On p-adic Interpolation of Motivic
Eisenstein Classes

Guido Kings

Abstract In this paper we prove that the motivic Eisenstein classes associated to
polylogarithms of commutative group schemes can be p-adically interpolated in étale
cohomology. This connects them to Iwasawa theory and generalizes and strengthens
the results for elliptic curves obtained in our former work. In particular, degeneration
questions can be treated easily.
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1 Introduction

In this paper we prove that the motivic Eisenstein classes associated to polylogarithms
of commutative group schemes can be p-adically interpolated in étale cohomology.
This generalizes the results for elliptic curves obtained in our former paper [12].
Already in the one dimensional case the results obtained here are stronger and much
more flexible as they allow to treat degenerating elliptic curves easily.

The interpolation of motivic Eisenstein classes connects them with Iwasawa the-
ory and is essential for many applications. In the elliptic case for example, the inter-
polation was used in [11] to prove a case of the Tamagawa number conjecture for CM
elliptic curves and it was one of the essential ingredients in the proof of an explicit
reciprocity law for Rankin-convolutions in [13]. We hope that the general case will
find similar applications.

Before we explain our results, we have to introduce the motivic Eisenstein classes
(for the construction we refer to Sect.4.2).
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Letm : G — S be asmooth commutative and connected group scheme of relative
dimension d (for example a semi-abelian scheme) and denote by

A = R'mZ,(1)

the first étale homology of G /S, which is just the sheaf of relative p-adic Tate modules
of G/S. We write 7, for the associated ,-adic sheaf. Note that this is not a lisse
sheafin general. Evaluating the motivic polylogarithm at a non-zero N-torsion section
t : § — G one defines motivic Eisenstein classes

LEisk (1) € HX (S, Sym* s (d)),

depending on some auxiliary data &, where Sym* H7(1) is the k-th symmetric tensor
power of the motivic sheaf g which underlies 75,

In the case of an elliptic curve, the de Rham realization of O,Eis’r‘not(t) is the coho-
mology class of a holomorphic Eisenstein series, which justifies the name. These
motivic Eisenstein classes in the elliptic case play a major role in Beilinson’s proof
of his conjectures on special values of L-functions for modular forms.

In this paper we consider the étale regulator

re: Hob (S, Sym* 4 (d)) — H*7' (S, Sym* 743, (d))

mot

which gives rise to the étale Eisenstein classes

oEisg, (1) := ra(Bisgy (1) € H¥7'(S, Sym* 5, (d)).
In the elliptic case these classes were used by Kato in his seminal work to construct
Euler systems for modular forms.

It is a natural question, whether these étale Eisenstein classes enjoy some
p-adic interpolation properties, in a similar way as one can p-adically interpo-
late the holomorphic Eisenstein series. At first sight, this seems to be a com-
pletely unreasonable question, as for varying k the different motivic cohomology
groups Hi’f,l_l (S, Sym* (1)) are not related at all. Nevertheless, this question was
answered affirmatively in the elliptic case in [12] and in this paper we will generalize
this result to commutative group schemes.

To explain our answer to this question we need the sheaf of Iwasawa-algebras
A (), which is defined as follows: One first defines a sheaf of “group rings”
Z/p"7Z[5] on S, where 77 is the étale sheaf associated to the [p”]-torsion subgroup
G[p'] or alternatively the first homology with Z/p"Z-coefficients (see Sect. 5.4 for
more details). These group rings form an inverse system for varying » and hence
define a pro-sheaf

A(A) == (Z/p"ZIA D r 0.
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Moreover, it is also possible to sheafify the classical moments of a measure to a
morphism of pro-sheaves

mom* : A(J) — T (),

where I'; () is the k-th graded piece of the divided power algebra I'z, (7). Thus
the sheaf A (7) p-adically interpolates the I'y (7). For the Q,-sheaf 75, the natural
map Sym* g, — Tk(Ag,) is an isomorphism and the moment map gives rise to
morphisms

mom" : H*'~'(S, A(J)(d)) — H* (S, Sym" 75, (d)).

To understand this better, it is instructive to consider the case of an abelian scheme
m : A — S over a scheme S which is of finite type over Spec Z (see also Sect.6.5).
Then

H*7N(S, A () = lim H*~(Alp"), Z/p" Z(d))

r

where the inverse limit is taken with respect to the trace maps along A[p"] — A[p’~!].
The right hand side is obviously an Iwasawa theoretic construction. In the one dimen-
sional case d = 1, the right hand side has an interpretation as an inverse limit of units
via Kummer theory.

Our main result can now be formulated as follows:

Main Theorem (see Theorem 7.3.3) There exists a cohomology class
o« E1 (NN € H*7I(S, M) (d))

called the Eisenstein—Iwasawa class, such that
mom* (,ET (f)y) = N"O,Eis@p (7).

This interpolation result in the elliptic case is one of the key ingredients in the
proof of an explicit reciprocity law for Rankin-convolutions of modular forms in
[13].

The use of this theorem also considerably simplifies the computations of the
degeneration of polylogarithm in [12]. We hope to treat this at another occasion.

We would also like to point out an important open problem: In the one-dimensional
torus or the elliptic curve case, the Eisenstein—Iwasawa class has a direct description
in terms of cyclotomic units or Kato’s norm compatible elliptic units respectively.
Unfortunately, we do not have a similar description of the Eisenstein—Iwasawa class
in the higher dimensional case.
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2 Notations and Set up

2.1 The Category of Zy-sheaves

All schemes will be separated of finite type over a noetherian regular scheme of
dimension O or 1. Let X be such a scheme and let p be a prime invertible on X. We
work in the category of constructable Z,-sheaves .#/(X) on X in the sense of [15,
Exposé V].

Recall that a constructible Z,-sheaf is an inverse system .# = (.%,),>; where
Z, is a constructible Z/p"7Z-sheaf and the transition maps .%, — .%,_; factor into
isomorphisms

T Quypz LIP" L= Fyy.

The Z,-sheaf is lisse, if each .%, is locally constant. If X is connected and x € X is
a geometric point, then the category of lisse sheaves is equivalent to the category
of finitely generated Z,-modules with a continous (X, x)-action. For a general
Z,-sheaf there exists a finite partition of X into locally closed subschemes X;, such
that .7 |y, is lisse (see [4, Rapport, Proposition 2.4., 2.5.]).

For a Z,-sheaf .# we denote by .# ® Q, its image in the category of (,-sheaves,
i.e., the quotient category modulo Z,-torsion sheaves.

We also consider the “derived” category D(X) of .¥’(X) in the sense of Ekedahl
[5]. This is a triangulated category with a 7-structure whose heart is the category of
constructible Z,-sheaves. By loc. cit. Theorem 6.3 there is a full 6 functor formalism
on these categories.

Recall that an inverse system A := (A,),>o (in any abelian category A) satisfies
the Mittag-Leffler condition (resp. is Mittag-Leffler zero), if for each r the image
of A4y — A, is constant for all sufficiently big s (is zero for some s > 1). If A
satisfies the Mittag-Leffler condition and A satisfies AB4* (i.e. products exists and
products of epimorphisms are epimorphisms) then l(igllA, = 0 (see [14, Proposition
1]). If A is Mittag-Leffler zero, then for each left exact functor 4 : A — B one has
R'lim h(A,) =0 foralli > 0 ([9, Lemma 1.11.]).

or a pro-system of étale sheaves . = (.%,),>0 on X we work with Jannsen’s
continuous étale cohomology H'(X, .%) which is the i-th derived functor of .Z#
1(i£1rHO(X, Z,). By [9, 3.1] one has an exact sequence

s Lpyi—1 i ar : i
0— lim'H'(X, 7,) - H'X, #) > im H'(X, .7,) — 0, (1)

-
Note in particular, that if H' = (X, .%,) is finite for all r, one has

i T\ — 15 i aT
H'X, ) =limH'(X, 7,). )

r
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For .# = (%,) Mittag-Leffler zero, one has for all i > 0

H (X, 7)=0. 3)

2.2 The Divided Power Algebra

Let A be a commutative ring and M be an A-module. Besides the usual symmetric
power algebra Sym, (M) we need also the divided power algebra I'y (M) (see [,
Appendix A] for more details).

