
Chapter 5

A Deep Understanding of Fractions Supports
Student Success in Algebra

Stacy Reeder

Abstract Algebra is frequently referred to as the “gateway” course for high school

mathematics in much the same way as calculus can “open” or “close” doors for

students interested in pursuing degrees in science, technology, engineering, and

mathematics (STEM) areas. This chapter presents the idea that students’ challenges
with algebra begin well before their first course in algebra and that these challenges

are embedded in a complex set of issues. Weak or incomplete mathematical

understanding of rational number concepts has a profound impact on students’
success in algebra and subsequently, courses that follow where students are

expected to confidently, competently, and efficiently address situations in which

“and the rest is just algebra” is invoked. Recognizing that developing students’ deep
understanding of rational number concepts requires years of nurturing and care by

capable, well-prepared teachers, both in terms of content and pedagogical knowl-

edge, and a discussion of issues related to teacher preparation and teacher shortages

and how these impact students’ preparedness for algebra and their success in

mathematics is presented.
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Algebra is frequently referred to as the “gateway” course for high school mathe-

matics in much the same way as calculus can “open” or “close” doors for students

interested in pursuing degrees in science, technology, engineering, and mathemat-

ics (STEM) areas. This chapter presents the idea that students’ challenges with

algebra begin well before their first course in algebra and that these challenges are

embedded in a complex set of issues. Weak or incomplete mathematical under-

standing of rational number concepts has a profound impact on students’ success in
algebra and subsequently, courses that follow where students are expected to

confidently, competently, and efficiently address situations in which “and the
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rest is just algebra” is invoked. Recognizing that developing students’ deep

understanding of rational number concepts requires years of nurturing and care

by capable, well-prepared teachers, both in terms of content and pedagogical

knowledge, and a discussion of issues related to teacher preparation and teacher

shortages and how these impact students’ preparedness for algebra and their success
in mathematics is presented.

5.1 Introduction

Over the last two decades, numerous reports have been written that focus on the

need for improved mathematics and science teaching and learning in the United

States. The pressure for global competitiveness and ever-changing demands of the

workforce in the areas of science, technology, engineering, and mathematics

(STEM) have propelled the conversation forward with intensity regarding learn-

ing outcomes in the STEM areas. In light of increased attention on STEM learning

outcomes, the need for individuals prepared to enter the STEM fields, and, in

general, the “need for more powerful learning focused on the demands of life,

work, and citizenship in the twenty-first century” (Darling-Hammond, 2010),

more students are taking algebra courses. The link to increased educational and

economic opportunities has also been linked to the increase in the number of

students taking algebra courses (Gamoran & Hannigan, 2000; Moses & Cobb,

2001; Nord et al., 2011; Rampey, Dion, & Donahue, 2009). Further, over the past

several decades, and particularly since 2002 when the reauthorization of the

Elementary and Secondary Education Act (ESEA) of 1965 commonly known as

the “No Child Left Behind” Act attached passing exams based on algebra courses

to graduation, more states require the passing of an algebra course for all students

for graduation.

Algebra is frequently referred to as the “gateway” course for high school

mathematics in much the same way as calculus can “open” or “close” doors for

students interested in pursuing degrees in STEM areas. Stein, Kaufman, Sherman,

and Hillen (2011) state that “[h]istorically, algebra has served a gatekeeper to

advanced mathematics and science course taking and entry into high-paying,

technical careers. Increased recognition of this phenomenon has led to a growing

trend, . . . , for more students taking algebra in eighth grade” (p. 483). Their study

examines algebra enrollment trends using data from the Early Childhood Longi-

tudinal Study, Kindergarten class of 1988–99 (ECLS-K), the High School Tran-

script Study, National Assessment of Educational Progress (NAEP), NAEP Long-

Term Trends, and Trends in International Mathematics and Science Study

(TIMMS) and reveals a significant increase in algebra enrollment in eighth

grade over the past two decades. Analysis of these sources provides empirical

data that from the late 1980s to the early 1990s, enrollment in algebra for the

nation’s eighth graders had increased from 15 to 20% to around 30% in 2009.

