible by means of
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verbs without being at odds with a well-established use in natural languages (at least in
English and Spanish, and very likely in other major European languages). My proposal
is to use not a verb alone, but the following expression: ‘to be contradictory to’ and
‘to be contrary to’; but then both would be covered by the generic expression ‘to be
inconsistent with’. This latter expression is frequently used to refer to both situations,
and it does not yield to confusion as ‘contradict’ does, a reason for which it is preferable.
Moreover, whenever ‘contradict’ is used, even though it would be possible—in principle—
to elucidate in which of the two senses is used, it can be understood as a generic term that is
equivalent to ‘to be inconsistent with’. In the line of Strawson’s approach, if something is
contrary to something, that does not exclude the possibility that they can be contradictory
to each other, because what is being said—by the first expression—is that they cannot be
true together, which does not exclude the possibility that it may be the case that they cannot
be false together. This is not the case when the terms ‘contradictories’ and ‘contraries’ are
used, because they exclude each other. We have seen that the two semantic definitions
of ‘inconsistent’ are applicable to both contradictories and contraries, and with respect to
the syntactic definition it may depend on the inference rules adopted but at least within
classical logic that also holds. For the case of subcontrary statements (sentences, . . . ), the
expression ‘to be subcontrary to’ would be precise but maybe too jargon-like, so it seems
better to use ‘to be opposite to, but not inconsistent with’. Then, ‘to be opposite to’
covers this case, together with the cases of ‘to be contradictory to’ and ‘to be contrary to’,
and—consequently—also ‘to be inconsistent with’.

In the case of the opposition between statements, if the opposition is determined by
classical negation as a statement operator, then the expression ‘to be contradictory to’
would be appropriate, this matches with the customary use. But if what is used is somehow
different, then in each case it would have to be assessed what kind of opposition is being
articulated. Let me just mention two examples without going deeper into them for the
moment:, using another characterization of negation it may be the case that, concerning a
statement and its negation (using that alternative negation), we will be able to say that they
cannot both be true, but we are not able to say that they cannot both be false, so they will
only be contrary to each other. Furthermore, using some form of paraconsistent negation it
can be the case that a statement and its negation will be both true, in which case they would
not even fulfil the condition that I have presented as characteristic of ‘to be contrary to’,
but they will fulfil the conditions stated by at least one of the definitions of inconsistent
(def. INCONSY and/or def. INCONSE2). A classical reply to that would be to say that
they are not proper negations, as issue that requires a full debate, but for the purpose of
this terminological proposal it would not be appropriate to presuppose any outcome of it,
so it has to leave open the possibility of calling these other operator ‘negations’. Then, to
express in general the relation of an statement (sentence, . . . ) with its negation (whatever
kind it is) a useful expression would be ‘to be the negation of”; although, it may be made
more specific adding some designator for the kind of operator involved (classical, strong,
weak, paraconsistent, paracomplete, etc.).
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Let me draw a schema of the main divisions of this terminological proposal:

contrary
inconsistent
contradictory
opposite

subcontrary
Statements

non-opposite

6 Terms

When I addressed the most general words, like ‘inconsistency’, ‘contradictoriness’ and
‘contrariness’, I talked about ‘elements’ because being the most general definitions they
have to cover, at least in principle, statements, sentences, propositions, formulae, beliefs
and similar notions. Moreover, there is no reason, at this point, to exclude the possibility
of these elements being just terms, so let us consider ‘contradictory terms’ and ‘contrary
terms’. Brady [2, p. 61] defines the former as being mutually exclusive and jointly
exhaustive of the universe of discourse, while the latter is defined only as mutually
exclusive.

If we enquire about their relation with the notions that we have been dealing with, we
can find answers like this:

contradiction is the counterpart, on the level of sentences, of the semantic relation of meaning
incompatibility at the level of lower order constituents. [...] Linguistically, the concept of
incompatibility appears as antonymy, which is a relation between expressions. (Katz [7, p. 144 f.])

Yet trying to characterize more formally the notion of antonymy, the same author
says that considering the notions of maleness and femaleness, we can assume that they
are “incompatible and jointly exhaustive of the sexual domain” [7, p. 146] or “that the
concepts are not jointly exhaustive (taking the term ‘hermaphrodite’ into consideration,
for example)” [7, p. 146]. Then we can have antonymy with and without exhaustion, so it
would be the counterpart not of the relation among contradictory statements (sentences)
but of contrary ones.

Taking a term as a generic notion that covers both names and predicates, and not
restricted to one word but including expressions,® my proposal is to use incompatible
terms as the counterpart of ‘inconsistent statements (sentences,...)’. Then, we will

8Following definitions like the one in Honderich 1995:
“term. A word or phrase denoting an individual or class, or the propositional component it expresses.
Thus ‘John is a man’ contains two terms ‘John’ and ‘man’ (or ‘is a man’), denoting John and the set of
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have contrary terms when they are only incompatible in some domain of discourse,
and contradictory terms when they are also jointly exhaustive of the domain’; thus,
the definitions given by Brady [2] apply, as long as ‘incompatible’ is understood as an
equivalent to ‘mutually exclusive’. Considering the possibility of having terms that are
jointly exhaustive but not incompatible, a denomination that seems to me adequate is
opposite yet compatible terms; then, opposite terms can be used as a denomination
that would include these but also incompatible terms.

This last possibility could also be called ‘subcontrary terms’, but it would be more
distant from the habitual use of the words, and the proposed denomination makes the
intended sense more explicit. Actually, in Brady [2], the definition of ‘subcontrary’ is only
given for propositions. That could be explained by the fact that it is much more difficult to
find terms that are jointly exhaustive but not mutually exclusive in a domain of discourse.
I have already presented my reservations about the possibility of an ‘atomic subcontrary
statement’; nevertheless, the situation is different regarding terms, because we have to
consider the possibility of establishing compound predicates. A good example is: ‘greater
than or equal” and ‘less than or equal’—and other similar expressions—because if the two
quantities compared are equal, then both terms would be applicable; thus, in that case there
is not incompatibility, but for all the other cases in the specific domain (like the natural
numbers) either one term or the other would have to be applicable, so they will jointly
exhaust that domain. In general, any pair of terms that overlap in some cases but together
cover the whole domain of discourse, would be ‘opposite yet compatible terms’. I think
that the most relevant cases are not vague predicates that may overlap, but terms that their
overlapping are not taken as a problem, or as a failure of being more precise. It may be said
that it is in principle possible to establish or insolate a term for those overlapping cases,
and, then, use two different terms for all the other cases (in my example would be ‘equal
to’, and then ‘greater than’ and ‘less than’). That is right, but then we would have just
made a transformation: from ‘two opposite yet compatible terms’ into ‘three incompatible
terms’. In this new outcome, the three terms will exhaust the domain of discourse, but not
by pairs, so they will fit in the classical law of trichotomy.'? However, that does not imply
that the first situation cannot hold, but rather that it can be transformed into something
else.

men respectively. More generally, any word or phrase that determines the proposition expressed. In this
sense, the above sentences contains the syncategorematic term ‘is’, which does not denote and individual
or class.” [5, p. 869 (Entry written by Wayne A. Davis)]

“Horn [6, p. 268] presents a different proposal: what I have called ‘incompatible terms’, there are called
“contraries (incompatibles)”; my ‘contrary terms’ are called “mediate (weak) contraries” (which are
subdivided into “simple (reductive) contraries” and “’polar (absolute) contraries”, subdivision that I do
not have; my ‘contradictory terms’ are called “immediate (strong, logical) contraries”. The main reason
for such differences is that he thinks, following Aristotle, that terms cannot be contradictories, only
propositions (cf. Ibid. p. 39). I will come back to this in the next chapter, but for the moment let me
point out that, for the purposes of his chap. 5, he also uses contradictories for terms (cf. [6, p. 269]).

101t is interesting to see how it is presented: “Law of Trichotomy. Also called the law of comparability.
In general, a division of entities into three sets that are pairwise disjoint (that is, non-overlapping) and
exhaustive.” [4, p. 61] That is followed by specific definitions for the theory of real numbers and for set
theory.
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That takes us to a further point, which is the application of these notions to more than
two. The definitions given in Brady 1967 only talk about the case of two terms, but their
extension to more than two terms does not seem to pose any problems as long as they are
all incompatible with each other; then, if they also exhaust the domain of discourse, we
can have a ‘contradictory set of terms’, if not, we will have a ‘contrary set of terms’. An
interesting feature of the former is that if we take its terms by pairs, or any other proper
subset, then they would conform to just a ‘contrary sets of terms’. This just emphasizes
the fact that both contradictory and contrary are notions that express a correlation among
some specific elements, so their applicability strictly depends on which are the elements
considered, but it also shows how closely related they are to each other. An even more
interesting issue is the converse situation, that is, having a contrary set of terms, how can
we conform a contradictory set of terms; then, the key question is what has to be added
to get jointly exhaustiveness. I will address this issue in the next chapters, so allow me to
leave it, for the moment, as an open question.

Let us consider now the case of one single term. Considering that I am using ‘term’ in a
wide sense, which includes expressions, then, it can be the case that a term is compounded
of two terms that are contradictory or contrary. That kind of situation take us to consider the
possibility of having a self-contradictory atomic statement, where what was contradictory
was either the name or the predicate in themselves. I do not have anything to add apart
from stressing that since these terms are compounded, then the correlative character of
contradictory and contrary is clearly present. It is quite different in the situation where
it is not a compound term, because if there is not at least two notions involved I do not
see how it would be possible to establish some kind of contradictory or contrary relation,
simply because there will not be something that would be contradictory with something
else; reflexivity is not feasible. And that includes the case of ‘opposite yet compatible
terms’; since to have some form of opposition there must be some difference. In short, the
notion of a contradictory or contrary set of terms may include the case of just one term
only if it is a compound one; furthermore, that holds for all cases of opposite terms.

7 Incompatibility

I have presented ‘incompatible terms’ as the counterpart of ‘inconsistent statements
(sentences, . ..)’, but considering that the latter covers the three senses of ‘inconsistent’, we
have to consider what happens with ‘incompatible’. Apart from the definitions in language
dictionaries,'! T have found only one relevant definition in a reference book of philosophy

"'The most relevant definitions in the NSOED are:

“Incompatible [ ...] adj. 1 Incapable of existing together in the same person, opposed in character,
discordant. (Foll. by with, [obsolete] to.) LME. [...] ¢ Of an item of equipment: unable to be used in
conjunction with some other item. M20. 2 Unable to agree or be in harmony together, at variance. M16.
[...1” (NSOED [10, p. 1339]).
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or logic, in Mautner [9]; it defines incompatible as “not compatible”, and then:

compatibleadj. Two beliefs, theories, etc. are compatible if and only if they can be true together.
Two facts, events, states of affairs, etc. are compatible if and only if the occurrence of one does not
rule out the occurrence of the other.

Compatible and consistent are near synonyms. There are, however, some subtle differences:
one point of difference is that compatible is mainly used in respect of exactly two items, whilst
consistent is used in respect of any number of items. Another point of difference is that when
two items are both objects, events, states of affairs (rather than thoughts, beliefs, statements,
theories), they are said to be compatible (rather than consistent). Similarly, we say two colours
are incompatible; to say that they are inconsistent would sound odd. [9, p. 101]

Considering that the three definitions of ‘inconsistent’ that I have presented came from
definitions of ‘consistent’, now, the situation would be similar. In the first paragraph we
have two definitions of ‘compatible’, but applied to different entities; our very familiar
‘can be true together’ is applied to “belief, theories, etc.”, but then in the next paragraph
it is indirectly implied that for those entities (adding explicitly thought and statements) it
would be better to say that they are consistent. That is exactly what I have been doing so
far, and then this first definition matches with def. CONSE2, and consequently with def.
INCONSE2. The second definition is for “fact, events, state of affairs, etc.” and adapting it
for ‘incompatible’ it would say ‘they are incompatible if and only if the occurrence of one
does rule out the occurrence of the other’; in the next paragraph, after explicitly adding
objects, it is said that ‘compatible’ is a better word to use about all of them, instead of
consistent. Then, ‘incompatible’ appears as the proper term for the relation between two
colours. This second definition does not have a direct equivalence in the definitions of
‘inconsistent’ that I have presented, which is part of the reason why I think the distinction
must be made explicit somehow.

From a wide perspective ‘incompatibility’ would be the most generic term, which may
describe the relation among facts, objects, events, state of affairs, but also thoughts, beliefs,
statements, theories, although ‘inconsistent’ is a more specific designation for the relation
among the latter ones. Now let’s enquire about terms. If ‘incompatible’ can be applied to
this very wider range of items, there is no doubt that it can be applied to terms, which
somehow are in the middle between the first ones and the late ones. But then, none
of the given definitions for ‘inconsistent’ are directly applicable to terms: they are not
truth-bearers so they cannot be true together (or otherwise), and the relations of syntactic
or semantic consequence do not hold among terms but among statements (or sentence,
proposition, formulae). Similarly, the definition of incompatibility articulated as “the
occurrence of one rules out the occurrence of the other” also does not seem appropriate
because terms are, rather, used or applied in some expressions, and the occurrence of one
term does not have de facto any effect in the occurrence of another. Consequently a parallel
definition can be proposed: ‘Two terms are incompatible if the application of one rules out
the application of the other’, so the application of one term would have a de jure effect in
the application of another.

We have ended up with three kinds of incompatibilities: de facto incompatibility,
incompatibility among terms, and inconsistency. Each has to do with a different kind of
entities or elements, but conceptually they are closely related. In the traditional classical
view—so to speak—, they must all fit together, so de facto incompatibilities should be
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expressed as incompatibilities among terms, and then these being reflected in the setting-
up of possible inconsistencies. But, in my view, a general main problem is that each one
can be seen as having its own dynamic, which is a source of important difficulties in
relation to the idea of all of them matching together. I have discussed this on Bobenrieth
2003, but for the moment let me stress that as a result of analysis of definitions in the last
chapter and the present terminological proposal, the notion of inconsistency has come out
as placed in the wider context of incompatibilities. That can be seen as something obvious,
but I think that keeping it in mind can be very helpful in order to deepen our understanding
of the whole issue of inconsistencies.

Before finishing, I would like to add that I do not fully agree with the quoted definition
when it says that compatible is “used mainly in respect of exactly two items”, which is
proposed as one of the differences with consistent. It may be that there is a tendency for
using ‘compatible’ when it is related to two elements, because it is the most notorious case,
but there is no reason not to use it for more than two. Following the same case mentioned
at the end, saying that two colours are incompatible sounds better that saying that they
are inconsistent, but the same is the case for any plural number of colours. Furthermore,
there are many other distinctions that aim to establish incompatibilities among more than
two items (for example: past, present and future; solid, liquid and gaseous, etc.). In my
proposed denomination, all of these would be, in principle, cases of incompatible terms.

Let me draw another schema:

«contrariness»
of true-bearers —=>inconsistency
contradictoriness

contrary
Incompatibility (mutually exclusive)
ofterms —> (dejure)

contadictory

(mutually exclusive and

jointly exhaustive)

of facts —> (de facto)

With these I conclude this terminological proposal. Its purpose has been not so much
to prescribe some kind of correct use of the terms but to differentiate some meanings
and assign some denominations to them. The words that I have used are not so important
as recognizing that there are different situations that require some specific designations.
Although I have tried to be as close as possible to the common use of words, in many
cases I have made distinctions that go beyond it. I hope that the result is not too artificial.
Anyhow, in case of any important disagreement about the most suitable word or expression
for some situation, the reader can «read» his or her preferred option instead of my
suggestion. Any terminological usage will have its pros and cons, but my main aim has
been to show some differences that are relevant for the reflection about inconsistencies and
related issues.
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Aristotle, Frege and “‘Second Nature”

Raffaela Giovagnoli and Philip Larrey

Abstract Aristotle proposed a “naturalistic” epistemological perspective that rests on
some fundamental notions:

— Perceptual judgment (passivity and activity),
— Simple propositions (subject and predicate),
— Complex propositions (syllogisms).

As is well known, the “Square of Opposition” provides the possibility of a fruitful
classification of reality that is made of things, species and genus. Frege introduced a new
form of notation that is exemplified in his Begriffschrift and changed the Aristotelian
square. He introduced a conception of judgment that entails a fundamental relationship
with a “second nature”. Starting from this background, McDowell and Brandom present
two original views of the “second nature” which are subject to some criticisms.

Keywords Second nature ¢ Concepts * Rationality ¢ Normativity

Mathematics Subject Classification 00-02, 03AXX

1 Second Nature as Conceptual

What is “second nature”? We mean (aside from any anthropological alternatives, interest-
ing in themselves) the characterization of human beings as rational; namely, concept-using
and discursive creatures. So, there is a nature we share with animals and a peculiar second
nature, which reveals our conceptual capacities. We want to sketch these two natures while
placing them in a fruitful relationship. This means that concepts must be world-involving.

Frege’s recognition of true judgments means recognition of true thoughts, where a
thought is the sense of a linguistic expression; its meaning is a concept; namely, the
corresponding function. But also a proper name has a sense (the way in which we think
of an object) and a meaning (Bedeutung) that is the object to which the name refers. The
distinction between “function”, namely the fixed part of an expression and “argument”,
namely the variable part of it, plays the fundamental epistemological role to indicate when
the argument is “determinate” or “indeterminate”. This very distinction is relevant for
specifying a new notation of “generality”, which differs from the Aristotelian one and
rests on a substitutional strategy [1].
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Frege’s logic developed sophisticated logical relations among concepts that rest on the
fundamental notion of “unsaturedness”. Here, we can represent the falling of an individual
under a concept by F(x), where x is the subject (argument) and F() is the predicate
(function), and where the empty place in the parentheses after F indicates non-saturation.
The distinction between “judgeable content” and “judgment”, namely the way from a
thought to its truth-value, entails a distinction between “cognitive content” and “semantic
content”. We need both in order to have a plausible definition of the nature of judgment.
But, Brandom and McDowell seem to privilege only one of them.

Brandom and McDowell follow the main idea of Wilfrid Sellars: «The essential point
is that in characterizing an episode or a state as that of knowing, we are not giving an
empirical description of that episode or state; we are placing it in the logical space of
reasons, of justifying and being able to justify what one says» [2]. We can consider
perceptual judgments as the product of two types of capacities: the capacity to respond
to environmental stimuli and the capacity of taking a position in the game of giving and
asking for reasons [3]. Otherwise, we can imagine two different logical spaces: the space of
impressions and the “normative” space of knowledge, of the “normative” relations with the
world (for example, justification) [4]. The motive of these distinctions is that the natural
response to environmental stimuli is a necessary condition of empirical knowledge, but
not a sufficient one. A parrot can reliably respond to the presence of a red thing by
uttering the sound, «That’s red» and we can also suppose that an observer can do the
same under the same circumstances. Consequently, we can conclude that the parrot and
the observer share the same reliable differential responsive dispositions. These capacities
are the ones on which empiricism builds its cognitive basis and so its “Myth of the Given”.
Sellars distinguishes the capacities to respond to stimuli from the observational knowledge
(the whole of true beliefs): true beliefs are responses by the application of concepts. The
observer responds generally to red things by asserting “that” there is something red. To
respond reliably to red things means to make a certain kind of move, i.e., to take a position
in the game of giving and asking for reasons, to commit oneself to a certain content playing
the role of premise and conclusion of inferences. This account differs from the Fregean one
as Frege points on the inferential articulation that is “internal” to a concept. Differently,
on Sellars view, the response of the observer possesses a conceptual content because it
occupies a knot on the net of inferential relations. The parrot does not treat “red” as
implying “colored”, implied by “scarlet” and incompatible with “green”. In this sense,
assertions have a pragmatic sense that corresponds to the undertaking of a specific type of
normative attitude: the undertaking of commitment. The cognitive commitment possesses
therefore an inferential structure: by performing an assertion the agent commits herself
to its use as premise from which certain conclusions can be derived. The noninferential
descriptions do not form an autonomous level of language: a game that can be played
without contemporarily playing another one. To grasp a concept corresponds to the use of
a word: concepts are acquired in the process of learning a language. This process requires
two elements: the inferential know-how that allows the speaker the connection of different
sentences and the social acknowledgement of that know-how as sufficient for the speech
acts of the speaker to have the sense of commitments and entitlements to inferentially
articulated claims.
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2 The Space of Reasons

Sellars’ inferentialism could cause a certain kind of “deformation” of the space of reasons
that makes it difficult to clarify the very nature of knowledge. «The deformation is an
interiorization of the space of reasons, a withdrawal of it from the external world. This
happens when we suppose we ought to be able to achieve flawless standings in the space
of reasons by our own unaided resources, without needing the world to do us any favour»
[5]. This leading idea is at the basis of McDowell’s reading of Frege’s account. Frege
introduced the distinction between sense and reference, which means that propositions can
exist even though the proper name that occurs in the sentence that expresses them do not
refer. McDowell presented a Fregean reading that included object dependent propositions
and contrasted them to Frege’s senses which he took to be object-independent [6]. He
accepted also Evans interpretation to make his view stronger [5, 7]. On Frege’s account, a
thought can play the role of cognitive content “and” the role of truth value bearer (nota).
This option is refused by the direct reference theory and revisited by Evans and McDowell.
“For example, if Ted is watching a cat on earth and Twin-Ted (Ted’s replica on Twin Earth)
is watching a cat on Twin Earth (of course a precise replica of the earth cat, this being
Twin Earth), then their thoughts would have the same narrow content; i.e., from looking
inside their heads their thoughts would be indistinguishable. In spite of that their objects
of thought are not the same due to Ted having beliefs about the cat on Twin Earth, and
thus two different animals figuring in the propositions that Ted and Twin-Ted believe. The
natural conclusion to draw from this type of thought experiment was that Frege was wrong,
it was not a single entity that played the role of cognitive content and the role of truth-value
bearer. Instead, we had a divergence as the cognitive significance criterion individuated the
narrow content, or what is in the head, while the truth-conditional criterion individuated
the objects of thought” [8]. This divergence does not belong to Frege’s account; at the
same time, it shows the importance of objects individuating our thoughts. But, McDowell
and Evans deny the divergence view that rests on the distinction between narrow and wide
contents. In this sense, Ted and Twin-Ted do not have the same narrow contents, because
they do not admit a mode of presentation (sense) independent of reference. Actually, we
can have thoughts without reference. First, as Frege shows, we can make sense of terms
like Pegasus, Santa Claus, Zeus etc. Second, mental causation can produce thoughts that
can be shared by different persons who act and feel the same accordingly.

Contrary to McDowell, who maintains that immediate certainty of responsibly
expressed perceptual judgments exist, Brandom specifies that this is the only way we have
to speak about immediate certainty. But justification has to do with a different concept of
space of reasons, which does not require experience. McDowell is wrong, as he does not
consider the social articulation of the space of reasons. The idea of learning the inferential
use of a concept is bound to social attitudes that imply “responsibility’”” and “authority”.
The game of giving and asking for reasons becomes, therefore, dependent on the social
practices by which we recognize commitments and entitlements. The “scorekeeper” takes
the place of the Sellarsian knower and becomes a “social role”. The scorekeeper is the
one who is able to reliably recognize inferentially articulated commitments that constitute
the content of beliefs. He possesses an “expressive” rationality as the capacity to perform
inferences in the game of giving and asking for reasons.
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According to Hegel, the very nature of negation is incompatibility, which is not only
formal but also material, i.e., entails material properties as, for example, “triangular”. In
this sense, we can say that non-p is the consequence of anything materially incompatible
with p. From an idealistic point of view we cannot objectively acknowledge relations
of material incompatibility unless we take part in processes and practices by which we
subjectively acknowledge the incompatibility among commitments. This is the reason
why to apply a concept is to occupy a social position, i.e., to undertake a commitment
(to take responsibility of justifying it or to be entitled to it). Thus, judgments, as the
minimum unit of experience, possess two sides: the subjective side which indicates who is
responsible for the validity of his claims, and the objective one, which indicates whatever
the speaker considers as responsible for the validity of his/her claims. Through specific
attitudes we can specify the social dimension of knowledge. The de dicto ascription such
as “he believes that...”, determines the content of a commitment from a subjective
point of view, i.e., from the point of view of the one who performs a certain claim.
The de re ascription such as “he believes of this thing that...”, determines the content
of a commitment from an objective point of view, i.e., the inferential commitments the
scorekeeper must acknowledge [9—13]. How does this acknowledgment happen? We can
use the above mentioned ascriptions. If, for example, I am a scorekeeper who performs
the de dicto ascription «Vincenzo says that this golden agaric must be cooked in butter»
and contemporarily I acknowledge that the mushroom is totally similar to an amanita
caesarea (a good golden agaric) yet it is dangerous because it is an amanita muscaria
(an evil golden agaric), I can isolate the content of Vincenzo’s assertion through the de
re ascription «Vincenzo says of this golden agaric that it must be cooked in butter» and
make explicit the commitments I undertake and the ones I refuse from an objective point
of view [14].

3 Cognitive Content, Semantic Content and Second Nature

Let us now follow Danielle Macbeth’s analysis to understand the limits of McDowell’s
and Brandom’s accounts about empirical judgment. «According to Frege, both object
names and concept words at once express senses, which, as Brandom argues in Making
It Explicit, just are inferential contents, and also, in favored cases, designate objects and
concepts. A thought qua thinkable is an inferentially articulated Fregean sense. It belongs
to the realm of freedom and is not world-involving. But that same thought is judgeable,
available to be acknowledged as true, just if the relevant object names and concept words
designate objects and concepts respectively. A judgeable content must designate a truth-
value; for to judge just is to advance from a thought to a truth-value. A judgeable content
is thus essentially world-involving. Brandom’s founding insight, we can now say, is an
insight into thinkable, or as we might say, cognitive content; it is an insight into the nature
of a thought insofar as it is available to be grasped by a thinker. McDowell’s founding
insight, by contrast, is an insight into the nature of judgeable, or as we might say, semantic
content; it is an insight into the nature of a thought as it is available to be acknowledged
as true by a thinker» [15]. This point of view requires the world be in conceptual shape
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not only in Frege’s sense of including concepts as the Bedeutung of concept-words but
also as including the senses, the Sinn, of concept words. We have this result if we do not
distinguish cognitive and semantic content. «On Frege’s account, the dictates of reason as
set in place by the Bedeutung of object names and concept words have as such only the
potential rationally to constrain our thinking. That potential is realized in our developing
adequate inferentially articulated conceptions of how things are and thereby the eyes to see.
His account is perfectly compatible with a conception of nature as the realm of law» [16].
Brandom, on the contrary, collapses semantic content into cognitive content as the
contents of concept words (which belong to the realm of Fregean sense) are exhausted by
their inferential relations. He maintains that reality is not conceptual and we simply know
about it using our discursive practices. «Brandom is right to think that cognitive content is
exhausted by inferential relations and as such belongs wholly to the faculty of spontaneity
as it contrasts with the faculty of receptivity; but he is wrong to think that that conception
of content can serve as a conception of judgeable content. Experience must function as
a tribunal for judgment, and we can understand how it can as soon as we recognize that
semantic content is different from cognitive content, that it is world-involving» [17]. The
Fregean innovation of the Aristotelian notation introduces epistemological consequences,
which rest on the notions of “judgeable content” and “judgment”. To conceive ourselves
as knowers we need to take a step beyond the idea of true perception. This move means to
consider our “second nature” and, as MacBeth points out, Brandom, McDowell and Frege
together help us to see this kind of human “actualization”. «To acquire the eyes to see
things as they are is to be acculturated into a sufficiently advanced scientific tradition where
this is at once a matter of our acquiring adequate conceptions of things and of the world
acquiring a face, a presence for us. Our capacity to know together with the capacity of the
world to be known is then fully actualized in successful (i.e., correct) judgments» [18].

4 “First” and “Second” Nature in Classical Thought

The Fregean distinction concerning “Second Nature” is said to have sprung from Aristo-
tle’s writings and indicates the emergence of human intelligence as a unique phenomenon
in the natural world.! Nature (¢uotc), in this sense, would refer to all that is independent
of human intelligence, the “natural world”, as that which surrounds us and which exists
separate from culture. The ancient Greeks by and large supported an authentic “ecological”
world view: the natural world was something to be respected and human intelligence had
the goal of harmonizing with the natural order so that life flourished. Kitto in his classical
work, The Greeks, has explained perhaps better than anyone the peculiar mindset of a
people that forged the basis of Western culture [19].

Cf. Aristotle, Peri Hermeneias, Part 7; also see Categories, Part 2, where he writes explicitly: “Of things
themselves some are predicable of a subject, and are never present in a subject. Thus ‘man’ is predicable
of the individual man, and is never present in a subject. By being ‘present in a subject’ I do not mean
present as parts are present in a whole, but being incapable of existence apart from the said subject.”
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An argument can be made to include human intelligence in this natural world (that it is
part of “nature”), but for our purposes here we will elaborate on the distinction that divides
nature in to two. The Second Nature is that which owes it foundation to human thought.
Aristotle was convinced that animals exhibited some sort of intelligence, albeit different in
essence from human intelligence. He referred to them as the “brutes”, although certainly
not in a derogatory fashion. The brutes were able to perceive their environment and act on
certain conditions in order to achieve their instinctive goals. Every living thing possessed
a “soul”, which for Aristotle was another name of the life principle (“form”). Even though
Aristotle did not believe in a revealed religion, he did conclude that humans possess souls
which are immortal, and that they continue to exist even after separation from bodies. As
is well known, Plato also taught the same doctrine yet he differed on the journey of souls
after their separation from bodies.

In his On the Soul, Aristotle argues that the human intellect is capable of actions which
transcend the material substratum of the body/soul union and that therefore is capable of
an act of existence which is “higher” than that of the body:

«Actual knowledge is identical with its object: in the individual, potential knowledge is in time
prior to actual knowledge, but in the universe as a whole it is not prior even in time. Mind is not at
one time knowing and at another not. When mind is set free from its present conditions it appears
as just what it is and nothing more: this alone is immortal and eternal [ .. .] and without it nothing
thinks» [20].

Here, Aristotle refers to “mind” as opposed to “intellect” because it is separate from
individual intellects yet provides each one with the act necessary for cognition. Therefore,
it is unclear if Aristotle held that actual people’s souls are immortal (as in a personal
immortality). The medieval scholar, Thomas Aquinas, will incorporate Aristotle’s notion
of a separate mind and place it in each individual human being, thus arriving at the
Christian view of personal immortality.

Although it is true that “there is nothing in the intellect which has not passed through
the senses” (a phrase which appears often in Aquinas), the intellect is capable of actions
which go beyond the potentialities of the body. The most common of such actions would
be conceptual thought, i.e., the universalization of the material element that results from
the process of abstraction. Through the apprehension of empirical data from the external
world, the passive intellect elaborates the sensorial data through the various internal senses
(such as the common sense, the fantasy, the memory and the cogitative sense) and the
active intellect then takes that “phantasmata” and renders it knowable in act. The universal
concept is thus seen as transcendent with regards to the (sensorial) process needed to create
it. For judgment to occur, the rational intellect would apply the verb “is” to the mental
content and arrive at an affirmation (or negation), as in the example, “This is a cat”.

It is commonly understood that non-human intellects are incapable of such mental
processes. In other words, animals do not possess an active intellect, yet only passive.
Instead of a “cogitative” sense, the brutes have the “estimative” sense which allows them
to calculate the value of the external object before them, the result of their own perceptive
process. Such a power allows the rabbit to flee when it perceives the fox, “estimating”
the danger of the object perceived. According to Aristotle, the rabbit does not “judge”
the value of the object, for that would require a more powerful intellect (which humans
possess).
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The study of animal cognition expanded greatly after Darwin. Many scholars are
convinced that some animals are indeed capable of conceptualization, and not simply
instinctive response.” A friend of mine, Bill Penn, retired professor of logic and ethics at
St. Edward’s University in Austin, Texas, has a ranch in western Colorado where he cares
for six horses and 200 acres of land. Musing about the question of animal intelligence, he
asked me how his horses realize that I am not a threat to them? He suggests that, in some
way, they have a type of “universal notion” which tells them that not only is Bill non-
threatening, but all human beings are thus (unless otherwise demonstrated, for example,
when someone truly wants to harm them in a concrete way). I could tell that they certainly
recognize Bill by his voice and scent as different from me, yet when I approach them they
do not flee. How do they “know that all humans can be trusted (at least generically) unless
they have some notion of similar members of a class?

Another example from Colorado conveys a similar idea. Every morning, Bill loads the
humming bird feeder on the deck with sugar water, and throughout the day the humming
birds arrive and drink the nectar. One morning, he forgot to add the water and went fishing
down by the river, about 300 yards from the house. Within a half hour, several dozen
humming birds started dive bombing towards him as he stood on the shore of the river. He
could not understand why this was happening and was sincerely perplexed (and slightly
scared) until he realized that he had not filled the feeder. Once he did so, the dive bombing
stopped. In order to explain such a phenomenon, one would seem to need to attribute
to the humming birds a notion of causal agency, attracting the attention of the one who
replenishes the nectar in the feeder in order to fill it up. Crows and pigeons are said to be
quite cunning in this regard.’

Althoughiit s difficult to provide a comprehensive evaluation of the differences between
human and animal intelligence, it is very apparent that there are differences. Aristotle
understood the human mind as capable of “modelling” nature, in the sense that extra-
mental reality becomes present to the soul in an intentional way. There are two modes of
existence for objects: a real mode of existence and an intentional one. The famous phrase,
“The soul becomes, in a way, all things” means that objects exist in the soul through the
intellect which gives rise to their representations. By way of the process of abstraction, the
intellect creates an image or representation of objects and then performs judgments.

Aquinas, commenting Aristotle, insists that the mental representation of reality is not
the object of knowledge, but rather things are the objects of knowledge. The mental
representation is that by which the mind knows [21]. It is clear that representations cannot
be the very objects of knowledge, because that would lock the cognitive subject in an
immanent loop, without ever being able to achieve knowledge of the external world. The
fact that we possess scientific knowledge which is efficacious and progressive implies

2For a recent, well-documented text on this subject, see How Animals See the World. Comparative
Behavior, Biology and Evolution of Vision, ed. By Olga Lazareva, Toru Shimizu, Edward Wasserman.
Oxford University Press, 2012.

3Cf. Candace Savage, Crows: Encounters with the Wise Guys of the Avian World, Greystone Books, 2005.
As a sign of crows’ advanced smarts, Savage cites Kacelnik’s 2002 study in the journal Science on a
captive New Caledonian crow that bent a straight piece of wire into a hook to fetch a bucket of food in a
tube.
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that we do in fact achieve an understanding of extra-mental reality through our thought
process. Throughout the Medieval period, this notion becomes known as the doctrine of
intentionality. Intentionality is simply the way that reality and the mental are related.

It is in this sense that we can understand Frege’s term of “Second Nature”: First Nature
is that which exists in the real world, and Second Nature is the same Nature’s existence in
the mind, an intentional existence, which depends on the intellectual capabilities of human
beings. From this understanding, it is logical to foresee the advent of some of the great
philosophical questions of modernity: how do the representations arise in the intellect?
(problem of perception); are such representations innate in the mind? (John Locke’s
dilemma); do our mental representations correspond to real objects? (Immanuel Kant’s
problem of the bridge); can these representations be expressed linguistically? (problem
addressed by the “Linguistic Turn”); how do our assertions “hook” onto the world? (Hilary
Putnam’s quandary); are representations truly universal or are they culturally conditioned?
(problem of post-modernity); as well as others.

The possibility of creating models of reality allows human beings to know the empirical
world. From the Aristotelian point of view, the modelling of nature captures the essence of
objects and holds such essences in the intellect, albeit in a non-physical way. In what way
the intentional essence is constructed from sense data arising from the object, as opposed to
an immanent construction by the powers of the mind, is a controversy which survives even
today. Quine addresses this issue by way of conceptual schemes which refutes the Kantian
distinction of the difference between analytic propositions and synthetic propositions
[22]. Reality, according to Quine, is relative to conceptual schemes, and this gives rise
to his notion of ontological relativity. Donald Davidson attempts to restore ontological
objectivity in his classical essays, On the Very Idea of Conceptual Scheme [23]. «In giving
up dependence on the concept of an uninterpreted reality, something outside all schemes
and science, we do not relinquish the notion of objective truth—quite the contrary. Given
the dogma of a dualism of scheme and reality, we get conceptual relativity, and truth
relative to a scheme. Without the dogma, this kind of relativity goes by the board» [24].