The A-algebra I'y (M) is a graded augmented algebra with I'o(M) = A, "1 (M) =
M and augmentation ideal 't (M) := @k>1 ', (M). For each element m € M one
has the divided power m!¥l € T\ (M) with the property that m* = k!'m* where m*
denotes the k-th power of m in I's (M). Moreover, one has the formula

(m+n)H = Z mtnll,
i+j=k

In the case where M is a free A-module with basis m, ..., m, the A-module I't (M)
is free with basis {m!") - .. ml#1 | 3" i; = k}. Further, for M free, there is an A-algebra
isomorphism

T4 (M) = TSym, (M)

with the algebra of symmetric tensors (TSymf1 M) C Symf1 (M) are the invariants of
the symmetric group), which maps m'*! to m®*. Also, by the universal property of
Sym, (M), one has an A-algebra homomorphism

Symy (M) — T'x(M) “4)

which maps m* to k!m*!, In particular, if A is a Q-algebra, this map is an isomorphism.
If M is free and M~ := Homy (M, A) denotes the A-dual one has in particular

SymF(MY) = Iy (M)Y = TSymk (M)".
The algebra I'4(M) has the advantage over TSym, (M) of being compatible with
arbitrary base change

FCa(M) ®4 B=Tp(M Q4 B)

and thus sheafifies well. Recall from [8, I 4.2.2.6.] that if .% is an étale sheaf of
Z,-modules, then I'z, (%) is defined to be the sheaf associated to the presheaf

U T'z,w)(F(U)). (5)
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Definition 2.2.1 We denote by

Ta(M) = lim T, (M) / T ()"

r

the completion of I'4(M) with respect to the divided powers of the augmentation
ideal.

Note that I (M)l = @k>r I'y(M) so that as A-module one has fA(M) =

Hk}O 1-‘k (M)
In the same way we define the completion of Sym, (M) with respect to the aug-
mentation ideal Sym’ (M) to be

Sym,, (M) := lim Sym, (M) /(Sym} (M))* (©6)
k

2.3 Unipotent Sheaves

Let A =Z/p"Z,7Z, or Q, and let w : X — § be a separated scheme of finite type,
with X, S asin Sect.2.1. A A-sheaf % on X is unipotent of length n, if it has a filtration
0=92"cZ"c...c F°=.7 such that F')F* = 1*%' for a A-sheaf ¥’
on S.

The next lemma is taken from [7], where it is stated in the setting of Q,-sheaves.

Lemma 2.3.1 Let A =7Z/p"Z, Z, or Q, and let wy : X1 — S and 71 : X, — S be
smooth of constant fibre dimension d\ and d,. Let f : X1 — X, be an S-morphism.
Let .7 be a unipotent A-sheaf. Then

T = F(d, — d»)[2d, — 2ds).

Proof Putc = d| — d, the relative dimension of . We start with the case .# = ;9.
In this case

['F =19 = f'my% (—db)[—2ds] = {9 (—d>)[—2d5]
= nf%(c)[Zc] :f*nz*%(c)[ZC] =f*F ® A(c)[2c].

In particular, f 'A = A(c)[2¢] and we may rewrite the formula as
[ FRfA=f(F®N).
There is always a map from the left to right via adjunction from the projection formula

RA(f*Z ®f'A) =.F QRAf'A > F ® A.
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Hence we can argue on the unipotent length of .% and it suffices to consider the case
F = *9. This case was settled above. a

The next lemma is also taken from [7]. Let X — § be a smooth scheme with
connected fibres and e : § — X a section. Homomorphisms of unipotent sheaves are
completely determined by their restriction to S via e*:

Lemma 2.3.2 Let w7 : X — S be smooth with connected fibres and e : S — X a
section of w. Let A = Z/p"Z, Z, or Q, and F a unipotent A-sheaf on X. Then

e* : Homy (A, %) — Homg(A, e*.F)
is injective.
Proof Let 0 - % — %, — %3 — 0 be a short exact sequence of unipotent
A-sheaves on G. As e* is exact and Hom left exact, we get a commutative diagram

of exact sequences

0 —— Homy (A, %) — Homy (A, .%,) — Homx (A, #3)

l i |

0 —— Homg(A, e*.%1) —— Homg (A, e*.%,) — Homg (A, e*.%3).
Suppose that the left and right vertical arrows are injective, then the middle one is
injective as well and it is enough to show the lemma in the case where . = 7*9.
But the isomorphism

Homy (A, 7*°9) = Homy (7' A, 7'9) = Homg(Rm7' A, 4)

factors through

Homy (7' A, 7'9) 5 Homg(A, ¥) — Homg(Rm7' A, 9)

where the last map is induced by the trace map Rmym'A — A. This proves the
claim. O

2.4 The Geometric Situation

We recall the geometric set up from [7] using as much as possible the notations from
loc. cit. Let
T:G—S
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be a smooth separated commutative group scheme with connected fibres of relative
dimension d. We denote by e : S — G the unit sectionand by i : G xg G — G the
multiplication. Let j : U — G be the open complement of e(S).

Let tp : D — G be a closed subscheme with structural map 7p : D — S. Typ-
ically mp will be étale and contained in the c-torsion of G for some ¢ > 1. We
note in passing, that for c invertible on § the c-torsion points of G, i.e. the
kernel of the c-multiplication G[c], is quasi-finite and étale over S. Denote by
Jjp : Up = G\ D — G the open complement of D. We summarize the situation in
the basic diagram

Up:=G\D—~G<"_p

N

S

We will also consider morphisms ¢ : G; — G, of S-group schemes as above. In this
case we decorate all notation with an index 1 or 2, e.g., d; for the relative dimension
of G 1 / S.

3 The Logarithm Sheaf

3.1 Homology of G

The basic sheaf in our constructions is the relative first Z,-homology % of G/S,
which we define as follows:

Definition 3.1.1 For the group scheme 7 : G — S we let
T = HG = RZd_lmZp(d) = R‘lmn!Zp.

We write 7] := 7’ ® Z/p"Z and H#g, := 7 ® Q, for the associated Q)-sheaf.

Note that 7 is not a lisse Z,-sheaf in general, but the stalks are free Z,-modules
of finite rank, which follows for example from Lemma 3.1.2 below.

The sheaf .77 and more generally R'm Z, is covariant functorial for any map of
S-schemes f : G — X using the adjunction fif'Z, — Z,. In particular, the group
multiplication u : G X G — G induces a product

R'mZ,(d) ® RmZ,(d) — R m7,(d)
and the diagonal A : G — G x5 G induces a coproduct

R'mZ,(d) > DR Z,(d) ® R mZ,(d)
J
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on R'mZ,, which gives it the structure of a Hopf algebra and one has

2d—i
R'nZyd) = N\ o (7

(this follows by base change to geometric points and duality from [2, Lemma 4.1.]).
The same result holds for Z/p” Z-coefficients.

