
Chapter 5
From Covariance Matrices to Covariance
Operators: Data Representation from Finite
to Infinite-Dimensional Settings

Hà Quang Minh and Vittorio Murino

Abstract This chapter presents some of the recent developments in the
generalization of the data representation framework using finite-dimensional covari-
ance matrices to infinite-dimensional covariance operators in Reproducing Kernel
Hilbert Spaces (RKHS). We show that the proper mathematical setting for covari-
ance operators is the infinite-dimensional Riemannian manifold of positive definite
Hilbert–Schmidt operators, which are the generalization of symmetric, positive def-
inite (SPD) matrices. We then give the closed form formulas for the affine-invariant
and Log-Hilbert–Schmidt distances between RKHS covariance operators on this
manifold, which generalize the affine-invariant and Log-Euclidean distances, respec-
tively, between SPD matrices. The Log-Hilbert–Schmidt distance in particular can
be used to design a two-layer kernel machine, which can be applied directly to a
practical application, such as image classification. Experimental results are provided
to illustrate the power of this new paradigm for data representation.

5.1 Introduction

Symmetric Positive Definite (SPD) matrices, in particular covariance matrices, play
an important role inmany areas ofmathematics, statistics,machine learning, and their
applications. In practice, the applications of SPD matrices are numerous, including
brain imaging [3, 12, 34], kernel learning [19] in machine learning, object detection
[39, 40] and image retrieval [11] in computer vision, and radar signal processing
[5, 15].

In the field of computer vision and image processing, covariance matrices
have recently been utilized as a powerful image representation approach, which is
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commonly called covariance descriptor. In this approach, an image is compactly
represented by a covariance matrix encoding correlations between different features
extracted from that image. This representation has been demonstrated to work very
well in practice and consequently, covariance descriptors have been applied with
success to many computer vision tasks, including tracking [33], object detection and
classification [39, 40], and image retrieval [11]. A more detailed discussion of the
covariance matrix representation can be found in the chapter by Cherian and Sra in
this volume.

Riemannian geometric framework for covariancematrices. Covariancematri-
ces, properly regularized if necessary, are examples of SPD matrices. In the follow-
ing, we denote by Sym++(n) the set of all n × n SPD matrices. A key mathematical
property of Sym++(n) is that it is not a vector subspace of Euclidean space under
the standard matrix addition and scalar multiplication operations. Instead, it is an
open convex cone, since it is only closed under positive scalar multiplication, and at
the same time admits a differentiable manifold structure. Consequently, in general,
the optimal measure of similarity between covariance matrices is not the Euclid-
ean distance, but a metric that captures the geometry of Sym++(n). Among the most
widely usedmetrics for Sym++(n) is the classical affine-invariant Riemannianmetric
[6, 7, 23, 30, 31, 40], under which Sym++(n) becomes a Riemannian manifold with
nonpositive curvature. Another commonly used Riemannian metric for Sym++(n)
is the recently introduced Log-Euclidean metric [3, 4], which is bi-invariant and
under which the manifold is flat. Compared to the affine-invariant metric, the Log-
Euclidean metric is faster to compute, especially on large datasets, and can be used
to define many positive definite kernels, such as the Gaussian kernel, allowing kernel
methods to be applied directly on the manifold [17, 24].

Positive definite kernels and covariance operators.While they have been shown
to be effective in many applications, one major limitation of covariance matrices is
that they only capture linear correlations between input features. In order to encode
nonlinear correlations, we generalize the covariance matrix representation frame-
work to the infinite-dimensional setting by the use of positive definite kernels defined
on the original input features. Intuitively, from the viewpoint of kernel methods in
machine learning [37], each positive definite kernel, such as the Gaussian kernel,
induces a feature map that nonlinearly maps each input point into a high (generally
infinite) dimensional feature space. We then represent each image by an infinite-
dimensional covariance operator, which can be thought as the covariance matrix of
the infinite-dimensional features in the feature space. Since the high-dimensional fea-
ture maps are nonlinear, the resulting covariance operators thus encode the nonlinear
correlations between the original input features. A key property of this framework, as
is common for kernel methods, is that the infinite-dimensional feature maps and the
corresponding covariance operators are all implicit, and all necessary computations
are carried out via the Gram matrices associated with the given kernels.

