
Chapter 10

Rethinking Algebra: A Versatile Approach
Integrating Digital Technology

Mike Thomas

Abstract Many have thought deeply about the construction of the school algebra

curriculum, but the question remains as to why we teach the topics we do in the

manner we do, stressing manipulations of symbols, and why some other avenues

are ignored. In this chapter we consider the basic constructs in the school algebra

curriculum and the procedural approach often taken to learning them and suggest

some reasons why certain topics may be excluded. We examine how particular

tasks, including some that integrate digital technology into student activity, could

be used to rethink the algebra curriculum content with a view to motivating students

and promoting versatile thinking. Some reasons why these topics have often not yet

found their way into the curriculum are discussed.

Keywords Versatile thinking • Algebra • Tertiary • Digital technology •

Representations

The aim of this chapter is to rethink both the content of secondary school algebra

and the manner of its delivery and to ask: Should either, or both, be changed in order

to improve understanding of algebra? There seems little doubt about two crucial

statements:

• Algebra (including the school algebra of generalised arithmetic) is of funda-

mental importance in mathematics.

• Many students find most of school algebra either difficult or impossible to

comprehend.

These two statements are linked together by the fact that school algebra is a

semiotic system. It is the signs or representations of this system that at one and the

same time make algebra so useful and yet so difficult for many. Consider, for

example, the compressive power in a relatively simple symbolism
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Xi¼2

i¼0
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where w is a cube root of unity. Suspending for a moment the fact that this

summation comes to zero and ignoring simplifications of w2, if we fully expand

the symbolisation we get
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Mason (1987) agrees that a semiotic problem, concerning the relationship

between the sign and the signified, or the symbol and the symbolised, is at the

root of algebraic difficulties. This semiotic difficulty is not surprising when we

consider how long it took for the symbolism to settle down into our modern version.

For example, Struik (1969) gives these examples.

(a) What must be the amount of a square, which, when twenty-one dirhams are

added to it becomes equal to the equivalent of ten roots of that square?

Al-Khwarizmi ca. 825 AD

(b) cubus p : 6 rebus aequalis 20 Cardan ca. 1545 AD

(c) aaa - 3bba¼þ2ccc Harriot ca. 1610 AD

The triadic model of Peirce describes how signs, constructed through thoughts

and ideas, comprise three components: the representamen [or the external material

entity]; the object referred to; and the interpretant, or the sense made of the entity.

Unlike icons and indexes, symbols, including those used in mathematics, have

become associated with their meaning by accepted usage (Peirce, 1898). The

grouping of these symbols into systems (sometimes called a representation system),

such as the algebra of generalised arithmetic considered here, requires more than a

set of symbols; it also needs rules for their production and transformation, and a set

of relationships between the signs and their meanings (see Ernest, 2006). Student

activity, both within such a system and converting between systems (Duval, 2006),

can lead to key epistemological aspects and understanding, of mathematical

objects, contributing to the goal of helping students attain versatile thinking in

mathematics, which according to Thomas (2008a, 2008b), involves at least three

abilities:

• To switch at will in any given representational system between a perception of a

particular mathematical entity as a process and the perception of the entity as an

object
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• To exploit the power of visual schemas by linking them to relevant logico/

analytic schemas

• To work seamlessly within and between representations, and to engage in

procedural and conceptual interactions with representations

Thus a versatile view (Graham, Pfannkuch, & Thomas, 2009; Graham &

Thomas, 2000, 2005; Tall & Thomas, 1991; Thomas, 1988, 2002, 2008a, 2008b)

of the semiotic system of school algebra requires more than the ability to transform

symbols according to the rules of the system; it also means making sense of them as

processes and objects, and the ability to relate them to other systems. However,

much of what happens in school algebra comprises activity aimed at transforma-

tions according to the rules of the system with much less effort addressed to

considering sense making or conversions. Such standard manipulation algebra

(Thomas & Tall, 2001) often leads to what Skemp (1976) described as instrumental

understanding, or applying rules without clear reasons.

In order to be able to operate on an entity within a further process, such as when

manipulating symbolic literals in algebra, APOS theory (Dubinsky, 1991) tells us

that students need an object view of the symbols (although what kind of object they

perceive is often open to question—see Tall, Thomas, Davis, Gray, & Simpson,

2000). While in the higher level mathematics of formal world thinking (Tall, 2004,

2008) objects can be brought into being through a definition, which specifies their

properties, in school algebra students are often left to abstract properties of objects

such as variable, expression, equation, function and polynomial for themselves by

learning and repeating procedural actions on symbols. In this chapter I suggest that

more attention could be paid to relating the algebraic symbols to other representa-

tions and investigating the properties of the objects of algebra. I also propose ways

that this could be achieved by harnessing the investigative power of digital tech-

nology (DT).

10.1 A Theoretical Framework

In other papers we have proposed a Framework for Advanced Mathematical

Thinking (FAMT) (Stewart & Thomas, 2010; Thomas & Stewart, 2011) that

combines orthogonally elements of the action-process-object-schema (APOS)

framework for studying learning, presented by Dubinsky and others (Dubinsky,

1991; Dubinsky &McDonald, 2001) with each of Tall’s (2004, 2008) Three Worlds

of Mathematical Thinking. APOS theory describes how mental objects may be

constructed from actions and processes via reflective abstraction, while Tall’s
framework suggests that mathematical thinking can involve an embodied world,

with its visual and enactive aspects, a symbolic world of semiotic symbols, and the

formal world of axiomatic and deductive mathematics. The FAMT is based on the

principle that each mathematical concept can be examined in terms of action,

process and object types of thinking in each of the embodied and symbolic and
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formal worlds of mathematics. Hence, a matrix of cells may be produced with each

cell targeting student thinking and understanding in one area, such as an embodied

process. While we have found FAMT particularly useful for analysing student

thinking in university mathematics, namely linear algebra (see the example in

Fig. 10.1), the underlying principles may also prove useful in school level mathe-

matics and we will consider this below.

