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Preface

In March 2015, the Dokchitser brothers and the two of us organized two events, a
workshop and a conference, in honour of John Coates’ 70th birthday, in order to
celebrate John’s work and his mathematical heritage. Among the participants of the
conference were many young mathematicians, and it is clear that John’s work, in
particular on Iwasawa theory, continues to be a great source of inspiration for the
new generation of number theorists. It is therefore a pleasure to dedicate this
volume to him, in admiration for his contributions to number theory and his
influence on the subject via his many students and collaborators.

Warwick, UK David Loeffler
July 2016 Sarah Livia Zerbes

v



John at the Royal Society Kavli Centre, March 2015
Published with kind permission, © John Coates
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Congruences Between Modular Forms
and the Birch and Swinnerton-Dyer
Conjecture

Andrea Berti, Massimo Bertolini and Rodolfo Venerucci

Abstract We prove the p-part of the Birch and Swinnerton-Dyer conjecture for
elliptic curves of analytic rank one for most ordinary primes.

Keywords Elliptic curves · Birch and Swinnerton-Dyer conjecture · Heegner
points · Shimura curves

1 Introduction

The theory of congruences between modular forms has turned out to be a crucial
player in a number of momentous results in the theory of rational points on elliptic
curves. To mention only a few instances, we recall here Mazur’s theory of the Eisen-
stein ideal [16], in which congruences between cusp forms and Eisenstein series on
GL2 are used to uniformly bound the torsion subgroups of elliptic curves over Q.
More germane to our setting, the recent work of Skinner–Urban [22] constructs
classes in the p-primary Shafarevich–Tate group of an elliptic curve over Q (and
more generally, over cyclotomic extensions) when p is ordinary and divides (the
algebraic part of ) the value of the associated Hasse–Weil L-series at s = 1. This is
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2 A. Berti et al.

achieved by exploiting p-power congruences between cusp forms on unitary groups
and Eisenstein series whose constant term encodes the special value of the L-series
of the elliptic curve. On the opposite side, when this special value is non-zero, Kato’s
Euler system [13] arising from Steinberg symbols of modular units gives an upper
bound on the p-primary Selmer group. The combination of these two results yields
the validity of the p-part of the Birch and Swinnerton-Dyer conjecture for elliptic
curves of analytic rank zero at almost all ordinary primes.

The goal of this paper is to present a direct proof of the p-part of the Birch
and Swinnerton-Dyer conjecture for elliptic curves of analytic rank one for most
ordinary primes, obtained by Zhang in [27] along a somewhat different path. More
precisely, let A/Q be an elliptic curve of conductor N . Write L(A/Q, s) for the
Hasse–Weil L-function of A, and X(A/Q) for its Shafarevich–Tate group. When
L(A/Q, s) has a simple zero at s = 1, the theorem of Gross–Zagier–Kolyvagin
[11, 14] states that A(Q) has rank one and X(A/Q) is finite. Fix a modular para-
metrisation

πA : X0(N) −→ A

of minimal degree deg(πA). For every rational point P ∈ A(Q), write hNT(P) ∈ R
for the canonical Néron–Tate height of P, and let �A ∈ R∗ be the real Néron period
attached to A/Q. Set cA := ∏

q|N cq(A), where cq(A) is the Tamagawa number of

A/Qq, and denote by ap(A) the coefficient 1 + p − Ā(Fp) of A at p, and by ordp :
Q∗ → Z the p-adic valuation.

Theorem A Assume that A/Q is semistable. Let p > 7 be a prime which does not
divide deg(πA), and is good ordinary and non-anomalous for A (i.e., p � N and
ap(A) �≡ 0, 1 (mod p)). If L(A/Q, s) has a simple zero at s = 1, then

ordp

(
L′(A/Q, 1)

hNT(P) · �A

)

= ordp
(
#X(A/Q) · cA

)
,

where P is a generator of A(Q) modulo torsion.

Note that the assumptions of Theorem A imply that the p-torsion of A(Q) is
trivial, and that the Tamagawa number cA is a p-adic unit, so that it can be omitted
in the statement.

By invoking the Kato–Skinner–Urban theoremmentioned above, Theorem A can
be reduced (as explained in Sect. 6) to an analogous statement over an imaginary
quadratic field K on which L(A/K, s) has a simple zero. In light of the Gross–
Zagier formula, this statement is in turn equivalent to the equality of the order of the
p-primary part of the Shafarevich–Tate group of A/K and the p-part of the square
of the index of a Heegner point in A(K). Theorem 6.1 below proves this result by
exploiting the theory of congruences between cusp forms on GL2. In a nutshell,
our strategy makes use of the explicit reciprocity laws of [3] combined with coho-
mological arguments and the theory of Euler systems to show that the existence of
Selmer classes stated in Theorem 6.1 can be obtained from the constructive methods
devised in [22] for elliptic curves of analytic rank zero.
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Theorem 6.1 has been obtained independently by Zhang [27]. His method uses
the reciprocity laws of loc. cit. together with [22] to prove Kolyvagin’s conjecture
on the non-vanishing of the cohomology classes defined in terms of Galois-theoretic
derivatives of Heegner points over ring class fields. This conjecture is known to
imply Theorem 6.1, thanks to prior work of Kolyvagin [15]. The method explained
in this paper (a weaker version of which appears in the first author’s Ph.D. thesis
[1]) is more direct, insofar as it consists in an explicit comparison of Selmer groups
and of special values of L-series attached to congruent modular forms.1

2 Modular Forms and Selmer Groups

Fix a squarefree positive integer N , a factorisation N = N+N−, and a rational prime
p > 3 such that p � N .

2.1 Eigenforms of Level (N+,N−)

Let S2(�0(N))N
−-new be theC-vector space of weight-two cusp forms of level �0(N),

which are new at every prime divisor of N−. Write

TN+,N− ⊂ End
(
S2(�0(N))N

−-new
)

for the Hecke algebra generated over Z by the Hecke operators Tq, for primes q � N ,
and Uq for primes q|N .

Let R be a complete local Noetherian ring with finite residue field kR of character-
istic p. (In the following sections, Rwill often be chosen to be the finite ring Z/pnZ.)
An R-valued (weight two) eigenform of level (N+,N−) is a ring homomorphism

g : TN+,N− −→ R.

Denote by S2(N+,N−;R) the set of R-valued eigenforms of level (N+,N−). To
every g ∈ S2(N+,N−;R) is associated—see for example [8], Sect. 2.2—a Galois
representation

ρg : GQ −→ GL2(kR),

1In the recent preprint [12] the authors give a different proof of Theorem A. More precisely they
combine the p-adic Gross–Zagier formula of [5] with (one divisibility in) the Iwasawa main con-
jecture for Rankin–Selberg convolutions [24] to deduce an analogue of Theorem 6.1 below (see
also Sect. 6.6). Their approach applies only to imaginary quadratic fields in which p splits, but
requires no assumption on the Tamagawa factors of A/Q. In particular they remove the hypothesis
p � deg(πA) from Theorem A.
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whose semi-simplification is characterised by the following properties. Let q be a
prime which does not divide Np, and let Frobq ∈ GQ be an arithmetic Frobenius
at q. Then ρg is unramified at q, and the characteristic polynomial of ρg(Frobq) is
X2 − g(Tq)X + q ∈ kR[X], where g : TN+,N− → kR is the composition of g with
the projection R � kR. By Théorèm 3 of loc. cit., if ρg is (absolutely) irreducible,
one can lift it uniquely to a Galois representation

ρg : GQ −→ GL2(R)

unramified at every prime q � Np, and such that trace
(
ρg(Frobq)

) = g(Tq) and
det

(
ρg(Frobq)

) = q for such a q. Assuming that ρg is irreducible, write

Tg ∈ R[GQ]Mod

for a R-module giving rise to the representation ρg . In other words, Tg is a free
R-module of rank two, equipped with a continuous, linear action of GQ, which is
unramified at every prime q � Np, and such that Frobq acts with characteristic poly-
nomial X2 − g(Tq)X + q ∈ R[X] for every such q.

2.2 Selmer Groups

Let g ∈ S2(N+,N−;R) be an eigenform satisfying the following assumption.

Assumption 2.1 1. ρg is absolutely irreducible.
2. ρg is ordinary at p, i.e., there exists a short exact sequence of GQp -modules

0 → T (p)
g → Tg → T [p]

g → 0,

where T (p)
g (resp., T [p]

g ) is a free R-module of rank one, on which the inertia subgroup
IQp ⊂ GQp acts via the p-adic cyclotomic character ε : GQp � Gal(Qp(μp∞)/Qp) ∼=
Z∗
p (resp., acts via the trivial character).

3. For every prime q dividing N , there exists a unique GQq -submodule T (q)
g ⊂ Tg ,

free of rank one over R, such that GQq2
acts on T (q)

g via the p-adic cyclotomic char-
acter ε : GQq � Gal(Qq(μp∞)/Qq) ↪→ Z∗

p. (Here Qq2/Qq denotes the quadratic
unramified extension of Qq.)

Let K/Q be an imaginary quadratic field of discriminant coprime with Np. For
every (finite) prime v of K , define the finite and singular parts of the local cohomol-
ogy group H1(Kv,Tg) as

H1
fin(Kv,Tg) := H1(Gv/Iv,T

Iv
g ); H1

sing(Kv,Tg) := H1(Kv,Tg)

H1
fin(Kv,Tg)

,
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where Iv is the inertia subgroup of Gv := Gal(Kv/Kv), and H1
fin(Kv,Tg) is viewed as

a submodule of H1(Kv,Tq) via the injective Gv/Iv-inflation map. For every prime v
lying above a rational prime q | Np, define the ordinary part of the local cohomol-
ogy H1(Kv,Tg) as

H1
ord(Kv,Tg) := Im

(
H1(Kv,T

(q)
g ) → H1(Kv,Tg)

)
.

Define the Selmer group of g/K as the submodule

Sel(K, g) ⊂ H1(K,Tg),

consisting of global cohomology classes x ∈ H1(K,Tg) satisfying the following
conditions.

• x is finite outside Np: resv(x) ∈ H1
fin(Kv,Tg) for every prime v of K not dividing

Np.

• x is ordinary at every prime dividing Np: resv(x) ∈ H1
ord(Kv,Tg) for every prime

v of K dividing a rational prime q|Np.
Note that the Selmer group Sel(K, g) depends on g (since it depends on its level N),
and not only on the representation Tg attached to it.

2.3 Admissible Primes

In this section, R will denote the finite ring Z/pnZ, where n is a positive integer and
p is a rational prime. Let g ∈ S2(N+,N−;Z/pnZ) be a mod-pn eigenform of level
(N+,N−), and let K/Q be an imaginary quadratic field of discriminant coprime
with Np.

Following [3], we say that a rational prime � is an n-admissible prime relative to
g if the following conditions are satisfied:

A1. � does not divide Np.
A2. �2 − 1 is a unit in Z/pnZ (i.e. � �≡ ±1 (mod p)).
A3. g(T�)

2 = (� + 1)2 in Z/pnZ.

If, in addition, � is inert in K , we say that � is n-admissible relative to (g,K).
For a rational prime �, we say that an eigenform g� ∈ S2(N+,N−�;Z/pnZ), i.e.

a surjective morphism g� : TN+,N−� → Z/pnZ, is an �-level raising of g if

g�(Tq) = g(Tq), resp. g�(Uq) = g(Uq)

for every prime q � N�, resp. q|N . As recalled in loc. cit., if � is n-admissible relative
to g, then an �-level raising g� exists.
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Assume that g satisfies Assumption 2.1. Then ρg and ρg�
are isomorphic,

absolutely irreducible representations of GQ in GL2(Fp), and by the results recalled
in Sect. 2.1, this implies that there is an isomorphism of Z/pnZ[GQ]-modules

T := Tg
∼= Tg�

∈ Z/pnZ[GQ]Mod.

Fix such an isomorphism, that we regard as an equality from now on. The following
lemma is proved by the same argument appearing in the proof of Lemma 2.6 of [3].
Write K�/Q� for the completion of K at the unique prime dividing � (so K� = Q�2

is the quadratic unramified extension of Q�).

Lemma 2.2 Let � be an n-admissible prime relative to (g,K). Then there is a
decomposition of Z/pnZ[GK�

]-modules

T = Z/pnZ(ε) ⊕ Z/pnZ,

where Z/pnZ(ε) (resp., Z/pnZ) denotes a copy of Z/pnZ on which GK�
acts via the

p-adic cyclotomic character ε (resp., acts trivially). Moreover, this decomposition
induces isomorphisms

H1
fin(K�,T ) ∼= H1(K�,Z/pnZ) ∼= Z/pnZ;

H1
sing(K�,T ) ∼= H1(K�,Z/pnZ(ε)) ∼= Z/pnZ.

(1)

Let g� ∈ S2(N+,N−�;Z/pnZ) be an �-level raising of g. One deduces that g� ∈
S2(N+,N−�;Z/pnZ) satisfies Assumption 2.1 too, and (with the notations above)

H1
ord(K�,Tg�

) ∼= H1
sing(K�,Tg) ∼= Z/pnZ. (2)

The preceding lemma allows us to define morphisms

v� : H1(K,T ) −→ H1
fin(K�,T ) ∼= Z/pnZ;

∂� : H1(K,T ) −→ H1
ord(K�,T ) ∼= Z/pnZ,

defined by composing the restriction map at � with the projection onto the finite and
ordinary (or singular) part respectively. Given a global class x ∈ H1(K,T ), we call
v�(x) its finite part at �, and ∂�(x) its residue at �.

2.4 Raising the Level at Admissible Primes

As in the previous section, let g ∈ S2(N+,N−;Z/pnZ) be a mod-pn eigenform of
level (N+,N−).

Assumption 2.3 The data (ρg,N
+,N−, p) satisfy the following conditions:
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1. N = N+N− is squarefree;
2. p does not divide N ;
3. ρg : GQ → GL2(Fp) is surjective;
4. If q | N− and q ≡ ± 1

(
mod p

)
, then ρg is ramified at q.

The following theorem, establishing the existence of a level raising at admissible
primes, comes from the work of several people, including Ribet and Diamond–
Taylor.

Theorem 2.4 Assume that Assumption 2.3 holds. Let L = �1 · · · �k be a product of
(distinct) n-admissible primes �j relative to g. Then there exists a unique mod-pn

eigenform gL : TN+,N−L −→ Z/pnZ of level (N+,N−L) such that

gL(Tq) = g(Tq) (for all q � NL), gL(Uq) = g(Uq) (for all q|N).

Proof We make some remarks about the references for the proof of this theorem.
Assume that N− > 1 and that N− has an odd (resp., even) number of prime divi-
sors. In this case the theorem is proved in Sect. 5 (resp., 9) of [3], working under
slightly more restrictive assumptions on (ρg,N

+,N−, p), subsequently removed in
Sect. 4 of [18]. The method of [3] generalises previous work of Ribet (which consid-
ered the case n = 1), and uses Diamond–Taylor’s generalisation of Ihara’s Lemma
(for modular curves) to Shimura curves. We refer to loc. cit. for more details and
references.

Assume now that N− = 1. If n = 1, the theorem has been proved by Ribet. If
n > 1, the theorem can be proved by following the arguments appearing in Sect. 9
of [3] (see in particular Proposition 9.2 and Theorem 9.3), and invoking the clas-
sical Ihara Lemma (instead of Diamond–Taylor’s generalisation) in the proof of
Proposition 9.2. �

3 The Explicit Reciprocity Laws

In this section we recall (special cases of ) the explicit reciprocity laws proved in
[3], which relate Heegner points on Shimura curves to special values of Rankin
L-functions (described in terms of certain Gross points attached to modular forms
on definite quaternion algebras). Together with the proof by Kato–Skinner–Urban
of the ( p-part of ) the Birch and Swinnerton-Dyer formula in analytic rank zero
(cf. Sect. 5 below), these reciprocity laws will be at the heart of our proof of
Theorem A.

Fix throughout this section a factorisation N = N+N− of a positive integer N , a
rational prime p not dividing N , and a Zp-valued eigenform

f ∈ S2(N
+,N−;Zp)
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of level (N+,N−). Fix also a quadratic imaginary fieldK/Q of discriminant coprime
with Np. Assume that the following hypotheses are satisfied (cf. Hypothesis CR of
[18]).

Assumption 3.1 1. N− has an even number of prime factors.
2. A prime divisor q of N divides N− precisely if q is inert in K/Q.
3. ρ f : GQ → GL2(Fp) is surjective.
4. f is ordinary at p, i.e. f (Tp) ∈ Z∗

p.
5. If q | N− and q ≡ ± 1

(
mod p

)
, then ρ f is ramified at q.

3.1 Special Points on Shimura Curves

3.1.1 Shimura Curves ([3, Sect. 5])

Let B := BN− be a quaternion algebra of discriminant N−, let R = RN+ be an
Eichler order of level N+ in B, and let Rmax be a maximal order of B containing
R. (The indefinite quaternion algebra B is unique up to isomorphism, while Rmax

and R are unique up to conjugation.) Let

FN+,N− : Sch/Z[1/N] −→ Sets

be the functor attaching to a Z[1/N]-scheme T the set of isomorphism classes
of triples (A, ι,C), where

• A is an abelian scheme over T of relative dimension 2;
• ι is a morphism Rmax → End(A/T), defining an action of Rmax on A;
• C is a subgroup scheme of A, locally isomorphic to Z/N+Z, which is stable and
locally cyclic over R.

If N− > 1, the moduli problem FN+,N− is coarsely represented by a smooth projec-
tive scheme

XN+,N− → Spec(Z[1/N]),

called the Shimura curve attached to the factorisation N = N+N−. In particular

XN+,N−(F) = FN+,N−(F)

for every algebraically closed field F of characteristic coprime with N .
If N− = 1, then the functor FN,1 can be shown to be coarsely represented by

the smooth, quasi-projective modular curve Xo
N,1 = Y0(N) over Z[1/N] of level

�0(N) ⊂ SL2(Z). In this case we write

XN,1 = X0(N) → Spec(Z[1/N])
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for the usual compactification obtained by adding to Xo
N,1 a finite set of cusps, which

is again a smooth projective curve over Z[1/N].

3.1.2 Heegner Points

Under Assumption 3.1(2) XN+,N−(C) contains points with CM by K . More pre-
cisely, let OK be the maximal order of K . Then there exists a point P = (A, ι,C) ∈
XN+,N−(C) such that

OK
∼= End(P), (3)

where End(P) ⊂ End(A) denotes the ring of endomorphisms of A/C which com-
mute with the action of ι, and respect the level structure C. By the theory of complex
multiplication,

P ∈ XN+,N−(H),

whereH := HK is the Hilbert class field of K . Call such a P ∈ XN+,N−(H) aHeegner
point, and write

HeegN+,N−(K) ⊂ XN+,N−(H)

for the set of Heegner points (of conductor one).

3.1.3 Gross Points

Let L = �1 · · · �k be a squarefree product of an odd number of primes �j � N which
are inert in K/Q. Let B := BN−L be a definite quaternion algebra of discriminant
N−L (which is unique up to isomorphism), and let R := RN+ be a fixed Eichler
order of level N+ in B. The Eichler order R is not necessarily unique, even up to
conjugation. Nonetheless, there are only finitely many conjugacy classes of Eichler
orders of level N+ in B, say R1, . . . ,Rh. More precisely, consider the double coset
space

XN+,N−L := R̂∗\B̂∗/B∗, (4)

where Ẑ := Z ⊗Z Ẑ for every ring Z , with Ẑ = ∏
q prime Zq. It is a finite set, in bijec-

tion with the set of conjugacy classes of oriented Eichler orders of level N+ in B,
via the rule B̂∗ � b �→ Rb := bR̂b−1 ∩ B (cf. [2, Sect. 1]).

Define the set of Gross points of level N+ and conductor p∞ on B as

GrN+,N−L(K,∞) := R̂∗∖(
Hom(K,B) × B̂∗)/B∗.

Here Hom(K,B) is the set of morphisms of algebras f : K → B. (The group B∗
acts on B̂∗ via the diagonal embedding B∗ → B̂∗, while it acts on Hom(K,B) via
conjugation on B.) A Gross point [ f × b] ∈ GrN+,N−L(K,∞) has conductor one if
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f (K) ∩ bR̂b−1 = f (OK). Denote by

GrN+,N−L(K) ⊂ GrM+,M−L(K,∞)

the set of Gross points of conductor one. In what follows, a Gross point (of level N+
on B) will always be a Gross point (of level N+ on B) of conductor one.

3.1.4 Gross Points and Reduction of Heegner Points

With the notations of the previous section, let L = � be a rational prime which is
inert in K/Q and such that � � N . The reduction modulo � map on the Shimura
curve XN+,N− allows us to define a map

r� : HeegN+,N−(K) −→ GrN+,N−�(K)

from Heegner points to Gross points. More precisely, let P = (A, ι,C) ∈
HeegN+,N−(H). Fix a prime λ of H dividing �. Since � is inert in K , it is totally
split in H, so that λ has associated residue field F�2 . The abelian variety A and the
subgroup C ⊂ A are defined over H, and A has good reduction at λ. Let

P := red�(P) = (A, ι,C) ∈ XN+,N−(F�2)

be the reduction of Pmodulo λ, whereA/F�2 and C ⊂ A denote the reductions ofA
and C modulo λ respectively, and ι denotes the composition of ι with reduction of
endomorphisms End(A) → End(A). Define (as above) End(P) ⊂ End(A) as the
subring of endomorphisms of A (defined over F�) commuting with the action of ι

and preserving C. It turns out that End(P) ∼= RP is isomorphic to an Eichler order RP

of level N+ in B = BN−�. In light of (3), reduction of endomorphisms onA induces
then an embedding

fP,� : OK
∼= End(P) −→ End(P) ∼= RP.

Denote again by fP,� : K → B the extension of scalars of fP,�. By (4) there exists
bP ∈ B̂∗ such that RP = bPR̂b

−1
P ∩ B. Define

r�(P) = [
fP,� × bP

] ∈ GrN+,N−�(K).

3.1.5 Action of Pic(OK)

The assumptions an notations are as in the preceding sections. Write Pic(OK) for the
ideal class group of K , which admits the adelic description Pic(OK) = Ô∗

K\K̂∗/K∗.
Given an ideal class σ ∈ Pic(OK) and a Gross point P = [ f × b] ∈ GrN+,N−�(K),
define
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Pσ := [
f × f̂ (σ ) · b] ∈ GrN+,N−�(K),

where f̂ : K̂ → B̂ is the morphism induced on adèles by the embedding f : K → B.
It is easily seen that the rule P �→ Pσ defines an action of Pic(OK) on GrN+,N−�(K).

The Artin map of global class field theory gives a canonical isomorphism
Pic(OK) ∼= Gal(H/K). The set of Heegner points HeegN+,N−(K) (of conductor one)
is contained in XN+,N−(H), and one obtains a natural geometric action of Pic(OK)

on HeegN+,N−(K).
With these definitions, the reduction map r� : HeegN+,N−(K) → GrN+,N−�(K)

defined in the preceding section is Pic(OK)-equivariant [2], i.e.

r�
(
Pσ

) = r�(P)σ (5)

for every ideal class σ ∈ Pic(OK) and every Heegner point P ∈ HeegN+,N−(K).

3.2 Modular Forms on Definite Quaternion Algebras

The notations and assumptions are as in Sect. 3.1.3. Let

JN+,N−L := Z
[
XN+,N−L

]

denote the group of formal divisors on the set XN+,N−L defined in Eq. (4). As
explained in Sect. 1.5 of [2], there is a Hecke algebra

TN+,N−L ⊂ End(JN+,N−L)

acting faithfully as a ring of endomorphisms of JN+,N−L, and generated over Z
by Hecke operators tq, for primes q � N , and uq, for primes q|N . By the Jacquet–
Langlands correspondence [2, Sect. 1.6], there is an isomorphism TN+,N−L ∼=
TN+,N−L, defined by sending tq (resp., uq) to Tq (resp., Uq).

Let n ∈ N ∪ {∞}, and let g ∈ S2(N+,N−L;Zp/pnZp) be a Zp/pnZp-valued
eigenform of level (N+,N−L) (with the convention that Zp/p∞Zp := Zp). Then
g induces a surjective morphism gJL : TN+,N−L � Zp/pnZp. Let mg := ker(g{1})
denote the maximal ideal of TN+,N−L associated with (the reduction g{1} modulo
p of ) g, and let Jmg and Tmg denote the completions at mg of JN+,N−L and TN+,N−L
respectively. According to Theorem 6.2 and Proposition 6.5 of [18], Assumption 3.1
implies that Jmg is a free Tmg -module of rank one. As a consequence, gJL induces a
surjective morphism (denoted by the same symbol with a slight abuse of notation)

gJL : JN+,N−L −→ Zp/p
nZp,
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such that gJL(h · x) = g(h) · gJL(x) for every x ∈ JN+,N−L and every h ∈ TN+,N−L.
Such a TN+,N−L-eigenform is unique up to p-adic units.

Remark 3.2 The above discussion establishes a correspondence between eigen-
forms in the sense of Sect. 2.1 and surjective Zp/pnZp-valued eigenforms on def-
inite quaternion algebras. The latter is the point of view adopted in [3]; we refer the
reader to Sect. 1.1 of loc. cit., and in particular to Eq. (11) in the proof of Proposition
1.3, for more details.

3.2.1 Special Values Attached to Modular Forms on Definite
Quaternion Algebras

There is a natural forgetful map

GrN+,N−L(K) −→ XN+,N−L,

which maps the Gross point represented by the pair f × b ∈ Hom(K,B) × B̂∗ to
the class of the idèle b in XN+,N−L. Any function γ defined on XN+,N−L then
induces a function on the set of Gross points GrN+,N−L(K), denoted again γ . Let
g : TN+,N−L → Zp/pnZp be as above. Thanks to the Jacquet–Langlands correspon-
dence recalled in the preceding section, one can define the special value attached to
(g,K) by

Lp(g/K) :=
∑

σ∈Pic(OK )

gJL
(
xσ

) ∈ Zp/p
nZp, (6)

where x ∈ GrN+,N−L(K) is any fixed Gross point of level N+ on B. The special value
Lp(g/K) is well defined up to multiplication by a p-adic unit. (Once gJL is fixed,
Lp(g/K) can be shown to be independent, up to sign, of the choice of the Gross
point x fixed to define it. We refer to Sect. 3 of [2] for more details.)

When n = ∞, so that g arises from a classical modular form,Lp(g/K) is essen-
tially equal to the square-root of the special value L(g/K, 1), as explained in Sect. 4
below.

3.3 The Reciprocity Laws

Fix throughout this section a positive integer n, and denote by

f{n} ∈ S2(N
+,N−;Z/pnZ)

the reduction of f modulo pn (i.e. the composition of f : TN+,N− → Zp with the
natural projection Zp � Z/pnZ). An n-admissible prime relative to ( f{n},K) is also
said to be n-admissible relative to ( f ,K).
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3.3.1 The Graph of Modular Forms

Let L = Ln denote the set of squarefree products L = �1 · · · �r of n-admissible
primes �j relative to ( f ,K). One can decomposeL = Ldef ∐Lindef , where L ∈ Ldef

is a definite vertex (resp., L ∈ Lindef is an indefinite vertex) if the number r of primes
dividing L is odd (resp., even).

According to Theorem 2.4 (and recalling Assumption 3.1), to every L ∈ L is
associated a unique mod-pn eigenform

fL ∈ S2(N
+,N−L;Z/pnZ)

of level (N+,N−L), such that fL(Tq) = f{n}(Tq) for every prime q � NL and fL(Uq) =
f{n}(Uq) for every prime q|N .

3.3.2 Construction of Cohomology Classes

Let L ∈ Lindef be an indefinite vertex. Let XL := XN+,N−L/Q be the Shimura curve
of level (N+,N−L), let JL/Q be the Jacobian variety of XL, and let Tap(JL) be its
p-adic Tate module. As explained e.g. in [2], the Hecke algebra TN+,N−L acts
faithfully as a ring of Q-rational endomorphisms of JL. Theorem 5.17 of [3], as
generalised in Proposition 4.4 of [18], states that there is an isomorphism of
Z/pnZ[GQ]-modules

πL : Tap(JL)/IL ∼= TfL ∼= Tf ,n, (7)

where IL ⊂ TN+,N−L denotes the kernel of fL ∈ S2(N+,N−L;Z/pnZ), TfL ∈ Z/pnZ[GQ]
Mod is the Galois representation attached in Sect. 2.1 to the eigenform fL, and
Tf ,n := Tf ⊗Z Z/pnZ (so that Tf ,n ∼= Tf{n}). Let PicL denote the Picard variety of XL.
Since IL is not an Eisenstein ideal, the natural map JL(K) ↪→ PicL(K) induces an
isomorphism JL(K)/IL ∼= PicL(K)/IL. One can then define the morphism

kL : PicL(K)/IL ∼= JL(K)/IL
δ−→ H1(K,Tap(JL)/IL)

πL∼= H1(K,Tf ,n),

where δ denotes the map induced by the global Kummer map JL(K)⊗̂Zp ↪→
H1(K,Tap(JL)) after taking the quotients by IL. Fix now a Heegner point P(L) ∈
HeegN+,N−L(K) ⊂ XL(H), let

P(L) :=
∑

σ∈Gal(H/K)

P(L)σ ∈ PicL(K),

and define the global cohomology class

κ(L) := kL
(
P(L)

) ∈ H1(K,Tf ,n).
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The class κ(L) is uniquely determined, up to sign, by the choice of the isomorphism
πL in (7) [3]. It is then naturally associated with the pair ( f ,L) up to multiplication
by a p-adic unit.

3.3.3 The Special Values

The constructions of Sects. 3.2.1 and 3.3.1 attach to a definite vertex L ∈ Ldef the
quaternionic special value

Lp(L) := Lp( fL/K) ∈ Z/pnZ.

This is canonically attached to the pair (f ,L) up to multiplication by a p-adic unit.

3.3.4 The First Reciprocity Law

Let L ∈ Ldef , and let � ∈ Ldef be a n-admissible prime relative to ( f ,K) such that
� � L. Recall the residue map ∂� : H1(K,Tf ,n) → H1

ord(K�,Tf ,n) ∼= Z/pnZ intro-
duced in Sect. 2.3. The following theorem is a special case of [3, Theorem 4.1].

Theorem 3.3 The equality

∂�

(
κ(L�)

) = Lp(L)

holds in Z/pnZ, up to multiplication by a p-adic unit.

3.3.5 The Second Reciprocity Law

Let L ∈ Lindef be an indefinite vertex, and let � ∈ Ldef be a n-admissible prime
which does not divide L. Recall the morphism v� : H1(K,Tf ,n) → H1

fin(K�,Tf ,n) ∼=
Z/pnZ. The following theorem is a special case of [3, Theorem 4.2].

Theorem 3.4 The equality

v�

(
κ(L)

) = Lp(L�)

holds in Z/pnZ, up to multiplication by a p-adic unit.

Proof This is proved in Sect. 9 of [3] when N− �= 1 (i.e. XN+,N− is not the classical
modular curve of level �0(N)), using Diamond–Taylor’s generalisation of Ihara’s
Lemma to Shimura curves. On the other hand, making use of the classical Ihara’s
Lemma, the argument of loc. cit. also applies to the case N− = 1. To handle the
case N− = 1, one may alternately go through the argument of Vatsal in [23, Sect. 6],
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where the case N− = 1 and n = 1 of Theorem 3.4 is proved, and note that the proof
applies also to the case n > 1. �

4 Gross’ Special Value Formula

In this section only, let N = N+N− be a squarefree integer coprime with p, such
that N− is a product of an odd number of primes. Let K/Q be a quadratic imagi-
nary field of discriminant coprime with Np. Let g ∈ S2(N+,N−;Zp) be a Zp-valued
eigenform of level (N+,N−). We impose in this section the following hypotheses
(cf. Assumption 3.1):

Assumption 4.1 The data (ρg,K,N+,N−) satisfy the following conditions:
1. N− has an odd number of prime factors.
2. A prime divisor q of N divides N− precisely if q is inert in K/Q.
3. ρg : GQ → GL2(Fp) is surjective.
4. If q | N− and q ≡ ± 1 (mod p), then ρg is ramified at q.

Section 3.2.1 (see Eq. (6) and the discussion following it) attached to g and K a
special value

Lp(g/K) ∈ Zp,

well defined up to multiplication by a p-adic unit. Gross’ formula compares this
quaternionic special value to the algebraic part of the complex special value of
g/K , defined as

Lalg(g/K, 1) := L(g/K, 1)

�g
∈ Zp.

Here L(g/K, s) := L(g, s) · L(g, εK , s) is the product of the Hecke complex
L-series of g with that of the twist g ⊗ εK of g by the quadratic character εK :
(Z/DZ)∗ → {±1} of K . Moreover �g ∈ C∗ is the canonical Shimura period of g.
In order to define it, we briefly recall the definition of congruence numbers, refer-
ring to [18] for more details. Given a positive integer M and a factorisation M =
M+ · M−, write T̂M+,M− for the p-adic completion of TM+,M− . For every eigenform
φ ∈ S2(M+,M−;Zp), define the congruence ideal

ηφ(M+,M−) := φ̂
(
AnnT̂M+,M−

(
ker(φ̂)

)) ⊂ Zp,

where φ̂ : T̂M+,M− → Zp is the morphism induced by φ. One identifies ηφ(M+,M−)

with the non-negative power of p that generates it, in other words we regard it as a
positive integer. Then ηφ(M+,M−) = 1 precisely if there is no non-trivial congru-
ence modulo p between φ and eigenforms of level (L,M−), for some divisor L|M+.
The canonical Shimura period mentioned above is defined as
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�g := (g, g)

ηg(N, 1)
,

where (g, g) is the Petersson norm of g ∈ S2(�0(N)), and where we write again g
to denote the composition of g : TN+,N− → Zp with the natural projection TN,1 →
TN+,N− in order to define ηg(N, 1).

Before stating Gross’ formula, we also need to introduce the Tamagawa expo-
nents attached to g at primes dividing N . Let φ denote either g or its quadratic
twist g ⊗ εK . Write as usual Tφ ∈ Zp[GQ]Mod for the p-adic representation attached
to φ, and Aφ := Tφ ⊗Zp Qp/Zp. Given a prime q | N , the Tamagawa factor cq(φ)

is defined to be the cardinality of (the finite group) H1(Frobq,A
Iq
φ ), where Iq is the

inertia subgroup of GQq . The Tamagawa exponent tq(g) = tq(g/K) of g at q is the
p-adic valuation of cq(g) · cq(g ⊗ εK). (If q|N− then tq(g) is the largest integer
n � 0 such that the GQ-module Ag[pn] is unramified at q, cf. [18, Definition 3.3].)

The following result is due the the work many people, including Gross, Daghigh,
Hatcher, Hui Xue, Ribet–Takahashi, and Pollack–Weston. We refer to [18] and
Sect. 3.1 of [4] for more details and precise references.

Theorem 4.2 The equality

Lalg(g/K, 1) = Lp(g/K)2 ·
∏

q|N−
ptq(g)

holds in Zp, up to multiplication by a p-adic unit.

Proof Combine Lemma 2.2 and Theorem 6.8 of [18]. �

5 A Theorem of Kato and Skinner–Urban

This section states the result of Kato–Skinner–Urban mentioned in the Introduction,
proving the validity of the p-part of the Birch and Swinnerton-Dyer conjecture for
weight-two newforms of analytic rank zero (under some technical conditions). Let
g ∈ S2(1,N;Zp) be a weight-two newform with Fourier coefficients in Zp. Let K/Q
be a quadratic imaginary field of discriminant coprime with Np. Consider as in the
preceding section the algebraic part Lalg(g/K, 1) ∈ Zp of the complex special value
of g/K . On the algebraic side, write as usual Ag := Tg ⊗Zp Qp/Zp ∈Zp[GQ] Mod for
the discrete representation attached to g. Assume that p � N is a prime of good ordi-
nary reduction for g, i.e. that g(Tp) ∈ Z∗

p. This implies that Ag fits into a short exact
sequence of Zp[GQp ]-modules

0 → A+
g → Ag → A−

g → 0,

where A±
g

∼= Qp/Zp as Zp-modules, and GQp acts on A+
g via ε · γ −1

g,p , where ε :
GQp → Z∗

p denotes the p-adic cyclotomic character, and γg,p : GQ � GQp/IQp →
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Z∗
p is the unramified character of GQp sending an arithmetic Frobenius in GQp/IQp

to g(Up). Hence A−
g

∼= Qp/Zp(γg,p) is unramified, with GQp acting via γg,p. Define
the p-primary Greenberg (strict) Selmer group of g/K by

Selp∞(K, g) :=

ker

⎛

⎝H1(KNp/K,Ag)
resNp−→

∏

v|p

H1(Kv,Ag)

H1
ord(Kv,Ag)div

×
∏

v|N
H1(Kv,Ag)

⎞

⎠ ,

where KNp/K denotes the maximal algebraic extension of K which is unramified
outside Np, andH1(KNp/K,Ag) stands forH1(Gal(KNp/K),Ag). Moreover, the map
resNp denotes the direct sum of the restriction maps at v, running over the primes v
of K which divide Np. Finally, for every prime v|p of K , H1

ord(Kv,Ag) ⊂ H1(Kv,Ag)

is the image of H1(Kv,A+
g ), and H1

ord(Kv,Ag)div is its maximal p-divisible subgroup.
The following theorem combines the work of Kato [13] and Skinner–Urban [22]

on the Iwasawa main conjecture for GL2. More precisely, it follows from Theorem
3.29 of [22], applied to g and its quadratic twist g ⊗ εK , taking into account the
algebraic Birch and Swinnerton-Dyer formulae proved by Mazur. For the precise
statement in the level of generality required here, we refer to Theorem B in Skinner’s
preprint [21].

Recall the Tamagawa exponent tq(g) = tq(g/K) attached to every prime q|N in
the preceding section.

Theorem 5.1 Assume that
1. p � N and g is p-ordinary,
2. the residual representation ρg : GQ → GL2(Fp) is irreducible,
3. there exists a prime q | N such that ρg is ramified at q.

Then Lalg(g/K, 1) �= 0 if and only if Selp∞(K, g) is finite. In this case, the equality

Lalg(g/K, 1) = #Selp∞(K, g)
∏

q|N
ptq(g)

holds in Zp, up to multiplication by p-adic units.

6 Heegner Points and Shafarevich–Tate Groups

Let A/Q be an elliptic curve of conductor N . Fix a modular parametrisation

πA : X0(N) −→ A

of minimal degree deg(πA). Let K/Q be a quadratic imaginary field of discriminant
coprime with Np, satisfying the Heegner hypothesis that every prime divisor of N
splits in K/Q. Fix a Heegner point P ∈ HeegN,1(H) ⊂ X0(N)(H) (see Sect. 3.1.2,
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recalling that X0(N) = XN,1 and H/K is the Hilbert class field of K). Define the
Heegner point over K

PK := TraceH/K
(
πA(P)

) ∈ A(K).

The theorem of Gross–Zagier [11] states that PK is a non-torsion point in A(K) if
and only the Hasse–Weil L-function L(A/K, s) of A/K has a simple zero at s = 1.
Moreover, according to the work of Kolyvagin [14], if PK is a non-torsion point, the
Mordell–Weil group A(K) has rank one and the Shafarevich–Tate group X(A/K)

is finite. In this case, denote by

Ip(PK) := pordp[A(K): ZPK ]

the p-part of the index of ZPK in A(K). Write, as customary, X(A/K)p∞ for the
p-primary part of the Shafarevich–Tate group of A/K . The following theorem is the
main result of this note and will imply Theorem A of the Introduction.

Theorem 6.1 Assume that A/Q is semistable, and that p > 7 is a prime which does
not divide deg(πA). Assume furthermore that ap(A) �≡ 0, 1 (mod p), resp. ap(A) �≡
0,±1 (mod p) when p is split, resp. inert in K, and that all primes dividing N are
split in K. If L(A/K, s) has a simple zero at s = 1, then

Ip(PK)2 = #X(A/K)p∞ .

The proof of Theorem 6.1 is given in Sect. 6.5.

6.1 Setting and Notations

Assume from now on that the assumptions of Theorem 6.1 are satisfied, and fix a
positive integer n such that

n > 2 · max
{
ordp

(
Ip(PK)

)
, ordp

(
#X(A/K)p∞

)}
. (8)

Let f = fA ∈ S2(�0(N),Z) be the weight-two newform of level N attached to A/Q
by the modularity theorem. With the notations of Sect. 2.1, one considers

f ∈ S2(N, 1;Zp); N+ := N; N− := 1.

Note that, since f is q-new at every prime q | N , one can consider f ∈ S2(N/m,

m;Zp), for every positive divisor m of N . In other words, f : TN := TN,1 → Zp

factorises through the m-new quotient TN/m,m of TN , for every positive divisor m
of N . As in Sect. 3.3, for every m ∈ N ∪ {∞} let f{m} ∈ S2(N, 1;Zp/pmZp) denote
the reduction of f modulo pm.
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Lemma 6.2 1. The data ( f ,N+,N−,K, p) satisfy Assumption 3.1.
2. f{m} satisfies Assumption 2.1 for every m ∈ N ∪ {∞}.

Proof Parts 1, 2, 4 and 5 of Assumption 3.1 are satisfied since A is ordinary
at p and N− = 1. As A/Q is semistable and p > 7, Assumption 3.1(3) holds by
a result of Mazur [16]. Moreover, the representation Tf ,m = Tf ⊗ Zp/pmZp asso-
ciated with f{m} is ordinary at p, hence Assumption 2.1(2) holds. Finally, since
p � deg(πA), Assumption 2.1(3) holds by a result of Ribet [19], as explained in
Lemma 2.2 of [3]. �

With the notations of Sect. 3.3.1, write Lm for the graph associated to f{m}, for
m ∈ N. Let L ∈ Lm and let fL ∈ S2(N,L;Z/pmZ) be the L-level raising of f{m} (cf.
Sect. 3.3.1). We say that fL can be lifted to a true modular form if there exists a Zp-
valued eigenform g = gL ∈ S2(N,L;Zp) of level (N,L) whose reduction modulo
pm equals fL (i.e. such that fL = g{m}).

6.2 Level Raising at One Prime

Let � ∈ Ldef
n be an n-admissible prime relative to ( f ,K). The next result shows that

the conclusion of Theorem 6.1 holds under certain assumptions.

Proposition 6.3 Assume that f� can be lifted to a true modular form. Moreover,
assume that the map A(K) ⊗ Z/pnZ → A(K�) ⊗ Z/pnZ (induced by the natural
inclusion A(K) ↪→ A(K�)) is injective. Then

Ip(PK)2 = #X(A/K)p∞ .

The rest of this section will be devoted to the proof Proposition 6.3. Section 3.3.2
attaches to f{n} and 1 ∈ Lindef a global cohomology class κ(1) ∈ H1(K,Tf ,n). The
representation Tf ,n attached to f{n} is nothing but the pn-torsion submodule Apn of
A = A(Q). Since ρ f is irreducible, πA induces isomorphisms of Zp[GQ]-modules
πA : Tap(J)/If ∼= Tf and πA,n : Tap(J)/If ,n ∼= Tf ,n, where J/Q = Jac(X0(N)) is the
Jacobian variety of X0(N), If := ker( f ) and If ,n := ker

(
f{n}

)
. One can then take

πA,n = π1 in (7), and retracing definitions it follows that, up to multiplication by
p-adic units,

κ(1) = δ(PK) ∈ Sel(K, f{n}), (9)

where δ denotes the global Kummer map A(K)/pn ↪→ H1(K,Apn). We observe that
the class κ(1) belongs to the Selmer group Sel(K, f{n}), defined in Sect. 2.2 by ordi-
nary conditions (which can be imposed in the current context in light of Lemma
6.2), since this Selmer group coincides with the usual pn-Selmer group of A in which
the local conditions are described in terms of the local Kummer maps. Indeed, our
assumption on ap(A) being �≡ 1 or �≡ ±1 (mod p) implies that the local Selmer con-
ditions at p agree (see for example [9]). As for the primes dividing N , this is a direct
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consequence of the theory of non-archimedean uniformisation for A. This yields the
equality up to units

Ip(PK) = v�

(
κ(1)

) ∈ H1
fin(K�,Tf ,n) ∼= Z/pnZ (10)

(see Sect. 2.3 for the last isomorphism). To see this, consider the composition

A(K) ⊗ Z/pnZ → A(K�) ⊗ Z/pnZ
δ

↪→ H1
fin(K�,Tf ,n) ∼= Z/pnZ. (11)

Since p > 7, one has A(K)p = 0 by Mazur’s theorem. Moreover, as we are assum-
ing ords=1L(A/K, s) = 1, the Gross–Zagier–Kolyvagin theorem gives that A(K) has
rank one. It follows that A(K) ⊗ Z/pnZ ∼= Z/pnZ. Since by assumption the first
map in (11) is injective, the composition (11) is an isomorphism, and the claim (10)
follows. Theorem 3.4 then yields the equality

Ip(PK) = Lp(�) ∈ Z/pnZ, (12)

up to multiplication by p-adic units. Let now g ∈ S2(N, �;Zp) be a Zp-valued eigen-
form of level (N, �) lifting f�. Combining Theorem 4.2 with Theorem 5.1 yields
(up to p-adic units)

Lp(g/K)2 · pt�(g) Theorem 4.2= Lalg(g/K, 1)
Theorem 5.1= #Selp∞(K, g) · pt�(g). (13)

More precisely, note that g satisfies the assumptions of Theorems 4.2 and 5.1
by Lemma 6.2. Moreover, as explained in the proof of Lemma 2.2 of [3], the
assumption p � deg(πA) and Ribet’s lowering the level theorem [19] imply that
Ap

∼= Ag,1 is ramified at every prime q | N . By the definition of tq(g), this gives∏
q|N� p

tq(g) = pt�(g), and the first equality in (13). Since by constructionLp(g/K) ≡
Lp(�) (mod pn), and Ip(PK) is non-zero in Z/pnZ by (8), Lp(g/K) �= 0 by (12),
hence Lalg(g/K, 1) �= 0, and the second equality in (13) follows by Theorem 5.1.
Combining Eqs. (12) and (13) give the identity

Ip(PK)2 = #Selp∞(K, g). (14)

It then remains to compare the cardinality of the p-primary Selmer group Selp∞

(K, g) with that of the p-primary part of the Shafarevich–Tate group X(A/K). In
order to do that, one first notes that

Sel(K, f�) ∼= Selp∞(K, g), (15)

where Sel(K, f�) is the pn-Selmer group attached in Sect. 2.1 to f� = g{n}. (Note
that f� satisfies Assumption 2.1, thanks to Lemma 6.2.) By the irreducibility of Ap

and our assumptions on ap(A), it is easily seen that the natural map Sel(K, f�) →
Selp∞(K, g)[pn] is an isomorphism (cf. [9]). On the other hand, Eqs. (12), (13) and
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(8) imply that pn > #Selp∞(K, g), hence (15) follows. One is thus reduced to com-
pare the cardinality of Sel(K, f�) to that of X(A/K)p∞ . Kummer theory inserts
X(A/K)p∞ in a short exact sequence

0 → A(K) ⊗ Z/pnZ → Sel(K, f{n}) → X(A/K)p∞ → 0

(one uses again pn > #X(A/K)p∞ , which follows by (8)). By the discussion above
this gives

#X(A/K)p∞ = p−n · #Sel(K, f{n}). (16)

We claim that
Sel(�)(K, f{n}) = Sel(K, f{n}). (17)

where the suffix (�) indicates condition at � relaxed. To prove this, let x ∈ Sel(�)

(K, fn) be a Selmer class relaxed at �; we have to show that x ∈ Sel(K, f{n}), i.e.
that its residue ∂�(x) at � vanishes. Since (11) is an isomorphism, there exists
a class y ∈ A(K)/pn ↪→ Sel(K, f{n}) such that res�(y) = v�(y) ∈ H1

fin(K�,Tf ,n) ∼=
Z/pnZ is a unit modulo pn. For every prime v of K , let 〈−,−〉v : H1(Kv,Tf ,n) ×
H1(Kv,Tf ,n) → H2(Kv, μpn) ∼= Z/pnZ be the perfect local Tate pairing attached to
theWeil pairing Tf ,n × Tf ,n → μpn . The subspaceH1

fin(Kv,Tf ,n) (resp.,H1
ord(Kv,Tf ,n)

for v|�Np) is maximal isotropic for 〈−,−〉v, i.e. it is equal to its own orthogonal
complement under 〈−,−〉v. By the reciprocity law of global class field theory and
the definition of Sel(�)(K, f{n}):

0 =
∑

v

〈resv(x), resv(y)〉v = 〈res�(x), res�(y)〉� = 〈∂�(x), v�(y)〉� ,

where the first sum runs over all primes of K . Since v�(y) generates H1
fin(K�,Tf ,n) by

assumption and the Tate local duality induces a perfect pairing between this finite
part and the ordinary (or singular) part H1

ord(K�,Tf ,n), this implies ∂�(x) = 0, as was
to be shown.

Using again that (11) is an isomorphism, together with Eq. (2), one deduces the
exact sequence

0 → Sel(K, f�) → Sel(�)(K, f{n})
v�→ H1

fin(K�,Tf ,n) ∼= Z/pnZ → 0. (18)

This allows us to conclude the proof of the proposition, as it gives

Ip(PK)2
(14)= #Selp∞(K, g)

(15)= #Sel(K, f�)
(18)= p−n · #Sel(�)(K, f{n})

(17)= p−n · #Sel(K, f{n})
(16)= #X(A/K)p∞ .
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6.3 Level Raising at Three n-admissible Primes

Write in this section L = L2n. Fix three primes �1, �2 and �3 in L (so that �1, �2 and
�3 are 2n-admissible primes relative to ( f ,K)).

Since Assumption 3.1 is satisfied by Lemma 6.2, Sect. 3.3.2 attaches to ( f , 1)
and ( f , �1�2) Selmer classes

κ(1) = δ(PK) ∈ Sel(K, f{2n}); κ(�1�2) ∈ Sel(K, f�1�2).

The fact that the first class belongs to Sel(K, f{2n}) was explained after Eq. (9). A
similar argument applies to the second class, recalling that it arises as the Kummer
image of a Heegner point on the Shimura curve XN,�1�2 and invoking the Cerednik–
Drinfeld theory of non-archimedean uniformisation for this curve at the primes �1
and �2 (see [3] for more details). If κ(�1�1) �= 0, set

κ̃(�1�2) := pt−1 · κ(�1�2) ∈ H1(K,Tf ,1),

where t � 2n is the smallest positive integer such that pt · κ(�1�2) = 0 (and we
identify H1(K,Tf ,1) with H1(K,Tf ,2n)[p], which is possible since TGK

f ,1 = 0). If
κ(�1�2) = 0, set κ̃(�1�2) := 0 (in H1(K,Tf ,1)). Recall the morphisms v�j : H1

(K,Tf ,k) → H1
fin(K�j ,Tf ,k) ∼= Z/pkZ (k � 1). The aim of this section is to prove

the following proposition.

Proposition 6.4 Assume that f�1�2�3 can be lifted to a true modular form of level
(N, �1�2�3). Assume moreover that the restriction map A(K)/pn → A(K�1)/p

n at �1
is injective, and that v�3

(
κ̃(�1�2)

) �= 0. Then

Ip(PK)2 = #X(A/K)p∞ .

The rest of this section will be devoted to the proof of Proposition 6.4. In partic-
ular, assume from now on that the assumptions of the proposition are satisfied.

Let r � 2n be a positive integer. Since �1, �2 and �3 are 2n-admissible primes,
they are also r-admissible primes relative to ( f ,K, p). For every divisor m of �1�2�3
write

Selpr (K, fm) ⊂ H1(K,Tf ,r); Selpr (K, f ) := Sel(K, f{r})

to denote the Selmer group attached to the reduction modulo pr of the mod-p2n form
fm. For every L ∈ L, let

Sel(L)
pr (K, fm) ⊂ H1(K,Tf ,r)

be the relaxed Selmer group at L, i.e. the Selmer group defined by the same local
conditions used to define Selpr (K, fm) at every prime of K which does not divide L,
and by imposing no local condition at every prime of K dividing L. As explained
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in Sect. 3 of [3] (see in particular Proposition 3.3 and the references therein), we
can enlarge �1�2�3 to an integer L ∈ L which controls the Selmer group. More
precisely, there exists L ∈ L, divisible by �1�2�3, such that the restriction map
Selp2n(K, f{2n}) → ⊕

�|L H1(K�,Tf ,2n) is injective and

Sel(L)

p2n (K, f ) ∼= (
Z/p2nZ

)#L

is free of rank #L over Z/p2nZ, where #L := #{� : � prime and �|L}. Fix from now
on such an L. For every element 0 �= x ∈ Sel(L)

p2n (K, f ), denote by ordp(x) the largest

integer such that x ∈ pordp(x) · Sel(L)

p2n (K, f ).
Theorems 3.3 and 3.4 yield the equality (up to multiplication by p-adic units)

Ip(PK) = v�1

(
κ(1)

) Theorem 3.4= Lp(�1)
Theorem 3.3= ∂�2

(
κ(�1�2)

) ∈ Z/p2nZ, (19)

the first equality being a consequence of the injectivity of the localisation map
A(K)/pn ↪→ A(K�1)/p

n, as explained in the proof Proposition 6.3 (see (10)). By
(8) one deduces

ξ(�1�2) := ordp
(
κ(�1�2)

)
� ordp

(
∂�2(κ(�1�2))

) = ordp
(
Ip(PK)

)
< n. (20)

Let κ̂(�1�2) ∈ Sel(L)

p2n (K, f ) be such that pξ(�1�2) · κ̂(�1�2) = κ(�1�2) ∈ Sel(L)

p2n (K, f ).
Consider the natural map

Sel(L)

p2n (K, f ) −→ Sel(L)
pn (K, f ) (21)

induced by the projection Tf ,2n � Tf ,n, and write κ ′(�1�2) ∈ Sel(L)
pn (K, f ) for the

image of κ̂(�1�2). Note that, while κ̂(�1�2) is well-defined only up to elements in
Sel(L)

p2n (K, f )[pξ(�1�2)], κ ′(�1�2) depends only on κ(�1�2).

Lemma 6.5 The class κ ′(�1�2) enjoys the following properties:
1. κ ′(�1�2) ∈ Selpn(K, f�1�2);
2. κ ′(�1�2) has exact order pn;
3. ∂�2

(
κ(�1�2)

)
(mod pn) = pξ(�1�2) · ∂�2

(
κ ′(�1�2)

) ∈ Z/pnZ, up to multiplica-
tion by units in (Z/pnZ)∗;

4. v�3

(
κ ′(�1�2)

) ∈ (Z/pnZ)∗ and v�3

(
κ(�1�2)

)
(mod pn) = pξ(�1�2), up to units

in (Z/pnZ)∗.

Proof Since Sel(L)

p2n (K, f ) is free over Z/p2nZ, κ̂(�1�2) has order p2n. If x ∈ Sel(L)

p2n

(K, f ) ⊂ H1(K,Tf ,2n) belongs to the kernel of the map (21), then x comes from a
class in H1(K, pn · Tf ,2n), hence is killed by pn. It follows that κ ′(�1�2) has order pn,
thus proving part 2. To show part 1, i.e. that κ ′(�1�2) belongs to Selpn(K, f�1�2), one
has to prove that vq

(
κ ′(�1�2)

) = 0 for q|�1�2, and that ∂�

(
κ ′(�1�2)

) = 0 for every �

dividing L/�1�2. This follows by the fact that pξ(�1�2) · κ̂(�1�2) already satisfies these
properties, and by the fact that ξ(�1�2) < n (see 20). Indeed, for ? ∈ {fin, sing} and
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k ∈ {n, 2n}, there is an isomorphism H1
? (K,Tf ,k) ∼= Z/pkZ (cf. Sect. 2.3), and the

morphism H1
? (K�,Tf ,2n) → H1

? (K�,Tf ,n) induced by Tf ,2n � Tf ,n corresponds to
the canonical projection Z/p2nZ → Z/pnZ. Part 3 also follows by the last argument.
Finally, let t be the order of κ(�1�2) ∈ Sel(L)

p2n (K, f�1�2), so that p
ξ(�1�2)+t−1 · κ̂(�1�2) =

κ̃(�1�2), and ξ(�1�2) + t = 2n. By assumption, v�3

(
κ̃(�1�2)

) �= 0, which implies
that v�3

(
κ̂(�1�2)

)
has order p2n in Z/p2nZ, i.e. it is a unit modulo p2n. Since, as

remarked above, v�3

(
κ ′(�1�2)

)
is the image of v�3

(
κ̂(�1�2)

)
under the projection

Z/p2nZ � Z/pnZ, Part 4 follows. �

Thanks to part 3 of the preceding lemma, (19) can be rewritten in term of the
class κ ′(�1�2), i.e.

Ip(PK) = pξ(�1�2) · ∂�2

(
κ ′(�1�2)

) ∈ Z/pnZ.

(The latter equality, valid up to multiplication by p-adic units, takes place now in
Z/pnZ, while (19) was an equality in Z/p2nZ.) Moreover, Theorem 3.4 and Part 4
of the preceding lemma give

Lp(�1�2�3) (mod pn)
Theorem 3.4= v�3

(
κ(�1�2)

)
(mod pn) = pξ(�1�2) ∈ Z/pnZ

(as usual up to p-adic units). We now make use of the assumption that f�1�2�3 can
be lifted to a true modular form g ∈ S2(N, �1�2�3;Zp). Using Theorem 4.2 and
Theorem 5.1 one proves, by the same argument used in the proof of Proposition 6.3,
that up to p-adic units

Lp(g/K)2 = #Selp∞(K, g) = #Selpn(K, f�1�2�3).

(To justify the second equality, note that Lp(�1�2�3) (mod pn) = pξ(�1�2) is non-
zero in Z/pnZ, as follows by (20), and proceed as in the proof of Eq. (15) in the
proof of Proposition 6.3.) The preceding three equations combine to give

Ip(PK)2 = p2·ordp
(
∂�2

(
κ ′(�1�2)

))

· #Selpn(K, f�1�2�3). (22)

(Here, given 0 �= x ∈ Z/pnZ, ordp(x) denotes the positive integer s.t.
(
pordp(x)

) = (x)
as ideals of Z/pnZ.) The proof of Proposition 6.4 will then result combining Eq. (22)
with the following lemma.

Lemma 6.6

#X(A/K)p∞ = p2·ordp
(
∂�2

(
κ ′(�1�2)

))

· #Selpn(K, f�1�2�3).
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Proof Recall that by assumption the localisation map A(K)/pn ↪→ A(K�1)/p
n is

injective. As in the proof of Proposition 6.3, this implies

#Selpn(K, f�1) = #X(A/K)p∞ . (23)

Given this, the proof naturally breaks into two parts. One first compares the Selmer
groups Selpn(K, f�1) and Selpn(K, f�1�2), and proves the equality

#Selpn(K, f�1�2) = pn−2·ordp
(
∂�2

(
κ ′(�1�2)

))

· #Selpn(K, f�1). (24)

One then compares the Selmer groups Selpn(K, f�1�2) and Selpn(K, f�1�2�3), and shows
that

#Selpn(K, f�1�2) = pn · #Selpn(K, f�1�2�3). (25)

The lemma will then follow by combining the preceding three equations.
By Poitou–Tate duality, as formulated e.g. in [20, Theorem 1.7.3] (see also [17,

Chap. I]), and the very definitions of the Selmer groups (see Sect. 2.2), there is an
exact sequence

0 → Selpn(K, f�1) → Sel(�2)pn (K, f�1�2)

∂�2−→ H1
sing(K�2 ,Tf ,n) ∼= H1

fin(K�2 ,Tf ,n)
∨ v∨

�2−→ Selpn(K, f�1)
∨,

where (·)∨ := Hom(·,Z/pnZ), the isomorphism is induced by the local Tate pairing
(cf. the proof of Proposition 6.3), and v∨

�2
refers to the dual of the morphism v�2 =

res�2 : Selpn(K, f�1) → H1
fin(K,Tf ,n). Similarly, one has the exact sequence

0 → Selpn(K, f�1�2) → Sel(�2)pn (K, f�1�2)

v�2−→ H1
fin(K�2 ,Tf ,n) ∼= H1

sing(K�2 ,Tf ,n)
∨ ∂∨

�2−→ Selpn(K, f�1�2)
∨.

The existence of these exact sequences yields

#∂�2

(
Selpn(K, f�1�2)

) · #v�2

(
Sel(�2)pn (K, f�1�2)

) = pn

= #∂�2

(
Sel(�2)pn (K, f�1�2)

) · #v�2

(
Selpn(K, f�1)

)
.

(26)

We claim that

∂�2

(
Selpn(K, f�1�2)

) = ∂�2

(
κ ′(�1�2)

) · Z/pnZ = ∂�2

(
Sel(�2)pn (K, f�1�2)

)
. (27)
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This would easily imply Eq. (24). Indeed, Eqs. (26) and (27) would then give

#∂�2

(
Sel(�2)pn (K, f�1�2)

)

#v�2

(
Sel(�2)pn (K, f�1�2)

)
(27)=

(
#∂�2

(
Selpn(K, f�1�2)

))2

#∂�2

(
Selpn(K, f�1�2)

) · #v�2

(
Sel(�2)pn (K, f�1�2)

)

(26) and (27)= pn−2ordp
(
∂�2

(
κ ′(�1�2)

))

.

On the other hand, the (trivial part of the) exact sequences above show that the first
term in the previous equation is equal to the ratio #Selpn(K, f�1�2)

/
#Selpn(K, f�1),

and Eq. (24) would follow. In order to prove Eq. (27), note that

Sel(�2)pn (K, f�1�2) = κ ′(�1�2) · Z/pnZ ⊕ X�1�2

for a certain direct summand X�1�2 . This follows by Parts 1 and 2 of Lemma 6.5.
Assume ad absurdum that there is a class (β, α), with β ∈ κ ′(�1�2) · Z/pnZ and
0 �= α ∈ X�1�2 , such that

∂�2

(
κ ′(�1�2)

) · Z/pnZ � ∂�2

(
β, α

) · Z/pnZ = ∂�2

(
Sel(�2)pn (K, f�1�2)

)
.

Without loss of generality, one can assume β = 0. Say ∂�2(α) = u1 · pt and ∂�2(
κ ′(�1�2)

) = u2 · pt′ , for units uj ∈ (Z/pnZ)∗, and integers t < t′ < n. Since the
images of pt

′−t · α and κ ′(�1�2) under ∂�2 generate the same ideal of Z/pnZ, there
exists a unit u ∈ (Z/pnZ)∗ such that u · pt′−t · α − κ ′(�1�2) belongs to the kernel
of ∂�2 . In other words u · pt′−t · α − κ ′(�1�2) ∈ Selpn(K, f�1). Let C be the small-
est non-negative integer such that pC kills X(A/K)p∞ . Equation (23) implies that
pC kills u · pt′−t · α − κ ′(�1�2), so that pC · κ ′(�1�2) = u · pC+t′−t · α = 0. Since
κ ′(�1�2) has order pn by Lemma 6.5(2), this implies C � n, which is impossible
by the choice (8) of n. This contradiction proves the second equality in (27), and
since κ ′(�1�2) ∈ Selpn(K, f�1�2) by Lemma 6.5(1), the first equality follows too. As
explained above, this also proves Eq. (24).

To conclude the proof of the proposition, one is left with the proof of Eq. (25). By
Parts 1 and 4 of Lemma 6.5, κ ′(�1�2) ∈ Selpn(K, f�1�2), and v�3

(
κ ′(�1�2)

)
generates

Z/pnZ. In particular

v�3

(
Sel(�3)pn (K, f�1�2�3)

) = Z/pnZ = v�3

(
Selpn(K, f�1�2)

)
.

As for Eq. (17) in the proof of Proposition 6.3, this implies (via Poitou–Tate duality)

Sel(�3)pn (K, f�1�2�3) = Selpn(K, f�1�2),
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and then Eq. (25) follows from the short exact sequence

0 → Selpn(K, f�1�2�3) → Sel(�3)pn (K, f�1�2�3)
v�3→ H1

fin(K,Tf ,n) ∼= Z/pnZ → 0. �

6.4 A Lifting Theorem

In order to apply Propositions 6.3 and 6.4 to the proof of Theorem 6.1, we need the
following lifting theorem, proved in Part 3 of [6]. The notations and assumptions are
as in the previous sections; in particular p � deg(πA).

Theorem 6.7 Let �1 be a 2n-admissible prime relative to ( f ,K, p). Assume that
f�1 cannot be lifted to a true modular form. Then there exists infinitely many pairs
(�2, �3) of 2n-admissible primes such that:

1. f�1�2�3 ∈ S2(N, �1�2�3;Z/p2nZ) can be lifted to a true modular form g :=
g�1�2�3 ∈ S2(N, �1�2�3;Zp),

2. v�3

(
κ̃(�1�2)

) �= 0 if and only if κ̃(�1�2) �= 0.

6.5 Proof of Theorem 6.1

The following proposition is a consequence of Theorem 3.2 of [3].

Proposition 6.8 For every positive integer t, there exist infinitely many t-admissible
primes � relative to ( f ,K) such that the natural map ι�,t : A(K)⊗Z/ptZ → A(K�) ⊗
Z/ptZ is an isomorphism.

Proof As noted in the proof of Proposition 6.3, under our assumptions A(K) ⊗
Z/ptZ ∼= Z/ptZ · P, for every generator P of A(K) modulo torsion. Similarly,
for every t-admissible prime �, the local Kummer map gives an isomorphism
A(K�) ⊗ Z/ptZ ∼= H1

fin(K�,Apt ) ∼= Z/ptZ (cf. Sect. 2.3). Let κp ∈ H1(K,Ap) be the
image of P (mod p) ∈ A(K) ⊗ Fp under the global Kummer map A(K) ⊗ Fp ↪→
H1(K,Ap). Theorem 3.2 of [3] shows that there exist infinitely many t-admissible
primes � relative to ( f ,K) such that v�(κp) �= 0 in H1

fin(K�,Ap). Since v�(κp) is
the image of ι�,t(P) (mod p) ∈ A(K�) ⊗ Fp under the local Kummer map A(K�) ⊗
Fp

∼= H1
fin(K�,Ap), this implies that ι�,t(P) is not divisible by p in A(K�) ⊗ Z/ptZ,

i.e. that ι�,t is an isomorphism, hence proving the proposition. �

We are now ready to prove Theorem 6.1. Thanks to the preceding proposition,
one can fix a 2n-admissible prime �1 relative to (f ,K) such that A(K) ⊗ Z/p2nZ ∼=
A(K�1) ⊗ Z/p2nZ. Let f�1 ∈ S2(N, �1;Z/p2nZ) be a level raising at �1 of the reduc-
tion of f modulo p2n. If f�1 can be lifted to a true modular form of level (N, �1),
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apply Proposition 6.3 to conclude the proof of Theorem 6.1. Assume, on the con-
trary, that f�1 cannot be lifted to a true modular form. Then Theorem 6.7 guaran-
tees the existence of infinitely many pairs (�2, �3) of 2n-admissible primes such
that: (i) the level raising f�1�2�3 ∈ S2(N, �1�2�3;Z/p2nZ) at �1�2�3 of f{2n} can be
lifted to a true modular form, and (ii) the image of κ̃(�1�2) ∈ H1(K,Ap) under
the map v�3 : H1(K,Ap) → H1

fin(K�3 ,Ap) is non-zero. Indeed Eq. (20) implies that
κ̃(�1�2) �= 0 for every 2n-admissible prime �2, thanks to the injectivity of the local-
isation map A(K)/pn ↪→ A(K�1)/p

n at �1, so that (ii) holds true. In this case, Theo-
rem 6.1 is a consequence of Proposition 6.4.

6.6 Generalisations

The statements of the results of the previous sections do not strive for a maximal
degree of generality, but rather aim at keeping technicalities and notations as simple
as possible. In this section, we briefly point at possible ways of generalising our
results.

Semistability. Theorem 6.1 (and Theorem A of the Introduction) is stated under
the assumption that the elliptic curve A is semistable. This makes it possible to
consider in our arguments Selmer groups defined in terms of ordinary local con-
ditions at the bad primes, and therefore to compare Selmer groups attached to dif-
ferent modular forms in a direct and elementary way. When N is not squarefree,
the lack of natural ordinary conditions at the non-semistable primes may be obvi-
ated by imposing non-self dual local conditions. For example, one may view the
cohomology classes κ(1) and κ(�1�2) as belonging to Selmer groups with relaxed
local conditions at these primes, and keep track of the appearance of the restricted
counterparts of these Selmer groups in the Poitou–Tate sequences of the proofs of
Sect. 6.

The Heegner hypothesis. Section 7 below deduces Theorem A from Theorem 6.1
by choosing an auxiliary imaginary quadratic field K in which all prime divisors of
the conductor of A are split, and hence the Heegner hypothesis of Sect. 6 is satisfied.
A more general version of Theorem 6.1 can be proved along the same lines when K
satisfies the generalised Heegner hypothesis Assumption 3.1(1,2). In this case, the
Heegner point PK arises on the Shimura curve XN+,N− and the class κ(�1�2) comes
from a Heegner point on XN+,N−�1�2 . Since the results of the previous sections hold
at this level of generality, and the Gross–Zagier formula has been generalised to
Shimura curves by Zhang [26], the proof of Theorem 6.1 goes through unchanged.

The non-anomalous condition. Our main results depend on the assumption that
p is a non-anomalous ordinary prime for A/K . This implies that the local Selmer
condition at p arising from the local Kummer map coincides with the ordinary con-
dition. The latter condition is defined solely in terms of the Galois representation
Apn . As a consequence, both classes κ(1) and κ(�1�2), which are defined as the
Kummer images of Heegner points on different Shimura curves, satisfy the same
local condition at p. When p is anomalous, one faces the need of directly comparing
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the images of the two different local Kummer maps. This requires a more sophisti-
cated analysis of the models for Apn over the ring of integers of K ⊗ Zp, as is carried
out for example in Sect. 4 of [10].

The ordinary condition. The technical heart of our proof of Theorem 6.1 is rep-
resented by the explicit reciprocity laws of Sect. 3, which hold without the ordinary
assumption. (Note that this hypothesis is imposed in [3] in order to obtain results
over the anticyclotomic Zp-extension of K , and not just over the base.) In order to
extend Theorem 6.1 (and its consequence Theorem A) to an elliptic curve having
supersingular reduction at p, one considers Selmer groups where the local condition
at p is defined to be the Kummer condition. As above, the comparison of Selmer con-
ditions at p can be done following [10]. In order to complete the proofs, one needs
an extension of Theorem 5.1 to the supersingular setting, similar to that announced
in [25].

7 Proof of Theorem A

In this section we prove Theorem A stated in the Introduction.
Thus, as in the Introduction and in Sect. 6, let A/Q be a semistable elliptic curve

of conductorN , let p > 7 be a non-anomalous prime of good ordinary reduction, and
fix a modular parametrisation πA : X0(N) → A of minimal degree deg(πA). Assume
moreover that p does not divide deg(πA) and that L(A/Q, s) has a simple zero at
s = 1.

Step I. Thanks to the results of [7], there exists a quadratic imaginary field
K/Q such that

(α) the discriminant of K/Q is coprime with 6Np, and every prime divisor of Np
splits in K/Q;

(β) the Hasse–Weil L-function L(A/K, s) of A/K has a simple zero at s = 1.

Writing AK/Q for the K-quadratic twist of A, one has L(A/K, s) = L(A/Q, s) ·
L(AK/Q, s), so that (β) is equivalent to L(AK/Q, 1) �= 0. In particular

L′(A/K, 1) = L′(A/Q, 1) · L(AK/Q, 1). (28)

Step II. The Gross–Zagier formula [11, Sect. 5, Theorem 2.1] states that

D
1
2
K · L′(A/K, 1)

c2 · �A/K · hNT(PK)
= [A(K) : ZPK ]2.

Here c is the Manin constant associated with the strong Weil curve in the isogeny
class of A/Q, DK is the absolute value of the discriminant of K/Q, and �A/K ∈ C∗
is the Néron period of A/K . Moreover, PK denotes a generator of A(K)/torsion,
hNT(PK) ∈ R its Néron–Tate canonical height, and PK ∈ A(K) the Heegner point
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attached to πA (cf. Sect. 6). A result of Mazur [16] states that p2|4N if p|c, hence c2
is a p-adic unit in our setting. Moreover, �A/K = D1/2

K · �A · �AK , where �∗ is the
real Néron period of the elliptic curve ∗/Q [11, P. 312]. Using (28), the preceding
equation gives

L′(A/Q, 1)

�A · hNT(P)
· L(AK/Q, 1)

�AK

·= [A(K) : ZPK ]2, (29)

where
·= denotes equality up to multiplication by a p-adic unit, and P is a generator

of A(Q)/torsion. (Note that in our setting PK ∈ A(Q), as the sign in the functional
equation satisfied by L(A/Q, s) is −1.)

Step III. As explained in the proof of Proposition 6.3 (see in particular the
discussion following Eq. (13)), the residual representation ρA,p = ρ f is ramified at
every prime q|N , hence ρAK ,p is also ramified at every prime q|N . Then the local
Tamagawa number cq(A) = cq(AK) is a p-adic unit for every q|N , so that every
local Tamagawa number of AK/Q is a p-adic unit. (Indeed, if a prime q � N divides
the conductor of AK/Q, then q divides the absolute discriminant of K , and AK/Q
has additive reduction at q and cq(AK) � 4). According to Theorem 2 of [22] (cf.
Theorem 5.1) the p-part of the Birch and Swinnerton-Dyer formula holds for AK/Q:

L(AK/Q, 1)

�AK

·= #X(AK/Q)p∞ . (30)

(Note that loc. cit. requires ρAK ,p to be surjective. On the other hand, as proved in
[21, Theorem B], the irreducibility of ρAK ,p is sufficient for the arguments of [22].)

Step IV. According to Theorem 6.1

[A(K) : ZPK ]2 ·= #X(A/K)p∞
·= #X(A/Q)p∞ · #X(AK/Q)p∞ .

Since cA := ∏
q|N cq(A) is a p-adic unit, combining the preceding equation with (29)

and (30) yields
L′(A/Q, 1)

�A · hNT(P)

·= #X(A/Q)p∞ · cA,

concluding the proof of Theorem A.
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p-adic Measures for Hermitian Modular
Forms and the Rankin–Selberg Method

Thanasis Bouganis

Abstract In this work we construct p-adic measures associated to an ordinary
Hermitian modular form using the Rankin–Selberg method.

Keywords Hermitian modular forms · Special L-values · p-adic measures

1 Introduction

p-adic measures are known to play an important role in Iwasawa theory, since they
constitute the analytic part of the various Main Conjectures. In this paper we are
interested in p-adic measures attached to an ordinary Hermitian modular form f .
There has been work on the subject by Harris et al. [20, 21], where the first steps
towards the construction of p-adic measures associated to ordinary Hermitian mod-
ular forms were made. Actually in their work they construct a p-adic Eisenstein
measure (see also the works of Eischen [15, 16] on this), and provide a sketch of
the construction of a p-adic measure associated to an ordinary Hermitian modular
form. We also mention here our work [4], where we constructed p-adic measures
associated to Hermitian modular forms of definite unitary groups of one and two
variables. All these works impose the following assumption on the prime number p:
if we denote by K the CM field associated to the Hermitian modular form f and let
F be the maximal totally real subfield of K , then all the primes in F above p must
be split in K . One of the main motivation of this work is to consider the case where
p does not satisfy this condition.

Actually this work differs from the once mentioned above on the method used to
obtain the p-adic measures. Indeed the previous works utilize the doubling method
in order to construct the p-adic measures, where in this work we will use the
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Rankin–Selberg method. In the Rankin–Selberg method one obtains an integral rep-
resentation of the L-values as a Petersson inner product of f with a product of a theta
series and a Siegel-type Eisenstein series, where in the doublingmethod the L-values
can be represented as a Petersson inner product of f with another Hermitian form,
which is obtained by pulling back a Siegel-type Eisenstein series of a larger unitary
group. Of course one should remark right away that the use of the Rankin–Selberg
method puts some serious restrictions on the unitary groups which may be consid-
ered. In particular, the archimedean components of the unitary group must be of the
formU (n, n), where the doublingmethod allows situations of the formU (n,m)with
n �= m. However, we believe that it reasonable to expect, with the current stage of
knowledge at least, to relax the splitting assumption only in the cases ofU (n, n). The
reason being that in the cases of U (n,m) with n �= m, in order to obtain the special
L-values, one needs to evaluate Siegel-type Eisenstein series on CM points, and in
the p-adic setting, one needs that this CM points correspond to abelian varieties with
complex multiplication, which are ordinary at p, and hence the need for the splitting
assumption. For example, even in the “simplest” case of the definiteU (1) = U (1, 0),
which is nothing else than the case of p-adic measures for Hecke characters of a CM
field K considered by Katz in [24], even today, in this full generality, it is not known
how to remove the assumption on the primes above p in F being split in K . We
need to remark here that in some special cases (for example elliptic curves over Q
with CM by imaginary quadratic fields), there are results which provide some p-adic
distributions associated to Hecke characters of CM fields.

In this work we make some assumptions, which will simplify various technicali-
ties, and we postpone to a later work [7] for a full account. In particular, we fix an odd
prime p, and write Pi for the prime ideals in F above p, which are inert in K . We
write pi for the prime ideal of K abovePi , and denote by S the set of these primes.
We will assume that S �= ∅. Then our aim is to construct p-measures for the Galois
group Gal(K (

∏
i p

∞
i )/K ), where K (

∏
i p

∞
i ) denotes the maximal abelian extension

of K unramified outside the prime ideals pi . As we said already our techniques can
also handle the situation of primes split in K , and this will be done in [7]. The other
simplifying assumptions which we impose in this work, which will be lifted in [7],
are

1. we assume that the class number of the CMfield K is equal to the class number of
the underlying unitary group with repsect to the standard congruence subgroup.
This for example happens when the class number of F is taken equal to one,

2. we will investigate the interpolation properties of the p-adic measures only for
the special values for which the corresponding Eisenstein series in the Rankin–
Selberg method are holomorphic, and not just nearly-holomorphic.

We should also remark that this present work should be seen as the unitary analogue
of the work of Panchishkin [27], and Courtieu and Panchishkin [12] in the Siegel
modular form case. We should say here that the second assumption above can be
lifted by developing the techniques of Courtieu and Panchishkin on the holomorphic
projection in the unitary case. Actually the techniques of this present work grew out
of the efforts of the author to extend the work of Courtieu and Panchishkin in the
following directions, which is also one of the aims of [7],
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1. to consider the situation of totally real fields (they consider the case of Q),
2. to obtain the interpolation properties also for Hecke characters which are not

totally ramified.
3. to construct the measures also for symplectic groups of odd genus. In their work

they consider the case of even genus, and hence no half-integral theta, and Eisen-
stein series appear in the construction. We remark here that, over Q, the work of
Böcherer and Schmidt [2], provides the existence of these p-adic measures, in
both odd and even genus. However their techniques seem to be hard to extend to
the totally real field situation.

Indeed in this paper we work completely adelically, which allow us to work over
any field. Moreover, we use a more precise form of the so-called Adrianov–Kalinin
identity, shown by Shimura, which allows us to obtain a better understanding of the
bad Euler factors above p. And finally, we work here the interpolation properties for
characters that may be unramified at some of the primes of the set S. Note that only
at these primes one sees the needed modification of the Euler factors above p at the
interpolation properties.

Notation: Since our main references for this work are the two books of Shimura
[29, 30] our notation is the one used by Shimura in his books.

2 Hermitian Modular Forms

In this section, which is similar to the corresponding section in [6], we introduce
the notion of a Hermitian modular form, both classically and adelically. We follow
closely the books of Shimura [29, 30], and we remark that we adopt the convention
done in the second book with respect to the weight of Hermitian modular forms (see
the discussion on p. 32, Sect. 5.4 in [30]).

Let K be an algebra equipped with an involution ρ. For a positive integer

n ∈ N we define the matrix η := ηn :=
(

0 −1n
1n 0

)

∈ GL2n(K ), and the group

G := U (n, n) := {α ∈ GL2n(K )|α∗ηα = η}, where α∗ := tα
ρ . Moreover we define

α̂ := (α∗)−1 and S := Sn := {s ∈ Mn(K )|s∗ = s} for the set of Hermitian matrices
with entries in K . If we take K = C and let ρ to denote the complex conjuga-
tion then the group G(R) = {α ∈ GL2n(C)|α∗ηα = η} acts on the symmetric space
(Hermitian upper half space)

Hn := {z ∈ Mn(C)|i(z∗ − z) > 0},

by linear fractional transformations,

α · z := (aαz + bα)(cαz + dα)−1 ∈ Hn, α =
(
aα bα

cα dα

)

∈ G(R), z ∈ Hn,

where the aα, bα, cα, dα are taken in Mn(C).
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Let now K be a CM field of degree 2d := [K : Q] and we write F for its maximal
totally real subfield. Moreover we write r for the ring of integers of K , g for that
of F , DF and DK for their discriminants and d for the different ideal of F . We
write a for the set of archimedean places of F . We now pick a CM type (K , {τv}v∈a)

of K , where τv ∈ Hom(K , C). For an element a ∈ K we set av := τv(a) ∈ C. We
will also regard a as the archimedean places of K corresponding to the embeddings
τv of the selected CM type. Finally we let b be the set of all complex embeddings
of K , and we note that b = {τv, τvρ|v ∈ a}, where ρ denotes complex conjugation
acting on the CM field K . By abusing the notation we may also write b = a

∐
aρ.

We write GA for the adelic group of G, and Gh =∏′
v Gv (restricted product) for

its finite part, and Ga =∏v∈a Gv for its archimedean part. Note that we understand
G as an algebraic group over F , and hence the finite places v above are finite places
of F , which will be denoted by h. For a description of Gv at a finite place we refer to
[29, Chap.2]. Given two fractional ideals a and b of F such that ab ⊆ g, we define
following Shimura the subgroup of GA,

D[a, b] :=
{(

ax bx
cx dx

)

∈ GA|ax ≺ gv, bx ≺ av, cx ≺ bv, dx ≺ gv, ∀v ∈ h
}

,

where we use the notation ≺ in [30, p. 11], where x ≺ bv means that the
v-component of the matrix x has are all its entries in bv . Again we take ax , bx , cx , dx
to be n by n matrices. For a finite adele q ∈ Gh we define �q = �q(b, c) :=
G ∩ qD[b−1, bc]q−1, a congruence subgroup of G. Given a finite order Hecke
character ψ of K of conductor dividing c we define a character on D[b−1, bc] by
ψ(x) =∏v|c ψv(det (ax )v)−1, where ψv denotes the local component of ψ at the
finite place v, and a character ψq on �q by ψq(γ ) = ψ(q−1γ q).

We write Za :=∏v∈a Z, Zb :=∏v∈b Z andH :=∏v∈a Hn . We embed Z ↪→ Za

diagonally and for an m ∈ Z we write ma ∈ Za for its image. We will simply write
a for 1a. We define an action of GA on H by g · z := ga · z := (gv · zv)v∈a, with
g ∈ GA and z = (zv)v∈a ∈ H . For a function f : H → C and an element k ∈ Zb we
define

( f |kα)(z) := jα(z)−k f (α · z), α ∈ GA, z ∈ H,

where,

jα(z)−k :=
∏

v∈a

det (cαv
zv + dαv

)−kvdet (cρ
αv

tzv + dρ
αv

)−kvρ , z = (zv)v∈a ∈ H .

For fixed b and c as above, and q ∈ Gh and a Hecke character ψ of K , we define,

Definition 2.1 [30, p. 31] A function f : H → C is called a Hermitian modular
form for the congruence subgroup �q of weight k ∈ Zb and nebentype ψq if:

1. f is holomorphic,
2. f |kγ = ψq(γ ) f for all γ ∈ �q ,
3. f is holomorphic at cusps (see [30, p. 31] for this notion).
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The space of Hermitian modular forms of weight k for the congruences group �q

and nebentypeψq will be denoted byMk(�
q , ψq). For any γ ∈ G we have a Fourier

expansion of the form (see [30, p. 33])

( f |kγ )(z) =
∑

s∈S
c(s, γ ; f )ea(sz), c(s, γ ; f ) ∈ C, (1)

where S a lattice in S+ := {s ∈ S| sv ≥ 0, ∀v ∈ a}, and

ea(x) := exp(2π i
∑

v

tr(xv)).

An f is called a cusp form if c(s, γ ; f ) = 0 for any γ ∈ G and s with det (s) = 0.
The space of cusp forms we will be denoted by Sk(�

q , ψq). When we do not wish
to determine the nebentype we will be writing f ∈ Mk(�

q), and this should be
understood that there exists some ψq as above such that f ∈ Mk(�

q , ψq).

We now turn to the adelic Hermitian modular forms. If we write D for a group of
the form D[b−1, bc], and ψ a Hecke character of finite order then we define,

Definition 2.2 [30, p. 166] A function f : GA → C is called an adelic Hermitian
modular form if

1. f(αxw) = ψ(w) j kw(i)f(x) for α ∈ G, w ∈ D with wa(i) = i,
2. For every p ∈ Gh there exists f p ∈ Mk(�

p, ψp), where� p := G ∩ pCp−1 such
that f(py) = ( f p|k y)(i) for every y ∈ Ga.

Here we write i := (i1n, . . . , i1n) ∈ H . We denote this space byMk(D, ψ), and the
space of cusp forms by Sk(D, ψ). As in the classical case above, we will write just
Mk(D) if we do not wish to determine the nebentype. A simple computation shows,
if f ∈ Mk(D, ψ) then the form f∗(x) := f(xη−1

h ) belongs to Mk(D′, ψ−c) where
D′ := D[bc, b−1] and ψ−c(x) := ψ(xρ)−1.

By [29, Chap. 2] there exists a finite set B ⊂ Gh such that GA =∐b∈B GbD and
an isomorphism Mk(D, ψ) ∼= ⊕b∈BMk(�

b, ψb) (see [29, Chap. 2]). We note here
that for the congruence subgroups D[b−1, bc] the cardinality of the set B does not

depend on the ideal c and its elements can be selected to be of the form

(
q̂ 0
0 q

)

with q ∈ GLn(K )h, and qv = 1 for v|c, (see for example [6, Lemma 2.6]). For a
q ∈ GLn(K )A and an s ∈ SA we have

f
((

q sq̂
0 q̂

))

=
∑

τ∈S+

cf(τ, q)eA(τ s).

For the properties of cf(τ, q) we refer to the [30, Proposition 20.2] and for the
definition of eA to [30, p. 127]. We also note that sometimes we may write c(τ, q; f)
for cf(τ, q).
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For a subfield L ofCwewill be writingMk(�
q , ψ, L) for the Hermitian modular

forms in Mk(�
q , ψ) whose Fourier expansion at infinity, that is γ is the identity in

Eq.1, has coefficients in L . For a fixed setB as abovewewill bewritingMk(D, ψ, L)

for the subspace ofMk(D, ψ) consisting of elements whose image under the above
isomorphism lies in ⊕b∈BMk(�

b, ψb, L). Finally we define the adelic cusp forms
Sk(D, ψ) to be the subspace of Mk(D, ψ), which maps to ⊕b∈BSk(�

b, ψb). As
above, when we do not wish to determine the nebentype we simply writeMk(�

q , L)

and Mk(D, L).
We fix an embedding Q ↪→ C and write Fcl for the Galois closure of F over Q.

Then by [30, Chap. II, Sect. 10] we have a well-defined action of the absolute Galois
group Gal(Q/Fcl) on Mk(�

q , Q) given by an action on the Fourier-coefficients of
the expansion at infinity. This action will be denoted by f σ for an f ∈ Mk(�

q , Q)

and σ ∈ Gal(Q/Fcl). A similar action can be defined on the space Mk(D, Q) (see
[30, p. 193, Lemma 23.14]), and will be also denoted by fσ for an f ∈ Mk(D, Q).
In both cases (classical and adelic) the action of the absolute Galois group preserves
the space of cusp forms.

We close this section with a final remark concerning Hecke characters. Given an
(adelic) Hecke character χ of K (or F), we will be abusing the notation and write χ

also for the corresponding ideal character.

3 Eisenstein and Theta Series

3.1 Eisenstein Series

In this section we collect some facts concerning Siegel-type Eisenstein series. We
closely follow [30, Chap. IV].

We consider a k ∈ Zb, an integral ideal c in F and a unitary Hecke character χ of
K with infinity component of the form χa(x) = x

a |xa|−, where  = (kv − kvρ)v∈a

and of conductor dividing c. For a fractional ideal bwe write C for D[b−1, bc]. Then
for a pair (x, s) ∈ GA × C, we denote by EA(x, s) or EA(x, s;χ, c) the Siegel type
Eisenstein series associated to the character χ and the weight k. We recall here its
definition, taken from [30, p. 131],

EA(x, s) =
∑

γ∈P\G
μ(γ x)ε(γ x)−s, �(s) >> 0,

where P is the standard Siegel parabolic subgroup and the function μ : GA → C is
supported on PAC ⊂ GA, defined by,

μ(x) = χh(det (dp))
−1χc(det (dw))−1 jx (i)−k | jx (i)|m,
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where x = pw with p ∈ PA and w ∈ C , and m = (kv + kvρ)v . Here we define
| jx (i)|m :=∏v∈a | jxv

(i1n)|mv . The function ε : GA → C is defined as ε(x) =
|det (dpd∗

p)|A where x = pw with p ∈ PA and w ∈ D[b−1, b]. Here for an adele
x ∈ F×

A we write |x |A for the adele norm normalized as in [29, 30]. Moreover we
define the normalized Eisenstein series

DA(x, s) = EA(x, s)
n−1∏

i=0

Lc(2s − i, χ1θ
i ),

where θ is the non-trivial character associated to K/F and χ1 is the restriction of
the Hecke character χ to F×

A . We note that since we consider unitary characters the

infinity part of such a character is of the form (χ1)a(x) =∏v∈a

(
xv

|xv |
)v

, and it will

be often denoted by sgn(xa)
. Moreover for a Hecke character φ of F , we write

Lc(s, φ) for the Dirichlet series associated to φ with the Euler factors at the primes
dividing c removed.

For a q ∈ GLn(K )h we define Dq(z, s; k, χ, c), a function on (z, s) ∈ H × C,
associated to DA(x, s) by the rule (see [30, p. 146]),

Dq(x · i, s; k, χ, c) = j kx (i)DA(diag[q, q̂]x, s).

We now introduce yet another Eisenstein series for which we have explicit infor-
mation about their Fourier expansion. In particular we define the E∗

A(x, s) :=
EA(xη−1

h , s) and D∗
A(x, s) := DA(xη−1

h , s), and as before we write D∗
q(z, s; k, χ, c)

for the series associated to D∗
A(x, s). We now write the Fourier expansion of

E∗
A(x, s) as,

E∗
A

((
q σ q̂
0 q̂

)

, s

)

=
∑

h∈S
c(h, q, s)eA(hσ), (2)

whereq ∈ GLn(K )A andσ ∈ SA.Wenowstate a result of Shimuraon the coefficients
c(h, q, s). We first define an r-lattice in S := Sn , by

T := T n := {x ∈ S|tr(xy) ⊂ g, ∀y ∈ S(r)},

where S(r) := S ∩ Mn(r). T is usually called the dual lattice to S(r). For a finite
place v of F we write Tv for T ⊗r rv .

Proposition 3.1 (Shimura, Proposition 18.14 and Proposition 19.2 in [29]). Suppose
that c �= g. Then c(h, q, s) �= 0 only if (tqhq)v ∈ (db−1c−1)vT n

v for every v ∈ h. In
this case

c(h, q, s) = C(S)χ(det (−q))−1|det (qq∗)|n−s
h |det (qq∗)|saN (bc)−n2×

αc(ω · tqhq, 2s, χ1)
∏

v∈a

ξ(qvq
∗
v , hv; s + (kv + kvρ)/2, s − (kv + kvρ)/2)),
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where N (·) denotes the norm from F to Q, |x |h :=∏v∈h |xv|v with | · |v the nor-
malized absolute value at the finite place v, ω is a finite idele such that ωr = bd,
and

C(S) := 2n(n−1)d |DF |−n/2|DK |−n(n−1)/4.

For the function ξ(gv, hv, s, s ′) with 0 < gv ∈ Sv, hv ∈ Sv , s, s ′ ∈ C, v ∈ a we refer
to [30, p. 134].

Moreover if we write r for the rank of h and let g ∈ GLn(F) such that g−1hg =
diag[h′, 0] with h′ ∈ Sr . Then

αc(ω · tqhq, 2s, χ1) = �c(s)
−1�h(s)

∏

v∈c

fh,q,v

(
χ(πv)|πv|2s

)
,

where

�c(s) =
n−1∏

i=0

Lc(2s − i, χ1θ
i ), �h(s) =

n−r+1∏

i=0

Lc(2s − n − i, χ1θ
n+i−1).

Here fh,q,v are polynomials with constant term 1 and coefficients in Z; they are
independent of χ . The set c is determined as follows: c = ∅ if r = 0. If r > 0, then
take gv ∈ GLn(rv) for each v � c so that (ωq∗hq)v = g∗

vdiag[ξv, 0]gv with ξv ∈ T r
v .

Then c consists of all the v prime to c of the following two types: (i) v is ramified in
K and (ii) v is unramified in K and det (ξv) /∈ g×

v .

For a number field W , a k ∈ Zb and r ∈ Za we follow [30] and writeNr
k (W ) for the

space of W -rational nearly holomorphic modular forms of weight k (see [30, p. 103
and p. 110] for the definition). Regarding the near holomorphicity of the Eisenstein
series Dq(z, s;χ, c) we have the following theorem of Shimura,

Theorem 3.2 (Shimura, Theorem 17.12 in [30]) We set m := (kv + kvρ)v∈a ∈ Za.
Let K ′ be the reflex field of K with respect to the selected CM type and Kχ the
field generated over K ′ by the values of χ . Let � be the Galois closure of K
over Q and μ ∈ Z with 2n − mv � μ � mv and mv − μ ∈ 2Z for every v ∈ a.
Then Dq(z, μ/2; k, χ, c) belongs to πβNr

k (�KχQab), except when 0 � μ < n,
c = g, and χ1 = θμ, where β = (n/2)

∑
v∈a(mv + μ) − dn(n − 1)/2. Moreover

r = n(m − μ + 2)/2 if μ = n + 1, F = Q and χ1 = θn+1. In all other cases we
have r = (n/2)(m − |μ − n|a − na).

We now work out the positivity of the Fourier expansion of some holomoprhic
Eisenstein series. In particular we assume that m = μa and we consider the series
D∗

A(x, s) for s = μ

2 and for s = n − μ

2 . For an h ∈ S, and c(h, q, s) as in Eq.2, we

define c(h, s) :=∏n−1
i=0 Lc(2s − i, χ1θ

i )c(h, q, s), that is the hth Fourier coefficient
of D∗

A(x, s). Then we have the following,

Proposition 3.3 (Shimura, Proposition 17.6 in [30]) Exclude the case where μ =
n + 1, F = Q and χ = θn+1. Then we have that c(h,

μ

2 ) �= 0 only in the following
situations
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1. h = 0, and μ = n,
2. h �= 0, μ > n and hv > 0 for all v ∈ a,
3. h �= 0, μ = n and hv � 0 for all v ∈ a.

Proof This follows directly from [30, Proposition 17.6], where the positivity of
c(h, q,

μ

2 ) is considered, after observing that�c(μ/2) =∏n−1
i=0 Lc(μ − i, χ1θ

i ) �= 0
for μ > n. For μ = n we need to observe that L(s, χ1θ

n−1) does not have a pole
at s = 1, since χ1θ

n−1 is not the trivial character, since (χ1)a(x) = sgn(xa)
na, and

hence (χ1θ
n−1)a(x) = sgn(xa). hence not trivial. �

The other holomorphic Eisenstein series, i.e. s = n − μ

2 , has a completely different
behaviour. Namely, independently of μ, it may have non-trivial Fourier coefficients
even for h � 0 not of full rank, that is with det (h) = 0. Let us explain this. By
Proposition 3.1 we observe that c(h, s) is equal to a finite non-vanishing factor times

f (s)�h(s)
∏

v∈a

ξ (yv, hv; s + μ/2, s − μ/2) , yv := qvq
∗
v ,

where f (s) :=∏v∈c fh,q,v

(
χ(πv)|πv|2s

)
, and for the function ξ we have (see [30,

p. 140]) that

ξ(yv, hv; a, b) = i nb−na2τπε �t (a + b − n)

�n−q(a)�n−p(b)
det (yv)

n−a−b×

δ+(hv yv)
a−n+q/2δ−(hv yv)

b−n+p/2ω(2πyv, hv; a, b),

where p (resp. q) is the number of positive (resp. negative) eigenvalues of hv and
t = n − p − q; δ+(x) is the product of all positive eigenvalues of x and δ−(x) =
δ+(−x), and

�n(s) := πn(n−1)/2
n−1∏

ν=0

�(s − ν).

For the quantities τ, ε and the function ω(·) we refer to [30, p. 140], since they do
not play any role in the argument below. We are interested in the values

f (n − μ/2)�h(n − μ/2)
∏

v∈a

ξ (yv, hv; n, n − μ) ,

with μ � n.
Let us write r for the rank of h, then �h(s) =∏n−1−r

i=0 Lc(2s − n − i, χ1θ
n+i−1)

and hence �h(n − μ/2) =∏n−1−r
i=0 Lc(n − μ − i, χ1θ

n+i−1). We now note that
(χ1)a(x) = sgn(xa)

μa and hence after setting ψi := χ1θ
n+i−1 we obtain (ψi )a(x) =

sgn(xa)
(μ+n+i−1)a. We now conclude that the quantity �h(n − μ/2) may not be

zero since by [30, Lemma 17.5] we have that L(n − μ − i, ψi ) = 0 if n − μ − i ≡
μ + n + i − 1 mod 2 (the so-called trivial zeros),whichnever holds. For the gamma
factors we have for h = 0,
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∏

v∈a

�n(n − μ)

�n(n)�n(n − μ)
=
∏

v∈a

1

�n(n)
�= 0.

Suppose that h �= 0 and let r = rank(h). Then

∏

v∈a

�n−r (n − μ)

�n(n)�n−r (n − μ)
=
∏

v∈a

1

�n(n)
�= 0.

In particular we conclude that in the case of s = n − μ

2 we may have non-trivial
Fourier coefficients even if the matrix h is not positive definite.

3.2 Theta Series

We start by recalling some results of Shimura in (the appendices of ) [29, 30] regard-
ing Hermitian theta series. We set V := Mn(K ) and we letS(Vh) to denote the space
of Schwartz–Bruhat functions on Vh :=∏′

v∈hVv . We consider an element λ ∈ S(Vh)

and an μ ∈ Zb such that μvμvρ = 0 for all v ∈ a and μv � 0 for all v ∈ b. For a
τ ∈ S+ ∩ GLn(K ) we then consider the theta series defined in [30, p. 277]),

θ(z, λ) :=
∑

ξ∈V
λ(ξ)det (ξ)μρena(ξ

∗τξ), z ∈ H,

where det (ξ)μρ := (∏v∈b det (ξv)
μv
)ρ
.We fix aHecke characterφ of K with infinity

type φa(y) = y−a|y|a and such that φ1 = θ , where we recall that we write θ for the
non-trivial character of K/F . Such a character φ always exists, [30, Lemma A5.1],
but may not be unique. We now let ω be a Hecke character of K and we write f for
its conductor and define h = f ∩ g. Following Shimura we introduce the notation,

R∗ = {w ∈ Mn(K )A|wv ≺ rv,∀v ∈ h},

and we fix an element r ∈ GLn(K )h. Then we define the function λ ∈ S(Vh) by

λ(x) := ω(det (r)−1)
∏

v|h
ωv(det (rvx

−1
v )),

if r−1x ∈ R∗ and r−1
v xv ∈ GLn(rv) for all v|h, and we set λ(x) = 0 otherwise.

As it is explained in Shimura [30, Theorem A5.4] there is an action of GA on S(Vh),
which will be denoted by x for x ∈ GA and  ∈ S(Vh). Then we define the adelic
theta function θA on GA by

θA(x, ω) := θA(x, λ) := j lx (i)θ(x · i, xλ), x ∈ GA,
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where l = μ + na ∈ Zb. Then Shimura shows that

θA(αxw, λ) = j lw(i)−1θA(x, wλ), α ∈ G, w ∈ GA, and w · i = i. (3)

and,

Theorem 3.4 (Shimura, Sect. A5.5 in [30] and Proposition A7.16 in [29]) θA(x, ω)

is an element in Ml(C, ω′) with C = D[b−1, bc] and ω′ = ωφ−n, and l = μ + na.
Moreover θA(x, ω) is a cusp form if μ �= 0. The ideals b and c are given as follows.
We define a fractional ideals y and t in F such that g∗τg ∈ y and h∗τ−1h ∈ t−1 for
all g ∈ rgn and h ∈ rn. Then we can take

(b, bc) = (dy, d(tefρf ∩ ye ∩ yf)) ,

where e is the relative discriminant of K over F. For an element q ∈ GLn(K )h we
have that the qth component of the theta series is given by

θq,ω(z) = ω′(det (q)−1)|det (q)|n/2
K ×

∑

ξ∈V∩r R∗q−1

ωa(det (ξ))ω(det (r−1ξq)r)det (ξ)μρea(ξ
∗τξ z).

where ξ ∈ V ∩ r R∗q−1 such that ξ ∗τξ = σ .

For our later applications we now work out the functional equation with respect to

the action of the element η = ηn =
(

0 −1n
1n 0

)

. In particular we are interested in the

theta series θ∗
A(x, ω) := θA(xη−1

h , ω). We note that by Eq.3 we have that

θ∗
A(x, ω) = θA(xη−1

h , λ) =

θA((−1)hxηh, λ) = θA((−1)hx, ηλ) = ω′
c(−1)θA(x, ηλ),

and by [30, Theorem A5.4 (6)] we have that

ηλ(x) = i p|NF/Q(det (2τ−1))|n
∫

Vh

λ(y)eh(−2−1TrK/F (tr(y∗τ x)))dy,

where p = n2[F : Q] and dy is the Haar measure on Vh such that the volume of
Mn(r)h is |DK |−n2/2. We now compute the integral

I (x) :=
∫

Vh

λ(y)eh(−2−1TrK/F (tr(y∗τ x)))dy.
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We have

I (x) = ω(det (r))−1

⎛

⎝
∏

v�h

∫

rvMn(rv)

ev(−2−1TrKv/Fv
(tr(y∗

v τvxv)))dv y

⎞

⎠×

⎛

⎝
∏

v|h

∫

rvGLn(rv)

ω(det (r−1
v yv))

−1ev(−2−1TrKv/Fv
(tr(y∗

v τvxv)))dv y

⎞

⎠ .

We compute the local integrals separately. For a prime v � h we have

∫

rvMn(rv)

ev(−2−1TrKv/Fv
(tr(y∗

v τvxv)))dv y =

|det (r)|v
∫

Mn(rv)

ev(−2−1TrKv/Fv
(tr(y∗

vr
∗
v τvxv)))dv y =

|det (r)|v
∫

Mn(rv)

ev(−2−1TrKv/Fv
(tr(x∗

v τ
∗
v rv yv)))dv y =

{
0, if x∗

v τ ∗
v rv /∈ T ;

|det (r)|v|DKv
|n2/2v , otherwise.

,

where T := {x ∈ Mn(Kv)|tr(xy) ∈ d−1
v , ∀y ∈ Mn(rv))} and DKv

is the discrimi-
nant of Kv . For the other finite places, we obtain generalized Gauss sums. We have

∫

rvGLn(rv)

ω(det (r−1
v yv))

−1ev(−2−1TrKv/Fv
(tr(y∗

v τvxv)))dv y =

|det (r)|v
∫

GLn(rv)

ω(det (yv))
−1ev(−2−1TrKv/Fv

(tr(y∗
vr

∗
v τvxv)))dv y =

|det (r)|v
∫

GLn(rv)

ω(det (yv))
−1ev(−2−1TrKv/Fv

(tr(x∗
v τ

∗
v rv yv)))dv y.

By a standard argument (see for example [22, pp. 259–260]), this integral is zero,
if x∗

v τ ∗
v rvrv �= (fdK )−1T×

v , where T×
v := Tv ∩ GLn(rv). If x∗

v τ ∗
v rvrv = (fdK )−1T×

v ,
then after the change of variable yv �→ (x∗

v τ
∗
v rv)

−1yvwe have that the integral
is equal to

|det (r)|v|det (x∗
v τ ∗

v rv)|−1×
∫

f−1d−1
K GLn(rv)

ω(det ((x∗
v τ ∗

v rv)
−1yv))

−1ev(−2−1TrKv/Fv
(tr(yv)))dv y =
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|det (x∗
v τ ∗

v )|−1ω(det (τ ∗
v rvx

∗
v ))×

∫

f−1d−1
K GLn(rv)

ω(yv)
−1ev(−2−1TrKv/Fv

(tr(yv)))dv y

We then have that |det (x∗
v τ ∗

v )|−1 = |det (rv)|vN (fd)−n and hence we can rewrite the
above expression as

|det (rv)|vN (fd)−nω(det (( f d)nτ ∗
v rvx

∗
v ))ω( f d)−n×

∫

f−1d−1
K GLn(rv)

ω(yv)
−1ev(−2−1TrKv/Fv

(tr(yv)))dv y

for some elements f, d such that ( f ) = fv and (d) = dv . By a standard argument
(see for example [22, p. 259]), we obtain

N (d)−nω( f d)−n
∫

f−1d−1
K GLn(rv)

ω(yv)
−1ev(−2−1TrKv/Fv

(tr(yv)))dv y =

∑

y∈(Mn(rv)/Mn(dfv)

ωv(det (y))
−1ev(−tr(y)).

We set τn(ω
−1) :=∑y∈(Mn(rv)/Mn(dfv)

ωv(det (y))−1ev(−tr(y)), and we note that
in the case that ω is primitive we have that the last integral can be related to one-
dimensional standard Gauss sums (see for example [2, p. 1410]). In particular in
such a case we have τn(ω

−1) = N (d)
n(n−1)

2 τ(ω−1)n where τ(ω−1) the standard one
dimensional Gauss sum, associated to the character ω−1. We summarize the above
calculations in the following Proposition.

Proposition 3.5 Let ω be a primitive character of conductor f. For the theta series
θ∗

A(x, ω) ∈ Ml(C ′, ω′−c
) with C ′ := D[bc, b−1] we have

θ∗
A(x, ω) = i n

2[F :Q]|N (2det (τ )−1)|nω′
c(−1)|det (r)|hN (f)−nN (d)(

−n

2
)×

∏

v|f
N (dv)

n2

2 τ(ω−1)nθA(x, λ∗),

where λ∗(x) = ωf(( f d)ndet (τvrvx∗
v )) for x ∈ T and x∗

v τ ∗
v rv ∈ fd−1T×

v for all v|f,
and zero otherwise.

We close this section by making a remark on the support of the q-expansion of θ∗.
We first set,
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C(ω) := i n
2[F :Q]|N (2det (τ )−1)|nω′

c(−1)|det (r)|hN (f)−nN (d)
−n
2

∏

v|f
N (dv)

n2

2 .

(4)
and take some q ∈ GLn(K )h. Then, the qth component of θ∗ is given by

θ∗
q (z) = i n

2d |det (q)|n/2
h φ(det (q))n

∑

ξ∈V
I (ξq)det (ξ)μρea(ξ

∗τξ z)

If det (ξ) �= 0, then I (ξq) �= 0 only when (τ ∗rq∗ξ ∗)v ∈ (fd)−1T×
v for all v|fd.

That is,

θ∗
q (z) = C(ω)τ(ω−1)n

∑

ξ∈f̂dR×
fdτ−1r̂q−1∩V

ωf(( f d)nτ ∗rq∗ξ ∗)det (ξ)μρea(ξ
∗τξ z).

In particular we have that (ξ ∗τξ)v ∈ (fd)−1q̂r−1τ̂T×
v τT×

v τ−1r̂q−1 f̂d for all v|f.

4 The L-function Attached to a Hermitian Modular Form

4.1 The Standard L-function

We fix a fractional ideal b and an integral ideal c of F . We set C = D[b−1, bc]. For
the fixed group C and for an integral ideal a of K we write T (a) for the Hecke
operator associated to it as it is defined for example in [30, p. 162].

Weconsider a non-zero adelicHermitianmodular form f ∈ Mk(C, ψ) and assume
that we have f |T (a) = λ(a)f with λ(a) ∈ C for all integral ideals a. If χ denotes a
Hecke character of K of conductor f, for s ∈ C with �(s) >> 0 we consider the
Dirichlet series

Z(s, f, χ) :=
(

2n∏

i=1

Lc(2s − i + 1, χ1θ
i−1)

)

×
∑

a

λ(a)χ(a)N (a)−s, (5)

where the sum runs over all integral ideals of K . It is shown in [30, p. 171] that
this series has an Euler product representation, which we write as Z(s, f, χ) =∏

q Zq

(
χ(q)N (q)−s

)
, where the product is over all prime ideals of K . Here we

remind the reader (see introduction) that we abuse the notation and write χ also for
the ideal character associated to the Hecke character χ . For the description of the
Euler factors Zq at the prime ideal q of K we have (see [30, p. 171]),

1. Zq(X) =∏n
i=1

(
(1 − N (q)n−1tq,i X)(1 − N (q)nt−1

q,i X)
)−1

, if qρ = q and q � c,

2.
Zq1(X1)Zq2(X2) =
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2n∏

i=1

(
(1 − N (q1)

2nt−1
q1q2,i

X1)(1 − N (q2)
−1tq1q2,i X2)

)−1
,

if q1 �= q2, q
ρ
1 = q2 and qi � c for i = 1, 2,

3. Zq(X) =∏n
i=1

(
(1 − N (q)n−1tq,i X)

)−1
, if qρ = q and q|c,

4.
Zq1(X1)Zq2(X2) =

2n∏

i=1

(
(1 − N (q1)

n−1tq1q2,i X1)(1 − N (q2)
n−1tq1q2,n+i X2)

)−1
,

if q1 �= q2, q
ρ
1 = q2 and qi |c for i = 1, 2,

where the t?,i above for ? = q, q1q2 are the Satake parameters associated to the
eigenform f . We also introduce the L-function,

L(s, f, χ) :=
∏

q

Zq

(
χ(q)(ψ/ψc)(πq)N (q)−s

)
, �(s) >> 0 (6)

where πq a uniformizer of Kq. We note here that we may obtain the Dirichelt series
in Eq.5 from the one in Eq.6, up to a finite number of Euler factors, by setting χψ−1

for χ . Moreover if ψ is trivial then the two series coincide.

4.2 The Rankin–Selberg Integral Representation

We recall that in Sect. 3.2 we have fixed a Hecke character φ of K of infinity part
φa(y) = y−a

a |ya|a and the restriction of φ to F×
A is the non-trivial Hecke character θ

corresponding to the extension K/F . Keeping the notations from above we define
t ∈ Za to be the infinity type of χ , that is χa(x) = x−t

a |xa|t . We then define μ ∈ Zb

by
μv := tv − kvρ + kv, and μvρ := 0 if tv � kvρ − kv,

and
μv := 0, and μvρ := kvρ − kv − tv if tv < kvρ − kv.

Wemoreover set l := μ + na,ψ ′ := χ−1φ−n and h := 1/2(kv + kvρ + lv + lvρ)v∈a.
Givenμ, φ, τ and χ as above we write θχ (x) := θA(x, λ) ∈ Ml(C ′, ψ ′) for the theta
series that we can associate to (μ, φ, τ, χ−1) by taking ω := χ−1 in Theorem 3.4.
We write c′ for the integral ideal defined by C ′ = D[b′−1

, b′c′].
We now fix a decomposition GLn(K )A =∐q∈Q GLn(K )qEGLn(K )a, where

E =∏v∈h GLn(rv). In particular the size of the set Q is nothing else than the class
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number of K . Given an element f ∈ Sk(�
q , ψq), and a function g on H such that

g|kγ = ψq(γ ) f for all γ ∈ �q we define the Petersson inner product

< f, g >:=< f, g >�q :=
∫

�q\H
f (z)g(z)δ(z)mdz,

where δ(z) := det ( i
2 (z

∗ − z)) and dz ameasure on�q \ H defined as in [30, Lemma
3.4 ] and m = (mv)v∈a with mv = kv + kvρ .

The following theorem (see also [25, Theorem 7.8]) is obtained by combining
results of Shimura [30] and Klosin [25]. For details we refer to [6, Sect. 4].

Theorem 4.1 (Shimura, Klosin) Let 0 �= f ∈ Mk(C, ψ)) such that f |T (a) = λ(a)f
for every a, and assume that kv + kvρ � n for some v ∈ a, then there exists τ ∈
S+ ∩ GLn(K ) and r ∈ GLn(K )h such that

�((s))ψc(det (r))cf(τ, r)L(s + 3n/2, f, χ) =

�c(s + 3n/2, θ(ψχ)1) ·
(
∏

v∈b

gv(χ(πp)N (p)−2s−3n)

)

det (τ )sa+h |det (r)|−s−n/2
K ×

C0

∑

q∈Q
|det (qq∗)|−n

F < fq(z), θq,χ (z)Eq(z, s̄ + n; k − l, (ψ ′/ψ)c, c′′) >�q (c′′),

where

�((s)) :=
∏

v∈a

(4π)−n(s+hv)�n(s + hv), and C0 := [�0(c
′′) : �]A
�X

.

where c′′ any non-trivial integral ideal of F such that cc′|c′′, �q(c′′) := G ∩
qD[e, eh]q−1, with e = b + b′ and h = e−1(bc′′ ∩ b′c′′). Moreover gv(·) are Siegel-
series related to the polynomials fτ,r,v(x) mentioned in Proposition 3.1 above, and
we refer to [30, Theorem 20.4] for the precise definition. Finally X denotes the set
of Hecke characters of infinity type t and conductor dividing fχ , � is a congruence
subgroup of SU (n, n) which appears in the [30, p. 179], and A some fixed rational
number times some powers of π , and is independent of χ .

We will make the following assumption (see also the introduction):

Assumption. We assume that the class number of K is equal to the class number
of U (n, n)/F with respect to the full congruence subgroup D[b−1, b]. For example
this holds when the class number of F is taken equal to one [29, p. 66].
From the above assumption it follows that

∑

q∈Q
|det (qq∗)|−n

F < fq(z), θq,χ (z)Eq(z, s̄ + n; k − l, (ψ ′/ψ)c, c′′) >�q (c′′)=
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< f(x), θA,χ (x)ẼA(x, s̄ + n; k − l, (ψ ′/ψ)c, c′′ >c′′ ,

where ẼA(x, s̄ + n; k − l, (ψ ′/ψ)c, c′′) is the adelic Eisenstein series with
q-component |det (qq∗)|−n

F Eq(z, s̄ + n; k − l, (ψ ′/ψ)c, c′′), and < ·, · >c′′ is the
adelic Petersson inner product associated to the group D[e, eh] as defined for exam-
ple in [29, Eq.10.9.6], but not normalized, and hence depends on the level. Moreover
we define,

D̃A(x, s̄ + n; k − l, �, c′′) := �c(s + 3n/2, θ(ψχ)1)ẼA(x, s̄ + n; k − l, �, c′′),
(7)

where � := (ψ ′/ψ)c.

5 Algebraicity of Special L-Values

In this section we present some algebraicity results on the special values of the
L-function introduced above, which were obtained in [6]. Results of this kind have
been obtained by Shimura [30], but over the algebraic closure of Q, and in [6] we
worked out the precise field of definition, as well as, the reciprocity properties. There
is also work by Harris [18, 19] and we refer to [6] for a discussion of how the results
there compare with the ones presented here.

We consider a cuspidal Hecke eigenform 0 �= f ∈ Sk(C, ψ; Q) with C := D
[b−1, bc] for some fractional ideal b and integral ideal c of F . We start by intro-
ducing some periods associated to f . These periods are the analogue in the unitary
case of periods introduced by Sturm in [31], and generalized in [3, 5], in the sym-
plectic case (i.e. Siegel modular forms). In the following theorem we write < ·, · >

for the adelic inner product associated to the group C .

Theorem 5.1 Let f ∈ Sk(D, ψ, Q) be an eigenform, and define mv := kv + kρv for
all v ∈ a. Let � be the Galois closure of K over Q and write W for the exten-
sion of � generated by the Fourier coefficients of f and their complex conjugation.
Assume m0 := minv(mv) > 3n + 2. Then there exists a period�f ∈ C× and a finite
extension � of � such that for any g ∈ Sk(Q) we have

(
< f, g >

�f

)σ

= < fσ , gσ ′
>

�fσ

,

for all σ ∈ Gal(Q/�), with σ ′ := ρσρ. Here �fσ is the period attached to the
eigenform fσ . Moreover �f depends only on the eigenvalues of f and we have
<f,f>

�f
∈ (W�)×. In particular we have <f,g>

<f,f> ∈ (W�)(g, gρ), where (W�)(g, gρ)

denotes the extension of W� obtained by adjoining the values of the Fourier coeffi-
cients of g and gρ .
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We note that the extension � does not depend on f , but only on K and n. We refer
to [6] for more details on this. The following two theorems were obtained in [6].

Theorem 5.2 Let f ∈ Sk(C, ψ; Q) be an eigenform for all Hecke operators, and
assume that m0 � 3n + 2. Let χ be a character of K such that χa(x) = xta|xa|−t

with t ∈ Za, and define μ ∈ Zb by μv := −tv − kvρ + kv and μvρ = 0 if kvρ − kv +
tv � 0, andμv = 0 andμvρ = kvρ − kv + tv , if kvρ − kv + tv > 0. Assumemoreover
that either

1. there exists v, v′ ∈ a such that mv �= mv′ , or
2. mv = m0 for all v and m0 > 4n − 2, or
3. μ �= 0.

Then let σ0 ∈ 1
2Z such that

4n − mv + |kv − kvρ − tv| � 2σ0 � mv − |kv − kvρ − tv|,

and,
2σ0 − tv ∈ 2Z, ∀v ∈ a.

We exclude the following cases: For n � 2σ0 < 2n, if we write f′ for the conductor
of the character χ1, then there is no choice of the integral ideal c′′ as in Theorem 4.1
such that for any prime ideal q of F, q|c′′c−1 implies either q|f′ or q ramifies in K .

We let W be a number field such that f, fρ ∈ Sk(W ) and �� ⊂ W, where � is
the Galois closure of K in Q, and � as in the Theorem 5.1 then

L(σ0, f, χ)

πβτ(χn
1 ψn

1 θn2)ρ i n
∑

v∈a pv < f, f >
∈ W := W (χ),

where β = n(
∑

v mv) + d(2nσ0 − 2n2 + n), W (χ) obtained from W by adjoin-
ing the values of χ on finite adeles, and p ∈ Za is defined for v ∈ a as pv =
mv−|kv−kvρ−tv |−2σ0

2 if σ0 � n, and pv = mv−|kv−kvρ−tv |−4n+2σ0

2 if σ0 < n.

Theorem 5.3 Let f ∈ Sk(C, ψ; Q) be an eigenform for all Hecke operators. With
notation as before we take m0 > 3n + 2. Let χ be a Hecke character of K such
that χa(x) = xta|xa|−t with t ∈ Za. Define μ ∈ Zb as in the previous theorem. With
the same assumptions as in the previous theorem and with �f ∈ C× as defined in
Theorem 5.1 we have for all σ ∈ Gal(Q/�Q) that

(
L(σ0, f, χ)

πβτ(χn
1 ψn

1 θn2)ρ i n
∑

v∈a pv�f

)σ

= L(σ0, fσ , χσ )

πβτ((χn
1 ψn

1 θn2)σ )ρ i n
∑

v∈a pv�fσ

,

where�Q = � if σ0 ∈ Z and it is the algebraic extension of� obtained by adjoining
|det (qq∗)|1/2h for all q ∈ Q, if σ0 ∈ 1

2Z, where the set Q is defined in Sect.4.
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6 The Euler Factors Above p and the Trace Operator

We now fix an odd prime p and write S for the set of prime ideals in K above p such
that they are inert with respect to the totally real subfield F . We assume of course
that S �= ∅. A typical element in this set will be denoted by p.

For a fractional ideal b and an integral ideal c of F , which are taken prime to
the ideals in the set S, we define C := D[b−1, bc]. We consider a non-zero f ∈
Sk(C, ψ), which we take to be an eigenform for all Hecke operators with respect to
C . Furthermorewe letχ be aHecke character of K of conductor fχ (or simply f if there
is no danger of confusion), supported in the set S. Aswementioned in the introduction
our aim is to obtain measures that interpolate special values of L(s, f, χ) such that
the Eisenstein series involved in the Theorem 4.1 are holomorphic. In particular if we
write t ∈ Za for the infinite type of the character χ and define μ ∈ Zb as in Sect. 4,
then we will assume that

(kv − μv − n) + (kvρ − μvρ) = r, ∀v ∈ a,

for some r � n, where we exclude the case of r = n + 1, F = Q and χ1 = θ . For a
fixed character χ we define

1. �χ := � := θA(x, χ−1), where we put some special condition on the element
r ∈ GLn(K )h in the definition of the theta series. Namelywe pick the element r ∈
GLn(K )h such that rv = πvr ′

v with r
′
v ∈ GLn(rv) for v not dividing the conductor

and v ∈ S, and rv ∈ GLn(rv) for v ∈ S and dividing the conductor. For τ we
assume that τv ∈ GLn(rv).

2. �∗
χ := �∗ := θ∗

A(x, χ−1), with similar conditions on r and τ as above.
3. Eχ,+ := E+ := D̃A(x, r

2 ; k − l, �, c′′),
4. E∗

χ,+ := E∗+ := D̃∗
A(x, r

2 ; k − l, �, c′′),
5. Eχ,− := E− := D̃A(x, n − r

2 ; k − l, �, c′′),
6. E∗

χ,− := E∗− := D̃∗
A(x, n − r

2 ; k − l, �, c′′),

where � := (χ−1φ−nψ−1)c, c′′ is as in Theorem 4.1 and the Eisenstein series D̃A

was introduced in Eq.7.
We now recall some facts about Hecke operators taken from [29, 30]. The action

of the Hecke operator TC(ξ) := T (ξ) := CξC for some ξ ∈ Gh, such that CξC =⊔
y∈Y Cy for a finite set Y , is defined by,

(f |CξC)(x) :=
∑

y∈Y
ψc(det (ay))

−1f(xy−1).

Following Shimura, we introduce the notation E :=∏v∈h GLn(rv) and B := {x ∈
GLn(K )h|x ≺ r}. We have,
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Lemma 6.1 (Shimura, Lemma 19.2 in [30]) Let σ = diag[q̂, q] ∈ Gv with q ∈ Bv

and v|c. Then
CvσCv =

⊔

d,b

Cv

(
d̂ d̂b
0 d

)

,

withd ∈ Ev \ EvqEv andb ∈ S(b−1)v/d∗S(b−1)vd,where S(b−1) := S ∩ Mn(b
−1).

We now introduce the following notation. Let v ∈ h be a finite place of F which
correspond to a prime ideal of F , that is inert in K . We write p for the ideal in K
corresponding to the place in K above v, and πv (or π when there is no fear of
confusion) for a uniformizer of p. Since the choice of v determines uniquely a place
of K (since we deal with the inert situation) we will often abuse the notation and
write v also for this place of K .

For an integral ideal c such that v|c we write U (πi ), for an i = 1, . . . , n, for the
operator CξC defined by taking ξv′ = 12n for v′ not equal to v and ξv = diag[q̂, q]
with q = diag[π, . . . , π, 1, . . . , 1] where there are i-many π ’s. Sometimes, we will
also write U (π) or U (p) for U (πn).

6.1 The Unramified Part of the Character

We now describe how we can choose the elements d in Lemma 6.1 for the operators
U (πi ). We have,

Lemma 6.2 Let q = diag[π, π, . . . π, 1, . . . , 1] with m many π ’s. Then we have
that in the decomposition

EvqEv =
⊔

d

Evd,

the representatives d = (di j )i, j ’s are all the lower triangular matrices such that,

1. there exist n − m many 1 on the diagonal and the rest elements of the diagonal
are equal to π . Write S for the subset of {1, . . . , n} such that i ∈ S if and only if
dii = π .

2. For any i > j , we have

di j =

⎧
⎪⎨

⎪⎩

0 if j /∈ S and i ∈ S

0 if j ∈ S and i ∈ S

α if j ∈ S and i /∈ S

,

whereα ∈ rv runs over somefixed representatives of rv/pv , where pv themaximal
ideal of rv .

Proof See [8, pp. 55–56] �
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We now let λi be the eigenvalues of f with respect to the operatorsU (πi ). For the
fixed prime ideal p as above we write ti for the Satake parameters tp,i associated to
f as introduced in Sect. 4.

Lemma 6.3 We have the identity

λ−1
n

(
n∑

i=0

(−1)i N (p)
i(i−1)

2 +ni+ n(n−1)
2 λi X

i

)

=

(−1)nN (p)n(2n−1)Xn
n∏

i=1

(1 − t−1
i N (p)1−n X−1).

Proof We first note that,

n∑

i=0

(−1)i N (p)
i(i−1)

2 +niλi X
i =

n∏

i=1

(1 − N (p)n−1ti X). (8)

This follows from [30, Lemma 19.13] and the fact that (see [30, p. 163])

∑

d∈Ev\Bv

ω0(Evd)|det (d)|−n
v Xvp(det (d)) =

n∏

i=1

(1 − N (p)n−1ti X)−1,

where vp(·) is the discrete valuation corresponding to the prime p, | · |v the absolute
value at v normalized as |π |v = N (p)−1. For the definition of ω0(Evd), we first find
an upper triangular matrix g so that Evd = Evg and then we define ω0(Evd) :=∏n

i=1

(
N (p)−2i ti

)ei , where the ei ∈ Z are so that gii = π ei for g = (gi j ).
We can rewrite the right hand side of Eq.8 as

n∏

i=1

(1 − N (p)n−1ti X) =

N (p)n(n−1)(−1)n(t1t2 . . . tn)X
n

n∏

i=1

(1 − t−1
i N (p)1−n X−1).

Moreover we have by Eq.8 that λn = N (p)−
n(n+1)

2 t1t2 . . . tn . So we conclude that

λ−1
n

(
n∑

i=0

(−1)i N (p)
i(i−1)

2 +niλi X
i

)

=

(−1)nN (p)n(n−1)+ n(n+1)
2 Xn

n∏

i=1

(1 − t−1
i N (p)1−n X−1),
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or,

λ−1
n

(
n∑

i=0

(−1)i N (p)
i(i−1)

2 +ni+ n(n−1)
2 λi X

i

)

=

(−1)nN (p)n(2n−1)Xn
n∏

i=1

(1 − t−1
i N (p)1−n X−1).

�

In particular if χ is a Hecke character of K which is taken unramified at p and we
set X := χ(p)N (p)s+ with s+ := − n+r

2 for some r ∈ Z we obtain,

λ−1
n

(
n∑

i=0

(−1)i N (p)
(n−i)(n−i−1)

2 − r−3n+2
2 λiχ(p)i

)

=

(−1)nN (p)n(2n−1)−n( r+n
2 )χ(p)n

n∏

i=1

(1 − χ(p)−1t−1
i N (p)

r−n+2
2 ),

or

λ−1
n

(
n∑

i=0

(−1)i N (p)
(n−i)(n−i−1)

2 − r−3n+2
2 λiχ(p)i−n

)

= (9)

(−1)nN (p)n(2n−1)−n( r+n
2 )

n∏

i=1

(1 − χ(p)−1t−1
i N (p)

r−n+2
2 ),

and if we set X := χ(p)N (p)s− with s− := − 3n−r
2 , we obtain,

λ−1
n

(
n∑

i=0

(−1)i N (p)
(n−i)(n−i−1)

2 − −n−r+2
2 λiχ(p)i−n

)

= (10)

(−1)nN (p)n(2n−1)−n( 3n−r
2 )

n∏

i=1

(1 − χ(p)−1t−1
i N (p)

n−r+2
2 ).

We also make a general remark about the adjoint operator of the Hecke operators
introduced in Lemma 6.1. First we note that,

(
0 1

−1 0

)(
a b
c d

)(
0 −1
1 0

)

=
(

d −c
−b a

)
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In particular we have

η−1
h D[b−1, bc]ηh = D[bc, b−1].

Now if we write W for the operator (f |W )(x) := f(xη−1
h ) we have,

Lemma 6.4 For f, g ∈ Mk(C, ψ) we have

< f |CσC, g >c=< f, g|WC̃ σ̃ C̃W−1 >c

where C̃ := D[bc, b−1], and σ̃ := diag[q̂∗, q∗] if σ = diag[q̂, q].
Proof By Proposition 11.7 in [29] we have that < f |CσC, g >=< f, g|Cσ−1C >.
Of course we have σ−1 = diag[q∗, q−1]. Moreover we have that

Cσ−1C = WW−1CWW−1σ−1WW−1CWW−1

and we have that Wσ−1W−1 = diag[q−1, q∗] = diag[q̂∗, q∗]. Moreover the group
W−1CW = D[bc, b−1] if C = D[b−1, bc]. Moreover we note that we may write
D[bc, b−1] = D[̃b−1, b̃c] by taking b̃ = b−1c−1. �

For the fixed ideal p, and an s ∈ C, we define the operator J (p, s) on Mk(C, ψ)

as

J (p, s) :=
n∑

i=0

(−1)i N (p)
i(i−1)

2 +i(n+s)+ n(n−1)
2 (χ)(p)i−nU (πi ).

We now note by Lemma 6.3 we have that for the eigenform f

f |J (p, s) = λn(−1)nN (p)n(2n−1)N (p)ns
n∏

i=1

(1 − N (p)1−nχ(p)−1t−1
i N (p)−s)f

Wewill need to consider the adjoint operator of J (p, s)with respect to the Peters-
son inner product. In particular if we write

< f |J (p, s), g >=< f, g|W J̃ (p, s)W−1 >,

then by Lemma 6.4 we have that

J̃ (p, s) =
n∑

i=0

(−1)i N (p)
i(i−1)

2 +i(n+s̄)+ n(n−1)
2 χ(p)n−iU (πi ),

where we keep writing U (πi ) for the Hecke operator

D[bc, b−1]diag[π, π, . . . , π, 1 . . . , 1]D[bc, b−1].
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We note here that

D[bc, b−1]diag[π, π, . . . , π, 1 . . . , 1]D[bc, b−1] =

D[bc, b−1]diag[πρ, πρ, . . . , πρ, 1 . . . , 1]D[bc, b−1]

Of particular interest for us are the operators ˜J (p, s±) where we recall we have
defined s+ := − r+n

2 and s− := 3n−r
2 . We set m0 := cppρ . We note that �∗E∗± ∈

D[bam0, b
−1] for some ideals a, b prime to q. This is clear for the Eisenstein

series by its definition, and for the theta series we need to observe that since
we are taking an r ∈ GLn(K )h of the form ππρr ′ for some r ′ ∈ GLn(K )h with
rv ∈ GLn(rv)we have that the ideals t and y are equal to qqρ . Hence we have that θ ∈
Ml(D[(dqqρ)−1, dqqρeffρ]).Hecne θ∗∈Ml(D[dqqρeffρ, (dqqρ)−1]) ⊂ Ml(D[dqqρ

effρ, d−1]) ⊂ Ml(D[dcqqρeffρ, d−1]). We then take b = d−1 and a = effρ .
Before we go further, we collect some facts which will be needed in the proof of the
following Theorem. We start by recalling the so-called generalized Möbius function
as for example defined by Shimura in [30, pp. 163–164]. We restrict ourselves to the
local version of it, since this will be enough for our purposes. We have fixed a finite
place v of the filed K (recall here our abusing of notation explained above), and write
Kv for the completion at v and rv for its ring of integers. We continue writing p for
the prime ideal of r corresponding to the finite place v, and pv for the maximal ideal
of rv . Finally we write π for a fixed uniformizer of rv .
The generalized Möbius function will be denoted by μ, and it is defined on the set
of rv-submodules of a torsion rv-module. In particular we cite the following lemma
[30, Lemma 19.10].

Lemma 6.5 To every finitely generated torsion rv-module A we can uniquely assign
an integer μ(A) so that

∑

B⊂A

μ(B) =
{
1 if A = {0}
0 if A �= {0} .

We also recall two properties (see [30] for a proof ) of this generalized Möbius
function, which will play an important role later. We have

1. μ((rv/pv)
r ) = (−1)r N (p)r(r−1)/2 if 0 � r ∈ Z.

2. μ(A) �= 0 if and only if A is annihilated by a square free integral ideal of Kv .

Let us now denote byL := L the set of rv-lattices in K 
v . Given an y ∈ GL(Kv)

and an L ∈ L we define a new lattice by yL := {yx |x ∈ L} ∈ L. Conversely it is
clear that given two latticesM, L ∈ L there exists a y ∈ GL(Kv) such thatM = yL .
We also note that if L , M ∈ L and M ⊂ L then we can write μ(L/M). Let us now
take L := rv ⊂ K 

v . Then by [30, Lemma 19.13] we have
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∑

L⊃M∈L
μ(L/M)Xvp(det (y)) =

∏

i=1

(1 − N (p)i−1X), (11)

where the sum runs over all lattices M ∈ L contained in L , and y is defined so that
M = yL . Here we write vp(·) for the normalized discrete valuation of Kv .
We will now use the above equality to obtain a relation between the number of left
cosets in the decomposition of Lemma 6.2. We set E := GL(rv) and for an m � 

we set π()
m := diag[π, π, . . . , π, 1, . . . , 1] ∈ GL(Kv) with m-many π ’s. As we

have seen in Lemma 6.2 we have a decomposition

Eπ
()
m E =

⊔

d()
m

Ed
()
m ,

for some d()
m ∈ GL(Kv) ∩ M(rv). We write μ()

m for the number of the cosets in
the above decomposition. Then we have,

Lemma 6.6 With notation as above,

∑

i=0

(−1)i N (p)
i(i−1)

2 μ
()
i = 0.

Proof We first note that by taking the transpose of the decomposition above we may
also work with right cosets, that is Eπ

()
m E =⊔d()

m

td()
m E. We now let L := rv ,

and we see that to every coset td()
m E for 0 � m �  we can associate a lattice

M ∈ L by M := td()
m L . Since td()

m are integral we have M ⊂ L . Moreover in the
sum
∑

L⊃M∈L μ(L/M)Xvp(det (y)), because of property (ii) of the Möbius function,
we have that the y′s have square free elementary divisors. Indeed it is enough to
notice (see for example [9, Theorem 1.4.1]) that for the lattice M = yL we have that
L/M is isomorphic to ⊕0�i�r (rv/pv)

ei where ei are the (powers) of the elementary
divisors of y, and r its rank. In particular we can conclude that each y in the sum∑

L⊃M∈L μ(L/M)Xvp(det (y)) belongs to some td()
m E for m equal to vp(det (y)).

That is, we may write

∑

L⊃M∈L
μ(L/M)Xvp(det (y)) =

∑

i=0

(−1)i N (p)
i(i−1)

2 μ
()
i X i ,

where we have used property (i) of the Möbius function. We now set X = 1 and use
Eq.11 to conclude the lemma. �

We are now ready to prove the following theorem.

Theorem 6.7 Let p ∈ S and write v for the finite place of F corresponding to p as
above. Consider a Hecke character χ of K unramified at the prime p. Let F± :=
�∗E∗± and write
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g± := F±| ˜J (p, s±).

Then, for q ∈ GL(K )h, with qv ∈ GLn(rv), we have

g±
((

q sq̂
0 q̂

))

= C(p, s±)
∑

τ∈S+

c(τ, q; g±)enA(τ s)

with C(p, s±) := (−1)nN (p)n(n−1)+n(n+s±)ψ(p)−n and,

c(τ, q; g±) =
∑

τ1+τ2=τ

c(τ1, qπ,�∗)c(τ2, qπ, E∗
±),

where (τ1)v ∈ (πvπ
ρ
v )−1T×

v , where T×
v = Tv ∩ GLn(rv) and we recall that

T = {x ∈ S|tr(S(r)x) ⊂ g},

where S(r) = S ∩ Mn(r), and Tv := T ⊗r rv .

Proof Wewill show the TheoremwhenF := F+ = �∗E∗+, and a similar proof shows
also the case of F− = �∗E∗−. We set g := g+, and we note that the Nebentype of
�∗E∗+ is ψ−c. We then have,

g
((

q sq̂
0 q̂

))

=

N (p)
n(n−1)

2

n∑

i=0

Bi

∑

di

ψv(det (di ))
−1
∑

bi

F
((

q sq̂
0 q̂

)(
d̂−1
i −bid

−1
i

0 d−1
i

))

,

where here we write di and bi for the d’s and b’s corresponding to the Hecke operator
U (πi ) as described in Lemma 6.1, and in order to make the formulas a bit shorter
we have introduced the notation Bi := (−1)i N (p)

i(i−1)
2 +i(n+s+)χ(p)i−n . In particular

we have that

N (p)−
n(n−1)

2 g
((

q sq̂
0 q̂

))

=

n∑

i=0

Bi

∑

di

ψv(det (di ))
−1
∑

bi

F
((

qd̂−1
i −qbid

−1
i + sq̂d−1

i

0 q̂d−1
i

))

=

n∑

i=0

Bi

∑

di

ψv(det (di ))
−1
∑

bi

F

((
qd∗

i (−qbiq∗ + s )̂qd∗
i

0 q̂d∗
i

))

=
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n∑

i=0

Bi

∑

di

ψv(det (di ))
−1
∑

bi

∑

τ∈S+

c(τ, qd∗
i ; F)enA(τ (−qbiq

∗ + s)) =

n∑

i=0

Bi

∑

di

ψv(det (di ))
−1
∑

τ∈S+

c(τ, qd∗
i ; F)

⎛

⎝
∑

bi

enh(−τqbiq
∗)

⎞

⎠ enA(τ s)

Since bi ∈ S(bc)v , we have by [30, Lemma 19.6] that

∑

bi

enh(−τqbiq
∗) = |det (di )|−n

A ,

if (q∗τq)v ∈ d−1b−1c−1Tv for all v ∈ h and zero otherwise. We now write

c(τ, qd∗
i ; F) =

∑

τ1+τ2=τ

c(τ1, qd
∗
i ;�∗)c(τ2, qd∗

i ; E∗
+),

and from above we have that (q∗τq)v ∈ d−1b−1c−1Tv for all v ∈ h. Moreover we
have that c(τ1, qd∗

i ;�∗) �= 0 only if (q∗τ1q)v ∈ d−1b−1c−1d−1
i Tv d̂i for all v ∈ h and

c(τ2, qd∗
i ; E∗+) �= 0, only if (q∗τ2q)v ∈ d−1b−1c−1d−1

i Tv d̂i for all v ∈ h. In the above
sum we run over all possible pairs of positive semi-definite hermitian matrices τ1, τ2
with τ1 + τ2 = τ , and set c(τ1, qd∗

i ;�∗) = c(τ2, qd∗
i ; E∗+) = 0 if τ1, τ2 are not in

the set described above.
From now on we will be writing v for the finite place of F corresponding to the
prime ideal p. We introduce the notation

Si := {s ∈ S : q∗sq ∈ d−1b−1c−1d−1
i T d̂i , ordp(dbcν(s)) = 2i},

where ν(s) is the so-called denominator ideal associated to a matrix s, as for example
defined in [29, Chap. I, Sect. 3]. That is, the valuation at p of the denominator-ideal of
the symmetric matrix q∗sq is exactly i , after clearing powers of p coming from dcb.
We note that since τ ∈ S0 we have that τ1 ∈ Si if and only if τ2 ∈ Si if τ1 + τ2 = τ .
We now rewrite the Fourier expansion of g as

∑

τ∈S+

N (p)
n(n−1)

2 χ(p)−n
n∑

i=0

(−1)i N (p)
i(i−1)

2 +i(n+s+)χ(pi )
∑

di

ψv(det (di ))
−1×

∑

τ1+τ2=τ

c(τ1, qd
∗
i ;�∗)c(τ2, qd∗

i ; E∗
+)|det (di )|−n

v ena(i Â
′tqτq)enA(τ s),
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where we have used the fact that |det (di )|A = |det (di )|v since (di )v′ = 1n for any
finite place v′ not equal to v. We now work the inner sum for any fixed τ . That is,

n∑

i=0

(−1)i N (p)
i(i−1)

2 +i(n+s+)χ(pi )
∑

di

ψv(det (di ))
−1×

∑

τ1+τ2=τ

c(τ1, qd
∗
i ;�∗)c(τ2, qd∗

i ; E∗
+)|det (di )|−n

v , (12)

or

∑

τ1+τ2=τ

n∑

i=0

(−1)i N (p)
i(i−1)

2 N (p)i(n+s+)χ(pi )×

∑

di

ψv(det (di ))
−1c(τ1, qd

∗
i ;�∗)c(τ2, qd∗

i ; E∗
+)|det (di )|−n

v (13)

We claim that this sum is equal to

N (p)
n(n−1)

2 +n(n+s+)(−1)nχ(p)nψ(p)−n
∑

τ1+τ2=τ

c(τ1, qπ,�∗)c(τ2, qπ, E∗
+), (14)

where (q∗τ1q)v, (q∗τ2q)v ∈ π−2d−1b−1c−1T×
v = Sn . Note that this is enough in

order to establish the claim of the Theorem.
To show this, we consider the nth term of the Eq.12, that is the summand with i = n
and we recall that the dn’s run over the single element π In . That is, the nth term is
equal to

N (p)
n(n−1)

2 +n(n+s+)(−1)nχ(p)nψ(p)−n
∑

τ1+τ2=τ

c(τ1, qπ,�∗)c(τ2, qπ, E∗
+), (15)

where (q∗τ1q)v, (q∗τ2q)v ∈ d−1b−1c−1d−1
n Tv d̂n = d−1b−1c−1π−2Tv .

Note that the difference of the expression in Eq.15, and the claimed sum in Eq.14
is the difference of the support of the Fourier coefficients. Indeed note that in Eq.15
(or better say in the line right after) we write Tv where in Eq.14 we write T×

v ,
and of course T×

v ⊂ Tv . Hence our aim is to prove that for every pair (τ1, τ2) with
τ1 + τ2 = τ and τi ∈ Sj with j < n that contributes a non-trivial term in Eq.15, its
contributionwill be cancelled out by the lower terms (i.e. i < n) that appear in Eq.13.
So the only terms that “survive” the cancellation will be the ones with τ1, τ2 ∈ Sn .
Moreover all lower terms will be cancelled out.

