
On p-adic Interpolation of Motivic
Eisenstein Classes
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Abstract In this paper we prove that the motivic Eisenstein classes associated to
polylogarithms of commutative group schemes can be p-adically interpolated in étale
cohomology. This connects them to Iwasawa theory and generalizes and strengthens
the results for elliptic curves obtained in our former work. In particular, degeneration
questions can be treated easily.
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1 Introduction

In this paperweprove that themotivicEisenstein classes associated to polylogarithms
of commutative group schemes can be p-adically interpolated in étale cohomology.
This generalizes the results for elliptic curves obtained in our former paper [12].
Already in the one dimensional case the results obtained here are stronger and much
more flexible as they allow to treat degenerating elliptic curves easily.

The interpolation of motivic Eisenstein classes connects them with Iwasawa the-
ory and is essential for many applications. In the elliptic case for example, the inter-
polation was used in [11] to prove a case of the Tamagawa number conjecture for CM
elliptic curves and it was one of the essential ingredients in the proof of an explicit
reciprocity law for Rankin-convolutions in [13]. We hope that the general case will
find similar applications.

Before we explain our results, we have to introduce the motivic Eisenstein classes
(for the construction we refer to Sect. 4.2).
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Let π : G → S be a smooth commutative and connected group scheme of relative
dimension d (for example a semi-abelian scheme) and denote by

H := R1π!Zp(1)

the first étale homology ofG/S, which is just the sheaf of relative p-adic Tatemodules
of G/S. We write HQp for the associated Qp-adic sheaf. Note that this is not a lisse
sheaf in general. Evaluating themotivic polylogarithmat a non-zeroN-torsion section
t : S → G one defines motivic Eisenstein classes

αEis
k
mot(t) ∈ H2d−1

mot (S,Symk HQ(d)),

depending on some auxiliary data α, where Symk HQ(1) is the k-th symmetric tensor
power of the motivic sheaf HQ which underlies HQp .

In the case of an elliptic curve, the de Rham realization of αEiskmot(t) is the coho-
mology class of a holomorphic Eisenstein series, which justifies the name. These
motivic Eisenstein classes in the elliptic case play a major role in Beilinson’s proof
of his conjectures on special values of L-functions for modular forms.

In this paper we consider the étale regulator

rét : H2d−1
mot (S,Symk HQ(d)) → H2d−1(S,Symk HQp(d))

which gives rise to the étale Eisenstein classes

αEis
k
Qp

(t) := rét(Eis
k
mot(t)) ∈ H2d−1(S,Symk HQp(d)).

In the elliptic case these classes were used by Kato in his seminal work to construct
Euler systems for modular forms.

It is a natural question, whether these étale Eisenstein classes enjoy some
p-adic interpolation properties, in a similar way as one can p-adically interpo-
late the holomorphic Eisenstein series. At first sight, this seems to be a com-
pletely unreasonable question, as for varying k the different motivic cohomology
groupsH2d−1

mot (S,Symk HQ(1)) are not related at all. Nevertheless, this question was
answered affirmatively in the elliptic case in [12] and in this paper we will generalize
this result to commutative group schemes.

To explain our answer to this question we need the sheaf of Iwasawa-algebras
�(H ), which is defined as follows: One first defines a sheaf of “group rings”
Z/prZ[Hr] on S, whereHr is the étale sheaf associated to the [pr]-torsion subgroup
G[pr] or alternatively the first homology with Z/prZ-coefficients (see Sect. 5.4 for
more details). These group rings form an inverse system for varying r and hence
define a pro-sheaf

�(H ) := (Z/prZ[Hr])r�0.
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Moreover, it is also possible to sheafify the classical moments of a measure to a
morphism of pro-sheaves

momk : �(H ) → �k(H ),

where �k(H ) is the k-th graded piece of the divided power algebra �Zp(H ). Thus
the sheaf�(H ) p-adically interpolates the�k(H ). For theQp-sheafHQp the natural
map Symk HQp → �k(HQp) is an isomorphism and the moment map gives rise to
morphisms

momk : H2d−1(S,�(H )(d)) → H2d−1(S,Symk HQp(d)).

To understand this better, it is instructive to consider the case of an abelian scheme
π : A → S over a scheme S which is of finite type over SpecZ (see also Sect. 6.5).
Then

H2d−1(S,�(H )(d)) = lim←−
r

H2d−1(A[pr], Z/prZ(d))

where the inverse limit is takenwith respect to the tracemaps alongA[pr ] → A[pr−1].
The right hand side is obviously an Iwasawa theoretic construction. In the one dimen-
sional case d = 1, the right hand side has an interpretation as an inverse limit of units
via Kummer theory.

Our main result can now be formulated as follows:

Main Theorem (see Theorem 7.3.3) There exists a cohomology class

α EI(t)N ∈ H2d−1(S,�(H )(d))

called the Eisenstein–Iwasawa class, such that

momk(αEI(t)N ) = Nk
αEis

k
Qp

(t).

This interpolation result in the elliptic case is one of the key ingredients in the
proof of an explicit reciprocity law for Rankin-convolutions of modular forms in
[13].

The use of this theorem also considerably simplifies the computations of the
degeneration of polylogarithm in [12]. We hope to treat this at another occasion.

Wewould also like to point out an important open problem: In the one-dimensional
torus or the elliptic curve case, the Eisenstein–Iwasawa class has a direct description
in terms of cyclotomic units or Kato’s norm compatible elliptic units respectively.
Unfortunately, we do not have a similar description of the Eisenstein–Iwasawa class
in the higher dimensional case.
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2 Notations and Set up

2.1 The Category of Zp-sheaves

All schemes will be separated of finite type over a noetherian regular scheme of
dimension 0 or 1. Let X be such a scheme and let p be a prime invertible on X. We
work in the category of constructable Zp-sheaves S (X) on X in the sense of [15,
Exposé V].

Recall that a constructible Zp-sheaf is an inverse system F = (Fn)n�1 where
Fn is a constructible Z/pnZ-sheaf and the transition maps Fn → Fn−1 factor into
isomorphisms

Fn ⊗Z/pnZ Z/pn−1
Z ∼= Fn−1.

The Zp-sheaf is lisse, if each Fn is locally constant. If X is connected and x ∈ X is
a geometric point, then the category of lisse sheaves is equivalent to the category
of finitely generated Zp-modules with a continous π1(X, x)-action. For a general
Zp-sheaf there exists a finite partition of X into locally closed subschemes Xi, such
that F |Xi is lisse (see [4, Rapport, Proposition 2.4., 2.5.]).

For a Zp-sheafF we denote byF ⊗ Qp its image in the category of Qp-sheaves,
i.e., the quotient category modulo Zp-torsion sheaves.

We also consider the “derived” category D(X) of S (X) in the sense of Ekedahl
[5]. This is a triangulated category with a t-structure whose heart is the category of
constructible Zp-sheaves. By loc. cit. Theorem 6.3 there is a full 6 functor formalism
on these categories.

Recall that an inverse system A := (Ar)r�0 (in any abelian category A) satisfies
the Mittag-Leffler condition (resp. is Mittag-Leffler zero), if for each r the image
of Ar+s → Ar is constant for all sufficiently big s (is zero for some s � 1). If A
satisfies the Mittag-Leffler condition and A satisfies AB4∗ (i.e. products exists and
products of epimorphisms are epimorphisms) then lim←−

1
r
Ar = 0 (see [14, Proposition

1]). If A is Mittag-Leffler zero, then for each left exact functor h : A → B one has
Rilim←−r

h(Ar) = 0 for all i � 0 ([9, Lemma 1.11.]).
For a pro-system of étale sheaves F = (Fr)r�0 on X we work with Jannsen’s

continuous étale cohomology Hi(X,F ) which is the i-th derived functor of F 	→
lim←−r

H0(X,Fn). By [9, 3.1] one has an exact sequence

0 → lim←−
1
r
Hi−1(X,Fr) → Hi(X,F ) → lim←−

r

Hi(X,Fr) → 0. (1)

Note in particular, that if Hi−1(X,Fr) is finite for all r, one has

Hi(X,F ) = lim←−
r

Hi(X,Fr). (2)
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For F = (Fr) Mittag-Leffler zero, one has for all i � 0

Hi(X,F ) = 0. (3)

2.2 The Divided Power Algebra

Let A be a commutative ring and M be an A-module. Besides the usual symmetric
power algebra SymA(M) we need also the divided power algebra �A(M) (see [1,
Appendix A] for more details).