Providing tasks that enable students to engage in activity that encourages them to

think in the manner described by as many of the cells of the framework as possible

for a given mathematical construct and to construct meaningful links between them,

is one way to promote versatile thinking. This is a key tenet of the ideas

presented here.

We will now look at some of the key ideas in school algebra and ask how DT

might assist students to construct versatile thinking about them.

10.2 Variables and Expressions in School Algebra

The concept of variable is not an easy one for students to construct. Even Bertrand

Russell found the notion of variable problematic.

6. Mathematical propositions are not only characterized by the fact that they assert

implications, but also by the fact that they contain variables. The notion of the variable is

one of the most difficult with which logic has to deal. For the present, I openly wish to make

it plain that there are variables in all mathematical propositions, even where at first sight

they might seem to be absent. . .We shall find always, in all mathematical propositions, that

Fig. 10.1 The Framework for Advanced Mathematical Thinking (FAMT) applied to linear

combination
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the words any or some occur; and these words are the marks of a variable and a formal

implication. (Russell, 1903, pp. 5, 6)

It has been known for well over 35 years now that students have problems

understanding the use of symbolic literals or letters in algebra (Küchemann, 1981;

Wagner, 1981). That these problems in understanding are persistent was shown by

Küchemann’s (1981) investigation into children’s understanding of the use of

letters in algebra, as part of the wide-ranging CSMS study, with four or five years

of algebra teaching making very little difference to their understanding of the

subject. Around 30 years later in a follow-up study (Hodgen, Brown, Küchemann,

& Coe, 2010; Hodgen, Coe, Brown, & Küchemann, 2014) the group concluded that

attainment had not changed very much, and

• Algebra results show fewer students reaching the higher Levels 3 and 4, which is

the point at which students begin to understand the key algebraic concepts of

variable and generalised number (Hodgen et al., 2010, p. 6)

Rosnick and Clement (1980) too showed that even college students had similar

problems, such as confusing the use of letter as variable with the use as a label or

unit. One of the factors causing this situation is the multiplicity of uses of letters in

mathematics, with Wagner (1981) listing placeholder, index, specific unknown,

generalised number, indeterminate, independent or dependent variable, constant

and parameter as possible uses. She also pointed out that this complexity is

increased by the fact that different letters can be used to represent the same thing,

and the same letter can be used to represent different things. It still often seems to be

the case that, as Skemp (1971, p. 227) noted, ‘The idea of a variable is in fact a key
concept in algebra—although many elementary texts do not explain or even

mention it’. This omission of explaining what a variable is still extends to many

classrooms. Hence, expecting students to abstract all the subtle complexities of

symbolic literals simply from procedural use of letters appears to be a step too far.

The difficulties students experience with use of letters clearly impinges on the

way they view symbols such as ‘xþ 3’. Many will not accept this kind of expression

as an answer because they expect a number (Küchemann, 1981). To be able to cope

with such a symbol requires not only that it be given a meaning, but that the

meaning should allow the student the versatility of thought to see it as a procept,

representing both as a process (of evaluation when x is known) and also an object

that can be operated on. Often students who are used to working in the symbolic

actions and symbolic process cells of FAMT see the symbol xþ 3 solely as a

process and not as a mental object; further it is a process they cannot carry out

because they do not know what x is.
In two previous papers we have described (Graham & Thomas, 2000; Tall &

Thomas, 1991) how DT might be used to help students construct a versatile

perspective on the use of letters as generalised number. The basis of the approach

used was to use digital technology to give students a symbolisation enabling an

embodied view of the use of letter. This embodied, enactive perspective comprises

a store with a label and a value that can be changed, as seen in Fig. 10.2, which is
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taken from Tall and Thomas (1991). Here students can engage in embodied actions,

entering numbers into variable stores, predicting outcomes about algebraic objects

and testing these predictions. In a second paper (Graham & Thomas, 2000) we

changed the technology from computers to graphic calculators, which intrinsically

employ variables with a large number of inbuilt stores labelled by the use of capital

letters and where the embodied actions of storing and retrieving numbers from these

lettered stores provides a direct correspondence to letter use in early algebra. The

same basic embodied model was used here, the graphic calculator’s lettered stores

as a model of a variable. Each store is represented by a box in which changing

values of the variable come and go, and next to which sits its label. Figure 10.3

shows a brief early section from the module used.

Both controlled experiments showed that the students using the DT were more

versatile in their thinking than the students following a traditional course. They were

significantly better at interpreting symbols, demonstrated an improved understand-

ing of the use of letters as specific unknown and generalised number and were more

likely to think of expressions as objects, without losing any procedural facility.