Infinite-dimensional Riemannian manifold setting for covariance operators.
Having represented each image by a covariance operator,we need to define a notion of
distances between these operators. Instead of the finite-dimensional manifold setting
for covariance matrices, in the infinite-dimensional setting, regularized covariance
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operators lie on an infinite-dimensional Hilbert manifold. This is the manifold of
positive definite unitized Hilbert–Schmidt operators, which are scalar perturbations
of Hilbert–Schmidt operators on a Hilbert space and which are infinite-dimensional
generalizations of SPD matrices. On this manifold, the generalization of the affine-
invariant Riemannian metric on Sym++(n) was recently carried out by [1, 21, 22]
from a purely mathematical viewpoint. For the case of RKHS covariance operators,
the explicit formulas for the affine-invariant distance, in terms of the Gram matrices,
were obtained in [26]. The generalization of the Log-Euclidean metric, called the
Log-Hilbert–Schmidt metric, was formulated by [28], including the explicit formulas
for the distances between RKHS covariance operators. As with the Log-Euclidean
metric, the Log-Hilbert–Schmidt metric can be used to define many positive definite
kernels, such as the Gaussian kernel, allowing kernel methods to be applied on
top of the infinite-dimensional manifold and effectively creating a two-layer kernel
machine.

Differences between the finite and infinite-dimensional settings. In [32], in the
context of functional data analysis, the authors discussed the difficulty of generaliz-
ing the affine-invariant and Log-Euclidean metrics to the infinite-dimensional setting
and proposed several other metrics instead. As we analyze in [26, 28] and below,
this difficulty is due to the fundamental differences between the finite and infinite-
dimensional cases. The reason is that many concepts, such as principal matrix loga-
rithm, determinant, and norm, all involve infinite sums and products and therefore are
well-defined only on specific classes of infinite-dimensional operators. In particular,
the infinite-dimensional distance formulas are not the limits of the finite-dimensional
ones as the dimension approaches infinity.

The aim of this chapter. In the present chapter, we first show how to gener-
alize the data representation framework by covariance matrices to RKHS covari-
ance operators. We then report on the recent development in mathematical theory of
infinite-dimensional positive definite operators [1, 21, 22, 28], which successfully
resolves the problems of extending the affine-invariant and Log-Euclidean metrics
to the infinite-dimensional setting. We then show how this theory can be applied to
compute distances between RKHS covariance operators. In particular, we describe
in detail the two-layer kernel machine which arises from the Log-Hilbert–Schmidt
distance between RKHS operators, which can be used in a practical application such
as image classification.

Related work. In the literature on kernel methods in machine learning, it is
well-known that RKHS covariance operators defined on nonlinear features, which
are obtained by mapping the original input data into a high-dimensional feature
space, can better capture input correlations than covariance matrices defined on the
original input data, see e.g. KernelPCA [36]. However, the use of RKHS covariance
operators for data representation is quite recent and has its origin in computer vision
[14, 16, 41]. Themain problemwith the approaches in [14, 16, 41] is that they lack the
theoretical foundation provided by the mathematical theory of infinite-dimensional
operators and infinite-dimensional manifolds. As such, they are necessarily heuristic
and many results obtained are only valid in the finite-dimensional setting.
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Organization. We start by recalling the data representation framework using
covariance matrices in Sect. 5.2. Then in Sect. 5.3, we show how this framework
generalizes to RKHS covariance operators which are induced by positive definite
kernels and their associated feature maps. In Sect. 5.4, we give the closed form for-
mulas for the Hilbert–Schmidt, affine-invariant, and Log-Hilbert–Schmidt distances
between RKHS covariance operators. The two-layer kernel machine resulting from
the Log-Hilbert–Schmidt distance is described in Sect. 5.5, with experimental results
illustrating its power in Sect. 5.6. Mathematical proofs are given in the Appendix.

5.2 Covariance Matrices for Data Representation

Before presenting covariance operators for data representation, we first recall how
covariancematrices are employed as a form of image representation. For each image,
at every pixel (or a subset of the pixels), we extract an image feature vector consisting
of n features, for example intensity, gradient, and colors. Suppose that we perform
feature extraction atm pixels, each one giving a feature vector xi ∈ R

n, i = 1, . . . ,m,
we then obtain a data matrix of size n × m, given by

x = [x1, . . . , xm], (5.1)

with each column consisting of image features extracted at one pixel. The n × n
covariance matrix

Cx = 1

m
xJmxT = 1

m

m∑

j=1

(xj − μ)(xj − μ)T , (5.2)

then encodes linear correlations between all the different extracted features and is
used as the representation for the image. Here Jm is the centering matrix, defined by
Jm = Im − 1

m1m1
T
m, where 1m = (1, . . . , 1)T ∈ R

m and μ = 1
m

∑m
j=1 xj ∈ R

n denotes
the mean column of x. In general, Cx is a symmetric, positive semi-definite matrix.