The A-algebra �A(M) is a graded augmented algebra with �0(M) = A, �1(M) =
M and augmentation ideal �+(M) := ⊕

k�1 �k(M). For each element m ∈ M one
has the divided power m[k] ∈ �k(M) with the property that mk = k!m[k] where mk

denotes the k-th power of m in �A(M). Moreover, one has the formula

(m + n)[k] =
∑

i+j=k

m[i]n[j].

In the case whereM is a free A-module with basis m1, . . . ,mr the A-module �k(M)

is free with basis {m[i1]
1 · · ·m[ir ]

r | ∑
ij = k}. Further, forM free, there is an A-algebra

isomorphism
�A(M) ∼= TSymA(M)

with the algebra of symmetric tensors (TSymk
A(M) ⊂ Symk

A(M) are the invariants of
the symmetric group), which maps m[k] to m⊗k . Also, by the universal property of
SymA(M), one has an A-algebra homomorphism

SymA(M) → �A(M) (4)

whichmapsmk to k!m[k]. In particular, ifA is aQ-algebra, thismap is an isomorphism.
IfM is free and M∨ := HomA(M,A) denotes the A-dual one has in particular

Symk(M∨) ∼= �k(M)∨ ∼= TSymk
A(M)∨.

The algebra �A(M) has the advantage over TSymA(M) of being compatible with
arbitrary base change

�A(M) ⊗A B ∼= �B(M ⊗A B)

and thus sheafifies well. Recall from [8, I 4.2.2.6.] that if F is an étale sheaf of
Zp-modules, then �Zp(F ) is defined to be the sheaf associated to the presheaf

U 	→ �Zp(U)(F (U)). (5)
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Definition 2.2.1 We denote by

�̂A(M) := lim←−
r

�A(M)/�+(M)[r]

the completion of �A(M) with respect to the divided powers of the augmentation
ideal.

Note that �+(M)[r] = ⊕
k�r �k(M) so that as A-module one has �̂A(M) ∼=∏

k�0 �k(M).
In the same way we define the completion of SymA(M) with respect to the aug-

mentation ideal Sym+
A (M) to be

ŜymA(M) := lim←−
k

SymA(M)/(Sym+
A (M))k (6)

2.3 Unipotent Sheaves

Let � = Z/prZ, Zp or Qp and let π : X → S be a separated scheme of finite type,
withX, S as in Sect. 2.1. A�-sheafF onX is unipotent of length n, if it has a filtration
0 = F n+1 ⊂ F n ⊂ . . . ⊂ F 0 = F such that F i/F i+1 ∼= π∗G i for a �-sheaf G i

on S.
The next lemma is taken from [7], where it is stated in the setting of Qp-sheaves.

Lemma 2.3.1 Let � = Z/prZ, Zp or Qp and let π1 : X1 → S and π2 : X2 → S be
smooth of constant fibre dimension d1 and d2. Let f : X1 → X2 be an S-morphism.
Let F be a unipotent �-sheaf. Then

f !F = f ∗F (d1 − d2)[2d1 − 2d2].

Proof Put c = d1 − d2 the relative dimension of f . We start with the caseF = π∗
2G .

In this case

f !F = f !π∗
2G = f !π !

2G (−d2)[−2d2] = π !
1G (−d2)[−2d2]

= π∗
1G (c)[2c] = f ∗π∗

2G (c)[2c] = f ∗F ⊗ �(c)[2c].

In particular, f !� = �(c)[2c] and we may rewrite the formula as

f ∗F ⊗ f !� = f !(F ⊗ �).

There is always amap from the left to right via adjunction from the projection formula

Rf!(f ∗F ⊗ f !�) = F ⊗ Rf!f !� → F ⊗ �.
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Hence we can argue on the unipotent length ofF and it suffices to consider the case
F = π∗G . This case was settled above. �

The next lemma is also taken from [7]. Let X → S be a smooth scheme with
connected fibres and e : S → X a section. Homomorphisms of unipotent sheaves are
completely determined by their restriction to S via e∗:

Lemma 2.3.2 Let π : X → S be smooth with connected fibres and e : S → X a
section of π . Let � = Z/prZ, Zp or Qp and F a unipotent �-sheaf on X. Then

e∗ : HomX(�,F ) → HomS(�, e∗F )

is injective.

Proof Let 0 → F1 → F2 → F3 → 0 be a short exact sequence of unipotent
�-sheaves on G. As e∗ is exact and Hom left exact, we get a commutative diagram
of exact sequences

0 �� HomX(�,F1) ��

��

HomX(�,F2) ��

��

HomX(�,F3)

��
0 �� HomS(�, e∗F1) �� HomS(�, e∗F2) �� HomS(�, e∗F3).

Suppose that the left and right vertical arrows are injective, then the middle one is
injective as well and it is enough to show the lemma in the case where F = π∗G .
But the isomorphism

HomX(�, π∗G ) ∼= HomX(π !�,π !G ) ∼= HomS(Rπ!π !�,G )

factors through

HomX(π !�,π !G )
e!−→ HomS(�,G ) → HomS(Rπ!π !�,G )

where the last map is induced by the trace map Rπ!π !� → �. This proves the
claim. �

2.4 The Geometric Situation

We recall the geometric set up from [7] using as much as possible the notations from
loc. cit. Let

π : G → S
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be a smooth separated commutative group scheme with connected fibres of relative
dimension d. We denote by e : S → G the unit section and by μ : G ×S G → G the
multiplication. Let j : U → G be the open complement of e(S).

Let ιD : D → G be a closed subscheme with structural map πD : D → S. Typ-
ically πD will be étale and contained in the c-torsion of G for some c � 1. We
note in passing, that for c invertible on S the c-torsion points of G, i.e. the
kernel of the c-multiplication G[c], is quasi-finite and étale over S. Denote by
jD : UD = G \ D → G the open complement of D. We summarize the situation in
the basic diagram

UD := G \ D jD ��

������������� G

π

��

D
ιD��

πD
����

��
��

��

S

Wewill also consider morphisms φ : G1 → G2 of S-group schemes as above. In this
case we decorate all notation with an index 1 or 2, e.g., d1 for the relative dimension
of G1/S.

3 The Logarithm Sheaf

3.1 Homology of G

The basic sheaf in our constructions is the relative first Zp-homology HG of G/S,
which we define as follows:

Definition 3.1.1 For the group scheme π : G → S we let

H := HG := R2d−1π!Zp(d) = R−1π!π !
Zp.

We write Hr := H ⊗ Z/prZ and HQp := H ⊗ Qp for the associated Qp-sheaf.

Note thatH is not a lisse Zp-sheaf in general, but the stalks are free Zp-modules
of finite rank, which follows for example from Lemma 3.1.2 below.

The sheaf H and more generally Riπ!Zp is covariant functorial for any map of
S-schemes f : G → X using the adjunction f!f !

Zp → Zp. In particular, the group
multiplication μ : G ×S G → G induces a product

Riπ!Zp(d) ⊗ Rjπ!Zp(d) → Ri+j−2dπ!Zp(d)

and the diagonal � : G → G ×S G induces a coproduct

Riπ!Zp(d) →
⊕

j

Rjπ!Zp(d) ⊗ R2d+i−jπ!Zp(d)
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on R·π!Zp, which gives it the structure of a Hopf algebra and one has

Riπ!Zp(d) ∼=
2d−i∧

H (7)

(this follows by base change to geometric points and duality from [2, Lemma 4.1.]).
The same result holds for Z/prZ-coefficients.

Lemma 3.1.2 Let G[pr] be the kernel of the pr-multiplication [pr] : G → G. Then
there is a canonical isomorphism of étale sheaves

G[pr] ∼= R−1π!π !
Z/prZ = Hr .

In particular, HG is the p-adic Tate-module of G.

Proof This is standard and we only sketch the proof: Consider G[pr] as an étale
sheaf on S. The Kummer sequence is a G[pr]-torsor on G, hence gives a class in

H1(G, π∗G[pr]) ∼= Ext1G(π∗
Z/prZ, π∗G[pr]) ∼= Ext1G(π !

Z/prZ, π !G[pr]) ∼=
∼= Ext1S(Rπ!π !

Z/prZ,G[pr]) ∼= HomS(R
−1π!π !

Z/prZ,G[pr]).

Thus the Kummer torsor induces a map R−1π!π !
Z/prZ → G[pr] and one can per-

form a base change to geometric points s ∈ S to show that this is an isomorphism. But
this follows then from Poincaré-duality and the isomorphism Homs(G[pr], μpr ) ∼=
H1(G, μpr ) shown in [2, Lemma 4.2.]. �

3.2 The First Logarithm Sheaf

Consider the complex Rπ!π !
Zp calculating the homology of π : G → S and its

canonical filtrationwhose associated graded pieces are theRiπ!π !
Zp.We apply this to

RHomG(π !
Zp, π

!H ) ∼= RHomS(Rπ!π !
Zp,H ).

