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Abstract We prove that the Lie algebra of the image of the Galois representation
associated with a finite slope family of modular forms contains a congruence sub-
algebra of a certain level. We interpret this level in terms of congruences with CM
forms.
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1 Introduction

Let f be a non-CM cuspidal eigenform and let £ be a prime integer. By the work of
Ribet [15, 17] and Momose [13], it is known that the ¢-adic Galois representation
Py, associated with f has large image for every £ and that for almost every £ it
satisfies

(congg) Im p ¢ contains the conjugate of a principal congruence subgroup I"(£™)
of SL2 (Zg)

For instance if Im p,, contains an element with eigenvalues in Z," distinct modulo
£ then (congy) holds.
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In [9], Hida proved an analogous statement for p-adic families of non-CM ordinary
cuspidal eigenforms, where p is any odd prime integer. We fix once and for all an
embedding Q — @p, identifying Gal(@p /Q,) with a decomposition subgroup G,
of Gal(@/@). We also choose a topological generator u of Z;. Let A =Z,[[T]]
be the Iwasawa algebra and let m = (p, T') be its maximal ideal. A special case of
Hida’s first main theorem ([9, Theorem IJ]) is the following.

Theorem 1.1 Let f be a non-CM Hida family of ordinary cuspidal eigenforms
defined over a finite extension I of A and let pg: Gal(@/@) — GL,(I) be the asso-
ciated Galois representation. Assume that pg is residually irreducible and that there
exists an element d in its image with eigenvalues o, B € Z; such that o # B2
(mod p). Then there exists a nonzero ideal | C A and an element g € GL,(I) such
that

gr(g™!  Impy,

where T () denotes the principal congruence subgroup of SL,(A) of level 1.

Under mild technical assumptions it is also shown in [9, Theorem II] that if the
image of the residual representation of p¢ contains a conjugate of SL,(FF,) then [is
trivial or m-primary, and if the residual representation is dihedral “of CM type” the
height one prime factors P of [ are exactly those of the g.c.d. of the adjoint p-adic
L function of f and the anticyclotomic specializations of Katz’s p-adic L functions
associated with certain Hecke characters of an imaginary quadratic field. This set of
primes is precisely the set of congruence primes between the given non-CM family
and the CM families.

In her Ph.D. dissertation (see [12]), J. Lang improved on Hida’s Theorem I. Let
T be Hida’s big ordinary cuspidal Hecke algebra; it is finite and flat over A. Let
Spec I be an irreducible component of T. It corresponds to a surjective A-algebra
homomorphism 6: T — I (a A-adic Hecke eigensystem). We also call # a Hida
family. Assume that it is not residually Eisenstein. It gives rise to a residually irre-
ducible continuous Galois representation pg: Gg — GL,(I) that is p-ordinary. We
suppose for simplicity that I is normal. Consider the A-algebra automorphisms o
of T for which there exists a finite order character n, : Gg — I™ such that for every
prime £ not dividing the level, o - 8(Ty) = n,(£)6(T;) (see [12, 17]). These auto-
morphisms form a finite abelian 2-group I'. Let Iy be the subring of I fixed by I.
Let Hy = (), r ker n,; itis a normal open subgroup of Gg. One may assume, up to
conjugation by an element of GL,(Il), that py |y, takes values in GL,(Ily).

Theorem 1.2 [12, Theorem 2.4] Let 6 : T — 1 be a non-CM Hida family such that
Py is absolutely irreducible. Assume that py|n, is an extension of two distinct char-
acters. Then there exists a nonzero ideal | C Iy and an element g € GL,(I) such
that

gT(Dg™" C Im py,

where I () denotes the principal congruence subgroup of SL,(Iy) of level 1.
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For all of these results it is important to assume the ordinarity of the family, as it
implies the ordinarity of the Galois representation and in particular that some element
of the image of inertia at p is conjugate to the matrix

-1
CTZ(M (10+T)41<)_

Conjugation by the element above defines a A-module structure on the Lie algebra
of a pro-p subgroup of Im py and this is used to produce the desired ideal . Hida
and Lang use Pink’s theory of Lie algebras of pro-p subgroups of SL;(I).

In this paper we propose a generalization of Hida’s work to the finite slope case.
We establish analogues of Hida’s Theorems I and II. These are Theorems 6.2, 7.1 and
7.4 in the text. Moreover, we put ourselves in the more general setting considered
in Lang’s work. In the positive slope case the existence of a normalizing matrix
analogous to C7 above is obtained by applying relative Sen theory ([19, 21]) to the
expense of extending scalars to the completion C, of an algebraic closure of Q,.

More precisely, forevery i € (0, 00), we define an Iwasawa algebra A, = O, [[¢]]
(where t = p~* T for some s;, € Qﬂ]ﬁ, oo[ and O, is a finite extension of Z,
containing p* such that its fraction field is Galois over Q,) and a finite torsion
free Aj-algebra T}, (see Sect.3.1), called an adapted slope < h Hecke algebra. Let
0: Tj, — I° be an irreducible component; it is finite and torsion-free over Aj. The
notation I° is borrowed from the theory of Tate algebras, but I° is not a Tate or an
affinoid algebra. We write I = I°[ p~!]. We assume for simplicity that I° is normal.
The finite slope family 6 gives rise to a continuous Galois representation py: Gg —
GL, (I°). We assume that the residual representation py is absolutely irreducible. We
introduce the finite abelian 2-group I as above, together with its fixed ring I and the
open normal subgroup Hy C Ggq. In Sect. 5.1 we define a ring B, (with an inclusion
Ip — B,)and a Lie algebra ), C sl,(B,) attached to the image of py. In the positive
slope case CM families do not exist (see Sect. 3.3) hence no “non-CM” assumption
is needed in the following. As before we can assume, after conjugation by an element
of GL,(I°), that pg (Hy) C GLy(I). Let Py C Ay, be the prime ' +T)—1).

Theorem 1.3 (Theorem 6.2) Let 6: T, — I° be a positive slope family such that
ol H, is absolutely irreducible. Assume that there exists d € py(Ho) with eigenvalues
o, B € L such thata?® # B% (mod p). Then there exists anonzero ideal | C ]Io[Pfl]
such that

[- 5[Z(Br) C ﬁr-

The largest such ideal [ is called the Galois level of 6.

We also introduce the notion of fortuitous CM congruence ideal for 6 (see
Sect.3.4). It is the ideal ¢ C I given by the product of the primary ideals modulo
which a congruence between 8 and a slope < 2 CM form occurs. Following the
proof of Hida’s Theorem II we are able to show (Theorem 7.1) that the set of primes
of Iy = I3[ p~'] containing [ coincides with the set of primes containing ¢ N Iy, except
possibly for the primes of [ above P; (the weight 1 primes).
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Several generalizations of the present work are currently being studied by one
of the authors.! They include a generalization of [10], where the authors treated the
ordinary case for GSp, with aresidual representation induced from the one associated
with a Hilbert modular form, to the finite slope case and to bigger groups and more
types of residual representations.

Acknowledgements. This paper owes much to Hida’s recent paper [9]. We also
thank Jaclyn Lang for making her dissertation [12] available to us and for some
very useful remarks pertaining to Sect. 4. We thank the referee of this article for the
careful reading of the manuscript and for useful suggestions which hopefully led to
improvements.

2 The Eigencurve

2.1 The Weight Space

Fix a prime integer p > 2. We call weight space the rigid analytic space over Q,,
W, canonically associated with the formal scheme over Z,, Spf(Z ,,[[Z;]]). The
Cp-points of ‘W parametrize continuous homomorphisms Z; — C/.

Let X be arigid analytic space defined over some finite extension L/Q,. We say
that a subset S of X(C,) is Zariski-dense if the only closed analytic subvariety Y of
X satisfying § C Y(C,,) is X itself.

For every r > 0, we denote by B(0, r), respectively B(0, r~), the closed, respec-
tively open, disc in C, of centre 0 and radius ». The space W is isomorphic to a
disjoint union of p — 1 copies of the open unit disc B(0, 17) centre in 0 and indexed
by the group Z/(p — 1)Z = i ,—;. If u denotes a topological generator of 1 + pZ,,
then an isomorphism is given by

Z/(p—DZxB0,17) > W, ({,v)— Xio»

where x; ,((Z, u*)) = ¢'(1 + v)*. Here we wrote an element of Z uniquely as a pair
(¢,u*) with¢ € p,_; and x € Z,. We make once and for all the choice u = 1 + p.

We say that a point x € W(C,) is classical if there exists k € N and a finite order
character ¢ : Z; — (C; such that y is the character z — zX/ (z). The set of classical
points is Zariski-dense in W(C,).

If Spm R C ‘W is an affinoid open subset, we denote by k = kg : Z, — R* its
tautological character given by «(¢)(x) = x (¢) for every x € Spm R. Recall ([3,
Proposition 8.3]) that «y is r-analytic for every sufficiently small radius r > 0 (by
which we mean that it extends to a rigid analytic function on Z; B, r)).

'A. Conti.
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2.2 Adapted Pairs and the Eigencurve

Let N be a positive integer prime to p. We recall the definition of the spectral
curve ZV and of the cuspidal eigencurve CV of tame level I'; (NV). These objects
were constructed in [6] for p > 2 and N = 1 and in [3] in general. We follow the
presentation of [3, Part IT]. Let Spm R C ‘W be an affinoid domain and let r = p~*
for s € Q be aradius smaller than the radius of analyticity of kg. We denote by Mg ,
the R-module of r-overconvergent modular forms of weight k. It is endowed it with
a continuous action of the Hecke operators Ty, £ 1 Np, and U »- The action of U, on
My, is completely continuous, so we can consider its associated Fredholm series
Fr,(T) =det(l1 —U,T|Mg,) € R{{T}}. These series are compatible when R and
r vary, in the sense that there exists ' € A{{T}} that restricts to F ,(T) for every
R andr.

The series Fg,,(T) converges everywhere on the R-affine line Spm R x A3,
so it defines a rigid curve Z} , = {F,(T) = 0} in Spm R x A"*". When R and r
vary, these curves glue into a rigid space Z" endowed with a quasi-finite and flat
morphism wz: Z¥ — “W.The curve Z" is called the spectral curve associated with
the U ,-operator. For every & > 0, let us consider

Zy<" = Z 0 (Som R x BO. ).

By [3, Lemma 4.1] Zg’gh is quasi-finite and flat over Spm R.
We now recall how to construct an admissible covering of ZV.

Definition 2.1 We denote by C the set of affinoid domains ¥ C Z such that:

e there exists an affinoid domain Spm R C ‘W such that Y is a union of connected
components of w}l (Spm R);
e the map wz|y: ¥ — Spm R is finite.

Proposition 2.2 [3, Theorem 4.6] The covering C is admissible.

Note in particular that an element ¥ € C must be contained in zﬁ*gh for some h.

For every R and r as above and every Y € C such that wz(Y) = Spm R, we can
associate with Y a direct factor My of My , by the construction in [3, Sect. 1.5]. The
abstract Hecke algebra H = Z[T;] etnp acts on Mg, and My is stable with respect
to this action. Let Ty be the R-algebra generated by the image of H in Endg(My)
and let C}) = Spm Ty. Note that it is reduced as all Hecke operators are self-adjoint
for a certain pairing and mutually commute.

For every Y the finite covering C {/V — Spm R factors through ¥ — Spm R. The
eigencurve CV is defined by gluing the affinoids Cy into a rigid curve, endowed
with a finite morphism CV — ZV. The curve C" is reduced and flat over ‘W since
it is so locally.

We borrow the following terminology from Bellaiche.
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Definition 2.3 [1, Definition II.1.8] Let Spm R C ‘W be an affinoid open subset
and & > 0 be a rational number. The couple (R, h) is called adapted if ZZ’@ is an
element of C.

By [1, Corollary II.1.13] the sets of the form Z,];]’gh are sufficient to admissibly cover
the spectral curve.

Now we fix a finite slope 4. We want to work with families of slope < & which
are finite over a wide open subset of the weight space. In order to do this it will be
useful to know which pairs (R, &) in a connected component of ‘W are adapted. If
Spm R’ C Spm R are affinoid subdomains of ‘W and (R, h) is adapted then (R’, k)
is also adapted by [1, Proposition II.1.10]. By [3, Lemma 4.3], the affinoid Spm R is
adapted to /4 if and only if the weight map Zg’gh — Spm R has fibres of constant
degree.