We note that if we consider a τ1 ∈ Sj (hence τ2 ∈ Sj )with j < n, then we observe
that given such a τ1 and τ2, we have that c(τ1, qd∗

m;�∗)c(τ2, qd∗
m; E∗+) �= 0 implies

thatm � j . Indeed since τ1, τ2 ∈ Sj wehave for anym < j that (q∗τ1q)v, (q∗τ2q)v /∈
d−1b−1c−1d−1

i Tv d̂i .
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So in what follows we fix a pair τ1 and τ2 in Sj for some j � 0 with j < n. By [29,
Lemma 13.3] since we are interested in the question whether τ1, τ2 belong to a partic-
ular lattice, we may assume without loss of generality that our τ1, τ2, locally at v, are
of the form diag[s1, . . . , sn] for si ∈ Kv . After reordering the si ’swemay assume that
s j+1, . . . , sn are integral, while the rest have non-trivial denominators. That means,
that the dm’s for j � m � n with c(τ1, qd∗

m;�∗)c(τ2, qd∗
m; E∗+) �= 0 can be taken of

a very particular form, namely we can take them to be lower triangular matrices (by
Lemma 6.2) with the diagonal of the form diag[π, . . . , π, π e j+1 , . . . , π en ], where
e j+1, . . . , en ∈ {0, 1} and e j+1 + . . . + en = m − j . Indeed the first j many π ’s on
the diagonal are imposed to us in order d jτ1d∗

j , d jτ2d∗
j to have integral coefficients

along the diagonal. Given such a pair of indices m and j , with m � j we will write
λ

( j)
m for the number of left cosets Evdm with diagonal of dm as just described. From

now on when we write a dm or d j it will be always one of this particular form (i.e.
lower diagonal and with the above mentioned description of the diagonal).
We now claim that we may write

c(τ1, qd
∗
n ,�

∗) = αn, j c(τ1, qd
∗
j ,�

∗),

and
c(τ2, qd

∗
n , E∗

+) = βn, j c(τ2, qd
∗
j , E∗

+),

for some αn, j and βn, j , and any d j . The terms c(τ1, qd∗
j ,�

∗), c(τ2, qd∗
j , E∗+) are not

trivially zero since (d jq∗τi d∗
j )v ∈ bdc−1Tv . Actually for anym with n � m � j , and

for any dm and d j of the form mentioned in the previous paragraph regarding their
diagonal we may write

c(τ1, qd
∗
m,�∗) = αm, j c(τ1, qd

∗
j ,�

∗),

and
c(τ2, qd

∗
m, E∗

+) = βm, j c(τ2, qd
∗
j , E∗

+),

for τ1, τ2 ∈ Sj . We now compute the αm, j , βm, j . We have by the explicit description
of the Fourier coefficients in Proposition 3.1 that,

c(τ2, qd
∗
m, E∗

+) = (ψχ)(det (dmd
−1
j ))φ(det (dmd

−1
j ))n×

|det (dmdρ
m)d−1

j d−ρ

j |n−r/2
v c(τ2, qd

∗
j , E∗

+).

Now we consider the theta series. We first notice that in order to compute the coef-
ficients c(τ1, qd∗

i ;�∗
χ ) for any i with 0 � i � n it is enough to compute the Fourier

coefficients of θχ (xw) with w = diag[d∗
i , d

−1
i ]h. We now note that by [30, Eq.

(A5.7)] we have that

θχ (xw) = |det (dρ

i )|n/2
v φh(det (d

ρ

i )nχfχ (det (di ))θχ (x),
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where we have used [30, Theorem A5.4] and the definition of the theta series. In
particular we conclude that

c(τ1, qd
∗
m,�∗) = |det (dρ

m)det (d−ρ

j )|n/2
v φh(det (d

ρ
m)det (d−ρ

j ))nc(τ1, qd
∗
j ,�

∗).

where we have used the fact that the character χ is unramified at p, and hence χfχ

can be ignored.
We now note that det (dm) = πm and det (d j ) = π j . In particular we have

βm, j = (χψ)(πm− j )φ(πm− j )n|πm− j |n−r/2
v ,

and
αm, j = |πm− j |n/2

v φ(π(m− j)ρ)n

In particular we observe that the αm, j and βm, j do not depend on the specific class
of Edm and Ed j .

Now we remark that the coefficients c(τ1, qd∗
j ,�

∗) and c(τ2, qd∗
j , E∗+) depend

only on the determinant of d j , and not on the particular choice of the d j , as it follows
from the explicit description of the Fourier coefficients of the Eisenstein series in
Propositions 3.1 and of the theta series in 3.5. Especially for the theta serieswe remark
that it is important here that the character χ is unramified at p. Hence going back
to the Eq.13, we observe that we can factor the term c(τ1, qd∗

j ,�
∗)c(τ2, qd∗

j , E∗+)

since it does not depend on a particular choice of d j . Here we remind the reader the
convention done above, that the d j ’s are taken of a particular form, i.e. lower diagonal
and a condition on the diagonal are described above. So for the fixed choice of the
pair τ1 and τ2, we see that in order to establish the cancellation of the contribution
of the fixed pair (τ1, τ2) in the sum, we need to show, that

n∑

m= j

(−1)mN (p)
m(m−1)

2 +m(n+s+)+ n(n−1)
2 χ(p)n−mαm, jβm, j |det (dm)|−n

v λ( j)
m = 0.

(We remark one more time here that the outer summation runs from j to n, since
for the fixed choice of τ1 and τ2 we have that c(τ1, qd∗

i ;�∗)c(τ2, qd∗
i ; E∗+) = 0 for

i < j .)
Using the fact that φ((ππρ)m− j )n is equal to φ1(ππρ)(m− j)n and the restriction

φ1 = θ , a quadratic character, we obtain φ((ππρ)m− j )n = 1. Hence we may rewrite
the above sum as

(χn− jψ− j )(p)

n∑

m= j

(−1)mN (p)
m(m−1)

2 +m(n+s+)+ n(n−1)
2 |πm− j |n−r/2

v |πm− j |n/2
v ×

|det (dm)|−n
v λ( j)

m = 0.
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Of course |π |v = N (p)−1 and hence we have

n∑

m= j

(−1)mN (p)
m(m−1)

2 +m(n+s+)+ n(n−1)
2 +( j−m)(n−r/2)+( j−m)n/2+mnλ( j)

m =

n∑

m= j

(−1)mN (p)
m(m−1)

2 +m(n+s+)+ n(n−1)
2 +( j−m)(n−r/2)+( j−m)n/2+mnλ( j)

m =

N (p) j (n−r/2+n/2)
n∑

m= j

(−1)mN (p)
2( m(m−1)

2 +m(n+s+)+ n(n−1)
2 )+mr−mn

2 λ( j)
m .

That is, we need to establish that

n∑

m= j

(−1)mN (p)
2( m(m−1)

2 +m(n+s+)+ n(n−1)
2 )+mr−mn

2 λ( j)
m = 0,

which is equivalent to

n∑

m= j

(−1)mN (p)
m(m−1+n+2s++r)

2 λ( j)
m = 0,

and since s+ = − r+n
2 we get that we need to show that,

n∑

m= j

(−1)mN (p)
m(m−1)

2 λ( j)
m = 0. (16)

We now recall that we are considering dm’s of very particular form, namely lower
diagonal matrices where the diagonal is of the form diag[π, . . . , π, π e j+1 , . . . , π en ],
where e j+1, . . . , en ∈ {0, 1} and e j+1 + . . . + en = m − j . We wrote λ

( j)
m for the

number of them. Recalling now the notation introduced in Lemma 6.6, we claim that

λ( j)
m = μ

(n− j)
m− j × N (p)(n−m) j . (17)

We first recall that by Lemma 6.2 we may pick the dm’s in the decomposition
EvπmEv =⊔dm Evdm such that, if we write dm = (aik) we have that aik = 0 for
i < k (i.e. lower triangular), and for i > k we have that aik could be any representa-
tive in rv of rv/pv for k ∈ S and i /∈ S and zero otherwise, where S is the subset of
{1, . . . , n} of cardinality m indicating the indices of the π ’s in the diagonal of dm .
Since we consider dm’s with π in the first j entries of the diagonal we have that
aik = 0 for 1 � k < i � j . Moreover the number of choices for the lower right
n − j × n − j part of dm is equal to μ

(n− j)
m− j since we are putting m − j many π on a
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diagonal of length n − j . We can conclude the claimed equality after observing that
we are free to pick for the entry aik with i > k and j + 1 � i � n, and 1 � k � j
(i.e. the lower left (n − j) × j part) any representative of rv/pv as long as aii = 1.
That is we have N (p)(n−m) j many choices, since we place n − m many ones in the
n − j many lower entries of the diagonal of dm .

By Lemma 6.6 we have,

n− j∑

i=0

(−1)i N (p)
i(i−1)

2 μ
(n− j)
i = 0,

and using Eq.17 we obtain

n− j∑

i=0

(−1)i N (p)
i(i−1)

2 N (p)−(n−(i+ j)) jλ
( j)
i+ j = 0,

or,

n∑

m= j

(−1)m− j N (p)
(m− j)(m− j−1)

2 −(n−m) jλ( j)
m = 0,

or,
n∑

m= j

(−1)mN (p)
m(m−1)

2 λ( j)
m = 0,

which establishes Equality (16), and hence concludes the proof. �

6.2 The Ramified Part of the Character

We now fix two integral ideals c1 and c2 of F with c1|c2. We writeCi := D[b−1, bci ],
for i = 1, 2 and define the trace operator Tr c2c1 : Mk(C2, ψ) → Mk(C1, ψ) by

f �→ Tr c2c1(f)(x) :=
∑

r∈R

ψc2(det (ar ))
−1f(xr),

where R is a set of left coset representatives of D[b−1, bc2] \ D[b−1, bc1]. We note
that for a Hermitian cusp form g ∈ Sk(C1, ψ) we have the well known identity

< g, f >c2=< g, Tr c2c1(f) >c1 , (18)
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where < ·, · >ci denotes the adelic inner product with respect to the group
D[b−1, bci ]. We now give an explicit description of the trace operator Tr c2c1 in the
case of supp(c1) = supp(c2), where by supp(m) of an ideal m is defined to be the
set of prime ideals q of F with q|m. We note that this is similar to the description
given in [27, p. 91, p. 136]. We write c2c

−1
1 = c for some integral ideal c and we fix

elements c, c1, c2 ∈ F×
A such that c?g = c? as well as b ∈ F×

A such that bg = b. We
first show the following lemma.

Lemma 6.8 Let a be an integral ideal prime to c2. Then we have the decomposition

D[b−1, bac1] =
⊔

r∈R

D[b−1, bac2]r,

where

R = {
(

1 0
bac1u 1

)

|u ∈ S(g)h mod c},

with a ∈ F×
A such that ag = a.

Proof Clearly without loss of generality we can set a = g. Moreover it is clear that
the right hand side of the claimed decomposition is included into the left. To prove

the other inclusion we consider an element

(
A B
C D

)

∈ D[b−1, bc1] and show that

there exists an r ∈ R such that

(
A B
C D

)

r−1 ∈ D[b−1, bc2] or otherwise there exists
u ∈ S(g)h mod c such that

(
A B
C D

)(
1 0

bc1u 1

)

∈ D[b−1, bc2].

That is, we need to prove that there exists such a u as above so thatC + bc1Du ≺ bc2.
Since C ≺ bc1r we can write it as C = bc1C0 with C0 ≺ r, and hence we need to
show that bc1(C0 + Du) ≺ bc2r. By our assumption that supp(c1) = supp(c2) we

have that DA∗ ≡ 1n mod
(∏

q|c q
)
r. For a prime ideal q that divides c we write

eq for the largest power of it that divides c and we define e := max(eq). Then we
have that (DA∗ − 1n)e ≺ cr. That means that there exists an element D̃ ≺ r such
that DD̃ ≡ 1 mod cr and D̃C0 ∈ S(g)h. Indeed we have that

(DA∗ − 1n)
e = DA∗DA∗ · · · DA∗ + ...(−1)e In ≺ cr,

or equivalently

D
(
A∗DA∗ · · · DA∗ + · · · + A∗) ≡ (−1)e−1 In mod cr.
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So we need only to check that the matrix

(
A∗DA∗ · · · DA∗ + · · · + A∗)C0 = A∗DA∗ · · · DA∗C0 + ... + A∗C0

is hermitian. But we know that A∗C is hermitian and since bc1 ∈ F×
A we have that

also A∗C0 is hermitian. The same reasoning holds for the product DC∗
0 . In particular

we have

(A∗DA∗ · · · DA∗C0)
∗ = C∗

0 AD
∗A · · · D∗A = A∗C0D

∗A · · · DA∗ =

A∗DC∗
0 A · · · DA∗ =

· · · = A∗DA∗ · · ·C0A = A∗DA∗ · · · DA∗C0.

This establishes the claim. Thenwe can take u = (−1)e D̃C0 to conclude the proof.�

Let us now assume that the deal c = c2c
−1
1 above is the norm of an integral

ideal c0 of K , that is c = NK/F (c0). We also pick an element c0 ∈ K×
A such that

c0r = c0. We consider now the Hecke operator TC(c) := T (c) :=∏v|c T (σv) for
σv = diag[ĉ0v1n, c0v1n], where we take C = D[bc1, b−1c]. Note that this group is
of the form D[b̃−1, b̃c̃] with b̃ = (bc1)

−1 and c̃ = cc1 = c2. By Lemma 6.1 we have
that

CvσvCv =
∐

b

Cv

(
ĉ0v1n ĉ0vb
0 c0v1n

)

,

where b ∈ S(bc1)v/cS(bc1)v . We now observe the identity
(

0 −1n
1n 0

)(
c∗
01n −c−1

0 b
0 c0−11n

)(
ĉ01n 0
0 c01n

)(
0 1n

−1n 0

)

=
(
1n 0
b 1n

)

.

We now write V (c0) : Mk(D[bc2, b−1]) → Mk(D[bc1, cb−1]) for the operator

defined by f(x) �→ f
(

x

(
ĉ01n 0
0 c01n

))

. We can conclude from the above calcu-

lation that the trace operator can be decomposed as

Tr c2c1 = W ◦ V (c0) ◦ T (c) ◦ W−1,

where the operators are operating from the right. We note that in general the
image of the right hand side is in Mk(D[b−1c, bc1]) which contains of course
Mk(D[b−1, bc1]), where the image of the trace operator lies. We summarize the
above calculations to the following lemma.
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Lemma 6.9 With notation as above, and assuming that there exists a c0 such that
c = NK/F (c0) we have

Tr c2c1 = W ◦ V (c0) ◦ T (c) ◦ W−1.

The effect of T (c) on the q-expansion. We now study the effect of the operator
T (c) and of V (c0) on the q-expansion of an automorphic form F which we take in
Mk([D[bc1, b−1c]], ψ−c). We write

F
((

q sq̂
0 q̂

))

=
∑

τ∈S+

c(τ, q; F)enA(τ s).

Setting G := F|T (c) we have,

G
((

q sq̂
0 q̂

))

=

ψ(det (c0))
−1
∑

b

F
((

q sq̂
0 q̂

)(
c0∗1n −c0−1b
0 c0−11n

))

=

where b runs over the set S(bc1)v/cS(bc1). In particular

G
((

q sq̂
0 q̂

))

=

ψ(det (c0))
−1
∑

b

F
((

qc∗
0 −qc−1

0 b + sq̂c−1
0

0 q̂c−1
0

))

=

∑

b

F
((

qc∗
0 (−qbq∗ + s)q̂c∗

0
0 q̂c∗

0

))

=

ψ(det (c0))
−1
∑

b

∑

τ∈S+

c(τ, qc∗
0; F)enA(τ (−qbq∗ + s)) =

ψ(det (c0))
−1
∑

τ∈S+

(
∑

b

enA(τqbq∗)

)

c(τ, qc∗
0; F)enA(τ s) =

ψ(det (c0))
−1
∑

τ∈S+

(
∑

b

enh(τqbq
∗)

)

c(τ, qc∗
0; F)enA(τ s).
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Note that the inner sum is well-defined since by [30, Proposition 20.2] we have that
c(τ, qc∗

0; f) = 0 unless enh(q
∗c0τqc∗

0s) = 1 for every s ∈ S(bc1)h. Moreover (see for
example [30, Lemma 19.6]) we have that

∑

b

enh(τqbq
∗) = |c0|−n2

K ,

if τ ∈ � := qT (bc1)q∗, and zero otherwise. Here T (bc1) denotes the dual lattice of
S(bc1) := S ∩ M(bc1)). That is,

G
((

q sq̂
0 q̂

))

= |c0|−n2

K ψ(det (c0))
−1
∑

τ∈�

c(τ, qc∗
0; F)enA(τ s). (19)

The effect of V (c0) on the q-expansion. Now we turn to the operator V (c0). With
F we now consider G = F|V (c0). Then for the q-expansion of G we have,

G
((

q sq̂
0 q̂

))

= F
((

q sq̂
0 q̂

)(
ĉ01n 0
0 c01n

))

= F
((

ĉ0q sq̂c0
0 q̂c0

))

=

∑

τ∈S+

c(τ, ĉ0q; F)enA(τ s).

We now take F of a particular dorm, namely we take F = �∗E∗+, and assume
that the conductor fχ of the character χ has the property that fχ |c0. We have that

c(τ, qĉ0,�
∗E∗

+) =
∑

τ1+τ2=τ

c(τ1, qĉ0,�
∗)c(τ2, qĉ0, E∗

+)

We now note that

c(τ1, qĉ0,�
∗) = |cρ

0 |−
n
2

K φh(c
ρ
0 )

n2χfχ (c0)
nc(τ, q,�∗),

and
c(τ2, qĉ0, E∗

+) = (ψχ)(c0)
−nφ(c0)

−n2 |c0|−n(n−r/2)c(τ2, q, E∗
+).

We then conclude that,

c(τ, qĉ0,�
∗E∗

+) = ψ(c0)
−n|c0|−

n
2 −n(n−r/2)

K c(τ, q,�∗E∗
+). (20)

In particular we have that c(τ, qĉ0,�∗E∗+) �= 0 only if

(c−ρ
0 q∗τc−1

0 q)v ∈ (f−1
χ f−ρ

χ )vTv,

for all v|p.
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Similarly we have for �∗E∗− but we need to replace r
2 with n − r

2 in the above
equations. That is

c(τ, qĉ0,�
∗E∗

−) = ψ(c0)
−n|c0|−

n
2 −n(r/2)

K c(τ, q,�∗E∗
−). (21)

6.3 Rewriting the Rankin–Selberg Integral

Wenow use the above identities to rewrite the Rankin–Selberg integrals.We consider
a p ∈ S and we let f0 ∈ Sk(C, ψ) be an eigenform for the Hecke operator U (p), of
eigenvalue α(p). We take C := D[b−1, bm0] where m0 := c′ppρ for some c′ prime
to p. We now consider a Hecke character χ of K , of some conductor fχ , and write
mχ for the ideal c′pnppnpρ where pnp is the smallest power-p ideal contained in the
conductor fχ . Moreover we take c′ small enough so that it includes the prime to p
level of�. Note that by Theorem 3.4 the level of� supported at p is exactly pnppnpρ .
We then show,

Proposition 6.10 Consider any cp ∈ N with cp � np � 1. Then we have

α(p)−np−1 < f0,�E± >mχ
=

α(p)−cp−1 < f0|W,�∗E∗
±|V (p)np−1 ◦U (p)cp−1 >m0 .

Proof
< f0,�E± >mχ

=

< f0,�E±|Trmχ

m0 >m0=< f0,�E±|W ◦ V (p)np−1 ◦U (p)np−1 ◦ W−1 >m0=

α(p)np−cp < f0|U (p)cp−np ,�E±|W ◦ V (p)np−1 ◦U (p)np−1 ◦ W−1 >m0=

< f0,�E±|W ◦ V (p)np−1 ◦U (p)np−1 ◦ W−1 ◦ W ◦U (p)cp−np ◦ W−1 >m0

α(p)−np+cp
=

α(p)np−cp < f0,�E±|W ◦ V (p)np−1 ◦U (p)cp−1 ◦ W−1 >m0=

α(p)np−cp < f0|W,�∗E∗
±|V (p)np−1 ◦U (p)cp−1 >m0 .

Hence

< f0,�E± >mχ
= α(p)np−cp < f0|W,�∗E∗

±|V (p)np−1 ◦U (p)cp−1 >m0 ,

or
α(p)−np < f0, �E± >mχ = α(p)−cp < f0|W, �∗E∗±|V (p)np−1 ◦U (p)cp−1 >m0 .

�
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7 The p-stabilization

Let us consider C := D[b−1, bc], where we take the integral ideal c prime to the
ideals in the fixed set S. We consider a Hermitian cusp form f in Sk(C, ψ) which
we take to be an eigenform for all the “good” Hecke operators in

∏
v�c R(Cv,Xv),

whereR(Cv,Xv) is the local Hecke algebra at v defined in [30, Chap. IV]. Our aim
in this section is to construct a Hermitian cusp form f0, of level c

∏
p∈S ppρ =: cm

which is an eigenform for all the “good” Hecke operators away from cm and for
the operators U (πv,i ) for all finite places v corresponding to prime ideals in the set
S. Our construction is the unitary analogue of the symplectic situation considered
in [2, Sect. 9]. It is important to mention here that our construction is adelic, so it
can be used to generalize the one in [2] to the totally real field situation. Here, as we
mentioned in the introduction, we restrict ourselves to the case where all prime ideals
in S are inert, but our arguments generalize also to the split case. We will consider
this in [7].

We write MS for the submodule of Sk(D[b−1, bcm], ψ) generated by f under
the action of the Hecke algebra

∏
v∈S R(C ′

v,Xv), where C ′ = D(b−1, bcm). We let
f0 ∈ MS to be a non-trivial eigenform of all the Hecke operators in

∏
v∈S R(C ′

v,Xv).
In particular f0 �= 0. We write the adelic q-expansion of f as

f
((

q sq̂
0 q̂

))

=
∑

τ∈S+

c(τ, q; f)enA(τ s).

and of f0 as,

f0

((
q sq̂
0 q̂

))

=
∑

τ∈S+

c(τ, q; f0)enA(τ s).

We pick a τ ∈ S+ ∩ GLn(K ) and q ∈ GLn(K )h such that c(τ, q; f0) �= 0. In partic-
ular that means that we have q∗τq ∈ T , where as always T denotes the dual lattice to
S(b−1) := S ∩ Mn(b

−1). Then for any finite place v corresponding to a prime ideal
p ∈ S we have [30, Eq. (20.15)]

Zv(f0, X)c(τ, q; f0) =
∑

d

ψc(det (d
∗))|det (d)∗|−n

v Xvp(det (d∗))c(τ, qd∗; f0), (22)

where d ∈ Ev \ EvqEv , and Zv(f0, X) denotes the Euler factor Zp(X) of Sect. 4.1.
Moreover vp(·) is the valuation associated to the ideal p, and | · |v the normalized
norm.

Following Böcherer and Schmidt [2] we now try to describe the right hand side
of (22) using the Satake parameters of the form f . As in [loc. cit.] we start with the
Andrianov type identity generalized by Shimura [30, Theorem 20.4]. For the selected
τ ∈ S+ ∩ GLn(K ) and q ∈ GLn(K )h we define (this is the local version at v of the
series D(τ, q; f) considered in [30, p. 169])
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Dv(τ, q : f, X) :=
∑

x∈Bv/Ev

ψc(det (qx))|det (x)|−n
v c(τ, qx; f)Xvp(det (x)),

where Bv = GLn(Kv) ∩ Mn(rv). We will employ now what may be considered as a
local version of the Andrianov–Kalinin equality in the unitary case. Namely we will
relate the above series Dv(τ, q : f, X) to the Euler factor Zv(f0, X).

We first introduce some notation. We let Lτ be the set of r-lattices L in Kn such
that ∗τ ∈ bd−1 for all  ∈ L . Moreover for the chosen ideal c above, and for two r
lattices M, N we write M < N if M ⊂ N and M ⊗r rv = N ⊗r rv for every v | c.
We now set L := qrn . Then we have the following local version of [30, Theorem
20.7],

Dv(τ, q; f, X) · L0,v(X) · gv(X) =

Zv(f, X) ·
∑

Lv<Mv∈Lτ

μ(Mv/Lv)ψc(det (y))X
vp(det (q∗ ŷ)c(τ, y; f),

where L0,v(X) :=∏n−1
i=0 (1 − (−1)i−1N (p)n+i X)−1, and gv(X) is a polynomial in

X with integers coefficients and constant term equal to 1. In the sum over the M’s,
we take y ∈ GLn(Kv) such that Mv = yrn and y−1q ∈ Bv . Furthermore μ(·) is the
generalized Möbius function introduced in the previous section, and as in the last
section we write vp(·) for the discrete valuation associated to the prime ideal p. We
now cite the following lemma regarding gv(X) (see [23, Lemma 5.2.4]).

Lemma 7.1 Write (q∗τq)v = diag[1n−r , πvs1] with s1 ∈ Sr (rv). Then we have

gv(X) =
r−1∏

i=0

(1 − (−1)i−1N (p)n+i X).

In particular we conclude that if (q∗τq)v is divisible by πv (i.e. r = n) then we
have that gv(X) is equal to L−1

0,v(X).

Our next step is to rewrite the expression

∑

Lv<Mv∈Lτ,v

μ(Mv/Lv)ψc(det (y))X
vp(det (q∗ ŷ)c(τ, y; f),

in terms of the action of the Hecke algebra. By the above lemma if we take πvq
instead of q we obtain,

Dv(τ, πq; f, X) = Zv(f, X)×
∑

Lv<Mv∈Lτ

μ(Mv/Lv)ψc(det (y))X
vp(det (q∗π∗ ŷ)c(τ, y; f),
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where now Lv = πvr
n
v and M = yrn . Since the y’s are supported only at v and we

are taking p � | c we have ψc(det (y)) = 1. That is,

Dv(τ, πq; f, X) = Zv(f, X) ·
∑

Lv<Mv∈Lτ

μ(Mv/Lv)X
vp(det (q∗π∗ ŷ)c(τ, y; f).

Now we rewrite the above expression in terms of the Hecke operators U (π j ). In
particular we have (see [30, proof of Theorem 19.8]),

Dv(τ, πq; f, X) = Zv(f, X)×

c

(

τ, q; f |
(

n∑

i=0

(−1)nN (p)i(i−1)/2ψv(π
i−n)N (p)−n(n−i)U (πn−i )X

i

))

,

where recall that we write the action of the Hecke operators from the right. Using the
fact that f0 is obtained from f by using the Hecke operators at the prime p, and the
fact that the Hecke algebra is commutative we obtain that the above relation holds
also for f0. That is, we have

Dv(τ, πq; f0, X) = Zv(f, X)× (23)

c

(

τ, q; f0|
(

n∑

i=0

(−1)nN (p)i(i−1)/2ψv(π
i−n)N (p)−n(n−i)U (πn−i )X

i

))

.

We first rewrite the left hand side of the above equation. We recall that

Dv(τ, πq; f0, X) =
∑

x∈Bv/Ev

ψc(det (qx))|det (x)|−n
v c(τ, πqx; f0)Xvp(det (x)).

Now we use the fact that f0 is an eigenform for the operators U (πi ). We write λi for
the eigenvalues. Then we have that

c(τ, πqx, f0) = N (p)−n2ψv(π)−nλnc(τ, qx, f0).

That is we obtain,

Dv(τ, πq; f0, X) = Zv(f0, X)λnN (p)−n2c(τ, q, f0),

and so we can rewrite Eq.23 as,

Zv(f0, X)λnN (p)−n2c(τ, q, f0) =
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Zv(f, X)c(τ, q; f0)

(
n∑

i=0

(−1)i N (p)i(i−1)/2ψv(π
i )N (p)−n(n−i)λn−i X

i

)

.

We note that we have

N (p)
i(i−1)

2 +niλi = N (p)i(n−1)Ei (t1, . . . , tn) (24)

and (t1 . . . tn)−1En−i (t1, . . . , tn) = Ei (t
−1
1 , . . . , t−1

n ) where Ei is the ith symmetric
polynomial. Indeed Eq.24 is the unitary analogue of the formula employed in [2, pp.
1429–1430] of how to obtain the eigenvalues of the Hecke operatorsU (πi ) from the
Satake parameters at p, and it can be shown in the same way. Hence we conclude
that after picking τ and q such that c(τ, q, f0) �= 0 we have

λnN (p)−n2 Zv(f0, X) = Zv(f, X)×

(

n∑

i=0

(−1)i N (p)i(i−1)/2ψv(π
i )Xi N (p)−n2N (p)−

i(i−1)
2 +2ni− n(n+1)

2 ×

(t1 . . . tn)Ei (t
−1
1 , . . . , t−1

n )),

and using the fact that N (p)
n(n+1)

2 λn = t1 . . . tn we get

Zv(f0, X) = Zv(f, X)

(
n∑

i=0

(−1)iψv(π
n−i )Xi N (p)2ni Ei (t

−1
1 , . . . , t−1

n )

)

=

Zv(f, X)

(
n∑

i=0

(−1)iψv(π
i )N (p)2ni Ei (t

−1
1 , . . . , t−1

n )Xi

)

,

and so

Zv(f0, X) = Zv(f, X)

(
n∑

i=0

(−1)iψv(π
i )Xi N (p)2ni Ei (t

−1
1 , . . . , t−1

n )

)

.

Equivalently

Zv(f0, X) = Zv(f, X)

n∏

i=0

(
1 − N (p)2nψv(π)i t−1

i X i
)
,
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and so we conclude that

Zv(f0, X)

n∏

i=0

(
1 − N (p)2nψ(π)i t−1

i X i
)−1 = Zv(f, X).

We now make the following definition

Definition 7.2 Let f ∈ Sk(C, ψ) be a Hecke eigenform for C = D[b−1, bc]. Let p
be a prime of K prime to c, which is inert over F . Then we say that f is ordinary at
p if there exists an eigenform 0 �= f0 ∈ M{p} ⊂ Sk(D[b−1, bcppρ], ψ) with Satake
parameters tp,i such that

∥
∥
∥
∥
∥

(
n∏

i=1

tp,i

)

N (p)−
n(n+1)

2

∥
∥
∥
∥
∥
p

= 1,

where ‖ · ‖p the normalized absolute value at p.

Summarizing the computations of this section we have,

Theorem 7.3 Let f be an cuspidal Hecke eigenform. Assume that f is ordinary for
all primes in K above p that are inert from F. Then we can associate to it a cuspidal
Hecke eigenform f0 such that its Euler factors above p are related by the equation

Zp(f0, X)

n∏

i=0

(
1 − N (p)2nψv(π)i t−1

i X i
)−1 = Zp(f, X),

where Zp(f, X) and Zp(f0, X) are given by (i) and (i i i) respectively of the Euler
factors described at the beginning of Sect.4. Moreover the eigenvalues of f0 with
respect to the Hecke operators U (p) are p-adic units. For all other primes q we have
Zq(f, X) = Zq(f0, X).

8 p-adic Measures for Ordinary Hermitian Modular Forms

We recall that for a fixed odd prime p we write S for the set of all prime ideals above
p in K , that are inert from F , and we assume that S �= ∅. Moreover we denote by v
the ideal

∏
p∈S p.We denote by K (S) themaximal abelian extension of K unramified

outside the set S, and we write G for the Galois group of the extension K (S)/K .
We consider a Hecke eigenform f ∈ Sk(C, ψ) with C = D[b−1, bc] for some ideals
b and c of F which are prime to p. We assume that m0 � 3n + 2, where we recall
that m0 := minv∈a(mv) with mv := kv + kvρ . Moreover we take f to be ordinary at
every prime p in the set S in the sense defined in the previous section. By Theorem
7.3 we can associate to it a Hermitian modular form f0. In particular the eigenvalues
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of f0 with respect to the Hecke operators U (p) for all p ∈ S are p-adic units, where
we recall that we writeU (p) for the Hecke operatorU (πn) where π is a uniformizer
corresponding to the prime ideal p. In this sectionwewriteα(p) forU (p)f0 = α(p)f0.
We also write {ti,p} for the Satake parameters of f0 at the prime p.

Given a k ∈ Zb and a t ∈ Za we define a μ ∈ Zb as in Sect. 4. Since in this paper
we have been working with unitary Hecke characters so far we need to establish a
correspondence between Galois characters and unitary Hecke characters. We start
by recalling the definition of a Grössencharacter of type A0 for the CM field K . In
the following for an integral ideal m of K we write I (m) for the free abelian group
generated by all prime ideals of K prime to m.

Definition 8.1 A Grössencharacter of type A0, in the sense of Weil, of conductor
dividing a given integral idealm of K , is a homomorphism χ : I (m) → Q such that
there exist integers λ(τ) for each τ : K ↪→ C, such that for each α ∈ K× we have

χ((α)) =
∏

τ

τ (α)λ(τ), if α ≡ 1 mod ×m.

Here the condition α ≡ 1 mod ×m means that if we write m =∏q q
nq with q dis-

tinct prime ideals and nq ∈ N then vq(α − 1) � nq, where vq the standard discrete
valuation associated to the prime ideal q.

It is well known (see for example [24]) if since we are taking K to be a CM field
then the above λ(τ) must satisfy some conditions. In particular if we select a CM
type of K , which we identify with the places a of F , then there exists integers dv for
each v ∈ a and an integer k such that

χ((α)) =
∏

v∈a

(
1

αk
v

(
αρ

v

αv

)dv

)

, if α ≡ 1 mod ×m.

We now keep writing χ for the associated, by class field theory, adelic character
to χ . As it is explained in [24, p. 286] the infinity type is of the form,

χa(x) =
∏

v∈a

(
xk+dv

v

xρdv
v

)

. (25)

We now consider the unitary character χ1 := χ | · |−k/2
AK

, where | · |AK the adelic
absolute value with archimedean part |x |a =∏v∈a |xv|v , where | · |v is the standard
absolute value of C. We then have that

χ1
a (x) =

∏

v∈a

(
xk/2+dv

v

x̄v
k/2+dv

)

=
∏

v∈a

(
xk+2dv

v

(xv x̄v)k/2+dv

)

=
∏

v∈a

(
xk+2dv

v

|xv|k+2dv

)

.
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In particular to a Grössencharacter χ of type A0 of infinity type as in Eq.25 we can
associate a unitary character χ1 of infinity type {mv}v∈a with mv := k + 2dv . The
relation between the associated L functions is given by

L(s, χ) = L(s + k/2, χ1).

In particular, in what follows, when we say that we consider a character χ of G
of infinite type t ∈ Za we shall mean that the corresponding unitary character, in the
way we explained above, is of infinity type t . And we will keep writing χ , instead
of χ1 for this corresponding unitary character.

Now we return to the general setting introduced at the beginning of this section.
Given a character χ of G we write fχ =∏p∈S pnp for its conductor and define the
ideal mχ := a

∏
j (pp

ρ)mp where mp = np for np �= 0 and mp = 1 for np = 0, and
a is a small enough ideal so that it is included in c and the prime to S level of the
theta series �χ , where �χ is defined at the beginning of Sect. 6. Moreover we define
m0 := a

∏
p∈S ppρ and

A+(χ) := C(χ−1)−1C(S)−1N (fχ )n
2− n

2 −n(n− r
2 )N (v),

where C(χ−1) was defined in Eq.4, C(S) in Proposition 3.1, and we recall that
v =∏p∈S p. We also define

A−(χ) := C(χ−1)−1C(S)−1N (fχ )n
2− n

2 − nr
2 N (v),

B+(χ) :=
∏

p �|fχ
N (p)n(2n−1)−n( r

2 + 3n
2 −1)−n2

⎛

⎝
∏

p �|fχ
C(p,−n + r

2
)

⎞

⎠

−ρ

,

B−(χ) :=
∏

p �|fχ
N (p)n(2n−1)−n(− r

2 + 5n
2 −1)−n2

⎛

⎝
∏

p �|fχ
C(p,−3n − r

2
)

⎞

⎠

−ρ

,

where C(p, s) was defined in Theorem 6.7. We also write C0(mχ ) for the quantity
appearing in Theorem 4.1 by taking c′′ equal tomχ there. We then have the following
theorems,

Theorem 8.2 Assume we are given a t ∈ Za such that

(kv − μv − n) + (kvρ − μvρ) = r, ∀v ∈ a

for some r � n. Moreover assume that r > n if ψ1 = 1 or c = g. Then there exists
a measure μ+

f,t of G such that for any primitive Hecke character χ of conductor
fχ =∏p p

np of infinite type χa(x) = x−t
a |xa|t we have
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∫

G
χdμ+

f,t = A+(χ)B+(χ)

C0(mχ )

⎛

⎝
∏

p|fχ
α(p)−np

⎞

⎠ τ(χ)−nρ×

∏

p �|fχ

n∏

i=1

(
1 − χ(p)−1t−1

i,p N (p)
r−n+2

2

1 − χ(p)ti,pN (p)
n−r
2 −1

)

× Lv(
r+n
2 , f, χ)

πβ�f0
,

where β is as in Theorem 5.2, and �f0 ∈ C× is the period defined in Theorem5.1
corresponding to the eigenform f0. In the case of r = n + 1 and F = Q we exclude
the characters χ such that (χψ)1 = θ .

We remark here that on the left hand side,χ denotes aGalois character towhich by
class field theory we can associate a Hecke character of A0 type, and by the process
described above we can further associate to it a unitary character χ1. Then as it was
indicated above it is our convention that in the right hand side of the above theorem
we write χ for this χ1. Moreover we recall that we declared the infinite type of χ to
be the infinite type of χ1.

Furthermore we remark that the archimedean periods we use for our interpolation
properties are the ones related to f0. However it is not hard to see by the definition
of these periods in [6] that they are related to �f by some algebraic factor, which
can be made very precise. For the cases excluded in the above theorem we have the
following theorem.

Theorem 8.3 We let q be a prime ideal of F, prime to p. Assume that r = n and
further thatψ1 = 1 or c = g there exists a measureμ+

f,q,t such that for all characters
χ of G of infinite type t we have

∫

G
χdμ+

f,q,t = A+(χ)B+(χ)

C0(mχ )

⎛

⎝
∏

p|fχ
α(p)−np

⎞

⎠ τ(χ)−nρ×

n−1∏

i=0
i+n≡1mod 2

(1 − (χψ)1(q)N (q)i+1)
∏

p �|fχ

n∏

i=1

(
1 − χ(p)−1t−1

i,p N (p)

1 − χ(p)ti,pN (p)−1

)
Lv(n, f, χ)

πβ�f0
,

where A+(χ) and B+(χ) are defined by taking r = n there.

For the other critical value, which does not involve nearly-holomorphic Eisenstein
series we have the following theorem.

Theorem 8.4 Assume that ψ1 �= 1, c �= g and r � n. Then there exists a measure
μ−

f,t on G such that for all characters χ of G of infinite type t we have,

∫

G
χdμ−

f,t = A−(χ)B−(χ)

C0(mχ )

⎛

⎝
∏

p|fχ
α(p)−np

⎞

⎠ τ(χ)−nρ
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∏

p �|fχ

n∏

i=1

(
1 − χ(p)t−1

i,p N (p)
n−r+2

2

1 − χ(p)ti,pN (p)
r−n
2 −1

)
Lv(

3n−r
2 , f, χ)

πβ�f0
,

And finally,

Theorem 8.5 Assume that ψ1 = 1 or c = g, and moreover r � n. Let q be an ideal
prime to p. Then there exist a measure μ−

f,q,t such that

∫

G
χdμ−

f,q = A−(χ)B−(χ)

C0(mχ )

⎛

⎝
∏

p|fχ
α(p)−np

⎞

⎠ τ(χ)−nρ×

n−1∏

i=0
n+i≡1mod 2

(1 − (χψ)1(q)N (q)r+i+1−n)
∏

p �|fχ

n∏

i=1

(
1 − χ(p)−1t−1

i,p N (p)
n−r+2

2

1 − χ(p)ti,pN (p)
r−n
2 −1

)

×

Lv(
3n−r
2 , f, χ)

πβ�f0
.

Remark 8.6 We remark that in the interpolation properties above, at the modified
Euler factors above p, we use the Satake parameters of the Hermitian form f0, and
not of f . However Theorem 7.3 provides a relation between them.

The rest of this section is devoted to proving the above theorems.Wewill establish
in details the proof of Theorem 8.2 and then comment on the needed modifications
to establish the rest.

We define,

F +
χ := �∗E∗

+|
⎛

⎝
∏

p|fχ
V (πp)

np−1

⎞

⎠

⎛

⎝
∏

p �|fχ
C(p, s+)−1 ˜J (p, s+)

⎞

⎠ ,

and

F −
χ := �∗E∗

−|
⎛

⎝
∏

p|fχ
V (πp)

np−1

⎞

⎠

⎛

⎝
∏

p �|fχ
C(p, s−)−1 ˜J (p, s−)

⎞

⎠ ,

where �∗ and E∗± are the series defined at the beginning of Sect. 6, associated to
the character χ , andC(p, s±) is defined in Theorem 6.7.We now define the following
distribution onG, which later we will show it is actually a measure. For the definition
of the distribution it is enough to give the values at each character χ of infinite type t .
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∫

G
χdμ′

f,+,t := 1

πβ�f0
A+(χ)

⎛

⎝
∏

p|fχ
α(p)−np

⎞

⎠

⎛

⎝
∏

p �|fχ
α(p)−2

⎞

⎠ τ(χ)−nρ×

< f0|W,F +
χ |
∏

p|fχ
U (p)np−1 >m0 ,

We now show that μ′
f,+,t is actually a measure. We start by recalling the classical

Kummer congruences (see [24]). Let Y be a profinite topological space, and R a
p-adic ring.

Proposition 8.7 (abstract Kummer congruences) Suppose R is flat over Zp, and let
{ fi }i∈I be a collection of elements of Cont (Y, R), whose R[1/p]-span is uniformly
dens inCont (Y, R[1/p]). Let {ai }i∈I be a family elements of R with the same indexing
set I . Then there exists an R-valued p-adic measure μ on Y such that

∫

Y
fi dμ = ai , ∀i ∈ I

if and only if the ai ’s satisfy the following “Kummer congruences”:
for every collection {bi }i∈I of elements in R[1/p]which are zero for all but finitely

many i , and every integer n such that

∑

i

bi fi (y) ∈ pn R, ∀y ∈ Y,

we have ∑

i

biai ∈ pn R.

Proof [24] �

Proposition 8.8 The distribution μ′
f,+,t is a measure.

Proof We establish the Kummer congruences. We first start with a remark. For a
character χ of conductor fχ =∏p∈S pnp we consider any vector c = (cp)p∈S with
cp ∈ Z, and cp � max(np, 1) for all p ∈ S. Then, by the same considerations as in
the proof of Proposition 6.10, we have that

⎛

⎝
∏

p|fχ
α(p)−np

⎞

⎠

⎛

⎝
∏

p �|fχ
α(p)−2

⎞

⎠ < f0|W,F +
χ |
∏

p|fχ
U (p)np−1 >m0

⎛

⎝
∏

p|fχ
α(p)−np−1

⎞

⎠

⎛

⎝
∏

p �|fχ
α(p)−2

⎞

⎠ < f0|W,F +
χ |
∏

p|fχ
U (p)np >m0=
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⎛

⎝
∏

p|fχ
α(p)−cp−1

⎞

⎠

⎛

⎝
∏

p �|fχ
α(p)−cp−1

⎞

⎠×

< f0|W,F +
χ |
⎛

⎝
∏

p|fχ
U (p)cp

⎞

⎠

⎛

⎝
∏

p �|fχ
U (p)cp−1

⎞

⎠ >m0 .

We now consider a finite set of characters χi with i = 1, . . .  of conductors
fχi =∏p∈S pnp,i . We define c = (cp)p∈S with cp := max(maxi (np,i ), 1). We now
let O be a large enough p-adic ring and take elements ai ∈ O[1/p] such that

∑

i=0

aiχi ∈ pmO

for some m ∈ N. We then establish the congruences

∑

i=0

ai A
+(χi )τ (χ)−nρF +

χi
|
⎛

⎝
∏

p|fχi
U (p)cp

⎞

⎠

⎛

⎝
∏

p �|fχ
U (p)cp−1

⎞

⎠ ∈ pmO[[q]].

The above statement should be understood that the q-expansion of the Hermitian
modular form on the left has coefficients in pmO.

The first observation here is that by Theorem 6.7 and by the discussion right after
Proposition 3.5, the Fourier expansion for all

Gi := F +
χi

|
⎛

⎝
∏

p|fχi
U (p)cp

⎞

⎠

⎛

⎝
∏

p �|fχ
U (p)cp−1

⎞

⎠ ,

is supported at the same Hermitian matrices. That is, the sets Suppi := {(τ, q) :
c(τ, q;Gi ) �= 0} for i = 1, . . . , , are the same.
We note here that we need to apply one power less of the Hecke operators U (p) at
the primes p which divide fχ , since for the rest we have already applied U (p) as the

n’th term of the operator ˜J (p, s+).
It now follows from the explicit description of the Fourier coefficients given in

Propositions 3.1 and 3.5 and by Eq.20 that the coefficients of A+(χi )τ (χi )
−nρF +

χi

are all p-integral and that we have the congruences

∑

i=0

ai A
+(χi )τ (χ)−ρFχi |

⎛

⎝
∏

p|fχi
U (p)cp

⎞

⎠

⎛

⎝
∏

p∈S
U (p)cp−1

⎞

⎠ ∈ pmO[[q]].
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Indeed, let us write R for the “polynomial” ring O[q|q ∈ PS], in the variables q ∈
PS . where PS is the set of prime ideals of K not in the set S. A character χ of
G, induces then a ring homomorphism χR : R → Qp, where we have extended

O- linear the multiplicative map χ : PS → Q
×
p . Given an element P ∈ R we write

P(χ) for χR(P) ∈ Qp. Then by Propositions 3.5 and 3.1 we have that the Fourier
coefficients of A+(χi )τ (χi )

−nρF +
χi

at any given Hermitian matrix τ are of the form
Pτ1(χi )Pτ2(χi ) = Pτ (χi ) for some Pτi , Pτ ∈ R, with Pτ = Pτ1 Pτ2 . In particular if we
have
∑

i aiχi ∈ pmO then
∑

i ai Pτ (χi ) ∈ pmO. We also remark here that we need to
use alsoProposition 3.3,which guarantees that the coefficients of theEisenstein series
are supported only at full rankHermitianmatrices, and hence no L-values ofDirichlet
series appear in the Fourier coefficients (and so the polynomial description above is
enough). Moreover we also use the fact that the operatorU (p) is p-integral as it was
shown using the q-expansion in Eq.19, where in the notation there U (p)m = T (pm)

for any m ∈ N and p ∈ S.
It is now a standard argument using the finite dimension of the space of cusp forms

of a particular level (see for example [2, Lemma 9.7] or [11, p. 134]) to show that
by taking projection to f0|W we obtain a measure. For this of course we use also by
Theorem 5.1, �(f0) is up to algebraic factor equal to < f0, f0 >. Hence we conclude
that μ′

f,t,+ is indeed a measure. �

We now define the measure μg on G by

∫

G
χdμg :=

∏

v∈b

gv(χ(πv)|πv|r+n),

where gv(X) are the polynomials appearing in Theorem 4.1. Note that gv ∈ Z[X ]
with gv(0) = 1, and hence since we evaluate then at places prime to p, we have that
μg is indeed a measure. We now define are measure μ+

f,2 as the convolution of μ′
f,+

with μg. In particular we now obtain after evaluating at a character χ that,

∫

G
χdμ+

f,2 =
(∫

G
χdμ′

f,+

)(∫

G
χdμg

)

=

1

πβ�f0
A+(χ)

⎛

⎝
∏

p|fχ
α(p)−np

⎞

⎠

⎛

⎝
∏

p �|fχ
α(p)−2

⎞

⎠ τ(χ)−nρ×

< f0|W,F +
χ |
∏

p|fχ
U (p)np−1 >m0

∏

v∈b

gv(χ(πv)|πv|r+n).
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However we have by Proposition 6.10, by taking there np = cp for all p|fχ that

⎛

⎝
∏

p|fχ
α(p)−np

⎞

⎠

⎛

⎝
∏

p �|fχ
α(p)−2

⎞

⎠ < f0|W,F +
χ >m0=

⎛

⎝
∏

p|fχ
α(p)−np

⎞

⎠

⎛

⎝
∏

p �|fχ
α(p)−2

⎞

⎠ < f0|
∏

p �|fχ
J (p, s+),�χE+,χ >mχ

,

and using Lemma 6.3, and in particular Eq.9, we get that the above is equal to

⎛

⎝
∏

p|fχ
α(p)−np

⎞

⎠

⎛

⎝
∏

p �|fχ
α(p)−1

⎞

⎠
∏

p �|fχ
(−1)nN (p)n(2n−1)−n( n+r

2 )×

n∏

i=1

(1 − χ(p)−1t−1
i N (p)

r−n+2
2 ) < f0,�χ Eχ,+ >mχ

.

We now use Theorem 4.1, where we pick an invertible τ such that c(τ, r, f0) �= 0,
which is of course always possible since f0 is a cusp form. Moreover after using the
fact that c(τ, πr, f0) = N (p)−n2α(p)c(τ, r, f0) we have that

∫

G
χdμ+

f,2 = B × C−1
0

⎛

⎝
∏

p|fχ
α(p)−np

⎞

⎠ A+(χ)τ(χ)−nρ×

⎛

⎝
∏

p �|fχ
N (p)n(2n−1)−n( n+r

2 )−n2
n∏

i=1

(1 − χ(p)−1t−1
i N (p)

r−n+2
2 )

⎞

⎠
L( r+n

2 , f0, χ)

πβ�f0
,

where B is some non-zero algebraic constant independent of χ . We then define the
measure μf,t,+ := B−1μf,2. Using the fact that f and f0 have the same Satake para-
meters away from p, we obtain the claimed interpolation properties of Theorem 8.2.

The proofs of Theorems 8.3, 8.4 and 8.5 are similar, we just need to take some
extra care for the fact that in the Fourier coefficients of the Eisenstein series involve
values of various Dirichlet series. In order to establish the congruences we use the
Barsky, Cassou-Noguès, Deligne–Ribet p-adic L-function [1, 10, 14]. Let us write
F(p∞) for the maximal abelian extension of F unramified outside p and infinity.
Then it is known that if we pick an ideal q of F prime to p, then there exists a measure
μF,q of the Galois group G ′ := Gal(F(p∞)/F), such that for any k � 1 we have,

∫

G ′
χNkdμF,q = (1 − χ(q)N (q)k

)
L(p)(1 − k, χ),
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where N denotes the cyclotomic character. Moreover if we select some primitive
character ψ , of some non-trivial conductor prime to p, then we can define a twisted
measure μF,ψ on G ′ such that for any k � 1 we have,

∫

G ′
χNkdμF,ψ = L(p)(1 − k, χψ),

where in both equations L(p)(1 − k, ?)means that we remove the Euler factors above
p. Nowwe are ready to dealwith the proof of the theorems.We explain it for Theorem
8.3, and similarly we argue for the rest. The main difference is the fact that the τ ’th
Fourier expansion of �∗E∗ is of the form Pτ1(χ)Pτ2(χ) (with notation as before)
multiplied by the L-values

∏n−1−r2
i=0 Lc(−i, χ1θ

n+i−1), where r2 is the rank of the
matrix τ2. That is we need to establish congruences of the form

∑

i

ai Pτ1(χi )Pτ2(χi )

n−1∏

i=0
i+n≡1mod 2

(1 − χ−1
i,1 (q)N (q)i+1)×

n−1−r2∏

i=0

Lc(−i, χ−1
i,1 θn+i−1) ∈ pnO.

But now the congruences follow from the existence of the Cassou-Nogues, Deligne–
Ribet p-adic measure since the above congruences can be understood as convolution
(which we denote as product below) of the measures

⎛

⎜
⎝

n−1∏

i=0
i+n≡1 mod 2

N i+1μF,q

⎞

⎟
⎠ �

(
n−1−r2∏

i=0

N i+1μF,θn+i−1

)

� P,

where P is the measure in the Iwasawa algebra represented by the polynomial Pτ1 ×
Pτ2 ∈ R, where the Iwasawa algebra. The rest of the proof is entirely identical where
of coursewe need to replace the quantities A+(χ) and B+(χ)with A−(χ) and B−(χ)

respectively.

9 The Values of the p-adic Measures

We now obtain a result regarding the values of the p-adic measures constructed
above. We show the following theorem.

Theorem 9.1 Writeμ for any of the measures constructed in Theorems 8.2, 8.3, 8.4
and 8.5. Define the normalized measure
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μ′ :=
(
τ(ψ1θ

n2)
)−ρ

i−n
∑

v∈a pvμ,

where the pv’s are defined as in Theorem5.2. Assume that one of the cases of Theorem
5.2 occurs. Then μ′ is W-valued, where W is the field appearing in the Theorem 5.2.

Proof By comparing the interpolation properties of the measure μ′ and the reci-
procity law shown in Theorem 5.3, we need only to establish that the Gauss sums

τ(χ1) and τ(χ) have the same reciprocity properties, namely
(

τ(χ)

τ(χ1)

)σ = τ(χσ )

τ (χσ
1 )

for

any σ ∈ Gal(Q/W ), and any character χ of G. For the proof we follow the strategy
sketched in [17, p. 33] and [28, p. 105].
We first recall a property (see [26, p. 36]) of the transfer map,

det (ρ) = θ · χ ◦ Ver = θ · χ1,

where ρ := I ndK
F (χ) is the two-dimensional representation induced from K to F ,

and for the second equakity we used the fact that the restriction F×
A ↪→ K×

A on the
automorphic side is the transfer map (Ver) on the Galois side. We note here that the
result in [26] is more general but we have applied it to our special case (i.e. χ is a
one-dimensional representation and the extension K/F is quadratic). Recalling that
the gauss sum attached to a character is closely related to the Deligne–Langlands
epsilon factor attached to the same character, we have that

τ(det (ρ)) = τ(θχ1) = ±τ(χ1)τ (θ),

where we have used the fact that K/F is unramified above p, χ1 can be ramified
only above p, θ is a quadratic character, and the property [32, p. 15, Eq. (3.4.6)].
Now we note that by [13, p. 330, Eq.5.5.1 and 5.5.2] we have that

(
τ(ρ)

τ(det (ρ))

)σ

= τ(ρσ )

τ (det (ρσ ))

for all σ ∈ Gal(Q/Q). We note here that we write τ(ρ) for the Deligne–Langlands
epsilon factor associated to the representation ρ. In particular since τ(θ) ∈ W we
have that (

τ(ρ)

τ(χ1)

)σ

= τ(ρσ )

τ (χσ
1 )

,

and now using the fact that also τ(ρ) = τ(χ) up to elements in W× we conclude
that (

τ(χ)

τ(χ1)

)σ

= τ(χσ )

τ (χσ
1 )

, σ ∈ Gal(Q/W ),

which concludes the proof of the theorem. �
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In [9], Hida proved an analogous statement for p-adic families of non-CM ordinary
cuspidal eigenforms, where p is any odd prime integer. We fix once and for all an
embedding Q ↪→ Qp, identifying Gal(Qp/Qp) with a decomposition subgroup Gp

of Gal(Q/Q). We also choose a topological generator u of Z×
p . Let � = Zp[[T ]]

be the Iwasawa algebra and let m = (p, T ) be its maximal ideal. A special case of
Hida’s first main theorem ([9, Theorem I]) is the following.

Theorem 1.1 Let f be a non-CM Hida family of ordinary cuspidal eigenforms
defined over a finite extension I of � and let ρf : Gal(Q/Q) → GL2(I) be the asso-
ciated Galois representation. Assume that ρf is residually irreducible and that there
exists an element d in its image with eigenvalues α, β ∈ Z×

p such that α2 �≡ β2

(mod p). Then there exists a nonzero ideal l ⊂ � and an element g ∈ GL2(I) such
that

g�(l)g−1 ⊂ Im ρf ,

where �(l) denotes the principal congruence subgroup of SL2(�) of level l.

Under mild technical assumptions it is also shown in [9, Theorem II] that if the
image of the residual representation of ρf contains a conjugate of SL2(Fp) then l is
trivial or m-primary, and if the residual representation is dihedral “of CM type” the
height one prime factors P of l are exactly those of the g.c.d. of the adjoint p-adic
L function of f and the anticyclotomic specializations of Katz’s p-adic L functions
associated with certain Hecke characters of an imaginary quadratic field. This set of
primes is precisely the set of congruence primes between the given non-CM family
and the CM families.

In her Ph.D. dissertation (see [12]), J. Lang improved on Hida’s Theorem I. Let
T be Hida’s big ordinary cuspidal Hecke algebra; it is finite and flat over �. Let
Spec I be an irreducible component of T. It corresponds to a surjective �-algebra
homomorphism θ : T → I (a �-adic Hecke eigensystem). We also call θ a Hida
family. Assume that it is not residually Eisenstein. It gives rise to a residually irre-
ducible continuous Galois representation ρθ : GQ → GL2(I) that is p-ordinary. We
suppose for simplicity that I is normal. Consider the �-algebra automorphisms σ

of I for which there exists a finite order character ησ : GQ → I× such that for every
prime � not dividing the level, σ ◦ θ(T�) = ησ (�)θ(T�) (see [12, 17]). These auto-
morphisms form a finite abelian 2-group �. Let I0 be the subring of I fixed by �.
Let H0 = ⋂

σ∈� ker ησ ; it is a normal open subgroup of GQ. One may assume, up to
conjugation by an element of GL2(I), that ρθ |H0 takes values in GL2(I0).

Theorem 1.2 [12, Theorem 2.4] Let θ : T → I be a non-CM Hida family such that
ρθ is absolutely irreducible. Assume that ρθ |H0 is an extension of two distinct char-
acters. Then there exists a nonzero ideal l ⊂ I0 and an element g ∈ GL2(I) such
that

g�(l)g−1 ⊂ Im ρθ ,

where �(l) denotes the principal congruence subgroup of SL2(I0) of level l.
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For all of these results it is important to assume the ordinarity of the family, as it
implies the ordinarity of theGalois representation and in particular that some element
of the image of inertia at p is conjugate to the matrix

CT =
(
u−1(1 + T ) ∗

0 1

)

.

Conjugation by the element above defines a �-module structure on the Lie algebra
of a pro-p subgroup of Im ρθ and this is used to produce the desired ideal l. Hida
and Lang use Pink’s theory of Lie algebras of pro-p subgroups of SL2(I).

In this paper we propose a generalization of Hida’s work to the finite slope case.
We establish analogues of Hida’s Theorems I and II. These are Theorems 6.2, 7.1 and
7.4 in the text. Moreover, we put ourselves in the more general setting considered
in Lang’s work. In the positive slope case the existence of a normalizing matrix
analogous to CT above is obtained by applying relative Sen theory ([19, 21]) to the
expense of extending scalars to the completion Cp of an algebraic closure of Qp.

More precisely, for every h ∈ (0,∞), we define an Iwasawa algebra�h = Oh[[t]]
(where t = p−sh T for some sh ∈ Q∩] 1

p−1 ,∞[ and Oh is a finite extension of Zp

containing psh such that its fraction field is Galois over Qp) and a finite torsion
free �h-algebra Th (see Sect. 3.1), called an adapted slope � h Hecke algebra. Let
θ : Th → I◦ be an irreducible component; it is finite and torsion-free over �h . The
notation I◦ is borrowed from the theory of Tate algebras, but I◦ is not a Tate or an
affinoid algebra. We write I = I◦[p−1]. We assume for simplicity that I◦ is normal.
The finite slope family θ gives rise to a continuous Galois representation ρθ : GQ →
GL2(I

◦). We assume that the residual representation ρθ is absolutely irreducible. We
introduce the finite abelian 2-group � as above, together with its fixed ring I0 and the
open normal subgroup H0 ⊂ GQ. In Sect. 5.1 we define a ring Br (with an inclusion
I0 ↪→ Br ) and a Lie algebraHr ⊂ sl2(Br ) attached to the image of ρθ . In the positive
slope case CM families do not exist (see Sect. 3.3) hence no “non-CM” assumption
is needed in the following. As before we can assume, after conjugation by an element
of GL2(I

◦), that ρθ (H0) ⊂ GL2(I
◦
0). Let P1 ⊂ �h be the prime (u−1(1 + T ) − 1).

Theorem 1.3 (Theorem 6.2) Let θ : Th → I◦ be a positive slope family such that
ρθ |H0 is absolutely irreducible. Assume that there exists d ∈ ρθ (H0)with eigenvalues
α, β ∈ Z×

p such thatα
2 �≡ β2 (mod p). Then there exists a nonzero ideal l ⊂ I0[P−1

1 ]
such that

l · sl2(Br ) ⊂ Hr .

The largest such ideal l is called the Galois level of θ .
We also introduce the notion of fortuitous CM congruence ideal for θ (see

Sect. 3.4). It is the ideal c ⊂ I given by the product of the primary ideals modulo
which a congruence between θ and a slope � h CM form occurs. Following the
proof of Hida’s Theorem II we are able to show (Theorem 7.1) that the set of primes
of I0 = I◦

0[p−1] containing l coincideswith the set of primes containing c ∩ I0, except
possibly for the primes of I0 above P1 (the weight 1 primes).
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Several generalizations of the present work are currently being studied by one
of the authors.1 They include a generalization of [10], where the authors treated the
ordinary case forGSp4 with a residual representation induced from the one associated
with a Hilbert modular form, to the finite slope case and to bigger groups and more
types of residual representations.

Acknowledgements. This paper owes much to Hida’s recent paper [9]. We also
thank Jaclyn Lang for making her dissertation [12] available to us and for some
very useful remarks pertaining to Sect. 4. We thank the referee of this article for the
careful reading of the manuscript and for useful suggestions which hopefully led to
improvements.

2 The Eigencurve

2.1 The Weight Space

Fix a prime integer p > 2. We call weight space the rigid analytic space over Qp,
W, canonically associated with the formal scheme over Zp, Spf(Zp[[Z×

p ]]). The
Cp-points of W parametrize continuous homomorphisms Z×

p → C×
p .

Let X be a rigid analytic space defined over some finite extension L/Qp. We say
that a subset S of X (Cp) is Zariski-dense if the only closed analytic subvariety Y of
X satisfying S ⊂ Y (Cp) is X itself.

For every r > 0, we denote by B(0, r), respectively B(0, r−), the closed, respec-
tively open, disc in Cp of centre 0 and radius r . The space W is isomorphic to a
disjoint union of p − 1 copies of the open unit discB(0, 1−) centre in 0 and indexed
by the group Z/(p − 1)Z = μ̂p−1. If u denotes a topological generator of 1 + pZp,
then an isomorphism is given by

Z/(p − 1)Z × B(0, 1−) → W, (i, v) �→ χi,v,

whereχi,v((ζ, ux )) = ζ i (1 + v)x . Here wewrote an element ofZ×
p uniquely as a pair

(ζ, ux ) with ζ ∈ μp−1 and x ∈ Zp. We make once and for all the choice u = 1 + p.
We say that a point χ ∈ W(Cp) is classical if there exists k ∈ N and a finite order

characterψ : Z×
p → C×

p such that χ is the character z �→ zkψ(z). The set of classical
points is Zariski-dense in W(Cp).

If Spm R ⊂ W is an affinoid open subset, we denote by κ = κR : Z×
p → R× its

tautological character given by κ(t)(χ) = χ(t) for every χ ∈ Spm R. Recall ([3,
Proposition 8.3]) that κR is r -analytic for every sufficiently small radius r > 0 (by
which we mean that it extends to a rigid analytic function on Z×

pB(1, r)).

1A. Conti.
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2.2 Adapted Pairs and the Eigencurve

Let N be a positive integer prime to p. We recall the definition of the spectral
curve ZN and of the cuspidal eigencurve CN of tame level �1(N ). These objects
were constructed in [6] for p > 2 and N = 1 and in [3] in general. We follow the
presentation of [3, Part II]. Let Spm R ⊂ W be an affinoid domain and let r = p−s

for s ∈ Q be a radius smaller than the radius of analyticity of κR . We denote by MR,r

the R-module of r -overconvergent modular forms of weight κR . It is endowed it with
a continuous action of the Hecke operators T�, � � Np, and Up. The action of Up on
MR,r is completely continuous, so we can consider its associated Fredholm series
FR,r (T ) = det(1 −UpT |MR,r ) ∈ R{{T }}. These series are compatible when R and
r vary, in the sense that there exists F ∈ �{{T }} that restricts to FR,r (T ) for every
R and r .

The series FR,r (T ) converges everywhere on the R-affine line Spm R × A1,an ,
so it defines a rigid curve ZN

R,r = {FR,r (T ) = 0} in Spm R × A1,an . When R and r
vary, these curves glue into a rigid space ZN endowed with a quasi-finite and flat
morphismwZ : ZN → W. The curve ZN is called the spectral curve associated with
the Up-operator. For every h � 0, let us consider

ZN ,�h
R = ZN

R ∩ (
Spm R × B(0, ph)

)
.

By [3, Lemma 4.1] ZN ,�h
R is quasi-finite and flat over Spm R.

We now recall how to construct an admissible covering of ZN .

Definition 2.1 We denote by C the set of affinoid domains Y ⊂ Z such that:

• there exists an affinoid domain Spm R ⊂ W such that Y is a union of connected
components of w−1

Z (Spm R);
• the map wZ |Y : Y → Spm R is finite.

Proposition 2.2 [3, Theorem 4.6] The covering C is admissible.

Note in particular that an element Y ∈ Cmust be contained in ZN ,�h
R for some h.

For every R and r as above and every Y ∈ C such that wZ (Y ) = Spm R, we can
associate with Y a direct factor MY of MR,r by the construction in [3, Sect. I.5]. The
abstract Hecke algebra H = Z[T�]��Np acts on MR,r and MY is stable with respect
to this action. Let TY be the R-algebra generated by the image of H in EndR(MY )

and let CN
Y = SpmTY . Note that it is reduced as all Hecke operators are self-adjoint

for a certain pairing and mutually commute.
For every Y the finite covering CN

Y → Spm R factors through Y → Spm R. The
eigencurve CN is defined by gluing the affinoids CN

Y into a rigid curve, endowed
with a finite morphism CN → ZN . The curve CN is reduced and flat over W since
it is so locally.

We borrow the following terminology from Bellaïche.
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Definition 2.3 [1, Definition II.1.8] Let Spm R ⊂ W be an affinoid open subset
and h > 0 be a rational number. The couple (R, h) is called adapted if ZN ,�h

R is an
element of C.
By [1, Corollary II.1.13] the sets of the form ZN ,�h

R are sufficient to admissibly cover
the spectral curve.

Now we fix a finite slope h. We want to work with families of slope � h which
are finite over a wide open subset of the weight space. In order to do this it will be
useful to know which pairs (R, h) in a connected component of W are adapted. If
Spm R′ ⊂ Spm R are affinoid subdomains of W and (R, h) is adapted then (R′, h)

is also adapted by [1, Proposition II.1.10]. By [3, Lemma 4.3], the affinoid Spm R is
adapted to h if and only if the weight map ZN ,�h

R → Spm R has fibres of constant
degree.

Remark 2.4 Given a slope h and a classical weight k, it would be interesting to have
a lower bound for the radius of a disc of centre k adapted to h. A result of Wan ([24,
Theorem 2.5]) asserts that for a certain radius rh depending only on h, N and p,
the degree of the fibres of ZN ,�h

B(k,rh)
→ SpmB(k, rh) at classical weights is constant.

Unfortunately we do not know whether the degree is constant at all weights of
B(k, rh), so this is not sufficient to answer our question. Estimates for the radii of
adapted discs exist in the case of eigenvarieties for groups different than GL2; see
for example the results of Chenevier on definite unitary groups ([4, Sect. 5]).

2.3 Pseudo-characters and Galois Representations

Let K be a finite extension of Qp with valuation ring OK . Let X be a rigid analytic
variety defined over K . We denote by O(X) the ring of global analytic functions on
X equipped with the coarsest locally convex topology making the restriction map
O(X) → O(U ) continuous for every affinoidU ⊂ X . It is a Fréchet space isomorphic
to the inverse limit over all affinoid domains U of the K -Banach spaces O(U ). We
denote byO(X)◦ theOK -algebra of functions bounded by 1 on X , equipped with the
topology induced by that on O(X). The question of the compactness of this ring is
related to the following property of X .

Definition 2.5 [2, Definition 7.2.10] We say that a rigid analytic variety X defined
over K is nested if there is an admissible covering X = ⋃

Xi by open affinoids Xi

defined over K such that the maps O(Xi+1) → O(Xi ) induced by the inclusions are
compact.

We equip the ringO(X)◦ with the topology induced by that onO(X) = lim←−i
O(Xi ).

Lemma 2.6 [2, Lemma 7.2.11(ii)] If X is reduced and nested, then O(X)◦ is a
compact (hence profinite) OK -algebra.

We will be able to apply Lemma 2.6 to the eigenvariety thanks to the following.
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Proposition 2.7 [2, Corollary 7.2.12] The eigenvariety CN is nested for K = Qp.

Given a reduced nested subvariety X of CN defined over a finite extension K
of Qp there is a pseudo-character on X obtained by interpolating the classical
ones. Let QNp be the maixmal extension of Q uniamified outside Np and let GQ,

Np = Gal(QNp/Q).

Proposition 2.8 [1, Theorem IV.4.1] There exists a unique pseudo-character

τ : GQ,Np → O(X)◦

of dimension 2 such that for every � prime to Np, τ(Frob�) = ψX (T�), where ψX is
the composition of ψ : H → O(CN )◦ with the restriction map O(CN )◦ → O(X)◦.

Remark 2.9 One can take as an example of X a union of irreducible components of
CN in which case K = Qp. Later we will consider other examples where K �= Qp.

3 The Fortuitous Congruence Ideal

In this section we will define families with slope bounded by a finite constant and
coefficients in a suitable profinite ring. We will show that any such family admits at
most a finite number of classical specializations which are CMmodular forms. Later
we will define what it means for a point (not necessarily classical) to be CM and we
will associate with a family a congruence ideal describing its CM points. Contrary to
the ordinary case, the non-ordinary CM points do not come in families so the points
detected by the congruence ideal do not correspond to a crossing between a CM and
a non-CM family. For this reason we call our ideal the “fortuitous congruence ideal”.

3.1 The Adapted Slope � h Hecke Algebra

Throughout this section we fix a slope h > 0. Let CN ,�h be the subvariety of CN

whose points have slope � h. Unlike the ordinary case treated in [9] the weight map
w�h : CN ,�h → W is not finite which means that a family of slope � h is not in
general defined by a finite map over the entire weight space. The best we can do
in the finite slope situation is to place ourselves over the largest possible wide open
subdomainU ofW such that the restricted weight mapw�h |U : CN ,�h ×W U → U
is finite. This is a domain “adapted to h” in the sense of Definition 2.3 where only
affinoid domains were considered. The finiteness property will be necessary in order
to apply going-up and going-down theorems.

Let us fix a rational number sh such that for rh = p−sh the closed disc B(0, rh)
is adapted for h. We assume that sh > 1

p−1 (this will be needed later to assure the

convergence of the exponential map). Let ηh ∈ Qp be an element of p-adic valuation
sh . Let Kh be the Galois closure (in Cp) of Qp(ηh) and let Oh be its valuation
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ring. Recall that T is the variable on the open disc of radius 1. Let t = η−1
h T and

�h = Oh[[t]]. This is the ring of analytic functions,withOh-coefficients and bounded
by one, on the wide open disc Bh of radius p−sh . There is a natural map � → �h

corresponding to the restriction of analytic functions on the open disc of radius 1,
with Zp coefficients and bounded by 1, to the open disc of radius rh . The image of
this map is the ring Zp[[ηt]] ⊂ Oh[[t]].

For i � 1, let si = sh + 1/ i andBi = B(0, p−si ). The open discBh is the increas-
ing union of the affinoid discsBi . For each i amodel forBi over Kh is given byBerth-
elot’s construction of Bh as the rigid space associated with the Oh-formal scheme
Spf �h . We recall it briefly following [7, Sect. 7]. Let

A◦
ri = Oh〈t, Xi 〉/(pXi − t i ).

We have Bi = Spm A◦
ri [p−1] as rigid space over Kh . For every i we have a mor-

phism A◦
ri+1

→ A◦
ri given by

Xi+1 �→ Xi t

t �→ t

Wehave induced compactmorphisms A◦
ri+1

[p−1] → A◦
ri [p−1], henceopen immer-

sionsBi → Bi+1 defined over Kh . The wide open discBh is defined as the inductive
limit of the affinoids Bi with these transition maps. We have �h = lim←−i

A◦
ri .

Since the si are strictly bigger than sh for each i , B(0, p−si ) = Spm A◦
ri [p−1] is

adapted to h. Therefore for every r > 0 sufficiently small and for every i � 1 the
image of the abstract Hecke algebra acting on MAri ,r

provides a finite affinoid A◦
ri -

algebra T
�h
A◦
ri

,r . The morphism wA◦
ri

,r : SpmT
�h
A◦
ri

,r → Spm A◦
ri is finite. For i < j we

have natural open immersions SpmT
�h
A◦
r j

,r → SpmT
�h
A◦
ri

,r and corresponding restric-

tion maps T
�h
A◦
ri

,r → T
�h
A◦
r j

,r . We call Ch the increasing union
⋃

i∈N,r>0 SpmT
�h
A◦
ri

,r ; it

is a wide open subvariety ofCN . We denote byTh the ring of rigid analytic functions
bounded by 1 onCh . We have Th = O(Ch)

◦ = lim←−i,r
T

�h
A◦
ri

,r . There is a natural weight

map wh : Ch → Bh that restricts to the maps wA◦
ri

,r . It is finite because the closed
ball of radius rh is adapted to h.

3.2 The Galois Representation Associated with a Family
of Finite Slope

Since O(Bh)
◦ = �h , the map wh gives Th the structure of a finite �h-algebra; in

particular Th is profinite.
Let m be a maximal ideal of Th . The residue field k = Th/m is finite. Let Tm

denote the localization of Th at m. Since �h is henselian, Tm is a direct factor of
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Th , hence it is finite over �h ; it is also local noetherian and profinite. It is the ring of
functions bounded by 1 on a connected component ofCh . LetW = W (k) be the ring
ofWitt vectors of k. By the universal property ofW ,Tm is aW -algebra. The affinoid
domain SpmTm contains a zarisiki-dense set of points x corresponding to cuspidal
eigenforms fx of weight w(x) = kx � 2 and level Np. The Galois representations
ρ fx associated with the fx give rise to a residual representation ρ : GQ,Np → GL2(k)
that is independent of fx . By Proposition 2.8, we have a pseudo-character

τTm
: GQ,Np → Tm

such that for every classical point x : Tm → L , defined over some finite extension
L/Qp, the specialization of τTm

at x is the trace of L fx .

Proposition 3.1 If ρ is absolutely irreducible there exists a unique continuous irre-
ducible Galois representation

ρTm
: GQ,Np → GL2(Tm),

lifting ρ and whose trace is τTm
.

This follows from a result of Nyssen and Rouquier ([14], [18, Corollary 5.2]), since
Tm is local henselian.

Let I◦ be a finite torsion-free�h-algebra.We call family an irreducible component
of SpecTh defined by a surjective morphism θ : Th → I◦ of�h-algebras. Since such
a map factors viaTm → I◦ for somemaximal idealm ofTh , we can define a residual
representation ρ associated with θ . Suppose that ρ is irreducible. By Proposition 3.1
we obtain a Galois representation ρ : GQ → GL2(I

◦) associated with θ .

Remark 3.2 If ηh /∈ Qp, �h is not a power series ring over Zp.

3.3 Finite Slope CM Modular Forms

In this section we study non-ordinary finite slope CM modular forms. We say that a
family is CM if all its classical points are CM.We prove that for every h > 0 there are
noCMfamilieswith positive slope� h. However, contrary to the ordinary case, every
family of finite positive slope may contain classical CM points of weight k � 2. Let
F be an imaginary quadratic field, f an integral ideal in F , If the group of fractional
ideals prime to f. Let σ1, σ2 be the embeddings of F into C (say that σ1 = IdF ) and
let (k1, k2) ∈ Z2. A Grössencharacter ψ of infinity type (k1, k2) defined modulo f
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is a homomorphism ψ : If → C∗ such that ψ((α)) = σ1(α)k1σ2(α)k2 for all α ≡ 1
(mod×f). Consider the q-expansion

∑

a⊂OF ,(a,f)=1

ψ(a)qN (a),

where the sum is over ideals a ⊂ OF and N (a) denotes the norm of a. Let F/Q be an
imaginary quadratic field of discriminant D and letψ be a Grössencharacter of exact
conductor f and infinity type (k − 1, 0). By [22, Lemma 3] the expansion displayed
above defines a cuspidal newform f (F, ψ) of level N (f)D.

Ribet proved in [16, Theorem 4.5] that if a newform g of weight k � 2 and
level N has CM by an imaginary quadratic field F , one has g = f (F, ψ) for some
Grössencharacter ψ of F of infinity type (k − 1, 0).

Definition 3.3 We say that a classicalmodular eigenform g ofweight k and level Np
has CM by an imaginary quadratic field F if its Hecke eigenvalues for the operators
T�, � � Np, coincide with those of f (F, ψ) for some Grössencharacter ψ of F of
infinity type (k − 1, 0). We also say that g is CM without specifying the field.

Remark 3.4 For g as in the definition the Galois representations ρg, ρ f (F,ψ) : GQ →
GL2(Qp) associated with g and f (F, ψ) are isomorphic, hence the image of the
representation ρg is contained in the normalizer of a torus in GL2.

Proposition 3.5 Let g be a CM modular eigenform of weight k and level Npm with
N prime to p and m � 0. Then its p-slope is either 0, k−1

2 , k − 1 or infinite.

Proof Let F be the quadratic imaginary field and ψ the Grössencharacter of F
associated with the CM form g by Definition 3.3. Let f be the conductor of ψ .

We assume first that g is p-new, so that g = f (F, ψ). Let ap be theUp-eigenvalue
of g. If p is inert in F we have ap = 0, so the p-slope of g is infinite. If p splits in F as
pp̄, then ap = ψ(p) + ψ(p̄). We can find an integer n such that pn is a principal ideal
(α)with α ≡ 1 (mod×f). Henceψ((α)) = αk−1. Since α is a generator of pn we have
α ∈ p and α /∈ p̄; moreover αk−1 = ψ((α)) = ψ(p)n , so we also haveψ(p) ∈ p − p̄.
In the same way we find ψ(p̄) ∈ p̄ − p. We conclude that ψ(p) + ψ(p̄) does not
belong to p, so its p-adic valuation is 0.

If p ramifies as p2 in F , then ap = ψ(p). As before we find n such that pn = (α)

with α ≡ 1 (mod×f). Then (ψ(p))nψ(pn) = ψ((α)) = αk−1 = pn(k−1). By looking
at p-adic valuations we find that the slope is k−1

2 .
If g is not p-new, it is the p-stabilization of a CM form f (F, ψ) of level prime

to p. If ap is the Tp-eigenvalue of f (F, ψ), the Up-eigenvalue of g is a root of the
Hecke polynomial X2 − apX + ζ pk−1 for some root of unity ζ . By our discussion
of the p-new case, the valuation of ap belongs to the set

{
0, k−1

2 , k − 1
}
. Then it is

easy to see that the valuations of the roots of the Hecke polynomial belong to the
same set. �

We state a useful corollary.
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Corollary 3.6 There are no CM families of strictly positive slope.

Proof We show that the eigencurve Ch contains only a finite number of points cor-
responding to classical CM forms. It will follow that almost all classical points of
a family in Ch are non-CM. Let f be a classical CM form of weight k and positive
slope. By Proposition 3.5 its slope is at least k−1

2 . If f corresponds to a point of Ch

its slope must be � h, so we obtain an inequality k−1
2 � h. The set of weights K

satisfying this condition is finite. Since the weight map Ch → Bh is finite, the set of
points of Ch whose weight lies in K is finite. Hence the number of CM forms in Ch

is also finite. �

We conclude that, in the finite positive slope case, classical CM forms can appear
only as isolated points in an irreducible component of the eigencurve Ch . In the
ordinary case, the congruence ideal of a non-CM irreducible component is defined
as the intersection ideal of the CM irreducible components with the given non-CM
component. In the case of a positive slope family θ : Th → I◦, we need to define the
congruence ideal in a different way.

3.4 Construction of the Congruence Ideal

Let θ : Th → I◦ be a family. We write I = I◦[p−1].
Fix an imaginary quadratic field F where p is inert or ramified; let −D be its

discriminant. Let Q be a primary ideal of I; then q = Q ∩ �h is a primary ideal
of �h . The projection �h → �h/q defines a point of Bh (possibly non-reduced)
corresponding to a weight κQ : Z∗

p → (�h/q)
∗. For r > 0 we denote by Br the ball

of centre 1 and radius r in Cp. By [3, Proposition 8.3] there exists r > 0 and a
character κQ,r : Z×

p · Br → (�h/q)
× extending κQ.

Let σ be an embedding F ↪→ Cp. Let r and κQ,r be as above. For m sufficiently
large σ(1 + pmOF ) is contained in Z×

p · Br , the domain of definition of κQ,r .
For an ideal f ⊂ OF let If be the group of fractional ideals prime to f. For every

prime � not dividing Np we denote by a�,Q the image of the Hecke operator T� in
I◦/Q.We define here a notion of non-classical CMpoint of θ (hence of the eigencurve
Ch) as follows.

Definition 3.7 Let F, σ,Q, r, κQ,r be as above. We say that Q defines a CM point
of weight κQ,r if there exist an integer m > 0, an ideal f ⊂ OF with norm N (f) such
that DN (f) divides N , a quadratic extension (I/Q)′ of I/Q and a homomorphism
ψ : Ifpm → (I/Q)′× such that:

1. σ(1 + pmOF ) ⊂ Z×
p · Br ;

2. for every α ∈ OF with α ≡ 1 (mod×fpm), ψ((α)) = κQ,r (α)α−1;
3. a�,Q = 0 if L is a prime inert in F and not dividing Np;
4. a�,Q = ψ(l) + ψ(l̄) if � is a prime splitting as ll̄ in F and not dividing Np.
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Note that κQ,r (α) is well defined thanks to condition 1.

Remark 3.8 IfP is a prime of I corresponding to a classical form f thenP is a CM
point if and only if f is a CM form in the sense of Sect. 3.3.

Proposition 3.9 The set of CM points in Spec I is finite.

Proof Bycontradiction assume it is infinite. Thenwehave an injection I ↪→ ∏
P I/P

whereP runs over the set of CMprime ideals of I. One can assume that the imaginary
quadratic field of complexmultiplication is constant along I.We can also assume that
the ramification of the associated Galois characters λP : GF → (I/P)× is bounded
(in support and in exponents). On the density one set of primes of F prime to fp and
of degree one, they take values in the image of I× hence they define a continuous
Galois character λ : GF → I× such that ρθ = IndGQ

GF
λ, which is absurd (by Corallary

3.6 and specialization at non-CM classical points which do exist). �

Definition 3.10 The (fortuitous) congruence ideal cθ associated with the family θ is
defined as the intersection of all the primary ideals of I corresponding to CM points.

Remark 3.11 (Characterizations of the CM locus)

1. Assume that ρθ = IndGQ

GK
λ for a unique imaginary quadratic field K . Then the

closed subscheme V (cθ ) = Spec I/cθ ⊂ Spec I is the largest subscheme onwhich

there is an isomorphism of Galois representations ρθ
∼= ρθ ⊗

(
K/Q

•
)
. Indeed,

for every artinian Qp-algebra A, a CM point x : I → A is characterized by the

conditions x(T�) = x(T�)
(

K/Q
�

)
for all primes � not dividing Np.

2. Note that N is divisible by the discriminant D of K . Assume that I is N -new and
that D is prime to N/D. Let WD be the Atkin-Lehner involution associated with
D. Conjugation by WD defines an automorphism ιD of Th and of I. Then V (cθ )
coincides with the (schematic) invariant locus (Spec I)ιD=1.

4 The Image of the Representation Associated
with a Finite Slope Family

It is shown by Lang in [12, Theorem 2.4] that, under some technical hypotheses, the
image of the Galois representation ρ : GQ → GL2(I

◦) associated with a non-CM
ordinary family θ : T → I◦ contains a congruence subgroup of SL2(I

◦
0), where I◦

0 is
the subring of I◦ fixed by certain “symmetries” of the representation ρ. In order to
study the Galois representation associated with a non-ordinary family we will adapt
some of the results in [12] to this situation. Since the crucial step ([12, Theorem
4.3]) requires the Galois ordinarity of the representation (as in [9, Lemma 2.9]),
the results of this section will not imply the existence of a congruence subgroup of
SL2(I

◦
0) contained in the image of ρ. However, we will prove in later sections the
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existence of a “congruence Lie subalgebra” of sl2(I◦
0) contained in a suitably defined

Lie algebra of the image of ρ by means of relative Sen theory.
For every ring R we denote by Q(R) its total ring of fractions.

4.1 The Group of Self-twists of a Family

We follow [12, Sect. 2] in this subsection. Let h � 0 and θ : Th → I◦ be a family
of slope � h defined over a finite torsion free �h-algebra I◦. Recall that there is a
natural map � → �h with image Zp[[ηt]].
Definition 4.1 We say that σ ∈ AutQ(Zp[[ηt]])(Q(I◦)) is a conjugate self-twist for θ

if there exists a Dirichlet character ησ : GQ → I◦,× such that

σ(θ(T�)) = ησ (�)θ(T�)

for all but finitely many primes �.

Any such σ acts on�h = Oh[[t]] by restriction, trivially on t and by aGalois auto-
morphism on Oh . The conjugates self-twists for θ form a subgroup of AutQ(Zp[[ηt]])
(Q(I◦)). We recall the following result which holds without assuming the ordinarity
of θ .

Lemma 4.2 [12, Lemma 7.1] � is a finite abelian 2-group.

We suppose from now on that I◦ is normal. The only reason for this hypothesis
is that in this case I◦ is stable under the action of � on Q(I◦), which is not true in
general. This makes it possible to define the subring I◦

0 of elements of I◦ fixed by �.

Remark 4.3 The hypothesis of normality of I◦ is just a simplifying one. We could
work without it by introducing the �h-order I◦,′ = �h[θ(T�), � � Np] ⊂ I◦: this is
an analogue of the �-order I′ defined in [12, Sect. 2] and it is stable under the action
of �. We would define I◦

0 as the fixed subring of I◦,′ and the arguments in the rest of
the article could be adapted to this setting.

The subring of �h fixed by � is an Oh,0 form of �h for some subring Oh,0 of Oh .
We denote it by �h,0 the field of fractions of Oh,0.

Remark 4.4 Bydefinition� fixesZp[[ηt]], sowehaveZp[[ηt]] ⊂ �h,0. In particular
it makes sense to speak about the ideal Pk�h,0 for every arithmetic prime Pk =
(1 + ηt − uk) ⊂ Zp[[ηt]]. Note that Pk�h defines a prime ideal of �h if and only if
the weight k belongs to the open disc Bh , otherwise Pk�h = �h .We see immediately
that the same statement is true if we replace �h by �h,0.

Note that I◦
0 is a finite extension of�h,0 because I◦ is a finite�h-algebra.Moreover,

we have K �
h = Kh,0 (although the inclusion �h · I◦

0 ⊂ I◦ may not be an equality).
We define two open normal subgroups of GQ by:
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• H0 = ⋂
σ∈� ker ησ ;

• H = H0 ∩ ker(det ρ).

Note that H0 is an open normal subgroup of GQ and that H is a n open normal
subgroup of H0 and GQ.

4.2 The Level of a General Ordinary Family

We recall the main result of [12]. Denote byT the big ordinary Hecke algebra, which
is finite over � = Zp[[T ]]. Let θ : T → I◦ be an ordinary family with associated
Galois representation ρ : GQ → GL2(I

◦). The representation ρ is p-ordinary, which
means that its restriction ρ|Dp to a decomposition subgroup Dp ⊂ GQ is reducible.
There exist two characters ε, δ : Dp → I◦,×, with δ unramified, such that ρ|Dp is an
extension of ε by δ.

Denote by F the residue field of I◦ and by ρ the representation GQ → GL2(F)

obtainedby reducingρmodulo themaximal ideal of I◦. Lang introduces the following
technical condition.

Definition 4.5 The p-ordinary representation ρ is called H0-regular if ε|Dp∩H0 �=
δ|Dp∩H0 .

The following result states the existence of a Galois level for ρ.

Theorem 4.6 [12, Theorem 2.4] Let ρ : GQ → GL2(I
◦) be the representation asso-

ciated with an ordinary, non-CM family θ : T → I◦. Assume that p > 2, the car-
dinality of F is not 3 and the residual representation ρ is absolutely irreducible
and H0-regular. Then there exists γ ∈ GL2(I

◦) such that γ · Im ρ · γ −1 contains a
congruence subgroup of SL2(I

◦
0).

The proof relies on the analogous result proved by Ribet [15] and Momose [13] for
the p-adic representation associated with a classical modular form.

4.3 An Approximation Lemma

In this subsection we prove an analogue of [10, Lemma 4.5]. It replaces in our
approach the use of Pink’s Lie algebra theory, which is relied upon in the case of
ordinary representations in [9, 12]. Let I◦

0 be a local domain that is finite torsion free
over �h . It does not need to be related to a Hecke algebra for the moment.

Let N be an open normal subgroup ofGQ and let ρ : N → GL2(I
◦
0) be an arbitrary

continuous representation. We denote by mI◦
0
the maximal ideal of I◦

0 and by F =
I◦
0/mI◦

0
its residue field of cardinality q. In the lemmawe do not suppose that ρ comes

from a family of modular forms. We will only assume that it satisfies the following
technical condition:
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Definition 4.7 Keep notations as above. We say that the representation ρ : N →
GL2(I

◦
0) is Zp-regular if there exists d ∈ Im ρ with eigenvalues d1, d2 ∈ Zp such

that d2
1 �≡ d2

2 (mod p). We call d a Zp-regular element. If N ′ is an open normal
subgroup of N then we say that ρ is (N ′, Zp)-regular if ρ|N ′ is Zp-regular.

Let B± denote the Borel subgroups consisting of upper, respectively lower, trian-
gular matrices in GL2. Let U± be the unipotent radical of B±.

Proposition 4.8 Let I◦
0 be a finite torsion free �h,0-algebra, N an open normal sub-

group of GQ and ρ: N → GL2(I
◦
0) a continuous representation that is Zp-regular.

Suppose (upon replacing ρ by a conjugate) that aZp-regular element is diagonal. Let
P be an ideal of I◦

0 andρP : N → GL2(I
◦
0/P) be the representation given by the reduc-

tion of ρ modulo P. Let U±(ρ), and U±(ρP) be the upper and lower unipotent sub-
groups of Im ρ, and Im ρP, respectively. Then the natural maps U+(ρ) → U+(ρP)

and U−(ρ) → U−(ρP) are surjective.

Remark 4.9 The ideal P in the proposition is not necessarily prime. At a certain
point we will need to take P = PI◦

0 for a prime ideal P of �h,0.

As in [10, Lemma 4.5] we need two lemmas. Since the argument is the same for
U+ andU−, we will only treat here the upper triangular caseU = U+ and B = B+.

For ∗ = U, B and every j � 1 we define the groups

�∗(P j ) = {x ∈ SL2(I
◦
0) | x (mod P j ) ∈ ∗(I◦

0/P
j )}.

Let �I◦
0
(P j ) be the kernel of the reduction morphism π j : SL2(I

◦
0) → SL2(I

◦
0/P

j ).

Note that �U (P j ) = �I◦
0
(P j )U (I◦

0) consists of matrices

(
a b
c d

)

such that a, d ≡ 1

(mod P j ), c ≡ 0 (mod P j ). Let K = Im ρ and

KU (P j ) = K ∩ �U (P j ), KB(P j ) = K ∩ �B(P j ).

Since U (I◦
0) and �I◦

0
(P) are p-profinite, the groups �U (P j ) and KU (P j ) for all

j � 1 are also p-profinite. Note that

[(
a b
c −a

)
,
( e f
g −e

)] =
(

bg−c f 2(a f −be)
2(ce−ag) c f −bg

)
.

From this we obtain the following.

Lemma 4.10 If X, Y ∈ sl2(I
◦
0) ∩ (

P j Pk

Pi P j

)
with i � j � k, then [X,Y ] ∈ (

Pi+k P j+k

Pi+ j Pi+k

)
.

Wedenote byD�U (P j ) the topological commutator subgroup (�U (P j ), �U (P j )).
Lemma 4.10 tells us that

D�U (P j ) ⊂ �B(P2 j ) ∩ �U (P j ). (1)
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By the Zp-regularity assumption, there exists a diagonal element d ∈ K with
eigenvalues in Zp and distinct modulo p. Consider the element δ = limn→∞ d pn ,
which belongs to K since this is p-adically complete. In particular δ normalizes K .
It is also diagonal with coefficients inZp, so it normalizes KU (P j ) and�B(P j ). Since
δ p = δ, the eigenvalues δ1 and δ2 of δ are roots of unity of order dividing p − 1. They
still satisfy δ21 �= δ22 as p �= 2.

Set α = δ1/δ2 ∈ F×
p and let a be the order of α as a root of unity. We see α as

an element of Z×
p via the Teichmüller lift. Let H be a p-profinite group normalized

by δ. Since H is p-profinite, every x ∈ H has a unique a-th root. We define a map
� : H → H given by

�(x) = [x · ad(δ)(x)α−1 · ad(δ2)(x)α−2 · · · ad(δa−1)(x)α
1−a ]1/a

Lemma 4.11 If u ∈�U (P j ) for some j � 1, then�2(u)∈�U (P2 j ) and π j (�(u)) =
π j (u).

Proof If u ∈ �U (P j ), we have π j (�(u)) = π j (u) as � is the identity map on
U (I◦

0/P
j ). Let D�U (P j ) be the topological commutator subgroup of �U (P j ). Since

� induces the projection of the Zp-module �U (P j )/D�U (P j ) onto its α-eigenspace
for ad(d), it is a projection onto U (I◦

0)D�U (P j )/D�U (P j ). The fact that this is
exactly the α-eigenspace comes from the Iwahori decomposition of �U (P j ), hence
a similar direct sum decomposition holds in the abelianization �U (P j )/D�U (P j ).

By (1), we have D�U (P j ) ⊂ �B(P2 j ) ∩ �U (P j ). Since the α-eigenspace of
�U (P j )/D�U (P j ) is inside �B(P2 j ), � projects u�U (P j ) to

�(u) ∈ (�B(P2 j ) ∩ �U (P j ))/D�U (P j ).

In particular, �(u) ∈ �B(P2 j ) ∩ �U (P j ). Again apply �. Since �B(P2 j )/�I◦
0
(P2 j )

is sent to �U (P2 j )/�I◦
0
(P2 j ) by �, we get �2(u) ∈ �U (P2 j ) as desired. �

Proof We can now prove Proposition 4.8. Let u ∈ U (I◦
0/P) ∩ Im(ρP). Since the

reduction map Im(ρ) → Im(ρP) induced by π1 is surjective, there exists v ∈ Im(ρ)

such that π1(v) = u. Take u1 ∈ U (I◦
0) such that π1(u1) = u (this is possible since

π1 : U (�h) → U (�h/P) is surjective). Then vu−1
1 ∈ �I◦

0
(P), so v ∈ KU (P).

By compactness of KU (P) and by Lemma 4.11, starting with v as above,
we see that limm→∞ �m(v) converges P-adically to �∞(v) ∈ U (I◦

0) ∩ K with
π1(�

∞(v)) = u. �

Remark 4.12 Proposition 4.8 is true with the same proof if we replace �h,0 by �h

and I◦
0 by a finite torsion free �h-algebra.

As a first application of Proposition 4.8 we give a result that we will need in the
next subsection. Given a representation ρ : GQ → GL2(I

◦) and every ideal P of I◦
we define ρP, U±(ρ) and U±(ρP) as above, by replacing I◦

0 by I◦.

Proposition 4.13 Let θ : Th → I◦ be a family of slope� h and ρθ : GQ → GL2(I
◦)

be the representation associated with θ . Suppose that ρθ is (H0, Zp)-regular and let
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ρ be a conjugate of ρθ such that Im ρ|H0 contains a diagonal Zp-regular element.
Then U+(ρ) and U−(ρ) are both nontrivial.

Proof By density of classical points in Th we can choose a prime ideal P ⊂ I◦
corresponding to a classical modular form f . The modulo P representation ρP is the
p-adic representation classically associated with f . By the results of [13, 15] and
the hypothesis of (H0, Zp)-regularity of L, there exists an ideal lP of Zp such that
Im ρP contains the congruence subgroup �Zp (lP). In particularU

+(ρP) andU−(ρP)

are both nontrivial. Since the maps U+(ρ) → U+(ρP) and U−(ρ) → U−(ρP) are
surjective we find nontrivial elements in U+(ρ) and U−(ρ). �

We adapt the work in [12, Sect. 7] to show the following.

Proposition 4.14 Suppose that the representation ρ : GQ → GL2(I
◦) is (H0, Zp)-

regular. Then there exists g ∈ GL2(I
◦) such that the conjugate representation gρg−1

satisfies the following two properties:

1. the image of gρg−1|H0 is contained in GL2(I
◦
0);

2. the image of gρg−1|H0 contains a diagonal Zp-regular element.

Proof As usual we choose a GL2(I
◦)-conjugate of ρ such that a Zp-regular element

d is diagonal. We still write ρ for this conjugate representation and we show that it
also has property (1).

Recall that for every σ ∈ � there is a character ησ : GQ → (I◦)× and an equiv-
alence ρσ ∼= ρ ⊗ ησ . Then for every σ ∈ � there exists tσ ∈ GL2(I

◦) such that, for
all g ∈ GQ,

ρσ (g) = tσ ησ (g)ρ(g)t−1
σ . (2)

We prove that the matrices tσ are diagonal. Let ρ(t) be a non-scalar diagonal
element in Im ρ (for example d). Evaluating (2) at g = t we find that tσ must be
either a diagonal or an antidiagonal matrix. Now by Proposition 4.13 there exists a
nontrivial element ρ(u+) ∈ Im ρ ∩U+(I◦). Evaluating (2) at g = u+ we find that tσ
cannot be antidiagonal.

It is shown in [12, Lemma 7.3] that there exists an extension A of I◦, at most
quadratic, and a function ζ : � → A× such that σ → tσ ζ(σ )−1 defines a cocycle
with values in GL2(A). The proof of this result does not require the ordinarity of ρ.
Equation (2) remains true if we replace tσ with tσ ζ(σ )−1, so we can and do suppose
from now on that tσ is a cocycle with values in GL2(A). In the rest of the proof we
assume for simplicity that A = I◦, but everything works in the same way if A is a
quadratic extension of I◦ and F is the residue field of A.

Let V = (I◦)2 be the space on which GQ acts via ρ. As in [12, Sect. 7] we use the
cocycle tσ to define a twisted action of � on (I◦)2. For v = (v1, v2) ∈ V we denote
by vσ the vector (vσ

1 , vσ
2 ). We write v[σ ] for the vector t−1

σ vσ . Then v → v[σ ] gives
an action of � since σ �→ tσ is a cocycle. Note that this action is I◦

0-linear.
Since tσ is diagonal for every σ ∈ �, the submodules V1 = I◦(1, 0) and V2 =

I◦(0, 1) are stable under the action of �. We show that each Vi contains an element
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fixed by �. We denote by F the residue field I◦/m◦
I . Note that the action of � on Vi

induces an action of � on the one-dimensional F-vector space Vi ⊗ I◦/mI◦ . We show
that for each i the space Vi ⊗ I◦/mI◦ contains a nonzero element vi fixed by �. This
is a consequence of the following argument, a form of which appeared in an early
preprint of [12]. Letw be any nonzero element of Vi ⊗ I◦/mI◦ and let a be a variable
in F. The sum

Saw =
∑

σ∈�

(aw)[σ ]

is clearly �-invariant. We show that we can choose a such that Saw �= 0. Since
Vi ⊗ I◦/mI◦ is one-dimensional, for everyσ ∈ � there existsασ ∈ F such thatw[σ ] =
ασw. Then

Saw =
∑

σ∈�

(aw)[σ ] =
∑

σ∈�

aσw[σ ] =
∑

σ∈�

aσασw =
(

∑

σ∈�

aσασa
−1

)

aw.

By Artin’s lemma on the independence of characters, the function f (a) =∑
σ∈� aσασa−1 cannot be identically zero on F. By choosing a value of a such

that f (a) �= 0 we obtain a nonzero element vi = Saw fixed by �.
We show that vi lifts to an element vi ∈ Vi fixed by �. Let σ0 ∈ �. By Lemma

4.2 � is a finite abelian 2-group, so the minimal polynomial Pm(X) of [σ0] acting on
Vi divides X2k − 1 for some integer k. In particular the factor X − 1 appears with
multiplicity at most 1.We show that its multiplicity is exactly 1. If Pm is the reduction
of Pm modulomI◦ then Pm([σ0]) = 0 on Vi ⊗ I◦/mI◦ . By our previous argument there
is an element of Vi ⊗ I◦/mI◦ fixed by� (hence by [σ0]) so we have (X − 1) | Pm(X).
Since p > 2 the polynomial X2k − 1 has no double roots modulomI◦ , so neither does
Pm . By Hensel’s lemma the factor X − 1 lifts to a factor X − 1 in Pm and vi lifts to
an element vi ∈ Vi fixed by [σ0]. Note that I◦ · vi = Vi by Nakayama’s lemma since
vi �= 0.

We show that vi is fixed by all of �. Let W[σ0] = I◦vi be the one-dimensional
eigenspace for [σ0] in Vi . Since � is abelianW[σ0] is stable under �. Let σ ∈ �. Since
σ has order 2k in � for some k � 0 and v

[σ ]
i ∈ W[σ0], there exists a root of unity ζσ

of order 2k satisfying v
[σ ]
i = ζσ vi . Since v

[σ ]
i = vi , the reduction of ζσ modulo mI◦

must be 1. As before we conclude that ζσ = 1 since p �= 2.
We found two elements v1 ∈ V1, v2 ∈ V2 fixed by �. We show that every element

of v ∈ V fixed by � must belong to the I◦
0-submodule generated by v1 and v2. We

proceed as in the end of the proof of [12, Theorem 7.5]. Since V1 and V2 are �-stable
we must have v ∈ V1 or v ∈ V2. Suppose without loss of generality that v ∈ V1.
Then v = αv1 for some α ∈ I◦. If α ∈ I◦

0 then v ∈ I◦
0v1, as desired. If α /∈ I◦

0 then
there exists σ ∈ � such that ασ �= α. Since v1 is [σ ]-invariant we obtain (αv1)

[σ ] =
ασv

[σ ]
1 = ασv1 �= αv1, so αv1 is not fixed by [σ ], a contradiction.
Now (v1, v2) is a basis for V over I◦, so the I◦

0 submodule V0 = I◦
0v1 + I◦

0v2 is an
I◦
0-lattice in V . Recall that H0 = ⋂

σ∈� ker ησ . We show that V0 is stable under the
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action of H0 via ρ|H0 , i.e. that if v ∈ V is fixed by �, so is ρ(h)v for every h ∈ H0.
This is a consequence of the following computation, where v and h are as before and
σ ∈ �:

(ρ(h)v)[σ ] = t−1
σ ρ(h)σ vσ = t−1

σ ησ (h)ρ(h)σ vσ = t−1
σ tσ ρ(h)t−1

σ vσ = ρ(h)v[σ ].

Since V0 is an I◦
0-lattice in V stable under ρ|H0 , we conclude that Im ρ|H0 ⊂

GL2(I
◦
0). �

4.4 Fullness of the Unipotent Subgroups

From now on we write ρ for the element in its GL2(I
◦) conjugacy class such that

ρ|H0 ∈ GL2(I
◦
0). Recall that H is the open subgroup of H0 defined by the condi-

tion det ρ(h) = 1 for every h ∈ H . As in [12, Sect. 4] we define a representation
H → SL2(I

◦
0) by

ρ0 = ρ|H ⊗ (det ρ|H )−
1
2 .

We can take the square root of the determinant thanks to the definition of H . We
will use the results of [12] to deduce that the�h,0-module generated by the unipotent
subgroups of the image of ρ0 is big. We will later deduce the same for ρ.

We fix from now on a height one prime P ⊂ �h,0 with the following properties:

1. there is an arithmetic prime Pk ⊂ Zp[[ηt]] satisfying k > h + 1 and P =
Pk�h,0;

2. every prime P ⊂ I◦ lying above P corresponds to a non-CM point.

Such a prime always exists. Indeed, by Remark 4.4 every classical weight k > h + 1
contained in the disc Bh defines a prime P = Pk�h,0 satisfying (1), so such primes
are Zariski-dense in�h,0, while the set of CMprimes in I◦ is finite by Proposition 3.9.

Remark 4.15 Since k > h + 1, every point of SpecTh above Pk is classical by [5,
Theorem 6.1]. Moreover the weight map is étale at every such point by [11, Theorem
11.10]. In particular the prime PI◦

0 = PkI◦
0 splits as a product of distinct primes of I◦

0.

Make the technical assumption that the order of the residue field F of I◦ is not 3.
For every ideal P of I◦

0 over P we let πP be the projection SL2(I
◦
0) → SL2(I

◦
0/P).

We still denote by πP the restricted maps U±(I◦
0) → U±(I◦

0/P).
LetG = Im ρ0. For every idealP of I◦

0 we denote byρ0,P the representationπP(ρ0)

and by GP the image of ρP, so that GP = πP(G). We state two results from Lang’s
work that come over unchanged to the non-ordinary setting.

Proposition 4.16 [12, Corollary 6.3] Let P be a prime of I◦
0 over P. Then GP

contains a congruence subgroup �I◦
0/P

(a) ⊂ SL2(I
◦
0/P). In particular GP is open

in SL2(I
◦
0/P).
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Proposition 4.17 [12, Proposition 5.1] Assume that for every primeP ⊂ I◦
0 over P

the subgroup GP is open in SL2(I
◦
0/P). Then the image of G in

∏
P|P SL2(I

◦
0/P)

through the map
∏

P|P πP contains a product of congruence subgroups∏
P|P �I◦

0/P
(aP).

Remark 4.18 The proofs of Propositions 4.16 and 4.17 rely on the fact that the big
ordinary Hecke algebra is étale over � at every arithmetic point. In order for these
proofs to adapt to the non-ordinary setting it is essential that the prime P satisfies
the properties above Remark 4.15.

We let U±(ρ0) = G ∩U±(I◦
0) and U±(ρP) = GP ∩U±(I◦

0/P). We denote by
U (ρP) either the upper or lower unipotent subgroups of GP (the choice will be fixed
throughout the proof). By projecting to the upper right element we identify U+(ρ0)

with a Zp-submodule of I◦
0 and U+(ρ0,P) with a Zp-submodule of I◦

0/P. We make
analogous identifications for the lower unipotent subgroups.Wewill use Propositions
4.17 and 4.8 to show that, for both signs, U±(ρ) spans I◦

0 over �h,0.
First we state a version of [12, Lemma 4.10], with the same proof. Let A and B

be Noetherian rings with B integral over A. We call A-lattice an A-submodule of B
generated by the elements of a basis of Q(B) over Q(A).

Lemma 4.19 Any A-lattice in B contains a nonzero ideal of B. Conversely, every
nonzero ideal of B contains an A-lattice.

We prove the following proposition by means of Proposition 4.8. We could also
use Pink theory as in [12, Sect. 4].

Proposition 4.20 Consider U±(ρ0) as subsets of Q(I◦
0). For each choice of sign the

Q(�h,0)-span of U±(ρ0) is Q(I◦
0). Equivalently the �h,0-span of U±(ρ0) contains

a �h,0-lattice in I◦
0.

Proof Keep notations as above. We omit the sign when writing unipotent subgroups
and we refer to either the upper or lower ones (the choice is fixed throughout the
proof). Let P be the prime of �h,0 chosen above. By Remark 4.15 the ideal PI◦

0
splits as a product of distinct primes in I◦

0. When P varies among these primes, the
map

⊕
P|P πP gives embeddings of �h,0/P-modules I◦

0/PI◦
0 ↪→ ⊕

P|P I◦
0/P and

U (ρPI◦
0
) ↪→ ⊕

P|P U (ρP). The following diagram commutes:

U (ρPI◦
0
)

⊕
P|P U (ρP)

I◦
0/PI◦

0

⊕
P|P I◦

0/P

⊕
P|P πP

⊕
P|P πP

(3)

By Proposition 4.17 there exist ideals aP ⊂ I◦
0/P such that (

⊕
P|P πP)(GPI◦

0
) ⊃⊕

P|P �I◦
0/P

(aP). In particular (
⊕

P|P πP)(U (ρPI◦
0
)) ⊃ ⊕

P|P(aP). By Lemma
4.19 each ideal aP contains a basis of Q(I◦

0/P) over Q(�h,0/P), so that the
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Q(�h,0/P)-span of
⊕

P|P aP is the whole
⊕

P|P Q(I◦
0/P). Then the Q(�h,0/P)-

span of (
⊕

P|P πP)(GP ∩U (ρP)) is also
⊕

P|P Q(I◦
0/P). By commutativity of

diagram (3) we deduce that the Q(�h,0/P)-span of GP ∩U (ρPI◦
0
) is Q(I◦

0/PI◦
0).

In particular GPI◦
0
∩U (ρPI◦

0
) contains a �h,0/P-lattice, hence by Lemma 4.19 a

nonzero ideal aP of I◦
0/PI◦

0.
Note that the representationρ0 : H → SL2(I

◦
0) satisfies the hypotheses of Proposi-

tion 4.8. Indeedwe assumed that ρ : GQ → GL2(I) is (H0, Zp)-regular, so the image
of ρ|H0 contains a diagonal Zp-regular element d. Since H is a normal subgroup of
H0, ρ(H) is a normal subgroup of ρ(H0) and it is normalized by d. By a trivial
computation we see that the image of ρ0 = ρ|H ⊗ (det ρ|H )−1/2 is also normalized
by d.

Let a be an ideal of I◦
0 projecting to aP ⊂ U (ρ0,PI◦

0
). By Proposition 4.8 applied

to ρ0 we obtain that the map U (ρ0) → U (ρ0,PI◦
0
) is surjective, so the Zp-module

a ∩U (ρ0) also surjects to aP . Since �h,0 is local we can apply Nakayama’s lemma
to the �h,0-module �h,0(a ∩U (ρ0) to conclude that it coincides with a. Hence
a ⊂ �h,0 ·U (ρ0), so the �h,0-span of U (ρ0) contains a �h,0-lattice in I◦

0 by lemma
4.19. �

We show that Proposition 4.20 is true if we replace ρ0 by ρ|H . This will be a
consequence of the description of the subnormal sugroups of GL2(I

◦) presented
in [23], but we need a preliminary step because we cannot induce a �h,0-module
structure on the unipotent subgroups ofG. For a subgroupG ⊂ GL2(I

◦
0) defineGp =

{gp, g ∈ G} and G̃ = Gp ∩ (1 + pM2(I
◦
0)). Let G̃�h,0 be the subgroup of GL2(I

◦)
generated by the set {gλ : g ∈ G̃, λ ∈ �h,0} where gλ = exp(λ log g). We have the
following.

Lemma 4.21 The group G̃�h,0 contains a congruence subgroup of SL2(I
◦
0) if and

only if both of the unipotent subgroups G ∩U+(I◦
0) and G ∩U−(I◦

0) contain a basis
of a �h,0-lattice in I◦

0.

Proof It is easy to see that G ∩U+(I◦
0) contains the basis of a �h,0-lattice in I◦

0
if and only if the same is true for G̃ ∩U+(I◦

0). The same is true for U−. By a
standard argument, used in the proofs of [9, Lemma 2.9] and [12, Proposition 4.2],
G�h,0 ⊂ GL2(I

◦
0) contains a congruence subgroup of SL2(I

◦
0) if and only if both its

upper and lower unipotent subgroup contain an ideal of I◦
0.WehaveU+(I◦

0) ∩ G�h,0 =
�h,0(G ∩U+(I◦

0)), so by Lemma 4.19 U+(I◦
0) ∩ G�h,0 contains an ideal of I◦

0 if and
only if G ∩U+(I◦

0) contains a basis of a �h,0-lattice in I◦
0. We proceed in the same

way for U−. �

Now let G0 = Im ρ|H , G = Im ρ0. Note that G0 ∩ SL2(I
◦
0) is a normal subgroup of

G. Let f : GL2(I
◦
0) → SL2(I

◦
0) be the homomorphism sending g to det(g)−1/2g. We

have G = f (G0) by definition of ρ0. We show the following.

Proposition 4.22 The subgroups G0 ∩U±(I◦
0) both contain the basis of a �h,0-

lattice in I◦
0 if and only if G ∩U±(I◦

0) both contain the basis of a �h,0-lattice in I◦
0.

Proof SinceG = f (G0)we have G̃ = f (G̃0). This implies that G̃�h,0 = f (G̃0
�h,0

).
We remark that G̃0

�h,0 ∩ SL2(I
◦
0) is a normal subgroup of G̃�h,0 . Indeed
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G̃0
�h,0 ∩ SL2(I

◦
0) is normal in G̃0

�h,0 , so its image f (G�h,0

0 ∩ SL2(I
◦
0)) = G�h,0

0 ∩
SL2(I

◦
0) is normal in f (G�h,0

0 ) = G̃�h,0 .
By [23, Corollary 1] a subgroup of GL2(I

◦
0) contains a congruence subgroup of

SL2(I
◦
0) if and only if it is subnormal in GL2(I

◦
0) and it is not contained in the centre.

We note that G̃0
�h,0 ∩ SL2(I

◦
0) = (G̃0 ∩ SL2(I

◦
0))

�h,0 is not contained in the subgroup
{±1}. Otherwise also G̃0 ∩ SL2(I

◦
0) would be contained in {±1} and Im ρ ∩ SL2(I

◦
0)

would be finite, since G̃0 is of finite index in Gp
0 . This would give a contradiction:

indeed if P is an arithmetic prime of I◦ of weight greater than 1 and P′ = P ∩ I◦
0,

the image of ρ modulo P′ contains a congruence subgroup of SL2(I
◦
0/P

′) by the
result of [15].

Since G̃0
�h,0 ∩ SL2(I

◦
0) is a normal subgroupof G̃�h,0 ,we deduce by [23,Corollary

1] that G̃0
�h,0 ∩ SL2(I

◦
0) (hence G̃0

�h,0 ) contains a congruence subgroup of SL2(I
◦
0)

if and only if G̃�h,0 does. By applying Lemma 4.21 toG = G0 andG = G we obtain
the desired equivalence. �

By combining Propositions 4.20 and 4.22 we obtain the following.

Corollary 4.23 The �h,0-span of each of the unipotent subgroups Im ρ ∩U± con-
tains a �h,0-lattice in I◦

0.

Unlike in the ordinary casewe cannot deduce from the corollary that Im ρ contains
a congruence subgroup of SL2(I

◦
0), sincewe areworking over�h �= � andwe cannot

induce a �h-module structure (not even a �-module structure) on Im ρ ∩U±. The
proofs of [9, Lemma 2.9] and [12, Proposition 4.3] rely on the existence, in the image
of the Galois group, of an element inducing by conjugation a �-module structure on
Im ρ ∩U±. In their situation this is predicted by the condition of Galois ordinarity
of ρ. In the non-ordinary case we will find an element with a similar property via
relative Sen theory. In order to do this we will need to work with a suitably defined
Lie algebra rather than with the group itself.

5 Relative Sen Theory

We recall the notations of Sect. 3.1. In particular rh = p−sh , with sh ∈ Q, is the h-

adapted radius (which we also take smaller than p− 1
p−1 ), ηh is an element in Cp of

norm rh , Kh is the Galois closure in Cp of Qp(ηh) and Oh is the ring of integers in
Kh . The ring �h of analytic functions bounded by 1 on the open discBh = B(0, r−

h )

is identified to Oh[[t]]. We take a sequence of radii ri = p−sh−1/ i converging to rh
and denote by Ari = Kh〈t, Xi 〉/(pXi − t i ) the Kh-algebra defined in Sect. 3.1 which
is a form over Kh of the Cp-algebra of analytic functions on the closed ball B(0, ri )
(its Berthelot model). We denote by A◦

ri the Oh-subalgebra of functions bounded
by 1. Then �h = lim←−i

A◦
ri where A◦

r j → A◦
ri for i < j is the restriction of analytic

functions.
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We defined in Sect. 4.1 a subring I◦
0 ⊂ I◦, finite over �h,0 ⊂ �h . For ri as above,

we write A◦
0,ri = Oh,0〈t, Xi 〉/(pXi − t i ) with maps A◦

0,r j → A◦
0,ri for i < j , so that

�h,0 = lim←−i
A◦
0,ri . Let I◦

ri = I◦⊗̂�h A
◦
ri and I◦

0,ri = I◦
0⊗̂�h,0 A

◦
0,ri , both endowed with

their p-adic topology. Note that (I◦
ri )

� = I◦
ri ,0.

Consider the representationρ : GQ → GL2(I
◦) associatedwith a family θ : Th →

I◦. We observe that ρ is continuous with respect to the profinite topology of I◦ but
not with respect to the p-adic topology. For this reason we fix an arbitrary radius
r among the ri defined above and consider the representation ρr : GQ → GL2(I

◦
r )

obtained by composing ρ with the inclusion GL2(I
◦) ↪→ GL2(I

◦
r ). This inclusion

is continuous, hence the representation ρr is continuous with respect to the p-adic
topology on GL2(I

◦
0,r ).

Recall fromProposition 4.14 that, after replacingρ by a conjugate, there is an open
normal subgroup H0 ⊂ GQ such that the restriction ρ|H0 takes values in GL2(I

◦
0) and

is (H0, Zp)-regular. Then the restrictionρr |H0 gives a representation H0 → GL2(I
◦
0,r )

which is continuous with respect to the p-adic topology on GL2(I
◦
0,r ).

5.1 Big Lie Algebras

Recall thatGp ⊂ GQ denotes our chosen decomposition group at p. LetGr andG loc
r

be the images respectively of H0 andGp ∩ H0 under the representation ρr |H0 : H0 →
GL2(I

◦
0,r ). Note that they are actually independent of r since they coincide with the

images of H0 and Gp ∩ H0 under ρ.
For every ring R and ideal I ⊂ R we denote by �GL2(R)(I ) the GL2-congruence

subgroup consisting of elements g ∈ GL2(R) such that g ≡ Id2 (mod I ). Let G ′
r =

Gr ∩ �GL2(I
◦
0,r )

(p) and G ′,loc
r = G loc

r ∩ �GL2(I
◦
0,r )

(p), so that G ′
r and G ′,loc

r are pro-p
groups. Note that the congruence subgroups �GL2(I0,r )(p

m) are open in GL2(I0,r ) for
the p-adic topology. In particular G ′

r and G ′,loc
r can be identified with the images

under ρ of the absolute Galois groups of finite extensions of Q and respectively Qp.

Remark 5.1 We remark that we can choose an arbitrary r0 and set, for every r ,
G ′

r = Gr ∩ �GL2(I
◦
0,r0

)(p). Then G ′
r is a pro-p subgroup of Gr for every r and it is

independent of r since Gr is. This will be important in Theorem7.1 where we will
take projective limits over r of various objects.

We set A0,r = A◦
0,r [p−1] and I0,r = I◦

0,r [p−1]. We consider from now on G ′
r and

G ′,loc
r as subgroups of GL2(I0,r ) through the inclusion GL2(I

◦
0,r ) ↪→ GL2(I0,r ).

We want to define big Lie algebras associated with the groups G ′
r and G ′,loc

r . For
every nonzero ideal a of the principal ideal domain A0,r , we denote byG ′

r,a andG
′,loc
r,a

the images respectively of G ′
r and G ′,loc

r under the natural projection GL2(I0,r ) →
GL2(I0,r/aI0,r ). The pro-p groups G ′

r,a and G ′,loc
r,a are topologically of finite type

so we can define the corresponding Qp-Lie algebras Hr,a and Hloc
r,a using the p-adic

logarithm map: Hr,a = Qp · LogG ′
r,a and Hloc

r,a = Qp · LogG ′,loc
r,a . They are closed

Lie subalgebras of the finite dimensional Qp-Lie algebra M2(I0,r/aI0,r ).
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Let Br = lim←−(a,P1)=1
A0,r/aA0,r where the inverse limit is taken over nonzero

ideals a ⊂ A0,r prime to P1 = (u−1(1 + T ) − 1) (the reason for excluding P1 will
become clear later). We endow Br with the projective limit topology coming from
the p-adic topology on each quotient. We have a topological isomorphism of Kh,0-
algebras

Br
∼=

∏

P �=P1

(̂A0,r )P ,

where the product is over primes P and (̂A0,r )P = lim←−m�1
A0,r/Pm A0,r denotes

the Kh,0-Fréchet space inverse limit of the finite dimensional Kh,0-vector spaces
A0,r/Pm A0,r . Similarly, let Br = lim←−(a,P1)=1

I0,r/aI0,r , where as before a varies over
all nonzero ideals of A0,r prime to P1. We have

Br
∼=

∏

P �=P1

(̂I0,r )PI0,r
∼=

∏

P�P1

(̂I0,r )P
∼= lim←−

(Q,P1)=1

I0,r/Q,

where the second product is over primes P of I0,r and the projective limit is over

primary idealsQof I0,r .Here (̂I0,r )P denotes the projective limit of finite dimensional
Kh,0-algebras (endowed with the p-adic topology). The last isomorphism follows
from the fact that I0,r is finite over A0,r , so that there is an isomorphism I0,r ⊗
(̂A0,r )P = ∏

P (̂I0,r )P where P is a prime of A0,r and P varies among the primes
of I0,r above P . We have natural continuous inclusions A0,r ↪→ Br and I0,r ↪→ Br ,
both with dense image. The map A0,r ↪→ I0,r induces an inclusion Br ↪→ Br with
closed image. Note however that Br is not finite over Br . We will work with Br for
the rest of this section, but we will need Br later.

For every a we have defined Lie algebras Hr,a and Hloc
r,a associated with the finite

type Lie groups G ′
r,a and G ′,loc

r,a . We take the projective limit of these algebras to
obtain Lie subalgebras of M2(Br ).

Definition 5.2 The Lie algebras associated withG ′
r andG

′,loc
r are the closedQp-Lie

subalgebras of M2(Br ) given respectively by

Hr = lim←−
(a,P1)=1

Hr,a

and
Hloc

r = lim←−
(a,P1)=1

Hloc
r,a,

where as usual the products are taken over nonzero ideals a ⊂ A0,r prime to P1.

For every ideal a prime to P1, we have continuous homomorphisms Hr → Hr,a

and Hloc
r → Hloc

r,a. Since the transition maps are surjective these homomorphisms are
surjective.
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Remark 5.3 The limits in Definition 5.2 can be replaced by limits over primary
ideals of I0,r . Explicitly, letQ be a primary ideal of I0,r . Let G ′

r,Q be the image of G ′
r

via the natural projection GL2(I0,r ) → GL2(I0,r/Q) and let Hr,Q be the Lie algebra
associated with G ′

r,Q (which is a finite type Lie group). We have an isomorphism of
topological Lie algebras

Hr = lim←−
(Q,P1)=1

Hr,Q,

where the limit is taken over primary idealsQ of I0,r . This is naturally a subalgebra
of M2(Br ) since Br

∼= lim←−(Q,P1)=1
I0,r/Q. The same goes for the local algebras.

5.2 The Sen Operator Associated with a Galois
Representation

Recall that there is a finite extension K/Qp such that G ′,loc
r is the image of ρ|Gal(K/K )

and, for an ideal P ⊂ A0,r andm � 1,G ′,loc
r,Pm is the image of ρr,Pm |Gal(K/K ). Following

[19, 21] we can define a Sen operator associated with ρr |Gal(K/K ) and ρr,Pm |Gal(K/K )

for every ideal P ⊂ A0,r and every m � 1. We will see that these operators satisfy
a compatibility property. We write for the rest of the section ρr and ρr,Pm while
implicitly taking the domain to be Gal(K/K ).

We begin by recalling the definition of the Sen operator associated with a rep-
resentation τ : Gal(K/K ) → GLm(R) where R is a Banach algebra over a p-adic
field L . We follow [21]. We can suppose L ⊂ K ; if not we just restrict τ to the open
subgroup Gal(K/K L) ⊂ Gal(K/K ).

Let L∞ be a totally ramified Zp-extension of L . Let γ be a topological generator

of � = Gal(L∞/L), �n ⊂ � the subgroup generated by γ pn and Ln = Lγ pn

∞ , so that
L∞ = ∪n Ln . Let L ′

n = LnK and G ′
n = Gal(L/L ′

n). If Rm is the R-module over
which Gal(K/K ) acts via τ , define an action of Gal(K/K ) on R⊗̂LCp by letting
σ ∈ Gal(K/K ) map x ⊗ y to τ(σ )(x) ⊗ σ(y). Then by the results of [19, 21] there
is a matrix M ∈ GLm

(R⊗̂LCp
)
, an integer n � 0 and a representation δ : �n →

GLm(R ⊗L L ′
n) such that for all σ ∈ G ′

n

M−1τ(σ )σ (M) = δ(σ ).

Definition 5.4 The Sen operator associated with τ is

φ = lim
σ→1

log
(
δ(σ )

)

log(χ(σ ))
∈ Mm(R⊗̂LCp).

The limit exists as for σ close to 1 the map σ �→ log
(
δ(σ )

)

log(χ(σ ))
is constant. It is

proved in [21, Sect. 2.4] that φ does not depend on the choice of δ and M .
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If L = R = Qp, we define the Lie algebra g associated with τ(Gal(K/K )) as the
Qp-vector space generated by the image of the logarithm map in Mm(Qp). In this
situation the Sen operator φ associated with τ has the following property.

Theorem 5.5 [19,Theorem1]Fora continuous representation τ : GK →GLm(Qp),
the Lie algebra g of the group τ(Gal(K/K )) is the smallestQp-subspace ofMm(Qp)

such that g⊗QpCp contains φ.

This theorem is valid in the absolute case above, but relies heavily on the fact that
the image of the Galois group is a finite dimensional Lie group. In the relative case
it is doubtful that its proof can be generalized.

5.3 The Sen Operator Associated with ρr

Set I0,r,Cp = I0,r ⊗̂Kh,0Cp. It is a Banach space for the natural norm. Let Br,Cp =
Br⊗̂Kh,0Cp; it is the topological Cp-algebra completion of Br ⊗Kh,0 Cp for the
(uncountable) set of nuclear seminorms pa given by the norms on I0,r,Cp/aI0,r,Cp

via the specialization morphisms πa : Br ⊗Kh,0 Cp → I0,r,Cp/aI0,r,Cp . Let Hr,a,Cp =
Hr,a ⊗Kh,0 Cp and Hloc

r,a,Cp
= Hloc

r,a, ⊗Kh,0 Cp. Then we define Hr,Cp = Hr ⊗̂Kh,0Cp as
the topological Cp-Lie algebra completion of Hr ⊗K0,h Cp for the (uncountable) set
of seminorms pa given by the norms onHr,a,Cp and similar specializationmorphisms
πa : Hr, ⊗Kh,0 Cp → Hr,a,Cp . We define in the same way Hloc

r,Cp
in terms of the norms

on Hloc
r,a,Cp

. Note that by definition we have

Hr,Cp = lim←−
(a,P1)=1

Hr,a,Cp , and Hloc
r,Cp

= lim←−
(a,P1)=1

Hloc
r,a,Cp

.

We apply the construction of the previous subsection to L = Kh,0,R = I0,r which
is a Banach L-algebra with the p-adic topology, and τ = ρr . We obtain an operator
φr ∈ M2(I0,r,Cp ). Recall that we have a natural continuous inclusion I0,r ↪→ Br ,
inducing inclusions I0,r,Cp ↪→ Br,Cp and M2(I0,r,Cp ) ↪→ M2(Br,Cp ). We denote all
these inclusions by ιBr since it will be clear each time to which we are referring to.
We will prove in this section that ιBr (φr ) is an element of Hloc

r,Cp
.

Let a be a nonzero ideal of A0,r . Let us apply Sen’s construction to L = Kh,0,
R = I0,r/aI0,r and τ = ρr,a : Gal(K/K ) → GL2(I0,r/aI0,r ); we obtain an operator
φr,a ∈ M2(I0,r/aI0,r ⊗̂Kh,0Cp).

Let
πa : M2(I0,r ⊗̂Kh,0Cp) → M2(I0,r/aI0,r ⊗̂Kh,0Cp)

and
π×
a : GL2(I0,r ⊗̂Kh,0Cp) → GL2(I0,r/aI0,r ⊗̂Kh,0Cp)

be the natural projections.
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Proposition 5.6 We have φr,a = πa(φr ) for all a.

Proof Recall from the construction of φr that there exist M ∈ GL2
(
I0,r,Cp

)
, n � 0

and δ : �n → GL2(I0,r ⊗̂Kh,0K
′
h,0,n) such that for all σ ∈ G ′

n we have

M−1ρr (σ )σ (M) = δ(σ ) (4)

and

φr = lim
σ→1

log(δ
(
σ)

)

log(χ(σ ))
. (5)

Let Ma = π×
a (M) ∈ GL2(I0,r,Cp/aI0,r,Cp ) and

δa = π×
a ◦ δ : �n → GL2((I0,r/aI0,r )⊗̂Kh,0K

′
h,0,n).

Denote by φr,a ∈ M2((I0,r/aI0,r )⊗̂Kh,0K
′
h,0,n) the Sen operator associated with ρr,a.

Now (4) gives
M−1

a ρr,a(σ )σ (Ma) = δa(σ ) (6)

so we can calculate φr,a as

φr,a = lim
σ→1

log(δa
(
σ)

)

log(χ(σ ))
∈ M2(R⊗̂LCp). (7)

By comparing this with (5) we see that φr,a = πa(φr ). �

Let φr,Br = ιBr (φr ). For a nonzero ideal a of A0,r letπBr ,a be the natural projection
Br → I0,r/aI0,r . Clearly πBr ,a(φr,Br ) = πa(φr ) and φr,a = πa(φr ) by Proposition
5.6, so we have φr,Br = lim←−(a,P1)=1

φr,a.

We apply Theorem 5.5 to show the following.

Proposition 5.7 Let a be a nonzero ideal of A0,r prime to P1. The operator φr,a

belongs to the Lie algebra Hloc
r,a,Cp

.

Proof Let n be the dimension overQp of I0,r/aI0,r ; by choosing a basis (ω1, . . . , ωn)

of this algebra as a Qp-vector space, we can define an injective ring homo-
morphism α : M2(I0,r/aI0,r ) ↪→ M2n(Qp) and an injective group homomorphism
α× : GL2(I0,r/αI0,r ) ↪→ GL2n(Qp). In fact, an endomorphism f of the (I0,r/aI0,r )-
module (I0,r/aI0,r )

2 = (I0,r/aI0,r ) · e1 ⊕ (I0,r/aI0,r ) · e2 is Qp-linear, so it induces
an endomorphism α( f ) of the Qp-vector space (I0,r/aI0,r )

2 = ⊕
i, j Qp · ωi e j ; fur-

thermore if α is an automorphism then α( f ) is one too. In particular ρr,a induces a
representation ρα

r,a = α× ◦ ρr,a : Gal(K/K ) → GL2n(Qp). The image of ρα
r,a is the

group G loc,α
r,a = α×(G loc

r,a). We consider its Lie algebra Hloc,α
r,a = Qp · Log (G loc,α

r,a ) ⊂
M2n(Qp). The p-adic logarithm commutes with α in the sense that α(Log x) =
Log (α×(x)) for every x ∈ �I0,r /aI0,r (p), so we have Hloc,α

r,a = α(Hloc
r,a) (recall that

Hloc
r,a = Qp · LogG loc

r,a).
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Let φα
r,a be the Sen operator associated with ρα

r,a : Gal(K/K ) → GL2n(Qp).

By Theorem 5.5 we have φα
r,a ∈ Hloc,α

r,a,Cp
= Hloc,α

r,a ⊗̂Cp. Denote by αCp the map

α⊗̂1 : M2(I0,r,Cp/aI0,r,Cp ) ↪→ M2n(Cp).We show thatφ
αCp
r,a = αCp (φr,a), fromwhich

it follows that φr,a ∈ Hloc
r,a,Cp

sinceH
loc,αCp

r,a,Cp
= αCp (H

loc
r,a,Cp

) and αCp is injective. Now

let Ma, δa be as in (6) and M
αCp
a = αCp (Ma), δ

αCp
a = αCp ◦ δa. By applying αC to

(4) we obtain (M
αCp
a )−1ρ

αCp
r,a (σ )σ (M

αCp
a ) = δ

αCp
a (σ ) for every σ ∈ G ′

n , so we can
calculate

φ
αCp
r,a = lim

σ→1

log(δ
αCp
a

(
σ)

)

log(χ(σ ))
,

which coincides with αCp (φr,a). �

Proposition 5.8 The element φr,Br belongs to H
loc
r,Cp

, hence to Hr,Cp .

Proof By definition of the space Hloc
r,Cp

as completion of the space Hloc
r ⊗Kh,0 Cp for

the seminorms pa given by the norms onHloc
r,a,Cp

, we haveHloc
r,Cp

= lim←−(a,P1)=1
Hloc

r,a,Cp
.

By Proposition 5.6, we have φr,Br = lim←−a
φr,a and by Proposition 5.7 we have, for

every a, φr,a ∈ Hloc
r,a,Cp

. We conclude that φr,Br ∈ Hloc
r,Cp

. �

Remark 5.9 In order to prove that our Lie algebras are “big” it will be useful to
work with primary ideals of Ar , as we did in this subsection. However, in light of
Remark 5.3, all of the results can be rewritten in terms of primary ideals Q of I0,r .
This will be useful in the next subsection, when we will interpolate the Sen operators
corresponding to the attached to the classical modular forms representations.

From now on we identify I0,r,Cp with a subring ofBr,Cp via ιBr , so we also identify
M2(I0,r ) with a subring of M2(Br ) and GL2(I0,r,Cp ) with a subgroup of GL2(Br,Cp ).
In particular we identify φr with φr,Br and we consider φr as an element of Hr,Cp ∩
M2(I0,r,Cp ).

5.4 The Characteristic Polynomial of the Sen Operator

Sen proved the following result.

Theorem 5.10 Let L1 and L2 be two p-adic fields. Assume for simplicity that L2

contains the normal closure of L1. Let τ : Gal(L1/L1) → GLm(L2) be a continuous
representation. For each embedding σ : L1 → L2, there is a Sen operator φτ,σ ∈
Mm(Cp ⊗L1,σ L2) associated with τ and σ . If τ is Hodge-Tate and its Hodge-Tate
weights with respect to σ are h1,σ , . . . , hm,σ (with multiplicities, if any), then the
characteristic polynomial of φτ,σ is

∏m
i=1(X − hi,σ ).
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Now let k ∈ N and Pk = (u−k(1 + T ) − 1) be the corresponding arithmetic prime
of A0,r . Let P f be a prime of Ir above P , associated with the system of Hecke
eigenvalues of a classical modular form f . Let ρr : GQ → GL2(Ir ) be as usual.
The specialization of ρr modulo P is the representation ρ f : GQ → GL2(Ir/P)

classically associated with f , defined over the field K f = Ir/P f Ir . By a theorem
of Faltings [8], when the weight of the form f is k, the representation ρ f is Hodge-
Tate of Hodge-Tate weights 0 and k − 1. Hence by Theorem 5.10 the Sen operator
φ f associated with ρ f has characteristic polynomial X (X − (k − 1)). Let P f,0 =
P f ∩ I0,r . With the notations of the previous subsection, the specialization of ρr

modulo P f,0 gives a representation ρr,P f,0 : Gal(K/K ) → GL2(I0,r/P f,0), which
coincides with ρ f |Gal(K/K ). In particular the Sen operator φr,P f,0 associated with
ρr,P f,0 is φ f .

By Proposition 5.6 and Remark 5.9, the Sen operator φr ∈ M2(I0,r,Cp ) specializes
moduloP f,0 to the Sen operator φr,P f,0 associated with ρr,P f,0 , for every f as above.
Since the primes of the form P f,0 are dense in I0,r,Cp , the eigenvalues of φr,Q are
given by the unique interpolation of those of ρr,P f,0 . This way we will recover an
element of GL2(Br,Cp ) with the properties we need.

Given f ∈ A0,r we define its p-adic valuation by v′
p( f ) = inf x∈B(0,r) vp( f (x)),

where vp is our chosen valuation on Cp. Then if v′( f − 1) � p− 1
p−1 there are well-

defined elements log( f ) and exp(log( f )) in A0,r , and exp(log( f )) = f .
Let φ′

r = log(u)φr . Note that φ′
r is a well-defined element of M2(Br,Cp ) since

log(u) ∈ Qp. Recall that we denote by CT the matrix diag(u−1(1 + T ), 1). We have
the following.

Proposition 5.11 1. The eigenvalues of φ′
r are log(u

−1(1 + T )) and 0. In partic-
ular the exponential �r = exp(φ′

r ) is defined in GL2(Br,Cp ). Moreover �′
r is

conjugate to CT in GL2(Br,Cp ).
2. The element �′

r of part (1) normalizes Hr,Cp .

Proof For everyP f,0 as in the discussion above, the element log(u)φr specializes to
log(u)φr,P f,0 moduloP f,0. IfP f,0 is a divisor of Pk , the eigenvalues of log(u)φr,P f,0

are log(u)(k − 1) and 0. Since 1 + T = uk moduloP f,0 for every primeP f,0 divid-
ing Pk ,wehave log(u−1(1 + T )) = log(uk−1) = (k − 1) log(u)moduloP f,0.Hence
the eigenvalues of log(u)φr,P f,0 are interpolated by log(u−1(1 + T )) and 0.

Recall that in Sect. 3.1 we chose rh smaller than p− 1
p−1 . Since r < rh , v′

p(T ) <

p− 1
p−1 . In particular log(u−1(1 + T )) is defined and exp(log(u−1(1 + T ))) = u−1

(1 + T ), so �r = exp(φ′
r ) is also defined and its eigenvalues are u−1(1 + T ) and

1. The difference between the two is u−1(1 + T ) − 1; this elements belongs to P1,
hence it is invertible in Br . This proves (1).

By Proposition 5.8, φr ∈ Hr,Cp . Since Hr,Cp is a Qp-Lie algebra, log(u)φr is also
an element of Hr,Cp . Hence its exponential �

′
r normalizes Hr,Cp . �
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6 Existence of the Galois Level for a Family with Finite
Positive Slope

Let rh ∈ pQ∩]0, p− 1
p−1 [ be the radius chosen in Sect. 3. As usual we write r for any

one of the radii ri of Sect. 3.1. Recall that Hr ⊂ M2(Br ) is the Lie algebra attached
to the image of ρr (see Definition 5.2) and Hr,Cp = Hr ⊗̂QpCp. Let u± and u±

Cp
be

the upper and lower nilpotent subalgebras of Hr , and Hr,Cp respectively.

Remark 6.1 The commutative Lie algebra u± is independent of r because it is equal
to Qp · Log(U (I◦

0) ∩ G ′
r ) which is independent of r , provided r1 � r < rh .

Wefix r0 ∈ pQ∩]0, rh[ arbitrarily andwework fromnowonwith radii r satisfying
r0 � r < rh . As in Remark 5.1 this fixes a finite extension of Q corresponding to
the inclusion G ′

r ⊂ Gr . For r < r ′ we have a natural inclusion I0,r ′ ↪→ I0,r . Since
Br = lim←−(aP1)=1

I0,r/aI0,r this induces an inclusionBr ′ ↪→ Br .Wewill consider from

now on Br ′ as a subring of Br for every r < r ′. We will also consider M2(I0,r ′,Cp )

andM2(Br ′) as subsets of M2(I0,r,Cp ) andM2(Br ) respectively. These inclusions still
hold after taking completed tensor products with Cp.

Recall the elements φ′
r = log(u)φr ∈M2(Br,Cp ) and �′

r = exp(φ′
r ) ∈ GL2(Br,Cp )

defined at the end of the previous section. The Sen operator φr is independent of r in
the following sense: if r < r ′ < rh and Br ′,Cp → Br,Cp is the natural inclusion then
the image of φr ′ under the induced map M2(Br ′,Cp ) → M2(Br,Cp ) is φr . We deduce
that φ′

r and �′
r are also independent of r (in the same sense).

By Proposition 5.11, for every r < rh there exists an element βr ∈ GL2(Br,Cp )

such that βr�
′
rβ

−1
r = CT . Since �′

r normalizes Hr,Cp , CT = βr�
′
rβ

−1
r normalizes

βrHr,Cpβ
−1
r .

We denote by U± the upper and lower nilpotent subalgebras of sl2. The action of
CT on Hr,Cp by conjugation is semisimple, so we can decompose βrHr,Cpβ

−1
r as a

sum of eigenspaces for CT :

βrHr,Cpβ
−1
r

= (
βrHr,Cpβ

−1
r

) [1] ⊕ (
βrHr,Cpβ

−1
r

) [u−1(1 + T )] ⊕ (
βrHr,Cpβ

−1
r

) [u(1 + T )−1]

with
(
βrHr,Cpβ

−1
r

) [u−1(1 + T )] ⊂ U+(Br,Cp ) and
(
βrHr,Cpβ

−1
r

) [u(1 + T )−1] ⊂
U−(Br,Cp ).
Moreover, the formula

(
u−1(1 + T ) 0

0 1

) (
1 λ

0 1

) (
u−1(1 + T ) 0

0 1

)−1

=
(
1 u−1(1 + T )λ

0 1

)

shows that the action ofCT by conjugation coincides with multiplication by u−1(1 +
T ). By linearity this gives an action of the polynomial ring Cp[T ] on βrHr,Cpβ

−1
r ∩

U+(Br,Cp ), compatible with the action ofCp[T ] onU+(Br,Cp ) given by the inclusions
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Cp[T ] ⊂ �h,0,Cp ⊂ Br,Cp ⊂ Br,Cp . Since Cp[T ] is dense in Ah,0,Cp for the p-adic
topology, it is also dense in Br,Cp . SinceHr,Cp is a closed Lie subalgebra ofM2(Br,Cp ),
we can define by continuity a Br,Cp -module structure on βrHr,Cpβ

−1
r ∩ U+(Br,Cp ),

compatible with that on U+(Br,Cp ). Similarly we have

(
u−1(1 + T ) 0

0 1

) (
1 0
μ 1

) (
u−1(1 + T ) 0

0 1

)−1

=
(

1 0
u(1 + T )−1μ 1

)

.

We note that 1 + T is invertible in A0,r since T = psh t where rh = p−sh .
Therefore CT is invertible and by twisting by (1 + T ) �→ (1 + T )−1 we can also
give βrHr,Cpβ

−1
r ∩ U−(Br,Cp ) a structure of Br,Cp -module compatible with that on

U−(Br,Cp ).
By combining the previous remarks with Corollary 4.23, we prove the following

“fullness” result for the big Lie algebra Hr .

Theorem 6.2 Suppose that the representation ρ is (H0, Zp)-regular. Then there
exists a nonzero ideal l of I0, independent of r < rh, such that for every such r the
Lie algebra Hr contains l · sl2(Br ).

Proof Since U±(Br ) ∼= Br , we can and shall identify u+ = Qp · LogG ′
r ∩ U+(Br )

with a Qp-vector subspace of Br (actually of I0), and u
+
Cp

with a Cp-vector subspace
of Br,Cp . We repeat that these spaces are independent of r since G ′

r is, provided that
r0 � r < rh (see Remark 5.1). By Corollary 4.23, u± ∩ I0 contains a basis {ei,±}i∈I
for Q(I0) over Q(�h,0). The set {ei,+}i∈I ⊂ u+ is a basis for Q(I0) over Q(�h,0), so
u+ contains the basis of a �h,0-lattice in I0. By Lemma 4.19 we deduce that �h,0u

+
contains a nonzero ideal a+ of I0. Hence we also have Br,Cpu

+
Cp

⊃ Br,Cpa
+. Now a+

is an ideal of I0 and Br,CpI0,Cp = Br,Cp , so Br,Cpa
+ = a+Br,Cp is an ideal in Br,Cp .