Then the resulting hypercohomology spectral sequence gives rise to the five term
sequence

0 → Ext1S(Zp,H )
π !−→ Ext1G(π !

Zp, π
!H ) → HomS(H ,H ) →
→ Ext2S(Zp,H )

π !−→ Ext2G(π !
Zp, π

!H )

and the maps π ! are injective because they admit the splitting e! induced by the unit
section e. This gives
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0 → Ext1S(Zp,H )
π !−→ Ext1G(π !

Zp, π
!H ) → HomS(H ,H ) → 0. (8)

Note that Ext1G(π !
Zp, π

!H ) ∼= Ext1G(Zp, π
∗H ). The same construction is also pos-

sible with the base ring �r := Z/prZ and Hr and gives the exact sequence

0 → Ext1S(�r,Hr)
π !−→ Ext1G(π !�r, π

!Hr) → HomS(Hr,Hr) → 0. (9)

Definition 3.2.1 The first logarithm sheaf (Log(1), 1(1)) on G consists of an exten-
sion class

0 → π∗H → Log(1) → Zp → 0

such that its image in HomS(H ,H ) is the identity together with a fixed splitting
1(1) : e∗

Zp → e∗Log(1). In exactly the same way one defines Log(1)
�r
. We denote by

Log(1)
Qp

the associated Qp-sheaf.

The existence and uniqueness of (Log(1), 1(1)) follow directly from (8). The auto-
morphisms of Log(1) form a torsor under HomG(Zp, π

∗H ). In particular, the pair
(Log(1), 1(1)) admits no automorphisms except the identity.

It is obvious from the definition that one has

Log(1) ⊗Zp �r
∼= Log(1)

�r
(10)

so that Log(1) = (Log(1)
�r

)r�0. Moreover, Log(1) is compatible with arbitrary base
change. If

GT
fT−−−−→ G

πT

⏐
⏐



⏐
⏐

π

T
f−−−−→ S

(11)

is a cartesian diagram one has f ∗
TLog(1)

G
∼= Log(1)

GT
and f ∗

T (1(1)) defines a splitting.
Let

ϕ : G1 → G2

be a homomorphism of group schemes of relative dimension d1, d2, respectively and
write c := d1 − d2.

Theorem 3.2.2 For ϕ : G1 → G2 as above, there is a unique morphism of sheaves

ϕ# : Log(1)
G1

→ ϕ∗Log(1)
G2

∼= ϕ!Log(1)
G2

(−c)[−2c]

such that ϕ#(1
(1)
G1

) = 1(1)
G2
. Moreover, if ϕ is an isogeny of degree prime to p, then ϕ#

is an isomorphism.



On p-adic Interpolation of Motivic Eisenstein Classes 345

Proof Pull-back of Log(1)
G2

gives an exact sequence

0 → π∗
1HG2 → ϕ∗Log(1)

G2
→ Zp → 0

and push-out of Log(1)
G1

by π∗
1HG1 → π∗

1HG2 induces a map

0 −−−−→ π∗
1HG1 −−−−→ Log(1)

G1
−−−−→ Zp −−−−→ 0

⏐
⏐



⏐
⏐

h

∥
∥
∥

0 −−−−→ π∗
1HG2 −−−−→ ϕ∗Log(1)

G2
−−−−→ Zp −−−−→ 0.

(12)

If ϕ is an isogeny and degϕ is prime to p, then π∗
1HG1 → π∗

1HG2 is an isomor-
phism, hence also h. By uniqueness there is a unique isomorphism of the pair
(Log(1)

G2
, e∗

1(h) ◦ 1(1)
G1

)with (Log(1)
G2

, 1(1)
G2

). The composition of this isomorphism with

h is the desired map. If h′ : Log(1)
G1

→ ϕ!Log(1)
G2

is another map with this prop-
erty, the difference h − h′ : Zp → π∗

1HG2 is uniquely determined by its pull-back
e∗(h − h′) : Zp → e∗

2Log(1)
G2

according to Lemma 2.3.2. If both, h and h′ are com-
patible with the splittings, then e∗(h − h′) = 0 and hence h = h′. �

Corollary 3.2.3 (Splitting principle) Let ϕ : G1 → G2 be an isogeny of degree
prime to p. Then if t : S → G1 is in the kernel of ϕ, then

t∗Log(1)
G1

∼= t∗ϕ∗Log(1)
G2

∼= e∗
1ϕ

∗Log(1)
G2

∼= e∗
1Log(1)

G1
.

Proof Apply t∗ to ϕ#. �

3.3 The Qp-logarithm Sheaf

We are going to define the Qp-logarithm sheaf, which has been studied extensively
in [7].

Definition 3.3.1 We define

Log(k)
Qp

:= Symk(Log(1)
Qp

)

and denote by

1(k) := 1

k! Sym
k(1(1)) : Qp → Log(k)

Qp

the splitting induced by 1(1).
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We note that Log(k)
Qp

is unipotent of length k and that the splitting 1(k) induces an
isomorphism

e∗Log(k)
Qp

∼=
k∏

i=0

Symi HQp . (13)

To define transition maps
Log(k)

Qp
→ Log(k−1)

Qp
(14)

consider the morphism Log(1)
Qp

→ Qp ⊕ Log(1)
Qp

given by the canonical projection
and the identity. Then we have

Log(k)
Qp

= Symk(Log(1)
Qp

)

→ Symk(Qp ⊕ Log(1)
Qp

) ∼=
⊕

i+j=k

Symi(Qp) ⊗ Symj(Log(1)
Qp

)

→ Sym1(Qp) ⊗ Symk−1(Log(1)
Qp

) ∼= Log(k−1)
Qp

.

A straightforward computation shows that 1(k) 	→ 1(k−1) under this transition map.

3.4 Main Properties of the Qp-logarithm Sheaf

The logarithm sheaf has three main properties: functoriality, vanishing of cohomol-
ogy and a universal mapping property for unipotent sheaves. Functoriality follows
trivially from Theorem 3.2.2. We review the others briefly, referring for more details
to [7].

Let ϕ : G1 → G2 be a homomorphism of group schemes of relative dimension d1,
d2, respectively and let c := d1 − d2 be the relative dimension of the homomorphism.

Theorem 3.4.1 (Functoriality) For ϕ : G1 → G2 as above there is a unique homo-
morphism of sheaves

ϕ# : LogQp,G1 → ϕ∗LogQp,G2
∼= ϕ!LogQp,G2(−c)[−2c]

such that 1G1 maps to 1G2 . Moreover, if ϕ is an isogeny, the ϕ# is an isomorphism.

Proof This follows directly from Theorem 3.2.2 and the fact that deg ϕ is invertible
in Qp. �
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Corollary 3.4.2 (Splitting principle) Let ϕ : G1 → G2 be an isogeny. Then if t :
S → G1 is in the kernel of ϕ, one has


t : t∗LogQp,G1
∼= t∗ϕ∗LogQp,G2

∼= e∗
1ϕ

∗LogQp,G2

∼= e∗
1LogQp,G1

∼=
∏

k�0

Symk HQp,G1 .

More generally, if ι : ker ϕ → G1 is the closed immersion, one has

ι∗LogG1
∼= π |∗ker ϕ

∏

k�0

Symk HQp,G1 ,

where π |ker ϕ : ker ϕ → S is the structure map.

Proof Apply t∗ to both sides of the isomorphism ϕ# and use (13). For the second
statement make the base change to ker ϕ and apply the first statement to the tauto-
logical section of ker ϕ. �

Theorem 3.4.3 (Vanishing of cohomology) One has

Riπ!LogQp
∼=

{
Qp(−d) if i = 2d

0 if i �= 2d.

More precisely, the transition maps Riπ!Log(k)
Qp

→ Riπ!Log(k−1)
Qp

are zero for i < 2d

and one has an isomorphism R2dπ!Log(k)
Qp

∼= Qp(−d) compatible with the transition
maps.

Proof This is Theorem 3.3.1. in [7]. �

LetF be a unipotent sheaf of finite length n on G. Consider the homomorphism

π∗HomG(LogQp,F ) → e∗F (15)

defined as the composition of

π∗HomG(LogQp,F ) → π∗e∗e∗HomG(LogQp ,F ) → HomS(e
∗LogQp , e

∗F )

with
HomS(e

∗LogQp, e
∗F )

(1)∗−−→ HomS(Qp, e
∗F ) ∼= e∗F .
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Theorem 3.4.4 (Universal property) Let F be a unipotent sheaf of finite length.
Then the map (15) induces an isomorphism

π∗Hom(LogQp,F ) ∼= e∗F .

