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Abstract We prove that the Lie algebra of the image of the Galois representation
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algebra of a certain level. We interpret this level in terms of congruences with CM
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1 Introduction

Let f be a non-CM cuspidal eigenform and let � be a prime integer. By the work of
Ribet [15, 17] and Momose [13], it is known that the �-adic Galois representation
ρ f,� associated with f has large image for every � and that for almost every � it
satisfies

(cong�) Im ρ f,� contains the conjugate of a principal congruence subgroup �(�m)

of SL2(Z�).

For instance if Im ρ f,� contains an element with eigenvalues in Z
×
� distinct modulo

� then (cong�) holds.
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In [9], Hida proved an analogous statement for p-adic families of non-CM ordinary
cuspidal eigenforms, where p is any odd prime integer. We fix once and for all an
embedding Q ↪→ Qp, identifying Gal(Qp/Qp) with a decomposition subgroup Gp

of Gal(Q/Q). We also choose a topological generator u of Z
×
p . Let � = Zp[[T ]]

be the Iwasawa algebra and let m = (p, T ) be its maximal ideal. A special case of
Hida’s first main theorem ([9, Theorem I]) is the following.

Theorem 1.1 Let f be a non-CM Hida family of ordinary cuspidal eigenforms
defined over a finite extension I of � and let ρf : Gal(Q/Q) → GL2(I) be the asso-
ciated Galois representation. Assume that ρf is residually irreducible and that there
exists an element d in its image with eigenvalues α, β ∈ Z

×
p such that α2 �≡ β2

(mod p). Then there exists a nonzero ideal l ⊂ � and an element g ∈ GL2(I) such
that

g�(l)g−1 ⊂ Im ρf ,

where �(l) denotes the principal congruence subgroup of SL2(�) of level l.

Under mild technical assumptions it is also shown in [9, Theorem II] that if the
image of the residual representation of ρf contains a conjugate of SL2(Fp) then l is
trivial or m-primary, and if the residual representation is dihedral “of CM type” the
height one prime factors P of l are exactly those of the g.c.d. of the adjoint p-adic
L function of f and the anticyclotomic specializations of Katz’s p-adic L functions
associated with certain Hecke characters of an imaginary quadratic field. This set of
primes is precisely the set of congruence primes between the given non-CM family
and the CM families.

In her Ph.D. dissertation (see [12]), J. Lang improved on Hida’s Theorem I. Let
T be Hida’s big ordinary cuspidal Hecke algebra; it is finite and flat over �. Let
Spec I be an irreducible component of T. It corresponds to a surjective �-algebra
homomorphism θ : T → I (a �-adic Hecke eigensystem). We also call θ a Hida
family. Assume that it is not residually Eisenstein. It gives rise to a residually irre-
ducible continuous Galois representation ρθ : GQ → GL2(I) that is p-ordinary. We
suppose for simplicity that I is normal. Consider the �-algebra automorphisms σ

of I for which there exists a finite order character ησ : GQ → I
× such that for every

prime � not dividing the level, σ ◦ θ(T�) = ησ (�)θ(T�) (see [12, 17]). These auto-
morphisms form a finite abelian 2-group �. Let I0 be the subring of I fixed by �.
Let H0 = ⋂

σ∈� ker ησ ; it is a normal open subgroup of GQ. One may assume, up to
conjugation by an element of GL2(I), that ρθ |H0 takes values in GL2(I0).

Theorem 1.2 [12, Theorem 2.4] Let θ : T → I be a non-CM Hida family such that
ρθ is absolutely irreducible. Assume that ρθ |H0 is an extension of two distinct char-
acters. Then there exists a nonzero ideal l ⊂ I0 and an element g ∈ GL2(I) such
that

g�(l)g−1 ⊂ Im ρθ ,

where �(l) denotes the principal congruence subgroup of SL2(I0) of level l.
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For all of these results it is important to assume the ordinarity of the family, as it
implies the ordinarity of theGalois representation and in particular that some element
of the image of inertia at p is conjugate to the matrix

CT =
(
u−1(1 + T ) ∗

0 1

)

.

Conjugation by the element above defines a �-module structure on the Lie algebra
of a pro-p subgroup of Im ρθ and this is used to produce the desired ideal l. Hida
and Lang use Pink’s theory of Lie algebras of pro-p subgroups of SL2(I).

In this paper we propose a generalization of Hida’s work to the finite slope case.
We establish analogues of Hida’s Theorems I and II. These are Theorems 6.2, 7.1 and
7.4 in the text. Moreover, we put ourselves in the more general setting considered
in Lang’s work. In the positive slope case the existence of a normalizing matrix
analogous to CT above is obtained by applying relative Sen theory ([19, 21]) to the
expense of extending scalars to the completion Cp of an algebraic closure of Qp.

More precisely, for every h ∈ (0,∞), we define an Iwasawa algebra�h = Oh[[t]]
(where t = p−sh T for some sh ∈ Q∩] 1

p−1 ,∞[ and Oh is a finite extension of Zp

containing psh such that its fraction field is Galois over Qp) and a finite torsion
free �h-algebra Th (see Sect. 3.1), called an adapted slope � h Hecke algebra. Let
θ : Th → I

◦ be an irreducible component; it is finite and torsion-free over �h . The
notation I

◦ is borrowed from the theory of Tate algebras, but I
◦ is not a Tate or an

affinoid algebra. We write I = I
◦[p−1]. We assume for simplicity that I

◦ is normal.
The finite slope family θ gives rise to a continuous Galois representation ρθ : GQ →
GL2(I

◦). We assume that the residual representation ρθ is absolutely irreducible. We
introduce the finite abelian 2-group � as above, together with its fixed ring I0 and the
open normal subgroup H0 ⊂ GQ. In Sect. 5.1 we define a ring Br (with an inclusion
I0 ↪→ Br ) and a Lie algebraHr ⊂ sl2(Br ) attached to the image of ρθ . In the positive
slope case CM families do not exist (see Sect. 3.3) hence no “non-CM” assumption
is needed in the following. As before we can assume, after conjugation by an element
of GL2(I

◦), that ρθ (H0) ⊂ GL2(I
◦
0). Let P1 ⊂ �h be the prime (u−1(1 + T ) − 1).

Theorem 1.3 (Theorem 6.2) Let θ : Th → I
◦ be a positive slope family such that

ρθ |H0 is absolutely irreducible. Assume that there exists d ∈ ρθ (H0)with eigenvalues
α, β ∈ Z

×
p such thatα

2 �≡ β2 (mod p). Then there exists a nonzero ideal l ⊂ I0[P−1
1 ]

such that
l · sl2(Br ) ⊂ Hr .

The largest such ideal l is called the Galois level of θ .
We also introduce the notion of fortuitous CM congruence ideal for θ (see

Sect. 3.4). It is the ideal c ⊂ I given by the product of the primary ideals modulo
which a congruence between θ and a slope � h CM form occurs. Following the
proof of Hida’s Theorem II we are able to show (Theorem 7.1) that the set of primes
of I0 = I

◦
0[p−1] containing l coincideswith the set of primes containing c ∩ I0, except

possibly for the primes of I0 above P1 (the weight 1 primes).
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Several generalizations of the present work are currently being studied by one
of the authors.1 They include a generalization of [10], where the authors treated the
ordinary case forGSp4 with a residual representation induced from the one associated
with a Hilbert modular form, to the finite slope case and to bigger groups and more
types of residual representations.

Acknowledgements. This paper owes much to Hida’s recent paper [9]. We also
thank Jaclyn Lang for making her dissertation [12] available to us and for some
very useful remarks pertaining to Sect. 4. We thank the referee of this article for the
careful reading of the manuscript and for useful suggestions which hopefully led to
improvements.

2 The Eigencurve

2.1 The Weight Space

Fix a prime integer p > 2. We call weight space the rigid analytic space over Qp,
W, canonically associated with the formal scheme over Zp, Spf(Zp[[Z×

p ]]). The
Cp-points of W parametrize continuous homomorphisms Z

×
p → C

×
p .

Let X be a rigid analytic space defined over some finite extension L/Qp. We say
that a subset S of X (Cp) is Zariski-dense if the only closed analytic subvariety Y of
X satisfying S ⊂ Y (Cp) is X itself.

For every r > 0, we denote by B(0, r), respectively B(0, r−), the closed, respec-
tively open, disc in Cp of centre 0 and radius r . The space W is isomorphic to a
disjoint union of p − 1 copies of the open unit discB(0, 1−) centre in 0 and indexed
by the group Z/(p − 1)Z = μ̂p−1. If u denotes a topological generator of 1 + pZp,
then an isomorphism is given by

Z/(p − 1)Z × B(0, 1−) → W, (i, v) �→ χi,v,

whereχi,v((ζ, ux )) = ζ i (1 + v)x . Here wewrote an element ofZ
×
p uniquely as a pair

(ζ, ux ) with ζ ∈ μp−1 and x ∈ Zp. We make once and for all the choice u = 1 + p.
We say that a point χ ∈ W(Cp) is classical if there exists k ∈ N and a finite order

characterψ : Z
×
p → C

×
p such that χ is the character z �→ zkψ(z). The set of classical

points is Zariski-dense in W(Cp).
If Spm R ⊂ W is an affinoid open subset, we denote by κ = κR : Z

×
p → R× its

tautological character given by κ(t)(χ) = χ(t) for every χ ∈ Spm R. Recall ([3,
Proposition 8.3]) that κR is r -analytic for every sufficiently small radius r > 0 (by
which we mean that it extends to a rigid analytic function on Z

×
pB(1, r)).

1A. Conti.
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2.2 Adapted Pairs and the Eigencurve

Let N be a positive integer prime to p. We recall the definition of the spectral
curve ZN and of the cuspidal eigencurve CN of tame level �1(N ). These objects
were constructed in [6] for p > 2 and N = 1 and in [3] in general. We follow the
presentation of [3, Part II]. Let Spm R ⊂ W be an affinoid domain and let r = p−s

for s ∈ Q be a radius smaller than the radius of analyticity of κR . We denote by MR,r

the R-module of r -overconvergent modular forms of weight κR . It is endowed it with
a continuous action of the Hecke operators T�, � � Np, and Up. The action of Up on
MR,r is completely continuous, so we can consider its associated Fredholm series
FR,r (T ) = det(1 −UpT |MR,r ) ∈ R{{T }}. These series are compatible when R and
r vary, in the sense that there exists F ∈ �{{T }} that restricts to FR,r (T ) for every
R and r .

The series FR,r (T ) converges everywhere on the R-affine line Spm R × A
1,an ,

so it defines a rigid curve ZN
R,r = {FR,r (T ) = 0} in Spm R × A

1,an . When R and r
vary, these curves glue into a rigid space ZN endowed with a quasi-finite and flat
morphismwZ : ZN → W. The curve ZN is called the spectral curve associated with
the Up-operator. For every h � 0, let us consider

ZN ,�h
R = ZN

R ∩ (
Spm R × B(0, ph)

)
.

By [3, Lemma 4.1] ZN ,�h
R is quasi-finite and flat over Spm R.

We now recall how to construct an admissible covering of ZN .

Definition 2.1 We denote by C the set of affinoid domains Y ⊂ Z such that:

• there exists an affinoid domain Spm R ⊂ W such that Y is a union of connected
components of w−1

Z (Spm R);
• the map wZ |Y : Y → Spm R is finite.

Proposition 2.2 [3, Theorem 4.6] The covering C is admissible.

Note in particular that an element Y ∈ Cmust be contained in ZN ,�h
R for some h.

For every R and r as above and every Y ∈ C such that wZ (Y ) = Spm R, we can
associate with Y a direct factor MY of MR,r by the construction in [3, Sect. I.5]. The
abstract Hecke algebra H = Z[T�]��Np acts on MR,r and MY is stable with respect
to this action. Let TY be the R-algebra generated by the image of H in EndR(MY )

and let CN
Y = SpmTY . Note that it is reduced as all Hecke operators are self-adjoint

for a certain pairing and mutually commute.
For every Y the finite covering CN

Y → Spm R factors through Y → Spm R. The
eigencurve CN is defined by gluing the affinoids CN

Y into a rigid curve, endowed
with a finite morphism CN → ZN . The curve CN is reduced and flat over W since
it is so locally.

We borrow the following terminology from Bellaïche.
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Definition 2.3 [1, Definition II.1.8] Let Spm R ⊂ W be an affinoid open subset
and h > 0 be a rational number. The couple (R, h) is called adapted if ZN ,�h

R is an
element of C.
By [1, Corollary II.1.13] the sets of the form ZN ,�h

R are sufficient to admissibly cover
the spectral curve.

Now we fix a finite slope h. We want to work with families of slope � h which
are finite over a wide open subset of the weight space. In order to do this it will be
useful to know which pairs (R, h) in a connected component of W are adapted. If
Spm R′ ⊂ Spm R are affinoid subdomains of W and (R, h) is adapted then (R′, h)

is also adapted by [1, Proposition II.1.10]. By [3, Lemma 4.3], the affinoid Spm R is
adapted to h if and only if the weight map ZN ,�h

R → Spm R has fibres of constant
degree.

Remark 2.4 Given a slope h and a classical weight k, it would be interesting to have
a lower bound for the radius of a disc of centre k adapted to h. A result of Wan ([24,
Theorem 2.5]) asserts that for a certain radius rh depending only on h, N and p,
the degree of the fibres of ZN ,�h

B(k,rh)
→ SpmB(k, rh) at classical weights is constant.

Unfortunately we do not know whether the degree is constant at all weights of
B(k, rh), so this is not sufficient to answer our question. Estimates for the radii of
adapted discs exist in the case of eigenvarieties for groups different than GL2; see
for example the results of Chenevier on definite unitary groups ([4, Sect. 5]).