In a practical application, such as classification, we need to have a similarity
measure between images. By representing images as covariance matrices, this means
that we need to compute distances between covariance matrices. Let A and B be two
symmetric, positive semi-definite matrices. A straightforward distance between A
and B is the Euclidean distance, given by

dE(A,B) = ||A − B||F . (5.3)

Here || ||F denotes the Frobenius norm, which, for A = (aij)ni,j=1, is defined by

||A||2F = tr(ATA) =
n∑

i,j=1

a2ij. (5.4)
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It is clear from the definition of the Frobenius norm that the distance ||A − B||F
depends only on the entries of A − B, without taking into account any structure
of A and B. Furthermore, the set of symmetric, positive semi-definite matrices is
not a vector subspace of Euclidean space under the standard matrix addition and
scalar multiplication operations, but a convex cone, since it is only closed under
positive scalar multiplication. By simply vectorizing A and B, the Euclidean distance
||A − B||F reflects neither the positivity of A and B nor the convex cone structure of
the set of positive matrices.

We note that, empirically, by a simple regularization, the regularized covariance
matrix (Cx + γI) for any constant γ > 0 is an element of Sym++(n), which has
been studied extensively, both mathematically and computationally. Thus, we can
apply to the set of regularized covariance matrices any distance on Sym++(n) that
reflects its intrinsic geometry as a set of SPD matrices. The regularization (Cx + γI)
is called diagonal loading in the literature (see [2, 13] for more general forms of
regularizations). We show in Sect. 5.4 below that for infinite-dimensional covariance
operators, this form of regularization is always necessary, both theoretically and
empirically.

Let Sym++(n) denote the set of SPDmatrices of size n × n. LetA,B ∈ Sym++(n)
be arbitrary. We now review three distances that exploit the geometry of Sym++(n),
namely the affine-invariant distance, Log-Euclidean distance, and Bregman diver-
gences.

Affine-invariant metric. In the first approach, the set Sym++(n) is equipped
with a Riemannian metric, the so-called affine-invariant metric [6, 7, 23, 30, 31].
For each P ∈ Sym++(n), the tangent space at P is TP(Sym++(n)) ∼= Sym(n), the
space of symmetric matrices of size n × n. The affine-invariant metric is defined by
the following inner product on the tangent space at P

〈A,B〉P = 〈P−1/2AP−1/2,P−1/2BP−1/2〉F, ∀P ∈ Sym++(n),A,B ∈ Sym(n).
(5.5)

Under the affine-invariant metric, Sym++(n) becomes a Riemannian manifold with
nonpositive sectional curvature. The affine-invariant geodesic distance between A
and B is given by

daiE(A,B) = || log(A−1/2BA−1/2)||F, (5.6)

where log denotes the principal matrix logarithm.
Log-Euclidean metric. In the second approach, the set Sym++(n) is equipped

with a bi-invariant Riemannian metric, the so-called Log-Euclidean metric [4]. This
metric arises from the following commutative Lie groupmultiplication on Sym++(n)

� : Sym++(n) × Sym++(n) → Sym++(n),

A � B = exp(log(A) + log(B)). (5.7)



120 H.Q. Minh and V. Murino

Under the Log-Euclidean metric, the geodesic distance between A and B is given by

dlogE(A,B) = || log(A) − log(B)||F . (5.8)

Along with the group operation �, one can also define the scalar multiplication

� : R × Sym++(n) → Sym++(n),

λ � A = exp(λ log(A)) = Aλ, λ ∈ R. (5.9)

Endowed with the commutative group multiplication� and the scalar multiplication
�, (Sym++,�,�) becomes a vector space [4]. Furthermore, we can endow this
vector space with the Log-Euclidean inner product.

〈A,B〉logE = 〈log(A), log(B)〉F = tr[log(A) log(B)]. (5.10)

along with the corresponding Log-Euclidean norm

||A||2logE = 〈log(A), log(A)〉F = tr[log2(A)], (5.11)

giving us the inner product space

(Sym++(n),�,�, 〈 , 〉logE). (5.12)

This inner product space structure was first discussed in [24]. The Log-Euclidean
distance in Eq. (5.8) is then expressed as

dlogE(A,B) = || log(A) − log(B)||F = ||A � B−1||logE. (5.13)

With this viewpoint, it follows that Sym++(n) under the Log-Euclidean metric is
flat, that is it has zero sectional curvature. Furthermore, the map

log : (Sym++(n),�,�, 〈 , 〉logE) → (Sym(n),+, ·, 〈 , 〉F)

A → log(A). (5.14)

is an isometrical isomorphism between inner product spaces, where (+, ·) denote
the standard matrix addition and scalar multiplication operations, respectively.