Proof This is Theorem 3.3.2. in [7]. �

4 The Qp-polylogarithm and Eisenstein Classes

4.1 Construction of the Qp-polylogarithm

Fix an auxiliary integer c > 1 invertible on S and consider the c-torsion subgroup
D := G[c] ⊂ G. We write UD := G \ D and consider

UD
jD−→ G

ιD←− D.

We also write πD : D → S for the structure map.
For any sheaf F the localization triangle defines a connecting homomorphism

Rπ!RjD∗j∗DF [−1] → Rπ!ιD!ι!DF . (16)

As Log(k)
Qp

(d)[2d] is unipotent we may use Lemma 2.3.1 to replace ι!D by ι∗D. Using
Corollary 3.4.2 one gets

πD!ι!DLog(k)
Qp

(d)[2d] ∼=
k∏

i=0

πD!π∗
D Symi HQp .

Putting everything together and taking the limit over the transition maps Log(k)
Qp

→
Log(k−1)

Qp
gives the residue map

res : H2d−1(S,Rπ!RjD∗j∗DLogQp(d)) → H0(S,
∏

k�0

πD!π∗
D Symk HQp). (17)

Proposition 4.1.1 The localization triangle induces a short exact sequence

0 → H2d−1(S,Rπ!RjD∗j∗DLogQp(d))
res−→

H0(S,
∏

k�0

πD!π∗
D Symk HQp) → H0(S, Qp) → 0.
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Proof This is an immediate consequence from the localization triangle and the com-
putation of Rπ!Log in Theorem 3.4.3. �
Definition 4.1.2 Let

Qp[D]0 := ker(H0(S, πD!Qp) → H0(S, Qp))

where the map is induced by the trace πD!Qp → Qp.

Note that

Qp[D]0 ⊂ ker

⎛

⎝H0(S,
∏

k�0

πD!π∗
D Symk HQp) → H0(S, Qp)

⎞

⎠ .

Definition 4.1.3 Let α ∈ Qp[D]0. Then the unique class

αpolQp
∈ H2d−1(S,Rπ!RjD∗j∗DLogQp(d))

with res(αpolQp
) = α is called the polylogarithm class associated to α. We write

αpolkQp
for the image of αpolQp

in H2d−1(S,Rπ!RjD∗j∗DLog(k)
Qp

(d)).

4.2 Eisenstein Classes

Recall that D = G[c] and fix an integer N > 1 invertible on S, such that (N, c) = 1
and let t : S → UD = G \ D be an N-torsion section. Consider the composition

Rπ!RjD∗j∗DLog(d) → Rπ!RjD∗j∗DRt∗t
∗Log(d) ∼= Rπ!Rt∗t∗Log(d) ∼= t∗Log(d)

(18)
induced by the adjunction id → Rt∗t∗, the fact thatRt∗ = Rt! and because π ◦ t = id.
Together with the splitting principle from Corollary 3.4.2 and the projection to the
k-th component one gets an evaluation map

H2d−1(S,Rπ!RjD∗j∗DLog(k)
Qp

(d))

t◦t∗−−→H2d−1(S,

k∏

i=0

Symi HQp)

prk−→ H2d−1(S,Symk HQp). (19)

Definition 4.2.1 Let α ∈ Qp[D]. The image of αpolQp
under the evaluationmap (19)

αEis
k
Qp

(t) ∈ H2d−1(S,Symk HQp)

is called the k-th étale Qp-Eisenstein class for G.
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Remark 4.2.2 The normalization in [12, Definition 12.4.6] is different. There we
had an additional factor of −Nk−1 in front of αEiskQp

(t). This has the advantage to

make the residues of αEiskQp
(t) at the cusps integral, but is very unnatural from the

point of view of the polylogarithm.

Recall from [7, Theorem 5.2.1] that the polylogarithm αpolkQp
is motivic, i.e., there

exists a class in motivic cohomology

αpol
k
mot ∈ H2d−1

mot (S,Rπ!RjD∗j∗DLog(k)
mot(d)),

the motivic polylogarithm, which maps to αpolkQp under the étale regulator

rét : H2d−1
mot (S,Rπ!RjD∗j∗DLog(k)

mot(d)) → H2d−1(S,Rπ!RjD∗j∗DLog(k)
Qp

(d)).

With the motivic analogue of the evaluation map (19) one can define exactly in the
same way as in the étale case motivic Eisenstein classes for α ∈ Q[D]0

αEis
k
mot(t) ∈ H2d−1

mot (S,Symk HQ). (20)

The next proposition is obvious from the fact that the evaluation map is compatible
with the étale regulator.

Proposition 4.2.3 Forα ∈ Q[D]0 the imageof themotivicEisenstein class αEiskmot(t)
under the étale regulator

rét : H2d−1
mot (S,Symk HQ) → H2d−1(S,Symk HQp)

is the étale Qp-Eisenstein class αEiskQp
(t).

5 Sheaves of Iwasawa Algebras

5.1 Iwasawa Algebras

Let X = lim←−r
Xr be a profinite space with transition maps λr : Xr+1 → Xr and

�r[Xr] := Map(Xr, Z/prZ)

the Z/prZ-module of maps from Xr to Z/prZ. For each xr we write δxr ∈ �r[Xr]
for the map which is 1 at xr and 0 else. It is convenient to interpret �r[Xr] as the
space of Z/prZ-valued measures on Xr and δxr as the delta measure at xr . Then the
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push-forward along λr : Xr+1 → Xr composed with reduction modulo pr induces
Zp-module maps

λr∗ : �r+1[Xr+1] → �r[Xr] (21)

which are characterized by λr∗(δxr+1) = δλr(xr).

Definition 5.1.1 The module of Zp-valued measures on X is the inverse limit

�(X) := lim←−
r

�r[Xr]

of �r[Xr] with respect to the transition maps from (21).

Let x = (xr)r�0 ∈ X. We define δx := (δxr )r�0 ∈ �(X), which provides a map

δ : X → �(X).

For each continuous map ϕ : X → Y of profinite spaces we get a homomorphism

ϕ∗ : �(X) → �(Y) (22)

“push-forward of measures” with the property ϕ∗(δx) = δϕ(x). Obviously, one has
�r[Xr × Yr] ∼= �r[Xr] ⊗ �r[Yr] so that

�(X × Y) ∼= �(X)⊗̂�(Y) := lim←−
r

�r[Xr] ⊗ �r[Yr].

In particular, if X = G = lim←−r
Gr is a profinite group, the group structure μ : G ×

G → G induces a Zp-algebra structure on �(G), which coincides with the Zp-
algebra structure induced by the inverse limit of group algebras lim←−r

�r[Gr].
Definition 5.1.2 If G = lim←−r

Gr is a profinite group, we call

�(G) := lim←−
r

�r[Gr]

the Iwasawa algebra of G.

More generally, if G acts continuously on the profinite space X, one gets a map

�(G)⊗̂�(X) → �(X)

which makes �(X) a �(G)-module. If X is a principal homogeneous space under
G, then �(X) is a free �(G)-module of rank 1.
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5.2 Properties of the Iwasawa Algebra

In this section we assume that H is a finitely generated free Zp-module. We let

Hr := H ⊗Zp Zp/p
r
Zp

so that H = lim←−r
Hr with the natural transition maps Hr+1 → Hr .

In the case H = Zp, the so called Amice transform of a measure μ ∈ �(Zp)

Aμ(T) :=
∞∑

n=0

Tn
∫

Zp

(
x

n

)

μ(x)

induces a ring isomorphismA : �(Zp) ∼= Zp[[T ]] (see [3, Sect. 1.1.]). A straightfor-
ward generalization shows that �(H) is isomorphic to a power series ring in rkH
variables. On the other hand one has the so called Laplace transform of μ (see loc.
cit.)

Lμ(t) :=
∞∑

n=0

tn

n!
∫

Zp

xnμ(x).

This map is called the moment map in [10] and we will follow his terminology. In
the next section, we will explain this map from an abstract algebraic point of view.
For this we interpret tn

n! as t
[n] in the divided power algebra �Zp(Zp).

5.3 The Moment Map

We return to the case of a free Zp-module H of finite rank.

