
Chapter 6

Overcoming the Algebra Barrier: Being
Particular About the General, and Generally
Looking Beyond the Particular, in Homage
to Mary Boole

John Mason

Algebra consists in preserving a constant, reverent, and
conscientious awareness of our own ignorance [p. 56]
Teaching involves preventing mechanicalness from reaching
a degree fatal to progress [p. 15]
The use of algebra is to free people from bondage [p. 56]
[all quotes are from Mary Boole, extracted in Tahta, 1972]

Abstract Consistent with a phenomenographic approach valuing lived experience

as the basis for future actions, a collection of pedagogic strategies for introducing

and developing algebraic thinking are exemplified and described. They are drawn

from experience over many years working with students of all ages, teachers and

other colleagues, and reading algebra texts from the fifteenth century to the present.

Attention in this chapter is mainly focused on invoking learners’ powers to express
generality, to instantiate generalities in particular cases, and to treat all generalities

as conjectures which need to be justified. Learning to manipulate algebra is actually

straightforward once you have begun to appreciate where algebraic expressions

come from.
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6.1 Introduction

That algebra is a watershed for most learners is common experience, and it has been

the case ever since algebra emerged. It has long been my claim that school algebra

is fundamentally the expression of generality in a succinct form so that it can be

manipulated (Mason, Graham, Pimm, & Gowar, 1985). The fact that almost all

books on algebra (or arithmetic with algebra) since the fifteenth century have

introduced algebra as the manipulation of letters as if they were numbers suggests
that recognition of algebra as expression of generality seems so obvious as not to

require mentioning, while what teachers want students to achieve is facility in

manipulating algebraic expressions. Consequently the usual focus is on how to

manipulate algebraic expressions. Or it could be that the constant pressure to get

learners to perform, to carry out procedures, has blinded curriculum designers to the

essence of algebra.

It seems to have been Isaac Newton (1683) who diverted attention from the

expression of generality to the nuts and bolts of algebraic manipulation, namely the

solving of equations, though some of his contemporaries questioned whether

expressing generality was as straightforward and simple as he claimed (Ward,

1706). Pushing learners immediately into solving equations (first linear, then

quadratic then perhaps factored or factorable polynomials and perhaps then into

iterative methods for approximate solutions) is a reflection of the technician’s
approach, the result of a particular transposition didactique (Chevallard, 1985):

on discovering a formula or a method, students are then faced with that method,

usually without the insight that led to it. But why would learners want to internalise

a collection of procedures involving entities that have no meaning for them? My

claim has always been that unless learners appreciate where equations come from,

unless they comprehend the origins of equations and inequalities in the expression

of generality, algebraic expressions and algebra itself will remain a mystery, and a

watershed.

That algebra as the manipulation of letters is mysterious has been attested to by

generations of learners concerning their experience at school. Many claim that they

could do what was asked, but had no idea what it was about or why they were doing

it. Recent generations have become less willing to undertake what seems to them

meaningless, resulting in algebra continuing to be one of the major watersheds of

school mathematics.

Yet there is abundant evidence that young children can cope with abstraction,

even with symbols for the as-yet-unspecified. Weakness in algebraic manipulation

comes, I claim, not from insufficient practice, but from teachers concentrating on

manipulation rather than invoking and evoking learners’ natural powers to special-

ise and to generalise, to see the general through the particular and to see the

particular in the general (Mason & Pimm, 1984).
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6.2 Methods

I am interested in what is possible, happy that others are concerned to study what is

the case currently in their situation. Furthermore, I am interested in lived experi-

ence, and as such I am committed to taking a phenomenological stance. Thus in this

chapter the reader will find numerous mathematical tasks through and by means of

which it is possible to get a taste of the more general claims that I am making. I am

convinced that this is the best way to work with learners and colleagues: to offer

experiences which can form the basis for noticing what might previously have

passed by unnoticed, thereby sensitising oneself to notice opportunities to support

and promote others becoming aware of something similar for themselves. This has

been the basis for Open University courses for teachers since 1982 (Mason,

Graham, Pimm, & Gowar 1985; Open University, 1982), and a foundation for

research as elaborated in Researching Your Own Practice: the discipline of noticing
(Mason, 2002a).