Lemma 3.1.2 Let G[p"] be the kernel of the p"-multiplication [p"] : G — G. Then
there is a canonical isomorphism of étale sheaves

GIP 1 =R 'mn'Z/p' 7 = .
In particular, 7 is the p-adic Tate-module of G.

Proof This is standard and we only sketch the proof: Consider G[p"] as an étale
sheaf on S. The Kummer sequence is a G[p”]-torsor on G, hence gives a class in

H'(G, n*G[p"]) = Ext;;(n*Z/p"Z, 7*GIp')) = Ext(n'Z/p"Z, 7' GIp]) =
= Exty(Rm'Z/p"Z, Glp']) = Homg(R™'m7'Z/p"Z, G[p")).
Thus the Kummer torsor induces a map R~'m7'Z/p"Z — G[p"] and one can per-
form a base change to geometric points s € S to show that this is an isomorphism. But

this follows then from Poincaré-duality and the isomorphism Homg(G[p'], ) =
H'(G, 11,r) shown in [2, Lemma 4.2.]. O

3.2 The First Logarithm Sheaf

Consider the complex RJT;JT’Z,, calculating the homology of 7 : G — S and its
canonical filtration whose associated graded pieces are the R’ mn!Z,,. ‘We apply this to

RHomg (7'Z,, 7' ) = RHomg(Rm'Z,, ).

Then the resulting hypercohomology spectral sequence gives rise to the five term
sequence

0 — Ext}(Z,, #) 5 ExtL(7'Z,, 7' ) — Homg(H, #) —
— Exté(Zp, )5 Exté(r{!Zp, 7' )

and the maps 7' are injective because they admit the splitting e' induced by the unit
section e. This gives
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0 — Extg(Z,, 7) LN Ext(; (1'Z,, 7' #) — Homg (S, #) — 0. (8)

Note that Ext; (7'Z,,, w' ) = Extg(Z,, n* ). The same construction is also pos-
sible with the base ring A, := Z/p"Z and .7 and gives the exact sequence

0 = Exti(A,, #) 5 Ext,(t'A,, n'76) — Homs(H, ) — 0. (9)

Definition 3.2.1 The first logarithm sheaf (Log", 1) on G consists of an exten-
sion class
0— 7*H — Log" — Z,— 0

such that its image in Homg (.77, 77) is the identity together with a fixed splitting
1V : *Z, — e* LogV. In exactly the same way one defines Logx'_). We denote by

1
Logg,

the associated Q,-sheaf.

The existence and uniqueness of (Log'", 1) follow directly from (8). The auto-
morphisms of Log " form a torsor under Homg (Z,, 7* ). In particular, the pair
(Log™, 1) admits no automorphisms except the identity.

It is obvious from the definition that one has

LogV ®z, A, = Log!)) (10)

so that Log) = (Logf\lr) )r>0- Moreover, Log? is compatible with arbitrary base
change. If

GT—fT—>G

”Tl ln (11

TL)S

is a cartesian diagram one has fT*.LZog(G1 ) Log(Gl; and £ (1V) defines a splitting.
Let
¢0:G — Gy

be a homomorphism of group schemes of relative dimension d, d», respectively and
write ¢ :==d; — d».
Theorem 3.2.2 For ¢ : G| — G, as above, there is a unique morphism of sheaves

¢s 2 Logg) — 9" Logg) = ¢' Logg) (—0)[~2c]

such that (p#(lgl)) = lgz Moreover, if ¢ is an isogeny of degree prime to p, then @s

is an isomorphism.
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Proof Pull-back of Log(Glz) gives an exact sequence

0— 7 s, — go*Loggz - Z,— 0

D

and push-out of Logél by s, — i, induces a map

0 —— nf s, —— Log(Gll) Zy 0
| L | 02
0 —— nj My, — ¢*Logy) Z, 0.

If ¢ is an isogeny and deg ¢ is prime to p, then 7| #;, — 77, is an isomor-
phism, hence also 4. By uniqueness there is a unique isomorphism of the pair
(Log(Glz), ef(h) o lgl)) with (Loggz), 182)). The composition of this isomorphism with
h is the desired map. If 4’ : Log(Gll) — gol.ﬁoggz) is another map with this prop-
erty, the difference h — /' : Z, — n{ 55, is uniquely determined by its pull-back
e*th—n):72,— ejﬁoggz) according to Lemma 2.3.2. If both, / and /4’ are com-
patible with the splittings, then ¢*(h — h’) = 0 and hence h = /. |

Corollary 3.2.3 (Splitting principle) Let ¢ : G| — G, be an isogeny of degree
prime to p. Then ift : S — G is in the kernel of ¢, then
t*Loggl) = t*go*lloggz) = e’{q)*Log&) = e’{lloggl).

Proof Apply t* to @s. (]

3.3 The Qp-logarithm Sheaf

We are going to define the (Q,-logarithm sheaf, which has been studied extensively
in [7].

Definition 3.3.1 We define
Logg, ,) = Symk (Lag&,))

and denote by
1
®) ._ keqy . (k)
1% .= a Sym*(1*V) : Q, — Long

the splitting induced by 1V,
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We note that Log(gf: is unipotent of length k and that the splitting 1% induces an
isomorphism

k
e*Loggf =[] sym' 7, (13)
i=0
To define transition maps
Log(gfp) — Loggpfl) (14)

consider the morphism Log& - Q,® Log((Q}p) given by the canonical projection

and the identity. Then we have

Log(gf; = Sym* (Log& )

— Sym(@Q, ® Long}p)) = @ Sym'(Q,) ® Symj(Log&)

i+j=k

— Sym'(Q,) ® Sym* ™' (Logg)) = Logéz]f,,_ v

A straightforward computation shows that 1% - 1%~ under this transition map.

3.4 Main Properties of the Q,-logarithm Sheaf

The logarithm sheaf has three main properties: functoriality, vanishing of cohomol-
ogy and a universal mapping property for unipotent sheaves. Functoriality follows
trivially from Theorem 3.2.2. We review the others briefly, referring for more details
to [7].

Lety : G; — G, be ahomomorphism of group schemes of relative dimension dj,
d,, respectively and let ¢ := d| — d; be the relative dimension of the homomorphism.

Theorem 3.4.1 (Functoriality) For ¢ : G; — G, as above there is a unique homo-
morphism of sheaves

o+ L0gg,.c, — ¢*L0gy,.c, = ¢' Logq,.6,(—c)[—2c]
such that 1, maps to 1,. Moreover, if ¢ is an isogeny, the ¢y is an isomorphism.

Proof This follows directly from Theorem 3.2.2 and the fact that deg ¢ is invertible
in Q,. (I
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Corollary 3.4.2 (Splitting principle) Let ¢ : G| — G, be an isogeny. Then if t :
S — G is in the kernel of ¢, one has
01 1" Log,.6, = 1'¢" Logq, 6, = ej¢" Logq, 6,
= e} Logg,.c, = [ | Sym" 4,6,

k>0

More generally, if 1 : ker ¢ — G is the closed immersion, one has

* ~ * k
t LOgGl =7 |ker<p | | Sym %val’
k>0

where T |ier ot ket ¢ — S is the structure map.

Proof Apply t* to both sides of the isomorphism ¢y and use (13). For the second
statement make the base change to ker ¢ and apply the first statement to the tauto-
logical section of ker ¢. ]

Theorem 3.4.3 (Vanishing of cohomology) One has

Qy(~d) ifi=2d

Rm L ~
=080, [0 ifi # 2d.