Fig. 10.2 The embodied

symbolisation of a variable

in the ‘Maths Machine’

Fig. 10.3 An example of the layout in Graham and Thomas (2000) algebra module
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In terms of semiotics the research shows that by extending the sign or symbol

used to represent a variable, from a single letter to a box plus a letter, students can

be assisted to make improved sense of the object represented. Following from this

approach a Dynamic Algebra programme was developed that enables investigative

activity with expressions and equations based on the same mental model. In

Fig. 10.4 we see an example of how this programme employs embodied actions

such as giving the variable u a value to see the effect on two expressions 6u� 5 and

�5uþ 4, to see when they reach equality. This is an example of an approach to the

hardest type of linear equation at this level.

10.3 Equations

While the ‘¼’ sign is now ubiquitous in mathematics, making sense of the meaning

of the sign appears not to be straightforward for students, and is often context

dependent. For example, many have an operational, process-oriented perspective of

the sign as a signal to perform some action (Crowley, Thomas, & Tall, 1994;

Godfrey & Thomas, 2008; Kieran, 1981; Thomas, 1994). For these students there

is a difference between, say,

2xþ 1 ¼ 5 and 3 ¼ 5xþ 2

dy

dx
¼ 2xþ 5 and 2xþ dy

dx
¼ 3

Fig. 10.4 A screen from the Dynamic Algebra programme
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I have found that even among mathematics graduates and teachers of mathe-

matics we have some discussion in my master’s courses on what constitutes an

equation. For example, when asked whether the following are equations not all

agree.

2xþ 1

3x� 2
¼ 1, f ðxÞ ¼ 2xþ 5, 4 ¼ 4, k ¼ 5, ðx� 1Þðxþ 3Þ ¼ x2 þ 2x� 3

In their research Hansson and Grevholm (2003) found that very few pre-service

teachers considered y¼ xþ 5 to be an equation, instead tending to a numerical

interpretation of y¼ xþ 5. Others I have asked say that it’s an assignment rather

than an equation. Indeed in computer science, and other areas, the sign :¼ is

reserved for such an assignment to a function or variable, possibly removing an

overlap in meaning. We can see that some issues with equations involve whether

the statement has to be true, whether it can include an assignment, does there have

to be ‘something to do’ and can it be always true. The following set of three

examples may help to illustrate some of these issues in the mind of the reader.

x2 þ 3x� 1 ¼ x2 þ 3xþ 1, ðx� 1Þðxþ 3Þ ¼ x2 þ 3x� 3, ðx� 1Þðxþ 3Þ
¼ x2 þ 2x� 3

Addressing this the Collins mathematics dictionary (Borowski & Borwein,

1989) distinguishes between an identical equation (or identity), which is true for

any values of the variables, and a conditional equation, which is only true for

certain values of the variables. This distinction seems to be a useful one and it might

help if more use were made of the symbol for equivalence (in an identical equation,

true for all values of the variables), �, that was more commonly used years ago.

In our study on understanding of equation (Godfrey & Thomas, 2008) we found

that for Year 10 students (age 14–15 years) many appear to be using the criteria that

an equation needs an ¼ sign and an operation to carry out (see examples in

Fig. 10.5). On this basis 65.6% of them rejected k¼ 5 as an equation while

72.4% accepted 7w�w as an equation.

In this same study, for those in Year 13 (17–18 years old), the last year of school,

27.6% still accepted 7w�w as an equation, while 56.6% were unwilling to accept

a¼ 5 and 61.8% did not see a¼ a as an equation. Overall 53.9% of these students

still wanted an equation to have an operation to carry out, and 14.5% of these

Fig. 10.5 Examples of 14-year-old students criteria for an equation
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rejected anything that was an identity or an assignment. In our group of first year

university students studying Engineering Science, which has a very high entry

requirement, 20.6% still emphasised the solution aspect of an equation (e.g. ‘An
equation is a mathematical formula formed by some unknown variables and

numbers. And it is those unknown variables we are trying to find a value/answer

to it’ and ‘Statement given to solve unknown variables in order to equate the right

hand side is equal to the left hand side’). However, 60% now accepted a¼ a as an

equation, although 26.7% did not see aþ b ¼ bþ a as an equation.

Student understanding of the use of equality often appears not to be predicated

on an explicit construction of properties of equations, including the reflexive,

symmetric and transitive nature of the ‘¼’ sign, that will eventually lead to the

idea of equivalence relations. Hence, activities that might allow them to construct

some of these properties could be of value.

In addition what could we say to a student who produces this argument?

4x2 � 5x� 6 ¼ 0

4xþ 3ð Þ x� 2ð Þ ¼ 0

4xþ 3 ¼ 0, x� 2 ¼ 0

4xþ 3 ¼ x� 2 ¼ 0

4xþ 3 ¼ x� 2

3x ¼ �5

x ¼ �5

3

Here the transitive property has been applied to 4xþ 3 ¼ 0, x� 2 ¼ 0 as if it reads

4xþ 3 ¼ 0 and x� 2 ¼ 0. Compare this with a¼ b and b¼ c implies a¼ c.
However, the line actually should read 4xþ 3 ¼ 0 or x� 2 ¼ 0, and this might

give a teacher the chance to discuss the important logical difference between ‘and’
and ‘or’ in mathematical statements. In this way a crucial link between symbolic

algebra and logic using natural language could be made.