I offer no programme, no recommended or researchable sequence of tasks that

will prove to be most effective. Rather my approach is to work on developing

sensitivities to possibilities so that potential actions come to mind in the moment

(actually, come to action but are consciously considered before being enacted)

when they are needed. Thus the teacher can be attending to what learners are saying

and doing, rather than to a prepared sequence of tasks. This is in line with the notion

of teaching by listening (Davis, 1996).

6.3 Being Particular About the General

The suggestion in this section is that being particular about invoking and evoking

generality, placing the expression of generality at the heart of the curriculum (and

not simply in mathematics) would benefit many learners who for some reason or

other, seem to leave their natural powers at the classroom door. There is extensive

research backing up this proposition stretching over many years. See, for example,

Giménez, Lins, and Gómez (1996), Bednarz, Kieran, and Lee (1996), Chick,

Stacey, Vincent, and Vincent (2001), Mason and Sutherland (2002), Kaput,

Carraher, and Blanton (2008) and Cai and Knuth (2011).

6.3.1 Beginning in the Earliest Years

Mary Boole finds the origins of algebra in young children’s experience such as that
a metal teapot can be hot or cold: some of its attributes can vary (Tahta, 1972,

pp. 57–58). Notice that there is an inherent use of what has come to be called

variation theorywhich suggests that what is available to be learned is what has been
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experienced as varying in close proximity of time and space (Marton, 2015; Marton

& Booth, 1997). Even earlier in a child’s life, in order to recognise mother in her

various guises, with different smells and appearances, it is necessary to generalise,

to recognise that some attributes can change while others remain invariant. This

applies in the affective-emotional domain just as it does in the physical-enactive

domain, and in the cognitive-intellectual domain. Indeed, as Caleb Gattegno (1988)

claimed, the foetus in the womb already shows signs of generalising, responding to

different stimuli in particular ways.

To learn to read people’s expressions, to learn to grab and put things in your

mouth, to crawl, to stand, to walk and to talk all require extensive and wide-ranging

use of natural powers to specialise and generalise. It has often been said that, given

our success in teaching children to read and write, it is a good thing we don’t have to
teach children to talk as well. Put another way, having used and developed their

natural powers so well before they reach school, how might we call upon those

same powers to develop further, so that reading and writing, counting and arith-

metic, algebra and conceptual thinking are just as natural? Terezinha Nunes and

Peter Bryant (1996) (see also Nunes, Bryant, & Watson, 2008) show clearly how

making use of what children bring to school in the way of experience and

internalised actions can make a substantial difference to the children’s experience
and success in school.

Western approaches have been strongly influenced by the staircase metaphor for

learning, in which learners gradually ascend a staircase of ‘levels’ from the simple

to the complex, from the particular to the more general, from the specific to the

abstract. This permeates both curriculum and pedagogy. Jerome Bruner (1966)

distinguished three modes of (re)presentation (enactive, iconic and symbolic).

Considered by researchers, curriculum designers, mathematics educators, and

teachers as a sequence rather than as three worlds of experience between which

we move as we add layers of appreciation, comprehension and hence understand-

ing, learners have often been enculturated into a sequence of always building from

the simple to the complex, the particular towards the general, the concrete towards

the abstract. Because this is how we teach, many learners balk at some stage and so

do not experience the general, the abstract, the overview. They remain locked into

the specifics of procedures without appreciation of what is possible, without

comprehension of what can be achieved, and without understanding of what their

actions are all about. Mary Boole warned against this, but generations of learners

are still having the experience of ‘hopeless non-comprehension’, or even of ‘self-
protecting and contemptuous non-attention’ (Tahta, 1972, p. 51). She

recommended ‘build[ing] up good habits on a basis within which falls the centre

of gravity of the individual with whom you are dealing with’ (Tahta, 1972, p. 17).
A contrasting approach has been promoted by Vasily Davydov (1990) and taken

up by Jean Schmittau (2004) and Barbara Dougherty (2008), among others, who

have shown that young children are perfectly capable of working from abstractions

and generality to instantiation in particular situations.

An intermediate stance is both possible and desirable: sometimes starting from

particulars, sometimes from a slight or moderate generality and sometimes from an
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extremely general statement. Learners are then encouraged, whenever they are

stuck, to specialise to examples with which they are more confident, and then to

re-generalise as they begin to make sense of underlying structure. The purpose of

specialising is not to fill a notebook with examples, but rather to detect and try to

express underlying structural relationships.