2.3 Pseudo-characters and Galois Representations

Let K be a finite extension of Qp with valuation ring OK . Let X be a rigid analytic
variety defined over K . We denote by O(X) the ring of global analytic functions on
X equipped with the coarsest locally convex topology making the restriction map
O(X) → O(U ) continuous for every affinoidU ⊂ X . It is a Fréchet space isomorphic
to the inverse limit over all affinoid domains U of the K -Banach spaces O(U ). We
denote byO(X)◦ theOK -algebra of functions bounded by 1 on X , equipped with the
topology induced by that on O(X). The question of the compactness of this ring is
related to the following property of X .

Definition 2.5 [2, Definition 7.2.10] We say that a rigid analytic variety X defined
over K is nested if there is an admissible covering X = ⋃

Xi by open affinoids Xi

defined over K such that the maps O(Xi+1) → O(Xi ) induced by the inclusions are
compact.

We equip the ringO(X)◦ with the topology induced by that onO(X) = lim←−i
O(Xi ).

Lemma 2.6 [2, Lemma 7.2.11(ii)] If X is reduced and nested, then O(X)◦ is a
compact (hence profinite) OK -algebra.

We will be able to apply Lemma 2.6 to the eigenvariety thanks to the following.
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Proposition 2.7 [2, Corollary 7.2.12] The eigenvariety CN is nested for K = Qp.

Given a reduced nested subvariety X of CN defined over a finite extension K
of Qp there is a pseudo-character on X obtained by interpolating the classical
ones. Let Q

Np be the maixmal extension of Q uniamified outside Np and let GQ,

Np = Gal(QNp/Q).

Proposition 2.8 [1, Theorem IV.4.1] There exists a unique pseudo-character

τ : GQ,Np → O(X)◦

of dimension 2 such that for every � prime to Np, τ(Frob�) = ψX (T�), where ψX is
the composition of ψ : H → O(CN )◦ with the restriction map O(CN )◦ → O(X)◦.

Remark 2.9 One can take as an example of X a union of irreducible components of
CN in which case K = Qp. Later we will consider other examples where K �= Qp.

3 The Fortuitous Congruence Ideal

In this section we will define families with slope bounded by a finite constant and
coefficients in a suitable profinite ring. We will show that any such family admits at
most a finite number of classical specializations which are CMmodular forms. Later
we will define what it means for a point (not necessarily classical) to be CM and we
will associate with a family a congruence ideal describing its CM points. Contrary to
the ordinary case, the non-ordinary CM points do not come in families so the points
detected by the congruence ideal do not correspond to a crossing between a CM and
a non-CM family. For this reason we call our ideal the “fortuitous congruence ideal”.

3.1 The Adapted Slope � h Hecke Algebra

Throughout this section we fix a slope h > 0. Let CN ,�h be the subvariety of CN

whose points have slope � h. Unlike the ordinary case treated in [9] the weight map
w�h : CN ,�h → W is not finite which means that a family of slope � h is not in
general defined by a finite map over the entire weight space. The best we can do
in the finite slope situation is to place ourselves over the largest possible wide open
subdomainU ofW such that the restricted weight mapw�h |U : CN ,�h ×W U → U
is finite. This is a domain “adapted to h” in the sense of Definition 2.3 where only
affinoid domains were considered. The finiteness property will be necessary in order
to apply going-up and going-down theorems.

Let us fix a rational number sh such that for rh = p−sh the closed disc B(0, rh)
is adapted for h. We assume that sh > 1

p−1 (this will be needed later to assure the

convergence of the exponential map). Let ηh ∈ Qp be an element of p-adic valuation
sh . Let Kh be the Galois closure (in Cp) of Qp(ηh) and let Oh be its valuation
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ring. Recall that T is the variable on the open disc of radius 1. Let t = η−1
h T and

�h = Oh[[t]]. This is the ring of analytic functions,withOh-coefficients and bounded
by one, on the wide open disc Bh of radius p−sh . There is a natural map � → �h

corresponding to the restriction of analytic functions on the open disc of radius 1,
with Zp coefficients and bounded by 1, to the open disc of radius rh . The image of
this map is the ring Zp[[ηt]] ⊂ Oh[[t]].

For i � 1, let si = sh + 1/ i andBi = B(0, p−si ). The open discBh is the increas-
ing union of the affinoid discsBi . For each i amodel forBi over Kh is given byBerth-
elot’s construction of Bh as the rigid space associated with the Oh-formal scheme
Spf �h . We recall it briefly following [7, Sect. 7]. Let

A◦
ri = Oh〈t, Xi 〉/(pXi − t i ).

We have Bi = Spm A◦
ri [p−1] as rigid space over Kh . For every i we have a mor-

phism A◦
ri+1

→ A◦
ri given by

Xi+1 �→ Xi t

t �→ t

Wehave induced compactmorphisms A◦
ri+1

[p−1] → A◦
ri [p−1], henceopen immer-

sionsBi → Bi+1 defined over Kh . The wide open discBh is defined as the inductive
limit of the affinoids Bi with these transition maps. We have �h = lim←−i

A◦
ri .

Since the si are strictly bigger than sh for each i , B(0, p−si ) = Spm A◦
ri [p−1] is

adapted to h. Therefore for every r > 0 sufficiently small and for every i � 1 the
image of the abstract Hecke algebra acting on MAri ,r

provides a finite affinoid A◦
ri -

algebra T
�h
A◦
ri

,r . The morphism wA◦
ri

,r : SpmT
�h
A◦
ri

,r → Spm A◦
ri is finite. For i < j we

have natural open immersions SpmT
�h
A◦
r j

,r → SpmT
�h
A◦
ri

,r and corresponding restric-

tion maps T
�h
A◦
ri

,r → T
�h
A◦
r j

,r . We call Ch the increasing union
⋃

i∈N,r>0 SpmT
�h
A◦
ri

,r ; it

is a wide open subvariety ofCN . We denote byTh the ring of rigid analytic functions
bounded by 1 onCh . We have Th = O(Ch)

◦ = lim←−i,r
T

�h
A◦
ri

,r . There is a natural weight

map wh : Ch → Bh that restricts to the maps wA◦
ri

,r . It is finite because the closed
ball of radius rh is adapted to h.

3.2 The Galois Representation Associated with a Family
of Finite Slope

Since O(Bh)
◦ = �h , the map wh gives Th the structure of a finite �h-algebra; in

particular Th is profinite.
Let m be a maximal ideal of Th . The residue field k = Th/m is finite. Let Tm

denote the localization of Th at m. Since �h is henselian, Tm is a direct factor of
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Th , hence it is finite over �h ; it is also local noetherian and profinite. It is the ring of
functions bounded by 1 on a connected component ofCh . LetW = W (k) be the ring
ofWitt vectors of k. By the universal property ofW ,Tm is aW -algebra. The affinoid
domain SpmTm contains a zarisiki-dense set of points x corresponding to cuspidal
eigenforms fx of weight w(x) = kx � 2 and level Np. The Galois representations
ρ fx associated with the fx give rise to a residual representation ρ : GQ,Np → GL2(k)
that is independent of fx . By Proposition 2.8, we have a pseudo-character

τTm
: GQ,Np → Tm

such that for every classical point x : Tm → L , defined over some finite extension
L/Qp, the specialization of τTm

at x is the trace of L fx .

Proposition 3.1 If ρ is absolutely irreducible there exists a unique continuous irre-
ducible Galois representation

ρTm
: GQ,Np → GL2(Tm),

lifting ρ and whose trace is τTm
.

This follows from a result of Nyssen and Rouquier ([14], [18, Corollary 5.2]), since
Tm is local henselian.

Let I◦ be a finite torsion-free�h-algebra.We call family an irreducible component
of SpecTh defined by a surjective morphism θ : Th → I

◦ of�h-algebras. Since such
a map factors viaTm → I

◦ for somemaximal idealm ofTh , we can define a residual
representation ρ associated with θ . Suppose that ρ is irreducible. By Proposition 3.1
we obtain a Galois representation ρ : GQ → GL2(I

◦) associated with θ .

Remark 3.2 If ηh /∈ Qp, �h is not a power series ring over Zp.

3.3 Finite Slope CM Modular Forms

In this section we study non-ordinary finite slope CM modular forms. We say that a
family is CM if all its classical points are CM.We prove that for every h > 0 there are
noCMfamilieswith positive slope� h. However, contrary to the ordinary case, every
family of finite positive slope may contain classical CM points of weight k � 2. Let
F be an imaginary quadratic field, f an integral ideal in F , If the group of fractional
ideals prime to f. Let σ1, σ2 be the embeddings of F into C (say that σ1 = IdF ) and
let (k1, k2) ∈ Z

2. A Grössencharacter ψ of infinity type (k1, k2) defined modulo f
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is a homomorphism ψ : If → C
∗ such that ψ((α)) = σ1(α)k1σ2(α)k2 for all α ≡ 1

(mod×f). Consider the q-expansion
∑

a⊂OF ,(a,f)=1

ψ(a)qN (a),

where the sum is over ideals a ⊂ OF and N (a) denotes the norm of a. Let F/Q be an
imaginary quadratic field of discriminant D and letψ be a Grössencharacter of exact
conductor f and infinity type (k − 1, 0). By [22, Lemma 3] the expansion displayed
above defines a cuspidal newform f (F, ψ) of level N (f)D.

Ribet proved in [16, Theorem 4.5] that if a newform g of weight k � 2 and
level N has CM by an imaginary quadratic field F , one has g = f (F, ψ) for some
Grössencharacter ψ of F of infinity type (k − 1, 0).

Definition 3.3 We say that a classicalmodular eigenform g ofweight k and level Np
has CM by an imaginary quadratic field F if its Hecke eigenvalues for the operators
T�, � � Np, coincide with those of f (F, ψ) for some Grössencharacter ψ of F of
infinity type (k − 1, 0). We also say that g is CM without specifying the field.

Remark 3.4 For g as in the definition the Galois representations ρg, ρ f (F,ψ) : GQ →
GL2(Qp) associated with g and f (F, ψ) are isomorphic, hence the image of the
representation ρg is contained in the normalizer of a torus in GL2.

Proposition 3.5 Let g be a CM modular eigenform of weight k and level Npm with
N prime to p and m � 0. Then its p-slope is either 0, k−1

2 , k − 1 or infinite.

Proof Let F be the quadratic imaginary field and ψ the Grössencharacter of F
associated with the CM form g by Definition 3.3. Let f be the conductor of ψ .

We assume first that g is p-new, so that g = f (F, ψ). Let ap be theUp-eigenvalue
of g. If p is inert in F we have ap = 0, so the p-slope of g is infinite. If p splits in F as
pp̄, then ap = ψ(p) + ψ(p̄). We can find an integer n such that pn is a principal ideal
(α)with α ≡ 1 (mod×f). Henceψ((α)) = αk−1. Since α is a generator of pn we have
α ∈ p and α /∈ p̄; moreover αk−1 = ψ((α)) = ψ(p)n , so we also haveψ(p) ∈ p − p̄.
In the same way we find ψ(p̄) ∈ p̄ − p. We conclude that ψ(p) + ψ(p̄) does not
belong to p, so its p-adic valuation is 0.

If p ramifies as p2 in F , then ap = ψ(p). As before we find n such that pn = (α)

with α ≡ 1 (mod×f). Then (ψ(p))nψ(pn) = ψ((α)) = αk−1 = pn(k−1). By looking
at p-adic valuations we find that the slope is k−1

2 .
If g is not p-new, it is the p-stabilization of a CM form f (F, ψ) of level prime

to p. If ap is the Tp-eigenvalue of f (F, ψ), the Up-eigenvalue of g is a root of the
Hecke polynomial X2 − apX + ζ pk−1 for some root of unity ζ . By our discussion
of the p-new case, the valuation of ap belongs to the set

{
0, k−1

2 , k − 1
}
. Then it is

easy to see that the valuations of the roots of the Hecke polynomial belong to the
same set. �

We state a useful corollary.
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Corollary 3.6 There are no CM families of strictly positive slope.

Proof We show that the eigencurve Ch contains only a finite number of points cor-
responding to classical CM forms. It will follow that almost all classical points of
a family in Ch are non-CM. Let f be a classical CM form of weight k and positive
slope. By Proposition 3.5 its slope is at least k−1

2 . If f corresponds to a point of Ch

its slope must be � h, so we obtain an inequality k−1
2 � h. The set of weights K

satisfying this condition is finite. Since the weight map Ch → Bh is finite, the set of
points of Ch whose weight lies in K is finite. Hence the number of CM forms in Ch

is also finite. �

We conclude that, in the finite positive slope case, classical CM forms can appear
only as isolated points in an irreducible component of the eigencurve Ch . In the
ordinary case, the congruence ideal of a non-CM irreducible component is defined
as the intersection ideal of the CM irreducible components with the given non-CM
component. In the case of a positive slope family θ : Th → I

◦, we need to define the
congruence ideal in a different way.

3.4 Construction of the Congruence Ideal

Let θ : Th → I
◦ be a family. We write I = I

◦[p−1].
Fix an imaginary quadratic field F where p is inert or ramified; let −D be its

discriminant. Let Q be a primary ideal of I; then q = Q ∩ �h is a primary ideal
of �h . The projection �h → �h/q defines a point of Bh (possibly non-reduced)
corresponding to a weight κQ : Z

∗
p → (�h/q)

∗. For r > 0 we denote by Br the ball
of centre 1 and radius r in Cp. By [3, Proposition 8.3] there exists r > 0 and a
character κQ,r : Z

×
p · Br → (�h/q)

× extending κQ.
Let σ be an embedding F ↪→ Cp. Let r and κQ,r be as above. For m sufficiently

large σ(1 + pmOF ) is contained in Z
×
p · Br , the domain of definition of κQ,r .

For an ideal f ⊂ OF let If be the group of fractional ideals prime to f. For every
prime � not dividing Np we denote by a�,Q the image of the Hecke operator T� in
I
◦/Q.We define here a notion of non-classical CMpoint of θ (hence of the eigencurve
Ch) as follows.