We conclude that Br,Cp · u+ ⊃ a+Br,Cp for a nonzero ideal a+ of I0. We proceed in
the same way for the lower unipotent subalgebra, obtaining Br,Cp · u− ⊃ a−Br,Cp for
some nonzero ideal a− of I0.

Consider now theLie algebra Br,CpHCp ⊂ M2(Br,Cp ). Its nilpotent subalgebras are
Br,Cpu

+ and Br,Cpu
−, and we showed Br,Cpu

+ ⊃ a+Br,Cp and Br,Cpu
− ⊃ a−Br,Cp .

Denote by t ⊂ sl2 the subalgebra of diagonal matrices over Z. By taking the Lie
bracket, we see that [U+(a+Br,Cp ),U

−(a−Br,Cp )] spans a+ · a− · t(Br,Cp ) over Br,Cp .
We deduce that Br,CpHCp ⊃ a+ · a− · sl2(Br,Cp ). Let a = a+ · a−. Now a · sl2(Br,Cp )

is a Br,Cp -Lie subalgebra of sl2(Br,Cp ). Recall that βr ∈ GL2(Br,Cp ); hence by sta-
bility by conjugation we have βr

(
a · sl2(Br,Cp )

)
β−1
r = a · sl2(Br,Cp ). Thus, we con-

structed a such that Br,Cp

(
βrHr,Cpβ

−1
r

) ⊃ a · sl2(Br,Cp ). In particular, if u
±,βr

Cp
denote

the unipotent subalgebras of βrHr,Cpβ
−1
r , we have Br,Cpu

±,βr

Cp
⊃ aBr,Cp for both

signs. By the discussion preceding the proposition the subalgebras u
±,βr

Cp
have a

structure of Br,Cp -modules, which means that u±,βr

Cp
= Br,Cpu

±,βr

Cp
. We conclude that

u
±,βr

Cp
⊃ βr

(
a · U±(Br,Cp )

)
β−1
r for both signs. By the usual argument of taking the

bracket, we obtain βrHr,Cpβ
−1
r ⊃ a2 · sl2(Br,Cp ). We can untwist by the invertible

matrix βr to conclude that, for l = a2, we have Hr,Cp ⊃ l · sl2(Br,Cp ).
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Let us get rid of the completed extension of scalars to Cp. For every ideal a ⊂ I0,r
not dividing P1, letHr,a be the image ofHr in M2(I0,r/aI0,r ). Consider the two finite
dimensional Qp-vector spaces Hr,a and l · sl2(I0,r/aI0,r ). Note that they are both
subspaces of the finite dimensional Qp-vector space M2(I0,r/aI0,r ). After extending
scalars to Cp, we have

l · sl2(I0,r/aI0,r ) ⊗ Cp ⊂ Hr,a ⊗ Cp. (8)

Let {ei }i∈I be an orthonormal basis of the Banach space Cp over Qp, with I some
index set, such that 1 ∈ {ei }i∈I . Let {v j } j=1,...,n be a Qp-basis of M2(I0,r/aI0,r ) such
that, for some d � n, {v j } j=1,...,d is a Qp-basis of Hr,a.

Let v be an element of l · sl2(I0,r/aI0,r ). Then v ⊗ 1 ∈ l · sl2(I0,r/aI0,r ) ⊗ Cp and
by (8) we have v ⊗ 1 ∈ Hr,a ⊗ Cp. As {v j ⊗ ei }1� j�d,i∈I , and {v j ⊗ ei }1� j�n,i∈I
are orthonormal bases of Hr,a ⊗ Cp, and M2(I0,r/aI0,r ) ⊗ Cp over Qp, respectively
there existλ j,i ∈ Qp, ( j, i) ∈ {1, 2, ..., d} × I converging to 0 in the filter of comple-
ments of finite subsets of {1, 2, ..., d} × I such that v ⊗ 1 = ∑

j=1,...,d; i∈I λ j,i (v j ⊗
ei ).

But v ⊗ 1 ∈ M2(I0,r/aI0,r ) ⊗ 1 ⊂ M2(I0,r/aI0,r ) ⊗ Cp and therefore v ⊗ 1 =∑
1� j�n a j (v j ⊗ 1), for some a j ∈ Qp, j = 1, ..., n. By the uniqueness of a rep-

resentation of an element in a Qp-Banach space in terms of a given orthonormal
basis we have

v ⊗ 1 =
d∑

j=1

a j (v j ⊗ 1), i.e. v =
d∑

j=1

a jv j ∈ Hr,a.

By taking the projective limit over a, we conclude that

l · sl2(Br ) ⊂ Hr .

�

Definition 6.3 The Galois level of the family θ : Th → I◦ is the largest ideal lθ of
I0[P−1

1 ] such that Hr ⊃ lθ · sl2(Br ) for all r < rh .

It follows by the previous remarks that lθ is nonzero.

7 Comparison Between the Galois Level and the Fortuitous
Congruence Ideal

Let θ : Th → I◦ be a slope � h family. We keep all the notations from the previous
sections. In particularρ : GQ → GL2(I

◦) is theGalois representation associatedwith
θ . We suppose that the restriction of ρ to H0 takes values in GL2(I

◦
0). Recall that
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I = I◦[p−1] and I0 = I◦
0[p−1]. Also recall that P1 is the prime of �h,0 generated by

u−1(1 + T ) − 1. Let c ⊂ I be the congruence ideal associated with θ . Set c0 = c ∩ I0
and c1 = c0I0[P−1

1 ]. Let l = lθ ⊂ I0[P−1
1 ] be the Galois level of θ . For an ideal a

of I0[P−1
1 ] we denote by V (a) the set of prime ideals of I0[P−1

1 ] containing a. We
prove the following.

Theorem 7.1 Suppose that

1. ρ is (H0, Zp)-regular;
2. there exists no pair (F, ψ), where F is a real quadratic field andψ : Gal(F/F) →

F× is a character, such that ρ : GQ → GL2(F) ∼= IndQ
Fψ .

Then we have V (l) = V (c1).

Before giving the proof we make some remarks. Let P be a prime of I0[P−1
1 ]

and Q be a prime factor of PI[P−1
1 ]. We consider ρ as a representation GQ →

GL2(I[P−1
1 ]) by composing it with the inclusion GL2(I) ↪→ GL2(I[P−1

1 ]). We have
a representation ρQ : GQ → GL2(I[P−1

1 ]/Q) obtained by reducing ρ modulo Q. Its
restriction ρQ |H0 takes values in GL2(I0[P−1

1 ]/(Q ∩ I0[P−1
1 ])) = GL2(I0[P−1

1 ]/P)

and coincides with the reduction ρP of ρ|H0 : H0 → GL2(I0[P−1
1 ]) modulo P . In

particular ρQ |H0 is independent of the chosen prime factor Q of PI[P−1
1 ].

We say that a subgroup of GL2(A) for some algebra A finite over a p-adic field
K is small if it admits a finite index abelian subgroup. Let P , Q be as above, GP

be the image of ρP : H0 → GL2(I0[P−1
1 ]/P) and GQ be the image of ρQ : GQ →

GL2(I[P−1
1 ]/Q). By our previous remark ρP coincides with the restriction ρQ |H0 ,

so GP is a finite index subgroup of GQ for every Q. In particular GP is small if and
only if GQ is small for all prime factors Q of PI[P−1

1 ].
Now if Q is a CM point the representation ρQ is induced by a character of

Gal(F/Q) for an imaginary quadratic field F . HenceGQ admits an abelian subgroup
of index 2 and GP is also small.

Conversely, if GP is small, GQ′ is small for every prime Q′ above P . Choose
any such prime Q′; by the argument in [16, Proposition 4.4] GQ′ has an abelian
subgroup of index 2. It follows that ρQ′ is induced by a character of Gal(FQ′/FQ′)

for a quadratic field FQ′ . If FQ′ is imaginary then Q′ is a CM point. In particular,
if we suppose that the residual representation ρ̄ : GQ → GL2(F) is not induced by
a character of Gal(F/F) for a real quadratic field F/Q, then FQ′ is imaginary and
Q′ is CM. The above argument proves that GP is small if and only if all points
Q′ ⊂ I[P−1

1 ] above P are CM.

Proof We prove first that V (c1) ⊂ V (l). Fix a radius r < rh . By contradiction, sup-
pose that a prime P of I0[P−1

1 ] contains c0 but P does not contain l. Then there exists
a prime factor Q of PI[P−1

1 ] such that c ⊂ Q. By definition of c we have that Q is a
CM point in the sense of Sect. 3.4, hence the representation ρI[P−1

1 ],Q has small image

in GL2(I[P−1
1 ]/Q). Then its restriction ρI[P−1

1 ],Q |H0 = ρP also has small image in

GL2(I0[P−1
1 ]/P). We deduce that there is no nonzero ideal IP of I0[P−1

1 ]/P such
that the Lie algebra Hr,P contains IP · sl2(I0[P−1

1 ]/P).
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Now by definition of l we have l · sl2(Br ) ⊂ Hr . Since reduction modulo P gives
a surjection Hr → Hr,P , by looking at the previous inclusion modulo P we find
l · sl2(I0,r [P−1

1 ]/PI0,r [P−1
1 ]) ⊂ Hr,P . If l �⊂ P we have l/P �= 0, which contradicts

our earlier statement. We deduce that l ⊂ P .
We prove now that V (l) ⊂ V (c1). Let P ⊂ I0[P−1

1 ] be a prime containing
l. Recall that I0[P−1

1 ] has Krull dimension one, so κP = I0[P−1
1 ]/P is a field.

Let Q be a prime of I[P−1
1 ] above P . As before ρ reduces to representations

ρQ : GQ → GL2(I[P−1
1 ]/Q) and ρP : H0 → GL2(I0[P−1

1 ]/P). Let P ⊂ I0[P−1
1 ]

be the P-primary component of l and let A be an ideal of I0[P−1
1 ] containing

P such that the localization at P of A/P is one-dimensional over κP . Choose
any r < rh . Let s = A/P · sl2(I0,r [P−1

1 ]/P) ∩ Hr,P, that is a Lie subalgebra of
A/P · sl2(I0,r [P−1

1 ]/P).
We show that s is stable under the adjoint action Ad(ρQ) of GQ. Let Q be the

Q-primary component of l · I[P−1
1 ]. Recall that Hr,P is the Lie algebra associ-

ated with the pro-p group Im ρr,Q|H0 ∩ �GL2(I0,ro [P−1
1 ]/P)(p) ⊂ GL2(I0,r [P−1

1 ]/P).

Since this group is open in Im ρr,Q ⊂ GL2(Ir [P−1
1 ]/Q), the Lie algebra asso-

ciated with Im ρr,Q is again Hr,P. In particular Hr,P is stable under Ad(ρQ).
Since Hr,P ⊂ sl2(I0,r [P−1

1 ]/P) we have A/P · sl2(I0,r [P−1
1 ]/P) ∩ Hr,P = A/P ·

sl2(Ir [P−1
1 ]/Q) ∩ Hr,P. NowA/P · sl2(Ir [P−1

1 ]/Q) is clearly stable under Ad(ρQ),
so the same is true for A/P · sl2(Ir [P−1

1 ]/Q) ∩ Hr,P, as desired.
We consider from now on s as a Galois representation via Ad(ρQ). By the proof

of Theorem 6.2 we can assume, possibly considering a sub-Galois representation,
thatHr is a Br -submodule of sl2(Br ) containing l · sl2(Br ) but not a · sl2(Br ) for any
a strictly bigger than l. This allows us to speak of the localization sP of s at P . Note
that, sinceP is the P-primary component of l andAP/PP

∼= κP , when P-localizing
we find Hr,P ⊃ PP · sl2(Br,P) and Hr,P �⊃ AP · sl2(Br,P).

The localization at P of a/P · sl2(I0,r [P−1
1 ]/P) is sl2(κP), so sP is contained in

sl2(κP). It is a κP -representation of GQ (via Ad(ρQ)) of dimension at most 3. We
distinguish various cases following its dimension.

We cannot have sP = 0. By exchanging the quotient with the localization we
would obtain (AP · sl2(Br,P) ∩ Hr,P)/PP = 0. By Nakayama’s lemma AP · sl2
(Br,P) ∩ Hr,P = 0,which is absurd sinceAP · sl2(Br,P) ∩ Hr,P ⊃ PP · sl2(Br,P) �=0.

We also exclude the three-dimensional case. If sP = sl2(κP), by exchanging the
quotient with the localization we obtain (AP · sl2(Br,P) ∩ Hr,P)/PP = (AP · sl2
(I0,r,P [P−1

1 ]))/PPI0,r,P [P−1
1 ], because we have API0,r,P [P−1

1 ]/PPI0,r,P [P−1
1 ] =(

I0,r,P [P−1
1 ]/PPI0,r,P [P−1

1 ]) and this is isomorphic to κP . By Nakayama’s lemma
we would conclude that Hr,P ⊃ A · sl2(Br,P), which is absurd.

We are left with the one and two-dimensional cases. If sP is two-dimensional we
can always replace it by its orthogonal in sl2(κP) which is one-dimensional; indeed
the action of GQ via Ad(ρQ) is isometric with respect to the scalar product Tr(XY )

on sl2(κP).
Suppose that sl2(κP) contains a one-dimensional stable subspace. Let φ be a gen-

erator of this subspace over κP . Let χ : GQ → κP denote the character satisfying
ρQ(g)φρQ(g)−1 = χ(g)φ for all g ∈ GQ. Now φ induces a nontrivial morphism of
representations ρQ → ρQ ⊗ χ . Since ρQ and ρQ ⊗ χ are irreducible, by Schur’s
lemma φ must be invertible. Hence we obtain an isomorphism ρQ

∼= ρQ ⊗ χ . By
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taking determinants we see that χ must be quadratic. If F0/Q is the quadratic exten-
sion fixed by ker χ , then ρQ is induced by a character ψ of Gal(F0/F0). By assump-
tion the residual representation ρmI

: GQ → GL2(F) is not of the form IndQ
Fψ for a

real quadratic field F and a character Gal(F/F) → F×. We deduce that F0 must be
imaginary, so Q is a CMpoint by Remark 3.11(1). By construction of the congruence
ideal c ⊂ Q and c0 ⊂ Q ∩ I0[P−1

1 ] = P . �

We prove a corollary.

Corollary 7.2 If the residual representation ρ : GQ → GL2(F) is not dihedral then
l = 1.

Proof Since ρ is not dihedral there cannot be any CM point on the family θ :
Th → I◦. By Theorem 7.1 we deduce that l has no nontrivial prime factor, hence it
is trivial. �

Remark 7.3 Theorem 7.1 gives another proof of Proposition 3.9. Indeed the CM
points of a family θ : Th → I◦ correspond to the prime factors of its Galois level,
which are finite in number.

We also give a partial result about the comparison of the exponents of the prime
factors in c1 and l. This is an analogous of what is proved in [9, Theorem 8.6] for
the ordinary case; our proof also relies on the strategy there. For every prime P of
I0[P−1

1 ] we denote by cP1 and lP the P-primary components of c1 and l respectively.

Theorem 7.4 Suppose thatρ is not induced by a character of GF for a real quadratic
field F/Q. We have (cP1 )2 ⊂ lP ⊂ cP1 .

Proof The inclusion lP ⊂ cP1 is proved in the same way as the first inclusion of
Theorem 7.1.

We show that the inclusion (cP1 )2 ⊂ lP holds. If cP1 is trivial this reduces toTheorem
7.1, so we can suppose that P is a factor of c1. Let Q denote any prime of I[P−1

1 ]
above P . Let cQ1 be a Q-primary ideal of I[P−1

1 ] satisfying c
Q
1 ∩ I0[P−1

1 ] = cP1 .
Since P divides c1, Q is a CM point, so we have an isomorphism ρP

∼= IndQ
Fψ for an

imaginary quadratic field F/Q and a character ψ : GF → C×
p . Choose any r < rh .

Consider the κP -vector space scP1 = Hr ∩ cP1 · sl2(I0,r )/Hr ∩ cP1 P · sl2(I0,r ). We see
it as a subspace of sl2(cP1 /cP1 P) ∼= sl2(κP). By the same argument as in the proof of
Theorem 7.1, scP1 is stable under the adjoint action Ad(ρcQ1 Q) : GQ → Aut(sl2(κP)).

Let χF/Q : GQ → C×
p be the quadratic character defined by the extension F/Q.

Let ε ∈ GQ be an element projecting to the generator of Gal(F/Q). Let ψε : GF →
C×

p be given by ψε(τ) = ψ(ετε−1). Set ψ− = ψ/ψε. Since ρQ
∼= IndQ

Fψ , we have

a decomposition Ad(ρQ) ∼= χF/Q ⊕ IndQ
Fψ−, where the two factors are irreducible.

Now we have three possibilities for the Galois isomorphism class of scP1 : it is either
that of Ad(ρQ) or that of one of the two irreducible factors.

If scP1
∼= Ad(ρQ), then as κP -vector spaces scP1 = sl2(κP). By Nakayama’s lemma

Hr ⊃ cP1 · sl2(Br ). This implies cP1 ⊂ lP , hence cP1 = lP in this case.
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If scP1 is one-dimensional then we proceed as in the proof of Theorem 7.1

to show that ρcQ1 Q : GQ → GL2(Ir [P−1
1 ]/cQ1 QIr [P−1

1 ]) is induced by a character

ψcQ1 Q : GF → C×
p . In particular the image of ρcP1 P : H → GL2(I0,r [P−1

1 ]/cP1 PI0,r )

is small. This is a contradiction, since cP1 is the P-primary component of c1,
hence it is the smallest P-primary ideal A of I0,r [P−1

1 ] such that the image of
ρA : GQ → GL2(Ir [P−1

1 ]/AIr [P−1
1 ]) is small.

Finally, suppose that scP1
∼= IndQ

Fψ−. Let d = diag(d1, d2) ∈ ρ(GQ) be the image
of a Zp-regular element. Since d1 and d2 are nontrivial modulo the maximal
ideal of I◦

0, the image of d modulo c
Q
1 Q is a nontrivial diagonal element dcQ1 Q =

diag(d1,cQ1 Q, d2,cQ1 Q) ∈ ρcQ1 Q(GQ). We decompose scP1 in eigenspaces for the adjoint

actionofdcQ1 Q :wewrite scP1 = scP1 [a] ⊕ scP1 [1] ⊕ scP1 [a−1],wherea = d1,cQ1 Q/d2,cQ1 Q .
Now scP1 [1] is contained in the diagonal torus, on which the adjoint action of GQ

is given by the character χF/Q. Since χF/Q does not appear as a factor of scP1 , we
must have scP1 [1] = 0. This implies that scP1 [a] �= 0 and scP1 [a−1] �= 0. Since scP1 [a] =
scP1 ∩ u+(κP) and scP1 [a−1] = scP1 ∩ u−(κP), we deduce that scP1 contains nontrivial

upper and lower nilpotent elements u+ and u−. Then u+ and u− are the images of
some elements u+ and u− ofHr ∩ cP1 · sl2(I0,r [P−1

1 ]) nontrivialmodulo cP1 P . TheLie
bracket t = [u+, u−] is an element ofHr ∩ t(I0,r [P−1

1 ]) (where t denotes the diagonal
torus) and it is nontrivial modulo (cP1 )2P . Hence the κP -vector space s(cP1 )2 = Hr ∩
(cP1 )2 · sl2(I0,r,Cp [P−1

1 ])/Hr ∩ (cP1 )2P · sl2(I0,r,Cp [P−1
1 ]) contains nontrivial diago-

nal, upper nilpotent and lower nilpotent elements, so it is three-dimensional. By
Nakayama’s lemma we conclude that Hr ⊃ (cP1 )2 · sl2(I0,r [P−1

1 ]), so (cP1 )2 ⊂ lP .�
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Behaviour of the Order of Tate–Shafarevich
Groups for the Quadratic Twists of X0(49)

Andrzej Dąbrowski, Tomasz Jędrzejak and Lucjan Szymaszkiewicz

Abstract We present the results of our search for the orders of Tate–Shafarevich
groups for the quadratic twists of E = X0(49).

Keywords Elliptic curves · Quadratic twists · Tate–Shafarevich group · Distribu-
tion of central L-values · Cohen–Lenstra heuristics
MSCs 11G05 · 11G40 · 11Y50

1 Introduction

Let E be an elliptic curve defined over Q of conductor NE , and let L(E, s) denote its
L-series. Let X(E) be the Tate–Shafarevich group of E, E(Q) the group of ratio-
nal points, and R(E) the regulator, with respect to the Néron–Tate height pairing.
Finally, let �E be the least positive real period of the Néron differential on E, and
define C∞(E) = �E or 2�E according as E(R) is connected or not, and let Cfin(E)

denote the product of the Tamagawa factors of E at the bad primes. The Euler prod-
uct defining L(E, s) converges for Re s > 3/2. The modularity conjecture, proven by
Wiles–Taylor–Diamond–Breuil–Conrad, implies that L(E, s) has an analytic contin-
uation to an entire function. The Birch and Swinnerton-Dyer conjecture relates the
arithmetic data of E to the behaviour of L(E, s) at s = 1.
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Conjecture 1 (Birch and Swinnerton-Dyer) (i) L-function L(E, s) has a zero of
order r = rank E(Q) at s = 1,

(ii)X(E) is finite, and

lim
s→1

L(E, s)

(s − 1)r
= C∞ (E)Cfin(E)R(E) |X(E)|

|E(Q)tors|2 .

If X(E) is finite, the work of Cassels and Tate shows that its order must be a
square.

The first general result in the direction of this conjecture was proven for elliptic
curves E with complex multiplication by Coates and Wiles in 1976 [3], who showed
that if L(E, 1) �= 0, then the group E(Q) is finite. Gross and Zagier [12] showed
that if L(E, s) has a first-order zero at s = 1, then E has a rational point of infi-
nite order. Rubin [23] proves that if E has complex multiplication and L(E, 1) �= 0,
then X(E) is finite. Let gE be the rank of E(Q) and let rE the order of the zero
of L(E, s) at s = 1. Then Kolyvagin [15] proved that, if rE � 1, then rE = gE
and X(E) is finite. The work [11] completed Rubin’s verification of the Birch
and Swinnerton-Dyer conjecture for the quadratic twists of X0(49) when the com-
plex L-series of the twist does not vanish at s = 1. Coates et al. [1, 2] showed
that there is a large class of explicit quadratic twists of X0(49) whose complex
L-series does not vanish at s = 1, and for which the full Birch and Swinnerton-
Dyer conjecture is valid. We recall that E = X0(49) has a minimal Weierstrass equa-
tion y2 + xy = x3 − x2 − 2x − 1. Its Néron differential ω = dx

2y+x has fundamental

real period �E = �(1/7)�(2/7)�(4/7)
2π

√
7

= 1.9333117 . . . In what follows we shall study
numerical data arising from the conjecture of Birch and Swinnerton-Dyer for the
quadratic twists of E. Our reason for considering the quadratic twists of this par-
ticular curve is that, in our present state of knowledge, one can prove more cases
of the full Birch–Swinnerton-Dyer conjecture for these quadratic twists than for the
quadratic twists of any other elliptic curve over Q with small conductor.

The numerical studies and conjectures by Conrey–Keating–Rubinstein–Snaith
[5], Delaunay [8, 9], Quattrini [20, 21], Watkins [25], Radziwiłł–Soundararajan
[22] (see also the paper [7] and references therein) substantially extend the system-
atic tables given by Cremona. Our present computations are over a considerably
larger range of quadratic twists, and support all previous conjectures, as well as
giving rise to some new ones (see our Conjectures 7 and 8 below).

In this paper we present the results of our search for the orders of Tate–
Shafarevich groups for the quadratic twists of E for rather large ranges of the index.
Our calculations may be served as an appendix to the following beautiful results
obtained by Gonzalez-Avilés ([11], Theorem B), and Coates et al. ([2], Theorems
1.2 and 1.4). If d is the discriminant of a quadratic field, Ed will denote the twist of
E by Q(

√
d)/Q.

Theorem 2 ([11], Theorem B) If L(Ed, 1) �= 0, then the full Birch and Swinnerton-
Dyer conjecture is true for Ed.
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Theorem 3 ([2], Theorem 1.2) Let d = p1 . . . pl be a product of � 0 distinct
primes, which are ≡ 1 mod 4 and inert in Q(

√−7). Then L(Ed, 1) �= 0, Ed(Q)

is finite, the Tate–Shafarevich group of Ed is finite of odd cardinality, and the full
Birch–Swinnerton-Dyer conjecture is valid for Ed.

Theorem 4 ([2], a special case of Theorem 1.4) Let l0 be a prime number > 3,
which is ≡ 3 mod 4 and inert inQ(

√−7). Assume that q1,. . . qr are distinct rational
primes, which are ≡ 1 mod 4 and inert in both the fields Q(

√−7) and Q(
√−l0).

Put d = −l0q1 . . . qr. Then L(Ed, s) has a simple zero at s = 1, Ed(Q) has rank 1,
and the Tate–Shafarevich group of Ed is finite of odd cardinality.

Our numerical data gives the order of X(Ed) for all 5598893691 odd positive
discriminants d, prime to 7, for which d < 32 · 109 and L(Ed, 1) �= 0. The calcu-
lations suggest that for any positive integer k there is square-free positive integer
d, (d, 7) = 1 (or even infinitely many such d’s), such that Ed has rank zero and
|X(Ed)| = k2 (Sects. 3 and 4); in Sect. 11 we propose asymptotical formulae for
the number of such d’s. The numerical data gives strong information, discussed in
Sect. 7, for the asymptotic behaviour of the sum of the orders of theX(Ed) for odd
positive d prime to 7, with L(Ed, 1) �= 0 over all such d with d � X as X → ∞.
It turns out that both distributions of L(Ed, 1) and log(|X(Ed)|/

√
d) follow an

approximate normal distribution (Sect. 9). In the last section we numerically con-
firm that |X(Ed)| = 1 is about as common as L(Ed, 1) = 0 when ε(Ed) = 1. The
attached table contains, for each positive integer k � 1793 (and for selected integers
up to 2941), an elliptic curve Edk with |X(Edk )| = k2.

Of course, all the experiments concerning statistics of the L-values of quadratic
twists of X0(49), and related orders of Tate–Shafarevich groups, can be repeated for
quadratic twists of other elliptic curves (see [6]).

At the end of December 2013, John Coates asked one of us (A. D.) to estab-
lish some results about large orders of X for the quadratic twists of X0(49) (using
Theorem 1.2 in [2]). It was the starting point for us to make extensive calculations
reported in this article. We heartily thank John for his constant support, sugges-
tions (i.e., he proposed to find and/or test asymptotic formulae in Sect. 7) and many
corrections. Finally, we thank him for sending us a manuscript by Radziwiłł and
Soundararajan [22] and some comments by Heath-Brown [13]. We thank Bjorn Poo-
nen for sending us his comments and, especially, for his question (see Sect. 11). We
thank the anonymous referees for their comments which improved the final version
of this paper.

The main part of the computations was carried out in 2015 on desktop computers
Core(TM) 2 Quad Q8300 4GB/8GB. For the calculations of examples in Sect. 5 we
also used the HPC cluster HAL9000. All machines are located at the Department of
Mathematics and Physics of Szczecin University.
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2 Formula for the Order of X(Ed) When L(Ed, 1) �= 0

We can compute L(Ed, 1) when it is non-zero for a huge range of positive discrimi-
nants d ≡ 1(mod 4) thanks to the remarkable ideas discovered by Waldspurger, and
worked out explicitly in this particular case by Lehman [17]. These ideas show that
L(Ed, 1), when it is non-zero, is essentially equal to the d-th Fourier coefficient of
an explicit modular form of weight 3/2, and we now recall the precise result which
Lehman proves.

Notation. Let q := e2π iz, �(z) = ∑
n∈Z qn

2
, �t(z) = �(tz) = ∑

n∈Z qtn
2
. Let d

be a positive square free integer, prime to 7, and ≡ 1(mod 4). Let l1(d) (resp. l2(d))
denote the number of odd prime divisors p of d such that (p/7) = 1 (resp. (p/7) =
−1). Define l(d) = l1(d) + 1

2 l2(d) if l2(d) is even, and l(d) = l1(d) + 1
2 (l2(d) − 1)

if l2(d) is odd.
Let g = g1 + · · · + g6, where

g1 =
∑

[q(14m+1)2+(14n)2 − q(14m+7)2+(14n+6)2 ]

g2 =
∑

[q(14m+3)2+(14n)2 − q(14m+7)2+(14n+4)2 ]

g3 =
∑

[q(14m+5)2+(14n)2 − q(14m+7)2+(14n+2)2 ]

g4 =
∑

[q(14m+1)2+(14n+2)2 − q(14m+5)2+(14n+6)2 ]

g5 =
∑

[q(14m+3)2+(14n+6)2 − q(14m+1)2+(14n+4)2 ]

g6 =
∑

[q(14m+5)2+(14n+4)2 − q(14m+3)2+(14n+2)2 ]

and all sums are taken over all m, n ∈ Z.
Let g�28 = ∑

anqn. Let �d denote the least positive real period of the Néron
differential on Ed . Then for d as above, we have �d = �E√

d
, and Lehman ([17], The-

orem 2) proves, in particular, the following result: L(Ed, 1) = �da2d if (d/7) = −1,
and L(Ed, 1) = 1

2�da2d if (d/7) = 1.
Assume that ad �= 0. Then L(Ed, 1) �= 0. In this case the full Birch and

Swinnerton-Dyer conjecture is valid ([11], Theorem B), hence using ([17], p. 268)
we obtain the following result.

Corollary 1 Assume d is positive, square free integer, prime to 7, and ≡ 1(mod 4).

If ad �= 0, then |X(Ed)| = a2d
4l(d) .
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Note that the weight 3/2 modular form g�28 may be constructed using ternary
quadratic forms. This construction will be used in our algorithm (see the Appendix),
hence we give some details. We introduce the following notations: for a positive
definite integral quadratic form f (x1, . . . , xm) define θ (f ) to be the power series

θ (f ) :=
∑

(k1,...,km)∈Zm

qf (k1,...,km).

We denote the form f (x, y, z) = ax2 + by2 + cz2 + ryz + szx + txy by the array[
a b c
r s t

]

, and put θ (f1, f2) := 1
2 (θ (f1) − θ (f2)). Then (see [17], p. 259 for details)

we get
g�28 = g′�28 + g′′�28,

where

g′�28 = θ

([
1 28 196
0 0 0

]

,

[
4 28 49
0 0 0

])

,

g′′�28 = θ

([
5 40 28
0 0 4

]

,

[
13 17 28
0 0 10

])

.

Definition 5 (i) We say that a positive integer d satisfies condition (*), if d =
p1 · · · pl is a product of distinct primes which are ≡ 1 mod 4 and (pi/7) = −1 for
all i = 1, . . . , l. (ii) We say that a positive integer d satisfies condition (**), if d is
square-free, d ≡ 1 mod 4, (d, 7) = 1, and ad �= 0.

Note that any d satisfying the condition (*) satisfies the condition (**) as well
(use Theorems 2 and 3).

3 Examples of Rank Zero Elliptic Curves Ed with
|X(Ed)| = k2 for all k � 1793

Our data contains values of |X(Ed)| for 5598893691 values of d � 32 · 109 satis-
fying (**) (and for 715987381 values of d satisfying (*)).

In the attached table we exhibit, for each positive integer k � 1793 (and for
selected integers up to 2941), an elliptic curve Edk with |X(Edk )| = k2. Note that for
each odd positive integer l � 2357 there is an elliptic curve Edl with |X(Edl )| = l2.
Our calculations strongly support the following

Conjecture 6 Let E = X0(49). For any positive integer k there is square-free posi-
tive integer d, (d, 7) = 1, such that Ed has rank zero and |X(Ed)| = k2.
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4 Frequency of Orders of X

Let Nk(x) (resp. N∗
k (x)) denote the number of integers d � x satisfying (*) (resp.

(**)), and such that |X(Ed)| = k2. Let Mk(x) := Nk(2x)
Nk(x)

(resp. M∗
k (x) := N∗

k (2x)
N∗
k (x) ).

Using our data, we obtain the following tables.

x M1(x) M3(x) M5(x) M7(x) M9(x) M11(x)
1 · 109 1.670002 1.673796 1.678710 1.682080 1.695299 1.702050
2 · 109 1.669373 1.673490 1.677806 1.682654 1.692469 1.696480
3 · 109 1.668695 1.672879 1.677747 1.681843 1.688599 1.692675
4 · 109 1.669351 1.672975 1.676227 1.680354 1.686862 1.691462
5 · 109 1.670374 1.673585 1.676169 1.679956 1.685623 1.690646
6 · 109 1.670751 1.673366 1.675929 1.679536 1.684822 1.690233
7 · 109 1.671123 1.673133 1.675905 1.679332 1.683803 1.689585
8 · 109 1.670935 1.673007 1.676074 1.679353 1.683255 1.689208
9 · 109 1.670890 1.672742 1.675902 1.679188 1.683266 1.688139
10 · 109 1.670861 1.672626 1.675780 1.679025 1.683358 1.687904
11 · 109 1.670619 1.672538 1.675438 1.678478 1.683040 1.687505
12 · 109 1.670764 1.673039 1.675417 1.678316 1.682781 1.687242
13 · 109 1.670597 1.673224 1.675475 1.678079 1.682533 1.687109
14 · 109 1.670479 1.673145 1.675411 1.677997 1.682744 1.686674
15 · 109 1.670658 1.673080 1.675425 1.677969 1.682986 1.685881
16 · 109 1.670893 1.673113 1.675090 1.677817 1.682823 1.685623

x M∗
1 (x) M∗

2 (x) M∗
3 (x) M∗

4 (x) M∗
5 (x) M∗

6 (x)
1 · 109 1.728915 1.756191 1.742642 1.778071 1.758349 1.794058
2 · 109 1.727257 1.752530 1.739237 1.772804 1.753243 1.785324
3 · 109 1.726643 1.751384 1.737529 1.769437 1.750071 1.781009
4 · 109 1.726260 1.750318 1.736594 1.767249 1.748203 1.777811
5 · 109 1.725806 1.749001 1.735493 1.765948 1.746848 1.775631
6 · 109 1.725426 1.748400 1.735025 1.764595 1.745359 1.773905
7 · 109 1.724843 1.747711 1.734246 1.763498 1.744371 1.772759
8 · 109 1.724452 1.747431 1.733720 1.762646 1.743659 1.771485
9 · 109 1.724231 1.746896 1.733419 1.761800 1.743276 1.770443
10 · 109 1.724024 1.746636 1.733082 1.761021 1.742697 1.769579
11 · 109 1.723739 1.746219 1.732533 1.760323 1.742181 1.768670
12 · 109 1.723712 1.745862 1.732306 1.759965 1.741811 1.767875
13 · 109 1.723749 1.745593 1.732126 1.759491 1.741372 1.767234
14 · 109 1.723679 1.745369 1.731859 1.759140 1.740965 1.766635
15 · 109 1.723582 1.744934 1.731700 1.758824 1.740612 1.766010
16 · 109 1.723609 1.744755 1.731335 1.758363 1.740290 1.765564

The values Mk(x) and M∗
l (x) (x → ∞) oscillate very closely near (or converge

to) some constants ck and c∗
l .
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Our calculations therefore suggest the following

Conjecture 7 Let E = X0(49). For any positive integer k there are infinitely many
positive square-free integers d, (d, 7) = 1, such that Ed has rank zero and
|X(Ed)| = k2.

In the last section we state a more precise conjecture, which suggests, in particu-
lar, that all the constants ck and c∗

l are equal to 2
3/4 ≈ 1.68179283.

5 Large Orders of X

The article [7] presents results of search for elliptic curves with exceptionally
large (analytic) orders of the Tate–Shafarevich group. It contains, in particular,
134 examples of rank zero elliptic curves E with |X(E)| > 18322, with the record
|X(E)| = 634082.

Our data gives 5102 examples of rank zero elliptic curves Ed with |X(Ed)| >

18322. Note that we obtain 30 elliptic curves Ed with |X(Ed)| > 25002, with the
record |X(E28715939033)| = 29412.

Using the approximations to |X(Ed)| (by evaluating L(Ed, 1) with sufficiently
accuracy as in [7], p. 411) we were able to find two examples of Ed with much
larger orders of Tate–Shafarevich groups: 74402 � |X(E1014+7521)| � 75602, and
70002 � |X(E1014+7857)| � 71602 (using 1.75 × 1013 terms of the L-series). The
values d1 = 1014 + 7521 and d2 = 1014 + 7857 are primes satisfying the condition
(*), hence the groups X(Ed1) and X(Ed2) both have odd order.

Finally, let us propose two candidates Ed with |X(Ed)| > 150002 (Fig. 1) and
one candidate Ed with |X(Ed)| > 1000002 (Fig. 2).

6 Large Primes Dividing the Orders of X

Another open problem about X of elliptic curves defined over Q is the following
one: do exist arbitrarily large primes p such that there exists some elliptic curve E
over Q withX(E)(p) �= 0 ([1], p. 2)?

From our tables it follows that for E = X0(49), we have |X(E25306669001)| =
28512, with 2851 a prime (the largest prime dividing |X(Ed)| at the moment). Also,
for any prime p � 2357 there is an elliptic curve Edp such that |X(Edp)| = p2.

Note that from the Table 1 on page 415 of the article [7], we obtain the fol-
lowing (analytic) order of X: |X(E(16, 472))| = 31192, where E(n,m) : y2 =
x(x + m)(x + m − 4 · 32n+1). The prime 3119 is good ordinary for E(16, 472), and
one may use [24] to prove that the analytic order of X coincides with the actual
order of X in this case.
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Fig. 1 Beginning of the approximation to |X(Ed)|, for d = 1016 + 11937 and d = 1016 + 6061
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7 Asymptotic Formulae

7.1 Quadratic Twists of Rank Zero

Let V (X) := {d �X : d satisfies the condition (*)}, andW (X) := {d � X : d satisfies
the condition (**)}. We put

S(X) :=
∑

d∈V (X)

|X(Ed)|, Z(X) :=
∑

d∈W (X)

|X(Ed)|,

s(X) := S(X)

X3/2
, z(X) := Z(X)

X3/2
,

s∗(X) := (logX)1/8S(X)

X3/2
, z∗(X) := (logX)1/8Z(X)

X3/2
.

We have numerically checked that the sequences s(X) and z(X) oscillate very
closely (or converge to) some positive constants. Therefore, we proposed the fol-
lowing asymptotic formulae:

∑

d∈T(X)

|X(Ed)| ∼ AE(T)X3/2, X → ∞, (1)

where AE(T) (T = V or W ) are constants depending on E.
R. Heath-Brown ([13]) has proposed a variant of (1):

∑

d∈V (X)

|X(Ed)| ∼ BEX
3/2(logX)−1/8, X → ∞. (2)

It is indeed intriguing which asymptotic formula should be correct. As the fol-
lowing pictures (Figs. 3 and 4) show, it may be difficult numerically to decide . . .

Delaunay [8] has used predictions on L-functions coming from random matrix
theory (see [4]) to give conjectures for the first leading order asymptotic for

ME(k,T) := 1

T∗
∑

|X(Ed)|k,

for any fixed elliptic curve E over Q and real positive number k, where the sum is
over all fundamental discriminants d < 0 coprime with NE (and satisfying some
restrictions) such that |d| � T and L(Ed, 1) �= 0, and T∗ denotes the number of
terms in the sum (see Conjecture 6.1 in [8]).

Consider the case k = 1, and take E = X0(49). In this case ε(Ed) = 1 if and only
if d > 0 and (d, 7) = 1 or d < 0 and 7|d, hence we cannot apply Conjecture 6.1
directly to E. Instead, we can take F = E−1 : y2 = x3 − 35x + 98. Then F−d = Ed ,
and in our situation Conjecture 6.1 reads as follows:
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Fig. 3 Numerical evidence for the asymptotic formulas (1) and (2), using the arithmetic sequence
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Fig. 4 Numerical evidence for the asymptotic formulas (1) and (2), using the geometric sequence
of arguments
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Fig. 5 Numerical evidence for the conjectures 6.1 and 4.2 in [8] in the case E = X0(49), using
the arithmetic sequence of arguments

ME(1,T)± ∼ C±
E T

1/2(logT)−5/8, T → ∞,

for some C±
E > 0, where ME(1,T)± denotes the subsum of ME(1,T) restricted to

d ∈ W (T) satisfying (d/7) = +1 (or (d/7) = −1, respectively). If we restrict to
prime discriminants, then we obtain a similar conjecture, but without the log term
(Conjecture 4.2 in [8]).

Let NE(1,T)± be a subsum of ME(1,T)±, restricted to prime discriminants. Let
f ±(T) := (log T)5/8ME(1,T)±

T 1/2 , and g±(T) := NE(1,T)±
T 1/2 . We obtain the following pictures

confirming the Conjectures 6.1 and 4.2 in [8] in the case E = X0(49) (Figs. 5 and 6).

7.2 Quadratic Twists of Rank One

A general conjecture of Le Boudec ([16], (1.6)), when applied to E = X0(49),
asserts that, if 	(X) denotes the set of odd negative square-free integers d prime
to 7, with absolute value at most X, such that L(Ed, s) has a zero of order 1 at s = 1,
we should have the asymptotic formula

∑

d∈	(X)

|X(Ed)|R(Ed) ∼ CEX
3/2 logX as X → ∞. (3)
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Fig. 6 Numerical evidence for the conjectures 6.1 and 4.2 in [8] in the case E = X0(49), using
the geometric sequence of arguments

At present, we do not unfortunately know if the exact Birch–Swinnerton-Dyer con-
jecture for the order of X(Ed) is valid for d ∈ 	(X). However, in what follows,
we simply have carried out calculations which use the conjectural analytic order of
X(Ed). We now give some numerical data in support of Le Boudec’s conjecture in
the special case of Theorem 4 (Theorem 1.4 in [2]). More precisely, we fix a prime
l > 3 which is congruent to 3 mod 4 and inert in the field Q(

√−7), and let R be a
product of distinct primes, which are congruent to 1 mod 4 and inert in both of the
fieldsQ(

√−7) andQ(
√−l). Take d = −lR, and let Vl(X) denote the set of all such

d with absolute value at most X. Then, inserting the precise values for the Tamagawa
factors in this case, the above asymptotic formula leads naturally to the conjecture
that, for each fixed choice of l, we should also have an asymptotic formula

∑

d∈Vl(X)

L′(Ed, 1)
√−d

�E2r(R)
∼ ClX

3/2 logX as X → ∞, (4)

where r(R) denotes the number of prime factors of R, and Cl is a positive constant.
Writing Tl(X) for the left hand side of this proposed asymptotic formula, we define

tl(X) := Tl(X)

X3/2 logX
.
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Then, using PARI/GP ([18]) for computations of L′(Ed, 1), we obtain the following
data:

X t19(X) t31(X) t47(X) t59(X) t83(X)

250000 0.00013902 0.00008012 0.00006212 0.00003896 0.00003245
500000 0.00011921 0.00007196 0.00006106 0.00003640 0.00003059
750000 0.00011147 0.00006782 0.00005860 0.00003660 0.00003231

1000000 0.00010830 0.00006689 0.00005706 0.00003821 0.00002984
1250000 0.00010783 0.00006785 0.00005560 0.00003814 0.00002996
1500000 0.00010778 0.00006985 0.00005396 0.00003708 0.00002964
1750000 0.00010860 0.00006767 0.00005027 0.00003650 0.00003010
2000000 0.00010621 0.00006648 0.00005119 0.00003567 0.00003079
2250000 0.00010566 0.00006736 0.00005087 0.00003545 0.00003046
2500000 0.00010501 0.00006739 0.00005191 0.00003518 0.00002851
2750000 0.00010359 0.00006582 0.00005205 0.00003353 0.00002812
3000000 0.00010342 0.00006580 0.00005118 0.00003353 0.00002695
3250000 0.00010292 0.00006436 0.00005069 0.00003323 0.00002778
3500000 0.00010190 0.00006371 0.00005027 0.00003337 0.00002710
3750000 0.00010135 0.00006277 0.00004977 0.00003286 0.00002702
4000000 0.00010013 0.00006263 0.00004938 0.00003205 0.00002710
4250000 0.00009997 0.00006175 0.00004914 0.00003268 0.00002653
4500000 0.00009872 0.00006253 0.00004927 0.00003252 0.00002655
4750000 0.00009777 0.00006236 0.00004850 0.00003274 0.00002676
5000000 0.00009764 0.00006165 0.00004870 0.00003248 0.00002759
5250000 0.00009707 0.00006179 0.00004834 0.00003305 0.00002755
5500000 0.00009696 0.00006205 0.00004814 0.00003327 0.00002741
5750000 0.00009708 0.00006225 0.00004798 0.00003326 0.00002717
6000000 0.00009654 0.00006233 0.00004762 0.00003298 0.00002733

and the following picture (Fig. 7).

8 Cohen–Lenstra Heuristics for the Order of X

Delaunay [9] has considered Cohen–Lenstra heuristics for the order of Tate–
Shafarevich group. He predicts, among others, that in the rank zero case, the
probability that |X(E)| of a given elliptic curve E over Q is divisible by a
prime p should be f0(p) := 1 − ∏∞

j=1(1 − p1−2j) = 1
p + 1

p3 + · · · . Hence, f0(2) ≈
0.580577, f0(3) ≈ 0.360995, f0(5) ≈ 0.206660, f0(7) ≈ 0.145408, and so on. The
papers of Quattrini ([20, 21]) make a correction to Delaunay’s heuristics for
p-divisibility of |X(Ed)| in the family of quadratic twists of a given elliptic curve E
of square-free conductor for odd primes dividing the order of E(Q)tors. The author
gives an explanation of why and when the original Cohen–Lenstra heuristics should
be used for the prediction of the p-divisibility of |X(Ed)|.

Let F(X) (resp. G(X)) denote the number of d � X satisfying (*) (resp. (**)).
Let Fp(X) (resp. Gp(X)) denote the number of d � X satisfying (*) (resp. satisfying
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Fig. 7 Numerical evidence for the asymptotic formula (4)

(**)), and such that |X(Ed)| is divisible by p. Let fp(X) := Fp(X)

F(X)
, and gp(X) :=

Gp(X)

G(X)
. We obtain the following table (see the next page).

The functions g3(X) and g5(X) both tend to the Delaunay numbers f0(3) and
f0(5), respectively. Additionally restricting to the twists satisfying (*) (i.e., consid-
ering the functions f3(X) and f5(X)) tends to speed the convergence. The func-
tion g2(X) tends (slowly) to f0(2). Finally, the table shows that the probability
that |X(Ed)| is divisible by 7 deviates from Delaunay’s prediction. Note that
NX0(49) = 49 is not square-free, hence the papers of Quattrini do not explain this
situation.

9 Distributions of L(Ed, 1) and |X(Ed)|

9.1 Distribution of L(Ed, 1)

It is a classical result (due to Selberg) that the values of log |ζ( 12 + it)| follow a
normal distribution.

Let E be any elliptic curve defined overQ. Let E denote the set of all fundamental
discriminants d with (d, 2NE) = 1 and εE(d) = εEχd(−NE) = 1, where εE is the
root number of E and χd = (d/·). Keating and Snaith [14] have conjectured that, for



Behaviour of the Order of Tate–Shafarevich Groups . . . 139

X g2(X) f3(X) g3(X) f5(X) g5(X) f7(X) g7(X)

1 · 109 0.524765 0.359655 0.343200 0.206042 0.186796 0.162955 0.142212
2 · 109 0.529699 0.359866 0.345360 0.206251 0.189156 0.163044 0.144630
3 · 109 0.532425 0.359882 0.346472 0.206308 0.190392 0.163055 0.145932
4 · 109 0.534302 0.359993 0.347244 0.206389 0.191231 0.163065 0.146795
5 · 109 0.535716 0.360069 0.347810 0.206375 0.191835 0.163086 0.147442
6 · 109 0.536861 0.360112 0.348264 0.206414 0.192318 0.163115 0.147960
7 · 109 0.537804 0.360147 0.348629 0.206418 0.192714 0.163116 0.148387
8 · 109 0.538615 0.360193 0.348945 0.206425 0.193046 0.163110 0.148740
9 · 109 0.539317 0.360219 0.349216 0.206442 0.193343 0.163121 0.149050
10 · 109 0.539944 0.360237 0.349461 0.206444 0.193599 0.163134 0.149321
11 · 109 0.540497 0.360248 0.349663 0.206451 0.193820 0.163140 0.149564
12 · 109 0.541004 0.360266 0.349853 0.206454 0.194025 0.163141 0.149782
13 · 109 0.541465 0.360269 0.350021 0.206464 0.194209 0.163143 0.149977
14 · 109 0.541890 0.360272 0.350182 0.206472 0.194382 0.163150 0.150158
15 · 109 0.542281 0.360285 0.350322 0.206479 0.194538 0.163153 0.150322
16 · 109 0.542646 0.360290 0.350456 0.206487 0.194681 0.163161 0.150478
17 · 109 0.542984 0.360302 0.350580 0.206493 0.194817 0.163169 0.150618
18 · 109 0.543301 0.360320 0.350695 0.206497 0.194940 0.163168 0.150753
19 · 109 0.543601 0.360322 0.350803 0.206498 0.195057 0.163173 0.150879
20 · 109 0.543883 0.360330 0.350903 0.206496 0.195165 0.163175 0.150997
21 · 109 0.544151 0.360331 0.350995 0.206494 0.195268 0.163171 0.151108
22 · 109 0.544404 0.360342 0.351086 0.206500 0.195368 0.163167 0.151211
23 · 109 0.544647 0.360358 0.351174 0.206503 0.195464 0.163170 0.151309
24 · 109 0.544877 0.360366 0.351258 0.206510 0.195552 0.163171 0.151404
25 · 109 0.545100 0.360371 0.351334 0.206513 0.195635 0.163174 0.151494
26 · 109 0.545312 0.360374 0.351408 0.206512 0.195715 0.163166 0.151578
27 · 109 0.545513 0.360387 0.351478 0.206510 0.195791 0.163167 0.151659
28 · 109 0.545707 0.360386 0.351541 0.206501 0.195864 0.163168 0.151738
29 · 109 0.545894 0.360395 0.351606 0.206499 0.195934 0.163171 0.151813
30 · 109 0.546074 0.360408 0.351669 0.206499 0.196001 0.163174 0.151885
31 · 109 0.546248 0.360413 0.351726 0.206501 0.196067 0.163173 0.151955
32 · 109 0.546416 0.360411 0.351784 0.206508 0.196131 0.163172 0.152022

d ∈ E, the quantity log L(Ed, 1) has a normal distribution with mean − 1
2 log log |d|

and variance log log |d|; see [5] for numerical data towards this conjecture.
Below we consider the case E = X0(49). Our data allow to confirm that the val-

ues logL(Ed, 1) indeed follow an approximate normal distribution.
Here is some explanation for the next figures. Let B = 32 · 109, V = {d � B :

d satisfies (*)}, W = {d � B : d satisfies (**)} and Ix = [x, x + 0.1) for x ∈
{−10,−9.9,−9.8, . . . , 10}. We create a histogram with bins Ix from the data{(
logL(Ed, 1) + 1

2 log log d
)
/
√
log log d : d ∈ V

}
and normalize it in such a way

that the total area of bars is equal to 1. Below we picture this histogram together
with a graph of the standard normal density function (Fig. 8).

Next, we do the same, but with W in place of V (Fig. 9).
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log log d for d � B satisfying (**).

The black line depicts a graph of the standard normal density function



Behaviour of the Order of Tate–Shafarevich Groups . . . 141

The paper of Conrey et al. [5] contains similar data (millions of quadratic twists
for thousands of elliptic curves). Their data compares not just against the limit-
ing Gaussian (as in our paper), but against the distribution suggested from random
matrix theory (which tends to the standard Gaussian); for more details see Sect. 6
in [5].

9.2 Distribution of |X(Ed)|

It is an interesting question to find results (or at least a conjecture) on distribution of
the order of the Tate–Shafarevich group for rank zero quadratic twists of an elliptic
curve over Q.

It turns out that the values of log(|X(Ed)|/
√
d) are the more natural ones (com-

pare Conjecture 1 in [22]). Let μ = − 1
2 − 3

2 log 2, σ 2 = 1 + 5
2 (log 2)

2 (it is the
case for [K : Q] = 2 in Conjecture 1 in [22]). We create a histogram from the

data
{(

log(|X(Ed)|/
√
d) − μ log log d

)
/
√

σ 2 log log d : d ∈ V
}
and normalize it

in such a way that the total area of bars is equal to 1. Below we picture this histogram
together with a graph of the standard normal density function (Fig. 10).

Next, we do the same, but with W in place of V (Fig. 11).
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10 Large and Small Values of L(Ed, 1)

Here we give some examples of large and small values of L(Ed, 1). We also give
some examples of small gaps between the values of L(Ed, 1) (compare Sect. 3 in
[7]).

10.1 Large Values

L(E12010333305, 1) = 139.0972543269 . . .

L(E24320258169, 1) = 130.2497841658 . . .

L(E30942205545, 1) = 130.0598150936 . . .

L(E21502242105, 1) = 129.4879974509 . . .

L(E26284959705, 1) = 128.3672354212 . . .

L(E17391204345, 1) = 127.8286009701 . . .

L(E24406185945, 1) = 127.3116124586 . . .

L(E18840415665, 1) = 127.0854001988 . . .
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10.2 Small Values

L(E31999908701, 1) = 0.0000108075564 . . .

L(E31999917269, 1) = 0.0000108075549 . . .

L(E31999918117, 1) = 0.0000108075548 . . .

L(E31999937569, 1) = 0.0000108075515 . . .

L(E31999943197, 1) = 0.0000108075505 . . .

L(E31999952249, 1) = 0.0000108075490 . . .

L(E31999975069, 1) = 0.0000108075451 . . .

L(E31999994129, 1) = 0.0000108075419 . . .

10.3 Small Gaps Between L-values

We expect that there are infinitely many d’s with trivialX(Ed), and hence we expect
L(Ed, 1) may take arbitrarily small values. Anyway, it may be of some interest to
have examples of small gaps between L-values in case of non-trivial Sha’s.

d1 d2 |L(Ed1 , 1) − L(Ed2 , 1)| |X(Ed1 )| |X(Ed2 )|
31999874185 31999874189 1.08 · 10−14 12 22

31999576809 31999576813 2.16 · 10−14 22 22

31999771129 31999771133 4.86 · 10−14 32 32

31999662013 31999662017 1.35 · 10−13 52 52

31999835293 31999835297 2.97 · 10−13 212 212

31999908217 31999908221 7.78 · 10−13 62 122

31999945877 31999945881 9.13 · 10−13 132 262

31999535093 31999535101 1.55 · 10−12 242 62

11 |X(Ed)| = 1 is About as Common as L(Ed, 1) = 0

Poonen [19] has recently asked one of us, whether our data show that |X(Ed)|=1 is
about as common as L(Ed, 1) = 0? It turns out that the literature contains conflicting
predictions about this (see Sect. 4.5 of [25] for a discussion).

Our computational evidence resolves this problem. Let f (x) denote the number of
positive square-free integers d � x, congruent to 1 modulo 4, such that (d, 7) = 1,
L(Ed, 1) �= 0, and |X(Ed)| = 1. Let g(x) denote the number of positive square-free
integers d � x, congruent to 1 modulo 4, such that (d, 7) = 1, and L(Ed, 1) = 0.
We obtain the following graph (Fig. 12).
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Fig. 12 Graph of the function f (x)/g(x)

We expect (Delaunay–Watkins [10], Heuristics 1.1):

g(x) ∼ cx3/4(log x)3/8+
√
2/2, x → ∞,

hence we may expect a similar asymptotic formula for f (x) as well.
Now let fk(x) denote the number of positive square-free integers d � x, congruent

to 1 modulo 4, such that (d, 7) = 1, L(Ed, 1) �= 0, and |X(Ed)| = k2. Let

Fk(x) := x3/4(log x)3/8+
√
2/2

fk(x)
,

G(x) := x3/4(log x)3/8+
√
2/2

g(x)
.

The above calculations and the next graph (Fig. 13) suggest the following

Conjecture 8 For any positive integer k there are constants ck > 0 and dk, such
that

fk(x) ∼ ckx
3/4(log x)dk , x → ∞.
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Appendix: The Algorithm and the Implementation

The strategy is to use the construction described in the end of Sect. 2 to compute the
coefficients ad for d satisfying condition (**) up to 32 · 109, and use Corollary 1.

We present our algorithm using computer algebra system PARI/GP [18].

sha(B) =
{

/* define quadratic forms */
f1 = [1,0,0; 0,28,0; 0,0,196];
f2 = [4,0,0; 0,28,0; 0,0,49];
f3 = [5,2,0; 2,40,0; 0,0,28];
f4 = [13,5,0; 5,17,0; 0,0,28];

/* compute ad for all d ∈ {1, . . . ,B} */
a = Vec(qfrep(f1,B)) - Vec(qfrep(f2,B)) +

Vec(qfrep(f3,B)) - Vec(qfrep(f4,B));

/* enumerate all d satisfying (**) */
forstep(d = 1, B, 4,

if(Mod(d,7)!=0 && issquarefree(d),
f = factor(d);
l1 = 0; l2 = 0;
for(i = 1, omega(d),
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if(kronecker(f[i,1],7)==1, l1=l1+1, l2=l2+1)
);
if(Mod(l2,2)==1, l=l1+(l2-1)/2, l=l1+l2/2);
print(d, "", abs(a[d]/2^l));

)
)

}

The key point of the above implementation is using the qfrep function. Recall
that qfrep (q,B) returns the vector whose i-th entry (1 � i � B) is half the number
of vectors v such that q(v) = i. Routine qfrep relies on qfminim function which
enumerates, using the Fincke–Pohst algorithm, the vectors v for which q(v) � B.

We used the above PARI/GP script (with small modifications) to compute
sha(B) for B = 5 · 107 (on standard desktop PC). We made further progress imple-
menting qfrep function in C++ language. Our routine directly enumerates all vec-
tors v for which fi(v) � B for i = 1, 2, 3, 4. Such a straightforward approach is more
effective for forms f1, f2, f3, f4 than the sophisticated Fincke–Pohst algorithm used
by PARI/GP. Moreover, we made some optimizations. Most important among them
are:

• time optimization—exploiting symmetries of f1, f2, f3, f4,
• memory optimization—storing in memory only values of ad for d ≡ 1 (mod 4).

Enumerating numbers satisfying condition (**) (and factoring them) also takes
some time. One can be speed it up by filtering out numbers which are not square-
free. We did it by using a modified sieve of Eratosthenes. However, the real bottle-
neck is computing qfrep.

Let us add that our algorithm is quite easily parallelizable. It appears that per-
forming computation in parallel will make possible to increase B substantially com-
pared to our achievement.

Tables

For each positive integer k � 1793, the column headed d1 gives the smallest inte-
ger d for which |X(Ed)| = k2. One interesting observation is that all odd orders
|X(Ed1)| are realized by the integers d1 satisfying the condition (*).

Selected values 1795 � k � 2941 are also considered.
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k d1 k d1 k d1 k d1
1 1 2 93 3 73 4 177
5 257 6 933 7 929 8 4337
9 2281 10 6073 11 3169 12 6609
13 5897 14 14177 15 12241 16 20497
17 10937 18 19713 19 5641 20 52257
21 18793 22 40769 23 31513 24 63473
25 26249 26 55617 27 23369 28 63849
29 62929 30 121881 31 49993 32 152769
33 65609 34 100857 35 62401 36 167073
37 98257 38 322921 39 96353 40 226913
41 133769 42 206273 43 151273 44 734001
45 110977 46 337681 47 129457 48 498129
49 253553 50 549817 51 152953 52 518137
53 152249 54 702353 55 291457 56 612529
57 247369 58 673817 59 368857 60 953313
61 365249 62 964793 63 626377 64 847793
65 290657 66 1319649 67 527729 68 1217049
69 536017 70 1091841 71 957361 72 2060353
73 637297 74 1501329 75 423097 76 1135649
77 1465469 78 1707729 79 955769 80 1827193
81 570113 82 2874369 83 682009 84 1234137
85 1101593 86 2827553 87 1899481 88 2229529
89 1885673 90 2341817 91 1323689 92 2799217
93 1381337 94 3018513 95 1242169 96 2904801
97 1917697 98 4294313 99 1790897 100 3567881
101 1625321 102 4518273 103 1866857 104 5884041
105 1781569 106 4184049 107 2915713 108 6165329
109 2182249 110 4479897 111 3647689 112 4909017
113 1465313 114 5427489 115 2761841 116 6469849
117 2687257 118 6350073 119 3393449 120 4884177
121 3524041 122 7486329 123 3485513 124 7240809
125 3613193 126 4935001 127 4229657 128 7353921
129 3486257 130 7753601 131 4459601 132 4110177
133 4693177 134 8832657 135 3247313 136 8314777
137 4296977 138 10538889 139 5507297 140 11180073
141 3688081 142 10114889 143 6025801 144 6302409
145 3653369 146 14245449 147 5294833 148 11250761
149 3106921 150 10362081 151 5946337 152 13688313
153 6790073 154 10240521 155 7491361 156 15464089
157 4103641 158 10692817 159 7016777 160 11928953
161 6718193 162 15799897 163 6645721 164 13927593
165 10108297 166 12971121 167 6120929 168 19275657
169 10688753 170 21326937 171 6078337 172 9310449
173 8860361 174 16962969 175 9539281 176 23387809
177 9032609 178 18940849 179 9425113 180 24630321
181 9843529 182 21259921 183 5634809 184 20181561
185 15130393 186 18589729 187 10534921 188 26802777
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k d1 k d1 k d1 k d1
189 9128969 190 18017673 191 15028201 192 27317361
193 17238961 194 27932529 195 13267873 196 18475521
197 19233889 198 32768481 199 18412817 200 17722329
201 14262433 202 35158337 203 17371513 204 31450409
205 15861473 206 55430673 207 17282137 208 25378833
209 16847953 210 20905977 211 13179577 212 30805273
213 17764913 214 47121369 215 14565193 216 24423177
217 17119073 218 31973313 219 20660377 220 30225721
221 20663593 222 32356041 223 24736529 224 31522353
225 17100961 226 44057561 227 23429761 228 61238433
229 20035217 230 30310809 231 17521937 232 45713721
233 26153209 234 53720529 235 19521001 236 30965713
237 17479313 238 45580921 239 19624729 240 59076249
241 24796313 242 46666337 243 15196457 244 47964921
245 24126161 246 67880649 247 15737417 248 59498961
249 27527393 250 67310681 251 31900529 252 71401089
253 21488809 254 42480201 255 21141041 256 62559121
257 21436001 258 44968137 259 23661529 260 68143553
261 28188257 262 83482809 263 45616297 264 74407953
265 33502577 266 76802441 267 45721681 268 56817777
269 30511001 270 80564961 271 42257857 272 65262849
273 30407369 274 51619593 275 34562401 276 86165913
277 28530241 278 100543353 279 29771201 280 55275609
281 33775801 282 102490809 283 38382041 284 89933937
285 27594521 286 94586473 287 41793233 288 84939537
289 47313209 290 94270929 291 25854097 292 74695377
293 49080337 294 129084873 295 48796537 296 97992497
297 41571113 298 108653521 299 63138337 300 114844137
301 28987073 302 117318657 303 70938377 304 120142353
305 54726241 306 106517777 307 62983121 308 108212241
309 54211177 310 132195057 311 57847201 312 107424529
313 64804081 314 136571681 315 67153729 316 72567049
317 39044641 318 103714801 319 68778097 320 124306361
321 67515881 322 99630969 323 42683441 324 126667249
325 81725521 326 128132673 327 22476089 328 69421713
329 82804153 330 131429937 331 35634569 332 103211529
333 53915137 334 127330809 335 58071737 336 145127361
337 82549193 338 127179537 339 81256817 340 212734713
341 94701017 342 120707049 343 74528177 344 180657537
345 82682417 346 163723673 347 83092201 348 127062681
349 64266313 350 158078897 351 45363041 352 165215121
353 86228729 354 150696393 355 74605177 356 158006489
357 96923641 358 168255201 359 101236001 360 199147433
361 61967953 362 208401153 363 75284753 364 179223529
365 81361481 366 190068321 367 128132273 368 233660249
369 104815049 370 166966409 371 78813817 372 166934289
373 85236353 374 259338137 375 100124561 376 150853497
377 86855849 378 195302193 379 117023129 380 170908593
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k d1 k d1 k d1 k d1
381 119282593 382 229290681 383 124208657 384 250172553
385 84921329 386 242076657 387 81585241 388 198355873
389 111613529 390 317098497 391 68312473 392 164772969
393 137121073 394 317478617 395 184317257 396 267280841
397 157495033 398 198455217 399 95602057 400 201599049
401 141095993 402 315033657 403 162887129 404 252130649
405 129060721 406 239496657 407 75453481 408 309730961
409 145253513 410 263668161 411 114535441 412 258161649
413 70924577 414 201012681 415 156669217 416 348700969
417 133510961 418 255577281 419 133337329 420 243488697
421 163103713 422 349629081 423 129344561 424 248961057
425 113424457 426 158340513 427 161716729 428 457284881
429 149221609 430 306979737 431 188287097 432 263466921
433 113174249 434 379096881 435 116677553 436 341102721
437 138979921 438 344625297 439 142217729 440 402660633
441 173153249 442 337717857 443 124106569 444 303693153
445 187920529 446 348974817 447 141120313 448 374142729
449 169920161 450 415195257 451 119896241 452 456636161
453 172998929 454 370842873 455 186067649 456 284126217
457 211471489 458 322781001 459 175500121 460 424009721
461 175321193 462 383282377 463 227914553 464 411552969
465 151632193 466 405886881 467 160286201 468 493254001
469 133377289 470 381535529 471 150114793 472 467868809
473 199481561 474 367048641 475 231417217 476 428448673
477 216300353 478 464970993 479 182712193 480 377366529
481 203950673 482 481370849 483 208906417 484 466546089
485 221357009 486 611992833 487 213593561 488 445591689
489 152807297 490 365071281 491 227448577 492 324398649
493 152292209 494 327557561 495 158411977 496 455620881
497 235272161 498 298850577 499 159619337 500 487175313
501 87873329 502 433020569 503 209599633 504 468120129
505 233102873 506 680179593 507 248435521 508 409342217
509 167807489 510 499217601 511 201167833 512 502073881
513 256670657 514 601398561 515 265990297 516 591746313
517 225790673 518 474463697 519 244563961 520 560288513
521 191110121 522 724247857 523 259344209 524 455548713
525 263635321 526 426422649 527 313004473 528 484397841
529 231144521 530 556803769 531 257557873 532 652226129
533 328620697 534 579162081 535 335578081 536 618274897
537 312412721 538 888968217 539 291056657 540 577412049
541 243334657 542 871280337 543 389624233 544 484212369
545 320529089 546 874368489 547 260262113 548 784207257
549 298280401 550 598627929 551 359759921 552 374213393
553 217628393 554 840530793 555 258609433 556 789059793
557 376545137 558 899077953 559 310206713 560 849373977
561 276498809 562 720256769 563 359961713 564 605796249
565 505198489 566 660711921 567 374576513 568 693060153
569 285955057 570 582042129 571 194086553 572 971076633
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k d1 k d1 k d1 k d1
573 269512417 574 812238113 575 394565449 576 531793497
577 376637449 578 558769737 579 177118241 580 800651713
581 314235617 582 971046561 583 278549137 584 713190633
585 343632217 586 910562577 587 299414377 588 806580569
589 339441217 590 969882153 591 404910817 592 1180596561
593 445593769 594 746080449 595 366680009 596 588145881
597 499709489 598 1000317921 599 453223081 600 857027697
601 482163793 602 709173529 603 464499577 604 1085969329
605 583993777 606 611140737 607 477113129 608 767941113
609 487518937 610 1205784057 611 345190481 612 1042100481
613 433569953 614 759143361 615 295290449 616 1060039817
617 271819777 618 916876041 619 399513761 620 833937729
621 351775609 622 1014335921 623 461803457 624 1063477353
625 604768433 626 1195237257 627 355313929 628 1130731233
629 356217217 630 1088179233 631 523841737 632 1296431537
633 373251833 634 1046573089 635 533158321 636 1129661633
637 437185369 638 1001125833 639 690863353 640 1049542113
641 393691721 642 1219662481 643 442113409 644 866810121
645 473179657 646 918013177 647 422803841 648 925311633
649 628298753 650 908022641 651 416028409 652 668155161
653 639545801 654 788481633 655 456778633 656 1253196393
657 553788233 658 1011782193 659 559500833 660 1095831129
661 502398097 662 1556083761 663 540229913 664 1511104233
665 487247689 666 1530974993 667 419408113 668 1006678033
669 557895281 670 1502333529 671 748804241 672 954448401
673 431472649 674 1503531033 675 567004513 676 1390863849
677 486471529 678 845750049 679 563530553 680 1401556137
681 472466377 682 1131586201 683 774729497 684 1153585497
685 424046153 686 1292386929 687 384060241 688 969826881
689 677852257 690 1146387201 691 472867673 692 1284311337
693 590461073 694 1448799433 695 552263017 696 1430856177
697 487192513 698 1065709793 699 789946601 700 1272089361
701 617717609 702 1305583953 703 622046417 704 1815425929
705 510979577 706 886583769 707 571233809 708 1259122593
709 634656713 710 1451816193 711 769553489 712 1902558001
713 919520761 714 1671253809 715 555591601 716 1737287913
717 690268577 718 1691545857 719 758546561 720 1417870169
721 626618809 722 2027470713 723 645226937 724 1660673337
725 357461201 726 1159545633 727 803008321 728 1172959881
729 645947833 730 1532369217 731 786522889 732 1220017089
733 822906313 734 1812159633 735 723749137 736 1677838089
737 797421113 738 1334772609 739 533625049 740 2156546177
741 898149521 742 1908161193 743 777702721 744 1475258537
745 764284097 746 1932838161 747 774980849 748 1597045321
749 805117801 750 1649813817 751 912356273 752 1922828889
753 535552681 754 2049963393 755 618088673 756 1439459169
757 1012636441 758 1734170937 759 704129537 760 2013014697
761 673372577 762 2328013713 763 832572401 764 1695155961
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k d1 k d1 k d1 k d1
765 920887169 766 1176556089 767 831201097 768 1843728657
769 786715537 770 2185812897 771 637134697 772 1860573801
773 623324777 774 2428781793 775 854043041 776 1309574841
777 413798201 778 2198450769 779 790908361 780 1722152721
781 1058446409 782 1562389249 783 673866737 784 1600255897
785 859210817 786 2201361121 787 845971769 788 2347753809
789 1009504417 790 2403252273 791 780662161 792 2485110489
793 991564633 794 1670427609 795 988737601 796 1304526953
797 851169289 798 2039945329 799 909129017 800 1739103809
801 936222409 802 1575219297 803 1063972649 804 2389858689
805 810098873 806 2374269969 807 838474873 808 1497563313
809 980245633 810 1902373617 811 1228354273 812 1950931833
813 636479009 814 1263787449 815 1314825769 816 2641549089
817 691199521 818 2555306121 819 839732129 820 2539277841
821 880782593 822 2059914081 823 1530012697 824 1619827449
825 1079910089 826 2651407089 827 877717273 828 2528252409
829 1123787593 830 2115598521 831 879991633 832 2757188417
833 910187017 834 2576804673 835 1162667929 836 2967468729
837 1194444817 838 1496186553 839 1092092489 840 2828807529
841 1168598161 842 1741340841 843 1217448433 844 2961741017
845 1055512121 846 2086860777 847 1176846961 848 2857144161
849 1145287009 850 3129250569 851 1359540241 852 2734116361
853 1270901369 854 2849667881 855 1316031401 856 4109398617
857 1192513873 858 2589301401 859 1747673497 860 2374378953
861 1665814057 862 2457866009 863 864297857 864 2597941641
865 1105681657 866 2126163873 867 1474091393 868 2422942097
869 813330241 870 2587316257 871 1215280433 872 2864765121
873 1055546617 874 2955604521 875 1588324849 876 2540162769
877 1166140897 878 1740197649 879 1071471217 880 3251124937
881 1121666929 882 2896790241 883 1071890161 884 2631081489
885 1370348857 886 2229607857 887 1314894769 888 2641504209
889 1094391521 890 3179094297 891 1421740409 892 2424853489
893 2003784313 894 2601422553 895 1324413313 896 3435753297
897 1457825417 898 3103542033 899 1602399217 900 4071247833
901 798447257 902 3530623273 903 1367841121 904 2494992417
905 1568185337 906 1507151409 907 1403055569 908 3180171369
909 720843289 910 3779810841 911 1697289089 912 2537937033
913 1444968089 914 3481002897 915 1492811897 916 3819843393
917 1201733153 918 2923319177 919 1520806369 920 3225574697
921 1219732793 922 3645265017 923 1480790041 924 2561150937
925 1303714201 926 2471502009 927 1672411249 928 3086409481
929 1134207353 930 3259442041 931 1342180313 932 3616278537
933 1823027209 934 3784692993 935 1818849121 936 3746518561
937 1919893561 938 4533867321 939 1944481873 940 2560471321
941 1902900761 942 2760382353 943 1998745937 944 4549819233
945 1727638009 946 2346199689 947 1791347633 948 3866224849
949 1776360337 950 2284988073 951 1859912113 952 3095542209
953 1968641401 954 4091400681 955 1242925193 956 4225706769
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k d1 k d1 k d1 k d1
957 1892915281 958 4045337521 959 1343608489 960 3763601697
961 1814149921 962 4314724129 963 1530725993 964 3609639993
965 2095192361 966 2436844953 967 1351773289 968 3652908681
969 1829988737 970 3910470657 971 1267624417 972 3916603681
973 1608509857 974 3902482497 975 2267415617 976 4570911097
977 1857529337 978 4374788097 979 2397032977 980 5057369153
981 1670595169 982 4467133353 983 1846662313 984 4018295033
985 1762663633 986 3335288433 987 1284164017 988 4156050761
989 1285009081 990 4916862897 991 2476064449 992 4493035633
993 1271996969 994 4194691593 995 1940749649 996 4604658081
997 1711463473 998 4304953977 999 1545011873 1000 5834979417
1001 1847473897 1002 4000561161 1003 2587251313 1004 4444371537
1005 1970441177 1006 3405718369 1007 1382096873 1008 5178973193
1009 1676958233 1010 3411899313 1011 1764844217 1012 3933861297
1013 2665391921 1014 4085187033 1015 2155796977 1016 4976692977
1017 1727206529 1018 4202383529 1019 2238334649 1020 4709707473
1021 1906163689 1022 4994064329 1023 2099589449 1024 3672154313
1025 2398817921 1026 4792036593 1027 2531008121 1028 6935325609
1029 2054505073 1030 3141709761 1031 2776699313 1032 5715222753
1033 2134171513 1034 4244558761 1035 1927111289 1036 5127372177
1037 1838393969 1038 4227048849 1039 2140121833 1040 2998130601
1041 2288746241 1042 4985786569 1043 2278021241 1044 3622165017
1045 1723885337 1046 4033170177 1047 1948369009 1048 4866766521
1049 2181026153 1050 4926721809 1051 1899948697 1052 4513174257
1053 1780107257 1054 6008035881 1055 1981477217 1056 4505164217
1057 2128430041 1058 3772506593 1059 2822718281 1060 4274440017
1061 1704499681 1062 4783736721 1063 1541303833 1064 4850259177
1065 2098010809 1066 5239266033 1067 2637658841 1068 4392626921
1069 2149662329 1070 5038266297 1071 2158972121 1072 4546632633
1073 2086733353 1074 3829269273 1075 2998234721 1076 6655000377
1077 2648174233 1078 5672683977 1079 2252184889 1080 5032809849
1081 1771959913 1082 5685794529 1083 2053479553 1084 5816631921
1085 1511663233 1086 4288434441 1087 2787474721 1088 4952525601
1089 2244439553 1090 6708573953 1091 3044027353 1092 4837226241
1093 2746126073 1094 7094498513 1095 2877152249 1096 6873218697
1097 1772069249 1098 4869092089 1099 2817189961 1100 4743326977
1101 3022586257 1102 4954226601 1103 2498748409 1104 6842596993
1105 2487064193 1106 7970709993 1107 2353272241 1108 5216995617
1109 1926922913 1110 4832534281 1111 2792473897 1112 5454046977
1113 3116936497 1114 6769807377 1115 2517392177 1116 5703735801
1117 2671437473 1118 7489651409 1119 2477257033 1120 5843140473
1121 2207569633 1122 6967177233 1123 3071942201 1124 5210538337
1125 2860318481 1126 4725738361 1127 2158369337 1128 4380257841
1129 2955926249 1130 6026522217 1131 2854320649 1132 8687265337
1133 3132253633 1134 3941363721 1135 3007750849 1136 8538508113
1137 2660576873 1138 4614141057 1139 2714667961 1140 5295320529
1141 2520918889 1142 5026383321 1143 3100841593 1144 5145053313
1145 3892302041 1146 6648477441 1147 3307165321 1148 7713100497
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k d1 k d1 k d1 k d1
1149 3459028681 1150 8423248593 1151 3855433433 1152 6303556081
1153 4081831337 1154 8181165073 1155 2370744913 1156 5505018033
1157 3265573513 1158 6115577073 1159 3420560993 1160 8620240729
1161 2074438369 1162 6685243161 1163 3091638289 1164 6461731329
1165 2557770689 1166 8386327569 1167 3909415849 1168 7717795649
1169 3346828609 1170 7157766009 1171 2546895473 1172 6856502937
1173 2793810361 1174 6047040057 1175 2157996097 1176 7838284001
1177 3455089697 1178 6647141153 1179 2842924577 1180 3590709753
1181 2476686001 1182 6121270401 1183 3243393473 1184 8151936081
1185 2750240993 1186 8253927273 1187 4210292057 1188 7049052497
1189 3727000777 1190 6917832177 1191 1880429633 1192 8525295417
1193 2945848097 1194 7813345929 1195 4223004449 1196 7625410321
1197 2935348321 1198 8133389889 1199 3453727913 1200 9033894193
1201 3900859073 1202 7929221217 1203 4421113777 1204 5713891737
1205 3245362609 1206 8728800369 1207 2985830417 1208 9863502889
1209 3775474961 1210 8046600153 1211 3447639473 1212 4400227329
1213 2407830617 1214 8811977777 1215 2882908073 1216 7791324753
1217 2283976033 1218 4647909473 1219 3339966881 1220 9564956097
1221 2923551601 1222 6811015929 1223 3830663849 1224 7028709697
1225 4063280401 1226 6696778449 1227 3844261441 1228 8576958993
1229 3535227961 1230 7620325329 1231 3092311897 1232 8908428153
1233 3776364689 1234 9188637753 1235 4696847321 1236 7724221737
1237 3856164217 1238 8480502209 1239 3861511657 1240 9144421801
1241 3395460017 1242 9294254817 1243 4180275881 1244 7201797177
1245 4078091713 1246 8112886233 1247 4499842297 1248 7881839529
1249 3775972633 1250 7019585673 1251 4105962433 1252 5848850001
1253 3991021849 1254 6065628801 1255 3564439913 1256 10740230169
1257 3463552753 1258 9561871929 1259 3185608033 1260 6169512273
1261 4293851609 1262 9078298377 1263 3156206177 1264 8582985849
1265 3897792881 1266 10075921769 1267 4139956313 1268 10380813601
1269 4570493801 1270 9356528801 1271 3890225513 1272 9442108113
1273 5438791777 1274 9367475217 1275 4870511089 1276 11355293009
1277 4570534433 1278 5457766953 1279 4582329937 1280 7966743801
1281 3303470393 1282 10603149393 1283 2858681489 1284 8329309041
1285 4838698793 1286 7925188569 1287 4214651369 1288 6365154713
1289 4383924977 1290 7700745369 1291 4783441193 1292 10899763737
1293 3183701393 1294 7947641353 1295 4216864601 1296 10375292481
1297 4884197377 1298 8881826633 1299 3896076089 1300 12504176953
1301 4842107689 1302 5756693721 1303 2723480233 1304 10029103001
1305 5075648857 1306 10231827369 1307 4881446321 1308 10362529857
1309 4663594841 1310 8630540241 1311 4361721577 1312 6785253561
1313 4473287153 1314 11339103273 1315 5213216977 1316 9030929009
1317 3765257761 1318 8397845481 1319 5921712193 1320 10518869337
1321 3553813609 1322 10411769897 1323 4880881361 1324 6586436201
1325 4041084001 1326 9637389353 1327 4263481897 1328 10794914769
1329 4020541969 1330 8861462817 1331 4655094673 1332 10320158377
1333 4225091729 1334 12687213841 1335 4849883897 1336 8635792713
1337 5056156097 1338 11247364209 1339 3533357441 1340 12338265921
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k d1 k d1 k d1 k d1
1341 6188174921 1342 10179842689 1343 4931635369 1344 10717061457
1345 4992350177 1346 9914338641 1347 3640667057 1348 10149929057
1349 5178899449 1350 11908911953 1351 3790717769 1352 9688139169
1353 2687142617 1354 11319565489 1355 5446670857 1356 10184514657
1357 4413137921 1358 11811948801 1359 5491510897 1360 14981176697
1361 6845363297 1362 11520637489 1363 5726707801 1364 9844492793
1365 4074339769 1366 13189267281 1367 4590877273 1368 10263989121
1369 6090656801 1370 11577597441 1371 5360341369 1372 8969163897
1373 3729738193 1374 10030041849 1375 5790874417 1376 13672932177
1377 3354967201 1378 9721180921 1379 3593612993 1380 11572057281
1381 2975326049 1382 11990306353 1383 5409192193 1384 12071006817
1385 6181709449 1386 14069494849 1387 6109066921 1388 11024766993
1389 5274319777 1390 9642295441 1391 6249679649 1392 11173712089
1393 3920782057 1394 14970384881 1395 4291103633 1396 14873830449
1397 4970225489 1398 14282140161 1399 3113018473 1400 9907899873
1401 5602055801 1402 13224194153 1403 4388529953 1404 9080218569
1405 5874339553 1406 14392574233 1407 5313687361 1408 8070174249
1409 5340878497 1410 8445957249 1411 5799147161 1412 11307387921
1413 6256545641 1414 14603912313 1415 5182399633 1416 11291079633
1417 5761864793 1418 8611063521 1419 4283780297 1420 11965703817
1421 4919896369 1422 13148498001 1423 5418737449 1424 11819709609
1425 6452481929 1426 8849047089 1427 6464797601 1428 10724557281
1429 5850358097 1430 11668121193 1431 4450743881 1432 14117182377
1433 7530295477 1434 11005822041 1435 4781099249 1436 16464319257
1437 5625246553 1438 15200800833 1439 6232068121 1440 11543895273
1441 5582017241 1442 11467212681 1443 6162816449 1444 12587849569
1445 4505553209 1446 9179582801 1447 4759466801 1448 12803192537
1449 5190934153 1450 13376175873 1451 5026362641 1452 17479263937
1453 6196053953 1454 12803941329 1455 6038713553 1456 14943995697
1457 5826184769 1458 12952966161 1459 8336832073 1460 12575735841
1461 6697005209 1462 12862360281 1463 6953992769 1464 14337419209
1465 5551779049 1466 13519359177 1467 5740147537 1468 11113911169
1469 6633294233 1470 10581863009 1471 6089924993 1472 14453700969
1473 6641047097 1474 13050281721 1475 6676376873 1476 13635058089
1477 4879320689 1478 11540902641 1479 5218748209 1480 15361738681
1481 5142288889 1482 8955885801 1483 8016755057 1484 12068317977
1485 5782637041 1486 14976660297 1487 7880353297 1488 16452839881
1489 6484799473 1490 9905393521 1491 5707371641 1492 17674712841
1493 6689379689 1494 12127943433 1495 6879464849 1496 16182669297
1497 4306434697 1498 14691262881 1499 8152320377 1500 15122451873
1501 6323595697 1502 14457595441 1503 6009027289 1504 13185180849
1505 5685159793 1506 14022943169 1507 8097404209 1508 16948680681
1509 6547557281 1510 14908391969 1511 7678220273 1512 19449660561
1513 6075080353 1514 17372940729 1515 6823802473 1516 10667702049
1517 7286535961 1518 16155325929 1519 6453592841 1520 14756469729
1521 7044532081 1522 11995984617 1523 6981504113 1524 17180091273
1525 7773449641 1526 19556487329 1527 6239985569 1528 18678344721
1529 7319054153 1530 9633634761 1531 8359447409 1532 19243693401
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k d1 k d1 k d1 k d1
1533 5383103641 1534 15336632257 1535 5435424889 1536 16518110361
1537 6493576057 1538 11799669513 1539 6261258617 1540 11453876897
1541 7007402449 1542 16811621457 1543 7119113321 1544 15084189201
1545 5032367849 1546 19853096433 1547 6206696401 1548 18095827017
1549 5585570233 1550 12228799353 1551 8651999977 1552 13545865481
1553 7061734417 1554 15351766761 1555 7881434881 1556 19088671361
1557 6358784129 1558 17521254633 1559 8866491401 1560 14777854617
1561 5406250657 1562 16055379201 1563 8111629553 1564 18455413729
1565 7557590969 1566 19354854017 1567 6376897561 1568 11162316201
1569 10325243801 1570 14174249937 1571 8346350809 1572 14805992793
1573 8639085097 1574 19876647729 1575 7310427353 1576 13383109041
1577 7692909481 1578 17923856217 1579 7980327521 1580 13791208929
1581 4445597953 1582 14074036089 1583 5656117361 1584 17916753801
1585 9527118401 1586 14217349353 1587 7082431481 1588 16185164297
1589 6205767769 1590 16566006801 1591 9414671033 1592 19394644593
1593 9484650257 1594 10596671121 1595 8488474417 1596 13021079817
1597 7823658209 1598 24921801969 1599 9490053809 1600 19530979913
1601 9941854033 1602 11917095513 1603 8980051961 1604 17863582801
1605 8408412017 1606 19317873369 1607 9030034649 1608 21150606513
1609 10040135537 1610 22641182337 1611 7404361369 1612 18619595009
1613 11724971569 1614 14844290169 1615 8054991409 1616 18427052337
1617 7654546177 1618 20158634841 1619 8074096649 1620 10101987681
1621 6833900393 1622 21247408473 1623 9205065929 1624 19442890041
1625 9320044529 1626 20777329497 1627 7474670633 1628 16407640929
1629 8062549801 1630 19745737113 1631 5708233177 1632 19947287721
1633 7857319273 1634 24913676649 1635 10897495537 1636 18635575281
1637 9765563569 1638 22715248593 1639 6518086921 1640 11710935681
1641 10877325889 1642 24782078073 1643 7997553217 1644 17307309497
1645 9688815713 1646 20375827873 1647 8266590337 1648 21286015017
1649 6771151313 1650 21418425473 1651 7759261313 1652 17058280017
1653 7055863681 1654 23824112489 1655 7797935281 1656 22941611697
1657 6898160657 1658 19080932649 1659 8573955281 1660 21767826777
1661 11803489417 1662 20306822649 1663 10557367441 1664 19351782129
1665 9643518041 1666 23188938609 1667 8053982201 1668 17951834217
1669 9542343233 1670 26324496353 1671 8320139033 1672 14965707817
1673 9223372409 1674 16030498793 1675 12397060721 1676 21302932753
1677 7388864993 1678 20675197713 1679 8424181121 1680 15850391313
1681 9979688393 1682 23169114809 1683 9821011049 1684 21532687521
1685 9032961017 1686 17768279433 1687 8223478961 1688 19766229081
1689 12157301161 1690 18187374489 1691 10753068737 1692 18319821657
1693 9909960329 1694 26639467017 1695 10258117313 1696 21471116241
1697 13692281329 1698 15424707057 1699 6648674609 1700 22105438041
1701 10328316337 1702 23340311481 1703 7672509353 1704 19865714313
1705 7345957961 1706 20083328049 1707 12110334193 1708 12603492609
1709 14665471217 1710 21153612153 1711 12214804297 1712 16901015217
1713 7883012129 1714 20265748617 1715 11526296753 1716 17900661153
1717 9022814057 1718 23173716129 1719 8558039537 1720 18317261649
1721 9755539897 1722 26642566113 1723 11295454553 1724 21852465793
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k d1 k d1 k d1 k d1
1725 9820146593 1726 25820071817 1727 13386871657 1728 19234668121
1729 10200354113 1730 22356100321 1731 10496099857 1732 15563628777
1733 10280518337 1734 19458436089 1735 10344401849 1736 15334875609
1737 12478800689 1738 22729799577 1739 13185137881 1740 31556733609
1741 11977301593 1742 13991205561 1743 9726851417 1744 26735056217
1745 7959615929 1746 20732047473 1747 13544803529 1748 23934761337
1749 10109738497 1750 15138620841 1751 10531936889 1752 26307135033
1753 11742293489 1754 15293415993 1755 11740768681 1756 21444330777
1757 11408438473 1758 26855399481 1759 9561059017 1760 19279833721
1761 9953890057 1762 25903870689 1763 13747239089 1764 23244127729
1765 10512541913 1766 29607980417 1767 14566400561 1768 31222130153
1769 13852180417 1770 29675608953 1771 9052924193 1772 21842571921
1773 12653890049 1774 21060861537 1775 10345905937 1776 22913920929
1777 11299193849 1778 23773736001 1779 12959578369 1780 27545395593
1781 11502866521 1782 27768982497 1783 12903652081 1784 28861680633
1785 12271976993 1786 24459731697 1787 10862200793 1788 15961497577
1789 10612904713 1790 24324206537 1791 10638082801 1792 31848889713
1793 10500588257

k d1 k d1 k d1 k d1
1795 14302640609 1796 27358359081 1797 11675814881 1798 27273950169
1799 12288253057 1800 29409340097 1801 10747223609 1802 17116275873
1803 10761662033 1805 11795108209 1806 24360921033 1807 14006501017
1809 11315214497 1810 30452439257 1811 10525057129 1812 28348764753
1813 8922565193 1814 31795855249 1815 10367096249 1816 28742795673
1817 8638659049 1818 24484322193 1819 13819473449 1820 15894922737
1821 11682471617 1822 28719137049 1823 10534815857 1824 17666542041
1825 10081327513 1827 12077934553 1828 22366484121 1829 14616252913
1830 20798720121 1831 11063929649 1832 28289473809 1833 8002632881
1834 25611350433 1835 9212193857 1836 27665418993 1837 16898429161
1838 26484256857 1839 9016016953 1840 24896737497 1841 15427422041
1842 26136546297 1843 10786881689 1844 28223186289 1845 16636782473
1847 12676735273 1849 7747069097 1850 28252003081 1851 10879109849
1852 26361529041 1853 13897278121 1854 21989559201 1855 10695553697
1856 27284626329 1857 14003640817 1858 27657269313 1859 12177360529
1860 21356618529 1861 11888816113 1862 30328356601 1863 9906836593
1864 21976435497 1865 14472946801 1866 20748624513 1867 11552645537
1868 27402172977 1869 11303255617 1870 24913897737 1871 8443601753
1872 31756304409 1873 16026449393 1874 29842152657 1875 12307826081
1876 27713889569 1877 9654472721 1879 15210808849 1880 28870006929
1881 15669411673 1882 28934387553 1883 16555237537 1885 11660985689
1886 27292507377 1887 14953069561 1889 10128518657 1891 17239580153
1892 30427087497 1893 11212691801 1894 30501258393 1895 15299539457
1896 27590751057 1897 13077468809 1898 31827861641 1899 11483109641
1901 12606717017 1903 15584020681 1905 11813267161 1906 16367835009
1907 18412667969 1909 11836986241 1910 21635667673 1911 13272833377
1912 30472364553 1913 12531171217 1914 23353861521 1915 8202143393
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k d1 k d1 k d1 k d1
1917 14755875137 1918 25708307601 1919 15066358481 1920 22043395081
1921 9023034793 1923 11690362561 1925 14786098913 1927 13989520417
1929 10757106673 1930 26996413497 1931 11823613913 1933 16867973321
1935 15576283369 1937 16795975817 1939 17334712729 1941 15871885753
1942 31072472337 1943 12023446697 1945 10890996689 1946 22747002657
1947 16774867913 1948 27535083801 1949 14984974273 1950 23125134057
1951 15365245153 1952 28463088977 1953 14557374529 1954 29968558449
1955 16991135209 1956 29772869289 1957 18647799593 1958 30016450209
1959 17536828609 1961 16387251809 1963 16939173761 1964 24017100321
1965 17519090473 1966 25475162953 1967 18063913321 1969 19189797049
1971 16094600017 1973 19185850561 1975 22692362201 1977 13792212017
1979 16926239609 1981 18654590113 1982 31863559753 1983 11258242889
1984 26625714369 1985 17771644441 1987 19770734129 1989 16941181249
1991 16964769281 1993 18166946593 1995 19893527657 1997 10175019889
1999 18426841921 2001 16120899073 2003 10683271289 2005 19279072217
2007 20008876177 2009 15135767321 2011 12772102033 2013 15387373321
2015 17258610449 2016 26923237881 2017 15488878849 2019 20066054209
2021 14898157433 2022 25753502769 2023 19001943929 2025 17314824481
2027 11829608209 2029 16940925433 2031 19334270129 2033 23685116761
2035 18311081017 2037 14836645081 2039 16373229137 2041 17298071521
2043 14748148673 2045 10982533169 2047 21082442393 2049 23866962377
2051 18769206193 2053 19125553481 2054 29534671497 2055 14107004761
2057 21482977393 2059 14756819873 2061 12912128689 2063 10837182401
2065 18331106561 2067 10481469337 2069 17415046001 2071 20282274193
2073 18819832793 2075 17545036193 2077 15578650289 2078 27729367257
2079 24057117089 2081 16148176609 2082 25882365777 2083 12490953649
2085 10832312753 2087 19455168137 2089 18270610081 2091 21856626049
2093 23238238169 2095 24068136049 2097 16522756057 2099 15962858257
2101 25476168961 2103 24847607321 2105 18015016057 2106 31923588929
2107 20803781729 2109 19673142289 2111 18392434289 2113 23220719273
2115 12636915289 2117 19315124009 2119 28994112073 2121 20050974761
2123 29088481481 2125 18655061473 2127 19574918641 2129 18895809337
2131 23112080113 2133 14523603209 2135 22249389529 2137 21773555593
2139 18025003393 2141 22630967561 2142 29046167529 2143 18693988129
2145 18877428953 2147 18136409801 2149 19695859753 2151 19861422377
2153 24196460777 2155 23555454961 2156 29713956801 2157 20859254233
2159 20632640297 2161 27332078161 2162 28975285761 2163 18060492217
2165 21744616193 2167 20857806913 2169 14622455329 2171 20886550177
2173 14434855249 2175 16846410769 2177 15977018641 2179 23282095961
2181 25607323801 2183 26851308977 2185 19995487417 2187 26886280081
2189 27014177657 2191 14464864153 2193 20535271249 2195 26841314281
2197 22297034849 2199 23926888417 2201 23201739361 2203 16987173097
2205 18142454081 2207 16398494993 2209 27148857433 2211 22374953593
2213 23897368169 2215 20780753537 2217 24137876041 2219 21973542001
2221 21305351633 2222 31449231969 2223 25203670673 2224 31563684681
2225 19548976033 2227 19151122577 2229 17388825793 2231 20015710609
2233 23774802841 2235 17229928721 2237 25054037273 2239 28215927697
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k d1 k d1 k d1 k d1
2241 25364314097 2243 24693406769 2245 19663680161 2247 23166334049
2249 22198449089 2251 21782856049 2253 23058697577 2255 23490722401
2257 23182069777 2259 25375332953 2261 23321397889 2263 23134466353
2265 21099281657 2267 20500043689 2269 24136990729 2271 26367890993
2273 23874674297 2275 18425670833 2277 26640229873 2279 23580652217
2281 18777503057 2282 28804400601 2283 25006505753 2285 28135395473
2287 25885481009 2289 24003072217 2291 25217386561 2293 22590552449
2295 24478979353 2297 29279333513 2299 21622666817 2301 28206525689
2303 29479981529 2305 30915727681 2307 23347446401 2309 30173417497
2311 17259667001 2313 20830862281 2315 28875641633 2317 22175499113
2319 20768662297 2321 22111529257 2323 22985300057 2325 21970530497
2327 21542492929 2329 25253712697 2331 24055982809 2333 27344154281
2335 31659517921 2337 26380992137 2339 24173328793 2341 23702333329
2343 22874829473 2345 27503106937 2347 23997306689 2349 25080505033
2351 27005350529 2353 19594199089 2355 26290364593 2357 31187585617
2361 21535123417 2363 30890690297 2365 17997494969 2367 25941664313
2368 30521729001 2369 21152347649 2373 28640771921 2375 25445748593
2377 24642382537 2379 27949170833 2383 29346656233 2385 27353459369
2387 22092862993 2389 26541069889 2391 27922751849 2395 25679645297
2397 25567788161 2401 26806417097 2403 25471907233 2411 23201469721
2413 27471244057 2415 28729140457 2417 31918397593 2423 19416040537
2427 27250644433 2429 28702862873 2431 18452796697 2433 31076018153
2437 19044233393 2443 28724687897 2447 24087157561 2449 24340659377
2451 24310203641 2453 29613412849 2455 25877124769 2457 20105114921
2459 31572674153 2465 31474193953 2469 31751925329 2473 25877913169
2479 25781498417 2483 30687948241 2485 29489657473 2487 23214266969
2489 24403608241 2493 28496723993 2495 26242884937 2499 29141913769
2511 27983986649 2523 31630888169 2531 30568914073 2533 29836994353
2545 30815861849 2551 29163166121 2553 18839920273 2555 25973619241
2561 27573697457 2565 20167085041 2567 30338840489 2575 24854975473
2579 29969335969 2623 29674805977 2627 26057264561 2645 22700098081
2667 26463497129 2683 28569879721 2705 30513902753 2713 29668713889
2735 28004847841 2757 20013907409 2783 31014739937 2801 31532536313
2851 25306669001 2869 30730146737 2941 28715939033
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Compactifications of S-arithmetic Quotients
for the Projective General Linear Group

Takako Fukaya, Kazuya Kato and Romyar Sharifi

Abstract Let F be a global field, let S be a nonempty finite set of places of F which
contains the archimedean places of F , let d � 1, and let X = ∏

v∈S Xv where Xv

is the symmetric space (resp., Bruhat-Tits building) associated to PGLd(Fv) if v is
archimedean (resp., non-archimedean). In this paper, we construct compactifications
�\X̄ of the quotient spaces �\X for S-arithmetic subgroups � of PGLd(F). The
constructions make delicate use of the maximal Satake compactification of Xv (resp.,
the polyhedral compactification of Xv of Gérardin and Landvogt) for v archimedean
(resp., non-archimedean). We also consider a variant of X̄ in which we use the
standard Satake compactification of Xv (resp., the compactification of Xv due to
Werner).

MSCs Primary 14M25 · Secondary 14F20

1 Introduction

1.1 Let d � 1, and let X = PGLd(R)/POd(R) ∼= SLd(R)/SOd(R). The Borel–
Serre space (resp., reductive Borel–Serre space) X̄ contains X as a dense open sub-
space [3] (resp., [26]). If � is a subgroup of PGLd(Z) of finite index, this gives rise
to a compactification �\X̄ of �\X .
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1.2 Let F be a global field, which is to say either a number field or a function field
in one variable over a finite field. For a place v of F , let Fv be the local field of F at
v. Fix d � 1.

In this paper, we will consider the space Xv of all homothety classes of norms on
Fd
v and a certain space X̄ F,v which contains Xv as a dense open subset. For F = Q

and v the real place, Xv is identified with PGLd(R)/POd(R), and X̄ F,v is identified
with the reductive Borel–Serre space associated to PGLd(Fv). We have the following
analogue of 1.1.

Theorem 1.3 Let F be a function field in one variable over a finite field, let v be
a place of F, and let O be the subring of F consisting of all elements which are
integral outside v. Then for any subgroup � of PGLd(O) of finite index, the quotient
�\X̄ F,v is a compact Hausdorff space which contains �\Xv as a dense open subset.

1.4 Our space X̄ F,v is not a very new object. In the case that v is non-archimedean,
Xv is identified as a topological space with the Bruhat-Tits building of PGLd(Fv).
In this case, X̄ F,v is similar to the polyhedral compactification of Xv of Gérardin [7]
and Landvogt [19], which we denote by X̄v. To each element of X̄v is associated a
parabolic subgroup of PGLd,Fv . We define X̄ F,v as the subset of X̄v consisting of all
elements for which the associated parabolic subgroup is F-rational. We endow X̄ F,v

with a topology which is different from its topology as a subspace of X̄v.
In the case d = 2, the boundary X̄v \ Xv of X̄v is P1(Fv), whereas the bound-

ary X̄ F,v \ Xv of X̄ F,v is P1(F). Unlike X̄v, the space X̄ F,v is not compact, but the
arithmetic quotient as in 1.1 and 1.3 is compact (see 1.6).

1.5 In §4, we derive the following generalization of 1.1 and 1.3.
Let F be a global field. For a nonempty finite set S of places of F , let X̄ F,S be the

subspace of
∏

v∈S X̄ F,v consisting of all elements (xv)v∈S such that the F-parabolic
subgroup associated to xv is independent of v. Let XS denote the subspace

∏
v∈S Xv

of X̄ F,S .
Let S1 be a nonempty finite set of places of F containing all archimedean places of

F , let S2 be a finite set of places of F which is disjoint from S1, and let S = S1 ∪ S2.
Let OS be the subring of F consisting of all elements which are integral outside S.

Our main result is the following theorem (see Theorem 4.1.4).

Theorem 1.6 Let � be a subgroup of PGLd(OS) of finite index. Then the quotient
�\(X̄ F,S1 × XS2) is a compact Hausdorff space which contains �\XS as a dense
open subset.

1.7 If F is a number field and S1 coincides with the set of archimedean places of F ,
then the space X̄ F,S1 is the maximal Satake space of the Weil restriction of PGLd,F

from F to Q. In this case, the theorem is known for S = S1 through the work of
Satake [23] and in general through the work of Ji et al. [14, 4.4].

1.8 We also consider a variant X̄ �

F,v of X̄ F,v and a variant X̄ �

F,S of X̄ F,S with con-
tinuous surjections

X̄ F,v → X̄ �

F,v, X̄ F,S → X̄ �

F,S.
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In the case v is non-archimedean (resp., archimedean), X̄ �

F,v is the part with
“F-rational boundary” inWerner’s compactification (resp., the standard Satake com-
pactification) X̄ �

v of Xv [24, 25] (resp., [22]), endowed with a new topology. We will
obtain an analogue of 1.6 for this variant.

To grasp the relationship with the Borel–Serre compactification [3], we also con-
sider a variant X̄ �

F,v of X̄ F,v which has a continuous surjection X̄ �

F,v → X̄ F,v, and

we show that in the case that F = Q and v is the real place, X̄ �

Q,v coincides with the
Borel–Serre space associated to PGLd,Q (3.7.4). If v is non-archimedean, the space
X̄ �

F,v is not Hausdorff (3.7.6) and does not seem useful.

1.9 What we do in this paper is closely related to what Satake did in [22, 23]. In
[22], he defined a compactification of a symmetric Riemannian space. In [23], he
took the part of this compactification with “rational boundary” and endowed it with
the Satake topology. Then he showed that the quotient of this part by an arithmetic
group is compact. We take the part X̄ F,v of X̄v with “F-rational boundary” to have
a compact quotient by an arithmetic group. So, the main results and their proofs in
this paper might be evident to the experts in the theory of Bruhat-Tits buildings, but
we have not found them in the literature.

1.10 We intend to apply the compactification 1.3 to the construction of toroidal
compactifications of themoduli space ofDrinfeldmodules of rank d in a forthcoming
paper. In Sect. 4.7, we give a short explanation of this plan, along with two other
potential applications, to asymptotic behavior of heights of motives and to modular
symbols over function fields.

1.11 We plan to generalize the results of this paper from PGLd to general reductive
groups in another forthcoming paper. The reason why we separate the PGLd -case
from the general case is as follows. For PGLd , we can describe the space X̄ F,v via
norms onfinite-dimensional vector spaces over Fv (thismethod is not used for general
reductive groups), and these norms play an important role in the analytic theory of
toroidal compactifications.

1.12 In §2, we review the compactifications of Bruhat-Tits buildings in the non-
archimedean setting and symmetric spaces in the archimedean setting. In §3 and §4,
we discuss our compactifications.

1.13 We plan to apply the results of this paper to the study of Iwasawa theory over
a function field F . We dedicate this paper to John Coates, who has played a leading
role in the development of Iwasawa theory.

2 Spaces Associated to Local Fields

In this section, we briefly review the compactification of the symmetric space (resp.,
of the Bruhat-Tits building) associated to PGLd of an archimedean (resp., non-
archimedean) local field. See the papers of Satake [22] and Borel–Serre [3] (resp.,
Gérardin [7], Landvogt [19], and Werner [24, 25]) for details.
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Let E be a local field. This means that E is a locally compact topological field
with a non-discrete topology. That is, E is isomorphic to R, C, a finite extension of
Qp for some prime number p, or Fq((T )) for a finite field Fq .

Let | | : E → R�0 be the normalized absolute value. If E ∼= R, this is the usual
absolute value. If E ∼= C, this is the square of the usual absolute value. If E is
non-archimedean, this is the unique multiplicative map E → R�0 such that |a| =
�(OE/aOE )−1 if a is a nonzero element of the valuation ring OE of E .

Fix a positive integer d and a d-dimensional E-vector space V .

2.1 Norms

2.1.1 We recall the definitions of norms and semi-norms on V .
A norm (resp., semi-norm) on V is a map μ : V → R�0 for which there exist an

E-basis (ei )1�i�d of V and an element (ri )1�i�d of Rd
>0 (resp., Rd

�0) such that

μ(a1e1 + · · · + aded) =

⎧
⎪⎨

⎪⎩

(r21 |a1|2 · · · + r2d |ad |2)1/2 if E ∼= R,

r1|a1| + · · · + rd |ad | if E ∼= C,

max(r1|a1|, . . . , rd |ad |) otherwise.

for all a1, . . . , ad ∈ E .

2.1.2 We will call the norm (resp., semi-norm) μ in the above, the norm (resp.,
semi-norm) given by the basis (ei )i and by (ri )i .

2.1.3 We have the following characterizations of norms and semi-norms.

(1) If E ∼= R (resp., E ∼= C), then there is a one-to-one correspondence between
semi-norms on V and symmetric bilinear (resp., Hermitian) forms ( , ) on V
such that (x, x) � 0 for all x ∈ V . The semi-norm μ corresponding to ( , ) is
given by μ(x) = (x, x)1/2 (resp., μ(x) = (x, x)). This restricts to a correspon-
dence between norms and forms that are positive definite.

(2) If E is non-archimedean, then (as in [9]) a map μ : V → R�0 is a norm (resp.,
semi-norm) if and only if μ satisfies the following (i)–(iii) (resp., (i) and (ii)):

(i) μ(ax) = |a|μ(x) for all a ∈ E and x ∈ V ,
(ii) μ(x + y) � max(μ(x), μ(y)) for all x, y ∈ V , and
(iii) μ(x) > 0 if x ∈ V \ {0}.

These well-known facts imply that if μ is a norm (resp., semi-norm) on V and V ′
is an E-subspace of V , then the restriction of μ to V ′ is a norm (resp., semi-norm)
on V ′.

2.1.4 We say that two norms (resp., semi-norms) μ and μ′ on V are equivalent if
μ′ = cμ for some c ∈ R>0.
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2.1.5 The group GLV (E) acts on the set of all norms (resp., semi-norms) on V : for
g ∈ GLV (E) and a norm (resp., semi-norm) μ on V , gμ is defined as μ ◦ g−1. This
action preserves the equivalence in 2.1.4.

2.1.6 Let V ∗ be the dual space of V . Then there is a bijection between the set of
norms on V and the set of norms on V ∗. That is, for a normμ on V , the corresponding
norm μ∗ on V ∗ is given by

μ∗(ϕ) = sup

( |ϕ(x)|
μ(x)

| x ∈ V \ {0}
)

for ϕ ∈ V ∗.

For a norm μ on V associated to a basis (ei )i of V and (ri )i ∈ Rd
>0, the norm μ∗ on

V ∗ is associated to the dual basis (e∗
i )i of V

∗ and (r−1
i )i . This proves the bijectivity.

2.1.7 For a norm μ on V and for g ∈ GLV (E), we have

(μ ◦ g)∗ = μ∗ ◦ (g∗)−1,

which is to say (gμ)∗ = (g∗)−1μ∗, where g∗ ∈ GLV ∗(E) is the transpose of g.

2.2 Definitions of the Spaces

2.2.1 Let XV denote the set of all equivalence classes of norms on V (as in 2.1.4).
We endow XV with the quotient topology of the subspace topology on the set of all
norms on V inside RV .

2.2.2 In the case that E is archimedean, we have

XV
∼=

{
PGLd(R)/POd(R) ∼= SLd(R)/SOd(R) if E ∼= R

PGLd(C)/PU(d) ∼= SLd(C)/SU(d) if E ∼= C.

In the case E is non-archimedean, XV is identified with (a geometric realization of)
the Bruhat-Tits building associated to PGLV [4] (see also [5, Sect. 2]).

2.2.3 Recall that for a finite-dimensional vector space H 
= 0 over a field I , the
following four objects are in one-to-one correspondence:

(i) a parabolic subgroup of the algebraic group GLH over I ,
(ii) a parabolic subgroup of the algebraic group PGLH over I ,
(iii) a parabolic subgroup of the algebraic group SLH over I , and
(iv) a flag of I -subspaces of H (i.e., a set of subspaces containing {0} and H and

totally ordered under inclusion).

The bijections (ii) �→ (i) and (i) �→ (iii) are the taking of inverse images. The bijection
(i) �→ (iv) sends a parabolic subgroup P to the set of all P-stable I -subspaces of H ,
and the converse map takes a flag to its isotropy subgroup in GLH .
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2.2.4 Let X̄V be the set of all pairs (P, μ), where P is a parabolic subgroup of the
algebraic group PGLV over E and, if

0 = V−1 � V0 � · · · � Vm = V

denotes the flag corresponding to P (2.2.3), then μ is a family (μi )0�i�m , where μi

is an equivalence class of norms on Vi/Vi−1.
We have an embedding XV ↪→ X̄V which sends μ to (PGLV , μ).

2.2.5 Let X̄ �

V be the set of all equivalence classes of nonzero semi-norms on the
dual space V ∗ of V (2.1.4). We have an embedding XV ↪→ X̄ �

V which sends μ to μ∗
(2.1.6).

This set X̄ �

V is also identified with the set of pairs (W, μ) with W a nonzero
E-subspace of V and μ an equivalence class of a norm on W . In fact, μ corre-
sponds to an equivalence class μ∗ of a norm on the dual space W ∗ of W (2.1.6),
and μ∗ is identified via the projection V ∗ → W ∗ with an equivalence class of semi-
norms on V ∗.

We call the understanding of X̄ �

V as the set of such pairs (W, μ) the definition of
X̄ �

V in the second style. In this interpretation of X̄ �

V , the above embedding XV → X̄ �

V
is written as μ �→ (V, μ).

2.2.6 In the case that E is non-archimedean, X̄V is the polyhedral compactification
of the Bruhat-Tits building XV by Gérardin [7] and Landvogt [19] (see also [11,
Proposition 19]), and X̄ �

V is the compactification of XV by Werner [24, 25]. In the
case that E is archimedean, X̄V is the maximal Satake compactification, and X̄ �

V
is the minimal Satake compactification for the standard projective representation of
PGLV (E), as constructed by Satake in [22] (see also [2, 1.4]). The topologies of X̄V

and X̄ �

V are reviewed in Sect. 2.3 below.

2.2.7 We have a canonical surjection X̄V → X̄ �

V which sends (P, μ) to (V0, μ0),
where V0 is as in 2.2.4, and where we use the definition of X̄

�

V of the second style in
2.2.5. This surjection is compatible with the inclusion maps from XV to these spaces.

2.2.8 We have the natural actions of PGLV (E) on XV , X̄V and X̄ �

V by 2.1.5. These
actions are compatible with the canonical maps between these spaces.

2.3 Topologies

2.3.1 We define a topology on X̄V .
Take a basis (ei )i of V . We have a commutative diagram

PGLV (E) × Rd−1
>0 XV

PGLV (E) × Rd−1
�0 X̄V .
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Here the upper arrow is (g, t) �→ gμ, whereμ is the class of the normonV associated
to ((ei )i , (ri )i ) with ri = ∏

1� j<i t
−1
j , and where gμ is defined by the action of

PGLV (E) on XV (2.2.8). The lower arrow is (g, t) �→ g(P, μ), where (P, μ) ∈ X̄V

is defined as follows, and g(P, μ) is then defined by the action of PGLV (E) on X̄V

(2.2.8). Let
I = { j | t j = 0} ⊂ {1, . . . , d − 1},

and write
I = {c(i) | 0 � i � m − 1},

where m = �I and 1 � c(0) < · · · < c(m − 1) � d − 1. If we also let c(−1) = 0
and c(m) = d, then the set of

Vi =
c(i)∑

j=1

Fe j

with −1 � i � m forms a flag in V , and P is defined to be the corresponding par-
abolic subgroup of PGLV (2.2.3). For 0 � i � m, we take μi to be the equivalence
class of the norm on Vi/Vi−1 given by the basis (e j )c(i−1)< j�c(i) and the sequence
(r j )c(i−1)< j�c(i) with r j = ∏

c(i−1)<k< j t
−1
k .

Both the upper and the lower horizontal arrows in the diagram are surjective, and
the topology on XV coincides with the topology as a quotient space of PGLV (E) ×
Rd−1

>0 via the upper horizontal arrow. The topology on X̄V is defined as the quotient
topology of the topology on PGLV (E) × Rd−1

�0 via the lower horizontal arrow. It is
easily seen that this topology is independent of the choice of the basis (ei )i .

2.3.2 The space X̄ �

V has the following topology: the space of all nonzero semi-norms
on V ∗ has a topology as a subspace of the product RV ∗

, and X̄ �

V has a topology as a
quotient of it.

2.3.3 Both X̄V and X̄ �

V are compact Hausdorff spaces containing XV as a dense
open subset. This is proved in [7, 19, 24, 25] in the case that E is non-archimedean
and in [2, 22] in the archimedean case.

2.3.4 The topology on X̄ �

V coincides with the image of the topology on X̄V . In fact,
it is easily seen that the canonical map X̄V → X̄ �

V is continuous (using, for instance,
[25, Theorem 5.1]). Since both spaces are compact Hausdorff and this continuous
map is surjective, the topology on X̄ �

V is the image of that of X̄V .

3 Spaces Associated to Global Fields

Let F be a global field, which is to say, either a number field or a function field in one
variable over a finite field.Wefix a finite-dimensional F-vector space V of dimension
d � 1. For a place v of F , let Vv = Fv ⊗F V . We set Xv = XVv and X �

v = X �

Vv
for
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brevity. If v is non-archimedean, we let Ov, kv, qv,�v denote the valuation ring of Fv,
the residue field of Ov, the order of kv, and a fixed uniformizer in Ov, respectively.

In this section, we define sets X̄ �
F,v containing Xv for � ∈ {�, , �}, which serve as

our rational partial compactifications. Here, X̄ F,v (resp., X̄
�

F,v) is defined as a subset

of Xv (resp., X̄ �
v), and X̄ �

F,v has X̄ F,v as a quotient. In §3.2, by way of example, we
describe these sets and various topologies on them in the case that d = 2, F = Q, and
v is the real place. For � 
= �, we construct more generally sets X̄ �

F,S for a nonempty
finite set S of places of F . In §3.1, we describe X̄ �

F,S as a subset of
∏

v∈S X̄
�
F,v.

In §3.3 and §3.4, we define topologies on these sets. That is, in §3.3, we define
the “Borel–Serre topology”, while in §3.4, we define the “Satake topology” on X̄ F,v

and, assuming S contains all archimedean places of F , on X̄ �

F,S . In §3.5, we prove

results on X̄ F,v. In §3.6, we compare the following topologies on X̄ F,v (resp., X̄
�

F,v):
the Borel–Serre topology, the Satake topology, and the topology as a subspace of X̄v

(resp., X̄ �
v). In §3.7, we describe the relationship between these spaces and Borel–

Serre and reductive Borel–Serre spaces.

3.1 Definitions of the Spaces

3.1.1 Let X̄ F,v = X̄V,F,v be the subset of X̄v consisting of all elements (P, μ) such
that P is F-rational. If P comes from a parabolic subgroup P ′ of PGLV over F , we
also denote (P, μ) by (P ′, μ).

3.1.2 Let X̄ �

F,v be the subset of X̄
�
v consisting of all elements (W, μ) such that W is

F-rational (using the definition of X̄ �
v in the second style in 2.2.5). If W comes from

an F-subspace W ′ of V , we also denote (W, μ) by (W ′, μ).

3.1.3 Let X̄ �

F,v be the set of all triples (P, μ, s) such that (P, μ) ∈ X̄ F,v and s is a
splitting

s :
m⊕

i=0

(Vi/Vi−1)v
∼−→ Vv

over Fv of the filtration (Vi )−1�i�m of V corresponding to P .
We have an embedding Xv ↪→ X̄ �

F,v that sends μ to (PGLV , μ, s), where s is the
identity map of Vv.

3.1.4 We have a diagram with a commutative square

X̄ �

F,v X̄ F,v X̄ �

F,v

X̄v X̄ �
v.
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Here, the first arrow in the upper row forgets the splitting s, and the second arrow
in the upper row is (P, μ) �→ (V0, μ0), as is the lower arrow (2.2.7).

3.1.5 The group PGLV (F) acts on the sets X̄ F,v, X̄
�

F,v and X̄ �

F,v in the canonical
manner.

3.1.6 Now let S be a nonempty finite set of places of F .

• Let X̄ F,S be the subset of
∏

v∈S X̄ F,v consisting of all elements (xv)v∈S such that
the parabolic subgroup of G = PGLV associated to xv is independent of v.

• Let X̄ �

F,S be the subset of
∏

v∈S X̄
�

F,v consisting of all elements (xv)v∈S such that
the F-subspace of V associated to xv is independent of v.

We will denote an element of X̄ F,S as (P, μ), where P is a parabolic subgroup of
G and μ ∈ ∏

v∈S,0�i�m X(Vi /Vi−1)v with (Vi )i the flag corresponding to P . We will

denote an element of X̄ �

F,S as (W, μ), where W is a nonzero F-subspace of V and
μ ∈ ∏

v∈S XWv . We have a canonical surjective map

X̄ F,S → X̄ �

F,S

which commutes with the inclusion maps from XS to these spaces.

3.2 Example: Upper Half-Plane

3.2.1 Suppose that F = Q, v is the real place, and d = 2.
In this case, the sets Xv, X̄v = X̄ �

v, X̄Q,v = X̄ �

Q,v, and X̄ �

Q,v are described by using
the upper half-plane. In §2, we discussed topologies on the first two spaces. The
remaining spaces also have natural topologies, as will be discussed in §3.3 and
§3.4: the space X̄ �

Q,v is endowed with the Borel–Serre topology, and X̄Q,v has two
topologies, the Borel–Serre topology and Satake topology, which are both different
from its topology as a subspace of X̄v. In this section, as a prelude to §3.3 and §3.4,
we describe what the Borel–Serre and Satake topologies look like in this special
case.

3.2.2 Let H = {x + yi | x, y ∈ R, y > 0} be the upper half-plane. Fix a basis
(ei )i=1,2 of V . For z ∈ H, let μz denote the class of the norm on V correspond-
ing to the class of the norm on V ∗ given by ae∗

1 + be∗
2 �→ |az + b| for a, b ∈ R.

Here (e∗
i )1�i�d is the dual basis of (ei )i , and | | denotes the usual absolute value

(not the normalized absolute value) on C. We have a homeomorphism

H
∼−→ Xv, z �→ μz

which is compatible with the actions of SL2(R).
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For the square root i ∈ H of −1, the norm ae1 + be2 �→ (a2 + b2)1/2 has class
μi . For z = x + yi , we have

μz =
(
y x
0 1

)

μi .

The action of

(−1 0
0 1

)

∈ GL2(R) on Xv corresponds to x + yi �→ −x + yi on H.

3.2.3 The inclusions
Xv ⊂ X̄Q,v ⊂ X̄v

can be identified with
H ⊂ H ∪ P1(Q) ⊂ H ∪ P1(R).

Here z ∈ P1(R) = R ∪ {∞} corresponds to the class in X̄ �
v = X̄v of the semi-norm

ae∗
1 + be∗

2 �→ |az + b| (resp., ae∗
1 + be∗

2 �→ |a|) on V ∗ if z ∈ R (resp., z = ∞).
These identifications are compatible with the actions of PGLV (Q).

The topology on X̄v of 2.3.1 is the topology as a subspace of P1(C).

3.2.4 Let B be the Borel subgroup of PGLV consisting of all upper triangular matri-
ces for the basis (ei )i , and let 0 = V−1 � V0 = Qe1 � V1 = V be the corresponding
flag. Then ∞ ∈ P1(Q) is understood as the point (B, μ) of X̄Q,v, where μ is the
unique element of X(V0)v × X(V/V0)v .

Let X̄Q,v(B) = H ∪ {∞} ⊂ X̄Q,v and let X̄
�

Q,v(B) be the inverse image of X̄Q,v(B)

in X̄ �

Q,v. Then for the Borel–Serre topology defined in §3.3, we have a homeo-
morphism

X̄ �

Q,v(B) ∼= {x + yi | x ∈ R, 0 < y � ∞} ⊃ H.

Here x + ∞i corresponds to (B, μ, s) where s is the splitting of the filtration (Vi,v)i
given by the embedding (V/V0)v → Vv that sends the class of e2 to xe1 + e2.

The Borel–Serre topology on X̄ �

Q,v is characterized by the properties that

(i) the action of the discrete group GLV (Q) on X̄ �

Q,v is continuous,

(ii) the subset X̄ �

Q,v(B) is open, and

(iii) as a subspace, X̄ �

Q,v(B) is homeomorphic to {x + yi | x ∈ R, 0 < y � ∞} as
above.

3.2.5 The Borel–Serre and Satake topologies on X̄Q,v (defined in §3.3 and §3.4) are
characterized by the following properties:

(i) The subspace topology on Xv ⊂ X̄Q,v coincides with the topology on H.
(ii) The action of the discrete group GLV (Q) on X̄Q,v is continuous.
(iii) The following sets (a) (resp., (b)) form a base of neighborhoods of ∞ for the

Borel–Serre (resp., Satake) topology:
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(a) the sets U f = {x + yi ∈ H | y � f (x)} ∪ {∞} for continuous f : R → R,
(b) the sets Uc = {x + yi ∈ H | y � c} ∪ {∞} with c ∈ R>0.

The Borel–Serre topology on X̄Q,v is the image of the Borel–Serre topology on X̄ �

Q,v.

3.2.6 For example, the set {x + yi ∈ H | y > x} ∪ {∞} is a neighborhood of∞ for
the Borel–Serre topology, but it is not a neighborhood of ∞ for the Satake topology.

3.2.7 For any subgroup � of PGL2(Z) of finite index, the Borel–Serre and Satake
topologies induce the same topology on the quotient space X (�) = �\X̄Q,v. Under
this quotient topology, X (�) is compact Hausdorff. If� is the image of a congruence
subgroup of SL2(Z), then this is the usual topology on the modular curve X (�).

3.3 Borel–Serre Topology

3.3.1 For a parabolic subgroup P of PGLV , let X̄ F,v(P) (resp., X̄ �

F,v(P)) be the

subset of X̄ F,v (resp., X̄
�

F,v) consisting of all elements (Q, μ) (resp., (Q, μ, s)) such
that Q ⊃ P .

The action of PGLV (Fv) on X̄v induces an action of P(Fv) on X̄ F,v(P). We have
also an action of P(Fv) on X̄ �

F,v(P) given by

g(α, s) = (gα, g ◦ s ◦ g−1)

for g ∈ P(Fv), α ∈ X̄ F,v(P), and s a splitting of the filtration.

3.3.2 Fix a basis (ei )i of V . Let P be a parabolic subgroup of PGLV such that

• if 0 = V−1 � V0 � · · · � Vm = V denotes the flag of F-subspaces corresponding
to P , then each Vi is generated by the e j with 1 � j � c(i), where c(i) = dim(Vi ).

This condition on P is equivalent to the condition that P contains the Borel subgroup
B of PGLV consisting of all upper triangular matrices with respect to (ei )i . Where
useful, we will identify PGLV over F with PGLd over F via the basis (ei )i .

Let

(P) = {dim(Vj ) | 0 � j � m − 1} ⊂ {1, . . . , d − 1},

and let 
′(P) be the complement of 
(P) in {1, . . . , d − 1}. Let Rd−1
�0 (P) be the

open subset of Rd−1
�0 given by

Rd−1
�0 (P) = {(ti )1�i�d−1 ∈ Rd−1

�0 | ti > 0 for all i ∈ 
′(P)}.

In particular, we have
Rd−1

�0 (P) ∼= R
′(P)
>0 × R
(P)

�0 .
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3.3.3 With P as in 3.3.2, the map PGLV (Fv) × Rd−1
�0 → X̄v in 2.3.1 induces a map

π̄P,v : P(Fv) × Rd−1
�0 (P) → X̄ F,v(P),

which restricts to a map

πP,v : P(Fv) × Rd−1
>0 → XF,v.

The map π̄P,v is induced by a map

π̄
�

P,v : P(Fv) × Rd−1
�0 (P) → X̄ �

F,v(P)

defined as (g, t) �→ g(P, μ, s) where (P, μ) is as in 2.3.1 and s is the splitting of
the filtration (Vi )−1�i�m defined by the basis (ei )i . For this splitting s, we set

V (i) = s(Vi/Vi−1) =
∑

c(i−1)< j�c(i)

Fe j

for 0 � i � m so that Vi = Vi−1 ⊕ V (i) and V = ⊕m
i=0 V

(i). If P = B, then we will
often omit the subscript B from our notation for these maps.

3.3.4 We review the Iwasawa decomposition. For v archimedean (resp., non-
archimedean), let Av � PGLd(Fv) be the subgroup of elements of that lift to diagonal
matrices in GLd(Fv) with positive real entries (resp., with entries that are powers of
�v). Let Kv denote the standard maximal compact subgroup of PGLd(Fv) given by

Kv =

⎧
⎪⎨

⎪⎩

POd(R) if v is real,

PUd if v is complex,

PGLd(Ov) otherwise.

Let Bu denote the upper-triangular unipotent matrices in the standard Borel B. The
Iwasawa decomposition is given by the equality

PGLd(Fv) = Bu(Fv)AvKv.

3.3.5 If v is archimedean, then the expression of a matrix in PGLd(Fv) as a product
in the Iwasawa decomposition is unique.

3.3.6 If v is non-archimedean, then the Bruhat decomposition is PGLd(kv) =
B(kv)Sd B(kv), where the symmetric group Sd of degree d is viewed as a subgroup of
PGLd over any field via the permutation representation on the standard basis. This
implies that PGLd(Ov) = B(Ov)Sd Iw(Ov), where Iw(Ov) is the Iwahori subgroup
consisting of those matrices in with upper triangular image in PGLd(kv). Combining
this with the Iwasawa decomposition (in the notation of 3.3.4), we have
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PGLd(Fv) = Bu(Fv)AvSd Iw(Ov).

This decomposition is not unique, since Bu(Fv) ∩ Iw(Ov) = Bu(Ov).

3.3.7 If v is archimedean, then there is a bijection Rd−1
>0

∼−→ Av given by

t = (tk)1�k�d−1 �→ a =
{
diag(r1, . . . , rd)−1 if v is real,

diag(r1/21 , . . . , r1/2d )−1 if v is complex,

where ri = ∏i−1
k=1 t

−1
k as in 2.3.1.

Proposition 3.3.8

(1) Let P be a parabolic subgroup of PGLV as in 3.3.2. Then the maps

π̄P,v : P(Fv) × Rd−1
�0 (P) → X̄ F,v(P) and π̄

�
P,v : P(Fv) × Rd−1

�0 (P) → X̄ �
F,v(P)

of 3.3.3 are surjective.
(2) For the Borel subgroup B of 3.3.2, the maps

πv : Bu(Fv) × Rd−1
>0 → Xv, π̄v : Bu(Fv) × Rd−1

�0 → X̄ F,v(B),

and π̄
�
v : Bu(Fv) × Rd−1

�0 → X̄�
F,v(B).

of 3.3.3 are all surjective.
(3) If v is archimedean, then πv and π̄ �

v are bijective.
(4) If v is non-archimedean, then π̄v induces a bijection

(Bu(Fv) × Rd−1
�0 )/∼ → X̄ F,v(B)

where (g, (ti )i ) ∼ (g′, (t ′i )i ) if and only if

(i) ti = t ′i for all i and
(ii) |(g−1g′)i j | � (

∏
i�k< j tk)

−1 for all 1 � i < j � d, considering any c ∈ R

to be less than 0−1 = ∞.

Proof If π̄ �
v is surjective, then for any parabolic P containing B, the restriction of

π̄ �
v to Bu(Fv) × Rd−1

�0 (P) has image X̄ �

F,v(P). Since Bu(Fv) ⊂ P(Fv), this forces the

subjectivity of π̄
�

P,v, hence of π̄P,v as well. So, we turn our attention to (2)–(4). If
r ∈ Rd

>0, we letμ
(r) ∈ Xv denote the class of the norm attached to the basis (ei )i and

r .
Suppose first that v is archimedean. By the Iwasawa decomposition 3.3.4, and

noting 3.3.5 and 2.2.2, we see that Bu(Fv)Av → Xv given by g �→ gμ(1) is bijective,
where μ(1) denotes the class of the norm attached to (ei )i and 1 = (1, . . . , 1) ∈ Rd

>0.
For t ∈ Rd−1

>0 , let a ∈ Av be its image under the bijection in 3.3.7. Since paμ(1) =
pμ(r), for p ∈ Bu(Fv) and r as in 2.3.1, we have the bijectivity of πv.
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Consider the third map in (2). For t ∈ Rd−1
�0 , let P be the parabolic that contains

B and is determined by the set 
(P) of k ∈ {1, . . . , d − 1} for which tk = 0. Let
(Vi )−1�i�m be the corresponding flag. Let M denote the Levi subgroup of P . (It is
the quotient of

∏m
i=0 GLV (i) < GLV by scalars, where V = ⊕m

i=0 V
(i) as in 3.3.3,

and M ∩ Bu is isomorphic to the product of the upper-triangular unipotent matrices
in each PGLV (i) .) The product of the first maps in (2) for the blocks ofM is a bijection

(M ∩ Bu)(Fv) × R
′(P)
>0

∼−→
m∏

i=0

XV (i)
v

⊂ X̄ F,v(P),

such that (g, t ′) is sent to (P, gμ) in X̄ F,v, whereμ is the sequence of classes of norms
determined by t ′ and the standard basis. The stabilizer of μ in Bu is the unipotent
radical Pu of P , and this Pu acts simply transitively on the set of splittings for the
graded quotients (Vi/Vi−1)v. Since Bu = (M ∩ Bu)Pu , and this decomposition is
unique, we have the desired bijectivity of π̄ �

v , proving (3).
Suppose next that v is non-archimedean. We prove the surjectivity of the first map

in (2). Using the natural actions of Av and the symmetric group Sd onRd
>0, we see that

any norm on Vv can be written as gμ(r), where g ∈ PGLd(Fv) and r = (ri )i ∈ Rd
>0,

with r satisfying
r1 � r2 � · · · � rd � qvr1.

For such an r , the class μ(r) is invariant under the action of Iw(Ov). Hence for such
an r , any element of Sd Iw(Ov)μ

(r) = Sdμ(r) is of the form μ(r ′), where r ′ = (rσ(i))i
for some σ ∈ Sd . Hence, any element of AvSd Iw(Ov)μ

(r) for such an r is of the
form μ(r ′) for some r ′ = (r ′

i )i ∈ Rd
>0. This proves the surjecivity of the first map of

(2). The surjectivity of the other maps in (2) is then shown using this, similarly to
the archimedean case.

Finally,weprove (4). It is easy to see that themap π̄v factors through thequotient by
the equivalence relation.We can deduce the bijectivity in question from the bijectivity
of (Bu(Fv) × Rd−1

>0 )/∼ → Xv, replacing V by Vi/Vi−1 as in the above arguments for
the archimedean case. Suppose that πv(g, t) = πv(1, t ′) for g ∈ Bu(Fv) and t, t ′ ∈
Rd−1

>0 . We must show that (g, t) ∼ (1, t ′). Write πv(g, t) = gμ(r) and πv(1, t ′) =
μ(r ′) with r = (ri )i and r ′ = (r ′

i )i ∈ Rd
>0 such that r1 = 1 and r j/ri = (

∏
i�k< j tk)

−1

for all 1 � i < j � d, and similarly for r ′ and t ′. It then suffices to check that r ′ = r
and ri |gi j | � r j for all i < j . Since μ(r) = g−1μ(r ′), there exists c ∈ R>0 such that

max{ri |xi | | 1 � i � d} = cmax{r ′
i |(gx)i | | 1 � i � d}

for all x = (xi )i ∈ Fd
v . Taking x = e1, we have gx = e1 as well, so c = 1. Taking

x = ei , we obtain ri � r ′
i , and taking x = g−1ei , we obtain ri � r ′

i . Thus r = r ′, and
taking x = e j yields r j = max{ri |gi j | | 1 � i � j}, which tells us that r j � ri |gi j |
for i < j . �
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Proposition 3.3.9 There is a unique topology on X̄F,v (resp., X̄
�

F,v) satisfying the
following conditions (i) and (ii).

(i) For every parabolic subgroup P of PGLV , the set X̄ F,v(P) (resp., X̄ �

F,v(P)) is

open in X̄ F,v (resp., X̄
�

F,v).
(ii) For every parabolic subgroup P of PGLV and basis (ei )i of V such that P

contains the Borel subgroup with respect to (ei )i , the topology on X̄F,v(P)

(resp., X̄ �

F,v(P)) is the topology as a quotient of P(Fv) × Rd−1
�0 (P) under the

surjection of 3.3.8(1).

This topology is also characterized by (i) and the following (i i)′.

(ii′) If B is a Borel subgroup of PGLV consisting of upper triangular matrices with
respect to a basis (ei )i of V , then the topology on X̄F,v(B) (resp., X̄ �

F,v(B)) is

the topology as a quotient of Bu(Fv) × Rd−1
�0 under the surjection of 3.3.8(2).

Proof The uniqueness is clear if we have existence of a topology satisfying (i) and
(ii). Let (ei )i be a basis of V , let B be the Borel subgroup of PGLV with respect to
this basis, and let P be a parabolic subgroup of PGLV containing B. It suffices to
prove that for the topology on X̄ F,v(B) (resp., X̄ �

F,v(B)) as a quotient of Bu(Fv) ×
Rd−1

�0 (B), the subspace topology on X̄ F,v(P) (resp., X̄ �

F,v(P)) coincides with the

quotient topology from P(Fv) × Rd−1
�0 (P). For this, it is enough to show that the

action of the topological group P(Fv) on X̄ F,v(P) (resp., X̄ �

F,v(P)) is continuous

with respect to the topology on X̄ F,v(P) (resp., X̄ �

F,v(P)) as a quotient of Bu(Fv) ×
Rd−1

�0 (P). We must demonstrate this continuity.
Let (Vi )−1�i�m be the flag corresponding to P , and let c(i) = dim(Vi ). For 0 �

i � m, we regardGLV (i) as a subgroup ofGLV via the decomposition V = ⊕m
i=0 V

(i)

of 3.3.3.
Supposefirst that v is archimedean. For 0 � i � m, let Ki be the compact subgroup

of GLV (i) (Fv) that is the isotropy group of the norm on V (i) given by the basis
(e j )c(i−1)< j�c(i) and (1, . . . , 1) ∈ ∏

c(i−1)< j�c(i) R>0. We identify Rd−1
>0 with Av as

in 3.3.7. By the Iwasawa decomposition 3.3.4 and its uniqueness in 3.3.5, the product
on P(Fv) induces a homeomorphism

(a, b, c) : P(Fv)
∼−→ Bu(Fv) × Rd−1

>0 ×
(

m∏

i=0

Ki

)

/{z ∈ F×
v | |z| = 1}.

We also have a product map φ : P(Fv) × Bu(Fv) × R
′(P)
>0 → P(Fv), where we

identify t ′ ∈ R
′(P)
>0 with the diagonal matrix diag(r1, . . . , rd)−1 if v is real and

diag(r1/21 , . . . , r1/2d )−1 if v is complex, with r−1
j = ∏

c(i−1)<k< j t
′
k for c(i − 1) < j �

c(i) as in 2.3.1. These maps fit in a commutative diagram
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P(Fv) × R
(P)

�0

P(Fv) × Bu(Fv)

× R
′(P)
>0 × R
(P)

�0
P(Fv) × X̄ F,v(P)

Bu(Fv) × Rd−1
�0 (P) X̄ F,v(P)

(id,π̄P,v)(φ,id)

π̄P,v

in which the right vertical arrow is the action of P(Fv) on X̄ F,v(P), and the left
vertical arrow is the continuous map

(u, t) �→ (a(u), b(u) · (1, t)), (u, t) ∈ P(Fv) × R
(P)

�0

for (1, t) the element of Rd−1
�0 (P) with R
′(P)

>0 -component 1 and R
(P)

�0 -component t .
(To see the commutativity, note that c(u) commutes with the block-scalar matrix
determined by (1, t).) We also have a commutative diagram of the same form for
X̄ �

F,v. Since the surjective horizontal arrows are quotientmaps, we have the continuity
of the action of P(Fv).

Next, we consider the case that v is non-archimedean. For 0 � i � m, let S(i) be
the group of permutations of the set

Ii = { j ∈ Z | c(i − 1) < j � c(i)},

and regard it as a subgroup of GLV (i) (F). Let Av be the subgroup of the diagonal
torus of PGLV (Fv) with respect to the basis (ei )i with entries powers of a fixed
uniformizer, as in 3.3.4.

Consider the action of Av
∏m

i=0 S
(i) ⊂ P(Fv) on Rd−1

�0 (P) that is compatible with

the action of P(Fv) on X̄ F,v(P) via the embeddingRd−1
�0 (P) → X̄ F,v(P). This action

is described as follows. Any matrix a = diag(a1, . . . , ad) ∈ Av sends t ∈ Rd−1
�0 (P)

to (t j |a j+1||a j |−1) j ∈ Rd−1
�0 (P). The action of

∏m
i=0 S

(i) on Rd−1
�0 (P) is the unique

continuous action which is compatible with the evident action of
∏m

i=0 S
(i) on Rd

>0
via the map Rd

>0 → Rd−1
�0 (P) that sends (ri )i to (t j ) j , where t j = r j/r j+1. That is,

for

σ = (σi )0�i�m ∈
m∏

i=0

S(i),

let f ∈ Sd be the unique permutation with f |Ii = σ−1
i for all i . Then σ sends t ∈

Rd−1
�0 (P) to the element t ′ = (t ′j ) j given by

t ′j =
{∏

f ( j)�k< f ( j+1) tk if f ( j) < f ( j + 1),
∏

f ( j+1)�k< f ( j) t
−1
k if f ( j + 1) < f ( j).



Compactifications of S-arithmetic Quotients … 177

Let C be the compact subset of Rd−1
�0 (P) given by

C =
{

t = (t j ) j ∈ Rd−1
�0 (P) ∩ [0, 1]d−1 |

∏

c(i−1)< j<c(i)

t j � q−1
v for all 0 � i � m

}

.

We claim that for each x ∈ Rd−1
�0 (P), there is a finite family (hk)k of elements of

Av
∏m

i=0 S
(i) such that the union

⋃
k hkC is a neighborhood of x . This is quickly

reduced to the following claim.

Claim Consider the natural action of H = AvSd ⊂ PGLV on the quotient space
Rd

>0/R>0, with the class of (a j ) j in Av acting as multiplication by (|a j |) j . Let C be
the image of

{r ∈ Rd
>0 | r1 � r2 � · · · � rd � qvr1}

in Rd
>0/R>0. Then for each x ∈ Rd

>0/R>0, there is a finite family (hk)k of elements
of H such that

⋃
k hkC is a neighborhood of x .

Proof of ClaimThis is a well-known statement in the theory of Bruhat-Tits buildings:
the quotientRd

>0/R>0 is called the apartment of theBruhat-Tits building Xv of PGLV ,
and the set C is a (d − 1)-simplex in this apartment. Any (d − 1)-simplex in this
apartment has the form hC for some h ∈ H , for any x ∈ Rd

>0/R>0 there are only
finitely many (d − 1)-simplices in this apartment which contain x , and the union of
these is a neighborhood of x in Rd

>0/R>0.

By compactness of C , the topology on the neighborhood
⋃

k hkC of x is
the quotient topology from

∐
k hkC . Thus, it is enough to show that for each

h ∈ Av
∏m

i=0 S
(i), the composition

P(Fv) × Bu(Fv) × hC
(id,πP,v)−−−−→ P(Fv) × X̄ F,v(P) → X̄ F,v(P)

(where the second map is the action) and its analogue for X̄ �

F,v are continuous.
For 0 � i � m, let Iwi be the Iwahori subgroup of GLV (i) (Fv) for the basis

(e j )c(i−1)< j�c(i). By the the Iwasawa and Bruhat decompositions as in 3.3.6, the
product on P(Fv) induces a continuous surjection

Bu(Fv) × Av

m∏

i=0

S(i) ×
m∏

i=0

Iwi → P(Fv),

and it admits continuous sections locally on P(Fv). (Here, the middle group
Av

∏m
i=0 S

(i) has the discrete topology.) Therefore, there exist an open covering (Uλ)λ
of P(Fv) and, for each λ, a subsetUλ of the above product mapping homeomorphi-
cally to Uλ, together with a continuous map
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(aλ, bλ, cλ) : Uλ → Bu(Fv) × Av

m∏

i=0

S(i) ×
m∏

i=0

Iwi

such that its composition with the above product map is the mapUλ
∼−→ Uλ. Let U ′

λ

denote the inverse image of Uλ under

P(Fv) × Bu(Fv) → P(Fv), (g, g′) �→ gg′h,

so that (U ′
λ)λ is an open covering of P(Fv) × Bu(Fv). For any γ in the indexing set

of the cover, letU′
λ,γ be the inverse image of U ′

λ inUγ × Bu(Fv). Then the images
of the U′

λ,γ form an open cover of P(Fv) × Bu(Fv) as well. Let (a′
λ,γ , b′

λ,γ ) be the
composition

U′
λ,γ → Uλ

(aλ,bλ)−−−→ Bu(Fv) × Av

m∏

i=0

S(i).