Proposition 5.3.1 LetH be a freeZp-module of finite rank andHr := H ⊗Zp Z/prZ.
Then

�̂Zp(H) ∼= lim←−
r

�̂Z/prZ(Hr).

Proof As each�Zp(H)/�+(H)[k] is a finitely generated freeZp-module, this follows
by the compatibility with base change of�Zp(H) and the fact that one can interchange
the inverse limits. �

By the universal property of the finite group ring �r[Hr], the group homomor-
phism

Hr → �̂Z/prZ(Hr)
×

hr 	→
∑

k�0

h[k]
r
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induces a homomorphism of Z/prZ-algebras

momr : �r[Hr] → �̂Z/prZ(Hr).

Corollary 5.3.2 The maps momr induce in the inverse limit a Zp-algebra homo-
morphism

mom : �(H) → �̂Zp(H).

which is functorial in H.

Definition 5.3.3 We call mom : �(H) → �̂Zp(H) themoment map and the compo-
sition with the projection to �k(H)

momk : �(H) → �k(H)

the k-th moment map.

5.4 Sheafification of the Iwasawa Algebras

Let X be a separated noetherian scheme of finite type as in Sect. 2.1 and X :=
(pr : Xr → X)r be an inverse system of quasi-finite étale schemes over X with étale
transition maps λr : Xr → Xr−1. We often write

�r := Z/prZ. (23)

The adjunction λr!λ!
r → id defines a homomorphism

pr+1!�r+1 = pr!λr!λ!
r�r+1 → pr!�r+1,

because λr is étale. If one composes this with reduction modulo pr , one gets a trace
map

Trr+1 : pr+1,!�r+1 → pr,!�r . (24)

Definition 5.4.1 We define an étale sheaf on X by

�r[Xr] := pr!�r .

With the trace maps Trr+1 : �r+1[Xr+1] → �r[Xr] as transition morphisms we
define the pro-sheaf

�(X ) := (�r[Xr])r�0.
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This definition is functorial in X . If (ϕr)r : (Xr)r → (Yr)r is a morphism of
inverse system of quasi-finite étale schemes over X, then the adjunction ϕr!ϕ!

r → id
defines a morphism

ϕr! : �r[Xr] → �r[Yr]

compatible with the transition maps, and hence a morphism of pro-sheaves

�(X ) → �(Y ).

Moreover, the formation of �(X ) is compatible with base change: if Xr,T :=
Xr ×S T for an S-scheme f : T → S, then by proper base change one has

f ∗�r[Xr] ∼= �[Xr,T ].

By the Künneth formula, one has

�r[Xr ×X Yr] ∼= �r[Xr] ⊗ �r[Yr]

and hence �(X ×X Y ) ∼= �(X )⊗̂�(Y ) by taking the inverse limit. In particular,
in the case where X = G is an inverse system of quasi-finite étale group schemes
Gr , the group structure μr : Gr ×X Gr → Gr induces a ring structure

�(G )⊗̂�(G ) → �(G )

on �(G ). Similarly, if
G ×X X → X

is a group action of inverse systems, i.e., a compatible family of actionsGr ×X Xr →
Xr , then �(X ) becomes a �(G )-module.

The next lemma shows that the above construction indeed sheafifies the Iwasawa
algebras considered before.

Lemma 5.4.2 Let x ∈ X be a geometric point and write pr,x : Xr,x → x for the base
change of Xr to x considered as a finite set. Then

�r[Xr]x ∼= �r[Xr].

Proof This follows directly from the base change property of �r[Xr] and the fact
that pr,x,!�r

∼= �r[Xr] over an algebraically closed field. �

Wereturn to our basic set up,whereπ : G → S is a separated smooth commutative
group scheme with connected fibres. Recall from Lemma3.1.2 that Hr is the sheaf
associated to G[pr], which is quasi-finite and étale over S.
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Definition 5.4.3 Define the sheaf of Iwasawa algebras �(H ) on S to be the pro-
sheaf

�(H ) := (�r[Hr])r�0.

5.5 Sheafification of the Moment Map

We keep the notation of the previous section. In particular, we consider the étale
sheaf Hr and the sheaf �r[Hr].

OverG[pr] the sheaf [pr]∗Hr has the tautological section τr ∈ �(G[pr], [pr]∗Hr)

corresponding to the identity map G[pr] → Hr . This gives rise to the section

τ [k]
r ∈ �(G[pr], [pr]∗�k(Hr)) (25)

of the k-th divided power ofHr . Using the chain of isomorphisms (note that [pr]∗ =
[pr]! as [pr] is étale)

�(G[pr], [pr]∗�k(Hr)) ∼= HomG[pr ](Z/prZ, [pr]∗�k(Hr))

∼= HomS([pr]!Z/prZ, �k(Hr)),

the section τ [k]
r gives rise to a morphism of sheaves

momk
r : �r[Hr] → �k(Hr). (26)

Lemma 5.5.1 There is a commutative diagram

�r[Hr] momk
r−−−−→ �k(Hr)

Trr

⏐
⏐



⏐
⏐



�r−1[Hr−1] momk
r−1−−−−→ �k(Hr−1)

where the right vertical map is given by the reduction map

�k(Hr) → �k(Hr) ⊗Z/prZ Z/pr−1
Z ∼= �k(Hr−1).

Proof Denote by λr : Hr → Hr−1 the transition map. Reduction modulo pr−1 gives
a commutative diagram

[pr]!Z/prZ
momk

r−−−−→ �k(Hr)
⏐
⏐



⏐
⏐



[pr]!λ∗
rZ/pr−1

Z
momk

r ⊗Z/pr−1Z−−−−−−−−→ �k(Hr−1).
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As the image of the tautological class τ [k]
r ∈ �(G[pr], [pr]∗�k(Hr)) under the reduc-

tion map gives the the pull-back of the tautological class

λ∗
r τ

[k]
r−1 ∈ �(G[pr], [pr]∗�k(Hr−1)) ∼= HomG[pr ](λ∗

rZ/pr−1
Z, [pr]∗�k(Hr−1))

∼= HomS([pr]!λ∗
rZ/pr−1

Z, �k(Hr−1))

one concludes that momk
r ⊗Z/pr−1

Z coincides with the map given by λ∗
r τ

[k]
r−1. This

means that momk
r ⊗Z/pr−1

Z has to factor through Trr , i.e., the diagram

[pr−1]!λr!λ∗
rZ/pr−1

Z
momk

r ⊗Z/pr−1Z ��

Trr ����������������
�k(Hr−1)

[pr−1]!Z/pr−1
Z

momk
r−1

��������������

commutes, which gives the desired result. �

With this result we can now define the moment map for the sheaf of Iwasawa
algebras �(H ).

Definition 5.5.2 We define the k-th moment map to be the map of pro-sheaves

momk : �(H ) → �k(H )

defined by (momk
r )r�0 and

mom : �(H ) → �̂Zp(H )

by taking momk in the k-th component.

Remark 5.5.3 In each stalk the the mapmomk coincides with the mapmomk defined
in Definition5.3.3 (see [12, Lemma 12.2.14]).

6 The Integral Logarithm Sheaf

6.1 Definition of the Integral Logarithm Sheaf

We now define a pro-sheaf L on G of modules over π∗�(H ), which will give a
Zp-structure of the logarithm sheaf LogQp . For this write Gr := G considered as a
quasi-finite étale G-scheme via the pr-multiplication

[pr] : Gr = G → G. (27)
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Note that this is a G[pr]-torsor

0 → G[pr] → Gr
[pr ]−→ G → 0

overG. Letλr : Gr → Gr−1 be the transitionmap,which is just the [p]-multiplication
in this case. Then, as in (24), we have trace maps

Trr : �r[Gr] → �r−1[Gr−1].

We will also need the following variant. Let �s := Z/psZ and write

�s[Gr] := [pr]!�s. (28)

Then the adjunction λr!λ!
r → id defines transition morphisms

λr! : �s[Gr] → �s[Gr−1]. (29)

Definition 6.1.1 With the above transition maps we can define the pro-sheaves

L := (�r[Gr])r�0 and L�s := (�s[Gr])r�0.

We call L the integral logarithm sheaf.

Note that the reduction modulo ps−1 gives transition maps L�s → L�s−1 and that
we have an isomorphism of pro-sheaves

L ∼= (L�s)s�0. (30)

By the general theory outlined above, L is a module over π∗�(H ) which is free of
rank 1.

Let t : S → G be a section and denote by G[pr]〈t〉 the G[pr]-torsor defined by
the cartesian diagram

G[pr]〈t〉 −−−−→ Gr
⏐
⏐



⏐
⏐

[pr ]

S
t−−−−→ G.