Additionally, their study reveals consistent lower enrolment in “eighth and ninth
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grade algebra among minorities and low-income students” (p. 460). This finding,

along with an examination of policies related to who takes algebra and when

students take algebra, called into question the preparedness of the students taking

algebra. If the policies in place are universal, then it is likely many students taking

algebra may not be prepared for the rigor and abstraction required for algebra.

However, if the policies related to who takes algebra and when they take algebra

allow for selection, evidence suggests that some prepared students from tradi-

tionally marginalized groups may be excluded from taking algebra prior to high

school.

5.2 The Challenges of Algebra Preparedness

Research from various fields including mathematics education, mathematics

teacher education, and mathematics reveals there is a confluence of issues that

impact students’ preparedness for algebra (e.g., Ball, 1993; Booth & Newton,

2012; Booth & Siegler, 2006, 2008; Harvey, 2012; Lamon, 2012; Ma, 1999;

Newton, 2008; NMAP, 2008; Wu, 2001). Students’ mathematical background

and abilities, misconceptions and limitations related to their mathematical under-

standing, student self-confidence related to mathematics, policies related to the

mathematics required in school prior to the taking of algebra, and teacher prep-

aration for teaching mathematics at the elementary and middle school levels are

among the chief contributors to this problem. In keeping with the title of this

volume, “and the rest is just algebra,” this chapter will present the argument that

students’ challenges with algebra begin well before their first course in algebra

and that these challenges are embedded in a complex set of issues. While

recognizing the complexity of this problem, this chapter will specifically explore

the impact of weak or incomplete mathematical understanding of rational number

concepts on students’ success in algebra and subsequently, courses that follow.

Also, included will be a discussion of issues related to teacher preparation and

teacher shortages and how these impact students’ preparedness for algebra and

their success in mathematics.

5.3 Fraction Understanding Supports Algebra

The National Mathematics Advisory Panel (NMAP, 2008) suggests that a central

goal of student’s mathematical development is the conceptual understanding of

fractions and procedural fluency with rational numbers and further implies that

these competencies provide the critical foundation for algebra learning. Research

corroborates the suggestions made by NMAP regarding the impact of weak or

limited mathematical understanding at the elementary and middle school level and

the significant impact it has on the future mathematical success of students and their
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educational possibilities (e.g., Booth & Newton, 2012; Wu, 2001). Brown and

Quinn (2007) state that “vague fraction concepts and misunderstood fraction

algorithms will ultimately be generalised into vague algebraic concepts and pro-

cedures. The lack of precise definitions and reliance upon shortcuts that are

thoughtlessly given to students are likely to hinder performance in algebra” (p. 29).

Research has shown that much of the basis for algebraic understanding and

algebraic thinking is contingent on a clear understanding of rational number

concepts (Driscoll, 1982; Kieren, 1980; Lamon, 1999; Wu, 2001) and the ability

to manipulate common fractions. For example, Booth and Newton (2012) found

that “knowledge of fraction magnitudes—more so than whole number magnitude

. . . is related to students’ skill in early algebra” (p. 251). Beyond simply using

fractions and their related operations with fractions to solve algebraic problems

involving fractions, students depend on their understanding of rates and ratios,

often represented as fractions, to make sense of the key concepts of rate and

variability in algebra. Wu (2001) claims that since operations with fractions can

be generalized, fractions provide an opportunity to introduce students to the use of

variables. Further, fractions are found throughout algebra. From coefficients to

the slope of linear equations, from constants to solutions, from linear equations to

completing the square, from solving systems of linear equations to solving

rational equations, and from simple probabilities to the binomial theorem, algebra

is brimming with examples that are directly and indirectly related to fractions. Wu

(2001) suggests that “[w]ith proper infusion of precise definitions, clear explana-

tions, and symbolic computations, the teaching of fractions can eventually hope to

contribute to mathematics learning in general and the learning of algebra in

particular” (p. 17).