As
∏m

i=0 Iwi fixes every element of C under its embedding in X̄ F,v(P), we have a
commutative diagram

U′
λ,γ × hC P(Fv) × Bu(Fv) × hC

Bu(Fv) × Rd−1
�0 (P) X̄ F,v(P)

in which the left vertical arrow is

(u, hx) �→ (a′
λ,γ (u), b′

λ,γ (u)x)

for x ∈ C . We also have a commutative diagram of the same form for X̄ �

F,v. This
proves the continuity of the action of P(Fv). �

3.3.10 We call the topology on X̄ F,v (resp., X̄
�

F,v) in 3.3.9 the Borel–Serre topology.
The Borel–Serre topology on X̄ F,v coincides with the quotient topology of the Borel–
Serre topology on X̄ �

F,v. This topology on X̄ F,v is finer than the subspace topology
from X̄v.

We define the Borel–Serre topology on X̄ �

F,v as the quotient topology of the Borel–

Serre topology of X̄ F,v. This topology on X̄ �

F,v is finer than the subspace topology
from X̄ �

v.
For a nonempty finite set S of places of F , we define the Borel–Serre topology on

X̄ F,S (resp., X̄
�

F,S) as the subspace topology for the product topology on
∏

v∈S X̄ F,v

(resp.,
∏

v∈S X̄
�

F,v) for the Borel–Serre topology on each X̄ F,v (resp., X̄
�

F,v).
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3.4 Satake Topology

3.4.1 For a nonempty finite set of places S of F , we define the Satake topology on
X̄ F,S and, under the assumption S contains all archimedean places, on X̄ �

F,S .
The Satake topology is coarser than the Borel–Serre topology of 3.3.10. On the

other hand, the Satake topology and the Borel–Serre topology induce the same topol-
ogy on the quotient space by an arithmetic group (4.1.8). Thus, the Hausdorff com-
pactness of this quotient space can be formulated without using the Satake topology
(i.e., using only the Borel–Serre topology). However, arguments involving the Satake
topology appear naturally in the proof of this property. One nice aspect of the Satake
topology is that each point has an explicit base of neighborhoods (3.2.5, 3.4.9, 4.4.9).

3.4.2 Let H be a finite-dimensional vector space over a local field E . Let H ′ and
H ′′ be E-subspaces of H such that H ′ ⊃ H ′′. Then a norm μ on H induces a norm
ν on H ′/H ′′ as follows. Let μ′ be the restriction of μ to H ′. Let (μ′)∗ be the norm
on (H ′)∗ dual to μ′. Let ν∗ be the restriction of (μ′)∗ to the subspace (H ′/H ′′)∗ of
(H ′)∗. Let ν be the dual of ν∗. This norm ν is given on x ∈ H ′/H ′′ by

ν(x) = inf {μ(x̃) | x̃ ∈ H ′ such that x̃ + H ′′ = x}.

3.4.3 For a parabolic subgroup P of PGLV , let (Vi )−1�i�m be the corresponding
flag. Set

X̄ F,S(P) = {(P ′, μ) ∈ X̄ F,S | P ′ ⊃ P}.

For a place v of F , let us set

ZF,v(P) =
m∏

i=0

X(Vi /Vi−1)v andZF,S(P) =
∏

v∈S
ZF,v(P).

We let P(Fv) act on ZF,v(P) through P(Fv)/Pu(Fv), using the PGL(Vi /Vi−1)v(Fv)-
action on X(Vi/Vi−1)v for 0 � i � m. We define a P(Fv)-equivariant map

φP,v : X̄ F,v(P) → ZF,v(P)

with the product of these over v ∈ S giving rise to a map φP,S : X̄ F,S(P) → ZF,S(P).
Let (P ′, μ) ∈ X̄ F,v(P). Then the spaces in theflag0= V ′−1 � V ′

0 � · · · � V ′
m ′ = V

corresponding to P ′ form a subset of {Vi | −1 � i � m}. The image ν = (νi )0�i�m

of (P ′, μ) under φP,v is as follows: there is a unique j with 0 � j � m ′ such that

V ′
j ⊃ Vi � Vi−1 ⊃ V ′

j−1,

and νi is the norm induced from μ j on the subquotient (Vi/Vi−1)v of (V ′
j/V

′
j−1)v, in

the sense of 3.4.2. The P(Fv)-equivariance of φP,v is easily seen using the actions
on norms of 2.1.5 and 2.1.7.
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Though the following map is not used in this subsection, we introduce it here by
way of comparison between X̄ F,S and X̄ �

F,S .

3.4.4 Let W be a nonzero F-subspace of V , and set

X̄ �

F,S(W ) = {(W ′, μ) ∈ X̄ �

F,S | W ′ ⊃ W }.

For a place v of F , we have a map

φ
�

W,v : X̄ �

F,v(W ) → XWv

which sends (W ′, μ) ∈ X̄ �

F,v(W ) to the restriction of μ to Wv. The map φ
�

W,v is
P(Fv)-equivariant, for P the parabolic subgroup of PGLV consisting of all elements
that preserveW . SettingZ�

F,S(W ) = ∏
v∈S XWv , the product of thesemaps over v ∈ S

provides a map φ
�

W,S : X̄ �

F,S(W ) → Z
�

F,S(W ).

3.4.5 For a finite-dimensional vector space H over a local field E , a basis e =
(ei )1�i�d of H , and a norm μ on H , we define the absolute value |μ : e| ∈ R>0 of
μ relative to e as follows. Suppose that μ is defined by a basis e′ = (e′

i )1�i�d and a
tuple (ri )1�i�d ∈ Rd

>0. Let h ∈ GLH (E) be the element such that e′ = he. We then
define

|μ : e| = | det(h)|−1
d∏

i=1

ri .

This is independent of the choice of e′ and (ri )i . Note that we have

|gμ : e| = | det(g)|−1|μ : e|

for all g ∈ GLH (E).

3.4.6 Let P and (Vi )i be as in 3.4.3, and let v be a place of F . Fix a basis e(i) of
(Vi/Vi−1)v for each 0 � i � m. Then we have a map

φ′
P,v : X̄ F,v(P) → Rm

�0, (P ′, μ) �→ (ti )1�i�m

where (ti )1�i�m is defined as follows. Let (V ′
j )−1� j�m ′ be the flag associated to P ′.

Let 1 � i � m. If Vi−1 belongs to (V ′
j ) j , let ti = 0. If Vi−1 does not belong to the last

flag, then there is a unique j such that V ′
j ⊃ Vi ⊃ Vi−2 ⊃ V ′

j−1. Let μ̃ j be a norm
on (V ′

j/V
′
j−1)v which belongs to the class μ j , and let μ̃ j,i and μ̃ j,i−1 be the norms

induced by μ j on the subquotients (Vi/Vi−1)v and (Vi−1/Vi−2)v, respectively. We
then let

ti = |μ̃ j,i−1 : e(i−1)|1/di−1 · |μ̃ j,i : e(i)|−1/di ,

where di := dim(Vi/Vi−1).
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The map φ′
P,v is P(Fv)-equivariant for the following action of P(Fv) on Rm

�0. For
g ∈ P(Fv), let g̃ ∈ GLV (Fv) be a lift of g, and for 0 � i � m, let gi ∈ GLVi/Vi−1(Fv)

be the element induced by g̃. Then g ∈ P(Fv) sends t ∈ Rm
�0 to t

′ ∈ Rm
�0 where

t ′i = | det(gi )|1/di · | det(gi−1)|−1/di−1 · ti .

If we have two families e = (e(i))i and f = ( f (i))i of bases e(i) and f (i) of
(Vi/Vi−1)v, and if the map φ′

P,v defined by e (resp., f ) sends an element to t (resp.,
t ′), then the same formula also describes the relationship between t and t ′, in this
case taking gi to be the element of GLVi /Vi−1 such that e(i) = gi f (i).

3.4.7 Fix a basis e(i) of Vi/Vi−1 for each 0 � i � m. Then we have a map

φ′
P,S : X̄ F,S(P) → Rm

�0, (P ′, μ) �→ (ti )1�i�m

where ti = ∏
v∈S tv,i , with (tv,i )i the image of (P ′, μv) under the map φ′

P,v of 3.4.6.

3.4.8 We define the Satake topology on X̄ F,S as follows.
For a parabolic subgroup P of PGLV , consider the map

ψP,S := (φP,S, φ
′
P,S) : X̄ F,S(P) → ZF,S(P) × Rm

�0

from 3.4.3 and 3.4.7, which we recall depends on a choice of bases of the Vi/Vi−1.
We say that a subset of X̄ F,S(P) is P-open if it is the inverse image of an open subset
of ZF,S(P) × Rm

�0. By 3.4.6, the property of being P-open is independent of the
choice of bases.

We define the Satake topology on X̄ F,S to be the weakest topology for which
every P-open set for each parabolic subgroup P of PGLV is open.

By this definition, we have:

3.4.9 Let a ∈ X̄ F,S be of the form (P, μ) for some μ. As U ranges over neighbor-
hoods of the image (μ, 0) of a in ZF,S(P) × Rm

�0, the inverse images of the U in

X̄ F,S(P) under ψP,S form a base of neighborhoods of a in X̄ F,S .

3.4.10 In §3.5 and §3.6, we explain that Satake topology on X̄ F,S is strictly coarser
than the Borel–Serre topology for d � 2.

3.4.11 The Satake topology on X̄ F,S can differ from the subspace topology of the
product topology for the Satake topology on each X̄ F,v with v ∈ S.

Example Let F be a real quadratic field, let V = F2, and let S = {v1, v2} be the
set of real places of F . Consider the point (∞,∞) ∈ (H ∪ {∞}) × (H ∪ {∞}) ⊂
X̄v1 × X̄v2 (see §3.2), which we regard as an element of X̄ F,S . Then the sets

Uc := {(x1 + y1i, x2 + y2i) ∈ H × H | y1y2 � c} ∪ {(∞,∞)}
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with c ∈ R>0 form a base of neighborhoods of (∞,∞) in X̄ F,S for the Satake topol-
ogy, whereas the sets

U ′
c := {(x1 + y1i, x2 + y2i) ∈ H × H | y1 � c, y2 � c} ∪ {(∞,∞)}

for c ∈ R>0 form a base of neighborhoods of (∞,∞) in X̄ F,S for the topology
induced by the product of Satake topologies on X̄ F,v1 and X̄ F,v2 .

3.4.12 Let G = PGLV , and let � be a subgroup of G(F).

• For a parabolic subgroup P of G, let �(P) be the subgroup of � ∩ P(F) consisting
of all elements with image in the center of (P/Pu)(F).

• For a nonzero F-subspace W of V , let �(W ) denote the subgroup of elements of
� that can be lifted to elements of GLV (F) which fix every element of W .

3.4.13 We let AF denote the adeles of F , let AS
F denote the adeles of F outside

of S, and let AF,S = ∏
v∈S Fv so that AF = AS

F × AF,S . Assume that S contains all
archimedean places of F . Let G = PGLV , let K be a compact open subgroup of
G(AS

F ), and let �K < G(F) be the inverse image of K under G(F) → G(AS
F ).

The following proposition will be proved in 3.5.15.

Proposition 3.4.14 For S, G, K and �K as in 3.4.13, the Satake topology on X̄F,S

is the weakest topology such that for every parabolic subgroup P of G, a subset U
of X̄ F,S(P) is open if

(i) it is open for Borel–Serre topology, and
(ii) it is stable under the action of �K ,(P) (see 3.4.12).

The following proposition follows easily from the fact that for any two compact
open subgroups K and K ′ of G(AS

F ), the intersection �K ∩ �K ′ is of finite index in
both �K and �K ′ .

Proposition 3.4.15 For S, K and �K as in 3.4.13, consider the weakest topology
on X̄ �

F,S such that for every nonzero F-subspace W, a subset U of X̄ �

F,S(W ) is
open if

(i) it is open for Borel–Serre topology, and
(ii) it is stable under the action of �K ,(W ) (see 3.4.12).

Then this topology is independent of the choice of K .

3.4.16 We call the topology in 3.4.15 the Satake topology on X̄ �

F,S .

Proposition 3.4.17

(1) Let P be a parabolic subgroup of PGLV . For both the Borel–Serre and Satake
topologies on X̄F,S, the set X̄ F,S(P) is open in X̄ F,S, and the action of the
topological group P(AF,S) on X̄F,S(P) is continuous.
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(2) The actions of the discrete group PGLV (F) on the following spaces are contin-
uous: X̄ F,S and X̄ �

F,S with their Borel–Serre topologies, X̄ F,S with the Satake

topology, and assuming S contains all archimedean places, X̄ �

F,S with the Satake
topology.

Proposition 3.4.18 Let W be a nonzero F-subspace of V . Then for the Borel–Serre
topology, and for the Satake topology if S contains all archimedean places of F, the
subset X̄ �

F,S(W ) is open in X̄ �

F,S.

Part (1) of 3.4.17 was shown in §3.3 for the Borel–Serre topology, and the result
for the Satake topology on X̄ F,S follows from it. The rest of 3.4.17 and 3.4.18 is
easily proven.

3.5 Properties of X̄F,S

Let S be a nonempty finite set of places of F .

3.5.1 Let P and (Vi )−1�i�m be as before. Fix a basis e(i) of Vi/Vi−1 for each i . Set

Y0 = (RS
>0 ∪ {(0)v∈S})m ⊂ (RS

�0)
m .

The maps ψP,v := (φP,v, φ
′
P,v) : X̄ F,v(P) → ZF,v(P) × Rm

�0 of 3.4.3 and 3.4.6 for
v ∈ S combine to give the map

ψP,S : X̄ F,S(P) → ZF,S(P) × Y0.

3.5.2 In addition to the usual topology on Y0, we consider the weak topology on Y0
that is the product topology for the topology on RS

>0 ∪ {(0)v∈S} which extends the
usual topology on RS

>0 by taking the sets

{

(tv)v∈S ∈ RS
>0 |

∏

v∈S
tv � c

}

∪ {(0)v∈S}

for c ∈ R>0 as a base of neighborhoods of (0)v∈S . In the case that S consists of a
single place, we have Y0 = Rm

�0, and the natural topology and the weak topology on
Y0 coincide.

Proposition 3.5.3 The map ψP,S of 3.5.1 induces a homeomorphism

Pu(AF,S)\X̄ F,S(P)
∼−→ ZF,S(P) × Y0

for the Borel–Serre topology (resp., Satake topology) on X̄F,S and the usual (resp.,
weak) topology on Y0. This homeomorphism is equivariant for the action of P(AF,S),
with the action of P(AF,S) on Y0 being that of 3.4.6.
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This has the following corollary, which is also the main step in the proof.

Corollary 3.5.4 For any place v of F, the map

Pu(Fv)\X̄ F,v(P) → ZF,v(P) × Rm
�0

is a homeomorphism for both the Borel–Serre and Satake topologies on X̄F,v.

We state and prove preliminary results towards the proof of 3.5.3.

3.5.5 Fix a basis (ei )i of V and a parabolic subgroup P of PGLV which satisfies
the condition in 3.3.2 for this basis. Let (Vi )−1�i�m be the flag corresponding to P ,
and for each i , set c(i) = dim(Vi ). We define two maps

ξ, ξ � : Pu(Fv) × ZF,v(P) × Rm
�0 → X̄ F,v(P).

3.5.6 First, we define the map ξ .
Set 
(P) = {c(0), . . . , c(m − 1)}. Let 
i = { j ∈ Z | c(i − 1) < j < c(i)} for

0 � i � m. We then clearly have

{1, . . . , d − 1} = 
(P) �
( m∐

i=0


i

)

.

For 0 � i � m, let V (i) = ∑
c(i−1)< j�c(i) Fe j , so Vi = Vi−1 ⊕ V (i). We have

Rd−1
�0 (P) = R
(P)

�0 ×
m∏

i=0

R
i
>0

∼= Rm
�0 ×

m∏

i=0

R
i
>0.

Let B be the Borel subgroup of PGLV consisting of all upper triangular matrices
for the basis (ei )i . Fix a place v of F . We consider two surjections

Bu(Fv) × Rd−1
�0 (P) � X̄ F,v(P),

Bu(Fv) × Rd−1
�0 (P) � Pu(Fv) × ZF,v(P) × Rm

�0.

The first is induced by the surjection π̄v of 3.3.8.
The secondmap is obtained as follows. For 0 � i � m, let Bi be the image of B in

PGLV (i) under P → PGLVi /Vi−1
∼= PGLV (i) . Then Bi is a Borel subgroup of PGLV (i) ,

and we have a canonical bijection

Pu(Fv) ×
m∏

i=0

Bi,u(Fv)
∼−→ Bu(Fv).
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By 3.3.8, we have surjections Bi,u(Fv) × R
i
>0 � X(Vi /Vi−1)v for 0 � i � m. The

second (continuous) surjection is then the composite

Bu(Fv) × Rd−1
�0 (P)

∼−→
(

Pu(Fv) ×
m∏

i=0

Bi,u(Fv)

)

×
(

Rm
�0 ×

m∏

i=0

R
i
>0

)

� Pu(Fv) ×
( m∏

i=0

X(Vi /Vi−1)v

)

× Rm
�0

= Pu(Fv) × ZF,v(P) × Rm
�0.

Proposition 3.5.7 There is a unique surjective continuous map

ξ : Pu(Fv) × ZF,v(P) × Rm
�0 � X̄ F,v(P)

for the Borel–Serre topology on X̄F,v(P) that is compatible with the surjections from
Bu(Fv) × Rd−1

�0 (P) to these sets. This map induces a homeomorphism

ZF,v(P) × Rm
�0

∼−→ Pu(Fv)\X̄ F,v(P)

that restricts to a homeomorphism of ZF,v(P) × Rm
>0 with Pu(Fv)\Xv.

This follows from 3.3.8.

3.5.8 Next, we define the map ξ�.
For g ∈ Pu(Fv), (μi )i ∈ (X(Vi /Vi−1)v)0�i�m , and (ti )1�i�m ∈ Rm

�0, we let

ξ�(g, (μi )i , (ti )i ) = g(P ′, ν),

where P ′ and ν are as in (1) and (2) below, respectively.

(1) Let J = {c(i − 1) | 1 � i � m, ti = 0}.Write J = {c′(0), . . . , c′(m ′ − 1)}with
c′(0) < · · · < c′(m ′ − 1). Let c′(−1) = 0 and c′(m ′) = d. For−1 � i � m ′, let

V ′
i =

c′(i)∑

j=1

Fe j ⊂ V .

Let P ′ ⊃ P be the parabolic subgroup of PGLV corresponding to the flag (V ′
i )i .

(2) For 0 � i � m ′, set

Ji = { j | c′(i − 1) < c( j) � c′(i)} ⊂ {1, . . . ,m}.

We identify V ′
i /V

′
i−1 with

⊕
j∈Ji

V ( j) via the basis (ek)c′(i−1)<k�c′(i). We define
a norm ν̃i on V ′

i /V
′
i−1 as follows. Let μ̃ j be the unique norm on V ( j) which
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belongs to μ j and satisfies |μ̃ j : (ek)c( j−1)<k�c( j)| = 1. For x = ∑
j∈Ji

x j with
x j ∈ V ( j), set

ν̃i (x) =

⎧
⎪⎨

⎪⎩

∑
j∈Ji

(r2j μ̃ j (x j )
2)1/2 if v is real,

∑
j∈Ji

r j μ̃ j (x j ) if v is complex,

max j∈Ji (r j μ̃ j (x j )) if v is non-archimedean,

where for j ∈ Ji , we set
r j =

∏

�∈Ji
�< j

t−1
� .

Let νi ∈ X(V ′
i /V

′
i−1)v

be the class of the norm ν̃i .

We omit the proofs of the following two lemmas.

Lemma 3.5.9 The composition

Pu(Fv) × ZF,v(P) × Rm
�0

ξ�−→ X̄ F,v(P)
ψP,v−−→ ZF,v(P) × Rm

�0

coincides with the canonical projection. Here, the definition of the second arrow uses
the basis (e j mod Vi−1)c(i−1)< j�c(i) of Vi/Vi−1.

Lemma 3.5.10 We have a commutative diagram

Pu(Fv) × ZF,v(P) × Rm
�0 X̄ F,v(P)

Pu(Fv) × ZF,v(P) × Rm
�0 X̄ F,v(P)

ξ

ξ�

in which the left vertical arrow is (u, μ, t) �→ (u, μ, t ′), for t ′ defined as follows.
Let Ii : X(Vi /Vi−1)v → R
i

>0 be the unique continuous map for which the composition

Bi,u(Fv) × R
i
>0 → X(Vi /Vi−1)v

Ii−→ R
i
>0

is projectiononto the second factor, and for j ∈ 
i , let Ii, j : X(Vi /Vi−1)v → R>0 denote
the composition of Ii with projection onto the factor ofR


i
>0 corresponding to j . Then

t ′i = ti ·
∏

j∈
i−1

Ii−1, j (μi )
j−c(i−2)

c(i−1)−c(i−2) ·
∏

j∈
i

Ii, j (μi )
c(i)− j

c(i)−c(i−1)

for 1 � i � m.
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3.5.11 Proposition 3.5.3 is quickly reduced to Corollary 3.5.4, which now follows
from 3.5.7, 3.5.9 and 3.5.10.

3.5.12 For two topologies T1, T2 on a set Z , we use T1 � T2 to denote that the
identity map of Z is a continuous map from Z with T1 to Z with T2, and T1 > T2 to
denote that T1 � T2 and T1 
= T2. In other words, T1 � T2 if T1 is finer than T2 and
T1 > T2 if T1 is strictly finer than T2.

By 3.5.3, the map ψP,S : X̄ F,S(P) → ZF,S(P) × Y0 is continuous for the Borel–
Serre topology on X̄ F,S and usual topology on Y0. On X̄ F,S , we therefore have

Borel–Serre topology � Satake topology.

Corollary 3.5.13 For any nonempty finite set S of places of F, the map φ
�

W,S :
X̄ �

F,S(W ) → Z
�

F,S(W ) of 3.4.4 is continuous for the Borel–Serre topology on X̄ �

F,S.
If S contains all archimedean places of F, it is continuous for the Satake topology.

Proof The continuity for the Borel–Serre topology follows from the continuity of
ψP,S , noting that the Borel–Serre topology on X̄ �

F,S is the quotient topology of the
Borel–Serre topology on X̄ F,S . Suppose that S contains all archimedean places. As
φ

�

W,S is �K ,(W )-equivariant, and �K ,(W ) acts trivially on Z
�

F,S(W ), the continuity for
the Satake topology is reduced to the continuity for the Borel–Serre topology. �

Remark 3.5.14 We remark that the map φP,v : X̄ F,v(P) → ZF,v(P) of 3.4.3 need
not be continuous for the topology on X̄ F,v as a subspace of X̄v. Similarly, the map
φ

�

W,v : X̄ �

F,v(W ) → XWv of 3.4.4 need not be continuous for the subspace topology

on X̄ �

F,v ⊂ X̄ �
v. See 3.6.6 and 3.6.7.

3.5.15 We prove Proposition 3.4.14.

Proof Let α = (P, μ) ∈ X̄ F,S . Let U be a neighborhood of α for the Borel–Serre
topology which is stable under the action of�K ,(P). By 3.5.12, it is sufficient to prove
that there is a neighborhood W of α for the Satake topology such that W ⊂ U .

Let (Vi )−1�i�m be the flag corresponding to P , and let V (i) be as before. Let
�1 = �K ∩ Pu(F), and let �0 be the subgroup of �K consisting of the elements that
preserve V (i) and act on V (i) as a scalar for all i . Then �1 is a normal subgroup of
�K ,(P) and �1�0 is a subgroup of �K ,(P) of finite index.

Let

Y1 =
{

(av)v∈S ∈ RS
>0 |

∏

v∈S
av = 1

}m

,

and set s = �S. We have a surjective continuous map

Rm
�0 × Y1 � Y0, (t, t ′) �→ (t1/si t ′v,i )v,i .

The composition Rm
�0 × Y1 → Y0 → Rm

�0, where the second arrow is (tv,i )v,i �→
(
∏

v∈S tv,i )i , coincides with projection onto the first coordinate.
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Let

� = Pu(AF,S) × Y1 and� = ZF,S(P) × Rm
�0.

Consider the composite map

f : � × � → Pu(AF,S) × ZF,S(P) × Y0
(ξ�

v )v∈S−−−→ X̄ F,S(P).

The map f is �1�0-equivariant for the trivial action on � and the following action
on �: for (g, t) ∈ �, γ1 ∈ �1 and γ0 ∈ �0, we have

γ1γ0 · (g, t) = (γ1γ0gγ
−1
0 , γ0t),

where γ0 acts on Y1 via the embedding �K → P(AF,S) and the actions of the P(Fv)

described in 3.4.6. The composition

� × �
f−→ X̄ F,S(P)

ψP,S−−→ �

coincides with the canonical projection.
There exists a compact subset C of � such that � = �1�0C for the above action

of �1�0 on �. Let β = (μ, 0) ∈ � be the image of α under ψP,S . For x ∈ �, we
have f (x, β) = α. Hence, there is an open neighborhood U ′(x) of x in � and an
open neighborhood U ′′(x) of β in � such that U ′(x) ×U ′′(x) ⊂ f −1(U ). Since C
is compact, there is a finite subset R of C such that C ⊂ ⋃

x∈R U
′(x). LetU ′′ be the

open subset
⋂

x∈R U
′′(x) of�, which contains β. The P-open setW = ψ−1

P,S(U
′′) ⊂

X̄ F,S(P) is by definition an open neighborhood of α in the Satake topology on
X̄ F,S . We show that W ⊂ f −1(U ). Since the map � × � → X̄ F,S(P) is surjective,
it is sufficient to prove that the inverse image � ×U ′′ of W in � × � is contained
f −1(U ). For this, we note that

� ×U ′′ = �1�0C ×U ′′ = �1�0

(
⋃

x∈R

U ′(x) ×U ′′
)

⊂ �1�0 f
−1(U ) = f −1(U ),

the last equality by the stability of U under the action of �K ,(P) ⊃ �1�0 and the
�1�0-equivariance of f . �

3.5.16 In the case d = 2, the canonical surjection X̄ F,S → X̄ �

F,S is bijective. It is a
homeomorphism for the Borel–Serre topology. If S contains all archimedean places
of F , it is a homeomorphism for the Satake topology by 3.4.14.
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3.6 Comparison of the Topologies

When considering X̄ �

F,v, we assume that all places of F other than v are non-
archimedean.

3.6.1 For X̄ F,v (resp., X̄ �

F,v), we have introduced several topologies: the Borel–
Serre topology, the Satake topology, and the subspace topology from X̄v (resp., X̄ �

v),
which we call the weak topology. We compare these topologies below; note that we
clearly have Borel–Serre topology � Satake topology and Borel–Serre topology �
weak topology.

3.6.2 For both X̄ F,v and X̄ �

F,v, the following hold:

(1) Borel–Serre topology > Satake topology if d � 2,
(2) Satake topology > weak topology if d = 2,
(3) Satake topology � weak topology if d > 2.

We do not give full proofs of these statements. Instead, we describe some special
cases that give clear pictures of the differences between these topologies. The general
cases can be proven in a similar manner to these special cases.

Recall from 3.5.16 that in the case d = 2, the sets X̄ F,v and X̄ �

F,v are equal, their
Borel–Serre topologies coincide, and their Satake topologies coincide.

3.6.3 We describe the case d = 2 of 3.6.2(1).
Take a basis (ei )i=1,2 of V . Consider the point α = (B, μ) of X̄ F,v, where B is

the Borel subgroup of upper triangular matrices with respect to (ei )i , and μ is the
unique element of ZF,v(B) = XFve1 × XVv/Fve1 .

Let π̄v be the surjection of 3.3.8(2), and identify Bu(Fv) with Fv in the canonical
manner. The images of the sets

{(x, t) ∈ Fv × R�0 | t � c} ⊂ Bu(Fv) × R�0

in X̄ F,v(B) for c ∈ R>0 form a base of neighborhoods of α for the Satake topology.
Thus, while the image of the set

{(x, t) ∈ Fv × R�0 | t < |x |−1}

is a neighborhood of α for Borel–Serre topology, it is not a neighborhood of α for
the Satake topology.

3.6.4 We prove 3.6.2(2) in the case that v is non-archimedean. The proof in the
archimedean case is similar. Since all boundary points of X̄ F,v = X̄ �

F,v are PGLV (F)-
conjugate, to show 3.6.2(2), it is sufficient to consider any one boundary point. We
consider α of 3.6.3 for a fixed basis (ei )i=1,2 of V .

For x ∈ Fv and y ∈ R>0, let μy,x be the norm on Vv defined by

μy,x (ae1 + be2) = max(|a − xb|, y|b|).
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The class ofμy,x is the image of (x, y−1) ∈ Bu(Fv) × R>0. Any element of Xv is the
class of the norm μy,x for some x, y. If we vary x ∈ F∞ and y ∈ R>0, the classes
of μy,x in X̄ F,v converge under the Satake topology to the point α if and only if y
approaches ∞. In X̄v, the point α is the class of the semi-norm ν on V ∗

v defined by
ν(ae∗

1 + be∗
2) = |a|. By 2.1.7,

μ∗
y,x =

(

μy,0 ◦
(
1 −x
0 1

))∗
= μ∗

y,0 ◦
(
1 0
x 1

)

,

from which we see that

μ∗
y,x (ae

∗
1 + be∗

2) = max(|a|, y−1|xa + b|).

Then μ∗
y,x is equivalent to the norm νy,x on V ∗

v defined by

νy,x (ae
∗
1 + be∗

2) = min(1, y|x |−1)max(|a|, y−1|xa + b|),

and the classes of the νy,x converge in X̄v to the class of the semi-norm ν as y → ∞.
Therefore, the Satake topology is finer than the weak topology.

Now, the norm μ∗
1,x is equivalent to the norm ν1,x on V ∗

v defined above, which for
sufficiently large x satisfies

ν1,x (ae1 + be2) = max(|a/x |, |a + (b/x)|).

Thus, as |x | → ∞, the sequence μ1,x converges in X̄v = X̄ �
v to the class of the semi-

norm ν. However, the sequence of classes of the norms μ1,x does not converge to α

in X̄ F,v = X̄ �

F,v for the Satake topology, so the Satake topology is strictly finer than
the weak topology.

3.6.5 We explain the case d = 3 of 3.6.2(3) in the non-archimedean case.
Take a basis (ei )1�i�3 of V . For y ∈ R>0, let μy be the norm on Vv defined by

μy(ae1 + be2 + ce3) = max(|a|, y|b|, y2|c|).

For x ∈ Fv, consider the norm μy ◦ gx , where

gx =
⎛

⎝
1 0 0
0 1 x
0 0 1

⎞

⎠ .

If we vary x ∈ F∞ and let y ∈ R>0 approach ∞, then the class of μy ◦ gx in Xv

converges under the Satake topology to the class α ∈ X̄ F,v of the pair that is the Borel
subgroup of upper triangular matrices and the unique element of

∏2
i=0 X(Vi /Vi−1)v ,

where (Vi )−1�i�2 is the corresponding flag. The quotient topology on X̄ �

F,v of the

Satake topology on X̄ F,v is finer than the Satake topology on X̄ �

F,v by 3.4.14 and
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3.4.15. Thus, if the Satake topology is finer than the weak topology on X̄ F,v or
X̄ �

F,v, then the composite μy ◦ gx should converge in X̄ �
v to the class of the semi-

norm ν on V ∗
v that satisfies ν(ae∗

1 + be∗
2 + ce∗

3) = |a|. However, if y → ∞ and
y−2|x | → ∞, then the class of μy ◦ gx in Xv converges in X̄ �

v to the class of the
semi-norm ae∗

1 + be∗
2 + ce∗

3 �→ |b|. In fact, by 2.1.7 we have

(μy ◦ gx)
∗(ae∗

1 + be∗
2 + ce∗

3) = μ∗
y ◦ (g∗

x )
−1(ae∗

1 + be∗
2 + ce∗

3)

= max(|a|, y−1|b|, y−2|−bx + c|) = y−2|x |νy,x
where νy,x is the norm

ae∗
1 + be∗

2 + ce∗
3 �→ max(y2|x |−1|a|, y|x |−1|b|, |−b + x−1c|)

on V ∗
v . The norms νy,x converge to the semi-norm ae∗

1 + be∗
2 + ce∗

3 �→ |b|.
3.6.6 Let W be a nonzero subspace of V . We demonstrate that the map φ

�

W,v :
X̄ �

F,v(W ) → XWv of 3.4.4 given by restriction to Wv need not be continuous for the
weak topology, even though by 3.5.13, it is continuous for the Borel–Serre topology
and (if all places other than v are non-archimedean) for the Satake topology.

For example, suppose that v is non-archimedean and d = 3. Fix a basis (ei )1�i�3

of V , and let W = Fe1 + Fe2. Let μ be the class of the norm

ae1 + be2 �→ max(|a|, |b|)

onWv, and consider the element (W, μ) ∈ X̄ �

F,v. For x ∈ Fv and ε ∈ R>0, let μx,ε ∈
Xv be the class of the norm

ae1 + be2 + ce3 �→ max(|a|, |b|, ε−1|c + bx |)

on Vv. Then μ∗
x,ε is the class of the norm

ae∗
1 + be∗

2 + ce∗
3 �→ max(|a|, |b − xc|, ε|c|)

on V ∗
v . When x → 0 and ε → 0, the last norm converges to the semi-norm

ae∗
1 + be∗

2 + ce∗
3 �→ max(|a|, |b|)

onV ∗
v , and this implies thatμx,ε converges to (W, μ) for theweak topology.However,

the restriction of μx,ε to Wv is the class of the norm

ae1 + be2 �→ max(|a|, |b|, ε−1|x ||b|).

If x → 0 and ε = r−1|x | → 0 for a fixed r > 1, then the latter norms converge to
the norm ae1 + be2 �→ max(|a|, r |b|), the class of which does not coincide with μ.
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3.6.7 Let P be a parabolic subgroup of PGLV (F). We demonstrate that the map
φP,v : X̄ F,v(P) → ZF,v(P) of 3.4.3 is not necessarily continuous for the weak topol-
ogy, though by 3.5.4, it is continuous for the Borel–Serre topology and for the Satake
topology.

Let d = 3 and W be as in 3.6.6, and let P be the parabolic subgroup of PGLV

corresponding to the flag

0 = V−1 ⊂ V0 = W ⊂ V1 = V .

In this case, the canonical map X̄ F,v(P) → X̄ �

F,v(W ) is a homeomorphism for the
weak topology on both spaces. It is also a homeomorphism for the Borel–Serre
topology, and for the Satake topology if all places other than v are non-archimedean.
Since ZF,v(P) = X(V0)v × X(V/V0)v

∼= XWv , the argument of 3.6.6 shows that φP,v is
not continuous for the weak topology.

3.6.8 For d � 3, the Satake topology on X̄ �

F,v does not coincide with the quotient
topology for the Satake topology on X̄ F,v, which is strictly finer. This is explained
in 4.4.12.

3.7 Relations with Borel–Serre Spaces and Reductive
Borel–Serre Spaces

3.7.1 In this subsection, we describe the relationship between our work and the
theory of Borel–Serre and reductive Borel–Serre spaces (see Proposition 3.7.4). We
also show that X̄ �

F,v is not Hausdorff if v is a non-archimedean place.

3.7.2 Let G be a semisimple algebraic group over Q. We recall the definitions of
the Borel–Serre and reductive Borel–Serre spaces associated to G from [3] and [26,
p. 190], respectively.

Let Y be the space of all maximal compact subgroups of G(R). Recall from
[3, Proposition 1.6] that for K ∈ Y, the Cartan involution θK of GR := R ⊗Q G
corresponding to K is the unique homomorphism GR → GR such that

K = {g ∈ G(R) | θK (g) = g}.

Let P be a parabolic subgroup of G, let SP be the largest Q-split torus in the
center of P/Pu , and let AP be the connected component of the topological group
SP(R) containing the origin. We have

AP
∼= Rr

>0 ⊂ SP(R) ∼= (R×)r

for some integer r . We define an action of AP on Y as follows (see [3, Sect. 3]).
For K ∈ Y, we have a unique subtorus SP,K of PR = R ⊗Q P over R such that the
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projection P → P/Pu induces an isomorphism

SP,K
∼−→ (SP)R := R ⊗Q SP

and such that the Cartan involution θK : GR → GR of K satisfies θK (t) = t−1 for all
t ∈ SP,K (R). For t ∈ AP , let tK ∈ SP,K (R) be the inverse image of t . Then AP acts
on Y by

AP × Y → Y, (t, K ) �→ tK K t−1
K .

TheBorel–Serre space is the set of pairs (P, Z) such that P is a parabolic subgroup
of G and Z is an AP -orbit in Y. The reductive Borel–Serre space is the quotient of
the Borel–Serre space by the equivalence relation under which two elements (P, Z)

and (P ′, Z ′) are equivalent if (P ′, Z ′) = g(P, Z) (that is, P = P ′ and Z ′ = gZ ) for
some g ∈ Pu(R).

3.7.3 Nowassume that F = Q andG = PGLV . Let v be the archimedean place ofQ.
We have a bijection between Xv and the setY of all maximal compact subgroups

ofG(R), whereby an element of Xv corresponds to its isotropy group inG(R), which
is a maximal compact subgroup.

Suppose that K ∈ Y corresponds toμ ∈ Xv, withμ the class of a norm that in turn
corresponds to a positive definite symmetric bilinear form ( , ) on Vv. The Cartan
involution θK : GR → GR is induced by the unique homomorphism θK : GLVv →
GLVv satisfying

(gx, θK (g)y) = (x, y) for all g ∈ GLV (R) and x, y ∈ Vv.

For a parabolic subgroup P of G corresponding to a flag (Vi )−1�i�m , we have

SP =
( m∏

i=0

Gm,Q

)

/Gm,Q,

where the i th term in the product is the group of scalars in GLVi/Vi−1 , and where the
last Gm,Q is embedded diagonally in the product. The above description of θK shows
that SP,K is the lifting of (SP)R to PR obtained through the orthogonal direct sum
decomposition

Vv
∼=

m⊕

i=0

(Vi/Vi−1)v

with respect to ( , ).

Proposition 3.7.4 If v is the archimedean place of Q, then X̄ �

Q,v (resp., X̄Q,v) is the
Borel–Serre space (resp., reductive Borel–Serre space) associated to PGLV .
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Proof Denote the Borel–Serre space by (X̄ �

Q,v)
′ in this proof. We define a canonical

map
X̄ �

Q,v → (X̄ �

Q,v)
′, (P, μ, s) �→ (P, Z),

where Z is the subset of Y corresponding to the following subset Z ′ of Xv. Let
(Vi )−1�i�m be the flag corresponding to P . Recall that s is an isomorphism

s :
m⊕

i=0

(Vi/Vi−1)v
∼−→ Vv.

Then Z ′ is the subset of Xv consisting of classes of the norms

μ̃(s) : x �→
(

m∑

i=0

μ̃i (s
−1(x)i )

2

)1/2

on Vv, where s−1(x)i ∈ (Vi/Vi−1)v denotes the i th component of s−1(x) for x ∈ Vv,
and μ̃ = (μ̃i )0�i�m ranges over all families of norms μ̃i on (Vi/Vi−1)v with class
equal to μi . It follows from the description of SP,K in 3.7.3 that Z is an AP -orbit.

For a parabolic subgroup P of G, let

(X̄ �

Q,v)
′(P) = {(Q, Z) ∈ (X̄ �

Q,v)
′ | Q ⊃ P}.

By [3, 7.1], the subset (X̄ �

Q,v)
′(P) is open in (X �

Q,v)
′.

Take a basis ofV , and let B denote theBorel subgroupof PGLV of upper-triangular
matrices for this basis. By 3.3.8(3), we have a homeomorphism

Bu(R) × Rd−1
�0

∼−→ X̄ �

Q,v(B).

It follows from [3, 5.4] that the composition

Bu(R) × Rd−1
�0 → (X̄ �

Q,v)
′(B)

induced by the above map

X̄ �

Q,v(B) → (X̄ �

Q,v)
′(B), (P, μ, s) �→ (P, Z)

is also a homeomorphism. This proves that the map X̄ �

Q,v → (X̄ �

Q,v)
′ restricts to a

homeomorphism X̄ �

Q,v(B)
∼−→ (X̄ �

Q,v)
′(B). Therefore, X̄ �

Q,v → (X̄ �

Q,v)
′ is a homeo-

morphism as well. It then follows directly from the definitions that the reductive
Borel–Serre space is identified with X̄Q,v. �
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3.7.5 Suppose that F is a number field, let S be the set of all archimedean places of
F , and let G be the Weil restriction ResF/Q PGLV , which is a semisimple algebraic
group over Q. Then Y is identified with XF,S , and X̄ F,S is related to the reductive
Borel–Serre space associated to G but does not always coincide with it. We explain
this below.

Let (X̄ �

F,S)
′ and X̄ ′

F,S be theBorel–Serre space and the reductiveBorel–Serre space

associated to G, respectively. Let X̄ �

F,S be the subspace of
∏

v∈S X̄
�

F,v consisting
of all elements (xv)v∈S such that the parabolic subgroup of G associated to xv is
independent of v. Then by similar arguments to the case F = Q, we see that Y is
canonically homeomorphic to XF,S and this homeomorphism extends uniquely to
surjective continuous maps

(X̄ �

F,S)
′ → X̄ �

F,S, X̄ ′
F,S → X̄ F,S.

However, these maps are not bijective unless F is Q or imaginary quadratic. We
illustrate the differences between the spaces in the case that F is a real quadratic
field and d = 2.

Fix a basis (ei )i=1,2 of V . Let P̃ be the Borel subgroup of upper triangularmatrices
in PGLV for this basis, and let P be the Borel subgroup ResF/Q P̃ of G. Then
P/Pu ∼= ResF/QGm,F and SP = Gm,Q ⊂ P/Pu . We have the natural identifications
Y = XF,S = H × H. For a ∈ R>0, the set

Za := {(yi, ayi) ∈ H × H | y ∈ R>0}

is an AP -orbit. If a 
= b, the images of (P, Za) and (P, Zb) in (X̄ F,S)
′ do not coincide.

On the other hand, both the images of (P, Za) and (P, Zb) in X̄ �

F,S coincide with
(xv)v∈S , where xv = (P, μv, sv) with μv the unique element of XFve1 × XVv/Fve1 and
sv the splitting given by e2.

Proposition 3.7.6 If v is non-archimedean, then X̄ �

F,v is not Hausdorff.

Proof Fix a, b ∈ Bu(Fv) with a 
= b, for a Borel subgroup B of PGLV . When t ∈
Rd−1

>0 is sufficiently near to 0 = (0, . . . , 0), the images of (a, t) and (b, t) in Xv

coincide by 3.3.8(4) applied to Bu(Fv) × Rd−1
>0 → Xv. We denote this element of

Xv by c(t). The images f (a) of (a, 0) and f (b) of (b, 0) in X̄ �

F,v are different.

However, c(t) converges to both f (a) and f (b) as t tends to 0. Thus, X̄ �

F,v is not
Hausdorff. �

3.7.7 Let F be a number field, S its set of archimedean places, and G = ResF/Q

PGLV , as in 3.7.5. Then X̄ F,S may be identified with the maximal Satake space for
G of [23]. Its Satake topology was considered by Satake (see also [2, III.3]), and its
Borel–Serre topology was considered by Zucker [27] (see also [14, 2.5]). The space
X̄ �

F,S is also a Satake space corresponding to the standard projective representation
of G on V viewed as a Q-vector space.
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4 Quotients by S-arithmetic Groups

As in §3, fix a global field F and a finite-dimensional vector space V over F .

4.1 Results on S-arithmetic Quotients

4.1.1 Fix a nonempty finite set S1 of places of F which contains all archimedean
places of F , fix a finite set S2 of places of F which is disjoint from S1, and let
S = S1 ∪ S2.

4.1.2 In the following, we take X̄ to be one of the following two spaces:

(i) X̄ := X̄ F,S1 ,
(ii) X̄ := X̄ �

F,S1
.

We endow X̄ with either the Borel–Serre or the Satake topology.

4.1.3 Let G = PGLV , and let K be a compact open subgroup of G(AS
F ), with AS

F
as in 3.4.13.

We consider the two situations in which (X, X̄) is taken to be one of the following
pairs of spaces (for either choice of X̄ ):

(I) X := XS × G(AS
F )/K ⊂ X̄ := X̄ × XS2 × G(AS

F )/K ,

(II) X := XS ⊂ X̄ := X̄ × XS2 .

We now come to the main result of this paper.

Theorem 4.1.4 Let the situations and notation be as in 4.1.1–4.1.3.

(1) Assume we are in situation (I). Let � be a subgroup of G(F). Then the quotient
space �\X̄ is Hausdorff. It is compact if � = G(F).

(2) Assume we are in situation (II). Let�K ⊂ G(F) be the inverse image of K under
the canonical map G(F) → G(AS

F ), and let � be a subgroup of �K . Then the
quotient space �\X̄ is Hausdorff. It is compact if � is of finite index in �K .

4.1.5 The case � = {1} of Theorem 4.1.4 shows that X̄ F,S and X̄ �

F,S are Hausdorff.

4.1.6 Let OS be the subring of F consisting of all elements which are integral
outside S. Take an OS-lattice L in V . Then PGLL(OS) coincides with �K for the
compact open subgroup K = ∏

v/∈S PGLL(Ov) ofG(AS
F ). Hence Theorem 1.6 of the

introduction follows from Theorem 4.1.4.

4.1.7 In the case that F is a number field and S (resp., S1) is the set of all archimedean
places of F , Theorem 4.1.4 in situation (II) is a special case of results of Satake [23]
(resp., of Ji, Murty, Saper, and Scherk [14, Proposition 4.2]).
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4.1.8 If in Theorem 4.1.4 we take� = G(F) in part (1), or� of finite index in�K in
part (2), then the Borel–Serre and Satake topologies on X̄ induce the same topology
on the quotient space �\X̄. This can be proved directly, but it also follows from the
compact Hausdorff property.

4.1.9 We show that some modifications of Theorem 4.1.4 are not good.
Consider the case F = Q, S = {p,∞} for a prime number p, and V = Q2, and

consider the S-arithmetic group PGL2(Z[ 1p ]). Note that PGL2(Z[ 1p ])\(X̄Q,∞ × X p)

is compact Hausdorff, as is well known (and follows from Theorem 4.1.4). We
show that some similar spaces are not Hausdorff. That is, we prove the following
statements:

(1) PGL2(Z[ 1p ])\(X̄Q,p × X∞) is not Hausdorff.

(2) PGL2(Z[ 1p ])\(X̄Q,∞ × PGL2(Qp)) is not Hausdorff.

(3) PGL2(Q)\(X̄Q,∞ × PGL2(A
∞
Q )) is not Hausdorff.

Statement (1) shows that it is important to assume in 4.1.4 that S1, not only S,
contains all archimedean places. Statement (3) shows that it is important to take the
quotient G(AS

F )/K in situation (I) of 4.1.3.
Our proofs of these statements rely on the facts that the quotient spaces Z[ 1p ]\R,

Z[ 1p ]\Qp, and Q\A∞
Q are not Hausdorff.

Proof of statements (1)–(3). For an element x of a ring R, let

gx =
(
1 x
0 1

)

∈ PGL2(R).

In (1), for b ∈ R, let hb be the point i + b of the upper half plane H = X∞. In (2),
for b ∈ Qp, let hb = gb ∈ PGL2(Qp). In (3), for b ∈ A∞

Q , let hb = gb ∈ PGL2(A
∞
Q ).

In (1) (resp., (2) and (3)), let ∞ ∈ X̄Q,p (resp., X̄Q,∞) be the boundary point corre-
sponding to the the Borel subgroup of upper triangular matrices.

In (1) (resp., (2), resp., (3)), take an element b of R (resp., Qp, resp., A∞
Q ) which

does not belong to Z[ 1p ] (resp., Z[ 1p ], resp., Q). Then the images of (∞, h0) and
(∞, hb) in the quotient space are different, but they are not separated. Indeed, in (1)
and (2) (resp., (3)), some sequence of elements x of Z[ 1p ] (resp., Q) will converge to
b, in which case gx(∞, h0) converges to (∞, hb) since gx∞ = ∞. �

4.2 Review of Reduction Theory

We review important results in the reduction theory of algebraic groups: 4.2.2, 4.2.4,
and a variant 4.2.6 of 4.2.2. More details may be found in the work of Borel [1] and
Godement [8] in the number field case and Harder [12, 13] in the function field case.
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Fix a basis (ei )1�i�d of V . Let B be the Borel subgroup of G = PGLV consisting
of all upper triangular matrices for this basis. Let S be a nonempty finite set of places
of F containing all archimedean places.

4.2.1 For b = (bv) ∈ A×
F , set |b| = ∏

v |bv|. Let Av be as in 3.3.4. We let a ∈ ∏
v Av

denote the image of a diagonalmatrix diag(a1, . . . , ad) inGLd(AF ). The ratiosaia
−1
i+1

are independent of the choice. For c ∈ R>0, we let B(c) = Bu(AF )A(c), where

A(c) =
{

a ∈
∏

v

Av ∩ PGLd(AF ) | |aia−1
i+1| � c for all 1 � i � d − 1

}

.

Let K 0 = ∏
v K

0
v < G(AF ), where K 0

v is identified via (ei )i with the stan-
dard maximal compact subgroup of PGLd(Fv) of 3.3.4. Note that Bu(Fv)AvK 0

v =
B(Fv)K 0

v = G(Fv) for all v.

We recall the following known result in reduction theory: see [8, Theorem 7] and
[12, Satz 2.1.1].

Lemma 4.2.2 For sufficiently small c ∈ R>0, one has G(AF ) = G(F)B(c)K 0.

4.2.3 Let the notation be as in 4.2.1. For a subset I of {1, . . . , d − 1}, let PI

be the parabolic subgroup of G corresponding to the flag consisting of 0, the F-
subspaces

∑
1� j�i Fe j for i ∈ I , and V . Hence PI ⊃ B for all I , with P∅ = G and

P{1,...,d−1} = B.
For c′ ∈ R>0, let BI (c, c′) = Bu(AF )AI (c, c′), where

AI (c, c
′) = {a ∈ A(c) | |aia−1

i+1| � c′ for all i ∈ I }.

Note that BI (c, c′) = B(c) if c � c′.

The following is also known [12, Satz 2.1.2] (see also [8, Lemma 3]):

Lemma 4.2.4 Fix c ∈ R>0 and a subset I of {1, . . . , d − 1}. Then there exists c′ ∈
R>0 such that

{γ ∈ G(F) | BI (c, c
′)K 0 ∩ γ −1B(c)K 0 
= ∅} ⊂ PI (F).

4.2.5 We will use the following variant of 4.2.3.
Let AS = ∏

v∈S Av. For c ∈ R>0, let

A(c)S = AS ∩ A(c) and B(c)S = Bu(AF,S)A(c)S.

For c1, c2 ∈ R>0, set

A(c1, c2)S ={a ∈ AS | for all v ∈ S and 1 � i � d − 1,

|av,i a−1
v,i+1| � c1 and |av,i a−1

v,i+1| � c2|aw,i a
−1
w,i+1| for all w ∈ S}.
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Note that A(c1, c2)S is empty if c2 > 1. For a compact subset C of Bu(AF,S), we
then set

B(C; c1, c2)S = C · A(c1, c2)S.

Let DS = ∏
v∈S Dv, where Dv = K 0

v < G(Fv) if v is archimedean, and Dv <

G(Fv) is identified with Sd Iw(Ov) < PGLd(Fv) using the basis (ei )i otherwise.
Here, Sd is the symmetric group of degree d and Iw(Ov) is the Iwahori subgroup of
PGLd(Ov), as in 3.3.6.

Lemma 4.2.6 Let K be a compact open subgroup of G(AS
F ), let �K be the inverse

image of K under G(F) → G(AS
F ), and let � be a subgroup of �K of finite index.

Then there exist c1, c2,C as above and a finite subset R of G(F) such that

G(AF,S) = �R · B(C; c1, c2)SDS.

Proof This can be deduced from 4.2.2 by standard arguments in the following man-
ner. By the Iwasawa decomposition 3.3.4, we have G(AS

F ) = B(AS
F )K 0,S where

K 0,S is the non-S-component of K 0. Choose a set E of representatives in B(AS
F ) of

the finite set
B(F)\B(AS

F )/(B(AS
F ) ∩ K 0,S).

Let D0 = DS × K 0,S , and note that since AS ∩ DS = 1, we can (by the Bruhat
decomposition 3.3.6) replace K 0 by D0 in Lemma 4.2.2. Using the facts that E is
finite, |a| = 1 for all a ∈ F×, and D0 is compact, we then have that there exists
c ∈ R>0 such that

G(AF ) = G(F)(B(c)S × E)D0.

For any finite subset R of G(F) consisting of one element from each of those sets
G(F) ∩ K 0,Se−1 with e ∈ E that are nonempty, we obtain from this that

G(AF,S) = �K R · B(c)SDS.

As �K is a finite union of right �-cosets, we may enlarge R and replace �K by �.
Finally, we can replace B(c)S by C · A(c)S for some C by the compactness of
the image of

Bu(AF,S) → �\G(AF,S)/DS

and then by B(C; c1, c2)S for some c1, c2 ∈ R>0 by the compactness of the coker-
nel of

� ∩ B(AF,S) → (B/Bu)(AF,S)1,

where (B/Bu)(AF,S)1 denotes the kernel of the homomorphism

(B/Bu)(AF,S) → Rd−1
>0 , aBu(AF,S) �→

(
∏

v∈S

∣
∣
∣
∣
av,i
av,i+1

∣
∣
∣
∣

)

1�i�d−1

.�
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4.3 X̄F,S and Reduction Theory

4.3.1 Let S be a nonempty finite set of places of F containing all archimedean
places. We consider X̄ F,S . From the results 4.2.6 and 4.2.4 of reduction theory, we
will deduce results 4.3.4 and 4.3.10 on X̄ F,S , respectively. We will also discuss other
properties of X̄ F,S related to reduction theory. Let G, (ei )i , and B be as in §4.2.

For c1, c2 ∈ R>0 with c2 � 1, we define a subset T(c1, c2) of (RS
�0)

d−1 by

T(c1, c2) =
{
t ∈ (

RS
�0

)d−1
∣
∣
∣ tv,i � c1, tv,i � c2tw,i for all v, w ∈ S and 1 � i � d − 1

}
.

Let Y0 = (RS
>0 ∪ {(0)v∈S})d−1 as in 3.5.1 (for the parabolic B), and note that

T(c1, c2) ⊂ Y0. Define the subsetS(c1, c2) of X̄ F,S(B) as the image of Bu(AF,S) ×
T(c1, c2) under the map

πS = (πv)v∈S : Bu(AF,S) × Y0 → X̄ F,S(B),

with πv as in 3.3.3. For a compact subset C of Bu(AF,S), we let S(C; c1, c2) ⊂
S(c1, c2) denote the image of C × T(c1, c2) under πS .

4.3.2 We give an example of the sets of 4.3.1.

Example Consider the case that F = Q, the set S contains only the real place, and
d = 2, as in §3.2. Fix a basis (ei )1�i�2 of V . Identify Bu(R) with R in the natural
manner. We have

S(C; c1, c2) = {x + yi ∈ H | x ∈ C, y � c−1
1 } ∪ {∞},

which is contained in

S(c1, c2) = {x + yi ∈ H | x ∈ R, y � c−1
1 } ∪ {∞}.

4.3.3 Fix a compact open subgroup K ofG(AS
F ), and let �K ⊂ G(F) be the inverse

image of K under G(F) → G(AS
F ).

Proposition 4.3.4 Let� bea subgroupof�K of finite index. Then there exist c1, c2,C
as in 4.3.1 and a finite subset R of G(F) such that

X̄ F,S = �R · S(C; c1, c2).

Proof It suffices to prove the weaker statement that there are c1, c2,C and R such
that

XS = �R · (XS ∩ S(C; c1, c2)).
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Indeed, we claim that the proposition follows from this weaker statement for the
spaces in the product

∏
v∈S X(Vi /Vi−1)v , where PI is as in 4.2.3 for a subset I of

{1, . . . , d − 1} and (Vi )−1�i�m is the corresponding flag. To see this, first note that
there is afinite subset R′ ofG(F) such that everyparabolic subgroupofG has the form
γ PIγ

−1 for some I and γ ∈ �R′. It then suffices to consider a = (P, μ) ∈ X̄ F,S ,
where P = PI for some I , and μ ∈ ZF,S(P). We use the notation of 3.5.6 and 3.5.1.
By Proposition 3.5.7, the set X̄ F,S(P) ∩ S(C; c1, c2) is the image under ξ of the
image ofC × T(c1, c2) in Pu(AF,S) × ZF,S(P) × Y0. Note that a has image (1, μ, 0)
in the latter set (for 1 the identity matrix of Pu(AF,S)), and ξ(1, μ, 0) = a. Since the
projection of T(c1, c2) (resp., C) to (RS

>0)

i (resp., Bi,u(AF,S)) is the analogous set

for c1 and c2 (resp., a compact subset), the claim follows.
For v ∈ S, we define subsets Qv and Q′

v of Xv as follows. If v is archimedean, let
Qv = Q′

v be the one point set consisting of the element of Xv given by the basis (ei )i
and (ri )i with ri = 1 for all i . If v is non-archimedean, let Qv (resp., Q′

v) be the subset
of Xv consisting of elements given by (ei )i and (ri )i such that 1 = r1 � · · · � rd � qv
(resp., r1 = 1 and 1 � ri � qv for 1 � i � d). Then Xv = G(Fv)Qv for each v ∈ S.
Hence by 4.2.6, there exist c′

1, c
′
2,C as in 4.3.1 and a finite subset R of G(F) such

that
XS = �R · B(C; c′

1, c
′
2)S · DSQS,

where QS = ∏
v∈S Qv.

We have DSQS = Q′
S for Q′

S = ∏
v∈S Q′

v, noting for archimedean (resp., non-
archimedean) v that K 0

v (resp., Iw(Ov)) stabilizes all elements of Qv. We have
B(C; c′

1, c
′
2)SQ

′
S ⊂ S(C; c1, c2), where

c1 = max{qv | v ∈ S f }(c′
1)

−1 and c2 = max{q2
v | v ∈ S f }(c′

2)
−1,

with S f the set of all non-archimedean places in S (and taking the maxima to be 1 if
S f = ∅). �

4.3.5 For v ∈ S and 1 � i � d − 1, let tv,i : S(c1, c2) → R�0 be the map induced
by φ′

B,v : X̄ F,v(B) → Rd−1
�0 (see 3.4.6) and the i th projectionRd−1

�0 → R�0. Note that
tv,i is continuous.

4.3.6 Fix a subset I of {1, . . . , d − 1}, and let PI be the parabolic subgroup of G
defined in 4.2.3. For c1, c2, c3 ∈ R>0, let

SI (c1, c2, c3) = {x ∈ S(c1, c2) | min{tv,i (x) | v ∈ S} � c3 for each i ∈ I }.

4.3.7 For an element a ∈ X̄ F,S , we define the parabolic type of a to be the subset

{dim(Vi ) | 0 � i � m − 1}

of {1, . . . , d − 1}, where (Vi )−1�i�m is the flag corresponding to the parabolic sub-
group of G associated to a.
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Lemma 4.3.8 Let a ∈ X̄ F,S(B), and let J be the parabolic type of a. Then the
parabolic subgroup of G associated to a is PJ .

This is easily proved.

4.3.9 In the following, we will often consider subsets ofG(F) of the form R1�K R2,
�K R, or R�K , where R1, R2, R are finite subsets ofG(F). These three types of cosets
are essentially the same thing when we vary K . For finite subsets R1, R2 of G(F),
we have R1�K R2 = R′�K ′ = �K ′′ R′′ for some compact open subgroups K ′ and K ′′
of G(AS

F ) contained in K and finite subsets R′ and R′′ of G(F).

Proposition 4.3.10 Given c1 ∈ R>0 and finite subsets R1, R2 of G(F), there exists
c3 ∈ R>0 such that for all c2 ∈ R>0 we have

{γ ∈ R1�K R2 | γSI (c1, c2, c3) ∩ S(c1, c2) 
= ∅} ⊂ PI (F).

Proof First we prove the weaker version that c3 exists if the condition on γ ∈
R1�K R2 is replaced by γSI (c1, c2, c3) ∩ S(c1, c2) ∩ XS 
= ∅.

Let Q′
v for v ∈ S and Q′

S be as in the proof of 4.3.4.

Claim 1 If c′
1 ∈ R>0 is sufficiently small (independent of c2), then we have

XS ∩ S(c1, c2) ⊂ B(c′
1)SQ

′
S.

Proof of Claim 1 Any x ∈ XS ∩ S(c1, c2) satisfies tv,i (x) � c1 for 1 � i � d − 1.
Moreover, if

∏
v∈S tv,i (x) is sufficiently small relative to (c′

1)
−1 for all such i , then

x ∈ B(c′
1)SQ

′
S . The claim follows.

Let Cv denote the compact set

Cv = {g ∈ G(Fv) | gQ′
v ∩ Q′

v 
= ∅}.

If v is archimedean, then Cv is the maximal compact open subgroup K 0
v of 4.2.1.

SetCS = ∏
v∈S Cv. We use the decompositionG(AF ) = G(AF,S) × G(AS

F ) to write
elements of G(AF ) as pairs.

Claim 2 Fix c′
1 ∈ R>0. The subset B(c′

1)SCS × R1K R2 of G(AF ) is contained in
B(c)K 0 for sufficiently small c ∈ R>0.

Proof of Claim 2 This follows from the compactness of the Cv for v ∈ S and the
Iwasawa decomposition G(AF ) = B(AF )K 0.

Claim 3 Let c′
1 be as in Claim 1, and let c � c′

1. Let c
′ ∈ R>0. If c3 ∈ R>0 is

sufficiently small (independent of c2), we have

XS ∩ SI (c1, c2, c3) ⊂ BI (c, c
′)SQ′

S,

where BI (c, c′)S = B(AF,S) ∩ BI (c, c′).
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Proof of Claim 3 An element x ∈ B(c)SQ′
S lies in BI (c, c′)SQ′

S if
∏

v∈S tv,i (x) �
(c′)−1 for all i ∈ I . An element x ∈ XS ∩ S(c1, c2) lies in XS ∩ SI (c1, c2, c3) if
min{tv,i (x) | v ∈ S} � c3 for all i ∈ I . In this case, x will lie in BI (c, c′)SQ′

S if
c3 � (c′)−1c1−s

1 , with s = �S.

Let c′
1 be as in Claim 1, take c of Claim 2 for this c′

1 such that c � c′
1, and let

c′ ∈ R>0. Take c3 satisfying the condition of Claim 3 for these c′
1, c, and c′.

Claim 4 If XS ∩ SI (c1, c2, c3) ∩ γ −1S(c1, c2) is nonempty for some γ ∈
R1�R2 ⊂ G(F), then BI (c, c′) ∩ γ −1B(c)K 0 contains an element of G(AF,S) ×
{1}.
Proof of Claim 4 By Claim 3, any x ∈ XS ∩ SI (c1, c2, c3) ∩ γ −1S(c1, c2) lies in
gQ′

S for some g ∈ BI (c, c′)S . ByClaim 1,we have γ x ∈ g′Q′
S for some g′ ∈ B(c′

1)S .
Since γ x ∈ γ gQ′

S ∩ g′Q′
S , we have (g′)−1γ g ∈ CS . Hence γ g ∈ B(c′

1)SCS , and
therefore γ (g, 1) = (γ g, γ ) ∈ B(c)K 0 by Claim 2.

We prove the weaker version of 4.3.10: let x ∈ XS ∩ SI (c1, c2, c3) ∩ γ −1

S(c1, c2) for some γ ∈ R1�R2. Then by Claim 4 and Lemma 4.2.4, with c′ sat-
isfying the condition of 4.2.4 for the given c, we have γ ∈ PI (F).

We next reduce the proposition to the weaker version, beginning with the
following.

Claim 5 Let c1, c2 ∈ R>0. If γ ∈ G(F) and x ∈ S(c1, c2) ∩ γ −1S(c1, c2), then
γ ∈ PJ (F), where J is the parabolic type of x .

Proof of Claim 5 By Lemma 4.3.8, the parabolic subgroup associated to x is PJ

and that associated to γ x is PJ . Hence γ PJγ
−1 = PJ . Since a parabolic subgroup

coincides with its normalizer, we have γ ∈ PJ (F).

Fix J ⊂ {1, . . . , d − 1}, ξ ∈ R1, and η ∈ R2.

Claim 6 There exists c3 ∈ R>0 such that if γ ∈ �K and x ∈ SI (c1, c2, c3) ∩
(ξγ η)−1S(c1, c2) is of parabolic type J , then ξγ η ∈ PI (F).

Proof of Claim 6 Let (Vi )−1�i�m be the flag corresponding to PJ . Suppose that
we have γ0 ∈ �K and x0 ∈ S(c1, c2) ∩ (ξγ0η)−1S(c1, c2) of parabolic type J . By
Claim 5, we have ξγ0η, ξγ η ∈ PJ (F). Hence

ξγ η = ξ(γ γ −1
0 )ξ−1ξγ0η ∈ �K ′η′,

where K ′ is the compact open subgroup ξK ξ−1 ∩ PJ (A
S
F ) of PJ (A

S
F ), and η′ =

ξγ0η ∈ PJ (F). The claim follows from the weaker version of the proposition in
which V is replaced by Vi/Vi−1 (for 0 � i � m), the group G is replaced by
PGLVi/Vi−1 , the compact open subgroup K is replaced by the image of ξK ξ−1 ∩
PJ (A

S
F ) in PGLVi /Vi−1(A

S
F ), the set R1 is replaced by {1}, the set R2 is replaced

by the image of {η′} in PGLVi/Vi−1(F), and PI (F) is replaced by the image of
PI (F) ∩ PJ (F) in PGLVi/Vi−1(F).

By Claim 6 for all J , ξ , and η, the result is proven. �
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Lemma 4.3.11 Let 1 � i � d − 1, and let V ′ = ∑i
j=1 Fe j . Let x ∈ Xv for some

v ∈ S, and let g ∈ GLV (Fv) be such that gV ′ = V ′. For 1 � i � d − 1, we have

d−1∏

j=1

(
tv, j (gx)

tv, j (x)

)e(i, j)

= |det(gv : V ′
v → V ′

v)|(d−i)/ i

|det(gv : Vv/V ′
v → Vv/V ′

v)|
,

where

e(i, j) =
{

j (d−i)
i if j � i,

d − j if j � i.

Proof By the Iwasawa decomposition 3.3.4 and 3.4.5, it suffices to check this in
the case that g is represented by a diagonal matrix diag(a1, . . . , ad). It follows from
the definitions that tv, j (gx)tv, j (x)−1 = |a ja

−1
j+1|, and the rest of the verification is a

simple computation. �

Lemma 4.3.12 Let i and V ′ be as in 4.3.11. Let R1 and R2 be finite subsets of
G(F). Then there exist A, B ∈ R>0 such that for all γ ∈ GLV (F) with image in
R1�K R2 ⊂ G(F) and for which γ V ′ = V ′, we have

A �
∏

v∈S

|det(γ : V ′
v → V ′

v)|(d−i)/ i

|det(γ : Vv/V ′
v → Vv/V ′

v)|
� B.

Proof We may assume that R1 and R2 are one point sets {ξ} and {η}, respectively.
Suppose that an element γ0 with the stated properties of γ exists. Then for any such
γ , the image of γ γ −1

0 in G(F) belongs to ξ�K ξ−1 ∩ P{i}(F), and hence the image
of γ γ −1

0 in G(AS
F ) belongs to the compact subgroup ξK ξ−1 ∩ P{i}(AS

F ) of P{i}(AS
F ).

Hence
|det(γ γ −1

0 : V ′
v → V ′

v)| = |det(γ γ −1
0 : Vv/V

′
v → Vv/V

′
v)| = 1

for every place v of F which does not belong to S. By Lemma 4.3.11 and the product
formula, we have

∏

v∈S
(|det(γ γ −1

0 : V ′
v → V ′

v)|(d−i)/ i · |det(γ γ −1
0 : Vv/V

′
v → Vv/V

′
v)|−1) = 1,

so the value of the product in the statement is constant under our assumptions, proving
the result. �

Proposition 4.3.13 Fix c1, c2 ∈ R>0 and finite subsets R1, R2 of G(F). Then there
exists A > 1 such that if x ∈ S(c1, c2) ∩ γ −1S(c1, c2) for some γ ∈ R1�K R2, then

A−1tv,i (x) � tv,i (γ x) � Atv,i (x)

for all v ∈ S and 1 � i � d − 1.
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Proof By a limit argument, it is enough to consider x ∈ XS ∩ S(c1, c2). Fix v ∈ S.
For x, x ′ ∈ XS ∩ S(c1, c2) and 1 � i � d − 1, let si (x, x ′) = tv,i (x ′)tv,i (x)−1.

For each 1 � i � d − 1, take c3(i) ∈ R>0 satisfying the condition in 4.3.10 for
the set I = {i} and both pairs of finite subsets R1, R2 and R−1

2 , R−1
1 of G(F). Let

c3 = min{c3(i) | 1 � i � d − 1}.

For a subset I of {1, . . . , d − 1}, let Y (I ) be the subset of (XS ∩ S(c1, c2))2 con-
sisting of all pairs (x, x ′) such that x ′ = γ x for some γ ∈ R1�K R2 and such that

I = {1 � i � d − 1 | min(tv,i (x), tv,i (x
′)) � c3}.

For the proof of 4.3.13, it is sufficient to prove the following statement (Sd),
fixing I .

(Sd) There exists A > 1 such that A−1 � si (x, x ′) � A for all (x, x ′) ∈ Y (I ) and
1 � i � d − 1.

By Proposition 4.3.10, if γ ∈ R1�K R2 is such that there exists x ∈ XS with
(x, γ x) ∈ Y (I ), then γ ∈ P{i}(F) for all i ∈ I . Lemmas 4.3.11 and 4.3.12 then imply
the following for all i ∈ I , noting that c−1

2 tw,i (y) � tv,i (y) � c2tw,i (y) for all w ∈ S
and y ∈ XS ∩ S(c1, c2).

(Ti ) There exists Bi > 1 such that for all (x, x ′) ∈ Y (I ), we have

B−1
i �

d−1∏

j=1

s j (x, x
′)e(i, j) � Bi ,

where e(i, j) is as in 4.3.11.

We prove the following statement (Si ) for 0 � i � d − 1 by induction on i .

(Si ) There exists Ai > 1 such that A−1
i � s j (x, x ′) � Ai for all (x, x ′) ∈ Y (I ) and

all j such that 1 � j � i and j is not the largest element of I ∩ {1, . . . , i} (if it
is nonempty).

That (S0) holds is clear. Assume that (Si−1) holds for some i � 1. If i /∈ I , then
since c3 � tv,i (x) � c1 and c3 � tv,i (x ′) � c1, we have

c3
c1

� si (x, x
′) � c1

c3
,

and hence (Si ) holds with Ai := max(Ai−1, c1c
−1
3 ).

Assume that i ∈ I . If I ∩ {1, . . . , i − 1} = ∅, then (Si ) is evidently true with
Ai := Ai−1. If I ∩ {1, . . . , i − 1} 
= ∅, then let i ′ be the largest element of this
intersection. We compare (Ti ) and (Ti ′). We have e(i, j) = e(i ′, j) if j � i and
e(i, j) < e(i ′, j) if j < i , so taking the quotient of the equations in (Ti ′) and (Ti ),
we have
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(Bi Bi ′)
−1 �

i−1∏

j=1

s j (x, x
′)e(i

′, j)−e(i, j) � Bi Bi ′ .

Since (Si−1) is assumed to hold, there then exists a ∈ R>0 such that

(Bi Bi ′)
−1A−a

i−1 � si ′(x, x
′)e(i

′,i ′)−e(i,i ′) � Bi Bi ′ A
a
i−1

As the exponent e(i ′, i ′) − e(i, i ′) is nonzero, this implies that (Si ) holds.
By induction, we have (Sd−1). To deduce (Sd ) from it, we may assume that I is

nonempty, and let i be the largest element of I . Then (Sd−1) and (Ti ) imply (Sd ). �

Proposition 4.3.14 Let c1, c2 ∈ R>0 and a ∈ X̄ F,S. Let I be the parabolic type
(4.3.7) of a. Fix a finite subset R of G(F) and 1 � i � d − 1.

(1) If i ∈ I , then for any ε > 0, there exists a neighborhood U of a in X̄ F,S for
the Satake topology such thatmax{tv,i (x) | v ∈ S} < ε for all x ∈ (�K R)−1U ∩
S(c1, c2).

(2) If i /∈ I , then there exist a neighborhood U of a in X̄ F,S for the Satake topol-
ogy and c ∈ R>0 such that min{tv,i (x) | v ∈ S} � c for all x ∈ (�K R)−1U ∩
S(c1, c2).

Proof The first statement is clear by continuity of tv,i and the fact that tv,i (γ −1a) = 0
for all γ ∈ G(F), and the second follows from 4.3.13, noting 4.3.4. �

Proposition 4.3.15 Let a ∈ X̄ F,S, and let P be the parabolic subgroup of PGLV

associated to a. Let �K ,(P) ⊂ �K be as in 3.4.12. Then there are c1, c2 ∈ R>0 and
ϕ ∈ G(F) such that �K ,(P)ϕS(c1, c2) is a neighborhood of a in X̄ F,S for the Satake
topology.

Proof This holds by definition of the Satake topology with ϕ = 1 if a ∈ X̄ F,S(B). In
general, let I be the parabolic type of a. Then the parabolic subgroup associated to
a has the form ϕPIϕ

−1 for some ϕ ∈ G(F). We have ϕ−1a ∈ X̄ F,S(PI ) ⊂ X̄ F,S(B).
By that already proven case, there exists γ ∈ �K ,(PI ) such that �K ,(P)ϕγS(c1, c2) is
a neighborhood of a for the Satake topoology. �

The following result can be proved in themanner of 4.4.8 for X̄ �

F,S below, replacing
R by {ϕ}, and �K ,(W ) by �K ,(P).

Lemma 4.3.16 Let the notation be as in 4.3.15. Let U ′ be a neighborhood of ϕ−1a
in X̄ F,S for the Satake topology. Then there is a neighborhood U of a in X̄ F,S for the
Satake topology such that

U ⊂ �K ,(P)ϕ(S(c1, c2) ∩U ′).
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4.4 X̄�
F,S and Reduction Theory

4.4.1 Let S be a finite set of places of F containing the archimedean places. In this
subsection, we consider X̄ �

F,S . Fix a basis (ei )1�i�d of V . Let B ⊂ G = PGLV be
the Borel subgroup of upper triangular matrices for (ei )i . Let K be a compact open
subgroup of G(AS

F ).

4.4.2 Let c1, c2 ∈ R>0. We let S�(c1, c2) denote the image of S(c1, c2) under
X̄ F,S → X̄ �

F,S . For r ∈ {1, . . . , d − 1}, we then define

S�
r (c1, c2) = {(W, μ) ∈ S�(c1, c2) | dim(W ) � r}.

Then the maps tv,i of 4.3.5 for v ∈ S and 1 � i � r induce maps

tv,i : S�
r (c1, c2) → R>0 (1 � i � r − 1) and tv,r : S�

r (c1, c2) → R�0.

For c3 ∈ R>0, we also set

S�
r (c1, c2, c3) = {x ∈ S�

r (c1, c2) | min{tv,r (x) | v ∈ S} � c3}.

Proposition 4.4.3 Fix c1 ∈ R>0 and finite subsets R1, R2 of G(F). Then there exists
c3 ∈ R>0 such that for all c2 ∈ R>0, we have

{γ ∈ R1�K R2 | γS�
r (c1, c2, c3) ∩ S�

r (c1, c2) 
= ∅} ⊂ P{r}.

Proof Take (W, μ) ∈ γS
�
r (c1, c2, c3) ∩ S

�
r (c1, c2), and let r ′ = dimW . Let P be

the parabolic subgroup of V corresponding to the flag (Vi )−1�i�d−r ′ with Vi =
W + ∑r ′+i

j=r ′+1 Fei for 0 � i � d − r ′. Letμ′ ∈ ZF,S(P) be the unique element such

that a = (P, μ′) ∈ X̄ F,S maps to (W, μ). Then a ∈ γS{r}(c1, c2, c3) ∩ S(c1, c2), so
we can apply 4.3.10. �

Proposition 4.4.4 Fix c1, c2 ∈ R>0 and finite subsets R1, R2 of G(F). Then there
exists A > 1 such that if x ∈ S

�
r (c1, c2) ∩ γ −1S

�
r (c1, c2) for some γ ∈ R1�K R2,

then
A−1tv,i (x) � tv,i (γ x) � Atv,i (x)

for all v ∈ S and 1 � i � r .

Proof This follows from 4.3.13. �

We also have the following easy consequence of Lemma 4.3.8.

Lemma 4.4.5 Let a be in the image of X̄ F,S(B) → X̄ �

F,S, and let r be the dimension
of the F-subspace of V associated to a. Then the F-subspace of V associated to a
is

∑r
i=1 Fei .
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Proposition 4.4.6 Let a ∈ X̄ �

F,S and let r be the dimension of the F-subspace of V
associated to a. Let c1, c2 ∈ R>0. Fix a finite subset R of G(F).

(1) For any ε > 0, there exists a neighborhoodU of a in X̄ �

F,S for the Satake topology

such that max{tv,r (x) | v ∈ S} < ε for all x ∈ (�K R)−1U ∩ S
�
r (c1, c2).

(2) If 1 � i < r , then there exist a neighborhoodU of a in X̄ �

F,S for the Satake topol-
ogy and c ∈ R>0 such that min{tv,i (x) | v ∈ S} � c for all x ∈ (�K R)−1U ∩
S

�
r (c1, c2).

Proof This follows from 4.4.4, as in the proof of 4.3.14. �

Proposition 4.4.7 Let W be an F-subspace of V of dimension r � 1. Let � be set
of ϕ ∈ G(F) such that ϕ(

∑r
i=1 Fei ) = W.

(1) There exists a finite subset R of � such that for any a ∈ X̄ �

F,S(W ), there exist

c1, c2 ∈ R>0 for which the set �K ,(W )RS
�
r (c1, c2) is a neighborhood of a in the

Satake topology.
(2) For any ϕ ∈ � and a ∈ X̄ �

F,S with associated subspace W, there exist c1, c2 ∈
R>0 such that a ∈ ϕS

�
r (c1, c2) and �K ,(W )ϕS

�
r (c1, c2) is a neighborhood of a

in the Satake topology.

Proof We may suppose without loss of generality that W = ∑r
j=1 Fe j , in which

case � = G(F)(W ) (see 3.4.12). Consider the set Q of all parabolic subgroups Q
of G such that W is contained in the smallest nonzero subspace of V preserved by
Q. Any Q ∈ Q has the form Q = ϕPIϕ

−1 for some ϕ ∈ G(F)(W ) and subset I of
J := {i ∈ Z | r � i � d − 1}. There exists a finite subset R of G(F)(W ) such that
we may always choose ϕ ∈ �K ,(W )R.

By 4.4.5, an element of X̄ F,S(B) has image in X̄ �

F,S(W ) if and only if the parabolic
subgroup associated to it has the form PI for some I ⊂ J . The intersection of the
image of X̄ F,S(B) → X̄ �

F,S with X̄ �

F,S(W ) is the union of theS�
r (c1, c2)with c1, c2 ∈

R>0. By the above, for anya ∈ X̄ �

F,S(W ),wemay choose ξ ∈ �K ,(W )R such that ξ−1a
is in this intersection, and part (1) follows. Moreover, ifW is the subspace associated
to a, then ϕ−1a ∈ X̄ �

F,S(W ) is in the image of X̄ F,S(B) for all ϕ ∈ G(F)(W ), from
which (2) follows. �

Lemma 4.4.8 Let W, �, R be as in 4.4.7, fix a ∈ X̄ �

F,S(W ), and let c1, c2 ∈ R>0 be

as in 4.4.7(1) for this a. For each ϕ ∈ R, let Uϕ be a neighborhood of ϕ−1a in X̄ �

F,S

for the Satake topology. Then there is a neighborhood U of a in X̄ �

F,S for the Satake
topology such that

U ⊂
⋃

ϕ∈R

�K ,(W )ϕ(S�
r (c1, c2) ∩Uϕ).

Proof We may assume that each ϕ(Uϕ) is stable under the action of �K ,(W ). Let

U = �K ,(W )RS
�
r (c1, c2) ∩

⋂

ϕ∈R

ϕ(Uϕ).
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Then U is a neighborhood of a by 4.4.7(1). Let x ∈ U . Take γ ∈ �K ,(W ) and ϕ ∈ R
such that x ∈ γ ϕS

�
r (c1, c2). Since ϕ(Uϕ) is �K ,(W )-stable, γ −1x ∈ ϕ(Uϕ) and hence

ϕ−1γ −1x ∈ S
�
r (c1, c2) ∩Uϕ . �

Proposition 4.4.9 Let a = (W, μ) ∈ X̄ �

F,S, and let r = dim(W ). Take ϕ ∈ G(F)

and c1, c2 ∈ R>0 as in 4.4.7(2) such that �K ,(W )ϕS
�
r (c1, c2) is a neighborhood of

a. Let φ�

W,S : X̄ �

F,S(W ) → Z
�

F,S(W ) be as in 3.4.4. For any neighborhood U of μ =
φ

�

W,S(a) in Z�

F,S(W ) and any ε ∈ R>0, set

�(U, ε) = (φ
�

W,S)
−1(U ) ∩ �K ,(W )ϕ{x ∈ S�

r (c1, c2) | tv,r (x) < ε for all v ∈ S}.

Then the set of all �(U, ε) forms a base of neighborhoods of a in X̄ �

F,S under the
Satake topology. �

Proof We may suppose that W = ∑r
i=1 Fei without loss of generality, in which

case ϕ ∈ G(F)(W ). Let P be the smallest parabolic subgroup containing B with flag
(Vi )−1�i�m such that V0 = W andm = d − r . Let Q be the parabolic of all elements
that preserve W . We then have G ⊃ Q ⊃ P ⊃ B. Let B ′ be the Borel subgroup of
PGLV/W that is the image of P and which we regard as a subgroup of G using
(er+i )1�i�m to split V → V/W .

Let
fv : Qu(Fv) × X̄V/W,F,v(B

′) × XWv × R�0 → X̄ F,v(P)

be the unique surjective continuous map such that ξ = fv ◦ h, where ξ is as in 3.5.6
and h is defined as the composition

Pu(Fv) × XWv × Rm
�0

∼−→ Qu(Fv)×B ′
u(Fv) × XWv × R�0 × Rm−1

�0

→ Qu(Fv) × X̄V/W,F,v(B
′) × XWv × R�0

of the map induced by the isomorphism Pu(Fv)
∼−→ Qu(Fv) × B ′

u(Fv) and the map
induced by the surjection π̄B ′,v : B ′

u(Fv) × Rm−1
�0 → X̄V/W,F,v(B ′) of 3.3.8(2). The

existence of fv follows from 3.3.8(4).
Set Y0 = RS

>0 ∪ {(0)v∈S}, and let

fS : Qu(AF,S) × X̄V/W,F,S(B
′) × Z

�

F,S(W ) × Y0 → X̄ F,S(P)

be the product of the maps fv. Let tv,r : X̄ F,v(P) → R�0 denote the composition

X̄ F,v(P) → X̄ F,v(B)
φ′
B,v−−→ Rd−1

�0 → R�0,

where the last arrow is the r th projection. The composition of fS with (tv,r )v∈S is
projection onto Y0 by 3.5.7 and 3.4.6.
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Let X̄ F,S(W ) denote the inverse image of X̄ �

F,S(W ) under the canonical surjection

�S : X̄ F,S → X̄ �

F,S . Combining fS with the action ofG(F)(W ), we obtain a surjective
map

f ′
S : G(F)(W ) × (Qu(AF,S) × X̄V/W,F,S(B

′) × Z
�

F,S(W ) × Y0) → X̄ F,S(W ),

f ′
S(g, z) = g fS(z).

The composition of f ′
S with φ

�

W,S ◦ �S is projection onto Z
�

F,S(W ) by 3.5.9 and
3.5.10.

Applying 4.3.4 with V/W in place of V , there exists a compact subset C of
Qu(AF,S) × X̄V/W,F,S(B ′) and a finite subset R ofG(F)(W ) such that f ′

S(�K ,(W )R ×
C × Z

�

F,S(W ) × Y0) = X̄ F,S(W ). Consider the restriction of �S ◦ f ′
S to a surjective

map
λS : �K ,(W )R × C × Z

�

F,S(W ) × Y0 → X̄ �

F,S(W ).

We may suppose that R contains ϕ, since it lies in G(F)(W ).
Now, let U ′ be a neighborhood of a in X̄ �

F,S(W ) for the Satake topology. It

is sufficient to prove that there exist an open neighborhood U of μ in Z
�

F,S(W )

and ε ∈ R>0 such that �(U, ε) ⊂ U ′. For ε ∈ R>0, set Yε = {(tv)v∈S ∈ Y0 | tv <

ε for all v ∈ S}.
For any x ∈ C , we have λS(α, x, μ, 0) = (W, μ) ∈ U ′ for all α ∈ R. By the con-

tinuity of λS , there exist a neighborhood D(x) ⊂ Qu(AF,S) × X̄V/W,F,S(B ′) of x , a
neighborhood U (x) ⊂ Z

�

F,v(W ) of μ, and ε(x) ∈ R>0 such that

λS(R × D(x) ×U (x) × Yε(x)) ⊂ U ′.

SinceC is compact, somefinite collection of the sets D(x) coverC . Thus, there exist a
neighborhoodU ofμ inZ�

F,v(W ) and ε ∈ R>0 such that λS(R × C ×U × Yε) ⊂ U ′.
Since U ′ is �K ,(W )-stable by 3.4.15, we have λS(�K ,(W )R × C ×U × Yε) ⊂ U ′.

Let y ∈ �(U, ε), and write y = gx with g ∈ �K ,(W )ϕ and x ∈ S
�
r (c1, c2) such

that tv,r (x) < ε for all v ∈ S. Since �(U, ε) ⊂ X̄ �

F,S(W ), we may by our above

remarks write y = λS(g, c, ν, t) = g�S( fS(c, ν, t)), where c ∈ C , ν = φ
�

W,S(y),
and t = (tv,r (x))v∈S . Since ν ∈ U and t ∈ Yε by definition, y is contained in U ′.
Therefore, we have �(U, ε) ⊂ U ′. �

Example 4.4.10 Consider the case F = Q, S = {v} with v the archimedean place,
and d = 3. We construct a base of neighborhoods of a point in X̄ �

Q,v for the Satake
topology.

Fix a basis (ei )1�i�3 of V . Let a = (W, μ) ∈ X̄ �

Q,v, where W = Qe1, and μ is
the unique element of XWv .

For c ∈ R>0, let Uc be the subset of Xv = PGL3(R)/PO3(R) consisting of the
elements
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(
1 0
0 γ

)
⎛

⎝
1 x12 x13
0 1 x23
0 0 1

⎞

⎠

⎛

⎝
y1y2 0 0
0 y2 0
0 0 1

⎞

⎠

such that γ ∈ PGL2(Z), xi j ∈ R, y1 � c, and y2 �
√
3
2 . When γ , xi j and y2 are fixed

and y1 → ∞, these elements converge to a in X̄ �

Q,v under the Satake topology. When
γ , xi j , and y1 are fixed and y2 → ∞, they converge in the Satake topology to

μ(γ, x12, y1) :=
(
1 0
0 γ

)
⎛

⎝
1 x12 0
0 1 0
0 0 1

⎞

⎠μ(y1),

where μ(y1) is the class in X̄ �

Q,v of the semi-norm a1e∗
1 + a2e∗

2 + a3e∗
3 �→ (a21 y

2
1 +

a22)
1/2 on V ∗

v .
The set of

Ūc := {a} ∪ {μ(γ, x, y) | γ ∈ PGL2(Z), x ∈ R, y � c} ∪Uc.

is a base of neighborhoods for a in X̄ �

Q,v under the Satake topology. Note that H =
SL2(Z){z ∈ H | Im(z) �

√
3
2 }, which is the reason for the appearance of

√
3
2 . It can

of course be replaced by any b ∈ R>0 such that b �
√
3
2 .

4.4.11 We continue with Example 4.4.10. Under the canonical surjection X̄Q,v →
X̄ �

Q,v, the inverse image of a = (W, μ) in X̄Q,v is canonically homeomorphic to
X̄(V/W )v = H ∪ P1(Q) under the Satake topology on both spaces. This homeomor-
phism sends x + y2i ∈ H (x ∈ R, y2 ∈ R>0) to the limit for the Satake topology
of ⎛

⎝
1 0 0
0 1 x
0 0 1

⎞

⎠

⎛

⎝
y1y2 0 0
0 y2 0
0 0 1

⎞

⎠ ∈ PGL3(R)/PO3(R)

as y1 → ∞. (This limit in X̄Q,v depends on x and y2, but the limit in X̄ �

Q,v is a.)

4.4.12 In the example of 4.4.10, we explain that the quotient topology on X̄ �

Q,v of

the Satake topology on X̄Q,v is different from the Satake topology on X̄ �

Q,v.
For a map

f : PGL2(Z)/

(
1 Z
0 1

)

→ R>0,

define a subset U f of Xv as in the definition of Uc but replacing the condition on

γ, xi j , yi by γ ∈ PGL2(Z), xi j ∈ R, y1 � f (γ ), and y2 �
√
3
2 . Let

Ū f = {a} ∪ {μ(γ, x, y) | γ ∈ PGL2(Z), x ∈ R, y � f (γ )} ∪U f .
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When f varies, the Ū f form a base of neighborhoods of a in X̄ �

Q,v for the quotient
topology of the Satake topology on X̄Q,v. On the other hand, if inf{ f (γ ) | γ ∈
PGL2(Z)} = 0, then Ū f is not a neighborhood of a for the Satake topology on
X̄ �

Q,v.

4.5 Proof of the Main Theorem

In this subsection, we prove Theorem 4.1.4. We begin with the quasi-compactness
asserted therein. Throughout this subsection, we set Z = XS2 × G(AS

F )/K in situa-
tion (I) and Z = XS2 in situation (II), so X̄ = X̄ × Z .

Proposition 4.5.1 In situation (I) of 4.1.3, the quotient G(F)\X̄ is quasi-compact.
In situation (II), the quotient �\X̄ is quasi-compact for any subgroup � of �K of
finite index.

Proof We may restrict to case (i) of 4.1.2 that X̄ = X̄ F,S1 , as X̄ �

F,S1
of case (ii)

is a quotient of X̄ F,S1 (under the Borel–Serre topology). In situation (I), we claim
that there exist c1, c2 ∈ R>0, a compact subset C of Bu(AF,S), and a compact sub-
set C ′ of Z such that X̄ = G(F)(S(C; c1, c2) × C ′). In situation (II), we claim
that there exist c1, c2,C,C ′ as above and a finite subset R of G(F) such that
X̄ = �R(S(C; c1, c2) × C ′). It follows that in situation (I) (resp., (II)), there is
a surjective continuous map from the compact space C × T(c1, c2) × C ′ (resp.,
R × C × T(c1, c2) × C ′) onto the quotient space under consideration, which yields
the proposition.

For any compact open subgroup K ′ ofG(AS1
F ), the setG(F)\G(AS1

F )/K ′ is finite.
Each Xv for v ∈ S2 may be identified with the geometric realization of the Bruhat-
Tits building for PGLVv , the set of i-simplices of which for a fixed i can be identified
with G(Fv)/K ′

v for some K ′. So, we see that in situation (I) (resp., (II)), there is a
compact subset D of Z such that Z = G(F)D (resp., Z = �D).

Now fix such a compact open subgroup K ′ of G(AS1
F ). By 4.3.4, there are c1, c2 ∈

R>0, a compact subset C of Pu(AF,S1), and a finite subset R′ of G(F) such that
X̄ F,S = �K ′ R′S(C; c1, c2).We consider the compact subsetC ′ := (R′)−1K ′D of Z .

Let (x, y) ∈ X̄, where x ∈ X̄ F,S and y ∈ Z .Write y = γ z for some z ∈ D and γ ∈
G(F) (resp., γ ∈ �) in situation (I) (resp., (II)). In situation (II), we write ��K ′ R′ =
�R for some finite subset R of G(F). Write γ −1x = γ ′ϕs where γ ′ ∈ �K ′ , ϕ ∈ R′,
s ∈ S(C; c1, c2). We have

(x, y) = γ (γ −1x, z) = γ (γ ′ϕs, z) = (γ γ ′ϕ)(s, ϕ−1(γ ′)−1z).

As γ γ ′ϕ lies inG(F) in situation (I) and in�R in situation (II), we have the claim.�

4.5.2 To prove Theorem 4.1.4, it remains only to verify the Hausdorff property. For
this, it is sufficient to prove the following.
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Proposition 4.5.3 Let � = G(F) in situation (I) of 4.1.3, and let � = �K in situ-
ation (II). For every a, a′ ∈ X̄, there exist neighborhoods U of a and U ′ of a′ such
that if γ ∈ � and γU ∩U ′ 
= ∅, then γ a = a′.

In the rest of this subsection, let the notation be as in 4.5.3. It is sufficient to prove
4.5.3 for the Satake topology on X̄. In 4.5.4–4.5.8, we prove 4.5.3 in situation (II)
for S = S1. That is, we suppose that X̄ = X̄ . In 4.5.9 and 4.5.10, we deduce 4.5.3 in
general from this case.

Lemma 4.5.4 Assume that X̄ = X̄ F,S. Suppose that a, a′ ∈ X̄ have distinct par-
abolic types (4.3.7). Then there exist neighborhoods U of a and U ′ of a′ such that
γU ∩U ′ = ∅ for all γ ∈ �.

Proof Let I (resp., I ′) be the parabolic type of a (resp., a′). We may assume that
there exists an i ∈ I with i /∈ I ′.

By 4.3.15, there exist ϕ,ψ ∈ G(F) and c1, c2 ∈ R>0 such that �KϕS(c1, c2)
is a neighborhood of a and �KψS(c1, c2) is a neighborhood of a′. By 4.3.14(2),
there exist a neighborhoodU ′ ⊂ �KψS(c1, c2) of a′ and c ∈ R>0 with the property
that min{tv,i (x) | v ∈ S} � c for all x ∈ (�Kψ)−1U ′ ∩ S(c1, c2). Let A ∈ R>1 be
as in 4.3.13 for these c1, c2 for R1 = {ϕ−1} and R2 = {ψ}. Take ε ∈ R>0 such that
Aε � c. By 4.3.14(1), there exists a neighborhoodU ⊂ �KϕS(c1, c2) of a such that
max{tv,i (x) | v ∈ S} < ε for all x ∈ (�Kϕ)−1U ∩ S(c1, c2).

We prove that γU ∩U ′ = ∅ for all γ ∈ �K . If x ∈ γU ∩U ′, then we may take
δ, δ′ ∈ �K such that (δϕ)−1γ −1x ∈ S(c1, c2) and (δ′ψ)−1x ∈ S(c1, c2). Since

(δϕ)−1γ −1x = ϕ−1(δ−1γ −1δ′)ψ(δ′ψ)−1x ∈ ϕ−1�Kψ · (δ′ψ)−1x,

we have by 4.3.13 that

c � tv,i ((δ
′ψ)−1x) � Atv,i ((δϕ)−1γ −1x) < Aε,

for all v ∈ S and hence c < Aε, a contradiction. �

Lemma 4.5.5 Assume that X̄ = X̄ �

F,S. Let a, a′ ∈ X̄ and assume that the dimen-
sion of the F-subspace associated to a is different from that of a′. Then there exist
neighborhoods U of a and U ′ of a′ such that γU ∩U ′ = ∅ for all γ ∈ �.

Proof The proof is similar to that of 4.5.4. In place of 4.3.13, 4.3.14, and 4.3.15, we
use 4.4.4, 4.4.6, and 4.4.7, respectively. �

Lemma 4.5.6 Let P be a parabolic subgroup of G. Let a, a′ ∈ ZF,S(P) (see 3.4.3),
and let R1 and R2 be finite subsets of G(F). Then there exist neighborhoods U of a
and U ′ of a′ in ZF,S(P) such that γ a = a′ for every γ ∈ R1�K R2 ∩ P(F) for which
γU ∩U ′ 
= ∅.

Proof For each ξ ∈ R1 and η ∈ R2, the set ξ�Kη ∩ P(F) is a ξ�K ξ−1 ∩ P(F)-orbit
for the left action of ξ�K ξ−1. Hence its image in

∏m
i=0 PGLVi /Vi−1(AF,S) is discrete,



214 T. Fukaya et al.

for (Vi )−1�i�m the flag corresponding to P , and thus the image of R1�K R2 ∩ P(F)

in
∏m

i=0 PGLVi /Vi−1(AF,S) is discrete as well. On the other hand, for any compact
neighborhoods U of a and U ′ of a′, the set

{

g ∈
m∏

i=0

PGLVi/Vi−1(AF,S) | gU ∩U ′ 
= ∅

}

is compact. Hence the intersection M := {γ ∈ R1�K R2 ∩ P(F) | γU ∩U ′ 
= ∅} is
finite. If γ ∈ M and γ a 
= a′, then replacingU andU ′ by smaller neighborhoods of
a and a′, respectively, we have γU ∩U ′ = ∅. Hence for sufficiently small neigh-
borhoodsU andU ′ of a and a′, respectively, we have that if γ ∈ M , then γ a = a′.�

Lemma 4.5.7 Let W be an F-subspace of V . Let a, a′ ∈ Z
�

F,S(W ) (see 3.4.4), and
let R1 and R2 be finite subsets of G(F). Let P be the parabolic subgroup of G
consisting of all elements which preserve W. Then there exist neighborhoods U of a
andU ′ of a′ in Z�

F,S(W ) such that γ a = a′ for every γ ∈ R1�K R2 ∩ P(F) for which
γU ∩U ′ 
= ∅.

Proof This is proven in the same way as 4.5.6. �

4.5.8 We prove 4.5.3 in situation (II), supposing that S = S1.
In case (i) (that is, X̄ = X̄ = X̄ F,S), we may assume by 4.5.4 that a and a′ have

the same parabolic type I . In case (ii) (that is, X̄ = X̄ = X̄ �

F,S), we may assume by
4.5.5 that the dimension r of the F-subspace of V associated to a coincides with that
of a′. In case (i) (resp., (ii)), take c1, c2 ∈ R>0 and elements ϕ and ψ (resp., finite
subsets R and R′) of G(F) such that c1, c2, ϕ (resp., c1, c2, R) satisfy the condition
in 4.3.15 (resp., 4.4.7) for a and c1, c2, ψ (resp., c1, c2, R′) satisfy the condition in
4.3.15 (resp., 4.4.7) for a′. In case (i), we set R = {ϕ} and R′ = {ψ}.

Fix a basis (ei )1�i�d of V . In case (i) (resp., (ii)), denote S(c1, c2) (resp.,
S

�
r (c1, c2)) byS. In case (i), let P = PI , and let (Vi )−1�i�m be the associated flag.

In case (ii), let W = ∑r
i=1 Fei , and let P be the parabolic subgroup of G consisting

of all elements which preserve W .
Note that in case (i) (resp., (ii)), for all ϕ ∈ R andψ ∈ R′, the parabolic subgroup

P is associated to ϕ−1a and to ψ−1a′ (resp., W is associated to ϕ−1a and to ψ−1a′)
and hence these elements are determined by their images inZF,S(P) (resp.Z�

F,S(W )).
In case (i) (resp., case (ii)), apply 4.5.6 (resp., 4.5.7) to the images of ϕ−1a and

ψ−1a′ for ϕ ∈ R, ψ ∈ R′ in ZF,S(P) (resp., Z�

F,S(W )). By this, and by 4.3.10 for
case (i) and 4.4.3 for case (ii), we see that there exist neighborhoods Uϕ of ϕ−1a
for each ϕ ∈ R and U ′

ψ of ψ−1a′ for each ψ ∈ R′ for the Satake topology with the
following two properties:

(A) {γ ∈ (R′)−1�K R | γ (S ∩Uϕ) ∩ (S ∩U ′
ψ) 
= ∅ for some ϕ ∈ R, ψ ∈ R′}

⊂ P(F),
(B) if γ ∈ (R′)−1�K R ∩ P(F) and γUϕ ∩U ′

ψ 
= ∅ for ϕ ∈ R and ψ ∈ R′, then
γ ϕ−1a = ψ−1a′.
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In case (i) (resp., (ii)), take a neighborhoodU ofa satisfying the condition in 4.3.16
(resp., 4.4.8) for (Uϕ)ϕ∈R , and take a neighborhoodU ′ of a′ satisfying the condition in
4.3.16 (resp., 4.4.8) for (U ′

ψ)ψ∈R′ . Let γ ∈ �K and assume γU ∩U ′ 
= ∅. We prove
γ a = a′. Take x ∈ U and x ′ ∈ U ′ such thatγ x = x ′. By4.3.16 (resp., 4.4.8), there are
ϕ ∈ R,ψ ∈ R′, and ε ∈ �K ,(ϕPϕ−1) and δ ∈ �K ,(ψPψ−1) in case (i) (resp., ε ∈ �K ,(ϕW )

and δ ∈ �K ,(ψW ) in case (ii)) such that ϕ−1ε−1x ∈ S ∩Uϕ andψ−1δ−1x ′ ∈ S ∩U ′
ψ .

Since
(ψ−1δ−1γ εϕ)ϕ−1ε−1x = ψ−1δ−1x ′,

we have ψ−1δ−1γ εϕ ∈ P(F) by property (A). By property (B), we have

(ψ−1δ−1γ εϕ)ϕ−1a = ψ−1a′.

Since εa = a and δa′ = a′, this proves γ a = a′.

We have proved 4.5.3 in situation (II) under the assumption S = S1. In the fol-
lowing 4.5.9 and 4.5.10, we reduce the general case to that case.

Lemma 4.5.9 Let a, a′ ∈ Z. In situation (I) (resp., (II)), let H = G(AS1
F ) (resp.,

H = G(AF,S2)). Then there exist neighborhoods U of a and U ′ of a′ in Z such that
ga = a′ for all g ∈ H for which gU ∩U ′ 
= ∅.

Proof For any compact neighborhoods U of a and U ′ of a′, the set M := {g ∈ H |
gU ∩U ′ 
= ∅} is compact. By definition of Z , there exist a compact open subgroup
N of H and a compact neighborhood U of a such that gx = x for all g ∈ N and
x ∈ U . For such a choice of U , the set M is stable under the right translation by
N , and M/N is finite because M is compact and N is an open subgroup of H . If
g ∈ M and if ga 
= a′, then by shrinking the neighborhoods U andU ′, we have that
gU ∩U ′ = ∅. As M/N is finite, we have sufficiently small neighborhoods U and
U ′ such that if g ∈ M and gU ∩U ′ 
= ∅, then ga = a′. �

4.5.10 We prove Proposition 4.5.3.
Let H be as in Lemma 4.5.9. Write a = (aS1 , aZ ) and a′ = (a′

S1
, a′

Z ) as elements
of X̄ × Z . By 4.5.9, there exist neighborhoodsUZ of aZ andU ′

Z of a′
Z in Z such that

if g ∈ H and gUZ ∩U ′
Z 
= ∅, then ga = a′. The set K ′ := {g ∈ H | gaZ = aZ } is

a compact open subgroup of H . Let �′ be the inverse image of K ′ under � → H ,
where � = G(F) in situation (I). In situation (II), the group �′ is of finite index in
the inverse image of the compact open subgroup K ′ × K under G(F) → G(AS1

F ).
In both situations, the set M := {γ ∈ � | γ aZ = a′

Z } is either empty or a �′-torsor
for the right action of �′.

Assumefirst thatM 
= ∅, inwhich casewemay choose θ ∈ � such thatM = θ�′.
Since we have proven 4.5.3 in situation (II) for S1 = S, there exist neighborhoods
US1 of aS1 and U ′

S1
of θ−1a′

S1
such that if γ ∈ �′ satisfies γUS1 ∩U ′

S1

= ∅, then

γ aS1 = θ−1a′
S1
. LetU = US1 ×UZ andU ′ = θU ′

S1
×U ′

Z , which are neighborhoods
of a and a′ in X̄, respectively. Suppose that γ ∈ � satisfies γU ∩U ′ 
= ∅. Then,
since γUZ ∩U ′

Z 
= ∅, we have γ aZ = a′
Z and hence γ = θγ ′ for some γ ′ ∈ �′.



216 T. Fukaya et al.

Since θγ ′US1 ∩ θU ′
S1


= ∅, we have γ ′US1 ∩U ′
S1


= ∅, and hence γ ′aS1 = θ−1a′
S1
.

That is, we have γ aS1 = a′
S1
, so γ a = a′.

In the case that M = ∅, take any neighborhoods US1 of aS1 and U ′
S1
of a′

S1
, and

setU = US1 ×UZ andU ′ = U ′
S1

×U ′
Z . Any γ ∈ � such that γU ∩U ′ 
= ∅ is con-

tained in M , so no such γ exists.

4.6 Supplements to the Main Theorem

We use the notation of §4.1 throughout this subsection, and in particular, we let �

be as in Theorem 4.1.4. For a ∈ X̄, let �a < � denote the stabilizer of a.

Theorem 4.6.1 Let � = G(F) in situation (I), and let � be a subgroup of �K of
finite index in situation (II). For a ∈ X̄ (with either the Borel–Serre or the Satake
topology), there is an open neighborhood U of the image of a in �a\X̄ such that the
image U ′ of U under the quotient map �a\X̄ → �\X̄ is open and the map U → U ′
is a homeomorphism.

Proof By the case a = a′ of Proposition 4.5.3, there is an open neighborhoodU ′′ ⊂
X̄ of a such that if γ ∈ �K and γU ′′ ∩U ′′ 
= ∅, then γ a = a. Then the subset
U := �a\�aU ′′ of �a\X̄ is open and has the desired property. �

Proposition 4.6.2 Suppose that S = S1, and let a ∈ X̄. Let � = G(F) in situation
(I), and let � be a subgroup of �K of finite index in situation (II).

(1) Take X̄ = X̄ F,S, and let P be the parabolic subgroup associated to a. Then �(P)

(as in 3.4.12) is a normal subgroup of �a of finite index.
(2) Take X̄ = X̄ �

F,S, and let W be the F-subspace of V associated to a. Then �(W )

(as in 3.4.12) is a normal subgroup of �a of finite index.

Proof We prove (1), the proof of (2) being similar. Let (Vi )−1�i�m be the flag cor-
responding to P . The image of � ∩ P(F) in

∏m
i=0 PGLVi/Vi−1(AF,S) is discrete. On

the other hand, the stabilizer in
∏m

i=0 PGLVi/Vi−1(AF,S) of the image of a in ZF,S(P)

is compact. Hence the image of �a in
∏m

i=0 PGLVi/Vi−1(F), which is isomorphic to
�a/�(P), is finite. �

Theorem 4.6.3 Assume that F is a function field and X̄ = X̄ F,S1 , where S1 consists
of a single place v. Let � be as in Theorem 4.6.1. Then the inclusion map �\X ↪→
�\X̄ is a homotopy equivalence.

Proof Let a ∈ X̄. In situation (I) (resp., (II)), write a = (av, av) with av ∈ X̄ F,v and
av ∈ XS2 × G(AS

F )/K (resp., XS2 ). Let K
′ be the isotropy subgroup of av in G(Av

F )

(resp.,
∏

w∈S2 G(Fw)), and let �′ < � be the inverse image of K ′ under the map
� → G(Av

F ) (resp., � → ∏
w∈S2 G(Fw)).

Let P be the parabolic subgroup associated to a. Let �a be the isotropy subgroup
of a in �, which is contained in P(F) and equal to the isotropy subgroup �′

av of av
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in �′. In situation (I) (resp., (II)), take a �a-stable open neighborhood D of av in
XS2 × G(AS

F )/K (resp., XS2 ) that has compact closure.

Claim 1 The subgroup �D := {γ ∈ �a | γ x = x for all x ∈ D} of �a is normal
of finite index.

Proof of Claim 1 Normality follows from the �a-stability of D. For any x in the
closure D̄ of D, there exists an open neighborhood Vx of x and a compact open
subgroup Nx of G(Av

F ) (resp.,
∏

w∈S2 G(Fw)) in situation (I) (resp., (II)) such that
gy = y for all g ∈ Nx and y ∈ Vx . For a finite subcover {Vx1 , . . . , Vxn } of D̄, the
group �D is the inverse image in �a of

⋂n
i=1 Nxi , so is of finite index.

Claim 2 The subgroup H := �D ∩ Pu(F) of �a is normal of finite index.

Proof of Claim 2Normality is immediate from Claim 1 as Pu(F) is normal in P(F).
Let H ′ = �′

(P) ∩ Pu(F), which has finite index in �′
(P) and equals �′ ∩ Pu(F) by

definition of �′
(P). Since �′

(P) ⊂ �′
av ⊂ �′ and �′

av = �a , we have H ′ = �a ∩ Pu(F)

aswell. ByClaim 1, we then have that H ′ contains H with finite index, so H has finite
index in �′

(P). Proposition 4.6.2(1) tells us that �′
(P) is of finite index in �′

av = �a .

Let (Vi )−1�i�m be the flag corresponding to P . By Corollary 3.5.4, we have a
homeomorphism

χ : Pu(Fv)\X̄ F,v(P)
∼−→ ZF,v(P) × Rm

�0

on quotient spaces arising from the P(Fv)-equivariant homeomorphism ψP,v =
(φP,v, φ

′
P,v) of 3.5.1 (see 3.4.3 and 3.4.6).

Claim 3 For a sufficiently small open neighborhoodU of 0 = (0, . . . , 0) in Rm
�0,

the map χ induces a homeomorphism

χU : H\X̄ F,v(P)U
∼−→ ZF,v(P) ×U,

where X̄ F,v(P)U denotes the inverse image of U under φ′
P,v : X̄ F,v(P) → Rm

�0.

Proof of Claim 3 By definition, χ restricts to a homeomorphism

Pu(Fv)\X̄ F,v(P)U
∼−→ ZF,v(P) ×U

for any open neighborhood U of 0. For a sufficiently large compact open subset C
of Pu(Fv), we have Pu(Fv) = HC . For U sufficiently small, every g ∈ C fixes all
x ∈ X̄ F,v(P)U , which yields the claim.

Claim 4 The map χU and the identity map on D induce a homeomorphism

χU,a : �a\(X̄ F,v(P)U × D)
∼−→ (�a\(ZF,v(P) × D)) ×U.
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Proof of Claim 4The quotient group�a/H is finite by Claim 2. Since the determinant
of an automorphism of Vi/Vi−1 of finite order has trivial absolute value at v, the �a-
action on Rm

�0 is trivial. Since H acts trivially on D, the claim follows from Claim 3.

Now let c ∈ Rm
>0, and setU = {t ∈ Rm

�0 | ti < c for all 1 � i � m}. Set (Xv)U =
Xv ∩ X̄ F,v(P)U . If c is sufficiently small, then

(�a\(ZF,v(P) × D)) × (U ∩ Rm
>0) ↪→ (�a\(ZF,v(P) × D)) ×U

is a homotopy equivalence, and we can apply χ−1
U,a to both sides to see that the

inclusion map
�a\((Xv)U × D) ↪→ �a\(X̄ F,v(P)U × D)

is also a homotopy equivalence. By Theorem 4.6.1, this proves Theorem 4.6.3. �

Remark 4.6.4 Theorem 4.6.3 is well-viewed as a function field analogue of the
homotopy equivalence for Borel–Serre spaces of [3].

4.6.5 Theorem 4.1.4 remains true if we replace G = PGLV by G = SLV in 4.1.3
and 4.1.4. It also remains true if we replace G = PGLV byG = GLV and we replace
X̄ in 4.1.4 in situation (I) (resp., (II)) by

X̄ × XS2 × (RS
>0 × G(AS

F )/K )1 (resp., X̄ × XS2 × (RS
>0)1),

where ( )1 denotes the kernel of

((av)v∈S, g) �→ |det(g)|
∏

v∈S
av (resp., (av)v∈S �→

∏

v∈S
av),

and γ ∈ GLV (F) (resp., γ ∈ �K ) acts on this kernel by multiplication by
((| det(γ )|v)v∈S, γ ) (resp., (|det(γ )|v)v∈S).

Theorems 4.6.1 and 4.6.3 also remain true under these modifications. These mod-
ified versions of the results are easily reduced to the original case G = PGLV .

4.7 Subjects Related to This Paper

4.7.1 In this subsection, as possibilities of future applications of this paper, we
describe connections with the study of

• toroidal compactifications of moduli spaces of Drinfeld modules (4.7.2–4.7.5)
• the asymptotic behavior of Hodge structures and p-adic Hodge structures associ-
ated to a degenerating family of motives over a number field (4.7.6, 4.7.7), and

• modular symbols over function fields (4.7.8, 4.7.9).
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4.7.2 In [21], Pink constructed a compactification of the moduli space of Drinfeld
modules that is similar to the Satake-Baily-Borel compactification of the moduli
space of polarized abalian varieties. In a special case, it had been previously con-
structed by Kapranov [15].

In [20], Pink, sketched amethod for constructing a compactification of the moduli
space ofDrinfeldmodules that is similar to the toroidal compactificationof themoduli
space of polarized abelian varieties (in part, using ideas of K. Fujiwara). However,
the details of the construction have not been published. Our plan for constructing
toroidal compactifications seems to be different from that of [20].

4.7.3 Wegive a rough outline of the relationship that we envision between this paper
and the analytic theory of toroidal compactifications. Suppose that F is a function
field, and fix a place v of F . Let O be the ring of all elements of F which are integral
outside v. In [6], the notion of a Drinfeld O-module of rank d is defined, and the
moduli space of such Drinfeld modules is constructed.

Let Cv be the completion of an algebraic closure of Fv and let | | : Cv → R�0

be the absolute value which extends the normalized absolute value of Fv. Let � ⊂
Pd−1(Cv) be the (d − 1)-dimensional Drinfeld upper half-space consisting of all
points (z1 : . . . : zd) ∈ Pd−1(Cv) such that (zi )1�i�d is linearly independent over Fv.

For a compact open subgroup K of GLd(A
v
F ), the set of Cv-points of the moduli

space MK of Drinfeld O-modules of rank d with K -level structure is expressed as

MK (Cv) = GLd(F)\(� × GLd(A
v
F )/K )

(see [6]).
Consider the case V = Fd in §3 and §4.We have amap� → Xv which sends (z1 :

· · · : zd) ∈ � to the class of the the norm Vv = Fd
v → R�0 given by (a1, . . . , ad) �→

|∑d
i=1 ai zi | for ai ∈ Fv. This map induces a canonical continuous map

(1) MK (Cv) = GLd(F)\(� × GLd(A
v
F )/K ) → GLd(F)\(Xv × GLd(A

v
F )/K ).

The map (1) extends to a canonical continuous map

(2) M̄KP
K (Cv) → GLd(F)\(X̄ �

F,v × GLd(A
v
F )/K ),

where M̄KP
K denotes the compactification of Kapranov and Pink of MK . In particular,

M̄KP
K is related to X̄ �

F,v. On the other hand, the toroidal compactifications of MK

should be related to X̄ F,v. If we denote by M̄ tor
K the projective limit of all toroidal

compactifications ofMK , then themap of (1) should extend to a canonical continuous
map

(3) M̄ tor
K (Cv) → GLd(F)\(X̄ F,v × GLd(A

v
F )/K ).

that fits in a commutative diagram
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M̄ tor
K (Cv) GLd(F)\(X̄ F,v × GL(Av

F )/K )

MKP
K (Cv) GLd(F)\(X̄ �

F,v × GLd(A
v
F )/K ).

4.7.4 The expected map of 4.7.3(3) is the analogue of the canonical continuous
map from the projective limit of all toroidal compactifications of the moduli space
of polarized abelian varieties to the reductive Borel–Serre compactification (see [10,
16]).

From the point of view of our study, the reductive Borel–Serre compactification
and X̄ F,v are enlargements of spaces of norms. A polarized abelian variety A gives
a norm on the polarized Hodge structure associated to A (the Hodge metric). This
relationship between a polarized abelian variety and a norm forms the foundation of
the relationship between the toroidal compactifications of amoduli space of polarized
abelian varieties and the reductive Borel–Serre compactification. This is similar to
the relationship between MK and the space of norms Xv given by themap of 4.7.3(1),
as well as the relationship between M̄ tor

K and X̄ F,v given by 4.7.3(3).

4.7.5 In the usual theory of toroidal compactifications, cone decompositions play
an important role. In the toroidal compactifications of 4.7.3, the simplices of Bruhat-
Tits buildings (more precisely, the simplices contained in the fibers of X̄ F,v → X̄ �

F,v)
should play the role of the cones in cone decompositions.

4.7.6 We are preparing a paper in which our space X̄ F,S with F a number field and
with S containing a non-archimedean place appears in the following way.

Let F be a number field, and let Y be a polarized projective smooth variety over F .
Let m � 0, and let V = Hm

dR(Y ) be the de Rham cohomology. For a place v of F , let
Vv = Fv ⊗F V .

For an archimedean place v of F , it is well known that Vv has aHodgemetric. For v
non-archimedean, we can under certain assumptions define a Hodge metric on Vv by
the method illustrated in the example of 4.7.7 below. The [Fv : Qv]-powers of these
Hodge metrics for v ∈ S are norms and therefore provide an element of

∏
v∈S XVv .

When Y degenerates, this element of
∏

v∈S XVv can converge to a boundary point of
X̄ F,S .

4.7.7 Let Y be an elliptic curve over a number field F , and take m = 1.
Let v be a non-archimedean place of F , and assume that Fv ⊗F Y is a Tate elliptic

curve ofq-invariantqv ∈ F×
v with |qv| < 1. Then the first log-crystalline cohomology

group D of the special fiber of this elliptic curve is a free module of rank 2 over the
Witt vectorsW (kv)with a basis (e1, e2) on which the Frobenius ϕ acts as ϕ(e1) = e1
andϕ(e2) = pe2,where p is the characteristic of kv. Thefirst �-adic étale cohomology
group of this elliptic curve is a free module of rank 2 over Z� with a basis (e1,�, e2,�)
such that the inertia subgroup of Gal(F̄v/Fv) fixes e1. The monodromy operator N
satisfies

Ne2 = ξ ′
ve1, Ne1 = 0, Ne2,� = ξ ′

ve1,�, Ne1,� = 0
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where ξ ′
v = ordFv(qv) > 0. The standard polarization 〈 , 〉 of the elliptic curve sat-

isfies 〈e1, e2〉 = 1 and hence

〈Ne2, e2〉 = ξ ′
v, 〈e1, N−1e1〉 = 1/ξ ′

v 〈Ne2,�, e2,�〉 = ξ ′
v, 〈e1,�, N−1e1,�〉 = 1/ξ ′

v.

For V = H 1
dR(Y ), we have an isomorphism Vv

∼= Fv ⊗W (kv) D. The Hodge metric
| |v on Vv is defined by

|a1e1 + a2e2|v = max(ξ−1/2
v |a1|p, ξ 1/2

v |a2|p)

for a1, a2 ∈ Fv, where | |p denotes the absolute value on Fv satisfying |p|p = p−1

and
ξv := −ξ ′

v log(|�v|p) = − log(|qv|p) > 0,

where �v is a prime element of Fv. That is, to define the Hodge metric on Vv, we
modify the naive metric (coming from the integral structure of the log-crystalline
cohomology) by using ξv which is determined by the polarization 〈 , 〉, the mon-
odromy operator N , and the integral structures of the log-crystalline and �-adic
cohomology groups (for � 
= p).

This is similar to what happens at an archimedean place v. We have Y (C) ∼=
C×/qZ

v with qv ∈ F×
v . Assume for simplicity that we can take |qv| < e−2π where

| | denotes the usual absolute value. Then qv is determined by Fv ⊗F Y uniquely.
Let ξ := − log(|qv|) > 2π . If v is real, we further assume that qv > 0 and that we
have an isomorphism Y (Fv) ∼= F×

v /qZ
v which is compatible with Y (C) ∼= C×/qZ

v .
Then in the case v is real (resp., complex), there is a basis (e1, e2) of Vv such that
(e1, (2π i)−1e2) is a Z-basis of H 1(Y (C), Z) and such that the Hodge metric | |v on
Vv satisfies |e1|v = ξ

−1/2
v and |e2|v = ξ

1/2
v (resp., ||e2|v − ξ

1/2
v | � πξ

−1/2
v ).

Consider for example the elliptic curves y2 = x(x − 1)(x − t) with t ∈ F = Q,

t 
= 0, 1. As t approaches 1 ∈ Qv for all v ∈ S, the elliptic curves Fv ⊗F Y satisfy
the above assumptions for all v ∈ S, and each qv approaches 0, so ξv tends to ∞.
The corresponding elements of

∏
v∈S XVv defined by the classes of the | |v for v ∈ S

converge to the unique boundary point of X̄ F,S with associated parabolic equal to
the Borel subgroup of upper triangular matrices in PGLV for the basis (e1, e2).

We hope that this subject about X̄ F,S is an interesting direction to be studied. It
may be related to the asymptotic behaviors of heights of motives in degeneration
studied in [18].

4.7.8 Suppose that F is a function field and let v be a place of F . Let � be as in 1.3.
Kondo and Yasuda [17] proved that the image of Hd−1(�\Xv, Q) → HBM

d−1
(�\Xv, Q) is generated by modular symbols, where HBM∗ denotes Borel-Moore
homology. Our hope is that the compactification �\X̄ F,v of �\Xv is useful in further
studies of modular symbols.

Let ∂ := X̄ F,v \ Xv. Then we have an isomorphism

HBM
∗ (�\Xv, Q) ∼= H∗(�\X̄ F,v, �\∂, Q)
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and an exact sequence

· · · → Hi (�\X̄ F,v, Q) →Hi (�\X̄ F,v, �\∂, Q)

→ Hi−1(�\∂, Q) → Hi−1(�\X̄ F,v, Q) → . . . .

Since �\Xv → �\X̄ F,v is a homotopy equivalence by Theorem 4.6.3, we have

H∗(�\Xv, Q)
∼−→ H∗(�\X̄ F,v, Q).

Hence the result of Kondo and Yasuda shows that the kernel of

HBM
d−1(�\Xv, Q) ∼= Hd−1(�\X̄ F,v, �\∂, Q) → Hd−2(�\∂, Q)

is generated by modular symbols.
If we want to prove that HBM

d−1(�\Xv, Q) is generated by modular symbols, it
is now sufficient to prove that the kernel of Hd−2(�\∂, Q) → Hd−2(�\X̄ F,v, Q) is
generated by the images (i.e., boundaries) of modular symbols.

4.7.9 In 4.7.8, assume d = 2. Then we can prove that HBM
1 (�\Xv, Q) is generated

by modular symbols. In this case H0(�\∂, Q) = Map(�\∂, Q) → H0(X̄ F,v, Q) =
Q is just the summation map and it is clear that the kernel of it is generated by the
boundaries of modular symbols.
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On the Structure of Selmer Groups

Ralph Greenberg

1 Introduction

Our objective in this paper is to prove a rather broad generalization of some classical
theorems in Iwasawa theory. We begin by recalling two of those old results. The first
is a theorem of Iwasawa, which we state in terms of Galois cohomology. Suppose
that K is a totally real number field and that ψ is a totally odd Hecke character
for K of finite order. We can view ψ as a character of the absolute Galois group
GK . Let Kψ be the corresponding cyclic extension of K and let � = Gal(Kψ/K ).
Then ψ becomes a faithful character of � and Kψ is a CM field. Now let p be an
odd prime. For simplicity, we will assume that the order of ψ divides p − 1. We
can then view ψ as a character with values in Z×

p . Let D be the Galois module
which is isomorphic to Qp/Zp as a group and on which GK acts by ψ . Let K∞
denote the cyclotomic Zp-extension of K . Thus � = Gal(K∞/K ) is isomorphic to
Zp. Define S(K∞, D) to be the subgroup of H 1(K∞, D) consisting of everywhere
unramified cocycle classes. As is usual in Iwasawa theory, we can view S(K∞, D)

as a discrete �-module, where � = Zp[[�]] is the completed group algebra for �

over Zp. Iwasawa’s theorem asserts that the Pontryagin dual of S(K∞, D) has no
nonzero, finite �-submodules.

The Selmer group for the above Galois module D over K∞, as defined in
[3], is precisely S(K∞, D). Let K∞,ψ = KψK∞, the cyclotomic Zp-extension of
Kψ . Under the restriction map H 1(K∞, D) → H 1(K∞,ψ , D)�, one can identify
S(K∞, D) with Hom(X (ψ), D), where X is a certain Galois group on which � acts.

Dedicated to John Coates
Research supported in part by National Science Foundation grant DMS-0200785.

R. Greenberg (B)
Department of Mathematics, University of Washington, Box 354350, Seattle,
WA 98195-4350, USA
e-mail: greenber@math.washington.edu

c© Springer International Publishing Switzerland 2016
D. Loeffler and S.L. Zerbes (eds.), Elliptic Curves, Modular Forms
and Iwasawa Theory, Springer Proceedings in Mathematics
& Statistics 188, DOI 10.1007/978-3-319-45032-2_6

225



226 R. Greenberg

To be precise, one takes X = Gal(L∞/K∞,ψ ), where L∞ denotes the maximal,
abelian pro-p extension of K∞,ψ which is unramified at all primes of K∞,ψ . There
is a canonical action of G = Gal(K∞,ψ/K ) on X (defined by conjugation). Further-
more, we can identify � and � with Gal(K∞,ψ/K∞) and Gal(K∞,ψ/Kψ), respec-
tively, so that G ∼= � × �. We define X (ψ) to be eψ X , where eψ ∈ Zp[�] is the
idempotent for ψ . Iwasawa proved that X (ψ) has no nonzero, finite �-submodules.
The theorem stated above is equivalent to that result.

To state the second classical result, suppose that K is any number field and that E
is an elliptic curve defined over K with good, ordinary reduction at the primes of K
lying above p. The p-primary subgroup SelE (K∞)p of the Selmer group for E over
K∞ is again a discrete �-module. If D = E[p∞], then SelE (K∞)p can again be
identified with the Selmer group for the Galois module D over K∞ as defined in [3].
Its Pontryagin dual XE (K∞) is a finitely-generated �-module. Mazur conjectured
that XE (K∞) is a torsion �-module. If this is so, and if one makes the additional
assumption that E(K ) has no element of order p, then one can show that XE (K∞)

has no nonzero, finite �-submodule.
The above results take the following form: S is a certain discrete �-module.

The Pontryagin dualX = Hom(S,Qp/Zp) is finitely generated as a �-module. The
results assert that X has no nonzero finite �-submodule. An equivalent statement
about S is the following: There exists a nonzero element θ ∈ � such that πS = S
for all irreducible elements π ∈ � not dividing θ . We then say that S is an “almost
divisible” �-module. Note that � is isomorphic to Zp[[T ]], a formal power series
ring over Zp in one variable, and hence is a unique factorization domain. Thus, one
can equivalently say that λS = S for all λ ∈ � which are relatively prime to θ . This
definition makes sense in a much more general setting, as we now describe.

Suppose that � is isomorphic to a formal power series ring over Zp, or over
Fp, in a finite number of variables. Suppose that S is a discrete �-module and
that its Pontryagin dual X is finitely generated. We then say that S is a cofinitely
generated �-module. We say that S is an almost divisible �-module if any one of
the five equivalent statements given below is satisfied. In the statements, the set of
prime ideals of � of height 1 is denoted by Specht=1(�). Note that since � is a
UFD, all such prime ideals 	 are principal. Also, if we say almost all, we mean all
but finitely many. The notation X[	] denotes the �-submodule of X consisting of
elements annihilated by 	. This is also denoted by X[π ], where π is a generator of
	. In the fifth statement, recall that a finitely-generated �-module Z is said to be
pseudo-null if there exist two relatively prime elements of � which annihilateZ.

• We have 	S = S for almost all 	 ∈ Specht=1(�).
• There exists a nonzero element θ in � such that πS = S for all irreducible ele-
ments π of � not dividing θ .

• We have X[	] = 0 for almost all 	 ∈ Specht=1(�).
• The set Ass�(Y) of associated prime ideals for the torsion �-submodule Y of X
contains only prime ideals of height 1.

• The �-module X has no nonzero, pseudo-null submodules.
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We refer the reader to [6] (and Proposition 2.4, in particular) for further discus-
sion, including an explanation of the equivalence of all of the above statements.

We will consider Selmer groups that arise in the following very general context.
Suppose that K is a finite extension of Q and that 
 is a finite set of primes of
K . Let K
 denote the maximal extension of K unramified outside of 
. We assume
that 
 contains all archimedean primes and all primes lying over some fixed rational
prime p. The Selmer groups that we consider in this article are associated to a con-
tinuous representation

ρ : Gal(K
/K )−→GLn(R)

where R is a complete Noetherian local ring. LetM denote the maximal ideal of R.
We assume that the residue field R/M is finite and has characteristic p. Hence R is
compact in its M-adic topology. Let T be the underlying free R-module on which
Gal(K
/K ) acts via ρ. We define D = T ⊗R R̂, where R̂ = Hom(R,Qp/Zp) is
the Pontryagin dual of R with a trivial action of Gal(K
/K ). That Galois group acts
on D through its action on the first factor T . Thus, D is a discrete abelian group
which is isomorphic to R̂n as an R-module and which has a continuous R-linear
action of Gal(K
/K ).

The Galois cohomology group H 1(K
/K ,D) can be considered as a discrete
R-module too. It is a cofinitely generated R-module in the sense that its Pontryagin
dual is finitely generated as an R-module. (See Proposition 3.2 in [6].) Suppose that
one specifies an R-submodule L(Kv,D) of H 1(Kv,D) for each v ∈ 
. We will
denote such a specification by L for brevity. Let

P(K ,D) =
∏

v∈


H 1(Kv,D) and L(K ,D) =
∏

v∈


L(Kv,D).

Thus, L(K ,D) is an R-submodule of P(K ,D). Let QL(K ,D) denote the quotient
P(K ,D)

/
L(K ,D). Thus,

QL(K ,D) =
∏

v∈


QL(Kv,D), where QL(Kv,D) = H 1(Kv,D)
/
L(Kv,D).

The natural global-to-local restriction maps for H 1( · ,D) induce a map

φL : H 1(K
/K ,D) −→ QL(K ,D). (1)

The kernel of φL will be denoted by SL(K ,D). It is the “Selmer group” for D over
K corresponding to the specification L.

It is clear that SL(K ,D) is an R-submodule of H 1(K
/K ,D) and so is also
a discrete, cofinitely generated R-module. For a fixed set 
, the smallest possible
Selmer group occurs when we take L(Kv,D) = 0 for all v ∈ 
. The Selmer group
corresponding to that choice will be denoted byX1(K , 
,D). That is,
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X1(K , 
,D) = ker
(
H 1(K
/K ,D) −→

∏

v∈


H 1(Kv,D)
)

Obviously, we have X1(K , 
,D) ⊆ SL(K ,D) for any choice of the specifica-
tion L.

In addition to the above assumptions about R, suppose that R is a domain. Let
d = m + 1 denote the Krull dimension of R, where m ≥ 0. (We will assume that
R is not a field. Our results are all trivial in that case.) A theorem of Cohen [2]
implies that R is a finite, integral extension of a subring � which is isomorphic to
one of the formal power series rings Zp[[T1, ..., Tm]] or Fp[[T1, ..., Tm+1]], depend-
ing on whether R has characteristic 0 or p. Although such a subring is far from
unique, it will be convenient to just fix a choice. A cofinitely generated R-module
S will also be a cofinitely generated �-module. All the results that we will prove in
this paper could be viewed as statements about the structure of the Selmer groups
as R-modules. But they are equivalent to the corresponding statements about their
structure as �-modules and that is how we will formulate and prove them. Those
equivalences are discussed in some detail in [6], Sect. 2. In particular, if S is a dis-
crete, cofinitely generated R-module, then we say that S is divisible (resp., almost
divisible) as an R-module if PS = S for all (resp., almost all) P ∈ Specht=1(R).
One result is that S is almost divisible as an R-module if and only if S is almost
divisible as a �-module. (See statement 1 on page 350 of [6].) A similar equivalence
is true for divisibility, but quite easy to prove.

One basic assumption that we will make about R is that it contain a subring �

of the form described in the previous paragraph, that R is finitely-generated as a
�-module, and that R is also reflexive as a �-module. If these assumptions are sat-
isfied, we say that R is a “reflexive ring”. In the case where R is also assumed to be
a domain, one can equivalently require that R is the intersection of all its localiza-
tions at prime ideals of height 1. See part D, Sect. 2 in [6] for the explanation of the
equivalence. In the literature, one sometimes finds the term “weakly Krull domain”
for such a domain. The class of reflexive domains is rather large. For example, if R
is integrally closed or Cohen–Macaulay, then it turns out that R is reflexive. There
are important examples (from Hida theory), where R is not necessarily a domain,
but is still a free (and hence reflexive) module over a suitable subring �.

The main results of this paper assert that if we make certain hypotheses aboutD
and L, then SL(K ,D) will be almost divisible. Some of the hypotheses are those
needed for Theorem 1 in [6] which gives sufficient conditions for H 1(K
/K ,D)

itself to be almost divisible. That theorem will be stated later (as Proposition 2.6.1.)
and is our starting point. The basic approach for deducing the almost divisibil-
ity of a �-submodule of H 1(K
/K ,D), defined by imposing local conditions
corresponding to a specification L, will be described in Sect. 3. Some of the needed
hypotheses will be discussed in Sect. 2. We also state there some results from [7]
concerning the surjectivity of the map φL. We will apply those results not just to
D, but also to the corresponding map forD[	], where 	 ∈ Specht=1(�). Our main
results concerning the almost divisibility of SL(K ,D) will be proved in Sect. 4.1.
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We show in Sect. 4.2 how to prove the classical theorems mentioned above from the
point of view of this paper.

This paper is part of a series of papers concerning foundational questions in Iwa-
sawa theory. The results discussed above depend on the results proved in [6, 7], the
first papers in this series. A subsequent paper will use the results we prove here to
study the behavior of Selmer groups under specialization. In particular, one would
like to understand how the “characteristic ideal” or “characteristic divisor” for a
Selmer group associated to the representation ρP : Gal(K
/K ) −→ GLn(R/P),
the reduction of ρ modulo a prime ideal P of R, is related to the characteristic ideal
or divisor associated to a Selmer group for ρ itself. Such a question has arisen many
times in the past. Consequently, for the purpose of studying exactly that question,
one can find numerous special cases of the results of this paper in the literature on
Iwasawa theory.

2 Various Hypotheses

The R-module T is a free R-module and so we say that D is a cofree R-module.
We also define T ∗ = Hom(D, μp∞). We can consider T ∗ as a module over the ring
Rop, which is just R since that ring is commutative. It is clear that T ∗ is also a
free R-module and that the discrete R-module D∗ = T ∗ ⊗R R̂ is cofree. It will be
simpler and more useful to formulate the hypotheses in terms of their structure as
�-modules rather than R-modules.

2.1 Hypotheses Involving Reflexivity

Recall that � is isomorphic to a formal power series ring in a finite number of
variables over either Zp or Fp. Reflexive �-modules play an important role here.
A detailed discussion of the definition can be found in Sect. 2, part C, of [6]. We
almost always will assume the following hypothesis.

• RFX(D): The �-module T is reflexive.

Equivalently, since T is free as an R-module, RFX(D) means that the ring R is
reflexive as a �-module. That is, R is a reflexive ring in the sense defined in the
introduction. We are still always assuming that R is a complete Noetherian local
ring with finite residue field of characteristic p.

We will say thatD is a coreflexive�-module if RFX(D) holds. This terminology
is appropriate because D is isomorphic to the �-module R̂n (ignoring the Galois
action) and its Pontryagin dual is the reflexive �-module Rn . One important role
of RFX(D) is to guarantee that D[π ] is a divisible (�/	)-module for all prime
ideals 	 = (π) in � of height 1. That property is equivalent to requiring that D be
coreflexive as a �-module. See Corollary 2.6.1 in [6] for the proof.
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The next two hypotheses involve T ∗ and are of a local nature. They could be
formulated just in terms of D, but the statements would become more complicated.
Note that if RFX(D) holds, then T ∗ is also a reflexive �-module. We suppose that
v is a prime of K and that Kv is the completion of K at v. We usually consider just
the primes v ∈ 
.

• LOC(1)
v (D):We have (T ∗)GKv = 0.

• LOC(2)
v (D): The �-module T ∗/(T ∗)GKv is reflexive.

Assumptions LOC(1)
v (D) and LOC(2)

v (D) play a crucial role in proving Theorem
1 in [6]. Just as in that result, we will usually assume LOC(1)

v (D) for at least one non-
archimedean prime v ∈ 
 and LOC(2)

v (D) for all v ∈ 
. One can find a general dis-
cussion of when those hypotheses are satisfied in part F, Sect. 5 of [6]. One obvious
remark is that since T ∗ is a torsion-free �-module, LOC(1)

v is satisfied if and only
if rank�

(
(T ∗)GKv

) = 0. It is also obvious that T ∗/(T ∗)GKv is at least torsion-free
as a �-module. Furthermore, note that if RFX(D) is true, then LOC(2)

v (D) follows
from LOC(1)

v (D). Notice also that if LOC(1)
v (D) and LOC(2)

v (D) are both true for
some prime v, then RFX(D) is also true. Nevertheless, our propositions will often
include RFX(D) as a hypothesis even though it may actually be implied by other
hypotheses.

2.2 Locally Trivial Cocycle Classes

The following much more subtle hypothesis is also needed in the proof of Theo-
rem 1 in [6], where it is referred to as Hypothesis L. As we explain there, it can
be viewed as a generalization of Leopoldt’s Conjecture for number fields. That spe-
cial case occurs when � = Zp, D = Qp/Zp, and GK acts trivially on D. For the
formulation, we define

X2(K , 
,D) = ker
(
H 2(K
/K ,D) −→

∏

v∈


H 2(Kv,D)
)
,

which is a discrete, cofinitely-generated �-module.

• LEO(D): The �-module X2(K , 
,D) is cotorsion.

A long discussion about the validity of the above hypothesis can be found in
the last few pages of Sect. 6, part D, in [6]. There are situations where it fails
to be satisfied. Also, Sect. 4 of that paper derives a natural lower bound on the
�-corank of H 1(K
/K ,D) from the duality theorems of Poitou and Tate. Hypoth-
esis LEO(D) is equivalent to the statement that corank�

(
H 1(K
/K ,D)

)
is equal

to that lower bound. That equivalence is the content of Propositions 4.3 and 4.4 in
[6]. Furthermore, one part of Theorem 1 in that paper asserts that if RFX(D) is sat-
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isfied, and if we assume LOC(1)
v (D) for at least one non-archimedean prime v ∈ 


and LOC(2)
v (D) for all v ∈ 
, then LEO(D) means that X2(K , 
,D) actually

vanishes.

2.3 Hypotheses Involving L

None of the hypotheses stated above involves the specification L. We now mention
two hypotheses which do involve L, one of which implies the other. They are state-
ments about the cokernel of the map φL defined in the introduction. The first plays
an important role in studying Selmer groups. The second appears weaker, but often
is sufficient to imply the first.

• SUR(D,L): The map φL defining SL(K ,D) is surjective.

An obvious necessary condition for this to be satisfied is the following equality
for the coranks:

• CRK(D,L): We have

corank�

(
H 1(K
/K ,D)

) = corank�

(
SL(K ,D)

) + corank�

(
QL(K ,D)

)
.

This just means that coker
(
φL

)
is a cotorsion �-module. Proposition 3.2.1 in

[7] shows that CRK(D,L), together with various additional assumptions, actually
implies SUR(D,L). One has the following obvious inequality:

corank�

(
SL(K ,D)

)
� corank�

(
H 1(K
/K ,D)

) − corank�

(
QL(K ,D)

)
(2)

Thus, CRK(D,L) is equivalent to having equality here. Of course, CRK(D,L), and
hence SUR(D,L), can fail simply because the quantity on the right side is negative.
Verifying CRK(D,L) is quite a difficult problem in many interesting cases.

It is worth recalling what the formulas for global and local Euler–Poincaré char-
acteristics tell us about the coranks on the right side of (2). One can find proofs in
Sect. 4 of [6]. For any prime v of K , we use the notation D(Kv) as an abbrevia-
tion for H 0(Kv,D), a �-submodule ofD. Similarly,D(K ) will denote H 0(K ,D).
Let r1(K ) and r2(K ) denote the number of real primes and complex primes of K ,
respectively. We give formulas for the �-coranks of the global and local H 1’s. For
the global H 1, we have

corank�

(
H 1(K
/K ,D)

)

= corank�

(D(K )
) + corank�

(
H 2(K
/K ,D)

) + δ�(K ,D),

where δ�(K ,D) = (
r1(K ) + r2(K )

)
corank�

(D) − ∑
v real corank�

(D(Kv)
)
.
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Now assume that v is a non-archimedean prime. Recall that D∗ denotes the
R-module T ∗ ⊗R R̂. If v does not lie over p, then the local Euler–Poincaré charac-
teristic is 0 and we have

corank�

(
H 1(Kv,D)

) = corank�

(D(Kv)
) + corank�

(D∗(Kv)
)
.

To justify replacing the �-corank of H 2(Kv,D) by that of D∗(Kv) in the above
formula as well as the formula below, one uses the fact that the Pontryagin dual of
H 2(Kv,D) is isomorphic to H 0(Kv,T ∗). Proposition 3.10 in [6] implies that the
�-rank of H 0(Kv,T ∗) is equal to the �-corank of H 0(Kv,D∗). If v lies over p,
then we have

corank�

(
H 1(Kv,D)

)

= corank�

(D(Kv)
) + corank�

(D∗(Kv)
) + [Kv : Qp] corank�

(D)
.

If v is archimedean, then H 1(Kv,D) vanishes unless p = 2 and v is real. Even
for p = 2, its �-corank is 0 unless � is a power series ring over F2. In that case,
one has the following formula when v is real:

corank�

(
H 1(Kv,D)

) = 2 corank�

(D(Kv)
) − n.

Here n = corank�

(D)
. See page 380 of [6] for the simple justification.

Finally, we have the obvious formula

corank�

(
QL(Kv,D)

) = corank�

(
H 1(Kv,D)

) − corank�

(
L(Kv,D)

)

and so the above formulas for the �-coranks of H 1(Kv,D) for v ∈ 
, and the
specification L, determine the �-corank of QL(K , D).

2.4 Behavior Under Specialization

In some proofs, Selmer groups for D[	], as well as for D, will occur. Here 	 is
a prime ideal of � and D[	] is a discrete, cofinitely-generated module over the
ring �/	. Various other modules over �/	 will arise. Now �/	 is a complete,
Noetherian, local ring, and therefore (just as for R in the introduction), it is a finite,
integral extension of a subring �′ which is isomorphic to a formal power series ring
over Zp or Fp. We fix such a choice for each 	 and denote �′ by �	. If � has Krull
dimension d, then �	 has Krull dimension d − 1. Of course, some results could be
easily stated or proved just in terms of �/	 itself.