D

More precisely, the transition maps Rin!.Eog&? — Ring.ﬁog&)_ are zero fori < 2d

and one has an isomorphism RZdn!Logg : = Q,(—d) compatible with the transition

maps.
Proof This is Theorem 3.3.1. in [7]. U

Let .% be a unipotent sheaf of finite length n on G. Consider the homomorphism
n.Hom;(Logq,, F) — €*F (15)
defined as the composition of
m.Hom (Logq,, #) — mere’Hom;(Logg,, F) — Homg(e* Logg,, €*.F)

with
D*
Homg(e* Logg,, ¢*.F) O Hom((Q,, ¢*.7) = ¢*. 7.
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Theorem 3.4.4 (Universal property) Let .% be a unipotent sheaf of finite length.
Then the map (15) induces an isomorphism

m.Hom(Logg,, #) = e* 7.

Proof This is Theorem 3.3.2. in [7]. U

4 The Q,-polylogarithm and Eisenstein Classes

4.1 Construction of the Q,-polylogarithm

Fix an auxiliary integer ¢ > 1 invertible on S and consider the c-torsion subgroup
D := G[c] C G. We write Up := G \ D and consider
Up 2 G £ .

We also write p : D — S for the structure map.
For any sheaf .7 the localization triangle defines a connecting homomorphism

R Rjpjy F[—1]1 — Rty 7. (16)
As Log(gfp) (d)[2d] is unipotent we may use Lemma 2.3.1 to replace L!D by . Using
Corollary 3.4.2 one gets

k
pupLogy) (d)2d) = [ [ oy, Sym’ 5,
i=0
Putting everything together and taking the limit over the transition maps Lo g(gp) —

.Eog(gfp_l) gives the residue map
res : H*'(S, RmiRjp.jiLoga, (d)) — HO(S, [ [ wpiry Sym* ,). (17
k=0
Proposition 4.1.1 The localization triangle induces a short exact sequence

res

0 — H*7Y(S, R RjpjpLogq, (d) —

HOS, [ [ oy Sym* 2,) — HO(S. Q) — 0.
k>0
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Proof This is an immediate consequence from the localization triangle and the com-
putation of RmLog in Theorem 3.4.3. ]

Definition 4.1.2 Let

Q,[D1° := ker(H"(S, mp1Q,) — H'(S, Q,))

where the map is induced by the trace 7pQ, — Q.

Note that

Q,,[D]O C ker | HO(S, H np), Symk Hy,) — HO(S, Qp)
k=0

Definition 4.1.3 Leta € Q, [D1°. Then the unique class
apoly, € H*7! (S, RmRjp.jj,Logg, (d))

with res((,pol@p) = « is called the polylogarithm class associated to o«. We write

O,pol@p for the image of O[pol(@p in H*2-1(S, RijD*jELog(g[? (d)).

4.2 Eisenstein Classes

Recall that D = G[c] and fix an integer N > 1 invertible on S, such that (N, c) = 1
andlets:S — Up = G \ D be an N-torsion section. Consider the composition

Rm\Rjp.jj,Log(d) — RmRjp«jhRtt" Log(d) = RmRt,t* Log(d) = t* Log(d)
(18)
induced by the adjunction id — Rt,t*, the fact that Rt, = Rty and because 7 o ¢ = id.
Together with the splitting principle from Corollary 3.4.2 and the projection to the
k-th component one gets an evaluation map

o,ot*

k
H*'(S, RmRjp.jpLogg) (d)) “—H*7'(S, [ [ Sym' #3,)
i=0
P H21(S, Symt ). (19)
Definition 4.2.1 Leta € Q,[D]. The image of , polQp under the evaluation map (19)

aEis{éﬂ (t) € H*7(S, Sym* #3),)

is called the k-th étale Q,-Eisenstein class for G.
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Remark 4.2.2 The normalization in [12, Definition 12.4.6] is different. There we
had an additional factor of —N*~! in front of aEis{ép (#). This has the advantage to

make the residues of aEis{‘Qp (t) at the cusps integral, but is very unnatural from the
point of view of the polylogarithm.

Recall from [7, Theorem 5.2.1] that the polylogarithm apolf‘Qp is motivic, i.e., there
exists a class in motivic cohomology

opolk € HX\(S, RmRjp.jh Log® (d)),

mot mol

the motivic polylogarithm, which maps to ,pol* @, under the étale regulator

re s Hb o' (S, RRjpajy Logmo () — H*™'(S, RmiRjpajfyLogl) (d)).

mot

With the motivic analogue of the evaluation map (19) one can define exactly in the
same way as in the étale case motivic Eisenstein classes for « € Q[D1°

LEisk (1) € HXZI(S, Sym* ). (20)

mot

The next proposition is obvious from the fact that the evaluation map is compatible
with the étale regulator.

Proposition 4.2.3 Fora € Q[D]° the image of the motivic Eisenstein class , Eisk ()
under the étale regulator
ra  Hpl NS, Sym* o) — HX (S, Sym* %)

mot

is the étale Q,-Eisenstein class aEis@p (1).

5 Sheaves of Iwasawa Algebras

5.1 Iwasawa Algebras

LetX = l(iger, be a profinite space with transition maps A, : X,+; — X, and
A [X,] :=Map(X,, Z/p"Z)
the Z/p"Z-module of maps from X, to Z/p"Z. For each x, we write 8, € A,[X,]

for the map which is 1 at x, and O else. It is convenient to interpret A,[X,] as the
space of Z/p"Z-valued measures on X, and §,, as the delta measure at x,. Then the
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push-forward along X, : X,,; — X, composed with reduction modulo p" induces
Z,-module maps
)\r* : Ar+][Xr+l] g Ar[Xr] (21)

which are characterized by A, (dy,,,) = 8, x,)-

Definition 5.1.1 The module of Z,-valued measures on X is the inverse limit

r

of A,[X,] with respect to the transition maps from (21).

Letx = (x;),>0 € X. We define §, := (d,)r>0 € A(X), which provides a map
§:X - AX).
For each continuous map ¢ : X — Y of profinite spaces we get a homomorphism
@it AX) — A(Y) (22)

“push-forward of measures” with the property ¢, (8x) = d,(). Obviously, one has
AXr x Y] = AX ] ® AY,] so that

AX X Y) ZACORAY) :=lim A [X,] @ A[Y,].

r

In particular, if X = G = lier, is a profinite group, the group structure i : G X
G — G induces a Z,-algebra structure on A(G), which coincides with the Z,-
algebra structure induced by the inverse limit of group algebras l(iger,[G,].

Definition 5.1.2 If G = 1<i£1rG, is a profinite group, we call

A(G) :=1im A,[G/]

p
the Iwasawa algebra of G.
More generally, if G acts continuously on the profinite space X, one gets a map

AGRAX) — AX)

which makes A(X) a A(G)-module. If X is a principal homogeneous space under
G, then A(X) is a free A(G)-module of rank 1.



352 G. Kings

5.2 Properties of the Iwasawa Algebra

In this section we assume that H is a finitely generated free Z,-module. We let
H,« =H ®Zp Zp/prZP

so that H = limrHr with the natural transition maps H,,| — H,.
In the case H = Z,, the so called Amice transform of a measure 1 € A(Z)

> X
AT = "
u(T) ; /Zp (n)u(x)

induces a ring isomorphism A : A(Z,) = Z,[[T]] (see [3, Sect. 1.1.]). A straightfor-
ward generalization shows that A(H) is isomorphic to a power series ring in tk H
variables. On the other hand one has the so called Laplace transform of u (see loc.

cit.)
0 o
L) = —/ " .
(1) z;‘n! pr p(x)

This map is called the moment map in [10] and we will follow his terminology. In
the next section, we will explain this map from an abstract algebraic point of view.
For this we interpret :T"' as "l in the divided power algebra Uz, (Zy).