Unfortunately, rational number concepts and fractions are challenging for many

students, and students’ understanding of rational numbers, or fractions, and mis-

conceptions students might develop about fractions have a profound impact on their

ability to learn algebra. According to Lamon (2012):

Understanding fractions marks only the beginning of the journey toward rational number

understanding. By the end of the middle school years, as a result of maturation, experience,

and fraction instruction, it is assumed that students are capable of a formal thought process

called proportional reasoning. This form of reasoning opens the door to high-school

mathematics and science, and eventually, to careers in the mathematical sciences. The

losses that occur because of the gaps in conceptual understanding about fractions, ratios,

and related topics are incalculable. The consequences of doing, rather than understanding,

directly or indirectly affect a person’s attitudes towards mathematics, enjoyment and

motivation in learning, course selection in mathematics and science, achievement, career

flexibility, and even the ability to fully appreciate some of the simplest phenomena in

everyday life (p. xi).

Algebra is replete with fractions and understanding many of the concepts found

within algebra is dependent on student understanding of the multiple interpretations

of fractions.
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5.4 Deep Understanding of Fractions

Helping students develop a deep understanding and rich number sense about

fractions and rational numbers including conceptual understanding and procedural

fluency is not an easy task. It requires deep content knowledge specific to rational

numbers on behalf of the teachers and requires several years to develop in students.

Kieren (1988) reported that students in the United States rely heavily on rote

memory of rules to solve fraction problems. The 2004 National Assessment of

Educational Progress (NAEP), often referred to as the Nations Report Card,

reported that 50% of eighth grade students could not order three fractions from

least to greatest and that fewer than 30% of 17-year-olds correctly translated 0.029

as 29/1000 (Kloosterman, 2010). Further, Rittle-Johnson, Siegler, and Alibali

(2001) conducted one-on-one controlled experiments and found that when asked

which of two decimals 0.274 and 0.83 is greater, most fifth and sixth graders choose

0.274. Siegler et al. (2010) suggest that the lack of student conceptual understand-

ing includes students not viewing fractions as numbers, viewing fractions as

meaningless symbols that need to be manipulated in a variety of ways to produce

answers that satisfy a teacher, focusing on numerators and denominators as separate

numbers rather than thinking of the fraction as a single number, and confusing

properties of fractions with those of whole numbers. They go on to state that “A

high percentage of U.S. students lack conceptual understanding of fractions, even

after studying fractions for several years; this, in turn, limits students’ ability to

solve problems with fractions and to learn and apply computational procedures

involving fractions” (pp. 6–7).

The challenges are significant in the United States with regard to fraction and

rational number teaching and student understanding. In light of these and other

concerning findings, understanding this challenge and working to improve student

learning related to fractions and rational numbers have been a focus of the math-

ematics education community for several decades. In the late 1980s, the publication

of the National Council of Teachers of Mathematics (NCTM) Curriculum and

Evaluation Standards (1989) and several other NCTM publications in the decade

that followed helped drive the charge for change in fraction instruction. Since that

time, there have been continual calls for fraction instruction to move from a

procedural focus to one aimed at developing deep conceptual understanding

(Lamon, 2012; Van de Walle, 2007). Understanding fractions concepts with

depth is a complex endeavor and requires that teachers understand the work on

fraction meanings and constructs. Kieren’s work in the 1970s revealed the com-

plexity of fraction understanding suggesting that the concept of fractions consists of

several sub-constructs or meanings (1976).

In his work, Kieren suggested that one must understand each sub-construct

independently and jointly in order to have a general understanding of fractions.

Initially, Kieren identified four meanings for fractions: measure, ratio, quotient, and

operator. Originally, the notion of the part-whole relationship served as a basis for

the development of the other sub-constructs and as such was not included in the list
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as a separate construct. Kieren’s ideas were later expanded by Behr, Lesh, Post, and
Silver (1983) who recommended that the part-whole relationship as seen by Kieren

to be embedded in the four other meanings be considered a distinct sub-construct of

fractions (see Fig. 5.1). Their work connected the part-whole meaning of fractions

with the notion of portioning and establishing it as a distinct sub-construct of

fractions. Behr et al.’s (1983) work revealed that the process of partitioning and

the part-whole sub-construct of rational numbers are fundamental for developing a

deep understanding of the four other constructs of fractions. Since that time, others

(Lamon, 1999, 2012; Mack, 2001; Simon, 1993; Tobias, 2012) have suggested that

conceptualizing the whole is important for understanding many significant mathe-

matical concepts including contextualizing situations, understanding procedures,

and interpreting solutions.