This process was summarised as a pedagogic strategy and

as a learning strategy in Open University (1982); see also

Mason, 2002b or Mason & Johnston-Wilder, 2004) as a

continuing spiral of Manipulating – Getting a sense of—
Articulating—Manipulating—Getting a sense of – Artic-
ulating—. . . . This means turning to confidence-inspiring

entities, manipulating them in order to locate structural

relationships, getting a sense of what is going on, and

trying to articulate this, eventually reaching a succinct

articulation which can form the basis of confidently

manipulable objects in the future. When things get sticky,

or thinking breaks down, it is sensible to move down the

spiral to reach some confidently manipulable examples

from which to re-ascend. This is basically what Hilbert is

reported to have used as his ‘method’ (Courant, 1981)

Since encounters with number, from the earliest moments, effectively draws on

or makes use of the powers that enable abstraction and generality, working on

getting learners to express generality in words, frequently, whenever appropriate,

makes an important contribution to the developing of mathematical thinking.

Indeed, you cannot appreciate and comprehend arithmetic without encountering

the general (Hewitt, 1998).

6.3.2 Routes into Symbols

This section describes a collection of pedagogic strategies and didactic tactics

which have been used to ease learners into the use of letters to denote the as-yet-

unknown or the general. A plausible conjecture is that it is the sudden introduction

of ‘letters in place of numbers’ which, for learners unused to denoting the as-yet-

unknown or the as-yet-unspecified, triggers refusal to cooperate in algebra, or, for

many who appear to cooperate, brings down the portcullis on pursuing mathematics

because of the meaninglessness of symbol manipulation.

6.3.2.1 Watch What You Do and Say What You See

When seeking how to locate and/or extend a repeating geometrical pattern, or a

numeric pattern with some growth structure, it is often useful to ‘do an example’,
preferably a non-trivial example, or even to ‘do’ several examples. This has been
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the practice since recorded time! While drawing or calculating, it can be useful to

pay attention to what your body wants to do (I use the slogan Watch What You Do

or WWYD as a catch to remind me). For example, shown below are two configu-

rations of squares made up of sticks, the first showing three rows of four columns

and the second, four rows of six columns.

Make a copy of the second, watching how your body does the drawing. Then try

to express how your body worked as a rule for how to draw a configuration with

r rows and c columns, and how to count the number of sticks required.

The act of copying, or constructing your own instance, often leads to recognition

of structure which can then be expressed verbally. Once refined, this provides a way

to count the number of elements which can then be recorded using succinct

symbols. For example, locating features in the first diagram which relate to three-

ness and four-ness for which the same features in the second diagram relate to four-

ness and six-ness is usually an acknowledgement by cognition of bodily awareness.

Note that the two ‘examples’ provided are not sequential, and do not start at ‘the
beginning’. It tookme a long time to realise that always offering the first few terms of

a sequence as exampleswas blocking learners’ opportunities to use their ownpowers.
It is often the case that our bodies, our automatic functioning, locks into a pattern.

For example, if invited to copy and extend the following for another nine rows,

most children will quite spontaneously follow a flowing pattern downward, making

use of the natural numbers and the invariants in each column. Anne Watson (2000)

coined the expression ‘going with and across the grain’ to summarise what is made

available to be learned in such a situation. To complete the mechanical part of the

task, go with the grain, following the downward flow; to make sense of it, ask

yourself what is changing and what is invariant, and how the three statements in a

row relate to each other. This is ‘going across the grain’, revealing the structure, just
as when you saw across the grain of a log you reveal the fibrous structure of the tree

from which it came.
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The slogan Say What You See (SWYS) can serve as a reminder to get learners to

do articulate what they notice, first to a neighbour or group in which they are

working, and then in plenary, where what is noticed can be recorded and organised.

Once integrated into a learner’s functioning, SWYS and WWYD can be powerful

aides to detecting and expressing structure.

6.3.2.2 Tracking Arithmetic

Tracking Arithmetic is a label for the act of following one or more numbers through

a sequence of calculations, in order to see what their role is, their influence, their

contribution to the result. In other words, it leads directly to perceiving structural

relationships and expressing generality. An especially powerful example is given

by the following collection of tasks.

THOANs

Think of a Number ‘games’ have been played for hundreds, perhaps thousands of

years. A simple version is the following:

Think of a (positive whole) number; add two; multiply by the number you first

thought of; add one; take the (positive) square root (I can assure you that if you

started with a positive whole number you will have a whole number square root).