5.3 The Moment Map

We return to the case of a free Z,-module H of finite rank.

Proposition 5.3.1 Let H be a free Z,-module of finite rank and H, := H ®z, Z/p"Z.
Then
Iz, (H) =1im I'prz(Hy).

r

Proof AseachT'z, (H)/ ' (H)" is a finitely generated free Z,-module, this follows
by the compatibility with base change of 'z, (/) and the fact that one can interchange
the inverse limits. (]

By the universal property of the finite group ring A,[H,], the group homomor-
phism
H, — Tz (H)*

hy > > Y

k>0
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induces a homomorphism of Z/p”Z-algebras

mom, : A, [H,] — Fz/prZ(H,).
Corollary 5.3.2 The maps mom, induce in the inverse limit a Z,-algebra homo-
morphism

mom : A(H) — FZF(H).

which is functorial in H.

Definition 5.3.3 We call mom : A(H) — FZ,, (H) the moment map and the compo-
sition with the projection to I'y (H)

mom* : A(H) — T (H)

the k-th moment map.

5.4 Shedfification of the Iwasawa Algebras

Let X be a separated noetherian scheme of finite type as in Sect.2.1 and 2" :=
(pr : Z; — X), be an inverse system of quasi-finite étale schemes over X with étale
transition maps A, : 2, — Z,_1. We often write

A, =7Z/p" 7. (23)

The adjunction 11! — id defines a homomorphism

PrenArst = prdphi At = prAssi,
because A, is étale. If one composes this with reduction modulo p”, one gets a trace
map
Trr+1 :pr+1,!Ar+1 g pr,!Ar- (24)
Definition 5.4.1 We define an étale sheaf on X by
AJLZ7) = paA,.
With the trace maps Tr,y; : A,41[Z,4+1] & A [Z,] as transition morphisms we

define the pro-sheaf
AZ) == (A LZ D >0
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This definition is functorial in 2°. If (¢,), : (Z;), = (%;), is a morphism of
inverse system of quasi-finite étale schemes over X, then the adjunction ¢,1¢. — id
defines a morphism

(20 Ar[%] g Ar[@r]

compatible with the transition maps, and hence a morphism of pro-sheaves
ANZ) —> ANZ).

Moreover, the formation of A(Z") is compatible with base change: if 2, r =
Z, xs T for an S-scheme f : T — S, then by proper base change one has

T AEINE )
By the Kiinneth formula, one has
Ar[% Xx %] = Ar[%] Q Ar[gr]

and hence A(2 xx %) = A(2)®A(¥) by taking the inverse limit. In particular,
in the case where 2 = ¢ is an inverse system of quasi-finite étale group schemes
9., the group structure u, : 9, Xy 4, — 9, induces a ring structure

ADRAG) — A (D)

on A(¥). Similarly, if
G xx X —> X

is a group action of inverse systems, i.e., a compatible family of actions ¥, xx %2, —
Z,, then A(Z") becomes a A(%)-module.

The next lemma shows that the above construction indeed sheafifies the Iwasawa
algebras considered before.

Lemma 5.4.2 Letx € X be a geometric point and write p, 5 © %, 5 — X for the base
change of Z, to x considered as a finite set. Then

Ar[%]f = Ar[Xr]

Proof This follows directly from the base change property of A,[.Z,] and the fact
that p, x1A, = A,[X,] over an algebraically closed field. O

We return to our basic setup, where 7 : G — S is aseparated smooth commutative
group scheme with connected fibres. Recall from Lemma3.1.2 that .7 is the sheaf
associated to G[p"], which is quasi-finite and étale over S.
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Definition 5.4.3 Define the sheaf of Iwasawa algebras A(S7) on S to be the pro-

sheaf
A(%) = (Ar[%])rZW

5.5 Shedfification of the Moment Map

We keep the notation of the previous section. In particular, we consider the étale
sheaf /% and the sheaf A,[77].
Over G[p'] the sheaf [p”]*Z has the tautological section 7, € I'(G[p'], [p"1* )
corresponding to the identity map G[p"] — 7. This gives rise to the section
™ e T(GIp'), [P T Tw() (25)

of the k-th divided power of .7Z;. Using the chain of isomorphisms (note that [p"]* =
[p']" as [p’]is étale)

TGP, [P T'Tk(A7) = Homgp (Z/p" Z, [p") Tk (7))
= Homg([p'1.Z/p"Z, T'i (7)),

the section t/¥! gives rise to a morphism of sheaves
momy : A, [H;] — Tx(HA). (26)

Lemma 5.5.1 There is a commutative diagram

mom¥
A —— T

.| !

mom’_,
AN [P 1] —— Tw(F-1)
where the right vertical map is given by the reduction map
k() = Ti(A) ®zyprz Tp™ " L = T(H-0).

Proof Denoteby A, : 7 — 5 the transition map. Reduction modulo pr! gives
a commutative diagram

mom¥
(P 1 Z/p"Z — L (A7)

I |

_ mom! ®Z/p" ' Z
PV Z)p L ——— Ti(H).
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As the image of the tautological class ¥l € T'(G[p"], [p"]*Tx (%)) under the reduc-
tion map gives the the pull-back of the tautological class

air e D(GIp' ), P T TW(H-1)) = Homgyp (W Z/p ' Z., [p T Ti (A1)
= Homg ([p" 114, Z/p"™ ' 2, Tk (A1)

one concludes that mom* ®Z/p"~!Z coincides with the map given by Ajrr[lill. This

means that momlr‘ ®Z/p"~'Z has to factor through Tr,, i.e., the diagram

k QLT
P AT T momy &%y T (A1)

Tr, 4

P ~"NZ/p'Z

commutes, which gives the desired result. O

With this result we can now define the moment map for the sheaf of Iwasawa
algebras A (7).

Definition 5.5.2 We define the k-th moment map to be the map of pro-sheaves
mom* : A(J#) — T ()

defined by (mom*), >, and
mom : A(J) — FZ,,(%)

by taking mom¥ in the k-th component.

k

Remark 5.5.3 In each stalk the the map momF coincides with the map mom* defined

in Definition5.3.3 (see [12, Lemma 12.2.14]).

6 The Integral Logarithm Sheaf

6.1 Definition of the Integral Logarithm Sheaf

We now define a pro-sheaf £ on G of modules over 7*A (7¢), which will give a
Zy-structure of the logarithm sheaf Logg,. For this write G, := G considered as a
quasi-finite étale G-scheme via the p”-multiplication

p1:G,=G— G. 27
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Note that this is a G[p"]-torsor

0 Glp'l— G LG50

over G.LetA, : G, — G,_; bethe transition map, which is just the [p]-multiplication
in this case. Then, as in (24), we have trace maps

Tr, : A[G] > A1[Gr—1].
We will also need the following variant. Let A := Z/p°Z and write
AG ] =[P 1A (28)
Then the adjunction A, 1! — id defines transition morphisms

)Vr! : As[Gr] g As[Grfl]- (29)

Definition 6.1.1 With the above transition maps we can define the pro-sheaves
L= (Ar[Gr])r>0 and —L‘AX = (As[Gr])rko-

We call L the integral logarithm sheaf.
Note that the reduction modulo p‘v‘1 gives transition maps L, — La, , and that
we have an isomorphism of pro-sheaves

L= (La)s>o0. (30)

By the general theory outlined above, £ is a module over 7 * A (¢°) which is free of
rank 1.
Let ¢ : S — G be a section and denote by G[p"](t) the G[p"]-torsor defined by

the cartesian diagram
GIp')(t) —— G,

J lm 31)

S ', G.