Many of the above hypotheses are not preserved when the �-module D is
replaced by the �	-moduleD[	]. For example, even if RFX(D) is satisfied,D[	]
may fail to be reflexive as a �	-module and so RFX(D[	]) may fail to be satis-
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fied. In general, all one can say is that RFX(D) implies that D[	] is a divisible
�	-module for all 	 ∈ Specht=1(�). The situation is better for LOC(1)

v (D) and
LEO(D). We have the following equivalences.

• Assume that RFX(D) is satisfied. Then LOC(1)
v (D) is true if and only if

LOC(1)
v (D[	]) is true for almost all 	 ∈ Specht=1(�).

• LEO(D) is true if and only if LEO(D[	]) is true for almost all	 ∈ Specht=1(�).

These assertions follow easily from results in [6]. For the first statement, one
should see Remarks 3.5.1 or 3.10.2 there. Note that LOC(1)

v (D[	]) and
LOC(2)

v (D[	]) are statements about the (�/	)-module Hom(D[	], μp∞), which
is isomorphic to T ∗/	T ∗. The second of the above equivalences follows from
Lemma 4.4.1 and Remark 2.1.3 in [6]. We will prove a similar equivalence for
CRK(D,L) in Sect. 3.4.

2.5 A Result About Almost Divisibility

In addition to SUR(D,L) and CRK(D,L), there will be various other hypotheses
concerning the specification L. If L(Kv,D) is �-divisible (resp., almost
�-divisible) for all v ∈ 
, then we will say that L is �-divisible (resp, almost
�-divisible). Consider another specification L′ for D and let L ′(Kv,D) denote
the corresponding subgroup of H 1(Kv,D) for each v ∈ 
. We write L′ ⊆ L if
L ′(Kv,D) ⊆ L(Kv,D) for all v ∈ 
. In particular, if L ′(Kv,D) = L(Kv,D)�-div

for each v ∈ 
, then we will refer to the specificationL′ as the maximal �-divisible
subspecification ofL, which we denote simply byLdiv . One assumption that we will
usually make is that L is almost divisible. Its importance is clear from the following
proposition.

Proposition 2.5.1 Assume that L′ and L are specifications forD and that L′ ⊆ L.
Assume also that SUR(D,L′) is true. Then SUR(D,L) is also true, we have the
inclusion SL′(K ,D) ⊆ SL(K ,D), and

SL(K ,D)
/
SL′(K ,D) ∼=

∏

v∈


L(Kv,D)
/
L ′(Kv,D)

as �-modules. In particular, if SUR(D,Ldiv) is true and SLdiv (K ,D) is almost
�-divisible, then SL(K ,D) is almost �-divisible if and only if L is almost �-
divisible. If SUR(D,Ldiv) is true and SL(K ,D) is almost �-divisible, then L must
be almost �-divisible.

Thus, under certain assumptions, the structure of SL(K ,D) can be related to
that of SLdiv (K ,D) and the quotient �-modules L(Kv,D)

/
L(Kv,D)div for v ∈ 
.

Since all of those quotients are cofinitely-generated, cotorsion �-module for all
v ∈ 
, it follows that CRK(D,L) is true if and only if CRK(D,Ldiv) is true.
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Proof Most of the statements are clear from the definitions. For the isomorphism,
consider the following maps:

H 1(K
/K ,D)
φL′−→ QL′(K ,D)

ψ−→ QL(K ,D)

where ψ is the natural map, the canonical homomorphism whose kernel is the direct
product in the proposition. The map ψ is surjective and the composition is φL. If φL′

is surjective, then it follows that φL is also surjective and that SL(K ,D)
/
SL′(K ,D)

is isomorphic to ker(ψ). The stated isomorphism follows immediately. For the
final statements, one takes L′ = Ldiv . Note that if SL(K ,D) is almost divisible,
and if one assumes SUR(D,Ldiv), then there is a surjective homomorphism from
SL(K ,D) to L(Kv,D)

/
L(Kv,D)�-div , which must therefore be almost divisible

too. This implies that L(Kv,D) is then almost divisible for all v ∈ 
. Thus, L is
almost divisible. Moreover, if a discrete, cofinitely-generated �-module S contains
an almost divisible �-submodule S′, then it is clear that S is almost divisible if and
only if S/S′ is almost divisible. �

2.6 The Main Results in [6] and [7]

The following result is proved in [6]. It is part of the Theorem 1 which we alluded to
before. It plays a crucial role in this paper because we will study when SL(K ,D) is
almost divisible as a �-module under the assumption that H 1(K
/K ,D) is almost
divisible, as outlined in the next section.

Proposition 2.6.1 Suppose that RFX(D) and LEO(D) are both satisfied, that
LOC(2)

v (D) is satisfied for all v in 
, and that there exists a non-archimedean prime
η ∈ 
 such that LOC(1)

η (D) is satisfied. Then H 1(K
/K ,D) is an almost divisible
�-module.

Another part of Theorem 1 is the following.

Proposition 2.6.2 Suppose that RFX(D) is satisfied, that LOC(2)
v (D) is both satis-

fied for all v in 
, and that there exists a non-archimedean prime η ∈ 
 such that
LOC(1)

η (D) is satisfied. Then X2(K , 
,D) is a coreflexive �-module.

The conclusion in this result has the interesting consequence that the Pontryagin
dual of X2(K , 
,D) is torsion-free as a �-module. It follows that X2(K , 
,D)

is �-divisible. Hence eitherX2(K , 
,D) has positive �-corank orX2(K , 
,D)

vanishes under the assumptions in Proposition 2.6.2.
We now state the main result that we need from [7]. It is Proposition 3.2.1 there.

Proposition 2.6.3 Suppose that D is divisible as a �-module. Assume that
LEO(D), CRK(D,L), and also at least one of the following additional assump-
tions is satisfied.
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(a) D[m] has no subquotient isomorphic to μp for the action of GK ,
(b) D is a cofree �-module and D[m] has no quotient isomorphic to μp for the

action of GK ,
(c) There is a prime η ∈ 
 satisfying the following properties: (i) H 0(Kη,T ∗) = 0,

and (ii) QL(Kη,D) is divisible as a �-module.

Then φL is surjective.

As mentioned in the introduction, we will apply the above result not just to D,
but also to D[	] for prime ideals 	 of � of height 1. Fortunately, if D is itself
coreflexive as a �-module, then D[	] is divisible as a (�/	)-module, and hence
satisfies the first hypothesis in the above proposition.

3 An Outline

3.1 An Exact Sequence

Assume that SUR(D,L) is satisfied. We will denote φL just by φ, although we will
continue to indicate the L for other objects. We have an exact sequence

0 −→ SL(K ,D) −→ H 1(K
/K ,D)
φ−→ QL(K ,D) −→ 0 (3)

of discrete �-modules. Suppose that 	 ∈ Specht=1(�) and that π is a generator
of 	. Applying the snake lemma to the exact sequence (3) and to the endomor-
phisms of each of the above modules induced by multiplication by π , we obtain
the following important exact sequence. We refer to it as the snake lemma sequence
for 	.

Now assume additionally that H 1(K
/K ,D) is an almost divisible �-module.
The last term in the above exact sequence is then trivial for almost all 	 ∈
Specht=1(�). Therefore, under these assumptions, the assertion that SL(K ,D) is
almost divisible is equivalent to the assertion that α	 is surjective for almost all
	 ∈ Specht=1(�). We study the surjectivity of α	 by considering the (�/	)-
module D[π ].
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3.2 The Cokernel of α�

If D arises from a representation ρ as described in the introduction, and if R is
a domain, then D will be �-divisible. However, here we will just assume that D
is divisible by π and cofinitely generated as a �-module. We then have an exact
sequence

0 −→ D[	] −→ D −→ D −→ 0

induced by multiplication by π . As a consequence, the following global and local
“specialization” maps are surjective:

h	 : H 1(K
/K ,D[	]) −→ H 1(K
/K ,D)[	],
h	,v : H 1(Kv,D[	]) −→ H 1(Kv,D)[	]

We can compare the exact sequence (3) with an analogous sequence for D[	],
viewed as a (�

/
	)-module. For this purpose, we define a specification L	 for

D[	] as follows: For each v ∈ 
, let us take

L(Kv,D[	]) = h−1
	,v

(
L(Kv,D)[	] )

which is a (�/	)-submodule of H 1(Kv,D[	]). If we think of L as fixed, we
will refer to the specification L	 just defined as the “L-maximal specification for
D[	]”. Using the analogous notation to that for D, we define

P(K ,D[	]) =
∏

v∈


H 1(Kv,D[	]),

QL	
(K ,D[	]) = P(K ,D[	])/L(K ,D[	])

where L(K ,D[	]) = ∏
v∈
 L(Kv,D[	]). We can then define the corresponding

global-to-local map

φL	
: H 1(K
/K ,D[	]) −→ QL	

(K ,D[	])

We will usually denote the map φL	
simply by φ	. The product of the h	,v’s for

v ∈ 
 defines a map b	 : P(K ,D[	]) → P(K ,D)[	]. Note that the image of
L(K ,D[	]) under b	 is contained in L(K ,D) and so we get a well-defined map

q	 : QL	
(K ,D[	]) −→ QL(K ,D)[	].

Lemma 3.2.1 Assume thatD is divisible by π and that L(Kv,D) is divisible by π

for all v ∈ 
. Then q	 is an isomorphism.
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Proof The definition of L	 implies that q	 is injective without any assumptions.
Furthermore, a snake lemma argument shows that if L(K ,D) is divisible by π , then
the map c	 : P(K ,D)[	] → QL(K ,D)[	] will be surjective. Since the map b	

is also surjective, it would then follow that c	 ◦ b	 is also surjective. This would
imply that q	 is surjective. �

Consequently, if we assume that D is almost �-divisible and that L is almost
�-divisible, we see that q	 is then an isomorphism for almost all 	 ∈ Specht=1(�).

The map α	 is induced by the map φ and is defined without making any assump-
tions. We have the following commutative diagram whose rows are exact:

0 �� SL	
(K ,D[	]) ��

s	

��

H 1(K
/K ,D[	]) φ	 ��

h	

��

QL	
(K ,D[	])

q	

��
0 �� SL(K ,D)[	] �� H 1(K
/K ,D)[	] α	 �� QL(K ,D)[	]

The second and third vertical maps have been defined and make that part of the
diagram commutative, and so the map s	 is induced from h	. Although it is not
needed now, we remark in passing that the injectivity of the map q	 and the surjec-
tivity of the map h	 imply that s	 is also surjective. But the important consequence
for us is that q	 maps im(φ	) isomorphically to im(α	) and therefore induces an
isomorphism

coker(α	) ∼= coker(φ	) (4)

under the assumptions in Lemma 3.2.1. In particular, the surjectivity of α	 and φ	

would then be equivalent.
To summarize, if we assume that D, H 1(K
/K ,D), and the specification L are

almost�-divisible, and that SUR(D,L) holds, then SL(K ,D) is almost�-divisible
if and only if φ	 is surjective for almost all 	 ∈ Specht=1(�).

Remark 3.2.2 (Divisibility by m) One can ask if mSL(K ,D) = SL(K ,D), where
m denotes the maximal ideal of �. This would mean that the Pontryagin dual
X of SL(K ,D) has no nonzero, finite �-submodules. For if Z is the maximal
finite �-submodule of X, then Z[m] = X[m] is the Pontryagin dual of the quotient
�-module SL(K ,D)

/
mSL(K ,D). This is trivial if and only ifZ itself is trivial.

Assume that SUR(D,L) is satisfied and that H 1(K
/K ,D) is almost
�-divisible. One sees easily that ifZ = 0, thenZ[	] = 0 for all	 ∈ Specht=1(�).
As a consequence of the snake lemma sequence, if one can show that α	 is surjec-
tive for infinitely many 	’s in Specht=1(�), then it would follow as a consequence
that mSL(K ,D) = SL(K ,D). This observation is especially useful if � has Krull
dimension 2. In that case, it follows that SL(K ,D) is almost divisible if and only if
α	 is surjective for infinitely many 	’s in Specht=1(�). ♦
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3.3 Behavior of the Corank Hypothesis Under Specialization

We can now complete the discussion in Sect. 2.4. We want to justify the following
equivalence.

• CRK(D,L) is true if and only if CRK(D[	],L	) is true for almost all
	 ∈ Specht=1(�).

According to Remark 2.1.3 in [6], coker(φ) is �-cotorsion if and only if
coker

(
α	) is (�/	)-cotorsion for almost all 	 ∈ Specht=1(�). If we assume that

L is almost �-divisible, then we have the isomorphism (4) for almost all 	’s. Since
�/	 is a finitely-generated �	-module, it follows that coker(φ) is �-cotorsion if
and only if coker

(
φ	) is �	-cotorsion for almost all 	 ∈ Specht=1(�), which is the

stated equivalence.
The assumption thatL is almost�-divisible is not needed. Suppose that	 = (π)

is an arbitrary element of Specht=1(�). Referring to the discussion in Sect. 3.2, we
have an injective map

coker
(
φ	

) −→ coker
(
α	

)
. (5)

induced by q	. Furthermore, the cokernel of (5) is isomorphic to coker
(
q	

)
. The

stated equivalence will follow if we show that coker
(
q	

)
is (�/	)-cotorsion for

almost all 	’s. Using the notation from Sect. 3.2, we have coker
(
q	

) = coker
(
c	

)
.

We then obtain another injective map

coker
(
q	

) −→ L(K ,D)
/
πL(K ,D).

Thus, it suffices to show that L(K ,D)
/
	L(K ,D) is (�/	)-cotorsion for almost

all 	 ∈ Specht=1(�).
In general, suppose that A is a discrete, cofinitely-generated �-module and that

X is the Pontryagin dual of A. Thus, we have a perfect pairing A × X → Qp/Zp.
Let Z denote the maximal pseudo-null �-submodule of X and let B denote the
orthogonal complement of Z under that pairing. Thus, B ⊆ A. Let C = A/B. The
Pontryagin duals of B and C are X/Z and Z, respectively. It follows that B is
the maximal almost �-divisible �-submodule of A. Furthermore, by definition,
Z is annihilated by a nonzero element of � relatively prime to π , and so Z[	]
is a torsion (�/	)-module. Thus, C/

	C is (�/	)-cotorsion. If we choose 	 so
that 	B = B, it follows that A/	A ∼= C/	C. Applying these considerations to
A = L(K ,D), we see that L(K ,D)

/
	L(K ,D) is indeed (�/	)-cotorsion for

almost all 	 ∈ Specht=1(�).

3.4 The Case Where φL is Not Surjective

We assume in this section thatD, H 1(K
/K ,D), and the specificationL are almost
�-divisible, but not that SUR(D,L) holds. In the exact sequence (3), we can simply
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replace QL(K ,D) by the image of φ = φL, which we will denote by Q′
L(K ,D).

We then can consider the map

α′
	 : H 1(K
/K ,D)[	] −→ Q′

L(K ,D)[	].

Applying the snake lemma as before, and using the assumption that H 1(K
/K ,D)

is almost �-divisible, we see that SL(K ,D) is almost �-divisible if and only if α′
	

is surjective for almost all 	 ∈ Specht=1(�).
We have an exact sequence

0 −→ Q′
L(K ,D) −→ QL(K ,D) −→ coker(φ) −→ 0. (6)

The kernel of the natural map ξ	 : QL(K ,D)[	] → coker(φ)[	] is Q′
L(K ,D)[	]

which clearly contains im(α	) = im(α′
	). We then obtain a map

ξ̃	 : coker(α	) −→ coker(φ)[	]

whose kernel is coker(α′
	). Thus, α′

	 is surjective if and only if ker(ξ̃	) is trivial.
Choose 	 ∈ Specht=1(�) so that the assumptions in Lemma 3.2.1 are satisfied.

Then q	 induces the isomorphism (4) and hence determines an isomorphism from
ker

(
ξ̃	

)
to a certain subgroup of coker(φ	), namely the subgroup

q−1
	

(
ker(ξ	)

)/
im(φ	) = ker

(
ξ	 ◦ q	

)/
im(φ	). (7)

Note that ξ	 ◦ q	 is a map from QL	
(K ,D[	]) to coker(φ)[	] and induces a map

from coker(φ	) to coker(φ)[	] whose kernel is (7). We can conclude that α′
	 is

surjective if and only if the map

coker(φ	) −→ coker(φ)[	] (8)

is injective.
Consequently, SL(K ,D) is almost �-divisible if and only if (8) is injective

for almost all 	 ∈ Specht=1(�). Note that (8) is surjective for almost all 	’s. To
see this, note that Q′

L(K ,D) is a quotient of H 1(K
/K ,D) and hence is almost
�-divisible. Applying the snake Lemma to (6), it follows that ξ	 is surjective for
almost all 	 ∈ Specht=1(�). The same is true for the map q	, hence for ξ	 ◦ q	,
and therefore for the map (8).

Examples exist where φ fails to be surjective, but α′
	 is surjective for almost all

	 ∈ Specht=1(�). This is discussed in the next section. The type of example con-
sidered there involves choosing a suitable Zp-extension K∞ of K and a suitable β in
the maximal ideal of � to define a Galois module T ∗ of �-rank 1. The Galois mod-
ule D is then Hom(T ∗, μp∞). When we take � = Zp[[T ]], both groups in (8) are
finite for almost all 	 ∈ Specht=1(�). Hence injectivity follows from surjectivity
by simply showing that their orders are equal.
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3.5 A Special Case

We discuss a way to verify that (8) is injective in a very special situation. A specific
example will be given at the end of Sect. 4.4. In general, suppose thatD satisfies the
assumptions in Proposition 2.6.2 and that LEO(D) and CRK(D,L) are satisfied.
Then X1(K , 
,T ∗) = 0. Suppose also that

L(Kv,D) ⊆ H 1(Kv,D)�−div (9)

for all v ∈ 
. Under these assumptions, we have

̂coker(φ) ∼= H 1(K
/K ,T ∗)�−tors
∼= H 0(K ,T ∗/θT ∗)

as �-modules, where θ ∈ � is any nonzero annihilator for H 1(K
/K ,T ∗)�−tors .
The first isomorphism follows from Propositions 2.3.1 and 3.1.1 in [7]. The second
follows from Proposition 2.2.2 in that paper.

Now assume also that D is a cofree �-module of corank 1. Then T ∗ is a
free �-module of rank 1. Suppose that the action of GK on T ∗ factors through
� = Gal(K∞/K ), where K∞ is a Zp-extension of K . Hence the image of GK in
�× is generated topologically by an element 1 + β, where β ∈ m. We assume that
p � β. Note that 1 + β has infinite order. We can choose θ (as above) so that β|θ .
We then have

̂coker(φ) ∼= (β−1θ)
/
θ ∼= �/(β) (10)

as �-modules. Let B = (β). Therefore, coker(φ)[	] is isomorphic to the Pontrya-
gin dual of �/(B + 	) as discrete �-modules.

In addition to the above assumptions, let us now assume that � ∼= Zp[[T ]]. Then
� has Krull dimension 2 and �/B is a free Zp-module of some rank. Furthermore,
if	 = (p), then�/	 is a finite integral extension of Zp and is free as a Zp-module.
Note that D[	] is Zp-cofree and hence Zp-divisible. If B ⊂ 	, then �/(B + 	)

is finite. Since the map (8) is surjective, injectivity will follow if one can verify that
coker(φ	) has the same order as �/(B + 	).

We add one more assumption. For each v ∈ 
, let �v be the decomposition sub-
group of � for v. We will assume that �v is nontrivial for all v ∈ 
. Thus, [� : �v]
is finite. A topological generator for �v acts as multiplication by 1 + βv , where
βv ∈ m. Note that 1 + βv = (1 + β)a , where a ∈ Zp and a = 0. Since p � β, it fol-
lows that p � βv . Let Bv = (βv). Then H 0(Kv,D) = D[Bv] is cofree as a �/Bv-
module and hence is almost divisible as a �-module. It follows that h	,v is an
isomorphism for almost all 	 ∈ Specht=1(�) and all v ∈ 
. Also, as we show in
the lemma below, H 1(Kv,D)�−div is�-cofree. Consequently, H 1(Kv,D)�−div[	]
is Zp-cofree (e.g., Zp-divisible) if p /∈ 	. Assuming that h	,v is injective, the
same is true for its inverse image under the map h	,v . Consequently, for almost
all 	 ∈ Specht=1(�), the inclusion (9) holds when D is replaced by D[	].
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Note that if p /∈ 	, then D[	] is Zp-cofree of finite corank. It is just a divis-
ible group. Furthermore, for almost all 	 ∈ Specht=1(�), both LEO(D[	]) and
CRK(D[	],L	) are satisfied. (See Sects. 2.4 and 3.3.) For such II, it follows that
X1(K , 
,T ∗/	T ∗) vanishes, that coker(φ	) is finite, and that we can determine
its order when the analogue of the inclusion (9) holds for D[	]. In what follows,
we will denote T ∗/	T ∗ more simply by T ∗

	.
For 	 as above, Propositions 2.3.1 and 3.1.1 in [7] imply that coker(φ	) is iso-

morphic to the Pontryagin dual of H 1(K
/K ,T ∗
	)Zp−tors . Since this last group is

finite, we can choose m sufficiently large so that pm annihilates that group. If we
assume that β /∈ 	, then Proposition 2.2.2 in [7] implies that this last group is iso-
morphic to H 0(K ,T ∗

	

/
pmT ∗

	). Hence, coker(φ	) has the same order as the kernel
of multiplication by β on the finite group T ∗

	

/
pmT ∗

	. This is the same as the order
of the cokernel of multiplication by β on that group, which is T ∗

	

/
(β, pm)T ∗

	. By
taking m >> 0, one can conclude that coker(φ	) has the same order as T ∗

	

/
βT ∗

	

since that group is finite. Since T ∗ is free of rank 1 over �, it follows that coker(φ	)

has the same order as �/(	 + B) for almost all 	 ∈ Specht=1(�), which is indeed
equal to the order of coker(φ)[	].

To complete this discussion, we need the following lemma.

Lemma 3.5.1 With the above assumptions, H 1(Kv,D)�−div is �-cofree.

Proof Let cv = corank�

(
H 1(Kv,D)

) = corank�

(
H 1(Kv,D)�−div

)
. It suffices to

show that H 1(Kv,D)�−div[	] is (�/	)-cofree of corank cv for at least one prime
ideal 	 ∈ Specht=1(�). For it would then follow by Nakayama’s lemma that the
Pontryagin dual of H 1(Kv,D)�−div can be generated by cv elements as a �-module
and hence must be a free �-module of rank cv .

For almost all 	 ∈ Specht=1(�), the (�
/
	)-coranks of H 1(Kv,D)�−div[	]

and H 1(Kv,D)[	] are both equal to cv . This follows from Remark 2.1.3 in [6].
We will assume in this proof that 	 is chosen in that way. To simplify the discus-
sion, we will also assume that 	 is chosen so that �/	 ∼= Zp. Define

Av = H 1(Kv,D)
/
H 1(Kv,D)�−div,

A	,v = H 1(Kv,D[	])/H 1(Kv,D[	])Zp−div.

By Poitou–Tate duality, we find that the Pontryagin dual of Av is isomorphic to
H 1(Kv,T ∗)�−tors . Just as argued above in the global case, it follows that Av[	]
is finite and is isomorphic to the Pontryagin dual of �/(Bv + 	) for almost
all 	 ∈ Specht=1(�). Furthermore, we have an isomorphism between the groups
H 1(Kv,T ∗/	T ∗)Zp−tors and �/(Bv + 	) for almost all 	 ∈ Specht=1(�). By
Poitou–Tate duality again, the Pontryagin dual of H 1(Kv,T ∗/	T ∗)Zp−tors is in
turn isomorphic to A	,v . Thus, it follows that Av[	] is finite and isomorphic to
A	,v for almost all 	 ∈ Specht=1(�). We assume that 	 is chosen in this way.

Since 	 is principal, a snake lemma argument gives us the following exact
sequence.
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0 −→ H 1(Kv,D)�−div[	] −→ H 1(Kv,D)[	] −→ Av[	] −→ 0.

By definition, we also have the exact sequence

0 −→ H 1(Kv,D[	])Zp−div −→ H 1(Kv,D[	]) −→ A	,v −→ 0.

Now the natural map H 1(Kv,D[	]) → H 1(Kv,D)[	] is an isomorphism for
almost all 	 because H 0(Kv,D) = D[βv] is an almost divisible �-module. For
such 	, it is clear that the image of H 1(Kv,D[	])Zp−div under that natural map is
precisely the maximal Zp-divisible submodule of H 1(Kv,D)[	] and hence is con-
tained in H 1(Kv,D)�−div[	]. The fact that Av[	] and A	,v have the same order
implies that the natural map induces an isomorphism

H 1(Kv,D[	])Zp−div −→ H 1(Kv,D)�−div[	]

of (�/	)-modules. Since the Zp-coranks of each is cv , it then follows that
H 1(Kv,D)�−div[	] is indeed (�/	)-cofree of corank cv . �

Remark 3.5.2 Suppose that 	 ∈ Specht=1(�) and that Av[	] has positive (�/	)-
corank. Since Av is a cofinitely generated, cotorsion �-module, this means that
Âv[	] has positive (�/	)-rank, and so the same is true for H 1(Kv,T ∗)�−tors[	].
Consequently, H 0(Kv,T ∗/	T ∗) has positive (�/	)-rank. Now

T ∗/	T ∗ ∼= Hom(D[	], μp∞).

If 	 = (p), it follows that Av[	] has positive (�/	)-corank if and only if the
group HomGKv

(D[	], μp∞) is infinite.
Assume now that GKv

acts onD[	] through a finite quotient group. Since p � βv ,
one sees easily that 	 = (p). Note that Kv(μp∞)/Kv is an infinite extension. Con-
sequently, it follows that Av[	] is finite. Furthermore, if J is a product of such prime
ideals, then Av[J ] is also finite. Therefore, if Lv is a �-submodule of H 1(Kv,D)

which is annihilated by such an ideal J and if Lv is divisible as a group, then we
must have the inclusion Lv ⊆ H 1(Kv,D)�−div .

4 Sufficient Conditions for Almost Divisibility

We will prove a rather general result in Sect. 4.1. Section 4.2 discusses the verifi-
cation of various hypotheses in that result. Section 4.3 will concern a special case
(although still quite general) where several of the hypotheses are automatically sat-
isfied.
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4.1 The Main Theorem

We prove the following result.

Proposition 4.1.1 Suppose that RFX(D) and LEO(D) are both satisfied, that
LOC(2)

v (D) is satisfied for all v in 
, and that there exists a non-archimedean prime
η ∈ 
 such that LOC(1)

η (D) is satisfied. Suppose also that L is almost divisible,
that CRK(D,L) is satisfied, and also that at least one of the following additional
assumptions is satisfied.

(a) D[m] has no subquotient isomorphic to μp for the action of GK ,
(b) D is a cofree �-module and D[m] has no quotient isomorphic to μp for the

action of GK ,
(c) There is a prime η ∈ 
 which satisfies LOC(1)

η (D) and such that QL(Kη,D) is
coreflexive as a �-module.

Then SL(K ,D) is an almost divisible �-module.

Proof First of all, RFX(D), LEO(D), and the assumptions about LOC(1)
v and

LOC(2)
v are sufficient to imply that H 1(K
/K ,D) is an almost divisible �-module.

This follows from Proposition 2.6.1. Secondly, since RFX(D) holds, D is certainly
�-divisible. We can apply Proposition 2.6.3 to conclude that SUR(D,L) is satisfied
too.

Thus, as described in Sect. 3.1, it suffices to show that the map

α	 : H 1(K
/K ,D)[	] −→ QL(K ,D)[	]

is surjective for almost all 	 = (π) in Specht=1(�). In the rest of this proof, we
will exclude finitely many 	’s in Specht=1(�) in each step, and altogether just
finitely many. We will follow the approach outlined in Sect. 3, reducing the question
to studying coker(φ	) and then applying Proposition 2.6.3. We want to apply that
proposition to D[	] and so must verify the appropriate hypotheses. At each step,
we consider just the 	’s which have not been already excluded. As described in
Sect. 2, we regard various (�/	)-modules as modules over a certain subring �	.

Since RFX(D) holds for D, it follows that D[	] is a divisible (�/	)-module.
Corollary 2.6.1 in [6] justifies that assertion. Therefore, D[	] is also divisible as a
�	-module. Furthermore, the assumption LEO(D) means that X2(K , 
,D) is
�-cotorsion. Consequently, X2(K , 
,D)[	] is a cotorsion (�/	)-module for
almost all 	 ∈ Specht=1(�). This follows from Remark 2.1.3 in [6]. The same is
true for X2(K , 
,D[	]) according to Lemma 4.1.1 in [6]. Recall that �/	 is
finitely-generated as a �	-module. It follows that LEO(D[	]) holds for almost all
	 ∈ Specht=1(�).

The fact that CRK(D,L) is satisfied implies that CRK(D[	],L	) is satis-
fied for almost all 	 ∈ Specht=1(�). This follows from Sect. 3.4. Thus, we can
assume from here on that coker(φ	) is �	-cotorsion. Now we consider the addi-
tional assumptions. Each implies the corresponding assumption in Proposition 2.6.3.
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Once we verify that assertion, it will then follow that φ	 is surjective for almost all
	 ∈ Specht=1(�). Hence the same thing will be true for α	. This will prove that
SL(K ,D) is indeed almost divisible as a �-module.

First assume that (a) is satisfied. Let m	 denote the maximal ideal of �	. Using
Proposition 3.8 in [6], it follows that D[	][m	] indeed has no subquotient isomor-
phic to μp. Now assume that (b) is satisfied. Then D[	] is cofree as a (�/	)-
module. Since 	 is principal, �/	 is a complete intersection. According to Propo-
sition 3.1.20 in [1], it follows that �/	 is a Cohen–Macaulay domain. Proposi-
tion 2.2.11 in [1] then implies that �/	 is a free �	-module. HenceD[	] is cofree
as a �	-module. Furthermore,D[m] = D[	][m] has no quotient isomorphic to μp

for the action of GK . Remark 3.2.2 in [7] implies that the same thing is true for
D[	][m	]. Thus, the assumption (b) in Proposition 2.6.3 for the �	-moduleD[	]
is indeed satisfied.

Now assume that (c) is satisfied. As pointed out in Sect. 2.4, LOC(1)
η (D[	]) is

satisfied for almost all 	 ∈ Specht=1(�). Since D is �-divisible and L(Kη,D) is
almost �-divisible, we have

QL	
(Kη,D[	]) ∼= QL(Kη,D)[	]

for almost all 	’s. It suffices to have L(Kη,D) divisible by π . The assumption
that QL(Kη,D) is a coreflexive �-module then implies that QL	

(Kη,D[	]) is
(�/	)-divisible, and hence �	-divisible, which is the only assumption in Proposi-
tion 2.6.3(c) left to verify. �

4.2 Non-primitive Selmer Groups

Suppose that 
0 is a subset of 
 consisting of non-archimedean primes. Consider
the map

φL,
0 : H 1(K
/K ,D) −→
∏

v∈
−
0

QL(Kv,D).

We denote the kernel of φL,
0 by S
0
L (K ,D). We refer to this group as the non-

primitive Selmer group corresponding to the specification L and the set 
0. It is
defined just as SL(K ,D), but one omits the local conditions for the specification
L corresponding to the primes v ∈ 
0. Of course, we have the obvious inclusion
SL(K ,D) ⊆ S
0

L (K ,D) and the corresponding quotient S
0
L (K ,D)

/
SL(K ,D) is

isomorphic to a �-submodule of
∏

v∈
0
QL(Kv,D). In effect, S
0

L (K ,D) is the
Selmer group corresponding to a new specification L′, where we simply replace
L(Kv,D) by L ′(Kv,D) = H 1(Kv,D) for all v ∈ 
0. Thus, we now have
QL′(Kv,D) = 0 for v ∈ 
0.

If we assume that SUR(D,L) is satisfied, then it obviously follows that
SUR(D,L′) is satisfied. Furthermore, we have
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S
0
L (K ,D)

/
SL(K ,D) ∼=

∏

v∈
0

QL(Kv,D).

In general, coker
(
φL′

)
is clearly a quotient of coker

(
φL

)
, and hence if we assume

that CRK(D,L) is satisfied, then so is CRK(D,L′). The following proposition then
follows immediately from Proposition 4.1.1(c).

Proposition 4.2.1 Suppose that RFX(D) and LEO(D) are both satisfied, that
LOC(2)

v (D) is satisfied for all v in 
, and that there exists a non-archimedean prime
η ∈ 
0 such that LOC(1)

η (D) is satisfied. Suppose also thatL is almost divisible and

that CRK(D,L) is satisfied. Then S
0
L (K ,D) is an almost divisible �-module.

Remark 4.2.2 Suppose that η is a non-archimedean prime not dividing p. Regard-
ingD[m] as an Fp-representation space for GKη

, suppose that it has no subquotients
isomorphic to μp or to Z/pZ (with trivial action of GKη

). According to Proposi-
tion 3.1 in [6], the GKη

-module D[mt ] has the same property for all t ≥ 1. The
local duality theorems imply that H 0(Kη,D[mt ]) and H 2(Kη,D[mt ]) both van-
ish, and therefore that H 1(Kη,D[mt ]) = 0. It follows that H 1(Kη,D) = 0. If we
let 
0 = {η}, then we have S
0

L (K ,D) = SL(K ,D). The hypothesis LOC(1)
η (D) is

also satisfied. Consequently, if the other assumptions in Proposition 4.2.1 are satis-
fied, it follows that SL(K ,D) is almost divisible as a �-module. Alternatively, in
this case, QL(Kη,D) vanishes and so is certainly coreflexive, making assumption
(c) in Proposition 4.1.1 satisfied.

4.3 Verifying the Hypotheses

We will discuss the various hypotheses in Proposition 4.1.1. Some of them are
already needed for Propositions 2.6.1 and 2.6.3, and we may simply refer to discus-
sions in [6, 7]. We have nothing additional to say about RFX(D). If D is R-cofree,
then that hypothesis is just that R is a reflexive ring.

4.3.1 The Local Hypotheses

There is a discussion of the verification of LOC(1)
v (D) and LOC(2)

v (D) in Sect. 5,
part F of [6]. Most commonly, LOC(1)

v (D) is satisfied for all non-archimedean
primes v ∈ 
 simply because H 0(Kv,T ∗) = 0 for those v’s. That is a rather mild
condition, although we mention one kind of example in Sect. 4.4 where it may fail
to be satisfied. Such examples were one motivation for introducing LOC(2)

v (D) as a
hypothesis in [6]. Another motivation is that for archimedean primes, H 0(Kv,T ∗)
is often nontrivial, but LOC(2)

v (D) may still be satisfied. The archimedean primes
are only an issue when p = 2.
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4.3.2 The Hypotheses CRK(D,L) and LEO(D)

As mentioned before, a discussion of LEO(D) can be found in Sect. 6, part D of [6].
It is called hypothesis L there. Of course, the validity of CRK(D,L) is related to the
choice of the specification L. We will discuss one rather natural way of choosing a
specification below. Let cL(K ,D) denote the �-corank of the cokernel of φL. Thus,
CRK(D,L) means that cL(K ,D) = 0. As discussed in the introduction to [7], one
has an equation

sL(K ,D) = b1(K ,D) − qL(K ,D) + cL(K ,D) + corank�

(
X2(K , 
,D)

)
,

where sL(K ,D) and qL(K ,D) are the �-coranks of SL(K ,D) and QL(K ,D),
respectively. The integer b1(K ,D) is defined just in terms of the Euler–Poincaré
characteristic for D and the �-coranks of some local Galois cohomology groups,
and does not depend on L. It occurs in Proposition 4.3 in [6]. One then has a lower
bound

sL(K ,D) ≥ b1(K ,D) − qL(K ,D)

and equality means that both CRK(D,L) and LEO(D) are satisfied. The simplest
case is where L is chosen so that qL(K ,D) = b1(K ,D). In this case, the equality
means that SL(K ,D) is a cotorsion �-module.

4.3.3 The Additional Assumptions in Proposition 4.1.1

Remark 3.2.2 in [7] discusses assumptions (a) and (b). It includes some observa-
tions when D arises from an n-dimensional representation ρ of Gal(K
/K ) over a
ring R, as in the introduction. One observation is that if n ≥ 2 and if the residual
representation ρ̃ is irreducible over the finite field R/M, then hypothesis (a) is satis-
fied. The residual representation gives the action of Gal(K
/K ) onD[M]. Another
observation in that remark is thatD[m] has a quotient isomorphic to μp if and only
ifD[M] has such a quotient.

We now discuss hypothesis (c). This will be useful if D[m] has a quotient or
subquotient isomorphic to μp for the action of GK . We will assume that η is a
non-archimedean prime in 
 and that LOC(1)

η (D) is satisfied. The issue is the core-
flexivity of QL(Kη,D) as a �-module.

Let us nowmake the following two assumptions: (i) H 1(Kη,D) is�-coreflexive,
(ii) L(Kη,D) is almost �-divisible. The coreflexivity of the discrete �-module
QL(Kη,D) then follows easily. To see this, suppose that A is a cofinitely gener-
ated, coreflexive, discrete �-module and that B is an almost divisible �-submodule
of A. Let X be the Pontryagin dual of A and let Y be the orthogonal complement
of B under the perfect pairing A × X → Qp/Zp. Then X is a finitely-generated,
reflexive �-module. Furthermore, X/Y is the Pontryagin dual of B and hence has
no nonzero pseudo-null �-submodules. However, the reflexive hull Ỹ ofY must be
contained in X and the quotient Ỹ/Y is a pseudo-null �-module, and so must be
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zero. It follows thatY is reflexive as a �-module and hence that its Pontryagin dual
A/B is a coreflexive �-module.

Section 5, part D, of [6] gives some sufficient conditions for H 1(Kη,D) to be
coreflexive. One condition requires the assumption that μp is not a quotient of
D[m] as a GKη

-module. However, that assumption clearly implies assumption (a)
in Proposition 4.1.1. Another more subtle sufficient condition is given in Proposi-
tion 5.9 in [6]. It involves T ∗ ⊗� �̂ which is denoted by D∗ there. We are assum-
ing that H 0(Kη,T ∗) = 0. Equivalently, that means that D∗(Kη) = H 0(Kη,D∗) is
�-cotorsion. Its Pontryagin dual D̂∗(Kη) is a torsion �-module. The result from [6]
is that ifD is �-cofree and if every associated prime ideal for the torsion �-module
D̂∗(Kη) has height at least 3, then H 1(Kη,D) is coreflexive as a �-module. Some
interesting cases where this criterion is satisfied will be discussed in [8].

Even if H 1(Kη,D) fails to be coreflexive, it is still possible for the quotient
�-module QL(Kη,D) to be coreflexive. Consider the following natural way to
specify a choice of L(Kη,D). Suppose that Cη is a GKη

-invariant �-submodule
of D and that H 2(Kη,Cη) vanishes. Then we can define

L(Kη,D) = im
(
H 1(Kη,Cη) −→ H 1(Kη,D)

)
.

Let Eη = D/Cη. The map H 1(Kη,D) → H 1(Kη,Eη) is surjective and its kernel
is L(Kη,D). If η � p, then one can take Cη = 0 and hence L(Kη,D) = 0. This is
often a useful choice. If η|p, then one often will make a nontrivial choice of Cη. This
kind of definition occurs in [4] for primes above p when a Galois representation ρ

satisfies something we called a “Panchiskin condition.” (See Sect. 4 in [4].) Under
the stated assumptions, we have

QL(Kη,D) ∼= H 1(Kη,Eη)

as �-modules. Propositions 5.8 and 5.9 from [6] then give the following result.

Proposition 4.3.1 In addition to the assumption that H 2(Kη,Cη) = 0, suppose that
either one of the following assumptions is satisfied.

(i) Eη is �-coreflexive and Eη[m] has no subquotient isomorphic to μp as a GKη
-

module,
(ii) Eη is �-cofree and every associated prime ideal for the �-module Ê∗

η(Kη) has
height at least 3.

Then the �-module QL(Kη,D) is coreflexive.

Concerning (i), note that it may be satisfied even if assumption (a) in Proposition
4.1.1 fails to be satisfied. One such situation will be mentioned in Sect. 4.4.

We will also want L(Kη,Cη) to be almost �-divisible. The following result fol-
lows immediately from Proposition 5.3 in [6].
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Proposition 4.3.2 Assume that Cη is �-coreflexive and that H 2(Kη,Cη) = 0. Then
H 1(Kη,Cη) is almost �-divisible. Hence the image of H 1(Kη,Cη) in H 1(Kη,D) is
also almost �-divisible.

4.4 The Two Classical Results

Let p be an odd prime. Suppose that T is a free Zp-module of rank n which has
a continuous action of Gal(K
/K ). Thus, we have a continuous homomorphism
Gal(K
/K ) → AutZp (T ). Suppose also that K∞ is the cyclotomic Zp-extension of
K and let � = Gal(K∞/K ). Let � = Zp[[�]] denote the completed group ring for
� over Zp. Thus, � is isomorphic to a formal power series ring Zp in one variable.
In this situation, one can define a free �-module T of rank n together with a homo-
morphism ρ : Gal(K
/K ) → Aut�(T ). This is described in Sect. 5 of [7] in detail,
where T is denoted by T ⊗ κ , and also in [4] where it is called the cyclotomic
deformation of T . Here κ is the natural embedding of � into �× and one thinks of
T as the twist of T by the �×-valued character κ .

Just as in the introduction, taking R = �, one can define D = T ⊗� �̂. This
discrete, �-cofree Gal(K
/K )-module D is denoted by D ⊗ κ in [7], where
D = T ⊗Zp (Qp/Zp). We think of D as the Gal(K
/K )-module obtained from
D by inducing from Gal(K
/K∞) up to Gal(K
/K ). We have D ∼= D[I ] as
Gal(K
/K ), where I denotes the augmentation ideal in �, Consequently, we have
D[p] ∼= D[m], where m is the maximal ideal of �.

Many of our hypothesis are automatically satisfied. Obviously, RFX(D) is sat-
isfied. Furthermore, Lemma 5.2.2 in [7] shows that LOC(1)

η (D) is satisfied for all
non-archimedean primes η in 
. This is so because only the archimedean primes
can split completely in K∞/K . Since p is assumed to be odd, if η is archimedean,
then (T ∗)GKη is a direct summand in T ∗ and hence LOC(2)

η (D) is satisfied. It is
reasonable to conjecture that LEO(D) is always satisfied. This is stated as Con-
jecture 5.2.1 in [7] and is equivalent to conjecture L stated in the introduction to
[6]. Section 5.2 in [6] discusses its validity. It is proved in certain special cases.
In the examples that we will discuss below, LEO(D) is indeed satisfied as well as
CRK(D,L).

Consider the case where T = Tp(E), the p-adic Tate module for an elliptic curve
defined over K . We then have T/pT ∼= E[p]. Let 
 be a finite set of primes of K
including the primes dividing p, the infinite primes, and the primes where E has
bad reduction. The properties of the Weil pairing E[p] × E[p] → μp show that
assumption (b) is satisfied if and only if E(K ) has no element of order p. Assume
that E has good, ordinary reduction at the primes of K lying over p. There is a
natural choice of a specification L in this case because the Panchiskin condition
is satisfied. See the discussion in Sect. 4.3. One chooses L(Kη,D) = 0 if η � p. If
η|p, let Cη denote the kernel of the reduction map E[p∞] → Eη[p∞], where Eη is
the reduction of E at η. Let Cη = Cη ⊗ κ . Then Eη = Eη[p∞] ⊗ κ . Note that L is
almost divisible.
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The formulas in Sect. 2.3 show that δ�(K ,D) = [K : Q], which is a lower
bound on corank�

(
H 1(K
/K ,D)

)
. However, the local formulas show easily that

QL(Kv,D) has �-corank 0 when v � p and �-corank [Kv : Qp] when v|p. There-
fore, corank�

(
QL(K ,D)

) = [K : Q]. Thus, if SL(K ,D) is �-cotorsion, then
inequality (2) shows that both LEO(D) and CRK(D,L) are satisfied.

The above discussion shows that if E(K ) has no element of order p and if
SL(K ,D) is �-cotorsion, then Proposition 4.1.1 implies that SL(K ,D) is an almost
divisible �-module. The second classical result stated in the introduction follows
from this because SelE (K∞) can be identified with the Selmer group attached to
D over K∞. However, Proposition 3.2 in [4] gives an isomorphism between that
Selmer group and SL(K ,D) (with a �-module structure modified by the involution
of � induced from γ → γ −1 for γ ∈ �).

Now suppose that K is totally real, that T ∼= Zp, and that GK acts on T by a
totally odd character ψ . Since p is odd, the order of ψ divides p − 1. Let 
 be a
finite set of primes of K including the primes dividing p, the infinite primes, and
the primes dividing the conductor of ψ . Define D and D as described above. Thus,
D is �-cofree and has �-corank 1. We take the following specification L:

L(Kv,D) = ker
(
H 1(Kv,D) → H 1(Kunr

v ,D)
)

for all v ∈ 
. Here Kunr
v denotes the maximal unramified extension of Kv . Thus,

SL(K ,D) consists of locally unramified cocycle classes in H 1(K
/K ,D) (or
equivalently, cocycle classes in H 1(K ,D) which are unramified at all primes v

of K .). Just as in the elliptic curve case, one can identify SL(K ,D) (slightly
modifying the �-module structure) with S(K∞.D) (as defined in the introduc-
tion) and hence the Pontryagin dual of SL(K ,D) can be identified with X (ψ),
where X = Gal(L∞/K∞,ψ ). Iwasawa proved that X is a finitely generated, tor-
sion �-module. Hence, SL(K ,D) is a cofinitely generated, cotorsion �-module.
As we explain below, L(Kv,D) is �-cotorsion for all v. Furthermore, the for-
mulas in Sect. 2.3 show that the �-corank of H 1(K
/K ,D) is at least [K : Q]
and the �-corank of QL(K ,D) is equal to [K : Q]. The fact that SL(K ,D) has
�-corank 0 implies that the �-corank of H 1(K
/K ,D) is equal to [K : Q] and
that CRK(D,L) is satisfied. It also follows that H 2(K
/K ,D) has �-corank 0,
and hence the same is true forX2(K∞, 
, D). Thus, LEO(D) is satisfied. We now
show that L is almost divisible.

LetD(Kunr
v ) denote H 0(Kunr

v ,D). The inflation-restriction sequence shows that

L(Kv,D) ∼= H 1
(
Kunr

v /Kv, D(Kunr
v )

)

as �-modules. Let ψv be the restriction of ψ to the decomposition subgroup �v

of � = Gal(Kψ/K ). Then ψv is a faithful character of �v and has order dividing
p − 1. We can regard ψv as a character of GKv

and it defines a faithful charac-
ter of Gal(Kv,ψv

/Kv) for a certain cyclic extension Kv,ψv
of Kv . Let Kv,∞ be the

cyclotomic Zp-extension of Kv and let �v = Gal(Kv,∞/K ). The action of GKv
on

D factors through Gal(Kv,ψv
Kv,∞/Kv) which is isomorphic to �v × �v , where we
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have identified �v and �v with subgroups of Gal(Kv,ψv
Kv,∞/Kv) in an obvious

way. Note that �v is a cyclic group of order dividing p − 1. The inertia subgroup of
�v is also cyclic and a generator will act on D as multiplication by a root of unity
εv of order dividing p − 1.

If the restriction of ψv to GKunr
v

is nontrivial, then εv = 1 and hence
D(Kunr

v ) = 0. It follows that L(Kv,D) = 0 for such v. We assume now that ψv

is unramified at v and hence εv = 1. The restriction map

H 1
(
Kunr

v /Kv, D(Kunr
v )

) −→ H 1
(
Kunr

v /Kv,ψv
, D(Kunr

v )
)�v

is injective. Also, we have an isomorphism

H 1
(
Kunr

v /Kv,ψv
, D(Kunr

v )
)�v ∼= Hom�v

(
�v, D(Kunr

v )
/
(γv − 1)D(Kunr

v )
)
.

(11)

The action of �v on �v (by conjugation) is trivial. On the other hand, �v is cyclic
and a generator δv acts onD as multiplication by a root of unity ζv of order dividing
p − 1. Hence, if ψv is nontrivial, then ζv = 1 and

H 0(�v,D(Kunr
v )

/
(γv − 1)D(Kunr

v )
)

must vanish. It follows that the right side in (11) is trivial. Therefore, we must have
L(Kv,D) = 0 in this case too.

We assume now that ψv is trivial and hence the action of GKv
on D fac-

tors through Gal(Kv,∞/Kv). If v � p, then v is unramified in K∞/K and hence
Kv,∞ ⊂ Kunr

v . Thus,D(Kunr
v ) = D. Furthermore, Gal(Kunr

v /Kv) contains a unique
subgroup P isomorphic to Zp and the restriction map P → �v is an isomorphism.
The action of P onD is through this isomorphism. Let γv be a topological generator
for �v . The restriction map

H 1(Kunr
v /Kv,D) −→ H 1(P,D)

is injective. Also, H 1(P,D) ∼= D/(γv − 1)D vanishes because γv − 1 acts onD as
multiplication by a nonzero element of � and D is �-divisible. The above remarks
show that L(Kv,D) = 0 for all v � p.

Now consider primes v of K lying over p. Ifψv is nontrivial, then L(Kv,D) = 0,
as shown above. Assuming that ψv is trivial, the action of GKv

onD factors through
�v . By definition, �v ⊆ � is identified with a subgroup of �× = Zp[[�]]× in a
canonical way, and one sees that γv acts on D as multiplication by 1 + βv , where
βv ∈ � and p � βv . The inertia subgroup of �v is topologically generated by γ

pa
v

for some a ≥ 0. Also, γ
pa

v − 1 acts as multiplication by β
pa
v − 1, an element of

� which is not divisible by p. It follows that D(Kunr
v ) = D[β pa

v − 1] is a divisi-
ble group. It also follows that D(Kunr

v ) is a cotorsion �-module. Furthermore, as
before, H 1

(
Kunr

v /Kv,D(Kunr
v )

)
is isomorphic to a certain quotient of D(Kunr

v ).
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Hence L(Kv,D) is cotorsion as a �-module and is a divisible group. Hence, its
Pontryagin dual has no nonzero finite �-submodules. Thus, in this case, L(Kv,D)

may be nontrivial, but it is still almost divisible as a �-module.
Assume that ψ = ω. Now D[m] is a 1-dimensional Fp-vector space on which

GK acts by ψ . Hence, assumption (a) in Proposition 4.1.1 is satisfied. It then fol-
lows that the �-module SL(K ,D) is indeed almost divisible, and hence Iwasawa’s
theorem is proved when ψ = ω.

In the case ψ = ω, then we are in the setting of Sect. 3.5 and must use the results
from Sects. 3.4 and 3.5. In this case, (10) shows that φL is not surjective. We must
show that L(Kv,D) ⊆ H 1(Kv,D)�−div for all v ∈ 
. Now, L(Kv,D) is nontriv-
ial only when v|p and and ψv is trivial. But in that case, L(Kv,D) is a quotient
of D[β pa

v − 1] and is annihilated by J = (β
pa
v − 1). Now J is a product of prime

ideals of height 1 which contain β
pa
v − 1. Hence, GKv

acts onD[	] through a finite
quotient group. Remark 3.5.2 then implies that L(Kv,D) ⊆ H 1(Kv,D)�−div . This
is true for all v ∈ 
. Consequently, SL(K ,D) is an almost divisible �-module.

4.5 Examples Where Almost Divisibility Fails

We consider two variants of the classical examples mentioned in Sect. 4.4. We will
follow the notation described there and the Selmer groups will be defined in exactly
the same way. In one example, all the hypotheses in Proposition 4.1.1 are satis-
fied, except that none of the additional assumptions (a), (b) or (c) hold. In another
example, it is CRK(D,L) which is not satisfied.

Let p = 5. Let E be the elliptic curve over Q of conductor 11 such that
E(Q) = 0. It is the second curve in Cremona’s tables and has good, ordinary reduc-
tion at p. The curve E has an isogeny of degree p defined overQ whose kernel � is
isomorphic to μp for the action of GQ. Also, the action of GQ on E[p]/� ∼= Z/pZ
is trivial. Let K = Q(μp) and let T = Tp(E) as in Sect. 4.4. Note that E(K ) has a
point of order p. A theorem of Kato, or a direct calculation, implies that SL(K ,D)

is �-cotorsion, and hence CRK(D,L) is satisfied. It is clear thatD[m] = E[p] has
a quotient E[p]/� isomorphic to μp for the action of GK . Thus, assumptions (a)
and (b) fail to hold. We take 
 to be the set of primes lying above ∞, p, or 11.
Assumption (c) fails to hold too. For if η lies over 11, one finds that QL(Kη,D) is
�-cotorsion, but nontrivial, and hence cannot be coreflexive. If η lies over p, one
finds that QL(Kη,D) is not �-divisible and hence is not coreflexive. In this exam-
ple, SL(K ,D) can be identified with SelE (K∞)p as �-modules (up to an involution
of �). It is shown in [5], pp. 127–128, that SelE (K∞)p has a direct summand as a
�-module which is of order p. Hence, the Pontryagin dual of SelE (K∞)p has a sub-
module isomorphic to �/m. And so, in this example, SL(K ,D) fails to be almost
divisible as a �-module.

Let p be any odd prime. Suppose that K is a totally real number field, that
T ∼= Zp, and that GK acts on T by a totally even character ψ . In this case, Kψ is
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totally real. It is conjectured that X = Gal(L∞/K∞,ψ ) is finite. We refer the reader
to [9], pp. 350, 351, for more discussion and references concerning this conjecture.
There are many examples when K = Q, ψ has order 2, and p = 3, where X (ψ)

turns out to be finite, but nonzero. It would then follow that SL(K ,D) is finite and
nonzero, and hence fails to be almost divisible as a �-module. The weak Leopoldt
conjecture holds for the Zp-extension K∞,ψ/Kψ and this implies that the �-corank
of H 1(K
/K ,D) is zero. We refer the reader to page 344 in [6] for an explana-
tion. In contrast, the local formula in Sect. 2.3 implies that QL(K ,D) has positive
�-corank. Therefore, CRK(D,L) cannot be satisfied.
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Control of �-adic Mordell–Weil Groups

Haruzo Hida

Abstract The (pro)�-MW group is a projective limit of Mordell–Weil groups over
a number field k (made out of modular Jacobians) with an action of the Iwasawa
algebra and the “big” Hecke algebra. We prove a control theorem of the ordinary
part of the �-MW groups under mild assumptions. We have proven a similar control
theorem for the dual completed inductive limit in [21].

Keywords Modular curve · Hecke algebra · Modular deformation · Analytic
family of modular forms · Mordell–Weil group · Modular Jacobian

MSCs primary: 11G40, 11F25, 11F32, 11G18, 14H40 · secondary: 11D45,
11G05, 11G10

1 Introduction

Fix a prime p. This article concerns weight 2 cusp forms of level Npr for r > 0 and
p � N , and for small primes p = 2, 3, they exist only when N > 2; thus, we may
assume Npr ≥ 4. Then the open curve Y1(Npr ) (obtained from X1(Npr ) remov-
ing all cusps) gives the fine smooth moduli scheme classifying elliptic curves E
with an embedding μNpr ↪→ E . We applied in [17, 20] the techniques of U (p)-
isomorphisms to Barsotti–Tate groups of modular Jacobian varieties of high p-power
level (with the fixed prime-to-p level N ). In this article, we apply the same tech-
niques of U (p)-isomorphisms to the projective limit of Mordell–Weil groups of
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the Jacobians and see what we can say (see Sect. 3 for U (p)-isomorphisms). We
study the (inductive limit of) Tate–Shafarevich groups of the Jacobians in another
article [22].

Let Xr = X1(Npr )/Q be the compactified moduli of the classification problem
of pairs (E, φ) of an elliptic curve E and an embedding φ : μNpr ↪→ E[Npr ].
Write Jr/Q for the Jacobian whose origin is given by the infinity cusp ∞ ∈ Xr (Q)

of Xr . For a number field k, we consider the group of k-rational points Jr (k).
Put Ĵr (k) := lim←−n

Jr (k)/pn Jr (k) (as a compact p-profinite module). The Albanese
functoriality of Jacobians (twisted by the Weil involutions) gives rise to a projective
system { Ĵr (k)}r compatible with Hecke operators (see Sect. 6 for details of twist-
ing), and we have

Ĵ∞(k) = lim←−
r

Ĵr (k)

equipped with the projective limit compact topology. By Picard functoriality, we
have an injective limit J∞(k) = lim−→r

Ĵr (k) (with the injective limit of the com-

pact topology of Ĵr (k)) and J∞[p∞]/Q = lim−→r
Jr [p∞]/Q (the injective limit of the

p-divisible Barsotti–Tate group). We define

J̌∞(k) = lim←−
n

J∞(k)/pn J∞(k).

An fppf sheaf F (over Spec(k)) is a presheaf functor from the fppf site over Spec(k)
to the category of abelian groups satisfying the sheaf condition for an fppf covering
{Ui } of T/k , that is, the exactness of

0 → F (T )
ResUi /T−−−−→

∏

i

F (Ui )
ResUi j /Ui −ResUi j /U j−−−−−−−−−−−→

∏

i, j

F (Ui j ), (L)

where ResU/V indicates the restriction map relative to U → V and Ui j := Ui ×T

U j . Since the category of fppf sheaves over Q (e.g., [4, §4.3.7]) is an abelian cate-
gory (cf. [10, II.2.15]), if we apply a left exact functor (of the category of abelian
groups into itself) to the value of a sheaf, it preserves the sheaf condition given
by the left exactness (L). Thus projective limits and injective limits exist inside the
category of fppf sheaves. We may thus regard

R �→ Ĵ∞(R) := lim←−
r

(Jr (R) ⊗Z Zp) and R �→ J∞(R)

as fppf sheaves over the fppf site over Q for an fppf extension R/k , though we do
not use this fact much (as we compute Ĵ∞(k) as a limit of Ĵs(k) not using sheaf
properties of Ĵ∞). If one extends Ĵs to the ind-category of fppf extensions, we no
longer have projective limit expression. We have given detailed description of the
value Ĵs(R) in [21, §2] and we will give a brief outline of this in Sect. 2 in the text.
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We can think of the sheaf endomorphism algebra End(J∞/Q) (in which we have
Hecke operators T (n) and U (l) for l|Np).

The Hecke operatorU (p) acts on Jr (k), and the p-adic limit e = limn→∞ U (p)n!
is well defined on Ĵr (k). As is well known (cf. [17, 28]; see an exposition on this
in Sect. 6), T (n), U (l) and diamond operators are endomorphisms of the injective
(resp. projective) systems {Js(k)}s (resp. { Ĵs(k)}s). The projective system comes
fromw-twisted Albanese functoriality for the Weil involutionw (as we need to twist
in order to make the system compatible withU (p); see Sect. 6 for the twisting). The
image of e is called the ordinary part. We attach as the superscript or the subscript
“ord” to indicate the ordinary part. Since these Zp-modules have natural action of
the Iwasawa algebra � through diamond operators, we call in particular the group
Ĵ∞(k)ord the pro �-MW group (“MW” stands for Mordell–Weil). We define the
�-BT groupG/Q by the ordinary part J∞[p∞]ord/Q of J∞[p∞]/Q whose detailed study
is made in [20, §4]. Though in [20], we made an assumption that p ≥ 5, as for the
results over Q in [20, §4], they are valid without any change for p = 2, 3 as verified
in [15] for p = 2 (and the prime p = 3 can be treated in the same manner as in [16]
or [20, §4]). Thus we use control result over Q of G in this paper without assum-
ing p ≥ 5. Its Tate module TG := HomZp (�

∨,G) is a continuous �[Gal(Q/Q)]-
module under the profinite topology, where M∨ = HomZp (M, Qp/Zp) (Pontryagin
dual) for Zp-modules M . We define the big Hecke algebra h = h(N ) to be the
�-subalgebra of End�(TG) generated by Hecke operators T (n) (n = 1, 2, . . . ).
Then Ĵ∞(k)ord and J̌∞(k)ord are naturally continuous h-modules. Take a connected
component Spec(T) of Spec(h) and define the direct factors

Ĵs(k)
ord
T := Ĵs(k)

ord ⊗h T (s = 1, 2, . . . ,∞) and TGT := TG ⊗h T

of Ĵ∞(k)ord and TG, respectively. In this introduction, for simplicity, we assume
that the component T cuts out Ĵ∞(k)ordT from Ĵ∞(k)ord a part with potentially
good reduction modulo p (meaning that GT[γ ps − 1] extends to �-BT group over
Zp[μps ] for all s). This is to avoid technicality coming from potentially multiplica-
tive reduction of factors of Js outside Ĵs(k)ordT .

The maximal torsion-free part � of Z×
p (which is a p-profinite cyclic group) acts

on these modules by the diamond operators. In other words, for modular curves
Xr and X0(Npr ), we identify Gal(Xr/X0(Npr )) with (Z/NprZ)×, and � acts on
Jr through its image in Gal(Xr/X0(Npr )). Therefore the Iwasawa algebra � =
Zp[[�]] = lim←−r

Zp[�/� pr ] acts on the pro �-MW group, the ind �-MW group,
the �-BT group and its Tate module. Then TG is known to be free of finite rank
over � [15, 17] and [20, §4]. A prime P ∈ Spec(T)(Qp) is called arithmetic of
weight 2 if P factors through Spec(T ⊗� Zp[�/� pr ]) for some r > 0. Associated
to P is a unique Hecke eigenform of weight 2 on X1(Npr ) for some r > 0. Write
BP for the Shimura’s abelian quotient associated to fP of the jacobian Jr . LetAT be
the set of all principal arithmetic points of Spec(T)(Qp) of weight 2 and put �T :=
{P ∈ AT|BP has good reduction over Zp[μp∞]}. The word “principal” means, as
a prime ideal of T, it is generated by a single element, often written as α. In this
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article, we prove control results for the pro �-MW group Ĵ∞(k)ord and study the
control of the ind �-MW-groups J̌∞(k)ord in the twin paper [21, Theorem 6.5].
Take a topological generator γ = 1 + pε of �, and regard γ as a group element of
� = Zp[[�]], where ε = 1 if p > 2 and ε = 2 if p = 2. We use this definition of ε

throughout the paper (and we assume that r ≥ ε if the exponent r − ε shows up in
a formula). We fix a finite set S of places of Q containing all places v|Np and the
archimedean place. Here is a simplified statement of our finial result:
Theorem. If T is an integral domain, for almost all principal arithmetic prime P =
(α) ∈ AT, we have the following canonical exact sequence up to finite error of
Hecke modules:

0 → Ĵ ord
∞ (k)T

α−→ Ĵ ord
∞ (k)T

ρ∞−→ B̂ord
P (k)T. (1)

This theorem will be proven as Theorem 9.2. The exact sequence in the theorem is a
Mordell–Weil analogue of a result of Nekovář in [27, 12.7.13.4] for Selmer groups
and implies that Ĵ ord∞ (k) is a �-module of finite type. In the text, we prove a stronger
result showing finiteness of Coker(ρ∞) for almost all principal arithmetic primes P
if the ordinary part of Selmer group of BP0 is finite for one principal arithmetic
prime P0 (see Theorem 10.1).

Put J̌∞(k)∗ord := HomZp ( J̌∞(k)ord, Zp). In [21, Theorem 1.1], we proved the fol-
lowing exact sequence:

J̌∞(k)∗ord,P
α−→ J̌∞(k)∗ord,P → ÂP(k)∗ord,P → 0

for arithmetic P of weight 2, in addition to the finiteness of J̌∞(k)∗ord as a�-module.
This sequence is a localization at P of the natural one. The two sequences could be
dual each other if we have a �-adic version of the Néron–Tate height pairing.

Here is some notation for Hecke algebras used throughout the paper. Let

hr (Z) = Z[T (n),U (l) : l|Np, (n, Np) = 1] ⊂ End(Jr ),

and put hr (R) = hr (Z) ⊗Z R for any commutative ring R. Then we define hr =
e(hr (Zp)). The restriction morphism hs(Z)  h �→ h|Jr ∈ hr (Z) for s > r induces
a projective system {hr }r whose limit gives rise to a big ordinary Hecke algebra

h = h(N ) := lim←−
r

hr .

Writing 〈l〉 (the diamond operator) for the action of l as an element of (Z/NprZ)× =
Gal(Xr/X0(Npr )), we have an identity l〈l〉 = T (l)2 − T (l2) ∈ hr (Zp) for all
primes l � Np. Thus we have a canonical �-algebra structure � = Zp[[�]] ↪→ h. It
is now well known that h is a free of finite rank over� and hr = h ⊗� �/(γ pr−ε −1)
(cf. [16]). Though the construction of the big Hecke algebra is intrinsic, to relate an
algebra homomorphism λ : h → Qp killing γ pr − 1 for r > 0 to a classical Hecke
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eigenform, we need to fix (once and for all) an embedding Q
i p−→ Qp of the algebraic

closure Q in C into a fixed algebraic closure Qp of Qp. We write i∞ for the inclusion
Q ⊂ C.

The following two Sects. 3 and 4 (after a description of sheaves associated to
abelian varieties) about U (p)-isomorphisms are an expanded version of a con-
ference talk at CRM (see http://www.crm.umontreal.ca/Representations05/indexen.
html) in September of 2005 which was not posted in the author’s web page, though
the lecture notes of the two lectures [18] at CRM earlier than the conference have
been posted. While converting [18] into a research article [20], the author found an
application to Mordell–Weil groups of modular Jacobians. The author is grateful
for CRM’s invitation to speak. The author would like to thank the referee of this
paper for careful reading (and the proof of (10.4) in the old version is incomplete as
was pointed out by the referee). Heuristically, as explained just after Theorem 10.1,
this point does not cause much trouble as we are dealing with the standard tower
for which the root number for members of the family is not equal to −1 for most
arithmetic point; so, presumably, the Mordell Weil group of BP is finite for most P .

2 Sheaves Associated to Abelian Varieties

Here is a general fact proven in [21, §2] about sheaves associated to abelian varieties.
Let 0 → A → B → C → 0 be an exact sequence of algebraic groups proper over
a field k. The field k is either a number field or a finite extension of the l-adic field
Ql for a prime l. We assume that B and C are abelian varieties. However A can be
an extension of an abelian variety by a finite (étale) group.

If k is a number field, let S be a set of places including all archimedean places of
k such that all members of the above exact sequence have good reduction outside S.
We use the symbol K for kS (the maximal extension unramified outside S) if k is
a number field and for k (an algebraic closure of k) if k is a finite extension of
Ql . A general field extension of k is denoted by κ . We consider the étale topology,
the smooth topology and the fppf topology on the small site over Spec(k). Here
under the smooth topology, covering families are made of faithfully flat smooth
morphisms.

For the moment, assume that k is a number field. In this case, for an exten-
sion X of abelian variety defined over k by a finite étale group scheme, we define
X̂(κ) := X (κ) ⊗Z Zp for an fppf extension κ over k. By Mordell–Weil theorem
(and its extension to fields of finite type over Q; e.g., [2, IV]), we have X̂(κ) =
lim←−n

X (κ)/pn X (κ) if κ is a field extension of k of finite type. We may regard the

sequence 0 → Â → B̂ → Ĉ → 0 as an exact sequence of fppf abelian sheaves over
k (or over any subring of k over which B and C extends to abelian schemes). Since
we find a complementary abelian subvariety C ′ of B such that C ′ is isogenous to C
and B = A + C ′ with finite A ∩ C ′, adding the primes dividing the order |A ∩ C ′| to
S, the intersection A ∩ C ′ ∼= Ker(C ′ → C) extends to an étale finite group scheme

http://www.crm.umontreal.ca/Representations05/indexen.html
http://www.crm.umontreal.ca/Representations05/indexen.html
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outside S; so, C ′(K ) → C(K ) is surjective. Thus we have an exact sequence of
Gal(K/k)-modules

0 → A(K ) → B(K ) → C(K ) → 0.

Note that Â(K ) = A(K ) ⊗Z Zp := ⋃
F Â(F) for F running over all finite exten-

sions of k inside K . Then we have an exact sequence

0 → Â(K ) → B̂(K ) → Ĉ(K ) → 0. (2)

Now assume that k is a finite extension of Ql . Again we use F to denote
a finite field extension of k. Then A(F) ∼= Odim A

F ⊕ F for a finite group F

for the l-adic integer ring OF of F (by [23] or [32]). Thus if l �= p, Â(F) :=
lim←−n

A(F)/pn A(F) = F ⊗Z Zp = A[p∞](F). Recall K = k. Then Â(K ) =
A[p∞](K ) (for A[p∞] = lim−→n

A[pn] with A[pn] = Ker(pn : A → A)); so, defin-

ing Â, B̂ and Ĉ by A[p∞], B[p∞] and C[p∞] as fppf abelian sheaves, we again
have the exact sequence (2) of Gal(k/k)-modules:

0 → Â(K ) → B̂(K ) → Ĉ(K ) → 0

and an exact sequence of fppf abelian sheaves

0 → Â → B̂ → Ĉ → 0

whose value at a finite field extension κ/Ql coincides with X̂(κ) = lim←−n
X (κ)/

pn X (κ) for X = A, B,C .
Suppose l = p. For any module M , we define M (p) by the maximal prime-

to-p torsion submodule of M . For X = A, B,C and an fppf extension R/k , the
sheaf R �→ X (p)(R) = lim−→p�N

X [N ](R) is an fppf abelian sheaf. Then we define

the fppf abelian sheaf X̂ by the sheaf quotient X/X (p). Since X (F) = Odim X
F ⊕

X [p∞](F) ⊕ X (p)(F) for a finite field extension F/k , over the étale site on k, X̂
is the sheaf associated to a presheaf R �→ Odim X

F ⊕ X [p∞](R). If X has semi-
stable reduction over OF , we have X̂(F) = X◦(OF ) + X [p∞](F) ⊂ X (F) for
the formal group X◦ of the identity connected component of the Néron model
of X over OF [32]. Since X becomes semi-stable over a finite Galois exten-
sion F0/k, in general X̂(F) = H 0(Gal(F0F/F), X (F0F)) for any finite exten-
sion F/K (or more generally for each finite étale extension F/k); so, F �→ X̂(F)

is a sheaf over the étale site on k. Thus by [10, II.1.5], the sheafication coin-
cides over the étale site with the presheaf F �→ lim←−n

X (F)/pn X (F). Thus we con-

clude X̂(F) = lim←−n
X (F)/pn X (F) for any étale finite extensions F/k . Moreover

X̂(K ) = ⋃
K/F/k X̂(F). Applying the snake lemma to the commutative diagram

with exact rows (in the category of fppf abelian sheaves):
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A(p) ↪→−−−−→ B(p) �−−−−→ C (p)

∩
⏐
⏐
� ∩

⏐
⏐
� ∩

⏐
⏐
�

A −−−−→
↪→ B −−−−→

�
C,

the cokernel sequence gives rise to an exact sequence of fppf abelian sheaves over
k:

0 → Â → B̂ → Ĉ → 0

and an exact sequence of Gal(k/k)-modules

0 → Â(K ) → B̂(K ) → Ĉ(K ) → 0.

In this way, we extended the sheaves Â, B̂, Ĉ to fppf abelian sheaves keeping the
exact sequence Â ↪→ B̂ � Ĉ intact. However note that our way of defining X̂ for
X = A, B,C depends on the base field k = Q, Qp, Ql . Here is a summary for fppf
algebras R/k :

X̂(R) =

⎧
⎪⎨

⎪⎩

X (R) ⊗Z Zp if [k : Q] < ∞,

X [p∞](R) if [k : Ql] < ∞(l �= p),

(X/X (p))(R) as a sheaf quotient if [k : Qp] < ∞.

(S)

Here is a sufficient condition when X̂(κ) is given by the projective limit:
lim←−n

X (κ)/pn X (κ) for X = A, B or C :

X̂(κ) = lim←−
n

X̂(κ)/pn X̂(κ)

if

⎧
⎪⎨

⎪⎩

[k : Q] < ∞ and κ is a field of finite type over k

[k : Ql] < ∞ with l �= p and κ is a field of finite type over k

[k : Qp] < ∞ and κ is a finite algebraic extension over k.

(3)

A slightly weaker sufficient condition for X̂(κ) = lim←−n
X̂(κ)/pn X̂(κ) is proven in

[21, Lemma 2.1].
For a sheaf X under the topology ?, we write H •

? (X) for the cohomology group
H 1

? (Spec(k), X) under the topology ?. If we have no subscript, H 1(X) means the
Galois cohomology H •(Gal(K/k), X) for the Gal(K/k)-module X . For any Zp-
module M , we put TpM = lim←−n

M[pn] = HomZp (Qp/Zp, M).
The following fact is essentially proven in [21, Lemma 2.2] (where it was proven

for finite S but the same proof works for infinite S as is obvious from the fact that it
works under fppf topology):
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Lemma 2.1 Let X be an extension of an abelian variety over k by a finite étale
group scheme of order prime to p. Then, we have a canonical injection

lim←−
n

X̂(k)/pn X̂(k) ↪→ lim←−
n

H 1(X [pn]).

Similarly, for any fppf or smooth extension κ/k of finite type which is an integral
domain, we have an injection

lim←−
n

X̂(κ)/pn X̂(κ) ↪→ lim←−
n

H 1
? (Spec(κ), X [pn])

for ? = fppf or sm according as κ/k is an fppf extension or a smooth extension of
finite type. For Galois cohomology, we have an exact sequence for j = 0, 1:

0 → lim←−
n

H j (X̂(k))/pnH j (X̂(k)) → lim←−
n

H j+1(X [pn]) → TpH
j+1(X).

The natural map: lim←−n
H j+1(X [pn]) π−→ TpH j+1(X) is surjective if either j = 0 or

k is local or S is finite. In particular, H 1(TpX) for TpX = lim←−n
X [pn] is equal to

lim←−n
H 1(X [pn]), and

0 → X̂(k) → H 1(TpX) → TpH
1(X)[pn] → 0

is exact.

We shall give a detailed proof of the surjectivity of π for Galois cohomology
(which we will use) along with a sketch of the proof of the exactness.

Proof By p-divisibility, we have the sheaf exact sequence under the étale topology
over Spec(κ)

0 → X [pn] → X
pn−→ X → 0.

This implies, we have an exact sequence

0 → X [pn](K ) → X (K )
pn−→ X (K ) → 0.

By the long exact sequence associated to this sequence, for a finite intermediate
extension K/κ/k, we have exactness of

0 → H j (X (κ))/pnH j (X (κ)) → H j+1(X [pn]) → H j+1(X)[pn] → 0. (∗)

Passing to the limit (with respect to n), we have the exactness of

0 → lim←−
n

H j (X (κ))/pnH j (X (κ)) → H j+1(TpX) → TpH
j+1(X).
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as lim←−n
H j+1(X [pn]) = H j+1(lim←−n

X [pn]) = H j (TpX) for j = 0, 1 without
assumption if j = 0 and assuming S is finite if j = 1 (because of finiteness of
X [pn](K ) and p-divisibility of X ; e.g., [12, Corollary 2.7.6] and [22, Lemma 7.1
(2)]).

Assume κ = k. If k is local or S is finite, by Tate duality, all the terms of
(∗) is finite; so, the surjectivity of (∗) is kept after passing to the limit. If j =
0 and κ = k, X (k)/pn X (k) is a finite module; so, the sequences (∗) satisfied
Mittag–Leffler condition. Thus again the surjectivity of (∗) is kept after passing to
the limit. �

For finite S, the following module structure of H 1( Â) is well known (see [9,
Corollary I.4.15] or [21, Lemma 2.3]):

Lemma 2.2 Let k be a finite extension of Q or Ql for a prime l. Suppose that S is
finite if k is a finite extension of Q. Let A/k be an abelian variety. Then H 1(A) ⊗Z

Zp = H 1( Â) is isomorphic to the discrete module (Qp/Zp)
r ⊕  for a finite r ≥ 0

and a finite p-torsion group .

Hereafter we assume that S is a finite set unless otherwise indicated.

3 U( p)-isomorphisms for Group Cohomology

For Z[U ]-modules X and Y , we call a Z[U ]-linear map f : X → Y a U -injection
(resp. a U -surjection) if Ker( f ) is killed by a power of U (resp. Coker( f ) is
killed by a power of U ). If f is an U -injection and U -surjection, we call f is a
U -isomorphism. If X → Y is a U -isomorphism, we write X ∼=U Y . In terms of
U -isomorphisms (for U = U (p),U ∗(p), we describe briefly the facts we need in
this article (and in later sections, we fill in more details in terms of the ordinary
projector e and the co-ordinary projector e∗ := limn→∞ U ∗(p)n!).

Let N be a positive integer prime to p. We consider the (open) modular curve
Y1(Npr )/Q which classifies elliptic curves E with an embedding φ : μpr ↪→ E[pr ]
= Ker(pr : E → E) of finite flat groups. Let Ri = Z(p)[μpi ] and Ki = Q[μpi ]. For
a valuation subring or a subfield R of K∞ over Z(p) with quotient field K , we write
Xr/R for the normalization of the j-line P( j)/R in the function field of Y1(Npr )/K .
The group z ∈ (Z/prZ)× acts on Xr by φ �→ φ ◦ z, as Aut(μNpr ) ∼= (Z/NprZ)×.
Thus � = 1 + pεZp = γ Zp acts on Xr (and its Jacobian) through its image in
(Z/NprZ)×. Hereafter we take U = U (p),U ∗(p) for the Hecke–Atkin operator
U (p).

Let Jr/R = Pic0Xr/R
be the connected component of the Picard scheme. We state

a result comparing Jr/R and the Néron model of Jr/K over R. Thus we assume that
R is a valuation ring. By [8, 5.5.1, 13.5.6, 13.11.4], Xr/R is regular; the reduction
Xr ⊗R Fp is a union of irreducible components, and the component containing the
∞ cusp has geometric multiplicity 1. Then by [1, Theorem 9.5.4], Jr/R gives the
identity connected component of the Néron model of the Jacobian of Xr/R . In this
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paper, we do not use these fine integral structure of Xr/R but work with Xr/Q. We
just wanted to note these facts for possible use in our future articles.

We write Xs
r/R for the normalization of the j-line of the canonical Q-curve asso-

ciated to the modular curve for the congruence subgroup �r
s = �1(Npr ) ∩ �0(ps)

for 0 < r ≤ s. We denote Pic0Xr
s/R

by Jrs/R . Similarly, as above, Jrs/R is the connected

component of the Néron model of Xr
s/K . Note that, for αm = (

1 0
0 pm

)
,

�r
s \�r

sαs−r�1(Npr ) =
{ ( 1 a

0 ps−r

) ∣
∣
∣a mod ps−r

}

= �1(Npr )\�1(Npr )αs−r�1(Npr ). (4)

Write Us
r (p

s−r ) : J s
r/R → Jr/R for the Hecke operator of �s

rαs−r�1(Npr ). Strictly
speaking, the Hecke operator induces a morphism of the generic fiber of the
Jacobians and then extends to their connected components of the Néron models
by the functoriality of the model (or by Picard functoriality). Then we have the fol-
lowing commutative diagram from the above identity, first over C, then over K and
by Picard functoriality over R:

(5)

where the middle u′ is given by Us
r (p

s−r ) and u and u′′ are U (ps−r ). Thus

• (u1) The map π∗ : Jr/R → Jrs/R is a U (p)-isomorphism (for the projection π :
Xr
s → Xr ).

Taking the dual U ∗(p) of U (p) with respect to the Rosati involution associated to
the canonical polarization of the Jacobians, we have a dual version of the above
diagram for s > r > 0:

(6)

Here the superscript “∗” indicates the Rosati involution of the canonical divisor of
the Jacobians, and u∗ = U ∗(p)s−r for the level �1(Npr ) and u′′∗ = U ∗(p)s−r for
�r
s . Note that these morphisms come from the following coset decomposition, for

βm := (
pm 0
0 1

)
�1(Npr ),
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�r
s \�r

sβs−r�1(Npr ) =
{ (

ps−r a
0 1

) ∣
∣
∣a mod ps−r

}

= �1(Npr )\�1(Npr )βs−r�1(Npr ). (7)

From this, we get

(u∗1) The map π∗ : Jr/R → Jrs/R is a U ∗(p)-isomorphism, where π∗ is the dual
of π∗.

In particular, if we take the ordinary and the co-ordinary projector e =
limn→∞ U (p)n! and e∗ = limn→∞ U ∗(p)n! on J [p∞] for J = Jr/R, Js/R, Jrs/R , not-
ing U (pm) = U (p)m , we have

π∗ : J ord
r/R[p∞] ∼= Jr,ords/R [p∞] and π∗ : Jr,co-ords/R [p∞] ∼= J co-ord

r/R [p∞]

where “ord” (resp. “co-ord”) indicates the image of the projector e (resp. e∗). For
simplicity, we write Gr/R := J ord

r/R[p∞]/R , and we set G := lim−→r
Gr .

Pick a congruence subgroup � defining the modular curve X (C) = �\(H �
P1(Q)), and write its Jacobian as J . We now identify J (C) with a subgroup of
H 1(�,T) (for the trivial �-module T := R/Z ∼= {z ∈ C× : |z| = 1} with trivial
�-action). Since �r

s � �1(Nps), consider the finite cyclic quotient group C :=
�r
s

�1(Nps ) . By the inflation restriction sequence, we have the following commutative
diagram with exact rows:

H 1(C,T)
↪→−−−−→ H 1(�r

s ,T) −−−−→ H 1(�1(Nps),T)γ
pr =1 −−−−→ H 2(C,T)

�
⏐
⏐ ∪

�
⏐
⏐

�
⏐
⏐∪

�
⏐
⏐

? −−−−→ Jrs (C) −−−−→ Js(C)[γ pr−ε − 1] −−−−→ ?.
(8)

Since C is a finite cyclic group of order ps−r (with generator g) acting trivially on
T, we have H 1(C,T) = Hom(C,T) ∼= C and

H 2(C,T) = T/(1 + g + · · · + gps−r−1) = T/ps−rT = 0.

By the same token, replacing T by Tp := Qp/Zp, we get H 2(C, Tp) = 0. By a
sheer computation (cf. [17, Lemma 6.1]), we confirm that U (p) acts on H 1(C,T)

and H 1(C, Tp) via multiplication by its degree p, and henceU (p)s−r kill H 1(C,T)

and H 1(C, Tp). We record what we have proven:

U (p)s−r (H 1(C, Tp)) = H 2(C,T) = H 2(C, Tp) = 0. (9)

This fact has been exploited by the author (for example, [17] and [20]) to study the
modular Barsotti–Tate groups Js[p∞].
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4 U( p)-isomorphisms for Arithmetic Cohomology

To good extent, we reproduce the results and proofs in [21, §3] as it is important in
the sequel. Let X → Y → S be proper morphisms of noetherian schemes. We now
replace H 1(�,T) in the above diagram (8) by

H 0
fppf(T, R1 f∗Gm) = R1 f∗O×

X (T ) = PicX/S(T )

for S-scheme T and the structure morphism f : X → S, and do the same analysis as
in Sect. 3 for arithmetic cohomology in place of group cohomology (via the moduli

theory of Katz–Mazur and Drinfeld; cf., [8]). Write the morphisms as X
π−→ Y

g−→ S
with f = g ◦ π . Assume that π is finite flat.

Suppose that f and g have compatible sections S
sg−→ Y and S

s f−→ X so that π ◦
s f = sg . Then we get (e.g., [1, Sect. 8.1])

PicX/S(T ) = Ker(s1f : H 1
fppf(XT , O×

X ) → H 1
fppf(T, O×

T ))

PicY/S(T ) = Ker(s1g : H 1
fppf(YT , O×

YT
) → H 1

fppf(T, O×
T ))

for any S-scheme T , where sqf : Hq(XT , O×
XT

) → Hq(T, O×
T ) and sng : Hn(YT , O×

YT
)

→ Hn(T, O×
T ) are morphisms induced by s f and sg , respectively. Here XT =

X ×S T and YT = Y ×S T . We suppose that the functors PicX/S and PicY/S are rep-
resentable by group schemes whose connected components are smooth (for exam-
ple, if X,Y are curves and S = Spec(k) for a field k; see [1, Theorem 8.2.3 and
Proposition 8.4.2]). We then put J? = Pic0?/S (? = X,Y ). Anyway we suppose here-
after also that X,Y, S are varieties (in the sense of [3, II.4]).

For an fppf covering U → Y and a presheaf P = PY on the fppf site over Y ,
we define via Čech cohomology theory an fppf presheaf U �→ Ȟq(U, P) denoted
by Ȟ

q
(PY ) (see [10, III.2.2 (b)]). The inclusion functor from the category of fppf

sheaves over Y into the category of fppf presheaves over Y is left exact. The derived
functor of this inclusion of an fppf sheaf F = FY is denoted by H •(FY ) (see [10,
III.1.5 (c)]). Thus H •(Gm/Y )(U) = H •

fppf(U, O×
U) for a Y -schemeU as a presheaf

(hereU varies in the small fppf site over Y ).
Instead of the Hochschild–Serre spectral sequence producing the top row of the

diagram (8), assuming that f , g and π are all faithfully flat of finite presentation,
we use the spectral sequence of Čech cohomology of the flat covering π : X � Y
in the fppf site over Y [10, III.2.7]:

Ȟ p(XT /YT , Hq(Gm/Y )) ⇒ Hn
fppf(YT , O×

YT
)

∼−→
ι

Hn(YT , O×
YT

) (10)

for each S-scheme T . Here F �→ Hn
fppf(YT , F) (resp. F �→ Hn(YT , F)) is the right

derived functor of the global section functor: F �→ F(YT ) from the category of
fppf sheaves (resp. Zariski sheaves) over YT to the category of abelian groups. The
canonical isomorphism ι is the one given in [10, III.4.9].
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By the sections s?, we have a splitting Hq(XT , O×
XT

) = Ker(sqf ) ⊕ Hq(T, O×
T )

and Hn(YT , O×
YT

) = Ker(sng ) ⊕ Hn(T, O×
T ). Write H •

YT
for H •(Gm/YT ) and

Ȟ •(H 0
YT

) for Ȟ •(YT /XT , H 0
YT

). Since

PicX/S(T ) = Ker(s1f,T : H 1(XT , O×
XT

) → H 1(T, O×
T ))

for the morphism f : X → S with a section [1, Proposition 8.1.4], from the spectral
sequence (10), we have the following commutative diagram with exact rows:

(11)
where we have written J? = Pic0?/S (the identity connected component of Pic?/S).
Here the horizontal exactness at the top two rows follows from the spectral sequence
(10) (see [10, Appendix B]).

Take a correspondence U ⊂ Y ×S Y given by two finite flat projections π1, π2 :
U → Y of constant degree (i.e., π j,∗OU is locally free of finite rank deg(π j ) over
OY ). Consider the pullback UX ⊂ X ×S X given by the Cartesian diagram:

UX = U ×Y×SY (X ×S X) −−−−→ X ×S X
⏐
⏐
�

⏐
⏐
�

U
↪→−−−−→ Y ×S Y

Let π j,X = π j ×S π : UX � X ( j = 1, 2) be the projections.

Consider a new correspondence U (q)

X =
q

︷ ︸︸ ︷
UX ×Y UX ×Y · · · ×Y UX , whose pro-

jections are the iterated product

π j,X (q) = π j,X ×Y · · · ×Y π j,X : U (q)

X → X (q) ( j = 1, 2).

Here is the first step to prove a result analogous to (9) for arithmetic cohomology.

Lemma 4.1 Let the notation and the assumption be as above. In particular, π :
X → Y is a finite flat morphism of geometrically reduced proper schemes over
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S = Spec(k) for a field k. Suppose that X and UX are proper schemes over a field
k satisfying one of the following conditions:

1. UX is geometrically reduced, and for each geometrically connected component

X◦ of X, its pull back to UX by π2,X is also connected; i.e., π0(X)
π∗
2,X−−→∼ π0(UX );

2. ( f ◦ π2,X )∗OUX = f∗OX .

If π2 : U → Y has constant degree deg(π2), then, for each q > 0, the action of U (q)

X
on H 0(X (q),O×

X (q) ) factors through the multiplication by deg(π2) = deg(π2,X ).

This result is given as [21, Lemma 3.1, Corollary 3.2].
To describe the correspondence action of U on H 0(X,O×

X ) in down-to-earth
terms, let us first recall the Čech cohomology: for a general S-scheme T ,

Ȟq(
XT

YT
, H 0(Gm/Y )) =
{

(ci0,...,iq )

∣
∣
∣
∣
∣

ci0,...,iq ∈ H 0(X (q+1)
T , O×

X (q+1)
T

) and
∏

j (ci0...ǐ j ...iq+1
◦ pi0...ǐ j ...iq+1

)(−1) j = 1

}

{dbi0...iq = ∏
j (bi0...ǐ j ...iq ◦ pi0...ǐ j ...iq )

(−1) j |bi0...ǐ j ...iq ∈ H 0(X (q)

T , O×
X (q)

T

)} (12)

where we agree to put H 0(X (0)
T , O(0)

XT
) = 0 as a convention,

X (q)
T =

q
︷ ︸︸ ︷
X ×Y X ×Y · · · ×Y X ×ST, O

X (q)
T

=
q

︷ ︸︸ ︷
OX ×OY OX ×OY · · · ×OY OX ×OS OT ,

the identity
∏

j (c ◦ pi0...ǐ j ...iq+1
)(−1) j = 1 takes place in OX (q+2)

T
and pi0...ǐ j ...iq+1

:
X (q+2)
T → X (q+1)

T is the projection to the product of X the j-th factor removed.

Since T ×T T ∼= T canonically, we have X (q)

T
∼=

q
︷ ︸︸ ︷
XT ×T · · · ×T XT by transitivity

of fiber product.
Consider α ∈ H 0(X,OX ). Then we lift π∗

1,Xα = α ◦ π1,X ∈ H 0(UX ,OUX ). Put
αU := π∗

1,Xα. Note that π2,X,∗OUX is locally free of rank d = deg(π2) over OX ,
the multiplication by αU has its characteristic polynomial P(T ) of degree d with
coefficients in OX . We define the norm NU (αU ) to be the constant term P(0). Since
α is a global section, NU (αU ) is a global section, as it is defined everywhere locally.
If α ∈ H 0(X,O×

X ), NU (αU ) ∈ H 0(X,O×
X ). Then define U (α) = NU (αU ), and in

this way, U acts on H 0(X,O×
X ).

For a degree q Čech cohomology class [c] ∈ Ȟq(X/Y , H 0(Gm/Y )) with a Čech
q-cocycle c = (ci0,...,iq ), U ([c]) is given by the cohomology class of the Čech
cocycle U (c) = (U (ci0,...,iq )), where U (ci0,...,iq ) is the image of the global section
ci0,...,iq under U . Indeed, (π∗

1,Xci0,...,iq ) plainly satisfies the cocycle condition, and
(NU (π∗

1,Xci0,...,iq )) is again a Čech cocycle as NU is a multiplicative homomorphism.
By the same token, this operation sends coboundaries to coboundaries, and define
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the action of U on the cohomology group. We get the following vanishing result
(cf. (9)):

Proposition 4.2 Suppose that S = Spec(k) for a field k. Let π : X → Y be a finite
flat covering of (constant) degree d of geometrically reduced proper varieties over
k, and let Y

π1←− U
π2−→ Y be two finite flat coverings (of constant degree) identifying

the correspondence U with a closed subscheme U
π1×π2
↪→ Y ×S Y . Write π j,X : UX =

U ×Y X → X for the base-change to X. Suppose one of the conditions (1) and (2)
of Lemma 4.1 for (X,U ). Then

1. The correspondence U ⊂ Y ×S Y sends Ȟq(H 0
Y ) into deg(π2)(Ȟq(H 0

Y )) for all
q > 0.

2. If d is a p-power and deg(π2) is divisible by p, Ȟq(H 0
Y ) for q > 0 is killed by

UM if pM ≥ d.
3. The cohomology Ȟq(H 0

Y ) with q > 0 is killed by d.

This follows from Lemma 4.1, because on each Čech q-cocycle (whose value is a
global section of iterated product X (q+1)

T ), the action ofU is given byU (q+1) by (12).
See [21, Proposition 3.3] for a detailed proof. We can apply the above proposition
to (U, X,Y ) = (U (p), Xs, Xr

s ) with U given by U (p) ⊂ Xr
s × Xr

s over Q. Indeed,
U := U (p) ⊂ Xr

s × Xr
s corresponds to X (�) given by � = �1(Npr ) ∩ �0(ps+1)

and UX is given by X (�′) for �′ = �1(Nps) ∩ �0(ps+1) both geometrically irre-
ducible curves. In this case π1 is induced by z �→ z

p on the upper complex plane
and π2 is the natural projection of degree p. Moreover, deg(Xs/Xr

s ) = ps−r and
deg(π2) = p.

An easy criterion to see π0(U (q)

X ) = π0(X (q)) (which will not be used in this
paper), we can offer

Lemma 4.3 For a finite flat covering V
π−→ X

f−→ Y of geometrically irreducible
varieties over a field k, if a fiber f ◦ π of a k-closed point y ∈ Y of V is made of a
single closed point v ∈ V (k) (as a topological space), then V (q) :=

q
︷ ︸︸ ︷
V ×Y V ×Y · · · ×Y V and X (q) are geometrically connected.

Proof The q-fold tensor product of the stalks at v given by

O(q)

V,v :=
q

︷ ︸︸ ︷
OV,v ⊗OY,y OV,v ⊗OY,y · · · ⊗OY,y OV,v

is a local ring whose residue field is that of y. This fact holds true for the base
change V/k ′ → X/k ′ → Y/k ′ for any algebraic extension k ′/k; so, V (q) and X (q) are
geometrically connected �

Assume that a finite group G acts on X/Y faithfully. Then we have a natural
morphism φ : X × G → X ×Y X given by φ(x, σ ) = (x, σ (x)). In other words,
we have a commutative diagram
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X × G
(x,σ ) �→σ(x)−−−−−−→ X

(x,σ ) �→x

⏐
⏐
�

⏐
⏐
�

X −−−−→ Y,

which induces φ : X × G → X ×Y X by the universality of the fiber product. Sup-
pose that φ is surjective; for example, if Y is a geometric quotient of X by G; see
[5, §1.8.3]). Under this map, for any fppf abelian sheaf F , we have a natural map
Ȟ 0(X/Y, F) → H 0(G, F(X)) sending a Čech 0-cocycle c ∈ H 0(X, F) = F(X)

(with p∗
1c = p∗

2c) to c ∈ H 0(G, F(X)). Obviously, by the surjectivity of φ, the
map Ȟ 0(X/Y, F) → H 0(G, F(X)) is an isomorphism (e.g., [10, Example III.2.6,
p. 100]). Thus we get

Lemma 4.4 Let the notation be as above, and suppose that φ is surjective. For
any scheme T fppf over S, we have a canonical isomorphism: Ȟ 0(XT /YT , F) ∼=
H 0(G, F(XT )).

We now assume S = Spec(k) for a field k and that X and Y are proper reduced
connected curves. Then we have from the diagram (11) with the exact middle two
columns and exact horizontal rows:

0 −−−−→ Z Z −−−−→ 0
�
⏐
⏐ deg

�
⏐
⏐onto deg

�
⏐
⏐onto

�
⏐
⏐

Ȟ 1(H 0
Y ) −−−−→ PicY/S(T )

b−−−−→ Ȟ 0( XT
YT

,PicY/S(T )) −−−−→ Ȟ 2(H 0
Y )

�
⏐
⏐ ∪

�
⏐
⏐

�
⏐
⏐∪

�
⏐
⏐

?1 −−−−→ JY (T ) −−−−→
c

Ȟ 0( XT
YT

, JX (T )) −−−−→ ?2,

Thus we have ? j = Ȟ j (H 0
Y ) ( j = 1, 2).

By Proposition 4.2, if q > 0 and X/Y is of degree p-power and p| deg(π2),
Ȟq(H 0

Y ) is a p-group, killed by UM for M � 0. Taking (X,Y,U )/S to be
(Xs/Q, Xr

s/Q,U (p))/Q for s > r ≥ 1, we get for the projection π : Xs → Xr
s

Corollary 4.5 Let F be a number field or a finite extension of Ql for a prime l.
Then we have

(u) The map π∗ : Jrs/Q(F) → Ȟ 0(Xs/Xr
s , Js/Q(F))

(∗)= Js/Q(F)[γ pr−ε − 1] is a
U (p)-isomorphism,
where Js/Q(F)[γ pr−ε − 1] = Ker(γ pr−ε − 1 : Js(F) → Js(F)).

Here the identity at (∗) follows from Lemma 4.4. The kernel A �→ Ker(γ pr−ε − 1 :
Js(A) → Js(A)) is an abelian fppf sheaf (as the category of abelian fppf sheaves
is abelian and regarding a sheaf as a presheaf is a left exact functor), and it is
represented by the scheme theoretic kernel Js/Q[γ pr−ε − 1] of the endomorphism

γ pr−ε − 1 of Js/Q. From the exact sequence 0 → Js[γ pr−ε − 1] → Js
γ pr−ε −1−−−−→ Js ,
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we get another exact sequence

0 → Js[γ pr−ε − 1](F) → Js(F)
γ pr−ε −1−−−−→ Js(F).

Thus
Js/Q(F)[γ pr−ε − 1] = Js/Q[γ pr−ε − 1](F).

The above (u) combined with (u1) implies (u2) below:

(u2) The map π∗ : Jr/Q → Js/Q[γ pr−ε − 1] = Ker(γ pr−ε − 1 : Js/Q → Js/Q) is a
U (p)-isomorphism.

Actually we can reformulate these facts as

Lemma 4.6 Then we have morphisms

ιrs : Js/Q[γ pr−ε − 1] → Jrs/Q and ιr,∗s : Jrs/Q → Js/Q/(γ pr−ε − 1)(Js/Q)

satisfying the following commutative diagrams:

(13)

and

(14)

where u and u′′ are U (ps−r ) = U (p)s−r and u∗ and u′′∗ are U ∗(ps−r ) = U ∗(p)s−r .
In particular, for an fppf extension T/Q, the evaluated map at T : (Js/Q/(γ pr−ε −1)

(Js/Q))(T )
π∗−→ Jrs (T ) (resp. J rs (T )

π∗−→ Js[γ pr−ε − 1](T )) is a U ∗(p)-
isomorphism (resp. U (p)-isomorphism).

Note here that the natural homomorphism:

Js(T )

(γ pr−ε − 1)(Js(T ))
→ (Js/Q/(γ pr−ε − 1)(Js/Q))(T )
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may have non-trivial kernel and cokernel which may not be killed by a power of
U ∗(p). In other words, the left-hand-side is an fppf presheaf (of T ) and the right-
hand-side is its sheafication. On the other hand, T �→ Js[γ pr−ε − 1](T ) is already an

fppf abelian sheaf; so, Jrs (T )
π∗−→ Js[γ pr−ε − 1](T ) is a U (p)-isomorphism without

ambiguity.

Proof We first prove the assertion for π∗. We note that the category of groups
schemes fppf over a base S is a full subcategory of the category of abelian fppf
sheaves. We may regard Jrs/Q and Js[γ pr−ε − 1]/Q as abelian fppf sheaves over Q
in this proof. Since these sheaves are represented by (reduced) algebraic groups
over Q, we can check being U (p)-isomorphism by evaluating the sheaf at a field
k of characteristic 0 (e.g., [4, Lemma 4.18]). By Proposition 4.2 (2) applied to
X = Xs/k = Xs ×Q k and Y = Xr

s/k (with S = Spec(k) and s ≥ r ),

K := Ker(Jrs/Q → Js/Q[γ pr−ε − 1])

is killed by U (p)s−r as d = ps−r = deg(Xs/Xr
s ). Thus we get

K ⊂ Ker(U (p)s−r : Jrs/Q → Jrs/Q).

Since the category of fppf abelian sheaves is an abelian category (because of the
existence of the sheafication functor from presheaves to sheaves under fppf topology
described in [10, §II.2]), the above inclusion implies the existence of ιrs with π∗ ◦
ιrs = U (p)s−r as a morphism of abelian fppf sheaves. Since the category of group
schemes fppf over a base S is a full subcategory of the category of abelian fppf
sheaves, all morphisms appearing in the identity π∗ ◦ ιrs = U (p)s−r are morphism
of group schemes. This proves the assertion for π∗.

Note that the second assertion is the dual of the first; so, it can be proven revers-
ing all the arrows and replacing Js[γ pr−ε − 1]/Q (resp. π∗, U (p)) by the quotient
Js/(γ pr−ε −1)Js as fppf abelian sheaves (resp. π∗,U ∗(p)). Since Js/(γ pr−ε − 1)(Js)
and Jrs are abelian schemes over Q, the quotient abelian scheme Js/(γ pr−ε − 1)(Js)
is the dual of Js[γ pr−ε − 1] and ιr,∗s is the dual of ιrs . �

By the second diagram of the above lemma, we get

(u∗) The map Js/(γ pr−ε − 1)(Js)/Q
π∗−→ Jrs/Q is a U ∗(p)-isomorphism of abelian

fppf sheaves.
As a summary, we have

Corollary 4.7 Then the morphism π : Xs → Xr
s induces an isogeny

π∗ : Js/(γ pr−ε − 1)(Js)/Q → Jrs/Q

whose kernel is killed by a sufficiently large power of U ∗(p), and the pull-back map
π∗ induces an isogeny π∗ : Js[γ pr−ε − 1] → Jrs whose kernel is killed by a high
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power of U (p). Moreover, for a finite extension F of Q or Ql (for a prime l not
necessarily equal to p), π∗ : Js[γ pr−ε − 1](F) → Jrs (F) is a U (p)-isomorphism.

Proof Let C ⊂ Aut(Xs) be the cyclic group generated by the action of γ pr−ε

.
Then Xs/Q/Xr

s/Q
is an étale covering with Galois group C (even unramified at

cusps). Thus Lie(Jrs ) = H 1(Xr
s ,OXr

s
) = H0(C, H 1(Xs,OXs )) = H0(C, Lie(Js)).

This shows that π∗ is an isogeny over Q and hence over Q, which is a U ∗(p)-
isomorphism by Lemma 4.6. By taking dual, π∗ is also an isogeny, which is a
U (p)-isomorphism even after evaluating the fppf sheaves at F by Lemma 4.6 and
the remark following the lemma. This proves the corollary. �

Then we get

(u∗2) The map Js/(γ pr−ε − 1)(Js)/Q → Jr/Q is aU ∗(p)-isomorphism of abelian
fppf sheaves.

We can prove (u∗2) in a more elementary way. We describe the easier proof.
Identify Js(C) = H 1(Xs,T) whose Pontryagin dual is given by H1(Xs, Z). If
k = Q, we have the Pontryagin dual version of (u2):

H1(Xr , Z)
π∗←− H1(Xs, Z)/(γ pr−ε − 1)(H1(Xs, Z)) is a U ∗(p)-isomorphism. (15)

Since Js,Q(C) ∼= H1(Xs, R)/H1(Xs, Z) as Lie groups, we get

Jr (C)
π∗←− Js(C)/(γ pr−ε − 1)(Js(C)) is a U ∗(p)-isomorphism. (16)

This implies (u∗2). By (16), writing Q for the algebraic closure of Q in C and taking
algebraic points, we get that

Jr (Q)
π∗←− (Js/(γ

pr−ε − 1)(Js))(Q) = Js(Q)/(γ pr−ε − 1)(Js(Q)) (17)

is a U ∗(p)-isomorphism.

Remark 4.8 The U (p)-isomorphisms of Jacobians do not kill the part associated
to finite slope Hecke eigenforms. Thus the above information includes not just the
information of p-ordinary forms but also those of finite slope Hecke eigenforms.

5 Control of �-MW Groups as Fppf Sheaves

Let k be either a number field in Q or a finite extension of Ql in Ql for a
prime l. Write Ok (resp. W ) for the (resp. l-adic) integer ring of k if k is a num-
ber field (resp. a finite extension of Ql). For an abelian variety A/k , we have
Â(κ) := lim←− A(κ)/pn A(κ) for a finite field extension κ/k as in (3). A down-to-

earth description of the value of Â(κ) is given by (S) just above (3).
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We study Jr (k) equipped with the topology Jk(k) induced from k (so, it is dis-
crete if k is a number field and is l-adic if k is a finite extension of Ql). The p-adic
limits e = limn→∞ U (p)n! and e∗ = limn→∞ U ∗(p)n! are well defined on Ĵr (k). The
Albanese functoriality gives rise to a projective system { Ĵs(k), πs,r,∗}s for the cov-
ering map πs,r : Xs → Xr (s > r ), and we have

J̃∞(k) = lim←−
r

Ĵr (k) (with projective limit of p -profinite compact topology)

on which the co-ordinary projector e∗ = limn→∞ U ∗(p)n! acts. As before, adding
superscript or subscript “ord” (resp. “co-ord”), we indicate the image of e (resp. e∗)
depending on the situation.

We study mainly in this paper the control theorems of the w-twisted version
Ĵ∞(k)ord (which we introduce in Sect. 6) of J̃∞(k)co-ord under the action of � and
Hecke operators, and we have studied J̌ ord∞ (k) in [21] in a similar way. Here the
word “w-twisting” means modifying the transition maps by the Weil involution at
each step. As fppf sheaves, we have an isomorphism i : Ĵ∞(k)ord ∼= J̃∞(k)co-ord but
i ◦ T (n) = T ∗(n) ◦ i for all n. Hereafter, unless otherwise mentioned, once our fppf
abelian sheaf is evaluated at k, all morphisms are continuous with respect to the
topology defined above (and we do not mention continuity often).

From (u1), we get

Jr (k)
π∗−→ Jrs (k) is a U (p)-isomorphism (for the projection π : Xr

s → Xr ). (18)

The dual version (following from (u∗1)) is

Jrs (k)
π∗−→ Jr (k) is a U

∗(p)-isomorphism, where π∗ is the dual of π∗. (19)

From (18) and (19), we get

Lemma 5.1 For a field k as above, we have

π∗ : Ĵ rs (k)co-ord ∼= Ĵr (k)
co-ord and π∗ : Ĵr (k)ord ∼= Ĵ rs (k)ord

for all 0 < r < s with the projection π : Xr
s � Xr .

From Corollary 4.7 (or Lemma 4.6 combined with (u∗2) and (u2)), for any field k,
we get

(I) π∗ : Jr (k) → Js[γ pr−ε − 1](k) is a U (p)-isomorphism, and obviously, π∗ :
Jr → Js[γ pr−ε − 1] is a U (p)-isomorphism of abelian fppf sheaves.

(P) π∗ : Jr → Js/(γ pr−ε − 1)Js is a U ∗(p)-isomorphism of fppf abelian sheaves.

Note that (P) does not mean that Ĵs (k)
(γ pr−ε −1)( Ĵs (k))

→ Ĵr (k) is aU ∗(p)-isomorphism (as

the sheaf quotient Js/(γ pr−ε − 1)Js and the corresponding presheaf quotient could
be different).
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We now claim

Lemma 5.2 For integers 0 < r < s, we have isomorphisms of fppf abelian sheaves

π∗ : Ĵ ord
r

∼= Ĵs[γ pr−ε − 1]ord and π∗ : (
Ĵs

(γ pr−ε − 1)Js
)co-ord ∼= Ĵ co-ord

r .

The first isomorphism π∗ induces an isomorphism: Ĵ ord
r (T ) ∼= Ĵs[γ pr−ε − 1]ord(T )

for any fppf extension T/k , but the morphism Ĵs (T )co-ord

(γ pr−ε −1)( Ĵs (T ))co-ord
→ Ĵr (T )co-ord

induced by the second one may not be an isomorphism.

Proof By (I) above, Ĵ ord
r

∼= Âord for the abelian variety A = Js[γ pr−ε − 1] and Â as
in (S) above (3). We consider the following exact sequence

0 → A → Js
γ pr−ε −1−−−−→ Js .

This produces another exact sequence 0 → Â → Ĵs
γ pr−ε −1−−−−→ Ĵs ; so, we get Â ∼=

Ĵs[γ pr−ε − 1]. Taking ordinary part and combining with the identity: Ĵ ord
r

∼= Âord,
we conclude Ĵ ord

r
∼= Ĵs[γ pr−ε − 1]ord. This holds true after evaluation at T as the

presheaf-kernel of a sheaf morphism is still a sheaf. The second assertion is the dual
of the first. �

Passing to the limit, Lemmas 5.1 and 5.2 tells us

Theorem 5.3 Let k be either a number field or a finite extension of Ql . Then we
have isomorphisms of fppf abelian sheaves over k:

(a) J ord∞ [γ pr−ε − 1] ∼= Ĵ ord
r ;

(b) ( J̃∞/(γ pr−ε − 1)( J̃∞))co-ord ∼= Ĵ co-ord
r

where we put J̃∞/(γ pr−ε − 1)( J̃∞)co-ord := lim←−s
̂Js/(γ pr−ε − 1)(Js)

co-ord
as an fppf

sheaf.

Proof The assertion (b) is just the projective limit of the corresponding statement in
Lemma 5.2.

We prove (a). Since injective limit always preserves exact sequences, we have

0 → Ĵr (k)
ord → lim−→

s

Ĵs(k)
ord γ pr−ε −1−−−−→ lim−→

s

Ĵs(k)
ord

is exact, showing (a). �

See [21, Proposition 6.4] for a control result similar to (a) for J̌ ord∞ .

Remark 5.4 As is clear from the warning after (P), the isomorphism (b) does not
mean that
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lim←−
s

{
Ĵs(T )

(γ pr−ε − 1)( Ĵs(T ))

}co-ord

→ Ĵr (T )co-ord

for each fppf extension T/k is an isomorphism. The kernel and the cokernel of this
map will be studied in Sect. 9.

6 Sheaves Associated to Modular Jacobians

We fix an element ζ ∈ Zp(1) = lim←−n
μpn (Q); so, ζ is a coherent sequence of gen-

erators ζpn of μpn (Q) (i.e., ζ p
pn+1 = ζpn ). We also fix a generator ζN of μN (Q), and

put ζNpr := ζN ζpr . Identify the étale group scheme Z/NpnZ/Q[ζN ,ζpn ] with μNpn by
sending m ∈ Z to ζm

Npn . Then for a couple (E, φNpr : μNpr ↪→ E)/K over a Q[μpr ]-
algebra K , let φ∗ : E[Npr ] � Z/NprZ be the Cartier dual of φNpr . Then φ∗
induces E[Npr ]/ Im(φNpr ) ∼= Z/NprZ. Define i : Z/prZ ∼= (E/ Im(φNpr ))[Npr ]
by the inverse of φ∗. Then we define ϕNpr : μNpr ↪→ E/ Im(φNpr ) by ϕNpr : μNpr

∼=
Z/NprZ

i−→ (E/ Im(φNpr ])[pr ] ⊂ E/ Im(φNpr ). This induces an automorphismwr

of Xr defined over Q[μNpr ], which in turn induces an automorphism wr of
Jr/Q[ζNpr ]). We have the following well known commutative diagram (e.g., [11,
Sect. 4.6]):

Jr
T (n)−−−−→ Jr

wr

⏐
⏐
�� wr

⏐
⏐
��

Jr −−−−→
T ∗(n)

Jr .

Let P ∈ Spec(h)(Qp) be an arithmetic point of weight 2. Then we have a
p-stabilized Hecke eigenform form fP associated to P; i.e., fP |T (n) = P(T (n)) fP
for all n. Then f ∗

P = wr ( fP) is the dual common eigenform of T ∗(n). If fP is new
at every prime l|pN , f ∗

P is a constant multiple of the complex conjugate f cP of fP
(but otherwise, it is different).

We then define as described in (S) in Sect. 2 an fppf abelian sheaf X̂ for any
abelian variety quotient or subgroup variety X of Js/k over the fppf site over k = Q
and Ql (note here the explicit value of Ĵs depends on k as in (S)).

Pick an automorphism σ ∈ Gal(Q(μNpr )/Q) with ζ σ
Npr = ζ z

Npr for z ∈ (Z/

NprZ)×. Since wσ
r is defined with respect to ζ σ

Npr = ζ z
Npr , we find wσ

r = 〈z〉 ◦
wr = wr ◦ 〈z〉−1 (see [25, p. 237] and [24, 2.5.6]). Here 〈z〉 is the image of z in
(Z/NprZ)× = Gal(Xr/X0(Npr )). Let πs,r,∗ : Js → Jr for s > r be the morphism
induced by the covering map Xs � Xr through Albanese functoriality. Then we
define π r

s = wr ◦ πs,r,∗ ◦ ws . Then (π r
s )

σ = wr 〈z−1〉πs,r,∗〈z〉ws = π r
s for all σ ∈

Gal(Q(μNps )/Q); thus, π r
s is well defined over Q, and satisfies T (n) ◦ π r

s = π r
s ◦

T (n) for all n prime to Np andU (q) ◦ π r
s = π r

s ◦U (q) for all q|Np. Since w2
r = 1,

by this w-twisting, the projective system {Js, πs,r,∗} equivariant under T ∗(n) is
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transformed into the isomorphic projective system {Js, π r
s }s>r (of abelian varieties

defined over Q) which is Hecke equivariant (i.e., T (n) and U (l)-equivariant). Thus
what we proved for the co-ordinary part of the projective system { Ĵs, πs,r,∗} is valid
for the ordinary part of the projective system { Ĵs, π r

s }s>r . If Xs is either an algebraic
subgroup or an abelian variety quotient of Js and π r

s produces a projective system
{Xs}s we define X̂∞ := lim←−s

X̂s(R) for an fppf extension R of k = Q, Ql (again the

definition of X̂s and hence X̂∞ depends on k). For each ind-object R = lim−→i
Ri of

fppf, smooth or étale algebras Ri/k, we define X̂∞(R) = lim−→i
X̂∞(Ri ).

Lemma 6.1 Let K/k be the Galois extension as in Sect. 2. Then the Gal(K/k)-
action on X̂∞(K ) is continuous under the discrete topology on X̂∞(K ). In par-
ticular, the Galois cohomology group Hq(X̂∞(K )) := Hq(Gal(K/κ), X̂∞(K )) for
q > 0 is a torsion Zp-module for any intermediate extension K/κ/k.

Proof By definition, X̂∞(K ) = ⋃
K/F/k X̂∞(F), and for all finite intermediate

extensions K/F/k we have X̂∞(F) ⊂ H 0(Gal(K/F), X̂∞(K )). Thus X̂∞(K ) =
lim−→F

H 0(Gal(K/F), X̂∞(K )), which implies the continuity of the action under the
discrete topology. Then the torsion property follows from [7, Corollary 4.26]. �

Let ι : Cr/Q ⊂ Jr/Q be an abelian subvariety stable under Hecke operators
(including U (l) for l|Np) and wr and t ι : Jr/Q � tCr/Q be the dual abelian quo-
tient. We then define π : Jr � Dr by Dr := tCr and π = twr ◦ t ιr ◦ wr for the map
twr ∈ Aut(tCr/Q[μpr ]) dual to wr ∈ Aut(Cr/Q[μpr ]). Again π is defined over Q. Then
ι and π are Hecke equivariant. Let ιs : Cs := π∗

s,r (C) ⊂ Js for s > r and Ds be the
quotient abelian variety of Js defined in the same way taking Cs in place of Cr (and
replacing r by s). Put πs : Js � Ds which is Hecke equivariant.

Since the two morphisms Jr → Jrs and Jrs → Js[γ pr−ε − 1] (Picard functorial-
ity) are U (p)-isomorphism of fppf abelian sheaves by (u1) and Corollary 4.5, we
get the following two isomorphisms of fppf abelian sheaves for s > r > 0:

Cr [p∞]ord ∼−→
π∗
r,s

Cs[p∞]ord and Ĉord
r

∼−→
π∗
r,s

Ĉord
s , (20)

since Ĉord
s is the isomorphic image of Ĉord

r ⊂ Ĵr in Ĵs[γ pr−ε − 1]. By w-twisted
Cartier duality [20, §4], we have

Ds[p∞]ord ∼−→
π r
s

Dr [p∞]ord. (21)

Thus by Kummer sequence in Lemma 2.1, we have the following commutative dia-
gram

D̂ord
s (κ) ⊗ Z/pmZ = (Ds(κ) ⊗ Z/pmZ)ord −−−−→

↪→ H 1(Ds[pm]ord)
π r
s

⏐
⏐
� �

⏐
⏐
�(21)

D̂ord
r (κ) ⊗ Z/pmZ = (Dr (κ) ⊗ Z/pmZ)ord −−−−→

↪→ H 1(Dr [pm]ord)
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This shows
D̂ord

s (κ) ⊗ Z/pmZ ∼= D̂ord
r (κ) ⊗ Z/pmZ.

Passing to the limit, we get

D̂ord
s

∼−→
π r
s

D̂ord
r and (Ds ⊗Z Tp)

ord ∼−→
π r
s

(Dr ⊗Z Tp)
ord (22)

as fppf abelian sheaves. In short, we get

Lemma 6.2 Suppose that κ is a field extension of finite type of either a number field
or a finite extension of Ql . Then we have the following isomorphism

Ĉr (κ)ord
∼−→

π∗
s,r

Ĉs(κ)ord and D̂s(κ)ord
∼−→
π r
s

D̂r (κ)ord

for all s > r including s = ∞.

By computation, π r
s ◦ π∗

r,s = ps−rU (ps−r ). To see this, as Hecke operators com-
ing from �s-coset operations, π∗

r,s = [�s] (restriction map) and πr,s,∗ = [�r ] (trace
operator for �r/�s). Thus we have

π r
s ◦ π∗

r,s(x) =x |[�s] · ws · [�r ] · wr = x |[�s] · [wswr ] · [�r ]
= x |[�r

s : �s][�r
s

( 1 0
0 ps−r

)
�r ] = ps−r (x |U (ps−r )). (23)

Corollary 6.3 We have the following two commutative diagrams for s ′ > s

Ĉord
s ′

∼←−−−−
π∗
s,s′

Ĉord
s

π s
s′
⏐
⏐
�

⏐
⏐
�ps

′−sU (p)s
′−s

Ĉord
s Ĉord

s .

and
D̂ord

s ′
∼−−−−→
π s
s′

D̂ord
s

π∗
s,s′

�
⏐
⏐

�
⏐
⏐ps

′−sU (p)s
′−s

D̂ord
s D̂ord

s .

Proof By π∗
r,s (resp. π r

s ), we identify Ĉord
s with Ĉord

r (resp. D̂ord
s with D̂ord

r ) as in
Lemma 6.2. Then the above two diagrams follow from (23). �

By (23), we have exact sequences

0 →Cs[ps−r ]ord → Cs[p∞]ord π r
s−→ Cr [p∞]ord → 0,

0 →Dr [ps−r ]ord → Dr [p∞]ord π∗
r,s−→ Ds[p∞]ord → 0.

(24)
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Applying (2) to the exact sequence Kr
s (K ) ↪→ Cs(K ) � Cr (K ) for Kr

s (K ) =
Ker(π r

s )(K ) andKr,s(K ) ↪→ Cr (K ) � Ds(K ) forKr,s = Ker(π∗
r,s), we get the fol-

lowing exact sequence of fppf abelian sheaves:

0 →K̂r
s → Ĉs

π r
s−→ Ĉr → 0,

0 →K̂r,s → D̂r
π∗
r,s−→ D̂s → 0.

Taking the ordinary part, we confirm exactness of

0 →Cs[ps−r ]ord → Ĉord
s

π r
s−→ Ĉord

r → 0,

0 →Dr [ps−r ]ord → D̂ord
r

π∗
r,s−→ D̂ord

s → 0.
(25)

Write H 1(X) = H 1(Gal(K/κ), X) for an intermediate extension K/κ/k and
Gal(K/k)-module X and H 1

? (X) = H 1
? (Spec(κ), X) for a smooth/fppf extension

for ? = sm or fppf. Then taking the p-adic completion, we get the following exact
sequences as parts of the long exact sequences associated to (25)

0 →Cs[ps−r ]ord(κ) → Ĉord
s (κ) −→

π r
s

Ĉord
r (κ) → H 1

? (Cs[ps−r ]ord),
0 →Dr [ps−r ]ord(κ) → D̂ord

r (κ) −→
π∗
r,s

D̂ord
s (κ) → H 1

? (Dr [ps−r ]ord) (26)

for ? = fppf, sm (cohomology under smooth topology) or nothing (i.e., Galois coho-
mology equivalent to étale cohomology in this case). Here if ? = fppf, κ/k is an
extension of finite type, if ? = sm, κ/k is a smooth extension of finite type, and if ?
is nothing, K/κ/k is an intermediate field.

By Lemma 6.2, we can rewrite the first exact sequence of (24) as

0 → Cr [ps−r ]ord(κ)
π∗
r,s−→ Ĉord

s (κ)
π r
s−→ Ĉord

r (κ) → H 1
? (Cr [ps−r ]ord). (27)

This (combined with Corollary 6.3) induces the corresponding diagram for H 1, for
any extension κ/k inside K ,

H 1(Cs[ps ′−r ]ord) ∼←−−−−
π∗
r,s′

H 1(Cr [ps ′−r ]ord) ←↩←−−−−
(

Cr (κ)

ps′−rCr (κ)

)ord

π s
s′
⏐
⏐
�

⏐
⏐
�ps

′−sU (p)s
′−s

⏐
⏐
�ps

′−sU (p)s
′−s

H 1(Cs[ps−r ]ord) ∼←−−−−
π∗
r,s

H 1(Cr [ps−r ]ord) ←↩←−−−−
(

Cr (κ)

ps′−rCr (κ)

)ord
.

The right square is the result of Kummer theory for Cr . Passing to the projective
limit with respect to s, we get a sequence
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0 → lim←−
s

Cr [ps−r ]ord(κ)
π∗
r,s−→ lim←−

s

Ĉord
s (κ)

π r
s−→ Ĉord

r (κ) → lim←−
s

H 1(Cr [ps−r ]ord)
(28)

which is exact at left three terms up to the term Ĉord
r (κ).

Proposition 6.4 Let k be a finite extension field of Q or Ql for a prime l. Assume
(3) for κ/k . Then we have the following identity

Ĉ∞(κ)ord = lim←−
s

Ĉs(κ)ord ∼= lim←−
s

Cr [ps−r ](κ)ord = 0

and exact sequences for K/k as in Sect. 2:

0 →TpC
ord
r → lim←−

s

Ĉs(K )ord → Ĉr (K )ord → 0

0 →TpC
ord
r → lim←−

s

Cs[p∞](K )ord → Cr [p∞](K )ord → 0.

In the last sequence, we have lim←−s
Cs[p∞](K )ord ∼= TpCord

r ⊗Z Q. By the first iden-

tity, Ĉord∞ as a smooth (resp. étale) sheaf vanishes if k is a number field or a local
field with residual characteristic l �= p (resp. a p-adic field).

Proof By (28), we get a sequence which is exact at the first three left terms (up to
the term Ĉord

r (κ)):

0 → lim←−
s

Cr [ps−r ](κ)ord → Ĉ∞(κ)ord −→
π r
s

Ĉr (κ)ord
δ−→ lim←−

s

H 1(Cs[ps−r ]ord).

Since δ is injective by Lemma 2.1 under (3), we get the first two identities. The
vanishing of lim←−s

Cr [ps−r ](κ)ord follows because Cr [p∞]ord(κ) is a finite p-torsion
module if κ/k is an extension of finite type.

If κ = K , we may again pass to the limit of the first exact sequence of (25) again
noting Cs[ps−r ](K )ord ∼= Cr [ps−r ](K )ord. The limit keeps exactness (as {Cr [ps−r ]
(K )}s is a surjective projective system), and we get the following exact sequence

0 → TCr [p∞](K )ord → lim←−
s

Ĉs(K )ord −→
π r
s

Ĉr (K )ord → 0.

The divisible version can be proven taking the limit of (24). Since Cr [p∞](K )ord is
p-divisible and the projective system of the exact sequences 0 → Cr [p](K )ord →
Cr [p∞](K )ord

x �→px−−−→ Cr [p∞](K )ord → 0 by the transition map x �→ pnU (pn)(x)
satisfies the Mittag–Leffler condition (as Cr [p](K )ord is finite), lim←−s

Cs[p∞](K )ord

is a p-divisible module. Thus by the exact sequence, we have TpCord
r ⊗Z Q ⊂

lim←−s
Cs[p∞](K )ord, which implies
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TpC
ord
r ⊗Z Q ∼= lim←−

s

Cs[p∞](K )ord

as TpCord
r ⊗Z Q/TpCr

∼= Cr [p∞]ord(K ). �

We insert here Shimura’s definition of his abelian subvariety [13, Theorem 7.14]
and abelian variety quotient [31] of Js associated to a member fP of a p-adic ana-
lytic family. Shimura mainly considered these abelian varieties associated to a prim-
itive Hecke eigenform. Since we need those associated to old Hecke eigenforms, we
give some details.

Let P ∈ Spec(h)(Qp) be an arithmetic point of weight 2. Then we have a p-
stabilized Hecke eigenform form fP associated to P; i.e., fP |T (n) = P(T (n)) fP
for all n (e.g., [5, Sect. 3.2]). Then f ∗

P = wr ( fP) is the dual common eigenform of
T ∗(n). If fP is new at every prime l|pN , f ∗

P is a constant multiple of the complex
conjugate f cP of fP (but otherwise, they are different). Shimura’s abelian subva-
riety AP (associated to fP ) is defined to be the identity connected component of⋂

α∈P Jr [α] regarding P as a prime ideal of hr (Z).
The Rosati involution (induced by the canonical polarization) brings hr (Z) to

h∗
r (Z) ⊂ End(Jr/Q) isomorphically, and h acts on Ĵ∞ (resp. J̃∞) through the iden-

tity T (n) �→ T (n) (resp. through T (n) �→ T ∗(n)). Let f ∗
P |T ∗(n) = P(T (n)) f ∗

P ,
and regard P as an algebra homomorphism P∗ : h∗

r (Z) → Q (so, P∗(T ∗(n)) =
P(T (n))). Identify P∗ with the prime ideal Ker(P∗), and define A∗

P to be the iden-
tity connected component of Jr [P∗] := ⋂

α∈P∗ Jr [α]. Then AP
∼= A∗

P by wr over
Q(μNpr ).

Assume that r = r(P) is the minimal exponent of p in the level of fP . For
s > r , we write As (resp. A∗

s ) for the abelian variety associated to fP regarded as
an old form of level ps (resp. ws( fP)). In other words, regarding P∗ as an ideal of
h∗
s (Z) via the projection h∗

s (Z) � h∗
r (Z), we define A∗

s by the identity connected
component of Js[P∗]. The Albanese functoriality π∗ : Js � Jr induces an isogeny
A∗
s � A∗

r = A∗
P . Similarly the Picard functoriality π∗ : Jr → Js induces an isogeny

AP = Ar � As . Since f ∗
P is the complex conjugate of fP (assuming that fP is

new), A∗
P = AP inside Jr (for r = r(P)). Since ws : As/Q[ζNps ] ∼= A∗

s/Q[ζNps ] and As

and A∗
s are isogenous to AP over Q, As and A∗

s are isomorphic over Q. Consider the
dual quotient Js � Bs (resp. Js � B∗

s ) of A
∗
s ↪→ Js (resp. As ↪→ Js). In the same

manner as above, Bs and B∗
s are isomorphic over Q. Then Bs (resp. B∗

s ) is stable
under T (n) and U (p) (resp. T ∗(n) and U ∗(p)) and �Bs/C (resp. �B∗

s /C) is spanned
by f σ

P dz (resp. g
σ
Pdz for gP = ws( fP)) for σ running over Gal(Q/Q). We mainly

apply Corollary 6.3 and Proposition 6.4 taking Cs (resp. Ds) to be As (resp. Bs).

7 Abelian Factors of Modular Jacobians

Let k be a finite extension of Q inside Q or a finite extension of Qp over Qp. We
study the control theorem for Ĵs(k) which is not covered in [21].
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Let Ar be a group subscheme of Jr proper over k; so, Ar is an extension of
an abelian scheme A◦

r/Q by a finite étale group. Write As (s ≥ r ) for the image of
Ar in Js under the morphism π∗ : Jr → Js given by Picard functoriality from the
projection π : Xs → Xr . Hereafter we assume

(A) We have α ∈ h(N ) such that (γ pr−ε − 1) = αx with x ∈ h(N ) and that h/(α)

is free of finite rank over Zp. Write αs for the image in hs (s ≥ r ) and
as = (αshs ⊕ (1 − e)hs(Zp)) ∩ hs(Z) and put As = Js[as] and Bs = Js/as Js ,
where as Js is an abelian subvariety defined over Q of Js with as Js(Q) =∑

a∈as
a(Js(Q)) ⊂ Js(Q).

Here for s > s ′, coherency of αs means the following commutative diagram:

Ĵ ord
s ′

π∗−−−−→ Ĵ ord
s

αs′
⏐
⏐
�

⏐
⏐
�αs

Ĵ ord
s ′ −−−−→

π∗ Ĵ ord
s

which is equivalent (by the self-duality of Js) to the commutativity of

Ĵ co-ord
s

π∗−−−−→ Ĵ co-ord
s ′

α∗
s

⏐
⏐
�

⏐
⏐
�α∗

s′

Ĵ co-ord
s −−−−→

π∗
Ĵ co-ord
s ′ .

The following fact is proven in [22, Lemma 5.1]:

Lemma 7.1 Assume (A). Then we have Âord
s = Ĵ ord

s [αs] and Â◦
s = Âs . The identity

connected component A◦
s (s > r) of As is the image of A◦

r in Js under the morphism
π∗ = π∗

s,r : Jr → Js induced by Picard functoriality from the projection π = πs,r :
Xs → Xr and is Q-isogenous to Bs. The morphism Js → Bs factors through Js

π r
s−→

Jr → Br . In addition, the sequence

0 → Âord
s → Ĵ ord

s
α−→ Ĵ ord

s
ρs−→ B̂ord

s → 0 for 0 < ε ≤ r ≤ s < ∞

is an exact sequence of fppf sheaves.

This implies

Corollary 7.2 Recall the finite set S of places made of prime factors of Np and
∞. Let R = k if k is local, and let R be the S-integer ring of k (i.e., primes in
S is inverted in R) if k is a number field. Then the sheaf αs( Ĵ ord

s ) is a p-divisible
étale/fppf sheaf over Spec(R), and its p-torsion part αs( Ĵ ord

s )[p∞] is a p-divisible
Barsotti–Tate group over R.
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In particular, the Tate module Tpα( Ĵ ord
s ) is a well defined free Zp-module of

finite rank for all r ≤ s < ∞.

Proof By the above lemma, the fppf sheaf αs( Ĵ ord
s ) = Ker( Ĵ ord

s
ρs−→ B̂ord

s ) fits into
the following commutative diagram with exact rows:

As[p∞]ord ↪→−−−−→ Js[p∞]ord �−−−−→ α(Js[p∞]ord)
∩
⏐
⏐
� ∩

⏐
⏐
� ∩

⏐
⏐
�

Âord
s

↪→−−−−→ Ĵ ord
s

�−−−−→ α( Ĵ ord
s )

⏐
⏐
�

⏐
⏐
�

⏐
⏐
�

Âord
s /As[p∞]ord ↪→−−−−→ Ĵ ord

s /Js[p∞]ord �−−−−→ α( Ĵ ord
s )/α(Js[p∞]ord).

The first two terms of the bottom row are sheaves of Qp-vector spaces, so is the last
term. Thus we conclude α(Js[p∞]ord) = α( Ĵ ord

s )[p∞]. Since Âs = Â◦
s , Âs[p∞]ord

is a direct summand of the Barsotti–Tate group Js[p∞]ord. Therefore α(Js[p∞]ord)
is a Barsotti–Tate group as desired.

Alternatively, we can identify αs( Ĵ ord
s )[p∞] with the Barsotti–Tate p-divisible

group of the abelian variety quotient Js/A◦
s . �

The condition (A) is a mild condition. Here are sufficient conditions for
(α, As, Bs) to satisfy (A) given in [22, Proposition 5.2]:

Proposition 7.3 Let Spec(T) be a connected component of Spec(h) and Spec(I) be
a primitive irreducible component of Spec(T). Then the condition (A) holds for the
following choices of (α, As, Bs):

1. Suppose that an eigen cusp form f = fP new at each prime l|N belongs to
Spec(T) and that T = I is regular. Writing the level of fP as Npr , the algebra
homomorphism λ : T → Qp given by f |T (l) = λ(T (l)) f gives rise to a height
1 prime ideal P = Ker(λ), which is principal generated by a ∈ T. This a has
its image as ∈ Ts = T ⊗� �s for �s = �/(γ ps−ε − 1). Write hs = h ⊗� �s =
Ts ⊕ 1shs as an algebra direct sum for an idempotent 1s . Then, the element
αs = as ⊕ 1s ∈ hs for the identity 1s of Xs satisfies (A). In this case, α = lim←−s

αs .
2. More generally than (1), we pick a general connected component Spec(T) of

Spec(h). Pick a (classical) Hecke eigenform f = fP (of weight 2) for P ∈
Spec(T). Assume that hs (for every s ≥ r) is reduced and P = (a) for a ∈ T,
and write as for the image of a in hs . Then decomposing hs = Ts ⊕ 1shs ,
αs = as ⊕ 1s satisfies (A).

3. Fix r > 0. Then α for a factor α|(γ pr−ε − 1) in � satisfies (A) for As = Js[α]◦
(the identity connected component).

Remark 7.4 (i) Under (1), all arithmetic points P of weight 2 in Spec(I) satisfies
(A).
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(ii) For a given weight 2 Hecke eigenform f , for density 1 primes p of Q( f ), f
is ordinary at p (i.e., a(p, f ) �≡ 0 mod p; see [19, §7]). Except for finitely many
primes p as above, f belongs to a connected component T which is regular (e.g.,
[14, §3.1] and [22, Theorem 5.3]); so, (1) is satisfied for such T.

8 Mordell–Weil Groups of Modular Abelian Factors

Consider the composite morphism �s : As ↪→ Js � Bs of fppf abelian sheaves for
triples (αs, As, Bs) as in (A), and apply the results in Sect. 6 to abelian varieties
Cs = As and Ds = Bs . Let Cord

s := (Ker(�s) ⊗Z Zp)
ord be the p-primary ordinary

part of Ker(�s).
Recall we have written ρs for the morphism Js → Bs . As before, κ is an inter-

mediate extension K/κ/k finite over k. Define the error terms by

Es
1(κ) := α( Ĵ ord

s )(κ)/α( Ĵ ord
s (κ)) and Es

2(κ) := Coker( Ĵ ord
s (κ)

ρs−→ B̂ord
s (κ)) (29)

for ρs : Ĵ ord
s (κ) → B̂ord

s (κ). Note that Es
1(κ)(↪→ H 1

? ( Âord
s ) = H 1

? (Aord
s ) ⊗Z Zp) and

Es
2(κ) = Bord

s (κ)/ρs( Ĵ ord
s (κ))(↪→ H 1

? (α( Ĵ ord
s ))[α]) are p-torsion finite module as

long as s is finite.

Lemma 8.1 We have the following commutative diagram with exact rows and exact
columns:

Es
1(κ)

↪→−−−−→ H 1
? ( Âord

s )
ιs−−−−→ H 1

? ( Ĵ ord
s )

onto

�
⏐
⏐

�
⏐
⏐

�
⏐
⏐

α( Ĵ ords )(κ)

α(α( Ĵ ords )(κ))

↪→−−−−→ H 1
? (Cord

s )
�−−−−→ H 1

? (α( Ĵ ord
s ))[α]

αs

�
⏐
⏐ bs

�
⏐
⏐

�
⏐
⏐∪

Ĵ ords (κ)

α( Ĵ ords )(κ)

ρs−−−−→
↪→ B̂ord

r (κ) −−−−→
�

Es
2(κ).

(30)

Each term of the bottom two rows is a profinite module if either k is local or S is a
finite set.

The last assertion follows as Cs is finite and B̂ord
r (κ) is profinite. We will define

each map in the following proof. The proof is the same in any cohomology theory:
H 1

? for ? = sm, fppf, étale and Galois cohomology. Therefore, we prove the lemma
for the Galois cohomology dropping ? from the notation. This lemma is valid for
the Galois cohomology for infinite S as is clear from the proof below.

Proof Exactness for the bottom row is from the definition of Es
2(κ), and exactness

for the left column is by the definition of Es
1(κ). The middle column is a part of

the long exact sequence attached to 0 → Cord
s → Âord

s → B̂ord
r → 0, where B̂ord

s is
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identified with B̂ord
r by Lemma 6.2 applied to Ds = Bs . The right column comes

from the long exact sequence attached to 0 → α( Ĵ ord
s ) → Ĵ ord

s → B̂ord
r → 0, again

B̂ord
s is identified with B̂ord

r . The top row comes from the long exact sequence of

0 → Âord
s → Ĵ ord

s
α−→ α( Ĵ ord

s ) → 0.
As for the middle row, we consider the following commutative diagram (with

exact rows in the category of fppf abelian sheaves):

α( Ĵ ord
s )

↪→−−−−→ Ĵ ord
s

�−−−−→
ρs

B̂ord
s

∪
�
⏐
⏐ ∪

�
⏐
⏐

�
⏐
⏐‖

0 → α( Ĵ ord
s ) × Ĵ ords

Âord
s −−−−→

↪→ Âord
s

�s−−−−→
�

B̂ord
s .

(31)

Under this circumstance, we have α( Ĵ ord
s ) ∩ Âord

s = α( Ĵ ord
s ) × Ĵ ords

Âord
s = Ker(�s)

which is a finite étale p-group scheme over Q. Since α( Ĵ ord
s ) ∩ Âord

s is equal to
α( Ĵ ord

s )[α], we have Cord
s = α( Ĵ ord

s )[α].
Note that α2( Ĵ ord

s ) = α( Ĵ ord
s ) as sheaves (as α : α( Ĵ ord

s ) → α( Ĵ ord
s ) is an isogeny,

and hence, α(α( Ĵ ord
s (K ))) = α( Ĵ ord

s )(K )). Thus we have a short exact sequence
under ?-topology for ? = fppf, sm and ét:

0 → Cord
s (K ) → α( Ĵ ord

s )(K )
α−→ α( Ĵ ord

s )(K ) → 0.

Look into the associated long exact sequence

0 → α( Ĵ ord
s )(k)/α(α( Ĵ ord

s )(k)) →H 1(α( Ĵ ord
s )[α])
→ H 1(α( Ĵ ord

s ))
α−→ H 1(α2( Ĵ ord

s ))

which shows the exactness of the middle row, taking the p-primary parts (and then
the ordinary parts). �

In the diagram (30), we identify Âord
s with Âord

r by π∗
s,r : Jr → Js for the pro-

jection πs,r : Xs → Xr (Picard functoriality); so, the projective system { Âord
s =

Âord
r , π r

s }s (w-twisted Albanese functoriality) gives rise to the nontrivial maps
π r
s : Âord

s = Âord
r → Âord

r given by x �→ U (ps−r )(ps−r x). If we write H 1( Âord
r ) =

(Qp/Zp)
m ⊕ r for a finite p-torsion group r by Lemma 2.2 (assuming that S is

finite), we have

lim←−
π r
s ∗:x �→ps−rU (ps−r )(x)

H 1( Âord
r ) ∼= lim←−

π r
s ∗:x �→ps−r x

((Qp/Zp)
m ⊕ r ) = Qm

p . (32)

We quote from [12, Corollary 2.7.6] the following fact (which is valid also for infi-
nite S):

Lemma 8.2 We have lim←−s
H 1(Ar [ps]ord) = H 1(Tp Aord

r ).

We give a proof here for the sake of completeness.
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Proof More generally, let {Mn}n be a projective system of finite Gal(kS/k)-modules
with surjective transition maps. Let B(Mn) (resp. Z(Mn)) be the module of 1-
coboundaries (resp. inhomogeneous continuous 1-cocycles) G := Gal(kS/k) →
Mn . We have the exact sequence 0 → B(Mn) → Z(Mn) → H 1(G, Mn) → 0. Plainly
for m > n, the natural map B(Mm) → B(Mn) is onto. Thus the above sequences
satisfies the Mittag–Leffler condition, and plainly lim←−n

?(Mn) = ?(lim←−n
Mn) for ? =

B, Z , we have
lim←−
n

H 1(kS/k, Mn) = H 1(kS/k, lim←−
n

Mn).

�

We have the following commutative diagram with exact rows:

Cord
s −−−−→

↪→ Âord
s −−−−→

�
B̂ord
s

⏐
⏐
�

⏐
⏐
� �

⏐
⏐
�

Cord
r −−−−→

↪→ Âord
r −−−−→

�
B̂ord
r .

By the snake lemma applied to the above diagram, we get the following exact
sequence:

0 → Ar [ps−r ]ord → Cord
s → Cord

r → 0.

Passing to the limit (as continuous H 1 for profinite coefficients is a projective limit
of H 1 of finite coefficients; cf., [12, 2.7.6]), we have

Tp A = lim←−
s

Ar [ps]ord = lim←−
s

Cord
s

and H 1(Tp A
ord
r ) = lim←−

s

H 1(Ar [ps]ord) = lim←−
s

H 1(Cord
s ). (33)

9 Control Theorems with an Error Term

Taking the projective limit of the exact sequence 0 → Âord
s → Ĵ ord

s
α−→ Ĵ ord

s , by the
vanishing lim←−s

Âord
s (κ) = 0 in Proposition 6.4 applied to Cs = As , we get the injec-

tivity of Ĵ ord∞
α−→ Ĵ ord∞ .

Since all the terms of the exact sequences: 0 → α( Ĵ ord
s )(κ) → Ĵ ord

s (κ) →
Ĵ ords (κ)

α( Ĵ ords )(κ)
→ 0 are compact p-profinite groups, after taking the limit with respect

to π r
s , we still have an exact sequence

0 → lim←−
s

α( Ĵ ord
s )(κ) → lim←−

s

Ĵ ord
s (κ) → lim←−

s

Ĵ ord
s (κ)

α( Ĵ ord
s )(κ)

→ 0
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with lim←−s

Ĵ ords (κ)

α( Ĵ ords )(κ)
↪→ B̂ord

r (κ). Thus

Ĵ ord∞ (κ)

α( Ĵ ord∞ )(κ)
:= lim←−s

Ĵ ord
s (κ)

lim←−s
α( Ĵ ord

s )(κ)
∼= lim←−

s

α( Ĵ ord
s )(κ)

α(α( Ĵ ord
s )(κ))

.

Here the last isomorphism follows from the injectivity of α. By the same token, we
have

α( Ĵ ord∞ )(κ)

α(α( Ĵ ord∞ )(κ))
:= lim←−s

α( Ĵ ord
s )(κ)

lim←−s
α(α( Ĵ ord

s )(κ))
= lim←−

s

α( Ĵ ord
s )(κ)

α(α( Ĵ ord
s )(κ))

.

Writing E∞
j (κ) = lim←−s

Es
j (κ) and passing to projective limit of the diagram (30),

we get the following commutative diagram with exact rows:

E∞
1 (κ)

↪→−−−−−→
Lemma 8.1

lim←−
s:

x �→ps−rU (ps−r )(x)

H 1( Âord
r )

ι∞−−−−→ H 1(lim←−
s

Ĵ ord
s (K ))

onto

�
⏐
⏐

�
⏐
⏐

�
⏐
⏐

α( Ĵ ord∞ )(κ)

α(α( Ĵ ord∞ )(κ))

↪→−−−−→ H 1(Tp Ar (K )ord)
a−−−−→ lim←−

s

H 1(α( Ĵ ord
s )(K ))[α]

α∞

�
⏐
⏐ b

�
⏐
⏐∪ c

�
⏐
⏐∪

Ĵ ord∞ (κ)

α( Ĵ ord∞ )(κ)

ρs−−−−→
↪→ B̂ord

r (κ)
d−−−−→ E∞

2 (κ).