In a way, Davidson returns to Aristotle, recognizing the causal influence that objects
have on our mental activity. The relationship between objects and mental activity
is certainly complex, and it will continue to perplex us. Some scholars look to the
neurosciences to solve these mysteries, and there have certainly been advances in this field.
Robert T. Knight at the University of California Berkeley has made effective progress
in this sense with his Cognitive Neuroscience Research Laboratory. One spectacular
experiment involved epilepsy patients which were wired with deep neural sensors attached
to computers. The patients listened to words and were asked to think about them without
pronouncing the words. The words were then heard over the speakers of the computer.
Some patients later told Bob Knight, “You’re reading my mind!”*

“For the complete scientific study, see Robert T. Knight, Reconstructing Speech from Human Auditory
Cortex in http://www.plosbiology.org/article/info%3Adoi%2F10.1371%2Fjournal.pbio.1001251, January
31, 2012.
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5 Conclusion

As a concluding provocation, a further hypothesis can be suggested. Third Nature. If
Second Nature is what occurs when the human mind models reality, could it not be
suggested that Third Nature is what occurs when autonomous robots model reality? Rapid
progress in artificial intelligence (AI) leads to such a suggestion. In just several months,
the capacity to model nature given to Google’s self-driving cars has increased almost
exponentially.’ These cars can now calming drive in urban traffic, addressing hundreds
of seemingly unpredictable situations (unforeseen construction work on the road, animals
running across the street, stop lights which don’t work). Google claims that their cars have
driven for more than 700,000 miles with no accidents.® Any advanced Al system utilizes
complex models of nature which allow that system to interact with the environment. As
these systems get better and create more complex models (for example, IBM’s Watson
which competed with the best two Jeopardy! champions and defeated them), we can
certainly ask if those systems give rise to a Third Nature, understanding that modeling
nature from their perspective is quite different than the way the human mind does it.
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There Is No Cube of Opposition

Jean-Yves Béziau

Abstract The theory of opposition has been famously crystallized in a square. One of
the most common generalizations of the square is a cube of opposition. We show here that
there is no cube such that each of its faces is a square of opposition. We discuss the question
of generalization and present two other generalizations of the theory of opposition to the
third dimension: one based on Blanché’s hexagon of opposition, the other on the square of
contrariety.

Keywords Cube of opposition ¢ Generalization ¢ Hexagon of opposition ¢
n-Opposition ¢ Square of opposition

Mathematics Subject Classification (2000) Primary 03A05; Secondary 00A30; 03B45,
03B53, 03B22, 03B50.

1 The Cube of Opposition: An Obvious Geometrical
Generalization

An obvious way to generalize the square of opposition is to consider a cube of opposition.
Many cubes of opposition have been presented in the literature (see e.g. [19, 27, 29-31, 39,
40, 49, 50]). The cube is a an immediate generalization that one may have for the theory
of opposition driven by a geometrical spirit. From a square we can go to other polygons:
a pentagon, a hexagon, a heptagon, ..., a chiliagon. And such generalizations also exist in
the literature (see e.g. [26, 36, 37] and in general all the recent publications on the square:
[6, 14-18]).

The cube is a nice generalization in the sense that we keep the square shape but
at the same time we go to the third dimension. Something is preserved and at the
same time there is a change, an expansion. This double contrasting aspect—preservation
with transformation—is a key feature of generalization. But this is here only from the
geometrical point of view.

Another fundamental aspect should be taken into account, and that is: the relation
between the theory and what it is supposed to represent. There is an interaction between
the geometrical figure of the square and the theory of opposition and this interaction also
has to be preserved. Generalization should not just be on the geometrical side, it should
also be on the side of what the geometrical object is supposed to represent. This side is
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Fig. 1 Abstract coloured square
of opposition
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not a dark side and only one side. The square has internal and external structures that can
be colourfully represented. The square can be seen as built on a red cross (the heart of the
square), which is then “circled” by a top blue line of contrariety, a bottom green line of
subcontrariety and two black arrows of subalternation (Fig. 1).!

The result presented in this paper shows that there is no straightforward generalization
of the theory of opposition from a square to a cube, in the sense that there is no cube of
opposition such that each of its six faces is a square of opposition as represented in Fig. 1.

The title of our paper is deliberately provocative. It is to stress that if one wants to
promote the idea of a cube of opposition, (s)he has to carefully explain and/or justify what
(s)he is doing. We will let the proposers of such cubes of opposition do the job. Here we
will present two other generalizations of the square into the third dimension which are not
cubes, and explain why they are good generalizations of the square of opposition.

2 The Square of Opposition: A Flag for the Theory of Opposition

The theory of opposition has famously been crystallized in a square. This crystallization
became very important, exceeding the theory itself. It is not exaggerated to say that the
square of opposition became the flag of the theory of opposition. And this is not necessarily
a problem, this is quite a nice flag. This is indeed a better flag than most of countries’
flags where there is no visible connection between the image and what it is supposed to
represent. Let us examine two cases shown in Fig. 2.

The flag of Switzerland is a white cross on a red square. Like the square of opposition,
it is a square, but here the square apparently has no special meaning. It is a pure question
of regularity/symmetry in harmony with the cross which is inside. At the end everything
is square in the Swiss flag. This can be seen as a compass indicating rationality and
organization. Generally flags are rectangular. Only two sovereign states have a flag with a
shape of a square: Switzerland and Vatican. We have organized congresses on the square in
both of these countries (The first SQUARE in Montreux in 2007 and the fourth SQUARE
at the Pontifical Lateran University in 2014). The others were organized in countries with
rectangular flags. This is the case of the third SQUARE that took place at the American
University of Beirut in 2012. The flag of Lebanon is also made of some red and white

"'We introduced this colouring of the square in 2003, cf. [2].
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Fig. 2 Flags of Switzerland and _
Lebanon

Fig. 3 A typical representation
of a giraffe

geometric shapes but it has moreover at the middle of it a tree, known as the Lebanon
cedar. This tree is the symbol of Lebanon, because it is typical of Lebanon. The square of
opposition is also a typical exemplification of the theory of opposition. However such kind
of “typicity” is not the same as the one of the Lebanon cedar.

Itis also not the same as the picture of a giraffe as represented in Fig. 3. Such a picture is
a schematic representation of a giraffe emphasizing its main features corresponding to the
standard definition of this animal: a long-necked, spotted quadruped ruminant. The class
of giraffes is a class of homogeneous “things”, so it is easier to “typify” them. What about
the class of all animals? The giraffe in Fig. 3 certainly is not a good typical example of
animal. It is not general enough. If we exemplify the notion of animal through this picture,
this may give the idea that all animals are quadruped. Choosing the square represented as
in Fig. 1 this may also give the idea that opposition is necessarily a quadruped ...If we
generalize the square of opposition to a cube or a hypercube, maybe the square may still
serve as a good example, considering it is the first and simplest form. It would be the same
as to consider 1 as a typical example of number.

Can we say that the square is a symbol for the theory of opposition like the balance for
justice, or the two parallel lines for identity (Fig.4)? A symbol can be defined as a sign
where there is a connection between the sign and what it represents, as opposed to arbitrary
signs (cf. Saussure [51] and Beziau [8] for a semiotic hexagon). The two signs of Fig. 4
are doubly symbolic: (1) They are stylized pictures; (2) They represent an idea through
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Fig. 4 Symbols of justice and equality

a typical concrete example. We call the first aspect of symbolization pictogrammatic
symbolization and the second aspect ideal symbolization.”

The picture of the giraffe presented in Fig.3 can be considered as doubly symbolic.
But there are two slight differences on both sides of the symbolization procedure. On the
one hand it is not completely stylized—not so simplified both in form and colour, on the
other hand it is not so ideally symbolic since the reality it describes, the species of giraffes,
is not so ideal. The square of opposition presented in Fig.3 is more stylized, despite the
fact that there are still colours. But colours are used here in a different way than in the
case of the giraffe. The colours themselves are symbolic like in the case of traffic signs; in
the case of the giraffe the colours are purely descriptive.? Considering the ideal aspect of
symbolization, the theory of opposition is much more ideal than the species of the giraffes.
The question we have to investigate is if the figure of the square is as good an idealization
through particularization as is the balance for justice or the two parallel lines for equality.

Since justice and identity are very heterogeneous, the objects singled out to represent
them are necessarily too particular. The art of ideal symbolization is to convey the general
idea through a particular concrete instantiation. The problem is that with the theory of
opposition we are going from the particular to the general, whereas this is not the case
with justice, as the theory of justice did not start with a balance. Going from the particular
to the general is very common in science, in particular in mathematics (see e.g. [33]).

Figure 1 can be viewed as an abstract structure having many different instantiations.
The letters A, E, I, O can be seen as variables that can be interpreted as different kinds
of propositions or different kinds of concepts. Let us just give two examples: the square
of modalities and the square of speed (Fig. 5). The square of modalities can be interpreted
as a square of concepts (necessary, possible, impossible, not necessary) or of correlated

2We have elaborated this distinction in our paper “La puissance du symbole” [11] published in the book
La pointure du Symbole [10] which is the result of the interdisciplinary workshop we organized at the
University of Neuchatel in 2005. Saussure gives as an example of symbol the balance but he does not
specify the double aspect of symbolization.

30ur choice for the colours of the square as in Fig. 1 was more or less intuitive: red for contradiction,
because it is the strongest opposition, black for subalternation, because it is not an opposition. The choice
of blue and green was more intuitive, we didn’t know at this time the RBG theory which was later on
formalized by Dany Jaspers using the theory of opposition, see [35].
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Fig. 5 Square of modality and square of speed

Omnis uoluptas Omnis uoluptas . . . .
bonum est bonum non est Universalis —ee— Universalis
AfﬁrmatlvaleNeganva
Quaedam uoluptas Quaedam uoluptas Particularis === Particularis
bonum est bonum non est Affirmativa Negativa

Fig. 6 The voluptuous square of Apuleius and the corresponding categorisation

propositions (It is necessary that it will rain, etc ...). These modalities can also be
interpreted in a deontic way (obligatory, prohibited, ...) of which the square of speed
is a particular case related to action.

Historically speaking the situation developed the other way round. First a particular
square was developed, a square related to Aristotle’s theory of proposition, which classifies
the propositions in four categories.* There are here already two levels: the categories
themselves (universal affirmative, universal negative, particular affirmative and particular
negative) and specific examples. In Fig. 6 on the left we have the original “typical” example
given by Apuleius, the voluptuous square. It is very easy to understand through this
particular example the corresponding categorical generalization, which is on the right.

People have generally not stuck to the original exemplification of Apuleius or/and to
the Aristotelian categorization, but many have stuck to the square (and two of its avatars:
the quantificational and modal squares) as if the theory of opposition was limited and/or
reducible to that. Sticking to the original square is the same as to stick to natural numbers,
not considering other numbers. But generalization in mathematics is not the product of

4The square of opposition is an interesting way to classify propositions and it can be seen as a tool
for classification, which is at once more complex yet more compact than the most famous classificatory
structure, the tree—about the theory of classification see [47].
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pure fantasy. Irrational numbers are the by-product of rationality, more specifically the
reduction to the absurd (Fig. 7).

Aristotle’s theory of proposition led to a specific configuration of the theory of
opposition. By abstraction a certain structure is manifested and then applied back to many
particular cases. This procedure is common in mathematics where structures like algebraic
structures were extracted from some specific cases, studied by themselves and applied
back to some concretes cases.” Two famous cases are groups and lattices. Some people
even had the funny idea that everything is (or has the structure of) a group. Other people
had a similar idea about lattices. In fact at some point lattices were called “structures”, as
if they were the quintessence of structures (see [32]). But the idea of structures was indeed
the next step in generalization by abstraction in mathematics.

Saying that the theory of opposition is nothing more than the square of opposition
would be the same as saying that geometry is nothing more than Euclidean geometry or
that numbers are nothing more than natural numbers. Nevertheless we can use the square
of opposition as a flag for the theory of opposition because it was the first manifestation of
it. This is a phenomenon common in thought and language. “Alpinism” means mountain
climbing, not only climbing the Alps. Some people are trying to detach it from its
particularism and replace it by “mountaineering”. Another possibility would be to talk
about “Everestism”, considering that Mount Everest is the highest mountain on earth (the
name of this mountain is related to George Everest, the uncle of Mary Everest Boole, the
wife of George Boole). Using proper names, another option would be “Saussurism”, in
memory of Horace-Bénédict de Saussure, one of the main promoters of Alpinism. For the
square it is also common to attach it to Aristotle, Apuleius or Boethius. When one is talking
about the Apuleian square, we know it is about opposition, not just about a geometrical
shape or/and Apuleius. This conveys the idea of the theory of opposition.

Saussure was not the first to climb the Mount Blanc, nor George Everest was the first
to climb the Mount Everest. And probably Apuleius is not the first to have drawn a square
of opposition (see [28]), as it has been claimed by Bochenski [24, 25] and Sullyvan [52]
and supported by Londey and Johanson:

Historians of logic are agreed that, although Aristotle stated the principal logical relations between
the four types of categorical proposition, he did not invent the heuristic diagram, traditionally
known as the Square of Opposition, which maps those relations. This diagram has been part of
the staple fare of students of elementary logic for centuries, but modern writers do not always show
any certainty about its origin, or its original form. It is not uncommonly thought to be a medieval
invention, or is simply glossed as ‘traditional’ in a way which implies either a medieval or post-
medieval origin. However, Bocheiiski and Sullyvan correctly locate the first known occurrence of
the diagram in the Peri Hermeneias. “The Apuleian square of opposition”, Appendix B of [41,
p. 108].

Let us point out that nobody has seen a square of opposition drawn by Apuleius though
Londey and Johanson correctly say that Apuleius gives a “set of instructions on how to
draw the figure and how to label the relations to be charted”. But Laurence Horn pointed
out that Aristotle also had a square in mind (see [34]).

SLet us point out here that there is a difference between generalization reached by induction and
generalization reached by abstraction from a single example. There can be some mixed cases. In the case
of the square it looks more like pure abstraction than induction.
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3 The Proof that There Is No Cube of Opposition

We now present the proof that there is no cube of opposition. Firstly we present an abstract
proof and secondly a visual proof.

Theorem There is no cube of opposition such that each side of it is a square of opposition.

Abstract Proof (1) Suppose that we have a cube of opposition such that each of the six
faces of it is a standard square of opposition. (2) At a vertex v of a cube we have a triple
point where three edges A, B, C coterminate and three faces X, Y, Z meet. (3) Any pair of
these three faces share one of these three edges, and any pair of these three edges form two
adjoining sides of one of these three faces. (4) According to the definition of a square of
opposition, when we have two edges meeting at a corner of a square, one should be black
(subalternation) and one should not be black (either green or blue). (5) Therefore one of
the edges meeting at v must be black, let’s say A. (6) If B is black too, then, according to
(3), A and B are two edges of a square, say X, meeting at a corner of this square, so X is
not a square of opposition, this contradicts (1). (7) So B is not black. (8) Then according to
(4) C has to be black. (9) According to (3) B and C meet at a corner of one of the squares,
say Y. (10) Since B is not black, according to (4), C must be black. (11) But then A and
C are two black edges meeting at a corner of the third square Z, so Z is not a square of
opposition, this contradicts (1).

Visual Proof There is a more visual and more direct way to prove this result.® Consider
the following situation.

Fig. 7 No cube of opposition

% About recent advances on visual reasoning see e.g. [43].
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We have put a square, in the standard position, on the front side of the cube. It is easy
to understand that there is no loss of generality putting the square in this position.
Now let us consider the diagonal edge on the top right. It can be blue, green or black.

Blue: then the upper side of the cube is not a square of opposition
Green: then again the upper side of the cube is not a square of opposition
Black: then the right side of the cube is not a square of opposition

In the three cases, due to colouring, we immediately see why the mentioned sides are
not squares of opposition even without stating explicitly the above proposition (4).

4 Two Other Three-Dimensional Generalizations of the Square
of Opposition

In this section we will discuss two other generalizations of the square of opposition: the
hexagon of opposition and n-opposition theory. They are also related to the third dimension
but in a different way than the cube. In a way which is at the same time more indirect
and more fundamental. These two generalizations have in common the fact that the first
motivation of their development is not the third dimension, but they naturally and even
imperatively lead to it. They are also tightly related to each other, n-opposition theory
being a generalization of the hexagon of opposition.

The hexagon of opposition appeared in the 1950s, and as often in the evolution of
science, which can be seen as a general movement of human thought, it is not the idea of
one isolated person. Different people had independently the same idea at more or less
the same time. Let us note that this is what happened with many-valued logic which
was independently developed by Peirce, Post, Bernays, and Lukasiewicz. This does not
mean that everybody had exactly the same idea. There is something in common, but it is
presented and developed in different ways, and this can lead to a theory which is a blend
of ideas, or alternatively one of them develops more than the other ones and dominates.

In the case of the hexagon, this is rather the second case, as Robert Blanché developed
the hexagon of opposition in a systematic and continuous way over more than 10 years
starting in the mid 1950s (see [20-23]). We have already written a paper on the hexagon
entitled “The Power of the Hexagon” (see [6] and edited a special issue of Logica
Universalis on the hexagon (see [6]) so we will not enter much into details here. We will
just discuss the hexagon from the issue of generalization.

Blanché’s hexagon of opposition is not a two-dimensional generalization of the square
of opposition in the sense that sides are added. Let us point out that the square of opposition
is not just a square, it has a structure made of three oppositions and the further notion of
subalternation. If we add sides, how to adjust the structure and what is the motivation?

Blanché’s construction is based on a true philosophical inquiry about the theory of
opposition dealing in particular with the original exemplification of the square, the square
of quantification. Blanché solved one of the main problems of the square of quantification.
There were two problems with the traditional square, both related with the I-corner, the
“existential” corner. The first problem is the question of existential import that we will not
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Fig. 8 Quantificational triangle All None
of contrariety

Some
Fig. 9 Blanché’s hexagon of U=AorE

opposition // x\
A E

Y=land O

discuss here (a very romantic topic which bears some similarity with the question of sex
of angels). The second problem is about some. It was pointed out by several people that
the I-corner does not correspond to the meaning of the quantifier some and for this reason
people wanted to replace the square by a triangle (Fig. 8).

Blanché, instead of staying with just the triangle, constructed a hexagon through a star
by tying this triangle of contrariety with a triangle of subcontrariety (Fig.9).

In which sense can we say that this hexagon of opposition is a generalization of the
square? Firstly in the sense that the hexagon has a high degree of generality, it can be
applied to many different situations (see [8, 9, 12, 13]). But this is also the case of the
blue triangle which is the heart of hexagon. Secondly it is a natural extension of the
square, which is recovered inside the hexagon (and two more squares appear as can be
seen by rotating the hexagon). It is natural to consider the conjunction of the I and the O
corners and the disjunction of the A and E corners. This makes sense, and it is supported
by a nice internal structure. So the hexagon is like a flourishing of the square. It is a
natural complexification of the square. Such kinds of developments contrast with trivial
generalizations.
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Fig. 10 The
cuboctahedron—with a structure
of 4 hexagons

The way from the hexagon to the third dimension is also a kind of flourishing. Having
discovered that the negation of necessity was a paraconsistent negation (see [1, 4, 5]) I
wanted to systematically study the relations between negation and modalities (see [3, 7]).
This can lead to an octagon. It is one option, but I wanted to preserve the star/hexagon
structure, therefore I built three hexagons of opposition and a natural way of relating
them is to construct a three-dimensional object. So I built such a structure. As noted
by Alessio Moretti and Hans Smessaert to whom I communicated my idea at this time
a fourth hexagon shows up in this three-dimensional construction, that I first saw as a
stellar dodecahedron but that they identified as a cuboctahedron considering the surfaces
generated by subalternation (Fig. 10). The surface of this cuboctahedron is made of an
alternation of six squares with eight triangles. None of these squares is a square of
opposition, all the edges are subalternations, that’s why they are in black in Fig. 10. In red
we have links of contradiction. We have not put the blue and green edges of contrariety
and subcontrariety but at the end we have 12 interlaced squares of opposition inside this
three-dimensional object because we have 4 hexagons and inside a hexagon of opposition
there are 3 squares of opposition.

Let us now have a look at the other generalization which also leads to the third
dimension, n-opposition theory. As we have seen, the hexagon is constructed by putting
two triangles together. The heart of the hexagon is the blue triangle of contrariety. Such
a triangle can be seen as breaking/extending the dichotomy promoted by the school of
Pythagoras (cf. the table of opposition). This triangle was not designed by Aristotle, but
Aristotle promoted the notion of contrariety which is intimately related to it.

On the other hand contrariety is not necessarily limited to trichotomy. We can go
to tetrachotomy and draw some squares of contrariety. The similarity of a square of
contrariety and the standard square of opposition is only in the structure/shape of the edges,
but all edges correspond to contrariety, like with the triangle of contrariety; so using colour,
we have a blue square (Fig. 11).

In the same way as in the construction of the hexagon, we can consider a dual green
square of subcontrariety and tie the two squares together using red contradictory edges.
This gives birth to an octagon of opposition. This is a natural generalization of the hexagon.
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Fig. 11 Square of contrariety of Baby Teenager
ages

Adult old

Fig. 12 Tetrahedron

We have gone from a 3-contrariety (a contrariety of three terms) to a 4-contrariety (a
contrariety of four terms). Contrariety can work with only two terms but it is not limited
to three terms. We can go to four terms and more. In fact it seems that “child” is missing
in the square of Fig. 11, so it would be better to have a pentagon.

I promoted this generalization of the theory of the hexagon of opposition and Alessio
Moretti baptized this “n-opposition theory” (cf. [44]). The expression is quite ambiguous
because the number of oppositions is still the same in all the cases, we are not adding
more oppositions, we are staying only with the three basic ones: contrariety, subcontrariety
and contradiction. 3-opposition theory is Blanché’s hexagon, 4-opposition theory is when
we consider four contrarieties (and four subcontrarieties), etc. But the main contribution
of Moretti is much more interesting than this ambiguous terminology (which he likes to
abbreviate as N.O.T.= n-opposition theory).

Moretti had the idea that it would be better to have the same distance between the
four vertices. This is not the case in a square because the diagonals are longer than the
sides. For the standard square this is not necessarily a problem, because the diagonals do
not correspond to the same notion of opposition as the sides. One may defend the idea that
contradiction is longer because it is stronger. But if we consider a blue square of contrariety
then the asymmetry is a defect. So Moretti suggested that it would be better to consider
a tetrahedron (Fig. 12). Such a geometrical object is three-dimensional. We go here to the
third-dimension by a kind of accidental necessity.

If we want now to generalize the construction of the hexagon for 4-opposition, we
construct a dual green tetrahedron of subcontrariety and putting the two together we arrive
at the object represented in Fig. 13, which is called a “stellated octahedron”.

The idea of tetrahedron can be generalized to any number of vertices, the name for such
an object is “simplex” and the name for a composition of two simplexes is a bi-simplex.
Moretti used these geometrical objects to generalize Blanché’s hexagon of opposition. His
theory of n-opposition takes a bi-simplicial form and even a poly-simplicial from (see
[45, 46] and also [42, 48]).
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Fig. 13 Stellated octahedron for
4-opposition theory

Let us summarize the story. We have the square of opposition which is a two-
dimensional object. Considering trichotomy is quite natural and does not lead immediately
to the third dimension. It leads to a hexagon. On the one hand instead of going to an
octagon where the basic figure of the triangle is somewhat lost, we can go to the third
dimension constructing a cuboctahedron—all this staying in 3-opposition theory. On the
other hand we can generalize this theory going to 4-opposition theory, then we have to go
directly to the third dimension right at the start.

In the case of the cuboctahedron, the move to the third dimension is motivated by
the preservation of a triangular structure. The triangle leads to the third dimension, this
is quite homogeneous and harmonious. In the case of 4-opposition, although the way of
going to the third dimension is more subtle than in the case of the cube of opposition
(internal structural necessity) this theory can also be criticized. Why go from trichotomy
to tetrachotomy? does this make sense from a philosophical point of view? The move
from 2 to 3 can already be criticized, as Kant puts it: only dichotomy is a priori (see [38]).
But trichotomy can indeed be defended, either from the point of view of reality or from
a transcendental viewpoint, or both. The structure of thought can be seen as trichotomic.
This is an idea more or less promoted by Blanché, justifying his hexagon (see [23]). We
can consider that at the level of signs everything can be reduced to dichotomy but that
thought is essentially trichotomic. Tetrachotomy looks much more empirical. There are
four seasons (in some regions of the earth), but can we say that there are four kinds of
ages? As we have said, five would be a better division.

The four points of the compass are a rather arbitrary squaring of space. Maybe
everything is round, in space and time (Fig. 14).
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Fig. 14 Circles of space and time

Acknowledgements Thanks to Catherine Chantilly and Robert Purdy for discussion and comments.

References
1. J.-Y. Beziau, S5 is paraconsistent logic and so is first-order classical logic. Logic. Invest. 9, 301-309
(2002)
2.J.-Y. Beziau, New light on the square of oppositions and its nameless corner. Logic. Invest. 10,
218-232 (2003)
3. J.-Y. Beziau, Paraconsistent logic from a modal viewpoint. J. Appl. Log. 3, 7-14 (2005)
4. J.-Y. Beziau, The paraconsistent logic Z - A possible solution to Jaskowski’s problem. Logic Log.
Philos. 15, 99-111 (2006)
5.J.-Y. Beziau, Adventures in the paraconsistent jungle, in Handbook of Paraconsistency (King’s
College, London, 2007), pp. 63—-80
6. J.-Y. Beziau (ed.), Special issue on the hexagon of opposition. Log. Univers. 6(1-2) (2012)
7. J.-Y. Beziau, The new rising of the square, in [15] (2012), pp. 3-19
8. J.-Y. Beziau, The power of the hexagon. Log. Univers. 6, 1-43 (2012)
9. J.-Y. Beziau, The metalogical hexagon of opposition. Argumentos 10, 111-122 (2013)
10. J.-Y. Beziau (ed.), La pointure du symbole (Petra, Paris, 2014)
11. J.-Y. Beziau, La puissance du symbole, in [10] (2014), pp. 9-34
12. J.-Y. Beziau, Disentangling contradiction from contrariety via incompatibility. Log. Univers. 10,
157-170 (2016)
13. J.-Y. Beziau, Round squares are no contradictions, in New Directions in Paraconsistent Logic, ed. by
J.-Y. Beziau, M. Chakraborty, S. Dutta (Springer, New Delhi, 2016), pp. 39-55
14. J.-Y. Beziau, S.Gerogiorgakis (eds.), New Dimension of the Square of Opposition (Philosophia,
Munich, 2016)
15. J.-Y. Beziau, D. Jacquette (eds.), Around and Beyond the Square of Opposition (Birkhduser, Basel,
2012)
16. J.-Y. Beziau, G. Payette (eds.), Special issue on the square of opposition. Log. Univers. 2(1) (2008)
17. J.-Y. Beziau, G. Payette (eds.), The Square of Opposition - A General Framework for Cognition (Peter
Lang, Bern, 2012)
18. J.-Y. Beziau, S. Read (eds.), Special issue on the square of opposition. Hist. Philos. Logic. 4 (2014)
19. F. Bjgrdal, Cubes and hypercubes of opposition, with ethical ruminations on inviolability. Log.
Univers. 10, 373-376 (2016)
20. R. Blanché, Sur I’opposition des concepts. Theoria 19, 89-130 (1953)
21. R. Blanché, Opposition et négation. Rev. Philos. 167, 187-216 (1957)



19

22

23.
24.
25.
26.

217.

28.

29.

30.

31.

32.

33.

34.

35.

36.

37.

38.

39.
40.

41

42.

43.
44,

45
46
47
48

2 J.-Y. Béziau

. R. Blanché, Sur la structuration du tableau des connectifs interpropositionnels binaires. J. Symb. Log.
22, 17-18 (1957)

R. Blanché, Structures intellectuelles. Essai sur I’organisation systématique des concepts (Vrin, Paris,
1966)

LM. Bocheriski, Ancient Formal Logic (North-Holland, Amsterdam, 1951)

LM. Bocheniski, A History of Formal Logic (University of Notre Dame Press, Notre Dame, 1961)
J.M. Campos-Benitez, The medieval modal octagon and the S5 Lewis modal system, in [17] (2012)
pp. 99-118

D. Ciucci, D. Dubois, H. Prade, The structure of oppositions in rough set theory and formal concept
analysis - toward a new bridge between the two Settings, in International Symposium on Foundations
of Information and Knowledge Systems (FolKS) (FolKS 2014), Bordeaux. LNCS, vol. 8367 (Springer,
New York, 2014), pp. 154-173

M. Correia, The proto-exposition of Aristotelian categorical logic, in The Square of Opposition: A
Cornerstone of Thought, ed. by J.-Y. Beziau, G. Basti (Springer, Cham, 2016). doi:10.1007/978-3-
319-45062-9

J.-P. Desclés, A.Pascu, The cube generalizing Aristotle’s square in logic of determination of objects
(LDO), in [15], pp. 277-291

D. Dubois, H. Prade, A. Rico, The cube of opposition: a structure underlying many knowledge
representation formalisms, in International Joint Conference on Artificial Intelligence (IJCAI 2015),
Buenos Aires, Argentina (AAAI Press, Menlo Park, 2015) pp. 2933-2939

D. Dubois, H. Prade, A. Rico, The cube of opposition and the complete appraisal of situations by means
of sugeno integrals, in International Symposium on Methodologies for Intelligent Systems (ISMIS
2015), Lyon. LNAI vol. 9384 (Springer, New York, 2015), pp. 197-207

V. Glivenko, Théorie générale des structures (Hermann, Paris, 1938)

I. Grattan-Guinness, Omnipresence, multipresence and ubiquity: kinds of generality in and around
mathematics and logics. Log. Univers. 5, 21-73 (2011)

L. Horn, On the contrary: disjunctive syllogism and pragmatic strengthening, in The Road to Universal
Logic Festschrift for 50th Birthday of Jean-Yves Béziau, vol. 1, ed. by A. Koslow, A.Buchsbaum
(Birkhéuser, Basel, 2012), pp. 241-265

D. Jaspers, Logic and colour. Log. Univers. 6, 227-248 (2012)

J.C. Joerden, Deontological square, hexagon, and decagon: a deontic framework for supererogation.
Log. Univers. 6, 201-216 (2012)

S. Johnstone, The modal octagon and John Buridan’s modal ontology, in The Square of Opposition:
A Cornerstone of Thought, ed. by J.-Y. Beziau, G. Basti (Springer, Cham, 2016). doi:10.1007/978-3-
319-45062-9

1. Kant, Logik - Ein Handbuch zu Vorlesungen (im Auftrag Kants hrsg. von Gottlob Benjamin Jésche)
(Nicolovius, Konigsberg, 1800)

W. Lenzen, Leibniz’s logic and the “cube of opposition”. Log. Univers. 10, 171-190 (2016)

T. Libert, Hypercubes of duality, in [15], pp. 293-301

. D. Londey, C. Johanson, Philosophia Antiqua, the logic of Apuleius (Brill, Leiden, 1987)

D. Luzeaux, J. Sallantin, C. Dartnell, Logical extensions of Aristotle’s square. Log. Univers. 2,
167-187 (2008)

A. Moktefi, S.-J. Shin (eds.) Visual Reasoning with Diagrams (Birkhiuser, Basel, 2013)

A. Moretti, Geometry of modalities? yes: through n-opposition theory, in Aspects of Universal Logic,
Travaux de Logique, vol. 17, ed. by J.-Y. Beziau, A. Costa Leite, A. Facchini (Université de Neuchatel,
Neuchatel, 2004), pp. 102-145

. A. Moretti, The geometry of opposition. PhD Thesis, University of Neuchatel (2009)

. A. Moretti, From the “logical square” to the “logical poly-simplexes”, in [17] (2012), pp. 119-156

. D. Parrochia, P. Neuville, Towards a General Theory of Classifications (Birkhauser, Basel, 2013)

. R. Pellissier, “Setting” n-opposition. Log. Univers. 2, 235-263 (2008)



There Is No Cube of Opposition 193

49. C. Pizzi, Aristotle’s cubes and consequential implication. Log. Univers. 2, 143-153 (2008)

50. C. Pizzi, Generalization and composition of modal squares of oppositions. Log. Univers. 10, 313-326
(2016)

51. F. de Saussure, in Cours de linguistique générale, ed. by C. Bally, A. Sechehaye (Payot, Paris, 1916)

52. M.W. Sullyvan, Apuleian logic - the nature, sources and influence of Apuleius’s Peri Hermeneias
(North-Holland Amsterdam, 1967)

J.-Y. Beziau (<)
Brazilian Research Council, University of Brazil, Rio de Janeiro, Brazil
e-mail: jyb@uftj.br


mailto:jyb@ufrj.br

Part V
Theoretical Investigations on the Square



The Unreasonable Effectiveness of Bitstrings
in Logical Geometry

Hans Smessaert and Lorenz Demey

Abstract This paper presents a unified account of bitstrings—i.e. sequences of bits
(0/1) that serve as compact semantic representations—for the analysis of Aristotelian
relations and provides an overview of their effectiveness in three key areas of the Logical
Geometry research programme. As for logical effectiveness, bitstrings allow a precise
and positive characterisation of the notion of logical independence or unconnectedness,
as well as a straightforward computation—in terms of bitstring length and level—of the
number and type of Aristotelian relations that a particular formula may enter into. As for
diagrammatic effectiveness, bitstrings play a crucial role in studying the subdiagrams of
the Aristotelian rhombic dodecahedron, and different types of Aristotelian hexagons turn
out to require bitstrings of different lengths. The linguistic and cognitive effectiveness
of bitstring analysis relates to the scalar structure underlying the bitstrings, and to the
difference between linear and non-linear bitstrings.

Keywords Aristotelian diagram ¢ Bitstrings ¢ Cognitive effectiveness * Diagrammatic
effectiveness * Linguistic effectiveness * Logical effectiveness ¢ Logical geometry e
Unconnectedness

Mathematics Subject Classification (2000) Primary 03G05, 68T30; Secondary 03B65,
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1 Introduction

The central aim of the research programme of Logical Geometry (henceforth abbreviated
as LG) is to develop an interdisciplinary framework for the study of logical diagrams.' LG
has focussed on constructing logical diagrams for (1) logical systems such as syllogistics
with subject negation [10], syllogistics with singular propositions [41], modal logic
[40] and public announcement logic [9], (2) linguistic systems such as those involving
subjective quantifiers [45] and generalised quantifiers [40], and (3) conceptual systems,
such as those involving the Aristotelian and duality relations themselves [13] and the
metalogical concepts of tautology and satisfiability [11].

'For more detailed information, see the website www.logicalgeometry.org.
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LG studies both the abstract-logical properties and the visual-geometrical properties
of logical diagrams. As far as the abstract-logical properties of logical diagrams are
concerned, LG investigates a range of topics including the information contents of the
Aristotelian relations [43], the difference between opposition and implication relations
[43], the intricate connection between Aristotelian and duality relations [17, 42], the
context-dependence of Aristotelian relations [10], logical complementarities between
Aristotelian diagrams [44—46], Boolean subfamilies and Boolean closures of Aristotelian
diagrams [41]. These abstract-logical topics are studied from the perspective of logic itself
[10], but also from those of formal semantics [40, 42], group theory [8, 17] and lattice
theory [14, 40].

As for the visual-geometrical properties of logical diagrams, the LG framework studies,
among others, the relation between Aristotelian and Hasse diagrams [14, 40], differences
between 2D and 3D diagrams [40, 45], subdiagrams embedded inside larger diagrams
[8, 41, 44-46], geometrical complementarities between Aristotelian diagrams [44—46],
informational and computational equivalence of Aristotelian diagrams [15, 16, 48] and
cognitive aspects of Aristotelian and duality diagrams [8, 14]. For the analysis of these
visual-geometrical topics LG makes crucial use of insights from disciplines such as
cognitive psychology [14,44], group theory [8, 17], diagrams design [14, 44] and computer
graphics [10].2

The LG programme also studies the historical development of logical diagrams,
focussing on their use in the works of distinguished authors such as John Buridan [19] and
J. N. Keynes [10]. Finally, LG has also explored the potential roles of logical diagrams in
logic education [11] and the interface between formal and natural languages [13].

In its investigations, LG makes extensive use of bitstrings, i.e. sequences of bits (0/1)
that serve as compact representations of the formulas’ semantics. These bitstrings have
turned out to be an extremely powerful tool, yielding both quantitative and qualitative
results as well as raising interesting new questions. The main aims of this paper are hence
(1) to present a unified account of bitstrings in LG and (2) to provide an overview of their
effectiveness in the various areas of LG.?

The paper is organised as follows. Section 2 introduces bitstrings and discusses some of
their basic properties. The next three sections survey the effectiveness of bitstrings in three
key areas of LG. In particular, Sect. 3 goes into the logical effectiveness of bitstrings, while
Sect. 4 deals with their diagrammatic effectiveness, and Sect. 5 addresses their linguistic
and cognitive effectiveness. Finally, Sect. 6 draws some conclusions and points out some
prospects and challenges.

2Some of these abstract-logical and visual-geometrical properties are also studied (for Aristotelian
diagrams) in Moretti’s oppositional geometry framework [28, 29].

3The paper thus stands in a long tradition of work discussing the ‘unreasonable effectiveness’ of a variety
of mathematical tools and techniques for a variety of purposes [4, 21, 22], which was initiated by Wigner’s
famous [49].
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2 Bitstrings in Logical Geometry

Bitstrings are sequences of bits (0/1) which serve as compact combinatorial representa-
tions, both of the denotations of formulas in logical systems (such as classical propositional
logic, first-order logic, modal logic and public announcement logic), and of concepts from
lexical fields (such as comparative quantification, subjective quantification, color terms
and set inclusion relations).* As such, there is no limitation on the length of bitstrings:
they may consist of any number of bit positions. For example, bitstrings consisting of up
to 16 bit positions have already proved useful in LG [10]. However, most of the properties
and applications to be discussed in this paper can already be described by means of much
shorter bitstrings. For ease of presentation, we will therefore mainly work with bitstrings
of length 4, which allow us to encode various interesting logical fragments, such as the 2*
= 16 formulas of classical propositional logic with 2 propositional variables p and g, and
the 16 formulas from the modal logic S5 with 1 propositional variable p, as illustrated in
Table 1. If a formula ¢ is encoded by the bitstring b, we write S(¢) = b. In other words,
B is a function mapping a formula ¢ onto its bitstring b.> Bitstrings can be characterised
in terms of their level, i.e. the number of positions with value 1. Hence, for bitstrings of
length 4, the top half in Table 1 contains the 4 level 1 (L1) bitstrings 1000, 0100, 0010 and
0001 and their 4 contradictory L3 bitstrings 0111, 1011, 1101 and 1110. The bottom half
in Table 1 then consists of the 6 L2 bitstrings as well as the L0 and L4 bitstrings 0000 and
1111.