Subtract the number you first thought of. Your answer is 1.

Offered a sequence of these, perhaps using only addition and subtraction,

children soon want to know how it is done, and to try it themselves. Tracking

arithmetic reveals the underlying idea:

Start with 7. Add 2 to get not 9 but 7þ 2. Multiply by the number you first thought

of to get 7(7þ 2). Now add 1 to get 7(7þ 2)þ 1. I can do the arithmetic to

discover 64 whose square root is 8, but I want to see that 8 in terms of the 7, and I

can see that 7(7þ 2)þ 1¼ 7� 7þ 2� 7þ 1¼ (7þ 1)(7þ 1), so the square root

is 7þ 1. Subtracting the number first thought of yields 1 as claimed. The 7 has

been made to disappear! Now replace every instance of the starting 7 with a

cloud (it might be that 7 also shows up spontaneously in the calculation so one

has to be wary):

Using a cloud, which draws upon learners’ experience of cartoons, has in my

experience enabled algebra–refusers in secondary school both to engage and to act

algebraically, blissfully unaware that they have been ‘doing algebra’. A good deal

of the energy exhibited by learners who have chosen to become algebra–refusers

lies in their not knowing what the letters of algebra refer to. As Mary Boole put it,
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the use of algebra is to free people from bondage (Tahta, 1972, p. 55; italics in

original), by which she means bondage by and to the particular.

A particularly effective use of tracking arithmetic can be made by tracking all

numbers in the following task.

Grid Sums

Write down four numbers in a two-by-two grid (as in the example)

Record the products along the rows and the products down the columns

Now add the column sums and subtract both the row sums

The result in this case is 35þ 12 – 15 – 28¼ 4

Now choose numbers for a new grid so as to make the result equal to 3 (or any

other pre-assigned number!)

Most people start trying numbers and doing calculations. Tracking arithmetic

reveals an underlying structure:

The row sums are 5� 3 and 7� 4; the column sums are 5� 7 and 3� 4, so the

result is

5� 7þ 3� 4� 5� 3� 7� 4 ¼ 5� 7� 5� 3ð Þ þ 3� 4� 7� 4ð Þ
¼ 5� 7� 3ð Þ þ 3� 7ð Þ � 4

¼ 5� 7� 3ð Þ � 7� 3ð Þ � 4

¼ 5� 7� 3ð Þ � 4� 7� 3ð Þ ¼ 5� 4ð Þ � 7� 3ð Þ

The result is the product of the differences along the diagonals! Once that structure

is recognised, it is easy to achieve any pre-assigned result, whereas without it,

achieving a specified number can be really challenging. Of course if you are already

familiar and confident with using letters, you can do it ‘algebraically’, but Tracking
Arithmetic is available even if you do not yet have algebraic facility. Notice

however that you do need some general arithmetic facility, which is why it is

worth, early on in arithmetic, drawing attention to the properties of arithmetic such

as commutativity, associativity and distributivity.

As an extension, why does the result stay the same if I choose two additional

numbers, add the first number to the upper left and lower right cells, and subtract

the second number from the lower left and upper right numbers?

Since no task is an island complete unto itself (Mason, 2010), how might this

task be altered or extended? It turns out that it is not obvious how to extend the idea
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to a three-by-three grid. However, there is a variation which might be somewhat

surprising.

Reading clockwise from the upper left corner, form two two-digit numbers. In my

case I get 53 and 47. Do the same counterclockwise to get 57 and 43. Now form the

difference of the products: 53� 47 – 57� 43¼ 40

Adjusting the grid by subtracting say 1 from the main diagonal numbers and adding

say 2 to the off diagonal numbers gives the grid shown, and 45� 39 – 49� 35¼ 40 as

well. Could this be a coincidence?

Tracking arithmetic on the original grid shows that

53� 47� 57� 3 ¼ 50þ 3ð Þ � 40þ 7ð Þ � 50þ 7ð Þ � 40þ 3ð Þ
¼ 50� 40þ 50� 7þ 3� 40þ 3� 7ð Þ

� 50� 40þ 50� 3þ 7� 40þ 7� 3ð Þ
¼ 50� 7þ 3� 40ð Þ � 50� 3þ 7� 40ð Þ
¼ 50� 7� 3ð Þ þ 3� 7ð Þ � 40

¼ 50� 40ð Þ � 7� 3ð Þ
¼ 10� 5� 4ð Þ � 7� 3ð Þ:

It is immediately evident then that adding or subtracting the same thing to/from the

main diagonal numbers makes no difference, nor does adding or subtracting the

same number to/from the off diagonal elements. Furthermore, the result must

always be ten times the result of the previous calculation using the grid numbers.