Remark 2.4 Given a slope & and a classical weight k, it would be interesting to have
a lower bound for the radius of a disc of centre k adapted to /4. A result of Wan ([24,
Theorem 2.5]) asserts that for a certain radius r, depending only on A4, N and p,
the degree of the fibres of Zg(,fff y = Spm B(k, r;) at classical weights is constant.
Unfortunately we do not know whether the degree is constant at all weights of
B(k, ry), so this is not sufficient to answer our question. Estimates for the radii of
adapted discs exist in the case of eigenvarieties for groups different than GL,; see
for example the results of Chenevier on definite unitary groups ([4, Sect. 5]).

2.3 Pseudo-characters and Galois Representations

Let K be a finite extension of Q, with valuation ring Ok . Let X be a rigid analytic
variety defined over K. We denote by O(X) the ring of global analytic functions on
X equipped with the coarsest locally convex topology making the restriction map
O(X) — O(U) continuous for every affinoid U C X.Itis aFréchet space isomorphic
to the inverse limit over all affinoid domains U of the K-Banach spaces O(U). We
denote by O(X)° the Ok -algebra of functions bounded by 1 on X, equipped with the
topology induced by that on O(X). The question of the compactness of this ring is
related to the following property of X.

Definition 2.5 [2, Definition 7.2.10] We say that a rigid analytic variety X defined
over K is nested if there is an admissible covering X = J X; by open affinoids X;
defined over K such that the maps O(X;,;) — O(X;) induced by the inclusions are
compact.

We equip the ring O(X)° with the topology induced by thaton O(X) = l(ir_niO(X,- ).

Lemma 2.6 [2, Lemma 7.2.11(ii)] If X is reduced and nested, then O(X)° is a
compact (hence profinite) Ok -algebra.

We will be able to apply Lemma 2.6 to the eigenvariety thanks to the following.
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Proposition 2.7 [2, Corollary 7.2.12] The eigenvariety CV is nested for K = Q.

Given a reduced nested subvariety X of C" defined over a finite extension K
of Q, there is a pseudo-character on X obtained by interpolating the classical
ones. Let Q» be the maixmal extension of QQ uniamified outside N » and let G,

N, = Gal(Q"r Q).

Proposition 2.8 [1, Theorem IV.4.1] There exists a unique pseudo-character
7: Gonp = O(X)°

of dimension 2 such that for every £ prime to Np, t(Frob,) = ¥x (Ty), where Vrx is
the composition of ¥ : H — O(CN)° with the restriction map O(CV)° — O(X)°.

Remark 2.9 One can take as an example of X a union of irreducible components of
C" in which case K = Q,. Later we will consider other examples where K # Q.

3 The Fortuitous Congruence Ideal

In this section we will define families with slope bounded by a finite constant and
coefficients in a suitable profinite ring. We will show that any such family admits at
most a finite number of classical specializations which are CM modular forms. Later
we will define what it means for a point (not necessarily classical) to be CM and we
will associate with a family a congruence ideal describing its CM points. Contrary to
the ordinary case, the non-ordinary CM points do not come in families so the points
detected by the congruence ideal do not correspond to a crossing between a CM and
anon-CM family. For this reason we call our ideal the “fortuitous congruence ideal”.

3.1 The Adapted Slope < h Hecke Algebra

Throughout this section we fix a slope & > 0. Let CY'S" be the subvariety of CV
whose points have slope < /. Unlike the ordinary case treated in [9] the weight map
wSs": CNSh — W is not finite which means that a family of slope < / is not in
general defined by a finite map over the entire weight space. The best we can do
in the finite slope situation is to place ourselves over the largest possible wide open
subdomain U of ‘W such that the restricted weight map w<" |y : CNVS xqp U — U
is finite. This is a domain “adapted to 4 in the sense of Definition 2.3 where only
affinoid domains were considered. The finiteness property will be necessary in order
to apply going-up and going-down theorems.

Let us fix a rational number s;, such that for , = p~ the closed disc B(0, ;)
is adapted for h. We assume that s, > ﬁ (this will be needed later to assure the

convergence of the exponential map). Let i, € Q » be an element of p-adic valuation
sp. Let K, be the Galois closure (in C,) of Q,(n,) and let O, be its valuation
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ring. Recall that T is the variable on the open disc of radius 1. Let t = n;, ' T and
Ay, = Op[[t]]. This is the ring of analytic functions, with Oy,-coefficients and bounded
by one, on the wide open disc B), of radius p~*. There is a natural map A — Ay
corresponding to the restriction of analytic functions on the open disc of radius 1,
with Z, coefficients and bounded by 1, to the open disc of radius r;. The image of
this map is the ring Z,[[nt]] C Ox[[¢]].

Fori > 1,lets; = s, + 1/i and B; = B(0, p~*). The open disc By, is the increas-
ing union of the affinoid discs B;. For each i a model for B; over K}, is given by Berth-
elot’s construction of By, as the rigid space associated with the O,-formal scheme
Spf Aj,. We recall it briefly following [7, Sect. 7]. Let

A} =O(t, Xi)/(pXi — 1.

We have 8; = Spm A? [ p~'1 as rigid space over K. For every i we have a mor-
phism A7~ — A7 given by

Xi+1 — Xt
t—1

We have induced compact morphisms A [p~'] — Ay [p~'], hence openimmer-
sions B; — B, defined over K. The wide open disc B, is defined as the inductive
limit of the affinoids B; with these transition maps. We have A, = l(igliAfi.

Since the s; are strictly bigger than s, for each i, 8(0, p™) = Spm A}, [p~"is
adapted to h. Therefore for every r > 0 sufficiently small and for every i > 1 the
image of the abstract Hecke algebra acting on M, , provides a finite affinoid A7 -

<h . <h e .
algebra T . . The morphism wy. »: SpmT,. = — Spm A? is finite. Fori < j we
' . . <h . <h . .
have natural open immersions Spm T}, . — Spm T, . and corresponding restric-
A,j Nd Ayi,r

<h .
55 St

. <h <h . . .
tion maps ’IFA?i’r — T . We call C, the increasing union Uienr~0 Spm TAS,J’

is a wide open subvariety of CV. We denote by T}, the ring of rigid analytic functions

bounded by 1 on Cj,. We have T, = O(C,)° = 1(i£1i ).Tf"},',r' There is a natural weight
map wy: C, — By, that restricts to the maps wae . It is finite because the closed
ball of radius 7, is adapted to A.

3.2 The Galois Representation Associated with a Family
of Finite Slope

Since O(B,)° = Ay, the map wj, gives T, the structure of a finite Aj-algebra; in
particular T, is profinite.

Let m be a maximal ideal of T;. The residue field k = T} /m is finite. Let T,
denote the localization of T, at m. Since A, is henselian, T, is a direct factor of
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T}, hence it is finite over Aj; it is also local noetherian and profinite. It is the ring of
functions bounded by 1 on a connected component of Cj,. Let W = W (k) be the ring
of Witt vectors of k. By the universal property of W, T, is a W-algebra. The affinoid
domain Spm T\, contains a zarisiki-dense set of points x corresponding to cuspidal
eigenforms f, of weight w(x) = k, > 2 and level Np. The Galois representations
Py, associated with the f, give rise to a residual representation p: Gg,np, — GL2 (k)
that is independent of f,. By Proposition 2.8, we have a pseudo-character

T, Gonp = T

such that for every classical point x: T,, — L, defined over some finite extension
L/Q,, the specialization of Tt at x is the trace of Lf,.

Proposition 3.1 Ifp is absolutely irreducible there exists a unique continuous irre-
ducible Galois representation

p'ﬂ*mi GQ,Np - GLZ(Tm)»

lifting 0 and whose trace is tr,.

This follows from a result of Nyssen and Rouquier ([14], [18, Corollary 5.2]), since
T, is local henselian.

Let I° be a finite torsion-free Aj-algebra. We call family an irreducible component
of Spec T, defined by a surjective morphism 6 : T;, — I° of Aj-algebras. Since such
amap factors via T\, — I° for some maximal ideal m of T}, we can define a residual
representation p associated with 6. Suppose that p is irreducible. By Proposition 3.1
we obtain a Galois representation p: Gg — GL,(I°) associated with 6.

Remark 3.2 If n, ¢ Q,, Ay, is not a power series ring over Z,.

3.3 Finite Slope CM Modular Forms

In this section we study non-ordinary finite slope CM modular forms. We say that a
family is CM if all its classical points are CM. We prove that for every 2 > 0 there are
no CM families with positive slope < #. However, contrary to the ordinary case, every
family of finite positive slope may contain classical CM points of weight k > 2. Let
F be an imaginary quadratic field, f an integral ideal in F", I; the group of fractional
ideals prime to {. Let oy, 0, be the embeddings of F into C (say that oy = Idf) and
let (ki, ko) € Z2. A Grossencharacter ¥ of infinity type (ki, k») defined modulo §
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is a homomorphism v : I; — C* such that ¥ ((a)) = o ()17 ()2 for all ¢ = 1
(mod™f). Consider the g-expansion

> Y@g"®,

aCcOr,(a,f)=1

where the sum is over ideals a C Of and N (a) denotes the norm of a. Let F/Q be an
imaginary quadratic field of discriminant D and let ¢ be a Grossencharacter of exact
conductor f and infinity type (k — 1, 0). By [22, Lemma 3] the expansion displayed
above defines a cuspidal newform f (F, i) of level N(f)D.

Ribet proved in [16, Theorem 4.5] that if a newform g of weight k£ > 2 and
level N has CM by an imaginary quadratic field F', one has g = f(F, ¢) for some
Grossencharacter ¥ of F of infinity type (k — 1, 0).

Definition 3.3 We say that a classical modular eigenform g of weight k and level Np
has CM by an imaginary quadratic field F if its Hecke eigenvalues for the operators
Ty, £ 1 Np, coincide with those of f(F, ) for some Grossencharacter ¥ of F of
infinity type (k — 1, 0). We also say that g is CM without specifying the field.

Remark 3.4 For g as in the definition the Galois representations p,, pr(r,y): Gg —
GL>(Q,) associated with g and f(F, y) are isomorphic, hence the image of the
representation o, is contained in the normalizer of a torus in GL,.

Proposition 3.5 Let g be a CM modular eigenform of weight k and level Np™ with
N prime to p and m > 0. Then its p-slope is either O, %, k — 1 or infinite.

Proof Let F be the quadratic imaginary field and ¢ the Grossencharacter of F
associated with the CM form g by Definition 3.3. Let f be the conductor of .

We assume first that g is p-new, sothat g = f(F, ¥). Leta, be the U ,-eigenvalue
of g.If pisinertin F we have a,, = 0, so the p-slope of g is infinite. If p splitsin F" as
pp, thena, = ¥ (p) + ¥ (p). We can find an integer n such that p” is a principal ideal
(o) witha = 1 (mod ™). Hence ¥ (()) = a*~!. Since « is a generator of p” we have
a € panda ¢ p; moreover ¥~ = Y ((@)) = ¥ (p)", so we also have ¥ (p) € p — p.
In the same way we find ¥ (p) € p — p. We conclude that ¥ (p) + ¥ (p) does not
belong to p, so its p-adic valuation is 0.

If p ramifies as p” in F, then a, = Y (p). As before we find n such that p" = ()
with @ = 1 (mod™f). Then (¢ (p))" ¥ (p") = ¥ (@) = o=l = prt=D, By looking
at p-adic valuations we find that the slope is %

If g is not p-new, it is the p-stabilization of a CM form f(F, v) of level prime
to p. If a, is the T),-eigenvalue of f(F, v), the U,-eigenvalue of g is a root of the
Hecke polynomial X? — a,X + ¢p*~! for some root of unity ¢. By our discussion
of the p-new case, the valuation of a, belongs to the set {O, ’%‘, k — 1}. Then it is
easy to see that the valuations of the roots of the Hecke polynomial belong to the
same set. (]

We state a useful corollary.
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Corollary 3.6 There are no CM families of strictly positive slope.