Definition 3.7 Let F, σ,Q, r, κQ,r be as above. We say that Q defines a CM point
of weight κQ,r if there exist an integer m > 0, an ideal f ⊂ OF with norm N (f) such
that DN (f) divides N , a quadratic extension (I/Q)′ of I/Q and a homomorphism
ψ : Ifpm → (I/Q)′× such that:

1. σ(1 + pmOF ) ⊂ Z
×
p · Br ;

2. for every α ∈ OF with α ≡ 1 (mod×fpm), ψ((α)) = κQ,r (α)α−1;
3. a�,Q = 0 if L is a prime inert in F and not dividing Np;
4. a�,Q = ψ(l) + ψ(l̄) if � is a prime splitting as ll̄ in F and not dividing Np.
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Note that κQ,r (α) is well defined thanks to condition 1.

Remark 3.8 IfP is a prime of I corresponding to a classical form f thenP is a CM
point if and only if f is a CM form in the sense of Sect. 3.3.

Proposition 3.9 The set of CM points in Spec I is finite.

Proof Bycontradiction assume it is infinite. Thenwehave an injection I ↪→ ∏
P I/P

whereP runs over the set of CMprime ideals of I. One can assume that the imaginary
quadratic field of complexmultiplication is constant along I.We can also assume that
the ramification of the associated Galois characters λP : GF → (I/P)× is bounded
(in support and in exponents). On the density one set of primes of F prime to fp and
of degree one, they take values in the image of I

× hence they define a continuous
Galois character λ : GF → I

× such that ρθ = IndGQ

GF
λ, which is absurd (by Corallary

3.6 and specialization at non-CM classical points which do exist). �

Definition 3.10 The (fortuitous) congruence ideal cθ associated with the family θ is
defined as the intersection of all the primary ideals of I corresponding to CM points.

Remark 3.11 (Characterizations of the CM locus)

1. Assume that ρθ = IndGQ

GK
λ for a unique imaginary quadratic field K . Then the

closed subscheme V (cθ ) = Spec I/cθ ⊂ Spec I is the largest subscheme onwhich

there is an isomorphism of Galois representations ρθ
∼= ρθ ⊗

(
K/Q

•
)
. Indeed,

for every artinian Qp-algebra A, a CM point x : I → A is characterized by the

conditions x(T�) = x(T�)
(

K/Q

�

)
for all primes � not dividing Np.

2. Note that N is divisible by the discriminant D of K . Assume that I is N -new and
that D is prime to N/D. Let WD be the Atkin-Lehner involution associated with
D. Conjugation by WD defines an automorphism ιD of Th and of I. Then V (cθ )
coincides with the (schematic) invariant locus (Spec I)ιD=1.

4 The Image of the Representation Associated
with a Finite Slope Family

It is shown by Lang in [12, Theorem 2.4] that, under some technical hypotheses, the
image of the Galois representation ρ : GQ → GL2(I

◦) associated with a non-CM
ordinary family θ : T → I

◦ contains a congruence subgroup of SL2(I
◦
0), where I

◦
0 is

the subring of I
◦ fixed by certain “symmetries” of the representation ρ. In order to

study the Galois representation associated with a non-ordinary family we will adapt
some of the results in [12] to this situation. Since the crucial step ([12, Theorem
4.3]) requires the Galois ordinarity of the representation (as in [9, Lemma 2.9]),
the results of this section will not imply the existence of a congruence subgroup of
SL2(I

◦
0) contained in the image of ρ. However, we will prove in later sections the
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existence of a “congruence Lie subalgebra” of sl2(I◦
0) contained in a suitably defined

Lie algebra of the image of ρ by means of relative Sen theory.
For every ring R we denote by Q(R) its total ring of fractions.

4.1 The Group of Self-twists of a Family

We follow [12, Sect. 2] in this subsection. Let h � 0 and θ : Th → I
◦ be a family

of slope � h defined over a finite torsion free �h-algebra I
◦. Recall that there is a

natural map � → �h with image Zp[[ηt]].
Definition 4.1 We say that σ ∈ AutQ(Zp[[ηt]])(Q(I◦)) is a conjugate self-twist for θ

if there exists a Dirichlet character ησ : GQ → I
◦,× such that

σ(θ(T�)) = ησ (�)θ(T�)

for all but finitely many primes �.

Any such σ acts on�h = Oh[[t]] by restriction, trivially on t and by aGalois auto-
morphism on Oh . The conjugates self-twists for θ form a subgroup of AutQ(Zp[[ηt]])
(Q(I◦)). We recall the following result which holds without assuming the ordinarity
of θ .

Lemma 4.2 [12, Lemma 7.1] � is a finite abelian 2-group.

We suppose from now on that I
◦ is normal. The only reason for this hypothesis

is that in this case I
◦ is stable under the action of � on Q(I◦), which is not true in

general. This makes it possible to define the subring I
◦
0 of elements of I

◦ fixed by �.

Remark 4.3 The hypothesis of normality of I
◦ is just a simplifying one. We could

work without it by introducing the �h-order I
◦,′ = �h[θ(T�), � � Np] ⊂ I

◦: this is
an analogue of the �-order I

′ defined in [12, Sect. 2] and it is stable under the action
of �. We would define I

◦
0 as the fixed subring of I

◦,′ and the arguments in the rest of
the article could be adapted to this setting.

The subring of �h fixed by � is an Oh,0 form of �h for some subring Oh,0 of Oh .
We denote it by �h,0 the field of fractions of Oh,0.

Remark 4.4 Bydefinition� fixesZp[[ηt]], sowehaveZp[[ηt]] ⊂ �h,0. In particular
it makes sense to speak about the ideal Pk�h,0 for every arithmetic prime Pk =
(1 + ηt − uk) ⊂ Zp[[ηt]]. Note that Pk�h defines a prime ideal of �h if and only if
the weight k belongs to the open disc Bh , otherwise Pk�h = �h .We see immediately
that the same statement is true if we replace �h by �h,0.

Note that I◦
0 is a finite extension of�h,0 because I

◦ is a finite�h-algebra.Moreover,
we have K �

h = Kh,0 (although the inclusion �h · I
◦
0 ⊂ I

◦ may not be an equality).
We define two open normal subgroups of GQ by:
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• H0 = ⋂
σ∈� ker ησ ;

• H = H0 ∩ ker(det ρ).

Note that H0 is an open normal subgroup of GQ and that H is a n open normal
subgroup of H0 and GQ.

4.2 The Level of a General Ordinary Family

We recall the main result of [12]. Denote byT the big ordinary Hecke algebra, which
is finite over � = Zp[[T ]]. Let θ : T → I

◦ be an ordinary family with associated
Galois representation ρ : GQ → GL2(I

◦). The representation ρ is p-ordinary, which
means that its restriction ρ|Dp to a decomposition subgroup Dp ⊂ GQ is reducible.
There exist two characters ε, δ : Dp → I

◦,×, with δ unramified, such that ρ|Dp is an
extension of ε by δ.

Denote by F the residue field of I
◦ and by ρ the representation GQ → GL2(F)

obtainedby reducingρmodulo themaximal ideal of I◦. Lang introduces the following
technical condition.

Definition 4.5 The p-ordinary representation ρ is called H0-regular if ε|Dp∩H0 �=
δ|Dp∩H0 .

The following result states the existence of a Galois level for ρ.

Theorem 4.6 [12, Theorem 2.4] Let ρ : GQ → GL2(I
◦) be the representation asso-

ciated with an ordinary, non-CM family θ : T → I
◦. Assume that p > 2, the car-

dinality of F is not 3 and the residual representation ρ is absolutely irreducible
and H0-regular. Then there exists γ ∈ GL2(I

◦) such that γ · Im ρ · γ −1 contains a
congruence subgroup of SL2(I

◦
0).

The proof relies on the analogous result proved by Ribet [15] and Momose [13] for
the p-adic representation associated with a classical modular form.

4.3 An Approximation Lemma

In this subsection we prove an analogue of [10, Lemma 4.5]. It replaces in our
approach the use of Pink’s Lie algebra theory, which is relied upon in the case of
ordinary representations in [9, 12]. Let I

◦
0 be a local domain that is finite torsion free

over �h . It does not need to be related to a Hecke algebra for the moment.
Let N be an open normal subgroup ofGQ and let ρ : N → GL2(I

◦
0) be an arbitrary

continuous representation. We denote by mI◦
0
the maximal ideal of I

◦
0 and by F =

I
◦
0/mI◦

0
its residue field of cardinality q. In the lemmawe do not suppose that ρ comes

from a family of modular forms. We will only assume that it satisfies the following
technical condition:
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Definition 4.7 Keep notations as above. We say that the representation ρ : N →
GL2(I

◦
0) is Zp-regular if there exists d ∈ Im ρ with eigenvalues d1, d2 ∈ Zp such

that d2
1 �≡ d2

2 (mod p). We call d a Zp-regular element. If N ′ is an open normal
subgroup of N then we say that ρ is (N ′, Zp)-regular if ρ|N ′ is Zp-regular.

Let B± denote the Borel subgroups consisting of upper, respectively lower, trian-
gular matrices in GL2. Let U± be the unipotent radical of B±.

Proposition 4.8 Let I◦
0 be a finite torsion free �h,0-algebra, N an open normal sub-

group of GQ and ρ: N → GL2(I
◦
0) a continuous representation that is Zp-regular.

Suppose (upon replacing ρ by a conjugate) that aZp-regular element is diagonal. Let
P be an ideal of I◦

0 andρP : N → GL2(I
◦
0/P) be the representation given by the reduc-

tion of ρ modulo P. Let U±(ρ), and U±(ρP) be the upper and lower unipotent sub-
groups of Im ρ, and Im ρP, respectively. Then the natural maps U+(ρ) → U+(ρP)

and U−(ρ) → U−(ρP) are surjective.

Remark 4.9 The ideal P in the proposition is not necessarily prime. At a certain
point we will need to take P = PI

◦
0 for a prime ideal P of �h,0.

As in [10, Lemma 4.5] we need two lemmas. Since the argument is the same for
U+ andU−, we will only treat here the upper triangular caseU = U+ and B = B+.

For ∗ = U, B and every j � 1 we define the groups

�∗(P j ) = {x ∈ SL2(I
◦
0) | x (mod P j ) ∈ ∗(I◦

0/P
j )}.

Let �I◦
0
(P j ) be the kernel of the reduction morphism π j : SL2(I

◦
0) → SL2(I

◦
0/P

j ).

Note that �U (P j ) = �I◦
0
(P j )U (I◦

0) consists of matrices

(
a b
c d

)

such that a, d ≡ 1

(mod P j ), c ≡ 0 (mod P j ). Let K = Im ρ and

KU (P j ) = K ∩ �U (P j ), KB(P j ) = K ∩ �B(P j ).

Since U (I◦
0) and �I◦

0
(P) are p-profinite, the groups �U (P j ) and KU (P j ) for all

j � 1 are also p-profinite. Note that

[(
a b
c −a

)
,
( e f
g −e

)] =
(

bg−c f 2(a f −be)
2(ce−ag) c f −bg

)
.

From this we obtain the following.

Lemma 4.10 If X, Y ∈ sl2(I
◦
0) ∩ (

P j Pk

Pi P j

)
with i � j � k, then [X,Y ] ∈ (

Pi+k P j+k

Pi+ j Pi+k

)
.

Wedenote byD�U (P j ) the topological commutator subgroup (�U (P j ), �U (P j )).
Lemma 4.10 tells us that

D�U (P j ) ⊂ �B(P2 j ) ∩ �U (P j ). (1)
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By the Zp-regularity assumption, there exists a diagonal element d ∈ K with
eigenvalues in Zp and distinct modulo p. Consider the element δ = limn→∞ d pn ,
which belongs to K since this is p-adically complete. In particular δ normalizes K .
It is also diagonal with coefficients inZp, so it normalizes KU (P j ) and�B(P j ). Since
δ p = δ, the eigenvalues δ1 and δ2 of δ are roots of unity of order dividing p − 1. They
still satisfy δ21 �= δ22 as p �= 2.

Set α = δ1/δ2 ∈ F
×
p and let a be the order of α as a root of unity. We see α as

an element of Z
×
p via the Teichmüller lift. Let H be a p-profinite group normalized

by δ. Since H is p-profinite, every x ∈ H has a unique a-th root. We define a map
� : H → H given by

�(x) = [x · ad(δ)(x)α−1 · ad(δ2)(x)α−2 · · · ad(δa−1)(x)α
1−a ]1/a

Lemma 4.11 If u ∈�U (P j ) for some j � 1, then�2(u)∈�U (P2 j ) and π j (�(u)) =
π j (u).

Proof If u ∈ �U (P j ), we have π j (�(u)) = π j (u) as � is the identity map on
U (I◦

0/P
j ). Let D�U (P j ) be the topological commutator subgroup of �U (P j ). Since

� induces the projection of the Zp-module �U (P j )/D�U (P j ) onto its α-eigenspace
for ad(d), it is a projection onto U (I◦

0)D�U (P j )/D�U (P j ). The fact that this is
exactly the α-eigenspace comes from the Iwahori decomposition of �U (P j ), hence
a similar direct sum decomposition holds in the abelianization �U (P j )/D�U (P j ).

By (1), we have D�U (P j ) ⊂ �B(P2 j ) ∩ �U (P j ). Since the α-eigenspace of
�U (P j )/D�U (P j ) is inside �B(P2 j ), � projects u�U (P j ) to

�(u) ∈ (�B(P2 j ) ∩ �U (P j ))/D�U (P j ).

In particular, �(u) ∈ �B(P2 j ) ∩ �U (P j ). Again apply �. Since �B(P2 j )/�I◦
0
(P2 j )

is sent to �U (P2 j )/�I◦
0
(P2 j ) by �, we get �2(u) ∈ �U (P2 j ) as desired. �

Proof We can now prove Proposition 4.8. Let u ∈ U (I◦
0/P) ∩ Im(ρP). Since the

reduction map Im(ρ) → Im(ρP) induced by π1 is surjective, there exists v ∈ Im(ρ)

such that π1(v) = u. Take u1 ∈ U (I◦
0) such that π1(u1) = u (this is possible since

π1 : U (�h) → U (�h/P) is surjective). Then vu−1
1 ∈ �I◦

0
(P), so v ∈ KU (P).