(34)

The rows are exact since projective limit is left exact. The maps a and d are onto
if either S is finite or k is local (as projective limit is exact for profinite modules).
By the same token, the right and left columns are also exact. Therefore E∞

j (κ)

( j = 1, 2) is a torsion �-module of finite type.
To see, we look into the cohomology exact sequence of the short exact sequence:

Cs ↪→ Âord
r � B̂ord

r with transition maps ps
′−sU (p)s

′−s for {Cs}s and { Âord
r }s and

U (p)s
′−s for {B̂ord

r }s . Thus we have the limit sequence

0 → lim←−
s:x �→ps−rU (ps−r )(x)

Âord
r (κ)/Cs(κ) → B̂ord

r (κ)
b−→ lim←−

s

H 1(Cs) = H 1(Tp A
ord
r ).

This sequence is exact as all the terms are profinite compact modules at each step.
Since

lim←−
s:x �→ps−rU (ps−r )(x)

Âord
r (κ)/Cs(κ) = 0,

the map b is injective.
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Passing to the limit of exact sequences of profinite modules: Cs(κ) → Âord
r (κ)

�s−→ B̂ord
r (κ) � Coker(�s), we get the limit exact sequence 0 → B̂ord

r (κ) ∼= lim←−s
Coker(�s). By the left exactness of projective limit, the sequence

0 → lim←−
s

Coker(�s) → H 1(Tp A
ord
r ) → lim←−

s

H 1( Âord
r )

is exact. Therefore the middle column is exact; so,

α∞ is injective. (35)

Since Ĵ∞(κ)ord[α] = Âord∞ (κ) = 0, α : α( Ĵ ord∞ )(κ) → α( Ĵ ord∞ )(κ) is injective.
This shows

Lemma 9.1 Let κ be a field extension of Q or Ql for a prime l, but we assume
finiteness condition (3) for the extension κ/k. We allow an infinite set S of places
of k when k is finite extension of Q. Let α be as in (A). Then we have the following
exact sequences (of p-profinite �-modules)

0 → Ĵ ord
∞ (κ)

α−→ α( Ĵ ord
∞ )(κ) → E∞

1 (κ)ord → 0

and
0 → α( Ĵ ord

∞ )(κ) → Ĵ ord
∞ (κ)

ρ∞−→ B̂ord
r (κ) → E∞

2 (κ) → 0.

Here E∞
j (κ) is a �-torsion module of finite type. In particular, taking α = γ − 1,

we conclude that the compact module Ĵ∞(κ) is a �–module of finite type.

The statement of this lemma is independent of the set S (though in the proof, we
used Galois cohomology groups for finite S if k is global); therefore, the lemma is
valid also for an infinite set S of places of k (as long as S contains all p-adic and
archimedean places and places over N ).

The left column of (34) is made up of compact modules for which projective
limit is an exact functor; so, left column is exact; in particular

lim←−
s

α( Ĵ ord
s )(κ)

α(α( Ĵ ord
s )(κ))

→ E∞
1 (κ) := lim←−

s

Es
1(κ)

is onto.
Take the maximal �-torsion module X inside Ĵ ord∞ (κ). Since X is unique, it

is an h-module. The module Ĵ ord∞ (κ) is pseudo-isomorphic to X ⊕ �R for a pos-
itive integer R. Since α is injective on Ĵ ord∞ (κ), for the α-localization h(α), we have
Xα = X ⊗h h(α) = 0. Thus Ĵ ord∞ (κ) ⊗h h(α) is �Pα

-free, where Pα = (α) ∩ �. Thus
α( Ĵ ord∞ )(κ)

α(α( Ĵ ord∞ )(κ))
⊗Zp Qp and Ĵ ord∞ (κ)

α( Ĵ ord∞ )(κ)
⊗Zp Qp have equal Qp-dimension. Therefore, by

the injectivity of α∞ (35), E∞
1 (κ) is p-torsion. However by (32), this torsion module



Control of �-adic Mordell–Weil Groups 287

is embedded in a Qp-vector space by the top sequence of (34), we have E∞
1 (κ) = 0.

This shows

Theorem 9.2 Let α be as in (A) and k be a finite field extension of either Q or Ql

for a prime l. Assume (3) for the extension κ/k. Then we have the following exact
sequence (of p-profinite �-modules):

0 → Ĵ ord
∞ (κ)

α−→ Ĵ ord
∞ (κ)

ρ∞−→ B̂ord
r (κ) → E∞

2 (κ) → 0.

In particular, taking α = γ − 1, we conclude that the �-module Ĵ∞(κ) is a
�–module of finite type and that Ĵ∞(κ) does not have any pseudo-null�-submodule
non null (i.e., Ĵ∞(κ) has �-homological dimension ≤ 1).

By this theorem (applied to α = γ ps − 1 for s = 1, 2, . . . ), the localization
Ĵ∞(κ)P at an arithmetic prime P is �P -free of finite rank, which also follows from
[27, Proposition 12.7.13.4] as Ĵ∞(κ) can be realized inside Nekovář’s Selmer group
by the embedding of Lemma 2.1.

10 Control Theorem for a Number Field

The following theorem is the final result of this paper for a number field k.

Theorem 10.1 Let the notation be as in the introduction. Suppose that k is a finite
extension of Q. Let AT be the set of all principal arithmetic points of Spec(T)(Qp)

of weight 2 and put �T := {P ∈ AT|AP has good reduction over Zp[μp∞]}. Sup-
pose that we have a single point P0 ∈ �T with finite Selk(AP0)

ord, and write Spec(I)
for the unique irreducible component on which P0 lies. Let k be a finite field exten-
sion of either Q or Ql for a prime l. Then, for almost all P ∈ �T ∩ Spec(I), we have
the following exact sequence (of p-profinite �-modules):

0 → Ĵ ord
∞,T(k)

α−→ Ĵ ord
∞,T(k)

ρ∞−→ B̂ord
P (k) → E∞

2 (k) → 0

with finite error term |E∞
2 (k)| < ∞.

Since T is étale at P0 over �, only one irreducible component of Spec(T) contains
P0 (e.g. [6, Proposition 3.78]).

Since the root number of L(s, AP) is not equal to −1 for most points (as {Xr }r
is the standard tower), we expect that |Selk(AP)ord| < ∞ for most arithmetic P; so,
the assumption of the theorem is a reasonable one.

Proof The Selmer group Selk(AP)ord is the one defined in [22, §8]. By
[27, 12.7.13.4] or [22, Theorem A], the finiteness |Selk(AP0)

ord| < ∞ for a single
point P0 ∈ �T implies that Selk(AP)ord is finite for almost all P ∈ �T ∩ Spec(I).
Though in [22, Theorem A], it is assumed that T is regular to guarantee that all
arithmetic points are principal, what we need to get the result is the principality of
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P0 and P in T; so, this holds true for P ∈ �T ∩ Spec(I). By the well known exact
sequence

0 → B̂ord
P (k) ⊗Zp Qp/Zp → Selk(AP)ord → Xk(AP)ord → 0,

the finiteness of Selk(AP)ord implies finiteness of B̂ord
P (k); so, E2(k) is finite

as well. �

11 Local Error Term

Now let k be an l-adic field. As before, we write Hq(M) for Hq(k, M). For any
abelian variety X/k , we have an exact sequence

X̂(k) ↪→ H 1(TpX) � lim←−
n

H 1(X̂)[pn]

by Lemma 2.1. Similarly, by Corollary 7.2, Lemma 2.1 tells us that

α( Ĵ ord
s (k)) ↪→ H 1(Tpα( Ĵ ord

s )) � TpH
1(α( Ĵ ord

s )) := lim←−
n

H 1(α( Ĵ ord
s ))[pn]

is exact. Thus we have the following commutative diagram in which the first two
columns and the first three rows are exact by Lemma 8.2 and left exactness of
the formation of projective limits combined (the surjectivity of the three horizon-
tal arrows c j ( j = 1, 2, 3) are valid if S is finite or k is local):

α( Ĵ ord
s )(k)

↪→−−−−→ H 1(Tpα( Ĵ ord
s ))

c1−−−−→
�

TpH 1(α( Ĵ ord
s ))

∩
⏐
⏐
�i a

⏐
⏐
�

⏐
⏐
�b

Ĵ ord
s (k)

↪→−−−−→
f

H 1(Tp J ord
s )

c2−−−−→
�

TpH 1( Ĵ ord
s )

ρs

⏐
⏐
� j

⏐
⏐
�

⏐
⏐
�h

B̂ord
r (k)

↪→−−−−→
β

H 1(TpBord
r )

c3−−−−→
�

TpH 1(B̂ord
r )

onto

⏐
⏐
�π �s

⏐
⏐
�

⏐
⏐
�g

Es
2(k)

es−−−−→ H 2(Tpα( Ĵ ord
s )) −−−−→ TpH 2(α( Ĵ ord

s )).

(36)

Assuming that S is finite, the right column is made of Zp-free modules, and
hence, the rows are split exact sequences.
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To see the existence of the map es , we suppose that x = ρs(y) ∈ Im(ρs). Then
we have

�s(β(x)) = �s(β(ρs(y))) = �s( j ( f (y))) = 0.

If b ≡ b′ mod Im(ρs) for b, b′ ∈ B̂ord
r (k), we have �s(β(b)) = �s(β(b′)). In

other words, π(b) �→ �(β(b)) is a well-defined homomorphism from Es
2(k) ∼=

B̂ord
r (k)/ Im(ρs) into Im(�s) ∼= Coker( j) ⊂ H 2(Tpα( Ĵ ord

s )), which we have writ-
ten as es .

We have the following fact (cf. [21, Corollary 4.4]).

Lemma 11.1 We have H 0(TpBord
r ) = H 0(TG) = 0, where TG := Hom�(�∨,G)

∼= lim←−s
Tp J ord

s .

Proof We only need to prove this for a finite field extension k of Ql (as this implies
the result for a number field) and TpBr (as we can take Br := Jr , which implies the
result for TG). Write B = Br . By replacing k be a finite field extension, we may
assume that B has either good reduction or split multiplicative reduction over the
valuation ring O of k with residue field F. If B has good reduction over O and
l �= p, TpBord is unramified at l. All the eigenvalues of the action of the l-Frobenius
element φ are a Weil l-number of positive weight; so, we conclude

H 0(TpB) ⊂ Ker(φ − 1 : TpB → TpB) = 0,

and the assertion follows.
Modifying B by an isogeny does not affect the outcome; so, by doing this, we

may assume that End(B/Q) contains the integer ring OB of the Hecke field. Sup-
pose that p = l, and take a prime factor p|p in OB such that TpBord = TpB :=
lim←−n

B[pn](Q). Then B[p∞]ord extends to an ordinary Barsotti–Tate group. If B
does not have complex multiplication, by [33], the connected-étale exact sequence

0 → B[p]◦,ord → B[p∞]ord → B[p∞]ét → 0

is non-split as a Gal(Qp/k)–module; so, H 0(TpBord) = 0 again. If B has complex
multiplication, by the Cartier duality, we have a Galois equivariant non-degenerate
pairing

(TpB[p∞]ét ⊗Zp Qp) × (TpB[p]◦,ord ⊗Zp Qp) → Qp(1).

On TpB[p∞]ét ⊗Zp Qp, again the eigenvalues of the action of the p-Frobenius ele-
ment φ are Weil p-numbers of positive weight. This shows H 0(TpB[p∞]ét) = 0. By
duality, H 0(TpB[p∞]◦,ord) = 0. Then from the exact sequence

0 → TpB[p∞]◦,ord → TpB
ord → TpB[p∞]ét → 0,

we conclude H 0(TpBord) = 0.
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If B is split multiplicative over O , this fact is a well known result of Mumford–
Tate [26]. �

By the above lemma, the map a in (36) is injective.

Lemma 11.2 Let k be either a number field or a finite extension of Ql for a prime l.
Then the map b in the diagram (36) is injective, and if k is local with l �= p, we have
Im(b) = Ker(h) = 0 in (36) (so the right column is exact).

Proof Applying the snake lemma to the first two rows of (36), we find that b is
injective.

Suppose that k is local. For an abelian variety X over k with Xt := Pic0X/k , X
t (k)

is isomorphic to Zm
l times a finite group; so, if l �= p, X̂ t (k) is finite p-group. By [9,

I.3.4], H 1(k, X) ∼= Xt (k)∨; so, H 1(k, X̂) is a finite group. Therefore H 1(k, Ĵ ord
s )

and H 1(k, B̂ord
r ) are finite groups, and TpH 1(k, Ĵ ord

s ) = TpH 1(k, B̂ord
r ) = 0. Since

b is injective, TpH 1(k, α( Ĵ ord
s )) = 0; so, Ker(h) = Im(b) = 0. �

We note the following fact: If k is local non-archimedean, for an abelian variety A
over k,

H 2(k, Â) = H 2(k, A) = 0 for any abelian variety A over k. (37)

This follows from [9, Theorem I.3.2], since H 2(k, Â) = H 2(k, A) ⊗Z Zp.

Proposition 11.3 If k be a finite extension of Ql with l �= p, then Es
2(k) = 0.

Proof Since the left column of (36) by Lemma 11.2 if l �= p, applying the snake
lemma to the middle two exact rows of (36), we find an exact sequence

0 → Es
2(k)

es−→ Im(�s) → Coker(h) → 0. (38)

This implies Es
2(k) ↪→ Im(�s).

Let X/k be a p-divisible Barsotti–Tate group. Then we have H 2(k, TpX) =
lim←−n

H 2(k, X [pn]) (e.g., [12, 2.7.6]). By Tate duality (e.g., [7, Theorem 4.43]), we

have H 2(k, X [pn]) ∼= Xt [pn](k)∨ for the Cartier dual Xt := Hom(TpX, μp∞) of X .
Thus we have

H 2(k, TpX) = lim←−
n

(Xt [pn](k)∨) ∼= (lim−→
n

H 0(k, Xt [pn]))∨,

since we have a canonical pairing X [pn] × Xt [pn] → μpn (i.e., Xt [pn](k)∨ ∼=
X [pn](−1)(k)).

Apply this to the complement X of Âs[p∞]ord in Js[p∞]ord; so, X + As[p∞]ord =
Js[p∞]ord with finite X ∩ As[p∞]ord. Requiring X to be stable under hs , for hs(Qp)

= hs ⊗Zp Qp, X is uniquely determined as hs(Qp) = (hs(Qp)/αshs(Qp)) ⊕
1shs(Qp) for an idempotent 1s (so, X = 1s Js[p∞]ord). By local Tate duality, we
get H 2(k, TpX) ∼= H 0(k, X [p∞]t )∨ and conclude
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H 2(k, TpX) ∼= lim−→
n

H 0(k,Hom(X [pn](k), μpn (k)))

= lim−→
n

X [pn](−1)(k) = X [p∞](−1)(k).

Thus we conclude the injectivity:

H 2(k, TpX) ∼= X [p∞](−1)(k)
↪→−→ Js[p∞]ord(−1)(k) ∼= H 2(k, Tp Js)

ord,

which is injective as X ⊂ Js[p∞]ord. By definition, we have X + As[p∞]ord =
Js[p∞]ord. By the assumption (A) and the definition of X , X = αs(Js[p∞]ord).
Therefore we get an injection:

H 2(k, Tpα( Ĵ ord
s )) ∼= H 2(k, Tpα(Js[p∞]ord))
∼= α(Js[p∞]ord)(−1)(k)

a2−→
↪→ Js[p∞]ord(−1)(k) ∼= H 2(k, Tp Js)

ord.

We have an exact sequence

H 1(k, Tpα( Ĵ ord
s ))

�s−→ H 2(k, Tp Ar )
ord a2−→ H 2(k, Tp Js)

ord.

Since a2 is injective, we find Im(�s) = 0; so, Es
2(k) = 0 if k is l-adic with

l �= p. �

Here are some remarks what happens when l = p for the local error terms. For
simplicity, we assume that k = Qp; so, Ws = Zp[μps ]. For l �= p, the proof of the
above proposition is an argument purely of characteristic 0. In [22, §17], we studied
the error term of the control of inductive limit J ord∞ (Qp) := lim−→s

Ĵ ord
s (Qp) using a

result of P. Schneider [29, 30] on universal norm for abelian varieties over ramified
Zp-extension. It works well for the inductive limit J ord∞ (Qp) but perhaps not for the
projective limit Ĵ ord∞ (Qp) for the following reason.

This involves study of integral models of the abelian variety (in particular, its
formal Lie group over W∞). Let Ir (resp. Xr,0) be the Igusa tower of level pr over
X0 := X1(N ) ⊗Zp Fp containing the zero cusp (resp. the infinity cusp). Then for
P ∈ �T, if the conductor of BP is divisible by pr with r > 0, BP ×Wr Fp is the quo-
tient of Pic0Ir /Fp

×Pic0Xr,0/Fp
(cf. [8, Chap. 14] or [20, §6]). On Pic0Ir /Fp

×Pic0Xr,0/Fp
,

U (p) and U ∗(p) acts in a matrix form with respect to the two factors Pic0Ir /Fp
and

Pic0Xr,0/Fp
in this order

U (p) =
(

F ∗
0 V 〈p(p)〉

)
and U ∗(p) =

(
V 〈p(p)〉 0

∗ F

)
, (39)

where 〈p(p)〉 is the diamond operator of the class of p modulo N . See [24, §3.3]
or [20, (6-1)] for this formula. Since the shoulder term ∗ of the above matrix form
of U (p) vanishes once restricted to BP if r > 0, from (39), B̂ord

P (F) must be the
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quotient of Pic0Ir /Fp
, and the ordinary part of the formal Lie group B̂◦,ord

P/Fp
of B̂P

has to be the quotient of Pic0Xr,0/Fp
. Similarly, B̂co-ord

P (F) must be the quotient of

Pic0Xr,0/Fp
, and the co-ordinary part of the formal Lie group B̂◦,co-ord

P/Fp
of B̂P has to be

the quotient of Pic0Ir /Fp
.

Write Bs for the quotient of Js corresponding to BP . We consider the exact
sequence defining Es

2(Qp):

0 → α( Ĵ ord
s,T )(Qp) → Ĵ ord

s,T (Qp)
ρs−→ B̂ord

s (Qp) → Es
2(Qp) → 0,

which is equivalent to, by the involution ws over characteristic 0 field, the following
exact sequence

0 → α∗( Ĵ co-ord
s,T )(Qp) → Ĵ co-ord

s,T (Qp)
ρ∗
s−→ t Âco-ord

s (Qp) → Es
2(Qp) → 0.

Thus we study the second exact sequence of the co-ordinary parts. Here we have
used the self duality of Js , t As is the dual abelian variety of As and α∗ is the image
of α under the Rosati involution.

Consider the complex of Néron models over Ws :

0 → α∗(Js) → Js → t As → 0

and its formal completion along the identity

0 → α∗(J ◦
s ) → J ◦

s → t A◦
s → 0.

Here X◦ is the formal group of an abelian variety X/Ws . These sequence might not
be exact as Ws/Zp is highly ramified at p (see [1, §7.5]). But just to go forward,
we assume the sequence of the co-ordinary parts of the formal Lie groups are exact
(and still we find some difficulties).

As explained in [22, (17.3)], taking the T∗-component (the image of T under the
Rosati involution), the complex

0 → α∗( Ĵ ◦
s,T∗) → Ĵ ◦

s,T∗ → t Â◦
s,T∗ → 0 (40)

is, by our assumption, an exact sequence of formal Lie groups over Ws ; so, the top
complex of the following commutative diagram is a short exact sequence:

α∗( Ĵ ◦
s,T∗)(Ws)

↪→−−−−→ Ĵ ◦
s,T∗(Ws)

�−−−−→ t Â◦
s,T∗(Ws)

Nα∗(Js )

⏐
⏐
� NJs

⏐
⏐
� Ns

⏐
⏐
�

α∗( Ĵ ◦
s,T∗)(Ws)

Gal(ks/kr ) ↪→−−−−→ Ĵ ◦
s,T∗(Ws)

Gal(ks/kr )
ρ∗
s−−−−→ t Â◦

r,T∗(Wr ),
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where NX,s is the norm map relative to ks/kr of an abelian variety X defined over
kr . By Schneider [30], Ns is almost onto with the index of the image bounded inde-
pendent of s. However, we do not know yet ρ∗

s is surjective up to finite bounded
error for the following reason:

Though t Âco-ord
s

∼= t Âco-ord
r because Âord

r
∼= Âord

s as seen in [22], the projection
map

t Â◦,co-ord
s (Ws) → t Â◦,co-ord

r (Ws)

is not an isomorphism. After reducing modulo p, as already remarked, the formal
Lie group of t Âco-ord

s is in the identity connected component of Pic0X0,s
. Note that Is =

X (ps )
s,0 (the ps-power Frobenius twist); so, the projection Is → Ir is given by Fs−r ◦

π for the projection π : Xs,0 → Xr,0 ([8, Theorem 13.11.4 (1)] or [20, §6]) which is
purely inseparable. This shows that π∗ : t Âco-ord

s → t Âco-ord
r is not an isomorphism.

Thus we have two problems for proving bounded-ness of Es
2(Qp) (and hence of

Es
2(Qp))

1. (40) may not be exact;
2. the projection t Âco-ord

s/Fp
→ t Âco-ord

r/Fp
is purely inseparable of degree ≥ ps−r (as the

polarization of As has degree of high p-power ≥ ps).

These problems do not appear for the pull-back map Âord
r

∼−→ Âord
s even over Fp

as the exactness of Âord
r ↪→ Ĵ ord

s � α( Ĵ ord
s ) is proven by the control of the �-adic

BT group G in [22, §17] and the projection Xs,0 → Xr,0 is étale outside the super-
singular points for all s.
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Some Congruences for Non-CM Elliptic
Curves

Mahesh Kakde

(Sant Tukaram)

Abstract Let p be an odd prime and let G be a p-adic Lie group. The group
K1(�(G)), for the Iwasawa algebra �(G), is well understood in terms of congru-
ences between elements of Iwasawa algebras of abelian sub-quotients of G due to
the work of Ritter-Weiss and Kato (generalised by the author). In the former one
needs to work with all abelian subquotients of G whereas in Kato’s approach one
can work with a certain well-chosen sub-class of abelian sub-quotients of G. For
instance in [11] K1(�(G)) was computed for meta-abelian pro-p groups G but
the congruences in this description could only be proved for p-adic L-functions of
totally real fields for certain special meta-abelian pro-p groups. By changing the
class of abelian subquotients a different description of K1(�(G)), for a general G,
was obtained in [12] and these congruences were proven for p-adic L-functions of
totally real fields in all cases. In this note we propose a strategy to get an alternate
description of K1(�(G)) when G = GL2(Zp). For this it is sufficient to compute
K1(Zp[GL2(Z/pn)]). We demonstrate how the strategy should work by explicitly
computing K1(Zp[GL1(Z/p)])(p), the pro-p part of K1(Zp[GL2(Z/p)]), which is
the most interesting part.
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1 Introduction

We begin with a discussion of the main conjecture for non-CM elliptic curves. Let
E be an elliptic curve defined over Q. Assume that E does not admit complex
multiplication. Let p be a prime and put E[pn] for the set of pn-torsion points of
E (over Q). Let F∞ := Q(E[p∞]) := ⋃

n�1 Q(E[pn]). By a famous theorem of
Serre [17] Gal(F∞/Q) is an open subgroup of GL2(Zp) and is in fact equal to
GL2(Zp) for almost all p. From now on fix a prime p > 3 (so that GL2(Zp) does
not have an element of order p) such that G := Gal(F∞/Q) ∼= GL2(Zp) and such
that E has good ordinary reduction at p. Let μn be the group of nth roots of 1. Put
Q∞ := Q(μp∞) := ⋃

n�1 Q(μpn ). By the Weil pairing Q∞ is contained in F∞. Let
Qcyc be the unique extension ofQ (contained inQ∞) such that � := Gal(Qcyc/Q) is
isomorphic to the additive group of p-adic integersZp.We put H := Gal(F∞/Qcyc).

F∞

H

G

Q∞

Qcyc

�

Q

For a profinite group P = lim←−i
Pi , we put �(P) := lim←−i

Zp[Pi ] and �(P) := lim←−i
Fp[Pi ]. Following [5] we put

S := { f ∈ �(G) : �(G)/�(G) f is a f.g. �(H)-module}.

Put S∗ := ⋃
n�0 p

nS. By [5, Theorem 2.4] S and S∗ are multiplicatively closed sub-
sets of �(G), do not contain any zero-divisors and satisfy the Ore condition. Hence
we get localisations �(G)S and �(G)S∗ of �(G). Put MH (G) for the category of
finitely generated S∗-torsion�(G)-modules i.e. all finitely generated�(G)-modules
M such that �(G)S∗ ⊗�(G) M = 0. Following [5, Sect. 5], for any algebraic exten-
sion L of Q, we define the Selmer group

S(E/L) := Ker
(
H 1(L , E[p∞]) →

∏

w

H 1(Lw, E(Lw))
)
,

where w runs through all non-archimedian places of L and Lw denotes the union of
completions at w of all finite extensions of Q contained in L . Also put
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X (E/L) := Hom(S(E/L),Qp/Zp)

for the Pontrjagin dual.

Conjecture 1 (Conjecture 5.1 [5])The�(G)-module X (E/F∞) lies in the category
MH (G).

Every continuous homomorphism ρ : G → GLn(O), where O is the valuation ring
in a finite extension L of Qp, induces a map (see [5, Eq. (22)])

K1(�(G)S∗) → L ∪ {∞}, (1)

x �→ x(ρ).

(Classically, this would be denoted as
∫
G ρdx).

Conjecture 2 (Conjecture 5.7 [5]) There is a finite unramified extension A of Zp

and an element LE ∈ K1(�(G)S∗ ⊗Zp A) such that, for all Artin representation ρ

of G we have

LE (ρ) = L�(E, ρ̂, 1)

�+(E)d
+(ρ)�−(E)d

−(ρ)
· ep(ρ) · Pp(ρ, u−1)

Pp(ρ̂,w−1)
· u− fρ .

(see [5, Sect.5] for all unexplained notation and the paragraph before Proposition
7.5 [3] for correction to loc. cit. We thank the referee for pointing this out).

Recall the following part of the localisation sequence of K -theory

K1(�(G)) → K1(�(G)S∗)
∂−→ K0(MH (G)) → 1.

The surjection of ∂ is shown in [5, Proposition 3.4]. Assuming Conjecture 1 a char-
acteristic element of X (E/F∞) is defined as any element of K1(�(G)S∗) that maps
to the class of X (E/F∞) in K0(MH (G)).

Conjecture 3 (Conjecture 5.8 [5]) Assume Conjectures 1 and 2. Let ξE be a char-
acteristic element of X (E/F∞). Then the image of ξE in

K1(�(G)S∗ ⊗Zp A)

Image of K1(�(G) ⊗Zp A)

coincides with the image of LE .

For simplicity we assume that the ring A in the above Conjecture 2 is Zp as
we discuss the strategy for attacking the above conjecture. This strategy is due to
Burns and Kato (see [1]) and is well-known by now. Put S(G) for the set of all open
subgroups of G. For every U in S(G), there is a map
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θU : K1(�(G)) → K1(�(U ab)) ∼= �(U ab)×

defined as composition of the norm map K1(�(G)) → K1(�(U )) and the map
induced by natural project �(U ) → �(U ab). Hence we get a map

θ :=
∏

U∈S(G)

θU : K1(�(G)) →
∏

U∈S(G)

�(U ab)×

Similarly, there are maps

θS : K1(�(G)S) →
∏

U∈S(G)

�(U ab)×S ,

θS∗ : K1(�(G)S∗) →
∏

U∈S(G)

�(U ab)×S∗ .

AsG has no element of order p by “Weierstrass preparation theorem” [3, Proposition
3.4] there is an isomorphism

K1(�(G)S∗) ∼= K1(�(G)S) ⊕ K0(�(G)).

We have the map
θ0 : K0(�(G)) →

∏

U∈S(G)

K0(�(U ab))

that fits into the following commutative diagram

K1(�(G)S∗)
∼= ��

θS∗
��

K1(�(G)S) ⊕ K0(�(G))

(θS ,θ0)
��∏

U∈S(G)

�(U ab)×S∗
∏

U∈S(G)

�(U ab)×S ⊕ K0(�(U ab)).� ���

Here, we abuse the notation by denoting Ore sets forU ab by the same symbols S and
S∗. The injection in lower row is not surjective in general. Nevertheless, an element
(xU ) ∈ ∏

U∈S(G) �(U ab)×S∗ lies in the image of θS∗ if and only if it “factorises” as
xU = (xU , μU ) and (xU ) and (μU ) lie in the images of θS and θ0 respectively.

Let P be a pro-p normal subgroup of G. Put G0(Fp[G/P]) for the Grothendieck
group of the category of finitely generated Fp[G/P]-modules. The group is isomor-
phic to the group Brauer characters of G/P by [8, Proposition 17.14]. The group is
also independent of the choice of the pro-p normal subgroup P (by [8, Proposition
17.16(i)]. The group K0(�(G)) is aGreenmodule over theGreen ringG0(Fp[G/P])
(this is [18, 17.1(*)(c)]. For the notion of Green rings and Green modules see [15,
Chap. 11]). Moreover, there is a Cartan homomorphism [18, 15.1]
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c : K0(�(G)) → G0(Fp[G/P])

which is injective by [8, Lemma 18.22(ii)] (see also [3, 3.4.2]). Hence

x ∈ K0(�(G)) is 0 ⇐⇒ χ(x) = 0 ∀ Brauer characters χ of G (2)

(note that χ induces a map χ : K0(�(G)) → K0(Fp) = Z). The following lemma
is a generalisation of the the ‘only if’ part of [7, Theorem 3.8].

Lemma 4 The map θ0 is injective and its image consists of all tuples (μU ) such that
for any finite collection {Ui } ⊂ S(G), if there are mod p representation χi of U ab

i
and integers ni such that

∑
i ni I nd

G
U ab

i
(χi ) = 0, then

∑

i

niχi (μUi ) = 0.

Proof There is a canonical inflation map K0(�(U ab)) → K0(�(U )). By the Brauer
induction theorem [8, Theorem 21.15] there are finitely many open subgroups Ui of
G and Brauer characters χi of U ab

i such that the trivial character 1 of G is given by

1 =
∑

i

I ndG
Ui

χi ,

where we use the same symbol χi for the character of Ui obtained by inflating χi .
For any tuple (μU )U satisfying the condition given in the statement of the lemma
define an element μ ∈ K0(�(G)) as follows—firstly, by abuse of notation, let μU

denote the inflation of μU to K0(�(U ). Let iU : K0(�(U )) → K0(�(G)) be the
map induced by the inclusion U ↪→ G. Define

μ :=
∑

i

iUi (χi · μUi ).

Here χi is considered as an element of G0(Fp[Ui/Pi ]) for a suitable (i.e. χi is trivial
on Pi ) open normal pro-p subgroup Pi of Ui and χi · μUi ∈ K0(�(Ui )) is obtained
by the action of G0(Fp[Ui/Pi ]) on K0(�(Ui )). The element μ is independent of the
choice of Ui ’s and χi ’s because the hypothesis on (μU )U and (2). It is easy to check
that this gives the inverse of θ0 for the claimed image. �
Remark 5 The above discussion reveals two surprising consequences of S∗-torsion
conjecture. Firstly, as observed in [1], the p-adic L-function in�(U ab)×S∗ should fac-
torise canonically into an element in �(U ab)×S and a “μ-invariant” part (even though
there is noWeierstrass preparation theorem for�(U ab)×S∗ in general). Secondly, both
these parts of the p-adic L-functions should satisfy “Artin formalism” (one part
satisfies Artin formalism if and only if the other does since the p-adic L-function
satisfies Artin formalism).
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Remark 6 Coates-Sujatha [7] proved that for P ∼= Zp × Zp, the S∗-torsion conjec-
ture is equivalent to Artin formalism for μ-invariant parts of p-adic L-functions in
�(Zp × pnZp) (in this case this is equivalent to growth of μ-invariant in a certain
way). However, in general, Artin formalism forμ-invariants seems to be weaker than
S∗-torsion conjecture.

In any case, to prove above conjectures at present it seems necessary to study the
maps θ, θS, θS∗ , θ0 and compute their images explicitly. There are two ways to do
this. One is due to Ritter-Weiss [16, 19] and other is due to Kato, generalised by the
author [12–14]. The first one is very elegant to state and can be easily stated for a
general p-adic Lie group (as opposed to one dimension pro-p groups treated in [16,
19]) as will be shown in [2]. However, in this approach it is necessary to use all open
subgroups of G. The advantage of Kato’s approach is that in special situations one
can restrict to smaller classes of open subgroups of G. In this short note we propose
to begin the study of K1(�(G)) using a smaller class of open subgroups of G. By
[9, Proposition 1.5.1] K1(�(G)) ∼= lim←−n

K1(Zp[GL2(Z/pn)]). Hence it is enough
to compute K1(Zp[GL2(Z/pn)]). The strategy to compute K1(Zp[P]) for a finite
group P can roughly be stated as follows: Let S(P) be a fixed class of subgroups of
P . Then we have a map

θ : K1(Zp[P]) →
∏

U∈S(P)

Zp[U ab]×.

There is an additive analogue of this map

ψ : Zp[Conj(P)] →
∏

U∈S(P)

Zp[U ab],

where Conj(P) is the set of conjugacy classes of P . For the definition of ψ see next
section. Precise relation between θ and ψ via integral logarithm is often hard to
describe. In short there are two ingredients to compute K1(Zp[P])
(1) Explicit knowledge of Conj(P) so that the map ψ can be described explicitly.
(2) Explicit relation between θ and ψ via integral logarithm. Here we again need to

know Conj(P) explicitly.

In this short notewe carry out this strategy for n = 1. For n > 1 a similar computation
(with a lot more blood, sweat and tears but essentially with no new ideas) should go
through and will be carried out in future. In the end the congruences turn out to be
rather trivial for n = 1 but that is expected as p-Sylow subgroups of GL2(Z/pZ)

are cyclic groups of order p. However, we hope the calculations in this simple case
are illuminating and indicate how the general case will proceed.

There are several interesting aspects of this construction. For example, it is already
seen from computations in meta-abelian case in [11] and in general in [12], that the
shape of the congruences can be very different if one chooses different class of sub-
groups. It seems hard to pass from the congruences in [11] to the congruences in [12]
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directly in cases when they both apply. As [12] shows having an alternate description
can be useful to prove the congruences. Secondly, we hope that open subgroups of
G that, modulo pm , are one of the “standard subgroups” (Borel, Cartan, Centre etc.)
will suffice. These are closer to the theory of automorphic representations. Therefore
one may hope that the theory of automorphic representations and automorphic forms
weighs in significantly in understanding these congruences. This will only be clear
after the congruences are explicitly written down in general. Lastly, in the case of
elliptic curves admitting CM, the main conjecture for symmetric power representa-
tions attached to the curve has been deduced from the two variable main conjecture
by Coates-Schmidt [6]. It was mentioned to the author by John Coates that a similar
deduction should be possible for non-CM elliptic curves using the main conjecture
stated above. This seems to be an extremely hard problem. Specially because in
the main conjecture above we allow evaluation of p-adic L-function only at Artin
representations. Hence one needs to understand reduction modulo powers of p of
Artin representations and symmetric power representations. This study is implicit in
the calculations proposed here. L-functions of symmetric power representations are
extremely hard to study and the author does not claim that the calculations proposed
here would provide a way to do this.

Remark 7 Throughout the paper we restrict to Zp coefficients, however, the same
computation should work for a more general class of coefficient rings for which inte-
gral logarithm has been constructed (for example rings considered in [4]). However,
all the results we need are not stated or proven in this generality yet and a satisfactory
discussion of these will take us too far off our modest goal.

2 An Additive Result

From now onwardsG denotesGL2(Fp). Let us denote the set of conjugacy classes of
G by Conj(G). Fix a non-square element ε in Fp. It is well-known that the conjugacy
classes of G are (for example see [10])

ia :=
(
a 0
0 a

)

for a ∈ F×
p .

ca,1 :=
(
a 1
0 a

)

for a ∈ F×
p .

ta,d :=
(
a 0
0 d

)

for a �= d ∈ F×
p .

ka,b :=
(
a εb
b a

)

for a ∈ Fp and b ∈ F×
p .
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We first describe the free Zp-module Zp[Cong(G)] explicitly in terms of abelian
subgroups of G. For this we define the following subgroups of G.

Z :=
{

ia =
(
a 0
0 a

)

: a ∈ F×
p

}

= centre of G,

C :=
{

ca,b =
(
a b
0 a

)

: a ∈ F×
p , b ∈ Fp

}

,

T :=
{

ta,d =
(
a 0
0 d

)

: a, d ∈ F×
p

}

= split Cartan,

and

K :=
{

ka,b =
(
a εb
b a

)

: a, b ∈ Fp

}

= non-split Cartan,

where ε is the fixed non-square element of Fp. Note that they are all abelian. Put
S(G) := {Z ,C, T, K }. Define a map

ψ := (ψU )U∈S(G) : Zp[Conj(G)] →
∏

U∈S(G)

Zp[U ],

where (the trace map) ψU : Zp[Conj(G)] → Zp[U ] is a Zp-linear map defined by

g �→
n∑

i=1

{h−1
i ghi : h−1

i ghi ∈ U }

for any g ∈ G and a fixed set {h1, . . . , hn} of left coset representatives for U in G.
This map is explicitly given in the following table

ψZ ψC ψT ψK

ia p(p2 − 1)ia (p2 − 1)ia p(p + 1)ia p(p − 1)ia
ca,1 0

∑p−1
i=1 ca,i 0 0

ta,d 0 0 ta,d + td,a 0
ka,b 0 0 0 ka,b + ka,−b

Definition 8 We put � for the set of all tuples (aU ) ∈ ∏
U∈S(G) Zp[U ] satisfying

the following conditions

(A1) For every U ∈ S(G), the trace map trU : Zp[U ] → Zp[Z ] maps aU to aZ (as
Zp[U ] is a free finitely generated module over Zp[Z ] we have the trace map
trU ).
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(A2) Let NGU be the normaliser ofU in G. We require that every aU is fixed under
the conjugation action of NGU .

(A3) The element aZ lies in the ideal pZp[Z ] of Zp[Z ].
Theorem 9 (additive theorem) The map ψ induces an isomorphism between
Zp[Conj(G)] and �.

Proof From the above table it is clear that the image of ψ lies in �. We sim-
ply define a left inverse δ of the map ψ and then show that δ is injective on
�. Define δ := ∑

U∈S(G) δU , with each δU : ∏
V∈S(G) Zp[V ] → Qp[Conj(G)] =

Q[G]
[Q[G],Q[G]] defined by

δU ((aV )) =
{

1
[NGU :U ]

(
aU − 1

[U :Z ]aZ
)
if U �= Z

1
[G:Z ]aZ if U = Z .

First we show that δ ◦ ψ = idZp[Conj(G)]. As all the maps are Zp-linear it is enough
to check only on conjugacy classes Conj(G).

(1) (For classes ia) It is clear from the above table that δZ (ψZ (ia)) = ia . For every
U ∈ S(G), we have trU (ψU (ia)) = [U : Z ]ψU (ia) (considered as an element of
Zp[Z ] as it already lies in that subring of Zp[U ]). Therefore δU (ψU (ia)) = 0
for all U �= Z by (A1). Hence δ(ψ(ia)) = ia .

(2) (For classes ca,1) From the above table it is clear that δU (ψU (ca,1)) = 0 for all
U �= C . Moreover, it is easy to check that NGC is the set of upper triangular
matrices in G. Hence δC(ψC(ca,1)) = 1

p−1 (
∑

h∈NGC/C h−1ca,1h) = ca,1. Hence
δ(ψ(ca,1)) = ca,1.

(3) (For classes ta,d ) Again from the above table it is clear that δU (ψU (ta,d)) = 0
for U �= T . The normaliser

NGT =
{(

a b
c d

)

: a = d = 0 or b = c = 0

}

= T ∪
(
0 1
1 0

)

T .

Therefore [NGT : T ] = 2. Hence δT (ψT (ta,d)) = ta,d (we abuse the notation
and denote the conjugacy class of ta,d by the same symbol).

(4) (For classes ka,b) Again from the above table it is clear that δU (ψU (ka,b)) = 0
for U �= K . The normaliser

NGK =
{(

a εb
c d

)

: a = d, b = c or a = −d, b = −c

}

= K ∪
(
0 −ε

1 0

)

K .

Therefore [NGK : K ] = 2. Hence δK (ψK (ka,b)) = ka,b.

This show that δ ◦ ψ = idZp[Conj(G)].
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Next we show that δ|� is injective. Let (aU ) ∈ � be such that δ((aU )) = 0. First
consider aC = ∑p−1

i=0

∑p−1
a=1 xa,i ca,i . Then trC(aC) = [C : Z ]∑p−1

a=1 xa,0ca,0 which,
by (A1), is equal to aZ . Hence aC − 1

[C :Z ]aZ = ∑p−1
i=1

∑p−1
a=1 xa,i ca,i . As ca,i , for

1 � i � p − 1, are all conjugates of ca,1 we have, by (A2),

aC − 1

[C : Z ]aZ =
p−1∑

a=1

xa,1

p−1∑

i=1

ca,i .

Therefore δC((aU )) = ∑p−1
a=1 xa,1ca,1. Moreover these conjugacy classes ca,1 cannot

appear in the imageof δU for anyU �= C . Therefore δ((aU )) = 0 implies that xa,1 = 0
for all a. Hence aC = 1

[C :Z ]aZ . Hence δC((aU )) = 0.

Similarly, we show that aT = 1
[T :Z ]aZ and aK = 1

[K :Z ]aZ and so δT ((aU )) = 0 =
δK ((aU )). Hence δZ ((aU )) = 0. Therefore aZ = 0 and so aC = 0, aT = 0 and aK =
0. This show that δ|� is injective. �

Remark 10 The above proof goes through with any coefficient ring which is a Z(p)-
algebra.

3 The Main Result

We have a map
θ : K1(Zp[G]) →

∏

U∈S(G)

Zp[U ]×.

Let χU be representations of U and nU be integers such that

∑

U∈S(G)

nU Ind
G
U χU = 0.

This sum takes place in the group of virtual characters of G. We say that a tuple
(xU ) ∈ ∏

U∈S(G) Zp[U ]× satisfies (F) if for any χU and nU as above

∏

U

χU (xU )nU = 1.

It is clear that the image of θ satisfies (F).

Proposition 11 Let (xU ) ∈ ∏
U Zp[U ]× satisfy (F). Then

(M1) (xU ) satisfies the analogue of (A1), i.e. the norm map nr : Zp[U ] → Zp[Z ]
maps xU to xZ for any U ∈ S(G).

(M2) (xU ) satisfies the analogue of (A2), i.e. xU is fixed by NGU for any U ∈ S(G).
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Proof This is an easy consequence of (F). We demonstrate (M1). Let χ be a repre-
sentation of Z and ρ := I ndU

Z (χ). Then

χ(nr(xU )) = ρ(xU ).

As I ndG
Z (χ) = I ndG

U (ρ), it is plain from (F) that ρ(xU ) = χ(xZ ). Hence χ(nr(xU ))

= χ(xZ ). Hence nr(xU ) = xZ . �

Next we observe that by Oliver [15, Proposition 12.7] SK1(Zp[G]) = 1. Let P
be a finite group and put JP for the Jacobson radical of group ring Zp[P]. By [15,
Theorem 2.10]

K1(Zp[P]) ∼= K1(Zp[P]/JP) ⊕ K1(Zp[P], JP).

The group K1(Zp[P]/JP) is a finite group of order prime to P . The group
K1(Zp[P], JP) is a Zp-module. Hence K1(Zp[P])(p) = K1(Zp[P], JP). Hence the
map θ induces

θ |K1(Zp[G]/JG ) : K1(Zp[G]/JG) →
∏

U∈S(G)

(Zp[U ]/JU )×

and
θ |K1(Zp[G])(p) : K1(Zp[G])(p) →

∏

U∈S(G)

K1(Zp[U ])(p).

In this paper we will ignore the prime to p-part K1(Zp[G]/JG) as interesting con-
gruences come from the p-part K1(Zp[G])(p).

We first recall the integral logarithm of Oliver and Taylor ([15, Chaps. 6 and 12])

L : K1(Zp[G])(p) → Zp[Cong(G)]

defined as L :=
(
1 − ϕ

p

)
◦ log, where ϕ is the map induced by g �→ gp for every

g ∈ Conj(G).

Proposition 12 The integral logarithm on K1(Zp[G]) induces an isomorphism

L : K1(Zp[G])(p) ∼=−→ Zp[Conj(G)].

In particular, K1(Zp[G])(p) is torsion-free.
Proof For a finite group P let P ′ denote the set representative of p-regular conju-
gacy classes of P . Then kernel and cokernel of integral logarithm L on K1(Zp[P])
are equal to H1(P,Zp[P ′])ϕ and H1(P,Zp[P ′])ϕ respectively. Here H1 is the
Hochschild homology and P acts on the coefficients by conjugation. The opera-
tor ϕ is the one induced by the map

∑
agg �→ ∑

aggp on the coefficients (this is
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[15, Theorem 12.9]). We apply this to the group G. Firstly note that ϕ is identity
on p-regular elements of G. To compute the homology group H1(G,Zp[G ′]) notice
that by the sentence after Eq. (1) on page 286 in [15]

H1(G,Zp[G ′]) = ker(L) = tor(K1(Zp[G])(p)),

which by [15, Theorem 12.5(ii)] is trivial in our case (this can be computed using
the explicit conjugacy classes of G given in the previous section). �

Next we find a relation between ψ and θ . Let η = I ndC
Z 1 be a representation

of C . It induces a Zp-linear map η : Zp[C] → Zp[C] given by g �→ tr(η(g))g.
The image of this map lies in Zp[Z ] ⊂ Zp[C]. The representation η also induces
a map Zp[C]× → Zp[C]×, that we again denote by η, given by

∑
g∈C agg �→

det (
∑

g agη(g)g). It is easy to verify that this is just the norm map Zp[C]× →
Zp[Z ]×.
Lemma 13 We have the following commutative diagram

Qp[Conj(G)] ϕ ��

ψ

��

Qp[Conj(G)]
ψ

��∏

U∈S(G)

Qp[U ]
ϕ̃

��
∏

U∈S(G)

Qp[U ],

where the map ϕ̃ = (ϕ̃U ) is given by

ϕ̃Z (aZ , aC , aT , aK ) := ϕ(aZ ) + p(p + 1)ϕ(aC − η

p
(aC))

ϕ̃C(aZ , aC , aT , aK ) := ϕ(aC) − p(aC − η

p
(aC))

ϕ̃T (aZ , aC , aT , aK ) := ϕ(aT ) + p(p + 1)

p − 1
ϕ(aC − η

p
(aC))

ϕ̃K (aZ , aC , aT , aK ) := ϕ(aK ) + pϕ(aC − η

p
(aC)).

In the above we use the fact that ϕ(aC − η

p (aC)) belongs to Zp[Z ] and hence can be
considered as an element of Zp[U ] for any U ∈ S(G).

Proof This is a simple and straightforward, though somewhat tedious, calculation
using the explicit description of conjugacy classes of G and the map ψ . �
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Proposition 14 The relation between the maps θ and ψ is given by

K1(Zp[Conj(G)])(p)
θ

��

L �� Zp[Conj(G)]
ψ

��∏

U∈S(G)

Zp[U ]×
L̃

��
∏

U∈S(G)

Qp[U ]

where the map L̃ := (L̃U ) is given by

L̃ Z (xZ , xC , xT , xK ) := 1

p
log

(
x p
Z

ϕ(xZ )
· ϕ(η(xC))p+1

ϕ(xC)p(p+1)

)

L̃C(xZ , xC , xT , xK ) := 1

p
log

(
x p
C

ϕ(xC)
· ϕ(η(xC))

ϕ(xC )p

)

L̃T (xZ , xC , xT , xK ) := 1

p(p − 1)
log

(
x p(p−1)
T

ϕ(xT )p−1
· ϕ(η(xC))p+1

ϕ(xC )p(p+1)

)

L̃ K (xZ , xC , xT , xK ) := 1

p
log

(
x p
K

ϕ(xK )
· ϕ(η(xC))

ϕ(xC )p

)

Proof This is again a simple explicit calculation using Lemma 13,

L =
(

1 − ϕ

p

)

◦ log

and the fact that ψ ◦ log = log ◦ θ (by the commutative diagram (1a) in the Proof of
Theorem 6.8 in [15]). �
Remark 15 We refer the reader to the discussion on page 286 after the Proof of
Theorem 12.9 in [15]. It may explain why the definition of L̃ is complicated.

Definition 16 Let� be the set of all tuples (xU ) ∈ ∏
U∈S(G) Zp[U ]×(p) which are not

torsion and such that

(1) (xU ) satisfies (F).
(2) xZ ≡ ϕ(xC)(mod pZp[Z ]).
Lemma 17 If (xZ , xC , xT , xK ) ∈ �, then L̃ Z (xZ , xC , xT , xK ) becomes

L̃ Z (xZ , xC , xT , xK ) = log

(
xZϕ(xZ )

ϕ(xC)p+1

)
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Proof As shown in Proposition 11, condition (F) implies that η(xC) =
nr(xC) = xZ . �

We can now state our main theorem.

Theorem 18 The map θ induces an isomorphism between K1(Zp[G])(p) and �.

Proof We prove this in two steps.

(1) First note that, as p is odd, xZ ≡ ϕ(xC)(mod p) is implied by

(
xZφ(xZ )

ϕ(xC)ϕ(xC)p

)

≡
(

xZϕ(xZ )

ϕ(xC)ϕ2(xC)

)

≡
(

xZ
ϕ(xC)

)2

≡ 1(mod p).

Note that −1 does not belong to K1(Zp[G])(p). As log induces an isomorphism
between1 + pZp[Z ] and pZp[Z ], Lemma17 implies that the imageof θ satisfies
(C). Hence by Propositions 11 and 14 we get that the image of θ is contained
in �.

(2) We first claim that the ker(L̃|�) is trivial. Let (xU )U be in the kernel of L̃|�. As
log induces an isomorphism between 1 + pZp[C] and pZp[C] it follows that

x p
C

ϕ(xC )
· ϕ(η(xC))

ϕ(xC )p
= 1.

This shows that x p
C lies inZp[Z ]× (sinceϕ(Zp[C]×) ⊂ Zp[Z ]×).Henceη(x p

C) =
x p2

C . Hence 0 = pL̃C(xZ , xC , xT , xK ) = log
(

x p
C

ϕ(xC )

)
= pL(xC) (here L is the

integral logarithm map on Zp[C]×(p)). Whence L(xC) = 0 and xC = 1 by [15,
Theorem 12.9] (note that xC is not torsion by the definition of �). Hence
ϕ(η(xC ))

ϕ(xC )p
= 1 and consequently 1

p log
(

x p
U

ϕ(xU )

)
= 1 for all U . Hence xU = 1 for

all U �= C . Therefore ker(L̃) is trivial. This proves the claim. (Compare this
with proof of injectivity of δ above).

Now consider the commutative diagram

K1(Zp[G])(p) L
∼=

��

θ

��

Zp[Conj(G)]
ψ∼=

��
�

L̃
�� �.

This diagram shows that L̃ : � → � is surjective and hence an isomorphism.
Therefore θ is an isomorphism. �
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Diophantine Geometry and Non-abelian
Reciprocity Laws I

Minhyong Kim

I dive down into the depth of the ocean of forms, hoping to gain
the perfect pearl of the formless. . .

(Tagore)

Abstract We use non-abelian fundamental groups to define a sequence of higher
reciprocity maps on the adelic points of a variety over a number field satisfying cer-
tain conditions in Galois cohomology. The non-abelian reciprocity law then states
that the global points are contained in the kernel of all the reciprocity maps.

Keywords Class field theory · Diophantine geometry · Non-abelian cohomology

Mathematics Subject Classification: 11D99 · 11R37

1 Refined Hasse Principles and Reciprocity Laws

Consider the Hasse–Minkowski theorem [11] for affine conics like

X : ax2 + by2 = c
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stating that X has a rational point in a number field F if and only if it has a point
in Fv for all places v. In spite of its great elegance, even undergraduate students
are normally left with a somewhat unsatisfactory sense of the statement, having
essentially to do with the fact that the theorem says nothing about the locus of

X(F) ⊂ X(AF).

There are various attempts to rectify the situation, the most successful of which
might be the theory of the Brauer–Manin obstruction [8].

The point of view of this paper is that one should consider such problems, even
for more general varieties, as that of defining a good reciprocity map. That is, let’s
simplify for a moment and assume X � Gm (so that existence of a rational point is
not the issue). Then we are just asking about the locus of F× in the ideles A×

F of F.
In this regard, a description of sorts is provided by Abelian class field theory [1],
which gives us a map

with the property that
recab(F×) = 0.

So one could well view the reciprocity map as providing a ‘defining equation’ for
Gm(F) in Gm(AF), except for the unusual fact that the equation takes values in
a group. Because F is a number field, there is also the usual complication that the
kernel of recab is not exactly equal toGm(F). But the interpretation of the reciprocity
law as a refined statement of Diophantine geometry is reasonable enough.

In this paper, we obtain a generalization of Artin reciprocity to an iterative non-
abelian reciprocity law with coefficients in smooth varieties whose étale fundamen-
tal groups satisfy rather mild cohomological conditions [Coh], to be described near
the end of this section. They are satisfied, for example, by any smooth curve. Given
a smooth variety X equipped with a rational point b ∈ X(F) satisfying [Coh], we
define a sequence of subsets

X(AF) = X(AF)1 ⊃ X(AF)21 ⊃ X(AF)2 ⊃ X(AF)32 ⊃ X(AF)3 ⊃ X(AF)43 ⊃ · · ·

and a sequence of maps

to a sequence Gn(X),Gn+1
n (X) of profinite abelian groups in such a way that

X(AF)n+1
n = rec−1

n (0)

and
X(AF)n+1 = (recn+1

n )−1(0).
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We visualize this as a diagram:

in which each reciprocity map is defined not on all of X(AF), but only on the kernel
(the inverse image of 0) of all the previous maps. We put

X(AF)∞ =
∞⋂

i=1

X(AF)i.

The non-abelian reciprocity law then states

Theorem 1.1
X(F) ⊂ X(AF)∞.

We give now a brief description of the groups Gn andGn+1
n . Let � = π1(X̄, b)(2)

be the profinite prime-to-2 étale fundamental group1 [3] of X̄ =X ×Spec(F) Spec(F̄),
and let �[n] be its lower central series defined as

�[1] = �

and
�[n+1] := [�,�[n]],

where the overline refers to the topological closure. We denote

�n := �/�[n+1]

and
Tn := �[n]/�[n+1].

1The referee has asked for an explanation for leaving out the prime 2 in the fundamental groups.
To include the full profinite π1, we would need to consider localization to Archimedean places in
Poitou–Tate duality, which would then require us to include Archimedean places in the definition
of restricted direct products. But then, because of non-trivial H0 at Archimedean places, various
long exact sequences in non-abelian cohomology would become problematic (cf. Lemma 4.2). We
note in this regard that if the base field F had no real places, the full fundamental group could have
been used in the entire paper.
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Thus, we have an exact sequence

for each n, turning �n into a central extension of �n−1.
All of the objects above are equipped with canonical actions of GF = Gal(F̄/F).

Given any topological abelian group A with continuous GF-action, we have the
continuous Galois dual

D(N) := Homct(A, μ∞),

and the Pontriagin dual
A∨ = Homct(A,Q/Z).

(See Appendix II for details.)
With this notation, we can define the targets of the reciprocity maps recn using

continuous cohomology:

Gn(X) := H1(GF,D(Tn))
∨.

Notice that when X = Gm, we have T1 = Ẑ(2)(1) and Tn = 0 for n > 1. Thus,
D(T1) = ⊕

p	=2 Qp/Zp and

H1(GF,D(T1)) =
⊕

p	=2

Hom(GF,Qp/Zp) =
⊕

p	=2

Hom(Gab
F ,Qp/Zp).

Hence, by Pontrjagin duality, there is a canonical isomorphism

G1((Gm)F) � Gab,(2)
F ,

and rec1 will agree with the prime-to-2 part of the usual reciprocity map recab.
For the Gn+1

n (X), we need a little more notation. Let S be a finite set of places
of F and GS

F = Gal(FS/F) the Galois group of the maximal extension of F unram-
ified outside of S. We denote by S0 the set of non-Archimedean places in S. For a
topological abelian group A with GS

F-action, we have the kernel of localization

and what we might call the strict kernel,
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where the localization map now goes to all non-Archimedean places in F. Obvi-
ously,

sXi
S(A) ⊂ Xi

S(A).

For the strict kernels, whenever S ⊂ T , the restriction maps on cohomology induce
maps

For any finite set M of odd primes, denote by �M the maximal pro-M quotient
of �, together with corresponding notation [�M][n], �M

n , T
M
n . Given M, we con-

sider sets of places S of F that contain all places lying above primes of M, all
Archimedean places, and all places of bad reduction for (X, b).

Then

Gn+1
n (X) := lim←−

M

(lim−→
S

sX2
S(T

M
n+1)).

We will see in Sect. 3 how to define the reciprocity maps from level of thr filtration
on X(AF) to all these groups.

The conditions [Coh] are the following.

• [Coh 1] For each finite setM of odd primes, TM
n is torsion-free.

• [Coh 2] For each finite set M of odd primes and non-Archimedean place v,
H0(Gv,TM

n ) = 0.

They are used in suitable injectivity statements for localization in cohomology,
which, in turn, feed into the inductive definition of the reciprocity maps. Also,
[Coh 2] is necessary for the long exact sequence (2.28) in the restricted direct prod-
uct of local cohomology.

If we pick a place v, then the projection induces the image
filtration

X(Fv) = X(Fv)1 ⊃ X(Fv)
2
1 ⊃ X(Fv)2 ⊃ X(Fv)

3
2 ⊃ X(Fv)3 ⊃ X(Fv)

4
3 ⊃ · · ·

and of course,
X(F) ⊂ X(Fv)∞ :=

⋂

n

X(Fv)n.

Conjecture 1.2 When X is a proper smooth curve and v is an odd prime of good
reduction, we have

X(F) = X(Fv)∞.

This conjecture can be viewed as a refinement of the conjecture of Birch and
Swinnerton-Dyer type made in [2]. By comparing the profinite reciprocity map here
to a unipotent analogue, the computations of that paper can be viewed as evidence
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for (an affine analogue of) this conjecture as well. We will write more systematically
about this connection and about explicit higher reciprocity laws in a forthcoming
publication. In the meanwhile, we apologise a bit for the lack of examples in this
paper, pointing out that it is possible to view the examples in [2] as illustrating the
reciprocity laws here. That is, it is quite likely unfeasible to give explicit formulas
for the full non-abelian reciprocity maps, in the same way such formulas are hard to
come by in the abelian theory. It is rather that one should compose the reciprocity
maps with natural projections or functions. Even though we do not spell it out in
detail as yet, the computations in [2] arise exactly from such a process.

2 Pre-reciprocity

Wewill assume throughout that X is a smooth variety over F such that the conditions
[Coh] are satisfied. We will denote by VF the set of all places of F and by V 0

F the set
of non-Archimedean places.

The maps recn and recn+1
n will be constructed in general via non-abelian coho-

mology and an iterative application of Poitou–Tate duality. For this, it is important
that the GF-action on any fixed�M , whereM, as before, is a finite set of odd primes,
factors through GS

F = Gal(FS/F) for some finite set S of places of F. Here, FS refers
to the maximal algebraic extension of F unramified outside S. If is a
smooth compactification with a normal crossing divisor D as complement, then by
[13, Theorem 2.1] it suffices to take S large enough to satisfy the conditions that

• X ′ has a smooth model over Spec(OF[1/S]);
• D extends to a relative normal crossing divisor over Spec(OF[1/S]);
• b extends to an S-integral point of the model of X, given as the complement of
the closure of D in the smooth model of X ′;

• S contains M and all Archimedean places of F.

We will be using thereby the continuous cohomology sets and groups
(Appendix I, and [5, 12])

H1(GS
F,�M

n ), Hi(GS
F,TM

n ), Hi(GS
F,D(TM

n )).

(Note that the first term is an H1, in anticipation of the possibility that �M
n is non-

abelian.) Whenever this notation is employed, we assume that the finite set S has
been chosen large enough so that the GF-action factors through GS

F . Given any
topological group U with continuous action of GF , if this action factors through GS

F
for some set S, we will call S an admissible set of places. For any admissible set, we
denote by S0 the non-Archimedean places in S.

For each non-Archimedean place v of F, let Gv = Gal(F̄v/Fv). In the following,
U denotes a topologically finitely-generated profinite group that is prime to 2, in the
sense that it is the inverse limit of finite groups of order prime to 2. When U has a
continuous GF-action, define
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S∏
Hi(Gv,U) :=

∏

v∈S0
Hi(Gv,U) ×

∏

v∈V 0
F \S0

Hi
un(Gv,U)

where
Hi

un(Gv,U) := Hi(Gv/Iv,U
Iv)

and Iv ⊂ Gv is the inertia subgroup. Here, as in the following, if U is non-abelian,
we only allow i = 1. In any case, we have a natural map

and hence, if T ⊃ S, a natural map

Define the ‘restricted direct product’ as a direct limit

′∏
Hi(Gv,U) := lim−→

S

S∏
Hi(Gv,U).

For i = 1, the maps in the limit will be injective, but not in general for i = 2. We
will also use the notation

∏

S

Hi(Gv,U) =
∏

v∈S0
Hi(Gv,U)

and
S∏

T

Hi(Gv,U) =
∏

v∈S0
Hi(Gv,U) ×

∏

v∈T 0\S0
H1

un(Gv,U)

for T ⊃ S, so that
S∏
Hi(Gv,U) = lim←−

T

S∏

T

Hi(Gv,U).

For each n � 2, we have an exact sequence
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of topological groups. By Appendix I, Lemma 4.4, the surjection is
equipped with a continuous section, so that we get a long exact sequence of contin-
uous cohomology

Here, the superscript in ‘δgn−1’ refers to ‘global’. As explained in the Appendix I,
Lemmas 4.2 and 4.3, the meaning of exactness here is as follows. The group
H1(GS

F,TM
n ) acts freely on the space H1(GS

F,�M
n ). and the projection

identifies the orbit space with the kernel of the boundary map δ
g
n−1. To check that

the conditions of Appendix I are satisfied, note that twisting the Galois action by
a cocycle for a class c ∈ H1(GS

F,�M
n−1) will not change the action on the graded

pieces TM
i , so that the condition [Coh 2] implies that �M

n−1 has no GS
F-invariants.

This is because the twisted action is an inner twist, which will not affect the sub-
quotients of the lower central series.

Similarly, for each non-Archimedean local Galois group, we have exact sequences

For each n, there is a surjection

Thus, TM
n has strictly negative weights between −2n and −n as a Galois represen-

tation. By [4], Theorem 3(b), we see that the localization

is injective.
In order to use [4], we need to make a few remarks. Firstly, there is the simple

fact that
TM
n =

∏

l∈M
Tl
n,

so it suffices to consider l-adic representations for a fixed prime l. Next, we note
that [4] proves the injectivity for the Galois representations Hi(V̄ ,Zl(n))/(tor) and



Diophantine Geometry and Non-abelian Reciprocity Laws I 319

i 	= 2n where V is a smooth projective variety. But an examination of the proof
shows that it only uses the fact that this is torsion-free, finitely-generated, and of
non-zero weight. That is to say, it is shown that

is injective for any torsion-free finitely-generated Zl-module of non-zero Galois
weight. Note that all the Tl

n are torsion-free by condition [Coh 1].
Now, by using the exact sequences (2.8) and (2.10) and an induction over n, we

get injectivity of localization

for every n.
Of course, we can repeat the discussion with any admissible T ⊃ S. Using these

natural localization maps, we will regard global cohomology simply as subsets of
the

∏S or of
∏′.

For any U with continuous GS
F-action such that the localization map

is injective for all admissible T , define

E(U) := lim−→
T

loc(H1(GT
F,U)) =

⋃

T

loc(H1(GT
F,U)).

For admissible T , there is also the partial localization

When U is topologically finitely-generated abelian profinite group with all finite
quotients prime to 2, we have the duality isomorphism (local Tate duality, [9],
Chap. VII.2)

D :
∏

T

H1(Gv,U) �
∏

T

H1(Gv,D(U))∨

that can be composed with



320 M. Kim

to yield a map

such that
Ker(loc∗

T ◦D) = locT (H1(GT
F,U))

(Poitou–Tate duality, [9], Chap. VIII.6). We denote also by loc∗
T ◦D the map

obtained by projecting the components in
∏

v∈V 0
F \T 0 H1

un(Gv,U) to zero.
When U is abelian and T ′ ⊃ T , these maps fit into commutative diagrams as

follows:

where the lower arrow is the dual to inflation. The commutativity follows from the
fact that H1

un(Gv,U) and H1
un(Gv,D(U)) annihilate each other under duality, so that

the sum of the local pairings between
∏T H1(Gv,U) and H1(GT

F,D(U)) will be
independent of the contribution from T ′ \ T . Hence, we get a compatible family of
maps

Taking the union over T , we then get

(The notation prec for ‘pre-reciprocity’ will be placed in context below.) According
to Appendix II (5.13),
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Proposition 2.1 When U is a topologically finitely-generated abelian pro-finite
group with all finite quotients prime to 2, then

Ker(prec(U)) = E(U).

(Recall E(U) defined in (2.17).)

One distinction from the appendix is that our product runs only over non-
Archimedean places. However, because we are only considering prime-to-2 coeffi-
cients, the local H1 vanishes as all Archimedean places. The goal of this section, by
and large, is to generalise this result to the coefficients �M

n , which are non-abelian.
In addition to the exact sequences (2.8) and (2.10), we have exact sequences with

restricted direct products

making the second term of the first line a
∏′ H1(Gv,TM

n )-torsor over the kernel of
δ. To see this, let S be an admissible set of primes. Then the Gv-action for v /∈ S
factors through Gv/Iv, so that we have an exact sequence

and hence, an exact sequence

Taking the direct limit over S gives us the exact sequence with restricted direct
products.
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In the following, various local, global, and product boundary maps will occur. In
the notation, we will just distinguish the level and the global boundary map, since
the domain should be mostly clear from the context.

We go on to define a sequence of pre-reciprocity maps as follows. First, we let

as above. The kernel of prec1 is exactly E1 := lim←−M
E(�M

1 ). For x ∈ E1, define

prec21(x) := δ
g
1 (x) ∈ lim←−

M

lim−→
T

H2(GT
F,TM

2 )

(where we identify global cohomology with its image under the injective localisa-
tion in order to apply the boundary map to elements of E1) and

E2
1 := Ker(prec21).

Given x ∈ E2
1 we will denote by xM the projection to

[E2
1 ]M := Ker[δg1 |E(�M

1 )].

We will be considering various inverse limits over M below, and using superscripts
M in a consistent fashion.

Now define

W (�M
2 ) ⊂

′∏
H1(Gv,�

M
2 )

to be the inverse image of [E2
1 ]M under the projection map

which is, therefore, a
∏′ H1(Gv,TM

2 )-torsor over [E2
1 ]M . (By (2.28) an element of

[E2
1 ]M is liftable to

∏′ H1(Gv,�
M
2 ).)
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Consider the following diagram:

We see with this that E(�M
2 ) provides a reduction of structure group for W (�M

2 )

from
∏′ H1(Gv,TM

2 ) to E(TM
2 ). That is, W (�M

2 ) is the torsor pushout of E(�M
2 )

with respect to the map

Choose a set-theoretic splitting

of the torsor in the left column. We then use this ‘global’ splitting to define

by the formula
precM2 (x) = prec(TM

2 )(x − s1(p1(x)))

Here, we denote by x − s1(p1(x)) the unique element z ∈ ∏′ H1(Gv,TM
2 ) such that

x = s1(p1(x)) + z. (We are using additive notation because the context is the action
of a vector group on a torsor.)

Because E(TM
2 ) is killed by prec(TM

2 ), it is easy to see that

Proposition 2.2 precM2 is independent of the splitting s1.

Now define
W2 := lim←−

M

W2(�
M
2 )
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and

In general, define
En := lim←−

M

E(�M
n )

and

Then define
En+1
n = Ker(δgn ) ⊂ En,

and
W (�M

n+1) = p−1
n ([En+1

n ]M),

where [En+1
n ]M = Ker(δg|E(�M

n )). As when n = 1, (2.28) implies that W (�M
n+1) is

a
∏′ H1(Gv,TM

n+1) torsor over [En+1
n ]M . Use a splitting sn of

to define

via the formula
precMn+1(x) = prec(TM

n+1)(x − sn(pn(x))).

Once again, because E(TM
n+1) is killed by prec(TM

n+1), we get

Proposition 2.3 precMn is independent of the splitting sn.

Finally, define
Wn+1 := lim←−

M

W (�M
n+1)

and

Then we finally have the following generalisation of Proposition 2.1.
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Proposition 2.4
Ker(precn+1) = En+1.

Proof We have seen this already for n = 1. Let x ∈ Ker(precn+1) and xM the pro-
jection to Ker(precMn+1). It is clear from the definition that E(�M

n+1) ⊂ Ker(precMn+1).
On the other hand, if precMn+1(xM) = 0, then yM = xM − sn(pn(xM)) ∈ E(TM

n+1), by
Proposition 2.1. Hence, xM = yM + sn(pn(xM)) ∈ E(�M

n+1). Since this is true for
all M, x ∈ En+1 = lim←−E(�M

n+1). (The assertion is a kind of ‘left exactness’ of the
inverse limit for pointed sets, although we are giving a direct argument.) �

3 Reciprocity

Recall the product of the local period maps

Here,

π et
1 (X̄; b, xv)Mn := π et

1 (X̄; b, xv) ×π et
1 (X̄,b) �M

n = [π et
1 (X̄; b, xv) × �M

n ]/π et
1 (X̄, b),

(where the π et
1 (X̄, b)-action at the end is the diagonal one giving the pushout tor-

sor) are torsors for �M
n with compatible actions of Gv, and hence, define classes in

H1(Gv,�
M
n ). When v /∈ S for S admissible and xv ∈ X(OFv), then this class belongs

to H1
un(Gv,�

M
n ) ([13], Proposition 2.3). Therefore, (π et

1 (X̄; b, xv)Mn )v defines a class
in

∏′ H1(Gv,�
M
n ). (This discussion is exactly parallel to the unipotent case [6, 7].)

Clearly, we can then take the limit over M, to get the period map

The reciprocity maps will be defined by

recn(x) = precn(jn(x)),

and
recn+1

n (x) = precn+1
n (jn(x)).

Of course, these maps will not be defined on all of X(AF). As in the introduction,
define
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X(AF)21 = Ker(rec1).

Then for x ∈ X(AF)21, j1(x) ∈ E(�1), and hence, prec21 is defined on j1(x). Thus,
rec21 is defined on X(AF)21. Now define

X(AF)2 := Ker(rec21).

Then for x ∈ X(AF)2, j1(x) ∈ E2
1 , so that j2(x) ∈ W2. Hence, prec2 is defined on

j2(x), and rec2 is defined on X(AF)2.
In general, the following proposition is now clear.

Proposition 3.1 Assume we have defined

X(AF)21 ⊃ X(AF)2 ⊃ · · · ⊃ X(AF)nn−1 ⊃ X(AF)n

as the iterative kernels of rec1, rec21, . . . , recn−1, recnn−1. Then, jn(x) ∈ Wn for x ∈
X(AF)n so that recn = precn ◦jn is defined on X(AF)n and recn+1

n is defined on
Ker(recn).

Note that precnn−1 takes values in lim←−M
lim−→T

H2(GT
F,TM

n ). However, jn−1(x) lifts

to jn(x) ∈ lim←−M

∏′ H1(Gv,�
M
n ), and hence, is clearly in the kernel of δn. Therefore,

precnn−1(jn−1(x)) ∈ lim←−
M

lim−→
T

sX2
T (TM

n ) =: Gn
n−1(X)

for all x ∈ X(AF)n−1.
The global reciprocity law of Theorem 1.1,

X(F) ⊂ X(AF)∞,

now follows immediately from the commutativity of the diagram

for each M.
To check compatibility with the usual reciprocity map for X = Gm note that the

map
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is the local reciprocity map ([9], Corollary (7.2.13), with the natural modification
for the prime-to-2 part). Here, κ is the map given by Kummer theory, while D is
local duality as before. Furthermore, the localization

is dual to the map,

induced by , so that the dual of localization

is simply the natural map we started out with. Since the global reciprocity map is the
sum of local reciprocity maps followed by the inclusion of decomposition groups,
we are done.
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Appendix I: A Few Lemmas on Non-abelian Cohomology

We include here some basic facts for the convenience of the reader.
Given a continuous action

of topological group G on a topological group U, we will only need H0(G,U)

and H1(G,U) in general. Of course H0(G,U) = Uρ ⊂ U is the subgroup of
G-invariant elements. (We will put the homomorphism ρ into the notation or not
depending upon the needs of the situation.) Meanwhile, we define

H1(G,U) = U\Z1(G,U).

Here, Z1(G,U) consists of the 1-cocycles, that is, continous maps
such that

c(gh) = c(g)gc(h),
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while the U action on it is given by

(uc)(g) := uc(g)g(u−1).

We also need H2(G,A) for A abelian defined in the usual way as the 2-cocycles,
that is, continuous functions such that

gc(h, k) − c(gh, k) + c(g, hk) − c(g, h) = 0,

modulo the subgroup of elements of the form

df (g, h) = f (gh) − f (g) − gf (h)

for continuous. Any Hi(G,U) defined in this way is pointed by the
class of the constant map , even though it is a group in general only
for U abelian. We denote by [c] the equivalence class of a cocycle c.

Given a 1-cocycle c ∈ Z1(G,U), we can define the twisted action

as
ρc(g)u = c(g)ρ(g)(u)c(g)−1.

The isomorphism class of this action depends only on the equivalence class [c].
Given an exact sequence

of topological groups with G action such that the last map admits a continuous
splitting (not necessarily a homomorphism) and A is central in B, we get the exact
sequence

of pointed sets, in the sense that the image of one map is exactly the inverse image
of the base-point for the next map ([12], Appendix to Chap. VII).

But there are several bits more of structure. Consider the fibers of the map



Diophantine Geometry and Non-abelian Reciprocity Laws I 329

The group H0(G,C) will act on H1(G,A) as follows. For γ ∈ H0(G,C), choose a
lift to b ∈ B. For x ∈ Z1(G,A), let (bx)(g) = bx(g)g(b−1). Because γ is
G-invariant, this take values in A, and defines a cocycle. Also, a different choice
of b will result in an equivalent cocycle, so that the action on H1(G,A) is well-
defined. From the definition, the H0(G,C)-action preserves the fibers of i∗. Con-
versely, if [x] and [x′] map to the same element of H1(G,B), then there is a
b ∈ B such that x′(g) = bx(g)g(b−1) for all g ∈ G. But then by applying q, we
get 1 = q(b)g(q(b)−1), that is, q(b) ∈ H0(G,C). We have shown:

Lemma 4.1 The fibers of i∗ are exactly the H0(G,C)-orbits of H1(G,A).

We can say more. Given x ∈ Z1(G,A) and y ∈ Z1(G,B), consider the map

(xy)(g) := x(g)y(g).

This is easily seen to be in Z1(G,B) and defines an action ofH1(G,A) onH1(G,B).

Lemma 4.2 Suppose Cρz = 1 for all [z] ∈ H1(G,C). Then H1(G,A) acts freely on
H1(G,B).

Proof Fix an element [y] ∈ H1(G,B). We work out its stabilizer. We have [x][y] =
[xy] = [y] if and only if there is a b ∈ B such that x(g)y(g) = by(g)g(b−1). By
composing with q, we get

qy(g) = q(b)qy(g)g(q(b)−1)

or
qy(g)g(q(b))qy(g)−1 = q(b).

This says that q(b) is invariant under the G-action ρqy given by

c �→ qy(g)g(c)qy(g)−1.

Hence, by assumption, q(b) = 1, and hence, b ∈ A. But then, x(g)y(g) = bg
(b−1)y(g) for all g, from which we deduce that x(g) = bg(b−1) for all g, so that
[x] = 0. �

On the other hand,

Lemma 4.3 The action of H1(G,A) is transitive on the fibers of q∗ : H1(G,B) →
H1(G,C).

Proof The action clearly preserves the fiber. Now suppose [qy] = [qy′] ∈ H1(G,C).
Then there is a c ∈ C such that

qy′(g) = cqy(g)g(c−1)
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for all g. We can lift c to b ∈ B, from which we get

y′(g) = x(g)by(g)g(b−1)

for some x(g) ∈ A. Since y, y′ and g �→ by(g)g(b−1) are all cocycles and A is cen-
tral, this equality implies that

is a cocycle, and [y′] = [x][y]. �

The existence of the continuous splitting of exact sequences that we need for
applying the results above always holds in the profinite case.

Lemma 4.4 Suppose we have an exact sequence of profinite groups

where all maps are continuous. Suppose B = lim←−j
Bj, where the j run over natural

numbers. Then there is a continuous section to the map .

Proof If B = lim←−Bj, by replacing each Bj with the image of B if necessary, we can
assume all the maps in the inverse system are surjective. Furthermore, if Aj is the
image of A in Bj, and Cj = Bj/Aj, one gets A = lim←−Aj (since A is closed in B) and
C = lim←−Cj. That is, the exact sequence of profinite groups can be constructed as an
inverse limit of exact sequences

indexed by the same category in such as way that all the transition maps

are surjective. From the commutative diagram
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we get the commutative diagram

We claim that the map h is surjective. To see this, let cj ∈ Cj and bj ∈ Bj map to
cj. We need to check that f −1(bj) surjects onto g−1(cj). Let ci ∈ g−1(cj). Choose
b′
i ∈ Bi mapping to ci and let b′

j = f (b′
i). Since b

′
j and bj both map to cj, there is an

aj ∈ Aj such that b′
j = bj + aj. Now choose ai mapping to aj and put bi = b′

i − ai.
Then bi ∈ f −1(bj) and it still maps to ci. This proves the claim.

For any fixed j, suppose we’ve chosen a section sj of . Then

defines a section of

This section can then be lifted to a section si of . Thereby, we have
constructed a diagram of sections

By composing sj with the projection , we have a compatible sequence
of maps

such that pj ◦ fj = gj. Thus, we get a continuous map such that p ◦
f = Id. �

It has been pointed out by the referee that a more general statement can be found
in [10], Proposition 2.2.2. However, we will retain the proof above for the conve-
nience of the reader. That is, a continuous section exists in circumstances more gen-
eral than countably ordered inverse limits, but we have just recalled this case since
it is all we will need. This applies for example when B is the pro-M completion of
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a finitely-generated group: For every n, we can let B(n) ⊂ B be the intersection of
open subgroups of index ≤ n. This is a characteristic subgroup, and still open. So
the quotients defining the inverse limit can be taken as B/B(n).

Appendix II: Some Complements on Duality for Galois
Cohomology

When A is topological abelian group, A∨ denotes the continuous homomorphisms
to the discrete group Q/Z. Thus, in the profinite case of A = lim←−A/H, where the H
run over any defining system of open normal subgroups of finite index,

A∨ = lim−→
H

Hom(A/H,Q/Z)

with the discrete topology. If A = lim−→m
A[m] is a torsion abelian group with the

discrete topology, then

A∨ = lim←−Hom(A[m],Q/Z)

with the projective limit topology. Meanwhile, if A has a continuous action of the
Galois group of a local or a global field, then D(A) denotes the continuous homo-
morphisms to the discrete group

μ∞ = lim−→
m

μm

with Galois action. As far as the topological group structure is concerned, D(A) is
of course the same as A∨.

We let F be a number field and T a finite set of places of F including the
Archimedean places. We denote by GF the Galois group Gal(F̄/F) and by GT

F =
Gal(FT/F) the Galois group of the maximal extension FT of F unramified outside T .
Let v be a place of F, and equip Gv = Gal(F̄v/Fv) with a choice of homomorphism

given by the choice of an embedding
In the following A (with or without Galois action) will be in the abelian subcat-

egory of all abelian groups generated by topologically finitely-generated profinite
abelian groups and torsion groups A such that A∨ is topologically finitely-generated.
We choose this category to give a discussion of duality.

We have local Tate duality

Hi(Gv,A) �D H2−i(Gv,D(A))∨.
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We also use the same letter D to denote the product isomorphisms

∏

v∈T ′
Hi(Gv,A) �D

∏

v∈T ′
H2−i(Gv,D(A))∨

for any indexing set T ′.
Let Xi

T (A) be the kernel of the localization map

and Imi
T (A), the image of the localization map

Assume now that A = lim←−An, where T contains all the places lying above primes
dividing the order of any An. According to Poitou–Tate duality, we have an isomor-
phism

Xi
T (A) � X2−i

T (D(A))∨,

and an exact sequence

Note that this is usually stated for finite coefficients.2 But since all the groups in the
exact sequence

are finite, we can take an inverse limit to get the exact sequence above (since the
inverse limit is exact on inverse systems of finite groups).

If T ′ ⊃ T , since all the inertia subgroups Iv ⊂ Gv for v /∈ T act trivially on A, we
have

Im1
T ′(A) ∩ [

∏

v∈T
H1(Gv,A) ×

∏

v∈T ′\T
H1(Gv/Iv,A)] = Im1

T (A).

2It has been pointed out by the referee that this general case is well-known, for example, in work
of Nekovar or Schneider.
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In particular, we have an exact sequence

Taking an inverse limit over T ′, we get an exact sequence
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On p-adic Interpolation of Motivic
Eisenstein Classes

Guido Kings

Abstract In this paper we prove that the motivic Eisenstein classes associated to
polylogarithms of commutative group schemes can be p-adically interpolated in étale
cohomology. This connects them to Iwasawa theory and generalizes and strengthens
the results for elliptic curves obtained in our former work. In particular, degeneration
questions can be treated easily.

Keywords Polylogarithms · étale Eisenstein cohomology · Iwasawa cohomology

1 Introduction

In this paperweprove that themotivicEisenstein classes associated to polylogarithms
of commutative group schemes can be p-adically interpolated in étale cohomology.
This generalizes the results for elliptic curves obtained in our former paper [12].
Already in the one dimensional case the results obtained here are stronger and much
more flexible as they allow to treat degenerating elliptic curves easily.

The interpolation of motivic Eisenstein classes connects them with Iwasawa the-
ory and is essential for many applications. In the elliptic case for example, the inter-
polation was used in [11] to prove a case of the Tamagawa number conjecture for CM
elliptic curves and it was one of the essential ingredients in the proof of an explicit
reciprocity law for Rankin-convolutions in [13]. We hope that the general case will
find similar applications.

Before we explain our results, we have to introduce the motivic Eisenstein classes
(for the construction we refer to Sect. 4.2).
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Let π : G → S be a smooth commutative and connected group scheme of relative
dimension d (for example a semi-abelian scheme) and denote by

H := R1π!Zp(1)

the first étale homology ofG/S, which is just the sheaf of relative p-adic Tatemodules
of G/S. We write HQp for the associated Qp-adic sheaf. Note that this is not a lisse
sheaf in general. Evaluating themotivic polylogarithmat a non-zeroN-torsion section
t : S → G one defines motivic Eisenstein classes

αEis
k
mot(t) ∈ H2d−1

mot (S,Symk HQ(d)),

depending on some auxiliary data α, where Symk HQ(1) is the k-th symmetric tensor
power of the motivic sheaf HQ which underlies HQp .

In the case of an elliptic curve, the de Rham realization of αEiskmot(t) is the coho-
mology class of a holomorphic Eisenstein series, which justifies the name. These
motivic Eisenstein classes in the elliptic case play a major role in Beilinson’s proof
of his conjectures on special values of L-functions for modular forms.

In this paper we consider the étale regulator

rét : H2d−1
mot (S,Symk HQ(d)) → H2d−1(S,Symk HQp(d))

which gives rise to the étale Eisenstein classes

αEis
k
Qp

(t) := rét(Eis
k
mot(t)) ∈ H2d−1(S,Symk HQp(d)).

In the elliptic case these classes were used by Kato in his seminal work to construct
Euler systems for modular forms.

It is a natural question, whether these étale Eisenstein classes enjoy some
p-adic interpolation properties, in a similar way as one can p-adically interpo-
late the holomorphic Eisenstein series. At first sight, this seems to be a com-
pletely unreasonable question, as for varying k the different motivic cohomology
groupsH2d−1

mot (S,Symk HQ(1)) are not related at all. Nevertheless, this question was
answered affirmatively in the elliptic case in [12] and in this paper we will generalize
this result to commutative group schemes.

To explain our answer to this question we need the sheaf of Iwasawa-algebras
�(H ), which is defined as follows: One first defines a sheaf of “group rings”
Z/prZ[Hr] on S, whereHr is the étale sheaf associated to the [pr]-torsion subgroup
G[pr] or alternatively the first homology with Z/prZ-coefficients (see Sect. 5.4 for
more details). These group rings form an inverse system for varying r and hence
define a pro-sheaf

�(H ) := (Z/prZ[Hr])r�0.
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Moreover, it is also possible to sheafify the classical moments of a measure to a
morphism of pro-sheaves

momk : �(H ) → �k(H ),

where �k(H ) is the k-th graded piece of the divided power algebra �Zp(H ). Thus
the sheaf�(H ) p-adically interpolates the�k(H ). For theQp-sheafHQp the natural
map Symk HQp → �k(HQp) is an isomorphism and the moment map gives rise to
morphisms

momk : H2d−1(S,�(H )(d)) → H2d−1(S,Symk HQp(d)).

To understand this better, it is instructive to consider the case of an abelian scheme
π : A → S over a scheme S which is of finite type over SpecZ (see also Sect. 6.5).
Then

H2d−1(S,�(H )(d)) = lim←−
r

H2d−1(A[pr], Z/prZ(d))

where the inverse limit is takenwith respect to the tracemaps alongA[pr ] → A[pr−1].
The right hand side is obviously an Iwasawa theoretic construction. In the one dimen-
sional case d = 1, the right hand side has an interpretation as an inverse limit of units
via Kummer theory.

Our main result can now be formulated as follows:

Main Theorem (see Theorem 7.3.3) There exists a cohomology class

α EI(t)N ∈ H2d−1(S,�(H )(d))

called the Eisenstein–Iwasawa class, such that

momk(αEI(t)N ) = Nk
αEis

k
Qp

(t).

This interpolation result in the elliptic case is one of the key ingredients in the
proof of an explicit reciprocity law for Rankin-convolutions of modular forms in
[13].

The use of this theorem also considerably simplifies the computations of the
degeneration of polylogarithm in [12]. We hope to treat this at another occasion.

Wewould also like to point out an important open problem: In the one-dimensional
torus or the elliptic curve case, the Eisenstein–Iwasawa class has a direct description
in terms of cyclotomic units or Kato’s norm compatible elliptic units respectively.
Unfortunately, we do not have a similar description of the Eisenstein–Iwasawa class
in the higher dimensional case.
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2 Notations and Set up

2.1 The Category of Zp-sheaves

All schemes will be separated of finite type over a noetherian regular scheme of
dimension 0 or 1. Let X be such a scheme and let p be a prime invertible on X. We
work in the category of constructable Zp-sheaves S (X) on X in the sense of [15,
Exposé V].

Recall that a constructible Zp-sheaf is an inverse system F = (Fn)n�1 where
Fn is a constructible Z/pnZ-sheaf and the transition maps Fn → Fn−1 factor into
isomorphisms

Fn ⊗Z/pnZ Z/pn−1Z ∼= Fn−1.

The Zp-sheaf is lisse, if each Fn is locally constant. If X is connected and x ∈ X is
a geometric point, then the category of lisse sheaves is equivalent to the category
of finitely generated Zp-modules with a continous π1(X, x)-action. For a general
Zp-sheaf there exists a finite partition of X into locally closed subschemes Xi, such
that F |Xi is lisse (see [4, Rapport, Proposition 2.4., 2.5.]).

For a Zp-sheafF we denote byF ⊗ Qp its image in the category of Qp-sheaves,
i.e., the quotient category modulo Zp-torsion sheaves.

We also consider the “derived” category D(X) of S (X) in the sense of Ekedahl
[5]. This is a triangulated category with a t-structure whose heart is the category of
constructible Zp-sheaves. By loc. cit. Theorem 6.3 there is a full 6 functor formalism
on these categories.

Recall that an inverse system A := (Ar)r�0 (in any abelian category A) satisfies
the Mittag-Leffler condition (resp. is Mittag-Leffler zero), if for each r the image
of Ar+s → Ar is constant for all sufficiently big s (is zero for some s � 1). If A
satisfies the Mittag-Leffler condition and A satisfies AB4∗ (i.e. products exists and
products of epimorphisms are epimorphisms) then lim←−

1
r
Ar = 0 (see [14, Proposition

1]). If A is Mittag-Leffler zero, then for each left exact functor h : A → B one has
Rilim←−r

h(Ar) = 0 for all i � 0 ([9, Lemma 1.11.]).
For a pro-system of étale sheaves F = (Fr)r�0 on X we work with Jannsen’s

continuous étale cohomology Hi(X,F ) which is the i-th derived functor of F 	→
lim←−r

H0(X,Fn). By [9, 3.1] one has an exact sequence

0 → lim←−
1
r
Hi−1(X,Fr) → Hi(X,F ) → lim←−

r

Hi(X,Fr) → 0. (1)

Note in particular, that if Hi−1(X,Fr) is finite for all r, one has

Hi(X,F ) = lim←−
r

Hi(X,Fr). (2)
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For F = (Fr) Mittag-Leffler zero, one has for all i � 0

Hi(X,F ) = 0. (3)

2.2 The Divided Power Algebra

Let A be a commutative ring and M be an A-module. Besides the usual symmetric
power algebra SymA(M) we need also the divided power algebra �A(M) (see [1,
Appendix A] for more details).

The A-algebra �A(M) is a graded augmented algebra with �0(M) = A, �1(M) =
M and augmentation ideal �+(M) := ⊕

k�1 �k(M). For each element m ∈ M one
has the divided power m[k] ∈ �k(M) with the property that mk = k!m[k] where mk

denotes the k-th power of m in �A(M). Moreover, one has the formula

(m + n)[k] =
∑

i+j=k

m[i]n[j].

In the case whereM is a free A-module with basis m1, . . . ,mr the A-module �k(M)

is free with basis {m[i1]
1 · · ·m[ir ]

r | ∑
ij = k}. Further, forM free, there is an A-algebra

isomorphism
�A(M) ∼= TSymA(M)

with the algebra of symmetric tensors (TSymk
A(M) ⊂ Symk

A(M) are the invariants of
the symmetric group), which maps m[k] to m⊗k . Also, by the universal property of
SymA(M), one has an A-algebra homomorphism

SymA(M) → �A(M) (4)

whichmapsmk to k!m[k]. In particular, ifA is aQ-algebra, thismap is an isomorphism.
IfM is free and M∨ := HomA(M,A) denotes the A-dual one has in particular

Symk(M∨) ∼= �k(M)∨ ∼= TSymk
A(M)∨.

The algebra �A(M) has the advantage over TSymA(M) of being compatible with
arbitrary base change

�A(M) ⊗A B ∼= �B(M ⊗A B)

and thus sheafifies well. Recall from [8, I 4.2.2.6.] that if F is an étale sheaf of
Zp-modules, then �Zp(F ) is defined to be the sheaf associated to the presheaf

U 	→ �Zp(U)(F (U)). (5)
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Definition 2.2.1 We denote by

�̂A(M) := lim←−
r

�A(M)/�+(M)[r]

the completion of �A(M) with respect to the divided powers of the augmentation
ideal.

Note that �+(M)[r] = ⊕
k�r �k(M) so that as A-module one has �̂A(M) ∼=∏

k�0 �k(M).
In the same way we define the completion of SymA(M) with respect to the aug-

mentation ideal Sym+
A (M) to be

ŜymA(M) := lim←−
k

SymA(M)/(Sym+
A (M))k (6)

2.3 Unipotent Sheaves

Let � = Z/prZ, Zp or Qp and let π : X → S be a separated scheme of finite type,
withX, S as in Sect. 2.1. A�-sheafF onX is unipotent of length n, if it has a filtration
0 = F n+1 ⊂ F n ⊂ . . . ⊂ F 0 = F such that F i/F i+1 ∼= π∗G i for a �-sheaf G i

on S.
The next lemma is taken from [7], where it is stated in the setting of Qp-sheaves.

Lemma 2.3.1 Let � = Z/prZ, Zp or Qp and let π1 : X1 → S and π2 : X2 → S be
smooth of constant fibre dimension d1 and d2. Let f : X1 → X2 be an S-morphism.
Let F be a unipotent �-sheaf. Then

f !F = f ∗F (d1 − d2)[2d1 − 2d2].

Proof Put c = d1 − d2 the relative dimension of f . We start with the caseF = π∗
2G .

In this case

f !F = f !π∗
2G = f !π !

2G (−d2)[−2d2] = π !
1G (−d2)[−2d2]

= π∗
1G (c)[2c] = f ∗π∗

2G (c)[2c] = f ∗F ⊗ �(c)[2c].

In particular, f !� = �(c)[2c] and we may rewrite the formula as

f ∗F ⊗ f !� = f !(F ⊗ �).

There is always amap from the left to right via adjunction from the projection formula

Rf!(f ∗F ⊗ f !�) = F ⊗ Rf!f !� → F ⊗ �.
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Hence we can argue on the unipotent length ofF and it suffices to consider the case
F = π∗G . This case was settled above. �

The next lemma is also taken from [7]. Let X → S be a smooth scheme with
connected fibres and e : S → X a section. Homomorphisms of unipotent sheaves are
completely determined by their restriction to S via e∗:

Lemma 2.3.2 Let π : X → S be smooth with connected fibres and e : S → X a
section of π . Let � = Z/prZ, Zp or Qp and F a unipotent �-sheaf on X. Then

e∗ : HomX(�,F ) → HomS(�, e∗F )

is injective.

Proof Let 0 → F1 → F2 → F3 → 0 be a short exact sequence of unipotent
�-sheaves on G. As e∗ is exact and Hom left exact, we get a commutative diagram
of exact sequences

0 �� HomX(�,F1) ��

��

HomX(�,F2) ��

��

HomX(�,F3)

��
0 �� HomS(�, e∗F1) �� HomS(�, e∗F2) �� HomS(�, e∗F3).

Suppose that the left and right vertical arrows are injective, then the middle one is
injective as well and it is enough to show the lemma in the case where F = π∗G .
But the isomorphism

HomX(�, π∗G ) ∼= HomX(π !�,π !G ) ∼= HomS(Rπ!π !�,G )

factors through

HomX(π !�,π !G )
e!−→ HomS(�,G ) → HomS(Rπ!π !�,G )

where the last map is induced by the trace map Rπ!π !� → �. This proves the
claim. �

2.4 The Geometric Situation

We recall the geometric set up from [7] using as much as possible the notations from
loc. cit. Let

π : G → S
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be a smooth separated commutative group scheme with connected fibres of relative
dimension d. We denote by e : S → G the unit section and by μ : G ×S G → G the
multiplication. Let j : U → G be the open complement of e(S).

Let ιD : D → G be a closed subscheme with structural map πD : D → S. Typ-
ically πD will be étale and contained in the c-torsion of G for some c � 1. We
note in passing, that for c invertible on S the c-torsion points of G, i.e. the
kernel of the c-multiplication G[c], is quasi-finite and étale over S. Denote by
jD : UD = G \ D → G the open complement of D. We summarize the situation in
the basic diagram

UD := G \ D jD ��

������������� G

π

��

D
ιD��

πD
����

��
��

��

S

Wewill also consider morphisms φ : G1 → G2 of S-group schemes as above. In this
case we decorate all notation with an index 1 or 2, e.g., d1 for the relative dimension
of G1/S.

3 The Logarithm Sheaf

3.1 Homology of G

The basic sheaf in our constructions is the relative first Zp-homology HG of G/S,
which we define as follows:

Definition 3.1.1 For the group scheme π : G → S we let

H := HG := R2d−1π!Zp(d) = R−1π!π !Zp.

We write Hr := H ⊗ Z/prZ and HQp := H ⊗ Qp for the associated Qp-sheaf.

Note thatH is not a lisse Zp-sheaf in general, but the stalks are free Zp-modules
of finite rank, which follows for example from Lemma 3.1.2 below.

The sheaf H and more generally Riπ!Zp is covariant functorial for any map of
S-schemes f : G → X using the adjunction f!f !Zp → Zp. In particular, the group
multiplication μ : G ×S G → G induces a product

Riπ!Zp(d) ⊗ Rjπ!Zp(d) → Ri+j−2dπ!Zp(d)

and the diagonal � : G → G ×S G induces a coproduct

Riπ!Zp(d) →
⊕

j

Rjπ!Zp(d) ⊗ R2d+i−jπ!Zp(d)
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on R·π!Zp, which gives it the structure of a Hopf algebra and one has

Riπ!Zp(d) ∼=
2d−i∧

H (7)

(this follows by base change to geometric points and duality from [2, Lemma 4.1.]).
The same result holds for Z/prZ-coefficients.

Lemma 3.1.2 Let G[pr] be the kernel of the pr-multiplication [pr] : G → G. Then
there is a canonical isomorphism of étale sheaves

G[pr] ∼= R−1π!π !Z/prZ = Hr .

In particular, HG is the p-adic Tate-module of G.

Proof This is standard and we only sketch the proof: Consider G[pr] as an étale
sheaf on S. The Kummer sequence is a G[pr]-torsor on G, hence gives a class in

H1(G, π∗G[pr]) ∼= Ext1G(π∗Z/prZ, π∗G[pr]) ∼= Ext1G(π !Z/prZ, π !G[pr]) ∼=
∼= Ext1S(Rπ!π !Z/prZ,G[pr]) ∼= HomS(R

−1π!π !Z/prZ,G[pr]).

Thus the Kummer torsor induces a map R−1π!π !Z/prZ → G[pr] and one can per-
form a base change to geometric points s ∈ S to show that this is an isomorphism. But
this follows then from Poincaré-duality and the isomorphism Homs(G[pr], μpr ) ∼=
H1(G, μpr ) shown in [2, Lemma 4.2.]. �

3.2 The First Logarithm Sheaf

Consider the complex Rπ!π !Zp calculating the homology of π : G → S and its
canonical filtrationwhose associated graded pieces are theRiπ!π !Zp.We apply this to

RHomG(π !Zp, π
!H ) ∼= RHomS(Rπ!π !Zp,H ).

Then the resulting hypercohomology spectral sequence gives rise to the five term
sequence

0 → Ext1S(Zp,H )
π !−→ Ext1G(π !Zp, π

!H ) → HomS(H ,H ) →
→ Ext2S(Zp,H )

π !−→ Ext2G(π !Zp, π
!H )

and the maps π ! are injective because they admit the splitting e! induced by the unit
section e. This gives
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0 → Ext1S(Zp,H )
π !−→ Ext1G(π !Zp, π

!H ) → HomS(H ,H ) → 0. (8)

Note that Ext1G(π !Zp, π
!H ) ∼= Ext1G(Zp, π

∗H ). The same construction is also pos-
sible with the base ring �r := Z/prZ and Hr and gives the exact sequence

0 → Ext1S(�r,Hr)
π !−→ Ext1G(π !�r, π

!Hr) → HomS(Hr,Hr) → 0. (9)

Definition 3.2.1 The first logarithm sheaf (Log(1), 1(1)) on G consists of an exten-
sion class

0 → π∗H → Log(1) → Zp → 0

such that its image in HomS(H ,H ) is the identity together with a fixed splitting
1(1) : e∗Zp → e∗Log(1). In exactly the same way one defines Log(1)

�r
. We denote by

Log(1)
Qp

the associated Qp-sheaf.

The existence and uniqueness of (Log(1), 1(1)) follow directly from (8). The auto-
morphisms of Log(1) form a torsor under HomG(Zp, π

∗H ). In particular, the pair
(Log(1), 1(1)) admits no automorphisms except the identity.

It is obvious from the definition that one has

Log(1) ⊗Zp �r
∼= Log(1)

�r
(10)

so that Log(1) = (Log(1)
�r

)r�0. Moreover, Log(1) is compatible with arbitrary base
change. If

GT
fT−−−−→ G

πT

⏐
⏐



⏐
⏐

π

T
f−−−−→ S

(11)

is a cartesian diagram one has f ∗
TLog(1)

G
∼= Log(1)

GT
and f ∗

T (1(1)) defines a splitting.
Let

ϕ : G1 → G2

be a homomorphism of group schemes of relative dimension d1, d2, respectively and
write c := d1 − d2.

Theorem 3.2.2 For ϕ : G1 → G2 as above, there is a unique morphism of sheaves

ϕ# : Log(1)
G1

→ ϕ∗Log(1)
G2

∼= ϕ!Log(1)
G2

(−c)[−2c]

such that ϕ#(1
(1)
G1

) = 1(1)
G2
. Moreover, if ϕ is an isogeny of degree prime to p, then ϕ#

is an isomorphism.
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Proof Pull-back of Log(1)
G2

gives an exact sequence

0 → π∗
1HG2 → ϕ∗Log(1)

G2
→ Zp → 0

and push-out of Log(1)
G1

by π∗
1HG1 → π∗

1HG2 induces a map

0 −−−−→ π∗
1HG1 −−−−→ Log(1)

G1
−−−−→ Zp −−−−→ 0

⏐
⏐



⏐
⏐

h

∥
∥
∥

0 −−−−→ π∗
1HG2 −−−−→ ϕ∗Log(1)

G2
−−−−→ Zp −−−−→ 0.

(12)

If ϕ is an isogeny and degϕ is prime to p, then π∗
1HG1 → π∗

1HG2 is an isomor-
phism, hence also h. By uniqueness there is a unique isomorphism of the pair
(Log(1)

G2
, e∗

1(h) ◦ 1(1)
G1

)with (Log(1)
G2

, 1(1)
G2

). The composition of this isomorphism with

h is the desired map. If h′ : Log(1)
G1

→ ϕ!Log(1)
G2

is another map with this prop-
erty, the difference h − h′ : Zp → π∗

1HG2 is uniquely determined by its pull-back
e∗(h − h′) : Zp → e∗

2Log(1)
G2

according to Lemma 2.3.2. If both, h and h′ are com-
patible with the splittings, then e∗(h − h′) = 0 and hence h = h′. �

Corollary 3.2.3 (Splitting principle) Let ϕ : G1 → G2 be an isogeny of degree
prime to p. Then if t : S → G1 is in the kernel of ϕ, then

t∗Log(1)
G1

∼= t∗ϕ∗Log(1)
G2

∼= e∗
1ϕ

∗Log(1)
G2

∼= e∗
1Log(1)

G1
.

Proof Apply t∗ to ϕ#. �

3.3 The Qp-logarithm Sheaf

We are going to define the Qp-logarithm sheaf, which has been studied extensively
in [7].

Definition 3.3.1 We define

Log(k)
Qp

:= Symk(Log(1)
Qp

)

and denote by

1(k) := 1

k! Sym
k(1(1)) : Qp → Log(k)

Qp

the splitting induced by 1(1).
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We note that Log(k)
Qp

is unipotent of length k and that the splitting 1(k) induces an
isomorphism

e∗Log(k)
Qp

∼=
k∏

i=0

Symi HQp . (13)

To define transition maps
Log(k)

Qp
→ Log(k−1)

Qp
(14)

consider the morphism Log(1)
Qp

→ Qp ⊕ Log(1)
Qp

given by the canonical projection
and the identity. Then we have

Log(k)
Qp

= Symk(Log(1)
Qp

)

→ Symk(Qp ⊕ Log(1)
Qp

) ∼=
⊕

i+j=k

Symi(Qp) ⊗ Symj(Log(1)
Qp

)

→ Sym1(Qp) ⊗ Symk−1(Log(1)
Qp

) ∼= Log(k−1)
Qp

.

A straightforward computation shows that 1(k) 	→ 1(k−1) under this transition map.

3.4 Main Properties of the Qp-logarithm Sheaf

The logarithm sheaf has three main properties: functoriality, vanishing of cohomol-
ogy and a universal mapping property for unipotent sheaves. Functoriality follows
trivially from Theorem 3.2.2. We review the others briefly, referring for more details
to [7].

Let ϕ : G1 → G2 be a homomorphism of group schemes of relative dimension d1,
d2, respectively and let c := d1 − d2 be the relative dimension of the homomorphism.

Theorem 3.4.1 (Functoriality) For ϕ : G1 → G2 as above there is a unique homo-
morphism of sheaves

ϕ# : LogQp,G1 → ϕ∗LogQp,G2
∼= ϕ!LogQp,G2(−c)[−2c]

such that 1G1 maps to 1G2 . Moreover, if ϕ is an isogeny, the ϕ# is an isomorphism.

Proof This follows directly from Theorem 3.2.2 and the fact that deg ϕ is invertible
in Qp. �
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Corollary 3.4.2 (Splitting principle) Let ϕ : G1 → G2 be an isogeny. Then if t :
S → G1 is in the kernel of ϕ, one has


t : t∗LogQp,G1
∼= t∗ϕ∗LogQp,G2

∼= e∗
1ϕ

∗LogQp,G2

∼= e∗
1LogQp,G1

∼=
∏

k�0

Symk HQp,G1 .

More generally, if ι : ker ϕ → G1 is the closed immersion, one has

ι∗LogG1
∼= π |∗ker ϕ

∏

k�0

Symk HQp,G1 ,

where π |ker ϕ : ker ϕ → S is the structure map.

Proof Apply t∗ to both sides of the isomorphism ϕ# and use (13). For the second
statement make the base change to ker ϕ and apply the first statement to the tauto-
logical section of ker ϕ. �

Theorem 3.4.3 (Vanishing of cohomology) One has

Riπ!LogQp
∼=

{
Qp(−d) if i = 2d

0 if i �= 2d.

More precisely, the transition maps Riπ!Log(k)
Qp

→ Riπ!Log(k−1)
Qp

are zero for i < 2d

and one has an isomorphism R2dπ!Log(k)
Qp

∼= Qp(−d) compatible with the transition
maps.

Proof This is Theorem 3.3.1. in [7]. �

LetF be a unipotent sheaf of finite length n on G. Consider the homomorphism

π∗HomG(LogQp,F ) → e∗F (15)

defined as the composition of

π∗HomG(LogQp,F ) → π∗e∗e∗HomG(LogQp ,F ) → HomS(e
∗LogQp , e

∗F )

with
HomS(e

∗LogQp, e
∗F )

(1)∗−−→ HomS(Qp, e
∗F ) ∼= e∗F .
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Theorem 3.4.4 (Universal property) Let F be a unipotent sheaf of finite length.
Then the map (15) induces an isomorphism

π∗Hom(LogQp,F ) ∼= e∗F .

Proof This is Theorem 3.3.2. in [7]. �

4 The Qp-polylogarithm and Eisenstein Classes

4.1 Construction of the Qp-polylogarithm

Fix an auxiliary integer c > 1 invertible on S and consider the c-torsion subgroup
D := G[c] ⊂ G. We write UD := G \ D and consider

UD
jD−→ G

ιD←− D.

We also write πD : D → S for the structure map.
For any sheaf F the localization triangle defines a connecting homomorphism

Rπ!RjD∗j∗DF [−1] → Rπ!ιD!ι!DF . (16)

As Log(k)
Qp

(d)[2d] is unipotent we may use Lemma 2.3.1 to replace ι!D by ι∗D. Using
Corollary 3.4.2 one gets

πD!ι!DLog(k)
Qp

(d)[2d] ∼=
k∏

i=0

πD!π∗
D Symi HQp .

Putting everything together and taking the limit over the transition maps Log(k)
Qp

→
Log(k−1)

Qp
gives the residue map

res : H2d−1(S,Rπ!RjD∗j∗DLogQp(d)) → H0(S,
∏

k�0

πD!π∗
D Symk HQp). (17)

Proposition 4.1.1 The localization triangle induces a short exact sequence

0 → H2d−1(S,Rπ!RjD∗j∗DLogQp(d))
res−→

H0(S,
∏

k�0

πD!π∗
D Symk HQp) → H0(S, Qp) → 0.
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Proof This is an immediate consequence from the localization triangle and the com-
putation of Rπ!Log in Theorem 3.4.3. �
Definition 4.1.2 Let

Qp[D]0 := ker(H0(S, πD!Qp) → H0(S, Qp))

where the map is induced by the trace πD!Qp → Qp.

Note that

Qp[D]0 ⊂ ker

⎛

⎝H0(S,
∏

k�0

πD!π∗
D Symk HQp) → H0(S, Qp)

⎞

⎠ .

Definition 4.1.3 Let α ∈ Qp[D]0. Then the unique class

αpolQp
∈ H2d−1(S,Rπ!RjD∗j∗DLogQp(d))

with res(αpolQp
) = α is called the polylogarithm class associated to α. We write

αpolkQp
for the image of αpolQp

in H2d−1(S,Rπ!RjD∗j∗DLog(k)
Qp

(d)).

4.2 Eisenstein Classes

Recall that D = G[c] and fix an integer N > 1 invertible on S, such that (N, c) = 1
and let t : S → UD = G \ D be an N-torsion section. Consider the composition

Rπ!RjD∗j∗DLog(d) → Rπ!RjD∗j∗DRt∗t
∗Log(d) ∼= Rπ!Rt∗t∗Log(d) ∼= t∗Log(d)

(18)
induced by the adjunction id → Rt∗t∗, the fact thatRt∗ = Rt! and because π ◦ t = id.
Together with the splitting principle from Corollary 3.4.2 and the projection to the
k-th component one gets an evaluation map

H2d−1(S,Rπ!RjD∗j∗DLog(k)
Qp

(d))

t◦t∗−−→H2d−1(S,

k∏

i=0

Symi HQp)

prk−→ H2d−1(S,Symk HQp). (19)

Definition 4.2.1 Let α ∈ Qp[D]. The image of αpolQp
under the evaluationmap (19)

αEis
k
Qp

(t) ∈ H2d−1(S,Symk HQp)

is called the k-th étale Qp-Eisenstein class for G.
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Remark 4.2.2 The normalization in [12, Definition 12.4.6] is different. There we
had an additional factor of −Nk−1 in front of αEiskQp

(t). This has the advantage to

make the residues of αEiskQp
(t) at the cusps integral, but is very unnatural from the

point of view of the polylogarithm.

Recall from [7, Theorem 5.2.1] that the polylogarithm αpolkQp
is motivic, i.e., there

exists a class in motivic cohomology

αpol
k
mot ∈ H2d−1

mot (S,Rπ!RjD∗j∗DLog(k)
mot(d)),

the motivic polylogarithm, which maps to αpolkQp under the étale regulator

rét : H2d−1
mot (S,Rπ!RjD∗j∗DLog(k)

mot(d)) → H2d−1(S,Rπ!RjD∗j∗DLog(k)
Qp

(d)).

With the motivic analogue of the evaluation map (19) one can define exactly in the
same way as in the étale case motivic Eisenstein classes for α ∈ Q[D]0

αEis
k
mot(t) ∈ H2d−1

mot (S,Symk HQ). (20)

The next proposition is obvious from the fact that the evaluation map is compatible
with the étale regulator.

Proposition 4.2.3 Forα ∈ Q[D]0 the imageof themotivicEisenstein class αEiskmot(t)
under the étale regulator

rét : H2d−1
mot (S,Symk HQ) → H2d−1(S,Symk HQp)

is the étale Qp-Eisenstein class αEiskQp
(t).

5 Sheaves of Iwasawa Algebras

5.1 Iwasawa Algebras

Let X = lim←−r
Xr be a profinite space with transition maps λr : Xr+1 → Xr and

�r[Xr] := Map(Xr, Z/prZ)

the Z/prZ-module of maps from Xr to Z/prZ. For each xr we write δxr ∈ �r[Xr]
for the map which is 1 at xr and 0 else. It is convenient to interpret �r[Xr] as the
space of Z/prZ-valued measures on Xr and δxr as the delta measure at xr . Then the
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push-forward along λr : Xr+1 → Xr composed with reduction modulo pr induces
Zp-module maps

λr∗ : �r+1[Xr+1] → �r[Xr] (21)

which are characterized by λr∗(δxr+1) = δλr(xr).

Definition 5.1.1 The module of Zp-valued measures on X is the inverse limit

�(X) := lim←−
r

�r[Xr]

of �r[Xr] with respect to the transition maps from (21).

Let x = (xr)r�0 ∈ X. We define δx := (δxr )r�0 ∈ �(X), which provides a map

δ : X → �(X).

For each continuous map ϕ : X → Y of profinite spaces we get a homomorphism

ϕ∗ : �(X) → �(Y) (22)

“push-forward of measures” with the property ϕ∗(δx) = δϕ(x). Obviously, one has
�r[Xr × Yr] ∼= �r[Xr] ⊗ �r[Yr] so that

�(X × Y) ∼= �(X)⊗̂�(Y) := lim←−
r

�r[Xr] ⊗ �r[Yr].

In particular, if X = G = lim←−r
Gr is a profinite group, the group structure μ : G ×

G → G induces a Zp-algebra structure on �(G), which coincides with the Zp-
algebra structure induced by the inverse limit of group algebras lim←−r

�r[Gr].
Definition 5.1.2 If G = lim←−r

Gr is a profinite group, we call

�(G) := lim←−
r

�r[Gr]

the Iwasawa algebra of G.

More generally, if G acts continuously on the profinite space X, one gets a map

�(G)⊗̂�(X) → �(X)

which makes �(X) a �(G)-module. If X is a principal homogeneous space under
G, then �(X) is a free �(G)-module of rank 1.
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5.2 Properties of the Iwasawa Algebra

In this section we assume that H is a finitely generated free Zp-module. We let

Hr := H ⊗Zp Zp/p
rZp

so that H = lim←−r
Hr with the natural transition maps Hr+1 → Hr .

In the case H = Zp, the so called Amice transform of a measure μ ∈ �(Zp)

Aμ(T) :=
∞∑

n=0

Tn
∫

Zp

(
x

n

)

μ(x)

induces a ring isomorphismA : �(Zp) ∼= Zp[[T ]] (see [3, Sect. 1.1.]). A straightfor-
ward generalization shows that �(H) is isomorphic to a power series ring in rkH
variables. On the other hand one has the so called Laplace transform of μ (see loc.
cit.)

Lμ(t) :=
∞∑

n=0

tn

n!
∫

Zp

xnμ(x).

This map is called the moment map in [10] and we will follow his terminology. In
the next section, we will explain this map from an abstract algebraic point of view.
For this we interpret tn

n! as t
[n] in the divided power algebra �Zp(Zp).

5.3 The Moment Map

We return to the case of a free Zp-module H of finite rank.

Proposition 5.3.1 LetH be a freeZp-module of finite rank andHr := H ⊗Zp Z/prZ.
Then

�̂Zp(H) ∼= lim←−
r

�̂Z/prZ(Hr).

Proof As each�Zp(H)/�+(H)[k] is a finitely generated freeZp-module, this follows
by the compatibility with base change of�Zp(H) and the fact that one can interchange
the inverse limits. �

By the universal property of the finite group ring �r[Hr], the group homomor-
phism

Hr → �̂Z/prZ(Hr)
×

hr 	→
∑

k�0

h[k]
r
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induces a homomorphism of Z/prZ-algebras

momr : �r[Hr] → �̂Z/prZ(Hr).

Corollary 5.3.2 The maps momr induce in the inverse limit a Zp-algebra homo-
morphism

mom : �(H) → �̂Zp(H).

which is functorial in H.

Definition 5.3.3 We call mom : �(H) → �̂Zp(H) themoment map and the compo-
sition with the projection to �k(H)

momk : �(H) → �k(H)

the k-th moment map.

5.4 Sheafification of the Iwasawa Algebras

Let X be a separated noetherian scheme of finite type as in Sect. 2.1 and X :=
(pr : Xr → X)r be an inverse system of quasi-finite étale schemes over X with étale
transition maps λr : Xr → Xr−1. We often write

�r := Z/prZ. (23)

The adjunction λr!λ!
r → id defines a homomorphism

pr+1!�r+1 = pr!λr!λ!
r�r+1 → pr!�r+1,

because λr is étale. If one composes this with reduction modulo pr , one gets a trace
map

Trr+1 : pr+1,!�r+1 → pr,!�r . (24)

Definition 5.4.1 We define an étale sheaf on X by

�r[Xr] := pr!�r .

With the trace maps Trr+1 : �r+1[Xr+1] → �r[Xr] as transition morphisms we
define the pro-sheaf

�(X ) := (�r[Xr])r�0.
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This definition is functorial in X . If (ϕr)r : (Xr)r → (Yr)r is a morphism of
inverse system of quasi-finite étale schemes over X, then the adjunction ϕr!ϕ!

r → id
defines a morphism

ϕr! : �r[Xr] → �r[Yr]

compatible with the transition maps, and hence a morphism of pro-sheaves

�(X ) → �(Y ).

Moreover, the formation of �(X ) is compatible with base change: if Xr,T :=
Xr ×S T for an S-scheme f : T → S, then by proper base change one has

f ∗�r[Xr] ∼= �[Xr,T ].

By the Künneth formula, one has

�r[Xr ×X Yr] ∼= �r[Xr] ⊗ �r[Yr]

and hence �(X ×X Y ) ∼= �(X )⊗̂�(Y ) by taking the inverse limit. In particular,
in the case where X = G is an inverse system of quasi-finite étale group schemes
Gr , the group structure μr : Gr ×X Gr → Gr induces a ring structure

�(G )⊗̂�(G ) → �(G )

on �(G ). Similarly, if
G ×X X → X

is a group action of inverse systems, i.e., a compatible family of actionsGr ×X Xr →
Xr , then �(X ) becomes a �(G )-module.

The next lemma shows that the above construction indeed sheafifies the Iwasawa
algebras considered before.

Lemma 5.4.2 Let x ∈ X be a geometric point and write pr,x : Xr,x → x for the base
change of Xr to x considered as a finite set. Then

�r[Xr]x ∼= �r[Xr].

Proof This follows directly from the base change property of �r[Xr] and the fact
that pr,x,!�r

∼= �r[Xr] over an algebraically closed field. �

Wereturn to our basic set up,whereπ : G → S is a separated smooth commutative
group scheme with connected fibres. Recall from Lemma3.1.2 that Hr is the sheaf
associated to G[pr], which is quasi-finite and étale over S.
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Definition 5.4.3 Define the sheaf of Iwasawa algebras �(H ) on S to be the pro-
sheaf

�(H ) := (�r[Hr])r�0.

5.5 Sheafification of the Moment Map

We keep the notation of the previous section. In particular, we consider the étale
sheaf Hr and the sheaf �r[Hr].

OverG[pr] the sheaf [pr]∗Hr has the tautological section τr ∈ �(G[pr], [pr]∗Hr)

corresponding to the identity map G[pr] → Hr . This gives rise to the section

τ [k]
r ∈ �(G[pr], [pr]∗�k(Hr)) (25)

of the k-th divided power ofHr . Using the chain of isomorphisms (note that [pr]∗ =
[pr]! as [pr] is étale)

�(G[pr], [pr]∗�k(Hr)) ∼= HomG[pr ](Z/prZ, [pr]∗�k(Hr))

∼= HomS([pr]!Z/prZ, �k(Hr)),

the section τ [k]
r gives rise to a morphism of sheaves

momk
r : �r[Hr] → �k(Hr). (26)

Lemma 5.5.1 There is a commutative diagram

�r[Hr] momk
r−−−−→ �k(Hr)

Trr

⏐
⏐



⏐
⏐



�r−1[Hr−1] momk
r−1−−−−→ �k(Hr−1)

where the right vertical map is given by the reduction map

�k(Hr) → �k(Hr) ⊗Z/prZ Z/pr−1Z ∼= �k(Hr−1).

Proof Denote by λr : Hr → Hr−1 the transition map. Reduction modulo pr−1 gives
a commutative diagram

[pr]!Z/prZ
momk

r−−−−→ �k(Hr)
⏐
⏐



⏐
⏐



[pr]!λ∗
rZ/pr−1Z

momk
r ⊗Z/pr−1

Z−−−−−−−−→ �k(Hr−1).
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As the image of the tautological class τ [k]
r ∈ �(G[pr], [pr]∗�k(Hr)) under the reduc-

tion map gives the the pull-back of the tautological class

λ∗
r τ

[k]
r−1 ∈ �(G[pr], [pr]∗�k(Hr−1)) ∼= HomG[pr ](λ∗

rZ/pr−1Z, [pr]∗�k(Hr−1))

∼= HomS([pr]!λ∗
rZ/pr−1Z, �k(Hr−1))

one concludes that momk
r ⊗Z/pr−1Z coincides with the map given by λ∗

r τ
[k]
r−1. This

means that momk
r ⊗Z/pr−1Z has to factor through Trr , i.e., the diagram

[pr−1]!λr!λ∗
rZ/pr−1Z

momk
r ⊗Z/pr−1

Z ��

Trr ����������������
�k(Hr−1)

[pr−1]!Z/pr−1Z

momk
r−1

��������������

commutes, which gives the desired result. �

With this result we can now define the moment map for the sheaf of Iwasawa
algebras �(H ).

Definition 5.5.2 We define the k-th moment map to be the map of pro-sheaves

momk : �(H ) → �k(H )

defined by (momk
r )r�0 and

mom : �(H ) → �̂Zp(H )

by taking momk in the k-th component.

Remark 5.5.3 In each stalk the the mapmomk coincides with the mapmomk defined
in Definition5.3.3 (see [12, Lemma 12.2.14]).

6 The Integral Logarithm Sheaf

6.1 Definition of the Integral Logarithm Sheaf

We now define a pro-sheaf L on G of modules over π∗�(H ), which will give a
Zp-structure of the logarithm sheaf LogQp . For this write Gr := G considered as a
quasi-finite étale G-scheme via the pr-multiplication

[pr] : Gr = G → G. (27)
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Note that this is a G[pr]-torsor

0 → G[pr] → Gr
[pr ]−→ G → 0

overG. Letλr : Gr → Gr−1 be the transitionmap,which is just the [p]-multiplication
in this case. Then, as in (24), we have trace maps

Trr : �r[Gr] → �r−1[Gr−1].

We will also need the following variant. Let �s := Z/psZ and write

�s[Gr] := [pr]!�s. (28)

Then the adjunction λr!λ!
r → id defines transition morphisms

λr! : �s[Gr] → �s[Gr−1]. (29)

Definition 6.1.1 With the above transition maps we can define the pro-sheaves

L := (�r[Gr])r�0 and L�s := (�s[Gr])r�0.

We call L the integral logarithm sheaf.

Note that the reduction modulo ps−1 gives transition maps L�s → L�s−1 and that
we have an isomorphism of pro-sheaves

L ∼= (L�s)s�0. (30)

By the general theory outlined above, L is a module over π∗�(H ) which is free of
rank 1.

Let t : S → G be a section and denote by G[pr]〈t〉 the G[pr]-torsor defined by
the cartesian diagram

G[pr]〈t〉 −−−−→ Gr
⏐
⏐



⏐
⏐

[pr ]

S
t−−−−→ G.

(31)

We denote byHr〈t〉 the étale sheaf defined by G[pr]〈t〉 and byH 〈t〉 := (Hr〈t〉) the
pro-system defined by the trace maps. We write

�(H 〈t〉) := (�r[Hr〈t〉])r�0

for the sheaf of Iwasawa modules defined by H 〈t〉.
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Lemma 6.1.2 There is an canonical isomorphism

t∗L ∼= �(H 〈t〉).

In particular, for the unit section e : S → G one has

e∗L ∼= �(H )

and hence a section 1 : Zp → e∗L given by mapping 1 to 1.

Proof This follows directly from the fact that L is compatible with base change and
the definitions. �

6.2 Basic Properties of the Integral Logarithm Sheaf

The integral logarithm sheaf enjoys the same properties as its Qp-counterpart,
namely functoriality, vanishing of cohomology and a universal property for unipotent
sheaves.

Let ϕ : G1 → G2 be a homomorphism of group schemes of relative dimension
d1 and d2 over S. Denote byL1 andL2 the integral logarithm sheaves on G1 and G2

respectively.

Theorem 6.2.1 (Functoriality) Let c := d1 − d2. Then there is a canonical map

ϕ# : L1 → ϕ∗L2
∼= ϕ!L2(−c)[−2c].

Moreover, if ϕ is an isogeny of degree prime to p, then ϕ# : L1
∼= ϕ∗L2 is an isomor-

phism.

Proof The homomorphism ϕ induces a homomorphism of group schemes over G1

ϕ : G1,r → G2,r ×G2 G1 (32)

which induces by adjunction ϕ!ϕ! → id and the base change property of �r[G2,r] a
morphism of sheaves

ϕ# : �r[G1,r] → ϕ∗�r[G2,r] = ϕ!�r[G2,r](−c)[−2c].

Passing to the limit gives the required map. If ϕ is an isogeny of degree prime to p,
then the map in (32) is an isomorphism. Hence this is also true for ϕ#. �

Corollary 6.2.2 (Splitting principle)Let c be an integer prime to p and let t : S → G
be a c-torsion section. Then there is an isomorphism

[c]# : t∗L ∼= �(H ).



On p-adic Interpolation of Motivic Eisenstein Classes 359

More generally, if D := G[c] with (c, p) = 1 then

ι∗DL ∼= π∗
D�(H ),

where ιD : D → G and πD : D → S is the structure map.

Proof Apply t∗ respectively, ι∗D to the isomorphism [c]# : L → [c]∗L. �

Theorem 6.2.3 (Vanishing of cohomology) Recall that 2d is the relative dimension
of π : G → S. Then the pro-sheaves

Riπ!L for i < 2d

are Mittag-Leffler zero (see Sect. 2.1) and

R2dπ!L(d) ∼= Zp.

We start the proof of this theorem with a lemma:

Lemma 6.2.4 The endomorphism [pr]! : Riπ!Z/psZ → Riπ!Z/psZ is given by mul-
tiplication with pr(2d−i).

Proof By Lemma 3.1.2 we see that [pr]! is given by pr-multiplication on Hs. The
result follows from this and the Z/psZ-version of the isomorphism (7) �

Proof of Theorem 6.2.3. Consider the transition map �s[Gr+j] → �s[Gr]. If we
apply Riπ! we get the homomorphism

[pj]! : Riπr+j,!�s → Riπr,!�s,

where πr = π : Gr → S is the structure map of Gr = G. By Lemma 6.2.4, the map
[pj]! acts by multiplication with pj(2d−i) on Riπr+j,!�s. In particular, this is zero
for i �= 2d and j � s and the identity for i = 2d. This proves the theorem, because
R2dπ!�s(d) ∼= �s. �

The sheaf L satisfies also a property analogous to Theorem 3.4.4. To formulate
this properly, we first need a property of unipotent Z/psZ-sheaves.

Lemma 6.2.5 Let F be a unipotent �s = Z/psZ-sheaf of length n on G. Then
[pns]∗F is trivial on Gns in the sense that there exists a �s-sheaf G on S such that

[pns]∗F ∼= π∗
nsG ,

where πns : Gns → S is the structure map.

Proof We show this by induction. For n = 0 there is nothing to show. So let

0 → F ′ → F → π∗G ′′ → 0
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be an exact sequencewithF ′ unipotent of length n − 1, so that by induction hypothe-
ses [p(n−1)s]∗F ′ ∼= π∗G ′ on G(n−1)s. Thus it suffices to show that for an extension
F ∈ Ext1G(π∗G ′′, π∗G ′), the sheaf [ps]∗F is trivial on Gs. One has

Ext1G(π∗G ′′, π∗G ′) ∼= Ext1G(π !G ′′, π !G ′) ∼= Ext1S(Rπ!π !G ′′,G ′)

and the pull-back by [ps]∗ on the first group is induced by the trace map [ps]! :
Rπ![ps]![ps]!π !G ′′ → Rπ!π !G ′′ on the last group. By the projection formula we have
Rπ!π !G ′′ ∼= Rπ!�s(d)[2d] ⊗ G ′′ and the triangle

τ<2dRπ!�s(d)[2d] → Rπ!�s(d)[2d] → R2dπ!�s(d) ∼= �s

gives rise to a long exact sequence of Ext-groups

. . . → Ext1S(G
′′,G ′) → Ext1S(Rπ!�s(d)[2d] ⊗ G ′′,G ′)

→ Ext1S(τ<2dRπ!�s(d)[2d] ⊗ G ′′,G ′) → . . .

If we pull-back by [ps]∗ and use Lemma 6.2.4 the resulting map on the module
Ext1S(τ<2dRπ!�s(d)[2d] ⊗ G ′′,G ′) is zero, which shows that [ps]∗F is in the image
of

Ext1S(G
′′,G ′)

[ps]∗π∗−−−→ Ext1G([ps]∗π∗G ′′, [ps]∗π∗G ′).

This is the desired result. �

Exactly as in (15) one can define for each�s-sheafF and each r a homomorphism

π∗HomG(�s[Gr],F ) → e∗F (33)

as the composition

π∗HomG(L�s,r,F ) → π∗e∗e∗HomG(L�s,r,F )

→ HomS(e
∗L�s,r, e

∗F )
1∗−→ HomS(�s, e

∗F )

The next theorem corrects and generalizes [12, Proposition 4.5.3], which was erro-
neously stated for all Z/psZ-sheaves and not just for unipotent ones.

Theorem 6.2.6 (Universal property) Let F be a unipotent �s-sheaf of length n.
Then the homomorphism (33)

π∗HomG(�s[Gns],F ) ∼= e∗F

is an isomorphism.
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Proof LetF be unipotent of length n. Then we know from Lemma 6.2.5 that there is
a �s-sheaf G on S such that [pns]∗F ∼= π∗

nsG , where πns : Gns → S is the structure
map. Similarly, we write ens for the unit section of Gns. Then one has

e∗F ∼= e∗
ns[pns]∗F ∼= e∗

nsπ
∗
nsG

∼= G .

Further, one has the following chain of isomorphisms

π∗HomG(�s[Gns],F ) = π∗HomG([pns]!�s,F ) ∼= πns∗HomGns
(�s, [pns]∗F )

∼= πns∗HomGns
(�s, π

∗
nsG )

∼= HomS(Rπns!�s(d)[2d],G )

∼= HomS(R
2dπns!�s(d),G )

∼= G ∼= e∗F ,

which prove the theorem. �

6.3 The Integral étale Poylogarithm

In this section we define in complete analogy with the Qp-case the integral étale
polylogarithm.

We recall the set-up from Sect. 4.1. Denote by c > 1 an integer invertible on S
and prime to p and let D := G[c] be the c-torsion subgroup. Then the localization
triangle for jD : UD ⊂ G and ιD : D → G reads

Rπ!L(d)[2d − 1] → Rπ!RjD∗j∗DL(d)[2d − 1] → πD!ι!DL(d).

By relative purity and the splitting principle ι!DL(d)[2d] ∼= ι∗DL ∼= π∗
D�(H ). We

apply the functor Hj(S,−) to this triangle. As the Riπ!L are Mittag-Leffler zero for
i �= 2d by Theorem 6.2.3 one gets with (3):

Proposition 6.3.1 In the above situation there is a short exact sequence

0 → H2d−1(S,Rπ!RjD∗j∗DL(d))
res−→ H0(S, πD!π∗

D�(H )) → H0(S, Zp) → 0.

As in the Qp-case we define

Zp[D]0 := ker
(
H0(S, πD!π∗

DZp) → H0(S, Zp)
)

so that one has

Zp[D]0 ⊂ ker
(
H0(S, πD!π∗

D�(H )) → H0(S, Zp)
)
.

With these preliminaries we can define the integral polylogarithm.
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Definition 6.3.2 The integral étale polylogarithm associated to α ∈ Zp[D]0 is the
unique class

αpol ∈ H2d−1(S,Rπ!RjD∗j∗DL(d))

such that res(αpol) = α.

6.4 The Eisenstein–Iwasawa Class

Recall that D = G[c] and let t : S → UD = G \ D be an N-torsion section with
(N, c) = 1 but N not necessarily prime to p. The same chain of maps as in (18) gives
a map

H2d−1(S,Rπ!RjD∗j∗DL(d)) → H2d−1(S, t∗L(d)) ∼= H2d−1(S,�(H 〈t〉)(d)). (34)

By functoriality the N-multiplication induces a homomorphism

[N]# : �(H 〈t〉) → �(H ).

Definition 6.4.1 Let α ∈ Zp[D]0 and t : S → UD be an N-torsion section. Then the
image

α EI(t) ∈ H2d−1(S,�(H 〈t〉)(d))

of αpol under the map (34) is called the Eisenstein–Iwasawa class. We write

α EI(t)N := [N]#(αEI(t)) ∈ H2d−1(S,�(H )(d)).

Remark 6.4.2 Note that α EI(t)N depends on N and not on t alone. The class
α EI(t)NM differs from α EI(t)N .

The k-th moment map induces a homomorphism of cohomology groups

momk : H2d−1(S,�(H )(d)) → H2d−1(S, �k(H )(d)). (35)

Definition 6.4.3 The class

αEis
k
N (t) := momk(α EIN ) ∈ H2d−1(S, �k(H )(d))

is called the integral étale Eisenstein class.

These Eisenstein classes are interpolated by the Eisenstein–Iwasawa class by
definition. We will see later how they are related to the Qp-Eisenstein class, which
are motivic, i.e., in the image of the étale regulator from motivic cohomology.
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6.5 The Eisenstein–Iwasawa Class for Abelian Schemes

It is worthwhile to consider the case of abelian schemes in more detail. In this section
we let G = A be an abelian scheme over S, so that in particular π : A → S is proper
and we can write Rπ∗ instead of Rπ!.

The first thing to observe is the isomorphism

H2d−1(S,Rπ!RjD∗j∗DLog(d)) ∼= H2d−1(UD,Log(d)),

so that the Qp-polylogarithm is a class

αpolQp
∈ H2d−1(UD,Log(d)).

Evaluation at the N-torsion section t : S → UD is just the pull-back with t∗

t∗αpolQp
∈ H2d−1(S, t∗Log(d)) ∼= H2d−1(S,

∏

k�0

Symk HQp(d))

and the k-th component of t∗αpolQp
is αEiskQp

(t).
There is one specific choice of α which is particularly important, which we define

next. Consider the finite étale morphism πD : G[c] → S and the unit section e : S →
G[c]. These induce

e∗ : H0(S, Qp) → H0(S, πD∗Qp)

(coming from πD∗e!e!Qp → πD∗Qp) and

π∗
D : H0(S, Qp) → H0(S, πD∗Qp).

One checks easily that e∗(1) − π∗
D(1) is in the kernel ofH0(S, πD∗Qp) → H0(S, Qp).

Definition 6.5.1 Let αc ∈ Qp[D]0 be the class

αc := e∗(1) − π∗
D(1).

We write cpolQp
and cEiskQp

(t) for the polylogarithm and the Eisenstein class defined
with αc.

We now assume that S is of finite type over SpecZ. Then H2d−1(Ar \ Ar[cpr],
Z/prZ(d)) is finite, so that one has by (2)

H2d−1(S,Rπ!RjD∗j∗DL(d)) ∼= H2d−1(A \ A[c],L(d))

∼= lim←−
r

H2d−1(Ar \ Ar[cpr], Z/prZ(d))
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where, as before, [pr] : Ar = A → A is the pr-multiplication and the transition maps
are given by the trace maps. The integral étale polylogarithm is then a class

αpol ∈ lim←−
r

H2d−1(Ar \ Ar[cpr], Z/prZ(d)).

In the special case whereA = E is an elliptic curve over S it is shown in [12, Theorem
12.4.21] that

cpol ∈ lim←−
r

H1(Er \ Er[cpr], Z/prZ(d))

is given by the inverse limit of Kato’s norm compatible elliptic units cϑE . Unfor-
tunately, we do not have such a description even in the case of abelian varieties of
dimension � 2. If we write A[pr]〈t〉 for the A[pr]-torsor defined by diagram (31),
then

α EI(t) ∈ H2d−1(S, t∗L(d)) = lim←−
r

H2d−1(A[pr]〈t〉, Z/prZ(d))

where the inverse limit is again over the trace maps.

7 Interpolation of the Qp-Eisenstein Classes

7.1 An Integral Structure on Log(k)Qp

For the comparison between the integralL and theQp-polylogarithmLogQp we need
an intermediate object, which we define in this section. This is purely technical. The
reason for this is as follows: In general a unipotent Qp-sheaf does not necessarily
have a Zp-lattice which is again a unipotent sheaf. In the case of Log(k)

Qp
however, it

is even possible to construct a Zp-structure Log(k) such that

Log(k)
�r

:= Log(k) ⊗Zp �r

is a unipotent �r = Z/prZ-sheaf.
Let Log(1) be the Zp-sheaf defined in Definition3.2.1

0 → H → Log(1) → Zp → 0 (36)

and denote by 1(1) : Zp → e∗Log(1) a fixed splitting.

Definition 7.1.1 We define

Log(k) := �k(Log(1))
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as the k-th graded piece of the divided power algebra �Zp(Log(1)). We further
denote by

1(k) := �k(1(1)) : Zp → Log(k)

the splitting induced by 1(1).

As Zp andH are flat Zp-sheaves (all stalks are Zp-free), the k-th graded piece of
the divided power algebra�k(Log(1)) has a filtrationwith graded piecesπ∗�i(H ) ⊗
�k−i(Zp) (see [8, V 4.1.7]). In particular, the �k(Log(1)) are unipotent Zp-sheaves
of length k. By base change the same is true for the �r-sheaf

Log(k)
�r

:= Log(k) ⊗Zp �r . (37)

To define transition maps
Log(k) → Log(k−1) (38)

we proceed as in Sect. 3.3. Consider Log(1) → Zp ⊕ Log(1) given by the canonical
projection and the identity. Then we define

Log(k) = �k(Log(1)) → �k(Zp ⊕ Log(1)) ∼=
⊕

i+j=k

�i(Zp) ⊗ �j(Log(1)) →

→ �1(Zp) ⊗ �k−1(Log(1)) ∼= Log(k−1)

where we identify �1(Zp) ∼= Zp. A straightforward computation shows that 1(k) 	→
1(k−1) under the transition map.

Definition 7.1.2 We denote by Log the pro-sheaf (Log(k))k�0 with the above tran-
sition maps and let 1 : Zp → e∗Log be the splitting defined by (1(k))k�0.

Remark 7.1.3 We would like to point out that, contrary to the Qp-situation, the pro-
sheaf (Log(k))k�0 is not the correct definition of the Zp-logarithm sheaf. In fact, the
correct integral logarithm sheaf is L.
Proposition 7.1.4 Denote byLog(k) ⊗ Qp the Qp-sheaf associated toLog(k). Then
there is a canonical isomorphism

Log(k)
Qp

∼= Log(k) ⊗ Qp

which maps 1(k)
Qp

to 1(k).

Proof First note that the canonical map Symk Log(1)
Qp

→ �k(Log(1)
Qp

) is an isomor-

phism. This can be checked at stalks, where it follows from (4) as Log(1)
Qp

is a sheaf
of Qp-modules. The claim in the proposition then follows from the isomorphisms

Log(k)
Qp

= Symk Log(1)
Qp

∼= �k(Log(1)
Qp

) ∼= �k(Log(1)) ⊗ Qp = Log(k) ⊗ Qp
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and the claim about the splitting follows from the explicit formula for the map
Symk Log(1)

Qp
→ �k(Log(1)

Qp
) given after (4). �

Corollary 7.1.5 For all i there are isomorphisms

Hi(S,Rπ!RjD∗j∗DLog(k)(d)) ⊗Zp Qp
∼= Hi(S,Rπ!RjD∗j∗DLog(k)

Qp
(d))

Hi(S, πD!π∗
D

k∏

i=0

�i(H )) ⊗Zp Qp
∼= Hi(S, πD!π∗

D

k∏

i=0

Symi HQp)

Hi(S,Rπ!Log(k)(d)[2d]) ⊗Zp Qp
∼= Hi(S,Rπ!Log(k)

Qp
(d)[2d])

Proof The first and the third follow directly from the proposition and the definition
of the cohomology of a Qp-sheaf. For the second one observes that the canonical
map

Symk HQp
∼= Symk H ⊗ Qp → �k(H ) ⊗ Qp

∼= �k(HQp)

is an isomorphism. This can be checked on stalks, where it follows again
from (4). �

7.2 Comparison of Integral and Qp-polylogarithm

In this sectionwewant to compareL andLogQp .We first compareLwith the sheaves
Log(k) defined in Definition7.1.1.

Define a comparison map

compk : L → Log(k)

as follows. By Theorem 6.2.6 one has for the sheaves Log(k)
�r

from (37) the isomor-
phism

HomG(�r[Grk],Log(k)
�r

) ∼= H0(S, e∗Log(k)
�r

),

so that the splitting 1(k) ⊗ �r : �r → e∗Log(k)
�r

defines a morphism of sheaves on G

compkr : �r[Grk] → Log(k)
�r

, (39)

which is obviously compatible with the transition maps and functorial in G. Passing
to the pro-systems over r � 0, this defines a homomorphism

compk : L → Log(k). (40)

Taking also the pro-system in the k-direction leads to a comparison map

comp : L → Log. (41)
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For each k applying compk to the localization triangle for D ↪→ G ←↩ UD gives

Rπ!RjD∗j∗DL(d)[2d − 1] ��

compk

��

πD!π∗
D�(H ) ��

compk

��

Rπ!L(d)[2d]
compk

��
Rπ!RjD∗j∗DLog(k)(d)[2d − 1] �� πD!π∗

DLog(k) �� Rπ!Log(k)(d)[2d]
(42)

compatible with the transition maps Log(k) → Log(k−1).

Proposition 7.2.1 There is a commutative diagram with short exact columns

0

��

0

��
H2d−1(S,Rπ!RjD∗j∗DL(d))

res

��

comp �� H2d−1(S,Rπ!RjD∗j∗DLogQp(d))

res

��
H0(S, πD!π∗

D�(H ))

��

e∗ comp �� H0(S, πD!π∗
D

∏
k�0 Sym

k HQp(d))

��
H0(S, Zp)

��

�� H0(S, Qp)

��
0 0

Proof Take the long exact cohomology sequence of the commutative diagram in
(42), tensor the lower horizontal line with Qp and then pass to the inverse limit
over k. Using the isomorphisms in Corollary 7.1.5 gives the commutative diagram
as stated. �

Corollary 7.2.2 Let α ∈ Zp[D]0, with D = G[c] as before. Then one has

comp(αpol) = αpolQp

in H2d−1(S,Rπ!RjD∗j∗DLogQp(d)). In particular, for every N-torsion section t : S →
UD one has

comp(αEI(t)) = t∗(αpolQp
).

Proof Immediate from the definition of αpol and αpolQp
and the commutative dia-

gram in the proposition. The second statement follows from the first as comp is
compatible with the evaluation map at t. �
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7.3 Interpolation of the Qp-Eisenstein Classes

For our main result, we first have to relate the comparison map compk with the
moment map momk .