Proof We show that the eigencurve Cj, contains only a finite number of points cor-
responding to classical CM forms. It will follow that almost all classical points of
a family in C;, are non-CM. Let f be a classical CM form of weight k and positive
slope. By Proposition 3.5 its slope is at least ’%1 If f corresponds to a point of Cj,
its slope must be < 4, so we obtain an inequality ]%l < h. The set of weights K
satisfying this condition is finite. Since the weight map C;, — B, is finite, the set of
points of C;, whose weight lies in K is finite. Hence the number of CM forms in Cj,
is also finite. (]

We conclude that, in the finite positive slope case, classical CM forms can appear
only as isolated points in an irreducible component of the eigencurve C;. In the
ordinary case, the congruence ideal of a non-CM irreducible component is defined
as the intersection ideal of the CM irreducible components with the given non-CM
component. In the case of a positive slope family 6 : T), — I°, we need to define the
congruence ideal in a different way.

3.4 Construction of the Congruence Ideal

Let6: T), — I° be a family. We write I = I°[p~!].

Fix an imaginary quadratic field F where p is inert or ramified; let —D be its
discriminant. Let £ be a primary ideal of I; then q = Q N A, is a primary ideal
of Aj. The projection A, — Aj/q defines a point of B, (possibly non-reduced)
corresponding to a weight kg : Zj, — (A;/q)*. For r > 0 we denote by 8, the ball
of centre 1 and radius r in C,. By [3, Proposition 8.3] there exists » > 0 and a
character kg, Z, - B, — (A /q)” extending kq.

Let o be an embedding F < C,. Let r and kg , be as above. For m sufficiently
large o (1 + p™OF) is contained in Z[X, - B,, the domain of definition of kg .

For an ideal f C Or let I; be the group of fractional ideals prime to f. For every
prime £ not dividing Np we denote by a; o the image of the Hecke operator 7; in
I° /. We define here a notion of non-classical CM point of 6 (hence of the eigencurve
Cy,) as follows.

Definition 3.7 Let F, 0, Q, r, kg, be as above. We say that £ defines a CM point
of weight g , if there exist an integer m > 0, an ideal f C Of with norm N () such
that DN (f) divides N, a quadratic extension (I/9)" of I/9 and a homomorphism
Y Ijpm — (I/Q)” such that:

o(l1+ p™OF) C Z; -8B,

for every a € O with @ = 1 (mod*§p™), ¥ (&) = k., (@)a™!;

ae.n = 0if L is a prime inert in F and not dividing Np;

ap.q = () + ¥ (0) if € is a prime splitting as [ in F and not dividing Np.

Sl e
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Note that kg (o) is well defined thanks to condition 1.

Remark 3.8 If P is a prime of I corresponding to a classical form f then 3 is a CM
point if and only if f is a CM form in the sense of Sect.3.3.

Proposition 3.9 The set of CM points in Spec I is finite.

Proof By contradiction assume it is infinite. Then we have an injection I < Hm I/
where ‘13 runs over the set of CM prime ideals of I. One can assume that the imaginary
quadratic field of complex multiplication is constant along I. We can also assume that
the ramification of the associated Galois characters Az : Gr — (I/)* is bounded
(in support and in exponents). On the density one set of primes of F' prime to {p and
of degree one, they take values in the image of I* hence they define a continuous
Galois character A: Gp — I* suchthat py = Indgfk, which is absurd (by Corallary
3.6 and specialization at non-CM classical points which do exist). O

Definition 3.10 The (fortuitous) congruence ideal ¢y associated with the family 6 is
defined as the intersection of all the primary ideals of I corresponding to CM points.

Remark 3.11 (Characterizations of the CM locus)

1. Assume that p, = Indgfx for a unique imaginary quadratic field K. Then the
closed subscheme V (¢y) = Spec/cy C SpecLis the largest subscheme on which

there is an isomorphism of Galois representations pg = py ® (@) Indeed,
for every artinian Q,-algebra A, a CM point x: I — A is characterized by the
conditions x(Ty) = x(T}) (KT{Q) for all primes ¢ not dividing Np.

2. Note that N is divisible by the discriminant D of K. Assume that [ is N-new and
that D is prime to N/D. Let Wp be the Atkin-Lehner involution associated with

D. Conjugation by W, defines an automorphism ¢p of T, and of I. Then V (¢cg)
coincides with the (schematic) invariant locus (Spec I)**=".

4 The Image of the Representation Associated
with a Finite Slope Family

It is shown by Lang in [12, Theorem 2.4] that, under some technical hypotheses, the
image of the Galois representation p: Gg — GL,(I°) associated with a non-CM
ordinary family 6 : T — I° contains a congruence subgroup of SL, (I[§), where I is
the subring of I° fixed by certain “symmetries” of the representation p. In order to
study the Galois representation associated with a non-ordinary family we will adapt
some of the results in [12] to this situation. Since the crucial step ([12, Theorem
4.3]) requires the Galois ordinarity of the representation (as in [9, Lemma 2.9]),
the results of this section will not imply the existence of a congruence subgroup of
SL;(I3) contained in the image of p. However, we will prove in later sections the
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existence of a “congruence Lie subalgebra” of sl, (I[j) contained in a suitably defined
Lie algebra of the image of p by means of relative Sen theory.
For every ring R we denote by Q(R) its total ring of fractions.

4.1 The Group of Self-twists of a Family

We follow [12, Sect. 2] in this subsection. Let 2 > 0 and 6: T;, — I° be a family
of slope < & defined over a finite torsion free Aj-algebra I°. Recall that there is a
natural map A — A; with image Z,[[nt]].

Definition 4.1 We say that o € Autgz, ;) (Q(I°)) is a conjugate self-twist for 6
if there exists a Dirichlet character n, : Gg — I** such that

o (0(Ty)) = no (OO (Ty)

for all but finitely many primes £.

Any such o actson A, = Oy[[t]] by restriction, trivially on ¢ and by a Galois auto-
morphism on Oj,. The conjugates self-twists for 6 form a subgroup of Autgz, 1)
(Q(T°)). We recall the following result which holds without assuming the ordinarity
of 6.

Lemma 4.2 [12, Lemma 7.1] " is a finite abelian 2-group.

We suppose from now on that I° is normal. The only reason for this hypothesis
is that in this case I° is stable under the action of I' on Q(I°), which is not true in
general. This makes it possible to define the subring Ij of elements of I° fixed by T".

Remark 4.3 The hypothesis of normality of I° is just a simplifying one. We could
work without it by introducing the Aj-order I = A,[0(Ty), £ 1 Np] C I°: this is
an analogue of the A-order I’ defined in [12, Sect. 2] and it is stable under the action
of I'. We would define I as the fixed subring of I and the arguments in the rest of
the article could be adapted to this setting.

The subring of A, fixed by I' is an O, o form of A, for some subring Oy, o of Oy,.
We denote it by A ¢ the field of fractions of Oy, o.

Remark 4.4 By definition I fixes Z,[[nt]], sowe have Z ,[[nt]] C Ay 0. In particular
it makes sense to speak about the ideal PyAj o for every arithmetic prime P, =
(149t —ub) C Z,l[nt]]. Note that Py A, defines a prime ideal of A, if and only if
the weight k belongs to the open disc By, otherwise Py A, = Aj,. We see immediately
that the same statement is true if we replace Ay, by Aj .

Note that II§ is a finite extension of A, o because I° is a finite Aj,-algebra. Moreover,
we have K hr = K}, o (although the inclusion Ay, - I C I° may not be an equality).
We define two open normal subgroups of Gg by:
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o Hy= (), kerng;
e H = HyNker(detp).

Note that Hy is an open normal subgroup of Gg and that H is a n open normal
subgroup of Hy and Gg.

4.2 The Level of a General Ordinary Family

We recall the main result of [12]. Denote by T the big ordinary Hecke algebra, which
is finite over A = Z,[[T]]. Let 6: T — I° be an ordinary family with associated
Galois representation p: Gg — GL,(I°). The representation p is p-ordinary, which
means that its restriction p|p, to a decomposition subgroup D, C G is reducible.
There exist two characters ¢, §: D, — I>*, with § unramified, such that p| p, is an
extension of ¢ by §.

Denote by IF the residue field of I° and by p the representation Gg — GL,(IF)
obtained by reducing p modulo the maximal ideal of I°. Lang introduces the following
technical condition.

Definition 4.5 The p-ordinary representation p is called Hy-regular if €| D,NHy 7

3|D,,mHo-
The following result states the existence of a Galois level for p.

Theorem 4.6 [12, Theorem 2.4] Let p: Gg — GL,(I°) be the representation asso-
ciated with an ordinary, non-CM family 6 : T — 1°. Assume that p > 2, the car-
dinality of F is not 3 and the residual representation p is absolutely irreducible
and Hy-regular. Then there exists y € GL,(I°) such that y -Im p - y~! contains a
congruence subgroup of SL (I).

The proof relies on the analogous result proved by Ribet [15] and Momose [13] for
the p-adic representation associated with a classical modular form.

4.3 An Approximation Lemma

In this subsection we prove an analogue of [10, Lemma 4.5]. It replaces in our
approach the use of Pink’s Lie algebra theory, which is relied upon in the case of
ordinary representations in [9, 12]. Let Ij be a local domain that is finite torsion free
over Aj. It does not need to be related to a Hecke algebra for the moment.

Let N be an open normal subgroup of Gg andlet p: N — GL,(I3) be an arbitrary
continuous representation. We denote by my; the maximal ideal of Ij and by F =
I /mys its residue field of cardinality g. In the lemma we do not suppose that p comes
from a family of modular forms. We will only assume that it satisfies the following
technical condition:
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Definition 4.7 Keep notations as above. We say that the representation p: N —
GL,(I§) is Z,-regular if there exists d € Im p with eigenvalues d;, d, € Z, such
that di # d? (mod p). We call d a Z,-regular element. If N’ is an open normal
subgroup of N then we say that p is (N', Zp)-regular if p|y: is Z,-regular.

Let B* denote the Borel subgroups consisting of upper, respectively lower, trian-
gular matrices in GL,. Let U™ be the unipotent radical of B*.

Proposition 4.8 Let I be a finite torsion free Aj, o-algebra, N an open normal sub-
group of Gg and p: N — GLy(Ig) a continuous representation that is 7 ,-regular.
Suppose (upon replacing p by a conjugate) that a Z,-regular element is diagonal. Let
P be anideal of I and pp: N — GL,(I5/P) be the representation given by the reduc-
tion of p modulo P. Let U*(p), and U *(pp) be the upper and lower unipotent sub-
groups of Im p, and Im pp, respectively. Then the natural maps U (p) — Ut (pp)
and U~ (p) — U~ (pp) are surjective.

Remark 4.9 The ideal P in the proposition is not necessarily prime. At a certain
point we will need to take P = PI for a prime ideal P of A .

As in [10, Lemma 4.5] we need two lemmas. Since the argument is the same for
U and U, we will only treat here the upper triangular case U = U" and B = B™.
For x = U, B and every j > 1 we define the groups

I(P/) = {x € SLy(I3) | x (mod P/) € *(I5/P/)}.

Let I'; (P/) be the kernel of the reduction morphism 7; : SLy(I5) — SLo(I5/P7).
Note that 'y (P/) = I';; (P/)U (If) consists of matrices (Ccl Z) such that a,d = 1
(mod P/), ¢ =0 (mod P/). Let K = Im p and

Ky(P))y=KNTy®P), Kg®P/)=KnNTzP).

Since U (I3) and I'g; (P) are p-profinite, the groups I'y (P/) and Ky (P/) for all
Jj = 1 are also p-profinite. Note that

bg—cf 2(af—be)
[(? —ba) ’ (; —fe)] = (Z(L‘ge—cc{g) :_lff—bge ) .
From this we obtain the following.
Lemma 4.10 If X, Y € sb3) N (% F)) withi > j >k, then [X, Y] € (51 21).

We denote by DI'; (P/) the topological commutator subgroup (I'y (PY), T'y (PY)).
Lemma 4.10 tells us that

DIy (P/) C T'p(PY) NIy (P). D



102 A. Conti et al.

By the Z,-regularity assumption, there exists a diagonal element d € K with
eigenvalues in Z, and distinct modulo p. Consider the element § = lim,,_, » ar,
which belongs to K since this is p-adically complete. In particular § normalizes K.
It is also diagonal with coefficients in Z,,, so it normalizes Ky (P/) and I" 3 (P/). Since
87 = §, the eigenvalues §; and 8, of § are roots of unity of order dividing p — 1. They
still satisfy 87 # 83 as p # 2.