Log-Euclidean versus Euclidean. The previous discussion shows that the Log-
Euclidean metric essentially flattens Sym++(n) via the map A → log(A). However,
the vector space operations (�,�) are not the Euclidean space operations (+, ·) and
(Sym++(n),�,�, 〈 , 〉logE) is not a vector subspace of Euclidean space. Further-
more, (Sym++(n), || ||E) is an incomplete metric space, whereas, since || ||logE is an
inner product distance, the metric space (Sym++(n), || ||logE) is complete, which is
a desirable property when dealing with converging sequences of SPD matrices.
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One can also clearly see that the SPD property of the matrices A and B is encoded
by the principal matrix logarithms in the distance formula || log(A) − log(B)||F (if
A has a negative eigenvalue, for example, its principal matrix logarithm is not even
defined). This is in strong contrast to the Euclidean distance formula ||A − B||F ,
which depends only on the entries ofA − B and therefore does not reflect any inherent
structure in A and B.

Kernel methods with the Log-Euclidean metric. For the purposes of kernel
methods in machine learning and applications, since (Sym++(n),�,�, 〈 , 〉logE) is
an inner product space, one can define positive definite kernels on Sym++(n) using
the inner product 〈 , 〉logE and the corresponding norm || ||logE. This enables us to
apply kernel methods directly on Sym++(n), as is done in [17, 18, 24]. In particular,
we have the following result.

Proposition 1 The following kernelsK : Sym++(n) × Sym++(n) → R are positive
definite

K(A,B) = (c + 〈A,B〉logE)d = (c + 〈log(A), log(B)〉F)d, c ≥ 0, d ∈ N. (5.15)

K(A,B) = exp
(
−||A � B−1||plogE

)
, σ 
= 0, 0 < p ≤ 2,

= exp

(
−|| log(A) − log(B)||pF

σ2

)
. (5.16)

Remark 1 The proofs of Proposition 1 and all subsequent propositions are given
in the Appendix. The kernel K in Eq. (5.16) in particular generalizes the results in
[17, 18, 24], which show that K is positive definite for p = 2.

Bregman divergences. In the third approach, one defines distance-like functions
based on the convex cone structure of Sym++(n). One well-known example of this
approach is the Stein divergence, defined by [38]

d2stein(A,B) = log
det(A+B

2 )√
det(A) det(B)

. (5.17)

The Bregman divergences do not arise from Riemannian metrics on Sym++(n) and,
apart from special cases such as dstein in Eq. (5.17), they are generally not metric
distances. However, they can be computed efficiently and have been shown to work
well in diverse applications [11, 19].

In this chapter, we show how to generalize both the affine-invariant distance in
Eq. (5.6) and the Log-Euclidean distance in Eq. (5.8) to the infinite-dimensional set-
ting, in particular to RKHS covariance operators. The generalization of the Bregman
divergences to the infinite-dimensional setting will be presented in a separate work.
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5.3 Infinite-Dimensional Covariance Operators

Having reviewed the data representation framework using finite-dimensional covari-
ance matrices, we now present infinite-dimensional covariance operators in RKHS
and show how they can be used as a form of data representation. This framework is
grounded in the setting of positive definite kernels and their associated RKHS and
feature maps, which we discuss first.

5.3.1 Positive Definite Kernels, Reproducing Kernel Hilbert
Spaces, and Feature Maps

Positive definite kernels. Let X be an arbitrary non-empty set. A function K :
X × X → R is said to be a positive definite kernel if it is symmetric and satisfies

N∑

i,j=1

aiajK(xi, xj) ≥ 0 (5.18)

for any set of points x = {xi}Ni=1 in X and any set of real numbers {ai}Ni=1. In other
words, the N × N matrix K[x] defined by (K[x])ij = K(xi, xj) is symmetric, positive
semi-definite.

Examples of commonly used positive definite kernels include the Gaussian kernel

K(x, y) = exp
(
−||x−y||2

σ2

)
, σ 
= 0, and polynomial kernels K(x, y) = (〈x, y〉 + c)d ,

c ≥ 0, d ∈ N, for x, y ∈ R
n, n ∈ N.