The notion of part-whole as a construct for fractions and rational numbers

occupies a significant place in curricular materials for elementary children through-

out the world. This is based on the assumption that conceptualizing the whole and

understanding part-whole relationships is fundamental to many important mathe-

matical concepts including the four constructs of fractions identified by Kieren

(1976) and that operations with fractions are connected to the part-whole relation-

ship (Behr et al., 1983). Lamon (2012) discusses the idea that more emphasis should

not be placed on one sub-construct, or interpretation, of fractions and that rather,

teachers should understand that no single interpretation is a panacea. Cramer and

Whitney (2010), however, suggested that the part-whole sub-construct is a good

place for children to begin to develop an understanding of fractions.

Interpretations of 4
5

Meaning

Part-Whole Comparisons with
Unitizing

“4 parts out of 5 equal parts”

4

5
means four parts out of five equal parts of the unit, with 

equivalent fractions found by thinking of the parts in terms of 
larger or smaller chunks.

Measure

“4 (
1

5
– units )”

4

5
means a distance of 4 (

1

5
– units ) from 0 on the number line or 4 

(
1

5
– units ) of a given area.

Operator 

“
4

5
of something”

4

5
gives a rule that tells how to operate on a unit (or on the result of 

a previous operation); multiply 4 and divide your result by 5 or 
divide by 5 and multiply the result by 4.  This results in multiple 

meanings for 
4

5
;  4 (

1

5
– units ), 1 (

4

5
– units ), and 

1

5
( 4 – units ).

Quotient

“4 divided by 5”

4

5
is the amount each person receives when 5 people share a 4 – unit 

of something.

Ratios

“4 to 5”

4:5 is a relationship in which there are 4 A’s compared, in a 
multiplicative rather than an additive sense, to 5 B’s.

Fig. 5.1 Fraction interpretations and meanings (adapted from Lamon, 2012)
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Many researchers agree but also believe that while the part-whole meaning of

fractions is the most commonly relied upon interpretation in curricular materials,

placing more emphasis on other interpretations would help students gain a better

understanding of fractions (e.g., Clarke, Roche, & Mitchell, 2008; Siebert &

Gaskin, 2006). This suggests that an emphasis on the part-whole construct or

interpretation of fractions, while perhaps serving as a basis for understanding

fractions, is not sufficient by itself for deep understanding and flexibility with

fractions. Lamon (2007) believes that we have a tremendous problem related to

fraction teaching and learning due to the fact that most teachers only understand and

teach fractions from a part-whole understanding. The findings of a study conducted

by Reeder and Utley (under review) focused on prospective elementary teachers

corroborates this claim. The prospective elementary teachers in their study relied

almost exclusively on part-whole understanding of fractions as part of a whole to

answer basic questions about fractions, and when asked how they would explain the

concept of fractions to their students, the majority of the participants provided a

part-whole explanation.

5.5 The Importance of Proportional Reasoning for Algebra

While there are functional differences between each of the five sub-constructs of

fractions, they are interrelated. In addition, it is believed that, fractions should be

taught in such a way that students develop a holistic understanding of fractions that

includes the multiple perspectives of each of the sub-constructs. In this way,

students may be able to work more flexibly within varied contexts, with more

representations, and develop the higher-order thinking needed for proportional

reasoning (Lesh, Post, & Behr, 1988). However, the sub-construct of ratio and

rates is most related to proportional reasoning which makes it of paramount

importance for student success in algebra. Proportional reasoning has been referred

to as the cornerstone of higher levels of mathematics success (Kilpatrick, Swafford,

& Findell, 2001; Lamon, 1999; Lesh et al., 1988). Wright (2005) states that

proportional reasoning involves “making multiplicative comparisons between

quantities” (p. 363), and Lesh et al. (1988) add that it is “the ability to mentally

store and process several pieces of information” (p. 93). According to Lamon

(1999), “proportional reasoning is one of the best indicators that a student has

attained understanding of rational numbers” (p. 3).