(31)

We denote byHr〈t〉 the étale sheaf defined by G[pr]〈t〉 and byH 〈t〉 := (Hr〈t〉) the
pro-system defined by the trace maps. We write

�(H 〈t〉) := (�r[Hr〈t〉])r�0

for the sheaf of Iwasawa modules defined by H 〈t〉.
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Lemma 6.1.2 There is an canonical isomorphism

t∗L ∼= �(H 〈t〉).

In particular, for the unit section e : S → G one has

e∗L ∼= �(H )

and hence a section 1 : Zp → e∗L given by mapping 1 to 1.

Proof This follows directly from the fact that L is compatible with base change and
the definitions. �

6.2 Basic Properties of the Integral Logarithm Sheaf

The integral logarithm sheaf enjoys the same properties as its Qp-counterpart,
namely functoriality, vanishing of cohomology and a universal property for unipotent
sheaves.

Let ϕ : G1 → G2 be a homomorphism of group schemes of relative dimension
d1 and d2 over S. Denote byL1 andL2 the integral logarithm sheaves on G1 and G2

respectively.

Theorem 6.2.1 (Functoriality) Let c := d1 − d2. Then there is a canonical map

ϕ# : L1 → ϕ∗L2
∼= ϕ!L2(−c)[−2c].

Moreover, if ϕ is an isogeny of degree prime to p, then ϕ# : L1
∼= ϕ∗L2 is an isomor-

phism.

Proof The homomorphism ϕ induces a homomorphism of group schemes over G1

ϕ : G1,r → G2,r ×G2 G1 (32)

which induces by adjunction ϕ!ϕ! → id and the base change property of �r[G2,r] a
morphism of sheaves

ϕ# : �r[G1,r] → ϕ∗�r[G2,r] = ϕ!�r[G2,r](−c)[−2c].

Passing to the limit gives the required map. If ϕ is an isogeny of degree prime to p,
then the map in (32) is an isomorphism. Hence this is also true for ϕ#. �

Corollary 6.2.2 (Splitting principle)Let c be an integer prime to p and let t : S → G
be a c-torsion section. Then there is an isomorphism

[c]# : t∗L ∼= �(H ).
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More generally, if D := G[c] with (c, p) = 1 then

ι∗DL ∼= π∗
D�(H ),

where ιD : D → G and πD : D → S is the structure map.

Proof Apply t∗ respectively, ι∗D to the isomorphism [c]# : L → [c]∗L. �

Theorem 6.2.3 (Vanishing of cohomology) Recall that 2d is the relative dimension
of π : G → S. Then the pro-sheaves

Riπ!L for i < 2d

are Mittag-Leffler zero (see Sect. 2.1) and

R2dπ!L(d) ∼= Zp.

We start the proof of this theorem with a lemma:

Lemma 6.2.4 The endomorphism [pr]! : Riπ!Z/psZ → Riπ!Z/psZ is given by mul-
tiplication with pr(2d−i).

Proof By Lemma 3.1.2 we see that [pr]! is given by pr-multiplication on Hs. The
result follows from this and the Z/psZ-version of the isomorphism (7) �

Proof of Theorem 6.2.3. Consider the transition map �s[Gr+j] → �s[Gr]. If we
apply Riπ! we get the homomorphism

[pj]! : Riπr+j,!�s → Riπr,!�s,

where πr = π : Gr → S is the structure map of Gr = G. By Lemma 6.2.4, the map
[pj]! acts by multiplication with pj(2d−i) on Riπr+j,!�s. In particular, this is zero
for i �= 2d and j � s and the identity for i = 2d. This proves the theorem, because
R2dπ!�s(d) ∼= �s. �

The sheaf L satisfies also a property analogous to Theorem 3.4.4. To formulate
this properly, we first need a property of unipotent Z/psZ-sheaves.

Lemma 6.2.5 Let F be a unipotent �s = Z/psZ-sheaf of length n on G. Then
[pns]∗F is trivial on Gns in the sense that there exists a �s-sheaf G on S such that

[pns]∗F ∼= π∗
nsG ,

where πns : Gns → S is the structure map.

Proof We show this by induction. For n = 0 there is nothing to show. So let

0 → F ′ → F → π∗G ′′ → 0
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be an exact sequencewithF ′ unipotent of length n − 1, so that by induction hypothe-
ses [p(n−1)s]∗F ′ ∼= π∗G ′ on G(n−1)s. Thus it suffices to show that for an extension
F ∈ Ext1G(π∗G ′′, π∗G ′), the sheaf [ps]∗F is trivial on Gs. One has

Ext1G(π∗G ′′, π∗G ′) ∼= Ext1G(π !G ′′, π !G ′) ∼= Ext1S(Rπ!π !G ′′,G ′)

and the pull-back by [ps]∗ on the first group is induced by the trace map [ps]! :
Rπ![ps]![ps]!π !G ′′ → Rπ!π !G ′′ on the last group. By the projection formula we have
Rπ!π !G ′′ ∼= Rπ!�s(d)[2d] ⊗ G ′′ and the triangle

τ<2dRπ!�s(d)[2d] → Rπ!�s(d)[2d] → R2dπ!�s(d) ∼= �s

gives rise to a long exact sequence of Ext-groups

. . . → Ext1S(G
′′,G ′) → Ext1S(Rπ!�s(d)[2d] ⊗ G ′′,G ′)

→ Ext1S(τ<2dRπ!�s(d)[2d] ⊗ G ′′,G ′) → . . .

If we pull-back by [ps]∗ and use Lemma 6.2.4 the resulting map on the module
Ext1S(τ<2dRπ!�s(d)[2d] ⊗ G ′′,G ′) is zero, which shows that [ps]∗F is in the image
of

Ext1S(G
′′,G ′)

[ps]∗π∗−−−→ Ext1G([ps]∗π∗G ′′, [ps]∗π∗G ′).

This is the desired result. �

Exactly as in (15) one can define for each�s-sheafF and each r a homomorphism

π∗HomG(�s[Gr],F ) → e∗F (33)

as the composition

π∗HomG(L�s,r,F ) → π∗e∗e∗HomG(L�s,r,F )

→ HomS(e
∗L�s,r, e

∗F )
1∗−→ HomS(�s, e

∗F )

The next theorem corrects and generalizes [12, Proposition 4.5.3], which was erro-
neously stated for all Z/psZ-sheaves and not just for unipotent ones.

Theorem 6.2.6 (Universal property) Let F be a unipotent �s-sheaf of length n.
Then the homomorphism (33)

π∗HomG(�s[Gns],F ) ∼= e∗F

is an isomorphism.
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Proof LetF be unipotent of length n. Then we know from Lemma 6.2.5 that there is
a �s-sheaf G on S such that [pns]∗F ∼= π∗

nsG , where πns : Gns → S is the structure
map. Similarly, we write ens for the unit section of Gns. Then one has

e∗F ∼= e∗
ns[pns]∗F ∼= e∗

nsπ
∗
nsG

∼= G .

Further, one has the following chain of isomorphisms

π∗HomG(�s[Gns],F ) = π∗HomG([pns]!�s,F ) ∼= πns∗HomGns
(�s, [pns]∗F )

∼= πns∗HomGns
(�s, π

∗
nsG )

∼= HomS(Rπns!�s(d)[2d],G )

∼= HomS(R
2dπns!�s(d),G )

∼= G ∼= e∗F ,

which prove the theorem. �

6.3 The Integral étale Poylogarithm

In this section we define in complete analogy with the Qp-case the integral étale
polylogarithm.

We recall the set-up from Sect. 4.1. Denote by c > 1 an integer invertible on S
and prime to p and let D := G[c] be the c-torsion subgroup. Then the localization
triangle for jD : UD ⊂ G and ιD : D → G reads

Rπ!L(d)[2d − 1] → Rπ!RjD∗j∗DL(d)[2d − 1] → πD!ι!DL(d).

By relative purity and the splitting principle ι!DL(d)[2d] ∼= ι∗DL ∼= π∗
D�(H ). We

apply the functor Hj(S,−) to this triangle. As the Riπ!L are Mittag-Leffler zero for
i �= 2d by Theorem 6.2.3 one gets with (3):

Proposition 6.3.1 In the above situation there is a short exact sequence

0 → H2d−1(S,Rπ!RjD∗j∗DL(d))
res−→ H0(S, πD!π∗

D�(H )) → H0(S, Zp) → 0.