The Aristotelian relations are standardly defined as relations holding between two
Sformulas. Relative to a logical system S (which is assumed to be bivalent, and have all
the Boolean connectives), two formulas ¢, ¥ are said to be

S-contradictory (CDg) iff SE—-(pAy) and Sk —(—¢ A—Y),
S-contrary (Cs) iff SE—-(pAY) and S —(—¢ A—=Y),
S-subcontrary (SCs) iff SE—-(pAy) and Sk —(—¢ A—Y),
in S-subalternation (SAg) iff SkE ¢ —> ¢ and SHE Y — ¢.

This definition shows that the Aristotelian relations are sensitive with respect to the logical
system S [10, 18]. If the system is clear from the context, we will usually omit it, and
simply talk about ‘contrariety’ instead of ‘S-contrariety’, and so on. As will be discussed
in more detail in Sect. 3, this definition is fundamentally ‘hybrid’ in nature: the relations

“The original formulation of bitstring semantics in Smessaert [40] was inspired by considerations
from generalised quantifier theory about partitioning the powerset of the quantificational domain. As
demonstrated in Chatti [5, 6], however, an informal precursor of this technique was already used by
Avicenna in the eleventh century AD. Conceptually very similar techniques are the setting approach of
Pellissier [30], the valuation spaces account of Seuren [37, 39] and the question-answer semantics of
Schang [33].

SNote that Moretti [29] and Schang [34] use a bitstring-like notation to encode the Aristotelian relations
themselves (as well as possible generalisations of these relations). Within the LG framework, however,
bitstrings do not encode relations between formulas, but rather (the denotations of) the formulas as such.
Finally, note that it is not always immediately clear how to define the bitstring mapping S precisely;
however, a systematic way for achieving this is available (also see Sect. 6 and [18]).
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Table 1 Bitstrings (BS) for the 16 formulas of classical propositional logic (CPL) and the modal logic
S5

S5 CPL BS BS CPL S5

Op PAg 1000 0111 =(p Agq) =Op

p A-Op —(p—9q) 0100 1011 pP—q —pv Op

—pAp =(p < q) 0010 1101 p<gq pv—->p

-$p =(pVq) 0001 1110 pVgq Op

p p 1100 0011 _— —p

OpV (—p A<p) q 1010 0101 —q —OpA(pv—<>p)
Opv—=<p p<q 1001 0110 —(p < q) =Op A $p

Op A —-0Op pPA—D 0000 1111 pV—p Op v =Op

CD, C and SC are defined in terms of whether the formulas can be true together and
whether they can be false together,’ whereas SA is defined in terms of implication or truth
propagation [43].

Completely analogously, the Aristotelian relations can be defined as holding between
two bitstrings. Two bitstrings b; and b, of length £ are said to be

contradictory (CD) iff byAb,=0---0 and by Vvby=1---1,

contrary (C) iff byAb,=0---0 and by Vvby#1---1,
subcontrary (SC) iff byAb;#0---0 and byVvby=1---1,
in subalternation (SA) iff by A by = by and by V by # by.

If two formulas ¢ and ¥ cannot be true together, the meet of the corresponding bitstrings
B(p) and B(¥) equals the bottom element of the Boolean algebra {0, 1}¢, namely the LO
bitstring 0---0.” Similarly, ¢ and ¥ cannot be false together, whenever the join of the
bitstrings B(¢) and B(v) equals the top element of the Boolean algebra {0, 1}¢, namely
the L{ bitstring 1---1. The Aristotelian relation holding between any two formulas can
then easily be determined by computing the meet and join of their bitstring counterparts.
In other words, the formulas ¢ and ¥ stand in some Aristotelian relation (as defined for
S) if and only if 8(¢) and B(¥) stand in that same relation (as defined for bitstrings). This
can be seen as a manifestation of the representation theorem for finite Boolean algebras
[20, Chap. 15].

In contrast to the setting approach of Pellissier [30], the mapping B assigns a semantics
to the formulas. More in particular, each bit provides an answer to a meaningful (binary)
question. In the case of S5, for instance, the bit positions encode answers to the following

%The —(¢ A ) part in these definitions specifies whether the formulas can be true together, while the
—(—¢ A =) part specifies whether the formulas can be false together. Note that these clauses explicitly
use the —-connective to express that a formula is false, and thus assume the classicality of the underlying
logical system S. In non-classical (e.g. many-valued) logics, the informal condition that two formulas
cannot be true (resp. false) together can be formalised in many different, non-equivalent ways.

"The Boolean operations on bitstrings are defined bitwise, i.e. as operations of negation, conjunction or
disjunction computed bit position by bit position. For example, —=1100 = 0011, 1100 A 1010 = 1000 and
1100 v 1010 = 1110.
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questions about sets of possible worlds (PWs), where ¢ is a modal formula containing the
propositional variable p:

Is ¢ true if p is true in all PWs? yes/no
Is ¢ true if p is true in the actual world but not in all PWs? yes/no
Is ¢ true if p is true in some PWs but not in the actual world?  yes/no
Is ¢ true if p is true in no PWs? yes/no

The examples below illustrate how the bitstrings of length 4 that the -function assigns to
the formulas of S5 are a compact way to represent a quadruple of yes/no answers to the
questions above:

B(Cp) = 1110 = (yes,yes,yes, no)
BCpAO—p) = 0110 = (no,yes,yes, no)
B(C—p) = 0111 = (no,yes,yes,yes)

The fact that the S5-formula in the middle example is the conjunction of the upper and
lower formulas nicely corresponds to its bitstring being the meet of the upper and lower
bitstrings as well as to its quadruple of answers being the meet of the upper and lower
quadruples.

3 Logical Effectiveness

This section discusses two prime examples of the logical effectiveness of bitstring
semantics. First of all, bitstrings allow us to provide a precise and positive characterisation
of the notion of logical independence or unconnectedness. Secondly, the number and type
of Aristotelian relations that a particular formula may enter into can straightforwardly be
computed on the basis of the length and the level of its bitstring representation.

3.1 Characterizing Unconnectedness

As was mentioned in the previous section, the original set of Aristotelian relations is
hybrid. In [43] two other sets of logical relations are defined in order to account for
this hybrid nature, namely the opposition relations and the implication relations. The
set of opposition relations is uniformly defined in terms of whether the formulas can
be true together and whether they can be false together, and is obtained by removing
subalternation from the original set of Aristotelian relations and replacing it with the
relation of non-contradiction:

Opposition relations between bitstrings. Two bitstrings b, and b, of length £ are

contradictory (CD) iff byAb,=0---0 and by Vvby=1---1,
contrary (C) iff byAb,=0---0 and by Vvby#1---1,
subcontrary (SC) iff byAb;#0---0 and byVvby=1---1,
non-contradictory (NCD)  iff by Aby #0---0 and by Vb, #1---1.
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contradiction

contra- subcontra- left-
riety riety impl.

right-
impl.

non-contradiction non-impl.

Fig. 1 Auristotelian relations as hybrid between opposition and implication relations

The set of implication relations, by contrast, is uniformly defined in terms of implication or
truth propagation. The starting point is the relation of subalternation which was removed
from the Aristotelian relations and relabeled as left-implication since the implication holds
from the first/left formula to the second/right formula (but not vice versa). The three extra
implication relations then correspond to implication from right to left (right-implication),
two-way implication (bi-implication), and absence of implication in either direction (non-
implication):

Implication relations between bitstrings. Two bitstrings b; and b, of length £ are in
bi-implication (BI) iff byAby,=b;y and bV b, = b,
left-implication (LI) iff byAb,=0by and by V by # by,
right-implication (RI) iff by Aby #%b; and by V by = by,
non-implication (NI)  iff by Aby #b; and by V by # by.

In Fig.1 the hybrid nature of the Aristotelian relations is visualised: the relations
of contradiction, contrariety, and subcontrariety are taken from the set of opposition
relations on the left, whereas subalternation corresponds to left-implication from the set of
implication relations on the right.®

In [43] the lattices for the two sets of relations in Fig. 1 are argued to be ordered
by information level: they reveal parallel hierarchies of informativity, with the least
informative relations at the bottom, and the most informative ones at the top. From an
informational perspective, the four Aristotelian relations can be considered maximally
informative.’

This information perspective also sheds new light on the notion of unconnectedness.
Classically, two formulas are said to be unconnected if and only if they do not stand in
any Aristotelian relation whatsoever.'? As illustrated in Fig. 2, the information perspective
provides an alternative, positive characterisation of unconnectedness in terms of the two

8Despite their conceptual independence, there are several close connections between the sets of opposition
and implication relations—e.g. LI (b1, by) iff C(by, —b;) [43, Lemma 3]. The latter essentially captures
Schang’s [35] claim that subalterns can be seen as contradictories of contraries; also see [43, Footnote 18].
The absence of the two informative implication relations of bi-implication and right-implication can be
accounted for independently, see [43].

10Many authors refer to this same notion as logical independence, e.g. see [1, 23, 31, 37].
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contradiction bi-impl.

contra- subcontra- lefi- right-
riety riety impl. impl.

[ non-contradiction non-impl. ]

Fig. 2 Unconnectedness as the combination of non-contradiction and non-implication

least informative opposition and implication relations, viz. non-contradiction and non-
implication respectively.

It can be shown that unconnectedness requires bitstrings of length at least 4: if two
formulas ¢ and v are unconnected, then their bitstring representations B(¢) and B(y)
need to consist of at least 4 bit positions. Since unconnectedness is defined as the
combination of non-contradiction and non-implication, and the latter two themselves are
both characterised in terms of two conditions, unconnectedness involves four conditions
altogether. By virtue of non-contradiction, two unconnected formulas ¢ and ¥ can be true
together and can be false together. In terms of their bitstring representations, this means
that there must be at least one bit position in which both 8(¢) and S(v) have a value 1,
and at least one bit position in which both B(¢) and B (i) have a value O respectively. By
virtue of non-implication, there can be no implication relation in either direction between
two unconnected formulas ¢ and ¥ . In terms of their bitstring representations, this means
that there must be at least one bit position in which §(¢) has a value 1 and (/) has a
value 0, and conversely, that there must be at least one bit position in which §(i/) has a
value 1 and B(¢) has a value 0. Since these four conditions on bit positions are logically
independent, ¢ and ¥ can only be unconnected if their bitstrings S(¢) and S(y) consist
of at least 4 bit positions.'! By contraposition, it also holds that if the formulas in an
Aristotelian diagram can be encoded by bitstrings of length 3, then that diagram cannot
contain any unconnectedness, i.e. every pair of its formulas stands in some Aristotelian
relation.

Consider the three examples of Aristotelian hexagons for S5 in Fig. 3. The best-known
hexagon is no doubt the strong Jacoby-Sesmat-Blanché (JSB) hexagon in Fig. 3a: it can
be encoded by bitstrings of length 3, and thus does not contain any unconnectedness.'?
It is important to stress that having bitstrings of length 4 is a necessary condition for

"'"This dual perspective on unconnectedness can already be found in the works of the fourteenth century
logician John Buridan. He characterised unconnected formulas negatively as “obeying no law, neither the
law of contradictories, nor the law of contraries, nor the law of subcontraries, nor that of subalterns”,
whereas according to his positive characterisation, “such propositions can be true at the same time ... and
they can both be false at the same time ... [and] it is impossible that one should follow from the other”
[3, p. 81]. Also see [19].

12The strong JSB hexagon in Fig. 3a is named after Jacoby [24], Sesmat [36] and Blanché [2].
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Fig. 3 Three Aristotelian hexagons for S5: (a) strong Jacoby-Sesmat-Blanché, (b) Sherwood-Czezowski,
(¢) unconnected-4

unconnectedness, but not a sufficient condition. In other words, it is perfectly possible
to have Aristotelian diagrams that require an encoding by means of bitstrings of length
at least 4, and that yet do not contain any unconnectedness. A case in point is the
Sherwood-Czezowski (SC) hexagon of Fig. 3b, which requires bitstrings of length 4, but
in which every pair of formulas nevertheless does stand in some Aristotelian relation.'?
By contrast, the unconnected-4 (U4) hexagon in Fig.3c does contain unconnectedness
(e.g. the formulas p and Op A O—p are unconnected), and therefore its formulas can only
be encoded by bitstrings of length at least 4.4

3.2 Calculating Logical Relations

A second illustration of the logical effectiveness of the bitstring approach concerns the
way in which, for any bitstring of length ¢ and level i, we can use simple combinatorial
arguments on bitstrings'” to calculate the number of:

contradictories #CD =1
contraries #C =2t _1
subcontraries #SC =21—1

non-contradictories #NCD = (27— 1)(2' —1)

3The SC hexagon in Fig. 3b is named after William of Sherwood [25, 26] and Czezowski [7].

14The U4 hexagon in Fig. 3c is called ‘unconnected-4’ because it contains exactly 4 pairs of unconnected
formulas; it has recently been studied in [38] and [44].

5The combinatorial arguments for #CD, #C and #SC can also be found in [35] (where they are based on
Schang’s question-answer semantics).
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If we take a level 1 bitstring of length 3, for instance, then £ = 3 and i = 1, which yields
the following distribution over the 4 opposition relations:

#CD =1
#C =207 1=2"1_1=22-1=4—-1 =3
#SC  =2i—1=2'—-1=2-1 =1
#NCD =2 -1)2'—1)=3x1 =3

Notice that the total number of relations equals 2° = 8, since every bitstring of length
3 stands in an opposition relation to itself and to the 7 other bitstrings of length 3
(i.e. including the bottom element 000 and the top element 111). For example, for the
L1 bitstring 100 the distribution looks as follows: '

CD[100] = {011}
C[100] = {010,001, 000}

SC[100] = {111}
NCD[100] = {110, 101, 100}

Completely analogously, taking a level 2 bitstring of length 4 (£ = 4 and i = 2) yields the
following distribution over the 4 opposition relations:

#CD =1
#C =207 1=242_1=22-1=4—-1 =3
#SC  =2i—1=22—-1=4-1 =3
#NCD =27 -1)(2'—1)=3x3 =9

For the L2 bitstring 1100, for instance, the 24 =16 bitstrings are distributed over the
opposition relations in the following manner:

CD[1100] = {0011}
C[1100] = {0010, 0001, 0000}
SC[1100] = {1011,0111, 1111}
NCD[1100] = {1000, 0100, 1010, 1001, 0110, 0101, 1100, 1110, 1101}

Finally, it can be shown that for bitstrings on non-extreme levels (i.e. which are on level i,
for1 <i <€ —1), we have #CD < #C,#SC < #NCD. There thus exists a perfect inverse
correlation between (1) the numbers of opposition relations that those bitstrings enter into,
and (2) the informativity ordering of the opposition relations shown in Figs. | and 2:

Number of relations #CD < #C,#SC < #NCD
Informativity ordering CD > c,SC > NCD

Notice, furthermore, that if i ~ g, then #C ~ #SC. In other words, bitstrings in middle
levels have similar numbers of contraries and subcontraries, which straightforwardly

1For any binary relation R on a set A, the R-image of an element a € A is defined as R[a] := {@’ € A |
(a,d’) € R}.
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corresponds to the fact that contrariety and subcontrariety occupy the same intermediate
level of informativity in the lattices of Figs. 1 and 2 [43].7

4 Diagrammatic Effectiveness

This section presents two key examples of the diagrammatic effectiveness of bitstring
analysis. First, bitstrings play a crucial role in studying the subdiagrams of the Aristotelian
rhombic dodecahedron. Second, in establishing an exhaustive typology of all possible
Aristotelian hexagons, different types of hexagons turn out to require bitstrings of different
lengths.

4.1 Subdiagrams of the Aristotelian Rhombic Dodecahedron

The JSB hexagon in Fig.3a is Boolean closed: every contingent Boolean combination
of formulas in this hexagon is (logically equivalent to) a formula that already belongs
to it. It thus visualises the entire Boolean algebra {0, 1}, except for its T-element 111
and _-element 000. The SC hexagon in Fig. 3b, by contrast, is not Boolean closed: the
disjunction of the two top vertices, for instance, is itself not (logically equivalent to) a
vertex of the hexagon. The construction of the Boolean closure of bitstrings of length
4 has led to the discovery of the thombic dodecahedron (RDH)—a 3D polyhedron with
12 rhombic faces and 14 vertices—for the visualisation of the Boolean algebra {0, 1}*,
represented by bitstrings of length 4 [40]. In order to describe the internal structure of
this RDH and to present an exhaustive typology of all Aristotelian diagrams that can be
embedded inside RDH, bitstrings again play a crucial role. The 2* — 2 = 14 contingent
bitstrings of {0, 1}* constitute 7 pairs of contradictories (PCDs). These 7 PCDs can be
subdivided into 4 C-PCDs—which correspond to the 4 diagonals of the cube embedded in
RDH and connect the L1 and L3 bitstrings—and 3 O-PCDs—which correspond to the 3
diagonals of the octahedron embedded in RDH and connect pairs of L2 bitstrings. This so-
called CO-perspective then yields an exhaustive typology of the subdiagrams of RDH in
terms of how many C-PCDs and how many O-PCDs they consist of. For example, both the
strong Jacoby-Sesmat-Blanché hexagon in Fig. 3a and the Sherwood-Czezowski hexagon
in Fig.3b are C20' hexagons, whereas the unconnected-4 hexagon in Fig.3c is a C'O?
hexagon [46, 47].

As far as embedding smaller Aristotelian diagrams into bigger ones is concerned,
the classical result in the literature is that the RDH contains six strong JSB hexagons
[27, 28, 30, 32, 40, 45]. Bitstrings turn out to be a very powerful tool to study such
embeddings. If we consider two bit positions, for example the second and third, then

7The application of combinatorial techniques to bitstrings has generated many more results that are
relevant for LG than the few simple ones described in this subsection. A more comprehensive and
mathematically detailed overview can be found in [12].
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Table 2 Bitstring compression 1011 1101 1001 ~ 101 1110 w110
from length 4 to length 3 1010 1100 1000 ~ 100 0111  ~ 011
0011 0101 0001 ~> 001 0110 ~> 010
0010 0100 (0000) ~> (000) (I1111) ~> (111)

the 14 contingent bitstrings of length 4 can be partitioned into a group of 8 bitstrings
having different values in those positions—the left-hand side of Table 2—and a group of
6 bitstrings having identical values in those positions—the right-hand side of Table 2.8
The latter group constitutes a strong JSB hexagon, whereas the former group constitutes
its complementary Buridan octagon [44—46]. Although we are dealing with bitstrings of
length 4, the six contingent bitstrings in the right half of Table 2—with identical values in
their second and third bit positions—can thus be ‘compressed’ into bitstrings of length 3,
which constitute the JSB hexagon in Fig. 3a."”

There are exactly 4’2‘3 = 6 ways in which bitstrings of length 4 can have identical
(resp. different) values in two of their bit positions, and these correspond exactly to the 6
strong JSB hexagons (resp. Buridan octagons) embedded inside RDH:?°

b2 =[b]3 [bli=[b2 [bl3=1[bls [bli =[bla [D]i =[b]3 |[b]2=[Pl4
JSB1 JSB2 JSB3 JSB4 JSB5S JSB6

For the modal logic S5, the first three JSB hexagons are presented in terms of classical,
paraconsistent and paracomplete negation in [1]. The fourth JSB hexagon was discovered
independently in [28, 40] and the fifth and sixth JSB hexagons are introduced in [30, 401.2

We have just seen that the strong JSB hexagons inside RDH can be characterised by
means of bitstring constraints of the form [b]; = [b]; (for distinct i,j € {1,2,3,4}). It
can be shown that all other types of Aristotelian diagrams embedded inside RDH can also
be characterised by means of other, more complex bitstring constraints. For example, SC
hexagons are characterised by bitstring constraints of the form [b]; # [b]; A ([b]; = [b]x —
[b]: = [b]e) (for pairwise distinct i, j, k, £ € {1,2,3,4}); the concrete SC hexagon shown
in Fig. 4b corresponds to taking i = 1,j = 4,k = 3 and £ = 2.

1BOf course, the top and bottom elements 1111 and 0000 also have identical values in their second and
third bit positions, but as usual, these are ignored in Aristotelian diagrams, which explains the numerical
discrepancy between the two groups.

9For example, by collapsing the second and third bit positions, the bitstrings 1000 and 0110 for Clp and
Op A O=p in RDH are compressed into the bitstrings 100 and 010 in Fig. 3a, respectively.

20We will write [b]; = [b]; to express the condition that a bitstring b has the same values in bit positions i
and j.

2INote that the corresponding six hexagons for CPL were already discovered in [32] and that [27]
establishes the connection between S5 and CPL.
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4.2 An Exhaustive Typology of Aristotelian Hexagons

A second illustration of the diagrammatic effectiveness of bitstrings concerns the typology
of Aristotelian hexagons. A first question to be answered is how many hexagons can be
constructed with bitstrings of length . Although strictly speaking there are 2¢ bitstrings
of length £, the restriction to contingent bitstrings means we generally only consider
2% — 2 bitstrings of length £. The following combinatorial formula captures the number
of hexagons with bitstrings of length ¢:

2t =2)2" —4)(2* —6)
31 x 23

Bitstrings are chosen in contradictory pairs (PCDs): choosing one bitstring automat-
ically means choosing its contradictory as well. Hence, in order to select a hexagon,
only three ‘choices’ need to be made in the numerator of this fraction, and the number
of bitstrings from which we can choose each time decreases by 2 instead of 1. The
denominator captures the variety of presentations of a given hexagon: 3! represents the
number of permutations of 3 PCDs, while 23 reflects the fact that each of these 3 PCDs
occurs inside the hexagon with a given ‘orientation’ (e.g. 1000—O0111 versus 0111—
1000).>2 Applying the formula above to bitstrings of length 3—7 yields the following
numbers of hexagons:

=3 (=4 t=5 L=6 L=17

6x4x2  14x12x10  30x28x26  62x60x58  126x124x122
48 48 48 48 48

1 35 455 4495 39,711

Secondly, bitstrings have proved their computational importance in generating all
possible types of Aristotelian hexagons (and their Boolean subtypes). They thus allow
us to answer the question which types of hexagons exist and which lengths of bitstrings
each type requires. As discussed before, the strong JSB hexagon in Fig.3a requires
bitstrings of length 3, whereas the Sherwood-Czezowski and unconnected-4 hexagons
in Fig.3b,c require bitstrings of length 4. Three other types of Aristotelian hexagons
can be distinguished: the weak JSB hexagon [30] and the (strongest Boolean subtype of
the) unconnected-12 hexagon also require bitstrings of length 4, whereas the (strongest
Boolean subtype of the) unconnected-8 hexagon is the only type requiring bitstrings
of length 5.* A combination of mathematical reasoning and exhaustive computational
verification has demonstrated that there exist no types of Aristotelian hexagons that require
length 6 or higher (up to Boolean subtype).

22See [16] for a detailed comparison of the relationship between the number of presentations of a hexagon
on the one hand, and the number of geometrical symmetries/rotations of a regular hexagon on the other.
Z3From the bitstring characterisations of the strong and weak JSB hexagons, it follows that a JSB hexagon
is strong iff it is Boolean closed.
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5 Linguistic and Cognitive Effectiveness

This section briefly introduces two topics illustrating the linguistic and cognitive effective-
ness of bitstring analysis, namely that of the scalar structure underlying bitstrings, and that
of the difference between linear and non-linear bitstrings.

5.1 Scalar Structure in Bitstrings

In addition to its logical and diagrammatical effectiveness, bitstring semantics also gener-
ates new questions about the linguistic and cognitive aspects of the encoded expressions.
Two related questions are (1) what is the relative weight or strength of individual bit
positions inside bitstrings? and (2) what is the scalar or linear structure of the underlying
conceptual domain? To illustrate these questions, note that the semantics of the basic
operators of modal logic, predicate logic and total orders in Fig. 4 can all straightforwardly
be captured in terms of bitstrings of length 3. Nevertheless, there does seem to be a clear
intuitive difference in the relative weight of the individual bit positions in these cases,
in the sense that some bit positions correspond to points on a cognitive scalar structure
(or ‘logical space’), whereas other bit positions correspond to intervals on that structure.
In the case of the modal operators and the quantifiers in Fig. 4a,b, for instance, the first
and third bit position encode the end points of the scale, whereas the second bit position
encodes the intervening interval. With the ordering relations in Fig. 4c, by contrast, the
second bit position encodes the central reference point on the scale, whereas the first and
third positions encode the intervals extending to the left and to the right of that reference
point.

The tripartitions in Fig.4a,b can then be seen as the result of superimposing two
bipartitions that each consist of one point and one interval, e.g. all vs. not all (with the
point on the left and the interval on the right) and some vs. no (with the interval on the left
and the point on the right). By contrast, the scalar structure of total orders in Fig. 4c can
either be seen as being primitively tripartite in nature, or alternatively as being the result of
superimposing two bipartitions that each consist of two intervals, viz. > vs. < on the one
hand, and > vs. < on the other (so that the central reference point of the tripartite scale
(=) only arises out of the interaction between these two bipartitions).

It should be emphasised that the distinction between point- and interval-interpretations
of bit positions is primarily relevant from a linguistic or cognitive perspective, and does
not go beyond the realm of classical Boolean algebra. In particular, the scalar structures in
Fig. 4a,c all share the same Boolean structure. For example, for all three scalar structures,
the negation of the middle bit position is identical to the join of the leftmost and rightmost
bit positions (=010 = 101 = 100 v 001), regardless of whether that middle bit position
corresponds to an interval (as in Fig. 4a,b) or to a point (as in Fig. 4c).

Moving from bitstrings of length 3 to those of length 4, some quadripartite scalar
structures can be seen as refinements of an underlying tripartite scalar structure, while
others seem to be primitively quadripartite in nature, or to be the result of superimposing
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(a) (b) (c)
Llp ~Op all no > =. <
1/0 1/0 1/0 1/0 1/0 1/0 1/0 1 1/0

Fig. 4 Points versus intervals in bitstrings of length 3

(a) (b) (c)

Clp -Op all no

o —o o o |||z
— | — q -q q q
p -p many | few

]ll‘l[) I(!ll(J 1/0 1/0 1/0 1/0

Fig. 5 Bitstrings of length 4 as refinements of bitstrings of length 3

two bipartitions. For example, the quadripartite scale of the modal logic S5 in Fig. 5a can
be seen as the result of superimposing a bipartition for the bare modalities (p vs. —p) onto
the original tripartition of Fig. 4a (Op vs. Op A O=p vs. = < p). Similarly, the bipartition
with the subjective quantifiers many and few in Fig. 5b can be seen as a further refinement
of the original interval of the second bit position in Fig.4b [45]. With the formulas of
CPL in Fig.5c, by contrast, the scalar structure can either be seen as being primitively
quadripartite in nature (with each bit position corresponding to a row in the classical truth
tables), or alternatively as being the result of superimposing two independent bipartitions
(viz. p vs. =p and g vs. —q).

5.2 Linear Versus Non-linear Bitstrings

From a mathematical or algebraic perspective we cannot distinguish between ‘linear’
bitstrings—such as 1010, where all four bit positions are linearly ordered with respect
to each other—and ‘non-linear’ bitstrings—such as 1(1)0, where the precise ordering
between the second and the third bit position is left unspecified. From a linguistic or
cognitive perspective, however, such a difference does become relevant. Linear bitstrings
imply that all questions—i.e. all bit positions—about a lexical field can be situated on
a single dimension. For the realms of comparative and proportional quantification this
does indeed seem to be the case. Non-linear bitstrings, by contrast, imply that the various
questions belong to fundamentally distinct dimensions, as was argued to be the case for
the modalities of S5 and the scale with many and few in Fig. 5a,b.

It should be emphasised that from a mathematical perspective, linear and non-linear
bitstrings have the same Boolean structure. For example, a non-linear bitstring such as 1(1)0
consists of four bit positions that each have exactly one of the values 1 and O (just like
the linear bitstring 1010). In particular, the non-linear bitstring 1(1)0 should not be seen as
consisting of three bit positions, with the second position containing both the values 1 and
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0. The latter perspective might also prove useful (e.g. for assigning bitstring semantics to
non-classical logics), but by allowing certain bit positions to be simultaneously 1 and 0, it
constitutes a far more radical departure from the realm of classical Boolean algebra than
the non-linear bitstrings proposed here.

In future research, empirical hypotheses will be formulated concerning the cognitive
complexity of various lexical fields (e.g. in terms of processing times), and possible corre-
lations with the scalar and (non-)linear nature of their underlying bitstring representations
will be investigated.

6 Conclusion

In this paper we have presented a unified account of bitstrings and provided an overview of
their effectiveness in three key areas of the Logical Geometry research programme. As for
logical effectiveness, bitstrings first of all allow us to provide a positive characterisation of
the notion of unconnectedness as the combination of two conditions for non-contradiction
and two conditions for non-implication, thus requiring bitstrings of length at least 4.
Secondly, the number and type of Aristotelian relations that a particular formula may
enter into can straightforwardly be computed on the basis of the length and the level of its
bitstring representation. The number of opposition relations (#CD < #C,#SC < #NCD)
turns out to be inversely correlated with the informativity level of these relations.

Furthermore, two key examples have been discussed regarding the diagrammatic
effectiveness of bitstring semantics. On the one hand, bitstrings play a crucial role in
studying the subdiagrams of the Aristotelian rhombic dodecahedron. A case in point is
the embedding of 6 strong JSB hexagons in RDH, which can be accounted for in terms of
the 6 ways in which a bitstring of length 4 can be compressed into a bitstring of length
3 by collapsing bit positions with identical values. On the other hand, the exhaustive
typology of all possible Aristotelian hexagons reveals that different types of hexagons
require bitstrings of different lengths. Four types require a bitstring length of 4 (the weak
JSB, the Sherwood-Czezowski, the Unconnected-4 and the Unconnected-12 hexagons),
whereas the strong JSB hexagon only requires length 3 and the Unconnected-8 hexagon
requires length 5.

Finally, two topics have briefly illustrated the linguistic and cognitive effectiveness of
bitstring analysis. First of all, scalar structures underlying the bitstrings may differ from
one another as to which bit positions correspond to points on the scale and which positions
to intervals. Some quadripartite scalar structures can be considered as refinements of
originally tripartite structures, whereas others are inherently quadripartite. Secondly,
bitstrings are called linear or non-linear depending on whether the underlying binary
questions relate to one single dimension or to different dimensions.

As illustrated throughout the paper, bitstrings have proved extremely useful in Logical
Geometry so far. Nevertheless, bitstring analysis in its original formulation (as presented
in this paper) still exhibits a number of limitations. First of all, it is not always clear
how ‘sensitive’ bitstrings are to the specific properties of the underlying logical system:
two formulas may enter into different Aristotelian relations with one another depending
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on the logical system and should therefore be assigned different bitstrings accordingly.
Secondly, the complex interplay between Boolean and Aristotelian structure requires
further investigation: some fragments which have an isomorphic Aristotelian structure
may nevertheless not be isomorphic from a Boolean point of view. Thirdly, the current
approach does not provide a systematic strategy for establishing a bitstring semantics for
any fragment F of any logical system S [9]. In ongoing research we are developing a
more mathematically mature version of bitstring semantics that is able to overcome these
different limitations [18].
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An Arithmetization of Logical Oppositions

Fabien Schang

Abstract An arithmetic theory of oppositions is devised by comparing expressions,
Boolean bitstrings, and integers. This leads to a set of correspondences between three
domains of investigation, namely: logic, geometry, and arithmetic. The structural proper-
ties of each area are investigated in turn, before justifying the procedure as a whole. To
finish, I show how this helps to improve the logical calculus of oppositions, through the
consideration of corresponding operations between integers.

Keywords k-base system ¢ Bitstring ¢ Chasles’ relation ¢ Opposite * Opposition *
Question-answer semantics * Vectors

Mathematics Subject Classification Primary 03B35, Secondary 03B05, 03B65

1 Introduction

The arithmetization of the logic of oppositions is usually taken to mean a process that
consists in translating the logical relations between formulas (in a language L) into
arithmetic relations between integers (in the domain of positive integers N*).

This work can be considered from a structural point of view. That is, just as Descartes
made a connection between geometry and arithmetic through analytic geometry, the
present paper relies upon the fact that there are blatant analogies between the abstract areas
of geometry, logic, and arithmetic. There also exists a form of serendipity in this paper,
since the final result is derived from a completely different domain area of discourse—
the Chinese Book of Changes (or Yiking). There is, fairly obviously, no causal or logical
connection between the latter and logical oppositions, however, a comparison of both
domains leads to a fruitful explanation thanks to an analogy between elements of their
common structure.

The content of the paper runs as follows. In the first section, we propose a broad
historical background of binary systems. In the second section, the geometry of oppo-
sitions is considered from the Aristotelian square to recent research developments. In
the third section, a logic of opposition is characterized by an algebraic calculus on non-
Fregean valuations. In the fourth and final section, we introduce an arithmetic version of
oppositions.
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2 A Historical Background of Binary Systems

We start with three main works of Leibniz, the aim of which was (to some extent) to
build correspondences between arithmetic and metaphysics: “De progressione Dyadica”
(1678), his correspondence (from 1697 to 1703) with Father Joachim Bouvet (1697-1703),
a French Jesuit and mathematician sent to China by Louis XIV—above all, his article
“Explication de I’arithmétique binaire qui se sert des seuls caracteres 0 & 1 avec des
remarques sur son utilité et sur ce qu’elle donne le sens des anciennes figures chinoises de
Fohy” (1703) is a sample of the way in which Leibniz aimed towards his ambitious project
of a calculus ratiocinator. Fohy, or Fu Xi (3rd millenary B.C.), is the legendary ancestor of
the Chinese who is supposed to have created the well-known Book of Changes, or Yiking.
The reason that Leibniz took this religious book into consideration is because of an analogy
between the structuration of hexagrams and his own works on the arithmetic binary
number system. Furthermore, the German philosopher tried to show that a metaphysical
interpretation of the Yiking would help to corroborate the Christian metaphysics regarding
the origins of Being and Nothingness. We will not discuss this aspect of Leibniz’s
philosophy, instead, our aim is to show some striking similarities between the Yiking,
Leibniz’s binary number system, and a Boolean theory of logical oppositions.

Let us consider the binary number system first. Our common number system is decimal,
since it consists in ten basic units every numeral is composed of. Leibniz’s binary number
system relies on the two basic units well-known to computer scientists, viz. the Boolean
bits 0 and 1. More generally, there is a systematic way of transcribing in our usual decimal
(or 10-base) system the number X of an arbitrary number system according to its base and
its length. Thus:

For any k-base number system in which numbers (X)) are sequences of n items, its
decimal coding is characterized as follows:

(@r...ayy = ((kn_l X al) +o (K x a"))[lo]

Let us take an example. What is the appropriate decimal coding of a 2-base number
X =(ay...a,) like, e.g., (101110);2;? Its decimal transcription is the integer 46, or
(46)[10), starting from an integer of base k = 2 and length n = 6. Indeed,

(101110); = (25" x 1) + (25" x0) + (2* " x 1) + (2% ' x 1) + (22! x 1)
+ (271 % 0))
=((2°x1) 4+ (2*x0) + (2> x 1) + (22 x 1) + (2! x 1) 4+ (2° x 1))
=(B2xD)+(16x0)+@x1)+ (@x1)+2x1)+ (1 x0)
=(32+0+8+4+2+0)
= (46)(q)

(10]

Here, Leibniz saw a connection between his 2-base number system and the Chinese Yik-
ing, especially the graphic representation of it as set out by the philosopher, numerologist
and poet Shao Yong (1012-1077). It is a set of 2° = 64 gua or hexagrams, that is, 6-tuples
of lines organized both in a circular and a quadratic form (see Appendix).
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A certain square of contradiction or “earth structure” is included inside the above man-
dala, or “heaven structure”, in the sense that each pair of contradictory terms is similarly
related by central symmetry in the square—and it is the same sort of symmetry which
accounts for the distribution of each of the components in the circular mandala. The square
and the circle include the same 2° = 64 hexagrams as their components, where 2 is the
number m of distinctive data for each item and 6 the number n of items in a given n-gram.

Starting from the Daoist picture of the world, each entity of the world is a combination
of two basic elements. Subsequently, each discontinuous line of hexagrams symbolizes
the passive element Yin, which Leibniz made correspond to the integer O; each continuous
line symbolizes the active element Yang, symbolized by Leibniz with the integer 1.
Furthermore, each “gua” (hexagram) historically results from a sequence of two added
trigrams, resulting in 2313 = 26 = 64.

However, the Chinese numbering of the hexagrams differs from the Leibnizian
representation with respect to its direction (bottom-up for the former, left-right for
the latter). For example, the 63rd hexagram is 101010 and has the decimal value
(101010)z = (42)110y-

Hexagram 63

Trait 6 s - £
. ——— Trait 5

Trait 4 oess s "
) ——— Trait 3

Trait 2 eess i
—— Trait 1

To be read from bottom to top:

—

ap a a a4 as ag

1 0 i 0

[
(—

b e
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Therefore, the Chinese classification seems to rely on purely contingent rules of
interpretation that have nothing to do with arithmetic. So why should we follow Leibniz’s
binary number system, in this respect?