We denote by 77 (t) the étale sheaf defined by G[p"]{t) and by JZ(t) := (J%(t)) the
pro-system defined by the trace maps. We write

A1) := (N0 D=0

for the sheaf of Iwasawa modules defined by J#(r).
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Lemma 6.1.2 There is an canonical isomorphism
L= NIH)).
In particular, for the unit section e : S — G one has
e L= NANKH)

and hence a section 1 : Z,, — e* L given by mapping 1 to 1.

Proof This follows directly from the fact that £ is compatible with base change and
the definitions. ]

6.2 Basic Properties of the Integral Logarithm Sheaf

The integral logarithm sheaf enjoys the same properties as its (Q,-counterpart,
namely functoriality, vanishing of cohomology and a universal property for unipotent
sheaves.

Let ¢ : G; — G, be a homomorphism of group schemes of relative dimension
dy and d, over S. Denote by £ and £, the integral logarithm sheaves on G| and G,
respectively.

Theorem 6.2.1 (Functoriality) Let ¢ := d| — d». Then there is a canonical map
on 1 L1 = 9" Lo = ¢ Lr(—0)[-2¢].

Moreover, if ¢ is an isogeny of degree prime to p, then @ : L1 = ¢* L5 is an isomor-
phism.

Proof The homomorphism ¢ induces a homomorphism of group schemes over G

¢ : G, —> Gy Xg, Gy (32)

which induces by adjunction ¢;¢' — id and the base change property of A,[G,,] a
morphism of sheaves

(273 Ar[Gl,r] - (p*Ar[GZ,r] = (p!Ar[GZ,r](_C)[_ZC]-

Passing to the limit gives the required map. If ¢ is an isogeny of degree prime to p,
then the map in (32) is an isomorphism. Hence this is also true for ¢y. (]

Corollary 6.2.2 (Splitting principle) Let ¢ be an integer prime top and lett : S — G
be a c-torsion section. Then there is an isomorphism

[cls : F L= AT
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More generally, if D := G[c] with (c, p) = 1 then

(L E njA),
where 1p : D — G and wp : D — S is the structure map.

Proof Apply t* respectively, ¢}, to the isomorphism [c]¢ : L — [c]* L. (]

Theorem 6.2.3 (Vanishing of cohomology) Recall that 2d is the relative dimension
of m : G — S. Then the pro-sheaves

R'm L fori < 2d
are Mittag-Leffler zero (see Sect.2.1) and
R¥m L(d) = 7,.

We start the proof of this theorem with a lemma:

Lemma 6.2.4 The endomorphism [p"), : R'm\Z/p*Z — R'm\Z/p°Z is given by mul-
tiplication with p" 4=,

Proof By Lemma 3.1.2 we see that [p], is given by p"-multiplication on JZ;. The
result follows from this and the Z/p°Z-version of the isomorphism (7) (I

Proof of Theorem 6.2.3. Consider the transition map A [G ;] — A[G,]. If we
apply R'm, we get the homomorphism

[Pj]! : RijTr-I—j,!As - Rinr,!As’

where 7, = 7 : G, — S is the structure map of G, = G. By Lemma 6.2.4, the map
[P’]) acts by multiplication with p/®/=) on Rizm,; A;. In particular, this is zero
for i # 2d and j > s and the identity for i = 2d. This proves the theorem, because
R 1 Ay(d) = A, O

The sheaf £ satisfies also a property analogous to Theorem 3.4.4. To formulate
this properly, we first need a property of unipotent Z/p°Z-sheaves.

Lemma 6.2.5 Let . be a unipotent Ay = Z/p*Z-sheaf of length n on G. Then
[p™1*.F is trivial on G, in the sense that there exists a As-sheaf G on S such that

nsy* ~ *
[p ] F = nnsg’
where 1,5 : Gps — S is the structure map.

Proof We show this by induction. For n = 0 there is nothing to show. So let

0> > F >n9 -0
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be an exact sequence with .#’ unipotent of length n — 1, so that by induction hypothe-
ses [p"DS]*F" = %9 on G ,_1),. Thus it suffices to show that for an extension
F e ExtIG (*9", 1*4"), the sheaf [p*]*.% is trivial on G. One has
Ext;,(7*9", m*9") = Ext;;(n'9", n'9") = Ext{(Rm7'Y", 9')
and the pull-back by [p°]* on the first group is induced by the trace map [p*]; :
Rm[p*li[p*]'n'Y" — Rmm'9” on the last group. By the projection formula we have
Rmm'9" = RmAy(d)[2d] ® 4" and the triangle
TooaRTA(d)[2d] — RmAs(d)[2d] — R¥mA(d) = A,

gives rise to a long exact sequence of Ext-groups
.= Exty(9",9") — Extg(RmA(d)[2d1 @ 9", 9"
— Ext§(toaRmMA(d)2d1 @ 9", G — ...
If we pull-back by [p°]* and use Lemma 6.2.4 the resulting map on the module
Exté(r<2dR7r!As(d)[2d] ® 9", 94'") is zero, which shows that [p*]*.% is in the image

of
EXté(g”, g/) [P EXté;([ps]*JT*%”, [ps]*rr*%’).

This is the desired result. (]
Exactly asin (15) one can define for each A;-sheaf .%# and each r ahomomorphism
m . Hom (As[G,], ) — &*F (33)
as the composition
m.Homg(Ly, ,, F) — mee.e’Homg (La, o F)
— Homg(e* L4, ¢"F) > Homg (A, ¢"F)

The next theorem corrects and generalizes [12, Proposition 4.5.3], which was erro-
neously stated for all Z/p°Z-sheaves and not just for unipotent ones.

Theorem 6.2.6 (Universal property) Let .% be a unipotent Ag-sheaf of length n.
Then the homomorphism (33)

m . Homg; (A[Gl, F) = " F

is an isomorphism.
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Proof Let % be unipotent of length n. Then we know from Lemma 6.2.5 that there is
a A,-sheaf ¢ on S such that [p™]*.% = n ¥, where 7, : G,,; — S is the structure
map. Similarly, we write e, for the unit sectlon of G,;. Then one has

FF =PI T e G =Y.

I’[S ns - ns

Further, one has the following chain of isomorphisms

m Hom; (As[Gpsl, ) = mHomg ([p" 11 As, F) = mueHomg, (A, [p"]".7)
T Homg (A, ,9)

= Homg (R As(d)[2d], )
= Hom(R* 5 As(d). 4)
=Y =T,

12

which prove the theorem. (]

6.3 The Integral étale Poylogarithm

In this section we define in complete analogy with the Q,-case the integral étale
polylogarithm.