What about if we are working through an example where we are trying to find the

intersection of two graphs, whose equations are y1 ¼ xþ 6 and y2 ¼ 3xþ 1? Is it

necessary to explain how we get from line 1 to line 2 or how we have used the

symmetric property that a ¼ b ) b ¼ a to get from line 4 to 5?

y1 ¼ y2

x þ 6 ¼ 3x þ 1

6 ¼ 2x þ 1

5 ¼ 2x

2x ¼ 5

x ¼ 2
1

2
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Or when solving y2 ¼ 0 and then using 3xþ 1 ¼ 0 to do so, would we invoke the

transitive property (y2 ¼ 3xþ 1 and y2 ¼ 0 ) 3x þ 1 ¼ 0)?

Equations of the type ax þ b ¼ cx þ d have been well known to be a cut-off

point for those who will make good progress in the learning of algebra and the

obstacle has been called the didactic cut (Filloy & Rojano, 1984) or cognitive gap

(Herscovics & Linchevski, 1994). It is only at this point in the solving of equations

that one has to operate on the variable. One approach when solving

axþ b ¼ cxþ d, or similar equations such as those involving quadratic functions,

is to assist student understanding of properties of equations, such as what a solution

is and when it is invariant. For example, they might see that there is a difference

between what I have called legitimate and productive transformations of an equa-

tion (see Hong, Thomas, & Kwon, 2000; Thomas, 2008a). A legitimate transfor-

mation of a linear equation adds �k or �kx for all real k to both sides, but a

productive transformation that moves one quickly towards an algebraic solution, is

one of the type �ax, �cx, �b, and �d, taken from the infinite number of legitimate

transformations. It is important to understand that the solution remains invariant

under both types of transformations. It may be that DT could be employed to help

students see some properties of equations by linking the algebraic representation to

the graphical one. Clearly adding �k to both sides of the equation does not change

the solutions because graphically we are translating both graphs parallel to the y-
axis by�k. However, the effect of adding �kx to both sides may not be so obvious.

In Fig. 10.6a, which was constructed using GeoGebra, we can see that adding �kx
to both sides of the equation 2xþ 2 ¼ 5x� 3 appears to rotate the graphs of the

function on either side of the equation about the point of intersection with the y-
axis, although the x-value of the point of intersection, the solution of the equation,

remains invariant.

The angle a straight line y ¼ mxþ cmakes with the x-axis is given by tan θ ¼ m,

where θ is the angle with the x-axis, and adding kx will change it from θ ¼ tan �1

mð Þ to θ ¼ tan �1 mþ kð Þ, which may appear to indicate a rotational effect.

However, while the angle the line makes with the horizontal changes the individual

points do not rotate. Instead, in a move that encourages versatile thinking, we might

utilise another area of mathematics; one that is sometimes less often employed in

school mathematics, although it is essential for university studies in mathematics.

The idea of a transformation of the plane represented in matrix form is very useful

here. Linking mathematical ideas across representations in this way is very impor-

tant (Duval, 2006) and is a way to promote representational versatility (Thomas,

2002, 2008a, 2008b). In essence adding kx to f xð Þ ¼ mxþ c is a shear of the graph
of the function by a factor k parallel to the y-axis. Using matrices and vectors we can

represent this linear transformation as follows:

1 0

k 1

� �
x

f xð Þ
� �

¼ x
f xð Þ þ kx

� �
¼ x

mxþ cþ kx

� �
¼ x

mþ kð Þxþ c

� �

Now, since every point on the straight line (and in the plane), apart from those on

the y-axis, which are all invariant, is moved parallel to the y-axis (giving the
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appearance of a rotation), we can see that this is also true of the point of intersection

of two straight lines. We see this in Fig. 10.6c (we assume k> 0 here), and note that

when x< 0 the points move in the opposite direction, since for k> 0, kx< 0. Thus

the point of intersection ends up with the same x value as before, our invariant

solution to the equation. In terms of the FAMT this process has linked a symbolic

algebra process with an embodied graphical process and a symbolic matrix process.

Further, we have managed to link a pointwise approach to a translation to a global

perspective (Hong & Thomas, 2014; Vandebrouck, 2011).

Fig. 10.6 Legitimate and productive transformations of linear equations
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Having established these basic principles we could now consider what happens

with quadratic equations. Of course, the cases of adding a constant and adding a

multiple kx of x can be analysed in exactly the same way as above, although the

picture, again from GeoGebra, is quite different (see Fig. 10.7a, b). We can see that

the case of adding kx2 to both functions (see Fig. 10.7c) can be viewed in a similar

manner to that of adding kx. The translation is again parallel to the y-axis and for

k> 0, kx2> 0. Once again the point of intersection remains on each graph, the y-
translation is by the same amount and the x-value is unchanged by adding to the

value of the function. Hence, the solution is invariant.

Fig. 10.7 Invariant solution under legitimate transformations of quadratic equations
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10.4 Polynomial Functions

The concept of function, one of the most fundamental ideas in the whole of

mathematics, is often given only cursory attention in school mathematics. Hence,

it is not surprising that research has shown that students’ perspectives on function

differ considerably from those of mathematicians. For example, Williams (1998)

used function concept maps to compare conceptions of students and professors and

found that the students emphasised minor details and the idea that functions are

equations. In contrast none of the professors thought of a function as an equation,

preferring the idea of a correspondence, a mapping, a pairing or a rule. In a study

with trainee mathematics teachers Chinnappan and Thomas (2003) found the

teachers had a strong tendency to think of functions graphically and procedurally,

and often even separated algebra from functions in their thinking. In Fig. 10.8 we

see how a teacher, unable to decide on whether an ordered pair could represent a

function, moves from the ordered pair representation to a graph and then to an

explicit algebraic formula in order to say that this is a function.