The ability to reason proportionally involves a student’s ability to understand

variation and covariation and make multiple comparisons. It involves students’
abilities to differentiate between relative and absolute meanings of “more” and

determine which of these is a proportional relationship, compare ratios without

using common denominator algorithms, differentiate between additive and multi-

plicative processes and their effects on scale and proportionality, and interpret

graphs that represent proportional relationships or direct and indirect variation.

These abilities are directly related to the kind of thinking and reasoning needed for
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algebraic reasoning and developing an understanding of functions. For example,

Lobato and Thanheiser (2002) discuss the need for students to understand slope “as

a ratio that measures some attribute in a situation” (p. 174). They go on to argue that

helping students understand “the modeling and proportional reasoning aspects of

ratio-as-measure tasks, can in turn help students develop an understanding of slope

that is more general and applicable” (p. 174) and important for success in algebra.

5.6 Challenges Regarding Preparation of Teachers
of Mathematics

Research in mathematics education has also well documented the challenges of

teaching rational number concepts and the impact of teachers’ limited content

knowledge on their students’ learning (e.g., Ball, 1993; Harvey, 2012; Lamon,

2012; Ma, 1999; Newton, 2008). The Conference Board of the Mathematical

Sciences (CBMS, 2012) states that “a critical pillar of a strong PreK–12 education

is a well-qualified teacher in every classroom” (p. 14). Unfortunately, that is not

always the case with regard to teachers of mathematics at all grade levels. The paths

to teacher certification in the United States are varied allowing for significant

difference in what and how much mathematics is required for credentialing.

Many states, due to a decade’s long shortage of mathematics teachers, allow

individuals prepared to teach elementary, many of whom have had little college

level mathematics, to simply pass an exam to receive credentials to teach middle

level mathematics—in some cases up through Algebra II. Sadly, with these extreme

teacher shortages across the nation, some states are allowing significant numbers of

individuals into mathematics classrooms with little or no background in

mathematics.

In the case of teachers who have completed a teacher preparation program, the

challenges and limitations related to their content knowledge for teaching have

been a focus of the mathematics education community for decades and have been

well documented in the mathematics education literature (Ball, 1993; CBMS, 2001,

2012; Ma, 1999; Shulman, 1986). For education practice, policy, and research,

teachers’ mathematical content knowledge continues to be a major focus (CBMS,

2012; Greenberg & Walsh, 2008; National Mathematics Advisory Panel, 2008).

Despite this ongoing focus, a great number of teachers, particularly those teaching

in elementary, intermediate, and middle level mathematics, continue to be under-

prepared and uncomfortable with the mathematics content they are expected to

teach (Greenberg & Walsh, 2008). This is often due to a variety of factors

including, but not limited to, their own experiences with mathematics, their beliefs

and ideas about mathematics teaching and learning, and their preparation as

teachers related to mathematics content knowledge and pedagogical knowledge

for teaching mathematics (Reeder, Utley, & Cassel, 2009; Utley & Reeder, 2012).
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Prior to their teacher preparation coursework, most prospective teachers have

spent many years learning mathematics from teachers whose pedagogical practices

primarily reflect a traditional orientation focused on procedural understanding

rather than a balanced approach that attends to both conceptual understanding

and procedural fluency (National Research Council, 2001). When they arrive in

their undergraduate degree, they are typically engaged with mathematics similar to

their prior experiences through lecture style teaching methods and a show-and-

repeat procedures approach. Further, many teacher preparation programs require

prospective teachers to take mathematics coursework that is disconnected from the

mathematics they will teach. Prospective mathematics teachers are required in

many states to take a course in College Algebra which may extend their own

mathematical understanding but does not do much to deepen their understanding

of rational numbers, for example. This certainly shapes teachers’ attitudes about
mathematics and their ideas about what constitutes mathematics teaching and

learning (Reeder et al., 2009). Likewise, most secondary mathematics education

programs preparing teachers to teach grades 6–12 mathematics require, if not a

degree in applied mathematics, the coursework equivalent. Prospective secondary

mathematics teachers are typically required to take coursework well beyond what

many consider as necessary the strong content knowledge needed for teaching but

very well may not understand rational number concepts with depth. The CBMS

recommends more mathematics coursework specifically developed to meet the

needs of teachers and improve content knowledge specifically needed for

teaching (2012).