Seta =081/5, € F; and let a be the order of « as a root of unity. We see « as
an element of Z via the Teichmiiller lift. Let H be a p-profinite group normalized
by 8. Since H is p-profinite, every x € H has a unique a-th root. We define a map
A: H — H given by

Ax) = [x - ad(®)(x)* - ad(E*) () - -ad(8* ) (x)* Ve

Lemma 4.11 Ifu eIy (P/) for some j > 1, then A*(u) eIy (P¥) and ;i (A(u)) =
T (l/t)

Proof If u € T'y(P/), we have 7j(A(u)) =m;(u) as A is the identity map on
U (I3/P/). Let DIy (P/) be the topological commutator subgroup of I'yy (P/). Since
A induces the projection of the Z,-module 'y (P/)/DI'y; (P/) onto its c-eigenspace
for ad(d), it is a projection onto U (I)DI'y (P/)/DI'y (P/). The fact that this is
exactly the a-eigenspace comes from the Iwahori decomposition of I'y (P/), hence
a similar direct sum decomposition holds in the abelianization 'y (P/)/DI"y; (P/).

By (1), we have DI'y(P/) C I'g(P*) NIy (P/). Since the a-eigenspace of
'y (P/)/DI'y (PY) is inside T'z (P?/), A projects ul'y (P/) to

Au) € (Tg(P*) N Ty (P)))/Dry (P)).

In particular, A(u) € I'g(P*) N Ty (P/). Again apply A. Since I'z(P*)/ ' (P*)
is sent to [y (P*)/ T (P) by A, we get A*(u) € T'y (P%) as desired. O

Proof We can now prove Proposition 4.8. Let u € U (I5/P) N Im(pp). Since the
reduction map Im(p) — Im(pp) induced by 7, is surjective, there exists v € Im(p)
such that 71 (v) = u. Take u; € U(I}) such that 71 (u;) = u (this is possible since
w1 U(Ap) — U(Ay/P) is surjective). Then vul_l e I'y(P), sov € Ky (P).

By compactness of Ky (P) and by Lemma 4.11, starting with v as above,
we see that lim, . A™(v) converges P-adically to A*(v) € U(I§) N K with
T (A%®(v)) = u. (Il

Remark 4.12 Proposition 4.8 is true with the same proof if we replace Ay o by A
and Ij by a finite torsion free Aj-algebra.

As a first application of Proposition 4.8 we give a result that we will need in the
next subsection. Given a representation p: Gg — GL,(I°) and every ideal P of I°
we define pp, U~ (p) and U*(pp) as above, by replacing I3 by I°.

Proposition 4.13 Let6: T, — 1° be a family of slope < h and pg: Gg — GL,(I°)
be the representation associated with 6. Suppose that py is (Hy, Z,,)-regular and let
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p be a conjugate of pg such that Im p|y, contains a diagonal Z,-regular element.
Then U (p) and U~ (p) are both nontrivial.

Proof By density of classical points in T;, we can choose a prime ideal P C I°
corresponding to a classical modular form f. The modulo P representation pp is the
p-adic representation classically associated with f. By the results of [13, 15] and
the hypothesis of (Hy, Z,)-regularity of L, there exists an ideal [p of Z, such that
Im pp contains the congruence subgroup I'z, (Ip). In particular U *(pp) and U~ (pp)
are both nontrivial. Since the maps U™ (p) — U™ (pp) and U~ (p) — U~ (pp) are
surjective we find nontrivial elements in U (p) and U~ (p). (I

We adapt the work in [12, Sect. 7] to show the following.

Proposition 4.14 Suppose that the representation p: Gg — GLo(I°) is (Ho, Z)-
regular. Then there exists g € GL,(I°) such that the conjugate representation gpg ™!
satisfies the following two properties:

1. the image of gpg~"|n, is contained in GL, {@I5);
2. the image of gpg~"|n, contains a diagonal Z,-regular element.

Proof As usual we choose a GL, (I°)-conjugate of p such that a Z,-regular element
d is diagonal. We still write p for this conjugate representation and we show that it
also has property (1).

Recall that for every o € I' there is a character n, : Gg — (I°)* and an equiv-
alence p” = p ® n,. Then for every o € I there exists t, € GL,(I°) such that, for
all g € Go,

p7(8) = tens (2P (L, @)

We prove that the matrices t, are diagonal. Let p(¢) be a non-scalar diagonal
element in Im p (for example d). Evaluating (2) at g = ¢ we find that t, must be
either a diagonal or an antidiagonal matrix. Now by Proposition 4.13 there exists a
nontrivial element p(u™*) € Im p N U™ (I°). Evaluating (2) at g¢ = u* we find that t,
cannot be antidiagonal.

It is shown in [12, Lemma 7.3] that there exists an extension A of I°, at most
quadratic, and a function ¢: T' — A such that 0 — t,¢ (o)~ defines a cocycle
with values in GL;(A). The proof of this result does not require the ordinarity of p.
Equation (2) remains true if we replace t, with t, (o)™, so we can and do suppose
from now on that t, is a cocycle with values in GL,(A). In the rest of the proof we
assume for simplicity that A = I°, but everything works in the same way if A is a
quadratic extension of I° and T is the residue field of A.

Let V = (I°)? be the space on which Gg acts via p. Asin [12, Sect. 7] we use the
cocycle t, to define a twisted action of T" on (I°)%. For v = (v;, v;) € V we denote
by v? the vector (v¥, vg). We write vl°! for the vector t;'v°. Then v — vl°! gives
an action of I since o > t, is a cocycle. Note that this action is Ij-linear.

Since t, is diagonal for every o € I', the submodules V; =1°(1,0) and V, =
1°(0, 1) are stable under the action of I"'. We show that each V; contains an element
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fixed by I'. We denote by I the residue field I°/my. Note that the action of I" on V;
induces an action of I" on the one-dimensional F-vector space V; ® I°/mp.. We show
that for each i the space V; ® I°/mp contains a nonzero element v; fixed by I'. This
is a consequence of the following argument, a form of which appeared in an early
preprint of [12]. Let w be any nonzero element of V; ® I°/my- and let a be a variable

in F. The sum
Saw = Z(aw)[ﬂl

oel

is clearly I'-invariant. We show that we can choose a such that S,, # 0. Since
V; ® I° /my- is one-dimensional, forevery o € I there exists a, € F such that wl°! =
o, w. Then

Saw = Z(aw)"’] = Za"w[”] = Za"(x”w = (z a”aaal)aw.

el oel’ oel oel

By Artin’s lemma on the independence of characters, the function f(a) =
> er aa,a~" cannot be identically zero on F. By choosing a value of a such
that f(a) # 0 we obtain a nonzero element v; = S,,, fixed by I'.

We show that v; lifts to an element v; € V; fixed by I'. Let oy € I'. By Lemma
4.2 T is a finite abelian 2-group, so the minimal polynomial P, (X) of [oy] acting on
V; divides X2 — 1 for some integer k. In particular the factor X — 1 appears with
multiplicity at most 1. We show that its multiplicity is exactly 1. If P,, is the reduction
of P,, modulo my then P, ([og]) = Oon V; @ I° /mp. By our previous argument there
is an element of V; ® I°/mp. fixed by I" (hence by [0p]) so we have (X — 1) | P, (X).
Since p > 2 the polynomial X 2 _ 1 has no double roots modulo my-, so neither does
P,,. By Hensel’s lemma the factor X — 1 lifts to a factor X — 1 in P, and v; lifts to
an element v; € V; fixed by [op]. Note that [° - v; = V; by Nakayama’s lemma since
v; Z0.

We show that v; is fixed by all of I'. Let W,,; = [°v; be the one-dimensional
eigenspace for [op] in V;. Since I is abelian Wi, is stable under I'. Let o € I'. Since
o has order 2% in T for some k > 0 and vi[“] € Wis,), there exists a root of unity &,
of order 2¥ satisfying vl[”] = ¢, v;. Since El[”] = v;, the reduction of ¢, modulo my.
must be 1. As before we conclude that ¢, = 1 since p # 2.

We found two elements v; € Vi, v, € V, fixed by I'. We show that every element
of v € V fixed by I' must belong to the I-submodule generated by v; and v,. We
proceed as in the end of the proof of [ 12, Theorem 7.5]. Since V; and V, are I"-stable
we must have v € V| or v € V,. Suppose without loss of generality that v € V.
Then v = av; for some o € I°. If @ € Ij then v € [§vy, as desired. If o ¢ I then
there exists o € I" such that ®® # «. Since v is [0 ]-invariant we obtain (vl =
a"v[l”] = a%v; # avy, so av is not fixed by [o], a contradiction.

Now (v1, vy) is a basis for V over I°, so the I submodule Vo = I§v; 4 [§v, is an
I8-lattice in V. Recall that Hy = (), ker n,. We show that Vj is stable under the

oell
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action of Hy via p|g,, i.e. thatif v € V is fixed by I', so is p(h)v for every h € Hy.
This is a consequence of the following computation, where v and 4 are as before and
ocel:

(P =t p ()77 =t 1, (Mp ()77 =t 'ts p(WE, v = p(h)v!].

Since Vj is an [-lattice in V stable under p|y,, we conclude that Im p|g, C
GL, (I). O

4.4 Fullness of the Unipotent Subgroups

From now on we write p for the element in its GL,(I°) conjugacy class such that
plu, € GL2(I§). Recall that H is the open subgroup of Hy defined by the condi-
tion det p(h) = 1 for every h € H. As in [12, Sect. 4] we define a representation
H — SL,(I}) by

_1
po=plg ® (detplg)~2.

We can take the square root of the determinant thanks to the definition of H. We
will use the results of [12] to deduce that the Aj o-module generated by the unipotent
subgroups of the image of py is big. We will later deduce the same for p.

We fix from now on a height one prime P C Ay o with the following properties:

1. there is an arithmetic prime Py C Z,[[nt]] satisfying k > h+1 and P =
P o;
2. every prime 3 C I° lying above P corresponds to a non-CM point.

Such a prime always exists. Indeed, by Remark 4.4 every classical weightk > h + 1
contained in the disc B, defines a prime P = P Ay satisfying (1), so such primes
are Zariski-dense in Ay, o, while the set of CM primes in [° is finite by Proposition 3.9.

Remark 4.15 Since k > h + 1, every point of Spec T}, above Py is classical by [5,
Theorem 6.1]. Moreover the weight map is étale at every such point by [11, Theorem
11.10]. In particular the prime PI§ = P;Ij splits as a product of distinct primes of If.

Make the technical assumption that the order of the residue field IF of I° is not 3.
For every ideal P of Ij over P we let p be the projection SL,(I5) — SL,(I;/P).
We still denote by 7p the restricted maps U= {3 - U i(]Ig /P).

Let G = Im py. Forevery ideal P of I we denote by pg p the representation 7rp (09)
and by Gp the image of pp, so that Gp = p(G). We state two results from Lang’s
work that come over unchanged to the non-ordinary setting.

Proposition 4.16 [12, Corollary 6.3] Let ‘B be a prime of Iy over P. Then Gy
contains a congruence subgroup Itz (a) C SLo(I5/B). In particular G is open
in SLy (I5/B).
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Proposition 4.17 [12, Proposition 5.1] Assume that for every prime ‘B C Ij over P
the subgroup Gy is open in SLy(I5/B). Then the image of G in Hfmp SL2 I5/%8)
through the map H‘BI pTp contains a product of congruence subgroups

[T p T/ (asp).

Remark 4.18 The proofs of Propositions 4.16 and 4.17 rely on the fact that the big
ordinary Hecke algebra is étale over A at every arithmetic point. In order for these
proofs to adapt to the non-ordinary setting it is essential that the prime P satisfies
the properties above Remark 4.15.

We let U(pg) = GNUE() and U*(pp) = Gp N UE(I5/P). We denote by
U (pp) either the upper or lower unipotent subgroups of Gp (the choice will be fixed
throughout the proof). By projecting to the upper right element we identify U™ (o)
with a Z,-submodule of I§ and U™ (pg p) with a Z,-submodule of I/P. We make
analogous identifications for the lower unipotent subgroups. We will use Propositions
4.17 and 4.8 to show that, for both signs, U*(p) spans I over Ay .

First we state a version of [12, Lemma 4.10], with the same proof. Let A and B
be Noetherian rings with B integral over A. We call A-lattice an A-submodule of B
generated by the elements of a basis of Q(B) over Q(A).