To ‘see’ this for oneself requires only locating the 5, 4, 7 and 3 in the grid itself, and
realising (making real for oneself) that the digits are acting as placeholders and can

be changed.

Tracking arithmetic provides an intermediate stage between using arithmetic

with particular numbers and using letters for as-yet-unspecified numbers (our

ignorance). As such it is a didactic tactic (Mason, 2002b): it is particularly useful

and applicable to generating experience of algebraic thinking. I know of several

tasks which enable students to work with generality without having to call upon the

particular at all (see Sect. 6.4 for another example) and there must be many more.

6.3.2.3 Acknowledging Ignorance

Mary Boole (see Tahta, 1972, p. 55) suggested that algebra arises from ‘acknowl-
edging ignorance’. When you recognise that you do not know ‘an answer’ you can

acknowledge that fact by using a symbol (a little cloud is particularly effective) to

denote what is not (yet) known. You can then use that cloud to express what you do

know about it, and this will usually lead you to some constraints on the generality of

‘cloud’ in the form of equations or inequalities. This is what Isaac Newton (1683)
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thought was so elementary! Of course there are circumstances where this does not

help, but these are rare in school algebra examinations!

I have written down two numbers whose sum is one. I square the larger and add the

smaller; I square the smaller and add the larger. Which of my two numbers will

be the larger?

Notice that strong force to try a particular example. Choosing 0 and 1, or 1/2 and

1/2 is not very revealing. The fact that the two calculations always give the same

result is, at least at first, a little surprising. Acknowledging our ignorance and

denoting one of the numbers by and the other by is already using the

cloud to express what you know, namely that they sum to 1. Now the calculations

can be done using the cloud. If learners are not yet ready for manipulating cloud,

than tracking arithmetic can be used:

Try 7 as one number, and 1 – 7 as the other (notice that any calculation involving

7 is indicated but not carried out). Then the two calculations give

72 þ 1� 7ð Þ ¼ 72 � 7þ 1

and 1� 7ð Þ2 þ 7 ¼ 12 � 2� 1� 7þ 72 þ 7 ¼ 72 � 7þ 1

So the two calculations are equal in this instance.

Treating the 7 now as a place holder rather than as a particular number, perhaps

at first replacing it by a little cloud, confirms that the two calculations always give

the same result. It is worth pausing and contemplating the scope or range of

generality. The 7, or the cloud, can be replaced by any number you can think of,

or indeed numbers you cannot even think of or which have never previously been

thought of!

A useful task for emphasising the scope and range of generality involves variants

of the following:

Write down a number between 3 and 4.

Now write down a number between 3 and 4 but which no one else in the room will

write down.

Now write down a number between 3 and 4 but which no human being is ever likely

to have written down.

The second version draws attention to the range of possible choices. The third

version sharpens awareness that there are more numbers than human beings have

ever used! The idea is to draw attention to the range of possible variation, the scope

of generality.

Note that in a task like this there is an opportunity to get a learner to choose what

the difference will be. That way they have a sense of both the 3 and the 4 as place

holders for a dimension of variation (a generality) as well as experiencing greater

commitment to the task because they have participated in making a significant

choice.

A related tactic is to make a guess, and then check whether your guess is correct.

If you can check the correctness of a guess, then you can use tracking arithmetic to
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follow the guess through the checking process, using a little cloud or other token,

and end up with equations and inequalities which express the constraints on the

generality of your ‘guess’. The method of false position which pervades arithmetic

books up until the nineteenth century is based on a way of making use of one or

more guesses and the errors they give rise to when checking them, purely arith-

metically, in order to determine the correct answer. This only works when the

calculation is linear (one trial guess) or quadratic (two trial guesses), and rarely did

authors of textbooks give any criteria for knowing whether one guess or two were

required!