The expectation that a function will have an explicit algebraic formula was

prominent in Thomas’ (2003) study. In Fig. 10.9a we see an example of how one

Fig. 10.8 A teacher’s use of a graph and an algebraic formula for a function

Fig. 10.9 Two teachers’ view that functions require an explicit algebraic formula
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teacher responded to the question of whether the given graph could represent a

function by finding the explicit algebraic formula for each straight line section of

the graph in order to be able to respond ‘yes’. The second example in Fig. 10.9b

shows the reverse. A teacher rejects the table of values as representing a

function because the value at x¼ 5 deviates from the formula y ¼ xþ 2ð Þ2 that

all the others fit.

This research suggests that for many teachers the graphical representation of

function can become so dominant in thinking about function that it could hinder a

growth in inter-representational understanding.

In terms of the FAMT framework it would appear that at least some students

have a tendency to move between the embodied and symbolic worlds with respect

to function. An emphasis on symbolic actions and processes may be behind the

desire for an explicit formula and the use of the vertical line test embodied action/

process may encourage a graphical perspective on function. This movement

between embodied actions and symbolic actions is generally to be encouraged

but abstracting the notion of a function from graphical and algebraic expressions

exemplars appears to be difficult (Akkoc & Tall, 2002). As Thompson (1994) has

pointed out, ‘the core concept of ‘function’ is not represented by any of what are

commonly called the multiple representations of function, but instead our making

connections among representational activities produces a subjective sense of invari-

ance’ (p. 39). Student (and teacher) difficulties with abstracting the invariance from
graphs and algebraic formulations implies that the idea of function may be one area

where formal actions could be added to student experiences as a means of testing

given constructs against a definition of function. Of course, simply giving students a

formal definition, such as that in Akkoc and Tall (2002)—see Fig. 10.10—and

expecting them to be able to use it will probably not work. In their study Akkoc and

Tall (2002) found that some students were unable to see and apply the fundamental

(simple) definition of function, instead relying on almost arbitrary aspects of

examples they focussed on. Hence, the simplicity of the core function concept

eluded most of their students.

Instead Akkoc and Tall used a four part colloquial definition to assist students to

focus on essential properties of a function followed by experience of functions in

different representations as set diagrams, ordered pairs, graphs and formulas.

Employing a colloquial definition, such as each and every element of one set (the

Fig. 10.10 A possible formal world definition of function
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domain) is mapped to or related to one and only one element of the second set

(or codomain) and then testing this with formal actions in the four representations

used by Akkoc and Tall along with tables of values may be a way forward.

Although as they found, this is not the complete solution.

These difficulties with thinking about the concept of function are further exem-

plified when students meet the idea of a polynomial. When asked what a polynomial

is (see Chinnappan & Thomas, 2003) some trainee teachers responded:

• An equation which has more than 1 x variable whose power is bigger than 1

• An equation that has a power of x other than 1

• An equation with a power of x greater than one

• When I am talking about functions, I am not talking about polynomials and vice

versa, I find it very difficult to um.. interchange the words

• If somebody said ‘is that straight line relation a polynomial?’, my gut reaction

would be to say no. Just because a polynomial, poly being many.

So we can see an apparently common misconception here that linear functions,

and by extension constant functions, are not polynomials and that the set of poly-

nomials is not a subset of functions. Polynomials are perceived as beginning with

the quadratic function, since that is probably where the term was first met. This

view is reinforced by the natural language prefix ‘poly’, seen in other places in

mathematics, such as polygon (where the number of sides has to be three or more).

Confirming this are the kinds of responses received to the question of whether 3� x
is a polynomial.

• No, linear

• No—The powers of x is low
• Yes—Not sure! Maybe it’s not!
• Yes—because for each value of x, there is 1 corresponding y value

Once again, the idea of a polynomial (function) may be an area where it would

be beneficial to add formal actions based on a definition to student experiences so

that carefully chosen examples and non-examples of polynomials could be used to

build the construct. For example, one could define a real polynomial of degree n as

an expression of the form p xð Þ ¼ anx
n þ an�1x

n�1 þ � � � þ a2x
2 þ a1xþ a0 where

x is a real variable, n is a non-negative integer and each ai is a real number (later we

may define polynomials, for example, over the complex numbers) with an 6¼ 0. We

can then use a formal action of testing against a definition to determine whether we

have a polynomial or not, such as: Is xþ 1 a polynomial? Is x5/2 a polynomial? Is 0 a

polynomial?

When it comes to a consideration of the properties of some low order poly-

nomials it would appear that, for cubic functions, a number of interesting areas for

study have been often overlooked and would repay attention. I suggest one or two of

these below that are accessible with DT.
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10.5 Investigating Cubic Functions

One of the reasons for deciding what polynomial properties are studied in school

algebra may be whether the properties are considered to be accessible to students

through procedural calculations. However, with the advent of DT we can now

investigate properties that may have previously been in the domain of ‘higher’
mathematics.