Lemma 4.19 Any A-lattice in B contains a nonzero ideal of B. Conversely, every
nonzero ideal of B contains an A-lattice.

We prove the following proposition by means of Proposition 4.8. We could also
use Pink theory as in [12, Sect. 4].

Proposition 4.20 Consider U* (py) as subsets of Q}). For each choice of sign the
Q(App)-span of U*(po) is Q5). Equivalently the A, o-span of U*(py) contains
a Ap-lattice in I,

Proof Keep notations as above. We omit the sign when writing unipotent subgroups
and we refer to either the upper or lower ones (the choice is fixed throughout the
proof). Let P be the prime of Aj o chosen above. By Remark 4.15 the ideal PIj
splits as a product of distinct primes in I. When ‘3 varies among these primes, the
map @vmp Ty gives embeddings of A, O/P -modules I5/ PI§ — EBamP I5 /B and
U(ppr) — GB%W p U(pg). The following diagram commutes:

U o) 2% By U o)

[ e |
@mw B

I3/ PIg 25 @By p I/

By Proposition 4.17 there exist ideals ags C I /B such that (@mlp wp)(Gprg) D

EB‘BIP [ p (ag). In particular (EB;B‘P ) (U (pprg)) D @;mp(aqg) By Lemma
4.19 each ideal ayp contains a basis of Q(I§/B) over Q(A,0/P), so that the
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Q(Ap 0/ P)-span of EB;JB‘P ags is the whole EB;B‘P Q(I5/%). Then the Q(Ap 0/ P)-
span of (@‘BlP mp)(Gyp N U (pgp)) is also @ p QI5/P). By commutativity of
diagram (3) we deduce that the Q(Ay o/ P)- span of GprNU(ppr) is QI5/PL5).
In particular G p; VU (ppr3) contains a Ay o/ P-lattice, hence by Lemma 4.19 a
nonzero ideal ap of I/ PIG.

Note that the representation pg: H — SL,(I[§) satisfies the hypotheses of Proposi-
tion4.8. Indeed we assumed that p: Gg — GL,(I) is (Hy, Z,)-regular, so the image
of p|x, contains a diagonal Z ,-regular element d. Since H is a normal subgroup of
Hy, p(H) is a normal subgroup of p(Hp) and it is normalized by d. By a trivial
computation we see that the image of py = p|y ® (det p|g)~'/? is also normalized
by d.

Let a be an ideal of I§ projecting to ap C U (po, p13)- By Proposition 4.8 applied
to pp we obtain that the map U(pg) — U(po, p13) is surjective, so the Z,-module
a N U(pp) also surjects to ap. Since Aj o is local we can apply Nakayama’s lemma
to the Ay o-module Ay o(aNU(pg) to conclude that it coincides with a. Hence
a C Apo - U(po), so the Aj o-span of U(pp) contains a Ay o-lattice in I by lemma
4.19. O

We show that Proposition 4.20 is true if we replace pg by p|y. This will be a
consequence of the description of the subnormal sugroups of GL,(I°) presented
in [23], but we need a preliminary step because we cannot induce a Aj o-module
structure on the unipotent subgroups of G. For a subgroup G C GL(I[§) define G =
{g”, g € G} and G = G" N (1 + pM(I()). Let QA’IO be the subgroup of GL,(I°)
generated by the set {g*: g € G A€ Ao} where g4 = exp(Alog g). We have the
following.

Lemma 4.21 The group G™ contains a congruence subgroup of SL,(I}) if and
only if both of the unipotent subgroups G N U™ (I3) and G N U~ (I§) contain a basis
of a Ay p-lattice in I,

Proof 1t is easy to see that GNU +(]I ) contains the basis of a Aj o-lattice in I
if and only if the same is true for g nU +(]I ). The same is true for U~. By a
standard argument, used in the proofs of [9, Lemma 2.9] and [12, Proposition 4.2],
G"r C GL,(Ig) contains a congruence subgroup of SL,(I) if and only if both its
upper and lower unipotent subgroup contain an ideal of I. We have U () N G0 =
Ano(GNUT()), so by Lemma 4.19 UT(I3) N G** contains an ideal of I if and
onlyif GNU +(H ) contains a basis of a A, g-lattice in I[5. We proceed in the same
way for U~. ]

Now let Gy = Im p|y, G = Im py. Note that Gy N SL(I§) is a normal subgroup of
G.Let f: GLy(I§) — SL,(I[§) be the homomorphism sending g to det(g)~ 126 We
have G = f(Gy) by definition of py. We show the following.

Proposition 4.22 The subgroups Go N U jE(]I ) both contain the basis of a Ay -
lattice in 1§ if and only if G N U i(]IO) both contain the basis of a Ay o-lattice in I

Proof Since G = f(GO) we have G = f(Go) This implies that GAro = f(Gy AM
We remark that G, e SL,(I§) is a normal subgroup of G, Indeed
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~ Ano Ap,

Go "' NSLy(I) is normal in Go™™, 5o its image f(G,"" NSLy(I})) = A”'O N
SL,(I3) is normal in f(GA”) GAno,
By [23, Corollary 1] a subgroup of GL,(Ig) contains a congruence subgroup of

SL, () if and only if it is subnormal in GL, (I§) and it is not contained in the centre.

We note that Go" ™ N SL,(I§) = (Go N SLy(I3)) ¢ is not contained in the subgroup
{£1}. Otherwise also Gy N SL,(I§) would be contained in {£1} and Im p N SL, (1)
would be finite, since G is of finite index in G?!. This would give a contradiction:
indeed if % is an arithmetic prime of I° of Weight greater than 1 and P’ =P N I3,
the image of p modulo 3’ contains a congruence subgroup of SL,(I5/’) by the
result of [15]

Since GQ M0 A SL, (I3) is anormal subgroup of G, we deduce by [23, Corollary

1] that GO Ao N SL,(I5) (hence GO A, ) contains a congruence subgroup of SL, (II5)
if and only if G G does. By applying Lemma 4.21 to G = Gy and G = G we obtain
the desired equivalence. (]

By combining Propositions 4.20 and 4.22 we obtain the following.

Corollary 4.23 The A, o-span of each of the unipotent subgroups Im p N U* con-
tains a Ap o-lattice in I,

Unlike in the ordinary case we cannot deduce from the corollary that Im p contains
acongruence subgroup of SL; (I5), since we are working over A;, # A and we cannot
induce a A,-module structure (not even a A-module structure) on Im p N U*. The
proofs of [9, Lemma 2.9] and [12, Proposition 4.3] rely on the existence, in the image
of the Galois group, of an element inducing by conjugation a A-module structure on
Im p N U*. In their situation this is predicted by the condition of Galois ordinarity
of p. In the non-ordinary case we will find an element with a similar property via
relative Sen theory. In order to do this we will need to work with a suitably defined
Lie algebra rather than with the group itself.

5 Relative Sen Theory

We recall the notations of Sect.3.1. In particular r, = p~*, with s, € Q, is the h-
adapted radius (which we also take smaller than pfl%-‘), ny is an element in C,, of
norm ry,, K is the Galois closure in C,, of Q, (1) and Oy, is the ring of integers in
K},. The ring A, of analytic functions bounded by 1 on the open disc 8, = B8(0, r,)
is identified to Oy[[¢]]. We take a sequence of radii r; = pu—li converging to ry
anddenote by A,, = K;(t, X;)/(pXi — 1) the Kj-algebra defined in Sect. 3.1 which
is a form over K}, of the C,-algebra of analytic functions on the closed ball B(0, ;)
(its Berthelot model). We denote by A; the Oy-subalgebra of functions bounded
by 1. Then Ay, = hm A} where A° — Ao for i < j is the restriction of analytic
functions.
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We defined in Sect. 4.1 a subring II§ C I°, finite over A, o C Ay. For r; as above,
we write quri = Opoft, Xi)/(pXi — t') with maps qurj — Aa,r,» fori < j, so that
Apo=1lim A7 . Let I, = I°®,,A;, and [§,, = I5®a,,AG . both endowed with
their p-adic topology. Note that (I zW = I o

Consider the representation p: Gg — GL,(I°) associated withafamily 6 : T), —
I°. We observe that p is continuous with respect to the profinite topology of I° but
not with respect to the p-adic topology. For this reason we fix an arbitrary radius
r among the r; defined above and consider the representation p,: Gg — GL,(I})
obtained by composing p with the inclusion GL,(I°) < GL(I?). This inclusion
is continuous, hence the representation p, is continuous with respect to the p-adic
topology on GLo(I§ ).

Recall from Proposition 4.14 that, after replacing p by a conjugate, there is an open
normal subgroup Hy C G such that the restriction p| 4, takes values in GL, (I) and
is (Ho, Z;)-regular. Then the restriction p, | 4, gives arepresentation Hy — GL(Ij ,)
which is continuous with respect to the p-adic topology on GL(Ig ,).

5.1 Big Lie Algebras

Recall that G, C G denotes our chosen decomposition group at p. Let G, and G
be the images respectively of Hy and G, N Hy under the representation o, | g, : Ho —
GL, (L5 ,)- Note that they are actually independent of r since they coincide with the
images of Hy and G, N Hy under p.

For every ring R and ideal I C R we denote by I'gr,(r) (/) the GL,-congruence
subgroup consisting of elements g € GL,(R) such that g =Id; (mod 7). Let G, =
G, N Ty, (p) and G = G*° N Tar,a,)(p), so that G| and G'*° are pro-p
groups. Note that the congruence subgroups ', ,,)(p™) are open in GL,(Ily,,) for
the p-adic topology. In particular G/ and G/'° can be identified with the images
under p of the absolute Galois groups of finite extensions of @ and respectively Q.

Remark 5.1 We remark that we can choose an arbitrary ry and set, for every r,
G. =G, N FGLz(HS_,U)(P)~ Then G/ is a pro-p subgroup of G, for every r and it is
independent of r since G, is. This will be important in Theorem 7.1 where we will
take projective limits over r of various objects.

We set Ap, = A(‘)Ar[p’l] and Iy, = H(‘)Ar[p’l]. We consider from now on G/ and
G’r'l"C as subgroups of GL(Ilp ) through the inclusion GLy(I[§ ) <> GLa(Iy,)-

We want to define big Lie algebras associated with the groups G and G/'°. For
every nonzero ideal a of the principal ideal domain A ., we denote by G, , and G /;.lc‘l’c
the images respectively of G/ and G/'°° under the natural projection GLy(Ip,) —
GL,(Io,,/aly,,). The pro-p groups G, , and G/ are topologically of finite type
so we can define the corresponding Q,-Lie algebras 9),., and y)l;)g using the p-adic
logarithm map: $,.q = Q, - Log G, , and $!% = Q, - Log G'%°. They are closed

Lie subalgebras of the finite dimensional Q,-Lie algebra M, (Ily ,-/al ;).
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Let B, = l(ir_n(a P 1AOJ /aAp, where the inverse limit is taken over nonzero
> 11)=

ideals a C Ay, prime to P; = (u™'(1 4 T) — 1) (the reason for excluding P; will
become clear later). We endow B, with the projective limit topology coming from
the p-adic topology on each quotient. We have a topological isomorphism of K o-

algebras
B. = [] (Ao,
P#£P,

where the product is over primes P and @ p= 1(i£1m>1Ao,r /P™Ay,, denotes
the K o-Fréchet space inverse limit of the finite dimensional K -vector spaces
Ao,/ P™Ap,. Similarly, let B, = Liﬂl(a,P.pl]Io”/aHO*” where as before a varies over
all nonzero ideals of A, prime to P;. We have

Br = H (]Ioﬂr)PHOJ» = H (]I(),r)sp = 1(&1’1 ]I(),r/ﬂ,
P#P PP (Q.P)=I

where the second product is over primes ‘B of I, and the projective limit is over

primary ideals  of I .. Here (]Io,,);43 denotes the projective limit of finite dimensional
K o-algebras (endowed with the p-adic topology). The last isomorphism follows
from the fact that Iy, is finite over Ay ,, so that there is an isomorphism I, ®
m p= H‘B @m where P is a prime of Ao, and ‘P varies among the primes
of Il above P. We have natural continuous inclusions Ay, < B, and [y, — B,,
both with dense image. The map Ay, < [, induces an inclusion B, — B, with
closed image. Note however that B, is not finite over B,. We will work with B, for
the rest of this section, but we will need B, later.