By compactness of KU (P) and by Lemma 4.11, starting with v as above,
we see that limm→∞ �m(v) converges P-adically to �∞(v) ∈ U (I◦

0) ∩ K with
π1(�

∞(v)) = u. �

Remark 4.12 Proposition 4.8 is true with the same proof if we replace �h,0 by �h

and I
◦
0 by a finite torsion free �h-algebra.

As a first application of Proposition 4.8 we give a result that we will need in the
next subsection. Given a representation ρ : GQ → GL2(I

◦) and every ideal P of I
◦

we define ρP, U±(ρ) and U±(ρP) as above, by replacing I
◦
0 by I

◦.

Proposition 4.13 Let θ : Th → I
◦ be a family of slope� h and ρθ : GQ → GL2(I

◦)
be the representation associated with θ . Suppose that ρθ is (H0, Zp)-regular and let



Big Image of Galois Representations Associated with Finite Slope … 103

ρ be a conjugate of ρθ such that Im ρ|H0 contains a diagonal Zp-regular element.
Then U+(ρ) and U−(ρ) are both nontrivial.

Proof By density of classical points in Th we can choose a prime ideal P ⊂ I
◦

corresponding to a classical modular form f . The modulo P representation ρP is the
p-adic representation classically associated with f . By the results of [13, 15] and
the hypothesis of (H0, Zp)-regularity of L, there exists an ideal lP of Zp such that
Im ρP contains the congruence subgroup �Zp (lP). In particularU

+(ρP) andU−(ρP)

are both nontrivial. Since the maps U+(ρ) → U+(ρP) and U−(ρ) → U−(ρP) are
surjective we find nontrivial elements in U+(ρ) and U−(ρ). �

We adapt the work in [12, Sect. 7] to show the following.

Proposition 4.14 Suppose that the representation ρ : GQ → GL2(I
◦) is (H0, Zp)-

regular. Then there exists g ∈ GL2(I
◦) such that the conjugate representation gρg−1

satisfies the following two properties:

1. the image of gρg−1|H0 is contained in GL2(I
◦
0);

2. the image of gρg−1|H0 contains a diagonal Zp-regular element.

Proof As usual we choose a GL2(I
◦)-conjugate of ρ such that a Zp-regular element

d is diagonal. We still write ρ for this conjugate representation and we show that it
also has property (1).

Recall that for every σ ∈ � there is a character ησ : GQ → (I◦)× and an equiv-
alence ρσ ∼= ρ ⊗ ησ . Then for every σ ∈ � there exists tσ ∈ GL2(I

◦) such that, for
all g ∈ GQ,

ρσ (g) = tσ ησ (g)ρ(g)t−1
σ . (2)

We prove that the matrices tσ are diagonal. Let ρ(t) be a non-scalar diagonal
element in Im ρ (for example d). Evaluating (2) at g = t we find that tσ must be
either a diagonal or an antidiagonal matrix. Now by Proposition 4.13 there exists a
nontrivial element ρ(u+) ∈ Im ρ ∩U+(I◦). Evaluating (2) at g = u+ we find that tσ
cannot be antidiagonal.

It is shown in [12, Lemma 7.3] that there exists an extension A of I
◦, at most

quadratic, and a function ζ : � → A× such that σ → tσ ζ(σ )−1 defines a cocycle
with values in GL2(A). The proof of this result does not require the ordinarity of ρ.
Equation (2) remains true if we replace tσ with tσ ζ(σ )−1, so we can and do suppose
from now on that tσ is a cocycle with values in GL2(A). In the rest of the proof we
assume for simplicity that A = I

◦, but everything works in the same way if A is a
quadratic extension of I

◦ and F is the residue field of A.
Let V = (I◦)2 be the space on which GQ acts via ρ. As in [12, Sect. 7] we use the

cocycle tσ to define a twisted action of � on (I◦)2. For v = (v1, v2) ∈ V we denote
by vσ the vector (vσ

1 , vσ
2 ). We write v[σ ] for the vector t−1

σ vσ . Then v → v[σ ] gives
an action of � since σ �→ tσ is a cocycle. Note that this action is I

◦
0-linear.

Since tσ is diagonal for every σ ∈ �, the submodules V1 = I
◦(1, 0) and V2 =

I
◦(0, 1) are stable under the action of �. We show that each Vi contains an element
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fixed by �. We denote by F the residue field I
◦/m◦

I . Note that the action of � on Vi

induces an action of � on the one-dimensional F-vector space Vi ⊗ I
◦/mI◦ . We show

that for each i the space Vi ⊗ I
◦/mI◦ contains a nonzero element vi fixed by �. This

is a consequence of the following argument, a form of which appeared in an early
preprint of [12]. Letw be any nonzero element of Vi ⊗ I

◦/mI◦ and let a be a variable
in F. The sum

Saw =
∑

σ∈�

(aw)[σ ]

is clearly �-invariant. We show that we can choose a such that Saw �= 0. Since
Vi ⊗ I

◦/mI◦ is one-dimensional, for everyσ ∈ � there existsασ ∈ F such thatw[σ ] =
ασw. Then

Saw =
∑

σ∈�

(aw)[σ ] =
∑

σ∈�

aσw[σ ] =
∑

σ∈�

aσασw =
(

∑

σ∈�

aσασa
−1

)

aw.

By Artin’s lemma on the independence of characters, the function f (a) =∑
σ∈� aσασa−1 cannot be identically zero on F. By choosing a value of a such

that f (a) �= 0 we obtain a nonzero element vi = Saw fixed by �.
We show that vi lifts to an element vi ∈ Vi fixed by �. Let σ0 ∈ �. By Lemma

4.2 � is a finite abelian 2-group, so the minimal polynomial Pm(X) of [σ0] acting on
Vi divides X2k − 1 for some integer k. In particular the factor X − 1 appears with
multiplicity at most 1.We show that its multiplicity is exactly 1. If Pm is the reduction
of Pm modulomI◦ then Pm([σ0]) = 0 on Vi ⊗ I

◦/mI◦ . By our previous argument there
is an element of Vi ⊗ I

◦/mI◦ fixed by� (hence by [σ0]) so we have (X − 1) | Pm(X).
Since p > 2 the polynomial X2k − 1 has no double roots modulomI◦ , so neither does
Pm . By Hensel’s lemma the factor X − 1 lifts to a factor X − 1 in Pm and vi lifts to
an element vi ∈ Vi fixed by [σ0]. Note that I

◦ · vi = Vi by Nakayama’s lemma since
vi �= 0.

We show that vi is fixed by all of �. Let W[σ0] = I
◦vi be the one-dimensional

eigenspace for [σ0] in Vi . Since � is abelianW[σ0] is stable under �. Let σ ∈ �. Since
σ has order 2k in � for some k � 0 and v

[σ ]
i ∈ W[σ0], there exists a root of unity ζσ

of order 2k satisfying v
[σ ]
i = ζσ vi . Since v

[σ ]
i = vi , the reduction of ζσ modulo mI◦

must be 1. As before we conclude that ζσ = 1 since p �= 2.
We found two elements v1 ∈ V1, v2 ∈ V2 fixed by �. We show that every element

of v ∈ V fixed by � must belong to the I
◦
0-submodule generated by v1 and v2. We

proceed as in the end of the proof of [12, Theorem 7.5]. Since V1 and V2 are �-stable
we must have v ∈ V1 or v ∈ V2. Suppose without loss of generality that v ∈ V1.
Then v = αv1 for some α ∈ I

◦. If α ∈ I
◦
0 then v ∈ I

◦
0v1, as desired. If α /∈ I

◦
0 then

there exists σ ∈ � such that ασ �= α. Since v1 is [σ ]-invariant we obtain (αv1)
[σ ] =

ασv
[σ ]
1 = ασv1 �= αv1, so αv1 is not fixed by [σ ], a contradiction.
Now (v1, v2) is a basis for V over I

◦, so the I
◦
0 submodule V0 = I

◦
0v1 + I

◦
0v2 is an

I
◦
0-lattice in V . Recall that H0 = ⋂

σ∈� ker ησ . We show that V0 is stable under the
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action of H0 via ρ|H0 , i.e. that if v ∈ V is fixed by �, so is ρ(h)v for every h ∈ H0.
This is a consequence of the following computation, where v and h are as before and
σ ∈ �:

(ρ(h)v)[σ ] = t−1
σ ρ(h)σ vσ = t−1

σ ησ (h)ρ(h)σ vσ = t−1
σ tσ ρ(h)t−1

σ vσ = ρ(h)v[σ ].

Since V0 is an I
◦
0-lattice in V stable under ρ|H0 , we conclude that Im ρ|H0 ⊂

GL2(I
◦
0). �

4.4 Fullness of the Unipotent Subgroups

From now on we write ρ for the element in its GL2(I
◦) conjugacy class such that

ρ|H0 ∈ GL2(I
◦
0). Recall that H is the open subgroup of H0 defined by the condi-

tion det ρ(h) = 1 for every h ∈ H . As in [12, Sect. 4] we define a representation
H → SL2(I

◦
0) by

ρ0 = ρ|H ⊗ (det ρ|H )−
1
2 .

We can take the square root of the determinant thanks to the definition of H . We
will use the results of [12] to deduce that the�h,0-module generated by the unipotent
subgroups of the image of ρ0 is big. We will later deduce the same for ρ.

We fix from now on a height one prime P ⊂ �h,0 with the following properties:

1. there is an arithmetic prime Pk ⊂ Zp[[ηt]] satisfying k > h + 1 and P =
Pk�h,0;

2. every prime P ⊂ I
◦ lying above P corresponds to a non-CM point.

Such a prime always exists. Indeed, by Remark 4.4 every classical weight k > h + 1
contained in the disc Bh defines a prime P = Pk�h,0 satisfying (1), so such primes
are Zariski-dense in�h,0, while the set of CMprimes in I

◦ is finite by Proposition 3.9.

Remark 4.15 Since k > h + 1, every point of SpecTh above Pk is classical by [5,
Theorem 6.1]. Moreover the weight map is étale at every such point by [11, Theorem
11.10]. In particular the prime PI

◦
0 = PkI◦

0 splits as a product of distinct primes of I
◦
0.

Make the technical assumption that the order of the residue field F of I
◦ is not 3.

For every ideal P of I
◦
0 over P we let πP be the projection SL2(I

◦
0) → SL2(I

◦
0/P).

We still denote by πP the restricted maps U±(I◦
0) → U±(I◦

0/P).
LetG = Im ρ0. For every idealP of I◦

0 we denote byρ0,P the representationπP(ρ0)

and by GP the image of ρP, so that GP = πP(G). We state two results from Lang’s
work that come over unchanged to the non-ordinary setting.

Proposition 4.16 [12, Corollary 6.3] Let P be a prime of I
◦
0 over P. Then GP

contains a congruence subgroup �I◦
0/P

(a) ⊂ SL2(I
◦
0/P). In particular GP is open

in SL2(I
◦
0/P).
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Proposition 4.17 [12, Proposition 5.1] Assume that for every primeP ⊂ I
◦
0 over P

the subgroup GP is open in SL2(I
◦
0/P). Then the image of G in

∏
P|P SL2(I

◦
0/P)

through the map
∏

P|P πP contains a product of congruence subgroups∏
P|P �I◦

0/P
(aP).

Remark 4.18 The proofs of Propositions 4.16 and 4.17 rely on the fact that the big
ordinary Hecke algebra is étale over � at every arithmetic point. In order for these
proofs to adapt to the non-ordinary setting it is essential that the prime P satisfies
the properties above Remark 4.15.

We let U±(ρ0) = G ∩U±(I◦
0) and U±(ρP) = GP ∩U±(I◦

0/P). We denote by
U (ρP) either the upper or lower unipotent subgroups of GP (the choice will be fixed
throughout the proof). By projecting to the upper right element we identify U+(ρ0)

with a Zp-submodule of I
◦
0 and U+(ρ0,P) with a Zp-submodule of I

◦
0/P. We make

analogous identifications for the lower unipotent subgroups.Wewill use Propositions
4.17 and 4.8 to show that, for both signs, U±(ρ) spans I

◦
0 over �h,0.

First we state a version of [12, Lemma 4.10], with the same proof. Let A and B
be Noetherian rings with B integral over A. We call A-lattice an A-submodule of B
generated by the elements of a basis of Q(B) over Q(A).

Lemma 4.19 Any A-lattice in B contains a nonzero ideal of B. Conversely, every
nonzero ideal of B contains an A-lattice.

We prove the following proposition by means of Proposition 4.8. We could also
use Pink theory as in [12, Sect. 4].

Proposition 4.20 Consider U±(ρ0) as subsets of Q(I◦
0). For each choice of sign the

Q(�h,0)-span of U±(ρ0) is Q(I◦
0). Equivalently the �h,0-span of U±(ρ0) contains

a �h,0-lattice in I
◦
0.

Proof Keep notations as above. We omit the sign when writing unipotent subgroups
and we refer to either the upper or lower ones (the choice is fixed throughout the
proof). Let P be the prime of �h,0 chosen above. By Remark 4.15 the ideal PI

◦
0

splits as a product of distinct primes in I
◦
0. When P varies among these primes, the

map
⊕

P|P πP gives embeddings of �h,0/P-modules I
◦
0/PI

◦
0 ↪→ ⊕

P|P I
◦
0/P and

U (ρPI◦
0
) ↪→ ⊕

P|P U (ρP). The following diagram commutes:

U (ρPI◦
0
)

⊕
P|P U (ρP)

I
◦
0/PI

◦
0

⊕
P|P I

◦
0/P

⊕
P|P πP

⊕
P|P πP

(3)

By Proposition 4.17 there exist ideals aP ⊂ I
◦
0/P such that (

⊕
P|P πP)(GPI◦

0
) ⊃⊕

P|P �I◦
0/P

(aP). In particular (
⊕

P|P πP)(U (ρPI◦
0
)) ⊃ ⊕

P|P(aP). By Lemma
4.19 each ideal aP contains a basis of Q(I◦

0/P) over Q(�h,0/P), so that the
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Q(�h,0/P)-span of
⊕

P|P aP is the whole
⊕

P|P Q(I◦
0/P). Then the Q(�h,0/P)-

span of (
⊕

P|P πP)(GP ∩U (ρP)) is also
⊕

P|P Q(I◦
0/P). By commutativity of

diagram (3) we deduce that the Q(�h,0/P)-span of GP ∩U (ρPI◦
0
) is Q(I◦

0/PI
◦
0).