10.5.1 Symmetry

To simplify matters we will limit our discussion to monic cubic functions of

the form x3 þ ax2þbxþc with little loss of generality since

ax3 þ bx2 þ cxþd ¼ a x3 þ b
ax

2 þ c
axþ d

a

� �
when a 6¼ 0. For the function x3 þ ax2

þbxþ c we note without proof here that the transformation f x� a
3
Þ�
always

removes the x2 term (Why this works is an important question and CAS DT will

confirm this). For example, if we have a function f with f xð Þ ¼ x3 � 3x2 þ x� 5,

then f x� �3
3

� � ¼ f ðxþ 1Þ ¼ ðxþ 1Þ3 � 3ðxþ 1Þ2 þ ðxþ 1Þ � 5, which reduces to

x3 � 2x� 6. You might want to reach for your DT device to verify the above!

While this is an interesting property in its own right, it leads to two other interesting

ideas. Firstly, if we draw the graph of the two functions, f xð Þ ¼ x3 � 3x2 þ x� 5 and

g xð Þ ¼ x3 � 2x� 6, what do we find? Look at Fig. 10.11.

Fig. 10.11 An example of

the graphical transformation

of the cubic function for

f x� a

3

� �
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Since f
0
xð Þ ¼ 3x2 � 6xþ 11 and f

00
xð Þ ¼ 6x� 6 ¼ 6 x� 1ð Þ the cubic has a point

of inflection at x¼ 1 and since f xþ 1ð Þ represents a translation of –1 parallel to the
x-axis the point of inflection (1, –6) is mapped to (0, –6), on the y-axis. In general

the point of inflection for the function j, where j xð Þ ¼ x3 þ axþ b, will be mapped

to (0, b). Looking at this transformation in general we note that for

p xð Þ ¼ x3 þ ax2 þ bxþ c, p
00
xð Þ ¼ 2 3xþ að Þ, giving a point of inflection at

x ¼ �a
3
. Hence, all cubic graphs have a point of inflection and the translation

p x� a
3
Þ�
moves the point of inflection to the y-axis. Of course, if a¼ 0 there is

no x2 term and the point of inflection is already on the axis.

Turning back to the function f we can move the point of inflection to the origin

by adding 6 to g xð Þ ¼ x3 � 2x� 6, giving the function h, where h xð Þ ¼ x3 � 2x.
Clearly h is an odd function (since h �xð Þ ¼ �h xð Þ for all x) and hence h has

180� rotational symmetry about the origin. The point is that this whole process

generalises, so that translating j xð Þ ¼ x3 þ axþ b by a
3
parallel to the x-axis and then

by p �a
3

� � ¼ 2a3 � 9abþ 27c

27
parallel to the y-axis the graph’s point of inflection

will be moved to the origin. Hence, we always end up with the odd function

x3 � a2 � 3bð Þ
3

x, showing that all cubic polynomials have rotational symmetry of

180� about the point of inflection �a

3
,
2a3 � 9abþ 27c

27

� �
. Finding this general

property can be made accessible to some students with the assistance of DT, as seen

in Fig. 10.12, which was produced using TI-Nspire software.

Fig. 10.12 Using TI-Nspire software to show cubic symmetry

1 In this chapter we make some use of calculus differentiation techniques. While calculus is usually

not studied in school in the USA, many countries do include it in the curriculum from age 16 or 17.

Since the primary aim of school algebra is to lead to calculus some minimal use seems reasonable.
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10.5.2 Solving Equations

Interestingly the first step above, removing the term in x2, was also the first step in

the Tartaglia-Cardano method for solving cubic equations. If we then consider

solutions to equations of the form x3 þ axþ b ¼ 0, using Vieta’s substitution,

x ¼ z� a
3z enables us to solve the equation. For ease of calculation, although this

is not crucial with DT, consider the equation x3 þ 9xþ 8 ¼ 0, where a is divisible

by 3. We make the substitution x ¼ z� 3
z and this gives rise to a ‘disguised’

quadratic that can easily be solved for z and hence x is found using x ¼ z� 3
z.

Once again we show this process in Fig. 10.13, using TI-Nspire software. There are

some things to note here. In Fig. 10.14 we move representations and draw the graph

of the function f where f xð Þ ¼ x3 þ 9xþ 8, noting that the point of inflection

appears on the y-axis as expected. This enables us to ask whether there is only

one real root to the equation. We are trying to avoid calculus in this discussion

where possible, since it lies beyond the remit of school algebra in the USA

(see footnote 1), but note that since f
0
xð Þ ¼ 3x2 þ 9 > 0 for all x the function is

strictly (or monotone) increasing and so there is only one zero and hence only one

real root of our equation. Other possible questions worth considering are whether

this method always works (and if not when does it fail) and how we might find the

complex roots.

Fig. 10.13 Using TI-Nspire software to find exact solutions of cubic equations
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10.5.3 Touching Graphs

Another task involving polynomials that could be given to students is:

Can we find quadratic functions whose graphs touch at a given point ( p, q) with
gradient k? How many possible graphs are there? Is there a general solution to

the problem?

This task involves polynomials of degree 2 and links algebraic and graphical

representations. While students can relatively easily find simple solutions, such as

the graphs of polynomials x2 and�x2 thatmeet at (0, 0)with gradient 0, it is not so easy

to solve more general cases by trial and error. However, once again this task is more

approachable with DT. If we take a general quadratic function f xð Þ ¼ ax2 þ bxþ c
then we require the graph to pass through (p, q) and the gradient of the graph of the

function at that point to be k. These two conditions can be written:

f pð Þ ¼ ap2 þ bpþ c ¼ q and f
0
pð Þ ¼ 2apþ b ¼ k

In Fig. 10.15 we see the TI-Nspire software again employed to solve these

equations simultaneously. The solution here is given in terms of a parameter c and,
of course, p, q and k.