One reply is to point to the blatant resemblance between the following two examples
and recent developments in the theory of opposition.

The first case is the so-called diagram of unity, occurring in the flag of South Korea; it
also resorts to a logical octagon of opposition, which is an expansion of the Aristotelian
square.

Active // \s\

1 sky
= father
1daughter 5 ~"_ thunder

- lsem

& 2son

river

Passive gouon

(Yin) — =

mother _8_ 3son
ground == mountain

(o]

.
e

— lake

The flag of South Korea stems from four basic elements: Qian (Heaven), Kan (Water),
Kun (Earth), and Li (Fire). However, its four components result from a combination of
three lines whose exhaustive set is depicted clockwise in the middle figure. By adapting
the eight trigrams of the preceding right hand figure to the Leibnizian 2-base number
system, we obtain these definitions: Thunder (first son): (001)[2; = 1; River (second son):
(010);2; =2; Mountain (third son): (100);2; =4; Ground (mother): (000);;; =0; Lake
(third daughter): (011)[2; = 3; Fire (second daughter): (101)2) = 5; Wind (first daughter):
(110)[2]j2) = 6; Sky (father): (111)[2; = 7. It is important to note that the boldface numbers
placed above the trigrams do not correspond to their decimal translation: they represent
ordinal numbers (1 for “the 1st, trigram”, 2 for the 2nd trigram, and so on), just as in the
various sequences proposed throughout the history of the Yiking (Shao Yong, Jin Fang,
Mawangdui).

The same distribution of relations occurs in the below logical octagon below, which
is a double extension of the initial square of oppositions: two additional pairs of edges
supplement the hexagon vertically —U and Y, and horizontally —U and Y. The resulting
octagon is a combination of the diagrams studied in [2—4]: the two hexagons AUEOYI
and AEYOIU are combined to form the octagon AUEYOYIU, which was also mentioned
in [1] for studies on modal logic.
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The isomorphism between the Yiking trigram and logical octagons does not mean that
they match with each other, however: each vertex of the logical octagon corresponds
to a bitstring of length n =4, whereas trigrams are bitstrings of length n =3. This is
the case, because the first and eighth trigrams (Sky and Ground, respectively) have the
maximal and minimal values 7 and 0; these extrema correspond to tautology and antilogy
in logical polygons, and both can be located at the center of intersection of all the logical
contradictories (see page 7).

The second case is the Seal of Solomon, also occurring in a flag—that of Israel.
Whilst the Korean flag has just been compared to the logical octagon, the present one
also corresponds to one diagram of logical oppositions: Blanché’s logical hexagon of
oppositions AUEOY]I, once the latter has been deprived from its surrounding relations of
subalternation.

———Puuwe Y

This truncated version of the hexagram is a six-point starlike figure of the the Magen
David (Shield of David), to be also compared with the Hindu Shatkona. Each edge of the
Seal is marked with an integer from 1 to 6: 4 for A, 1 for U, 5 for E, 3 for O, 6 for Y, 2
for I. The center of the star is marked with the integer 7, resulting from the sum of each of
its diagonals:

1+6)=Q2+5=0CB+4=7

The connection link between this mystic star and the logical hexagon is not obvious at
first sight, given that the opposition between numbers and sentences is not supposed to
obey one and the same ordering process. Yet such a connection is made possible through
arithmetic, especially Leibniz’s 2-base system, as will be shown in the section devoted to
the logic of opposition.

It should be taken for granted that the above two examples of the Yiking and the Seal
of Solomon do not constitute a plea for numerology. The present paper does not purport to
show the “power” of numbers in order to explain how things are organized in the world,
as is the case with the 64 exhaustive elements of the world in the Yiking. Rather, this
paper is an essay on numerical logic and deals with the “power” of numbers in order
to show how people think logically. It is a matter of hermeneutics, i.e., how to interpret
signs in a language, whether signs denote integers in number theory or propositions in
logic.

To investigate this, three languages are compared in the next sections: geometrical,
logical, and arithmetic languages, assuming that each of the three areas consists of a set of
structured elements with specific relations between them.
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3 Geometry of Oppositions

The most famous geometry of oppositions is the so-called Aristotelian square, originating
from the logical corpus of the Stagirite. Although the latter did not himself consider
the logical oppositions of contradiction and contrariety in this way, the “Aristotelian”
square refers to the set of 6 logical oppositions between the categorical propositions
AE 1,0 of syllogistics. Despite some isolated developments of the geometry of oppo-
sitions in the history of logic—e.g., Buridan’s logical octagon of de re modalities,
a new impetus has been given much later by the French philosopher and logician
Robert Blanché. As exemplified above, Blanché’s hexagon has enriched the Aristotelian
square with two additional vertices Y,U in the vertical sense and given several inter-
pretations to the six resulting vertices: quantified, modal, but also conceptual in a
broader way. Earlier, the Polish logician Czezowski extended Aristotle’s categorical
square by introducing the singular propositions Y,U. This suggests that there was
no transcendental limitation on the initial square of oppositions, insofar as more or
less than four propositions may be opposed to each other. Moreover, propositions are
not the only sort of meaningful entities that can be represented in such geometrical
figures: concepts, modalities, and so on, may also be defined in terms of opposi-
tion.

A more systematic treatment of logical oppositions has been recently proposed by
philosophers, linguists, and mathematicians [1-5-6—10]. Some precise explanations have
been given there about the minimal and maximal extensions of the historical core pattern
of geometrical oppositions, namely: the square. There are not only different extensions
of the opposed edges in an arbitrary figure, but also different ways of representing these
extensions according to their inner structure.

Even given this precedence, there may remain some reluctance towards such a
logical procedure: why and how to afford a geometrical representation for logical
oppositions? But, whilst the core logical notion of consequence seems absent
from this special discipline, we see at least two advantages of a geometry of
oppositions.

On the one hand, these structured geometries offer a harmonious representation of
logical contradictions by central symmetry. This has been also seen twice above, both with
logical hexagons and octagons as well as in the mystic figures of the Yiking and the Seal
of Solomon. The central symmetry is shown there by sets of intersecting lines between
red contradictories: two lines in a square, three lines in a hexagon, four lines in a octagon,
and so on, until a circle displaying a hypothetically complete set of n relations in a perfect
shape (recall Shao Yong’s aforementioned mandala).
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This suggests that such a way of organizing oppositions goes beyond the scientific
domain of modern logic and already occurred a long time ago in prescientific domains of
thought.

On the other hand, a geometrical figure may also be used to depict the structural
completeness of a finite set of logical relations. To the question regarding how many
logical relations there can be in a given set of propositions or concepts, the answer is that
this depends on the number of relata to be opposed to each other in a given geometrical
structure. Thus, a logical structure (square, hexagon, and the like) is said to be complete
if and only if all the logical relations can be displayed in it. Following [8—11], structural
completeness can be explained as follows:

For any oppositional structure with m relata, the number of n-ary relations between any
relata is a combination C)}, = m!/ (n! (m — n)!).

For example, the Aristotelian square of oppositions is a structure that includes m =4
relata; hence there is a set of C§ = 4!/ (2! (4-2)!) = 6 binary relations between its relata:
AE.,AO,ALEO,ELOL

A related problem was raised in [2]: how to display every such opposition between the
classical (bivalent) binary sentences in one and the same geometric structure?

Binary sentences are of the form pog, where o is a binary connective. There is a total
set of 2" =222 = 2% = 16 such connectives in the classical or two-valued logic, where n
stands for the number of truth-values (T for truth, F for falsehood) and m for the number
of connected propositions (p and g).

A partial solution has been proposed by [2] in the form of a hexadic structure. It is a
repeated two-by-two connection of hexagons, each being related by two common vertices
up and down and forming a whole DNA-shaped structure of ten elements (a)—(j).
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Albeit an extension of the single hexagon, the above structure is still incomplete since
6 among the 16 binary connectives are still missing there.

A solution has been found by [6] in order to introduce all binary connectives into
one and the same structure while following the basic criterion of central symmetry for
contradictories. The result is a tetraicosahedron of logical oppositions, central symmetry
requiring a transition from 2D to 3D geometry. It is a very complex figure of C3, =
16!/ (2! (16-2)!) = 120 binary relations including 8 contradictories, in which the special
connectives of tautology and antilogy are located in the center of the structure. A common
feature with the Seal of Solomon is the occurrence of special values in the center of the
figure: tautology and antilogy, while the Seal has the sum of any opposed integers as its
core value. The link between the latter degenerate connectives T, L and the arithmetic
notion of sum will be explained in the final section.

The above geometric structure [5, 6] includes 6 squared faces; however, these are not
Aristotelian squares because they fail to have some of the usual logical relations in them
in such a 3D structure. The latter also includes 10 hexagons, whether regular or irregular.
Some of these figures have been studied at length elsewhere, especially in [5-10], and
it is not the purpose of the present paper to scrutinize the geometric features of logical
oppositions. Rather, our point is to show how the link can be made between geometry and
arithmetic through logic and with respect to the same issue: opposition.
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4 Logic of Oppositions

The following logic of oppositions departs from mainstream systems by focusing on the
concept of opposition instead of consequence. It is not a logical system endowed with a set
of theorems; rather, its purpose is to give an abstract formal definition of logical relations
including cases of opposition.

It is well-known that the truth-functional classical or two-valued logic is not able to
characterize each of the logical relations of opposition: if any two sentences @;, ¢, are
said to be contraries (or subcontraries), what of the truth-value of ¢, if ¢; is false (or
true)? The impossibility to treat oppositions as functions thus necessitates another formal
device to deal with logical oppositions.

4.1 Opposition and Opposites

This has been developed in several respects [7-8-9], inspired by two previous formal
devices: PQ-semantics, introduced in [5]; Modal Quantified Algebra, elaborated in [10].
Let us consider the resulting general theory of oppositions. It consists of two main
sections, namely, a semantic of the relations of opposition, and a complementary theory of
opposites, which are relata formed by opposition-forming operators.

The basic semantics embracing both areas is a constructive Question-Answer Semantics
(hereafter, QAS). It is an algebraic and non-Fregean semantics: in a Fregean semantics,
logical values are “truth-values” (true, or false) corresponding to single non-structured
objects and are assigned to only one category of objects, viz. propositions. In QAS,
logical values are structured context-dependent objects and are assigned to any meaningful
expression (not only sentences, but also concepts or individuals). In the case of sentential
expressions, the meaning of any sentence is afforded by a finite sequence of answers to
corresponding questions about the sentence. It results in an alternative coding of the logical
values of any sentence ¢;: not T or F, but a bitstring of relative length. The process of
valuation can be defined generally as follows:

For any meaningful expression ¢, there are m" logical values in a semantic with:

— nquestions Q (¢) = (q1 (¢) .- ... dn (¢))
— m sorts of answer A (¢) = (a;(¢),...,a,(¢)), every element a(¢) mapping into

{m-1,...,0}.

The presentation of logical relations in the form of a question-answer game helps to
approach an important problem concerning their cardinality, namely: how many logical
oppositions can there be? Although it is usually said that the Aristotelian square is a set of
four “oppositions”, a more scrutinized investigation will show that this is not so.

In the following logic of oppositions, only m =2 sorts of answer are used as
single bits: yes (symbol: 1), and no (symbol: 0). A corresponding semantics of clas-
sical oppositions consists in interpreting binary sentences in the form of sequences
of 4-bits, each logical value standing for their Disjunctive Normal Form. The sense
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Q) = (q1(9),q2(9),q3(¢),q4(¢)) of these binary sentences ¢ = pogq is specified by an
ordered set of 4 questions about their possible valuations: q;(¢): “v(p)=v(q) =T?”;

Q@2(¢): “v(p) =T, v(q) =F?"; q3(¢): “v(p) =F, v(q) =T?”; qa(¢): “v(p) =v(q) =F7".
This results in a set of 2* = 16 logical values A(¢) = (a;(p),a2(¢),a3(¢),a4(¢)), each of
these characterizing one of the 16 binary sentences of two-valued logic.

poqg=¢ A(pog=A(p) pog=¢ A(poqg =A(9)

pV ~p 1111 =T p<q 1001
pVyq 1110 q 1010
p<gq 1101 ~q 0101
p—q 1011 ~(pVq) 0001
~(pnrng) 0111 ~(p<¢q) 0010
p 1100 ~(p—>¢q) 0100
~(p<q) 0110 PAg 1000
~p 0011 1l=pa~p 0000

Once the logical values are set out, it becomes possible to achieve a calculus of
oppositions and opposites [7]. All related concepts are characterized by two interconnected
logical forms.

On the one hand, oppositions are relations the form Op(¢;,¢;) and can be read as
“@; stands in an opposition of ... to ¢,”. The generic relation R = Op is depicted in
all geometric structures we dealt with previously, Aristotle’s square, Blanché’s hexagon,
and so on, with the relata ¢;,¢;, and the relation Op, corresponding to vertices and lines.

On the other hand, opposites are opposition-forming operators mapping on expressions
and forming non-identical expressions in a given set of logical values. The generic
opposition-forming operator is of the form op(¢;) = ¢,. This includes its output value
and can be read as “a ... of ¢ is ¢;”, so that any application of an operator op yields a
corresponding relation from the set Op = {CT,CD,SCT,NCD}.

Let M and LI be the Boolean operations of meet and join such that, for any single answer

a;i(¢):
a; (¢1) M a; (92) = min (a; (¢1), a; (¢2))
a; (¢1) U a; (92) = max (a; (¢1), a; (¢2))

Then for every relation Op (A (¢1),A (¢2)) = Op (A (¢1),A (op(¢1))), we have the
following distinctive valuations:

Contrariety: CT
Op (91, 92) = CT (g1, ct(¢1)) iff

A(p)MA(p) =Land A(@) UA (@) #T
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Contradictoriness: CD
Op (¢1, ¢2) = CD (¢1,cd (¢1)) iff
A(p)NA(g) =L and A(p) UA(g2) =T
Subcontrariety: SCT
Op (91, 92) = SCT (g1, sct (1)) iff
A1) MA(¢2) #Land A(p1) UA(¢2) =T

Non-Contradictoriness: NCD
Op (@1, 92) = NCD (91, ncd (¢1)) iff

A1) MA(¢2) #Land A (@) UA(92) # T

It is worthwhile to note that the well-known relation of subalternation SB does not appear
in the above list: its valuation cannot be made distinct from non-contradictoriness, and
another way to individuate SB goes by the following definition:

Subalternation: SB
Op (@1, ¢2) = SB (¢1,sb (¢1)) iff

A (1) MA(92) =A(¢1) and A (¢1) MA (¢2) # A(¢2)

Subalternation has two peculiar features. For one thing, it has a converse relation of
superalternation SB~! = SP, by reverting the relation order between its relata ¢; and ¢,.
Also, it is not characterized in the same way as the previous relations: these are defined by
a combinatorial game of minimal and maximal valuations, min(¢;) = L and max(¢;) =T,
depending upon whether their meet and join values result or not in either of these extreme
valuations. There is still one such combination that has never been introduced in the usual
theory of opposition: unconnectedness [10, 11], which imposes absolutely no constraint on
the relata. However, this further relation cannot be defined by the sole terms of opposition
and requires another sort of questioning: not only about difference, but also about identity.

4.2 Identities and Differences

The above definitions show that the concept of subalternation does not answer to the same
set of questions as the other four relations. Following [11], one can see the whole as a set
of two distinctive questionings about modes of difference and identity.
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On the one side, the sense of logical oppositions is given by two meta-questions about
differences in valuations:

Q (Op (91, 92)) = (q1(Op (@1, ¢2)), q2(O0p (91, ¢2)))
q:1(Op (@1, 92)) = “ai(¢1) = 0= a;(g2) 177
@(Op (@1, 92)) = “ai(¢1) = 1 = a;(gz) 077

Contradiction, contrariety, subcontrariety and unconnectedness are rendered by these
questions: A (CD (¢1. ¢2)) = (1, 1), A (CT (g1, ¢2)) = (0, 1), A (SCT (1. 92)) = (1,0),
and A (NCD (g1, ¢2)) = (0,0).

On the other side, the sense of logical implications is given by two meta-questions about
identities in valuation:

Q (Imp (@1, ¢2)) = qi{(Imp (1, ¢2) ), q2(Imp (@1, ¢2)))
qi(Imp (@1, ¢2)) : “ai(¢1) =1 = ai(¢2) 177
Q@ (Imp (@1, ¢2)) : “a;(¢1) = 0 = a;(¢2) 07"

Subalternation is rendered transparent by this set of questionings, highlighting its pecu-
liarity with respect to the preceding relations of opposition: A (SB (¢1, ¢2)) = (1,0).
Special headings are assigned in [11] to the other three identity relations: bi-implication
for A (Imp (1, ¢2)) = (1, 1), right implication for A (Imp (¢1, ¢2)) = (0, 1), and non-
implication for A (Imp (¢;, ¢2)) = (0, 0).

On the one hand, it quickly appears that the 16 binary connectives result from a
combination of the above four questionings, thus accounting for their cardinality. However,
the questioning giving rise to the sixteen Disjunctive Normal Forms includes notions of
compossibility and asks if any two sentences can be true or false together or not. At the
same time, the meta-questioning that has just been used for relations of difference and
opposition deals with necessary relations, having to do with metalogical possibilities and
necessities.

On the other hand, every logical relation results from a combination of identities and
differences, viz. between the bits of a given expression and those of its relatum. In this
sense, it can be said that every logical relation is a logical opposition, once opposition is
defined in QAS as a Boolean difference of relative degree between bitstrings. It has been
argued in [11] that subalternation is not a relation of opposition at all, as depicted by the
above distinction between questionings about differences and identities (subalternation
proceeds from the latter). Admittedly, no logical relation is to be properly called an
“opposition” if its relata are compatible with each other. But since this also holds for
subcontrariety and unconnectedness, our reply is that a calculus of opposites helps to show
that any different relata can be formed by means of contradictory oppositions between
some of their single bits. Thus, a constructive definition of relations entails that different
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relata may be opposed in some way to each other, whilst being possibly compatible with
respect to their whole bitstrings.

4.3 Negations

It has been argued in [7] that each of these opposition-forming operators is a special case of
negation: a difference-forming operator that turns a given value into another one. However,
these operators are not functions in the usual sense of the word. That is to say, most of
these are not one-to-one mappings turning one input value into another single one. Rather,
the opposition-forming operators op are mostly one-many mappings: to one input value
corresponds more than one output value.

On the one hand, contradiction is the only extensional opposition-forming operator.
In other words, the operator op, = cd is a bijection. This is shown arithmetically by the
fact that there is only one integer A(¢;) + A(g2) = max(¢;). By derivation, only classical
negation plays the role of a contradiction-forming operator.

On the other hand, contrariety-forming operators can be associated to what is called
a paracomplete negation, whilst subcontrariety-forming operators behave like paracon-
sistent negation. Such a correspondence relies upon the nature of consequence from
the perspective of logical oppositions. As far as one can see, subalternation is the best
candidate to render the notion of consequence in a Boolean version of logical oppositions.
Indeed, every premise is such that it entails a number of consequences, and this number
is dependent upon the ways every yes-answer of the premise can be contained within
them. Taking the case of conjunction, pAg, Boolean oppositions combined with an
informal definition of subalternation helps to show that binary conjunction has as many
consequences as logical contraries. According to [1], subaltern expressions correspond to
contradictories of contraries.

It has also been shown in [8, 11] that the number of subalterns and contrary is relative
to the bitstring A(¢;) characterizing any expression ¢;. Thus, not every expression has
contraries or subcontraries, by virtue of its Boolean value, whereas every expression has
its own contradictory. In this way, we get information both about the number of logical
opposites and the nature of any opposition between arbitrary relata.

Moreover, a general calculus of oppositions can be achieved through two basic opera-
tors, cd and ct, in addition to the method of substitution. Then, for every expression ¢;:

sb(g;) = cd(ct(¢g;))
sct(g;) = cd(sp(¢i))
sp(¢;) = ct(cd(¢;))

However, the behavior of op as a one-many operator is troublesome from a compu-
tational point of view: how to determine the value of, for example, the contrary of a
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contradictory expression, if there may be more than one output value? The next section
helps to clarify these issues.

5 Arithmetic of Oppositions

In the preceding algebraic logic of oppositions, the logical import of relations relies upon
a Boolean calculus of expressions. Again, in the general logical form

D@y =01(@) + -+ @)y,

where 0;(9)jy = (ki-y = a; (9))

Arithmetic counterparts of the logical relation Op, and its corresponding logical operators
op, are the relation of difference @ and its corresponding operators of differentiation & in
N*. In addition, just as we expressed the view that oppositions are formed by means
of opposition-forming operators, we also can say that, for any pair of integers X(¢;)x,

2(@k:

) (Z (ODINE Z ((Pj)[k]) X @ (Z (> = (Z ((Pi)[k])) -
In other words, the relation ® (X(¢;)i,X(¢)x) stands for an arithmetic difference

expressed by an integer of N* such that (2(¢;)[k]) # X(@))p- It corresponds to Leibniz’s
2-base number and its decimal coding, such that

@(E(‘Pi)[z]v 2(%‘)[2]) = 2" (ar () —an () + -+ 4+ 2% x (2, (@) —a, (¢7))
The set of binary sentences and their arithmetic value can be listed as follows.

pogq=¢ A(pogq) > (pog) pog=y¢ A(pogq) Y. (pogq)

PV ~p 1111 15 Ny 1001 9
pVg 1110 14 q 1010 10
p<—gq 1101 13 ~q 0101 5
p—q 1011 11 ~(pVq) 0001 1
~(pAg) 0111 7 ~(p<gq) 0010 2
p 1100 12 ~(p—¢q) 0100 4
~(p<¢q) 0110 6 PAgG 1000 8
~p 0011 3 PA ~p 0000 0

For example, let ¢; =pAg, 2 =pVq. On the one hand, binary sentences ¢; and ¢, are
related by a relation of subalternation Op(A(¢;),A(¢z)) = SB(1000,1110). On the other
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hand, the operation turning the arithmetic value of the first relatum into the second one
is —6:

® (Z(e1)p. Sp)p) = (247" x (1-1) + (277 x (0-1)) + (2% x (0-1)) + (2! x (0-0))
Bx0)+@x D)+ 2x (1) + (1x0)
=0+ (-4 +(2)+0

=-6

The second step of our analogy consists in giving an arithmetic sense to the logical concept
of opposition.

5.1 Arithmetical Oppositions

It may seem impossible to talk about oppositions between integers. Although I have
already shown that concepts can be opposed to each other without referring to truth-values,
it hardly makes sense to say that, e.g., 7 is opposed to 5 by some relation of opposition.
For this purpose, an additional arithmetic criterion is required, namely, the introduction of
maximal or minimal integers, just as tautologies and antilogies play this role of extreme
values in algebraic logic. Thus for every sequence of n items ¢; in a k-base system:

— its maximum or maximal value is X(¢;) = k"1
Example: if k =2 and n = 4, then max(X(¢;)) = 24-1=15
— its minimum or minimal value is X(¢;) =0

Maximal value helps to understand why every vertex has only one contradictory:
there is only one X(¢;) such that X(¢p)+ Z(¢2) =max(XZ(¢;)), and Op(X(¢y),
£(¢2)) = CD(Z(¢1), E(¢2)).

A third notion has to be introduced in order to keep the 2-base system of Boolean bits:
summand, which denotes every single component or term o(¢;) of the addition X(¢;).
This item helps to define the logical opposition between two arithmetic terms through
their characteristic bitstrings, thereby focusing on the essential role of Boolean algebra to
connect logic and arithmetic.

Arithmetic oppositions can now be defined with the help of the above three main
concepts of maximal value, minimal value, and summand.

For every logical relation Op(X(¢;),X(¢2)) between integers, we have:

Contrariety

Op(Z(¢1) . X(¢2)) = CT(Z(¢1) . ct(Z(¢1))) iff

- 0(@)#0=/0(92)=0
- 0o(@p)=0=/0(p2) #0
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Example: CT(pAg, pA~q)
YS(prg)=8=84+0+04+0; Z(pA~q)=0100=0+4+0+0.
Contradictoriness

Op (2 (¢1) . X (¢2)) = CD (X (¢1) . cd (Z (¢1))) iff

- 0(p1) #0=0(92) =0
- 0(p1)=0=0(g2) #0

Example: CD(pAg,~(pAq))
X(pAqg)=8=84+04+04+0:2(~(pArq)=7=0+4+2+1.
Subcontrariety

Op (2 (91) . X (¢2)) = SCT(Z (¢1) . sct(Z (¢1))) iff

—o(p) #0=/0(e) =0
- 0(p1)=0=0(g2) #0

Example: SCT(pvVvg, ~(pAg))
Y(prq)=14=84+44+240; Z(~(pArq)=T=0+4+2+1.
Non-contradictoriness

Op (X (¢1) . X (¢2)) = NCD (X (¢1) . ned (X (¢1))) iff

- o(p)=0= /o (p)#0
- o(p) #0= /o (p) =0

Example: NCD(p, q)

X(pArq)=12=84+44+04+0; Z(pvg=6=0+4+2+0.
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Subalternation

Op (X (¢1) . X (92)) = SB(Z (¢1) . sb (% (¢1))) iff

- 0(p1) #0=0(92) #0
- 0(p)=0= /o (¢2) #0

Example: SB(pAg, pVq)
Y(prq)=8=84+0+0+0; Z(pvg =14=8+4+2+0.

In this way, arithmetic oppositions can make sense thanks to a correspondence with
logical values in QAS and their arithmetic properties. As such, the third and final stage of
our analogy concerns the link between arithmetic and geometry of oppositions.

5.2 Analytic Geometry of Oppositions

The analogy between arithmetic and geometry is made in the light of what Descartes
devised under the heading of analytic geometry. Its present version includes three main
components, namely: coordinates, identity, and opposition.

Just as in analytic geometry, expressions like points are to be defined by coordinates in
a space. Let A and B be any two points in a 2-dimensional vector space; then AB™ = (xg—
XA; YB—Ya). In our arithmetic of oppositions, coordinates are bitstrings and vectors are
turned into constants arithmetic functions @ between integers.

Example: let & for +2, X(¢) =3; hence £ (¢) =3+ 2 =35.

Furthermore, identity has a precise definition both in analytic geometry and arithmetic.

Let A,B,C be any three points in a vector space. Then the corresponding vectors
AB™ =u~ and BC™ =v~ are identical in a given space if and only if they have:

— the same direction
— the same sense
— the same norm

In the structured geometry of oppositions, the first criterion means that any two
lines relating vertices are parallel with each other. The second criterion has one logical
counterpart: subalternation, where the arrow between vertices indicates the sense of
entailment from premise to conclusion. The third criterion cannot be explained in logical
terms: a norm is a distance that cannot be rendered in a logical space, and only an
arithmetization of oppositions can do this with the help of an operator of differentiation & .
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Geometrical square
A 2 » B
AB = DC
4D ¥
AB = DC
D E——C
Logical square Arithmetical square
1000 0001 8 +7 1
+9 46
1110 0111 My 7

Finally, the idea of opposite vectors is the most important and proceeds as the converse
of identity. However, “opposite” is to be made in a particular sense of maximal opposition.

Two vectors u~ and v~ are opposed to each other if and only if they have opposite
coordinates, such as: u™ =—-v~

If such geometric relations and properties are verified in a logical space of oppositions,
modulo its Boolean transcription of logical values in QAS, then the same features of
analytic geometry should equally hold in our arithmetic of oppositions. An interesting
result can be obtained in this respect, concerning the calculus of oppositions already
suggested in [7] but limited by the inner constraints of one-many operators.

Another relevant result for our own purposes is the application of the so-called Chasles’
relation in analytic geometry.

For any points A,B,C in an affine space, we have:

AC™ = AB™” + BC™

The same properties can be observed in the 2D geometry of oppositions, as illustrated by
the following half-squares of opposition.

PAG —(pvg) 1000 N0 (001 A AB. . §—=D > 1
|
5—; S§ 3 N
;| & 5 A EIS
<] @Q ! 8) ;
Vg 1110 C 14
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Given the definitions of coordinates and vectors given above, the correspondence
of diagrams shows that Chasles’ relation applies to 2D geometries only. That it is, to
Aristotle’s square, but also Blanché’s hexagon, Buridan’s octagon, and so on. However,
a reference to Pellissier’s tetraicosahedron also shows that it does not hold for 3D
geometries: the identity criteria of vectors are lost once the third dimension of depth is
introduced between vertices. For this reason, we limit our correspondence result to 2D
geometries for the same reason Chasles’ relation holds for affine spaces only.

Thanks to this arithmetization of logical oppositions, it is also possible to identify any
logical relation between expressions. The one-many operators of logical oppositions made
this impossible, whereas a calculus of single values helps to define any sort of relation
on the basis of its relata. So, the correspondence also confirms the plurality of logical
negations as expounded in [7] from a purely Boolean perspective of logical negations.

Echoing the previous picture of oppositions as a set of partial identities and differences,
it is easily seen that not every double negation amounts to mere affirmation in a logical
calculus of oppositions: far from that, given the occurrence of double mixed negations like,
e.g., ct(cd(¢;)). Thus, for any opposition-forming operators op, and opy:

op,op, (¢) = ¢iff x =y =cd

This does not hold for the other logical oppositions such as contrariety. A contrary of a
contrary of ¢ may be (or not) another contrary of ¢, and the same holds for every one-
many mapping whereas contradictoriness proceeds as a genuine function, i.e. a one-one
operator.

More importantly, arithmetic helps to overcome the obstacle of one-many operators by
specifying the Boolean calculus of opposites: although there is not only one contrary, for
example, an arithmetic calculus helps to operate between single identified opposites from
particular relata.

To give an example of such a calculus, let us take any binary sentence of Pellissier’s
tetraicosahedron as a starting point; then let us check the final value of its opposite through
a finite sequence of operations between the 16 integers from O to 15.

Let A(pAg) = 1000 = X(pAg) = 8. Then:

8-5=3=04+04+2+1=A(0011)=X(—p), 0011 < ct(1000);
therefore, Op(8,3) = CT(pAg,—q).
3+411=14=84+4+2+0=A(1110)= Z(pVvg), 1110 Csct(0011);
therefore Op(3,14) = SCT(pAg,—q).
14-2=12=8+4+0+0=A(1100)= X(p), 1100 S sp(1110);
therefore, Op(14,12) = SP(pVvg.p).
8-5+11-2=12=8+4+4+0+0=A(1100) = X(p), 1100 < sb(1000);
therefore, Op(8,12) = SB(pAg,p).

To summarize:

— pis asubaltern of pAg: sb(pAg) 2 p.
— pis acontrary of a subcontrary of a superaltern of pAg: ct(sct(sp(pAg))) 2 p.
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It is worthwhile recalling that the above operations are not equations x = op(y) between
single values but, rather, inclusions x C op(x) between singletons and sets. This is the case,
because there is not only one subaltern to binary conjunction, and the above sequence
is just one possible way to move from an expression to one of its subalterns through
arithmetic extensions.

6 Conclusion

In this paper, I have proposed an arithmetization of logical oppositions, based on a
structural identity between three domains: logic, geometry, and arithmetic. Moving from
one domain to another one through the central device of Boolean algebra is possible by
assuming that any operation of a given domain finds its counterpart in the other.

This correspondence result can be summarized in the following table:

Logic Geometry Arithmetic
1 ¢ A xeNt
2 ¢2Cop(g) B yeN+
(3 Op(¢1.92) [AB] D(x,y)
4) op u” =AB7 L=y

According to this table:

. expressions are like different points in geometry and different integers in arithmetic;

. opposites are like differentiated points in geometry and differentiated integers in
arithmetic;

. opposition is like a segment in geometry and a numerical difference in arithmetic;

4. opposition-forming operators are like norms in analytic geometry and constant opera-

tions of addition or subtraction in arithmetic.

o =

W

The whole process may be seen as a legacy of Leibniz’s achievements in logic. That
is, despite its limited results, the algebraic logic of oppositions is an instantiation of what
Leibniz took as a lingua characteristic. Each relation of opposition is definite in a finite set
of expressions, and not every element of a given language can be compared to any other
in terms of oppositions. Likewise, the proposed arithmetic may be understood in terms
of a calculus ratiocinator, by computing the logical relation of expression through their
arithmetic values.

A number of further problems have not been addressed in the present paper and should
be developed in later works. For instance, how to construct a general algebraic logic for
any sorts of sentences beyond the sole binary sentences poq and its 16 elements? This will
depend upon the capacity of QAS to characterize every meaningful expression in the form
of a bitstring. This has been achieved with modal expressions [§—10], but only under the
proviso that their sense be given by a different set of questionings.
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Furthermore, the above arithmetic calculus relies upon a decimal coding of Boolean
values. The underlying game of yes-no answers thereby assumed a bivalent algebra {1,0}.
What of the meaning of expressions in non-Boolean algebras? If bivalence is rendered
by yes-no answers 1-0 and results in a 2-base number system, then many-valuedness
amounts to a higher set of 1, ..., k answers in QAS (where k>2) and should require
a corresponding k-base system.

Appendix: A Constructive Geometry of Logical Relations

In the first section of the paper, a historical reference has been made to Shao Wong’s order-
ing of the 64 hexagrams. Its striking feature is that it also respects the central symmetry of
contradictory oppositions between the Boolean bitstrings—and their corresponding blue
integers, here below, as is the case in all contemporary gatherings of logical geometry.

a

61 | :
)
59151

58] 5

57

s6 | 48 | 40 | 32 | 24 | 16 |8 |0

We propose in the following a similar constructive representation of logical oppositions:
all are decreasing quadrangles, of length L and width /. Each progression of a given 2"
quadrangle consists in duplicating it either horizontally (from left to right) when # is odd,
or vertically (from top to bottom) when 7 is even. The resulting figure is either a rectangle,
such that L =2 whenever 7 is odd, or a square, such that L =/ whenever # is even. Each
quadrangle is a complete set of bitstrings from the minimal value 0 to the maximal value
2" — 1, and the new ordering also preserves the properties of vectors (except Chasles’
relation).
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Groups, Not Squares: Exorcizing a Fetish

Walter Carnielli

Abstract I argue that the celebrated Square of Opposition is just a shadow of a much
deeper relationship on duality, complementarity, opposition and quaternality expressed
by algebraic means, and that any serious attempt to make sense of squares and cubes
of opposition must take into account the theory of finite groups. By defining a group as
triadic if all its elements, other than the identity, have order 3, I show that a natural notion
of triality group acting on three-valued structures emerges, generalizing the intuitions of
duality and quaternality.

Keywords Boolean groups * Group theory ¢ Square of opposition * Triadic groups

Mathematics Subject Classification (2000) Primary 03A05; Secondary 05C25

1 Contra Quadratus?

In their textbook [12], when discussing duality and commutativity, Halmos and Givant
make explicit something which should be obvious, but which is rather embarrassing for
the majority of philosophers, mathematicians and logicians: is the dual of a Boolean
polynomial that represents a proposition in classical logic' such as p V g, the polynomial
P A g, the polynomial —p Vv —g, or the polynomial —p A —g? All they comply a form of
duality, complementarity, or opposition. To make things clear for algebraic considerations,
given a polynomial f(p,q) in two variables, they define the complement of f(p,q)
(sometimes also called the external negation of f(p, q)) as —f(p, q), the contradual of
f(p, q) (sometimes also called the internal negation of f(p, q)) as f(—p, —q), and the dual
of f(p, q) as =f (—p, —q). Thus duality, in a proper sense, is the composite effect of internal
and external negations.

These three notions are intimately related, to a point that composing any two of them
defines the third: what happens, as they comment, is that there is a group of order four
acting in the set of propositions, not a group of order two: this group is precisely the
famous Vierergruppe V proposed by Felix Klein in 1884 (also called Klein 4-group), as

! A Boolean polynomial is the analogous of an ordinary polynomial, employing a finite number of Boolean
operations A and V on a finite number of elements in a Boolean algebra.
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we shall see. Thus, naive duality has no place in the deep relationship between algebra
and logic: what holds is quaternality, as already remarked by Gottschalk in [10]. This is
what lies behind De Morgan laws and behind many results of universal Boolean algebra,
geometry, topology, and several other areas.

Depicting this from a squared perspective, we obtain the following figure, which we
may call the Square of Quaternality:

contraduals

f(p,q) f(=p,—q)

>~ ]

duals complements duals

|

f(=p,=q) contraduals ~f(p.9)

The same quaternality relations hold of course for quantifiers, not only in classical
predicate logic but also for most modal logics and for generalized quantifiers (as for
instance for the quantifiers ‘most’, ‘many’, ‘rarely’, as treated in [4], as much as their
internal logics are endowed with a negation sharing the relevant features of classical
negation):

contraduals

I~

duals complements duals
7Q7

contraduals

where Q is V, 3, O, { or a generalized quantifiers (as the ones in [4], and several other).
Thus, for instance, it holds:

contraduals

I~ ]

complements dualb

[N

contraduals
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and

contraduals

I~ ]

duals complements duals

PN

o =0

contraduals

More significant for our purposes, Q can also be a restricted quantifier, as for instance, as
the ones usually employed in set theory: (Vx € S(x))P(x) and (3x € S(x))P(x), defined
respectively by (Vx)(S(x) — P(x)) and (Ix)(S(x) A P(x)).