For every a we have defined Lie algebras §), 4 and 5")1,‘); associated with the finite
type Lie groups G, , and G/;qlc?c. We take the projective limit of these algebras to
obtain Lie subalgebras of M, (1B, ).

Definition 5.2 The Lie algebras associated with G/, and G,'°° are the closed Q,,-Lie
subalgebras of M, (BB,) given respectively by

fJr = 1<£1 ﬁr,u
(a,P))=1

and
ﬁioc = lim f)loc

<« r,a’
(a,P)=1

where as usual the products are taken over nonzero ideals a C A, prime to P;.

For every ideal a prime to P;, we have continuous homomorphisms §), — 9, 4
and !°° — §!°¢_ Since the transition maps are surjective these homomorphisms are
surjective.
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Remark 5.3 The limits in Definition 5.2 can be replaced by limits over primary
ideals of Iy . Explicitly, let Q be a primary ideal of Iy ,. Let G|, - be the image of G,
via the natural projection GLy(Ip ) — GL2(Ip,/Q) and let 35, o be the Lie algebra
associated with G/, , (which is a finite type Lie group). We have an isomorphism of
topological Lie algebras
yjr = lim S‘:)r. )
@t

where the limit is taken over primary ideals £ of Iy . This is naturally a subalgebra

of M,(B,) since B, = hrn(Q P 1]10”/9' The same goes for the local algebras.

5.2 The Sen Operator Associated with a Galois
Representation

Recall that there is a finite extension K /Q, such that G"!°° is the image of p lGa®/x)

and, foranideal P C Ag,andm > 1,G} ;’,ﬁ, is the image of p,, pn |Gy (% k) - Following
[19, 21] we can define a Sen operator associated with p; [, %, k) and or, P lax k)
for every ideal P C Ay, and every m > 1. We will see that these operators satisfy
a compatibility property. We write for the rest of the section p, and p, p» while
implicitly taking the domain to be Gal(K /K).

We begin by recalling the definition of the Sen operator associated with a rep-
resentation T : Gal(?/ K) — GL,,(R) where R is a Banach algebra over a p-adic
field L. We follow [21]. We can suppose L C K; if not we just restrict 7 to the open
subgroup Gal(K /K L) C Gal(K /K).

Let L be a totally ramified Z ,-extension of L. Let y be a topological generator
of I' = Gal(Ln/L), T, C T the subgroup generated by y?" and L, = ng , so that
Lo =U,L,. Let L), =L,K and G, = Gal(Z/L;l). If R™ is the R-module over
which Gal(K /K) acts via 7, define an action of Gal(K /K) on RQ,C p» by letting
o€ Gal(f/l() map x ® y to 7(0)(x) ® o (y). Then by the results of [19, 21] there
is a matrix M € GL,, (R®.C,), an integer n > 0 and a representation §: I', —
GL,, (R®. L)) such that forall o € G/,

M~ 't(0)o (M) = §(0).
Definition 5.4 The Sen operator associated with t is

o, Jog(80)) log(8(0))

= € M,,(R®.C,).
M log(x (@) & M (RELEY)

log (8 (0))

_ log(x (o))
proved in [21, Sect. 2.4] that ¢ does not depend on the choice of § and M.

The limit exists as for o close to 1 the map o +— is constant. It is
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If L =R = Q,, we define the Lie algebra g associated with 7 (Gal (?/ K)) as the
Q,-vector space generated by the image of the logarithm map in M,,(Q,). In this
situation the Sen operator ¢ associated with 7 has the following property.

Theorem 5.5 [19, Theorem 1] Fora g)ntinuous representationt : Gg — GL,,(Q,),
the Lie algebra g of the group t(Gal(K /K)) is the smallest Q,-subspace of M, (Q,)
such that g®Q,C, contains ¢.

This theorem is valid in the absolute case above, but relies heavily on the fact that
the image of the Galois group is a finite dimensional Lie group. In the relative case
it is doubtful that its proof can be generalized.

5.3 The Sen Operator Associated with p,

Set ]Io rc, = o, ® ku0Cp. It is a Banach space for the natural norm. Let B¢, =
B, &x, 0(C,,; it is the topological C,-algebra completion of B, ®g,, C, for the
(uncountable) set of nuclear seminorms p, given by the norms on I nc,/ allp,,, C,

via the specialization morphisms 7, : B, ®x,, C, — Iy, c,/ allp,,, c,- Let 55, aC, =
Nra @k, Cpand H)% = H% Qx,, C,. Then we define e, = ﬁr®Kh0(C as
the topological C,-Lie aigebra completion of 9, ®k,, C, for the (uncountable) set
of seminorms p, given by the norms on 9, q,c, and similar specialization morphisms
o Hr. @k, Cp = Hra c, . We define in the same way ﬁlr‘,’(ccp in terms of the norms

on ﬁl"c «c,- Note that by definition we have

1 : I
Hrc, = lim $Hrac,. and Hp = lim 9% c .
@Po=1 (@.P)=1

We apply the construction of the previous subsectionto L = K}, 9, R = [y, which
is a Banach L-algebra with the p-adic topology, and T = p,. We obtain an operator
¢, € My (Ho,r,cp)- Recall that we have a natural continuous inclusion Iy, — B,,
inducing inclusions Iy, c, < B, c, and Ma(Ip ».c,) < M2(B, c,). We denote all
these inclusions by ¢, since it will be clear each time to which we are referring to.
We will prove in this section that (p _(¢,) is an element of f_)l"c

Let a be a nonzero ideal of Ay,,. Let us apply Sen’s construction to L = K| 7.0s
R=1y,/aly, and T = p, 4: Gal(K/K) — GL,(Ilp,,/aly ,); we obtain an operator
br.a € Ma(lo,,/allo,, Bk, ,Cp).

Let

Ta: Moo, Rk, ,Cp) = Ma(lo,,/allo,&k,,Cp)

and
775 : GLZ(HO,r®KhVU(Cp) - GLZ(]IO,r/a]IO,r®K;,VUCp)

be the natural projections.
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Proposition 5.6 We have ¢, , = mq(¢p,) for all a.

Proof Recall from the constructlon of ¢, that there exist M € GL, (]10 rC ) >0
and §: Iy — GL,(Ip, ,®Kh0 h o) such that for all o € G/, we have

M~ p,(0)o (M) = 8(0) “)
and

10g(8(o))

= fog(x (@)

&)
Let My =n (M) € GLZ(]IO.,.CP/aHO,,.,CP) and
8a =7 08: Ty = GLa((o,r/allo,)®k,0Kho.0)-

Denote by ¢, o € Ma((Ip -/ a]IOJ)@ KoK ;l,(),n) the Sen operator associated with p, 4.
Now (4) gives

M pra(0)o(My) = 84(0) (6)
so we can calculate ¢, , as
log(8q (o)) ~
e ————2 e M(R®.C)). 7
Pre = 0 Tog(x oy © MRRELE) @
By comparing this with (5) we see that ¢, o = 74(¢;). O

Let ¢, B, = tp, (¢,). Foranonzeroideal a of A, let rp, o be the natural projection
B, — Io,/alp,. Clearly B,.a(Prp,) = Ta(¢,) and ¢, o = mw,(¢,) by Proposition
5.6, so we have ¢, p, = (_(u P 1(}5, a-

We apply Theorem 5.5 to show the following.

Proposition 5.7 Let a be a nonzero ideal of Ao, prime to Py. The operator ¢, 4
loc

belongs to the Lie algebra %), a.C,

Proof Letn be the dimension over Q,, of Iy . /ally ,; by choosing a basis (wi, . .., w,)
of this algebra as a (Q,-vector space, we can define an injective ring homo-
morphism «: Ma(Ip »/alp ) — M>2,(Q,) and an injective group homomorphism
a*: GLy(Iy /oy ) < GL2,(Q,). In fact, an endomorphism f of the (Iy , /alp )-
module Iy, /aly,)* = (Lo, /aly,) - e1 & Ly, /aly,) - e is Q,-linear, so it induces
an endomorphism « ( f) of the Q,-vector space (I / cdlo,,)2 = @[, j Q, - wiej; fur-
thermore if « is an automorphism then a(f) is one too. In particular p, o induces a
representation op @ = =a*opq: : Gal(K /K) = GL,,(Q)). The image of o, is the
group G1°%% = a*(G1°¢). We consider its Lie algebra $)°°* = Q, - Log (G1%¢%) C
M,, (Qp) The p-adic logarithm commutes with « in the sense that a(Log x) =
Log (a* (x)) for every x € I'ty, ja,, (P), s0 we have §/%% = a(H}°¢) (recall that
9% = Q, - Log G%).
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Let ¢, be the Sen operator associated with o : Gal(f/K ) = GL2,(Q)).
By Theorem 5.5 we have ¢%, € 9% = §'%*®C,. Denote by ac, the map

raC, —

a®1: Ma(lo,.c,/alo,.c,) = M2, (C,). Weshow that ¢,.¢" = ac, (¢,.a), from which

. . . loc,ac,
it follows that ¢, , € 53}."; ¢, since §) !
; ,a,C,

— loc 1¢ 111 1
rac, =oc,($.5c,)andac, isinjective. Now

let Mg, 84 be as in (6) and My " = ac,(Ma), 82" = ac, o 8. By applying ac to

ac, ac, ac,

(4) we obtain (Mg ")~!p,.q (a)a(Mff‘C”) =68, " (o) for every o € G), so we can
calculate .
a log(8, " (o
r,i” = lim g(“—())’
o—1 log(x (o))

which coincides with ac, (¢r.a)- [l

Proposition 5.8 The element ¢, belongs to Sﬁlrf’(f:p, hence to 9, c,-

Proof By definition of the space ﬁlr?ép as completion of the space 9! ®, , C,, for

3 : loc loc _ 1; loc
the semmo.rr.ns Pa given by the norms OT] 5r,a,¢:p’ we have f-’r,cp_ = @(G’Pl)ﬂﬁm@.
By Proposition 5.6, we have ¢, 5, = @aqﬁm and by Proposition 5.7 we have, for
every a, ¢, o € H% c,- We conclude that ¢,.5, € ﬁ'rf’(f:l). O

Remark 5.9 In order to prove that our Lie algebras are “big” it will be useful to
work with primary ideals of A,, as we did in this subsection. However, in light of
Remark 5.3, all of the results can be rewritten in terms of primary ideals 2 of I ,.
This will be useful in the next subsection, when we will interpolate the Sen operators
corresponding to the attached to the classical modular forms representations.

From now on we identify ]IO.r,(C,, with a subring of IB%,,CP via (p, , so we also identify
M, (Io,-) with a subring of M (B,) and GL, (Iy .c,) with a subgroup of GL,(B;.c,)-
In particular we identify ¢, with ¢, 5. and we consider ¢, as an element of Hrc, N
Ma(o..c,)-

5.4 The Characteristic Polynomial of the Sen Operator

Sen proved the following result.

Theorem 5.10 Let L, and L, be two p-adic fields. Assume for simplicity that L,
contains the normal closure of L. Let T : Gal (Zl /L1) — GL,,(L,) be a continuous
representation. For each embedding o: Ly — Ly, there is a Sen operator ¢, , €
M,.(C, ®1, .0 L2) associated with T and o. If T is Hodge-Tate and its Hodge-Tate
weights with respect to o are hy, ..., h, , (with multiplicities, if any), then the
characteristic polynomial of ¢ » is ||| (X — h; o).
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Nowletk € Nand P, = (u=*(1 4+ T) — 1) be the corresponding arithmetic prime
of Ag,. Let ‘B be a prime of I, above P, associated with the system of Hecke
eigenvalues of a classical modular form f. Let p.: Gy — GL,(I.) be as usual.
The specialization of p, modulo ‘B is the representation pr: Gg — GL (I, /B)
classically associated with f, defined over the field Ky = I /B /I,. By a theorem
of Faltings [8], when the weight of the form f is k, the representation o is Hodge-
Tate of Hodge-Tate weights 0 and k£ — 1. Hence by Theorem 5.10 the Sen operator
¢ associated with p; has characteristic polynomial X (X — (k — 1)). Let By =
B, NIy, With the notations of the previous subsection, the specialization of p,
modulo B, gives a representation o, ., : Gal(f/ K) — GLy(Io, /B £,0), which
coincides with p7|g,x/k)- In particular the Sen operator ¢, g, associated with
pr.mm is ¢f.