In particular GPI◦
0
∩U (ρPI◦

0
) contains a �h,0/P-lattice, hence by Lemma 4.19 a

nonzero ideal aP of I
◦
0/PI

◦
0.

Note that the representationρ0 : H → SL2(I
◦
0) satisfies the hypotheses of Proposi-

tion 4.8. Indeedwe assumed that ρ : GQ → GL2(I) is (H0, Zp)-regular, so the image
of ρ|H0 contains a diagonal Zp-regular element d. Since H is a normal subgroup of
H0, ρ(H) is a normal subgroup of ρ(H0) and it is normalized by d. By a trivial
computation we see that the image of ρ0 = ρ|H ⊗ (det ρ|H )−1/2 is also normalized
by d.

Let a be an ideal of I
◦
0 projecting to aP ⊂ U (ρ0,PI◦

0
). By Proposition 4.8 applied

to ρ0 we obtain that the map U (ρ0) → U (ρ0,PI◦
0
) is surjective, so the Zp-module

a ∩U (ρ0) also surjects to aP . Since �h,0 is local we can apply Nakayama’s lemma
to the �h,0-module �h,0(a ∩U (ρ0) to conclude that it coincides with a. Hence
a ⊂ �h,0 ·U (ρ0), so the �h,0-span of U (ρ0) contains a �h,0-lattice in I

◦
0 by lemma

4.19. �

We show that Proposition 4.20 is true if we replace ρ0 by ρ|H . This will be a
consequence of the description of the subnormal sugroups of GL2(I

◦) presented
in [23], but we need a preliminary step because we cannot induce a �h,0-module
structure on the unipotent subgroups ofG. For a subgroupG ⊂ GL2(I

◦
0) defineGp =

{gp, g ∈ G} and G̃ = Gp ∩ (1 + pM2(I
◦
0)). Let G̃�h,0 be the subgroup of GL2(I

◦)
generated by the set {gλ : g ∈ G̃, λ ∈ �h,0} where gλ = exp(λ log g). We have the
following.

Lemma 4.21 The group G̃�h,0 contains a congruence subgroup of SL2(I
◦
0) if and

only if both of the unipotent subgroups G ∩U+(I◦
0) and G ∩U−(I◦

0) contain a basis
of a �h,0-lattice in I

◦
0.

Proof It is easy to see that G ∩U+(I◦
0) contains the basis of a �h,0-lattice in I

◦
0

if and only if the same is true for G̃ ∩U+(I◦
0). The same is true for U−. By a

standard argument, used in the proofs of [9, Lemma 2.9] and [12, Proposition 4.2],
G�h,0 ⊂ GL2(I

◦
0) contains a congruence subgroup of SL2(I

◦
0) if and only if both its

upper and lower unipotent subgroup contain an ideal of I◦
0.WehaveU+(I◦

0) ∩ G�h,0 =
�h,0(G ∩U+(I◦

0)), so by Lemma 4.19 U+(I◦
0) ∩ G�h,0 contains an ideal of I

◦
0 if and

only if G ∩U+(I◦
0) contains a basis of a �h,0-lattice in I

◦
0. We proceed in the same

way for U−. �

Now let G0 = Im ρ|H , G = Im ρ0. Note that G0 ∩ SL2(I
◦
0) is a normal subgroup of

G. Let f : GL2(I
◦
0) → SL2(I

◦
0) be the homomorphism sending g to det(g)−1/2g. We

have G = f (G0) by definition of ρ0. We show the following.

Proposition 4.22 The subgroups G0 ∩U±(I◦
0) both contain the basis of a �h,0-

lattice in I
◦
0 if and only if G ∩U±(I◦

0) both contain the basis of a �h,0-lattice in I
◦
0.

Proof SinceG = f (G0)we have G̃ = f (G̃0). This implies that G̃�h,0 = f (G̃0
�h,0

).
We remark that G̃0

�h,0 ∩ SL2(I
◦
0) is a normal subgroup of G̃�h,0 . Indeed
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G̃0
�h,0 ∩ SL2(I

◦
0) is normal in G̃0

�h,0 , so its image f (G�h,0

0 ∩ SL2(I
◦
0)) = G�h,0

0 ∩
SL2(I

◦
0) is normal in f (G�h,0

0 ) = G̃�h,0 .
By [23, Corollary 1] a subgroup of GL2(I

◦
0) contains a congruence subgroup of

SL2(I
◦
0) if and only if it is subnormal in GL2(I

◦
0) and it is not contained in the centre.

We note that G̃0
�h,0 ∩ SL2(I

◦
0) = (G̃0 ∩ SL2(I

◦
0))

�h,0 is not contained in the subgroup
{±1}. Otherwise also G̃0 ∩ SL2(I

◦
0) would be contained in {±1} and Im ρ ∩ SL2(I

◦
0)

would be finite, since G̃0 is of finite index in Gp
0 . This would give a contradiction:

indeed if P is an arithmetic prime of I
◦ of weight greater than 1 and P′ = P ∩ I

◦
0,

the image of ρ modulo P′ contains a congruence subgroup of SL2(I
◦
0/P

′) by the
result of [15].

Since G̃0
�h,0 ∩ SL2(I

◦
0) is a normal subgroupof G̃�h,0 ,we deduce by [23,Corollary

1] that G̃0
�h,0 ∩ SL2(I

◦
0) (hence G̃0

�h,0 ) contains a congruence subgroup of SL2(I
◦
0)

if and only if G̃�h,0 does. By applying Lemma 4.21 toG = G0 andG = G we obtain
the desired equivalence. �

By combining Propositions 4.20 and 4.22 we obtain the following.

Corollary 4.23 The �h,0-span of each of the unipotent subgroups Im ρ ∩U± con-
tains a �h,0-lattice in I

◦
0.

Unlike in the ordinary casewe cannot deduce from the corollary that Im ρ contains
a congruence subgroup of SL2(I

◦
0), sincewe areworking over�h �= � andwe cannot

induce a �h-module structure (not even a �-module structure) on Im ρ ∩U±. The
proofs of [9, Lemma 2.9] and [12, Proposition 4.3] rely on the existence, in the image
of the Galois group, of an element inducing by conjugation a �-module structure on
Im ρ ∩U±. In their situation this is predicted by the condition of Galois ordinarity
of ρ. In the non-ordinary case we will find an element with a similar property via
relative Sen theory. In order to do this we will need to work with a suitably defined
Lie algebra rather than with the group itself.

5 Relative Sen Theory

We recall the notations of Sect. 3.1. In particular rh = p−sh , with sh ∈ Q, is the h-

adapted radius (which we also take smaller than p− 1
p−1 ), ηh is an element in Cp of

norm rh , Kh is the Galois closure in Cp of Qp(ηh) and Oh is the ring of integers in
Kh . The ring �h of analytic functions bounded by 1 on the open discBh = B(0, r−

h )

is identified to Oh[[t]]. We take a sequence of radii ri = p−sh−1/ i converging to rh
and denote by Ari = Kh〈t, Xi 〉/(pXi − t i ) the Kh-algebra defined in Sect. 3.1 which
is a form over Kh of the Cp-algebra of analytic functions on the closed ball B(0, ri )
(its Berthelot model). We denote by A◦

ri the Oh-subalgebra of functions bounded
by 1. Then �h = lim←−i

A◦
ri where A◦

r j → A◦
ri for i < j is the restriction of analytic

functions.
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We defined in Sect. 4.1 a subring I
◦
0 ⊂ I

◦, finite over �h,0 ⊂ �h . For ri as above,
we write A◦

0,ri = Oh,0〈t, Xi 〉/(pXi − t i ) with maps A◦
0,r j → A◦

0,ri for i < j , so that
�h,0 = lim←−i

A◦
0,ri . Let I

◦
ri = I

◦⊗̂�h A
◦
ri and I

◦
0,ri = I

◦
0⊗̂�h,0 A

◦
0,ri , both endowed with

their p-adic topology. Note that (I◦
ri )

� = I
◦
ri ,0.

Consider the representationρ : GQ → GL2(I
◦) associatedwith a family θ : Th →

I
◦. We observe that ρ is continuous with respect to the profinite topology of I

◦ but
not with respect to the p-adic topology. For this reason we fix an arbitrary radius
r among the ri defined above and consider the representation ρr : GQ → GL2(I

◦
r )

obtained by composing ρ with the inclusion GL2(I
◦) ↪→ GL2(I

◦
r ). This inclusion

is continuous, hence the representation ρr is continuous with respect to the p-adic
topology on GL2(I

◦
0,r ).

Recall fromProposition 4.14 that, after replacingρ by a conjugate, there is an open
normal subgroup H0 ⊂ GQ such that the restriction ρ|H0 takes values in GL2(I

◦
0) and

is (H0, Zp)-regular. Then the restrictionρr |H0 gives a representation H0 → GL2(I
◦
0,r )

which is continuous with respect to the p-adic topology on GL2(I
◦
0,r ).

5.1 Big Lie Algebras

Recall thatGp ⊂ GQ denotes our chosen decomposition group at p. LetGr andG loc
r

be the images respectively of H0 andGp ∩ H0 under the representation ρr |H0 : H0 →
GL2(I

◦
0,r ). Note that they are actually independent of r since they coincide with the

images of H0 and Gp ∩ H0 under ρ.
For every ring R and ideal I ⊂ R we denote by �GL2(R)(I ) the GL2-congruence

subgroup consisting of elements g ∈ GL2(R) such that g ≡ Id2 (mod I ). Let G ′
r =

Gr ∩ �GL2(I
◦
0,r )

(p) and G ′,loc
r = G loc

r ∩ �GL2(I
◦
0,r )

(p), so that G ′
r and G ′,loc

r are pro-p
groups. Note that the congruence subgroups �GL2(I0,r )(p

m) are open in GL2(I0,r ) for
the p-adic topology. In particular G ′

r and G ′,loc
r can be identified with the images

under ρ of the absolute Galois groups of finite extensions of Q and respectively Qp.

Remark 5.1 We remark that we can choose an arbitrary r0 and set, for every r ,
G ′

r = Gr ∩ �GL2(I
◦
0,r0

)(p). Then G ′
r is a pro-p subgroup of Gr for every r and it is

independent of r since Gr is. This will be important in Theorem7.1 where we will
take projective limits over r of various objects.

We set A0,r = A◦
0,r [p−1] and I0,r = I

◦
0,r [p−1]. We consider from now on G ′

r and
G ′,loc

r as subgroups of GL2(I0,r ) through the inclusion GL2(I
◦
0,r ) ↪→ GL2(I0,r ).

We want to define big Lie algebras associated with the groups G ′
r and G ′,loc

r . For
every nonzero ideal a of the principal ideal domain A0,r , we denote byG ′

r,a andG
′,loc
r,a

the images respectively of G ′
r and G ′,loc

r under the natural projection GL2(I0,r ) →
GL2(I0,r/aI0,r ). The pro-p groups G ′

r,a and G ′,loc
r,a are topologically of finite type

so we can define the corresponding Qp-Lie algebras Hr,a and Hloc
r,a using the p-adic

logarithm map: Hr,a = Qp · LogG ′
r,a and Hloc

r,a = Qp · LogG ′,loc
r,a . They are closed

Lie subalgebras of the finite dimensional Qp-Lie algebra M2(I0,r/aI0,r ).



110 A. Conti et al.

Let Br = lim←−(a,P1)=1
A0,r/aA0,r where the inverse limit is taken over nonzero

ideals a ⊂ A0,r prime to P1 = (u−1(1 + T ) − 1) (the reason for excluding P1 will
become clear later). We endow Br with the projective limit topology coming from
the p-adic topology on each quotient. We have a topological isomorphism of Kh,0-
algebras

Br
∼=

∏

P �=P1

(̂A0,r )P ,

where the product is over primes P and (̂A0,r )P = lim←−m�1
A0,r/Pm A0,r denotes

the Kh,0-Fréchet space inverse limit of the finite dimensional Kh,0-vector spaces
A0,r/Pm A0,r . Similarly, let Br = lim←−(a,P1)=1

I0,r/aI0,r , where as before a varies over
all nonzero ideals of A0,r prime to P1. We have

Br
∼=

∏

P �=P1

(̂I0,r )PI0,r
∼=

∏

P�P1

(̂I0,r )P
∼= lim←−

(Q,P1)=1

I0,r/Q,

where the second product is over primes P of I0,r and the projective limit is over

primary idealsQof I0,r .Here (̂I0,r )P denotes the projective limit of finite dimensional
Kh,0-algebras (endowed with the p-adic topology). The last isomorphism follows
from the fact that I0,r is finite over A0,r , so that there is an isomorphism I0,r ⊗
(̂A0,r )P = ∏

P (̂I0,r )P where P is a prime of A0,r and P varies among the primes
of I0,r above P . We have natural continuous inclusions A0,r ↪→ Br and I0,r ↪→ Br ,
both with dense image. The map A0,r ↪→ I0,r induces an inclusion Br ↪→ Br with
closed image. Note however that Br is not finite over Br . We will work with Br for
the rest of this section, but we will need Br later.

For every a we have defined Lie algebras Hr,a and Hloc
r,a associated with the finite

type Lie groups G ′
r,a and G ′,loc

r,a . We take the projective limit of these algebras to
obtain Lie subalgebras of M2(Br ).

Definition 5.2 The Lie algebras associated withG ′
r andG

′,loc
r are the closedQp-Lie

subalgebras of M2(Br ) given respectively by

Hr = lim←−
(a,P1)=1

Hr,a

and
Hloc

r = lim←−
(a,P1)=1

Hloc
r,a,

where as usual the products are taken over nonzero ideals a ⊂ A0,r prime to P1.