We recall the set-up from Sect.4.1. Denote by ¢ > 1 an integer invertible on S
and prime to p and let D := G[c] be the c-torsion subgroup. Then the localization
triangle for jp : Up C G and (p : D — G reads

RmL(d)[2d — 1] = RmRjp.jpL(d)[2d — 1] — mpupL(d).
By relative purity and the splitting principle ¢ DL(d)[Zd] L= [ AN(IC). We

apply the functor H/(S, —) to this triangle. As the R, L are Mittag-Leffler zero for
i # 2d by Theorem 6.2.3 one gets with (3):

Proposition 6.3.1 [n the above situation there is a short exact sequence

res

0 — H*71(S, RmRjpsjpL(d)) — H(S, npim ), A(SF)) — H°(S, Z,) — 0.
As in the Q,-case we define
Z,ID° := ker (H(S, npimpZ,) — H°(S, Z,))
so that one has
Z,IDI° C ker (H*(S, ipyjy, A(H)) — H(S, Z,)) .

With these preliminaries we can define the integral polylogarithm.
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Definition 6.3.2 The integral étale polylogarithm associated to a € Z,[D]° is the
unique class

opol € H* 71 (S, RmRjp.j 3 L(d))

such that res(ypol) = «.

6.4 The Eisenstein—-Iwasawa Class

Recall that D = G[c] and let  : S — Up = G \ D be an N-torsion section with
(N, ¢) = 1 but N not necessarily prime to p. The same chain of maps as in (18) gives
a map

H*1(S, RmRjp.jp L(d)) — H* (S, 1* L(d)) = H*7'(S, A(H(1))(d)). (34)
By functoriality the N-multiplication induces a homomorphism
[Nls : A1) - A(FD).
Definition 6.4.1 Leto € Z, [DI°and : S — Up be an N-torsion section. Then the
image
o8I (1) € H*71(S, A (1))(d))
of ,pol under the map (34) is called the Eisenstein—Iwasawa class. We write

« EL(t)y = [N+ (,EL (1) € H*71(S, A(S)(d)).

Remark 6.4.2 Note that , EI(¢)y depends on N and not on ¢ alone. The class
o &1 (H)yy differs from , E1(f)y.

The k-th moment map induces a homomorphism of cohomology groups
mom" : H*~'(S, A(J)(d)) — H* (S, Tx () (d)). (35)
Definition 6.4.3 The class
«Eisk (1) := mom*(, ETy) € H* (S, [ (o£)(d))

is called the integral étale Eisenstein class.

These Eisenstein classes are interpolated by the Eisenstein—Iwasawa class by
definition. We will see later how they are related to the Q,-Eisenstein class, which
are motivic, i.e., in the image of the étale regulator from motivic cohomology.
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6.5 The Eisenstein-Iwasawa Class for Abelian Schemes

It is worthwhile to consider the case of abelian schemes in more detail. In this section
we let G = A be an abelian scheme over S, so that in particular & : A — S is proper
and we can write R, instead of Ro).

The first thing to observe is the isomorphism

H*1(S, RmiRjpajpLog(d) = H*™! (Up, Log(d)),
so that the (Q,-polylogarithm is a class
apolg, € H*™!(Up, Log(d)).

Evaluation at the N-torsion section ¢ : § — Up is just the pull-back with #*

tzpolg, € H*7'(S. " Log(d)) = H*~' (S, [ | Sym* 5, (d))
k>0

and the k-th component of 7} polQp is O[Eis@p ®).

There is one specific choice of @ which is particularly important, which we define
next. Consider the finite étale morphism 7p : G[c] — S and the unit sectione : § —
G|c]. These induce

e. : H(S, Q) — H(S, 7p.Q))

(coming from mp.ee'Q, — mp,Q,) and
n)HY(S, Q) — H(S, 7p.Q)).

One checks easily thate, (1) — /(1) is in the kernel of HO(S, mp+Qp) — HO(S, Qp).

Definition 6.5.1 Leta, € Q,[D]° be the class
o = e (1) — (1),
We write CpolQp and CEisf‘Q)p (¢) for the polylogarithm and the Eisenstein class defined
with «a.
We now assume that S is of finite type over Spec Z. Then H*~'(A4, \ A,[cp"],
Z/p"7Z(d)) is finite, so that one has by (2)

H* (S, RTRjp«jnL(d)) = H* V(A \ Alc], L(d))
= lim B> (A, \ A lep”), Z/p"L(d))

r
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where, as before, [p"] : A, = A — A is the p"-multiplication and the transition maps
are given by the trace maps. The integral étale polylogarithm is then a class

apol € lim H*™1(A, \ A,[cp"), Z/p"Z(d)).

r

In the special case where A = E is an elliptic curve over S itis shown in [12, Theorem
12.4.21] that
epol € lim H' (E, \ Erlep’), Z/p' Z(d))

r

is given by the inverse limit of Kato’s norm compatible elliptic units .9g. Unfor-
tunately, we do not have such a description even in the case of abelian varieties of
dimension > 2. If we write A[p"](¢) for the A[p"]-torsor defined by diagram (31),
then

o« 81(1) € H*7(S, 1" L(d)) = lim H* "1 (A[p'1(1), Z/p" L(d))

r

where the inverse limit is again over the trace maps.

7 Interpolation of the (,-Eisenstein Classes

7.1 An Integral Structure on Loggp)

For the comparison between the integral £ and the Q,-polylogarithm Logg, we need
an intermediate object, which we define in this section. This is purely technical. The
reason for this is as follows: In general a unipotent (Q,-sheaf does not necessarily

have a Z,-lattice which is again a unipotent sheaf. In the case of Log(gfp) however, it

is even possible to construct a Z,-structure Log® such that

Log) = Log® ®z, A,

is a unipotent A, = Z/p"Z-sheaf.
Let Log'" be the Z,-sheaf defined in Definition3.2.1

0— # — LogV — 7,0 (36)

and denote by 1V : Z,, — * Log" a fixed splitting.

Definition 7.1.1 We define

Log® =T (Log™)
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as the k-th graded piece of the divided power algebra 'z (Log"). We further
denote by
1% .=1r,aM)y: Ly — Log®

the splitting induced by 1V,

As Z, and S are flat Z,-sheaves (all stalks are Z,-free), the k-th graded piece of
the divided power algebra I'y (Log ") has a filtration with graded pieces 7 *T"; () ®
T'—i(Zy) (see [8, V 4.1.7]). In particular, the T'x(Log") are unipotent Z,-sheaves
of length k. By base change the same is true for the A,-sheaf

Log%} = .[:og(k) ®z, Ar. 37
To define transition maps
Log® — Logk=b (38)

we proceed as in Sect.3.3. Consider Log" — Z, & LogV given by the canonical
projection and the identity. Then we define

Log® =Ti(Log") — Tu(Z, & Log") = P Ti(Z,) ® Tj(Log") —
i+j=k

— T1(Z)) @ Th_1(LogW) = Log*™P

where we identify I'j(Z,) = Z,. A straightforward computation shows that 1%
1%=D under the transition map.

Definition 7.1.2 We denote by Log the pro-sheaf (Log®);¢ with the above tran-
sition maps and let 1 : Z, — e*Log be the splitting defined by (1%));>0.

Remark 7.1.3 We would like to point out that, contrary to the QQ,-situation, the pro-
sheaf (Log®),>o is not the correct definition of the Z,-logarithm sheaf. In fact, the
correct integral logarithm sheaf is L.