Proposition 7.3.1 The composition

�(H )
e∗(compk)−−−−−→ e∗Log(k) prk−→ �k(H )

coincides with the moment map momk.

Proof By the definitions of momk and compk it suffices to prove this statement for
�r-coefficients. Consider

compkr : �r[Grk] → Log(k)
�r

from (39). This comes by adjunction from a map

βr : �r → [prk]∗Log(k)
�r

,

on Grk which has by definition the property that its pull-back e∗
rk(βr) coincides with

1(k) : �r → e∗Log(k)
�r
. By Lemma 2.3.2 the map βr is uniquely determined by this

property. As Log(k)
�r

is unipotent of length k, the pull-back [prk]∗Log(k)
�r

is trivial by
Lemma 6.2.5 and is hence of the form

[prk]∗Log(k)
�r

∼= π∗
rke

∗Log(k)
�r

∼= π∗
rk

k∏

i=0

�i(Hr),

where the last isomorphism is obtained by the splitting 1(k). Thus the map

�r → [prk]∗Log(k)
�r

∼= π∗
rk

k∏

i=0

�i(Hr) 1 	→
k∑

i=0

τ [i]
r ,

where τ [i]
r is the i-th divided power of the tautological section from (25), has the

property that its pull-back by e∗
rk coincides with 1(k). It follows that this map equals

βr and by definition of the moment map in (26) the projection to the k-th component
coincides also with the moment map. �

Let t : S → UD be an N-torsion section. We need a compatibility between the
composition

momk
N := momk ◦[N]# : �(H 〈t〉) → �(H 〈t〉) → �k(H )
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and themap 
t in the splitting principle Corollary3.4.2 composed with the projection
onto the k-th component

prk ◦
t : t∗Log(k)
Qp

∼=
k∏

i=0

Symk HQp → Symk HQp .

Proposition 7.3.2 There is a commutative diagram

H2d−1(S,�(H 〈t〉)(d))
momk

N−−−−→ H2d−1(S, �k(H )(d))

t∗ compk
⏐
⏐



⏐
⏐



H2d−1(S, t∗Log(k)
Qp

(d))
Nk prk ◦
t−−−−−→ H2d−1(S,SymkHQp(d),

where momk
N = momk ◦[N]# and 
t = [N]−1

# ◦ [N]#.
Proof The commutative diagram

H2d−1(S,�(H 〈t〉)(d))
[N]#−−−−→ H2d−1(S,�(H )(d))

t∗ compk
⏐
⏐



⏐
⏐

e∗ compk

H2d−1(S, t∗Log(k)
Qp

(d))
[N]#−−−−→∼=

H2d−1(S, e∗Log(k)
Qp

(d))

coming from functoriality of compk and the isomorphisms

H2d−1(S, t∗Log(k)(d)) ⊗Zp Qp
∼= H2d−1(S, t∗Log(k)

Qp
(d))

H2d−1(S, e∗Log(k)(d)) ⊗Zp Qp
∼= H2d−1(S, e∗Log(k)

Qp
(d))

reduces the proof of the proposition to show the commutativity of the diagram

H2d−1(S,�(H )(d))
momk−−−−→ H2d−1(S, �k(H )(d))

e∗ compk
⏐
⏐



⏐
⏐



H2d−1(S, e∗Log(k)
Qp

(d))
Nk prk ◦[N]−1

#−−−−−−−→ H2d−1(S,SymkHQp(d).

The isogeny [N] acts by N-multiplication on H , hence by multiplication with Nk

on Symk HQp , which means that

prk ◦[N]−1
# = [N]−1

# ◦ prk = N−k prk .
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Thus it remains to show that the diagram

H2d−1(S,�(H )(d))
momk−−−−→ H2d−1(S, �k(H )(d))

e∗ compk
⏐
⏐



⏐
⏐



H2d−1(S, e∗Log(k)
Qp

(d))
prk−−−−→ H2d−1(S,Symk HQp(d))

commutes, which follows from Proposition 7.3.1 and the isomorphism

H2d−1(S, �k(H )(d)) ⊗Zp Qp
∼= H2d−1(S,Symk HQp(d))

which was obtained in Corollary 7.1.5. �

Recall from Definition 6.4.1 the Eisenstein–Iwasawa class

α EI(t)N = [N]#(αEI(t)) ∈ H2d−1(S,�(H )(d))

and from Definition4.2.1 the Qp-Eisenstein class

αEis
k
Qp

(t) ∈ H2d−1(S,Symk HQp).

We consider its image under the k-th moment map

momk : H2d−1(S,�(H )(d)) → H2d−1(S, �k(H )(d)).

The main result of this paper can now be formulated as follows:

Theorem 7.3.3 (Interpolation of Qp-Eisenstein classes) The image of α EI(t)N
under the k-th moment map is given by

momk(αEI(t)N ) = Nk
αEis

k
Qp

(t).

Proof This follows by combining Corollaries 7.2.2, 7.3.2 and the definition of the
Qp-Eisenstein class Definition4.2.1. �

Remark 7.3.4 For comparison with [12, Theorem 12.4.21] we point out again that
the normalization of αEiskQp

(t) in loc. cit. is different. We had there a factor of−Nk−1

in front of the Eisenstein series.
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Vanishing of Some Galois Cohomology
Groups for Elliptic Curves

Tyler Lawson and Christian Wuthrich

Abstract Let E/Q be an elliptic curve and p be a prime number, and let G be the
Galois group of the extension of Q obtained by adjoining the coordinates of the
p-torsion points on E. We determine all cases when the Galois cohomology group
H1

(
G,E[p]) does not vanish, and investigate the analogous question for E[pi] when

i > 1. We include an application to the verification of certain cases of the Birch
and Swinnerton-Dyer conjecture, and another application to the Grunwald–Wang
problem for elliptic curves.

Keywords Elliptic curves · Galois cohomology · Grunwald-Wang problem ·
Birch and Swinnerton-Dyer conjecture

1 Introduction

Let E be an elliptic curve over Q and p a prime number. Denote by K the Galois
extension of Q obtained by adjoining the coordinates of the p-torsion points on E
and let G be the Galois group of K/Q. The Galois action on the p-torsion points
E[p] identifies G with a subgroup of GL

(
E[p]) ∼= GL2(Fp) via the representation

ρ : Gal
(
Q̄/Q

) → GL
(
E[p]). A celebrated theorem of Serre [21] shows that G is

equal to the full group GL2(Fp) for all but finitely many primes p when the curve is
fixed.

We are interested in the vanishing of the Galois cohomology group H1
(
G,E[p]);

see [22] or [19] for the basic definitions of Galois cohomology. This specific
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cohomology group appears as an obstruction in various contexts. For instance, Koly-
vagin’s work uses the vanishing of this group in the case G is equal to GL2(Fp) (see
Proposition 9.1 in [14]). The following first theorem characterizes completely when
this cohomology group does not vanish, answering a question at [15].

Theorem 1 Fix a prime p. Let E/Q be an elliptic curve, K = Q(E[p]), and G the
Galois group of K/Q. Then H1

(
G,E[p]) is trivial except in the following cases:

• p = 3, there is a rational point of order 3 on E, and there are no other isogenies
of degree 3 from E that are defined over Q.

• p = 5 and the quadratic twist of E by D = 5 has a rational point of order 5, but
no other isogenies of degree 5 defined over Q.

• p = 11 and E is the curve labeled as 121c2 in Cremona’s tables [6], given by the
global minimal equation y2 + x y = x3 + x2 − 3632 x + 82757.

In each of these cases, H1
(
G,E[p]) has p elements.

Partial results on this question have appeared in various sources. For instance,
Lemma 10 in [5] by Coates shows that H1

(
G,E[p]) vanishes when E[p] is irre-

ducible as a Galois module. Section 3 in [4] also treats related questions.
The above result extends to elliptic curves E over more general number fields F

if we assume that F ∩ Q(μp) = Q, where Q(μp) is the field generated by p-th roots
of unity. Rather than a single elliptic curve for p > 5, one finds possibly infinitely
many exceptions for p = 11 and p = 17, but only finitely many further exceptions
for each p > 17 and none for all p such that p ≡ 1 (mod 3). See Theorem 11 for a
precise statement.

Next, we address the analogous question for E[pi] for i > 1, but assuming that
p > 3.

Theorem 2 Fix a prime p > 3. Let E/Q be an elliptic curve, Ki = Q(E[pi]) the
extension ofQ obtained by adjoining the coordinates of all pi-torsion points, and Gi

the Galois group of Ki/Q. Then H1
(
G2,E[p2]) is trivial if and only if H1

(
Gi,E[pi])

is trivial for all i � 2. This vanishing holds if and only if (E, p) is not among the
following cases:

• p = 5 or p = 7 and E contains a rational p-torsion point.
• p = 5 and there is an isogeny ϕ : E → E′ of degree 5 defined over Q and the
quadratic twist by D = 5 of E contains a rational 5-torsion point.

• p = 5 and there is an isogeny ϕ : E → E′ of degree 5 defined over Q but none of
degree 25 and the quadratic twist by D = 5 of E′ contains a rational 5-torsion
point.

• p = 5 and E admits an isogeny E → E′ → E′′ of degree 25 defined over Q and
E′ contains a rational 5-torsion point.

• p = 11 and E is 121c1 or 121c2.

Again, we will also obtain some results that are valid over more general base
fields F with F ∩ Q(μp) = Q, and some that are valid for p = 3. See Sect. 6.
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This more general question has also been investigated before, and Cha has
obtained results in this direction in [3]. He proved the vanishing of H1

(
Gi,E[pi])

when p > 3, the curve has semi-stable reduction at an unramified place above p, and
E does not have a rational p-torsion point. He also describes when this cohomology
group vanishes for p = 3 under his assumptions. The method of proof is similar.

The results in Theorem 2 can be applied to the Grunwald–Wang problem for
elliptic curves as formulated by Dvornicich and Zannier in [9]. In Proposition 25,
we give an example of an elliptic curve E/Q with a point P ∈ E(Q) divisible by
m = 9 in E(Q�) for almost all primes � but not divisible by 9 in E(Q). Previously,
the only known examples [10] were with m = 4. In Theorem 24, we also give a
simplified proof of the result in [20] that it is impossible to find such a point P when
m = p2 and p > 3.

The paper is structured as follows. We begin with some background in Sect. 2,
both establishing notation and reducing to cases where the Galois group G does
not contain a nontrivial homothety. In Sect. 3 we prove a general form of Theo-
rem 1. Section 4 establishes a vanishing result for H2. In Sect. 5 we give an appli-
cation to verifying cases of the Birch and Swinnerton-Dyer conjecture, correcting
an oversight in [13]. Our main results classifying the vanishing of H1(Gi,E[pi])
are then discussed in Sect. 6, and some supplementary numerical computations for
H1(G2,E[p2]) are included in Sect. 7. Finally, in Sect. 8 we give the application to
the Grunwald–Wang problem for elliptic curves.

2 Preliminaries and Notation

Throughout this paper E will be an elliptic curve defined over a number field F and
pwill be a prime number. We will denote by K = F

(
E[p]) the number field obtained

by adjoining the coordinates of the p-torsion points to F. Let G be the Galois group
of K/F. More generally, for i � 1 we let Ki = F

(
E[pi]) and Gi = Gal(Ki/F). The

faithful actions of Gi on E[pi] give embeddings Gi ↪→ Aut(E[pi]) ∼= GL2(Z/pi),
and so we may regard them as subgroups.

We will also use the groups Hi = Gal(Ki+1/Ki) and Mi = Gal(Ki/K). We note
that, as Hi is the kernel of the map Gi+1 → Gi, it is identified with a subgroup of

ker
(
GL2(Z/pi+1) → GL2(Z/pi)

) ∼= Mat2(Fp),

where the conjugation action of Gi+1 ⊂ GL2(Z/pi+1) is by the adjoint representa-
tion. Therefore, all elements in Hi have order p and commute with the elements of
Mi+1 inside Gi+1.
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In summary, we have the following situation:

Ki+1

Hi

���������

Gi+1

Ki

Mi

Gi

K = K1

G=G1 ����������

F

We will later use the inflation-restriction sequence

0 ��H1
(
Gi,E[pj]) inf ��H1

(
Gi+1,E[pj]) res ��H1

(
Hi,E[pj])Gi

��H2
(
Gi,E[pj]) (1)

which is valid for all 1 � j � i. In inductive arguments, we will also use that the
short exact sequence

0 ��E[p] ��E[pj] ��E[pj−1] ��0

gives a long exact sequence

E(F)[pj−1] ��H1
(
Gi,E[p]) ��H1

(
Gi,E[pj]) ��H1

(
Gi,E[pj−1]). (2)

As mentioned in the introduction, these cohomology groups only start to be inter-
esting when E[p] is reducible. The following argument for this is given in [3] as
Theorem 7.

Lemma 3 If G contains a non-trivial homothety, then H1
(
Gi,E[pi]) = 0.

Proof Let g be a non-trivial homothety. Since g is central, 〈g〉 is a normal subgroup
in G. Consider the inflation-restriction sequence

0 ��H1
(
G/〈g〉,E[p]g=1

)
��H1

(
G,E[p]) ��H1

(〈g〉,E[p])

The homothety g cannot have fixed points in E[p]; in particular E(F)[p] = 0. The
left-hand side cohomology group in the above sequence is therefore trivial. The
right-hand side is also trivial because 〈g〉 is of order coprime to p.
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We assume by induction that H1
(
Gi,E[pi]) and H1

(
Gi,E[p]) are both trivial.

By assumption, the restriction maps

H1
(
Gi+1,E[pi]) �� H1

(
Hi,E[pi])Gi ∼= Hom

(
Hi,E[pi])Gi

H1
(
Gi+1,E[p]) �� H1

(
Hi,E[p])Gi ∼= Hom

(
Hi,E[p])Gi

from (1) are both injective. Note that the target groups are actually equal because
all elements in Hi have order p. SinceMi+1 and Hi commute, the action of Gi on Hi

factors through G, so the target in both cases is Hom
(
Hi,E[p])G .

The homothety g acts trivially on Hi and non-trivially on any non-zero point in
E[p]. Therefore, there are no homomorphisms from Hi to E[p] which are fixed by
g. It follows that H1

(
Gi+1,E[pi]) and H1

(
Gi+1,E[p]) are both trivial. The exact

sequence (2) now implies that H1
(
Gi+1,E[pi+1]) is also trivial. �

Lemma 4 Suppose p > 2. Assume that G does not contain a non-trivial homothety
and F ∩ Q(μp) = Q. Then G is contained in a Borel subgroup.

Proof By the Weil pairing, the determinant of ρ is the Teichmüller character ω

describing the action of Galois on the p-th roots of unity μp. The assumption F ∩
Q(μp) = Q implies that det : G → F×

p must be surjective.
Assume first that p > 3. We fix a basis of E[p] and view G as a subgroup of

GL2(Fp). By the classification of maximal subgroups of GL2(Fp), we have to show
that the following cases can not occur: G is a subgroup of the normalizer of a split
Cartan group, G is a subgroup of the normalizer of a non-split Cartan group, or G
maps to an exceptional group A4, A5 or S4 in PGL2(Fp).

Suppose G is a subgroup of the group of diagonal and anti-diagonal matrices,
which is the normalizer of a split Cartan subgroup. Suppose moreover that G is not a
subgroup of the diagonal matrices. The square of

(
0 b
c 0

) ∈ G is the homothety by bc.
Therefore, all anti-diagonal elements in G must be of the form

(
0 c−1

c 0

)
. Multiplying

this with a diagonal element
(
u 0
0 v

)
in G then shows that all diagonal elements must

have determinant 1. Hence the determinant would not be surjective for p > 3.
Next, suppose that G is a subgroup of the normalizer of a non-split Cartan group.

Since G contains no non-trivial homothety, the image of G in PGL2(Fp) is iso-
morphic to G. In other words, G must be a subgroup of a dihedral group of order
2(p + 1). No such group could have a surjective map onto F×

p if p > 3.
Finally, assume that G is exceptional. As before, our hypothesis implies that G

is isomorphic to a subgroup of A4, A5 or S4. However the only case in which we
could have a surjective map onto F×

p with p > 3 is when p = 5 and G is a cyclic
group of order 4 in S4. However, as F5 contains the fourth roots of unity μ4, all such
subgroups are diagonalizable in GL2(F5).

We now return to the case p = 3. By assumption, G is isomorphic to its image
in PGL2(Fp), which is the full symmetric group on the four elements P1(F3). Since
the determinant is surjective, the image of G cannot be contained in the alternat-
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ing group. Therefore it is not transitive on P1(F3), and G is contained in a Borel
subgroup. �

From now on we will suppose that ϕ : E → E′ is an isogeny of degree p defined
over F, and write E[ϕ] for its kernel. The dual isogeny is denoted by ϕ̂ : E′ → E. We
will now also fix a basis of E[p]with the property that the first point belongs to E[ϕ].
In this basis, the Galois representation ρ : Gal

(
F̄/F

) → GL
(
E[p]) ∼= GL2(Fp) now

takes values in the Borel subgroup of upper triangular matrices. We will write
χ : Gal

(
F̄/F

) → F×
p for the character of the Galois group on E′[ϕ̂]. Then the char-

acter on E[ϕ] is ωχ−1, where ω is the Teichmüller character introduced above. The
representation now is of the form ρ = (

ωχ−1 ∗
0 χ

)
.

Corollary 5 Suppose p > 2. If F ∩ Q(μp) = Q and the group H1
(
G,E[p]) is non-

trivial, then E admits exactly one isogeny ϕ : E → E′ of degree p that is defined
over F.

Proof By Lemma 3, we know that there is no non-trivial homothety in G. Then
Lemma 4 implies that G is contained in a Borel subgroup. Hence there is a subgroup
of order p in E[p] fixed by the Galois group. If there were a second subgroup of
order p fixed by the Galois group, then in a suitable basis of E[p] the group G
would consist of diagonal matrices. It would follow that G has order coprime to
p and therefore that the cohomology group is trivial. Therefore, there is a unique
isogeny defined over F of degree p. �

3 Proof of Theorem 1

We begin by assuming that E is defined over a number field F such that F ∩
Q(μp) = Q.

Lemma 6 The cohomology group H1(G;E[2]) always vanishes.
Proof The group GL2(F2) is isomorphic to the symmetric group on 3 letters. For
any cyclic subgroup of GL2(F2) of order 2 generated by h, we may compute
H1

(〈h〉,E[2]) as the quotient of the kernel of the norm NG = 1 + h on E[2] modulo
the image of h − 1. Because p = 2, this group is trivial.

For a general subgroup G � GL2(F2), let H be the intersection of G with the
normal subgroup of order 3. We have H1

(
H,E[2]) = 0 because the order of H is

coprime to 2. We also have H1
(
G/H,E[2]H) = 0 because H is either of order 3

and only fixes 0 in E[2], or H is trivial and this group is H1
(〈h〉,E[2]) = 0. By the

inflation-restriction sequence, we conclude that H1
(
G,E[2]) = 0. �

Lemma 7 Let H < GL2(Fp) be the subgroup generated by h = (
1 1
0 1

)
. We have an

isomorphism
H1

(
H,E[p]) ∼= Fp,
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and the action of an element g = (
u w
0 v

)
in the normalizer N(H) of H on this coho-

mology group is multiplication by u−1v2.

Proof The cohomology of the cyclic group H is computed to be

H1
(
H,E[p]) ∼= ker

(∑p−1
a=0 h

a
)

im(h − 1)
= ker (0)

im
(
0 1
0 0

) ∼= Fp.

The explicit isomorphism i : H1
(
H,E[p]) → Fp sends a cocycle ξ : H → E[p] to

the second coordinate of ξ(h). Let now g = (
u w
0 v

)
be an element of N(H) with

u, v ∈ F×
p . Then the action of g on ξ ∈ H1

(
H,E[p]) is as follows.

(
g 	 ξ

)
(h) = g ξ

(
g−1hg

)

= g ξ
(
hu

−1v
)

= g
(
hu

−1v−1 + · · · + h + 1
)
ξ(h)

= (
u 0
0 v

) (
u−1v ∗
0 u−1v

) ( ∗
i(ξ)

)

Here the terms denoted by ∗ are unknown entries which do not alter the result that

i
(
g 	 ξ

) = u−1 v2 i(ξ). �

For the remainder of this section we will assume that p > 2 and E satisfies
H1

(
G,E[p]) = 0; we wish to show that we fall into one of the cases listed in the

Theorem 1.

Lemma 8 Suppose p > 2. Then G satisfies H1
(
G,E[p]) = 0 if and only if p ≡ 1

(mod 3) and there exists a basis of E[p] such that G consists of all matrices of
the form

(
v2 w
0 v

)
with v ∈ F×

p and w ∈ Fp. In this case, the cohomology group is

isomorphic to Fp and the representation ρ is of the form
(

χ2 ∗
0 χ

)
, where χ3 is the

Teichmüller character ω.

Proof By Corollary 5, we may view G as a group of upper triangular matrices
containing the subgroup H generated by element h = (

1 1
0 1

)
of order p.

Since H is a normal subgroup of G, we can use the inflation-restriction sequence
to show that

H1
(
G,E[p]) ��H1

(
H,E[p])G/H

is an isomorphism because G/H is of order coprime to p. Because we assumed that
H1

(
G,E[p]) is non-trivial, by Lemma 7 we must have that G/H acts trivially on

H1
(
H,E[p]), that H1

(
G,E[p]) has precisely p elements, and that all elements in G

must be of the form
(
v2 w
0 v

)
with w ∈ Fp and v ∈ F×

p .

Recall that the character χ is such that ρ = (
ωχ−1 ∗
0 χ

)
. We now deduce that χ2 =

ωχ−1 and hence χ3 = ω. Since we assumed F ∩ Q(μp) = Q, the determinant ω
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from G to F×
p must be surjective. As the determinant of the typical element in G is

v3 with v ∈ F×
p , we must conclude that either p = 3 or p ≡ 2 (mod 3), and that G

is equal to the group of all matrices of the form
(
v2 w
0 v

)
. �

Corollary 9 If p = 3, we have H1
(
G,E[3]) = 0 if and only if E has a 3-torsion

point and no other isogenies defined over F.

Proof This can only occur if the group G is the group of matrices of the form(
1 w
0 v

)
of order 6. This is precisely the case when E(F)[3] is of order 3 and no other

isogenies are defined over F. �

Lemma 10 If p = 5, we have H1
(
G,E[5]) = 0 if and only if the quadratic twist of

E by D = 5 has a 5-torsion point and no other isogenies defined over F.

Proof This happens precisely when we have

ρ =
(

ω2 ∗
0 ω−1

)

Here ω2 is the quadratic character corresponding to the non-trivial extension
F

(√
5
)
/F contained in F(μ5). Let E† be the quadratic twist of E by D = 5. Then

we have the desired form of representation ρ if and only if the representation ρ† on
E†[5] is now of the form

(
1 ∗
0 ω

)
. We conclude that this occurs if and only if E†(F)[5]

has five points and E† has no other isogenies of degree 5 defined over F. �

Theorem 11 Let E be an elliptic curve defined over a number field F with F ∩
Q(μp) = Q. Let K = F

(
E[p]) and G = Gal(F/K). Then H1

(
G,E[p]) = 0 except

in the following cases:

• p = 3, there is a rational 3-torsion point in E(F), and there are no other 3-
isogenies from E defined over F.

• p = 5 and the quadratic twist of E by D = 5 has a rational point of order 5, but
no other isogenies of degree 5 defined over F.

• p � 11, p ≡ 2 (mod 3), there is a unique isogeny ϕ : E → E′ of degree p defined
over F, its kernel E[ϕ] acquires a rational point over F · Q(μp)

+, and E[ϕ] ∼=
μ

⊗(p+1)/3
p .

There are only finitely many cases for each prime p with p > 17.

Proof The only remaining cases to prove are those where p > 5. As we may assume
p ≡ 2 (mod 3), one sees that

ρ =
(

ω
p+1
3 ∗
0 ω

2−p
3

)

.

This explains the condition in the cases p � 11 in the above list.
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The curve E and its unique isogeny ϕ of degree p defined over F represent a
point on the modular curve Y0(p) defined over F. For p = 11 and p = 17, the curve
Y0(p) is of genus 1; for all larger primes p ≡ 2 (mod 3) it is of genus at least two.
Therefore there are only finitely many Q̄-isomorphism classes of curves E/F with
an isogeny of degree p defined over F. Only a single twist in each class can have ρ

of the above shape. Hence there are only finitely many exceptions for p > 17. �

We specialize now to the field F = Q where the points on Y0(p) are well-known.

Lemma 12 If F = Q and p > 5, we have H1
(
G,E[p]) = 0 if and only if E is the

curve labeled as 121c2 in Cremona’s tables.

Proof For all those p, there are only a finite number of Q̄-isomorphism classes of
elliptic curves E with a p-isogeny defined over Q. Mazur’s theorem [16] shows that
there are no rational points on Y0(p) except for three points on Y0(11) and two points
on Y0(17). All of these five examples have no other automorphisms than ±1. Hence,
all elliptic curves E/Q representing one of them are quadratic twists of each other.

Let us first look at p = 11. The j-invariants of the three families are −121,
−32768, and −24729001, and the representation ρ must now be of the form(

ω4 ∗
0 ω7

)
. We start with the last. The curve 121c2 is an example of an elliptic

curve with j-invariant −24729001. Using SageMath [23], we find a point P of
order 11 in E

(
Q(μ11)

)
. Its x-coordinate in the global minimal model given above

is 11ζ 9 + 11ζ 8 + 22ζ 7 + 22ζ 6 + 22ζ 5 + 22ζ 4 + 11ζ 3 + 11ζ 2 + 39, where ζ is a
primitive 11-th root of unity. One finds that σ(P) = 5P for the Galois element with
σ(ζ ) = ζ 2. Therefore the action of Galois on the group generated by P is given by
ω4. The isogeny with P in its kernel is defined over Q and it is the only isogeny on
E defined over Q. Therefore the group G is precisely of the form required. Hence
H1

(
G,E[p]) has p elements. No quadratic twist of E could have the same property.
With similar computation one finds that the group G for the curve 121b1 with

j-invariant −32768 is of the form
(

ω8 ∗
0 ω3

)
and for the curve 121c1 with j-invariant

−121 it is
(

ω7 ∗
0 ω4

)
. No quadratic twist of these curves could have the required form

for G.
For p = 17, the representation ρ must now be of the form

(
ω6 ∗
0 ω11

)
. In particular,

for any prime � = 11 of good reduction for E, the Frobenius element is sent to a
matrix of the form

(
�6 ∗
0 �11

)
. We conclude that we must have �6 + �11 ≡ a� (mod p),

where a� is the trace of Frobenius. This gives an easy criterion to rule out specific
curves.

There are two j-invariants of elliptic curves that admit a 17-isogeny over Q:
−297756989/2 and −882216989/131072. In fact, these values were computed by
Vélu and published on page 80 of [1]. We pick a curve E for each of these j-
invariants. The curves 14450p1 and 14450n1 are examples. Now for both curves,
it is easy to show that ±36 ± 311 ≡ a3 (mod 17) for any choice of the signs as
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a3 = ±2. Therefore no quadratic twist of E will satisfy the congruence that we
need. Thus H1

(
G,E[p]) = 0 for all curves with a degree-17 isogeny. Similar com-

putations were done by Greenberg in Remark 2.1.2 in [11]. �

This concludes the proof of Theorem 1.

4 Vanishing of the Second Cohomology

We continue to assume that E is defined over a number field F such that F ∩
Q(μp) = Q.

Lemma 13 Let p be a prime. Then H2
(
G,E[p]) = 0 except if p > 2, E admits a

p-isogeny ϕ : E → E′ and no other p-isogenies over F, and E′[ϕ̂] contains an F-
rational p-torsion point. If this cohomology group is non-zero then it contains p
elements.

We could also write the condition in the lemma as either that E[ϕ] ∼= μp or that
χ is trivial.

Proof As before, only the cases when p divides the order of G are of interest.
We again discuss the case p = 2 separately. A Sylow subgroup of G is a cyclic

group of order 2 generated by h, and the restriction H2
(
G,E[p]) → H2

(〈h〉,E[p])
is an inclusion. However, H2

(〈h〉,E[p]) can be computed as the Tate cohomology

group Ĥ0
(〈h〉,E[p]), which is zero.

For p > 2, we have to deal with the cases when G contains SL
(
E[p]) and when

G is contained in a Borel subgroup.
In the first case, G is actually the full group GL

(
E[p]) as the Weil pairing forces

the determinant to be surjective. If Z is the center of G, then Hi
(
Z,E[p]) = 0 for all

i � 0. The Hochschild-Serre spectral sequence implies that Hi
(
G,E[p]) = 0 for all

i � 0.
Now we may assume that G is contained in the Borel subgroup of upper-

triangular matrices. If there is more that one isomorphism class of p-isogeny
leaving E which is defined over F, then G is of order coprime to p and hence
H2

(
G,E[p]) = 0. Therefore, we may assume that G contains the unique p-Sylow

H generated by h = (
1 1
0 1

)
. Since H is normal and G/H is of order coprime to p, the

restriction
H2

(
G,E[p]) ∼= H2

(
H,E[p])G/H

is an isomorphism.
Fix an injective homomorphismψ : H →Q/Z. Let δ : H1

(
H,Q/Z

) →H2
(
H,Z

)

be the connecting homomorphism. Then we have an isomorphism Ĥ0
(
H,E[p]) →

H2
(
H,E[p]) given by sending a point P ∈ E[p] to the cup product δψ ∪ P. For
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p > 2, the Tate cohomology group Ĥ0
(
H,E[p]) is equal to the usual cohomology

group H0
(
H,E[p]) = E[ϕ], which has p elements.

Let g = (
u w
0 v

) ∈ G. On the one hand, it acts on P by multiplication by u. On the
other hand, it acts on ψ by multiplication by u−1v because

(g 	 ψ)(h) = gψ
(
g−1hg

) = ψ
(
hu

−1v
) = u−1vψ(h).

It follows that g acts on the generator of H2
(
H,E[p]) by multiplication by uu−1v =

v. Unless all such g ∈ G have v = 1, we conclude that the second cohomology group
vanishes. Otherwise it has p elements, and this occurs if and only if E′[ϕ̂] contains
a rational p-torsion point. �

5 Application to the Conjecture of Birch and
Swinnerton-Dyer and p-descent

The vanishing of the Galois cohomology group we consider is used when trying to
extend Kolyvagin’s results to find a sharper bound on the Birch and Swinnerton-
Dyer conjecture for elliptic curves of analytic rank at most 1. This was the original
motivation in Cha’s work [3]. In [13], the authors attempt to extend Cha’s results,
but there is a mistake in the proof of their Lemma 5.4 and consequently their The-
orem 3.5 is not correct. The latter is also copied as Theorem 5.3 in [17]. Using
our results above, we can now state and prove a corrected version of Theorem 3.5
in [13]. We refer to the original paper for the notations.

Theorem 14 Let E/Q be an elliptic curve of analytic rank at most 1. Let p be an
odd prime. Let F a quadratic imaginary field satisfying the Heegner hypothesis and
suppose p does not ramify in F/Q. Suppose that (E, p) does not appear in the list of
Theorem 1 and that E is not isogenous to an elliptic curve overQ such that the dual
isogeny contains a rational p-torsion point. Then the p-adic valuation of the order
of the Tate-Shafarevich group is bounded by twice the index of the Heegner point.

Proof In their proof, only the vanishing of H1
(
G,E[p]) and H2

(
G,E[p]) are

needed for the argument. Under our assumptions they both vanish by Theorem 1
and Lemma 13. One has also to note that, as pointed out in [17], the assumption in
their theorem that E does not admit complex multiplication is not used in the proof.
Finally, the paper [13] needs that F is not included in K = Q

(
E[p]) to conclude that

Hi
(
Gal(F(E[p])/F),E[p]) also vanishes for i = 1 and 2. This is guaranteed by the

Heegner hypothesis and the assumption that p does not ramify in F, as F and K then
have disjoint sets of ramified primes. �

The following is a short-cut in the usual p-descent for E =121c2 and p = 11. It is
not a new result as it appears already in [18] as Example 7.4. However it illustrates
that the non-trivial class in H1

(
G,E[p]) can be of use.
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Proposition 15 The Tate-Shafarevich group of the curve 121c2 does not contain
any non-trivial elements of order 11. The full Birch and Swinnerton-Dyer conjecture
holds for this curve.

Proof Set p = 11. Let ϕ : E → E′ be the p-isogeny defined over Q. We saw before
that E[ϕ] ∼= Fp(4) and E′[ϕ̂] ∼= Fp(7) where Fp(k) is the 1-dimensional Fp-vector
space with the Galois group acting by the character ωk .

Let F be the maximal extension of Q which is unramified at all finite places
� = p. Write G = Gal

(
F/Q

)
and H = Gal

(
F/Q(ζ )

)
where ζ is a primitive p-

th root of 1. Let � = G/H . Since |�| is coprime to p, we have an isomorphism
H1

(G,E[ϕ]) ∼= H1(H,E[ϕ])�
. Now Dirichlet’s unit theorem can be used to com-

pute

H1
(H,Fp(1)

) = H1
(H, μp

) ∼= Fp(1) ⊕
4⊕

i=0

Fp(2 i)

as a Fp[�]-module; see for instance Corollary 8.6.12 (or 8.7.3 in the second edition)
in [19]. Since H1

(H,Fp(k)
) ∼= H1

(H,Fp(1)
)
(k − 1), the group H1

(G,Fp(k)
)
is a

sum of copies of Fp corresponding to the copies of Fp(1 − k) in H1
(H,Fp(1)

)
. We

deduce that H1
(G,E[ϕ]) is trivial and that H1

(G,E′[ϕ̂]) is 1-dimensional.
Since K/Q is only ramified at p, we have an inflation map H1

(
G,E′[ϕ̂]) →

H1
(G,E′[ϕ̂]). By Theorem 1 and the above, this is now an isomorphism and our

explicit cocycle ξ can be viewed as a generator for H1
(G,E′[ϕ̂]).

The ϕ̂-Selmer group Selϕ̂ is defined to be the kernel of the map

H1
(G,E′[ϕ̂]) → H1

(
Qp,E

′)[ϕ̂].

An explicit local computation shows that ϕ̂ : E′(Qp) → E(Qp) is surjective. There-
foreH1

(
Qp,E′)[ϕ̂] ∼= H1

(
Qp,E′[ϕ̂]). SinceK/Q is totally ramified at p, the decom-

position group of K/Q at the unique place above p in K is equal to G. Therefore ξ

also inflates to a non-trivial element in H1
(
Qp,E′[ϕ̂]). It follows that the generator

of H1
(G,E′[ϕ̂]) does not lie in the Selmer group. Therefore Selϕ̂ is trivial.

Since H1
(G,E[ϕ]) = 0, the ϕ-Selmer group Selϕ is trivial. The usual exact

sequence
Selϕ �� Selp(E/Q) �� Selϕ̂

shows now that the p-Selmer group Selp(E/Q) is trivial. Therefore the rank of E is
zero and the p-primary part of the Tate-Shafarevich group X(E/Q) is trivial.

As explained in Theorem 8.5 in [17], the only prime at which one has to check
the Birch and Swinnerton-Dyer conjecture after the Heegner point computations
done there is p = 11. Therefore, this completes the proof of the conjecture for this
specific elliptic curve. �

The main result of [17] (based on [8, 18]) by Miller and his collaborators states
that the Birch and Swinnerton-Dyer conjecture holds for all elliptic curves of con-
ductor at most 5000 and analytic rank at most 1. As a consequence of the error
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in [13], the verification for some curves in this list is not complete. The following is
a description how we performed the necessary computations to fill in the gaps for all
these curves. See also [24] for the correction of the corresponding bug in SageMath.

From the change in Theorem 14, it follows that only curves E contained in the list
of Theorem 1 could have been affected when verifying the p-part of the conjecture.
The case 121c2 was verified in Proposition 15. The exceptional cases with p = 3 are
already dealt with in Theorem 9.1 in [18], as they were already considered excep-
tional cases there. That only leaves the curves with non-vanishing H1

(
G,E[5]).

For the following list of curves, we had to perform a 5-descent to verify the con-
jecture: 50a3, 50a4, 75a2, 150b3, 150b4, 175c2, 275b1, 325d2, 550b1, 550f3,
775c1, 950a1, 1050d2, 1425b1, 1450a1, 1650b1, 1650b2, 1650c2, 1650d2, 1950b2,
1975d1, 2175f2, 2350e2, 2550f2, 2850a1, 2850a2, 2850g2, 2950a1, 3075d1,
3075g2, 3325c1, 3550d1, 3850k2, 3950a1, 4350a1, 4350a2, 4425c1, 4450a1,
4450f2, 4650e1, 4650k2, 4650m2. The methods in [18] are sufficient in all these
cases. If the rank is 1, then even the weaker bound in their Corollary 7.3 is enough.
Otherwise, if the rank is 0, the Selmer groups for ϕ and ϕ̂ are trivial as one finds
quickly by looking at a few local conditions.

6 Results for i > 1

We now turn to the question of finding all cases of elliptic curves E/F and primes
p such that the group H1

(
Gi,E[pi]) does not vanish for some i > 1. We continue to

assume that F ∩ Q(μp) = Q and we will assume now that p > 2.
By Lemmas 3 and 4, we know that all these groups vanish unless there is an

isogeny ϕ : E → E′ defined over F. Therefore, we may continue to assume the
existence of ϕ and that the group G is contained in the Borel subgroup of upper
triangular matrices. This fixes (up to scalar) the first basis element of E[p] and we
still have some flexibility about the second; if there is a second subgroup of E[p]
fixed by the Galois group, we will choose the second basis element in there. Unlike
in the case i = 1, we may not yet assume that p divides the order of G.

In what follows we will write expressions like G = (
1 ∗
0 ∗

)
. By this we mean that

G is equal to the group of all matrices of this form in GL2(Fp), so ∗ on the diagonal
can take any non-zero value and ∗ in the top right corner can be any value in Fp.

LetM be the additive group of 2 × 2-matrices with coefficients in Fp. Then G �
GL2(Fp) acts on M by conjugation. We would like to determine HomG

(
M,E[p]).

We do so by computing first HomG
(
M,E[ϕ]) and HomG

(
M,E′[ϕ̂]).

Lemma 16 Suppose first p > 3. The group HomG
(
M,E[ϕ]) is trivial except in the

following cases.

• If G = (
1 0
0 ∗

)
in a suitable basis of E[p], then HomG

(
M,E[ϕ]) has dimension 2

over Fp.
• If G = ( ∗ 0

0 1

)
in a suitable basis of E[p], this group has dimension 1.

• If G = (
1 ∗
0 ∗

)
, this group has dimension 1.
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• If G �
{( u w

0 u2
) ∣

∣ u ∈ F×
p ,w ∈ Fp

}
, this group has dimension 1.

If p = 3, the list is the same with one modification to the second and to the last case
above.

• If G = ( ∗ 0
0 1

)
in a suitable basis of E[3], this group has dimension 2.

Proof If f : M → E[ϕ] is fixed by g ∈ G, then f (m) = g · f (g−1mg) for all m ∈ M.
Let α, β, γ , and δ be the images in E[ϕ] under f of

(
1 0
0 0

)
,
(
0 1
0 0

)
,
(
0 0
1 0

)
, and

(
0 0
0 1

)

respectively. Then the above equation for m being one of the these four matrices
yields four equations that have to hold for all g = (

u w
0 v

) ∈ G:

α = u · (α + u−1w β)

β = u · (u−1v β)

γ = u · (−v−1w α − u−1v−1w2 β + uv−1 γ + v−1w δ)

δ = u · (δ − u−1w β)

(3)

From these equations, we deduce the following:

f is fixed by
(
1 1
0 1

) ⇐⇒ β = 0 and α = δ

f is fixed by
(
1 0
0 v

)
for some v = 1 ⇐⇒ β = γ = 0

f is fixed by
(
u 0
0 1

)
for some u = ±1 ⇐⇒ α = γ = δ = 0

f is fixed by
( −1 0

0 1

) ⇐⇒ α = δ = 0

Assume first that G is contained in
(
1 ∗
0 ∗

)
. Since the determinant must be surjective,

G is either
(
1 ∗
0 ∗

)
or

(
1 0
0 ∗

)
, after choosing a suitable second basis element for E[p]. In

both cases, the above allows us to verify the statements in the lemma. The case when
G is contained in

( ∗ ∗
0 1

)
is very similar, except that when p = 3, in which case we

are in the group of matrices with v = u2 and we can only apply the fourth equation
instead of the third.

Assume now that G contains an element
(
u w
0 v

)
with v = 1 and one with u = 1.

Then β = 0 by the second equation in (3). From the last two equations, we deduce
that α = δ = 0. Now the equations (3) simplify to one equation (1 − u2v−1)γ = 0.
Therefore, ifG is contained in the group of matrices with v = u2, then the dimension
of HomG

(
M,E[ϕ]) is 1 and p > 3 as otherwise all g ∈ G have v = 1, otherwise the

space is trivial. �

Recall that E′[ϕ̂] is the kernel of the dual isogeny.
Lemma 17 Suppose p > 2. The group HomG

(
M,E′[ϕ̂]) is trivial except in the fol-

lowing cases. If G is contained in
(
1 ∗
0 ∗

)
or if G = ( ∗ ∗

0 1

)
or if G = {(

v2 0
0 v

) ∣
∣ v ∈ F×

p

}

in a suitable basis for E[p], then HomG
(
M,E′[ϕ̂]) has dimension 1. If G = ( ∗ 0

0 1

)

in a suitable basis of E[p], then it has dimension 2.
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Proof This is analogous to the proof of the previous lemma. The equations (3)
become equations where the u at the start of the right hand side of each equation
is replaced by a v. This new set of equations can be rewritten as follows.

(1 − v)α = u−1vw β

(1 − u−1v2)β = 0

(1 − u)γ = w(δ − α) − u−1w2β

(1 − v)δ = −u−1vw β

(4)

From here, the computations are again straightforward for the cases when G is con-
tained in

( ∗ ∗
0 1

)
or

(
1 ∗
0 ∗

)
. If G is contained in the group

{(
v2 w
0 v

) ∣
∣ v ∈ F×

p ,w ∈ Fp
}
,

it is either equal to this group, in which case the cohomology group in question is
trivial, or it is equal to a subgroup of order p − 1. In the latter case, we may change
the choice of basis of E[p] to get G to be equal to

{(
v2 0
0 v

) ∣
∣ v ∈ F×

p

}
, in which case

α = γ = δ = 0, but β is free. In all other cases it is trivial. �

The exact sequence

0 �� HomG
(
M,E[ϕ]) �� HomG

(
M,E[p]) ϕ �� HomG

(
M,E′[ϕ̂]) (5)

connects the results from the previous two lemmas.

Proposition 18 If p > 3, the group HomG
(
M,E[p]) vanishes except when, for

some choice of basis of E[p], it is one of the following subgroups.

G = (
1 0
0 ∗

) = ( ∗ 0
0 1

) = (
1 ∗
0 ∗

)
�

( u ∗
0 u2

) = (
v2 0
0 v

)

dimFp HomG
(
M,E[p]) 3 3 2 1 1

If p = 3, the group HomG
(
M,E[p]) vanishes except when, for some choice of basis

of E[p], it is one of the following subgroups.

G = (
1 0
0 ∗

) = ( ∗ 0
0 1

) = (
1 ∗
0 ∗

) = ( ∗ ∗
0 1

)

dimF3 HomG
(
M,E[3]) 3 4 2 1

Here we have chosen a suitable second basis element in E[p] as in the previous
lemmas. Of course, the first two cases are in fact the same when the basis elements
are swapped.

Proof If HomG
(
M,E′[ϕ̂]) = 0, then the exact sequence (5) reduces this to

Lemma 16. Otherwise, we have to check if the homomorphisms f : M → E′[ϕ̂]
lift to homomorphisms e : M → E[p] that are G-equivariant. In the following four
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cases, they all lift indeed. We will just give the explicit map which form a basis of
HomG

(
M,E[p]) modulo the image from HomG

(
M,E[ϕ]). One can verify without

difficult that they are G-equivariant.

G = (
1 0
0 ∗

) = ( ∗ 0
0 1

) = (
1 ∗
0 ∗

) = (
v2 0
0 v

)

e
(
a b
c d

) ( a
c
) (

0
a

)
and

(
0
d

) ( a
c
) (

0
b

)

There is only the case G = ( ∗ ∗
0 1

)
left to treat. The generator of HomG

(
M,E′[ϕ̂])

is given by f
(
a b
c d

) = a + d. We will show that f does not lift to a map e : M → E[p].
Denote by

(
α
1

)
the image of

(
1 0
0 0

)
under such an e and by

(
β
0

)
the image of

(
0 1
0 0

)
.

Then we must have for all u = 1 and w in Fp that

(
β
0

) = (
u w
0 1

)
e
(
0 u−1w
0 0

) = (
u w
0 1

)(
u−1wβ

0

) = (
wβ
0

)
.

Hence β = 0. Again for all u and w, we should have that

(
α
1

) = (
u w
0 1

)
e
(
1 u−1w
0 0

) = (
u w
0 1

)(
α
1

) = (
uα+w

1

)
.

However, this cannot hold for all choices no matter what α is. �

Definition Let E/F be an elliptic curve. We will say that Gi is greatest possible if
it consists of all the matrices in GL2(Z/piZ) that reduce to a matrix in G modulo p.
Equivalently, Mi is the kernel of the map GL2(Z/pi) → GL2(Fp).

We will show that if p > 2 and i > 1, then Gi is greatest possible if and only if G2

is greatest possible: Since Gi → Gi−1 is surjective, by induction it suffices to prove
that the kernel Hi−1 contains all matrices of the form 1 + pi−1A ∈ GL2(Z/pi). If G2

is greatest possible, then for any A ∈ M2(Fp) there exists an element g ∈ Gi whose
image in GL2(Z/p2) is 1 + pA. Then gp

i−2
has image (1 + pi−1A) in GL2(Z/pi) by

taking binomial expansions, and so Gi contains all of Hi−1.

Proposition 19 Let p > 2 be a prime and let E/F be an elliptic curve. Suppose
G lies in the Borel subgroup of upper triangular matrices and that G2 is greatest
possible. If G is not among the exceptional cases in Theorem 1 or in Proposition 18,
then H1

(
Gi,E[pj]) = 0 for all i � j � 1.

Proof The short exact sequence (2) implies that if the groupsH1
(
Gi+1,E[pj−1]) and

H1
(
Gi+1,E[p]) are zero, then so is H1

(
Gi+1,E[pj]). By induction on j, it suffices

to prove the proposition in the case j = 1.
For i = 1, the statement follows from Theorem 1. We assume now that it holds

for i � 1. By assumption Mi+1 is isomorphic to the group (1 + pMat2
(
Z/pi

)
) ⊂

GL2(Z/pi+1) and Hi is isomorphic to the group M of all matrices with coefficients
in Fp. Using Proposition 18, we find

H1(Mi+1,E[p])G = HomG
(
Mi+1,E[p]) ∼= HomG

(
M,E[p]) = 0
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because all elements in the kernel of the mapMi+1 → M are p’th powers. (Note that
this requires p > 2.) Now considering the inflation-restriction sequence

0 ��H1
(
G,E[p]) ��H1

(
Gi+1,E[p]) ��H1

(
Mi+1,E[p])G (6)

yields that H1
(
Gi+1,E[p]) = 0. �

Lemma 20 Let p > 2 be a prime and E/F an elliptic curve such that G2 is greatest
possible. If G is among the exceptional cases in Theorem 1 or in Proposition 18 then
H1

(
Gi,E[pi]) = 0 for all i � 2.

Proof We claim that the sequence (6) is part of a short exact sequence. The next
term in the sequence is H2

(
G,E[p]), and so it suffices to show that the map

H1(Mi+1,E[p])G → H2
(
G,E[p]) is zero. By Lemma 13, the target group is trivial

unless G = ( ∗ ∗
0 1

)
. If p > 3 and G = ( ∗ ∗

0 1

)
, then the source group H1(Mi+1,E[p])G

vanishes. If p = 3 and G = ( ∗ ∗
0 1

)
, the source is cyclic and generated by a cocycle

ξ : Mi+1 → E[3] such that
(
a b
c d

) �→ (
c/3
0

)
. The image of ξ in H2

(
G,E[p]) is zero

because the formula
(
a b
c d

) �→ (
ac/3
0

)
lifts it to a cocycle Gi+1 → E[3].

Therefore, the dimension of H1(Gi+1,E[p]) is the sum of the dimensions of the
two groups surrounding it in the sequence (6). In all cases, this dimension is strictly
larger than the dimension of the group of p-torsion points of E defined over F.

Now we turn to sequence (2) with i � 2. In all cases, the dimension of H1
(
Gi,E[p]) is strictly larger than the dimension of E(F)[pi−1]/pE(F)[pi] (which is
at most 1 because E(F)[pi−1] must be cyclic by the assumption on F). We conclude
that H1

(
Gi,E[pi]) is non-trivial. �

So far we have been able to treat all cases in which Gi is greatest possible and
F ∩ Q(μp) = Q. We will now restrict our attention to F = Q and p > 3. Luckily,
for the large majority of elliptic curves over Q the groups Gi are indeed greatest
possible. The following is a summary of the results in [11, 12].

Theorem 21 Let p > 3 and i > 1. Let E/Q be an elliptic curve with an isogeny of
degree p defined over Q. Then Gi is greatest possible except in two cases:

• when p = 7 and the curve is the quadratic twist of a curve of conductor 49, or
• when p = 5 and there is an isogeny ψ : E → E′′ of degree 25 defined over Q.

We will now treat the two exceptional cases, starting with p = 5.

Lemma 22 Let E/Q be an elliptic curve and suppose there is an cyclic isogeny
ψ : E → E′ → E′′ of degree p2 = 25 defined over Q. Then H1

(
G2,E[p2]) = 0 if

and only if H1
(
Gi,E[pi]) = 0 for all i > 1. This vanishing holds except if G =(

1 ∗
0 ∗

)
, if G = ( ∗ ∗

0 1

)
, or if E appears in Theorem 1 as an exception.

For instance, it is non-vanishing if E admits a rational 5-torsion point or if E′ admits
a rational 5-torsion point. The curves 11a3 and 11a2 are examples of these two situa-
tions where H1

(
G,E[p]) = 0, yet H1

(
Gi,E[pi]) = 0 for all i > 1 because there are
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two 5-isogenies 11a3 → 11a1 → 11a2 with only 11a3 and 11a1 having a rational
5-torsion point. The cohomology group H1

(
G2,E[25]) is also non-trivial for 11a1

by Proposition 19.

Proof Note that there are no elliptic curves with rational points of order 25 and there
are no cyclic isogenies over Q of degree p3 = 125. Greenberg shows in Theorem 2
in [11] that the index of G2 in GL2

(
Z/25

)
is divisible by 5 but not 25. Hence the

group G2 can be identified with a subgroup of the upper triangular matrices modulo
p2, but the top left entry is not constant 1 modulo p2 and the top right corner is not
constant zero modulo p. Since the index is only divisible by 5 once, the group G2

consists of all the upper triangular matrices that reduce to an element of G.
We wish to use the same strategy as in the proof of Proposition 19, but we have

to show that G-fixed part of H1
(
M2,E[p]) is still zero despite M2 = M. This time

M2 can be identified with upper triangular matrices modulo p and the computations
are slightly easier. One finds that HomG

(
M2,E[ϕ]) has dimension 2 if G = (

1 ∗
0 ∗

)

and 0 in all other cases. Similarly, the dimension of HomG
(
M2,E′[ϕ̂]) is equal to

2 if G = ( ∗ ∗
0 1

)
and zero otherwise. (Alternatively, it is not too hard to show by

direct calculation that the dimension of HomG
(
M2,E[p]) is 2 if G = (

1 ∗
0 ∗

)
, 1 if

G = ( ∗ ∗
0 1

)
, and 0 otherwise.)

Hence if we assume that neither G = ( ∗ ∗
0 1

)
nor G = (

1 ∗
0 ∗

)
nor G =

{(
v2 w
0 v

) ∣
∣
∣

v ∈ F×
p ,w ∈ Fp

}
, then H1

(
Gi,E[pi]) = 0 for all i � 1 with the same proof as in

Proposition 19.
If G = (

1 ∗
0 ∗

)
, then one can show as in Lemma 20 that H1

(
Gi,E[pi]) is non-zero

for all i > 1. Similarly for G =
{(

v2 w
0 v

) ∣
∣
∣ v ∈ F×

p ,w ∈ Fp

}
.

Finally if G = ( ∗ ∗
0 1

)
, then one may compute H1

(
G2,E[p2]) directly: the group

G2 consists of all upper triangular matrices modulo p2 whose lower right entry
is congruent to 1 modulo p. Let H be the subgroup generated by

(
1 1
0 1

)
. Then the

method used in the proof of Theorem 1 shows that the subgroup of H1
(
H,E[p2])

fixed by the action of G2/H is trivial. HoweverH1
(
G2/H,E[p2]H) ∼= Z/pZ implies

then that H1
(
G2,E[p2]) ∼= Z/pZ where an explicit isomorphism sends a cocycle ξ

to the first coordinate of ξ
((

1 0
0 1+p

))
in pZ/p2Z. From the exact sequence (2), one

deduces thatH1
(
G2,E[p]) is non-trivial and again this implies that allH1

(
Gi,E[pi])

are non-zero for i > 1. �

Lemma 23 Let E/Q be a quadratic twist of a curve of conductor 49 and let p = 7.
Then H1

(
Gi,E[pi]) = 0 for all i � 1.

Proof Assume first that E is one of the curves of conductor 49. By assumption E
has complex multiplication by O, where O is either Z[√−7] or the ring of integers
in Q(

√−7). Since Q(
√−7) ⊂ K , the subgroup Gal(K/Q(

√−7)) < G acts by O-
linear endomorphisms on E[7i]. By scaling with the period, we may choose points
p and

√−7 · p as a basis for E[7i]. Any lift of these forms a Z7-basis of the Tate
module T7E. The endomorphism a + b

√−7 with a, b ∈ Q ∩ Z7 acts via
(

a b−7b a

)
on

T7(E).
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The Frobenius element Fr� ∈ GL(T7E) for � = 347 has trace a� = 4 for all four
curves of conductor 49. Since � splits in Q(

√−7), the Frobenius Fr� in GL2(Z7)

is a matrix of the above shape with trace 4 and determinant 347. We find that it is
congruent to

(
2 0
0 2

)
modulo 7. Since G contains now the homotheties by 2 and 4, the

result follows from Lemma 3.
Let now E be a quadratic twist of a curve of conductor 49. Then it is the quadratic

twist of one of them by an integer D coprime to 7. The above homotheties are
multiplied by a non-zero scalar and hence Lemma 3 also implies the result for E. �

Proof of Theorem 2 We combine the results from Proposition 19, Lemmas 20, 22
and 23. From these we conclude immediately that H1

(
Gi,E[pi]) = 0 if and only if

H1
(
G2,E[p2]) = 0.
We are now left with making the list in Theorem 2 match with the non-vanishing

cases. We start by verifying that the cohomology groups are non-vanishing in each
of the five special cases in the theorem.

• First, if E contains a rational point of order p, then G = (
1 0
0 ∗

)
, G = ( ∗ 0

0 1

)
, or

G = (
1 ∗
0 ∗

)
. In all these cases, the cohomology groups in question do not vanish

by Lemmas 20 and 22.
• In the second point in the list of Theorem 2, p = 5 and the quadratic twist by
D = 5 of E has a rational 5-torsion point. Then G is contained in

{(
v2 ∗
0 v

) ∣
∣ v ∈

F×
p

}
. If G is equal to that group, then Theorem 1 and Lemmas 20 or 22 imply the

non-vanishing of H1
(
G2,E[p2]). Otherwise we may choose the basis of E[p] so

that G is contained in the diagonal matrices of this form, in which case Lemma 20
proves the assertion.

• In the third point, p = 5 and the quadratic twist by D = 5 of E′ has a rational
5-torsion point. Then G is contained in

{( u ∗
0 u2

) ∣
∣ u ∈ F×

p

}
. There is no isogeny of

degree 25 defined overQ leaving from E, hence G2 is greatest possible; therefore
Lemma 20 proves the desired non-vanishing.

• If we are in the situation of the fourth point in Theorem 2, we are in the situation
of Lemma 22 and G = ( ∗ ∗

0 1

)
. Therefore H1

(
G2,E[p2]) = 0.

• In the final point, if p = 11 and E is 121c2, then Theorem 1 and Lemma 20 shows
the desired non-vanishing. If the curve is 121c1 instead, then G = {( u ∗

0 u2
) ∣

∣ u ∈
F×
p

}
and Lemma 20 treats this case too.

Next, we have to check that every case when the group H1
(
G2,E[p2]) is non-

trivial is among the exceptional cases of Theorem 2 above.
Let us assume first that G2 is greatest possible and consider the cases in

Lemma 20. If G = (
1 0
0 ∗

)
or G = (

1 ∗
0 ∗

)
, then E has a rational p-torsion point. By

Mazur’s Theorem on the torsion point on elliptic curves over Q, we know that this
can only occur if p = 5 or p = 7 and we fall under the first point in the list of The-
orem 2. If (E, p) appears as an exception in Theorem 1, then either p = 5 and we
are in the situation of the second point, or p = 11 and we are in the last point on
the list. If G is the group of all matrices of the form

(
v2 0
0 v

)
, then the quadratic twist

by D = 5 has a rational 5-torsion point and we are in the situation of the second
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point. Finally, assume G is contained in the group
{( u ∗

0 u2
) ∣

∣ u ∈ F×
p

}
. Then p ≡ 2

(mod 3). If p = 5, then the quadratic twist by D = 5 of E′ has a rational 5-torsion
point and we are in the third case. If p � 11, then the proof that there is only one
curve, namely 121c1, is very analogous to Lemma 12.

Finally, we consider the cases in Lemma 22. If G = (
1 ∗
0 ∗

)
, then E has a rational

5-torsion point and we are in the first point in the list. If G = ( ∗ ∗
0 1

)
, then E′ admits

a rational 5-torsion point, which is the fourth point on the list. If (E, p) appear as
exceptions in Theorem 1, then we fall into the second point on the list. �

7 Numerical Computations

We used Magma [2] to perform, for small primes p, the numerical computation of
our cohomology group H1

(
G2, V2

)
for various subgroup G2 � GL2(Z/p2), where

V2 is the natural rank 2 module over Z/p2 on which G2 acts. We restricted our
attention to groups with surjective determinants and we only considered groups up
to conjugation in GL2(Z/p2).

We will continue to write M2 for the kernel of reduction G2 → GL2(Fp) and G
for its image.

7.1 p = 2

For the prime p = 2, the groups H1
(
G2, V2

)
are non-zero for 36 conjugacy classes

of subgroup G2 � GL2(Z/4)with surjective determinant. The possible cohomology
groups are

(
Z/2

)k
for 0 � k � 6 and Z/4. Non-trivial cohomology groups appear

for all dimensions 1 � d � 4 of M2.

7.2 p = 3

There are 41 groups G2 with non-vanishing H1
(
G2, V2

)
. For thirteen of them the

cohomology group is Z/3 ⊕ Z/3, for one it is Z/3 ⊕ Z/3 ⊕ Z/3 and for all others
it is just Z/3. In all non-vanishing cases the image G � GL2(F3) of reduction has
either non-trivial H0(G, V ) or non-trivial H2(G, V ), where V is the 2-dimensional
vector space over F3 with its natural action by G � GL2(F3). In other words, these
numerical computations show that if the group H1

(
G2,E[9]) is non-trivial for an

elliptic curve E/Q, there is an isogeny ϕ : E → E′ defined over Q of degree 3 such
that either ϕ or its dual ϕ̂ has a rational 3-torsion point in its kernel.

The maximal order of the cohomology group appears for the group G2 consisting
of all matrices in GL2(Z/9) with reduction

(
1 0
0 1

)
or

(
1 0
0 −1

)
modulo 3.
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7.3 p = 5

There are 39 groups G2 with non-vanishing H1
(
G2, V2

)
. For two of them, the group

is Z/5 ⊕ Z/5, for one it is Z/25 and for all others it is Z/5. If we restrict to those
groups for which M2 has dimension 4, then there are five cases as found in Sect. 6:

G
(
v2 0
0 v

) (
1 0
0 ∗

) ( u ∗
0 u2

) (
v2 ∗
0 v

) (
1 ∗
0 ∗

)

|G| 4 4 20 20 20

H1
(
G2, V2

)
Z/5 Z/5 ⊕ Z/5 Z/5 Z/5 Z/5

This determines what the non-vanishing cohomology groups can be for this specific
prime.

7.4 p = 7

Here we restricted our attention to the subgroups G2 for whichM2 has dimension 4.
Then, as previously found, there are only two cases. The group G can be of the form(
1 0
0 ∗

)
or

(
1 ∗
0 ∗

)
. In the first case the cohomology group H1

(
G2, V2

)
is Z/7 ⊕ Z/7; in

the latter it is Z/7.

8 Applications to Local and Global Divisibility
of Rational Points

The cohomology groups that we have discussed in this paper also appear in the
analogue of the Grunwald–Wang problem for elliptic curves. This question was
raised by Dvornicich and Zannier in [9].

Grunwald–Wang problem for elliptic curves. Let E/Q be an elliptic curve,
P ∈ E(Q), and m > 1. If P is divisible by m in E(Q�) for almost all �, is it true
that P is divisible by m in E(Q) ?

By the Chinese remainder theorem, it is sufficient to restrict to the case when
m = pi is a prime power. The answer is positive if m is prime. The explicit example
in [10] shows that the answer is negative for m = 4. In [20], it is shown that the
answer is positive for all m = p2 with p a prime larger than 3. To our knowledge,
the case m = 9 has not been determined.

This question connects to our cohomology groups through the following reinter-
pretation. Suppose m = pi for our fixed prime p. Let � be a finite set of places inQ.
Let

D(E/Q) = ker
(
E(Q)/piE(Q) →

∏

v/∈�

E(Qv)/p
iE(Qv)

)



394 T. Lawson and C. Wuthrich

be the group that measures if there are points P that are locally divisible by pi, but
not globally. Let

L(E/Q) = L(Gi) = ker
(
H1

(
Gi,E[pi]) →

∏

C�Gi
C cyclic

H1
(
C,E[pi])

)
(7)

be the kernel of reduction to all the cyclic subgroups of Gi. We now assume that �
contains all places above p and all bad places. By Chebotarev’s theorem, L(E/Q) is
also the kernel of localization from H1

(
Gi,E[pi]) to all H1(Dw|v,E[pi]) where Dw|v

is the decomposition group in Ki/Q of a place w above v. Hence a natural notation
for L(E/Q) could be X1

(
U,E[pi]) with U the complement of � in Spec(Z). The

sequence
0 ��D(E/Q) ��L(E/Q) ��H1

(
Gi,E(Ki)

)

is exact. Hence the answer is positive for m = pi if H1
(
Gi,E[pi]) vanishes. Note

that the description of L(E/Q) in (7) is now entirely group-theoretic, and can be
computed numerically with the methods described in the previous section.

Theorem 24 Let p a prime and i � 1. Then the Grunwald–Wang problem for local-
global divisibility by m = pi admits a positive answer for all elliptic curves E/Q if
and only if p > 3 or m = 2 or m = 3.

Proof If we find a point P of infinite order that is a counter-example for m = pi,
then pjP is a counter-example for m = pi+j for any j > 0. As mentioned before, the
negative answer for m = 4 is explained in [10]. This settles also all higher powers
of 2 as their examples are points of infinite order. Counter-examples when m is a
power of 3 were first found by Creutz in [7]. We will give below in Proposition 25
a new counter-example of infinite order for m = 9. For p � 5 the theorem follows
from [20]. However, we wish to give a slightly simplified proof with our methods.

Assume therefore p � 5. We will now show that the kernel of localization L(Gi)

is zero. Note that by Greenberg’s result in Theorem 21 and the work done in the
exceptional cases in Lemmas 22 and 23, we may assume that Gi is greatest possible
or that i = 2 andM2 consists of all matricesm such thatm − 1 is upper triangular. In
both cases the elements in E[pi] fixed byMi are just E[p]. We get an exact sequence

0 ��H1
(
G,E[p]) inf ��H1

(
Gi,E[pi]) ��H1

(
Mi,E[pi]).

First assume that L(Gi) contains a non-trivial element which belongs to the image
of the inflation map from H1

(
G,E[p]). Since the latter must now be non-trivial,

G must contain the element h̄ = (
1 1
0 1

)
. By the description of Mi, we find that Gi

contains the element h = (
1 1
0 1

)
. Let C be the cyclic group generated by h and
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let C̄ be its image in G. Our computations for proving Theorem 1 showed that
H1

(
G,E[p]) → H1(C̄,E[p]) is a bijection. Next, both maps in the composition

H1
(
C̄,E[p]) ��H1

(
C̄,E[pi]C∩Mi

)
��H1

(
C,E[pi])

are injective: for the latter it is because any inflation map is injective, and for
the first it can be read off the long exact sequence associated to the inclusion
E[p] → E[pi]C∩Mi . We conclude that H1

(
G,E[p]) → H1

(
C,E[pi]) is injective.

This now contradicts the assumption that L(Gi) contained a non-trivial element from
H1

(
G,E[p]).
Therefore, L(Gi) injects into to

L(Mi) = ker
(
H1(Mi,E[pi]) →

∏

C�Mi
cyclic

H1(C,E[pi])
)
,

where the product now runs over all cyclic subgroups of Mi. We will now prove by
induction on i that L(Mi) is trivial. It is known for i = 1.

Recall that the group Hi acts trivially on E[pi]. We consider the following dia-
gram with exact rows:

0 �� H1
(
Mi,E[pi]) ��

��

H1
(
Mi+1,E[pi]) ��

��

H1
(
Hi,E[pi])

��
0 �� ∏

C H1
(
C/C ∩ Hi,E[pi]C∩Hi

)
�� ∏

C H1
(
C,E[pi]) �� ∏

C H1
(
C ∩ Hi,E[pi])

(8)
where the products run over all cyclic subgroups C of Mi+1. Now the vertical map
on the right hand side has the same kernel as

H1
(
Hi,E[pi]) = Hom

(
Hi,E[pi]) ��

∏

D�Hi
cyclic

Hom
(
D,E[pi])

and this map is clearly injective. Since C ∩ Hi fixes E[pi] the vertical map on the
right in the above diagram (8) is injective by induction hypothesis because C/C ∩
Hi

∼= CHi/Hi will run through all cyclic subgroups of Mi at least once. Therefore
the middle vertical map in (8) is injective, too.

Next, consider the following diagram with exact rows:

0 �� E[p] δ �� Hom
(
Mi+1,E[p]) ι ��

��

H1
(
Mi+1,E[pi+1])[p] ��

��

H1
(
Mi+1,E[pi])

��
E[pi+1]C[p]

�� E[pi]C
δC

�� Hom
(
C,E[p]) �� H1

(
C,E[pi+1]) �� H1

(
C,E[pi])
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Here C is any cyclic subgroup of Mi+1. The zero at the top left corner is a con-
sequence from the fact that the Mi+1-fixed points in E[pj] are exactly E[p] for all
1 � j � i + 1.

If ξ ∈ L(Mi+1), then its image under [p] in H1
(
Mi+1,E[pi]) must be trivial by

what we have shown for the middle vertical map in (8). Therefore ξ is the image
under ι of an element f in Hom

(
Mi+1,E[p]). Since E[p] is p-torsion, we can identify

Hom
(
Mi+1,E[p]) with Hom

(
M2,E[p]). To say that ξ restricts to zero for a cyclic

group C � Mi+1 forces f : M2 → E[p] to be in the image of the map δC : E[p] →
Hom

(
C,E[p]) for all cyclic subgroups C of M2.

Now we identifyM2 with the additive subgroup M̃2 � Mat2(Fp) as before. Under
this identification the map δ sends a p-torsion point T ∈ E[p] = F2

p to the map f

sending a matrix m ∈ M̃2 to m(T). Thus, the restriction of f to Hom
(〈m〉,F2

p

)
is in

the image of δ〈m〉 for a particular m ∈ M̃2 if and only if f (m) ∈ F2
p belongs to the

image of m. Therefore, we have shown that

L(Mi+1) =
{
f ∈ Hom

(
M̃2,F

2
p

) ∣
∣
∣ f (m) ∈ im(m) ∀m ∈ M̃2

}

{
f (m) = m(T) for some T ∈ F2

p

} . (9)

We wish to show that L(Mi+1) is trivial if M̃2 is the full matrix group or the upper
triangular matrices. Assume first that M̃2 is the full matrix group. Then f is deter-
mined by its image on the matrices with only one non-zero entry. However, the
local condition of being in the image of δC for these matrices and the matrices(
1 0
1 0

)
and

(
0 1
0 1

)
forces f (m) to be just m(T) for T = f

((
1 0
0 0

)) + f
((

0 0
0 1

))
. Therefore

L(Mi+1) is trivial. The case when M̃2 is the group of upper triangular matrices is very
similar. �

The result about the vanishing of L(G2) for p > 3 in the above proof is reminis-
cent of Proposition 3.2.ii in [9]. We have reproved part of this result with a more
conceptual approach. The main reason for doing so is that the general statement
there is slightly incorrect. The case dim(M2) = 3 assumes that

(
1 1
0 1

)
belongs to G2.

However, for p = 3, the group G2 generated by
(
7 8
3 1

)
and the group of all matrices

m withm − 1 upper-triangular is a counterexample. This group does not contain any
elements of order 9 and one can compute that L(G2) is isomorphic to Z/3.

We include here a new counter-example for m = 9; the method is quite different
from [7] where a first such example was found.

Proposition 25 Let E be the elliptic curve labeled 243a2, given by the global min-
imal equation y2 + y = x3 + 20, and let P = (−2, 3). Then 3P is divisible by 9 in
E(Q�) for all primes � = 3, but it is not divisible by 9 in E(Q).

Proof Since P is a generator of the free part of this curve of rank 1, it is clear that
3P is not divisible by 9 in E(Q).

Let k be the unique subfield of Q(μ9) of degree 3 over Q and let ζ be a primitive
9-th root of unity. Then P′ = (3ζ 5 + 3ζ 4 + 3, 9ζ 4 − 9ζ 2 + 9ζ + 4) ∈ E(k) satisfies
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3P′ = P. Thus, if � ≡ ±1 (mod 9), then � splits in k and hence P is divisible by 3
in E(Q�). As a consequence, 3P is divisible by 9 over Q�.

For this curve and p = 3, the group G = (
1 ∗
0 ∗

)
is of order 6 and K = Q(θ) with

θ6 + 3 = 0. Factoring the 9-division polynomial, one finds that K2/K is an exten-
sion of degree 3. The field of definition of the points of order 9 is K2 except for those
points T with 3T ∈ E(Q)[3]. Those are defined instead over a non-Galois extension
of degree 3 over k.

Let � ≡ ±1 (mod 9) and � = 3. Then the Frobenius element Fr� in G2 cannot
belong to Gal(K2/k). Therefore Fr� does not fix any point of order 9. It follows that
Ẽ(F�)[9] = Ẽ(F�)[3]. Consider the following commutative diagram, whose lower
row is exact.

P ∈ E(Q)/3E(Q)
[3] ��

��

E(Q)/9E(Q)

��
E(Q�)[9] [3] �� E(Q�)[3] δ �� E(Q�)/3E(Q�)

[3] �� E(Q�)/9E(Q�)

Since � = 3, the reduction of E at � is good and hence [3] is an isomorphism on
the kernel of reduction E(Q�) → Ẽ(F�). It follows that E(Q�)[3] ∼= Ẽ(F�)[3] and
E(Q�)/3E(Q�) ∼= Ẽ(F�)/3Ẽ(F�) have the same size. By the above argument δ is
an injective map between two groups of the same size. Thus δ is a bijection. This
implies that 3P is divisible by 9 in E(Q�). �

This is the counter-example of smallest conductor for m = 9; here is how we
found that this curve is a likely candidate.

Consider curves E with a 3-isogeny where either the kernel has a rational
3-torsion point or where the kernel of the dual isogeny has a rational 3-torsion point.
On the one hand, we computed (for a few thousand primes � = 3 of good reduction)
the pairs (a�(E), �) modulo 9. On the other hand, we may determine all subgroups
G2 � GL2(Z/9) with surjective determinant to find the examples for which the ker-
nel (7) is non-trivial. There are 13 such groups. The dimension ofM2 in these cases
is 1, 2 or 3. For each of them we may list pairs (tr(g), det(g)) when g runs through
all matrices g ∈ G2.

Now, if the list of possible pairs (a�(E), �) modulo 9 agrees with one of the lists
above, then G2 could be among the groups for which the localization kernel is non-
trivial. Furthermore, it is easy to check local divisibility for primes � < 1000 for all
possible candidates in 3E(Q)/9E(Q). The above curve 243a2 was the first to pass
all these tests.

Here are a few more candidates. Note that we have not formally proved that local
divisibility holds by 9 holds for all primes � of good reduction.

The point P = (6, 17) on the curve 9747f1 gives a point 3P which is likely to be
locally divisible by 9 for all primes, but not divisible by 9 globally. In this example
G2 has 54 elements.
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On the curve 972d2 the point 3P with P = (13, 35) is likely to be locally divisible
by 9 for all places � = 3, yet not globally so. This is a curve without a rational
3-torsion point and G2 having 54 elements again.

All the above examples have complex multiplication by the maximal order in
Q(

√−3). The curve 722a1, with a point P having x-coordinate 27444
169 , is an example

without complex multiplication and |G2| = 162. Again, it is likely that 3P is locally
divisible by 9 at all places � = 19, but 3P is not globally divisible by 9. The group
G2 here is probably conjugate to the one mentioned earlier as a counter-example to
Proposition 3.2.ii in [9].

We have also done numerical calculation of the kernel in (7) for other primes. For
p = 5, there are only three subgroups G2 in GL2(Z/25) with non-trivial localization
kernel. They all have dim(M2) = 2 and |G| = 4.

For p = 2, there are twelve cases. The dimensions ofM2 can be 1, 2, or 3. In only
one of these cases is the localization kernel is Z/2 ⊕ Z/2; otherwise it is Z/2.
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Coates–Wiles Homomorphisms and Iwasawa
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Abstract For the p-cyclotomic tower of Qp Fontaine established a description of
local Iwasawa cohomology with coefficients in a local Galois representation V in
terms of the ψ-operator acting on the attached etale (ϕ, �)-module D(V ). In this
chapter we generalize Fontaine’s result to the case of arbitrary Lubin–Tate towers
L∞ over finite extensions L of Qp by using the Kisin–Ren/Fontaine equivalence of
categories betweenGalois representations and (ϕL, �L)-modules and extending parts
of [20, 33]. Moreover, we prove a kind of explicit reciprocity law which calculates
the Kummer map over L∞ for the multiplicative group twisted with the dual of the
Tate module T of the Lubin–Tate formal group in terms of Coleman power series
and the attached (ϕL, �L)-module. The proof is based on a generalized Schmid–Witt
residue formula. Finally, we extend the explicit reciprocity law of Bloch and Kato
[3] Theorem 2.1 to our situation expressing the Bloch–Kato exponential map for
L(χ r

LT ) in terms of generalized Coates–Wiles homomorphisms, where the Lubin–
Tate character χLT describes the Galois action on T .
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1 Introduction

The invention of Coates–Wiles homomorphisms and Coleman power series [7, 8]
were the starting point of a range of new and important developments in arithmetic.
They have not lost their impact and fascination up to now. In order to recall it we
shall first introduce some notation.

Consider a finite extension L of Qp and fix a Lubin–Tate formal group LT over
the integers oL (with uniformizer πL). By η = (ηn) we denote a generator of the
Tate module T of LT as oL-module. The πn

L -division points generate a tower of
Galois extensions Ln = L(LT [πn

L ]) of L the union of which we denote by L∞ with
Galois group �L. Coleman assigned to any norm compatible system of units u =
(un) ∈ lim←−n

L×
n a Laurent series gu,η ∈ oL((Z))× such that gu,η(ηn) = un for all n.

If ∂inv denotes the invariant derivation with respect to LT , then, for r ≥ 1, the rth
Coates–Wiles homomorphism is given by

ψ r
CW : lim←−

n

L×
n →L(χ r

LT ),

u �→ 1

r!∂
r
inv log gu,η(Z)|Z=0 := 1

r!∂
r−1
inv

∂invgu,η(Z)

gu,η(Z)
|Z=0 ,

it is Galois invariant and satisfies at least heuristically—setting tLT = logLT (Z)—the
equation

log gu,η(Z) =
∑

r

ψ r
CW (u)trLT

the meaning of which in p-adic Hodge theory has been crucially exploited, e.g. [5,
13, 16].

Explicitly or implicitly this mysterious map plays—classically for the multiplica-
tive group overQp—acrucial role in the Bloch–Kato (Tamagawa number) conjecture
[3], in the study of special L-values [6], in explicit reciprocity laws [23, 37] and even
in the context of the cyclotomic trace map from K-theory into topological cyclic
homology for Zp [2].

In this context one motivation for the present work is to understand Kato’s (and
hence Wiles’s) explicit reciprocity law in terms of (ϕL, �L)-modules. Since in the
classical situation a successful study of explicit reciprocity laws has been achieved by
Colmez, Cherbonnier/Colmez, Benois and Berger using Fontaine’s work on (ϕ, �)-
modules and Herr’s calculation of Galois cohomology bymeans of them, the plan for
this chapter is to firstly use Kisin–Ren/Fontaine’s equivalence of categories (recalled
in Sect. 4) to find a description of Iwasawa cohomologyHi

Iw(L∞/L, V ) for the tower
L∞ and a (finitely generated oL-module) representation V of GL in terms of a ψ-
operator acting on the etale (ϕL, �L)-module DLT (V ). To this aim we have to gen-
eralize parts of [20] in Sect. 3, in particular the residue pairing, which we relate to
Pontrjagin duality. But instead of using Herr complexes (which one also could define
easily in this context) we use local Tate duality Hi

Iw(L∞/L, V ) ∼= H2−i(L∞, V ∨(1))
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for V being an oL-module of finite length and an explicit calculation of the latter
groups in terms of (ϕL, �L)-modules inspired by [15, 16, 33]. Using the key obser-
vation that DLT (V )∨ ∼= DLT (V ∨(χLT )) (due to the residue pairing involving differ-
entials 	1 ∼= DLT (oL)(χLT ) and the compatibility of inner Homs under the category
equivalence) we finally establish in Theorem 5.13 the following exact sequence

0−→H1
Iw(L∞/L, V )−→DLT (V (τ−1))

ψL−1−−−→
DLT (V (τ−1))−→H2

Iw(L∞/L, V )−→ 0

as one main result of this article, where the twist by τ = χ−1
LT χcyc is a new phenom-

enon (disappearing obviously in the cyclotomic case) arising from the joint use of
Pontrjagin and local Tate duality. The second main result is the explicit calculation
of the twisted (by the oL-dual T∗ of T ) Kummer map

lim←−
n

L×
n ⊗Z T∗ κ⊗Zp T

∗
−−−−→ H1

Iw(L∞/L,Zp(1)) ⊗Zp T
∗ ∼= H1

Iw(L∞/L, oL(τ ))

in terms of Coleman series (recalled in Sect. 2) and (ϕL, �L)-modules, see Theorem
6.2, which generalizes the explicit reciprocity laws of Benois and Colmez. Inspired
by [15, 16] we reduce its proof to an explicit reciprocity law, Proposition 6.3, in
characteristic p, which in turn is proved by the Schmid–Witt residue formula which
we generalize to our situation in Sect. 7, see Theorem 7.16. In Sect. 8 we generalize
the approach sketched in [16] to prove in Theorem 8.6 a generalization of the explicit
reciprocity law of Bloch and Kato [3] Theorem 2.1: again in this context the Bloch–
Kato exponential map is essentially given by the Coates–Wiles homomorphism. As
a direct consequence we obtain as Corollary 8.7 a new proof for a special case of
Kato’s explicit reciprocity law for Lubin–Tate formal groups.

It is a great honour and pleasure to dedicate this work to John Coates who has
been a source of constant inspiration for both of us.

We thank L. Berger for pointing Lemma 8.2.i out to us and for a discussion
about Proposition 9.1 and G. Kings for making available to us a copy of [25]. We
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Notation

Let Qp ⊆ L ⊂ Cp be a field of finite degree d over Qp, oL the ring of integers of L,
πL ∈ oL a fixed prime element, kL = oL/πLoL the residue field, and q := |kL|. We
always use the absolute value | | on Cp which is normalized by |πL| = q−1.

We fix a Lubin–Tate formal oL-module LT = LTπL over oL corresponding to the
prime element πL. We always identify LT with the open unit disk around zero, which
gives us a global coordinate Z on LT . The oL-action then is given by formal power
series [a](Z) ∈ oL[[Z]]. For simplicity the formal group law will be denoted by+LT .
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The power series ∂(X+LT Y)
∂Y |(X,Y)=(0,Z)

is a unit in oL[[Z]] and we let gLT (Z) denote
its inverse. Then gLT (Z)dZ is, up to scalars, the unique invariant differential form
on LT ([19] §5.8). We also let logLT (Z) = Z + . . . denote the unique formal power
series inL[[Z]]whose formal derivative is gLT . This logLT is the logarithm ofLT ([26]
8.6). In particular, gLTdZ = d logLT . The invariant derivation ∂inv corresponding to
the form d logLT is determined by

f ′dZ = df = ∂inv( f )d logLT = ∂inv( f )gLTdZ

and hence is given by
∂inv( f ) = g−1

LT f
′ . (1)

For any a ∈ oL we have

logLT ([a](Z)) = a · logLT and hence agLT (Z) = gLT ([a](Z)) · [a]′(Z) (2)

([26] 8.6 Lemma 2).
Let T be the Tate module of LT . Then T is a free oL-module of rank one, and the

action ofGL := Gal(L/L) on T is given by a continuous character χLT : GL −→ o×
L .

LetT ′ denote the Tatemodule of the p-divisible groupCartier dual toLT , which again
is a free oL-module of rank one. The Galois action on T ′ is given by the continuous
character τ := χcyc · χ−1

LT , where χcyc is the cyclotomic character.
For n ≥ 0 we let Ln/L denote the extension (in Cp) generated by the πn

L -torsion
points of LT , and we put L∞ := ⋃

n Ln. The extension L∞/L is Galois. We let
�L := Gal(L∞/L) and HL := Gal(L/L∞). The Lubin–Tate character χLT induces

an isomorphism �L
∼=−→ o×

L .

2 Coleman Power Series

We recall the injective ring endomorphism

ϕL : oL[[Z]] −→ oL[[Z]]
f (Z) �−→ f ([πL](Z)) .

In order to characterize its image we let LT1 denote the group of πL-torsion points
of LT . According to [8] Lemma 3 we have

im(ϕL) = { f ∈ oL[[Z]] : f (Z) = f (a +LT Z) for any a ∈ LT1}.

This leads to the existence of a unique oL-linear endomorphism ψCol of oL[[Z]] such
that

ϕL ◦ ψCol( f )(Z) =
∑

a∈LT1
f (a +LT Z) for any f ∈ oL[[Z]]
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([8] Theorem 4 and Corollary 5) as well as of a unique multiplicative map N :
oL[[Z]] −→ oL[[Z]] such that

ϕL ◦ N ( f )(Z) =
∏

a∈LT1
f (a +LT Z) for any f ∈ oL[[Z]]

([8] Theorem 11).
The group �L acts continuously on oL[[Z]] via

�L × oL[[Z]] −→ oL[[Z]]
(γ, f ) �−→ f ([χLT (γ )](Z)) (3)

([8] Theorem 1).

Remark 2.1 i. ψCol ◦ ϕL = q.
ii. ψCol([πL] · f ) = ZψCol( f ) for any f ∈ oL[[Z]].
iii. N([πL]) = Zq.

Proof Because of the injectivity of ϕL it suffices in all three cases to verify the
asserted identity after applying ϕL. i. We compute

ϕL ◦ ψCol ◦ ϕL( f ) =
∑

a∈LT1
(ϕLf )(a +LT Z) =

∑

a∈LT1
f ([πL](a +LT Z))

=
∑

a∈LT1
f ([πL](Z)) = ϕL(qf ).

ii. We compute

(ϕL ◦ ψCol)([πL] f ) =
∑

a∈LT1
[πL](a +LT Z)f (a +LT Z)

= [πL](Z)
∑

a∈LT1
f (a +LT Z) = ϕL(Z)(ϕL ◦ ψCol)( f )

= ϕL(ZψCol( f )) .

iii. We omit the entirely analogous computation. �

We observe that for any f ∈ oL((Z)) = oL[[Z]][Z−1] there is an n( f ) ≥ 1 such
that [πL]n( f ) · f ∈ oL[[Z]]. The above remark therefore allows to extend ψCol to an
oL-linear endomorphism

ψCol : oL((Z)) −→ oL((Z))

f �−→ Z−n( f )ψCol([πL]n( f )f )
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and to extend N to a multiplicative map

N : oL((Z)) −→ oL((Z))

f �−→ Z−qn( f )N([πL]n( f )f ) .

We choose an oL-generator η of T . This is a sequence of elements ηn ∈ πLnoLn
such that [πL](ηn+1) = ηn for n ≥ 1, [πL](η1) = 0, and η1 �= 0.

Theorem 2.2 (Coleman) For any norm-coherent sequence u = (un)n ∈ lim←−n
L×
n

there is a unique Laurent series gu,η ∈ (oL((Z))×)N=1 such that gu,η(ηn) = un for
any n ≥ 1. This defines a multiplicative isomorphism

lim←−
n

L×
n

∼=−→ (oL((Z))
×)N=1

u �−→ gu,η .

Proof See [8] Theorem A and Corollary 17. �

Remark 2.3 i. The map (oL((Z))×)N=1
∼=−→ kL((Z))× given by reduction modulo

πL is an isomorphism; hence

lim←−
n

L×
n

∼=−→ kL((Z))
×

u �−→ gu,η mod πL

is an isomorphism of groups.
ii. If ϑ = cη is a second oL-generator of T then gu,ϑ ([c](Z)) = gu,η(Z) for any

u ∈ lim←−n
L×
n .

Proof i. [8] Corollary 18. ii. This is immediate from the characterizing property of
gu,η in the theorem. �

We now introduce the “logarithmic” homomorphism

�LT : oL[[Z]]× −→ oL[[Z]]
f �−→ ∂inv( f )

f
= g−1

LT

f ′

f
,

whose kernel is o×
L .

Lemma 2.4 i. �LT ◦ ϕL = πLϕL ◦ �LT .
ii. ψCol ◦ �LT = πL�LT ◦ N .
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Proof We begin with a few preliminary observations. From (2) we deduce

gLT = [πL]′
πL

ϕL(gLT ) . (4)

Secondly we have

d
dZ ϕL( f (Z)) = d

dZ f ([πL](Z)) = f ′([πL](Z))[πL]′(Z) = ϕL( f
′)[πL]′ (5)

for any f ∈ oL[[Z]]. Finally, the fact that gLT (Z)dZ is an invariant differential form
implies that

gLT = d
dZ logLT (a +LT Z) for any a ∈ LT1. (6)

For i. we now compute

�LT ◦ ϕL( f ) = 1
gLT

d
dZ ϕL( f (Z))

ϕL( f )
= [πL]′

gLT
ϕL( f ′)
ϕL( f )

= πL
ϕL(gLT )

ϕL( f ′)
ϕL( f )

= πLϕL ◦ �LT ( f ) ,

where the second, resp. the third, identity uses (5), resp. (4). For ii. we compute

ϕL ◦ ψCol ◦ �LT ( f ) =
∑

a∈LT1

1
gLT (a+LT Z)

f ′
f (a +LT Z)

=
∑

a∈LT1

1
gLT (a+LT Z)

d
dZ f (a+LT Z)

f (a+LT Z)
1

d
dZ (a+LT Z)

=
∑

a∈LT1

1
d
dZ logLT (a+LT Z)

d
dZ f (a+LT Z)

f (a+LT Z)

=
∑

a∈LT1
�LT ( f (a +LT Z)) = �LT (

∏

a∈LT1
f (a +LT Z))

= �LT ◦ ϕL ◦ N( f ) = πLϕL ◦ �LT ◦ N( f )

= ϕL(πL�LT ◦ N( f )) ,

where the fourth, resp. the seventh, identity uses (6), resp. part i. of the assertion. �

It follows that �LT restricts to a homomorphism

�LT : (oL[[Z]]×)N=1 −→ oL[[Z]]ψCol=πL .

Its kernel is the subgroup μq−1(L) of (q − 1)th roots of unity in o×
L .
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On the other hand �LT obviously extends to the homomorphism

�LT : oL((Z))× −→ oL((Z))

f �−→ g−1
LT

f ′

f
,

with the same kernel o×
L .

Lemma 2.5 The identity ψCol ◦ �LT = πL�LT ◦ N holds true on oL((Z))×.

Proof Let f ∈ oL((Z)× be any element. It can be written f = Z−nf0 with f0 ∈
oL[[Z]]×. Then

ψCol ◦ �LT ( f ) = −nψCol(
1

ZgLT
) + ψCol ◦ �LT ( f0)

and
πL�LT ◦ N( f ) = −nπL�LT (N(Z)) + πL�LT ◦ N( f0) .

The second summands being equal by Lemma 2.4.ii we see that we have to establish
that

ψCol(
1

ZgLT
) = πL�LT (N(Z)) .

By definition the left hand side is Z−1ψCol(
[πL]
ZgLT

) and the right hand side is πL
gLT

d
dZ N(Z)
N(Z) .

Hence we are reduced to proving the identity

gLTN(Z)ψCol(
[πL]
ZgLT

) = πLZ
d

dZ
N(Z) ,

which is an identity in oL[[Z]] and therefore can be checked after applying ϕL. On
the left hand side we obtain

ϕL(gLT )
∏

a∈LT1
(a +LT Z)

∑

b∈LT1

[πL](b +LT Z)

(b +LT Z)gLT (b +LT Z)

= ϕL(gLT )ϕL(Z)
∏

a∈LT1
(a +LT Z)

∑

b∈LT1

1

(b +LT Z)gLT (b +LT Z)

= gLT
πL

[πL]′ ϕL(Z)
∏

a∈LT1
(a +LT Z)

∑

b∈LT1

1

(b +LT Z)gLT (b +LT Z)
,
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where the second equality uses (4). On the right hand side, using (5), we have

πLϕL(Z)ϕL(
d
dZN(Z)) = πL

[πL]′ ϕL(Z)
d
dZ ϕL(N(Z))

= πL

[πL]′ ϕL(Z)
d
dZ

∏

a∈LT1
(a +LT Z) .

This further reduces us to proving that

gLT
∑

b∈LT1

1

(b +LT Z)gLT (b +LT Z)
=

d
dZ

∏
a∈LT1(a +LT Z)

∏
a∈LT1(a +LT Z)

.

The invariance of gLT (Z)dZ implies

d
dZ (a +LT Z) = gLT (Z)

gLT (a +LT Z)
. (7)

We see that the above right hand side, indeed, is equal to

d
dZ

∏
a∈LT1(a +LT Z)

∏
a∈LT1(a +LT Z)

=
∑

a∈LT1

d
dZ (a +LT Z)

a +LT Z

= gLT
∑

a∈LT1

1

(a +LT Z)gLT (a +LT Z)
. �

Hence we even have the homomorphism

�LT : (oL((Z))×)N=1 −→ oL((Z))
ψCol=πL

with kernel μq−1(L).

3 Etale (ϕL, �L)-modules

We define the ring AL to be the πL-adic completion of oL[[Z]][Z−1] and we let
BL := AL[π−1

L ] denote the field of fractions of AL. The ring endomorphism ϕL of
oL[[Z]] maps Z to [πL](Z). Since [πL](Z) ≡ Zq mod πL the power series [πL](Z) is
a unit in AL. Hence ϕL extends to a homomorphism oL[[Z]][Z−1] −→ AL and then
by continuity to a ring endomorphism ϕL ofAL and finally to an embedding of fields
ϕL : BL −→ BL. Similarly the invariant derivation ∂inv first extends algebraically to
oL[[Z]][Z−1], then by continuity toAL, and finally by linearity toBL. Evidently we
still have (1) for any f ∈ BL.
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Remark 3.1 1,Z, . . . ,Zq−1 is a basis of BL as a ϕL(BL)-vector space.

Proof See [17] Remark before Lemma 2.1 or [31] Proposition 1.7.3. �

This remark allows us to introduce the unique additive endomorphism ψL ofBL

which satisfies
ϕL ◦ ψL = π−1

L · traceBL/ϕL(BL) .

By the injectivity of ϕL and the linearity of the field trace we have the projection
formula

ψL(ϕL( f1)f2) = f1ψL( f2) for any fi ∈ BL

as well as the formula
ψL ◦ ϕL = q

πL
· id .

Correspondingly, we consider the unique multiplicative map NL : BL −→ BL

which satisfies
ϕL ◦ NL = NormBL/ϕL(BL) . (8)

Remark 3.2 i. ψL(AL) ⊆ AL and NL(AL) ⊆ AL.
ii. On oL((Z)) we have ψL = π−1

L · ψCol and NL = N .
iii. ϕL ◦ ψL ◦ ∂inv = ∂inv ◦ ϕL ◦ ψL on BL.
iv. NL( f )([c](Z)) = NL( f ([c](Z))) for any c ∈ o×

L and f ∈ BL.
v. NL( f ) ≡ f mod πLAL for any f ∈ AL.
vi. If f ∈ AL satisfies f ≡ 1 mod πm

L AL for some m ≥ 1 then NL( f ) ≡ 1 mod
πm+1
L AL.

vii. (oL((Z))×)N=1 = (A ×
L )NL=1.

Proof i. The homomorphism ϕL induces on AL/πLAL = kL((Z)) the injective q-
Frobenius map. It follows that { f ∈ BL : ϕL( f ) ∈ AL} = AL. Hence the assertion
reduces to the claim that

traceBL/ϕL(BL)(AL) ⊆ πLAL . (9)

But the trace map traceBL/ϕL(BL) induces the trace map for the purely inseparable
extension kL((Z))/kL((Zq)), which is the zero map.

ii. For any a ∈ LT1 we have the ring homomorphism

σa : oL[[Z]] −→ oL1 [[Z]] ⊆ AL1

f (Z) �→ f (a +LT Z) .

Sinceσa(Z) = a +LT Z ≡ a + Z mod deg 2wehaveσa(Z) ∈ A ×
L1
, so thatσa extends

to oL[[Z]][Z−1]. By continuity σa further extends to AL and then by linearity to an
embedding of fields

σa : BL −→ BL1 = BLL1 .
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Clearly these σa are pairwise different. Moreover, for any f ∈ oL[[Z]], we have

σa ◦ ϕL( f )(Z) = f ([πL](a +LT Z)) = f (Z) .

Weconclude, by continuity, that σa|ϕL(BL) = id. It follows that
∏

a∈LT1(X − σa( f )),
for any f ∈ BL, is the characteristic polynomial of f over ϕL(BL). Hence

traceBL/ϕL(BL)( f ) =
∑

a∈LT1
σa( f ) , (10)

which proves the assertion for f ∈ oL[[Z]]. For general f ∈ oL((Z)), using the nota-
tion and definition before Theorem 2.2 we compute

ϕL ◦ ψCol( f ) = ϕL
(
Z−n( f )ψCol([πL]n( f )f )

)

= ϕL(Z)
−n( f )

∑

a∈LT1
σa([πL]n( f )f )

=
∑

a∈LT1
σa( f ) = traceBL/ϕL(BL)( f )

= ϕL ◦ πLψL( f ) .

The proof for NL is completely analogous.
iii. By the invariance of ∂inv we have ∂inv ◦ σa = σa ◦ ∂inv on oL[[Z]][Z−1], whence

onBL by continuity and linearity. Therefore, the claim follows from (10).
iv. We compute

ϕL(NL( f )([c](Z))) = NL( f )([c]([πL](Z))) = NL( f )([πL]([c](Z)))
= ϕL(NL( f ))([c](Z)) =

∏

a∈LT1
σa( f )([c](Z))

=
∏

a∈LT1
σ[c−1](a)( f ([c](Z))) =

∏

a∈LT1
σa( f ([c](Z)))

= ϕL(NL( f ([c](Z)))) .

v. We have

ϕL ◦ NL( f ) mod πLAL = NormkL((Z))/kL((Zq))( f mod πLAL) ≡ f q mod πLAL

= ϕL( f ) mod πLAL .

vi. Let f = 1 + πm
L g with g ∈ AL. We compute

ϕL(NL(1 + πm
L g)) =

∏

a∈LT1
1 + πm

L σa(g) ≡ 1 + πm
L (

∑

a∈LT1
σa(g)) mod πm+1

L AL

≡ 1 mod πm+1
L AL ≡ ϕL(1) mod πm+1

L AL
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where the third identity uses (9). The assertion follows since ϕL remains injective
modulo π

j
L for any j ≥ 1.

vii. We have the commutative diagram

(oL((Z))×)N=1 ⊆ ��

∼= �������������
(A ×

L )NL=1

������������

kL((Z))×

where the oblique arrows are given by reduction modulo πL. The left one is an
isomorphism by Remark 2.3.i. The right one is injective as a consequence of the
assertion vi. Hence all three maps must be bijective. �

Due to Remark 3.2.vii we may view the Coleman isomorphism in Theorem 2.2
as an isomorphism

lim←−
n

L×
n

∼=−→ (A ×
L )NL=1 . (11)

We always equip AL with the weak topology, for which the oL-submodules
πm
L AL + ZmoL[[Z]], form ≥ 1, form a fundamental system of open neighbourhoods

of zero. The weak topology on any finitely generated AL-module M is defined to
be the quotient topology, with respect to any surjective homomorphism A n

L � M,
of the product topology on A n

L ; this is independent of the choice of this homomor-
phism.We have the following properties (cf. [32] Lemmas 8.2 and 8.22 for a detailed
discussion of weak topologies):

• AL is a complete Hausdorff topological oL-algebra (with jointly continuous mul-
tiplication).

• AL induces on oL[[Z]] its compact topology.
• M is a complete Hausdorff topological module (with jointly continuous scalar
multiplication).

• M/πm
L M, for any m ≥ 1, is locally compact.

Remark 3.3 The endomorphisms ϕL and ψL of AL are continuous for the weak
topology.

Proof For ϕL see [31] Proposition 1.7.8.i. For ψL see [17] Proposition 2.4(b) (note
that their ψ is our πL

q ψL). �

Let	1 = 	1
AL

= ALdZ denote the free rank oneAL-module of differential forms.
Obviously the residue map

Res : 	1 −→ oL

(
∑

i

aiZ
i)dZ �−→ a−1
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is continuous. Later on in Sect. 7 it will be a very important fact that this map does
not depend on the choice of the variable Z . For the convenience of the reader we
explain the argument (cf. [15] A2.2.3). First of all we have to extend the maps d and
Res by linearity to maps

BL
d−→ 	1

BL
:= L ⊗oL 	1

AL

Res−→ L .

Only for the purposes of the subsequent remark we topologize BL by taking as a
fundamental system of open neighbourhoods of zero the oL[[Z]]-submodules

πm
L AL + L ⊗oL Z

moL[[Z]]) for m ≥ 1.

Using the isomorphism 	1
BL

= BLdZ ∼= BL we also make 	1
BL

into a topological
oL-module. It is easy to see that the maps d and Res are continuous.

Remark 3.4 i. d(BL) is dense in ker(Res).
ii. Res = ResZ does not depend on the choice of the variable Z , i.e., if Z ′ is any

element inAL whose reduction modulo πL is a uniformizing element in k((Z)),
then ResZ(ω) = ResZ ′(ω) for all ω ∈ 	1

BL
.

Proof i. On the one hand L[Z,Z−1] ∩ ker(Res) is dense in ker(Res). On the other
hand we have L[Z,Z−1] ∩ ker(Res) ⊆ d(BL). ii. As a consequence of i. both maps
ResZ andResZ ′ have the same kernel. It therefore suffices to show that ResZ( dZ

′
Z ′ ) = 1.

We have Z ′ = cZν(1 + πLα) with c ∈ o×
L , ν ∈ 1 + ZoL[[Z]], and α ∈ AL. Hence

dZ ′
Z ′ = dZ

Z + dν
ν

+ d(1+πLα)

1+πLα
.

Clearly ResZ( dνν ) = 0. Furthermore, ifm ≥ 1 is sufficiently big, then log(1 + πm
L β),

for any β ∈ AL, converges in AL. Since (1 + π
j
LAL)/(1 + π

j+1
L AL) ∼= AL/πLAL,

for any j ≥ 1, we have (1 + πLα)
pm = 1 + πm

L β for some β ∈ AL. It follows that
pm d(1+πLα)

1+πLα
= d(1+πm

L β)

1+πm
L β

= d(log(1 + πm
L β)) and therefore that ResZ(

d(1+πLα)

1+πLα
) = 0.

�

Since 	1 is a topological AL-module it follows that the residue pairing

AL × 	1 −→ oL (12)

( f , ω) �−→ Res( fω)

is jointly continuous. It induces, for any m ≥ 1, the continuous pairing

AL/π
m
L AL × 	1/πm

L 	1 −→ L/oL
( f , ω) �−→ π−m

L Res( fω) mod oL
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and hence (cf. [4] X.28 Theorem 3) the continuous oL-linear map

	1/πm
L 	1 −→ Homc

oL (AL/π
m
L AL,L/oL) (13)

ω �−→ [ f �→ π−m
L Res( fω) mod oL] ,

where Homc
oL denotes the module of continuous oL-linear maps equipped with the

compact-open topology. For the convenience of the reader we recall the following
well known fact.

Lemma 3.5 The map (13) is an isomorphism of topological oL-modules.

Proof Let R := oL/πm
L oL. It is convenient to view the map in question as the map

R((Z))dZ −→ Homc
R(R((Z)),R)

ω �−→ �ω( f ) := Res( fω) .

One easily checks that ω = ∑
i �ω(Z

−i−1)ZidZ . Hence injectivity is clear. If � is an
arbitrary element in the right hand sideweputω := ∑

i �(Z
−i−1)ZidZ . The continuity

of � guarantees that �(Zi) = 0 for any sufficiently big i. Hence ω is a well defined
preimage of � in the left hand side. Finally, the map is open since

{ f ∈ R((Z)) : Res( fZnR[[Z]]dZ) = 0} = Z−nR[[Z]]

is compact for any n ≥ 1. �

For an arbitrary AL-module N we have the adjunction isomorphism

HomAL (N,HomoL (AL,L/oL))
∼=−→ HomoL (N,L/oL) (14)

F �−→ F(.)(1) .

Lemma 3.6 For any finitely generated AL/π
m
L AL-module M the adjunction (14)

together with (13) induces the topological isomorphism

HomAL (M,	1/πm
L 	1)

∼=−→ Homc
oL (M,L/oL)

F �−→ π−m
L Res(F(.)) mod oL .

Proof It is clear that (14) restricts to an injective homomorphism

HomAL (M,Homc
oL (AL/π

m
L AL,L/oL)) −→ Homc

oL (M,L/oL) . (15)

The inverse of (14) sends � ∈ HomoL (M,L/oL) to F(m)( f ) := �( fm) and visibly
restricts to an inverse of (15). By inserting (13) we obtain the asserted algebraic
isomorphism. To check that it also is a homeomorphism we first clarify that on the
left hand side we consider the weak topology of HomAL (M,	1/πm

L 	1) as a finitely
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generatedAL-module. The elementary divisor theorem for the discrete valuation ring
AL implies that M is isomorphic to a finite direct product of modules of the form
AL/π

n
LAL with 1 ≤ n ≤ m. It therefore suffices to consider the caseM = AL/π

n
LAL.

We then have the commutative diagram of isomorphisms

HomAL (AL/π
n
LAL,	

1/πm
L 	1)

=
�� ����������������

πm−n
L 	1/πm

L 	1 Homc
oL (AL/π

n
LAL,L/oL).

	1/πn
L	

1

πm−n
L ·

��

(13)

��������������������

By Lemma 3.5 all maps in this diagram except possibly the upper oblique arrow,
which is the map in the assertion, are homeomorphisms. Hence the oblique arrow
must be a homeomorphism as well. �

The �L-action (3) on oL[[Z]] extends, by the same formula, to a �L-action onAL

which, moreover, is continuous for the weak topology (see [31] Proposition 1.7.8.ii).

Definition 3.7 A (ϕL, �L)-module M (over AL) is a finitely generated AL-module
M together with

• a �L-action onM by semilinear automorphisms which is continuous for the weak
topology, and

• a ϕL-linear endomorphism ϕM of M which commutes with the �L-action.

It is called etale if the linearized map

ϕlin
M : AL ⊗AL,ϕL M

∼=−→ M

f ⊗ m �−→ f ϕM(m)

is bijective. We let Met(AL) denote the category of etale (ϕL, �L)-modules M over
AL.

Remark 3.8 Let α : AL −→ AL be a continuous ring homomorphism, and let β :
M −→ M be any α-linear endomorphism of a finitely generatedAL-moduleM; then
β is continuous for the weak topology on M.

Proof The map

β lin : AL ⊗AL,α M −→ M

f ⊗ m �−→ f β(m)

is AL-linear. We pick a free presentation λ : A n
L � M. Then we find an AL-linear

map β̃ such that the diagram
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A n
L

λ

����

αn
�� A n

L = AL ⊗AL,α A
n
L

id⊗λ
����

β̃ �� A n
L

λ

����
M

β

		
m �→1⊗m �� AL ⊗AL,α M

β lin

�� M

is commutative. All maps except possibly the lower left horizontal arrow are con-
tinuous. The universal property of the quotient topology then implies that β must be
continuous as well. �

Remarks 3.3 and 3.8 imply that the endomorphism ϕM of a (ϕL, �L)-module M
is continuous.

On any etale (ϕL, �L)-module M we have the oL-linear endomorphism

ψM : M (ϕlin
M )−1

−−−→ AL ⊗AL,ϕL M −→ M

f ⊗ m �−→ ψL( f )m ,

which, by construction, satisfies the projection formulas

ψM(ϕL( f )m) = fψM(m) and ψM( f ϕM(m)) = ψL( f )m ,

for any f ∈ AL and m ∈ M, as well as the formula

ψM ◦ ϕM = q

π
· idM .

Remark 3.3 is easily seen to imply that ψM is continuous for the weak topology.
For technical purposes later on we need to adapt part of Colmez’s theory of treillis

to our situation.We will do this in the following setting. LetM be a finitely generated
AL-module (always equipped with its weak topology) such that πn

LM = 0 for some
n ≥ 1; we also assume thatM is equipped with a ϕL-linear endomorphism ϕM which
is etale, i.e., such that ϕlin

M is bijective.

Definition 3.9 A treillis N inM is an oL[[Z]]-submodule N ⊆ M which is compact
and such that its image in M/πLM generates this kL((Z))-vector space.

Remark 3.10 i. If e1, . . . , ed are AL-generators of M then oL[[Z]]e1 + · · · +
oL[[Z]]ed is a treillis inM.

ii. A compact oL[[Z]]-submodule N of M is a treillis if and only if it is open.
iii. For any two treillis N0 ⊆ N1 inM the quotient N1/N0 is finite; in particular, any

intermediate oL[[Z]]-submodule N0 ⊆ N ⊆ N1 is a treillis as well.

Proof Part i. is obvious from the compactness of oL[[Z]]. For ii. and iii. see [11]
Proposition I.1.2(i). �
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Following Colmez we define

M++ := {m ∈ M : ϕi
M(m)

i→∞−−−→ 0}.

Since oL[[Z]] is compact it is easily seen that M++ is an oL[[Z]]-submodule of M.
Obviously M++ is ϕM-invariant.

Lemma 3.11 i. M++ is a treillis.
ii. ϕM − 1 is an automorphism of M++.

Proof i. Using Remark 3.10.i/iii this follows from [11] Lemma II.2.3. This lemma
is stated and proved there in the cyclotomic situation. But the only property of ϕL,
besides being etale, which is used is that ϕL(Z) ∈ Z2oL[[Z]] + πLZoL[[Z]].

ii. Obviouslym = 0 is the only element inM++ which satisfies ϕM(m) = m. Now
letm ∈ M++ be an arbitrary element. SinceM is complete the seriesm′ := ∑

i ϕ
i
M(m)

converges and satisfies (ϕM − 1)(−m′) = m. But M++ is open and hence closed in
M so that −m′ ∈ M++. �

The following lemma is a slight generalization of a result of Fontaine (cf. [20]
Proposition 2.4.1).

Lemma 3.12 On any etale (ϕL, �L)-module M such that πn
LM = 0 for some n ≥ 1

the map ϕM − 1 is open and, in particular, is topologically strict.

Proof AsM++, by Lemma 3.11.i and Remark 3.10.ii, is compact and open inM we
first see, using Lemma 3.11.ii, that ϕM − 1 is a homeomorphism on M++ and then
that ϕM − 1 is an open map. �

The categoryMet(AL) has an internal Hom-functor. For any two modulesM and
N in Met(AL) the AL-module HomAL (M,N) is finitely generated. It is a (ϕL, �L)-
module with respect to

γ (α) := γ ◦ α ◦ γ−1 and ϕHomAL (M,N)(α) := ϕlin
N ◦ (idAL ⊗α) ◦ (ϕlin

M )−1

for any γ ∈ �L and any α ∈ HomAL (M,N). We need to verify that the �L-action,
indeed, is continuous. This is a consequence of the following general facts.

Remark 3.13 For any two finitely generated AL-modules M and N we have:

i. The weak topology on HomAL (M,N) coincides with the topology of pointwise
convergence.

ii. The bilinear map

HomAL (M,N) × M −→ N

(α,m) �−→ α(m)

is continuous for the weak topology on all three terms.
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Proof Since any finitely generated module over the discrete valuation ring AL is a
direct sum of modules of the form AL or AL/π

j
LAL for some j ≥ 1, it suffices to

consider the case that M and N both are such cyclic modules. In fact, we may even
assume that M = AL and N = AL =: AL/π

∞
L AL or N = AL/π

j
LAL. We then have

the isomorphism of AL-modules

ev1 : HomAL (AL,AL/π
j
LAL)

∼=−→ AL/π
j
LAL

α �−→ α(1) .

For i.wehave to show that thismap is a homeomorphism for the topologyof pointwise
convergence and the weak topology on the left and right term, respectively. The
topology of pointwise convergence is generated by the subsets C( f ,U) := {α ∈
HomAL (AL,AL/π

j
LAL) : α( f ) ∈ U}, where f ∈ AL and where U runs over open

subsets U ⊆ AL/π
j
LAL (for the weak topology). For the open subset Uf := {n ∈

AL/π
j
LAL : fn ∈ U} we have C( f ,U) = C(1,Uf ). We see that ev1(C( f ,U)) = Uf .

Using the topological isomorphism ev1 the bilinear map in ii. becomes the multi-
plication map AL/π

j
LAL × AL −→ AL/π

j
LAL. It is continuous since, as noted ear-

lier, AL is a topological algebra for the weak topology. �

Let (γi)i∈N in �L, resp. (αi)i∈N in HomAL (M,N), be a sequence which converges
to γ ∈ �L, resp. to α ∈ HomAL (M,N) for the weak topology. We have to show
that the sequence (γi(αi))i converges to γ (α) for the weak topology. By Remark
3.13.i it, in fact, suffices to check pointwise convergence. Let therefore m ∈ M be
an arbitrary element. As �L acts continuously on M, we have limi→∞ γ−1

i (m) =
γ−1(m). The Remark 3.13.ii then implies that limi→∞ αi(γ

−1
i (m)) = α(γ−1(m). By

the continuity of the�L-action onN we finally obtain that limi→∞ γi(αi(γ
−1
i (m))) =

γ (α(γ−1(m))).
In order to check etaleness we use the linear isomorphisms ϕlin

M and ϕlin
N to identify

HomAL (M,N) and HomAL (AL ⊗AL,ϕL M,AL ⊗AL,ϕL N) = HomAL (M,AL ⊗AL,ϕL

N). Then the linearized map ϕlin
HomAL (M,N) becomes the map

AL ⊗AL,ϕL HomAL (M,N) −→ HomAL (M,AL ⊗AL,ϕL N)

f ⊗ α �−→ [m �→ f ⊗ α(m)] .

To see that the latter map is bijective we may use, because of the flatness of ϕL as an
injective ring homomorphism between discrete valuation rings, a finite presentation
of the module M in order to reduce to the case M = AL, in which the bijectivity is
obvious. Hence HomAL (M,N) is an etale (ϕL, �L)-module (cf. [15] A.1.1.7). One
easily checks the validity of the formula

ϕHomAL (M,N)(α)(ϕM(m)) = ϕN (α(m)) . (16)
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As a basic example we point out that	1 naturally is an etale (ϕL, �L)-module via

γ (dZ) := [χLT (γ )]′(Z)dZ = d[χLT (γ )](Z)
ϕ	1(dZ) := π−1

L [πL]′(Z)dZ = π−1
L d[πL](Z) .

Note that the congruence [πL](Z) ≡ πLZ + Zq mod πL indeed implies that the deriv-
ative [πL]′(Z) is divisible by πL. The simplest way to see that	1 is etale is to identify
it with another obviously etale (ϕL, �L)-module.

If χ : �L −→ o×
L is any continuous character with representation module Wχ =

oLtχ then, for any M in Met(AL), we have the twisted module M(χ) in Met(AL)

where M(χ) := M ⊗oL Wχ as AL-module, ϕM(χ)(m ⊗ w) := ϕM(m) ⊗ w, and
γ |M(χ)(m ⊗ w) := γ |M(m) ⊗ γ |Wχ (w) = χ(γ ) · γ |M(m) ⊗ w for γ ∈ �L. It fol-
lows that ψM(χ)(m ⊗ w) = ψM(m) ⊗ w. For the character χLT we take WχLT = T =
oLη andWχ−1

LT
= T∗ = oLη∗ as representation module, where T∗ denotes the oL-dual

with dual basis η∗ of η.

Lemma 3.14 The map

AL(χLT )
∼=−→ 	1

f ⊗ η �−→ fd logLT = f gLTdZ

is an isomorphism of (ϕL, �L)-modules.

Proof Since gLT is a unit in oL[[Z]] it is immediately clear that the map under
consideration is well defined and bijective. The equivariance follows from (2). �

Remark 3.15 For later applications we want to point out that for û ∈ (oL((Z))×)N=1

the differential form dû
û is ψ	1 -invariant: In fact using Lemma 3.14, Remark 3.2.ii,

and Lemma 2.5 for the second, fourth, and fifth identity, respectively, we compute

ψ	1(
dû

û
) = ψ	1(�LT (û)d logLT ) = ψ	1(�LT (û)ϕ	1(d logLT ))

= ψL(�LT (û))d logLT = π−1
L ψCol(�LT (û))d logLT

= �LT (û)d logLT = dû

û
.

Lemma 3.16 The map d : AL −→ 	1 satisfies:

i. πL · ϕ	1 ◦ d = d ◦ ϕL;
ii. γ ◦ d = d ◦ γ for any γ ∈ �L;
iii. π−1

L · ψ	1 ◦ d = d ◦ ψL.
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Proof i. For f ∈ AL we compute

ϕ	1(df ) = ϕ	1( f ′dZ)

= π−1
L f ′([πL](Z))[πL]′(Z)dZ

= π−1
L d( f ([πL](Z)))

= π−1
L d(ϕL( f )) .

ii. The computation is completely analogous to the one for i.
iii. Sinceϕ	1 is injective, the asserted identity is equivalent toϕ	1 ◦ ψ	1 ◦ d = d ◦

ϕL ◦ ψL by i. Lemma 3.14 implies that (ϕL ◦ ψL( f ))gLTdZ = ϕ	1 ◦ ψ	1( f gLTdZ).
Using this, (1), and Remark 3.2.iii in the second, first and fourth, and third identity,
respectively, we compute

ϕ	1 ◦ ψ	1(df ) = ϕ	1 ◦ ψ	1(∂inv( f )gLTdZ)

= (ϕL ◦ ψL(∂inv( f ))gLTdZ = ∂inv(ϕL ◦ ψL( f ))gLTdZ

= d(ϕL ◦ ψL( f )) .

�

Proposition 3.17 The residue map Res : 	1 −→ L satisfies:

i. Res ◦ ϕ	1 = π−1
L q · Res;

ii. Res ◦ γ = Res for any γ ∈ �L;
iii. Res ◦ ψ	1 = Res.

Proof Of course, exact differential forms have zero residue. Let now α denote any
of the endomorphisms ϕ	1 , γ , or ψ	1 of 	1. Using Lemma 3.16 we have (m +
1)Res(α(ZmdZ)) = Res(α(d(Zm+1))) = πε

LRes(dα(Z
m+1)) = 0with ε ∈ {−1, 0, 1}

and hence Res(α(ZmdZ)) = 0 for any m �= −1. Since Res is continuous it fol-
lows that α preserves the kernel of Res. This reduces us to showing the asserted
identities on the differential form Z−1dZ . In other words we have to check that
Res(α(Z−1dZ)) = π−1

L q, 1, 1, respectively, in the three cases.
i. We have ϕ	1(Z−1dZ) = π−1

L
[πL]′(Z)
[πL](Z) dZ . But [πL](Z) = Zq(1 + πLv(Z)) with

v ∈ AL. Hence ϕ	1(Z−1dZ) = π−1
L qZ−1dZ + π−1

L
d(1+πLv)
1+πLv

. In the proof of Remark

3.4.ii we have seen that d(1+πLv)
1+πLv

has zero residue.

ii. Here we have γ (Z−1dZ) = [χLT (γ )]′(Z)
[χLT (γ )](Z) dZ . But [χLT (γ )](Z) = Zu(Z)with a unit

u ∈ oL[[Z]]×. It follows that γ (Z−1dZ) = Z−1dZ + u′
u dZ . The second summand has

zero residue, of course.
iii. The identity in i. implies that Res ◦ ϕ	1 = π−1

L q · Res = Res ◦ ψ	1 ◦ ϕ	1 .
Hence the identity in iii. holds on the image of ϕ	1 (as well as on the kernel of
Res). But in the course of the proof of i. we have seen that Z−1dZ ∈ im(ϕ	1) +
ker(Res). �
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Corollary 3.18 The residue pairing satisfies

Res( fψ	1(ω)) = Res(ϕL( f )ω) for any f ∈ AL and ω ∈ 	1.

Proof By the projection formula the left hand side of the asserted equality is equal
to Res(ψ	1(ϕL( f )ω)). Hence the assertion follows from Proposition 3.17.iii. �

For a finitely generated AL/π
n
LAL-module M the isomorphism in Lemma 3.6

induces the following pairing

[ , ] = [ , ]M : M × HomAL (M,	1/πn
L	

1) −→ L/oL
(m,F) �−→ π−n

L Res(F(m)) mod oL .

Since M is locally compact it is (jointly) continuous by [4] X.28 Theorem 3. Note
that this pairing (and hence also the isomorphism in Lemma 3.6) is �L-invariant by
Proposition 3.17.ii.

The map HomAL (AL/π
n
LAL,	

1/πn
L	

1)
∼=−→ 	1/πn

L	
1 which sends F to F(1) is

an isomorphism of (etale) (ϕL, �L)-modules. Corollary 3.18 then implies that

[ϕAL/π
n
LAL ( f ),F]AL/π

n
LAL = [ f , ψHomAL (AL/π

n
LAL,	1/πn

L	
1)(F)]AL/π

n
LAL

for all f ∈ AL/π
n
LAL and F ∈ HomAL (AL/π

n
LAL,	

1/πn
L	

1). More generally, we
show:

Proposition 3.19 Let M be an etale (ϕL, �L)-module such that πn
LM = 0 for some

n ≥ 1; we have:

i. The operator ψM is left adjoint to ϕHomAL (M,	1/πn
L	

1) under the pairing [ , ], i.e.,

[ψM(m),F] = [m, ϕHomAL (M,	1/πn
L	

1)(F)]

for all m ∈ M and all F ∈ HomAL (M,	1/πn
L	

1);
ii. the operator ϕM is left adjoint to ψHomAL (M,	1/πn

L	
1) under the pairing [ , ], i.e.,

[ϕM(m),F] = [m, ψHomAL (M,	1/πn
L	

1)(F)]

for all m ∈ M and all F ∈ HomAL (M,	1/πn
L	

1).

Proof For notational simplicity we abbreviate the subscript HomAL (M,	1/πn
L	

1)

to Hom.
i. SinceM is etale it suffices to check the asserted identity on elements of the form

f ϕM(m) with f ∈ AL and m ∈ M. By the projection formula for ψM the left hand
side then becomes [ψL( f )m,F]. We compute the right hand side:
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[ f ϕM(m), ϕHom(F)] ≡ π−n
L Res(ϕHom(F)( f ϕM(m)))

≡ π−n
L Res( f ϕHom(F)(ϕM(m)))

≡ π−n
L Res( f ϕ	1/πn

L	
1(F(m)))

≡ π−n
L Res(ψ	1/πn

L	
1( f ϕ	1/πn

L	
1(F(m))))

≡ π−n
L Res(ψL( f )F(m))

≡ π−n
L Res(F(ψL( f )m))

≡ [ψL( f )m,F] mod oL ;

here the first and last identities are just the definition of [ , ], the second and sixth
use AL-linearity, the third the formula (16), the fourth Proposition 3.17 iii., and the
fifth the projection formula for ψ	1/πn

L	
1 .

ii. Correspondingly we compute

[ϕM(m), f ϕHom(F)] ≡ π−n
L Res( f ϕHom(F)(ϕM(m)))

≡ π−n
L Res( f ϕ	1/πn

L	
1(F(m)))

≡ π−n
L Res(ψ	1/πn

L	
1( f ϕ	1/πn

L	
1(F(m))))

≡ π−n
L Res(ψL( f )F(m))

≡ π−n
L Res((ψHom( f ϕHom(F)))(m))

≡ [m, ψHom( f ϕHom(F))] mod oL .

�

Remark 3.20 Similarly, for any etale (ϕL, �L)-module M such that πn
LM = 0 one

can consider the �L-invariant (jointly) continuous pairing

[ , 〉 = [ , 〉M : M × HomAL (M,AL(χLT )/π
n
LAL(χLT )) −→ L/oL

(m,F ⊗ η) �−→ π−n
L Res(F(m)d logLT ) mod oL

which arises from [ , ]M by plugging in the isomorphism from Lemma 3.14. Clearly,
it has adjointness properties analogous to the ones in Proposition 3.19.

4 The Kisin–Ren Equivalence

Let Ẽ+ := lim←− oCp/poCp with the transition maps being given by the Frobenius

φ(a) = ap. We may also identify Ẽ+ with lim←− oCp/πLoCp with the transition maps

being given by the q-Frobenius φq(a) = aq. Recall that Ẽ+ is a complete valuation
ring with residue field Fp and its field of fractions Ẽ = lim←−Cp being algebraically

closed of characteristic p. Let mẼ denote the maximal ideal in Ẽ+.
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The q-Frobenius φq first extends by functoriality to the rings of the Witt vectors
W (Ẽ+) ⊆ W (Ẽ) and then oL-linearly to W (Ẽ+)L := W (Ẽ+) ⊗oL0

oL ⊆ W (Ẽ)L :=
W (Ẽ) ⊗oL0

oL, where L0 is the maximal unramified subextension of L. The Galois
group GL obviously acts on Ẽ and W (Ẽ)L by automorphisms commuting with φq.
This GL-action is continuous for the weak topology on W (Ẽ)L (cf. [31] Lemma
1.5.3). Let ML denote the ideal in W (Ẽ+)L which is the preimage of mẼ under the
residue class map.

Evaluation of the global coordinate Z of LT at πL-power torsion points induces a
map (not a homomorphismof abelian groups) ι : T −→ Ẽ+. Namely, if t = (zn)n≥1 ∈
T with [πL](zn+1) = zn and [πL](z1) = 0, then zqn+1 ≡ zn mod πL and hence ι(t) :=
(zn mod πL)n ∈ Ẽ+.

Lemma 4.1 The image of the map ι is contained in mẼ. The map

ιLT : T −→ ML

t �−→ lim
n→∞([πL] ◦ φ−1

q )n([ι(t)])) ,

where [ι(t)] denotes the Teichmüller representative of ι(t), is well defined and satis-
fies:

1. [a](ιLT (t)) = ιLT (at) for any a ∈ oL;
2. φq(ιLT (t)) = ιLT (πLt) = [πL](ιLT (t));
3. σ(ιLT (t)) = [χLT (σ )](ιLT (t)) for any σ ∈ GL.

Proof This is [24] Lemma 1.2, which refers to [9] Lemma 9.3. For full details see
[31] §2.1. �

As before we fix an oL-generator η of T and put ωLT := ιLT (η). By sending Z to
ωLT we obtain an embedding of rings

oL[[Z]] −→ W (Ẽ+)L .

As explained in [24] (1.3) it extends to embeddings of rings

AL −→ W (Ẽ)L and BL −→ L ⊗oL W (Ẽ)L .

The left map, in fact, is a topological embedding for the weak topologies on both
sides ([31] Proposition 2.1.16.i). The Galois groupGL acts through its quotient�L on
BL by (σ, f ) �−→ f ([χLT (σ )](Z)). Then, by Lemma 4.1.c, the above embeddings are
GL-equivariant. Moreover, the q-Frobenius φq on L ⊗oL W (Ẽ)L, by Lemma 4.1.b,
restricts to the endomorphism f �−→ f ◦ [πL] ofBL which we earlier denoted by ϕL.

We define AL to be the image ofAL inW (Ẽ)L. It is a complete discrete valuation
ring with prime element πL and residue field the image EL of kL((Z)) ↪→ Ẽ. As a
consequence of Lemma 4.1.a this subring AL is independent of the choice of η. As
explained above each choice of η gives rise to an isomorphism
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(AL, ϕL, �L,weak topology)
∼=−→ (AL, φq, �L,weak topology) (17)

between the oL-algebras AL and AL together with their additional structures. By
literally repeating the Definition 3.7 we have the notion of (etale) (φq, �L)-modules
over AL as well as the category Met(AL). In the same way as for Remark 3.2.i we
may define the operator ψL on AL and then on any etale (φq, �L)-module over AL.
The above algebra isomorphism gives rise to an equivalence of categories

Met(AL)
�−→ Met(AL) , (18)

which also respects the ψL-operators. Using the norm map for the extension
AL/φq(AL)we define, completely analogously as in (8), a multiplicative norm oper-
ator N : AL −→ AL. Then, using also Lemma 4.1.b, NL and N correspond to each
other under the isomorphism (17). In particular, (17) (for any choice of η) induces
an isomorphism

(A ×
L )NL=1 ∼=−→ (A×

L )
N=1 . (19)

We form the maximal integral unramified extension (= strict Henselization) of
AL inside W (Ẽ)L. Its p-adic completion A still is contained in W (Ẽ)L. Note that A
is a complete discrete valuation ring with prime element πL and residue field the
separable algebraic closure Esep

L of EL in Ẽ. By the functoriality properties of strict
Henselizations the q-Frobenius φq preserves A. According to [24] Lemma 1.4 the

GL-action on W (Ẽ)L respects A and induces an isomorphism HL = ker(χLT )
∼=−→

Autcont(A/AL).
Let RepoL (GL) denote the abelian category of finitely generated oL-modules

equipped with a continuous linear GL-action. The following result is established
in [24] Theorem 1.6.

Theorem 4.2 The functors

V �−→ DLT (V ) := (A ⊗oL V )ker(χLT ) and M �−→ (A ⊗AL M)φq⊗ϕM=1

are exact quasi-inverse equivalences of categories betweenRepoL (GL) andMet(AL).

For the convenience of the reader we discuss a few properties, which will be used
later on, of the functors in the above theorem.

First of all we recall that the tensor productM ⊗oL N of two linear-topological oL-
modulesM and N is equipped with the linear topology for which the oL-submodules

im(UM ⊗oL N → M ⊗oL N) + im(M ⊗oL UN → M ⊗oL N) ⊆ M ⊗oL N ,

where UM and UN run over the open submodules of M and N , respectively, form a
fundamental system of open neighbourhoods of zero. One checks that, if a profinite
group H acts linearly and continuously on M and N , then its diagonal action on
M ⊗oL N is continuous as well.
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In our situation we consider M = A with its weak topology induced by the
weak topology of W (Ẽ)L and N = V in RepoL (GL) equipped with its πL-adic
topology. The diagonal action of GL on A ⊗oL V then, indeed, is continuous. In
addition, since the πL-adic topology on A is finer than the weak topology, any
open oL-submodule of A contains π

j
LA for a sufficiently big j. Hence {im(U ⊗oL

V → A ⊗oL V ) : U ⊆ A any open oL -submodule} is a fundamental system of open
neighbourhoods of zero in A ⊗oL V . This implies that the tensor product topology
on A ⊗oL V is nothing else than its weak topology as a finitely generated A-module.

Remark 4.3 For any V in RepoL (GL) the tensor product topology on A ⊗oL V
induces the weak topology on DLT (V ). In particular, the residual �L-action on
DLT (V ) is continuous.

Proof The finitely generated AL-moduleDLT (V ) is of the formDLT (V ) ∼= ⊕r
i=1AL/

π
ni
L AL with 1 ≤ ni ≤ ∞. Using the isomorphism in the subsequent Proposition 4.4.ii

we obtain that A ⊗oL V ∼= ⊕r
i=1A/π

ni
L A. We see that the inclusionDLT (V ) ⊆ A ⊗oL

V is isomorphic to the direct product of the inclusions AL/π
ni
L AL ⊆ A/π

ni
L A, which

clearly are compatible with the weak topologies. �

Proposition 4.4 i. The functor DLT is exact.

ii. For any V in RepoL (GL) the natural map A ⊗AL DLT (V )
∼=−→ A ⊗oL V is an

isomorphism (compatible with the GL-action and the Frobenius on both sides).

Proof We begin with three preliminary observations.
(1) As A is oL-torsion free, the functor A ⊗oL − is exact.
(2) The functor DLT restricted to the full subcategory of finite length objects

V in RepoL (GL) is exact. This follows immediately from 1) and the vanishing of
H1(HL,A ⊗oL V ) in Lemma 5.2 below.

(3) For any V in RepoL (GL) we have DLT (V ) = lim←−n
DLT (V/πn

LV ). To see this
we compute

lim←−
n

DLT (V/πn
LV ) = lim←−

n

(A ⊗oL V/πn
LV )HL = (lim←−

n

(A ⊗oL V/πn
LV ))HL

= (A ⊗oL lim←−
n

V/πn
LV )HL = (A ⊗oL V )HL

= DLT (V ) .

Here the third identity becomes obvious if one notes that V as an oL-module is
a finite direct sum of modules of the form oL/π

j
LoL with 1 ≤ j ≤ ∞. In this case

lim←−n
(A ⊗oL oL/π

j+n
L oL) = lim←−n

A/π
j+n
L A = A/π

j
LA = A ⊗oL oL/π

j
LoL.

i. Let
0 −→ V1 −→ V2 −→ V3 −→ 0

be an exact sequence inRepoL (GL). By (2)weobtain the exact sequences of projective
systems of finitely generated AL-modules
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DLT (ker(π
n
L |V3)) → DLT (V1/π

n
LV1) → DLT (V2/π

n
LV2) → DLT (V3/π

n
LV3) → 0 .

Since AL is a noetherian pseudocompact ring taking projective limits is exact. By
(3) the resulting exact sequence is

lim←−
n

DLT (ker(π
n
L |V3)) −→ DLT (V1) −→ DLT (V2) −→ DLT (V3) −→ 0 .

But since the torsion subgroup of V3 is finite and the transition maps in the projective
system (ker(πn

L |V3))n are multiplication by πL, any composite of sufficiently many
transition maps in this projective system and hence also in the projective system
(DLT (ker(πn

L |V3)))n is zero. It follows that lim←−n
DLT (ker(πn

L |V3)) = 0.
ii. The compatibility properties are obvious from the definition of the map.

To show its bijectivity we may assume, by devissage and (3), that πLV = 0.
In this case our assertion reduces to the bijectivity of the natural map Esep

L ⊗EL

(Esep
L ⊗k V )Gal(E

sep
L /EL) −→ Esep

L ⊗k V . But this is a well known consequence of the
vanishing of the Galois cohomology group H1(Gal(Esep

L /EL),GLd(E
sep
L )) where

d := dimkV . �

Lemma 4.5 The above equivalence of categories DLT is compatible with the for-
mation of inner Hom-objects, i.e., there are canonical isomorphisms

HomAL (DLT (V1),DLT (V2)) = DLT (HomoL (V1, V2))

for every V1, V2 in RepoL (GL). We also have

ψHomAL (DLT (V1),DLT (V2)) = ψDLT (HomoL (V1,V2)) .

Proof We have

DLT (HomoL (V1, V2)) = (A ⊗oL HomoL (V1, V2))
HL

= HomA(A ⊗oL V1,A ⊗oL V2)
HL

= HomA(A ⊗AL DLT (V1),A ⊗oL V2)
HL

= HomAL (DLT (V1),A ⊗oL V2)
HL

= HomAL (DLT (V1), (A ⊗AL V2)
HL )

= HomAL (DLT (V1),DLT (V2)) .

Here the second identity is clear for V1 being free, the general case follows by
choosing a finite presentation of V1 (as oL-module neglecting the group action). The
third identity uses Proposition 4.4.ii, while the fourth one comes from the adjointness
of base extension and restriction. The fifth one uses the fact that HL acts trivially on
DLT (V1).

One easily checks that the above sequence of identities is compatible with the
�L-actions (which are induced by the diagonal GL-action on A ⊗oL −).
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The compatibility with Frobenius can be seen as follows. First of all we abbreviate
ϕDLT (Hom) := ϕDLT (HomoL (V1,V2)) and ϕHom := ϕHomAL (DLT (V1),DLT (V2)). An element β =
∑

i ai ⊗ αi ∈ (A ⊗oL HomoL (V1, V2))
HL becomes, under the above identifications,

the map ιβ : DLT (V1) → (A ⊗oL V2)
HL which sends

∑
j cj ⊗ vj to

∑
i,j aicj ⊗ αi(vj).

Assuming that cj = φq(c′
j) we compute

ιϕDLT (Hom)(β)(ϕDLT (V1)(
∑

j

c′
j ⊗ vj) = ι∑

i φq(ai)⊗αi(
∑

j

φq(c
′
j) ⊗ vj)

=
∑

i,j

φq(ai)φq(c
′
j) ⊗ αi(vj)

= ϕDLT (V2)(
∑

i,j

aic
′
j ⊗ αi(vj))

= ϕDLT (V2)(ιβ(
∑

j

c′
j ⊗ vj))

= ϕHom(ιβ)(ϕDLT (V1)(
∑

j

c′
j ⊗ vj)) ,

where the last identity comes from (16). Using the etaleness of DLT (V1) we deduce
that ιϕDLT (Hom)(β) = ϕHom(ιβ) for any β ∈ DLT (HomoL (V1, V2)). The additional for-
mula for the ψ-operators is a formal consequence of the compatibility of the ϕ-
operators. �

Remark 4.6 For any V in RepoL (GL) and any continuous character χ : �L −→
o×
L with representation module Wχ = oLtχ the twisted GL-representation V (χ)

is defined to be V (χ) = V ⊗ Wχ as oL-module and σ|V (χ)(v ⊗ w) = σ|V (v) ⊗
σ|Wχ

(w) = χ(σ) · σ|V (v) ⊗ w. One easily checks that DLT (V (χ)) = DLT (V )(χ).
If V = oL/πn

LoL, 1 ≤ n ≤ ∞ is the trivial representation, we usually identify V (χ)

and Wχ . Recall that for the character χLT we take WχLT = T = oLη and Wχ−1
LT

=
T∗ = oLη∗ as representation module, where T∗ denotes the oL-dual with dual basis
η∗ of η.

Defining 	1 := 	1
AL

= ALdωLT any choice of η defines an isomorphism 	1
AL

∼=
	1

AL
by sending f (Z)dZ to f (ωLT )dωLT ; moreover 	1

AL
and 	1

AL
correspond to each

other under the equivalence of categories (18). Due to the isomorphism (17) we
obtain a residue pairing

AL × 	1
AL

−→ oL (20)

( f (ωLT ), g(ωLT )dωLT ) �−→ Res( f (Z)g(Z)dZ)

which satisfies

Res( fψ	1(ω)) = Res(φq( f )ω) for any f ∈ AL and ω ∈ 	1
AL

(21)
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(by Corollary 3.18) and which is independent of the choice of η, i.e.,ωLT , by Remark
3.4.ii and Lemma 4.1.a. In particular, we have a well defined map Res : 	1

AL
→ oL.

In this context Remark 3.15 together with Remark 3.2.vii tell us that

ψ	1(
dû

û
) = dû

û
(22)

holds true for every û ∈ (A×
L )

N=1.
Moreover, Lemma 3.6 translates into the (existence of the) topological isomor-

phism

HomAL (M,	1
AL

/πn
L	

1
AL

)
∼=−→ Homc

oL (M,L/oL) (23)

F �−→ π−n
L Res(F(.)) mod oL ,

for any M annihilated by πn
L . Lemma 3.14 implies the isomorphism

AL(χLT ) = AL ⊗oL T
∼=−→ 	1

AL

f (ιLT (η)) ⊗ η �−→ f (ιLT (η))gLT (ιLT (η))dιLT (η) .

Using Lemma 4.1.a as well as the second identity in (2) one verifies that this isomor-
phism (unlike its origin in Lemma 3.14) does not depend on the choice of η. We use
it in order to transform (23) into the topological isomorphism

HomAL (M,AL/π
n
LAL(χLT ))

∼=−→ Homc
oL (M,L/oL). (24)

Finally we obtain the following analogues of Proposition 3.19 and Remark 3.20.

Remark 4.7 For any etale (ϕL, �L)-module M such that πn
LM = 0 one has the �L-

invariant (jointly) continuous pairing

[ , 〉 = [ , 〉M : M × HomAL (M,AL/π
n
LAL(χLT )) −→ L/oL

(m,F) �−→ π−n
L Res(F(m)d logLT (ωLT )) mod oL

with adjointness properties analogous to the ones in Proposition 3.19. Again, it is
independent of the choice of η.

5 Iwasawa Cohomology

For any V in RepoL (GL) we also write Hi(K, V ) = Hi(GK , V ), for any algebraic
extension K of L, and we often abbreviate ϕ := ϕDLT (V ).
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Remark 5.1 For any V in RepoL (GL) the sequence

0 −→ V
⊆−→ A ⊗oL V

φq⊗id−1−−−−−→ A ⊗oL V −→ 0 (25)

is exact.

Proof We clearly have the exact sequence 0 → kL → Esep
L

x �→xq−x−−−−→ Esep
L → 0. By

devissagewe deduce the exact sequence 0 → oL/πn
LoL → A/πn

LA
φq−1−−→ A/πn

LA →
0 for any n ≥ 1. Since the projective system {oL/πn

LoL}n has surjective transition
maps, passing to the projective limit is exact and gives the exact sequence

0 → oL → A
φq−1−−→ A → 0. (26)

Finally, A is oL-torsion free and hence flat over oL. It follows that tensoring by V is
exact. �

Since A is the πL-adic completion of an unramified extension of AL with Galois
groupHL theHL-action on A/πn

LA, for any n ≥ 1, and hence on A ⊗oL V , whenever
πn
LV = 0 for some n ≥ 1, is continuous for the discrete topology. We therefore may,

in the latter case, pass from (25) to the associated long exact Galois cohomology
sequence with respect to HL.

Lemma 5.2 Suppose that πn
LV = 0 for some n ≥ 1; we then have:

i. Hi(HL,A ⊗oL V ) = 0 for any i ≥ 1;
ii. the long exact cohomology sequence for (25) gives rise to an exact sequence

0 −→ H0(L∞, V ) −→ DLT (V )
ϕ−1−−−→ DLT (V )

∂ϕ−→ H1(L∞, V ) −→ 0 . (27)

Proof i. Since A ⊗oL V ∼= A ⊗AL DLT (V ) by Proposition 4.4.ii, it suffices to show
the vanishing of Hi(HL,A/πn

LA) = 0 for i ≥ 1. This reduces, by devissage, to the
case n = 1, i.e., toHi(HL,Esep

L ) = 0, which is a standard fact of Galois cohomology.
ii. follows immediately from i. �

In order to derive from this a computation of Iwasawa cohomology in terms of
(ϕL, �L)-modules we first have to recall Pontrjagin duality and local Tate duality in
our setting. The trace pairing

L × L −→ Qp

(x, y) �−→ TrL/Qp(xy)

gives rise to the inverse different

D−1
L/Qp

= {x ∈ L : TrL/Qp(xoL) ⊆ Zp} ∼=−→ HomZp(oL,Zp)

y �−→ [x �→ TrL/Qp(yx)] .
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Let DL/Qp = π s
LoL. We fix once and for all the oL-linear isomorphism

oL
∼=−→ HomZp(oL,Zp) (28)

y �−→ [x �→ TrL/Qp(π
−s
L xy)] .

By tensoring with Qp/Zp it induces the isomorphism of torsion oL-modules

� : L/oL ∼= HomZp(oL,Zp) ⊗Zp Qp/Zp
∼= HomZp(oL,Qp/Zp) .

Now let M be any topological oL-module. Since HomZp(oL,−) is right adjoint
to scalar restriction from oL to Zp and by using �−1 in the second step, we have a
natural isomorphism

HomZp(M,Qp/Zp) ∼= HomoL (M,HomZp(oL,Qp/Zp)) ∼= HomoL (M,L/oL) . (29)

Lemma 5.3 The isomorphism (29) restricts to an isomorphism

Homc
Zp
(M,Qp/Zp) ∼= Homc

oL (M,L/oL)

of topological groups between the subgroups of continuous homomorphisms endowed
with the compact-open topology.

Proof Coming from an isomorphism between the targets the second isomorphism
in (29) obviously restricts to a topological isomorphism

Homc
oL (M,HomZp(oL,Qp/Zp)) ∼= Homc

oL (M,L/oL) .

The first isomorphism is induced by the homomorphism λ �→ λ(1) between the
targets and therefore, at least restricts to a continuous injective map

Homc
oL (M,HomZp(oL,Qp/Zp)) −→ Homc

Zp
(M,Qp/Zp) .

Let � : M → Qp/Zp be a continuous homomorphism. Then the composite map

M × oL
(m,a)�→am−−−−−→ M

�−→ Qp/Zp

is continuous. Therefore the preimage F� ∈ HomoL (M,HomZp(oL,Qp/Zp)) of �,
which is given by F�(m)(a) := �(am), is continuous by [4] X.28 Theorem 3. Finally
let A ⊆ M be any compact subset and V ⊆ Qp/Zp be any subset. Define B := {a ∈
oL : aA ⊆ A}. Then 1 ∈ B, and, sinceA is closed, alsoB is closed and hence compact.
Put Ṽ := {λ ∈ HomZp(oL,Qp/Zp) : λ(B) ⊆ V }. One easily checks that �(A) ⊆ V if
and only if F�(A) ⊆ Ṽ . This means that the inverse bijection � �→ F� is continuous
as well. �
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In the following we shall use the notation

M∨ := Homc
oL (M,L/oL) ,

always equipped with the compact-open topology. The following version of Pontrja-
gin duality should be well known. Since we could not find a reference we will sketch
a proof for the convenience of the reader.