For every ideal a prime to P1, we have continuous homomorphisms Hr → Hr,a

and Hloc
r → Hloc

r,a. Since the transition maps are surjective these homomorphisms are
surjective.
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Remark 5.3 The limits in Definition 5.2 can be replaced by limits over primary
ideals of I0,r . Explicitly, letQ be a primary ideal of I0,r . Let G ′

r,Q be the image of G ′
r

via the natural projection GL2(I0,r ) → GL2(I0,r/Q) and let Hr,Q be the Lie algebra
associated with G ′

r,Q (which is a finite type Lie group). We have an isomorphism of
topological Lie algebras

Hr = lim←−
(Q,P1)=1

Hr,Q,

where the limit is taken over primary idealsQ of I0,r . This is naturally a subalgebra
of M2(Br ) since Br

∼= lim←−(Q,P1)=1
I0,r/Q. The same goes for the local algebras.

5.2 The Sen Operator Associated with a Galois
Representation

Recall that there is a finite extension K/Qp such that G ′,loc
r is the image of ρ|Gal(K/K )

and, for an ideal P ⊂ A0,r andm � 1,G ′,loc
r,Pm is the image of ρr,Pm |Gal(K/K ). Following

[19, 21] we can define a Sen operator associated with ρr |Gal(K/K ) and ρr,Pm |Gal(K/K )

for every ideal P ⊂ A0,r and every m � 1. We will see that these operators satisfy
a compatibility property. We write for the rest of the section ρr and ρr,Pm while
implicitly taking the domain to be Gal(K/K ).

We begin by recalling the definition of the Sen operator associated with a rep-
resentation τ : Gal(K/K ) → GLm(R) where R is a Banach algebra over a p-adic
field L . We follow [21]. We can suppose L ⊂ K ; if not we just restrict τ to the open
subgroup Gal(K/K L) ⊂ Gal(K/K ).

Let L∞ be a totally ramified Zp-extension of L . Let γ be a topological generator

of � = Gal(L∞/L), �n ⊂ � the subgroup generated by γ pn and Ln = Lγ pn

∞ , so that
L∞ = ∪n Ln . Let L ′

n = LnK and G ′
n = Gal(L/L ′

n). If Rm is the R-module over
which Gal(K/K ) acts via τ , define an action of Gal(K/K ) on R⊗̂LCp by letting
σ ∈ Gal(K/K ) map x ⊗ y to τ(σ )(x) ⊗ σ(y). Then by the results of [19, 21] there
is a matrix M ∈ GLm

(R⊗̂LCp
)
, an integer n � 0 and a representation δ : �n →

GLm(R ⊗L L ′
n) such that for all σ ∈ G ′

n

M−1τ(σ )σ (M) = δ(σ ).

Definition 5.4 The Sen operator associated with τ is

φ = lim
σ→1

log
(
δ(σ )

)

log(χ(σ ))
∈ Mm(R⊗̂LCp).

The limit exists as for σ close to 1 the map σ �→ log
(
δ(σ )

)

log(χ(σ ))
is constant. It is

proved in [21, Sect. 2.4] that φ does not depend on the choice of δ and M .
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If L = R = Qp, we define the Lie algebra g associated with τ(Gal(K/K )) as the
Qp-vector space generated by the image of the logarithm map in Mm(Qp). In this
situation the Sen operator φ associated with τ has the following property.

Theorem 5.5 [19,Theorem1]Fora continuous representation τ : GK →GLm(Qp),
the Lie algebra g of the group τ(Gal(K/K )) is the smallestQp-subspace ofMm(Qp)

such that g⊗QpCp contains φ.

This theorem is valid in the absolute case above, but relies heavily on the fact that
the image of the Galois group is a finite dimensional Lie group. In the relative case
it is doubtful that its proof can be generalized.

5.3 The Sen Operator Associated with ρr

Set I0,r,Cp = I0,r ⊗̂Kh,0Cp. It is a Banach space for the natural norm. Let Br,Cp =
Br⊗̂Kh,0Cp; it is the topological Cp-algebra completion of Br ⊗Kh,0 Cp for the
(uncountable) set of nuclear seminorms pa given by the norms on I0,r,Cp/aI0,r,Cp

via the specialization morphisms πa : Br ⊗Kh,0 Cp → I0,r,Cp/aI0,r,Cp . Let Hr,a,Cp =
Hr,a ⊗Kh,0 Cp and Hloc

r,a,Cp
= Hloc

r,a, ⊗Kh,0 Cp. Then we define Hr,Cp = Hr ⊗̂Kh,0Cp as
the topological Cp-Lie algebra completion of Hr ⊗K0,h Cp for the (uncountable) set
of seminorms pa given by the norms onHr,a,Cp and similar specializationmorphisms
πa : Hr, ⊗Kh,0 Cp → Hr,a,Cp . We define in the same way Hloc

r,Cp
in terms of the norms

on Hloc
r,a,Cp

. Note that by definition we have

Hr,Cp = lim←−
(a,P1)=1

Hr,a,Cp , and Hloc
r,Cp

= lim←−
(a,P1)=1

Hloc
r,a,Cp

.

We apply the construction of the previous subsection to L = Kh,0,R = I0,r which
is a Banach L-algebra with the p-adic topology, and τ = ρr . We obtain an operator
φr ∈ M2(I0,r,Cp ). Recall that we have a natural continuous inclusion I0,r ↪→ Br ,
inducing inclusions I0,r,Cp ↪→ Br,Cp and M2(I0,r,Cp ) ↪→ M2(Br,Cp ). We denote all
these inclusions by ιBr since it will be clear each time to which we are referring to.
We will prove in this section that ιBr (φr ) is an element of Hloc

r,Cp
.

Let a be a nonzero ideal of A0,r . Let us apply Sen’s construction to L = Kh,0,
R = I0,r/aI0,r and τ = ρr,a : Gal(K/K ) → GL2(I0,r/aI0,r ); we obtain an operator
φr,a ∈ M2(I0,r/aI0,r ⊗̂Kh,0Cp).

Let
πa : M2(I0,r ⊗̂Kh,0Cp) → M2(I0,r/aI0,r ⊗̂Kh,0Cp)

and
π×
a : GL2(I0,r ⊗̂Kh,0Cp) → GL2(I0,r/aI0,r ⊗̂Kh,0Cp)

be the natural projections.
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Proposition 5.6 We have φr,a = πa(φr ) for all a.

Proof Recall from the construction of φr that there exist M ∈ GL2
(
I0,r,Cp

)
, n � 0

and δ : �n → GL2(I0,r ⊗̂Kh,0K
′
h,0,n) such that for all σ ∈ G ′

n we have

M−1ρr (σ )σ (M) = δ(σ ) (4)

and

φr = lim
σ→1

log(δ
(
σ)

)

log(χ(σ ))
. (5)

Let Ma = π×
a (M) ∈ GL2(I0,r,Cp/aI0,r,Cp ) and

δa = π×
a ◦ δ : �n → GL2((I0,r/aI0,r )⊗̂Kh,0K

′
h,0,n).

Denote by φr,a ∈ M2((I0,r/aI0,r )⊗̂Kh,0K
′
h,0,n) the Sen operator associated with ρr,a.

Now (4) gives
M−1

a ρr,a(σ )σ (Ma) = δa(σ ) (6)

so we can calculate φr,a as

φr,a = lim
σ→1

log(δa
(
σ)

)

log(χ(σ ))
∈ M2(R⊗̂LCp). (7)

By comparing this with (5) we see that φr,a = πa(φr ). �

Let φr,Br = ιBr (φr ). For a nonzero ideal a of A0,r letπBr ,a be the natural projection
Br → I0,r/aI0,r . Clearly πBr ,a(φr,Br ) = πa(φr ) and φr,a = πa(φr ) by Proposition
5.6, so we have φr,Br = lim←−(a,P1)=1

φr,a.

We apply Theorem 5.5 to show the following.

Proposition 5.7 Let a be a nonzero ideal of A0,r prime to P1. The operator φr,a

belongs to the Lie algebra Hloc
r,a,Cp

.

Proof Let n be the dimension overQp of I0,r/aI0,r ; by choosing a basis (ω1, . . . , ωn)

of this algebra as a Qp-vector space, we can define an injective ring homo-
morphism α : M2(I0,r/aI0,r ) ↪→ M2n(Qp) and an injective group homomorphism
α× : GL2(I0,r/αI0,r ) ↪→ GL2n(Qp). In fact, an endomorphism f of the (I0,r/aI0,r )-
module (I0,r/aI0,r )

2 = (I0,r/aI0,r ) · e1 ⊕ (I0,r/aI0,r ) · e2 is Qp-linear, so it induces
an endomorphism α( f ) of the Qp-vector space (I0,r/aI0,r )

2 = ⊕
i, j Qp · ωi e j ; fur-

thermore if α is an automorphism then α( f ) is one too. In particular ρr,a induces a
representation ρα

r,a = α× ◦ ρr,a : Gal(K/K ) → GL2n(Qp). The image of ρα
r,a is the

group G loc,α
r,a = α×(G loc

r,a). We consider its Lie algebra Hloc,α
r,a = Qp · Log (G loc,α

r,a ) ⊂
M2n(Qp). The p-adic logarithm commutes with α in the sense that α(Log x) =
Log (α×(x)) for every x ∈ �I0,r /aI0,r (p), so we have Hloc,α

r,a = α(Hloc
r,a) (recall that

Hloc
r,a = Qp · LogG loc

r,a).
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Let φα
r,a be the Sen operator associated with ρα

r,a : Gal(K/K ) → GL2n(Qp).

By Theorem 5.5 we have φα
r,a ∈ Hloc,α

r,a,Cp
= Hloc,α

r,a ⊗̂Cp. Denote by αCp the map

α⊗̂1 : M2(I0,r,Cp/aI0,r,Cp ) ↪→ M2n(Cp).We show thatφ
αCp
r,a = αCp (φr,a), fromwhich

it follows that φr,a ∈ Hloc
r,a,Cp

sinceH
loc,αCp

r,a,Cp
= αCp (H

loc
r,a,Cp

) and αCp is injective. Now

let Ma, δa be as in (6) and M
αCp
a = αCp (Ma), δ

αCp
a = αCp ◦ δa. By applying αC to

(4) we obtain (M
αCp
a )−1ρ

αCp
r,a (σ )σ (M

αCp
a ) = δ

αCp
a (σ ) for every σ ∈ G ′

n , so we can
calculate

φ
αCp
r,a = lim

σ→1

log(δ
αCp
a

(
σ)

)

log(χ(σ ))
,

which coincides with αCp (φr,a). �

Proposition 5.8 The element φr,Br belongs to H
loc
r,Cp

, hence to Hr,Cp .

Proof By definition of the space Hloc
r,Cp

as completion of the space Hloc
r ⊗Kh,0 Cp for

the seminorms pa given by the norms onHloc
r,a,Cp

, we haveHloc
r,Cp

= lim←−(a,P1)=1
Hloc

r,a,Cp
.

By Proposition 5.6, we have φr,Br = lim←−a
φr,a and by Proposition 5.7 we have, for

every a, φr,a ∈ Hloc
r,a,Cp

. We conclude that φr,Br ∈ Hloc
r,Cp

. �

Remark 5.9 In order to prove that our Lie algebras are “big” it will be useful to
work with primary ideals of Ar , as we did in this subsection. However, in light of
Remark 5.3, all of the results can be rewritten in terms of primary ideals Q of I0,r .
This will be useful in the next subsection, when we will interpolate the Sen operators
corresponding to the attached to the classical modular forms representations.

From now on we identify I0,r,Cp with a subring ofBr,Cp via ιBr , so we also identify
M2(I0,r ) with a subring of M2(Br ) and GL2(I0,r,Cp ) with a subgroup of GL2(Br,Cp ).
In particular we identify φr with φr,Br and we consider φr as an element of Hr,Cp ∩
M2(I0,r,Cp ).

5.4 The Characteristic Polynomial of the Sen Operator

Sen proved the following result.

Theorem 5.10 Let L1 and L2 be two p-adic fields. Assume for simplicity that L2

contains the normal closure of L1. Let τ : Gal(L1/L1) → GLm(L2) be a continuous
representation. For each embedding σ : L1 → L2, there is a Sen operator φτ,σ ∈
Mm(Cp ⊗L1,σ L2) associated with τ and σ . If τ is Hodge-Tate and its Hodge-Tate
weights with respect to σ are h1,σ , . . . , hm,σ (with multiplicities, if any), then the
characteristic polynomial of φτ,σ is

∏m
i=1(X − hi,σ ).
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Now let k ∈ N and Pk = (u−k(1 + T ) − 1) be the corresponding arithmetic prime
of A0,r . Let P f be a prime of Ir above P , associated with the system of Hecke
eigenvalues of a classical modular form f . Let ρr : GQ → GL2(Ir ) be as usual.
The specialization of ρr modulo P is the representation ρ f : GQ → GL2(Ir/P)

classically associated with f , defined over the field K f = Ir/P f Ir . By a theorem
of Faltings [8], when the weight of the form f is k, the representation ρ f is Hodge-
Tate of Hodge-Tate weights 0 and k − 1. Hence by Theorem 5.10 the Sen operator
φ f associated with ρ f has characteristic polynomial X (X − (k − 1)). Let P f,0 =
P f ∩ I0,r . With the notations of the previous subsection, the specialization of ρr

modulo P f,0 gives a representation ρr,P f,0 : Gal(K/K ) → GL2(I0,r/P f,0), which
coincides with ρ f |Gal(K/K ). In particular the Sen operator φr,P f,0 associated with
ρr,P f,0 is φ f .

By Proposition 5.6 and Remark 5.9, the Sen operator φr ∈ M2(I0,r,Cp ) specializes
moduloP f,0 to the Sen operator φr,P f,0 associated with ρr,P f,0 , for every f as above.
Since the primes of the form P f,0 are dense in I0,r,Cp , the eigenvalues of φr,Q are
given by the unique interpolation of those of ρr,P f,0 . This way we will recover an
element of GL2(Br,Cp ) with the properties we need.