Choosing values for the point ( p, q) and the gradient k gives a and b in terms of c,
and we note that cþ kp� q 6¼ 0 (since then we don’t have a quadratic function) and
p 6¼ 0. Figure 10.16 shows some of the possible solutions for the point (2, 3) and

gradient 3 drawn using TI-Nspire. It is good practice to check these solutions, of

course. For example, withp ¼ 2, q ¼ 3, k ¼ 1 if we choose c¼ –2 then our function

Fig. 10.14 Using TI-Nspire software to graph a solution to a cubic equation
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is given by f xð Þ ¼ 1
4
x2 þ 2x� 2, which passes through (2, 3) and the gradient there is

1
2
2ð Þ þ 2 ¼ 3, as required.

A further question for investigation that arises is: does the latter condition p 6¼ 0

for the general solution mean that it is not possible to find graphs that meet on the y-
axis with the same gradient? Well we have already seen that x2 and �x2 meet at

(0, 0) with gradient 0, and in general so does kx2, k 6¼ 0, k real. But what about

other points not at the origin and whose gradient at x¼ 0 is not zero? Well it

certainly appears to be possible to find some, as Fig. 10.17 shows, but students will

have to engage with how we might find these solutions. It is hoped that ways to

structure interesting tasks for students that promote understanding of properties of

polynomials will become apparent.

Fig. 10.15 Using the TI-Nspire software to find a general solution

Fig. 10.16 Using the TI-Nspire software to show graphs of possible solution functions

192 M. Thomas



Since generalising is always a key aim in mathematics, a possible next step is to

try to extend these ideas further. One question we might ask is: Can we do the same

for cubic polynomial functions? Using the DT again, as Fig. 10.18 shows, two

parameters, c and d, are needed, where cþ kð Þpþ 2 d � qð Þ 6¼ 0 (since then we

don’t have a cubic) and p 6¼ 0, and Fig. 10.19 shows examples of the graphs of some

polynomials of degree three meeting at the point (1, 2) with gradient –1 (cþ 2d
�5 6¼ 0 here).

Fig. 10.17 Graphs of possible solution functions with p¼ 0

Fig. 10.18 Using the TI-Nspire software to find the general solution for cubic polynomials
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10.5.4 Tangents to Cubic Polynomials

If we consider a cubic polynomial with three distinct real zeros then they have an

interesting property related to their tangents that could be investigated (see de

Alwis, 2012). We will consider a particular case first. The graph of the cubic

function f where f xð Þ ¼ xþ 1ð Þ x� 1ð Þ x� 3ð Þ is shown in Fig. 10.20, which is

drawn using GeoGebra. It is reasonably clear that the graph meets the x-axis at the
three points (–1, 0), (1, 0) and (3, 0). Let’s take the point on the curve where

x ¼ 1þ3
2

¼ 2, the mean of the x values of the last two points of intersection, and find

the equation of the tangent to the graph there. We have f 2ð Þ ¼ 3ð Þ 1ð Þ �1ð Þ ¼ �3

and since

f xð Þ ¼ xþ 1ð Þ x� 1ð Þ x� 3ð Þ ¼ x2 � 1ð Þ x� 3ð Þ ¼ x3 � 3x2 � xþ 3

f
0
xð Þ ¼ 3x2 � 6x� 1

and f
0
2ð Þ ¼ �1. So the equation of the tangent isyþ 3 ¼�1 x� 2ð Þoryþ xþ 1 ¼ 0

and when y¼ 0 for this tangent x¼ –1. So the tangent at the mean value of two points

of intersection passes through the third point of intersection. Figure 10.20 also shows

the tangent at the point where x ¼ �1þ1
2

¼ 0 passing through the point (3, 0).

Of course, the tangent at the point where x ¼ �1þ3
2

¼ 1 passes through the point

(1, 0) here since it’s a special case where the zeros are equally spaced. So the

question is does this result generalise? Is it always true for cubics? One way to

investigate it using GeoGebra is to use sliders for the function coefficients.

Fig. 10.19 Using the TI-Nspire software to show graphs of possible solution functions
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Algebraically, consider the monic polynomial function f where

f xð Þ ¼ x� að Þ x� bð Þ x� cð Þ, and without loss of generality consider the tangent

at the point M where x ¼ aþb
2
. This could be done by hand but once again the

symbolic process can be left to the DT, in this with case TI-Nspire as shown in

Fig. 10.21. The function df is the derivative of f and we note that the DT does not

Fig. 10.21 Using TI-Nspire to demonstrate the generality of the tangent property of the cubic

function f xð Þ ¼ x� að Þ x� bð Þ x� cð Þ

Fig. 10.20 The graph

of the cubic function

f xð Þ ¼ xþ 1ð Þ x� 1ð Þ x� 3ð Þ
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automatically factorise the result, although this is not crucial in this example. Using

df we can find the gradient of the tangent at the point where x ¼ aþb
2

and hence the

equation of the tangent using the well-known equation y� y1 ¼ m x� x1ð Þ, where
m is the gradient and (x1, y1) a point on the line (nb y ¼ y1 þ m x� x1ð Þ is used here).
Then solving for where the tangent is zero gives x¼ c or, interestingly, a2 � 2ab

þb2 ¼ 0but then ða� bÞ2 ¼ 0, a ¼ b, which would contradict our requirement that

f have three distinct real zeros. So the tangent atx ¼ aþb
2
does indeed pass through the

point (c, 0).
Once more the DT has allowed us to make some crucial links, this time between

embodied actions and processes involving graphs and tangents and symbolic

processes in order to find a solution for the task. Often we make the link by

encouraging embodied views of symbolic expressions, so it is good to have an

example that links the representations in the other direction.