Proposition 5.4 (Pontrjagin duality) The functor −∨ defines an involutory con-
travariant autoequivalence of the category of (Hausdorff) locally compact linear-
topological oL-modules. In particular, for such a module M, the canonical map

M
∼=−→ (M∨)∨

is an isomorphism of topological oL-modules.

Proof We recall that a topological oL-moduleM is called linear-topological if it has a
fundamental system of open zero neighbourhoods consisting of oL-submodules. IfM
is linear-topological and locally compact one easily checks that it has a fundamental
system of open zero neighbourhoods consisting of compact open oL-submodules.

Classical Pontrjagin duality M �−→ Homc(M,R/Z), the right hand side being
the group of all continuous group homomorphisms equipped with the compact-open
topology, is an autoequivalence of the category of locally compact abelian groupsM.
We first compare this, for any locally compact linear-topologicalZp-moduleM, with
the group Homc

Zp
(M,Qp/Zp), as always equipped with the compact-open topology.

There is an obvious injective and continuous map

Homc
Zp
(M,Qp/Zp) −→ Homc(M,R/Z) . (30)

Step 1: The map (30) is bijective. Let � : M → R/Z be any continuous group
homomorphism. We have to show that im(�) ⊆ Qp/Zp and that � is continuous for
the discrete topology on Qp/Zp. We fix a compact-open Zp-submodule U ⊆ M.
Then �(U) is a compact subgroup of R/Z, and hence is either equal to R/Z or
is finite. Since U is profinite the former cannot occur. We conclude that �(U) is a
finite subgroup ofQp/Zp. In particular, there is an r ∈ N such that pr · �|U = 0. The
quotient moduleM/U is discrete and Zp-torsion. It follows that pr · �(M) ⊆ Qp/Zp

and hence that �(M) ⊆ Qp/Zp. SinceR/Z induces the discrete topology on the finite
subgroup �(U) the restricted homomorphism � : U → Qp/Zp is continuous. Since
U is open in M this suffices for the continuity of � : M → Qp/Zp. That � then is a
homomorphism of Zp-modules is automatic.

Step 2: The map (30) is open.As usual,C(A, V ), for a compact subset A ⊆ M and
an arbitrary subsetV ⊆ Qp/Zp, denotes theopen subset of all � ∈ Homc

Zp
(M,Qp/Zp)

such that �(A) ⊆ V . First one checks that the C(m + U, V ), for m ∈ M, U ⊆ M a
compact-open Zp-submodule, and V arbitrary, form a subbase of the compact-open
topology. For any �0 ∈ C(m + U, V ) we have �0 ∈ C(m + U, �0(m) + �0(U)) ⊆
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C(m + U, V ), where �0(U) is a finite subgroup ofQp/Zp. These observations reduce
us to showing that the sets C(m + U, v + 1

pnZ/Z) are open in Homc(M,R/Z). We

fix a point �0 ∈ C(m + U, v + 1
pnZ/Z), and we let pt be the order of m modulo U.

Note that we have �0(m) ∈ v + 1
pnZ/Z and hence

�0(U) ⊆ 1
pnZ/Z and �0(m) ∈ 1

pn+t Z/Z . (31)

We use the open subsets

V1(�0) := (
(− 1

2pn+t+1 ,
1

2pn+t+1 ) + 1
pnZ

)
/Z ⊆ V2(�0) := V1(�0) − V1(�0) ⊆ R/Z .

They satisfy:

(a) V2(�0) ∩ 1
pn+t+1Z/Z = V1(�0) ∩ 1

pn+t+1Z/Z = 1
pnZ/Z.

(b) V1(�0) + 1
pnZ/Z ⊆ V1(�0).

We claim that �0 ∈ C(m + U, v + V1(�0)) ⊆ C(m + U, v + 1
pnZ/Z). This means

that in Homc(M,R/Z) we have found an open neighbourhood of �0 which is con-
tained in C(m + U, v + 1

pnZ/Z). Hence C(m + U, v + 1
pnZ/Z) is open in Homc

(M,R/Z). Since 1
pnZ/Z ⊆ V1(�0) we certainly have �0 ∈ C(m + U, v + V1(�0)).

Let now � ∈ C(m + U, v + V1(�0)) be an arbitrary element. We have �(U) = 1
pjZ/Z

for some j ≥ 0 and consequently �(m) ∈ 1
pj+t Z/Z.

Case 1: j ≤ n. Using (31) we then have �0(m) − v ∈ 1
pnZ/Z and �(m) − �0(m) ∈

1
pn+t Z/Z and hence

�(m) − v = �(m) − �0(m) + �0(m) − v ∈ 1
pn+t Z/Z .

Since also �(m) − v ∈ V1(�0) we deduce from (a) that �(m) − v ∈ 1
pnZ/Z and there-

fore
�(m + U) = �(m) + �(U) ⊆ v + 1

pnZ/Z + 1
p jZ/Z = v + 1

pnZ/Z .

Case 2: j > n. We obtain

1
pn+1Z/Z ⊆ 1

p jZ/Z = �(U) ⊆ −�(m) + v + V1(�0)

= −(�(m) − �0(m)) − �0(m) + v + V1(�0)

⊆ −(�(m) − �0(m)) + 1
pnZ/Z + V1(�0)

⊆ −(�(m) − �0(m)) + V1(�0)

⊆ −(V1(�0) + 1
pnZ/Z) + V1(�0)

⊆ V1(�0) − V1(�0)

⊆ V2(�0) ,
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where the fourth and the sixth inclusion use (b). This is in contradiction to (b). We
deduce that this case, in fact, cannot occur.

At this point we have shown that (30) is a topological isomorphism of locally
compact abelian groups. From now on we assume thatM is a locally compact linear-
topological oL-module. By combining this latter isomorphism with the isomorphism
inLemma5.3weobtain a topological isomorphismof locally compact abelian groups

Homc
oL (M,L/oL) ∼= Homc(M,R/Z) , (32)

which is natural inM. Of course, Homc
oL (M,L/oL) naturally is an oL-module again.

Step 3: The oL-module Homc
oL (M,L/oL) is linear-topological. It is straight-

forward to check that the C(U, {0}) with U running over all compact open oL-
submodules of M form a fundamental system of open zero neighbourhoods in M∨.
Each such C(U, {0}) evidently is an oL-submodule.

Hence the topological isomorphism (32) also applies to M∨ instead of M. One
checks that the natural map M → Homc(Homc(M,R/Z),R/Z) corresponds under
this isomorphism to the natural map M → (M∨)∨. We finally see that the classical

Pontrjagin duality implies that M
∼=−→ (M∨)∨ is a topological isomorphism; it, of

course, is oL-linear. �

Remark 5.5 LetM0
α−→ M

β−→ M1 be a sequenceof locally compact linear-topological
oL-modules such that im(α) = ker(β) and β is topologically strict with closed

image; then the dual sequence M∨
1

β∨−→ M∨ α∨−→ M∨
0 is exact as well, i.e., we have

im(β∨) = ker(α∨).

Proof We have ker(α∨) = (M/ im(α))∨ ∼= im(β)∨, where the second isomorphism
uses the assumption that β is topologically strict. The assertion therefore reduces to
the claim that the closed immersion im(β) ⊆ M1 induces a surjection between the
corresponding Pontrjagin duals. For this see, for example, [21] Theorem 24.11. �

We recall that theweak topology on a finitely generatedAL-moduleM is oL-linear;
moreover, it is locally compact ifM is annihilated by some power of πL. Suppose that
M is a finitely generated AL/π

n
LAL-module. From (23) and (24) we have topolog-

ical isomorphismsM∨ ∼= HomAL (M,	1/πn
L	

1) ∼= HomAL (M,AL/π
n
LAL(χLT )). By

Proposition 5.4 they dualize into topological isomorphisms M ∼= HomAL

(M,	1/πn
L	

1)∨ ∼= HomAL (M,AL/π
n
LAL(χLT ))

∨. IfM actually is an etale (ϕq, �L)-
module then we see that in the adjoint pairs of maps (ψM, ϕHomAL (M,	1/πn

L	
1)) and

(ϕM, ψHomAL (M,	1/πn
L	

1)) from Remark 4.7 each map determines the other uniquely.

Remark 5.6 Let V be an object in RepoL (GL) of finite length. Then, the pairing
[ , 〉DLT (V ) from Remark 4.7, the Remark 4.6, and the compatibility of the functor
DLT (−) with internal Hom’s by Lemma 4.5 induce, for n sufficiently large, a natural
isomorphism of topological groups
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DLT (V )∨ ∼= HomAL (DLT (V ),AL/π
n
LAL(χLT ))

∼= HomAL (DLT (V ),DLT ((oL/π
n
LoL)(χLT )))

= DLT (HomoL (V, (oL/π
n
LoL)(χLT ))) = DLT (V

∨(χLT )) ,

which is independent of the choice of n and under whichψDLT (V ∨(χLT )) identifies with
ϕ∨
DLT (V ) by Remark 4.7.

Proposition 5.7 (Local Tate duality) Let V be an object in RepoL (GL) of finite
length, and K any finite extension of L. Then the cup product and the local invariant
map induce perfect pairings of finite oL-modules

Hi(K, V ) × H2−i(K,HomZp(V,Qp/Zp(1))) −→ H2(K,Qp/Zp(1)) = Qp/Zp

and

Hi(K, V ) × H2−i(K,HomoL (V,L/oL(1))) −→ H2(K,L/oL(1)) = L/oL

where—(1) denotes the Galois twist by the cyclotomic character. In other words,
there are canonical isomorphisms

Hi(K, V ) ∼= H2−i(K, V ∨(1))∨ .

Proof Note that the isomorphism H2(K,L/oL(1)) = L/oL arises from the isomor-
phism H2(K,Qp/Zp(1)) = Qp/Zp by tensoring with oL over Zp. The first pairing is
the usual version of local Tate duality (cf. [35] II.5.2 Theorem 2). It induces the first
isomorphism in

Hi(K, V ) ∼= HomZp(H
2−i(K,HomZp(V,Qp/Zp(1))),Qp/Zp)

∼= HomoL (H
2−i(K,HomZp(V,Qp/Zp(1))),L/oL)

∼= HomoL (H
2−i(K,HomoL (V,L/oL(1))),L/oL) ,

while the second and third are induced by Lemma 5.3. To obtain the second pair-
ing it remains to check that the above composite isomorphism is given by the cup
product again. By the functoriality properties of the cup product this reduces to the
following formal fact. Let ξ : L/oL −→ Qp/Zp be any group homomorphism. Then
the diagram

H2(K,L/oL(1))

H2(K,ξ(1))
��

= �� L/oL

ξ

��
H2(K,Qp/Zp(1))

= �� Qp/Zp
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commutes, where the horizontal maps are the local invariant maps. This in turn is
an easy consequence of the Zp-linearity of the local invariant map if one uses the

following description of ξ viewed as a map L/oL = Qp/Zp ⊗Zp oL
ξ−→ Qp/Zp. Let

ζ : oL −→ HomZp(Qp/Zp,Qp/Zp) = Zp be the homomorphism which sends a to
c �→ ξ(c ⊗ a). Then ξ(c ⊗ a) = ζ(a)c. �

For any V in RepoL (GL) we define the generalized Iwasawa cohomology of V by

H∗
Iw(L∞/L, V ) := lim←−

K

H∗(K, V )

where K runs through the finite Galois extensions of L contained in L∞ and the
transition maps in the projective system are the cohomological corestriction maps.1

Shapiro’s lemma for cohomology gives natural isomorphisms

H∗(K, V ) = H∗(GL, oL[GL/GK ] ⊗oL V )

where, on the right hand side, GL acts diagonally on the coefficients. In this picture
the corestriction map, for K ⊆ K ′, becomes the map induced on cohomology by the
map pr⊗ idV : oL[GL/GK ′ ] ⊗oL V −→ oL[GL/GK ] ⊗oL V .

Lemma 5.8 H∗
Iw(L∞/L, V ) = H∗(GL, oL[[�L]] ⊗oL V ) (where the right hand side

refers to cohomology with continuous cochains).

Proof On the level of continuous cochain complexes we compute

lim←−
K

C•(GL, oL[GL/GK ] ⊗oL V ) = C•(GL, lim←−
K

(oL[GL/GK ] ⊗oL V ))

= C•(GL, oL[[�L]] ⊗oL V ) .

The second identity comes from the isomorphism lim←−K
(oL[GL/GK ] ⊗oL V ) ∼=

oL[[�L]] ⊗oL V which is easily seen by using a presentation of the form 0 → osL →
orL → V → 0. Since the transition maps in this projective system of complexes are
surjective the first hypercohomology spectral sequence for the composite functor
lim←−◦H0(GL, .) degenerates so that the second hypercohomology spectral sequence
becomes

Ri lim←−
K

Hj(GL, oL[GL/GK ] ⊗oL V ) =⇒ Hi+j(GL, oL[[�L]] ⊗oL V ) .

1Note that, for any finite extension K/L contained in L∞ the definition H∗
Iw(L∞/K, V ) :=

lim←−K⊆K ′⊆L∞
H∗(K ′, V ) produces the same oL-modules. Our notation indicates that we always

consider these groups as �L-modules.
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Due to the countability of our projective system we have Ri lim←−K
= 0 for i ≥ 2.

Hence this spectral sequence degenerates into short exact sequences

0 −→R1 lim←−
K

Hi−1(GL, oL[GL/GK ] ⊗oL V ) −→

Hi(GL, oL[[�L]] ⊗oL V ) −→ lim←−
K

Hi(GL, oL[GL/GK ] ⊗oL V ) −→ 0 .

It is well known that the Galois cohomology groupsH∗(GL, oL[GL/GK ] ⊗oL V ) are
finitely generated oL-modules (cf. [35] II.5.2 Proposition 14). It therefore follows
from [22] Theorem 8.1 that the above R1 lim←−K

-terms vanish. �

Lemma 5.9 H∗
Iw(L∞/L, V ) is a δ-functor on RepoL (GL).

Proof Let 0 → V1 → V2 → V3 → 0 be a short exact sequence in RepoL (GL). Then
the sequence of topological GL-modules 0 → oL[[�L]] ⊗oL V1 → oL[[�L]] ⊗oL
V2 → oL[[�L]] ⊗oL V3 → 0 is short exact as well. In view of Lemma 5.8 our asser-
tion therefore follows from [30] Lemma 2.7.2 once we show that

1. the topology of oL[[�L]] ⊗oL V1 is induced by the topology of oL[[�L]] ⊗oL V2

and
2. the (surjective continuous) map oL[[�L]] ⊗oL V2 → oL[[�L]] ⊗oL V3 has a con-

tinuous section as a map of topological spaces.

Each oL[[�L]] ⊗oL Vi is a profinite (hence compact) abelian group with a countable
base of the topology, which therefore is metrizable by [4] IX.21 Proposition 16. One
easily deduces 1. and that the map in 2. is open. The property 2. then follows from
[29] Corollary 1.4. �

Remark 5.10 For any V0 in RepoL (GL) which is oL-free and on which GL acts
through its factor �L there is a natural isomorphism H∗

Iw(L∞/L, V ⊗oL V0) ∼=
H∗

Iw(L∞/L, V ) ⊗oL V0.

Proof In view of Lemma 5.8 the asserted isomorphism is induced by the GL-
equivariant isomorphism on coefficients

oL[[�L]] ⊗oL V ⊗oL V0
∼=−→ oL[[�L]] ⊗oL V ⊗oL V0

γ ⊗ v ⊗ v0 �−→ γ ⊗ v ⊗ γ−1v0 ;

on the leftGL acts diagonally on all three factors, whereas on the right it acts trivially
on the third factor. �
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Remark 5.11 Let V be in RepoL (GL) of finite length; in particular V is discrete.
Then local Tate duality (Proposition 5.7) induces an isomorphism

Hi
Iw(L∞/L, V ) ∼= H2−i(L∞, V ∨(1))∨ .

Proof Use Proposition 5.7 over the layers Ln and take limits. �

We point out that H∗
Iw(L∞/L, V ) = H∗(GL, oL[[�L]] ⊗oL V ) is a left oL[[�L]]-

module through the action of γ ∈ �L by right multiplication with γ−1 on the factor
oL[[�L]].
Lemma 5.12 i. H∗

Iw(L∞/L, V ) = 0 for ∗ �= 1, 2.
ii. H2

Iw(L∞/L, V ) is finitely generated as oL-module.
iii. H1

Iw(L∞/L, V ) is finitely generated as oL[[�L]]-module.
Proof i. In case ∗ > 2 the assertion follows from the fact that the groups GK

have cohomological p-dimension 2 ([35] II.4.3 Proposition 12). The vanishing of
H0

Iw(L∞/L, V ) = lim←−K
V GK is clear if V is finite. Hence we may assume that V is

finitely generated free over oL. Note that the identity H0
Iw(L∞/L, V ) = lim←−K

V GK

shows that H0
Iw(L∞/L, V ) is a profinite oL-module. On the other hand we then have

the exact sequence

0 −→ H0
Iw(L∞/L, V )

πL ·−−→ H0
Iw(L∞/L, V ) −→ H0

Iw(L∞/L, V/πLV ).

Since we observed already that the last term vanishes it follows thatH0
Iw(L∞/L, V ) is

an L-vector space. Both properties together enforce the vanishing ofH0
Iw(L∞/L, V ).

ii. We have

H2
Iw(L∞/L, V ) = lim←−

K

H2(K, V ) = lim←−
K

H0(K, V ∨(1))∨ = (
⋃

K

V ∨(1)GK )∨ ,

which visibly is a finitely generated oL-module.
iii. Case 1: V is finite. By Remark 5.11 H1

Iw(L∞/L, V ) = H1(L∞, V ∨(1))∨ is
the Pontrjagin dual of a discrete torsion module and hence is a compact oL[[�L]]-
module. The compact Nakayama lemma (cf. [30] Lemma 5.2.18) therefore reduces
us to showing that the Pontrjagin dual (H1

Iw(L∞/L, V )�)
∨ = H1(L∞, V ∨(1))� of

the �-coinvariants of H1
Iw(L∞/L, V ) is cofinitely generated over oL; here � is a

conveniently chosen open subgroup of �L. The Hochschild–Serre spectral sequence
for the extension L∞/K , where K := L�∞, gives us an exact sequence

H1(K, V ∨(1)) −→ H1(L∞, V ∨(1))� −→ H2(�, V ∨(1)HL ) .

The first group is finite by local Galois cohomology. At this point we choose � to
be isomorphic to Zd

p . Then H2(�,Fp) is finite. Since Fp is the only simple Zp[[�]]-
module it follows by devissage that H2(�, V ∨(1)HL ) is finite.
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Case 2: V is oL-free. As pointed out above oL[[�L]] ⊗oL V is a oL[[�L]]-module,
which is finitely generated free and on which GL acts continuously and oL[[�L]]-
linearly. In view of Lemma 5.8 we therefore may apply [18] Proposition 1.6.5 and
obtain that H∗

Iw(L∞/L, V ), as a oL[[�L]]-module, is isomorphic to the cohomology
of a bounded complex of finitely generated projective oL[[�L]]-modules. The ring
oL[[�L]] is noetherian.Hence the cohomology of such a complex is finitely generated.

The general case follows by using Lemma 5.9 and applying the above two special
cases to the outer terms of the short exact sequence 0 → Vtor → V → V/Vtor → 0,
where Vtor denotes the torsion submodule of V . �

Theorem 5.13 Let V in RepoL (GL). Then, with ψ = ψDLT (V (τ−1)), we have a short
exact sequence

0 −→ H1
Iw(L∞/L, V ) −→ DLT (V (χLTχ

−1
cyc ))

ψ−1−−−→ DLT (V (χLTχ
−1
cyc ))

−→ H2
Iw(L∞/L, V ) −→ 0 , (33)

which is functorial in V .

Proof In the senseofRemark4.6we takeT∗ ⊗Zp Zp(1) andT ⊗Zp HomZp(Zp(1),Zp)

as representation module for τ and τ−1, respectively.
Wefirst assume that V has finite length. Then the exact sequence (27) is a sequence

of locally compact linear-topological oL-modules. In fact, the first term is finite and
the last term is cofinitely generated over oL. In particular, the first and the last term
carry the discrete topology and the first map is a closed immersion. Moreover, the
mapϕ − 1 in themiddle, byLemma3.12, is topologically strict with open image. The
latter implies that ∂ϕ induces an isomorphism of discretely topologized oL-modules

DLT (V )/(ϕ − 1)DLT (V )
∼=−→ H1(L∞, V ). In particular, the map ∂ϕ is topologically

strict as well.
Therefore, using Remark 5.5, we obtain that the dual sequence

0 −→ H1(L∞, V )∨ −→ DLT (V )∨
ϕ∨−1−−−→ DLT (V )∨ −→ H0(L∞, V )∨ −→ 0

is exact. If we identify the terms in this latter sequence according to Remarks 5.6
and 5.11 then the result is the exact sequence in the assertion.

Now let V be arbitrary and put Vn := V/πn
LV . We have the exact sequence of

projective systems

0 → H1
Iw(L∞/L, Vn) → DLT (Vn(τ

−1))
ψ−1−−−→ DLT (Vn(τ

−1))

→ H2
Iw(L∞/L, Vn) → 0 .

Since the functor DLT is exact (Proposition 4.4.i) we have

lim←−
n

DLT (Vn(τ
−1)) = lim←−

n

DLT (V (τ−1))/πn
LDLT (V (τ−1)) = DLT (V (τ−1)) .
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Moreover,

lim←−
n

Hi
Iw(L∞/L, Vn) = lim←−

n

lim←−
K

Hi(K, Vn) = lim←−
K

lim←−
n

Hi(K, Vn) = lim←−
K

Hi(K, V )

= Hi
Iw(L∞/L, V ) .

Therefore it remains to show that passing to the projective limit in the above exact
sequence of projective systems is exact. For this it suffices to show that R1 lim←− of the
two projective systems {H1

Iw(L∞/L, Vn)}n and {(ψ − 1)DLT (Vn(τ
−1))}n vanishes.

Because of DLT (Vn(τ
−1)) = DLT (V (τ−1))/πn

LDLT (V (τ−1)) the transition maps in
the second projective system are surjective, which guarantees the required vanishing.
For the first projective system we choose an open pro-p subgroup � in �L, so that
oL[[�]] is a complete local noetherian commutative ring. From Lemma 5.12.iii we
know that {H1

Iw(L∞/L, Vn)}n is a projective system of finitely generated oL[[�]]-
modules. Hence [22] Theorem 8.1 applies and gives the required vanishing. �
Remark 5.14 Each map in the exact sequence (33) is continuous and oL[[�L]]-
equivariant.

Proof Continuity and �L-equivariance follow from the construction. Since the weak
topology on DLT (V ) is oL-linear and complete we may apply [28] Theorem II.2.2.6
(which is valid for any profinite group) and obtain that the continuous �L-action
extends, by continuity, uniquely to an oL[[�L]]-action on DLT (V ). �

6 The Kummer Map

We consider the Kummer isomorphism

κ : A(L∞) := lim←−
n,m

L×
n /L

×
n
pm ∼=−→ H1

Iw(L∞/L,Zp(1)) .

Recall that we have fixed a generator η of the Tatemodule T = oLη. Correspondingly
we have the dual generator η∗ of the oL-dual T∗ = oLη∗ of T . This leads to the twisted
Kummer isomorphism

A(L∞) ⊗Zp T
∗ κ⊗Zp T

∗
−−−−→∼=

H1
Iw(L∞/L,Zp(1)) ⊗Zp T

∗ ∼= H1
Iw(L∞/L, oL(τ ))

where the second isomorphism comes from Remark 5.10. On the other hand, by
Theorem 5.13, we have a natural isomorphism

Exp∗ : H1
Iw(L∞/L, oL(τ ))

∼=−→ DLT (oL)
ψ=1 = Aψ=1

L .
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Finally we have the homomorphism

∇ : (lim←−
n

L×
n ) ⊗Z T∗ −→ Aψ=1

L

u ⊗ aη∗ �−→ a
∂inv(gu,η)

gu,η
(ιLT (η)) .

It is well defined by Theorem 2.2, the last sentence in Sect. 2, and Remark 3.2.ii.

Remark 6.1 The map ∇ is independent of the choice of η.

Proof Let u ⊗ aη∗ ∈ (lim←−n
L×
n ) ⊗Z T∗. We temporarily write ∇η instead of ∇, and

we letϑ be a second generator of T , so thatϑ = cη for some c ∈ o×
L . Then u ⊗ aη∗ =

u ⊗ acϑ∗, and by inserting the definitions in the first line we compute

∇ϑ(u ⊗ aη∗) = ∇ϑ(u ⊗ acϑ∗) = ac

gLT (ιLT (ϑ))

g′
u,ϑ (ιLT (ϑ))

gu,ϑ (ιLT (ϑ))

= ac

gLT (ιLT (cη))

g′
u,cη(ιLT (cη))

gu,cη(ιLT (cη))

= ac

gLT ([c](ιLT (η)))
g′
u,cη([c](ιLT (η)))
gu,cη([c](ιLT (η)))

= a

gLT (ιLT (η))

(gu,cη ◦ [c])′(ιLT (η))
(gu,cη ◦ [c])(ιLT (η))

= a

gLT (ιLT (η))

g′
u,η(ιLT (η))

gu,η(ιLT (η))

= ∇η(u ⊗ aη∗) ,

where we use Lemma 4.1.a for the fourth identity, (2) for the fifth one, and Remark
2.3.ii for the sixth one. �

Generalizing ([5] Proposition V.3.2.iii) (see also [10] Theorem 7.4.1) we will
establish the following kind of reciprocity law.

Theorem 6.2 The diagram

(lim←−n
L×
n ) ⊗Z T∗

∇ 

�����������
κ⊗T∗

�� H1
Iw(L∞/L, oL(τ ))

Exp∗
∼=

�������������

Aψ=1
L

(34)

is commutative.
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In a first step we consider, for any n ≥ 1, the diagram

(
(AL/π

n
LAL)(χLT )

)
/ im(ϕ − 1)

∂ϕ ∼=
��

× (AL/π
n
LAL)

ψ=1 [ , 〉 �� L/oL

H1(L∞, oL/πn
LoL(χLT )) × H1

Iw(L∞/L, oL/πn
LoL(χcycχ

−1
LT ))

Exp∗∼=
��

�� L/oL

(lim←−n
L×
n ) ⊗Z oL/πn

LoL(χ
−1
LT )

rec⊗Zp id

��

κ⊗Zp id

��

Hom(HL, oL/πn
LoL)(χLT ) × Hab

L (p) ⊗Zp oL/π
n
LoL(χ

−1
LT ) �� L/oL,

where the second pairing is induced by local Tate duality and the third pairing
is the obvious one. By rec : (lim←−n

L×
n ) −→ Hab

L (p) we denote the map into the

maximal abelian pro-p quotient Hab
L (p) of HL induced by the reciprocity homo-

morphisms of local class field theory for the intermediate extensions Lm. Note
that Gal(Lab∞/L∞) = lim←−m

Gal(Lab
m /L∞) = lim←−m

Gal(Lab
m /Lm), whereLab

? denotes the
maximal abelian extension of L?. The upper half of the diagram is commutative by
the construction of the map Exp∗. The commutativity of the lower half follows from
[30] Corollary 7.2.13. All three pairings are perfect in the sense of Pontrjagin duality.

In order to prove Theorem 6.2 we have to show that, for any u ∈ lim←−n
L×
n and any

a ∈ oL, we have

[z ⊗ η,Exp∗(κ(u) ⊗ aη∗)〉 ≡ Res(za
∂inv(gu,η)

gu,η
d logLT ) mod πn

L

for any z ∈ AL and any n ≥ 1. Due to the commutativity of the above diagram the left
hand side is equal to a∂ϕ(z ⊗ η)(rec(u) ⊗ η∗) = a∂ϕ(z)(rec(u)). On the other hand

the right hand side, by (1), is equal to Res(za(
g′
u,η

gu,η
dZ)|Z=ιLT (η)) = Res(za d(gu,η(ιLT (η)))

gu,η(ιLT (η))
).

By the oL-bilinearity of all pairings involved we may assume that a = 1. Hence we
are reduced to proving that

Res(z
d(gu,η(ιLT (η)))

gu,η(ιLT (η))
) = ∂ϕ(z)(rec(u))

holds true for any z ∈ AL and u ∈ lim←−n
L×
n . According to the theory of fields of

norms we have the natural identification lim←−n
L×
n = E×

L (cf. [24] Lemma 1.4). Under
this identification, by [27] Theorem 3.2.2, rec(u) coincides with the image recEL (u)
of u under the reciprocity homomorphism recEL : E×

L −→ Hab
L (p) in characteristic

p. Furthermore, gu,η(ιLT (η)) ∈ (A×
L )

N=1, is, by Remark 2.3.i, Remark 3.2.vii, and
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(19), a lift of u ∈ E×
L . This reduces the proof of Theorem 6.2 further to the following

proposition which generalizes the explicit reciprocity law in [15] Proposition 2.4.3.

Proposition 6.3 For any z ∈ AL and any u ∈ E×
L with (unique) lift û ∈ (A×

L )
N=1 we

have

Res(z
dû

û
) = ∂ϕ(z)(recEL (u)) ,

where ∂ϕ is the connecting homomorphism in (27).

Obviously the connecting homomorphism ∂ϕ for V = oL induces, by reduc-
tion modulo πnoL, the corresponding connecting homomorphism for V = oL/πn

LoL.
Hence we may prove the identity in Proposition 6.3 as a congruence modulo πnoL
for any n ≥ 1. Recall that for û ∈ (A×

L )
N=1 the differential form dû

û is ψ	1 -invariant
by (22). Hence, by the adjointness of ψ	1 and ϕL cf. (21), we obtain the equality

Res(ϕm
L (z)

dû

û
) = Res(z

dû

û
)

for anym ≥ 1.This reduces Proposition 6.3 and consequentlyTheorem6.2 to proving
the congruence

Res(ϕn−1
L (z)

dû

û
) ≡ ∂ϕ(z)(recEL (u)) mod πn

LoL (35)

for all n ≥ 1. This will be the content of the next section (cf. Lemma 7.18).

7 The Generalized Schmid–Witt Formula

The aim of this section is to generalize parts of Witt’s seminal paper [38] (see also
the detailed accounts [36] and [25] of Witt’s original article) to the case of ramified
Witt vectors.

First of all we need to recall a few facts about ramified Witt vectors W (B)L for
oL-algebras B. Details of this construction can be found in [19]. But we will use
[31] where a much more straightforward approach is fully worked out. We denote by
�B = (�0,�1, . . .) : W (B)L −→ BN0 the homomorphism of oL-algebras, called the

ghost map, given by the polynomials �n(X0, . . . ,Xn) = Xqn

0 + πLX
qn−1

1 + . . . πn
LXn.

On the other hand, the multiplicative Teichmüller map B −→ W (B)L is given
by b �→ [b] := (b, 0, . . .) (cf. [31] Lemma 1.1.15). If B is a kL-algebra then the
Frobenius endomorphism F = φq of W (B)L has the form φq(b0, . . . , bn, . . .) =
(bq0, . . . , b

q
n, . . .) (cf. [31] Proposition 1.1.18.i).

For a perfect kL-algebra B we have Wn(B)L = W (B)L/πn
LW (B)L for any n ≥ 1

and, in particular, ker(�0) = πLW (B)L; moreover, any b = (b0, b1, . . .) ∈ W (B)L
has the unique convergent expansion b = ∑∞

m=1 π
m
L [bq−m

m ] (cf. [31] Proposition
1.1.19).
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Proposition 7.1 Suppose that πL is not a zero divisor in B and that B has an endo-
morphism of oL-algebras σ such that σ(b) ≡ bq mod πLB for any b ∈ B. Then there
is a unique homomorphism of oL-algebras

sB : B −→ W (B)L such that �i ◦ sB = σ i for any i ≥ 0.

Moreover, we have:

i. sB is injective;
ii. for any n ≥ 1 there is a unique homomorphism of oL-algebras sB,n : B/πn

LB −→
Wn(B/πLB)L such that the diagram

B

pr

��

sB �� W (B)L
W (pr)L �� W (B/πLB)L

pr

��
B/πn

LB
sB,n �� Wn(B/πLB)L

is commutative;
iii. if B/πLB is perfect then sB,n, for any n ≥ 1, is an isomorphism.

Proof See [31] Proposition 1.1.23. �

Lemma 7.2 For any perfect kL-algebra B we have:

i. The diagram

Wn(W (B)L)L

Wn(pr)L
��

�n−1 �� W (B)L

pr

��
Wn(B)L

φn−1
q �� Wn(B)L

is commutative for any n ≥ 1.
ii. The composite map

W (B)L
sW (B)L−−−−→ W (W (B)L)L

W (pr)L−−−→ W (B)L

is the identity.

Proof i. Let (b0, . . . ,bn−1) ∈ Wn(W (B)L)L with bj = (bj,0, bj,1, . . .). As ker(�0) =
πLW (B)L we have bj ≡ [bj,0] mod πLW (B)L. Hence [31] Lemma 1.1.1 implies that
bqm

j ≡ [bqmj,0] mod πm+1
L W (B)L for any m ≥ 0. Using this as well as [31] Lemma

1.1.13.i we now compute
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�n−1(b0, . . . ,bn−1) =
n−1∑

m=0

πm
L bqn−1−m

m

≡
n−1∑

m=0

πm
L [bqn−1−m

m,0 ] mod πn
LW (B)L

= (bq
n−1

0,0 , . . . , bq
n−1

n−1,0, 0, . . .)

= φn−1
q (b0,0, . . . , bn−1,0, 0, . . .)

= φn−1
q ◦ Wn(pr)L(b0, . . . ,bn−1) .

ii. First of all we note that the Frobenius on W (B)L is the qth power map modulo
πL. Hence the homomorphism sW (B)L exists.

Let b = (b0, . . . ,bj, . . .) ∈ W (W (B)L)L with bj = (bj,0, bj,1, . . .) ∈ W (B)L be
the image under sW (B)L of some b = (b0, b1, . . .) ∈ W (B)L. We have to show that
bi = bi,0 for any i ≥ 0. By the characterizing property of sW (B)L we have �i(b) =
(bq

i

0 , . . . , b
qi

j , . . .). On the other hand the computation in the proof of i. shows that

�i(b) = (bq
i

0,0, . . . , b
qi

i,0, . . .). Hence b
qi

i = bq
i

i,0 and therefore bi = bi,0. �

By construction (and [31] Proposition 1.1.26) we have AL ⊆ W (Ẽ)L. But there
is the following observation.

Remark 7.3 Let A ⊆ W (Ẽ)L be a φq-invariant oL-subalgebra such that A/πLA ⊆ Ẽ;
we then have A ⊆ W (A/πLA)L.

Proof We consider the diagram

A

⊆
��

sA �� W (A)L

⊆
��

W (pr)L �� W (A/πLA)L

⊆
��

W (Ẽ)L

sW (Ẽ)L �� W (W (Ẽ)L)L
W (pr)L �� W (Ẽ)L.

For the commutative left square we apply Proposition 7.1 (with σ := φq). The right
hand square is commutative by naturality. By Lemma 7.2.ii the composite map in
the bottom row is the identity. Hence the composite map in the top row must be an
inclusion. �

This applies to AL and shows that

AL ⊆ W (EL)L ⊆ W (Ẽ)L

holds true. In particular, we have the commutative diagram (cf. Proposition 7.1.ii)
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AL

pr

��

⊆ ��

αn

���������� W (EL)L

pr

��
AL/π

n
LAL

αn:=sAL ,n �� Wn(EL)L

(36)

for any n ≥ 1, where αn by definition is the composite of the outer maps. For later
use before Lemma 7.18 we note that Remark 7.3 also applies to A showing that
A ⊆ W (Esep

L )L.

Lemma 7.4 For any n ≥ 1 the diagram

Wn(AL)L

Wn(pr)L
��

�n−1 �� AL

αn

��
Wn(EL)L

φn−1
q �� Wn(EL)L

is commutative.

Proof We consider the diagram

Wn(AL)L
�n−1 ��

Wn(pr)L

��

⊆ ��											 AL

αn

��

⊆
��











Wn(W (Ẽ)L)L
�n−1 ��

Wn(pr)L

��

W (Ẽ)L

pr

��

Wn(EL)L
φn−1
q ��

⊆ ��											 Wn(EL)L

⊆
��











Wn(Ẽ)L
φn−1
q �� Wn(Ẽ)L.

The front square is commutative by Lemma 7.2.i. The top and bottom squares are
commutative by the naturality of the involved maps and the side squares for trivial
reasons. Hence the back square is commutative as claimed. �
Lemma 7.5 For any n ≥ 1 the map αn : AL/π

n
LAL −→ Wn(EL)L is injective.

Proof We have to show that Vn(EL)L ∩ AL = πn
LAL. We know already that πn

LAL ⊆
Vn(EL)L ∩ AL = Vn(Ẽ)L ∩ AL = πn

LW (Ẽ)L ∩ AL. But AL ⊆ W (Ẽ)L both are dis-
crete valuation rings with the prime element πL. Therefore we must have
equality. �

The above two lemmas together with the surjectivity of Wn(α1)L imply that, for
any n ≥ 1, there is a unique homomorphism of oL-algebras wn−1 : Wn(EL)L −→
AL/π

n
LAL such that the diagram
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Wn(AL)L

Wn(pr)L
��

�n−1 �� AL

pr

��
Wn(EL)L

wn−1 �� AL/π
n
LAL

(37)

is commutative. Furthermore, we have

αn ◦ wn−1 = φn−1
q |Wn(EL)L

and wn−1 ◦ αn = φn−1
q |AL/π

n
LAL

. (38)

We alsomay apply Proposition 7.1 to oL itself (with σ := id) and obtain analogous
commutative diagrams as well as the corresponding maps

oL

pr

��

αn
















oL/πn
LoL

αn �� Wn(kL)L
wn−1 �� oL/πn

LoL .

But here αn and wn−1 are isomorphisms which are inverse to each other (cf. Propo-
sition 7.1.iii). Of course these maps for oL and AL are compatible with respect to the
inclusions oL ⊆ AL and kL ⊆ EL.

For the rest of this section let K denote any local field isomorphic to k((Z))
with k = kL (such an isomorphism depending on the choice of an uniformizing
element Z of K), Ksep any separable closure of it and H = Gal(Ksep/K) its Galois
group. Furthermore we write K for an algebraic closure of Ksep, φq for the qth
power Frobenius, and ℘ := φq − 1 for the corresponding Artin–Schreier operator.
By induction with respect to n one easily proves the following fact.

Lemma 7.6 We have the short exact sequences

0 −→ Wn(k)L −→ Wn(K
sep)L

℘−→ Wn(K
sep)L −→ 0

and
0 −→ Wn(k)L −→ Wn(K)L

℘−→ Wn(K)L −→ 0 .

From theH-group cohomology long exact sequence associatedwith thefirst sequence
above we obtain a homomorphism

Wn(K)L = (Wn(K
sep)L)

H ∂−→ H1(H,Wn(k)L)
rec∗

K−−→ Homcont(K×,Wn(k)L) ,

which induces the generalized, bilinear Artin–Schreier–Witt pairing

[ , ) := [ , )K : Wn(K)L × K× −→ Wn(k)L
(x, a) �−→ [x, a) := ∂(x)(recK(a)) ,
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i.e., [x, a) = recK(a)(α) − α for any α ∈ Wn(Ksep)L with ℘(α) = x. It is bilinear in
the sense that it is oL-linear in the first and additive in the second variable.

Remark 7.7 Let Krad be the perfect closure of K in K . Then one can use the second
exact sequence to extend the above pairing to Wn(Krad)L × K×.

For a separable extension F of K we obtain similarly by taking Gal(Ksep/F)-
invariants (instead of H-invariants) an Artin–Schreier–Witt pairing for F

[ , )F : Wn(F)L × F× −→ Wn(k)L
(x, a) �−→ [x, a) := ∂(x)(recF(a)) ,

(with respect to the same q!) satisfying

[x, a)F = [x,NormF/K(a))K for x ∈ Wn(K)L and a ∈ F×

—and similarly for any pair of separable extensions F and F ′—by the functoriality
of class field theory.

AlthoughWn(k)L is not a cyclic group in general,many aspects ofKummer/Artin–
Schreier theory still work. In particular, for any α = (α0, . . . , αn−1) ∈ Wn(Ksep)L
with ℘(α) = x ∈ Wn(K)L the extension K(α) := K(α0, . . . , αn−1) = (Ksep)Hx =
K(℘−1(x)) of K is Galois with abelian Galois group Gal(K(α)/K) contained in
Wn(k)L via sending σ to χx(σ ) := σ(α) − α; here Hx ⊆ H denotes the stabilizer of
α, which also is the stabilizer of ℘−1(x).

We also need the injective additive map

τ : Wn(B)L −→ Wn+1(B)L
(x0, . . . , xn−1) �−→ (0, x0, . . . , xn−1)

induced in an obvious way by the additive Verschiebung V (cf. [31] Proposition
1.1.10). If B is a kL-algebra then

τ ◦ φq = φq ◦ τ and, in particular, ℘ ◦ τ = τ ◦ ℘ (39)

(cf. [31] Proposition 1.1.18.i).

Lemma 7.8 Let K ⊆ F ⊆ Ksep be a finite extension. Then, for any a ∈ F×, x ∈
Wn(F)L, and α ∈ Wn(Ksep)L with ℘(α) = x we have:

i. [τx, a)F = τ [x, a)F (where we use the same notation for the pairing at level
n + 1 and n, respectively!);

ii. if a belongs to (F×)pn , then [x, a)F = 0;
iii. [x, a)F = 0 if and only if a ∈ NormF(α)/F(F(α)×).

Proof i. By (39) we have ℘(τα) = τx. Therefore [τx, a) = recK(a)(τα) − τα =
τ(recK(a)(α) − α) = τ [x, a). ii. Since pnWn(k)L = 0 (this is not sharp with regard
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to pn!) this is immediate from the bilinearity of the pairing. iii. Because of [x, a)F =
χx(recF(a)) this is clear from local class field theory. �

For any subset S of an oL-algebra R we define the subset

Wn(S)L := {(s0, . . . , sn−1) ∈ Wn(R)L : si ∈ S for all i}

of Wn(R)L as well as VWn(S)L := V (Wn(S)L). If I ⊆ R is an ideal then Wn(I)L is
an ideal in Wn(R)L, and we have the exact sequence

0 −→ Wn(I)L −→ Wn(R)L −→ Wn(R/I)L −→ 0 . (40)

If R′ ⊆ R is an oL-subalgebra (not necessarily with a unit), then Wn(R′)L ⊆ Wn(R)L
forms a subgroup and there is an exact sequence of abelian groups

0 −→ VWn(R
′)L −→ Wn(R

′)L
�0−−→ R′ −→ 0 . (41)

We apply this to R′ = ak[a] for a ∈ K×.

Proposition 7.9 For any x ∈ Wn(ak[a])L we have [x, a) = 0.

Proof We prove by induction on n that for any finite separable extension F of K and
for any a ∈ F× the corresponding statement holds true with R′ = ak[a].

For both, n = 1 (trivially) and n > 1 (by induction hypothesis and Lemma 7.8.i),
we know the implication

x ∈ VWn(ak[a])L =⇒ [x, a) = 0 .

Therefore, for arbitrary x ∈ Wn(ak[a])L we have [x, a) = [[x0], a) by the bilinearity
of the pairing and Lemma 1.1.13.i in [31]—we constantly will make use of the fact
that the first component of Witt vectors behaves additively. Moreover, again by the
additivity of the pairing and using (41) it suffices to prove (for all n > 0) that

[[ral], a) = 0 for all r ∈ k×, l ≥ 1 .

Writing l = l′pm with l′ and p coprime and denoting by r′ the pmth root of r we see
that

l′[[ral], a) = [[(r′al
′
)p

m ], al′) = [[(r′al
′
)p

m ], al′) + [[(r′al
′
)p

m ], r′)

= [[(r′al
′
)p

m ], r′al
′
)

by Lemma 7.8.ii because r′ ∈ (k×)pn . Noting that l′ is a unit inWn(k)L we are reduced
to the case x = [apm ] for m ≥ 0.
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To this end letα0 ∈ Fsep be in℘−1(a) and define α̃0 := ∏
ξ∈k/ im(χa)

(α0 + ξ).Then

NormF(α0)/F(α̃0) =
∏

σ∈Gal(F(α0)/F)

σ α̃0

=
∏

ξ ′∈im(χa)

∏

ξ∈k/im(χa)

(α0 + ξ ′ + ξ) (42)

=
∏

ξ∈k
(α0 + ξ) = a ,

since α0 + ξ, ξ ∈ k, are precisely the zeros of Xq − X − a.
Now let β be in ℘−1([apm ]) with β0 = α

pm

0 . Then we have F(α0)(β) = F(α0, β0,

. . . , βn−1) = F(α0)(β − [β0]) and

℘(β − [β0]) = [apm ] − ℘([αpm

0 ])

belongs to VWn(α0k[α0])L because apm = (α
q
0 − α0)

pm belongs to α0k[α0] as well as
℘([αpm

0 ]) = [(αpm

0 )q] − [αpm

0 ] ∈ Wn(α0k[α0])L and [apm ]0 = ap
m = ℘([αpm

0 ])0.
Note that for n = 1 we have F(α0)(β) = F(α0) (i.e., the last consideration is not

needed) and since a is a normwith respect to the extensionF(α0)/F the claim follows
from Lemma 7.8.iii.

Now let n > 1. Then, the induction hypothesis for F ′ := F(α0) and a′ := α0

implies that [[apm ] − ℘([αpm

0 ]), α0) = 0, i.e., thatα0 ∈NormF(α0)(β)/F(α0)(F(α0)(β)
×)

by Lemma 7.8.iii.
Replacing α0 by α0 + ξ , for ξ ∈ k, we see that we also have α0 + ξ ∈

NormF(α0)(β)/F(α0)(F(α0)(β)
×) (note that F(α0) = F(α0 + ξ) and the composite

F(α0)(β) = F(α0)F(β) does not depend on the choices involved above). By the
multiplicativity of the norm we obtain that α̃0 lies in NormF(α0)(β)/F(α0)(F(α0)(β)

×),
whence by transitivity of the norm and (42) a belongs to NormF(α0)(β)/F(F(α0)(β)

×)
and thus also toNormF(β)/F(F(β)×) becauseF(β) ⊆ F(α0)(β). Thus [[apm ], a) = 0,
again by Lemma 7.8.iii, as had to be shown. �

Now we will define a second bilinear pairing

( , ) : Wn(K)L × K× −→ Wn(k)L

by using the residue pairing (cf. (12))

Res : AL × 	1
AL

−→ oL .

To this end we choose an isomorphismAL/πLAL = k((Z)) ∼= K and remark that our
construction will not depend on this choice of a prime element of K by Remark 3.4.
Consider the map d log : oL((Z))× −→ 	1

AL
, sending f to df

f . We define the upper
pairing in
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Wn(AL)L

�n−1

��

× oL((Z))×

d log
��

{ , } �� oL

AL × 	1
AL

Res �� oL

via the commutativity of the diagram.

Lemma 7.10 There is a unique well defined bilinear pairing ( , ) such that the
diagram

Wn(AL)L

Wn(α1)L
����

× oL((Z))×

mod πL
����

{ , } �� oL

αn

����
Wn(K)L × K× ( , ) �� Wn(k)L,

is commutative.

Proof (Note that the reduction map oL((Z))× → K× indeed is surjective.) We need
to show that

{ker(Wn(pr)L), oL((Z))
×} ⊆ πn

LoL
and {Wn(AL)L, ker(oL((Z))

× → K×)} ⊆ πn
LoL .

Fora = (a0, . . . , an−1) ∈ Wn(pr)L such thatai ∈ πLAL weobviously have�n−1(a) ∈
πn
LAL. Hence {a, oL((Z))×} ⊆ πn

LoL.
For the second inclusion we first observe that ker(oL((Z))× → K×) = 1 +

πLoL[[Z]]. Hence we have to prove that

Res(�n−1( f )d log(1 + πLh)) ∈ πn
LoL (43)

holds true for all f = ( f0, . . . , fn−1) ∈ A n
L and h ∈ oL[[Z]]. We observe that sending

Z to Z ′ := Z(1 + πLh) defines a ring automorphism first of oL[[Z]], then by local-
ization of oL((Z)), and finally by πL-adic completion ofAL. We write fi(Z) = gi(Z ′)
and g := (g0, . . . , gn−1), and we compute

ResZ(�n−1( f )d log(1 + πLh))

= ResZ(�n−1(g(Z
′))d log(Z ′)) − ResZ(�n−1( f (Z))d log(Z))

= ResZ ′(�n−1(g(Z
′))d log(Z ′)) − ResZ(�n−1( f (Z))d log(Z))

= ResZ([�n−1(g(Z)) − �n−1( f (Z))]d log(Z)) .

Here the second equality uses the fact that the residue does not depend on the choice
of the variable (cf. Remark 3.4) while in the third equality we just rename the variable
Z ′ into Z both in the argument and the index of Res, which of course does not change
the value. Now note that, since Z ′ ≡ Z mod πLoL[[Z]], we have the congruences
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fi(Z) = gi(Z
′) ≡ gi(Z) mod πLAL for any 0 ≤ i ≤ n − 1.

This implies that

�n−1(g(Z)) − �n−1( f (Z)) ≡ 0 mod πn
LoL

(cf. [31] Lemma 1.1.2.i) whence the claim (43) by the oL-linearity of the residue. �

Remark 7.11 Alternatively, one can define similarly a pairing by using the full ghost
map � = (�0, . . . , �n−1) via commutativity of the diagram

Wn(AL)L� �

�

��

× oL((Z))×

d log
��

�� Wn(oL)L� �

�

��
A n

L × 	1
AL

Res �� onL

and by showing that for all f ∈ Wn(AL)L and h ∈ oL((Z))× the residue vector
(Res(�i( f )

dh
h ))i belongs to the image of (the right hand)�. We leave it to the inter-

ested reader to check that this induces the same pairing as ( , ) above by applying
Wn(pr)L to the target. For unramifiedWitt vectors this is done in [36] Proposition 3.5.2

Our aim is to show that the two pairings [ , ) and ( , ), in fact, coincide. This
generalizes a result of Witt ([38] Satz 18), which we learned from [15, 16]. The
strategy is to reduce this to the comparison of the restrictions of the two pairings to
Wn(k)L × K×.

For an element x = ∑
j xjZ

j ∈ K with xj ∈ k and xj = 0 for j < vZ(x) (the valua-
tion ofK)we set x+ := ∑

j≥1 xjZ
j and x− := ∑

j<0 xjZ
j. Then, for x = (x0, . . . , xn−1)

∈ Wn(K)L, with arbitrary n ≥ 1, we define iteratively elements (the ’constant term’
and the plus and negative parts of x with respect to the variable Z)

	n
Z(x) ∈ Wn(k)L, x+ ∈ Wn(Zk[[Z]])L, and x− ∈ Wn(Z

−1k[Z−1])L

2Another alternative formulation for the definition of ( , ) goes as follows: The residue pairing

Res : AL/π
n
LA × 	1

AL/π
n
LA

−→ oL/π
n
LoL

induces the pairing

im(�n−1) + πn
LAL/π

n
LA × 	1

AL/π
n
LA

/d log(1 + πLoL[[Z]]) �� oL/πn
LoL

Wn(K)L

wn−1

��

× K×

��

( , ) �� Wn(k)L,

wn−1

��

where themiddle verticalmap is induced by d log and the inverse of the isomorphism oL((Z))×/(1 +
πLoL[[Z]]) ∼= K×.
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such that
x = 	n

Z(x) + x+ + x− .

For n = 1 put

	1
Z(x) := [x0 − x+

0 − x−
0 ], x+ := [x+

0 ], and x− := [x−
0 ]

and for n > 1 define

	n
Z(x) := [x0 − x+

0 − x−
0 ] + τ	n−1

Z (y), x+ := [x+
0 ] + τy+, and x− := [x−

0 ] + τy− ,

where y ∈ Wn−1(K)L satisfies τy = x − [x0 − x+
0 − x−

0 ] − [x+
0 ] − [x−

0 ].
Remark 7.12 x = 	n

Z(x) + x+ + x− is the unique decomposition of x ∈ Wn(K)L
such that the three summands lie in Wn(k)L, Wn(Zk[[Z]])L, and Wn(Z−1k[Z−1])L,
respectively.

Proof Let x = a + a+ + a− be any decomposition such that a ∈ Wn(k)L, a+ ∈
Wn(Zk[[Z]])L, and a− ∈ Wn(Z−1k[Z−1])L. Since the projection onto the zeroth
component is additive we immediately obtain that a = [x0 − x+

0 − x−
0 ] + τb, a+ =

[x+
0 ] + τb+, and x− = [x−

0 ] + τb− for (uniquelydetermined) elementsb ∈ Wn−1(k)L,
b+ ∈ Wn−1(Zk[[Z]])L, and b− ∈ Wn−1(Z−1k[Z−1])L. We put y := b + b+ + b− and
obtain x = [x0 − x+

0 − x−
0 ] + [x+

0 ] + [x−
0 ] + τy. Hence y is the element in the above

inductive construction for x. By induction with respect to n we have b = 	n−1
Z (y),

b+ = y+ and b− = y−. It follows that a = 	n
Z(x), a+ = x+, and a− = x−. �

Lemma 7.13 For any prime element Z in K and any x ∈ Wn(K)L we have

(x,Z) = 	n
Z(x) .

Proof For x ∈ Wn(Zk[[Z]])L ∪ Wn(Z−1k[Z−1])L we may choose the lift f of x to lie
in Wn(ZoL[[Z]])L and Wn(Z−1oL[Z−1])L, respectively. It is straightforward to see
that then { f ,Z} = Res(�n−1( f )d logZ) = Res(�n−1( f )

dZ
Z ) = 0. By Remark 7.12

we have 	n
Z(x) = 0 as well.

By the additivity of ( , ) in the first component it therefore remains to treat
the case that x ∈ Wn(k)L. Let x̃ ∈ Wn(W (k)L)L ⊆ Wn(AL)L be any lift of x. Then we
have that {x̃,Z} = Res(�n−1(x̃)

dZ
Z ) = �n−1(x̃). But αn(�n−1(x̃)) = αn ◦ wn−1(x) =

φn−1
q (x) = x by (37) and (38) for oL. Hence (x,Z) = αn({x̃,Z}) = αn(�n−1(x̃)) =

x = 	n
Z(x), the last identity again by Remark 7.12. �

Lemma 7.14 For any prime element Z in K and any x ∈ Wn(k)L we have [x,Z) =
(x,Z).

Proof We choose α ∈ Wn(ksep)L such that ℘(α) = x. Then K(α) ⊆ k(α)((Z)) is
an unramified extension of K = k((Z)). From local class field theory we therefore
obtain that recK(Z) = φq. It follows that [x,Z) = recK(Z)(α) − α = ℘(α) = x. On
the other hand Lemma 7.13 implies that (x,Z) = 	n

Z(x) = x as well. �
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Proposition 7.15 For any prime element Z in K, any a ∈ K×, and any x ∈ Wn(K)L
we have

[x, a) = [(x, a),Z) and (x, a) = ((x, a),Z) .

Proof As 	n
Z((x, a)) = (x, a) the second identity is a consequence of Lemma 7.13.

For the fist identity we first consider the special case a = Z . We will compare the
decompositions

[x,Z) = [	n
Z(x),Z) + [x+,Z) + [−x−,Z−1) and

[(x,Z),Z) = [(	n
Z(x),Z),Z) + [(x+,Z),Z) + [(−x−,Z−1),Z)

term by term. By Lemma 7.13 the two first terms coincide and the remaining terms in
the second decomposition vanish. The last term in the first decomposition vanishes by
Proposition 7.9.Hence it remains to show that [x+,Z) = 0. For this it suffices to check
that Wn(Zk[[Z]])L ⊆ ℘(Wn(K)L). Indeed, we claim that for y ∈ Wn(Zk[[Z]])L the
series

∑∞
i=0 φ

i
q(y) converges inWn(k[[Z]])L (componentwise in theZ-adic topology).

We observe that, for x ∈ Wn(k[[Z]])L and z ∈ Wn(Zlk[[Z]])L with l ≥ 0, one has, by
(40), the congruence

(x + z)i ≡ xi mod Zlk[[Z]]

for the components of the respective Witt vectors. It follows that each component of
the sequence of partial sums

∑m
i=0 φ

i
q(y) forms a Cauchy sequence. Since φq, being

the componentwise qth power map, obviously is continuous for the topology under
consideration we obtain ℘(−∑∞

i=0 φ
i
q(y)) = y.

For a general a we find a ν ∈ Z and another prime element Z ′ ∈ K such that
a = ZνZ ′. Using bilinearity and the special case (for Z as well as Z ′) we compute

[x, a) = ν[x,Z) + [x,Z ′) = ν[(x,Z),Z) + [(x,Z ′),Z ′)
= [(x,Z),Zν) + [(x,Z ′),Z) = [(x,ZνZ ′),Z)
= [(x, a),Z) ;

the third equality uses Lemma 7.14. �

Theorem 7.16 (Schmid–Witt formula) The pairings [ , ) and ( , ) coincide.

Proof This now is an immediate consequence of Lemma 7.14 and Proposition
7.15. �

Corollary 7.17 For all z ∈ Wn(K)L and û ∈ oL((Z))× any lift of u ∈ K× we have

Res(wn−1(z)
dû

û
) = wn−1(∂(z)(recK(u))).
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Proof Let f ∈ Wn(AL)L be a lift of z. Theorem 7.16 implies that

∂(z)(recK(u)) = αn(Res(�n−1( f )
dû

û
))

holds true. Applying wn−1 (for oL) we obtain

wn−1(∂(z)(recK(u))) = Res(�n−1( f )
dû

û
) mod πn

LoL .

On the other hand, by (37), the element�n−1( f )module πn
L is equal town−1(z) (with

wn−1 for AL
∼= AL). �

We finally are able to establish the congruence (35). First note that since A ⊆
W (Esep

L )L we obtain the commutative diagram

0 �� oL/πn
LoL

w−1
n−1=αn∼=

��

�� A/πn
LA

��

φq−1 �� A/πn
LA

��

�� 0

0 �� Wn(k)L �� Wn(E
sep
L )L

φq−1 �� Wn(E
sep
L )L �� 0.

We recall that ∂ϕ and ∂ denote the connecting homomorphisms arising from the upper
and lower exact sequence, respectively. We obviously have the identity (αn)∗ ◦ ∂ϕ =
∂ ◦ αn for the map αn which was defined in (36).

Lemma 7.18 For any z ∈ AL and û ∈ oL((ωLT ))
× ⊆ A×

L any lift of u ∈ E×
L we have

Res(ϕn−1
L (z)

dû

û
) ≡ ∂ϕ(z)(recEL (u)) mod πn

LoL . (44)

Proof We use the identity in Corollary 7.17 for the element z′ := αn(z) with respect
to K = EL. Since wn−1 ◦ αn = ϕn−1

L by (38) its left hand side becomes the left hand
side of the assertion. For the right hand sides we compute

wn−1(∂(αn(z))(recEL (u))) = wn−1 ◦ αn(∂ϕ(z)(recEL (u))) = ∂ϕ(z)(recEL (u)) .

�

As explained at the end of Sect. 6 this last lemma implies Proposition 6.3. The
proof of Theorem 6.2 therefore now is complete.
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8 Bloch and Kato’s as Well as Kato’s Explicit Reciprocity
Law Revisited

In this section we give a proof of a generalization of the explicit reciprocity law of
Bloch andKato ([3] Theorem 2.1) as well as of (a special case of) Kato’s explicit reci-
procity law ([23] Theorem II.2.1.7) replacing his method of syntomic cohomology
by generalizing the method of Fontaine in [16] from the cyclotomic to the general
Lubin–Tate case.

First we recall some definitions and facts from [9]. (This reference assumes
that the power series [πL](Z) is a polynomial. But, by some additional conver-
gence considerations, the results can be seen to hold in general (cf. [31] §2.1 for
more details).) The ideal IL ⊆ W (Ẽ+)L is defined to be the preimage of πLoCp

under the surjective homomorphism of oL-algebras θ : W (Ẽ+)L −→ oCp (cf. [31]
Lemma 1.4.17). [9] §8.5 introduces the πL-adic completion Amax,L of the subal-
gebra W (Ẽ+)L[ 1

πL
IL] ⊆ W (Ẽ+)L[ 1

πL
] as well as B+

max,L := Amax,L[ 1
πL

] ⊆ B+
dR. The

important point is that the Frobenius φq naturally extends to Amax,L ⊆ B+
max,L (but

not to B+
dR). Let EL denote the algebraic closure of EL in Ẽ and E

+
L its ring of

integers. Setting ωL := ωLT , ω1 := φ−1
q (ωLT ) ∈ W (E

+
)L, ξL := ωLω

−1
1 ∈ W (E

+
L )L

(compare [31] Lemmas 2.1.13 and 2.1.18), tL := logLT (ωL) ∈ Amax,L, and Bmax,L :=
B+
max,L[ 1

tL
] ⊆ BdR we have the following properties by Propositions 9.10 and 9.6 in

loc. cit.:
(B+

max,L)
GL = L, (45)

φq(tL) = πLtL and
tL
ωL

= 1 +
∑

k≥2

ekω
k−1
L ∈ A×

max,L with ek ∈ π
−lq(k)
L oL, (46)

where lq(k) denotes the maximal integer l such that ql ≤ k,

W (Ẽ+)LξL = ker
(
W (Ẽ+)L

θ−→ oCp

)
, (47)

W (Ẽ+)LωL = {x ∈ W (Ẽ+)L : θ(φi
q(x)) = 0 for all i ≥ 0},

B+
max,LtL = {x ∈ B+

max,L : θ(φi
q(x)) = 0 for all i ≥ 0}. (48)

By (46) we see that (
tL
ωL

)−r

=:
∑

m≥0

λm,rω
m
L

belongs to L[[ωL]] ⊆ B+
dR for r ≥ 0.
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Lemma 8.1 i.
∑

m≥0 λm,rω
m
L converges in Amax,L.

ii.
∑

m≥1 λm+r,rω
m−1
L converges in B+

max,L.

Proof First of all we note that the πL-adic completion R of the polynomial ring oL[Z]
is the subring of all power series in oL[[Z]] whose coefficients tend to zero. Using
the geometric series we see that 1 + πLR ⊆ R×.

According to (46) and the proof of [9] Proposition 9.10 there exists a g(Z) ∈ R
such that (

tL
ωL

)r

= 1 − πLg(u) ,

where u = ωL
πL

∈ π−1
L IL for q �= 2 and u = ωL

π2
L

∈ π−2
L I2L for q = 2, respectively. By

the initial observation we have

(1 − πLg(Z))
−1 =

∑

m≥0

bmZ
m ∈ R .

Thus (
tL
ωL

)−r

=
∑

m≥0

bmu
m =

∑

m≥0

λm,rω
m
L

converges in Amax,L. For the second part of the assertion it remains to note that

∑

m≥1

λm+r,rω
m−1
L = π

−(r+1)
L

∑

m≥0

bm+r+1u
m .

�

Setting τ ′
r := ∑r

m=0 λm,rω
m
L and τr := ω−r

L τ ′
r ∈ L[ 1

ωL
] ⊆ W (EL)L[ 1

πL
] we have

τr − t−r
L ∈ L[[ωL]] ⊆ B+

dR . (49)

By [9] Proposition 9.25 (SEF 3E) we have the exact sequence

0 −→ L −→ (Bmax,L)
φq=1 −→ BdR/B

+
dR −→ 0 . (50)

We define
FilrB+

max,L := B+
max,L ∩ trLB

+
dR for r ≥ 0.

Lemma 8.2 i. For r ≥ 1 the sequence

0 −→ LtrL −→ FilrB+
max,L

π−r
L φq−1−−−−→ B+

max,L −→ 0

is exact.
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ii. For r = 0 the sequence

0 −→ L −→ B+
max,L

φq−1−−→ (φq − 1)B+
max,L −→ 0

is exact, and ((φq − 1)B+
max,L)

GL = L.
iii. φq − 1 is bijective on ωLB

+
max,L.

Proof i. and ii. By [9] Proposition 9.22 we have, for any r ≥ 0, the exact sequence

0 −→ LtrL −→ (B+
max,L)

φq=π r
L −→ B+

dR/t
r
LB

+
dR −→ 0 .

First we deduce that LtrL = (B+
max,L)

φq=π r
L ∩ trLB

+
dR = (FilrB+

max,L)
φq=π r

L . Secondly
it implies that B+

dR = (B+
max,L)

φq=π r
L + trLB

+
dR and hence B+

max,L = (B+
max,L)

φq=π r
L +

FilrB+
max,L. In the proof of [9] Proposition 9.25 it is shown that, for r ≥ 1, the map

B+
max,L

π−r
L φq−1−−−−→ B+

max,L is surjective. It follows that B+
max,L = (π−r

L φq − 1)FilrB+
max,L

for r ≥ 1.
It remains to verify the second part of ii. By (45)we have ((φq − 1)B+

max,L)
GL ⊆ L.

For the reverse inclusion it suffices to consider any a ∈ oL ⊆ W (E
+
L )L. Since E

+
L is

integrally closed the map φq − 1 on W (E
+
L )L is surjective. Hence we find a y ∈

W (E
+
L )L ⊆ B+

max,L such that (φq − 1)y = a.
iii. First of all we note that φq(ωLB

+
max,L) ⊆ φq(ω1ξ)B

+
max,L ⊆ ωLB

+
max,L, so

that, indeed, φq − 1 restricts to an endomorphism of ωLB
+
max,L. By ii. we have

(ωLB
+
max,L)

φq=1 ⊆ (B+
max,L)

φq=1 = L. But ωLB
+
max,L ∩ L = 0 by (47). This proves the

injectivity. It suffices to establish surjectivity on ωLAmax,L. Let ωLa ∈ ωLAmax,L. We
let ωL = tLu with u ∈ A×

max,L and compute

φn
q(ωLa) = φn

q(tLau) = φn
q(tL)φ

n
q(au) =πn

L tLφ
n
q(au)

∈ πn
L tLAmax,L = ωLπ

n
LAmax,L .

It follows that the series −∑
n≥0 φ

n
q(ωLa) converges (πL-adically) to some element

ωLc ∈ ωLAmax,L such that (φq − 1)(ωLc) = ωLa. �
The sequences in Lemma 8.2.i/ii induce, for any r ≥ 0, the connecting homomor-

phism in continuous Galois cohomology

L = (B+
max,L)

GL
∂r−→ H1(L,LtrL) ,

Note3 that as a GL-representation LtrL is isomorphic to V := L ⊗oL T (cf. Lemma
4.1.c and (2)). We introduce the composite homomorphism

3Setting Lradm := L ∩ (π−r
L φq − 1)(FilrB+

max,L) we still may define

Lradm
∂r−→ H1(L,LtrL)
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δr : L ∂r−→ H1(L,LtrL)
res−−→ Hom�L (HL,Lt

r
L) .

By Lemma 7.6 we also have the connecting homomorphism

∂ϕ : W (E
HL

L )L[ 1
πL

] −→ H1(HL,L) .

Proposition 8.3 δr(a) = ∂ϕ(τra)trL for any a ∈ L.

Proof Let n ≥ 0 such that πn
Lτr ∈ oL[ 1

ωL
], and assume without loss of generality that

a belongs to πn
LoL, i.e., that τ

′
ra ∈ oL[ωL] ⊆ W (E

+
L )L. In order to compute δr(a) we

choose any α ∈ FilrB+
max,L such that (π−r

L φq − 1)(α) = a. Then

δr(a)(g) = (g − 1)α for all g ∈ HL.

In fact, choosing α is equivalent to choosing β := t−r
L α ∈ t−r

L B+
max,L ∩ B+

dR such that

(φq − 1)(β) = b := t−r
L a .

On the other hand, to compute ∂ϕ(τra) we note that τ ′
ra and ξ rL belong to W (E

+
L )L

and that, since E
+
L is integrally closed, the map φq − ξ rL : W (E

+
L )L → W (E

+
L )L is

surjective (argue inductively with respect to the length of Witt vectors). Hence we
find a y ∈ W (E

+
L )L such that

ϕL(y) − ξ rLy = τ ′
ra .

By using (46) we see that ω−r
1 = ξ rLω

−r
L ∈ t−r

L B+
max,L. It follows that the element

β0 := ω−r
1 y belongs to t−r

L B+
max,L as well as to W (EL)L and satisfies

(φq − 1)(β0) = φq(ω1)
−rφq(y) − ω−r

1 y

= ω−r
L (φq(y) − ξ rLy)

= ω−r
L τ ′

ra = τra .

Hence
∂ϕ(τra)(g) = (g − 1)β0 for all g ∈ HL.

We observe that y ∈ W (E
+
L )L ⊆ B+

dR, that ω1 is a unit in B
+
dR (since θ(ω1) �= 0 by the

first sentence in the proof of [9] Proposition 9.6), andhence thatβ0 ∈ t−r
L B+

max,L ∩ B+
dR.

At this point we are reduced to finding an element γ ∈ (ωLB
+
max,L)

HL ⊆ B+
max,L ⊆

t−r
L B+

max,L ∩ B+
dR such that (φq − 1)(γ ) = (t−r

L − τr)a. We then put β := β0 + γ and
obtain

(Footnote 3 continued)
without knowing the right hand surjectivity in Lemma 8.2.i and define ∂r with source Lradm instead.
In the course of the next Proposition one can then shown that Lradm = L.
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δr(a)(g) = (g − 1)β ⊗ trL = (g − 1)(β0 + γ ) ⊗ trL = (g − 1)β0 ⊗ trL = ∂ϕ(τra)(g) ⊗ trL

for any g ∈ HL. In order to find γ it suffices, because of Lemma 8.2.iii, to observe
that

t−r
L − τr = ωL(

∑

m≥1

λm+r,rω
m−1
L ) ∈ (ωLB

+
max,L)

HL

by Lemma 8.1.ii. �

Now we define the Coates–Wiles homomorphisms in this context for r ≥ 1 and
m ≥ 0 by4

ψ r
CW,m : lim←−

n

o×
Ln

−→ Lm

u �−→ 1

r!π rm
L

(
∂r−1
inv �LT gu,η

)
|Z=ηm

.

Then the map

!r
CW,m : lim←−

n

o×
Ln

−→ Lmt
r
L

u �−→ ψ r
CW,m(u)t

r
L

is GL-equivariant (it depends on the choice of η). In the following we abbreviate
ψ r

CW := ψ r
CW,0 and !r

CW := !r
CW,0. One might think about these maps in terms of

the formal identity

log gu,η(ωLT ) =
∑

r

ψ r
CW (u)trL =

∑

r

!r
CW (u) in L[[tL]] ⊆ BdR.

But instead of justifying in which sense we may insert gu,η(ωLT (tL))5 into the loga-
rithm series, we shall only explain (and below use) the following identity

d log gu,η(ωLT ) = dgu,η(ωLT )

gu,η(ωLT )
=

∑

r≥1

rψ r
CW (u)tr−1

L dtL .

Indeed, tL = logLT (ωLT ) implies d
dtL

ωLT = gLT (ωLT )
−1 and hence

d

dtL
f (ωLT ) = gLT (ωLT )

−1 d

dωLT
f (ωLT ) = ∂inv( f )(Z)|Z=ωLT .

4Form > 0 one can extend the definition to lim←−n
L×
n while form = 0 one cannot evaluate at η0 = 0!

5This power series has a constant term: see [16] for a technical solution.
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We calculate

1
(r−1)!

(

( d
dtL

)r−1 1

gu,η(ωLT )

dgu,η(ωLT )

dtL

)

|“tL=0′′

= 1
(r−1)! ((∂

r−1
inv �LT gu,η(Z))|Z=ωLT )|“tL=0′′

= 1
(r−1)! (∂

r−1
inv �LT gu,η(Z))|Z=0

= rψ r
CW (u) .

Proposition 8.4 For all a ∈ L, r ≥ 1, and u ∈ lim←−n
o×
Ln
we have

arψ r
CW (u) = ∂ϕ(τra)(rec(u)) .

Proof Using L[[tL]]=L[[ωL]]⊆ B+
dR we obtain from (49) that τr − t−r

L ∈ L[[tL]]. By
the discussion before Proposition 6.3 we therefore obtain

∂ϕ(τra)(rec(u)) = ResωL (τrad log gu,η(ωLT ))

= RestL (τrad log gu,η(ωLT ))

= RestL (at
−r
L d log gu,η(ωLT ))

= RestL (at
−r
L

∑

n≥1

nψn
CW (u)tn−1

L dtL)

= arψ r
CW (u) .

�

With (50) also the sequence

0 −→ L
diag−−−→ B

φq=1
max,L ⊕ B+

dR

(x,y)�→x−y−−−−−−→ BdR −→ 0 (51)

is exact. Tensoring with V = L ⊗oL T over L gives the upper exact sequence in the
commutative diagram

0 �� V⊗r �� (B
φq=1
max,L ⊕ B+

dR) ⊗L V⊗r �� BdR ⊗L V⊗r �� 0

0 �� LtrL
diag ��

∼=j(atrL):=aη⊗r

��

B
φq=π r

L
max,L ⊕ trLB

+
dR

∼= (x,y)�→(xt−r
L ,yt−r

L )⊗η⊗r

��

(x,y)�→(x−y)t−r
L ⊗η⊗r

�� BdR ⊗L V⊗r �� 0.

(52)
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Passing to continuous GL-cohomology gives rise to the connecting isomorphism

H1(L, V⊗r)

(BdR ⊗L V⊗r)GL = tanL(V⊗r)

exp:=expL,V⊗r ,id
������������

���������������

H1(L,LtrL),

∼=

��

which is the identity component (see §9) of the Bloch–Kato exponential map over L
for V⊗r . We introduce the composite map

expr : L a �→at−r
L ⊗η⊗r

−−−−−−−→∼=
tanL(V

⊗r)
expL,V⊗r ,id−−−−−→ H1(L, V⊗r)

res−−→ Hom�L (HL, V
⊗r) .

Proposition 8.5 For all a ∈ L we have

j−1 ◦ expr(a) = −δr((π−r
L − 1)a) .

Proof By (52) we find (x, y) ∈ B
φq=π r

L
max,L ⊕ trLB

+
dR such that x − y = a. Then

( j−1 ◦ expr(a))(g) = (g − 1)x = (g − 1)y for all g ∈ HL.

We claim that y belongs to FilrB+
max,L. For this it suffices to prove that y lies in B

+
max,L

(because it is contained in trLB
+
dR by assumption).We know that y = x − a ∈ Bmax,L =⋃

s≥0 t
−s
L B+

max,L. Let s be minimal with respect to the property that y ∈ t−s
L B+

max,L, i.e.,
that tsLy ∈ B+

max,L. We want to show that s = 0. Assume to the contrary that s > 0.
Then B+

max,L � φi
q(t

s
Ly) = π is

L t
s
Lφ

i
q(y), for any i ≥ 0, belongs to FilsB+

max,L ⊆ ker(θ)
because

φi
q(y) = φi

q(x − a) = π ri
L x − a = π ri

L y + π ri
L a − a ∈ B+

dR .

By (48) we obtain tsLy = tLy′ for some y′ ∈ B+
max,L. Hence t

s−1
L y already belongs to

B+
max,L, which is a contradiction. The above claim follows.
In particular, by the definition of δr and using that y = x − a we see that

( j−1 ◦ expr(a))(g) = (g − 1)y = δr((π−r
L φq − 1)(y))(g) = −δr((π−r

L − 1)a)(g)

for g ∈ HL, because (π−r
L φq − 1)(x) = 0 as x belongs to B

φq=π r
L

max,L . �

Putting the previous results together we obtain the following generalization of the
explicit reciprocity law of Bloch and Kato ([3] Theorem 2.1) from the cyclotomic
to the general Lubin–Tate case. In particular, this confirms partly the speculations in
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[14] §11: de Shalit had suggested to find a replacement for Bmax,Qp (or rather Bcris

which was used at that time) in the context of general Lubin–Tate formal groups and
it is precisely Colmez’ Bmax,L which has this function (although the path in (loc. cit.)
is slightly different from the one chosen here).

Theorem 8.6 For all u ∈ lim←−n
o×
Ln
, a ∈ L, and r ≥ 1 we have the identities

δr(a)(rec(u)) = ar!r
CW (u)

and

( j−1 ◦ expr(a))(rec(u)) = −(π−r
L − 1)ar!r

CW (u)

= 1
(r−1)! (1 − π−r

L )a∂rinv log gu,η(Z)|Z=0t
r
L .

Finally we consider the following commutative diagram

Hab
L (p) ⊗Zp V

⊗−r × Homc(HL, V⊗r) �� L

lim←−n
L×
n ⊗Zp V

⊗−r

rec⊗id

��

cores(−κ⊗id)

��
H1(L, V⊗−r(1))

exp∗

��

× H1(L, V⊗r)

res

��

∪ �� H2(L,L(1)) = L

∼= c �→ct−1
Qp

⊗ηcyc

��
D0

dR,L(V
⊗−r(1)) × tanL(V⊗r) ��

exp

��

DdR,L(L(1))

L

∼=a �→atrLt
−1
Qp

⊗(η⊗−r⊗ηcyc)

��

× L

∼= b �→bt−r
L ⊗η⊗r

��

(a,b)�→ab �� L.

∼= c �→ct−1
Qp

⊗ηcyc

��

Here ηcyc is a generator of the cyclotomic Tate module Zp(1), and tQp := log
Gm

([ι(ηcyc) + 1] − 1). The commutativity of the upper part can be shown by taking
inverse limits (onboth sides) of a similar diagramwith appropriate torsion coefficients
and afterwards tensoring with L over oL. Its middle part is the definition of the
dual exponential map exp∗. The commutativity of the lower part is easily checked.
Note also that the composite of the middle maps going up is nothing else than
expr by definition. Thus setting dr := trLt

−1
Qp

⊗ (η⊗−r ⊗ ηcyc)we obtain the following
consequence.
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Corollary 8.7 (A special case of Kato’s explicit reciprocity law) For r ≥ 1 the
diagram

lim←−n
o×
Ln

⊗Z T⊗−r

−κ⊗id

�� ′′(1−π−r
L )rψ r

CW (−)dr
′′



���������������������������

H1
Iw(L∞/L,T⊗−r(1))

cores

��
H1(L,T⊗−r(1))

exp∗
�� D0

dR,L(V
⊗−r(1)) = Ldr,

commutes, i.e., the diagonal map sends u ⊗ aη⊗−r to

a(1 − π−r
L )rψ r

CW (u)dr = a
1 − π−r

L

(r − 1)! ∂
r
inv log gu,η(Z)|Z=0dr .

9 Appendix: p-adic Hodge Theory

For a continuous representation of GK on a finite dimensional Qp-vector space V
we write as usual

DdR,K(V ) := (BdR ⊗Qp V )GK ⊇ D0
dR,K(V ) := (B+

dR ⊗Qp V )GK and

Dcris,K(V ) := (Bmax,Qp ⊗Qp V )GK .

The quotient tanK(V ) := DdR,K(V )/D0
dR,K(V ) is called the tangent space of V .

Henceforth we assume that V is de Rham. Then the usual Bloch–Kato exponential
map expK,V : tanK(V ) → H1(K, V ) can be defined as follows. Apply the tensor
functor − ⊗Qp V to the exact sequence

0 → Qp → B
φp=1
max,Qp

→ BdR/B
+
dR → 0 (53)

and take the (first) connecting homomorphism in the associated GK -cohomology
sequence.6 Note that by [3] Lemma 3.8.1 we have tanK(V ) = (BdR/B

+
dR ⊗Qp V )GK .

Furthermore, the dual exponential map exp∗
K,V is defined by the commutativity of

the following diagram

6It follows from [12, Proposition III.3.1] that this sequence splits in the category of topological Qp-
vector spaces. Since the p-adic topology on Qp coincides with the induced topology from Bmax,Qp

the existence of the transition map is granted by [30, Lem. 2.7.2].
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H1(K, V )

∼=
��

exp∗
K,V �� D0

dR,K(V )

∼=
��

H1(K, V ∗(1))∗
(expK,V∗(1))∗ �� (DdR,K(V ∗(1))/D0

dR,K(V
∗(1)))∗,

(54)

where the left, resp. right, perpendicular isomorphism comes from local Tate duality,
resp. from the perfect pairing

DdR,K(V ) × DdR,K(HomQp(V,Qp(1))) −→ DdR,K(Qp(1)) ∼= K, (55)

inwhich theD0
dR,K -subspaces are orthogonal to each other. Note that the isomorphism

K ∼= DdR,K(Qp(1)) sends a to at−1
Qp

⊗ ηcyc. Also, (−)∗ here means the Qp-dual.
Now assume that V is in RepL(GK) and consider K = L in the following. Ten-

soring (28) with Qp gives the isomorphism of L-vector spaces

�̃ : L ∼= HomZp(oL,Zp) ⊗Zp Qp
∼= HomQp(L,Qp) .

Since HomQp(L,−) is right adjoint to scalar restriction from L to Qp, and by using
�̃−1 in the second step, we have a natural isomorphism

HomQp(V,Qp) ∼= HomL(V,HomQp(L,Qp)) ∼= HomL(V,L) . (56)

Combined with (55) we obtain the perfect pairing

DdR,L(V ) × DdR,L(HomL(V,L(1))) −→ L (57)

with an analogous orthogonality property. Furthermore, similarly as in Proposition
5.7 local Tate duality can be seen as a perfect pairing of finite dimensional L-vector
spaces

Hi(K, V ) × H2−i(K,HomL(V,L(1))) −→ H2(K,L(1)) = L . (58)

Altogether we see that, for such a V , the dual Bloch–Kato exponential map can also
be defined by an analogous diagram as (54) involving the pairings (57) and (58) and
in which (−)∗ means taking the L-dual.

Since BdR contains the algebraic closure L of L we have the isomorphism

BdR ⊗Qp V = (BdR ⊗Qp L) ⊗L V
∼=−→

∏

σ∈GQp /GL

BdR ⊗σ,L V
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which sends b ⊗ v to (b ⊗ v)σ . The tensor product in the factor BdR ⊗σ,L V is formed
with respect to L acting on BdR through σ . With respect to the GL-action the right
hand side decomposes according to the double cosets in GL\GQp/GL. It follows, in
particular, that Did

dR,L(V ) := (BdR ⊗L V )GL is a direct summand of DdR,L(V ). Sim-
ilarly, tanL,id(V ) := (BdR/B

+
dR ⊗L V )GL is a direct summand of tanL(V ). We then

have the composite map

ẽxpL,V,id : tanL,id(V )
⊆−→ tanL(V )

expL,V−−−→ H1(L, V ),

the identity component of expL,V . On the other hand, applying the tensor functor
− ⊗L V to the exact sequence (50)

0 → L → B
φq=1
max,L → BdR/B

+
dR → 0

and taking the (first) connecting homomorphism7 in the associated GL-cohomology
sequence gives rise to a map

expL,V,id : tanL,id(V ) → H1(L, V ) .

Suppose that V is even L-analytic, i.e., that the Hodge–Tate weights of V at all
embeddings id �= σ : L → L are zero. We then have tanL(V ) = tanL,id(V ) and the
following fact.

Proposition 9.1 If V is L-analytic, themaps expL,V , ẽxpL,V,id and expL,V,id coincide.

Because of this fact we call also expL,V,id the identity component of expL,V in the
situation of the Proposition. We remark that by [34] III.A4 Proposition 4 and Lemma
2(b) the character V = L(χLT ) is L-analytic.

Proof of Proposition 9.1 Let L0 ⊆ L be the maximal unramified subextension and
let f := [L0 : Qp]. As explained at the beginning of §9.7 in [9] we have Bmax,L ⊆
Bmax,Qp ⊗L0 L and hence B

φq=1
max,L ⊆ B

φ
f
p=1

max,Qp
⊗L0 L. We claim that

B
φq=1
max,Qp

= B
φ
f
p=1

max,Qp
= B

φp=1
max,Qp

⊗Qp L0 .

The left hand side contains L0. Let� := Gal(L0/Qp)with Frobenius generator δ. For

any x ∈ B
φ
f
p=1

max,Qp
we have the finite dimensional L0-vector space Vx := ∑f−1

i=0 L0φ
i
p(x)

onwhich theGalois group� acts semilinearly by sending δ toφp. Hilbert 90 therefore
implies that Vx = L0 ⊗Qp V

�
x . This proves the claim.

7Analogous arguments as in Footnote 6 grant the existence of this connecting homomorphism.
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It follows that we have the commutative diagram

0 �� L

��

�� B
φp=1
max,Qp

⊗Qp L

=
��

�� BdR/B
+
dR ⊗Qp L

mult

��

�� 0

0 �� C �� B
φq=1
max,Qp

⊗L0 L �� BdR/B
+
dR

�� 0

0 �� L

��

�� B
φq=1
max,L

⊆
��

�� BdR/B
+
dR

=
��

�� 0,

in which the upper exact sequence is induced by tensoring (53) by L over Qp while
the lower one is (50). C is defined to be the kernel in the middle horizontal sequence
which is therefore also exact. Note that the two vertical maps L → C both coincide
as their composites into the middle term each sends l ∈ L to 1 ⊗ l. By tensoring
this diagram with V over L and forming the cohomology sequences we conclude
that the composites of expL,V and expL,V,id with H1(GL, V ) → H1(GL,C ⊗L V )

coincide whence the claim shall follow from the injectivity of the latter map. The
snake lemma applied to the upper part of the diagram (tensored with V ) leads to the
exact sequence8

0 → V → C ⊗L V →
∏

σ �=id

BdR/B
+
dR ⊗σ,L V → 0 ,

which in turn, by forming continuous GL-cohomology, induces the exact sequence

0 = ker(tanL(V ) → tanL,id(V )) → H1(GL, V ) → H1(GL,C ⊗L V ) ,

i.e., we obtain the desired injectivity. �
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1 Introduction

Let k be a finite field of characteristic �, let V be a finite dimensional vector
space over k and let G be a subgroup of GL(V ). For an endomorphism g of V
and an element α of k we let Vg,α denote the generalized eigenspace of g with eigen-
value α. It is naturally a sub and a quotient of V . Following Clozel, Harris and Taylor
(see [6, Def. 2.5.1]), we say that G is big if the following four conditions hold:

(B1) The group G has no non-trivial quotient of �-power order.
(B2) The space V is absolutely irreducible as a G-module.
(B3) We have H 1(G, ad◦ V ) = 0.
(B4) For every irreducible G-submodule W of ad V we can find g ∈ G, α ∈ k and

f ∈ W such that Vg,α is one dimensional and the composite

Vg,α
� � �� V

f �� V �� �� Vg,α

is non-zero.

The bigness condition is important in the work of Clozel, Harris and Taylor [6].
They prove modularity lifting theorems of the following general form: if ρ is an
�-adic representation of the absolute Galois group G F of a number field F such
that ρ comes from a modular form then so does ρ. There are several hypotheses
in these theorems, but one crucial one is that the image of ρ must be big. In this
paper, we investigate the bigness condition in compatible systems and show that it
automatically holds at a density one set of primes, assuming the system is sufficiently
irreducible. Thus the theorems of [6] should become easier to apply in the setting of
compatible systems. Precisely, our main theorem is the following:

Theorem 1.1 Let F be a number field. Let L be a set of prime numbers of Dirichlet
density one and for each � ∈ L let ρ� : G F → GLn(Q�) be a continuous represen-
tation of G F . Assume that the ρ� form a compatible system and that each ρ� is
absolutely irreducible when restricted to any open subgroup of G F . Then there is a
subset L ′ ⊂ L of density one such that ρ�(G F ) is a big subgroup of GLn(F�) for all
� ∈ L ′.

Here ρ� denotes the semi-simplified mod � reduction of ρ�. For our definition of
“compatible system” see §7. We in fact prove a more general result, allowing for
compatible systems with coefficients in a number field and for F to be a function
field; see §8 for details.
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1.1 Outline of Proof

Broadly speaking, the proof of Theorem 1.1 has three steps:

1. We first show that if G/F� is a reductive group and ρ : G → GLn is an absolutely
irreducible algebraic representation of G such that � is large compared to n and
the weights appearing in ρ then the group ρ(G(F�)) is big.

2. Using this, we show that if ρ : � → GLn(Q�) is an �-adic representation of a
profinite group such that (a) � is large compared to n; (b)ρ is absolutely irreducible
when restricted to any open subgroup of �; and (c) ρ(�) is close to being a
hyperspecial subgroup of its Zariski closure, then ρ(�) is a big subgroup of
GLn(F�).

3. Finally, we combine the above with results of Serre and Larsen on compatible
systems to deduce Theorem 1.1.

1.2 Examples

We should point out that one can construct compatible systems which satisfy the
hypotheses of the theorem. Let F be a totally real number field (resp. imaginary CM
field) and let π be a cuspidal automorphic representation of GLn(AF ) satisfying the
following conditions:

(C1) π is regular algebraic. This means that π∞ has the same infinitesimal character
as some irreducible algebraic representation of the restriction of scalars from
F to Q of GLn .

(C2) π is essentially self-dual (resp. conjugate self-dual). When F is totally real
this means that π∨ = χ ⊗ π for some character χ of the idele group of F for
which χv(−1) is independent of v, as v varies over the infinite places of F .
When F is imaginary CM, this means that π∨ = π c, where c denotes complex
conjugation.

(C3) There is some finite place v0 of F such that πv0 is a twist of the Steinberg
representation.

Under these conditions, we can associate to π a compatible system of semi-simple
representations {ρw} of G F with coefficients in some number field E . The system is
indexed by the placesw of E . For more precise statements, see [6, Propositions 3.2.1
and 3.3.1].

Letw be a place of E with residue characteristic different from that of v0. Assume
that F is imaginaryCM.By themain result of [19] the (Frobenius semi-simplification
of the) representation ρw|G F,v0

corresponds to πv0 under the local Langlands corre-
spondence (we write G F,v0 for the decomposition group at v0). As πv0 is a twist
of the Steinberg representation, we find that ρw|G F,v0

is absolutely indecomposable,
and remains so after restricting to any open subgroup of G F,v0 . It follows that ρw is
absolutely indecomposable when restricted to any open subgroup of G F . Since ρw
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is semi-simple, we conclude that it is in fact absolutely irreducible when restricted
to any open subgroup of G F . When F is totally real we can still conclude that ρw

has this property by making an appropriate abelian base change to an imaginary CM
field and appealing to the above argument.

We thus see that all but finitely many members of the compatible system {ρw} are
absolutely irreducible on any open subgroup of G F . By the more general version of
the main theorem given in §8, we conclude that there is a set of primes P of Q of
Dirichlet density 1/[E : Q], all of which split in E , such that ρw(G F ) is big subgroup
of GLn(F�) for all w which lie above a prime � ∈ P .

1.3 Remark

In view of Patrikis’ thesis [16, Proposition 1.1.15], every absolutely irreducible ρ�

is of the form ρ� = IndF
K (ρ ′

� ⊗ �) where K is a finite extension of F , � is an Artin
representation of G K , and ρ ′

� is an �-adic representation of G K that is absolutely
irreducible on every open subgroup. We would conjecture that if ρ� is part of a semi-
simple compatible system then so is ρ ′

�, and that K and� may be chosen independent
of �. A similar statement should hold for compatible systems with coefficients in a
number field.

1.4 Notation and Conventions

Reductive groups over fields are connected. A semi-simple group G over a field k
is called simply connected if the root datum of Gk is simply connected (i.e., coroots
span the coweight lattice). If G is a semi-simple group over k then there is a simply
connected group Gsc and an isogeny Gsc → G whose kernel is central. The group
Gsc and the map Gsc → G are unique up to isomorphism. We call Gsc the universal
cover of G. For an arbitrary algebraic group G over k we let G◦ denote the connected
component of the identity, Gad the adjoint group of the quotient of G◦ by its radical,
which is a semi-simple group, and Gsc the universal cover of Gad. We also write
Gder for the derived subgroup of G◦, which is semi-simple if G◦ is reductive. For a
vector space V we denote by ad V the space of endomorphisms of V and by ad◦ V
the subspace of traceless endomorphisms. More definitions are given in the body of
the paper.
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2 Elementary Properties of Bigness

In this section we establish some elementary properties of bigness. Throughout this
section, k denotes a finite field of characteristic �, V a finite dimensional vector space
over k and G a subgroup of GL(V ).

Proposition 2.1 Let H be a normal subgroup of G. If H satisfies (B2), (B3) and
(B4) then G does as well. In particular, if H is big and the index [G : H ] is prime to
� then G is big.

Proof Assume H satisfies (B2), (B3) and (B4). Since V is absolutely irreducible for
H , it is for G as well, and so G satisfies (B2). We have an exact sequence

H 1(G/H, (ad◦ V )H ) → H 1(G, ad◦ V ) → H 1(H, ad◦ V )G/H .

Since H satisfies (B3), H 1(H, ad◦ V ) = 0 and so the rightmost term vanishes. Since
V is absolutely irreducible for H we have (ad◦ V )H = 0 and so the leftmost term
vanishes. Thus H 1(G, ad◦ V ) = 0 andG satisfies (B3).Now letW be aG-irreducible
submodule of ad V . Let W ′ be an H -irreducible submodule of W . Since H satisfies
(B4), we can find g ∈ H , α ∈ k and f ∈ W ′ such that Vg,α is one dimensional and
f (Vg,α) has non-zero projection to Vg,α . Of course, g also belongs to G and f also
belongs to W . Thus G satisfies (B4) as well.

Now say that H is big and [G : H ] is prime to �. The above arguments show that
G satisfies (B2), (B3) and (B4), so to show that G is big we need only verify (B1).
Let K be an �-power order quotient of G. Since H has no �-power order quotient,
its image in K is trivial. Thus K is a quotient of G/H . But this group has prime-to-�
order, and so K = 1. This shows that the only �-power order quotient of G is the
trivial group, and so G satisfies (B1). �

Proposition 2.2 The group G is big if and only if k×G is, where k× denotes the
group of scalar matrices in GL(V ).

Proof Since G is a normal subgroup of k×G of prime-to-� index, the bigness of the
former implies that of the latter by Proposition 2.1. Now assume that k×G is big. Let
K be an �-power order quotient of G. Since k× ∩ G is prime to �, its image in K is
trivial. Thus K is a quotient of the group G/(G ∩ k×) = k×G/k×. By assumption,
k×G has no non-trivial quotient of �-power order. Thus K = 1 and G satisfies (B1).

Since V is absolutely irreducible for k×G it is for G as well. Thus G satisfies
(B2).

We have an exact sequence

1 → G → k×G → H → 1

where H is a quotient of k×. We thus have an exact sequence

H 1(k×G, ad◦ V ) → H 1(G, ad◦ V )H → H 2(H, (ad◦ V )G).



474 A. Snowden and A. Wiles

The group on the left vanishes by hypothesis. The group on the right vanishes since
(ad◦ V )G = 0. Thus the group in the middle vanishes. Now, the action of H on
H 1(G, ad ◦V ) is trivial. (Proof: Let f : G → ad◦ V be a 1-cocycle representing a
cohomology class [ f ] and let h be an element of H . Then h · [ f ] is represented by
the 1-cocycle g �→ h̃ f (̃h−1gh̃) for any lift h̃ of h. We can pick a lift h̃ of h which
belongs to k×. Thus h̃ acts trivially on G by conjugation and acts trivially on ad◦
V . Therefore h · [ f ] = [ f ].) It thus follows that H 1(G, ad◦ V ) vanishes and so G
satisfies (B3).

As for the last condition, let W be an irreducible G-submodule of ad V .
Then it is also an irreducible k×G-module. Thus we can find g ∈ k×G, α ∈ k and
f ∈ W such that Vg,α is one dimensional and f (Vg,α) has non-zero projection to Vg,α .
We can write g = zg′ where z belongs to k× and g′ belongs to G. Put α′ = αz−1.
Then Vg′,α′ = Vg,α . Thus this space is one dimensional and f (Vg′,α′) has non-zero
projection to Vg′,α′ . We have therefore shown that G satisfies (B4). Thus G is big. �

The following result will not be used, but is good to know.

Proposition 2.3 Let k ′/k be a finite extension and put V ′ = V ⊗ k ′. If G is a big
subgroup of GL(V ) then it is a big subgroup of GL(V ′).

Proof Conditions (B1), (B2) and (B3) for G as a subgroup of GL(V ′) are immediate.
We prove (B4). Let S be the set of pairs (g, α) ∈ G × k× such that Vg,α is one
dimensional. Consider the natural map

	 : ad V →
⊕

(g,α)∈S

End(Vg,α).

The map 	 is G-equivariant, using the natural action of G on the target. Let W be an
irreducible submodule of ad V . Since G ⊂ GL(V ) satisfies (B4), we can find f ∈ W
such that the image of f in End(Vg,α) is non-zero, for some (g, α) ∈ S. Clearly then,
	( f ) = 0. It follows that 	(W ) = 0, and therefore (since W is irreducible), 	|W is
injective. As this holds for every irreducible submodule of ad V , it follows that 	 is
injective. Tensoring 	 with k ′, we find that the natural map

	′ : ad V ′ →
⊕

(g,α)∈S

End(V ′
g,α)

is injective. (Note that Vg,α ⊗k k ′ = V ′
g,α .) Let W be an irreducible submodule of ad

V ′. Given any non-zero f ∈ W the image of f under 	′ is non-zero. It follows that
there exists some (g, α) ∈ S such that the image of f in End(V ′

g,α) is non-zero. This
shows that G ⊂ GL(V ′) satisfies (B4). �
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3 Background on Representations of Algebraic Groups

In this section we review some representation theory of algebraic groups. To a rep-
resentation V of an algebraic group G we attach a non-negative integer ‖V ‖ which
measures the size of the weights appearing in V . The key principle we need is: over
a field of positive characteristic, the representations of G with ‖V ‖ small behave
in many ways like representations in characteristic 0. We will give several precise
statements of this type.

3.1 Borel–Weil Type Representations

Let S be a scheme. A group scheme G/S is reductive (resp. semi-simple) if it is
smooth, affine and its geometric fibers are reductive (resp. semi-simple). This implies
that its geometric fibers are connected, by our conventions. Such a group is a torus
if it is fppf locally isomorphic to Gn

m . A torus is split if it is (globally) isomorphic
to Gn

m (it may be best to allow n to be a locally constant function on the base S; this
will not be an issue for us). By a maximal torus in G we mean a subtorus which is
maximal in each geometric fiber. Similarly, by a Borel subgroup we mean a closed
subgroup which is smooth over S and a Borel subgroup in each geometric fiber. A
reductive group G/S is split if it has a split maximal torus T such that the weight
spaces of T on Lie(G) are free coherent sheaves on S. See [7, Exp. XIX] for the
general theory.

Let G/S be a split reductive group over a connected locally noetherian base S.
Let B be a Borel subgroup of G and let T ⊂ B be a split maximal torus. Let λ be
a dominant weight of T and let LS(λ) be the natural G-equivariant line bundle on
G/B associated to λ. Put VS,λ = f∗LS(λ), where f : G/B → S is the structuremap.
Thus VS,λ is a coherent sheaf on S with a natural action of G. We call these sheaves
“Borel–Weil representations.” We omit the S from the notation if it is clear from
context. Consider a cartesian diagram

(G/B)S′
g′

��

f ′

��

G/B

f

��
S′ g �� S.

Note that formation ofLS(λ) commuteswith pull-back, that is, (g′)∗LS(λ) = LS′(λ).
Kempf’s vanishing theorem [9, Proposition II.4.5] states that if S′ is a geometric
point of S then Ri f ′∗LS′(λ) = 0 for i > 0. (When S′ has characteristic 0 this is
part of the classical Borel–Weil–Bott theorem.) Thus, using a combination of the
formal functions theorem and the proper base change theorem (see also the chapter
“Cohomology and base change” in [14]), we see that VS,λ is a locally free sheaf on
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S and its formation commutes with base change, that is, for any diagram as above
we have VS′,λ = g∗VS,λ.

Assume now that S = Spec(k) with k an algebraically closed field. If k has char-
acteristic zero then Vλ is an irreducible representation of G. Furthermore, every
irreducible representation of G is isomorphic to a unique Vλ. This is the classical
Borel–Weil theorem. If k does not have characteristic zero then Vλ may not be irre-
ducible. However, it has a unique irreducible submodule soc(Vλ) and any irreducible
representation of G is isomorphic to a unique soc(Vλ) (see [9, Corollary II.2.7]). The
representation soc(Vλ) is the unique irreducible with λ as its highest weight.

3.2 The Norm of a Representation

Let G/k be a reductive group over a field k. Assume for the moment that G is
split and pick a split maximal torus T of G. For a weight λ of T we let ‖λ‖ be the
maximum value of |〈λ, α∨〉| as α varies over the roots of G with respect to T . Let
V be a representation of G. We let ‖V ‖ be the maximum value of the ‖λ‖ among
the weights λ appearing in V . The value of ‖V ‖ is independent of the choice of the
torus T ; furthermore, if k ′/k is a field extension then ‖Vk ′ ‖ = ‖V ‖. Now drop the
assumption that G is split. For a representation V of G we define ‖V ‖ to be ‖Vk ′ ‖
where k ′/k is an extension over which G splits. It is clear that if V is an extension
of V1 by V2 then ‖V ‖ = max(‖V1‖, ‖V2‖). We also have the following:

Proposition 3.1 Let f : G ′ → G be a map of reductive groups over a field k and
let V be a representation of G. Assume one of the following holds:

1. f is a central isogeny.
2. f is the projection onto a direct factor.
3. f is the inclusion of the derived subgroup G ′ of G.
4. f is a surjection and ker f/(Z ′ ∩ ker f ) is smooth, where Z ′ is the center of G ′.

Then ‖ f ∗V ‖ = ‖V ‖. (Note (4) subsumes (1) and (2).)

Proof Wemay prove the proposition after passing to the closure of k.We thus assume
k that is closed, and therefore, that G and G ′ are split. Although (4) subsumes (1)
and (2) we will use (1) and (2) in the proof of (4), and so prove them separately.

(1) Let T be a split maximal torus of G. Then T ′ = f −1(T ) is a split maximal
torus of G ′. Every weight of f ∗V is of the form f ∗λ where λ is a weight of V . For a
corootα∨ ofG ′ wehave the identity 〈 f ∗λ, α∨〉 = 〈λ, f∗α∨〉. The push-forward f∗α∨
is a coroot of G, and every coroot arises in this manner. We thus find ‖ f ∗V ‖ = ‖V ‖.

(2) Write G ′ = G × G ′′ so that f is the projection onto G. Let T be a split
maximal torus of G and T ′′ a split maximal torus of G ′′ so that T ′ = T × T ′′ is a
split maximal torus of G ′. The weights of f ∗V coincide with the weights of V in
the obvious manner. The coroots of G ′ are the union of the coroots of G and G ′′. As
any coroot of G ′′ pairs to zero with a weight of T , we find ‖ f ∗V ‖ = ‖V ‖.
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(3) Let G ′ = Gder and let f : G ′ → G be the natural inclusion. Let T be a split
maximal torus of G. Then the reduced subscheme of the connected component of
the identity of f −1(T ) is a group (by the lemma following this proof) and is a split
maximal torus T ′ of G ′. If α∨ is a coroot of G ′ then f∗α∨ is a coroot of G and all
coroots arise in this manner. We also have an adjointness between f ∗ on weights and
f∗ on coweights. The proof now proceeds as in part (1).
(4) We have a diagram

G̃ ′ p′
��

f̃

��

(G ′)der i ′
��

f ′

��

G ′

f

��
G̃

p �� Gder i �� G

Here G̃ is the universal cover ofGder and similarly for G̃ ′. Themap f̃ is a lift of f ′. Let
H = ker f̃ and let Hred be the reduced subscheme of H ; it is a normal subgroup of G̃ ′
by the lemma following this proof. Of course, Hred is smooth since it is reduced. Let
K = H ∩ Z̃ ′. Then H/K = ker f/(ker f ∩ Z ′) is smooth by hypothesis. The map
Hred → H/K is between smooth groups of the same dimension and is surjective
on connected components; it is therefore surjective. We thus have H = K Hred. The
map f̃ can now be factored as

G̃ ′ → G̃ ′/H ◦
red → G̃ ′/Hred → G̃ ′/H = G̃

The kernel of the first map is H ◦
red, which is a direct factor of G̃ ′ since it is smooth,

connected and normal. The kernel of the second map is π0(Hred), which is étale
and therefore central. The kernel of the third map is H/Hred, which is the image
of K in G̃ ′/Hred, and therefore central. We thus see that f̃ is a composition of a
projection onto a direct factor with two central isogenies. It follows from (1) and (2)
that ‖ f̃ ∗W‖ = ‖W‖ for any representation W of G̃. We now have:

‖ f ∗V ‖ = ‖(i ′)∗ f ∗V ‖ = ‖(p′)∗(i ′)∗ f ∗V ‖ = ‖ f̃ ∗ p∗i∗V ‖ = ‖p∗i∗V ‖ = ‖i∗V ‖ = ‖V ‖.

The first equality uses (3), the second (1), the third the commutativity of the diagram,
the fourth the fact that f̃ ∗ preserves norm, the fifth (1), the sixth (3). �

Lemma 3.2 Let G be an affine group over a field k and let Gred be the reduced
subscheme of G.

1. If k is perfect then Gred is a subgroup of G.
2. If G is a closed normal subgroup of a smooth affine group H then Gred is stable

under conjugation by H.

Thus if k is perfect and G is a closed normal subgroup of a smooth affine group then
Gred is a closed normal subgroup of G.
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Proof (1) Since k is perfect, the productGred × Gred (fiber product over k) is reduced.
Therefore the composite

Gred × Gred → G × G → G

factors through the inclusion Gred → G. This shows that Gred is a subgroup of G.
(2) Given h ∈ H(k), the map G → G given by conjugation by h induces a map

Gred → Gred. If k is infinite then H(k) is dense in H , and so Gred is stable under
conjugation by H . If k is finite then it is perfect, and one may therefore verify that
Gred is stable by conjugation after passing to the closure; since the closure is infinite,
the previous argument applies. �

We thank Brian Conrad for informing us of counterexamples to the above state-
ments when the hypotheses are not in place.

3.3 Representations of Small Norm

We let Rep(G) be the category of representations of G. For an integer n we let
Rep(n)(G) be the full subcategory of Rep(G) on those representations V which
satisfy ‖V ‖ < n. Both Rep(G) and Rep(n)(G) are abelian categories. Furthermore,
if

0 → V ′ → V → V ′′ → 0

is an exact sequence in Rep(G) then V belongs to Rep(n)(G) if and only if both V ′
and V ′′ do. In other words, Rep(n)(G) is a Serre subcategory of Rep(G).

Proposition 3.3 Let G/k be a reductive group over an algebraically closed field k.
Assume char k is zero or large compared to n and dim G. Then:

1. The category Rep(n)(G) is semi-simple.
2. The simple objects of Rep(n)(G) are Borel–Weil representations.

In other words, any representation V of G with ‖V ‖ small compared to char k is a
direct sum of Vλ’s.

Proof The statements are well-known in characteristic zero, so we assume k has
positive characteristic. We prove (2) first. The simple objects of Rep(G) are exactly
the soc(Vλ). Now, ‖ soc(Vλ)‖ � ‖λ‖ as λ occurs as a weight in soc(Vλ). Thus if
soc(Vλ) belongs to Rep(n)(G) then ‖λ‖ < n. On the other hand, it is known that for
char k large compared to dim G and ‖λ‖ the representation Vλ is irreducible (see
[17]). This proves (2).

We now prove (1). First note that the simple objects of Rep(n)(G) have dimension
bounded in terms of n and dim G. Indeed, the groupG is the pull-back to k of a unique
split reductive group over Z, which we still call G. The simple Vk,λ is just VZ,λ ⊗ k.
Thus the dimension of Vk,λ is the same as the dimension of VC,λ. This dimension
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can then be bounded in terms of dim G and ‖λ‖ using the Weyl dimension formula
[8, Corollary 24.6] and the fact that there are only finitely many root data of a given
rank.

Now, it is known (see [10, 12]) that any representation of G with small dimension
compared to char k is semi-simple. Since char k is large, we thus find that if A and
B are two simples of Rep(n)(G) then any extension of A by B is semi-simple, and
therefore Ext1(A, B) = 0. This shows that Rep(n)(G) is semi-simple. This completes
the proof of the proposition. �

Corollary 3.4 Let G/k be a reductive group over an algebraically closed field k of
characteristic � and let V be a representation of G such that dim V and ‖V ‖ are
small compared to �. Then V is semi-simple and a direct sum of simple Borel–Weil
representations.

Proof Let H be the kernel of G → GL(V ), let H ′ be the reduced subscheme of H ◦
and let G ′ = G/H ′. Then the map G ′ → GL(V ) has finite kernel. Thus dim G ′ is
bounded by dim V and is therefore small compared to �. By Proposition 3.1, ‖V ‖
is the same for G and G ′. By Proposition 3.3, V is semi-simple for G ′ and a direct
sum of simple Borel–Weil representations. It follows that the same holds for G. (The
restriction of a Borel–Weil representation along a surjection is still Borel–Weil.) �

Proposition 3.5 Let K/Q� be an extension with ring of integers OK and residue
field k. Let G/OK be a reductive group and let V be a finite free OK -module with
a representation of G. Then ‖Vk‖ = ‖VK ‖ and this is bounded in terms of rk V . If
the representation of G K on VK is absolutely irreducible and � is large compared to
rk V then the representation of Gk on Vk is absolutely irreducible.

Proof By enlarging K if necessary we can assume that G is split. Let T be a split
maximal torus in G. As maps of tori are rigid, the weights of T in VK and Vk are the
same. This shows that their norms agree. The fact that ‖VK ‖ is bounded in terms of
rk V is a fact about representations of complex Lie groups and can be proved using
the Weyl dimension formula [8, Corollary 24.6].

Now, assume that VK is irreducible for the action of G K and that � is large
compared to rk V . By the first paragraph, � is large compared to ‖Vk‖. It thus follows
from Corollary 3.4 that we can write Vk = ⊕

Vk,λi
with each Vk,λi

irreducible. The
representations Vk,λi

lift to OK . By the first paragraph, we see that VK and
⊕

VK ,λi

have the same weights, and are thus isomorphic. Since VK is irreducible, there must
therefore be only one term in the sum, and so Vk must be irreducible as well. �

3.4 Representations of G(k)

Let k be a finite field and let G/k be a reductive group. We denote by Rep(G(k)) the
category of representations of the finite group G(k) on k-vector spaces.
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Proposition 3.6 Let k be a finite field and G/k a semi-simple simply connected
group. Assume char k is sufficiently large compared to dim G and n. Then the func-
tor Rep(n)(Gk) → Rep(G(k)) is fully faithful and the essential image is a Serre
subcategory of Rep(G(k)).

Proof The functor Rep(n)(Gk) → Rep(G(k)) is clearly faithful and exact. The
desired properties now follow from the fact that Rep(n)(Gk) is semi-simple and
the fact that if V is an irreducible representation of Gk with norm small compared
to char k then it stays irreducible when restricted to G(k) (see [11, §1.13]). �

3.5 Representations of Lie(G)

We will need the following result:

Proposition 3.7 Let k be the algebraic closure of a finite field, G/k a semi-simple
group and V an irreducible representation of G. Pick a system of positive roots P in
g = Lie(G). Assume char k is large compared to ‖V ‖ and dim G. Then the subspace
of V annihilated by P is one dimensional. (This subspace is the highest weight space
of V with respect to P.)

Proof Denote by G still the unique split group over Z giving rise to G/k. By our
hypotheses we have V = Vk,λ for some dominant weight λ. We know that Vk,λ =
VZ,λ ⊗ k and similarly VC,λ = VZ,λ ⊗ C. Now, since G is split overZ for each r ∈ P
we can find Xr ∈ gZ which generates the r root space of gZ. Consider the map

VZ,λ →
⊕

P

VZ,λ, v �→ (Xr · v)r∈P .

This is a linear map of finite free Z-modules. After tensoring with C the kernel of
this map is the subspace of VC,λ annihilated by P . This is one dimensional by the
usual highest weight theory over C. It thus follows that for � sufficiently large, the
reduction of the map modulo � will have one dimensional kernel. This proves the
proposition. �

4 Highly Regular Elements of Semi-simple Groups

Fix a finite field k of cardinality q. The purpose of this section is to demonstrate the
following result:

Proposition 4.1 Let G/k be a semi-simple group and let T ⊂ G be a maximal torus
defined over k. Let n be an integer and assume q is large compared to dim G and n.
Then there exists an element g ∈ T (k) for which the map
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{λ ∈ X (Tk) | ‖λ‖ < n} → k
×
, λ �→ λ(g)

is injective.

Before proving the proposition we give a few lemmas.

Lemma 4.2 Let T/k be a torus of rank r . Then (q − 1)r � #T (k) � (q + 1)r .

Proof Wehave#T (k) = det((q − F)|X (Tk)),where F is theFrobenius inGal(k/k).
(For a proof of this, see [15, §1.5].) Since T splits over a finite extension, the action
of F on X (Tk) has finite order and so its eigenvalues are roots of unity. We thus have
#T (k) = ∏r

i=1(q − ζi )where each ζi is a root of unity, fromwhich the lemma easily
follows. �

Lemma 4.3 Let G/k be a semi-simple group and let T ⊂ G be a maximal torus
defined over k. Then #{λ ∈ X (Tk) | ‖λ‖ < n} is bounded in terms of dim G and n.

Proof The quantity #{λ ∈ X (Tk) | ‖λ‖ < n} depends only on n and the root datum
associated to (Gk, Tk). Since there are only finitely many semi-simple root data of a
given dimension, the result follows. �

Lemma 4.4 Let G/k be a semi-simple group of rank r , T ⊂ G a maximal torus
defined over k and λ ∈ X (Tk) a non-zero character satisfying ‖λ‖ < n. Then the

kernel of the map λ : T (k) → k
×

has order at most C(q + 1)r−1 for some constant
C depending only on n and dim G.

Proof For a subset S of {λ ∈ X (Tk) | ‖λ‖ < n} let C(S) denote the cardinality of
the torsion of the quotient of X (Tk) by the subgroup generated by S. Let C be the
least common multiple of the C(S) over all S. Since C only depends upon n and the
root datum associated to (Gk, Tk), it can be bounded in terms n and dim G.

Now, say the character λ of Tk is defined over the extension k ′/k. Then λ defines
a map T → Resk ′/k(Gm), where Res denotes restriction of scalars. The kernel of
λ is a diagonalizable group scheme whose character group is the cokernel of the
map f : Z[Gal(k ′/k)] → X (Tk) given by σ �→ σ · λ (note that Z[Gal(k ′/k)] is the
character group of Resk ′/k(Gm)). The image of f is spanned by the Gal(k/k) orbit
of λ. Since ‖ · ‖ is Galois invariant, it follows that the torsion in the cokernel of f
has order at most C . Furthermore, since λ is non-zero, we see that the rank of the
cokernel of f is at most r − 1.

We have thus shown that the kernel of T → Resk ′/k(Gm) is an extension of a finite
group scheme of order at most C by a torus of rank at most r − 1. It follows from
Lemma 4.2 that the set of k-points of the kernel—which is identified with the kernel
of λ : T (k) → k

×
— has cardinality at most C(q + 1)r−1, as was to be shown. �

We now prove the proposition.

Proof of Proposition 4.1Let S be the set of all non-zeroλ ∈ X (Tk) such that ‖λ‖ < 2n
and let N be the cardinality of S. We first claim that
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T (k) ⊂
⋃

λ∈S

ker λ.

Of course, this is equivalent to T (k) = ⋃
λ∈S(ker λ ∩ T (k)). To see this, we look at

the cardinality of each side. The right side is a union of N sets, each of which has
cardinality at most C(q + 1)r−1, while the left side has cardinality at least (q − 1)r

by Lemma 4.2. Since N and C are small compared to q (by Lemmas 4.3 and 4.4),
the claim follows.

Now, pick an element g ∈ T (k) such that g /∈ ⋃
λ∈S ker λ. Let λ and λ′ be distinct

elements of X (Tk) each of which has ‖ · ‖ < n. Then λ − λ′ belongs to S. Thus
(λ/λ′)(g) = 1 and so λ(g) = λ′(g). Therefore, λ �→ λ(g) is injective on those λ

with ‖ · ‖ < n. �

5 Bigness for Algebraic Representations

In this section we prove that “small” algebraic representations have big image. The
main result is the following:

Proposition 5.1 Let k be a finite field, let G/k be a reductive group and let ρ be an
absolutely irreducible representation of G on a k-vector space V . Assume � = char
k is large compared to dim V and ‖V ‖. Then ρ(G(k)) is a big subgroup of GL(V ).

Proof Let G1 = Gder, a semi-simple group. The group G1(k) is a normal subgroup
of G(k). The quotient is a subgroup of (G/G1)(k), which is prime to � since G/G1

is a torus. Thus it suffices by Proposition 2.1 to show that ρ(G1(k)) is big.
Let H be the kernel of ρ|G1 and let H ′ be the reduced subscheme of the identity

component of H . Then H ′ is a closed normal subgroup of G1 by Lemma 3.2 and
is smooth, since it is reduced. Put G2 = G1/H ′. The map ρ factors through G2. By
Lang’s theorem, the natural map G1(k) → G2(k) is surjective. Thus ρ(G1(k)) =
ρ(G2(k)) and so it is enough to show that ρ(G2(k)) is big. Note that the kernel of
ρ|G2 is finite, and so the dimension of G2 can be bounded in terms of the dimension
of V .

Let G3 be the universal cover of G2. The image of G3(k) in G2(k) is normal and
the quotient is a subgroup of H 1(k, Z), where Z = ker(G3 → G2). Now, the order
of Z divides the order of the center of (G3)k , which can be computed in terms of the
root datum of (G3)k . Since the dimension of G3 is bounded in terms of that of V and
there are only finitely many root data of a given dimension, it follows that the order
of Z can be bounded in terms of the dimension of V . Thus since � is large compared
to the dimension of V , we find that the order of Z is prime to �. It follows that the
index of G3(k) in G2(k) is prime to �. Thus it is enough to show that ρ(G3(k)) is
big.

We have thus shown that if ρ(G3(k)) is big then so is ρ(G(k)). Now, since ρ

is an absolutely irreducible representation of G the center of G acts by a character
under ρ. Thus the restriction of ρ to G1 is still absolutely irreducible. Therefore
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ρ defines an absolutely irreducible representation of G3. Furthermore, the norm of
V as a representation of G is equal to the norm of V as a representation of G3 by
Proposition 3.1. We have thus shown that it suffices to prove the proposition when
G is a simply connected, semi-simple group and ker ρ is a finite subgroup of G. We
now begin the proof proper.

As G is semi-simple and simply connected, it is a product of simple simply
connected groups Gi . Each Gi , being simple and simply connected, is of the form
Reski /k(G ′

i ) where ki is a finite extension of k and G ′
i is an absolutely simple simply

connected group over ki (this is explained in §6.21(ii) of [3]). We have Gi (k) =
G ′

i (ki ). Let Z ′
i be the center of G ′

i . By [5, Theorem 11.1.2] and [5, Theorem 14.4.1]
the group G ′

i (ki )/Z ′
i (ki ) is simple and non-abelian. Aswe have previously explained,

the order of Z ′
i can be bounded by dim G ′

i , which is in turn bounded by dim V . Thus,
by our assumptions, the order of Z ′

i is small compared to �. We therefore find that
the Jordan–Hölder constituents of G(k) are all simple groups of Lie type and abelian
groups of the form Z/pZ with p a prime that is small compared to �. In particular,
Z/�Z is not a Jordan–Hölder constituent of G(k) and therefore not a constituent of
the quotient ρ(G(k)). Thus ρ(G(k)) does not have a quotient of �-power order, as
such a quotient would be solvable and have a quotient isomorphic to Z/�Z. This
shows that ρ(G(k)) satisfies (B1).

Proposition 3.6 shows that V is absolutely irreducible as a representation of G(k)

and so ρ(G(k)) satisfies (B2).
We now examine H 1(ρ(G(k)), ad◦ V ). By Propositions 3.3 and 3.6, we have

H 1(G(k), ad V ) = 0 since this group classifies self-extensions of V and any such
extension is semi-simple. Since � is large compared to dim V this implies H 1(G(k),

ad◦ V ) = 0, as ad◦ (V ) is a summand of ad V . Let H be the kernel of ρ. We have
an exact sequence

1 → H(k) → G(k) → ρ(G(k)) → 1

and thus we get an injection

H 1(ρ(G(k)), (ad◦ V )H(k)) → H 1(G(k), ad◦ V ).

The group on the right vanishes and so the group on the left does too. Since H(k)

acts trivially on V , it acts trivially on ad◦ V . Thus H 1(ρ(G(k)), ad◦ V ) = 0 and so
ρ(G(k)) satisfies (B3).

We now turn to condition (B4). As every reductive group over a finite field is
quasi-split (see [2, Proposition 16.6]), we can pick a Borel subgroup B of G defined
over k. Let T be a maximal torus of B, which is automatically a maximal torus
of G, and let U be the unipotent radical of B. By Proposition 4.1 we can pick an
element g of T (k) such that λ(g) = λ′(g) for any two distinct characters λ and λ′
of Tk which are weights of Vk . Now, the space V0 = V U is one dimensional and
stable under the action of T . Let λ0 : T → Gm give the action of T on V0. Then λ0

is the highest weight of Vk , and thus occurs as a weight in this representation with
multiplicity one. Put α = λ0(g), an element of k×. We then have Vg,α = V0, and so
the α-generalized eigenspace of g is one dimensional. To show that the image of
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G(k) is big, it thus suffices to show that any irreducible G(k)-submodule of ad V
has non-zero projection to ad V0.

Thus let W be an irreducible G(k)-submodule of ad V . To show that the image
of W in ad V0 is non-zero it suffices to show that the image of W in ad V 0 is,
where the bar denotes − ⊗ k. Let U be an irreducible G(k)-submodule of W . It is
enough, of course, to show that the image of U in ad V 0 is non-zero. Now, U is an
irreducible G(k)-submodule of ad V , and so, by Proposition 3.6, it is an irreducible
G-submodule of ad V . Thus to show that the image of G(k) in GL(V ) satisfies (B4)
it is enough to prove the following: every irreducible G-submodule of ad V has
non-zero image in ad V 0. This is established in the following lemma. �

Lemma 5.2 Let k be the algebraic closure of a finite field, let G/k be a semi-simple
group and let (ρ, V ) be an irreducible representation of G with dim V and ‖V ‖ small
compared to char k. Let V0 be the highest weight space of V . Then every irreducible
submodule of ad V has non-zero projection to ad V0.

Proof By the same reductions used in the proof of the proposition we can assume
that ker ρ is finite, and so dim G is bounded in terms of dim V . Pick a maximal torus
of G and a system of positive roots. For a weight λ let Vλ denote the λ-weight space
of V . Let λ0 be the highest weight for V and let V0 be the λ0-weight space. For a
root α we pick an element Xα of Lie(G) which spans the α root space. Any positive
element λ of the root lattice has a unique expression λ = ∑

niαi where the ni are
non-negative integers and the αi are the simple roots. We let len λ be the sum of
the ni .

By a simple tuplewemean an ordered tupleα = (α1, . . . , αn) consisting of simple
roots. For such a tuple α we put |α| = ∑

αi . Note that len |α| = n. We let Xα (resp.
Yα) denote the product Xα1 · · · Xαn (resp. X−α1 · · · X−αn ), regarded as an element of
the universal enveloping algebra.

Given a weight λ for which Vλ is non-zero the difference λ0 − λ is positive and
lies in the root lattice. For a simple tuple α with |α| = λ0 − λ the operator Xα maps
Vλ into V0. The resulting map

Vλ →
⊕

|α|=λ0−λ

V0

is injective. (Proof: By Proposition 3.7, the only vector annihilated by all of the Xα is
the highest weight vector. Thus if λ = λ0 and v belongs to Vλ then we can find some
α such that Xαv is non-zero. We can thus move v closer to the λ0-weight space. By
induction on len(λ0 − λ) we can therefore find α1, . . . , αn such that Xαn · · · Xα1v is
non-zero and belongs to V0.)We can thus pickm = dim Vλ simple tuples α1, . . . , αm
for which the resulting map is injective. We can then pick a basis {vi } of Vλ such that
vi belongs to the kernel of Xα j

whenever i = j but does not belong to the kernel of
Xαi

. We call such a basis admissible. Note that in V ∗ the space V ∗
0 is a lowest weight

space. The same process as above, but with Xα replaced by Yα , yields the notion of
an admissible basis for V ∗

α .
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Let W be an irreducible submodule of ad V . Let p : W → V0 ⊗ V ∗ be the natural
projection. We first show that p(W ) is non-zero. Among those weights λ for which
the projectionW → Vλ ⊗ V ∗ is non-zero, pick one forwhich len(λ0 − λ) isminimal.
Let w be an element of W which has non-zero projection to Vλ ⊗ V ∗ and write

w =
(∑

vi ⊗ v∗
i

)
+ v′

where {vi } is an admissible basis of Vλ, the v∗
i belong to V ∗ and v′ belongs to the

complement of Vλ ⊗ V ∗. Let αi be the simple tuples yielding the basis vi . Let 1
denote an index such that v∗

1 is non-zero. We then have

p(Xα1
w) = (Xα1

v1) ⊗ v∗
1 (1)

(explained below). Since the right side is non-zero, it follows that p(W ) is non-zero.
We now explain why (1) holds. Recall that if X is an element of Lie(G) then the

formula for how X acts on a pure tensor is

X (v ⊗ w) = (Xv) ⊗ w + v ⊗ (Xw).

Thus when we apply Xα1
to a pure tensor v ⊗ w we get a sum of terms and in each

term some Xα1,i land on v and some land onw. We now examine Xα1
v. First consider

the v′ part. Write v′ = ∑
v′

i ⊗ u′
i where v′

i has weight μi . If α′ is any sub-sequence
of α1 then Xα′v′

i lands in the μi + |α′| weight space. If α′ is not all of α1 then this
cannot equal λ0 for length reasons. Even if α′ is all of α1 this is not equal to λ0 since
λ0 = |α1| + λ and noμi is equal to λ. Thus p(Xα1

v′) = 0. We now consider the first
term in v. The same length argument shows that the only way to land in V0 ⊗ V ∗ is
to have all of Xα1

land on the first factor. However, Xα1
kills vi for i = 1. We have

thus proved (1).
We now show that the image of the projection q : W → V0 ⊗ V ∗

0 is non-zero.
Among thoseweightsλ forwhich the projectionW → V0 ⊗ V ∗

λ is non-zero, pick one
for which len(λ0 − λ) is minimal. (Such a weight exists by the previous paragraphs.)
Let w be an element of W which has non-zero projection to V0 ⊗ V ∗

λ . We may as
well assume that w has weight λ0 − λ. We can thus write

w =
(∑

vi ⊗ v∗
i

)
+ v′

where the vi belong to V0, {v∗
i } is an admissible basis of V ∗

λ and v′ belongs to the
complement of V0 ⊗ V ∗. Let αi be the simple tuples yielding the basis v∗

i . Let 1
denote an index such that v1 is non-zero. We then have

q(Yα1
w) = v1 ⊗ (Yα1

v∗
1) (2)

(explained below). Since the right side is non-zero, it follows that q(W ) is non-zero,
proving the proposition.
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We now explain (2). The point is that, since Yα1
is a lowering operator, the only

way for a term of Yα1
w to have its first factor in V0 is if Yα1

lands entirely on the
second factor. Of course, none of the terms in v′ have their first factor in V0 to begin
with, so they will not after applying Yα1

. As for the first term, Yα1
kills v∗

i for i = 1.
This proves (2). �

6 Bigness for Nearly Hyperspecial Groups

Throughout this section K denotes a finite extension of Q�, OK its ring of integers
and k its residue field.

We begin by recalling some definitions. Let G/K be a reductive group. The group
G is quasi-split if it has a Borel subgroup. It is unramified if it is quasi-split and it
splits over an unramified extension of K . A subgroup � ⊂ G(K ) is hyperspecial
if there exists a reductive group G̃/OK with generic fiber G such that � = G̃(OK ).
Hyperspecial subgroups of G(K ) are maximal compact subgroups. The group G(K )

has a hyperspecial subgroup if and only if G is unramified. Let Gad be the adjoint
group of G and let Gsc be the simply connected cover of Gad. We have maps

G
σ �� Gad Gsc.

τ��

We say that a subgroup � ⊂ G(K ) is nearly hyperspecial if τ−1(σ (�)) is a hyper-
special subgroup of Gsc(K ). (This is not a standard term.)

The purpose of this section is to prove the following proposition:

Proposition 6.1 Let ρ : � → GLn(K ) be a continuous representation of the profi-
nite group �. Assume:

• The characteristic � of k is large compared to n.
• The restriction of ρ to any open subgroup of � is absolutely irreducible.
• The index of G◦ in G is small compared to �, where G is the Zariski closure of

ρ(�).
• The subgroup ρ(�) ∩ G◦(K ) of G◦(K ) is nearly hyperspecial.

Then ρ(�) is a big subgroup of GLn(k).

We remark that the second condition in the proposition, that the restriction of ρ

to any open subgroup remain absolutely irreducible, is equivalent to the condition
that the representation of G◦ on V be absolutely irreducible. We need some auxiliary
lemmas to prove the proposition. We begin with the following one.

Lemma 6.2 Let G̃/OK be a simply connected semi-simple group and let σ be an
automorphism of the generic fiber G = G̃ K such that σ maps G̃(OK ) into itself. Then
for any tamely ramified finite extension L/K the automorphism σ maps G̃(OL) into
itself.
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Proof The group G̃(OK ) fixes a point x on the building B(G, K ) by [18, §2.3.1]
or [4, §4.6.31] which is known to be unique. Similarly, the group G̃(OL) fixes a
unique point x ′ on the building B(G, L). Furthermore G̃(OK ) (resp. G̃(OL)) is the
full stabilizer of x (resp. x ′) since G̃(OK ) (resp. G̃(OL)) is maximal compact ([18,
§3.2]). We now claim that under the natural inclusion B(G, K ) → B(G, L) the
point x is identified with x ′. To see this, first note that if τ is an element of Gal(L/K )

then G̃(OL) fixes τ x ′ and so τ x ′ = x ′ by the uniqueness of x ′. Thus x ′ is fixed by
Gal(L/K ) and therefore belongs to B(G, K ) by [18, §2.6.1] (this uses the hypothesis
that L/K is tamely ramified). Since x ′ is fixed by G̃(OL) it is certainly also fixed by
the subgroup G̃(OK ). By the uniqueness of x we conclude x = x ′.

Now, the automorphism σ of G acts on B(G, K ) and B(G, L) and respects the
inclusion map. As σ carries G̃(OK ) into itself it must fix x . It therefore also fixes x ′
and so must carry its stabilizer, G̃(OL), into itself. This proves the lemma. �

We can now prove the following:

Lemma 6.3 Let � be a profinite group and let ρ be an absolutely irreducible repre-
sentation of � on a K -vector space V . Assume that the Zariski closure G of ρ(�) is
connected and that ρ(�) is a nearly hyperspecial subgroup of G(K ). Then we can
find:

• a �-stable lattice � in V ;
• a semi-simple group G̃/OK with generic fiber equal to Gsc; and
• a representation r : G̃ → GL(�) which induces the natural map Gsc → G on the

generic fiber,

such that O×
K · r(G̃(OK )) is an open normal subgroup of O×

K · ρ(�), the index of
which can be bounded in terms of dim V . Necessarily, the generic fiber of r is an
absolutely irreducible representation of G̃ K on V .

Proof The group G is a reductive (and in particular connected) group, by hypothesis.
Since ρ is absolutely irreducible, the center Z of G is contained in the center of
GL(V ). We have maps

G
σ �� Gad Gscτ��

����������

Gder.

����������

��

By hypothesis, τ−1(σ (ρ(�))) is a hyperspecial subgroup of Gsc. Thus we can find a
semi-simple group G̃/OK with generic fiber Gsc such that G̃(OK ) = τ−1(σ (ρ(�))).

Let r : Gsc → G be the natural map; this factors through Gder in the above dia-
gram. Let U be the image of Gsc(K ) under τ . It is an open normal subgroup of
Gad(K ), the index of which can be bounded in terms of dim G and thus dim V (by
arguments similar to those used in the third paragraph of the proof of Proposition 5.1).
Now, we have

σ(r(G̃(OK ))) = τ(G̃(OK )) = σ(ρ(�)) ∩ U.
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Applying σ−1, we find

K × · r(G̃(OK )) = K × · (ρ(�) ∩ σ−1(U )).

Since r(G̃(OK )) and ρ(�) ∩ σ−1(U ) are both compact, it follows that

O×
K · r(G̃(OK )) = O×

K · (ρ(�) ∩ σ−1(U )).

Thus O×
K · r(G̃(OK )) is an open normal subgroup of O×

K · ρ(�), the index of which
can be bounded in terms of dim V .

We now claim that for any finite unramified extension L/K the group ρ(�) nor-
malizes O×

L · r(G̃(OL)). To see this, let γ be an element of ρ(�). Write γ for the
image of γ in Gad(K ) under σ . Thus γ gives an automorphism of Gsc, which we
denote by x �→ γ xγ −1. Now, let x be an element of Gsc(L). We then have

γ r(x)γ −1 = z · r(γ xγ −1),

for some z ∈ O×
L , as is easily seen by applying σ . It thus suffices to show that

conjugation by γ carries G̃(OL) into itself. By Lemma 6.2 it suffices to show that
γ carries G̃(OK ) into itself. Thus let x be an element of G̃(OK ). Using the above
formula and the fact that γ normalizes O×

K · r(G̃(OK )), we can find an element y
of G̃(OK ) and an element z of O×

K such that r(γ xγ −1) = zr(y). It thus follows that
γ xγ −1 = z′y for some element z′ of the K -points of center of Gsc. However, z′ must
be contained in G̃(OK ) since it belongs to a compact central group and G̃(OK ) is
maximal compact. Thus γ xγ −1 belongs to G̃(OK ).

Now, the group G̃(Oun
K ) is bounded in the sense of [18, §2.2.1]. Thus, arguing

as in [11, §1.12], we can find a lattice �′ ⊂ V such that �′ ⊗ Oun
K is stable under

the action of G̃(Oun
K ). Now, we have shown that O×

K · r(G̃(OK )) has finite index in
O×

K · ρ(�). Let γ1, . . . , γn be coset representatives and put

� =
n∑

i=1

γi · �′.

Thus � is a lattice in V . It is easy to see that � maps � into itself and G̃(Oun
K ) maps

� ⊗ Oun
K into itself. Following the argument in [11, §1.12] once again, we see that

r : G̃ K → GL(V ) lifts to a map G̃ → GL(�), which we still call r . This completes
the proof of the proposition. �

We can now prove the proposition.

Proof of Proposition 6.1 Let �, ρ and G be as in the statement of the proposition,
and let V = K n be the representation space of ρ. We must show that ρ(�) is big. Let
�◦ = � ∩ G◦(K ). Then �◦ is a normal subgroup of � of prime to � index (since the
number of components of G is assumed small compared to �). It is therefore enough,
by Proposition 2.1, to show that ρ(�◦) is big. Replacing � by �◦, it thus suffices
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to prove the proposition under the assumption that the Zariski closure G of ρ(�) is
connected.

Let G̃/OK , � and r be as in Lemma 6.3. Let ρ be the representation of � on U =
� ⊗OK k. By Proposition 3.5, the representation of G̃k onU is absolutely irreducible
and its norm is bounded in terms of dim V . It thus follows from Proposition 5.1 that
r(G̃(k)) is a big subgroup of GL(U ). Now, O×

K ρ(�) contains O×
K r(G̃(OK )) as a

normal subgroup of index prime to �. Taking the image of each group in GL(U ),
we find that k×ρ(�) contains k×r(G̃(k)) as a normal subgroup of index prime to �.
(Note that the image of r(G̃(OK )) in GL(U ) is equal to r(G̃(k)) since G̃ is smooth
over OK .) Since r(G̃(k)) is big, we conclude the same for ρ(�) by Propositions 2.1
and 2.2. �

7 Groups with Frobenii and Compatible Systems

A group with Frobenii is a pair (�,F ) consisting of a profinite group � and a dense
set of elementsF of � indexed by a set P . The elements ofF are called “Frobenius
elements.” The motivating example of a group with Frobenii is the Galois group of
a global field. Let F be a global field (that is, a finite extension of Fp(t) or ofQ) and
let � be its absolute Galois group. For each place v of F choose a Frobenius element
Frobv and let F be the set of all the Frobv . Then (�,F ) is a group with Frobenii.

Let� be a groupwith Frobenii, let E be a number field, let L be a set of places of E
and for each w ∈ L let ρw : � → GLn(Ew) be a continuous representation. We say
that the ρw form a compatible system (with coefficients in E) if for each Frobenius
element F ∈ F there exists a finite set of places L F ⊂ L (the “bad places” for F)
such that the following conditions hold:

• The characteristic polynomial of F has coefficients in E and is independent of w

for good w. Precisely, given F ∈ F there is a polynomial p with coefficients in
E such that for all places w ∈ L \ L F the characteristic polynomial of ρw(F) is
equal to p.

• For any finite subset L ′ of L the Frobenii for which all primes in L ′ are good form
a dense set in �. That is, for any such L ′ the set {F ∈ F | L ′ ∩ L F = ∅} is dense.

By a “compatible system of semi-simple representations” we simply mean a com-
patible system in which each ρw is semi-simple. We call a set L of places of E full if
there exists a set of rational primes P of Dirichlet density one such that for all � ∈ P
all places of E over � belong to L .

Proposition 7.1 Let � be a group with Frobenii and let {ρw}w∈L be a compatible
system of n dimensional semi-simple representations of � with coefficients in E, with
L a full set of places. We assume that E is Galois over Q. Let Gw be the Zariski
closure of ρw(�) in GLn(Ew) and let G◦

w be its identity component. Then there is
a finite index subgroup �◦ of � and a set of primes P of Q of Dirichlet density
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1/[E : Q], all of which split completely in E, such that if w ∈ L lies over a prime in
P then:

1. The Zariski closure of ρw(�◦) is G◦
w.

2. The group ρw(�◦) is a nearly hyperspecial subgroup of G◦
w(Ew).

Proof 1 When E = Q, the first statement is due to Serre (see [13, Proposition 6.14])
and the second to Larsen (see [11]). We will deduce the statement for arbitrary E
from the E = Q case. Let P0 be the set of rational primes � such that all places
of E above � belong to L . Then P0 has Dirichlet density one since L is full. For
� ∈ P define σ� = ⊕

w|� ρw, where here ρw is regarded as a Q� representation of
dimension n[Ew : Q�]. Then σ� is aQ� representation of � of dimension nm, where
m = [E : Q]. One easily sees that {σ�}�∈P forms a compatible system.

Let H� be the Zariski closure of the image of σ�. Applying the E = Q case of the
proposition, we can find a set of primes P1 ⊂ P0 of Dirichlet density one and a finite
index subgroup �◦ of � such that for all � ∈ P we have: (1) the Zariski closure of
σ�(�

◦) is H ◦
� ; and (2) σ�(�

◦) is a nearly hyperspecial subgroup of H ◦
� (Q�). Let P be

the set of primes in P1 which split completely in E . Let � ∈ P and pick w | �. Since
Ew = Q�, the representation ρw is an n-dimensional Q� representation, and as such
a summand of σ�. Thus σ�(�

◦) surjects onto ρw(�◦), and so H ◦
� surjects onto the

Zariski closure of ρw(�◦). It follows that the Zariski closure of ρw(�◦) is connected.
Since ρw(�◦) has finite index in ρw(�), the Zariski closure of the former must be the
connected component of the Zariski closure of the latter, namely G◦

w. The following
lemma shows that ρw(�◦) is nearly hyperspecial in G◦

w(Q�). �
Lemma 7.2 Let K/Q� be a finite extension, let f : G → H be a surjection of reduc-
tive groups over K and let � be a nearly hyperspecial subgroup of G(K ). Then f (�)

is a nearly hyperspecial subgroup of H(K ).

Proof Consider the diagram

Gsc τ ��

f ′′

��

Gad

f ′

��

G
σ��

f

��
H sc τ ′

�� H ad H
σ ′

��

where f ′′ is the lift of f ′. Let �′ = f (�), � = τ−1(σ (�)) and �′ = (τ ′)−1(σ ′(�′)).
We are given that � is hyperspecial and we want to show that �′ is hyperspecial.
One easily sees that f ′′(�) ⊂ �′ and that �′ is compact. Now, since Gsc and H sc

are simply connected semi-simple groups the map f ′′ is a projection onto a direct
factor. It follows that Gsc = H sc × H ′ for some group H ′. The following lemma
shows that � = �1 × �2 where �1 is a hyperspecial subgroup of H sc(K ) and �2

is a hyperspecial subgroup of H ′(K ). We thus find f ′′(�) = �1 ⊂ �′. Since �′
is compact and �1 is maximal compact, we have �′ = �1 and so �′ is
hyperspecial. �

1An argument similar to the one given here appeared in [1].
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Lemma 7.3 Let K/Q� be a finite extension, let H1 and H2 be reductive groups over
K and let � be a hyperspecial subgroup of H1(K ) × H2(K ). Then � = �1 × �2

where �i is a hyperspecial subgroup of Hi (K ).

Proof We thank Brian Conrad for this argument. Let � = G̃(OK ) where G̃/OK is
a reductive group with generic fiber G. We wish to find G̃i such that �i = G̃i (OK ).
If G̃i exists then it is necessarily the Zariski closure of Gi in G̃ and thus unique.
To establish the existence of G̃i we may therefore (by descent theory) work étale
locally on OK . We may therefore replace OK by a cover and assume that G̃ is split.
Let T̃ be a split maximal torus of G̃. Then the root datum for (G̃, T̃ ) is canonically
identified with that for (G, T ), where T is the generic fiber of T̃ . As the latter is a
product, so is the former. Thus G̃ = G̃1 × G̃2 where the generic fiber of G̃i is Gi .
This establishes the lemma. �

8 Bigness for Compatible Systems

We can now prove our main theorem:

Theorem 8.1 Let � be a group with Frobenii, let E be a Galois extension of Q,
let L be a full set of places of E and for each w ∈ L let ρw : � → GLn(Ew) be
a continuous representation. Assume that {ρw}w∈L forms a compatible system and
that each ρw is absolutely irreducible when restricted to any open subgroup of �.
Then there is a set of primes P of Q of Dirichlet density 1/[E : Q], all of which split
completely in E, such that ρw(�) is a big subgroup of GLn(F�) for any w ∈ L lying
over a prime � ∈ P.

Proof Let Gw be the Zariski closure of ρw(�) in GLn(Ew). Let P0 be the set of
primes provided by Proposition 7.1. Then as w varies amongst places of L lying
over elements of P0 the index of G◦

w in Gw is bounded. Thus by Proposition 6.1,
ρw(�) is a big subgroup of GLn(F�) if w ∈ L lies over � ∈ P0 and � is sufficiently
large. It follows that we can take P to be the set of all sufficiently large elements of
P0. �

We expect that one should be able to take the set P of primes in the above theorem
to have density one, but we have not proved this. Applying the theorem in the case
where� is the absolute Galois group of a number field and E = Q gives Theorem 1.1
from the introduction.
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