By Proposition 5.6 and Remark 5.9, the Sen operator ¢, € My (I .c,) specializes
modulo B to the Sen operator ¢, 3, associated with p, 5, for every f as above.
Since the primes of the form B¢ are dense in Iy, c,, the eigenvalues of ¢, o are
given by the unique interpolation of those of p, g ,,. This way we will recover an
element of GL,(By,c,) with the properties we need.

Given f € Ag, we define its p-adic valuation by v;?(f) =inf e, vp(f (X)),

where v, is our chosen valuation on C,,. Then if v'(f — 1) < pfﬂ%l there are well-
defined elements log( f) and exp(log(f)) in Ay, ,, and exp(log(f)) = f.

Let ¢, = log(u)¢,. Note that ¢, is a well-defined element of My (B,.c,) since
log(u) € Q. Recall that we denote by C7 the matrix diag(u='(1 + T), 1). We have
the following.

Proposition 5.11 1. The eigenvalues of ¢, are log(u="'(1 4+ T)) and 0. In partic-
ular the exponential ®, = exp(¢;) is defined in GL, (B, c,). Moreover ®, is
conjugate to Ct in GL(B,.c,).

2. The element @ of part (1) normalizes $,c,.

Proof For every B as in the discussion above, the element log(u)¢, specializes to
log(u)¢r.s,, modulo PBro. I Prois adivisor of Py, the eigenvalues of log(u),, o
are log(u)(k — 1) and 0. Since 1 + T = u* modulo B . for every prime B 1o divid-
ing Py, wehavelog(u='(1 + T)) = log(u*~") = (k — 1) log(u) modulo‘B 0. Hence
the eigenvalues of log(u)¢, 5, are interpolated by log(u="'(1 4 T)) and 0.

Recall that in Sect.3.1 we chose r;, smaller than piﬁ. Since r < ry, v;,(T) <

pfﬁ. In particular log(u’l(l + T)) is defined and exp(log(u’l(l +T))=u!
(1+T), so d, =exp(¢,) is also defined and its eigenvalues are u '+ T) and
1. The difference between the two is u~!(1 + T) — 1; this elements belongs to Py,
hence it is invertible in B,. This proves (1).

By Proposition 5.8, ¢, € $,.c,. Since 9, ¢, is a Q,-Lie algebra, log(u)¢, is also
an element of §), c,. Hence its exponential ®| normalizes §),.c,. d
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6 Existence of the Galois Level for a Family with Finite
Positive Slope

Letr, € p@ﬂ]O, pfﬁ [ be the radius chosen in Sect. 3. As usual we write r for any
one of the radii r; of Sect.3.1. Recall that ), C M,(B,) is the Lie algebra attached
to the image of p, (see Definition 5.2) and $),¢c, = ﬁr@@pC p- Let u® and ua be
the upper and lower nilpotent subalgebras of §),, and ), c, respectively.

Remark 6.1 The commutative Lie algebra u¥ is independent of r because it is equal
to Q, - Log(U(I§) N G;) which is independent of 7, provided r; < r < ry.

Wefixrg € pQﬂ]O, rp[ arbitrarily and we work from now on with radii r satisfying
ro < r < ry. As in Remark 5.1 this fixes a finite extension of Q corresponding to
the inclusion G, C G,. For r < r’ we have a natural inclusion I, < I ,. Since
B, = l(igl(upl):l Iy, /allp  this induces an inclusion B,, < B,. We will consider from
now on B, as a subring of B, for every r < r’. We will also consider M, (To.r.c,)
and M, (B,) as subsets of Mz ([ .c,) and M (B, ) respectively. These inclusions still
hold after taking completed tensor products with C,,.

Recall the elements ¢ = log(u)¢p, € My(B,.c,) and @, = exp(¢;,) € GL2(B,.c,)
defined at the end of the previous section. The Sen operator ¢, is independent of 7 in
the following sense: if r < r’ < r; and B, c, — B, c, is the natural inclusion then
the image of ¢, under the induced map Ma(B,/ c,) - Ma(B,. c,) is ¢,. We deduce
that ¢, and &) are also independent of r (in the same sense).

By Proposition 5.11, for every r < ry, there exists an element 8, € GL,(B,.c,)
such that B, ®,B," = Cr. Since @, normalizes 9,c,, Cr = B, ®. ;' normalizes
ﬂrﬁr,(cpﬁr_l'

We denote by L* the upper and lower nilpotent subalgebras of sl,. The action of
Cr on ), c, by conjugation is semisimple, so we can decompose B,9,.c, B, lasa
sum of eigenspaces for Cy:

ﬂrﬁr,(cl,ﬁr_l
= (B:9rc, 8, ) (1@ (B5rc, B, ) [ A+ D@ (B9, B7") [ud +T)7']
with (,Brf.)r,tcpﬁr_]) [u_l(l + T)] - u+(Br,C,,) and (ﬂrﬁr,cpﬂr_l) [Lt(l + T)_]] -

U= By.c,)-
Moreover, the formula

' A+T)0) (12 (' A+T)0\ ' (1u'(1+T)r
0 1)\o1 0 1) ~\o 1

shows that the action of C7 by conjugation coincides with multiplication by u~' (1 4
T). By linearity this gives an action of the polynomial ring C,[T] on B, $,.c, B, 'n
s (B,.c,), compatible with the action of CplT]on g+ (B,.c,) given by the inclusions
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C,lT] C Anoc, C Brc, C B, c,- Since C,[T] is dense in Ap,.c, for the p-adic
topology, itis also dense in B.c,- Since ﬁr,«:p is aclosed Lie subalgebra of M, (Br,c,,),
we can define by continuity a B, c,-module structure on S, 9,.c,B, Pyt Br.c,)s
compatible with that on U*(B,.c,). Similarly we have

w14+ T)0\ (10 (u'(1+T)0\ " _ 1 0
0 1\l 0 1 “\ud+1) 1)

We note that 14 7 is invertible in Ag, since T = p*t where r, = p~.
Therefore Cr is invertible and by twisting by (1 + T) +— (1 + T)~!' we can also
give B:-9,.c, B, Ny~ (B,.c,) a structure of B, c,-module compatible with that on
U (Br,C,,)'

By combining the previous remarks with Corollary 4.23, we prove the following
“fullness” result for the big Lie algebra $),.

Theorem 6.2 Suppose that the representation p is (Hy, Zp)-regular. Then there
exists a nonzero ideal | of Iy, independent of r < ry, such that for every such r the
Lie algebra 9, contains [ - sl,(B,).

Proof Since U*(B,) = B,, we can and shall identify u* = Q,, - Log G, N 4+ (B,)
with a Q,-vector subspace of B, (actually of Ip), and ua, with a C,-vector subspace
of B,.c,. We repeat that these spaces are independent of r since G, is, provided that
ro < r < r, (see Remark 5.1). By Corollary 4.23, u* N I contains a basis {ei +}ier
for Q(lp) over Q(Apo). The set{e; +}ie; C uT isabasis for Q(Ip) over Q(Ay.0), $O
ut contains the basis of a Ay o-lattice in Ty. By Lemma 4.19 we deduce that A, ou't
contains a nonzero ideal a™ of . Hence we also have B, c, ua D B.c,a". Nowa™"
is an ideal of Iy and B,.c,lo.c, = B,.c,, s0 B,.c,a* = a*B, ¢, is an ideal in B,.c, .
We conclude that B,.c, - ut > a*IB%,,Cp for a nonzero ideal a*t of Iy. We proceed in
the same way for the lower unipotent subalgebra, obtaining B,.c, - u~ D a™B, ¢, for
some nonzero ideal a~ of I.

Consider now the Lie algebra B, ¢, $c, C M2(B;.c,). Its nilpotent subalgebras are
B,c,u" and B.c,u", and we showed B, c,u* D a*B,c, and B.c,u” D a B, c,.
Denote by t C sl, the subalgebra of diagonal matrices over Z. By taking the Lie
bracket, we see that [U* (a*B,.c,), 4~ (a”B,.c,)] spans a* - a~ - t(B,.c,) over B,.c, .
We deduce that B, c,9c, D at - a” -5l (B,c,).Leta = at-a”.Nowa- sh(B,.c,)
is a IB%,,CF-Lie subalgebra of sl, (IB%,,(CP). Recall that 8, € GLz(]E%,,cP); hence by sta-
bility by conjugation we have 8, (a - sb(B,.c,)) B;7' = a-sL(B,c,). Thus, we con-
structed a such that B, c, (,Brf_),ycp B 1) D a-sk(B,.c,). Inparticular, if ué;’ﬁ " denote
the unipotent subalgebras of .9,c,B, !, we have B,-,cpué’f} " D aB,c, for both

signs. By the discussion preceding the proposition the subalgebras uaﬂ " have a

By

structure of B, c,-modules, which means that ué; = B, c, uaﬁ ". We conclude that

uaﬂ "D B (a SUE (IB%,,CF)) B! for both signs. By the usual argument of taking the

;
bracket, we obtain ,B,Ifjr_cp B L5 a2 sl (Br.c,,)- We can untwist by the invertible
matrix B, to conclude that, for [ = a2, we have $Hrc, DL 5[2(153,,@/)).
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Let us get rid of the completed extension of scalars to C,. For every ideal a C I,
not dividing Py, let 9, 4 be the image of ), in M, (Il /allp ). Consider the two finite
dimensional Q,-vector spaces ), o and [-sl(Ip,/aly ). Note that they are both
subspaces of the finite dimensional QQ ,-vector space M (Iy , /aly ). After extending
scalars to C,,, we have

[ : 5[Z(HO,i'/aHO,r) ® Cp C 573r,u ® (Cp- (8)

Let {e;};c; be an orthonormal basis of the Banach space C,, over Q,, with / some
index set, such that 1 € {e;};c;. Let {v;} =1, , be a Q,-basis of My(Ily ,-/ally ) such
that, for some d < n, {v;};=1,. 4 is a Q,-basis of §, .

Letvbeanelementof [ - sl,(Iy ,/ally,). Thenv ® 1 € [ - sl,(Iy,, /ally ) ® C,, and
by 8) we have v® 1 € 9,, ® C,. As {v; ® e;}1<j<aier» and {v; @ e;}igj<n.ier
are orthonormal bases of ), ® C,,, and My(Iy »/aly ) ® C,, over Q,, respectively
thereexistA;; € Q,, (j,i) € {1, 2, ...,d} x I converging to 0 in the filter of comple-
ments of finite subsets of {1,2, ..., d} x I suchthatv® 1 =3 ;| ./ 4;i(v; ®
ei).

But v®1 e My, /alp,) ® 1 C My(lp/aly,) ® C, and therefore v ® 1 =
Zlgjgn aj(v; ® 1), for some a; € Qp, j =1, ..., n. By the uniqueness of a rep-
resentation of an element in a Q,-Banach space in terms of a given orthonormal
basis we have

d d

v®1=2aj(vj®l), ie. v:ZajvjEYJr,a.
j=1 j=1
By taking the projective limit over a, we conclude that

[- 5[Z(IBr) C ﬁr-

O

Definition 6.3 The Galois level of the family 6: T;, — I° is the largest ideal [y of
HO[PI_I] such that , D [y - sL(B,) for all ¥ < ry.

It follows by the previous remarks that [y is nonzero.

7 Comparison Between the Galois Level and the Fortuitous
Congruence Ideal

Let6: T), — I° be a slope < & family. We keep all the notations from the previous
sections. In particular p : Gg — GL,(I°) is the Galois representation associated with
0. We suppose that the restriction of p to Hy takes values in GL,(Ig). Recall that
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I=1I°[p~']and I, = I3[ p~']. Also recall that P is the prime of A ¢ generated by
u~'(14 T) — 1.Letc C I be the congruence ideal associated with 6. Set ¢y = ¢ N I
and ¢; = co]Io[Pl_l]. Letl =1y C ]IO[P,_I] be the Galois level of 6. For an ideal a
of ]Io[Pfl] we denote by V (a) the set of prime ideals of ]Io[Pfl] containing a. We
prove the following.

Theorem 7.1 Suppose that

1. pis (Ho, Zp)-regular; .
2. there exists no pair (F, ), where F is areal quadratic field and  : Gal(F /F) —
F* is a character, such that p: Gg — GLy(F) = Indglﬁ.