10.6 Polynomials in Two Variables

Students at school often consider Pythagoras’ theorem and its solutions, and while

the theorem does not generalise to higher powers, as Fermat’s last theorem states,

solutions to other Diophantine equations are in reach if we use DT. One of these that

can be approached, that I have described elsewhere (see Heid, Thomas, & Zbiek,

2013), is x2þ y2¼ z3, a special case of the general equation xnþ yn¼ znþ1, whose

solutions have been outlined by, for example, Hoehn (1989). As I previously

suggested, in a structured task students could be encouraged to use a DT spread-

sheet listing values of n2 and n3 to try to find two of the squares that add up to a cube
(for example, x¼ 2, y¼ 2 and z¼ 2 may be seen immediately). In this way x¼ 5,

y¼ 10 and z¼ 5 might also be found. Hence, there are solutions. Further, if we

substitute x¼ ka and y¼ kb in the equation x2þ y2¼ z3 we obtain k2 a2 þ b2
� � ¼ z3

and although this substitution is not obvious this last equation gives a big leap

forward to finding solutions, since setting k ¼ a2 þ b2 will produce a solution

z ¼ k ¼ a2 þ b2. As an example, if we let a ¼ 2, b ¼ 3 then k¼ 13 and x¼ 26,

y¼ 39 and z ¼ a2 þ b2 ¼ 262 þ 392 ¼ 2197 ¼ 133. In Fig. 10.22 we can see how

the DT might be used to investigate the problem by introducing a function of two

variables (we can also see this as a polynomial in two variables), an idea that will be

very important later in mathematics. Hence, this constitutes an example of math-

ematics at the horizon in the mathematical knowledge for teaching framework

(Ball, Hill, & Bass, 2005; Hill & Ball, 2004).

Extending the same method to a general equation xnþ yn¼ znþ1 could be too

difficult for most school students, but the method above does generalise and this can

be seen using DT, as in Fig. 10.23. Interestingly, as shown, the factorisation of

a an þ bnð Þð Þn þ b an þ bnð Þð Þn seems beyond this DT program, but those students

who have been taught to ‘see’ algebraic factors may be able to work as follows:
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a an þ bnð Þð Þn þ b an þ bnð Þð Þn ¼ an an þ bnð Þn þ bn an þ bnð Þn
¼ an þ bnð Þn an þ bnf g ¼ an þ bnð Þnþ1

and hence this leads to a solution with x ¼ a an þ bnð Þ, y ¼ b an þ bnð Þ and

z ¼ an þ bn.

10.7 Concluding Remarks

In a standard algebra curriculum students are involved in a great deal of what we

have called manipulation algebra (Thomas & Tall, 2001). The outcome of this

practice is that students may learn a lot about manipulating symbolic literals but far

less about the nature of the objects they represent, such as polynomial functions,

and their properties. Stressing the value of enactive and iconic thinking (Bruner,

1966) through visualisation encourages students to engage in the inter-

representational conversions (Duval, 2006) that are a crucial constituent of building

versatile thinking. Central to that inter-representational thinking is the DT, which, if

it is used thoughtfully, can take on the role of epistemic mediator in order to help

Fig. 10.23 Using DT to find solutions to xnþ yn¼ znþ1

Fig. 10.22 Linking representations to find solutions to x2þ y2¼ z3
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students to abstract properties of objects and the structure related to them and even

to generalise to other sets of objects.

It has to be acknowledged first that some of the examples looked at above are at

the top end of the difficulty scale for students in secondary school or college.

Further, as I have noted elsewhere (Thomas & Palmer, 2013), while DT can provide

many opportunities there are also a number of obstacles to be overcome in order to

make good use of it. A major issue surrounds the role of the teacher in using DT in

the manner described here. Some of the factors involved are extrinsic to the teacher,

such as provision of suitable hardware. However, considering intrinsic teacher

factors influencing use of DT led me (Hong & Thomas, 2006; Thomas & Hong,

2005) to propose an emerging framework for pedagogical technology knowledge
(PTK) as a construct that could be an indicator of teacher progress in implementa-

tion of technology use. A teacher’s PTK incorporates the principles, conventions,

and techniques required to teach mathematics through DT. While the teacher has to

be a proficient user of the technology she must also understand what is required to

build tasks and situations that incorporate it, in order to enable mathematical

learning through the technology. The essential teacher factors that combine to

produce PTK include: instrumental genesis; mathematical knowledge for teaching;

orientations and goals (Schoenfeld, 2011), especially beliefs about the value of

technology and the nature of learning mathematical knowledge; and other affective

aspects, such as confidence in teaching with DT.

In spite of these reservations I suggest that a rethink of the algebra curriculum

and the dominance of the symbol manipulation approach usually employed might

pay dividends in terms of stimulating versatile thinking by students and hence

improve understanding of algebra.
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