6.3.2.4 Word Problems

It has already been noted that if you can check the answer to a question, you can

usually set it out algebraically, by tracking arithmetic: following your proposed

answer through the calculations without losing track of it. Then you can set up the

constraints on it as equations or inequalities, and perhaps even solve them to find

the correct answer. This applies particularly to ‘word problems’. But asking

learners to ‘solve’ word problems is likely to be met with hostility, whether

cognitive, affective or enactive, and perhaps all three. By contrast, the notion of

‘burying the bone’ (Watson &Mason, 2005), of getting students to try to construct a

problem that they can do themselves but that will challenge colleagues, perhaps

even the teacher, can be used to increase engagement and disposition. This actually

mirrors the competitions in Italy in the sixteenth century involving Nicolo Tartaglia

and Girolamo Cardano (MacTutor Website) which brought to light the formula for

solving a cubic equation! Invoking the theme of ‘doing and undoing’, by asking

learners to construct problems ‘like these’which will challenge others, puts learners
in the role of constructors, or meaningful agents. They may even come to appreciate

the complexity of setting problems which will enable others to display their

understanding, such as examiners. The more that learners get to make significant

mathematical choices, the more likely they are to appreciate the tasks they are set,

because they know how they are constructed and for what purpose.

Word problems can also be used to challenge people to find a solution without

using algebra! Algebra becomes a backstop, a place of last resort. Meanwhile they

are exercising their mathematical thinking in trying to find a purely arithmetic

resolution. Then they can use Tracking Arithmetic to express a general formula for

all problems of ‘that type’. This is how Newton (1683) presented his solutions: he

solved a particular, then the general, and then showed that the particular was an

instance of the general.
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6.4 Reasoning Without Numbers

It is well worth while looking out for opportunities for learners to reason without

having to work with numbers, especially if some or all have already developed a

reluctance to master arithmetic.

6.4.1 Magic Square Reasoning

Imagine that the initial three-by-three square is covering up some three-by-three

magic square. It doesn’t matter which one. The fact that it is a magic square means

that the sum of the numbers in any row, any column or either diagonal is the same.

So in particular, the sum of the numbers in the cells in the first row is the same as the

sum of the numbers in the first column.

The sum of the light-shaded cells in the first grid is the same as the sum of the

dark-shaded cells in the second grid, and because these would overlap, as shown in

the third grid the sum of the dark-shaded cells must be the same as the sum of the

light-shaded cells in the third grid.

On the remaining grids, shade in sets of cells so that the sum of the dark-shaded

cells must be the same as the sum of the light-shaded cells.

In the following grids, show why the sum of the dark-shaded cells must be the

same as the sum of the light-shaded cells.

Notice that you do not need to know any of the numbers . . . the reasoning is all

about rows, columns and diagonals with overlaps removed. However, it is not

always easy to see how to achieve someone else’s configuration. Things become

even more challenging and hence interesting when you move to four-by-four or

larger magic squares.

The power of the reasoning using overlaps is that the results apply to any magic

square whatsoever, and yet numbers are not actually used. Learners find themselves

thinking structurally, algebraically. Care is needed however, that learners keep in

mind that the patterns they are using involve rows, columns and diagonals only, and
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a balance between the number of these in one colour and the number in the other

colour, because these all have the same sum. In an experiment with children aged

11 it turned out that making patterns of colours dominated attention, and they lost

the idea of using only rows, columns and diagonals and eliminating overlaps

(Mason, Oliveira, & Boavida, 2012).

6.5 Reasoning About Numbers

Getting learners to reason about numbers, rather than doing arithmetic with them

can encourage arithmetic-refusers to engage even though numbers are involved. For

example,

I am about to subtract the number represented by the cloud (it is a number that

someone is thinking about) from the number represented by the box (it is also a

number that someone else is thinking about).

However, just before I do the subtraction, someone comes along and adds 1 to both

of the numbers. How will the subtraction result change?

The invariance is both intuitive and readily justified. How can this task now be

extended and developed? What aspects could be varied? Variation theory (see

Marton, 2015; Marton & Booth, 1997) suggests that what is available to be learned

is what has been varied in recent time and space. Teaching is seen as fundamentally

about opening up dimensions of possible variation so that learners not only become

aware of possibilities, but integrate into their functioning the action of considering

what can be varied, and over what range and with what constraints (‘range of

permissible change’: see Watson & Mason, 2005).

In this task, the adjustment by 1 is a dimension of possible variation, leading to

the recognition that the same adjustment to both numbers will make no difference.