Given f ∈ A0,r we define its p-adic valuation by v′
p( f ) = inf x∈B(0,r) vp( f (x)),

where vp is our chosen valuation on Cp. Then if v′( f − 1) � p− 1
p−1 there are well-

defined elements log( f ) and exp(log( f )) in A0,r , and exp(log( f )) = f .
Let φ′

r = log(u)φr . Note that φ′
r is a well-defined element of M2(Br,Cp ) since

log(u) ∈ Qp. Recall that we denote by CT the matrix diag(u−1(1 + T ), 1). We have
the following.

Proposition 5.11 1. The eigenvalues of φ′
r are log(u

−1(1 + T )) and 0. In partic-
ular the exponential �r = exp(φ′

r ) is defined in GL2(Br,Cp ). Moreover �′
r is

conjugate to CT in GL2(Br,Cp ).
2. The element �′

r of part (1) normalizes Hr,Cp .

Proof For everyP f,0 as in the discussion above, the element log(u)φr specializes to
log(u)φr,P f,0 moduloP f,0. IfP f,0 is a divisor of Pk , the eigenvalues of log(u)φr,P f,0

are log(u)(k − 1) and 0. Since 1 + T = uk moduloP f,0 for every primeP f,0 divid-
ing Pk ,wehave log(u−1(1 + T )) = log(uk−1) = (k − 1) log(u)moduloP f,0.Hence
the eigenvalues of log(u)φr,P f,0 are interpolated by log(u−1(1 + T )) and 0.

Recall that in Sect. 3.1 we chose rh smaller than p− 1
p−1 . Since r < rh , v′

p(T ) <

p− 1
p−1 . In particular log(u−1(1 + T )) is defined and exp(log(u−1(1 + T ))) = u−1

(1 + T ), so �r = exp(φ′
r ) is also defined and its eigenvalues are u−1(1 + T ) and

1. The difference between the two is u−1(1 + T ) − 1; this elements belongs to P1,
hence it is invertible in Br . This proves (1).

By Proposition 5.8, φr ∈ Hr,Cp . Since Hr,Cp is a Qp-Lie algebra, log(u)φr is also
an element of Hr,Cp . Hence its exponential �

′
r normalizes Hr,Cp . �
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6 Existence of the Galois Level for a Family with Finite
Positive Slope

Let rh ∈ pQ∩]0, p− 1
p−1 [ be the radius chosen in Sect. 3. As usual we write r for any

one of the radii ri of Sect. 3.1. Recall that Hr ⊂ M2(Br ) is the Lie algebra attached
to the image of ρr (see Definition 5.2) and Hr,Cp = Hr ⊗̂QpCp. Let u± and u±

Cp
be

the upper and lower nilpotent subalgebras of Hr , and Hr,Cp respectively.

Remark 6.1 The commutative Lie algebra u± is independent of r because it is equal
to Qp · Log(U (I◦

0) ∩ G ′
r ) which is independent of r , provided r1 � r < rh .

Wefix r0 ∈ pQ∩]0, rh[ arbitrarily andwework fromnowonwith radii r satisfying
r0 � r < rh . As in Remark 5.1 this fixes a finite extension of Q corresponding to
the inclusion G ′

r ⊂ Gr . For r < r ′ we have a natural inclusion I0,r ′ ↪→ I0,r . Since
Br = lim←−(aP1)=1

I0,r/aI0,r this induces an inclusionBr ′ ↪→ Br .Wewill consider from

now on Br ′ as a subring of Br for every r < r ′. We will also consider M2(I0,r ′,Cp )

andM2(Br ′) as subsets of M2(I0,r,Cp ) andM2(Br ) respectively. These inclusions still
hold after taking completed tensor products with Cp.

Recall the elements φ′
r = log(u)φr ∈M2(Br,Cp ) and �′

r = exp(φ′
r ) ∈ GL2(Br,Cp )

defined at the end of the previous section. The Sen operator φr is independent of r in
the following sense: if r < r ′ < rh and Br ′,Cp → Br,Cp is the natural inclusion then
the image of φr ′ under the induced map M2(Br ′,Cp ) → M2(Br,Cp ) is φr . We deduce
that φ′

r and �′
r are also independent of r (in the same sense).

By Proposition 5.11, for every r < rh there exists an element βr ∈ GL2(Br,Cp )

such that βr�
′
rβ

−1
r = CT . Since �′

r normalizes Hr,Cp , CT = βr�
′
rβ

−1
r normalizes

βrHr,Cpβ
−1
r .

We denote by U± the upper and lower nilpotent subalgebras of sl2. The action of
CT on Hr,Cp by conjugation is semisimple, so we can decompose βrHr,Cpβ

−1
r as a

sum of eigenspaces for CT :

βrHr,Cpβ
−1
r

= (
βrHr,Cpβ

−1
r

) [1] ⊕ (
βrHr,Cpβ

−1
r

) [u−1(1 + T )] ⊕ (
βrHr,Cpβ

−1
r

) [u(1 + T )−1]

with
(
βrHr,Cpβ

−1
r

) [u−1(1 + T )] ⊂ U+(Br,Cp ) and
(
βrHr,Cpβ

−1
r

) [u(1 + T )−1] ⊂
U−(Br,Cp ).
Moreover, the formula

(
u−1(1 + T ) 0

0 1

) (
1 λ

0 1

) (
u−1(1 + T ) 0

0 1

)−1

=
(
1 u−1(1 + T )λ

0 1

)

shows that the action ofCT by conjugation coincides with multiplication by u−1(1 +
T ). By linearity this gives an action of the polynomial ring Cp[T ] on βrHr,Cpβ

−1
r ∩

U+(Br,Cp ), compatible with the action ofCp[T ] onU+(Br,Cp ) given by the inclusions
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Cp[T ] ⊂ �h,0,Cp ⊂ Br,Cp ⊂ Br,Cp . Since Cp[T ] is dense in Ah,0,Cp for the p-adic
topology, it is also dense in Br,Cp . SinceHr,Cp is a closed Lie subalgebra ofM2(Br,Cp ),
we can define by continuity a Br,Cp -module structure on βrHr,Cpβ

−1
r ∩ U+(Br,Cp ),

compatible with that on U+(Br,Cp ). Similarly we have

(
u−1(1 + T ) 0

0 1

) (
1 0
μ 1

) (
u−1(1 + T ) 0

0 1

)−1

=
(

1 0
u(1 + T )−1μ 1

)

.

We note that 1 + T is invertible in A0,r since T = psh t where rh = p−sh .
Therefore CT is invertible and by twisting by (1 + T ) �→ (1 + T )−1 we can also
give βrHr,Cpβ

−1
r ∩ U−(Br,Cp ) a structure of Br,Cp -module compatible with that on

U−(Br,Cp ).
By combining the previous remarks with Corollary 4.23, we prove the following

“fullness” result for the big Lie algebra Hr .

Theorem 6.2 Suppose that the representation ρ is (H0, Zp)-regular. Then there
exists a nonzero ideal l of I0, independent of r < rh, such that for every such r the
Lie algebra Hr contains l · sl2(Br ).

Proof Since U±(Br ) ∼= Br , we can and shall identify u+ = Qp · LogG ′
r ∩ U+(Br )

with a Qp-vector subspace of Br (actually of I0), and u
+
Cp

with a Cp-vector subspace
of Br,Cp . We repeat that these spaces are independent of r since G ′

r is, provided that
r0 � r < rh (see Remark 5.1). By Corollary 4.23, u± ∩ I0 contains a basis {ei,±}i∈I
for Q(I0) over Q(�h,0). The set {ei,+}i∈I ⊂ u+ is a basis for Q(I0) over Q(�h,0), so
u+ contains the basis of a �h,0-lattice in I0. By Lemma 4.19 we deduce that �h,0u

+
contains a nonzero ideal a+ of I0. Hence we also have Br,Cpu

+
Cp

⊃ Br,Cpa
+. Now a+

is an ideal of I0 and Br,CpI0,Cp = Br,Cp , so Br,Cpa
+ = a+

Br,Cp is an ideal in Br,Cp .
We conclude that Br,Cp · u+ ⊃ a+

Br,Cp for a nonzero ideal a+ of I0. We proceed in
the same way for the lower unipotent subalgebra, obtaining Br,Cp · u− ⊃ a−

Br,Cp for
some nonzero ideal a− of I0.

Consider now theLie algebra Br,CpHCp ⊂ M2(Br,Cp ). Its nilpotent subalgebras are
Br,Cpu

+ and Br,Cpu
−, and we showed Br,Cpu

+ ⊃ a+
Br,Cp and Br,Cpu

− ⊃ a−
Br,Cp .

Denote by t ⊂ sl2 the subalgebra of diagonal matrices over Z. By taking the Lie
bracket, we see that [U+(a+

Br,Cp ),U
−(a−

Br,Cp )] spans a+ · a− · t(Br,Cp ) over Br,Cp .
We deduce that Br,CpHCp ⊃ a+ · a− · sl2(Br,Cp ). Let a = a+ · a−. Now a · sl2(Br,Cp )

is a Br,Cp -Lie subalgebra of sl2(Br,Cp ). Recall that βr ∈ GL2(Br,Cp ); hence by sta-
bility by conjugation we have βr

(
a · sl2(Br,Cp )

)
β−1
r = a · sl2(Br,Cp ). Thus, we con-

structed a such that Br,Cp

(
βrHr,Cpβ

−1
r

) ⊃ a · sl2(Br,Cp ). In particular, if u
±,βr

Cp
denote

the unipotent subalgebras of βrHr,Cpβ
−1
r , we have Br,Cpu

±,βr

Cp
⊃ aBr,Cp for both

signs. By the discussion preceding the proposition the subalgebras u
±,βr

Cp
have a

structure of Br,Cp -modules, which means that u±,βr

Cp
= Br,Cpu

±,βr

Cp
. We conclude that

u
±,βr

Cp
⊃ βr

(
a · U±(Br,Cp )

)
β−1
r for both signs. By the usual argument of taking the

bracket, we obtain βrHr,Cpβ
−1
r ⊃ a2 · sl2(Br,Cp ). We can untwist by the invertible

matrix βr to conclude that, for l = a2, we have Hr,Cp ⊃ l · sl2(Br,Cp ).
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Let us get rid of the completed extension of scalars to Cp. For every ideal a ⊂ I0,r

not dividing P1, letHr,a be the image ofHr in M2(I0,r/aI0,r ). Consider the two finite
dimensional Qp-vector spaces Hr,a and l · sl2(I0,r/aI0,r ). Note that they are both
subspaces of the finite dimensional Qp-vector space M2(I0,r/aI0,r ). After extending
scalars to Cp, we have

l · sl2(I0,r/aI0,r ) ⊗ Cp ⊂ Hr,a ⊗ Cp. (8)

Let {ei }i∈I be an orthonormal basis of the Banach space Cp over Qp, with I some
index set, such that 1 ∈ {ei }i∈I . Let {v j } j=1,...,n be a Qp-basis of M2(I0,r/aI0,r ) such
that, for some d � n, {v j } j=1,...,d is a Qp-basis of Hr,a.

Let v be an element of l · sl2(I0,r/aI0,r ). Then v ⊗ 1 ∈ l · sl2(I0,r/aI0,r ) ⊗ Cp and
by (8) we have v ⊗ 1 ∈ Hr,a ⊗ Cp. As {v j ⊗ ei }1� j�d,i∈I , and {v j ⊗ ei }1� j�n,i∈I
are orthonormal bases of Hr,a ⊗ Cp, and M2(I0,r/aI0,r ) ⊗ Cp over Qp, respectively
there existλ j,i ∈ Qp, ( j, i) ∈ {1, 2, ..., d} × I converging to 0 in the filter of comple-
ments of finite subsets of {1, 2, ..., d} × I such that v ⊗ 1 = ∑

j=1,...,d; i∈I λ j,i (v j ⊗
ei ).

But v ⊗ 1 ∈ M2(I0,r/aI0,r ) ⊗ 1 ⊂ M2(I0,r/aI0,r ) ⊗ Cp and therefore v ⊗ 1 =∑
1� j�n a j (v j ⊗ 1), for some a j ∈ Qp, j = 1, ..., n. By the uniqueness of a rep-

resentation of an element in a Qp-Banach space in terms of a given orthonormal
basis we have

v ⊗ 1 =
d∑

j=1

a j (v j ⊗ 1), i.e. v =
d∑

j=1

a jv j ∈ Hr,a.

By taking the projective limit over a, we conclude that

l · sl2(Br ) ⊂ Hr .

�

Definition 6.3 The Galois level of the family θ : Th → I
◦ is the largest ideal lθ of

I0[P−1
1 ] such that Hr ⊃ lθ · sl2(Br ) for all r < rh .

It follows by the previous remarks that lθ is nonzero.

7 Comparison Between the Galois Level and the Fortuitous
Congruence Ideal

Let θ : Th → I
◦ be a slope � h family. We keep all the notations from the previous

sections. In particularρ : GQ → GL2(I
◦) is theGalois representation associatedwith

θ . We suppose that the restriction of ρ to H0 takes values in GL2(I
◦
0). Recall that
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I = I
◦[p−1] and I0 = I

◦
0[p−1]. Also recall that P1 is the prime of �h,0 generated by

u−1(1 + T ) − 1. Let c ⊂ I be the congruence ideal associated with θ . Set c0 = c ∩ I0

and c1 = c0I0[P−1
1 ]. Let l = lθ ⊂ I0[P−1

1 ] be the Galois level of θ . For an ideal a
of I0[P−1

1 ] we denote by V (a) the set of prime ideals of I0[P−1
1 ] containing a. We

prove the following.

Theorem 7.1 Suppose that

1. ρ is (H0, Zp)-regular;
2. there exists no pair (F, ψ), where F is a real quadratic field andψ : Gal(F/F) →

F
× is a character, such that ρ : GQ → GL2(F) ∼= IndQ

Fψ .