Taking into account that the traditional forms of syllogistic quantification are symbol-
ized in contemporary logic as particular cases of restricted quantifiers

1. Universal affirmative A: Every S is P, (Vx € S(x))P(x)

2. Universal negative E: No S is P, (Vx € S(x))—P(x)

3. Particular affirmative I: Some S is P, (Ix € S(x))P(x)

4. Particular negative O: Some S is not P, (3x € S(x))—P(x)

the Square of Quaternality holds also for such traditional forms as follows:

contraduals

A \ / E
duals complements duals
I O

contraduals

However, the illustrious Square of Opposition works in terms of relative validity,
replacing the useful algebraic notions of duality (or quaternality) by much less significant
semantical relations (such as the notions of contrary and subcontrary) and entailment
relation (such as subalternation). Recalling the standard definitions:

» Two propositions are contraries iff they cannot both be true but can both be false;

» Two propositions are contradictory iff they cannot both be true and they cannot both be
false;

» Two propositions are subcontraries iff they cannot both be false but can both be true;

* A proposition B is a subaltern of a proposition A iff B must be true if A is true, and A
must be false if B is false.
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contraries

A E

\/

subaltern contradictories subaltern

e

1 [}

subcontraries

We also see that the Square of Opposition lacks symmetry, as the semantic relation
of subalternation is not symmetrical. The quaternality relations of complementarity, con-
traduality and duality are related to the semantic relations of contrariety, contradictoriety,
subcontrariety and subalternation, though in a complicated (and perhaps uninteresting)
way: although the complementary polynomials f(p, g) and —f(p, g) are always contra-
dictory, the contraduals f(p,g) and f(—p,—q) can be contraries or subcontraries. For
instance, the contraduals —p Vv ¢ and p VvV —g cannot be simultaneously false, but can be
simultaneously true, hence are subcontraries. Similarly, the contraduals —p A g and p A —¢q
cannot be simultaneously true, but can be simultaneously false, hence are contraries. Duals
are neither contraries nor subcontraries, e.g. p A g and p V ¢ can be both true and both
false. Subalternation is even more awkward: for instance, taking in particular the Boolean
polynomial f(p, q) as p A g gives:

contraries

PAq —pATq

~_

subaltern contradictories subaltern

pVa subcontraries ~(pAa)
while this does not hold by taking f(p,q) asp V q.

An illuminating exercise is to determine which pair of Boolean functions are con-
traduals, contraries, or subcontraries, and to compare this with their classification into
contradictory, contrary, and subcontrary. This is easily done by, for instance, representing
all the classical Boolean polynomials f(p, ¢) as expressions of the form a;pg + axp +
asq + as with coefficients in the field Z, (see [3, 5] or [6]) which readily gives the
following tables, separating the 16 binary Boolean polynomials f(p,q) into classes
grouping complementary, contradual, and dual functions:

pAg —(pAqQ —pA—q pVgq
0 1 1

— o

_ -0 O
—_ o = O X
—

0 1 0
0 1 0
1 0 0

—_
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P 9 pAmqg —~(pATqQ TpAq pV g
0 0 0 1 0 1
01 0 1 1 0
1 0 1 0 0 1
110 1 0 1

P q pXORg —(pXORg)
0 0 0 1
0 1 1 0
1 0 1 0
1 10 1

p q pXNORg —(pXNORg)
0 0 1 0
01 0 1
1 0 0 1
11 1 0

The remaining are 0-ary and unary functions, namely, the constants, projections and
their negations:

p g 01 p —p g —¢q
0001 01 01
0101 01 10
1 001 10 01
1101 10 10

Clearly, complementary functions are contradictory, contradual functions are some-
times contrary and sometimes subcontrary, and dual functions are can be simultaneously
contrary and subcontrary (or, neither contrary nor subcontrary). XOR and XNOR are self-
duals and self-contraduals, thus self-contrary and self-subcontrary: this just testifies, if
anything, for the weakness of the Square of Opposition. As an attempt to (at least partly)
remedy this lack of symmetry, a “new” form of Square of Opposition will hold by defining
a relation of cosubalternation as follows:

* A proposition B is a cosubaltern of a proposition A iff B must be false if A is false, and
A must be true if B is true.
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The following Square of Co-Opposition now holds by putting, e.g.,f(p,q) asp V ¢:

contraries

pVaq —“pPV—q

~_

cosubaltern contradictories cosubaltern

PAg ubcontrarics ~(pVa)

The Square of Quaternality, thus, gives rise to two symmetry-lacking squares: the
traditional one, preserving truth (subalternation), and a new one, preserving falsity
(cosubalternation). Of course, B is a cosubaltern of A iff A is a subaltern of B.

Model-theoretic relations also enjoy a form of algebraic duality: recall that a sentence
is said to be satisfiable in a given domain if there are assignments to its free variables that
make it true, and is valid if every assignment to its free variables makes it true. Since a
sentence is invalid if and only if its negation is satisfiable, and is unsatisfiable if and only if
its negation is valid, satisfiability and validity are dual notions. Moreover, if A is satisfiable
and B is valid, A and B are subcontrary, and if A is unsatisfiable and B is invalid, A and B
are contrary.

What we see from such examples is that the Square of Quaternality is immensely richer
than the shallow Square of Opposition with its lack of symmetry and its mediocre capacity
of being generalized. Why does it attract such attention? Let us postpone a tentative reply
for a moment.

2 The Triality Group: Generalizing Duality and Quaternality

The German-Jewish mathematician Amalie Emmy Noether was the first to note the
intrinsic relationship between symmetry and abstract structures, like rings or groups. Her
legacy, in the form of Noetherian rings, Noetherian groups, Noetherian equations and
so on made clear that the theory of groups is, as sometimes said, another way to treat
symmetries. Noether’s ideas explain the connection between symmetry and conservation
laws in Physics: conservation of energy comes from time symmetry, and conservation of
momentum comes from space symmetry. Conservation laws of quantum mechanics can
be derived from properties of symmetry of physical systems (see Chap. 52, Vol. I of [8]).

The combinatorialist Frank Harary, author of the one of the most important books on
graph theory [13] and who contributed to give the field a broader relevance, is a co-author
of a study (cf. [11]) of Boolean group models for the analysis of sexual symbolism in
New Guinea tribes applicable to a wide array of symbolic systems, not only interesting to
anthropology but also to logic.

The results of [11] are significant for ethnographic research and for assumptions
concerning the logic of mathematical representation of cultural structures. Hage and
Harary pay special attention to Boolean groups and cubes, starting from a simple definition
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of group as a set X endowed with an operation * satisfying the axioms of:

1. (Closure) If x,y € X thenx x y € X.

2. (Associativity) For all x,y,z € X, (x *y) x z = x % (¥ * 7).

3. (Identity) There exists an identity element i € X such thatforallx € X, ixx = x*i = x.

4. (Inversion) For each x € X there exists an element x~! € X (called the inverse of x)
suchthatx* x ™' =x'xx =1

An important class of groups are the permutation groups, whose elements are bijective
functions from a finite set M (the permutations) onto itself and whose group operation is
the composition of permutations. Permutations of a set M with m elements are usually
written in cyclic notation 0 = (o(1),0(1),---,0(k)), for k < m. So, for instance, if
M = {0,1,2,3}, a permutation o of M with 6(0) = 2, 6(2) = 3, 0(3) = 0, and where
o(1) = lis afixed point, is written as (0, 2, 3). The importance of permutation groups can
hardly be exaggerated: according to a famous theorem of Arthur Cayley (see [9]), every
group is isomorphic to a group of permutations.

The permutation group consisting of all n! permutations of n objects is called the
symmetric group, denoted by S,. It is obvious that S, is isomorphic with Z,, the group
of residues modulo 2 (odd-even), which by its turn coincides with classical negation (i.e.,
classical negation is just a cycle in the values O and 1).

A Boolean group B, is a finite abelian group in which every element different from the
identity i has order two (that is, x * x = i for all x).

Boolean groups have closed connections with classic propositional logic: the set of
propositional sentences forms a Boolean group under the operation of equivalence <
with the identity element 1 (verum): indeed, it is enough to check that the following laws
are valid:

(associativity): p & (& r)=(pq) &
(identity: p < 1 =p.
(inversion): p & p=1.

The same holds for the operation of ‘exclusive disjunction’ ¥ (also known as XOR), but
now with the identity element O ( falsum):

(associativity): pY (g¥r)=(p¥q) Vr.
(identity): p VY 0 =p.
(inversion): p Y p=0.

It is well known (see e.g [13], p.163) that every Boolean group is isomorphic to a sum
of n copies of the group S, for some positive integer n, where the sum of two permutation
groups X and Y is defined by all permutations xy obtained from the juxtaposition of
permutationsx € X andy € Y.

As an example, the well-known Klein 4-group V, often referred to in structural studies
(such as by Lévi-Strauss in various occasions, see e.g. his canonical formula for the
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structure of myths in chapter 11 of [15]) is defined by the following group table:

*i abc
iiabc
aaich
bbcia
cchai

Clearly, Klein’s V is a Boolean group (every element is its own inverse), and it thus
follows that the V is isomorphic to the sum S, & S». Thus the four smallest Boolean groups
are: By = 82, B> = $,®5,, B3 = $2D5,®S>, and By, = S, DS, BS>DS». B, can be written
as the sequences (00,01, 10, 11) and B3 as (000,001,010, 100,011, 101, 110, 111).

The group operation (under this representation) is componentwise addition modulo 2,
thatis, (ar, -+ ,a,) ® (b1, ,by) = (a1 + by,--- ,a, + b,) where a; + by is calculated
modulo 2, so e.g. (01 & 11 = 10); B, is generated by the (unity) vectors 01 and 10.

Seduced by the Erlangen Program of Felix Klein (for whom topology was the primary
form of conceiving space), Jean Piaget proposed a theory of oppositions connected to his
view on the development of cognitive behavior (see [7] and [19]) centered on his INRC
group,” a group of 4 elements that combines two cyclical, 2-element groups. INRC is
Zy x 7, the direct product of two copies of the cyclic group of order 2.

The group INRC can be seen as acting on quadruples (x;, x, x3, x4) of 0’s and 1’s, such
that its four components {I, N, R, C} produce the following actions on quadruples:

o I(x1,x2,x3,x4) = (x1,X2,x3,x4) Identity

* N(x1,x2,x3,x3) = (x; + 1,xp + 1,x3 + 1,x4 + 1) Negation

d R(xl,xz,x3,X4) = (X4,X3,XZ,X1) ReCipl‘OCEll

* C(x1,x2,x3,x4) = (xg + 1,x3 + 1,x5 + 1,x; + 1) Correlative

It is clear that NR = C, NC = R, RC = N, and NN = RR = CC = I where the
product means composition, and moreover composition is commutative, so the group table
is exactly the Klein’s group V (up to isomorphism):

x I NR C
I I NRC
NNI CR
RRCI N
CCRNI

On their turn, both the Klein’s 4-group V and the INRC are isomorphic to the
Gottschalk’s group of order four, considering complement, dual, contradual and identity
as operations on propositions (see also [17]).

I am not here interested in Piaget’s theory, nor in the abundant criticism around it: the only thing
interesting here is the coincidence involving Klein’s group V.
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From the geometric viewpoint, V, INRC, and Gottschalk’s group are also isomorphic
to the smallest non-trivial dihedral group. The dihedral groups D, are the group of
symmetries of a regular polygon of n sides, containing exactly 2n different symmetries: n
rotational symmetries and »n reflection symmetries.

The dihedral group D, (isomorphic with the group Klein’s V) is generated by the
reflection o across the vertical axis and the rotation p of 180°. The elements of D, can
then be represented as {e, p, o, po}, where e is the identity or null transformation and po
is the reflection composed with the rotation, which coincides with the reflection across the
horizontal axis. The geometric action of D, on the letter L is illustrated below:

L, I LT

Operations of rotation and reflection in general do not commute: for n > 2 the group
D, is not abelian; so D, (besides the trivial D) is the only commutative dihedral group.

The Boolean groups B, are depicted by the graphs called n-cubes, having as vertexes
the 2" points constituted by the binary sequences of length n, with two points adjacent
whenever their sequences differ in exactly in one places (that is to say, in terms of
coding theory they have Hamming distance equal 1). The four smallest cubes are 0-—1
(expressing classical negation) the “square of oppositions”, the “cube of oppositions” and
the “hypercube of oppositions in four-dimensional space”, which has not found any logical
or anthropological application yet.

By taking a closer look at Boolean polynomials, it becomes clear, looking at them
from the point of view of algebraic polynomials as in [3] (see also [1]), that the Boolean
polynomials f(p, g) in classical propositional logic reduce to all 16 expressions® of the
form aipq + axp + aszq + ay, for a; in the two-element field Z, = {0, 1}.

This gives a precise way to generalize the notions of duality, contraduality and
complementarity of [10] to several other, not necessarily bivalued, logics with negation: it
is just a matter of understanding which permutation lies behind negation. In more general
terms, a more complex group may be acting over negation, and this will define more
general duality, contraduality, complementarity, and perhaps yet new notions of symmetry.

For the case of three-valued logics, the six possible permutations of the truth-values
M = {0,1,2} are (0, 1), (0,2), (1,2), (0,1,2), and (0, 2, 1), plus the identity. Negations
of the well-known three-valued logics of Peirce, Bochvar Kleene and Lukasiewicz, among
others, are permutations (although several other three-valued negations are not). Recalling
that any three-valued logical operator (including negations) can be seen as a polynomial
f(p, q) in two variables over the three-element field Z; (for details see [1, 3], [5] or [6]),
then a generalization of Gottschalk’s complement, dual and contradual (as in [10]) of a
three-valued operator f(p, g) for ~ a negation which is a permutation of the truth-values

31t should be clear that the operation of multiplication is interpreted as conjunction or meet A, and addition
is interpreted as exclusive disjunction or symmetric difference Y. Addition does not represent disjunction
V, which would perhaps explain how exclusive disjunction, rather than standard inclusive disjunction,
would be a more natural basis for logic.
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M = {0,1,2} are:

~f(P.q). ~f(~p.~q) and f(~p, ~q), as before, plus ~*f(p, g), ~*f (~p. ~q),
F(~2p, ~2), ~f(~p, ~*q) and ~2f (~*p, ~*q).

We conclude then, that there is a group of order 9 (let us call it the triality group)
acting on three-valued sentences so as to define a precise notion of triality. Since any
group of order 9 is isomorphic to either Zg or Z3 x Z3 (see [9]), as a direct consequence
of the well-known Theorem of Finitely Generated Abelian Groups (see [18], Theorem
4.2.10, p. 103), and since the triality group has no element of order 9 (i,e., it is not cyclic),
the triality group is then obviously isomorphic to Z3 x Zs. This represents thus a direct
generalization of Klein’s V and Gottschalk’s group of quaternality and of Boolean groups
to three-valued structures (by calling a group triadic if all its elements, other than the
identity, have order 3).

3 Summing Up

I have argued that the algebraic structure behind Boolean groups, their generalizations,
and their isomorphic versions is what makes them relevant for understanding symmetries:
as each B, is a subgroup of B, 4, they form increasingly complex structures, and any
symbolic system may be regarded as a subsystem of a larger one, as suggested in [11].
For instance, each face of the cube Qs is O, so the “cube of oppositions” contains six
“squares of oppositions”, and so on, expressing combinatorial manifolds of complex
binary oppositions. In 1936 D. Konig, the graph theorist who proposed the famous Konig’s
Lemma, a denumerable form of the Axiom of Choice, conjectured that every finite group
is the group of symmetries of a finite (undirected) graph, a result proved by R. Frucht in
1939. Frucht’s theorem essentially says that for any finite group, there is a graph G such
that the group of automorphisms of G is isomorphic to the given group. In particular, this
will hold for any group of symmetries, so there will be infinitely many abstract forms of
‘squares of symmetries’ to play with, of which our notion of triality is just an example.

A perfect quantifier in many-valued logic is a quantifier that can generate all others
by means of negations, as in the classical existential and universal quantifiers. By using
the power group enumeration theorem, a combinatorial-algebraic generalization of the
classical enumeration techniques of Georg Polya, it was possible in [2] to define the notion
of distribution quantifiers, and to characterize all perfect quantifiers in 3-valued logics,
showing that there are 360 such quantifiers in 3-valued logics. A characterization of this
kind is only possible by applying the action of groups, not by any static diagram.

The Square of Opposition (as well as similar diagrammatic devices) is a rather poor
structure in comparison with Gottschalk’s group of order four and its isomorphic version
of Klein’s 4-group V: indeed, V is highly non-trivial, being the smallest non-cyclic group,
with importance for the study of symmetry in chemistry and physics, and has played a
relevant historical role in Klein’s program.
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The notion of quaternality is amply clarified from a group-theoretical perspective by
taking into account that there are exactly four functions that are one-to-one mappings
(automorphisms) of the set of Boolean polynomials onto itself: the identity function,
the complement function (defined by the external action of negation), the contradual
function (defined by the internal action of negation) and the dual function (defined by
the internal and the external actions of negation). The above defined triality group is an
immediate generalization of this idea. I am not against the trend of using diagrams in
logic, but I am not trying to depict a diagram for the triality group (which would be a kind
of “star of triality”’). The insistence on diagramming everything may be harmful to the
generalizations, as warned in the harsh criticism against the proliferation of diagrams and
graphical systems lacking formal semantics in computer programming found in [16].

If we are interested into a generalizations of Gottschalk’s notion of duality, as the
above suggested notion of triality, groups are essential and the Square of Opposition alone
is of no help; perhaps the penchant some people have for the square comes from the
Aristotelian elements and qualities (earth: cold and dry, water: cold and wet, air: hot and
wet, fire: hot and dry), popularized by Apuleius and Boethius as a pedagogical device, and
applied to modal propositions by twelfth-century logicians (see [14]). Recognizing that
our understanding in many things has evolved since the Aristotelian doctrines, historically
interesting as it can be, and that sophisticated structures are naturally behind linguistics,
logic, set theory, category theory, topology, geometry, philosophy, and anthropology would
heal and liberate people from a squared fetish.
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Part VI
Expansions and Variations of the Square



From the Square to Octahedra

José David Garcia-Cruz

Abstract Colwyn Williamson (Notre Dame J. Formal Log. 13:497-500, 1972) develops
a comparison between propositional and syllogistic logic. He outlines an interpretation of
the traditional square of opposition in terms of propositional logic, that is, the statements
corresponding to the corners of the traditional square can be represented with propositional
logic operators. His goal is to present a twofold square that preserves the truth conditions of
the relationships between the formulas, and define other set of formulas that complete the
traditional square to outline an octagon of opposition. We present two octahedra inspired in
these squares. The octahedra hold the relations of the traditional square of opposition and
also keep (and with some restrictions, extend) the equipollence and immediate inference
rules.

Keywords Hexagon ¢ Octagon ¢ Propositional logic ¢ Square of opposition e
Syllogistic

Mathematics Subject Classification (2000) Primary 03B05; Secondary 03B22, 03B35,
03B10

In geometry and logic alike a place is a
possibility: something can exist in it.

Ludwig Wittgenstein [6, 3.411]

1 Introduction

In [5] Colwyn Williamson develops a comparison between propositional and syllogistic
logic. He outlines an interpretation of the traditional square of opposition in terms of
propositional logic, that is, the statements corresponding to the corners of the traditional
square can be represented with propositional logic operators. His goal is to present
a twofold square that preserves the truth conditions of the relationships between the
formulas, and he defines other set of formulas that complete the traditional square to
outline an octagon of opposition. The aim of this paper is to lead to the end this
reconstruction taking seriously the task stated by Williamson.
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We present two octahedra inspired in these squares. The octahedra hold the relations
of the traditional square of opposition and also keep (and with some restrictions, extend)
the equipollence and immediate inference rules. Our goal is threefold: first, to analyze the
Williamson’s squares and state the basic consequences of his analysis, second, to present
an extension of the Williamson’s squares, i.e. the octahedra of opposition, and third, we
bring to the end Williamson’s thesis to get some results concerning the relation between
propositional and first-order logic.

In the second section we generate an analysis of the reconstruction of syllogistic logic
developed by Williamson in terms of propositional logic. In this part we highlight the main
results: (1) consider that the combination of the truth values defines a type of quantifier,
and (2) to establish the prevalence of the truth or falsity is relevant in reconstruction.
Subsequently, in Sect.3 these ideas are taken to build two structures that satisfy the
constraints presented, but with some difficulties, specifically the asymmetry in the number
of rules in each polyhedron. In Part 4 we developed a reinterpretation of the ideas presented
to solve the problems. That interpretation is to consider further consequences of the
above conditions, the commutativity as an ingredient necessary to define a quantifier
square opposition. And finally in the last section we apply the results to the traditional
theory.

2 Williamson’s Squares

Colwyn Williamson in his work Squares of opposition: Comparisons between Syllogistic
and Propositional Logic, develops an analysis of propositional and syllogistic logic based
on a definition of some Boolean operators. He begins with a definition of the operator
K representing the conjunction as follows: K11 = 1, K10 = 0, KOl = 0, KO0 = 0.
The operator K represents the conjunction connective in propositional logic and the 1 and
0 represent truth values True and False, and the combinations of 1 and O represents the
possible valuations for the propositional variables, therefore the definition of the operator
is 1000.

Taking in account this definition for the logical connectives Williamson defines the
following operators: B = 1101, C = 1011, D = 0111,J = 0110, L = 0100, M = 0010,
V = 1110, X = 0001. Williamson uses this resource to elaborate an analysis of the
traditional opposition square, and in addition to the later definitions he introduce notation
to define the four statements of the corners of the square of opposition as follows:

Aab:=alld's are b's
Eab:=noad's are b's

Iab := some d's are b's
Oab := some a’s are not b's

This notation is used by Williamson to generate the following traditional square of
opposition (7S1) (Fig. 1).
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Fig. 1 TSI Aab Eab
Iﬂ'b Oab
Fig. 2 SP1 Kpg Xpq
Vpq Dpq

We use the standard notation to represent the opposition relations of the square which
are represented in Williamson’s notation as D for contrariety, J for contradiction, C for
subalternation, and V for subcontrariety. The first comparison in Williamson’s analysis
is between the previous square 7S1 and the following square (which we can call SP1)
(Fig.2).

We may assume with Williamson that the ¢ in the later square could be consider
as predicate of the formulas in the corners, but he finds some problems concerning the
equipollence rule. The rule consist in define the operator of a formula of some corner in
terms of the negation and the operator of the remaining three corners preserving the truth
conditions of the initial formula, for example, when we deny' the predicate of Aab we get
a formula with the same truth conditions of Eab, namely Aanb. Williamson rejects this
assumption for the traditional propositional square because the rule of equipollence can’t
hold in the later square. To verify this take Kpg and Xpq as analogous of Aab ad Eab, in
according to equipollence rule KpNg must be equivalent to Xpg, but the equivalent of the
later is KNpNq and KpNgq is equivalent to DNpgq.

There is another reason to reject this square as a faithful propositional representation, in
the traditional square only two of the four formulas could be convert, that is Eab — Eba
and lab — Iba, but no so with Aab — Aba and Oab — Oba. But in the later propositional
square all formulas can be converted. These issues make Williamson to generate two
squares that correspond exactly with the traditional, that means that the later square don’t
preserve the restrictions of the traditional square of opposition. The first propositional
square is presented in Fig. 3.

'The Williamson’s notation for negation is: for external negation (de dicto), and for internal negation
(de re).
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Fig. 3 WPI Lpg _ Kpq
Dpq Cpq
Fig. 4 WP2 Mpq Xpq
Vpgq Bpq

Williamson generates a correspondence between the two squares (751 and WP1)
associating each Boolean operator formula of WP1 with the categorical formulas of T7S1
in the following sense:

Lpq is analogous to Aab
Kpq is analogous to Eab
Dpgq is analogous to lab
Cpq is analogous to Oab

The soundness of this interpretation is confirmed by the preservation of both the rules
of equipollence and immediate inference.? The second square is shown in Fig. 4.

In this case the link is between Mpq, Xpq, Vpq, and Bpq with the categorical formulas
Aab, Eab, lab, and Oab, respectively; and the equipollence and immediate inference
rules also hold. Williamson remarks two questions concerning the truth conditions of the
formulas in the corners of these squares. First “it will be noticed that the operators capable
of forming an exact analogue for the traditional square are the ones in which three and
only three of the defining values are the same: 1000, 0100, 0010, 0001, 0111, 1011, 1101
and 11107 [5, p. 499]. The second fact is connected with the correspondence by one side
between the truth value True and the particular quantifier, and by the other side between
the truth value False and universal quantifier, namely “the operators corresponding to
the “universals” of syllogistic are those in which false values predominate, while the
operators corresponding to the “particulars” of syllogistic are those in which true values

2Simple conversion, conversion per accidents, obversion, contraposition, and inversion.
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predominate” [5, Idem.]. Williamson emphasize that this correspondence could be some
kind of analogue to the medieval distribution theory, but he does not say more.?

Williamson note also an absence of symmetry in the comparison, because on the
one hand we have one traditional square, and on the other hand we could generate two
propositional squares with the above operators. We can assume following Williamson that
“there are—or ought to be—two such squares in traditional logic also”, and we may call
this later sentence the Williamson’s thesis. In other words, there are eight and not only four,
logically independent propositions. Williamson extends the traditional square and add four
new quantifiers: Rab, Sab, Tab, and Uab; and later he define them as follows:

Rab = Ananb = Aba
Sab = Enanb
Tab = Inanb
Uab = Onanb = Oba

These new quantifiers are used by Williamson to present another traditional opposition
square analogous to the first (7S1) to balance the situation and, evidently, he relates each
traditional square of opposition with his counterpart in propositional notation. In this case
the relationships are established between the new quantifiers Rab, Sab, Tab, and Uab with
the later Boolean operators Mpq, Xpq, Vpq, and Bpgq, respectively. Therefore, the following
equivalences also hold in propositional logic:

Mpq = LNpNqg = Lgp
Xpq = KNpNq
Vpq = DNpNg
Bpg = CNpNq = Cqp

Williamson’s interpretation ends with two notes about ‘“certain kind of connection
between Syllogistic and propositional logic”[5, p. 500]. First, following Lukasiewicz,
Williamson states that “the procedures of traditional logic presuppose laws of propo-
sitional calculus”[5, Idem.]; and second, he makes the claim that “syllogistic and
propositional logic express, at some level, a common structure of reasoning”[5, Idem.].
We will focus on this assumptions in the final section, and we will give an argu-
ment based on some thesis presented in the fourth section to vindicate the words of
Lukasiewicz.

3 From Squares to Octahedra

In this section we extend the previous ideas about the propositional interpretation of
traditional square of opposition, in specific we will show how to construct two opposition
structures based on Williamson’s squares. The novelty of this polyhedra is that it satisfy
the restrictions concerning the preservation of the equipollence and immediate inference

3We will say a few words about that in the final section.
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Fig. 5 SP2 Xpq Lpg

Cpq Vpq

rules, but as we will see, this polyhedra has two basic problems related with the rules
of the obversion and with the preservation of symmetry of the cited rules; nevertheless,
the octahedra has some interesting properties that serve as indication—together with the
mentioned difficulties—of the construction of a more complex opposition structure. The
main motivation of the extension of the Williamson’s squares is to analyze the relation
between these squares with the spurious* squares, namely SP1 and a new square SP2 with
the same problems that the later. Also we think that our extension is relevant because
we will see the role payed by SP1 and SP2 in the representation of the traditional
opposition square. Our thesis is twofold, by one side, using Williamson’s thesis we
will show that there is not only one spurious square, but two’; and by the other side,
we think that if the spurious squares are taken independently they don’t satisfy some
rules, but if we put all together we may construct a structure that satisfy the restrictions
stated by Williamson to make a correct propositional representation of the traditional
square, in other words, the spurious squares are intermediaries between the genuine
squares.

We begin presenting the spurious squares and consequently we show how join them to
the squares presented in the previous section. The first SP1 is the one who has presented by
Williamson, as we say it has problems with equipollence and immediate inference rules,
and for this reason is spurious. For the same reason the square in Fig. 5 is spurious.

Although this square preserves the main opposition relations it is not a correct
representation of the traditional square, to see why take, for example, Xpq and Lpg, Xpq
must be equivalent to LpNg but it is equivalent to Kpg not to Xpg. As we say, this two
squares are not part of the propositional reconstruction of the theory, to be taken into
account in the reconstruction of the propositional representation we must join them to the
genuine squares. We begin with the SP1 and the WP1 squares, in Fig. 6 we can see how
we construct the first octahedron from the intersection of the two squares.

The squares intersect perpendicularly taking as point of union the contradictory axis
of Kpg and Dpq. In the picture we have above the two squares with the axis highlighted,
but also if we look careful there is another square, the spurious SP2. This fact will be
analyzed later when we talk about how mix the two octahedra. There are some technical
reasons to consider this structure as an suitable reconstruction of the traditional square;

“The name was suggested by one of the jurors who reviewed an earlier draft.
3T thank one of the jurors for this observation.
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Fig. 6 WP1+SP1=D1

in the first place, in the operators V and X three of the defining values are the same, and
in the second place in X predominate the false values and in V the true values, because
the former is universal and the later particular. Before we move to the presentation of the
second octahedron we discuss what properties and rules preserve. The octahedron preserve
all the immediate and equipollence rules, but it extends the number of rules in both cases.
In the first place we have the equipollence rules:

Lpqg = KpNq = NCpg = NDpNg = NVNpq = XNpq
Kpq = LpNq = NDpq = NCpNq = NVNpNgq = XNpNq
Dpg = CpNg = NKpq = NLpNg = VNpNg = NXNpNq
Cpgq = DpNq = NLpq = NKpNq = VNpq = NXNpq
Vpq = CNpq = DNpNgq = NKNpNq = NXpq = NLNpq
Xpq = LNpq = KNpNq = NDNpNq = NVpq = NCNpq

This rules don’t have any problem, the only change is in the number. The relevant and
interesting modification is in the immediate inference rules, we analyze one by one starting
with the simple conversion rule. This rule states that a formula implies another formula
with the same operator but subject and predicate exchanged; as we say, this rule is only
satisfied by formulas with the E and I quantifier, and for this reason we only have restricted
number of them, in specific four. The next rule is conversion per accidents. This rule states
that an universal formula implies its subaltern with subject and predicate exchanged. In
this case we have six formulas that satisfy this rule because we have six subalternation
relation. The next one is obversion. In the square WP1 we have four obversion rules, this
rule states that a formula implies its contrary—in the case of the universal formulas—or
its subcontrary—in the case of particular formulas—with the predicated denied. As the D1
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octahedron have two triangles, one of contraries and other of subcontraries, it is expected
that in this polyhedra we have twelve rules of obversion, but the D1 only have four rules.°
The remaining formulas have in common the fact that they preserve some pattern that
exhaust the combination of 1 and 0 between p and g as we show below:

(Kpg — XpNq) = 0iff p=qg =1
(Xpqg — LpNg) = 0iff p=q =0
(Vpqg — DpNq) =0iffp=1,4=0
(Dpg — VpNq) = 0iffp =0,g =1
(Lpg — XpNq) = 0iffp=1,4=0
(Xpq — KpNq) = 0iff p=q =0
(Vpg — CpNq) =0iffp =0,g =1
(Cpg — VpNq) = 0iff p =q = 1.

Later we will present a detailed analysis of the question with the help of some additional
restrictions to the formulas to make a better propositional reconstruction of the theory with
an explanation of this difficulties.

The next rule is contraposition, this rule states that a formula implies another formula
whit the same operator, also the subject and predicate are exchanged and negated. The
main reason that not all operator satisfies the rule lies in some facts related with the
properties of conditional and similar operators, we return on that later. In WP1 we only
have two rules of contraposition and in the D1 we have the same number. The last rule
is inversion, this rule states that an universal formula implies its contradictory with the
subject denied. The octahedron satisfy three rules of inversion corresponding to the three
contradictory axis. Taking in account this facts we may generate the following list of
immediate inference rules:

Kpg — Kqp
Dpg — Dqp
Xpq — Xqp
Vpg — Vgp
Lpg — Dgp
Lpg — Vgp
Kpg — Cqp
Kpg — Vgp
Xpq — Dgp
Xpg — Cqp

. Lpg — KpNq

. KpNg — LpNq
. Dpgq — CpNq
. Cpg — DpNq
. Lpg — LNgNp
. Cpg — CNgNp

PN AW =

i e s e el ailens
QU kLN~ OO0

There are many facts that justify this anomaly but that does not discuss now, we will return to the issue
in the next section.
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17. Lpq — CNpgq
18. Kpg — DNpq
19. Xpg — VNpq

The formulas 1-4 are simple conversion, the formulas 5-10 are conversion per
accidents, the formulas 11-14 are obversion, 15 and 16 are contraposition, and 17-19
are inversion. Now we present the other octahedron together with its list of formulas, but
first we explain how to construct the octahedron (Fig. 7).

As in the DI in this octahedron the squares are intersected in a contradictory axis
composed by the X and the V operators. The technical restrictions are also satisfied by this
polyhedron, i.e. the X is universal and V is particular, and both have three identical values
in its definition. Now we will discuss the rules of inference. By one side the octahedron D2
preserve the same number of equipollence rules, and there is no anomaly in this kind of
rules. By the other side, there are an asymmetry with the later octahedron in the sense that
the number of inference rules that preserves are different, the D2 only preserves seventeen
rules. The following are the equipollence rules:

Mpq = XpNq = NBpg = NVpNg = NCNpNq = LNpNq
Xpq = MpNqg = NVpq = NBpNqg = NCNpgq = LNpq
Vpq = BpNg = NXpg = NMpNq = CNpq = NLNpq
Bpq = VpNg = NMpg = NXpNg = CNpNq = LNpNq
Cpq = NLpg = VNpq = NMNpNq = NXNpq = BNpNq
Lpg = NCpg = XNpq = MNpNg = NVNpg = NBNpNq

Fig. 7 WP2+SP2=D2
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As in the case of D1 the main change with respect with the squares lies in the immediate
inference rules, now we analyze this issue. The first anomaly is present in the simple
conversion rules, in D1 we have four rules and here we have only two. In the second place,
the D1 has six rules of conversion per accidents and the octahedron D2 hast only four.
In the case of the obversion rule we have the same number in the two octahedra but, we
have the same situation as in the D1, namely, the potential rule schemes that fails in one
assignation, as we see below:

(Bpqg — CpNq) = 0iff p=qg =1
(Cpg — BpNq) =0iff p=q =0
(Lpg — MpNq) = 0iffp=1,g=0
(Mpgq — LpNg) = 0iffp=0,g =1
(Vpg — CpNq) = 0iff p=qg =1
(Xpg — LpNqg) = 0iffp=¢g =0
(Lpg — XpNq) = 0iffp=1,4=0
(Cpg — VpNq) = 0iff p=0,g =1

We will also give a justification of this facts in the next section. Following with
contraposition, the octahedron D2 satisfy two more rules that the octahedron D1, in this
sense we get four rules. And finally the octahedron D2 has three rules while the octahedron
D1 only has two. To end this section we present the list of rules of D2 octahedra, and in
the next section we try to solve the problems generated by these structures:

Xpg — Xqp
Vpg — Vap
Mpg — Vqp
Xpg — Bgp
Xpg — Cqp
Lpg — Vgp
Mpqg — XpNq
XpNg — MpNq
9. Vpg — BpNg
10. Bpg — VpNq
11. Mpg — MNgNp
12. Bpg — BNgNp
13. Lpg — LNgNp
14. Cpg — CNgNp
15. Mpg — BNpq
16. Xpg — VNpq
17. Lpq — CNpgq

PN AW =
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4 Solving the Difficulties of the Octahedra: D1 + D2 = Hexagonal
Bipyramid of Opposition

In the previous section we have displayed the construction of two octahedra that extend
Williamson’s squares and preserve the propositional reconstruction of the traditional
square of opposition. Despite being a conservative extension the octahedra they have some
difficulties relative to the validity of the immediate inference rules and the symmetry of
both. In this section we discuss these facts that cause problems and do not allow us to
reconstruct faithfully the traditional square in terms of propositional logic; then, based on
the analysis we argue in favor of the construction of a more complex structure that connects
all the previous polyhedra. This structure is an Hexagonal Bipyramid. The novelty with
respect of its construction could be summarize in the following points: (1) with this
analysis we can establish some relevant properties needed to understand the restrictions of
the rules of traditional square of opposition, (2) we will add a new restriction for a correct
reconstruction of the square in terms of propositional logic, namely, the commutativity
property; and finally (3) we define essential properties of the four corners of the square of
opposition from the point of view of propositional logic. The last point will be emphasized
in the final section in which we will apply all the results presented here to the traditional
square of opposition.

We begin detailing the steps to form this structure and consequently we analyze the
resulting rules. When we analyze these rules we present reasons for the exclusion of the
formulas not satisfied in the octahedra and thus solve the problems of the previous section.
With this solution we will undermine the asymmetry in the previous interpretation.

The reason for the asymmetry is again that the octahedra are intermediate points
in building a more complex figure that more faithfully reconstructs both propositional
interpretation of square as the Williamson’s thesis. Initially, to show how to pass from the
octahedra to the Hexagonal Bipyramid we need to transform the octahedra in hexagons as
we see below (Fig. 8).