Opening up the constraint that the adjustments must be the same leads to further

insight. Note the parallel with the grid-sums task in Sect. 6.3.2.2). Altering sub-

traction to addition, to division or multiplication reveals similarities and differences

in the language and the actions that preserve an invariance.
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6.6 Generally Looking Beyond the Particular

Extending and varying, informed by variation theory are just as vital as getting

answers to some task. The learner who arrives at a test or examination and who has

treated every task as isolated has to deal with each test item in its particularity,

whereas the learner who has extended and varied, who has developed a rich space

of examples and of ways to augment and modify examples, is likely to recognise the

type of task and to have possible actions become available almost automatically. I

have long encouraged learners about to take an exam to set their own exam and send

it to the examiner, engaging in dialogue about what is reasonable and what is

challenging, and why. In that way learners become acquainted with what testing is

about, and develop their facility by extending and varying for themselves.

For example, the task One Sum presented earlier can be extended and varied in

several ways, but most easily when the situation is depicted.

As often happens in mathematics, finding two or more ways to express the same

thing can be enlightening and productive. Here the shaded area can be broken down

in two ways, and this leads to other possibilities, taking the number of numbers

adding to one as a dimension of possible variation, and taking the

two-dimensionality as a dimension of possible variation.

Use the two diagrams below to express generalisations of the one-sum

relationship.
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Working on expressing these involves both algebraic thinking, and shifting of

attention back and forth from recognising relationships in the particular diagrams,

and perceiving these as instantiations of properties (Mason, 2001).

6.7 A Word of Caution

Just because some pattern or relationship can be extended, it does not mean that it is

true. Put another way, every expression of generality starts life as a conjecture. It

must be tested and justified. Even with elementary repeating patterns, care must be

taken not to give learners the mistaken impression that whatever they think might

be true, will be true.

6.7.1 Repeating Patterns

The following pattern is made from repeating a block of letters. Extend the

sequence for yourself so that the repeating block continues to repeat.

AAABAA

Of course there are several ways: the repeating block can be any of AAAB,
AAABA, AAABAA, assuming that the generating pattern appears at least once. To

make the pattern unique, it is mathematically necessary to know that the repeating

pattern generating the sequence appears at least twice (Mason, 2014). For example,

AAABAAAABAAAA

with the claim that there are at least two copies of the repeating pattern, is uniquely

identifiable and therefore extendable.

6.7.2 Power Sums

It is well known that 32 þ 42 ¼ 52, but not so well known that 33 þ 43 þ 53 ¼ 63.

Having checked this, it is hard to resist trying extensions . . . but they don’t work!
The ‘obvious’ or ‘natural’ generalisation turns out to be false. The point is that

the first two facts are not presented in a structural form which actually extends. If

there is a suitable extension, some structural underpinning is required. That is why
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whenever learners are asked to extend a sequence, or to count the number of objects

needed to make a term in a sequence, they must first be asked to articulate what the

structural underpinning is that generates the sequence.

6.7.3 Structural Foundations

Consider, for example, the first two terms of a picture sequence:

The third term could be any of the following

not to say something completely different. Without specifying how the diagrams

are to be constructed, it is not possible to count the squares needed to make the nth
picture.

Use of pedagogic strategies such as getting learners to consider, having resolved

one problem, to consider the range of tasks they can solve similarly, and getting

them to change what is given and what is sought (a manifestation of the mathe-

matical theme of doing & undoing) not only engages learners more deeply, but also

offers them some actions to make use of for and by themselves, when studying, and

when interacting with the world generally. Thus in the study by Jo Boaler (1997)

learners at Phoenix Park, where mathematical thinking was encouraged through

work on extended tasks, recognised the role of mathematics outside of the class-

room in ways that students taught more traditionally as a sequence of procedures to

be mastered did not.

Not only does extending or varying aspects of a task, exploring possible dimen-

sions of variation, increase engagement with tasks, and not only does it provide

ways for quicker learners to remain engaged, it is the very heart of mathematics,

building up rich example spaces on which learners can draw in the future. One

important way to augment the affectivity of wanting to engage is to take every

opportunity to get students to make significant mathematical choices for them-

selves: what examples they work on, what letters they use to stand in for an as-yet-

112 J. Mason



unknown or a yet-to be decided unknown, whether to specialise or to work with the

general, and so on.

Even when you cannot see how to extend or vary, it is worthwhile trying. For

example, I came across the following task in Pólya (1954, Ex. 7, pp. 117–118) and

included it inMason,Burton, andStacey (1982, p. 169). Pólyanoticed it in our book and

asked why we had associated his name with it, which was because we got it from him!