Then we have V (l) = V (c1).

Before giving the proof we make some remarks. Let P be a prime of I0[P−1
1 ]

and Q be a prime factor of PI[P−1
1 ]. We consider ρ as a representation GQ →

GL2(I[P−1
1 ]) by composing it with the inclusion GL2(I) ↪→ GL2(I[P−1

1 ]). We have
a representation ρQ : GQ → GL2(I[P−1

1 ]/Q) obtained by reducing ρ modulo Q. Its
restriction ρQ |H0 takes values in GL2(I0[P−1

1 ]/(Q ∩ I0[P−1
1 ])) = GL2(I0[P−1

1 ]/P)

and coincides with the reduction ρP of ρ|H0 : H0 → GL2(I0[P−1
1 ]) modulo P . In

particular ρQ |H0 is independent of the chosen prime factor Q of PI[P−1
1 ].

We say that a subgroup of GL2(A) for some algebra A finite over a p-adic field
K is small if it admits a finite index abelian subgroup. Let P , Q be as above, GP

be the image of ρP : H0 → GL2(I0[P−1
1 ]/P) and GQ be the image of ρQ : GQ →

GL2(I[P−1
1 ]/Q). By our previous remark ρP coincides with the restriction ρQ |H0 ,

so GP is a finite index subgroup of GQ for every Q. In particular GP is small if and
only if GQ is small for all prime factors Q of PI[P−1

1 ].
Now if Q is a CM point the representation ρQ is induced by a character of

Gal(F/Q) for an imaginary quadratic field F . HenceGQ admits an abelian subgroup
of index 2 and GP is also small.

Conversely, if GP is small, GQ′ is small for every prime Q′ above P . Choose
any such prime Q′; by the argument in [16, Proposition 4.4] GQ′ has an abelian
subgroup of index 2. It follows that ρQ′ is induced by a character of Gal(FQ′/FQ′)

for a quadratic field FQ′ . If FQ′ is imaginary then Q′ is a CM point. In particular,
if we suppose that the residual representation ρ̄ : GQ → GL2(F) is not induced by
a character of Gal(F/F) for a real quadratic field F/Q, then FQ′ is imaginary and
Q′ is CM. The above argument proves that GP is small if and only if all points
Q′ ⊂ I[P−1

1 ] above P are CM.

Proof We prove first that V (c1) ⊂ V (l). Fix a radius r < rh . By contradiction, sup-
pose that a prime P of I0[P−1

1 ] contains c0 but P does not contain l. Then there exists
a prime factor Q of PI[P−1

1 ] such that c ⊂ Q. By definition of c we have that Q is a
CM point in the sense of Sect. 3.4, hence the representation ρI[P−1

1 ],Q has small image

in GL2(I[P−1
1 ]/Q). Then its restriction ρI[P−1

1 ],Q |H0 = ρP also has small image in

GL2(I0[P−1
1 ]/P). We deduce that there is no nonzero ideal IP of I0[P−1

1 ]/P such
that the Lie algebra Hr,P contains IP · sl2(I0[P−1

1 ]/P).
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Now by definition of l we have l · sl2(Br ) ⊂ Hr . Since reduction modulo P gives
a surjection Hr → Hr,P , by looking at the previous inclusion modulo P we find
l · sl2(I0,r [P−1

1 ]/PI0,r [P−1
1 ]) ⊂ Hr,P . If l �⊂ P we have l/P �= 0, which contradicts

our earlier statement. We deduce that l ⊂ P .
We prove now that V (l) ⊂ V (c1). Let P ⊂ I0[P−1

1 ] be a prime containing
l. Recall that I0[P−1

1 ] has Krull dimension one, so κP = I0[P−1
1 ]/P is a field.

Let Q be a prime of I[P−1
1 ] above P . As before ρ reduces to representations

ρQ : GQ → GL2(I[P−1
1 ]/Q) and ρP : H0 → GL2(I0[P−1

1 ]/P). Let P ⊂ I0[P−1
1 ]

be the P-primary component of l and let A be an ideal of I0[P−1
1 ] containing

P such that the localization at P of A/P is one-dimensional over κP . Choose
any r < rh . Let s = A/P · sl2(I0,r [P−1

1 ]/P) ∩ Hr,P, that is a Lie subalgebra of
A/P · sl2(I0,r [P−1

1 ]/P).
We show that s is stable under the adjoint action Ad(ρQ) of GQ. Let Q be the

Q-primary component of l · I[P−1
1 ]. Recall that Hr,P is the Lie algebra associ-

ated with the pro-p group Im ρr,Q|H0 ∩ �GL2(I0,ro [P−1
1 ]/P)(p) ⊂ GL2(I0,r [P−1

1 ]/P).

Since this group is open in Im ρr,Q ⊂ GL2(Ir [P−1
1 ]/Q), the Lie algebra asso-

ciated with Im ρr,Q is again Hr,P. In particular Hr,P is stable under Ad(ρQ).
Since Hr,P ⊂ sl2(I0,r [P−1

1 ]/P) we have A/P · sl2(I0,r [P−1
1 ]/P) ∩ Hr,P = A/P ·

sl2(Ir [P−1
1 ]/Q) ∩ Hr,P. NowA/P · sl2(Ir [P−1

1 ]/Q) is clearly stable under Ad(ρQ),
so the same is true for A/P · sl2(Ir [P−1

1 ]/Q) ∩ Hr,P, as desired.
We consider from now on s as a Galois representation via Ad(ρQ). By the proof

of Theorem 6.2 we can assume, possibly considering a sub-Galois representation,
thatHr is a Br -submodule of sl2(Br ) containing l · sl2(Br ) but not a · sl2(Br ) for any
a strictly bigger than l. This allows us to speak of the localization sP of s at P . Note
that, sinceP is the P-primary component of l andAP/PP

∼= κP , when P-localizing
we find Hr,P ⊃ PP · sl2(Br,P) and Hr,P �⊃ AP · sl2(Br,P).

The localization at P of a/P · sl2(I0,r [P−1
1 ]/P) is sl2(κP), so sP is contained in

sl2(κP). It is a κP -representation of GQ (via Ad(ρQ)) of dimension at most 3. We
distinguish various cases following its dimension.

We cannot have sP = 0. By exchanging the quotient with the localization we
would obtain (AP · sl2(Br,P) ∩ Hr,P)/PP = 0. By Nakayama’s lemma AP · sl2
(Br,P) ∩ Hr,P = 0,which is absurd sinceAP · sl2(Br,P) ∩ Hr,P ⊃ PP · sl2(Br,P) �=0.

We also exclude the three-dimensional case. If sP = sl2(κP), by exchanging the
quotient with the localization we obtain (AP · sl2(Br,P) ∩ Hr,P)/PP = (AP · sl2
(I0,r,P [P−1

1 ]))/PPI0,r,P [P−1
1 ], because we have API0,r,P [P−1

1 ]/PPI0,r,P [P−1
1 ] =(

I0,r,P [P−1
1 ]/PPI0,r,P [P−1

1 ]) and this is isomorphic to κP . By Nakayama’s lemma
we would conclude that Hr,P ⊃ A · sl2(Br,P), which is absurd.

We are left with the one and two-dimensional cases. If sP is two-dimensional we
can always replace it by its orthogonal in sl2(κP) which is one-dimensional; indeed
the action of GQ via Ad(ρQ) is isometric with respect to the scalar product Tr(XY )

on sl2(κP).
Suppose that sl2(κP) contains a one-dimensional stable subspace. Let φ be a gen-

erator of this subspace over κP . Let χ : GQ → κP denote the character satisfying
ρQ(g)φρQ(g)−1 = χ(g)φ for all g ∈ GQ. Now φ induces a nontrivial morphism of
representations ρQ → ρQ ⊗ χ . Since ρQ and ρQ ⊗ χ are irreducible, by Schur’s
lemma φ must be invertible. Hence we obtain an isomorphism ρQ

∼= ρQ ⊗ χ . By
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taking determinants we see that χ must be quadratic. If F0/Q is the quadratic exten-
sion fixed by ker χ , then ρQ is induced by a character ψ of Gal(F0/F0). By assump-
tion the residual representation ρmI

: GQ → GL2(F) is not of the form IndQ
Fψ for a

real quadratic field F and a character Gal(F/F) → F
×. We deduce that F0 must be

imaginary, so Q is a CMpoint by Remark 3.11(1). By construction of the congruence
ideal c ⊂ Q and c0 ⊂ Q ∩ I0[P−1

1 ] = P . �

We prove a corollary.

Corollary 7.2 If the residual representation ρ : GQ → GL2(F) is not dihedral then
l = 1.

Proof Since ρ is not dihedral there cannot be any CM point on the family θ :
Th → I

◦. By Theorem 7.1 we deduce that l has no nontrivial prime factor, hence it
is trivial. �

Remark 7.3 Theorem 7.1 gives another proof of Proposition 3.9. Indeed the CM
points of a family θ : Th → I

◦ correspond to the prime factors of its Galois level,
which are finite in number.

We also give a partial result about the comparison of the exponents of the prime
factors in c1 and l. This is an analogous of what is proved in [9, Theorem 8.6] for
the ordinary case; our proof also relies on the strategy there. For every prime P of
I0[P−1

1 ] we denote by cP1 and lP the P-primary components of c1 and l respectively.

Theorem 7.4 Suppose thatρ is not induced by a character of GF for a real quadratic
field F/Q. We have (cP1 )2 ⊂ lP ⊂ cP1 .

Proof The inclusion lP ⊂ cP1 is proved in the same way as the first inclusion of
Theorem 7.1.

We show that the inclusion (cP1 )2 ⊂ lP holds. If cP1 is trivial this reduces toTheorem
7.1, so we can suppose that P is a factor of c1. Let Q denote any prime of I[P−1

1 ]
above P . Let cQ1 be a Q-primary ideal of I[P−1

1 ] satisfying c
Q
1 ∩ I0[P−1

1 ] = cP1 .
Since P divides c1, Q is a CM point, so we have an isomorphism ρP

∼= IndQ
Fψ for an

imaginary quadratic field F/Q and a character ψ : GF → C
×
p . Choose any r < rh .

Consider the κP -vector space scP1 = Hr ∩ cP1 · sl2(I0,r )/Hr ∩ cP1 P · sl2(I0,r ). We see
it as a subspace of sl2(cP1 /cP1 P) ∼= sl2(κP). By the same argument as in the proof of
Theorem 7.1, scP1 is stable under the adjoint action Ad(ρcQ1 Q) : GQ → Aut(sl2(κP)).

Let χF/Q : GQ → C
×
p be the quadratic character defined by the extension F/Q.

Let ε ∈ GQ be an element projecting to the generator of Gal(F/Q). Let ψε : GF →
C

×
p be given by ψε(τ) = ψ(ετε−1). Set ψ− = ψ/ψε. Since ρQ

∼= IndQ
Fψ , we have

a decomposition Ad(ρQ) ∼= χF/Q ⊕ IndQ
Fψ−, where the two factors are irreducible.

Now we have three possibilities for the Galois isomorphism class of scP1 : it is either
that of Ad(ρQ) or that of one of the two irreducible factors.

If scP1
∼= Ad(ρQ), then as κP -vector spaces scP1 = sl2(κP). By Nakayama’s lemma

Hr ⊃ cP1 · sl2(Br ). This implies cP1 ⊂ lP , hence cP1 = lP in this case.
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If scP1 is one-dimensional then we proceed as in the proof of Theorem 7.1

to show that ρcQ1 Q : GQ → GL2(Ir [P−1
1 ]/cQ1 QIr [P−1

1 ]) is induced by a character

ψcQ1 Q : GF → C
×
p . In particular the image of ρcP1 P : H → GL2(I0,r [P−1

1 ]/cP1 PI0,r )

is small. This is a contradiction, since cP1 is the P-primary component of c1,
hence it is the smallest P-primary ideal A of I0,r [P−1

1 ] such that the image of
ρA : GQ → GL2(Ir [P−1

1 ]/AIr [P−1
1 ]) is small.

Finally, suppose that scP1
∼= IndQ

Fψ−. Let d = diag(d1, d2) ∈ ρ(GQ) be the image
of a Zp-regular element. Since d1 and d2 are nontrivial modulo the maximal
ideal of I

◦
0, the image of d modulo c

Q
1 Q is a nontrivial diagonal element dcQ1 Q =

diag(d1,cQ1 Q, d2,cQ1 Q) ∈ ρcQ1 Q(GQ). We decompose scP1 in eigenspaces for the adjoint

actionofdcQ1 Q :wewrite scP1 = scP1 [a] ⊕ scP1 [1] ⊕ scP1 [a−1],wherea = d1,cQ1 Q/d2,cQ1 Q .
Now scP1 [1] is contained in the diagonal torus, on which the adjoint action of GQ

is given by the character χF/Q. Since χF/Q does not appear as a factor of scP1 , we
must have scP1 [1] = 0. This implies that scP1 [a] �= 0 and scP1 [a−1] �= 0. Since scP1 [a] =
scP1 ∩ u+(κP) and scP1 [a−1] = scP1 ∩ u−(κP), we deduce that scP1 contains nontrivial

upper and lower nilpotent elements u+ and u−. Then u+ and u− are the images of
some elements u+ and u− ofHr ∩ cP1 · sl2(I0,r [P−1

1 ]) nontrivialmodulo cP1 P . TheLie
bracket t = [u+, u−] is an element ofHr ∩ t(I0,r [P−1

1 ]) (where t denotes the diagonal
torus) and it is nontrivial modulo (cP1 )2P . Hence the κP -vector space s(cP1 )2 = Hr ∩
(cP1 )2 · sl2(I0,r,Cp [P−1

1 ])/Hr ∩ (cP1 )2P · sl2(I0,r,Cp [P−1
1 ]) contains nontrivial diago-

nal, upper nilpotent and lower nilpotent elements, so it is three-dimensional. By
Nakayama’s lemma we conclude that Hr ⊃ (cP1 )2 · sl2(I0,r [P−1

1 ]), so (cP1 )2 ⊂ lP .�
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