As we know, the octahedra are only a 3D-representation of a 2D-structure, namely the
hexagon of opposition [4, p. 181], [2]. The choice of one representation over the other
obeys heuristic questions, in the above case what guided our way to generate the three-

Vpgq Cpq

Lpg Kpg Mpg Xpq

Drg : Cpqg  Vpq Bpgq

Fig. 8 HDI and HD2
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Vpg Cpq
Lpq Kpq  Mpq Xpg
Drg Cpq  Vpq Bpq

Xpgq Lpq

Fig. 9 SP2in HDI and HD2
Vg
tpa Kpq
Dpq -
Xpq

Fig. 10 Base=HDI1

dimensional structure was to highlight two important facts: (1) the function of the spurious
square, and (2) to display the asymmetry between the two octahedra, in the sense that
the spurious square SP2 is in both octahedron and the spurious SP1 only the first. These
facts are important now because for construction of the Hexagonal Bipyramid we need to
consider again the function of the spurious squares. In this case we will take advantage of
the visual characteristics of the hexagons to punctuate our thesis.

The feature that we wish to emphasize extracted from the three-dimensional analysis is
the presence of the spurious square SP2 on both hexagons (octahedra), as we can see in
Fig.9.

We must highlight several facts that support our way of proceeding. As in the previous
case, by joining two spurious squares with two genuine squares we take as a point of
intersection an axis of contradictories, now what we need is another intersection point
between the hexagons, and this is precisely the spurious square. The clue that led us
to unite them was precisely the presence of this square on both structures generating
asymmetry in the reconstruction.

To generate the Hexagonal Bipyramid (2PH) we take as the base the hexagon as shown
in Fig. 10. Now, to complete the Hexagonal Bipyramid we need to remove from HD2
the vertices that are in the base, i.e., the spurious square SP2. This leaves us with a
contradictory line going from Mpq to Bpq. The remainder is to complete the figure by



From the Square to Octahedra 265

Fig. 11 2PH Mpq

Bpq

taking the MB shaft and cutting the base by the center as shown in Fig. 11. The vertices of
this axis works as the tips of the Hexagonal Bipyramid.

The following is to talk about the inference rules generated by this structure, and
from this discussion we will study in depth the problems generated in the previous
section and the solution that this structure provides. We must highlight several facts:
(1) The operators of this figure are sufficient to generate a complete reconstruction of
the traditional square from propositional logic; (2) the operators satisfy the constraints
identified by Williamson; and (3) the use of these operators in specific vindicates the
Williamson’s thesis. In addition it should be noted a fact concerning operator properties: In
addition to dividing the operators of this structure in “O-predominant” (universal) and “1-
predominant” (particular), they can be subdivided into commutative and noncommutative.
In this division lies the solution to the above problems and it is the key to understanding
the properties of immediate inference rules.

We analyze the square with this distinction. Squares WP1 and WP2 satisfy a common
feature, from the pair of universal operators one is commutative when the other is not, in
WP1 the L is noncommutative and K is commutative, and in WP2 the M is noncommutative
and X is commutative. The same in the particulars, in the first square D commutative and C
noncommutative and in WP2 the V is commutative and B is not. This makes us suppose that
in addition to the restrictions outlined by Williamson to get a correct reconstruction of the
traditional square, we can add the following restriction: the commutative/noncommutative
combination is distributed symmetrically on the square. In other words, it is not possible
to have two adjacent commutative or noncommutative formulas in the square.
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We can be more radical and specify this restriction for categorical formulas as follows.
The A and the O corners must contain only a noncommutative operator and the £ and
I corner must contain only a commutative operator.” This restriction is preserved in all
structures generated above, and from it we can now solve the problems encountered. Now
we will analyze the rules that satisfies the Hexagonal Bipyramid and why only meets that
set, consequently we explain why the other structures left out several potential rules. First,
joining the two octahedra an intersection between the rules is generated because there are
rules that both structures satisfy, we first present equipollence rules, which only undergo a
change in the number. In each Williamson’s squares there are sixteen equipollence rules,
and in each octahedra there are thirty two rules, and now we have the following list of
sixty four rules:

Lpg = KpNq = NCpg = NDpNg = NVNpq = XNpq = MNpNg = NBNpNq
Kpq = LpNqg = NDpg = NCpNgq = NVNpNq = XNpNg = MNpq = NBNpq
Dpqg = CpNqg = NKpq = NLpNg = VNpNg = NXNpNq = NMNpq = BNpq
Cpq = DpNq = NLpg = NKpNqg = VNpq = NXNpg = NMNpNq = BNpNq
Vpq = CNpq = DNpNq = NKNpNq = NXpq = NLNpq = NMpNq = BpNq
Xpq = LNpq = KNpNgq = NDNpNq = NVpg = NCNpq = MpNq = NBpNq
Mpqg = XpNq = NBpg = NVpNg = NCNpNq = LNpNqg = KNpq = NDNpq
Bpq = VpNg = NMpg = NXpNqg = CNpNqg = LNpNg = NKNpq = DNpq

Now we continue with the rules of immediate inference. The first group comprises the
simple conversion rules. We have previously said that this rule is generated only between
E and I of the traditional square. From our commutative analysis we can establish that
the cause of this is that the formulas that can represent E or / corners are only formulas
with commutative operator. Therefore, the operators susceptible to occupy one of those
two corners are commutative, and consequently always preserve simple conversion. For
this reason in the first octahedron there are more simple conversion rules that in the
second, because the first octahedron has more universal commutative operators. In the
second place the conversion rule, as we said states that a universal formula implies his
subaltern with subject and predicate interchanged. The reason that there are formulas that
do not satisfy this rule is that as the formula involved should be subaltern, one must
be commutative if the other is not. In the Hexagonal Bipyramid we have twelve rules,
nine present in the octahedra six on the first and four in the second, with a repeated rule
present in both, and in addition to these, three new that resulted from the union of the two
octahedra.

The next rule is the obversion. In this case there are several facts that highlight. First,
we have said that this rule is generated between pairs of contrary or subcontrary formulas.
Also, there are twenty four potential rules. Considering contrary and subcontrary relations

"This restriction does not exclude the categorical notation or the first order interpretation of the square,
and in the last section we will see why.
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in the Hexagonal Pyramid we obtain the following list, of which only the first eight are
satisfied rules.

Lpg — KpNq
Kpq — LpNq
Dpqg — CpNq
Cpg — DpNg
Mpqg — XpNq
Xpq — MpNq
Vpq — BpNg
Bpg — VpNg
Kpg — XpNq
Xpq — KpNq
. Vpq — DpNq
. Dpg — VpNq
. Vpqg — CNgNp
. Xpq — LNgNp
. Lpg — XNgNp
. Cpg — VNgNp
. Bpg — CpNgq
. Cpg — BpNq
. Lpg — MpNq
. Mpg — LpNq
. Mpg — KNgNp
. Kpg — MNgNp
. Bpg — DNgNp
. Dpgq — BNgNp

PN A WD =

[ NS 2 NS T NS I NS B O R e e e e e e

The remaining are some of those mentioned above that are excluded from the octahedra
and generate a pattern on an assignment that makes false (9-20). The second important fact
is that there are two connected reasons that cause the last group of formulas are excluded,
on the one hand that the operators must satisfy the adjacency of commutativity, so we
can not find combinations of rules in which there are two commutative operators or two
noncommutative. Although we found relations between commutative and noncommutative
in the Hexagonal Bipyramid, this fact is justified because of the spurious squares connect
the genuine ones. And this brings us to the second reason, the formulas excluded from this
rule belongs to spurious squares. The formulas 9-12 belong to SP1 the 13—-16 to SP2, and
the remaining are not in any of the squares presented so far, and that is due to the fact that
there are two new spurious squares that result of the union of the two octahedra (Fig. 12).

These squares are only present in the Hexagonal Bipyramid because of its vertices are
scattered on both octahedra. They are analogous to the above in the following sense. SP1
and SP3 are spurious because the former is composed of commutative operators and the
second noncommutative operators, these are spurious because they cancel commutativity
adjacency. On the other hand, the SP2 and SP4 are spurious because they do not satisfy
equipollence. This is how the problems of the octahedra are cleared and asymmetry is
solved. Finally we analyze contraposition and inversion rules.
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Lpq Mpq Mpq Kpq

Cpq Bpq Dpq Bpq

Fig. 12 SP3 and SP4

The contraposition rules are only satisfied by noncommutative operators, therefore
there are only four, and that explains why in the octahedra are only two in the first and four
in the second; the asymmetry is explained by the predominance of commutative operators
in D1 and the prevalence of non-commutative D2. Finally, inversion rules are satisfied
between pairs of contradictory operators, and in this case there is no difficulty, leaving us
with the following list of rules. We continue in the las section with the interpretation of
this facts in the traditional square.

Kpg — Kqp
Dpg — Dgp
Xpg — Xqp
Vpg — Vap
Lpg — Dqp
Lpg — Vgp
Kpg — Cqp
Kpg — Vgp
Xpg — Dqp
Xpg — Cqp

. Mpg — Vgp

. Xpq — Bgp

. Lpg — Vgp

. Mpg — Dgp

. Mpg — Cqgp

. Kpg — Bgp

. Lpg — KpNq
. Kpg — LpNq
. Dpgq — CpNq
. Cpg — DpNq
. Mpg — XpNq
. Xpq — MpNq
. Vpq — BpNgq
. Bpg — VpNg
. Lpg — LNgNp

PN R WD =

[N T N T NG T NS T N i S I e e e e )
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26.
27.
28.
29.
30.
31.
32.

5 From Bipyramid to Octagon of Opposition

Cpqg — CNgNp
Mpg — MNgNp
Bpg — BNgNp
Lpg — CNpgq
Kpgq — DNpq
Xpq — VNpq
Mpqg — BNpq

269

In this section we discuss the final part of the analysis with reference to the first square
presented: TS1. The thesis that we defend to close is related to the bond that—according to
Williamson [5, p. 500]—Lukasiewicz established between logic of terms and propositional
logic. To do this, we will present two ways to view the Hexagonal Bipyramid in which
emphasis is placed on the Williamson’s thesis as a unified way to present both squares. Our
strategy will be to present the pyramid in traditional notation (A, E, I, O) and consequently
order it to form a cube and an octagon, with reference to the two squares; finally we
will use notation of first-order logic to show structural similarities and again we use the
commutative interpretation to analyze the differences of each vertex. The following figure
shows the Hexagonal Bipyramid with traditional notation (Fig. 13).

Fig. 13 Traditional 2PH

Rab

Uab
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To better appreciate the link between the two squares we build a cube showing how
they connect. This cube in turn can be transformed into a octagon which is simply
the interpretation of two-dimensional cube. The cube shows how the two squares are
connected from spurious square, in this representation becomes clear its function. The
question now is how to interpret the Williamson’s thesis from the relationship between
these two squares (Fig. 14)?

Our position is that there are two squares, because of an important property of the
operators, the inversion. Following to Gottshalk [3, p. 194] ‘[t]o invert a column of T’s
and F’s is to turn the column upside down”. The two squares WP1 and WP2 are inverse
each other, and for that reason both separately satisfy the restrictions indicated for proper
reconstruction of traditional logic, but also for that reason together satisfy the constraints.
This octagon meets opposition relations in a different order than the other octagons, i.e.
medieval octagons [1]; this is also due to inversion. For this reason, we can call this The
Inversion Octagon (Fig. 15).

This octagon is the ultimate reconstruction of the traditional square, but still we can
ask what about the remaining connectives of propositional logic, if we apply Williamson’s
thesis to get another octagon, this is also one that reconstructs the traditional theory of
opposition? We believe that the answer is no because of the following three reasons: (1) the

Fig. 14 Cube of opposition Mpq Xpg

\ Kpq
Lpq

o /././_, g
I -
Dpq Cpq
Fig. 15 Inversion octagon Mpq qu
Lpq Kpq

Dpq Cpq

Vpq Bpq
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Fig. 16 First-order inversion ¥x(Fx =+ Gx) =3x(Fx A Gx)
octagon
=3x(=Fx A =Gx)
Vx(Gx = Fx)
~Vx(Gx = F
3%(~Fx A —6x) W fllial
3x(Fx A Gx) ~Wx(Fx = 6x)

remaining operators are not O-predominant (therefore there is no universal operators),
(2) the operators are not 1-predominant(therefore there in no particular operators), and
(3) do not meet commutative adjacency. Now to conclude, we analyze this results in the
first-order octagon of transposed squares (Fig. 16).

This octagon has the same properties of the previous one and therefore preserves all the
equipollence and immediate inference rules presented. Also, is has the same constraints
related with commutative adjacency, but in which sense this octagon preserves inversion?
We believe that the octagon also satisfies inversion, but in different way depending on
whether the formula is commutative or not. For example, take Yx(Fx — Gx) we obtain its
inverse only exchanging the F for the G; on the other side take 3x(Fx A Gx) we obtain its
inverse denying Fx and Gx. The first process is applied only to noncommutative formulas
and the second to commutative ones. In both cases the inversion is satisfied in the sense
that inversion may be defined as the negation of duality, in our octagon if we take again
dx(Fx A Gx) we obtain its inverse changing the A for its dual v and denying them,
we obtain Ix—(—Fx v —Gx) which is equivalent to Ix(—Fx A —Gx). the same with the
remaining corners of the octagon. Finally, we think that this results vindicate the intuition
of Lukasiewicz and Williamson [5, p. 500], namely:

These results cast some light on a certain kind of connection between syllogistic and propositional
logic. It has been stressed, especially by Lukasiewicz, that the procedures of traditional logic
presuppose laws of propositional calculus. The analogies described above, however, rest on a direct
comparison of the logic of terms and the logic of propositions; and they appear to suggest that
syllogistic and propositional logic express, at some level, a common structure of reasoning.

6 Conclusion

We may summarize the main results in the following points: (1) Williamson’s thesis serve
us to generate many opposition structures that hold the constrains imposed in the paper to
make a correct reconstruction of the traditional syllogistic logic in terms of proposition
logic; (2) we emphasize that the commutativity property play a relevant role in the
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traditional presentation of the square, and therefore (3) we show the structural connection
between these two structures.

Finally, we think that our interpretation of the connectives and quantifiers could be
extend to analyze some relevant notions in logic, like the medieval distribution theory, the
existential import, and the relation of the spurious square and the disparate in medieval
octagons of opposition, but it remains open for further work.
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Iconic and Dynamic Models to Represent
“Distinctive” Predicates: The Octagonal Prism
and the Complex Tetrahedron of Opposition

Ferdinando Cavaliere

Abstract The predications of the Blanché Hexagon, enriched by converses and negative
terms, can be integrated into the ‘Octagonal Prism’ of Opposition, an exhaustive model
drawn from Distinctive Predicate Calculus, here presented in iconic version. The 7 basic
expressions, added to 9 cases without any existential presuppositions, are exhaustive
and geometrically organizable in a Complex Tetrahedron of Opposition. This model
has ‘dynamic’ features and a substructure, the ‘Double Diamond’, that is semantically
interpretable in terms of synonymies that are gradually different, and can play an important
role in theoretical and applied disciplines (e.g.: semantic search engines, translators).

Keywords Distinctive logic * Hexagon of opposition ¢ Knowledge representation e
Non-standard logic * Predicate logic * Synonymies * Tetrahedron of opposition

Mathematics Subject Classification Primary 03B65, Secondary 68T30, 03B20, 03B22,
03B60, 03B80

1 Distinctive Logic and the Octagonal Prism of Opposition

Taking an ordered pair of sets ba, we can use categorical predications to express the various
possible cases. That is, we have:

* every b is a (Aba) universal affirmative
* nobis a (Eba) universal negative
* only some b is a (Yba) distinctive or partial or exclusive particular

The quantifier Y represents the intuitive natural language some and not the existential
some of classical predicate logic. The latter means ‘at least one, perhaps all’, not excluding
the universal quantifier, whereas the former stands for ‘only some’. The partial quantifier
presupposes the existence of at least two elements in the term that quantifies, the one for
which the predicate delivers truth, the other for which it does not. The adjective distinctive
alludes to the necessity to distinguish, in the subject of the particular, these two kinds of
elements.

The three basic predications mentioned are mutually exclusive (incompatible) and
jointly comprehensive. To these predications, Aba, Yba, Eba, called ‘contrary’, can be
added the corresponding negations Oba, Uba, Iba, called ‘sub-contrary’. The well-known
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a Uba b Yba C Aba
Aba Eba  Aba Eba 220
Oba
Iba Oba Oba Iba Iba
Yba Uba Uba
Fig. 1 Hexagons standard (a), modified (b), and prism (c) of opposition

Aba=Aa’b’=Ea’b=Eba’ | contradictory of | Oba=0Oa’b’=Iba’=Ia’b
Eba=Eab=Aab’=Aba’ " Tba=Iab=0Oba’=0ab’
Yba=Yba’ " Uba=Uba’
Ab’a’=Aab=Eab’=Eb’a . Ob’a’=0Oab=Iab’=Ib’a
Eb’a’=Ea’b’=Aa’b=Ab’a " Ib’a’=Ia’b’=0a’b=0b’a
Yb’a’=Yb’a " Ub’a’=Ub’a
Yab=Yab’ " Uab=Uab’
Ya'b’=Ya’b g Ua’b’=Ua’b

Fig. 2 Immediate inferences

oppositional Hexagon of Blanché [1] graphically organizes these 6 predications and their
relations of opposition, contradiction, subcontrariety, subordination (Fig. 1a).

We give here a representation of the oppositional hexagon different from the standard
one (Fig. 1a, see Beziau [2]): here (Fig. 1b) the triangle of contraries (blue lines) forms the
top triangle, that of subcontraries (green lines) the bottom triangle, and the contradictories
(red lines) are shown as vertical connections of the three vertices of the two triangles, rather
than as opposite vertices, as in the standard representation. The black arrows represent
entailment relations.

The next step consists in re-fashioning the Hexagon in a tridimensional model as a
Triangular Prism (Fig. 1c), which would make it a suitable extension of the model to
encompass negative or complementary predicates (b’, a’) as well as inversions of the type
a’b, ab/, etc. In this case the condition holds that none of the positive (b, a) or negative
(b’, a") terms has a null extension (and consequently, an extension that equals the universe).

This allows for a total of 24 combinations for A, E and Y forms. Some forms are
equivalent. In the end, we are left with only 8 mutually irreducible primitive predications
(Fig. 2, first column) plus 8§ derived from them by negations (Fig. 2, last column).

The Triangular Prism is enriched with the new categoricals, whose equivalences are
well detectable in the model of the Octagonal Prism (see Fig. 3, where black arrows are
omitted for simplification).

Each triangle of contraries coincides with the mirror triangle of its categorical
obversions. For example: the triangle Aba—Yba—Eba coincides with that of Eba’~Yba'—
Aba’.
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Yb'a' =Yb'a
Eb'a' e | = Ab'2

=Ea'b'=Aa'b=Ab'a Aab=Eab'=Eb’'a
Ya'b= Ya' bq Dmb ~Yab'
Aba Eba

Yba'=
—FEba'=Ea'b Aalhl Yba 1 —Aba =Aab'= Eab

Ib'a'=la'b'=0a’ h llh : t)J: a'=0ab=lab'=Ib'a
| b'a

Ua'b=Ua'b’ Uab=Uab’

Oba=0a'b'=la'b=Iha’ Iba=lab=0ab'=0ba’

Uba=Uba'

Fig. 3 Octagonal Prism

2 ‘Compound’ Development

In order to avoid redundancy, we focus our interest on the octagon formed by four triangles
of contraries, ignoring those of subcontraries, that are not primitive. Little investigated, as
far as we know, is the binary conjunction of the predications of these triangles. In the
Fig. 4 we have connected by means of arrows the compatible categorical of the triangles
Aba-Yba-Eba and Ab’a’-Yb’a’-Eb’a’ in two-by-two combinations.

At the end of the arrows we have placed the Venn diagram uniquely identified by the
conjunctions given (in green the Universe of Discourse).!

[The pink ‘Double Diamond’ arrangement will be explained later].

The 7 diagrams thus obtained are exhaustive of the possible extensional relations
between two classes, in addition considering their complementaries.

Conjunction of categorical of two non-consecutive triangles in the Octagon of opposition:

Aba Yba Eba
Ab'a' | Aba *Ab'a' | Yba *Ab'a' | incompatible
Yb'a' | Aba* Yb'a' | Yba* Yb'a' | Eba*Yb'a'
Eb'a' | incompatible | Yba* Eb'a' | Eba *E b'a’
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Yb'a'(=Yb'a)
Eb'a’ Ab'a’
(=Ea'b'=Aa’b=Ab'a) (=Aab=Eab'=Eb'a)
(Ya'b=) Ya'd' Yab (=Yab')
Aba Eba
(Eba'=Ea'b =Aa'b") (=Aba'=Aab'= Eab)
Yba /[\(=Yba')
2
RO
bOa 1 b ))a , b)(a
yE|
a
a
bi(a @ b()a

Fig. 4 Conjunctions

A similar result isn’t obtained if we select two triangles that are consecutive because
some conjunctions will not have a unique diagrammatic interpretation.”

Figure 5 shows how the compatible conjunctions of one categorical with a second that
has its (positive) terms in inverse order, correspond to the 5 relations of Gergonne [3]
(shown in red).

If we introduce negative terms, the Gergonne notation can distinguish the cases 5, 6 and
7, but cannot identify case 4.> Deductive systems such as that of Gergonne (see Faris [4]),
freed from redundancies, give rise to a system based on 10 cases (Fig. 6).

As one can sees, the four X’s relation are ambiguous. Of the 100 syllogistic combina-
tions (10 x 10 base cases) 16 are inconclusive.

2Conjunction of categoricals of two consecutive triangles in the Octagon of opposition:

Aba | Yba Eba
Aab Aba*Aab Yba*Aab incompatible
Yab Aba*Yab Yba*Yab | incompatible
I Eab incompatible | incompatible Eba*Eab

3The following Figure shows that the Gergonne notation cannot identify case 4, other than by joining two
of its relations X and using negative terms. The symbolism of the sets is even more costly than that of
Gergonne.
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Aab

Yab

=2
o
®

B

=
i
=4

b

g /
(/ bXa P
a
N4 @
\"!-

Fig. 5 Gergonne’s relations

In another study (Cavaliere [5]) it has been shown how the Gergonne relations, seen
as double categoricals, can be interpreted as ‘Quantification of the Predicate’ (QoP), on
which (freed from errors) were based the deductive systems of J. G. von Holland, C. E.
Stanhope, G. Bentham, W. Hamilton [6], among others.

Gergonne Set symbolism 7 cases
{1816) |[(+ negative classes) (b"is yellow)
| bla b=a 1
bca bca bca 2
b>a b>a b>a 3

b. 0 * ba'#0 *
(b Xa)| bXa*bXa' .:'\3;& r"a#. 4
b'ma=0 * b'ma'#0

HE ¢ EEEE

(b X a) boa' b>oa' 5
(bHa) bca' bca' 6
(bHa) bla' b=a' 7
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Yb'a'(=Yb'a)
Ab'a’ bXa
(=Aab=Eab'=Eb'-

Eb'a’
Ea'b'=Aa'b=Ab'a)

4
(=Aba'=Aab’) R
~ab =

|
ol [
,.Bﬁhc a'

JE———
: Aa N
b & r—‘
( 175 G CD( )
e T 1 hoar g ose®
Fig. 6 Ten cases
5) © CONJUNCTION d)
SET Gergonne's | OF INVERTED |QUANTIFICATION

RAPRESENTATIONS | NOTATION CATEGORICALS OF PREDICATE

' bla Aba A Aab AbAa

I a bca Aba A Yab AbYa

I b boa | Ybardab | YbAa

v @ bXa Yba A Yab YbYa
a

V @@ bHa Eba A Eab EbEa

Fig. 7 Quantification of predicates

In Fig. 7, the transition is shown in the last two columns: the quantifier of the second
categorical has been moved to the position before the predicate. E.g.:

All b are a and Only some a are b = All b are Only some a.

The 7 cases were known to De Morgan [7] in the form of multiple conjunctions of
classical categoricals, with which he built his ‘Complex Syllogism’.

Using the particular quantifiers (I, O) instead of the partial (Y), he could not, however,
express case 4 with only two predications (see Fig. 8), which complicated the evidence of
the deductive rules.

De Morgan [8] also devised a notation system (the “spiculae” parenthesis) for syllo-
gistic with quantification of the predicate, different from those of the authors mentioned
above.
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7 cases Distinctive Predicate Calculus De Morgan (1847)

(b* is yellow) Iconic | compound predicates | | compound predicates | synthetic
1 bOa | Aba* Ab'a' Aba * Ab'a’ D
2 @a b))a | Aba*Yb'a' Aba * Ob'a’ D,
3 b b((a| Yba*Ab'a' Ab'a' * Oba D'

Oba * Ob'a' *
a °l (b Yba * Yb'a' P
b@ ) . . Iba * Ib'a’
b L) L) L. | 1
5 @a b()Ja| Yba'*Ab'a Eb'a’' * Iba C
6 @ @ b)(a| Aba'*Yb'a Eba * Ib'a’ C,
# f i bf’a Aba' * Ab'a Eba * Eb'a’ c

Fig. 8 Seven cases

In the iconic version of our complex DPC (Cavaliere [9]), we liberally drew our
inspiration (for cases 2, 3, 5 and 6) from such a system, simplifying it, but increasing

its deductive power.

4

4The code translation from grapheme to double predicate is as follows:
A..A becomes ( : ) equals A..Y becomes )) enclosed in Y..Y becomes )( )( tetraconnects
where the sequence of quantifiers refers to the complex predications of the table below, column IV, (in
which the commas represent the second pair, complementary to the first). See Cavaliere [9].

17 Cases

~N NN R W -

1T Explicit forms  III Equivalent forms
Aba * Eb’a Aba * Ab’a’
Aba * Yb'a Aba * Yb'a’
Yba * Eb’a Ab’a’ * Yba
Yba * Yb'a Yba * Yb'a’
Yba * Ab’a Ab’a * Yba'
Eba * Yb'a Aba’ * Yb’a
Eba * Ab’a Aba’ * Ab’a

IV D7¢c
AbaA”
AbaY”
Ab/ a/ Y//
YbaY”
Ab’aY”
Aba’Y”
Aba’A”
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case2 b))a =b)(a’ =b'((a’ =b'()a
©) 6lo © QD

case 3 bffa =b( )a’' =b'))a' =b') {
@] @ TN @) e

=b((a’ =b') (a' =b'))
case5 b()a b@a " b " o a

case6 b)(a =bj)a’ =b'( Ja' =b'((a
O | O @ @

Fig. 9 Cases2,3,5,6

3 An Iconic Notation for the 7 Compound Cases

So we have created a notation with graphemes or parentheses, the latter called “closed”, if
the parenthesis is concave towards its term, “open”, if it is convex. They are iconic for the
diagrams corresponding to each relation (see Fig. 8, I and II columns).

The immediate inference rules are: the simple rule of mirror rotation of the parenthesis
or other grapheme in conjunction with the inversion of the quality of the nearby term, e.g.

b)a=b)a =b'((a =b'()a.

The (equals) relation ‘(:)’ consists of two hemicycles, the right and the left ones, each of
which can refer to a term: if only one part rotates around its upper extremity, it results
in a sort of ‘() or mirror *(”, (integrates) relation; if they both rotate the equals relation
‘() is restored. Instead, the rotation of (tetraconnects) relation)()(is not affected by free
changes in the quality of the terms. This way complex distinctive predicates and immediate
inference rules find easy translation into diagrams. Depending on the pair in question, we
thus have four equivalent versions of diagrams and notation (Figs. 9 and 10).’

As regards mediated inferences of the Iconic DPC, see the deductive table of Fig. 11 that
is equivalent to the one just presented in predicative forms, with the resolving algorithm in
Cavaliere [9].

The compound DPC is more powerful and simpler than the Gergonne system [3] or
QoP, which can, however, be derived from DPC. This incorporates classic syllogistic,
including negative terms, and the Logic of Concepts (or Notions) of Vasil’ev [11], besides

SDistinguishing negative and positive terms by the shape of the curve was proposed by C. S. Peirce, but
only in his unpublished papers. See Moktefi and Pietarinen [10].
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cose i bOa =boa bed' =goa' b a| =bea b.ed

by—a b
case 4 b} )a Y =b)( )a'

®
L4

=b)( )@ =b’)( )(a

X

Fig. 10 Cases 1,4,7

1 2 3 4 5 6 o’
bOa b))a b((a b a b()a b)(a bga

1 aOc|[ bOc [b)c| bilc | B))(c | b)ec | b)(c |boec
2 a)c| b)e | b)e | Ibe Ycb | b()c | Ibe | b()c
3 a((c | b((e | e | b((c Yc'b Ibd | b)(c |b)(c
4 a))(c|B)(c | Yo | Ybe Ybc | Yb'e |b))(c
5 a()c| bO)e | e | B Yeb Tbe | b)jc | b))
6 a)(c|b)(e | B)(c| Ibe Yc'b bi(c | Ib'c | b
7 aldc| boce |[b)(e| BOe | B))e | be | b)e |[bOC

Fig. 11 Deductive table

being, as far as we know, the first complete deductive system based on all the Hexagons
retrievable from the categorical model of Blanché [1] (see Cavaliere [9]).

4 Existential Import and the Null Class

So far we have operated on the assumption that the classes treated were not empty. We
now consider also the empty (or null) set.

In the enlargement of the bases of the system that we are building, a pair of properties
is assigned to each element of the universe, whereby there are four possible choices:
an element possesses both properties (ba), or neither (b’a’), or only the first of the two
properties (ba’) or only the second (b’a). We can thus divide the universe into four sectors
(ba, ba’, b’a, b’a’) each of which can be real (=have instantiations, representatives) or not.

In the Fig. 12, the sectors are specified for each diagrammatic situation, as well as the
double predication form that describes it and the corresponding iconic notations.

For cases 815 a new symbolism has been introduced showing the relationship “[”
(= “omnicomprehends”) that the universe has with a term. The deductive rule here
stipulates that if the universal class omnicomprehends another class (not the universe)
it omnicomprehends also the complementary class. The non-universal class is therefore
always ‘closed’, in spite of the change of sign.
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Fig. 12 Cases with null class

ﬂirams Iconic | compound predicates s_ectars eguiwlent forms

| poa| Aba*Eba |P2 b'a'[ pra' | b'Oa' | b'fa
] | ena| Abatvba | pa pa| D)@ | BUE | BOA
Jblta| Yba*Eba | po | BOR' | B | )@
T o0 Yeatvba i pa e ba| P0G [B)0E | B)0E
D, ¢ bla| Yba*Aba |pa pa' b'a b((a' | b)(a' | b'))a
VO] | b)a| Eba*yba ba' b'a ba'| ' | b0’ | b((a
L] )| bra| eva*Aba | . pa | bOa'| bYfa' | b'Oa
(D 3| b[(a b'=C ba ba' b[(a"

]| f bte gy ES

16 b p'

10| a a'=gJ ba b'a N

| P o= ba  ba| PN

ba

=

b'a

b'a'

F. Cavaliere

If the second term is itself the universe, no immediate deductions can be made.
Finally, as a limiting case, when a term is empty, and so is its complement, the
entire universe is empty (non-existent). The relation :: (‘double colon’) expresses this

‘disintegration’.

S The Complex Tetrahedron of Opposition

An oppositional geometric model that can dynamically integrate the 7 cases of DD with
the cases 8—16 is the Complex Tetrahedron (Fig. 13), provided with four ‘actual’ vertices

plus twelve ‘virtual” ones.

6

SPossible alternative to the Tetrahedron: Hasse diagram, Tesseract, Rhombic Dodecahedron (with the
addition of the centre of gravity).
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Fig. 13 Tetrahedron with diagrams (a) and with sectors (b)

In Fig. 13a, each diagram finds its complementary on the surface of the Tetrahedron,
exactly at the point opposite to it with respect to the center of gravity. The latter (red)
represents the combination of all four sectors (case 4); it connects with the four midpoints
(green) of the faces of the Tetrahedron, which represent the diagrams with three sectors
(cases 2, 3, 5, 6).

Each of these center-faces connects to three of the midpoints of the six edges of
the Tetrahedron, which characterize the diagrams with only two sectors (of which two
‘existential’ diagrams or cases 1 and 7 (blue), and the remaining four with some empty
term/class, amounting to the cases 8, 9, 10, 11 (purple)).

Each midpoint is connected with two of the four authentic vertices of the Tetrahedron
representing the four cases with only one sector, that is, the cases 12, 13, 14 and 15 (in
black).

These four vertices are connected to the outer space (or circumscribed sphere), which
represents the empty universe, with 0 sectors (case 16) (in white). In summary:

* 1 case (center of gravity) with 4 sectors

* 4 cases (forming a small Tetrahedron) with 3 sectors
* 6 cases (forming an Octahedron) with 2 sectors

* 4 cases (forming a large Tetrahedron) with 1 sector
* 1 case (outer space) with 0 sectors
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This tridimensional graph has ‘dynamic’ features: the existential presupposition
decreases from the centre of gravity to outer space; this means that each transition from a
‘predicative’ vertex or node to a contiguous one corresponds to the subtraction or addition
of a single diagrammatic logical subset or sector (Fig. 13b).

6 The Substructure of the ‘Double Diamond’

The Tetrahedron has the Double Diamond or DD, as a substructure. DD is a planar graph
where each node represents a diagram, a double predication or an iconic relation (Fig. 14).
DD is inscribed into the Tetrahedron, half rotated 90° (Fig. 15, drawn by A. Moretti).
This spatial itinerary is organized as a twofold symmetry vertical and horizontal
(Fig. 16).

/U\El{ﬂ *Yb'a’
®E

Yha.¥b'a' b)(a Eba +Eb'a’
)O(a

a
\/ "@ Yba -« Eb'a’ I’f
No"b0)a
i ol

Fig. 14 The DD

2D bi-rhombus the 3D twisted bi-rhombus a tetrahedron emerges

Fig. 15 The DD twists

\j/\
NS

(1) melnm 7== ()

/
\

Fig. 16 Two asses of symmetry of DD
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We see that, due to the immediate inference rules of the iconic relations, each
complex predication placed on the left hand side of the vertical axis has a corresponding
symmetrical (i.e. maintaining the same relational symbol) to the right, but with negation
of the second term. The same applies proceeding from right to left. Given a complex
predication, its symmetrical with respect to the horizontal axis, always maintaining the
same symbol, sees the negation of both the first and the second term (or, equivalently,
changes the direction of both brackets, while maintaining equal signs). Combining both
symmetries we get, diagonally, expressions that differ in the sign of the first term.

The cases that are located on the axis itself, that are: 4 for the vertical axis, and 1, 4 and
7 for the horizontal one, being deprived of symbols such as parentheses, they apply the
rules described above only for the part concerning the signs.

7 Interpretations and Applications of the Double Diamond

7.1 Predicative Oppositions

Thus organized, the DD assumes an important role in the theoretical metacontrol with
regard to the past or present logical systems. For example, it includes the cases of the
Triangle of Contraries of our Distinctive Calculus), that is equivalent to that of Vasil’ev’s
Logic of Concepts of 1910s years (see Vasil’ev [11]), as we can see in Fig. 17. In Fig. 18 we
can see the 5 cases of Gergonne [3], analogous to those of QoP. The predications/relations
in question are defined by the disjunction of the cases included in the sets shown.

The examples given all fall in the substructure of DD, but we can always, if need be,
extend the sets under consideration to the vertices of Complex Tetrahedron that are free of
existential presuppositions.

Fig. 17 Representation of
Vasil’ev’s logic of concepts
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Fig. 18 Representation of
Gergonne’s relations

7.2 Intension (Connotation) as Opposed to Extension (Denotation)

The DD scheme lends itself to showing the relationship between an intensional (or
connotational) and an extensional (or denotational) reading of concepts.7

So, if we consider the case 2 (or 5) descriptive of the extensional relations between the
terms b and a, we will find the description of the intensional relationships between the
same terms as in case 3 (or 6) and vice versa, being 2 (or 5) symmetric to 3 (or 6), respect
to the horizontal axis. In cases 1,4 and 7, the two descriptions coincide, as they are placed
on the very symmetricity axis.

These considerations are a plausible hypothesis but not yet covered by a systematic
check.

7.3 Similarity (Sameness) Versus Difference (Diversity)

The horizontal axis of DD shows how similarity and difference are inversely proportional
concepts, when interpreted in logical terms, ordered in a linear sequence of four degrees.
The classes shown in the diagrams 1-7 are defined in terms of the scale ‘total-strong-weak-
no Similarity’ or, equivalently, ‘nothing-weak-strong-total corresponding Difference’
(Fig. 19).

7In a certain way, a concept can be defined as a set whose elements are its (essential) attributes or features.
A proper subset will thus contain a smaller number of those very features. As one goes from a set to one of
its proper subsets, certain features will get lost, which means a generalization or abstraction of the initial
set. Such a restriction of features will correspond to an increase of referential extensions. The inverse
procedure, the passing from a set to a superset, represents a specialization or particularization.
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SIMILARITY total strong 11 weak: ———— no =
2 3

€D

DIFFERENCE: no | il J o stong _JL__ total —J

Fig. 19 Similarity scale

This interpretation may play an important theoretical role, because some scalar or fuzzy
indefinable concepts from classical logic are logically illuminated by the DD model.

7.4 Synonymies

In a linguistic or semiotic context, DD gives a comprehensive survey of the possible
semantic variations of the relation between two terms, showing up any conceptual gap
that the disciplines mentioned have not captured. We can provide the framework for this
match between the 7 cases and the types of synonymy.

The cases 1, 2, 3 and 7 are commonly known in the linguistic-semantic literature as
well as in the dictionaries of synonyms and antonyms.