6.7.4 P�olya Strikes Out

Write out the natural numbers in a

sequence

Circle every other number

Form the cumulative sums of the

uncircled numbers

Not too surprisingly, we get the square numbers. If instead you begin by circling

every third number, forming cumulative sums, then circle every second number in

this, and form the cumulative sums, you get another recognisable sequence.

Repeating this sort of action continues to reveal recognisable sequences. Try as I

might I could not get beyond a simple generalisation. Then John Conway and

Richard Guy (1996, pp. 63–65) found it in a paper of Moessner (1952: see Conway

and Guy 1996, p. 89) and generalised it extensively. They noticed that if instead of

using ‘every-something’ as the circling rule, you circle each number in a triangular-

number position, repeatedly, then the first circled numbers in each row form another

familiar sequence, and that is just the beginning!

The slogans ‘be wise, generalise’ (attributed to Piccayne Sentinel: see

MAphorisms) and ‘there is always something more to discover in the way of

connections and relationships’ are part of a mathematician’s creed, though it must

also be noted that Paul Halmos (1975) decried the effect on graduate students of

using the first without also being aware of instantiations of those generalisations,

and of where in mathematics they might be relevant. William Blake also decried

generalisation, claiming that ‘to generalize is to be an idiot’. I take the more

balanced view that generalisation and instantiation in the particular are both

important, in fact are inescapably intertwined, and that to focus on one without

the other is indeed to be an idiot.
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6.8 Classroom Ethos

For mathematical thinking to take place effectively, there has to be a conjecturing
atmosphere (Mason, Burton, & Stacey, 1982/2010, pp. 64, 233). This is so much a

part of mathematicians’ practice that books often do not bother mentioning it. Yet it

is fundamental. In such a classroom ethos, those who are confident about a question

or a task listen to what others have to say, while those who are not confident try to

say what they can. Things are said (by learners, by the teacher) in order to get them

outside of the ‘tumble-dryer’ mind in which ideas get mixed up, change, and

develop, even in mid expression. Things are said as conjectures in order to consider

them dispassionately. Then, as George Pólya (1965) put it, ‘you must not believe

your conjecture’.
Instead of disagreeing with what someone says, or telling them they are wrong,

in a conjecturing atmosphere you might ask about how what was said plays out in

. . . (and here an example, perhaps a potential counter-example is offered). Learners

quickly find that asking someone to repeat what they said is less productive than

trying to say what you think you heard, and asking for validation and clarification.

6.8.1 Increasing Sums

Consider the portion of Pascal’s triangle shown below, and convince yourself you

know how to extend it to the right and down.

Now group as shown below
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Say What You See in this diagram. Take your time. It might even help to make a

copy for yourself, and Watch What You Do. Ask yourself what is invariant (not just

objects, but relationships), and what is changing and in what way(s). What is the

same and what is different about each row, about the groupings in each row, about

the groupings in a sequence of rows?

The first row groupings seem trivial, but in retrospect from the second and third

rows they make sense. But the fourth row displays a counter-example to a common

conjecture! A generalisation, an expression of generality, is always a conjecture

until it can be justified! Do the first groupings in each row continue?Why then don’t
the second groupings in each row continue?

Note the pedagogic strategies instantiated in the follow-up part of the task.

6.9 Summary

Drawing on more than 50 years of working with others to develop mathematical

thinking, it seems clear to me that there is no royal road to teaching, no single track

to pedagogy, no magic sequence of tasks that will achieve the transformation in

thinking algebraically sought after for so many centuries by so many teachers.

Quite the contrary, it is all about sensitivity to individuals and to groups of

individuals. It is all about teaching as a caring profession: caring for learners and

caring for the subject matter, which requires maintaining a balance between the two

and not going to extremes. As an old adage has it ‘every stick has two ends’. It is all
about responding to particular situations with access to a rich repertoire of peda-

gogic strategies and didactic tactics. It is about nurturing like a gardener rather than

managing an assembly line.

Developing facility in manipulating algebra is actually straightforward once

confidence and interest in working with generalities has been captured.

In this chapter I have offered some pedagogic strategies, some didactic tactics,

and some tasks through which to encounter these, which, if handled sensitively and

carefully, not as one-off events but as a classroom ethos, a way of working with

others, could make a difference to succeeding generations.
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