Specific to this chapter, existing research demonstrates that prospective and

in-service teachers’ knowledge of fractions is limited (Ball, 1990; Becker & Lin,

2005; Chinnappan & Forrester, 2014; Cramer, Post, & del Mas, 2002; Harvey,

2012; Ma, 1999; Newton, 2008; Zhou, Peverly, & Xin, 2006). Additionally,

research has documented that teaching and learning fraction concepts are a difficult

and complex undertaking (Ball, 1993; Harvey, 2012; Lamon, 2012; Ma, 1999;

Newton, 2008). Newstead and Murray (1998) purport that fractions are among the

most complex mathematical concepts that elementary students encounter, and

Charalambous and Pitta-Pantazi (2005) and Harvey (2012) assert that the teaching

and learning of fractions have traditionally been problematic. Lamon (2007)

believes that most teachers are not prepared to teach content other than the part-

whole construct of fractions which leaves their students with an incomplete and

shallow understanding of fractions and rational numbers.

5.7 The Growing Problem of Teacher Shortages

The United States is in the midst of a teacher shortage crisis. For decades there has

been a chronic shortage in particular teaching content areas such as mathematics,

science, special education, and bilingual education, but the current situation is

widespread and involves almost every state in the nation. From California to
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Oklahoma to New York, school districts are scrambling to hire teachers, and

unfortunately, in many cases this is regardless of their credentialing. In October

2015, US World and News Report reported that school districts in the state of

California were still trying to fill 21,500 vacant teaching positions. In this same

report, Partelow stated that “while it may be too early to tell whether this year’s
reported shortages are a blip or part of a long-term systemic trend, we do know that

fewer college students are enrolling in teacher training programs and surges of

teachers are retiring” (2015, para. 4). If this trend continues, it will not only lead to

greater numbers of unfilled teaching positions in the future but will also lead to

classrooms likely filled with teachers who are not as well prepared as needed.

When the school year begins each fall and there are not enough teachers to fill

the classrooms in each building, students do not sit in empty rooms. Rather, school

districts begin filling classrooms, in some cases, with anyone they can find regard-

less of the person’s credentials. This results in credentialed teachers teaching

outside of their content area, long-term substitutes filling teaching positions,

preservice teachers beginning teaching before they are fully prepared, and allow-

ances for individuals to be “emergency certified” often without any teacher prep-

aration. California, for example, has been particularly hard-hit following the loss of

more than 80,000 teaching jobs between 2008 and 2012 (Rich, 2015). Now, with a

recovering economy, there is a need for more teachers and they simply are not

enough. Rich (2015) reported that “[b]efore taking over a classroom solo in

California, a candidate typically must complete a post-baccalaureate credentialing

program, including stints as a supervised student teacher. But in 2013–2014, the last

year for which figures are available, nearly a quarter of all new teaching credentials

issued in California were for internships that allowed candidates to work full time

as teachers while simultaneously enrolling in training courses at night or on

weekends” (para. 13). Additionally, from 2012 to 2013, the number of emergency

permits issued in California to allow individuals who have no teaching credentials

to fill teaching positions jumped by more than 36%. This increase has been

unfortunately paralleled in other states in the past few years. Partelow (2015),

citing Oklahoma as an example, stated that “[u]nfortunately some states have

instead responded [to the teacher shortage] by lowering the (arguably too low

already) bar for entry into the profession. Oklahoma approved over 800 emergency

certificates in July and August allowing non-credentialed teachers to teach in

classrooms of their own” (para. 7). In October of the fall 2015 semester, over

1000 teacher vacancies remained unfilled in Oklahoma.