By analogy, we may complete the casuistry by coining new expressions such as
tetrameronymous for (4), or hypercomplement for (5) or hypocomplement for (6) (see
Fig. 20).

With expressions taken from ordinary language, a term may be, of a second one:

1. an equivalent 2. a restriction 3. an expansion 4. a limited connection 5. an integrative
connection 6. a limited disconnection 7. an integrative disconnection.

7.5 Scientific and Cultural Applications: Exemples

The issue of synonymy is in turn important in the field of semantic technologies, such
as data mining or ontologies. In a previous work the author has proposed the idea of a
semantic search engine and translators based on the 7 types of synonymy (Cavaliere [12]).

Ignoring the specifications “integrative” and “limited” of the cases 4, 5, 6 and 7, let us
return to the 5 Gergonne relations, which admit an interpretation in humanistic areas, for
example in poetry (rhetorical figures), or in the library sciences (Fig. 21).
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Semantic relations Diagrams Distinetive compound predicates

1| b synonym of a I

Zl b hyponym of a |

3| b_hyperonym of a |

dl b tetrameronym of a |

'}analogous

SI b hypercomplement of aI

Gl b hypocomplement of a |
1 outside }

?’l b complement of a |

Fig. 20 Semantic cases

@a

(D
@

b
b
b
b

®
0]0)
5

| All b and No not-b are .1]
[ All b and Only some noth are n]
| Only some b_and No not-b are .\I

| Only some b_and_Only some not-h_are -1]

| Only some b _and All not-b are .1]
I No b and Only some noth are a]
| No b and All not-b are .\I

Rethoric: tropes - g i

(logon)

Bibliographic indexes - Archivistic C

&

-

Definitio or Allusio or Periphrasis

HSF "Head Subjet For™ or UF "Use For” or "="all-

all relation (Equivalence)

Particularizing Synecdoche

BT "Broader Term" all-some relation

| b2

Generalizing Synecdoche

NT "Narrower Term” some-all relation

4-5| Metaphor (Part.Synec.+ Gener. Synec.)

"Almost Generic” or "[:]" some-some relation

6-7| Irony or Antithesis

“Related Term” (if and only if the relatedtermis a

“contrary” to the given one)

Fig. 21 Applications

7.6 Truth Values

F. Cavaliere

The 7 cases can provide a classification of the main logical and philosophical orientations.

Positing that class b is that of all true predications, and class a that of all false ones, we
recognize in case 7 the classical logic where every predications is true or false but not both
(bivalent systems) (Fig. 22). In case 6 we can also see predications that are neither true nor
false (trivalence or paracomplete or gap systems).

On the contrary, in case 5, predications appear that are both true and false (paraconsis-

tent or glut systems). Case 4 presents all four combinations of predications described above
(Four values of Belnap). In case 3 the idea that falsehood hides always truth, find a model
in the Freudian ‘lapsus’. A model for case 2 is given by a philosophy that considers all truth
false at the same time (that is, relative), but also admits the existence of pure (not-true) false
predications (skepticism). As regard case 1, all propositions are either contradictory or
meaningless (sophistics). Finally, it’s possible that some eastern philosophies (Buddhism,
Zen, etc.) are related to the point of the Tetrahedron without existential presuppositions.
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truth hides falshood trivalence
(skepticism) (Lukasiewicz)

QO

four

values bivalence

(Chrysippus)

paradoxal

D,

(sophistics)

(Belnap)

falshood hides truth paraconsistence
(Freud) (Vasil'ev)

Fig. 22 Philosophies of truth

8 Possible Extensions of the Model

Theoretical extensions of the Complex Tetrahedron seem interesting in five directions:

(a) “Imaginary Logic” of Vasil’ev [11] or a similar paraconsistent logic.
(b) N-Oppositional Theory (NOT) of Moretti [13] and others.

(c) Identification of possible psycholinguistics sub-structures, such as the ‘kite’ model by

Seuren and Jaspers [14] or other, in Seuren [15].
(d) Numerical predications with probabilistic or fuzzy applications (Cavaliere [16]).
(e) Ontologies, Semantic Web and Artificial Intelligence applications (Cavaliere [12]).
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The Exact Intuitionistic Meaning of the Square
of Opposition

Joseph Vidal-Rosset

To David DeVidi and to Sean McLaughlin

Abstract This paper aims at providing a complete analysis of the intuitionistic version of
the square of opposition and a reply to an article published by Méles (Around and Beyond
the Square of Opposition, ed. by J.-Y. Béziau, D. Jacquette (Studies in Universal Logic,
Birkhaiiser, 2012), pp. 201-218) on the same topic.

Keywords Intuitionistic logic ¢ Square of opposition * Tableau methods
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1 The Classical Square of Opposition

I assume that the reader is familiar both with classical first order logic (for short, CFOL)
and the standard symbolism adopted in this paper. Showing the discrepancies between, on
the one hand, the square of opposition in CFOL and, on the other hand, the intuitionistic
first order logic (for short, IFOL) is a good way to understand the latter; but before
one must grasp the former. The well known classical square of opposition i.e. Fig. 1,
page 292 is constructed by superimposing the two polygons of Fig. 2, page 292. Each valid
implication in these polygons gives the meaning of what is either a subaltern proposition,
or a contrary proposition, or contradictory proposition, or a sub-contrary proposition.

Definition 1.1 I call “negative” any formula obtained by prefixing one negation symbol
to a formula of the square, i.e. =(A), —(E), —(I), ~(0). A formula is “positive” if it is not
negative: (A), (E), (I), (O) are positive.

Remark 1.2 There is no valid implication between two negative formulas, and there is
only one validity only between a couple of positive formulas, i.e. in the subalternation
case.

Remark 1.3 Most valid implications contain a positive and a negative formula.

Every theorem of this paper has been checked by IMOGEN i.e. Sean McLaughlin’ theorem prover for
intuitionistic First Order Logic (https://github.com/seanmcl/imogen).

© Springer International Publishing Switzerland 2017 291
J.-Y. Béziau, G. Basti (eds.), The Square of Opposition: A Cornerstone of Thought,
Studies in Universal Logic, DOI 10.1007/978-3-319-45062-9_17
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Vx(Sx — Px) (A)

(E) Vx(Sx — Px)
AJx(Sx) — Contrary .

ATx(Sx)

Subaltern Subaltern

Ax(SxAPx) (D) (0) 3x(SxA-Px)

Subcontrary

AJx(Sx) AJx(Sx)
Fig. 1 Classical square of opposition
AVx(Sx — Px) Vx(Sx— Px) Vx(Sx — Px) AVx(Sx — —Px)
AJx(Sx) AJx(Sx) ATx(Sx) AJx(Sx)
—3x(Sx A Px) Ax(Sx A Px) Jx(Sx A Px) —3x(Sx A Px)
AJx(Sx) AJx(Sx) AJx(Sx) ATx(Sx)

Fig. 2 Implications valid in CFOL

Remark 1.4 Contrariety and sub-contrariety relations are duals of each other: the former
assumes a positive formula and concludes on a negative consequence, while the latter
assumes a negative formula and concludes on a positive consequence. That explains why
it is said, to explain the contrariety relation, that (A) and (E) cannot be both true but can
be both false, and that (I) and (O) cannot be both false but can be both true, to explain the
sub-contrariety relation.

Remark 1.5 The contradiction relation define four equivalences in the square, i.e.
1. (A) < —(0)
2. (0) < —(4)
3. (E) « —(])
4. (I) & —(E)
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Remark 1.6 The existential assumption 3x(Sx) is not necessary to prove a contradiction
relation in the square; one needs the following equivalences to do it':

(——A > A) A (A —> ——A) (1.1)
(=¥x—(Fx) = 3x(Fx)) A (3x(Fx) — =Vx—(Fx)) (1.2)
(=Fx—(Fx) — Vx(Fx)) A (Vx(Fx) — —3x—(Fx)) (1.3)
((A— B) > (~AVB)) A (mAV B) - (A — B)) (1.4)
(=(A AB) = (=A V —=B)) A ((=A V =B) — —(A A B)) (1.5)
(=(AV B) > (=A A=B)) A ((=A A =B) — —(A V B)) (1.6)
Example 1.7
e =Vx(Sx — Px) < 3x(Sx A —Px) (1.7)

Proof A simple proof can be made on the basis of the classical equivalences above.
By (1.3) and (1.4) one gets:

—Vx(Sx = Px) < ——3x—(—Sx Vv Px) (1.8)
By (1.1) and (1.6) one gets:
——=Ax—(—=Sx V Px) <> Ix(——Sx A —Px) (1.9)
By (1.1) one gets:

Ax(——Sx A =Px) <> Ix(Sx A =Px) (1.10)

'In this list, only (1.6) is an equivalence in IFOL: except this latter, all conjunctions, from (1.1) to (1.5)
have a left component provable in CFOL but not in IFOL.
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By transitivity of <>, from (1.8) to (1.10), one gets the conclusion:

—=Vx(Sx — Px) <> 3x(Sx A —=Px) (1.11)

2 The Intuitionistic Square of Opposition

2.1 Bell-DeVidi-Solomon Proof Method for Intuitionistic First
Order Logic

To understand the tree proof method for intuitionistic logic used in this paper, I reproduce
in Table 1 the tree rules given by Bell et al. [1, p. 197, pp. 216-27], and also the transport
and closure rules’:

2.2 Meles’ Incomplete Intuitionistic Square

In a paper published in a volume edited by Béziau and Jacquette [2], Méles [4, p. 207]
writes that “in intuitionistic logic, the square is clearly incomplete” and illustrates
immediately his claim by a figure that we reproduce in this paper in Fig. 3, page 295.

Unfortunately, Fig. 3 is misleading because it gives the impression that there is no
square of opposition in IFOL. As we are going to see, Fig.3 misses four provable
implications in IFOL.

* First, in Fig. 3 the contradiction arrow from (A) to (O) must be restored. Indeed the
implication

(AAB) — —=(—=AV —B) 2.1)

is valid in intuitionistic logic, and also —3x—(Ax) is intuitionistically deducible from
Vx(Ax), and therefore*:

F: Vx(Sx — Px) — —3x(Sx A —=Px) 2.2)

2T do not mention the fork rule, because it is not used in this paper. I strongly recommend the reading of
Bell et al.’s book.

3Symbols ., ¥,., F;, F; mean respectively: provable in classical logic, unprovable in classical
logic, provable in intuitionistic logic, unprovable in intuitionistic logic. I use in this paper the algorithm
of refutation trees defined by Bell, DeVidi and Solomon for intuitionistic logic [1, pp. 192-223] (see
Sect. 2.1).
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Table 1 Bell et al. tree rules for Disjunction  Conjunction  Implication
IFOL Affirmed AVB ANB A—B
PSS A P
A B B A B
Unaffirmed 2AVB)YV 2AANB)VYV (A—B)V
2A P A
2B ?A B 2B
Equivalence Negation
Affirmed A—B —A
P 2A
A ?A
B B
Unaffirmed (A< BV 20AV
A
20A>B)  2B—A)
rule IUI rule IEI
Vx(Fx) Ix(F0)v
Fc Fe
(for any appropriate c) (c new)
rule 201 rule 2EI
YX(FX)V ?23x(Fx)
Fc Fc
(c new) (for any appropriate c)

Transport rule: We are allowed to carry any state-
ment not marked by “?” across any horizontal line (i.e.
locality) introduced by the ? — and ?— rules.
Checkmark: Any checkmarked formula is deacti-
vated.

Closure rule. A path is closed when (and only when)
both P and ?P occur on it not separated by a horizontal
line. When it is the case, the path is marked by X. If all
paths of a refutation tree .7 of a formula F are closed,
7 is closed and that shows that the assumption of the
intuitionistic unprovability of F is a contradiction and
that, therefore, F is intuitionistically valid.

SAA-B  VxA VoA

Fig. 3 Méles’ incomplete AnB
intuitionistic square

AVB -AvV-B dxA dxA
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Proof

2Vx(Sx — Px) — —=3x(Sx A —=Px))V
Vx(Sx — Px)
?7=3x(Sx A —=Px)V’
Ax(Sx A =Px)V
Sa
—Pa
?Pa

Vx(Sx — Px)
RS

?2Sa Pa
X X
O

* Second, if one pays attention to the other contradiction relation of the square, i.e.
between (I) and (E), Fig.3 is correct but incomplete: it is true that (A v B) entails
—(—A A —B) and that the converse is not intuitionistically provable. But Fig. 3 does not
show that an equivalence is intuitionistically provable between —(A v B) and (—A A —B)
and also between — (I) and (E), i.e.

F; =3x(Sx A Px) <> Vx(Sx — —Px) (2.3)
Proof
2(—3Ax(Sx A Px) <> Vx(Sx — —Px))V

T

—3x(Sx A Px) Vx(Sx — —Px)
WVx(Sx — —=Px)v'  7=3(Sx A Px)V

Sa Ax(Sx A Px)v’
1=Pav’ Sa
Pa Pa
—3x(Sx A Px) N
?Elx(ﬁcQPx) 7Sa —Pa
X ?Pa
2Sa ?Pa X
Sa X

X
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» Third, according to Fig. 3, the contrariety relation would be provable in intuitionistic
logic only in the case of the implication (A) — —(E); (E) — —(A) would be
intuitionistically unprovable. The following tree both refutes such a claim and proves
this contrariety relation in IFOL:

Fi (Vx(Sx — —=Px) A Ix(Sx)) — —Vx(Sx — Px) 24

Proof

2(Vx(Sx — —Px) A 3x(Sx)) — —=(Vx(Sx — Px)))V
Vx(Sx — —Px)
Ax(Sx) v’
Sa
7=(Vx(Sx — Px))V
Vx(Sx — Px)
Sa
/\

28a Pa
X /\

28a —Pa
X ?Pa

O

* Fourth, sub-contrariety —(/) — (O) is provable in intuitionistic propositional logic as
well as in IFOL*:

—(AVB) > (mAA-B),(mAAN-B) —> (mAV-B)F; =(AVvB) - (—AV —=B) (2.5)

F; (—=3x(Sx A Px) A 3x(Sx)) — Ax(Sx A —Px) (2.6)

4By transitivity of implication (2.5) is deducible from Fig.3 ; but it is true that the other sub-contrariety
relation i.e. =(0) — (1) is not intuitionistically provable. (See Table 2, page 302).
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Proof

2((—=3Ax(Sx A Px) A x(Sx)) — Ix(Sx A —=Px))V
Ax(Sx)v’
Sa
—3x(Sx A Px)
73x(Sx A —Px)

N

Sa 1=Pav’
X Pa
Sa
—3x(Sx A Px)

23x(Sx A Px)
/\

?28a  ?Pa
X X

Consequently, we can assert a positive theorem in the next section.

2.3 A Proof That the Intuitionistic Square of Opposition Exists

Theorem 2.1 The set of all implications intuitionistically provable in the classical square
of opposition still defines a square.

Proof By superimposing the polygons of Fig. 4. Note that all contrariety and contradictory
relations with positive assumptions and negative consequences are provable as well as in
the classical case, and because one sub-contrariety relation remains provable in IFOL, a
square of opposition exists in IFOL. O

2.4 Do We Lose Something with the Intuitionistic Version
of the Square?

As Fig. 4 shows, in IFOL the contradiction relations can no longer be expressed via the
equivalences of Remark 1.5, except 3:

F; —=3x(Sx A Px) < Vx(Sx — —Px) 2.7
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AVYx(Sx — Px) Yx(Sx— Px) Vx(Sx — Px) AVYx(Sx — ~Px)
AJx(Sx) ATx(Sx) AJx(Sx) AJx(Sx)
—3x(Sx A Px) 3x(Sx A Px) 3x(Sx A Px) —3x(SxAPx)
ATx(Sx) ATx(Sx) ATx(Sx) ATx(Sx)

Fig. 4 Intuitionistic implications constructing the square

Comparing Figs.4 and 2, it is clear that the beautiful duality of the classic square of
opposition no longer exists in intuitionistic logic. So, in the polemic about classical logic
vs. intuitionistic logic, we have to wonder if the square of opposition can be used as an
argument on behalf of the conservative position. I am going to show that, in spite of the
strength of classical logic, the reply to this question is negative.

One of the criticisms made against intuitionistic logic is that, being weaker than
classical logic, intuitionistic logic prohibits some logical inferences as common as useful.
When Méles writes that there is an “intuitionistic gap in contradiction” [4, p. 208], it
sounds like a similar reproach: it suggests that there are contradictory formulas in classical
logic which are not identified as such in intuitionistic logic.’ It is indeed the case and it is
provable as follows.

Definition 2.2 A formula F is contradictory in FOL if and only if
FFEL1 (2.8)

Theorem 2.3 There are contradictory formulas in CFOL that cannot be considered as
such in IFOL.

Proof In the classical square of opposition, the implication —=(A) — (O) is provable,
therefore its negation is a contradiction, i.e.

—(=Vx(Sx — Px) — Ix(Sx A —=Px)) . L (2.9)

but in IFOL, Glivenko’s theorem fails and the double negation of —=(A) — (O) is not
provable, i.e.

—(=Vx(Sx = Px) — Ix(Sx A —Px)) ¥; L (2.10)

STn this context, a “gap” can mean a blank, a missing value.
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Proof

2(=(=Vx(Sx — Px) — Ax(Sx A —=Px)) — L)V
—(=Vx(Sx — Px) — Ix(Sx A —Px))
21
2(=Vx(Sx — Px) — Ix(Sx A —=Px))V
—Vx(Sx — Px)
73x(Sx A —Px)
WVx(Sx — Px)v’

Sa
2Pa
/\
?28a ?—=Pav
X Pa
O
Therefore, according to Definition 2.2 the formula
—(=Vx(Sx — Px) — Ix(Sx A —=Px)) (2.11)
is a contradiction in CFOL but not in IFOL. O

It seems that the previous proof could be a logical argument against intuitionistic logic
which would suffer of a sort of deficiency. But the embarrassment that theorem 2.3 can
cause is dissipated by the following one:

Theorem 2.4 A formula F is valid in CFOL if and only its Kuroda translation F* is valid
in IFOL.

Proof See David et al. [3, pp. 155-157] O

There would be a real “intuitionistic gap in contradiction” only if there would be no
intuitionistic translation of these formulas that are contradictory in CFOL but not IFOL.
But we know that Godel-Gentzen translation or Kuroda translation are secure means to
translate any formula valid in CFOL into a formula valid in IFOL.° and therefore, any
contradictory formula in CFOL can be translated by another contradictory formula in
IFOL. For example, via Kuroda translation, the formula

—Vx(Sx — Px) — 3x(Sx A —=Px) (2.12)
becomes

—=(=Vx—=—=(Sx — Px) — Ix(Sx A —=Px)) (2.13)

6See David et al. [3, p. 156] and von Plato [3, p. 170].
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Therefore the translation of the classical contradiction (2.11) is in IFOL the negation
of (2.13) and the translation of (2.9) is

—(=Vx—=(Sx — Px) — Ax(Sx A =Px)) H; L (2.14)

Regarding the intuitionistic square, it is therefore possible to translate every valid
implication of the classical square into its Kuroda expression, valid in turn in IFOL, and
then

* The three equivalences involved by the contradictory relations and lost in IFOL are,
thanks to Kuroda translation, redefined as follows:

Fi ==(Yx—=—(Sx — Px) <> —=3x(Sx A —=Px)) (2.15)
Fi == (@x(Sx A =Px) < =Vx——(Sx — Px)) (2.16)
i =—=(3x(Sx A Px) <> =Vx——(Sx — —Px)) (2.17)

* once transformed via Kuroda translation, sub-contrary relation —(0) — () is valid in
IFOL:

F; == ((—3x—=(Sx A =Px) A Ix(Sx)) — Ix(Sx A Px)) (2.18)

Consequently, nothing of the classical square of opposition is really lost in IFOL. But it
remains to show in conclusion why Kuroda’s translation is far from trivial and why some
classical implications in the square of opposition are no longer valid in intuitionistic logic.

3 Conclusion: What the Intuitionistic Square of Opposition
Means Exactly

3.1 Kuroda Translation of the Classical Square

As David et al. [3, p. 156] masterfully point out, Kuroda translation is a rigorous
expression, from an intuitionistic point of view, of the specificity of classical logic.
Because this translation shows the sufficient conditions to prove a formula F in classical
logic:



302 J. Vidal-Rosset

Table 2 The intuitionistic amputations inside the classical square

Fi Vx(Sx — aPx) — 3x(Sx APx)
FiVx(Sx — Px) — 3x(Sx A Px)

Proof Proof.
roof.
2(7Vx(Sx — —Px) — Ax(Sx APX))V
2(Vx(Sx — Px) — Ax(Sx A Px))V Vx(Sx — Px)
Vx(Sx — Px) 23x(Sx A Px)
qx(Sx A Px) 2(Sa APa)
San—Pa) Yx(Sx — Px)V
Wx(Sx— POV 2(Sb — ~Pb)v’
2(Sb — Pb)v’ Sh
Sb 22Pby
2Pb Pb
U O

¥ (73x(Sx A Px)) — (Vx(Sx — Px)) Fi (03x(Sx APx) ATx(Sx)) — Ix(Sx APXx)

Proof. Proof.
2((03x(Sx A Px)) — (Vx(Sx — Px))v'  2((mIx(Sx A Px) ATx(Sx)) — Ix(Sx APX))V
=3x(Sx A Px) Fx(Sx)v
2V (Sx — Px)v’ Sa
2(Sa— Pa)v’ =3x(Sx A PXx)
Sa 23x(Sx A Px)
2Pa 23x(Sx APx)
23x(Sx A Px)
2(San—Pa) 2Sa ?Pa
N x
2Sa 1 Pav 2Sa ?Pav
x Pa X Pa
O O

1. using the rule of reductio ad absurdum on all sub-formulas of F preceded by V and on
F itself.’
2. making use of the Ex Contradictione Quodlibet rule i.e the intuitionistic rule 1 E?

3.2 The Intuitionistic Amputations in the Classical Square

By using Bell et al.’s proof method for IFOL, I am going to try to sum up the logical
reasons of intuitionistic amputations in the classical square. The four classical implications
in the square that are not provable in IFOL are contained Table 2 with their respective trees

"Hence Kuroda’s translation recipe: put a double negation just before F and just before each scope of
universal quantifiers in F, e.g. if Vx(Fx) is in F, it is translated by Yx——(Fx).

8Kuroda’s translation is all what one needs as faithful translation of CFOL into IFOL. Godel-Gentzen
translation goes further because contrary to the former, it translates also classical logic into minimal logic,
see [3, pp. 157-158] .
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as countermodels.’
These amputations can be divided in two couples of formulas:

1. The trees of the pair {—(A) — (0), =(E) — (I)} are countermodels showing that
the assumption of the falsity of a universal statement does not analytically involve a
counterexample disproving this latter.

2. The trees of the second pair, {—=(0) — (A), =(0) — (I)}, are countermodels
corresponding in IFOL to the intuitionistic refusal of reducing any double negation
to a positive assertion.

The fact that these classical implications are no longer provable in IFOL can be
explained by the independence of the connectives and quantifiers in intuitionistic logic,
therefore that does not show that intuitionistic logic is weaker than classical logic, but that
the former has stronger means of expressions than the latter.
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of the Square of Opposition
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Abstract The modal collapse that afflicts Godel’s modal ontological argument for God’s
existence is discussed from the perspective of the modal square of opposition.

Keywords Higher-order logics ¢ Interactive and automated theorem proving ¢ Modal
logics ¢ Ontological argument

Mathematics Subject Classification (2000) Prim. 03B15; Sec. 68T15

1 Introduction

Attempts to prove the existence (or non-existence) of God by means of abstract, ontolog-
ical arguments are an old tradition in western philosophy, with contributions by several
prominent philosophers, including St. Anselm of Canterbury, Descartes and Leibniz. Kurt
Godel and Dana Scott studied and improved this argument, bringing it to a mathematically
more precise form, as a chain of axioms, lemmas and theorems in a second-order modal
logic [18, 26], shown in Fig. 1.

Godel defines God as a being who possesses all positive properties and states a few
reasonable (but debatable) axioms that such properties should satisfy. The overall idea of
Godel’s proof is in the tradition of Anselm’s argument, who defined God as an entity of
which nothing greater can be conceived. Anselm argued that existence in the actual world
would make such an assumed being even greater (more perfect), hence, by definition, God
must exist. However, for Anselm existence was treated as a predicate and the possibility of
God’s existence was assumed as granted. These issues were criticized by Kant and Leibniz,
respectively, and they were addressed in the work of Godel.

Nevertheless, Godel’s work still leaves room for criticism. In particular, his axioms
are so strong that, when assuming unrestricted comprehension principles,' they entail a
modal collapse [27, 28]: everything that is the case is so necessarily. There has been an

This work has been supported by the German National Research Foundation (DFG) under grant BE
2501/9-1,2.

I'A possible direction to remedy modal collapse, as studied e.g. by Koons [21] is to impose restrictions on
the domain of properties.

© Springer International Publishing Switzerland 2017 307
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A1l Either a property or its negation is positive, but not both:

Vo [P (=) < ~P(0)]
A2 A property necessarily implied by a positive property is positive:

VeV [(P(p) ADVzlp(z) — ¢(2)]) — P(¢)]

T1 Positive properties are possibly exemplified:

Vol P(p) — OFzp(z)]
D1 A God-like being possesses all positive properties:

G(z) = Y[ P(¢) — ¢(@)
A3 The property of being God-like is positive:
P(QG)
C Possibly, a God-like being exists:
OJzG(x)

A4 Positive properties are necessarily positive:

V[P(p) — O P(y)]

D2 An essence of an individual is a property possessed by it and necessarily
implying any of its properties:

@ ess © = p(x) AVY(Y(z) — DVY(e(y) — b(y)))
T2 Being God-like is an essence of any God-like being:
Vz[G(z) — G ess z]

D3 Necessary existence of an individual is the necessary exemplification of all its
essences:

NE(z) =Volp ess © — OJyp(y)]
A5 Necessary existence is a positive property:

P(NE)
L1 If a god-like being exists, then necessarily a god-like being exists:
JzG(z) — OJyG(y)
L2 If possibly a god-like being exists, then necessarily a god-like being exists:
032G(z) — OIyG(y)
T3 Necessarily, a God-like being exists:
O3zG(x)

Fig. 1 Scott’s version of Godel’s ontological argument [26]

impressive body of recent and ongoing work (cf. [1, 2, 11, 15-17, 19, 20, 28] and the
references therein) proposing solutions for the modal collapse. The goal of this article is
to discuss the modal collapse from the point of view of the modal square of opposition.
Ontological arguments typically rely on an inversion of the normal direction of entailment
in the modal square of opposition for one particular proposition (i.e. God’s existence), and
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the modal collapse shows that this inversion in fact occurs for all propositions, resulting in
a total collapse of the modal square of opposition.

2 A Collapse of the Modal Square

A crucial step of most ontological arguments is the claim that if God’s existence is possible,
then it is necessary. This is Lemma L2 in Godel’s proof. In the modal square of opposition
(Fig.2), this is an unusual situation in which the I corner must imply and entail the A
corner, in the particular case when ¢ is IxG(x). Godel’s proof shows that his axioms
are indeed strong enough to invert the direction of entailment for this choice of ¢. This
observation, however, immediately leads to the question whether the axioms are eventually
even strong enough to enable the inverted entailment for any arbitrary sentence ¢. That is
essentially the question asked by Sobel [27], and his proof of the modal collapse (MC, cf.
Fig.3) provides an affirmative answer. It is possible to show that this form of the modal
collapse entails (in modal logic K) a collapse of the modal square (MCs), causing the
subcontraries to entail (and even imply) their respective contraries. Normally, as shown in
Fig. 2, in the modal square of opposition only the other direction of entailment holds: the
contraries entail their subcontraries, assuming the modal existential import ExImp [14].

Moreover, in any modal logic where the axiom T holds (i.e. where the accessibility
relation is reflexive), even a total collapse of the modalities (MCt) is entailed by MC.
Interestingly, under this stronger form of modal collapse, the contraries entail their
subcontraries even without the existential import.

Although Gdodel’s axioms lead to modal collapse, there are several variants (e.g. [1, 2,
11]) that are known to be immune to it. This means there must be at least one proposition
¢ such that the implication ¢ — ¢ (from now on abbreviated as collapse(¢)) is not
valid under the axioms and definitions used by the variant. But if the variant is sufficiently
similar to Godel’s argument, also deriving Lemmas L1 and L2, then collapse(3IxG(x))

]
I M
i i /\ SUBCONTRARIES g ™
: feo i e e S Ll

T TR e .| i I S | 0

Fig. 2 Modal square of opposition
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MC Everything that is the case is so necessarily: Vo[¢p — O¢]
MCs Everything that is possible is necessary: V¢[0d — U¢]
T Everything that is necessary is the case: Vo[O¢ — ¢]
ExImp (Modal Existential Import): 0T

AI Everything that is necessary is possible: Vo[(p — O¢)

MCt Modalities collapse completely: Vo[(¢ < O¢) A (O «— 0¢)]

Fig. 3 Modal collapse

A:D1 A God-like being necessarily possesses those and only those properties that

are positive:
Ga(z) =Ve[P(p) < flip(z)]

A:MC The modal collapse happens for any positive properties applied to any god-like

being:
VVa[(P(¢) A Ga(x)) — collapse(io(x))
A:MC1 The modal collapse does not happen for positive properties applied to arbi-

trary individuals (counter-satisfiable):

VoV [P(p) — collapse(p(x))]

A:MC2 The modal collapse does not happen for an arbitrary properties applied to a
god-like being (counter-satisfiable):

VoVx[Ga(x) — collapse(p(z))]

Fig. 4 Restricted collapse for Anderson’s emendation [1]

must be valid. Therefore, one may wonder how strong is their immunity to the modal
collapse: is there any other proposition ¢ for which collapse(¢) is also valid?

For Anderson’s emendation [1], for example, a form of the modal collapse (A:MC),
restricted to positive properties applied to god-like beings, can be derived. The proof,
under the modal logic K, depends only on Anderson’s alternative definition of god-
like being (A:D1). This class of propositions for which the collapse occurs is tight:
weaker restrictions (A:MC1 and A:MC2), which could lead to larger classes, are
counter-satisfiable (Fig.4). These results hold under both constant and varying domain
quantification, with possibilist and actualist quantifiers.

In any modal logic at least as strong as K, and even without relying on axioms specific
to ontological arguments, it is easy to see (and even easier to check with an automated
theorem prover) the following facts about classes of collapsing propositions:

1. Valid propositions are collapsing: if ¢ is valid, then collapse(¢) is valid.
2. The class of collapsing propositions is closed under logical equivalence: if collapse(¢)
is valid and ¢ <> ¢’ is valid, then collapse(¢’) is valid.
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3. The class of collapsing propositions is not generally closed under equi-validity: even if
collapse(¢) is valid and ¢ and ¢’ are equi-valid, collapse(¢’) may not be valid.

4. The class of collapsing propositions is not generally closed under implication: even if
collapse(¢) is valid and ¢ — ¢’ is valid, collapse(¢’) may not be valid.

An easy corollary of the second fact above is that any ontological argument relying
on Lemmas L1 and L2 will necessarily lead to a modal collapse for all propositions
that are logically equivalent to God’s existence. The third and fourth facts indicate
that characterizations of larger classes of propositions for which the modal collapse
holds require using axioms specific to the variant of the ontological argument under
consideration, as in the case of A:MC.

3 Final Remarks

All results announced in this note have been obtained experimentally using interactive
and automated theorem provers and model finders [9, 10, 12, 13, 22]. The source
codes of the experiments, as well as the resulting proofs and counter-models, are
available in github.com/FormalTheology/GoedelGod/ in the files ModalCollapse.thy and
ModalSquareOfOpposition. thyinside the folder Formalizations/Isabelle/Meta as
well as in files inside the folder Formalizations/Isabelle/Anderson.

The technique enabling these experiments is the embedding of quantified modal
logics into higher-order logics [3, 7, 8], for which automated theorem provers exist. This
technique has already been successfully employed in the verification and reconstruction of
Godel’s proof [4, 5, 24], and a detailed mathematical description is available in [6].

The modal collapse is an interesting example of philosophical controversy and dispute,
to which we can apply Leibniz’s idea of a calculus ratiocinator brought to reality in the
form of contemporary automated theorem provers. A significant advantage provided by the
use of computers is that all parameters (e.g. modal logic, domain conditions, semantics)
under which the announced results hold must be explicitly specified in the source
code. Consequently, the danger of misunderstandings is reduced. Current technology
is increasingly ready to be embraced by those willing to practice computer-assisted
theoretical philosophy [23, 25].

Ongoing and future work includes the computer-assisted study of the modal collapse
in other variants of the ontological argument (e.g. [11, 17]). Furthermore, our experiments
in Isabelle revealed a weakness of the current integration of the HOL-ATPs LEO-II and
Satallax via Sledgehammer: most of the problems in our study solved by the two HOL-
ATPs were still too hard to be reconstructed and verified by Isabelle’s internal prover
Metis. This points to relevant future work regarding the integration of HOL-ATPs in
Isabelle.

Acknowledgements We would like to thank Paul Weingartner, André Fuhrmann and Melvin Fitting for
several discussions about Godel’s ontological argument.
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Fuzzy Eubouliatic Logic: A Fuzzy Version
of Anderson’s Logic of Prudence

Gert-Jan C. Lokhorst

Abstract Alan Ross Anderson was one of the first logicians who were interested in the
logic of prudence and related concepts, such as caution. He called this area “eubouliatic
logic,” a term which has not become popular. Anderson made a distinction between
four prudence-related concepts which can be placed in a square of opposition. Prudence
and related concepts are nowadays often seen as fuzzy concepts. We investigate which
consequences this has for the logic of these concepts.

Keywords Eubouliatic logic ¢ Fuzzy logic * Modal logic ¢ Prudence ¢ Relevance
logic » Square of opposition

Mathematics Subject Classification (2000) Primary 03B47; Secondary 03B52

1 Introduction

Alan Ross Anderson [1] was one of the first logicians who were interested in the logic
of prudence and related concepts, such as caution. He called this area “eubouliatic logic”
(from the Greek euboulos, meaning “prudent”). This appellation has not become very
popular.

2 Relevant Logic

A relevant logic is a logic in which A — B is a theorem if and only if (i) A and B share
a propositional variable or (meta-definable) propositional constant and (ii) either —A or
B is not a theorem [17]. Anderson’s eubouliatic logic was based on relevant logic R. R
is one of the best-known systems of relevant logic. The crucial difference between R and
classical propositional logic is that R does not provide A — (B — A) (the archetypical
fallacy of relevance, “which would enable us to infer that Bach wrote the Coffee Cantata
from the premiss that the Van Allen belt is doughnut-shaped—or indeed from any premiss
you like” [2, Sect. 5.1]).

© Springer International Publishing Switzerland 2017 315
J.-Y. Béziau, G. Basti (eds.), The Square of Opposition: A Cornerstone of Thought,
Studies in Universal Logic, DOI 10.1007/978-3-319-45062-9_19



316 G.-J.C. Lokhorst

Definition 2.1 R is axiomatized as follows [2, 3]:

R1: A—-A

R22: A—-B) —-(B—->C)—A—0)

R3: A— ((A— B)—B)

R4: (A— (A—B)—> (A —B)

R5: (AAB)—A

R6: (AAB)—B

R7: (A—>BAA—->C)—>A—>BAQO)
R8: A— (AVB)

R9: B— (AVB)

R10: (A—->OAB—->0C)—>((AVvB) —0)

R1
R1
R1
R1
R1

1: AABVC)—>((AAB)VCO)
2: (A— —B)— (B— —A)

3 —A—>A

4: A< (t—A)

5: A>T

MP: FromA and A — B to infer B
Adj: From A and BtoinferA A B

Definitions: S -t FL -T.A<BEZ (A B AB—>A), A=At

3

Eubouliatic Logic

Definition 3.1 Anderson’s eubouliatic logic Eg is R with a special constant e (“the good
thing”), plus:

D1:

PALA e (“A is prudent” means “A implies the good thing”).

D2: P,A (“itis imprudent that A”): A is not prudent: P,,A a —PA.

D3:

CA (“itis cautious that A”): the negation of A is not prudent: CA £ p-a.

D4: (C,A (“itis incautious that A”): the negation of A is prudent: C,,A L pa.

Ae:

Th
1.

—(—e — e).
eorem 3.2 Eg has the following theorems:

P,A < =PA: P,A and PA are contradictories.

. CwA < —CA: C,,A and CA are contradictories.
. PA — CA (“axiom of avoidance”): PA and CA are subalterns, in conformity with [5,

q- 49 art. 8] and [15, “prudence’].

. C,A — P,A: C,A and P, A are subalterns.
. =(PA A C,A): PA and C,A are contraries.
. P,AV CA: P,A and CA are subcontraries.

Proof From the definitions. O
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These eubouliatic notions can be depicted in a square of opposition (Fig. 1). This square
of opposition is the same as the square of opposition of Apuleius of Madaura (Fig. 2). The
A E I O propositions are familiar from the medieval Aristotle tradition. This diagram is
better known in the version of Boethius (Fig. 3). The modal square of opposition is similar
(Fig. 4). The deontic square of opposition is also similar (Fig.5). Anderson thought that
PA could also be read as “it is safe that A.” As we have argued elsewhere [11], “it is safe
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O0b1A contraties eForbA [0b1-A]
subalterns contragictories subalterns
PermA [-0bl-A] - e0ptA [-0blA]
subcontraries

Fig. 5 Standard deontic logic. Leibniz [10], [1, Fig. 4]

contraries
PA RiskyA £ P-A
subalterns contragictories subalterns
df af
Safed = ~P-A subcontraries Pud ==PA

Fig. 6 Safety, risk, prudence and imprudence

that A” should be represented as CA rather than PA. Figure 1 can therefore be relabeled as
in Fig. 6.