Proposition 7.1.4 Denote by Log® @ Q, the Q,-sheaf associated to Log®. Then
there is a canonical isomorphism

k) ~
Logé@p) = Log(k) ®Q,

which maps lgp) to 1,

D

Proof First note that the canonical map Sym* Log&p) — T (.Eog((@p) is an isomor-

phism. This can be checked at stalks, where it follows from (4) as Log&) is a sheaf
of Q,-modules. The claim in the proposition then follows from the isomorphisms

.Eoggp) = Sym* .Eog(gp) =~ Fk(.Eog(g[f) =i (Log")®Q, = Log® ®Q,
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and the claim about the splitting follows from the explicit formula for the map
Symf Lo g&) — Ty (Log&) given after (4). (Il

Corollary 7.1.5 For all i there are isomorphisms

H'(S, RmiRjpji Log® () @3, Q) = H'(S, RmRjpjpLogly) (d))
k k

H'(S, mpyyy [ | 1)) @2, Q, = H'(S, pyry [ | Sym’ 7#4,)
i=0 i=0

H'(S, Rm Log® (d)[2d)) ®z, Q) = H'(S, Rm Log(y) (d)[2d])

Proof The first and the third follow directly from the proposition and the definition
of the cohomology of a (Q,-sheaf. For the second one observes that the canonical
map

Sym* g, = Sym* # @ Q, > Tw(H) ® Q, = T (H,)

is an isomorphism. This can be checked on stalks, where it follows again
from (4). [

7.2 Comparison of Integral and Q,-polylogarithm

In this section we want to compare £ and Logg,. We first compare £ with the sheaves
Log™® defined in Definition7.1.1.
Define a comparison map

comp® : £ — Log®

as follows. By Theorem 6.2.6 one has for the sheaves Logﬁ(‘f

phism

from (37) the isomor-
Homg (A,[Gnl, Logl)) = H'(S, e Logl\)),

so that the splitting 1®¥ @ A, : A, — e*LogX?

defines a morphism of sheaves on G
comp : A ©
Pt AdG ] — Log?, (39)

which is obviously compatible with the transition maps and functorial in G. Passing
to the pro-systems over r > 0, this defines a homomorphism

comp® : £ — Log®. (40)
Taking also the pro-system in the k-direction leads to a comparison map

comp : £ — Log. (41)
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For each k applying comp* to the localization triangle for D < G <= Up gives

RrRjp.jp L(d)[2d — 1] —— wpip A(F) R L(d)[2d]

i comp® i comp l comp

RRjp.jLog® (d)[2d — 1] —— mpy}, Log® —— R Log® (d)[2d]
(42)

compatible with the transition maps Log® — Log*~V.

Proposition 7.2.1 There is a commutative diagram with short exact columns

0 0

comp

HY71(S, Rm\Rjp.jp L(d)) —— H*~(S, RmiRjpsjpLogg, (d))
res res

e* comp

HO(S, nipimy A(H)) ——= HO(S, mpim) [Tiso Sym* 4, (d))

HO(S, Z,) H'(S,Q))

0 0

Proof Take the long exact cohomology sequence of the commutative diagram in
(42), tensor the lower horizontal line with @@, and then pass to the inverse limit
over k. Using the isomorphisms in Corollary 7.1.5 gives the commutative diagram
as stated. (]

Corollary 7.2.2 Leto € 7Z, [D1°, with D = G|c] as before. Then one has
comp(ypol) = apolQp

in H¥=1(S, R\ Rjp«jpLogq,(d)). In particular, for every N-torsion section't : S —
Up one has
comp (&1 (1)) = 1" (apolg,).

Proof Immediate from the definition of ,pol and apol@p and the commutative dia-
gram in the proposition. The second statement follows from the first as comp is
compatible with the evaluation map at ¢. (]
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7.3 Interpolation of the ),-Eisenstein Classes

For our main result, we first have to relate the comparison map comp® with the

moment map mom?.

Proposition 7.3.1 The composition

e (comp )

A) S o Log® B T (00)

coincides with the moment map mom¥.

Proof By the definitions of mom* and comp it suffices to prove this statement for
A -coefficients. Consider

compr AGx] — Log(k)
from (39). This comes by adjunction from a map
ﬂ A — [prk LOg(k)

on G which has by definition the property that its pull-back e}, (8,) coincides with
10 A, — e*Log(k) By Lemma 2.3.2 the map f, is uniquely determined by this

(k)

property. As .Eog is unipotent of length k, the pull-back [p*]* Log} is trivial by

Lemma 6.2.5 and is hence of the form
[P*1" Logl\) = mhe* Logy) = ) H (),
where the last isomorphism is obtained by the splitting 1%, Thus the map
k
A, — [p™T Logl) =}, H () L >l

where !/ is the i-th divided power of the tautological section from (25), has the
property that its pull-back by e¥, coincides with 1%). It follows that this map equals
B, and by definition of the moment map in (26) the projection to the k-th component
coincides also with the moment map. (I

Let t: S — Up be an N-torsion section. We need a compatibility between the
composition

mom’, ;= mom® o[N]y : A((t)) — A(H(t)) — ()
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and the map p; in the splitting principle Corollary 3.4.2 composed with the projection
onto the k-th component

pry oo, : *Log(k) = HSymk My, — Sym* Ay,
i=0

Proposition 7.3.2 There is a commutative diagram

HA1(S, AGLU)(d) ™ H2-1(S, T (A)(d)
t*comp"l J
(8, 1" Log(d)) I [2i-1(s, Sym A, (d),

where momX, = mom* o[N1ly and o, = [N];" o [N1s.

Proof The commutative diagram

HM-L(S, A (1)) —2s  HXZ1(S, A(H)(d))

t* comka/ Je* comp¥

H2d- I(S l‘*.EOg(k)(d)) [Nl4 H2d- I(S e*.£0g(k)(d))

coming from functoriality of comp* and the isomorphisms

HY71(S, 17 Log® (d)) ®z, Q, = H* (S, 1" Log ) (d))
H2d I(S e*.EOg(k)(d)) ®Z Qp _sz I(S e*.ﬁog(k)(d))

reduces the proof of the proposition to show the commutativity of the diagram

m

HX 1S, AGOd) " HHS, T ()(d))

e comp"l l

“ pry o[NT;"!
HY\(S, ¢ Log (d)) T F2-1 (s, Sym 2, (d).

The isogeny [N] acts by N-multiplication on .7#, hence by multiplication with N*
on Symk %ﬂ, which means that

pryo[NI;' = [NI;' opry = N Fpr, .
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Thus it remains to show that the diagram

HY(S, AOY) " HY1 (S, Ty () (d)
-] |
H=1(S, ¢* Logy) (d)) ——— HX~1(S, Sym* 45, (d)
commutes, which follows from Proposition 7.3.1 and the isomorphism
H*71(S, T (A)(d)) ®z, Qp = H* (S, Sym* ), (d))
which was obtained in Corollary 7.1.5. (]
Recall from Definition 6.4.1 the Eisenstein—Iwasawa class
« 81O = NI (EI (1) € H*71(S, A()(d))
and from Definition4.2.1 the Q,-Eisenstein class
C,Eis@p (t) € H*71(S, Sym* ).
We consider its image under the k-th moment map
mom" : H*~1(S, A(J)(d)) — H* (S, T« () (d)).

The main result of this paper can now be formulated as follows:

Theorem 7.3.3 (Interpolation of Q,-Eisenstein classes) The image of o EI(t)y
under the k-th moment map is given by

mom* (,ET (f)y) = N"O,Eis@p (7).

Proof This follows by combining Corollaries 7.2.2, 7.3.2 and the definition of the
Qp-Eisenstein class Definition4.2.1. O

Remark 7.3.4 For comparison with [12, Theorem 12.4.21] we point out again that
the normalization of o(Eis{ép (t) in loc. cit. is different. We had there a factor of —N k=1
in front of the Eisenstein series.
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