Then we have V (I) = V(¢;).

Before giving the proof we make some remarks. Let P be a prime of Io[ P, 1
and Q be a prime factor of PI[P;']. We consider p as a representation Gg —
GL, (]I[Pf1 1) by composing it with the inclusion GL,(I) — GL, (]I[Pf1 1). We have
arepresentation pp: Gg — GLZ(]I[PI’I] / Q) obtained by reducing p modulo Q. Its
restriction pg |, takes values in GLy(Io[ P, '1/(Q N Ty[ P '1)) = GLo(Io[ P, ']/ P)
and coincides with the reduction pp of p|g,: Hy — GLz(I[O[Pl_l]) modulo P. In
particular po| g, is independent of the chosen prime factor Q of PI[P;'].

We say that a subgroup of GL,(A) for some algebra A finite over a p-adic field
K is small if it admits a finite index abelian subgroup. Let P, Q be as above, G p
be the image of pp: Hy — GLZ(HO[Pl_l]/P) and G ¢ be the image of pg: Gg —
GL, (]I[Pl_l] / Q). By our previous remark pp coincides with the restriction pg|g,,
so G p is a finite index subgroup of G ¢ for every Q. In particular G p is small if and
only if G is small for all prime factors Q of PI[P;'].

Now if Q is a CM point the representation p¢ is induced by a character of
Gal(F/Q) for an imaginary quadratic field F'. Hence G o admits an abelian subgroup
of index 2 and G p is also small.

Conversely, if Gp is small, G is small for every prime Q' above P. Choose
any such prime Q’; by the argument in [16, Proposition 4.4] G has an abelian
subgroup of index 2. It follows that py is induced by a character of Gal(F o/ Fo')
for a quadratic field Fy . If Fy is imaginary then Q' is a CM point. In particular,
if we suppose that the residual representation p: Gg — GL,(IF) is not induced by
a character of Gal(F/F) for a real quadratic field F/Q, then F, ¢’ 18 imaginary and
Q’ is CM. The above argument proves that G p is small if and only if all points
Q' c I[P, '] above P are CM.

Proof We prove first that V(¢;) C V (I). Fix a radius r < r,. By contradiction, sup-
pose that a prime P of ]IO[PI*I] contains ¢y but P does not contain [. Then there exists
a prime factor Q of P]I[Pfl] such that ¢ C Q. By definition of ¢ we have that Q is a
CM point in the sense of Sect. 3.4, hence the representation py -1 , has small image

in GLz(H[Pfl] / Q). Then its restriction py P]71]’Q| H, = pp also has small image in

GL, (]Io[Pl_l] /P). We deduce that there is no nonzero ideal Jp of HO[PI_I] /P such
that the Lie algebra §), p contains Jp - sl (HO[P]_I]/P).
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Now by definition of [ we have [ - s[(B,) C 9,. Since reduction modulo P gives
a surjection ), — 9, p, by looking at the previous inclusion modulo P we find
(- sl(To, [P ']/ PIo, [P7']) C $,.p. If L ¢ P wehave [/ P # 0, which contradicts
our earlier statement. We deduce that [ C P.

We prove now that V([) C V(¢;). Let P C ]Io[Pfl] be a prime containing
[. Recall that Io[ P, ' has Krull dimension one, so kp = ]Io[Pfl]/ P is a field.
Let Q be a prime of ]I[Pl_l] above P. As before p reduces to representations
po: Gg — GLy(I[P;'1/Q) and pp: Hy — GLy(Io[P; ']/ P). Let B C Io[P; ']
be the P-primary component of [ and let 2 be an ideal of ]IO[PI_I] containing
B such that the localization at P of 2/ is one-dimensional over xp. Choose
any r <ry. Let s = Ql/‘l?~5[2(ﬂ0,,[Pfl]/‘B) N $.q, that is a Lie subalgebra of
A/P - sbTo, [P'1/P).

We show that s is stable under the adjoint action Ad(pg) of Gg. Let Q be the
Q-primary component of [~]I[P]_1]. Recall that ), is the Lie algebra associ-
ated with the pro-p group Im p, o, N FGLz(Ho,,,[ Pl /‘13)( p) C GLy(To [ Plfl] /B).
Since this group is open in Im p, o C GLz(]I,[Pl_l]/Q), the Lie algebra asso-
ciated with Im p, o is again ), . In particular §), g is stable under Ad(pgp).
Since H,.9 C sL(Io, [P '1/P) we have /P - sb(lo, [P '1/PB) N Hrp = A/P -
sh(IL[P;'1/Q) N $H,.q. Now A/P - sl (I[P ']/9) is clearly stable under Ad(pp),
so the same is true for A/ - 5[2(H,[P1_1]/Q) N 9, as desired.

We consider from now on s as a Galois representation via Ad(pg). By the proof
of Theorem 6.2 we can assume, possibly considering a sub-Galois representation,
that §, is a B,-submodule of s[, (B, ) containing [ - s1,(IB,) but not a - sl,(B,) for any
a strictly bigger than [. This allows us to speak of the localization sp of s at P. Note
that, since 3 is the P-primary component of [ and 2p /B p = «p, when P-localizing
we find 9, p DO Pp - sLB,p) and H,p 2 Ap - sLB, p).

The localization at P of a/5]3 - 5[2(H0,,[P1_1]/‘13) is sl (kp), so sp is contained in
sly(kp). It is a kp-representation of Gg (via Ad(pp)) of dimension at most 3. We
distinguish various cases following its dimension.

We cannot have sp = 0. By exchanging the quotient with the localization we
would obtain (Ap - sL(B, p) N H, p)/Pp = 0. By Nakayama’s lemma Ap - sl,
B,.p) N9, p=0,whichisabsurdsinceAp - slL(B, p) N H, p D Pp - sL (B, p) 0.

We also exclude the three-dimensional case. If sp = sl,(kp), by exchanging the
quotient with the localization we obtain (Ap - sL(B,p) N H, p)/Ppr = Ap - sl
(To.r.pLP;'1))/Belo.r.p P '], because we have Aplo,.p[P{'1/PBplorp[P]']1=
(T, »[P;"1/%B 1o, p[P;'1) and this is isomorphic to kp. By Nakayama’s lemma
we would conclude that §, p D 2 - s[,(B, p), which is absurd.

We are left with the one and two-dimensional cases. If s p is two-dimensional we
can always replace it by its orthogonal in s, (k p) which is one-dimensional; indeed
the action of Gq via Ad(pp) is isometric with respect to the scalar product Tr(XY)
on 5[2 (Kp).

Suppose that sl (k p) contains a one-dimensional stable subspace. Let ¢ be a gen-
erator of this subspace over kp. Let x: Gg — kp denote the character satisfying
00(8)dpo(g)~! = x(g)¢ forall g € Gg. Now ¢ induces a nontrivial morphism of
representations pg — po ® x. Since pg and py ® x are irreducible, by Schur’s
lemma ¢ must be invertible. Hence we obtain an isomorphism pgp = pg ® x. By
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taking determinants we see that x must be quadratic. If F;/Q is the quadratic exten-
sion fixed by ker x, then pg is induced by a character v of Gal(F,/ Fy). By assump-
tion the residual representation oy, : Gg — GL,(F) is not of the form Indgw for a
real quadratic field F and a character Gal(f/ F) — F*. We deduce that F must be
imaginary, so Q is a CM point by Remark 3.11(1). By construction of the congruence
ideal c ¢ Qandcy c QNIH[P '] = P. O

We prove a corollary.

Corollary 7.2 Ifthe residual representation p: Gg — GL(IF) is not dihedral then
[=1.

Proof Since p is not dihedral there cannot be any CM point on the family 6:
T), — I°. By Theorem 7.1 we deduce that [ has no nontrivial prime factor, hence it
is trivial. 0

Remark 7.3 Theorem 7.1 gives another proof of Proposition 3.9. Indeed the CM
points of a family 6: T, — I° correspond to the prime factors of its Galois level,
which are finite in number.

We also give a partial result about the comparison of the exponents of the prime
factors in ¢; and [. This is an analogous of what is proved in [9, Theorem 8.6] for
the ordinary case; our proof also relies on the strategy there. For every prime P of
HO[PI_I] we denote by ¢/ and [? the P-primary components of ¢; and [ respectively.

Theorem 7.4 Suppose that p is not induced by a character of G g for a real quadratic
field F/Q. We have (¢{)? C I¥ C ¢f.

Proof The inclusion [” C ¢f is proved in the same way as the first inclusion of
Theorem 7.1.

We show that the inclusion (¢f)? C I” holds. If ¢ is trivial this reduces to Theorem
7.1, so we can suppose that P is a factor of ¢;. Let Q denote any prime of I[P, N
above P. Let le be a Q-primary ideal of ]I[Pl_l] satisfying cIQ HHO[PI_I] =
Since P divides ¢;, Q is a CM point, so we have an isomorphism pp = Ind%xﬂ for an
imaginary quadratic field F/Q and a character y: Gr — C}. Choose any r < ry.
Consider the i p-vector space 5.» = 9, N sl @o,) /9 Nl Psh(I,). We see
it as a subspace of sy (¢!’ /¢ P) = sly(xp). By the same argument as in the proof of
Theorem 7.1, Scr is stable under the adjoint action Ad(pleQ) : Gg — Aut(sl(kp)).

Let xr/o: Gg — (C; be the quadratic character defined by the extension F/Q.
Let ¢ € Gg be an element projecting to the generator of Gal(F/Q). Let ¥*: Gp —
Cx be given by y°(t) = ¥(ste™"). Set Yy~ = ¥/ ¥*. Since pg = Ind%y, we have
a decomposition Ad(pg) = xr/Q @ Ind%ﬂ’, where the two factors are irreducible.
Now we have three possibilities for the Galois isomorphism class of s it is either
that of Ad(pg) or that of one of the two irreducible factors.

Ifsclp = Ad(pp), then as k p-vector spaces S = sl (kp). By Nakayama’s lemma
9, D ¢f - shL(B,). This implies ¢/’ C [”, hence ¢/ = [” in this case.
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If s.» is one-dimensional then we proceed as in the proof of Theorem 7.1
to show that Pelp: Gg — GLZ(H,[Pl_I]/le QI[,[PI_I]) is induced by a character
Voot Gr — Cj. In particular the image of p.rp: H — GLy (T, [P "1/¢f PTy,,)
is small. This is a contradiction, since ¢} is the P-primary component of ci,
hence it is the smallest P-primary ideal 2 of ]IO,,[Pfl] such that the image of
pa: Gg — GLy(I [P '1/AL [P} ']) is small.

Finally, suppose thats.» = Indgl/f .Letd = diag(d,, d») € p(Gq) be the image
of a Zp-regular element. Since d; and d, are nontrivial modulo the maximal
ideal of I, the image of d modulo c; Q is a nontrivial diagonal element d 2o =
diag(d; cQQ, ). cQQ) € p‘.QQ(GQ) We decompose s.» in eigenspaces for the adjoint

actionof d Qg Iwe write s, P=5 p[a] Ds. p[l] @ s, P[Cl 11, wherea = 1 cQQ/d2 2o
Now s» [1] is contained in the d1ag0na1 torus on which the adjoint action of GQ
is glven by the character xr/q. Since xr/q does not appear as a factor of s.r, we

musthavesclp[l] = 0. This implies thatsclp[a] #* Oandscf[a"] #0. Sincesclp[a] =
S N ut(kp) and sclp[afl] =& Nu” (kp), we deduce that s.» contains nontrivial

upper and lower nilpotent elements u+ and u—. Then u* and u— are the images of
someelements u™ andu™ of $, N cf - sl Ty, [Pl_l]) nontrivial modulo clP P.ThelLie
bracket? = [u™t, u~]isanelementof ), N (I, [P*I]) (where t denotes the diagonal
torus) and it is nontrivial modulo (c; P2 p. Hence the Kp -vector space §(.ry: = 9N

("2 sh(o.c, [P '1)/$, N (c])?P - sb(lo,.c,[P;']) contains nontrivial diago-
nal, upper nilpotent and lower nilpotent elements, so it is three dimensional. By
Nakayama’s lemma we conclude that §), D (c; Pyz. sh(To [P, ), so (¢ M ciP. O
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