As in the Qp-case we define

Zp[D]0 := ker
(
H0(S, πD!π∗

DZp) → H0(S, Zp)
)

so that one has

Zp[D]0 ⊂ ker
(
H0(S, πD!π∗

D�(H )) → H0(S, Zp)
)
.

With these preliminaries we can define the integral polylogarithm.
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Definition 6.3.2 The integral étale polylogarithm associated to α ∈ Zp[D]0 is the
unique class

αpol ∈ H2d−1(S,Rπ!RjD∗j∗DL(d))

such that res(αpol) = α.

6.4 The Eisenstein–Iwasawa Class

Recall that D = G[c] and let t : S → UD = G \ D be an N-torsion section with
(N, c) = 1 but N not necessarily prime to p. The same chain of maps as in (18) gives
a map

H2d−1(S,Rπ!RjD∗j∗DL(d)) → H2d−1(S, t∗L(d)) ∼= H2d−1(S,�(H 〈t〉)(d)). (34)

By functoriality the N-multiplication induces a homomorphism

[N]# : �(H 〈t〉) → �(H ).

Definition 6.4.1 Let α ∈ Zp[D]0 and t : S → UD be an N-torsion section. Then the
image

α EI(t) ∈ H2d−1(S,�(H 〈t〉)(d))

of αpol under the map (34) is called the Eisenstein–Iwasawa class. We write

α EI(t)N := [N]#(αEI(t)) ∈ H2d−1(S,�(H )(d)).

Remark 6.4.2 Note that α EI(t)N depends on N and not on t alone. The class
α EI(t)NM differs from α EI(t)N .

The k-th moment map induces a homomorphism of cohomology groups

momk : H2d−1(S,�(H )(d)) → H2d−1(S, �k(H )(d)). (35)

Definition 6.4.3 The class

αEis
k
N (t) := momk(α EIN ) ∈ H2d−1(S, �k(H )(d))

is called the integral étale Eisenstein class.

These Eisenstein classes are interpolated by the Eisenstein–Iwasawa class by
definition. We will see later how they are related to the Qp-Eisenstein class, which
are motivic, i.e., in the image of the étale regulator from motivic cohomology.
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6.5 The Eisenstein–Iwasawa Class for Abelian Schemes

It is worthwhile to consider the case of abelian schemes in more detail. In this section
we let G = A be an abelian scheme over S, so that in particular π : A → S is proper
and we can write Rπ∗ instead of Rπ!.

The first thing to observe is the isomorphism

H2d−1(S,Rπ!RjD∗j∗DLog(d)) ∼= H2d−1(UD,Log(d)),

so that the Qp-polylogarithm is a class

αpolQp
∈ H2d−1(UD,Log(d)).

Evaluation at the N-torsion section t : S → UD is just the pull-back with t∗

t∗αpolQp
∈ H2d−1(S, t∗Log(d)) ∼= H2d−1(S,

∏

k�0

Symk HQp(d))

and the k-th component of t∗αpolQp
is αEiskQp

(t).
There is one specific choice of α which is particularly important, which we define

next. Consider the finite étale morphism πD : G[c] → S and the unit section e : S →
G[c]. These induce

e∗ : H0(S, Qp) → H0(S, πD∗Qp)

(coming from πD∗e!e!
Qp → πD∗Qp) and

π∗
D : H0(S, Qp) → H0(S, πD∗Qp).

One checks easily that e∗(1) − π∗
D(1) is in the kernel ofH0(S, πD∗Qp) → H0(S, Qp).

Definition 6.5.1 Let αc ∈ Qp[D]0 be the class

αc := e∗(1) − π∗
D(1).

We write cpolQp
and cEiskQp

(t) for the polylogarithm and the Eisenstein class defined
with αc.

We now assume that S is of finite type over SpecZ. Then H2d−1(Ar \ Ar[cpr],
Z/prZ(d)) is finite, so that one has by (2)

H2d−1(S,Rπ!RjD∗j∗DL(d)) ∼= H2d−1(A \ A[c],L(d))

∼= lim←−
r

H2d−1(Ar \ Ar[cpr], Z/prZ(d))
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where, as before, [pr] : Ar = A → A is the pr-multiplication and the transition maps
are given by the trace maps. The integral étale polylogarithm is then a class

αpol ∈ lim←−
r

H2d−1(Ar \ Ar[cpr], Z/prZ(d)).

In the special case whereA = E is an elliptic curve over S it is shown in [12, Theorem
12.4.21] that

cpol ∈ lim←−
r

H1(Er \ Er[cpr], Z/prZ(d))

is given by the inverse limit of Kato’s norm compatible elliptic units cϑE . Unfor-
tunately, we do not have such a description even in the case of abelian varieties of
dimension � 2. If we write A[pr]〈t〉 for the A[pr]-torsor defined by diagram (31),
then

α EI(t) ∈ H2d−1(S, t∗L(d)) = lim←−
r

H2d−1(A[pr]〈t〉, Z/prZ(d))

where the inverse limit is again over the trace maps.

7 Interpolation of the Qp-Eisenstein Classes

7.1 An Integral Structure on Log(k)
Qp

For the comparison between the integralL and theQp-polylogarithmLogQp we need
an intermediate object, which we define in this section. This is purely technical. The
reason for this is as follows: In general a unipotent Qp-sheaf does not necessarily
have a Zp-lattice which is again a unipotent sheaf. In the case of Log(k)

Qp
however, it

is even possible to construct a Zp-structure Log(k) such that

Log(k)
�r

:= Log(k) ⊗Zp �r

is a unipotent �r = Z/prZ-sheaf.
Let Log(1) be the Zp-sheaf defined in Definition3.2.1

0 → H → Log(1) → Zp → 0 (36)

and denote by 1(1) : Zp → e∗Log(1) a fixed splitting.

Definition 7.1.1 We define

Log(k) := �k(Log(1))
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as the k-th graded piece of the divided power algebra �Zp(Log(1)). We further
denote by

1(k) := �k(1(1)) : Zp → Log(k)

the splitting induced by 1(1).

As Zp andH are flat Zp-sheaves (all stalks are Zp-free), the k-th graded piece of
the divided power algebra�k(Log(1)) has a filtrationwith graded piecesπ∗�i(H ) ⊗
�k−i(Zp) (see [8, V 4.1.7]). In particular, the �k(Log(1)) are unipotent Zp-sheaves
of length k. By base change the same is true for the �r-sheaf

Log(k)
�r

:= Log(k) ⊗Zp �r . (37)

To define transition maps
Log(k) → Log(k−1) (38)

we proceed as in Sect. 3.3. Consider Log(1) → Zp ⊕ Log(1) given by the canonical
projection and the identity. Then we define

Log(k) = �k(Log(1)) → �k(Zp ⊕ Log(1)) ∼=
⊕

i+j=k

�i(Zp) ⊗ �j(Log(1)) →

→ �1(Zp) ⊗ �k−1(Log(1)) ∼= Log(k−1)

where we identify �1(Zp) ∼= Zp. A straightforward computation shows that 1(k) 	→
1(k−1) under the transition map.

Definition 7.1.2 We denote by Log the pro-sheaf (Log(k))k�0 with the above tran-
sition maps and let 1 : Zp → e∗Log be the splitting defined by (1(k))k�0.

Remark 7.1.3 We would like to point out that, contrary to the Qp-situation, the pro-
sheaf (Log(k))k�0 is not the correct definition of the Zp-logarithm sheaf. In fact, the
correct integral logarithm sheaf is L.
Proposition 7.1.4 Denote byLog(k) ⊗ Qp the Qp-sheaf associated toLog(k). Then
there is a canonical isomorphism

Log(k)
Qp

∼= Log(k) ⊗ Qp

which maps 1(k)
Qp

to 1(k).

Proof First note that the canonical map Symk Log(1)
Qp

→ �k(Log(1)
Qp

) is an isomor-

phism. This can be checked at stalks, where it follows from (4) as Log(1)
Qp

is a sheaf
of Qp-modules. The claim in the proposition then follows from the isomorphisms

Log(k)
Qp

= Symk Log(1)
Qp

∼= �k(Log(1)
Qp

) ∼= �k(Log(1)) ⊗ Qp = Log(k) ⊗ Qp
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and the claim about the splitting follows from the explicit formula for the map
Symk Log(1)

Qp
→ �k(Log(1)

Qp
) given after (4). �

Corollary 7.1.5 For all i there are isomorphisms

Hi(S,Rπ!RjD∗j∗DLog(k)(d)) ⊗Zp Qp
∼= Hi(S,Rπ!RjD∗j∗DLog(k)

Qp
(d))

Hi(S, πD!π∗
D

k∏

i=0

�i(H )) ⊗Zp Qp
∼= Hi(S, πD!π∗

D

k∏

i=0

Symi HQp)

Hi(S,Rπ!Log(k)(d)[2d]) ⊗Zp Qp
∼= Hi(S,Rπ!Log(k)

Qp
(d)[2d])

Proof The first and the third follow directly from the proposition and the definition
of the cohomology of a Qp-sheaf. For the second one observes that the canonical
map

Symk HQp
∼= Symk H ⊗ Qp → �k(H ) ⊗ Qp

∼= �k(HQp)

is an isomorphism. This can be checked on stalks, where it follows again
from (4). �

7.2 Comparison of Integral and Qp-polylogarithm

In this sectionwewant to compareL andLogQp .We first compareLwith the sheaves
Log(k) defined in Definition7.1.1.