The teacher shortage will undoubtedly have an impact on students’ mathemat-

ical preparedness. More classrooms will be filled with teachers who do not have the

specialized content knowledge needed for teaching mathematics or the pedagogical

content knowledge to teach mathematics effectively. Without deep content knowl-

edge or sophisticated and well-developed pedagogical practices, teachers typically

resort to teaching via rote methods and memorization—methods that do not account

for a holistic approach to teaching fractions and rational number concepts with the

five sub-constructs in mind.
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5.8 Discussion

In a recent report published by the National Academy of Sciences, the author stated

that the phrase “STEM education is shorthand for an enterprise that is as compli-

cated as it is important” (Beatty, 2011, p. 1). She goes onto to say that:

what students learn about the science disciplines, technology, engineering, and mathemat-

ics during their K-12 schooling shapes their intellectual development, opportunities for

future study and work, and choices of career, as well as their capacity to make informed

decisions about political and civic issues and about their own lives. A wide array of public

and personal issues—from global warming to medical treatment to social networking to

home mortgages—involve science, technology, engineering, and mathematics (STEM).

Indeed, the solutions to some of the most daunting problems facing the national will require

not only the expertise of top STEM professionals but also the wisdom and understanding of

its citizens. (Beatty, 2011, p. 1)

Clearly, helping students succeed in STEM fields and to live and succeed in a

global economy is important, and simply engaging students in the mastery of basic

skills is not sufficient to meet this goal.

In his popular book, The Checklist Manifesto, Atul Gawande (2010) addresses

the idea that despite our modern world and tremendous advances in health care,

government, the law, and financial industry, challenges still plague us. He examines

the nature of problems we frequently face and elaborates on the nature and

complexity of said problems. Referencing the work of Glouberman and

Zimmerman (2002), Gawande presents three different kinds of problems in the

world: the simple, the complicated, and the complex. Simple problems, he notes,

“are ones like baking a cake from a mix. There is a recipe and a few basic

techniques to follow but once these are mastered, following the recipe brings a

high likelihood of success” (p. 49). Complicated problems on the other hand, are

ones like sending a rocket to the moon. “They can sometimes be broken down into a

series of simple problems but there is no straightforward recipe. Success frequently

requires multiple people, often multiple teams, and specialized expertise”

(Gawande, 2010, p. 49), but once you learn to send a rocket to the moon, you can

repeat the process with other rockets and perfect it—one rocket is typically like

another rocket. “Complex problems, however, are like raising a child. Although

raising one child may provide experience, it does not guarantee success with the

next child” (Gawande, 2010, p. 49). Expertise is valuable but likely not sufficient

because unlike rockets, every child is unique. Each child may require an entirely

different approach from the previous one. Another feature of complex problems is

that their outcomes remain highly uncertain. “Yet we all know that it is possible to

raise a child well. It’s complex, that’s all” (Gawande, 2010, p. 49). Likewise,

helping students be prepared for algebra is a complex endeavor.

Preparing students well for algebra involves many years of working with them to

develop a deep understanding of fractions and proportional reasoning and ensuring

that our teachers not only understand but are able to teach rational number concepts

holistically. The challenge is multifaceted involving policy and practice, beliefs

about mathematics teaching and learning, beliefs about what is mathematics and
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what it means to know mathematics deeply, teacher preparation, and ensuring every

classroom of students has a well-qualified teacher. The complex challenge of

helping students be prepared for algebra and the important mathematics beyond

algebra involve many years of work and development. Equally important is the

specialized content and the pedagogical knowledge of many skillful teachers who

teach mathematics.

Darling-Hammond (2010) states that we can meet the challenges of our current

education system by developing a new paradigm for national and state education

policy that is guided “by twin commitments to support meaningful learning on the

part of students, teachers, and schools and to equalize access to educational oppor-
tunity, making it possible for all students to profit from more productive schools”

(p. 278). If, as an education community, we believe in the importance of preparing

students to live happily and succeed in a global economy, then we need to insist that

the mastery of basic skills that the emphasis on accountability has brought is not

sufficient. Cortese and Ravitch (2008) noted that “[W]hat we need is an education

system that focuses on deep knowledge, that values creativity and originality, and

that values thinking skills” (p. 4). As an education community, we can advocate for

policies and practices that support the teaching of deep knowledge and support

teachers in helping students learn meaningfully. These challenges can be met and

when they are, we can be confident that students in calculus courses and beyond will

respond competently and efficiently when addressing “and the rest is just algebra.”
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