Theorem 3.3 The eubouliatic fragment of Er (Er without e) can be axiomatized as R
plus the following axioms:

Erl: (A — B) — (PB — PA).
Er2: A — PPA.
Er3: PA - —P-A.

Proof For each derivation Ay, ..., A, define e as Pt, where t &£ Az, (pi = pi) and py,
.., bm are the propositional variables occurring in Ay, ..., A, [11]. ]

Theorem 3.4 Eg does not provide Pp.

Proof R does not provide p — (p — p), as MaGIC [13] shows. O

4 Eubouliatic Logic is Not Satisfactory

Theorem 4.1 Eg provides A — PPA.
Proof R providesA — ((A — e) — e). O

This theorem is unacceptable. For example, if A stands for “there are nuclear reactors,”
then it says that if there are nuclear reactors, then it is prudent that it is prudent that there
are nuclear reactors. This is unacceptable.
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5 Modal Eubouliatic Logic

We therefore introduce a modal system of eubouliatic logic. [JA is read as “it is necessary
that A.”

Definition 5.1 KDR is R plus:

O01: (OAAOB) — O AB)
02: 0OA — B) — (OA — OB)
Op: 0OA —» —-0O-A4

Nec: From A to infer [(JA.

Definition 5.2 Modal eubouliatic logic Expr is KDR plus the following definitions
(instead of D1-D4):

DI#*: P*A £ O(A — e) (“A is necessarily prudent” means “it is necessary that A
implies the good thing”).

D2*: PrA L —prA.

D3%: C*A S —P*-A.

Dax:  CA L pr-a.

Theorem 5.3 Expgr has the following theorems:

Exprl: 0O(A — B) — (P*B — P*A) [from DI1* R2]
Expr2:  (P*AAP*B) — P*(AV B) [from 01, R10]
Expr3: P*A — —P*-A [from OD]

Proof From the definitions. O
Theorem 5.4 Egpg provides neither A — P*P*A nor P*(A — P*A).

Proof KDR provides neither A — O(O(A — e) — ¢) nor (A — A), as MaGIC [13]
shows. O

6 Linguistic Hedges

Expr is better than Eg, but Eg and Expr have one major shortcoming: prudence seems to
be a fuzzy concept, whereas Egr and Expg are not fuzzy.

The fuzziness of prudence is shown by the fact that “prudence” is typically used with
“linguistic hedges,” such as:

sort of, kind of, loosely speaking, more or less, on the ... side (tall, fat, etc.), roughly, pretty (much),
relatively, somewhat, rather, mostly, technically, strictly speaking, essentially, in essence, basically,
principally, particularly, par excellence, largely, for the most part, very, especially, exceptionally,
quintessential(ly), literally, often, more of a ... than anything else, almost, typically/typical, as it
were, in a sense, in one sense, in a real sense, in an important sense, in a way, mutatis mutandis, in
a manner of speaking, details aside, so to say, a veritable, a true, a real, a regular, virtually, all but
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technically, practically, all but a, anything but a, a self-styled, nominally, he calls himself a ..., in
name only, actually, really, be as much as ..., -like, -ish, can be looked upon as, can be viewed as,
pseudo-, crypto-, (he’s) another (Caruso/Lincoln /Babe Ruth/...), is the ... of—(e.g., America is
the Roman Empire of the modern world, Chomsky is the De Gaulle of Linguistics, etc.) [9, p. 472].

These hedges imply that prudence itself is a fuzzy concept. Hedges applied to crisp,
black/white concepts are simply redundant. This may explain why there are so many
jokes about women who are “somewhat pregnant.” “Pregnant” is crisp: a woman is either
pregnant or not pregnant. This implies that a woman is somewhat pregnant (i.e., not
nonpregnant) if and only if she is pregnant.

“Linguistic hedges” can, to some extent, be represented in R.

Definition 6.1

1. vt(A) La+ag-a-a vt(A) is read as “A is very true.”
2. st(A) Laonl —(A — —A). st(A) is read as “A is slightly true.”
3. crisp(A) ! (A< T)V (A < F).crisp(A) is read as “A is crisp.”

Theorem 6.2 R provides all theorems mentioned in [14] and in the above, such as:

HI vt(A) < —st(—A)

H2 vt(A) > A

H3 vi(A — B) — (vt(A) — vt(B))
H4 vt(Av B) — (vt(A) v vt(B))
H5 A — st(A)

H6 vi(A — B) — (st(A) — st(B))
H7 st(A — B) — (st(A) — st(B))
H8 (A — B) — (st(A) — st(B))
H9 —st(F)

HIO crisp(A) — (st(A) < A)

Proof From the definitions. O

Theorem 6.3 R provides none of the rules discussed in [14], such as = A = vt(A)
and F —A =+ —st(A).

Proof = t by R14, but ¥ vt(t), as MaGIC [13] shows. - —f by R14, but ¥ —st(f) by
¥ vt(t) and HI1. O

Note that axiom Ae may be rewritten as st(—e).

7 Fuzzy Relevant Logic

The “official” definition of fuzziness is more complicated, however.

Definition 7.1 We write T -, A for: A is derivable from T using the axioms and rules of
system L.
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Definition 7.2 L is a weakly implicative logic if and only if L provides [7, Def. 10,
Lemma 3]:

Ref: FL,A—>A

MP: A,A— BhFLB

WI: A—-BB—-Ct,A—C

Cng: A — B,B— Aty C— C', where C' is a result of replacing some occurrence of
A with Bin C.

Definition 7.3 A weakly implicative logic L is fuzzy if and only if L is strongly complete
with respect to the class of all linearly ordered L-matrices [7, Def. 23].

Theorem 7.4 A finitely axiomatizable weakly implicative logic L is fuzzy if and only if L
has the prelinearity property:

PP: ForeachtheoryT, T by, Cifand only if T,A — Bty Cand T,B — A -, C.
Proof See [7, Theorem 3]. O
Definition 7.5 LR (R without distribution) is R without R11.

Theorem 7.6 (Relevant deduction theorem)

RDT: T,A by Bifandonly if T g At — B.

Proof See [16, 19]. ]

Theorem 7.7 A finitely axiomatizable weakly implicative logic L that extends LR is fuzzy
if and only if L provides:

PLi: (A — B)¢V (B — A) (prelinearity).
Proof “—”: we assume that L provides PP. We show that L provides PL;.
1 TFL(A—B)y—PLiand T I (B — A) — PLy R8,R9, MP

2 T,A— BFyLPLiandT,B — A b, PLy 1,RDT
3 ThiLPL 2, PP.
“=": we assume that L provides PL;. We show that L provides PP.
1 T A—- Bt CandT,B— Ay, C Hyp
2 TFLA—>B)y—>CandThry (B—>A)—C 1,RDT
3 THLPLi—>C 2, R10, MP, Adj
4 ThHLC 3, PL¢, MP
5 T,A—-BFLCandT,B—>AFLC]|—>TH.C 1,4
6 THLC<+= [T, A—-BFLCandT,B— AFL C] 5.

Definition 7.8 FR (fuzzy R) is LR plus PL; [12, 16, 18, 19].
Theorem 7.9 tggr RI1.
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Proof By R1-R10, R14, PL, MP and Adj, as follows:

1 Fir B— C)— (B— O) RS
2 l_LR (B —> C)t —>t R6
3 Fwrt—>(C—0) R1,R14
4 FmrB->Cp—>(C—0) 2,3,R2
5 FLRB—=Cp—=((BVC)—CO) 1,4,R10
6 FRB—=Cr—=(AABVC)—C0) 5,R5
7  FLr (B— O)¢ — (R11) 6,R9
8 l_LR (C i B)t —>t R6
9 l_LR t— (B — B) Rl, R14
10 Fir (C— B)— (B— B) 8,9,R2
11 kg (C— B)y — (C — B) RS
12 kR (C - B)y — (BVv C) — B) 10, 11, R10
13 FHrR(C—->Bi—>(AABVC)—>(AAB) 12,R2
14 kg (C — B) — (R11) 13,R8
15 Fr ((B— C)¢ VvV (C — B)y) — (R11) 7,14,R10
16 Fpr (B— C)¢ Vv (C — B)y PL¢
17 Fpr RI11 15, 16.
0
FR is therefore an extension of R.
The following table lists some properties of logics in the vicinity of FR.
name definition relevant? fuzzy? decidable?
RM R+A—>A—A) no yes yes [2, Sect.29.3.2]
FR LR + PL; yes yes unknown
R LR + R11 yes no no [3, Sect. 65]
LR yes no yes [3, Sect. 63.3]

It will be clear that Fy g A =g A =>Fpr A =>l-rM A, but not conversely.
An algebraic Kripke-style semantics for FR is to be found in [16, 19].

8 Fuzzy Eubouliatic Logic

Definition 8.1 Fuzzy eubouliatic logic Eggr is FR plus D1-D4, Ae.
Theorem 8.2 Egg provides A — PPA.

Proof Same as the proof of Theorem 4.1. O
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9 Modal Fuzzy Eubouliatic Logic

Definition 9.1 Modal fuzzy eubouliatic logic Exprr is FR plus (1, 02, OD, Nec, D1*—
D4*,

Theorem 9.2 Expygr provides neither A — P*P*A nor P*(A — P*A).
Proof Same as the proof of Theorem 5.4. O
Theorem 9.3 Exprr does not provide P*p.

Proof KDFR plus A <> A does not provide O(p — (p — p)), as MaGIC [13] shows.
O

Exkprr is an extension of R, FR, KDR and Expgr. Therefore all observations on these
systems made above also apply to Exkprr.

10 Conclusions

1. Anderson [1] remarked that he was “far from satisfied with [his] terminological
choices.” In contrast to Anderson, we are completely satisfied with our terminological
choices because (i) we have given various references for the theorem that PA and CA
are subalterns, and (ii) we have identified safety with caution rather than prudence.

2. Anderson’s eubouliatic logic can be extended to a modal fuzzy eubouliatic logic. This
does not affect the eubouliatic square of opposition.

3. Modal fuzzy eubouliatic logic makes it clear how the concepts of necessity, relevance,
prudence, caution, imprudence, incautiousness, safety, risk and fuzziness are logically
related to each other.
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Why Care beyond the Square? Classical
and Extended Shapes of Oppositions in Their
Application to “Introspective Disputes”

Sascha Benjamin Fink

Abstract So called “shapes of opposition”—Ilike the classical square of opposition and
its extensions—can be seen as graphical representations of the ways in which types of
statements constrain each other in their possible truth values. As such, they can be used
as a novel way of analysing the subject matter of disputes. While there have been great
refinements and extensions of this logico-topological tool in the last years, the broad
range of shapes of opposition are not widely known outside of a circle of specialists.
This ignorance may lead to the presumption that the classical square of opposition fits all
disputes. A broader view, which takes expanded shapes of opposition into account, may
come to a more nuanced appraisal of possible disputes. Once we take other shapes of
opposition into account, some alleged disputes may turn out to be Scheindisputes. In order
to do the wide range of linguistic expressions justice and to differentiate Scheindisputes
from real ones, a broader view is advised. To illustrate this point, I discuss the notion of
“introspective disputes”. These are commonly reconstructed as obeying the square, but are
more aptly reconstructed with a more complex octagon. If we reconstruct these disputes
based on Buridan’s octagon, it becomes obvious that “introspective disputes” are likely
Scheindisputes.

Keywords Octagon of opposition * Buridan’s octagon ¢ Oblique terms ¢ Genetive
constructions ¢ Introspection ¢ Philosophy of mind ¢ Scheindisputes

Mathematics Subject Classification (2000) Primary 03B65; Secondary 91F20

1 Introduction

Shapes of opposition, like the classical square, can be read as graphical representations of
the ways in which types of statements constrain each other in their possible truth values.
If we assent to a statement of one kind, p, we must, may, or cannot rationally assent to one
of another kind, g, depending on whether the relations between p and g are contradictory,
contrary, subaltern, or subcontrary. In the classical square, for example, if we assent to
“All cats are black™, we cannot assent to “There is a cat that is not black™ and “All cats are
not black”; but we must assent to “There is a cat that is black”; if we assent to “There is a
black cat”, we may (or may not) assent to “There is a cat that is not black”. So shapes of
opposition can be read as representing limitations of rational assent.
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Becoming and remaining in disputes has been one of the primary goals of education
since before the enlightenment, and the classical square is possibly one of the oldest
teaching tools when it comes to rational discursive proficiency. Its graphical way of
representing makes complex interdependencies didactically accessible. It remains an
invaluable tool for teaching philosophy and dialectics across a broad range of logics and
topics.

Because shapes of opposition express where we may, must, or cannot assent (given our
other commitments), they can be used to analyse disputes. We may also use it to distinguish
real disputes from Schein- or pseudo-disputes. In a genuine dispute, a proponent Pro holds
an opinion that p which is incompatible with the opinion that ¢, held by her opponent
Opp. Even if p and g are not directly negations of another (either on the surface or on
the syntactical level),' there can be disputes as long as p and g stand in contradictory and
contrary relations. People rarely fight over subaltern opinions, as their compatibility is
obvious even to the untrained eye. But some pseudo-disputes may arise over subcontrary
opinions, because their compatibility is not always obvious: Pro might argue with Opp
because Pro believes that one can like liquorice, and Opp that one may not like liquorice.
An opera lover, who believe that some of Wagner’s operas are worthwhile, may argue with
a Verdi enthusiast stating that some of Wagner’s operas are a waste of time. Pragmatic
influences, biases, and presumptions may suggest disputes where, rationally, there are
none.

Even though the square of opposition is widely taught, extensions as well as newer
discussions and developments are hardly presented outside of the realms of specialists.’
This might be a grave mistake because, due to a lack of acquaintance with other shapes
of opposition, most people may unconsciously presume the classical square wherever they
see fit. As a result, pseudo-disputes may be fuelled more than necessary. Some of these
can be easily avoided by applying even the most basic extensions.

In the following, I illustrate the rise of such a Schein-dispute by making certain
statements fit a square of opposition, however unnatural this is. My example is a
group of disputes often called “phenomenological disputes” [16, 115], “introspective
disagreements” [3, 34], or “introspective disputes”. I suggest that a solution for these
types of disputes can be derived by applying an obvious medieval extension of the square:
Buridan’s octagon for statements with oblique terms.

2 “Introspective Disputes”

In the 1990s, marked by widely recognised books by philosopher Daniel C. [8] and Nobel
laureate Francis Crick [7], a new science started its ascent: an empirical research program
on phenomenal consciousness. The phenomenal features of a mental state are those that

!For example, “Laura is rich” and “Laura is poor” are not syntactically or on the surface levels negations
of another (because there is no “not” involved at all). Still, both sentences are contrary to another, because
both can be simultaneously false: Laura could simply be doing alright.

2See e.g. [4,5, 11, 19, 23, 24, 38], as well as the examples in this volume for specialists’ papers on the
shapes of opposition.
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make it feel like something for the person whose mental state it is: A pain, an orgasm,
tickling, the smell of Ylang-Ylang—all these experiences feel like something to the person
being tickled, being in pain, having an orgasm, or smelling Ylang-Ylang. What makes
these mental events feel like this or that are their phenomenal features.

Unlike other phenomena which are treated by science, phenomenal consciousness is
only subjectively accessible: You and I may be in pain—but I can only access my pain as
pain and you yours. Your pain, in contrast, is accessible to me only by your report, your
behaviour, your physiological changes—but not as an experience of pain with such-and-
such specific phenomenal characteristics. Ascribing specific phenomenal events to others
is a matter of inference, not acquaintance. However, the phenomenal characteristics of
the events in one’s own mind can be directly grasped by introspection. Therefore, most
adopt the creed by William James [15, 158] concerning phenomenality: “Introspective
observation is what we have to rely on first and foremost and always.”

However, introspection sometimes leads to widely diverging opinions. This divergence
in opinions, where apparently opposing opinions are each justified by referring to one’s
introspective access to experiences, are widespread. I will call them introspective disputes.
But if a method leads to widespread divergences in opinion, why should we deem that
method to have any epistemic merit? Introspective disputes therefore motivate skepticism
vis-a-vis introspection: There is no knowledge to be had by introspecting.

Introspective disputes are marked by three conditions. First, the disputants believe that
their opinions, p and ¢, are incompatible; second, the method by which both p and g are
mainly justified or purportedly based on is introspection—a non-inferential, internal, and
direct form of acquaintance with the phenomenal aspects of a mental event;’ third, the
subject matter of these opinions are phenomenal features of mental events.*

Here is a prima facie paradigmatic case of such an introspective dispute: Horgan
and Tienson [13] and Wilson [41] see themselves as having opposing opinions on
whether intentional states or attitudes (beliefs, desires, wishes, hopes, etc.) have a distinct
phenomenal character that outruns the phenomenal character of the sensory experiences
that accompany them. On this, [13, 522f, my emphasis] write:

Intentional states have a phenomenal character, and this phenomenal character is precisely the
what-it’s-like of experiencing a specific propositional-attitude type vis-a-vis a specific intentional
content. [...] Attentive introspection reveals that both the phenomenology of intentional content
and the phenomenology of attitude type are phenomenal aspects of experience, aspects that you
cannot miss if you simply pay attention.

As a direct reply, Wilson [41, 415ff, my emphasis] counters:

When I engage in introspection on the character of my experience, I find that it is thoroughly
intentional, so thoroughly so that it is hard to distinguish any purely qualitative, non-intentional
remainder of the experience. [...] In the spirit of Horgan’s and Tienson’s appeal for a reader to
‘pay attention to your own experience’, I have just done the decisive experiment: I thought first

3Sometimes, the method is broadened: Reports that are deemed to express an introspectively formed
opinion or questionnaires about experiences are sometimes seen as introspection as well.

4Some argue that more than the phenomenal aspects of experiences can be introspected. There might then
be introspective disputes concerning attitudes, content, experience onset, and so on. I will focus only on
introspective disputes concerning phenomenal aspects of experiences, as this subject matter provides the
best examples for introspective disputes.
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Fig. 1 Reconstruction of a prima facie introspective dispute with a square of opposition

that George Bush is President of the United States, and had CNN-mediated auditory and visual
phenomenology that focused on one of his speeches. I then took a short break, doodled a little,
wandered around the room, and then had a thought with that very same content and . . . nothing.

One may easily construe this as an introspective dispute: Horgan’s and Tienson’s
opinion is that intentional states have phenomenal aspects; Wilson’s opinion is that
intentional states have no phenomenal aspects. In this reconstruction, both opinions
are contrary, and therefore cannot be simultaneously true. Additionally, both opinions
are about the phenomenal aspects of experiences and both are explicitly justified by
introspection. This suffices for being considered an “introspective dispute”, if we presume
the classical square of opposition (see Fig. 1).

There are numerous examples, which seem to follow a similar structure: If you look
at a coin at an angle, does it look round or elliptical?> Moore [22, 30f] introspects it as
elliptical but not as round, Peacocke [26, 98f] and Smith [39, 172] as round but not as
elliptical.

Are conceptualisations part of our experiences? For example, do you experience a
snowy landscape as consisting of snow or do you experience it simply as a white expanse?
Siewert [37, 256] introspects that you do experience that cold white expanse before you as
being snow, Dretske [9, 33] argues that you do not experience it as snow, but argues that
you only conceptualise it as such.

Are perceptual expectancies part of the phenomenal character of an experience? Some
say that they are [25, 960f], others fail to find such an expectancy-character in their
experiences [27, 250].

Does phenomenal character present itself as nothing but representing the properties
and objects of the external world? Pure representationalists [40, 160f] assent based on
their introspection, impure representationalists or anti-representationalists claim that there
is something in addition to the content of the experience available for introspection: some
of their introspected experiences show a phenomenal character which is independent of
the represented content [18, 277f].

3See [34, Chap. 2] for a discussion with more historical references.
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Do you experience only what you attend to or more? The abundancy-camp, [35,
137f and 37], holds that phenomenal character is independent of attention based on
introspection; the sparsity-opposition holds that you only experience the few limited items
that you attend to.®

Do experiences generally have an experienceable character of for-me-ness? Zahavi
[42] holds that all experiences have such a character’; but this stands in tension with
descriptions of long-term meditators, who report an absence of a self/other distinction
in experience [29].%

Are dreams coloured or in black and white? Schwitzgebel [31, 32, 35] traced the wide
divergence in opinions over time and area.

These are merely examples, but the list suffices to show that philosophy of mind is, at
least prima facie, riddled with introspective disputes. If we presume that the statements
discussed in these cases fit the classical square of opposition, we are forced to see these as
genuine disputes.” Such introspective disputes are not only ubiquitous, but apparently also
irresolvable—at least by introspection. And all other data (behaviour, report, physiology)
does not seem to help us to decide these issues. If introspection leads to such widely
diverging opinions, then how could one trust introspection? How could one defend it as
having any epistemic merit?

3 The Threat of Introspective Disputes

Kriegel [16], Bayne and Spener [3] as well as Schwitzgebel [34] have diagnosed intro-
spective disputes and suggested possible solutions or amendments. Other philosophers see
the same issues, but take introspective disputes as a basis for defending hostile positions
vis-a-vis introspection in general.

For example, Dennett [8, 44] has argued that a phenomenological or introspective
method has failed because there is no agreement between its users about what does or
does not hold for experiences.'” Phenomenologists and introspectors defend incompatible

6 Armstrong [2, 300], for example, argues for this, and seems to justify that claim by introspection.

7See also Zahavi [43, 132]: “Whereas we live through a number of different experiences, the dimension
of first-personal experiencing remains the same [...] it may be described as an invariant dimension of
first-personal givenness throughout the multitude of changing experiences.”

8See also Hume [14, Sect. VI].

?One may wonder how one justifies the general opinion by introspective acquaintance. But the method of
eidetic or Phenomenological variation builds on one’s direct grasp of phenomenal experiences to justify
such general statements. General statements about phenomenality can then be justified by one’s grasp of
one’s experiences from the first-person perspective. So there are similar disputes in Phenomenology. For
the purpose at hand, we may see such Phenomenological disputes as part of the larger class of introspective
disputes.

10See also Dennett [8, 66]: “It is just astonishing to see how often ‘academic’ discussions of phe-
nomenological controversies degenerate into desk-thumping cacophony, with everybody talking past
everybody else. This is all the more surprising, in a way, because according to long-standing philosophical
tradition, we all agree on what we find when we “look inside” at our own phenomenology. [...] just
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opinions, although they presume to have introspected tokens of the very same type
of experience. (For example, some believe—purportedly based on introspection—that
thoughts generally have phenomenal aspects, some hold that thoughts generally fail to
have these phenomenal qualities.) If introspection were a reliable way to gain knowledge,
how could it lead to such diverging, incompatible, but strongly held opinions? Controversy
and contradiction among introspectors and Phenomenologists are indicators of something
going wrong—for example: trusting introspection. Instead of using introspection, so
Dennett’s suggestion, we should use methods that are verifiable and reliable, e.g.
behavioural psychology [8, 70ff].

Thomas Metzinger [20, 35] strikes a similar chord when he writes that Phenomenology
failed to become an autonomous science of conscious experience, because the Phenomeno-
logical way of gaining data has no way of resolving conflicts between introspective reports
or Phenomenological positions. He restates this point in Being No One [21, 591].11 Tt
is a mark of science, he claims, that if inconsistencies arise, scientific methodology
suggests some way to overcome them. But for introspection or other first-person methods,
nothing like this seems to be available—introspective disputes appear to be irresolvable.
So introspection cannot be deemed scientific.

Eric Schwitzgebel [34, ix—xi] uses these variations in introspectively justified opinions
as a jumping board for some skeptical musings:'?> Variations in opinion—given that there
is no suiting variation in the subject matter—entails that somebody has a false opinion. But
if we don’t know who is wrong, we do not know if our decision to believe one person rather
than her opponent leads us to knowledge. This inability to resolve introspective disputes
raises suspicion concerning all claims of knowing by introspecting. It does not only mark
introspection as unscientific, it invites a general skepticism vis-a-vis introspection [cf. 33].

One of the most violent reactions to such “introspective disputes” is phenomenal
eliminativism: If these disputes stand irresolvably, then we can hardly claim that we
know something about phenomenality. If there is nothing known (or known to be
known, or proven to be known, or certain)—well, maybe there is nothing there to know.

about every author who has written about consciousness has made what we might call the first-person
plural presumption: Whatever mysteries consciousness may hold, we (you, gentle reader, and I) may
speak comfortably together about our mutual acquaintances, the things we both find in our streams of
consciousness. [...] This would be fine if it weren’t for the embarrassing fact that controversy and
contradiction bedevil the claims under these conditions of polite mutual agreement. We are fooling
ourselves about something.”

“The epistemological problem regarding phenomenological, first-person approaches of “data genera-
tion” [meant as scare quotes] is that if inconsistencies in two individual “data sets” [scare quotes again]
should appear, there is no way to settle the conflict. [...] This is a third defining characteristic of the
scientific way of approaching reality: there are procedures to settle conflicts resulting from conflicting
hypotheses. Epistemic progress continues.” [21, 591].

1241 aim to persuade you that people in general know very little about what might seem to be obvious
features of their stream of conscious experience [...] People often differ greatly in their judgments about
their stream of experience (across cultures, between individuals within the same culture, or within the same
individual over time). Sometimes, in such cases, it seems unlikely that their actual underlying experiences
vary correspondingly. Consequently, some of their judgments—we don’t necessarily know which ones—
are probably wrong.” [34, ix—x].



Why Care beyond the Square? Classical and Extended Shapes of Oppositions. . . 331

Maybe phenomenal experiences don’t exist.'? Persisting introspective disputes then invite
eliminativism vis-a-vis phenomenal character.'

These arguments based on what appears to be introspective disputes are generally
volatile: If there is a sufficient number of introspective disputes concerning specific aspects
of phenomenality, they then pose a massive danger for the trustworthiness of introspection
in general.

However, the situation need not be so dire. I think that what we take to be genuine
introspective disputes are mere illusions—there are only prima facie-disputes. The illusion
of introspective disputes can arise even if introspection works perfectly. Based on two
universally accepted premises, I argue that we mistake statements that are merely
subcontrary as being contrary or contradictory. These premises are, first, the thesis of
universal phenomenal ownership (P1) and the thesis of introspective internalism (P2). If
we take these two theses into account, it becomes obvious that a square of opposition
is insufficient to model statements about phenomenal experiences. One has to switch to
an octagon—more specifically: Buridan’s Octagon for statements with oblique terms [28].
Reconstructed with this underlying shape, introspective disputes vanish. If they vanish, the
skeptics’ argument against introspection based on introspective disputes becomes vacuous.

4 Buridan’s Octagon and Its Impact

With the implicit presumption of a square of opposition, we reconstruct the statements at
play in “introspective disputes” as belonging to four basic types (compare Fig. 1), where
we universally or particularly ascribe some phenomenal features F to mental events or not:

(A) All mental events (of type T) are F.
(E) All mental events (of type T) are not-F.
(I  Some mental event (of type T) is F.
(O) Some mental event (of type T) is not-F.

However, this reconstruction does not take into account two basic theses that are nearly
universally accepted in the philosophy of mind. If we take them into account, they lead to

3Kriegel [16, 122f] augurs this: “The above phenomenological disputes, and others like them, are
disconcerting inasmuch as the Consciousness Studies community does not have accepted guidelines
for adjudicating them. Phenomenological disputes have a way of leading to apparent deadlocks with
remarkable immediacy. Disputants reach the foot-stomping stage of the dialectic more or less right after
declaring their discordant positions. [...] The most violent reaction is to claim that there is no fact of the
matter concerning these disputes.”

14This is in accord with the presumption that a square of opposition is committed to existential import [1,
II, 176, 20-21]. That is, if I were to claim that all goblins eat cheese and you claim that no goblin eats
cheese, either statement commits us to the existence of goblins if we presume that we two are in a dispute
[see also 30]. If we reject the presumption that we are in a dispute, we thereby reject the ontological
commitment: If there are no goblins, we do not need to fight over their affinity to cheese. Rejecting the
existence claim means that general statements can (under some views) be considered true, but vacuously
so. This affects disputes based on contrary opinions.
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the demise of genuine introspective disputes: because they are incompatible with genuine
introspective disputes. These two theses are (P1) universal phenomenal ownership and
(P2) introspective internalism.

For any mental event, there is somebody whose mind this mental event takes place in.
Experiences are such mental events. Thus, there is an experiencer for every experience.
This experiencer is often marked by a possessive phrase or a phrase with in a genitive
form e.g. Mark’s pain, John’s orgasm, Luke’s dream, etc. Even philosophers who are stout
anti-physicalists and believe that there can be non-physical experiencers [10], they still
pose somebody who experiences (even if there isn’t some body corresponding to that
experiencer). It is common ground that there are no free-floating experiences. So if we
posit that there is some mental event e which has some phenomenal feature F', there must
be some subject s in whose mind this mental event takes place. Just like for any dance
there is a dancer, there is an experiencer for every experience. So the thesis of universal
phenomenal ownership says that:

(P1) Every experience is owned.

While (P1) is a claim about experiences, introspective internalism is a thesis about the
epistemic method under scrutiny—introspection:

(P2) Introspection is an internal process.

Say some s knows by introspection that some thought had phenomenal aspects. The
corresponding belief created by such an introspective act and the subject matter of this
knowledge (the thought in question) must be in the same mind. Thus, according to (P2),
the knower s; of some phenomenal fact about some mental event ¢;, who gained that
knowledge by introspection, must be identical with the owner s, of the known event
e;. So if s; knows that some thought of s, had phenomenal aspects by introspecting its
phenomenal aspects, then—by (P2)—s; = s,. Just like testimony is an epistemic method
that necessarily involves more than one person, introspection is necessarily a method that
involves at most one person. Nobody can introspect someone else’s experiences, so the
common lore.

If these two premises are accepted, as they usually are, then a square of opposition
does not provide the right framework for reconstructing the statements at issue in an
introspective dispute. We have to extend our tools beyond the square.

If all experiences are owned, then we ought to introduce another variable ranging over
experiencers to grasp this fact. For each of these two variables, we have two quantifiers (all
and some) that can range over them. As previously, we can ascribe or deny properties. This
allows for 2 x 2 x 2 different statement types, doubling the amount we can construct from
four (in the square where we assume only one variable for experiences) to eight. These
have the following form:

(AA) For all experiencers, all mental events (of type T) are F.
(AE) For all experiencers, all mental events (of type T) are not-F.

SHowever, see [12] for a conflicting view.
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(AI)  For all experiencers, some mental event (of type T) is F.

(AO) For all experiencers, some mental event (of type T) is not-F.
(IA)  For some experiencers, all mental events (of type T) are F.
(IE)  For some experiencers, all mental events (of type T) are not-F.
an For some experiencers, some mental event (of type T) is F.
(I0)  For some experiencers, some mental event (of type T) is not-F.

Terms in the genitive (like the one’s we use in such possessive phrases like “Mark’s pain’)
are oblique terms (as are accusative terms). ' For such statements, John Buridan presented
an octagonal shape in his Summulae de Dialectica [6] (see Fig. 2, reconstructed after [28,
14])."7 In this shape, the statements at the corners correspond in form to the eight presented
above.'®

The switch from a square to an octagon exposes some ambiguity. An assertion like

(A’) All dreams are coloured.
is in its surface structure ambiguous between

(AA’) For all dreamers, all dreams are coloured.
(IA”)  For some dreamers,'® all dreams are coloured.

In order to avoid confusion, one ought to make the experiencer variable explicit.

This switch from square to octagon thus necessitates a different reconstruction of the
statements at issue in introspective disputes. This, in turn, suggests a different diagnosis,
leading to a deflationary account of introspective disputes. Only the lowest four types of
statements (IA, IE, II, and IO, see Fig. 2) can be justified by introspection if we accept
introspective internalism (P2). Because I cannot introspect the experiences of another
subject, I could only introspect all experiencers, if I were the only experiencer in existence.

16Buridan’s example is of a man’s ass running, i.e. omnis asinus hominis currit. “Hominis” is here in the
genitive.
17See especially [28] for a discussion of this form and its variations.

'81n contrast to the reconstruction as an octagon, one might think that there should in principle be sixteen
different types of statements and, therefore, a sixteen-sided figure: While I have introduced A...- and
I...-statements (universally and particularly affirmative statements), I have ignored the possible forms of
E...-or O...-statements (universally and particularly negative statements). Only a sixteen-sided figure
would accommodate these additional eight statement-types.

Why are these omitted? Because each is equivalent to some of the forms mentioned. Consider the
case of an AA-statement like “For all experiencers, all their thoughts have phenomenal aspects.” This is
equivalent to the EO-statement “For all experiencers, none of their thoughts fails to have phenomenal
aspects.” And consider an II-statement like “For some experiencer, some thought have phenomenal
aspects.” This is equivalent with the OE-statement that “For some experiencers, not all thoughts fail to have
phenomenal aspects.” The general rule for such quantifier-involving statements is: To find the equivalent
statement to some ["A-statement, take the contrary or subcontrary type to I' in the classical square (A
transforms to E, I to O, and vice versa) and the contradictory form to A in the square (A transforms to
O, Ito E, and vice versa). This leads to a reduction of a hypothetical 16-sided figure to the octagon in the
following way: AA=EO; AE=EI; AI=EE; AO=EO; IA=00; [E=O0I; II=0E; I0O=0A. Thus, we may
continue with the octagon as presented in Fig. 2.
9Especially the person whose opinion this is.
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Fig. 2 Buridan’s octagon of opposition, applied to an exemplary introspective dispute

A solipsist might be able to justify AA-, AE-, Al-, and AO-statements by introspection,
but nobody else can. As long as we reject solipsism, only the lower four statements in
Fig. 2 can be justified by introspection.

However, IA-, IE-, II-, and IO-statements can all be simultaneously true. Consider Alfie,
Berta, Claire. Nothing speaks against it being the case that Alfie always dreams in colour,
that Berta never dreams in colour, while Claire sometimes dreams in colour and sometimes
not. In this population, IA-, IE-, II-, and IO-statements are simultaneously true. Among
these introspectively justifiable statements, people may only be mistaken about being in a
dispute.

Concerning the upper four statements (AA, AE, Al, and AO), which suffice for a
dispute, one cannot justify them by introspection alone. One would need an additional
method, probably an inductive step, to justify these statements.”’ But if disputes arise
under these circumstances, one cannot directly blame their rise on introspection as skeptics
like Dennett, Metzinger, and Schwitzgebel do. Induction is just as likely a source of error.
If the skeptic bases her argument on these upper statement-types, her argument fails to be
a direct argument against introspection. Someone fond of introspection may turn it to be
an argument against induction.

20Levin [17] argued that induction plays a major part of Phenomenological or eidetic variation, which is
often used to justify such statements.
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So either one justifies one’s opinion solely by introspection—but then, the introspec-
tors’ opinions fail to be in the right oppositional relations for disputes, and so there are no
introspective disputes anymore; or one justifies by a mixture of methods (e.g. introspection
+ induction) whereby disputes arise—but these are then no introspective disputes anymore,
but introspective+x-disputes. Then, one cannot show that introspection, not the additional
method x lead to this failure. So no matter how we turn, there are no pure introspective
disputes given (P1) and (P2). “Introspective disputes” (in scare quotes) are either Schein-
disputes or not based on introspection alone.

Thus, all the arguments against introspection based on “introspective disputes” (see
Sect. 3) fail: The phenomenon we face—variations in introspection-based opinion—can
arise even if introspection were perfect and infallible. All that is needed is some variation
in the phenomenon, and this is quite likely when it comes to anything psychological: Some
people may dream only in colour, some only in black-and-white just like some people like
liquorice and some do not. Variation is natural.

5 Conclusion

I argued that if one sees divergences in introspection-based opinions as disputes, one
reconstructs the statements accordingly under the presumption of a square of opposition.
But this presumption is unjustified because nobody believes in free-floating experiences
without an owner. So one has to introduce a possessive phrase. If we introduce a
possessive phrase, we have to extend the square to Buridan’s octagon for oblique terms.
With one’s presumptions corrected, the divergences in introspective-based opinion do
not constitute a dispute given introspective internalism. Therefore, a range of arguments
against introspection based on such alleged “disputes” fail to be substantive.

The steps made here are probably trivial for those trained with shapes of opposition.
If so, this only underlines that we ought to popularise extensions of the square. Shapes of
opposition make formal features of disputes easier accessible to people who think visually
rather than formally. They therefore might be better tools for diagnosing and teaching
important variations in dialectic structures in a way more accessible than calculus-style
training. It stands to reason that if extensions of and alternatives to the square were more
widely known, the square would stop to be a common unarticulated and unquestioned
default presumption. Then, certain pseudo-disputes—Ilike “introspective” ones—based on
subcontrary opinions would become obvious: What looked like a dispute from one angle
fails to be one if we look more carefully.?!

2I'This article is built on work published in my PhD-thesis (2015) at the University of Osnabriick. This
work has been supported by a Lichtenberg scholarship. I am grateful to Karsten Engel and one anonymous
reviewer for helpful comments, and also to the organisers of Square 2014 at the Vatican for a very enjoyable
conference.
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