Define a comparison map

compk : L → Log(k)

as follows. By Theorem 6.2.6 one has for the sheaves Log(k)
�r

from (37) the isomor-
phism

HomG(�r[Grk],Log(k)
�r

) ∼= H0(S, e∗Log(k)
�r

),

so that the splitting 1(k) ⊗ �r : �r → e∗Log(k)
�r

defines a morphism of sheaves on G

compkr : �r[Grk] → Log(k)
�r

, (39)

which is obviously compatible with the transition maps and functorial in G. Passing
to the pro-systems over r � 0, this defines a homomorphism

compk : L → Log(k). (40)

Taking also the pro-system in the k-direction leads to a comparison map

comp : L → Log. (41)
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For each k applying compk to the localization triangle for D ↪→ G ←↩ UD gives

Rπ!RjD∗j∗DL(d)[2d − 1] ��

compk

��

πD!π∗
D�(H ) ��

compk

��

Rπ!L(d)[2d]
compk

��
Rπ!RjD∗j∗DLog(k)(d)[2d − 1] �� πD!π∗

DLog(k) �� Rπ!Log(k)(d)[2d]
(42)

compatible with the transition maps Log(k) → Log(k−1).

Proposition 7.2.1 There is a commutative diagram with short exact columns

0

��

0

��
H2d−1(S,Rπ!RjD∗j∗DL(d))

res

��

comp �� H2d−1(S,Rπ!RjD∗j∗DLogQp(d))

res

��
H0(S, πD!π∗

D�(H ))

��

e∗ comp �� H0(S, πD!π∗
D

∏
k�0 Sym

k HQp(d))

��
H0(S, Zp)

��

�� H0(S, Qp)

��
0 0

Proof Take the long exact cohomology sequence of the commutative diagram in
(42), tensor the lower horizontal line with Qp and then pass to the inverse limit
over k. Using the isomorphisms in Corollary 7.1.5 gives the commutative diagram
as stated. �

Corollary 7.2.2 Let α ∈ Zp[D]0, with D = G[c] as before. Then one has

comp(αpol) = αpolQp

in H2d−1(S,Rπ!RjD∗j∗DLogQp(d)). In particular, for every N-torsion section t : S →
UD one has

comp(αEI(t)) = t∗(αpolQp
).

Proof Immediate from the definition of αpol and αpolQp
and the commutative dia-

gram in the proposition. The second statement follows from the first as comp is
compatible with the evaluation map at t. �
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7.3 Interpolation of the Qp-Eisenstein Classes

For our main result, we first have to relate the comparison map compk with the
moment map momk .

Proposition 7.3.1 The composition

�(H )
e∗(compk)−−−−−→ e∗Log(k) prk−→ �k(H )

coincides with the moment map momk.

Proof By the definitions of momk and compk it suffices to prove this statement for
�r-coefficients. Consider

compkr : �r[Grk] → Log(k)
�r

from (39). This comes by adjunction from a map

βr : �r → [prk]∗Log(k)
�r

,

on Grk which has by definition the property that its pull-back e∗
rk(βr) coincides with

1(k) : �r → e∗Log(k)
�r
. By Lemma 2.3.2 the map βr is uniquely determined by this

property. As Log(k)
�r

is unipotent of length k, the pull-back [prk]∗Log(k)
�r

is trivial by
Lemma 6.2.5 and is hence of the form

[prk]∗Log(k)
�r

∼= π∗
rke

∗Log(k)
�r

∼= π∗
rk

k∏

i=0

�i(Hr),

where the last isomorphism is obtained by the splitting 1(k). Thus the map

�r → [prk]∗Log(k)
�r

∼= π∗
rk

k∏

i=0

�i(Hr) 1 	→
k∑

i=0

τ [i]
r ,

where τ [i]
r is the i-th divided power of the tautological section from (25), has the

property that its pull-back by e∗
rk coincides with 1(k). It follows that this map equals

βr and by definition of the moment map in (26) the projection to the k-th component
coincides also with the moment map. �

Let t : S → UD be an N-torsion section. We need a compatibility between the
composition

momk
N := momk ◦[N]# : �(H 〈t〉) → �(H 〈t〉) → �k(H )
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and themap 
t in the splitting principle Corollary3.4.2 composed with the projection
onto the k-th component

prk ◦
t : t∗Log(k)
Qp

∼=
k∏

i=0

Symk HQp → Symk HQp .

Proposition 7.3.2 There is a commutative diagram

H2d−1(S,�(H 〈t〉)(d))
momk

N−−−−→ H2d−1(S, �k(H )(d))

t∗ compk
⏐
⏐



⏐
⏐



H2d−1(S, t∗Log(k)
Qp

(d))
Nk prk ◦
t−−−−−→ H2d−1(S,SymkHQp(d),

where momk
N = momk ◦[N]# and 
t = [N]−1

# ◦ [N]#.
Proof The commutative diagram

H2d−1(S,�(H 〈t〉)(d))
[N]#−−−−→ H2d−1(S,�(H )(d))

t∗ compk
⏐
⏐



⏐
⏐

e∗ compk

H2d−1(S, t∗Log(k)
Qp

(d))
[N]#−−−−→∼=

H2d−1(S, e∗Log(k)
Qp

(d))

coming from functoriality of compk and the isomorphisms

H2d−1(S, t∗Log(k)(d)) ⊗Zp Qp
∼= H2d−1(S, t∗Log(k)

Qp
(d))

H2d−1(S, e∗Log(k)(d)) ⊗Zp Qp
∼= H2d−1(S, e∗Log(k)

Qp
(d))

reduces the proof of the proposition to show the commutativity of the diagram

H2d−1(S,�(H )(d))
momk−−−−→ H2d−1(S, �k(H )(d))

e∗ compk
⏐
⏐



⏐
⏐



H2d−1(S, e∗Log(k)
Qp

(d))
Nk prk ◦[N]−1

#−−−−−−−→ H2d−1(S,SymkHQp(d).

The isogeny [N] acts by N-multiplication on H , hence by multiplication with Nk

on Symk HQp , which means that

prk ◦[N]−1
# = [N]−1

# ◦ prk = N−k prk .
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Thus it remains to show that the diagram

H2d−1(S,�(H )(d))
momk−−−−→ H2d−1(S, �k(H )(d))

e∗ compk
⏐
⏐



⏐
⏐



H2d−1(S, e∗Log(k)
Qp

(d))
prk−−−−→ H2d−1(S,Symk HQp(d))

commutes, which follows from Proposition 7.3.1 and the isomorphism

H2d−1(S, �k(H )(d)) ⊗Zp Qp
∼= H2d−1(S,Symk HQp(d))

which was obtained in Corollary 7.1.5. �

Recall from Definition 6.4.1 the Eisenstein–Iwasawa class

α EI(t)N = [N]#(αEI(t)) ∈ H2d−1(S,�(H )(d))

and from Definition4.2.1 the Qp-Eisenstein class

αEis
k
Qp

(t) ∈ H2d−1(S,Symk HQp).

We consider its image under the k-th moment map

momk : H2d−1(S,�(H )(d)) → H2d−1(S, �k(H )(d)).

The main result of this paper can now be formulated as follows:

Theorem 7.3.3 (Interpolation of Qp-Eisenstein classes) The image of α EI(t)N
under the k-th moment map is given by

momk(αEI(t)N ) = Nk
αEis

k
Qp

(t).

Proof This follows by combining Corollaries 7.2.2, 7.3.2 and the definition of the
Qp-Eisenstein class Definition4.2.1. �

Remark 7.3.4 For comparison with [12, Theorem 12.4.21] we point out again that
the normalization of αEiskQp

(t) in loc. cit. is different. We had there a factor of−Nk−1

in front of the Eisenstein series.
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