Reproducing kernel Hilbert spaces (RKHS). Each positive definite kernel K
corresponds to a uniqueHilbert space of functions onX as follows. For each x ∈ X ,
there corresponds a functionKx : X → R defined byKx(y) = K(x, y). Consider the
setH0 of all linear combinations of functions of the form Kx, x ∈ X , that is

H0 =
⎧
⎨

⎩

N∑

j=1

ajKxj : aj ∈ R, xj ∈ X ,N ∈ N

⎫
⎬

⎭ . (5.19)

OnH0, we define the following inner product

〈
N∑

i=1

aiKxi ,

M∑

j=1

bjKyj 〉HK =
N∑

i=1

M∑

j=1

aibjK(xi, yj). (5.20)

This inner product is well-defined by the assumption that K is a positive definite
kernel, making H0 an inner product space. Let HK be the Hilbert completion of
H0, obtained by adding the limits of all the Cauchy sequences in H0, then HK
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is a Hilbert space of functions on X , called the reproducing kernel Hilbert space
(RKHS) induced by the kernel K .

The terminology RKHS comes from the reproducing property, which states that
for all f ∈ HK and all x ∈ X ,

f (x) = 〈f ,Kx〉HK . (5.21)

Feature maps. A very useful and intuitive geometrical view of positive definite
kernels is that of feature maps, which comes from machine learning and pattern
recognition. In this viewpoint, a function K : X × X → R is a positive definite
kernel if and only if there exists a Hilbert spaceH , called feature space, and a map
Φ : X → H , called feature map, such that

K(x, y) = 〈Φ(x),Φ(y)〉H ∀x, y ∈ H . (5.22)

As the simplest example, consider the quadratic polynomial kernel K : R2 × R
2 →

R defined by K(x, y) = 〈x, y〉2 = (x1y1 + x2y2)2. It can be readily verified, via a
simple algebraic calculation, that this kernel possesses the 3-dimensional feature
map Φ : R2 → R

3, defined by

Φ(x) = (x21,
√
2x1x2, x

2
2) ∈ R

3.

For a general positive definite kernel K , from the definition of RKHS above, it
follows that the RKHSHK induced by K is a feature space associated with K , with
corresponding feature map Φ : X → HK , defined by

Φ(x) = Kx ∀x ∈ X , (5.23)

which is called the canonical feature map [27] associated withK . IfX ⊂ R
n is a set

with non-empty interior, then dim(HK) = ∞ (see [25]), so that the feature mapΦ is
infinite-dimensional. We refer to [27] for a more detailed discussion of feature maps,
including their equivalence to the canonical feature map, and many other examples.

The feature map viewpoint is particularly useful from an algorithmic perspective,
since it allows one to transform any linear algorithm, which is expressed in terms of
the inner product 〈x, y〉 of input examples in Euclidean space, into a nonlinear algo-
rithm, simply by replacing 〈x, y〉with 〈Φ(x),Φ(y)〉HK = K(x, y) for some nonlinear
kernel K .

For our present purposes, feature maps enable us to generalize covariance matri-
ces, which encode linear correlations between input features, to covariance operators
in RKHS, which encode nonlinear correlations between input features.
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5.3.2 Covariance Operators in RKHS and Data
Representation

With the kernels and feature maps in Sect. 5.3.1, we now define RKHS covariance
operators using these feature maps and show how they are employed for image repre-
sentation. This framework is a generalization of the covariance matrix representation
described in Sect. 5.2.

As in Sect. 5.2, for each image, let x = [x1, . . . , xm] be the data matrix of size
n × m, with each column being the vector of features xi ∈ R

n sampled at pixel i,
1 ≤ i ≤ m. Now let K : Rn × R

n → R be a positive definite kernel, such as the
Gaussian kernel, which induces implicitly a feature map Φ : Rn → HK , whereHK

is the RKHS induced by K . The map Φ gives us the matrix of features inHK

Φ(x) = [Φ(x1), . . . , Φ(xm)], (5.24)

which canbeviewed informally as a (potentially infinite)matrix of size dim(HK)×m.
Formally, it is a bounded linear operator Φ(x) : Rm → HK , defined by

Φ(x)b =
m∑

i=1

biΦ(xi), (5.25)

with corresponding adjoint operator Φ(x)∗ : HK → R
m. The operator Φ(x) gives

rise to the RKHS covariance operator

CΦ(x) = 1

m
Φ(x)JmΦ(x)∗ : HK → HK , (5.26)

which can be viewed informally as a (potentially infinite) matrix of size dim(HK) ×
dim(HK). The covariance operatorCΦ(x) is now the representation for the image and
encodes, for a nonlinear kernel K , nonlinear correlations between all the different
extracted features.

Remark 2 We say that the covariance operator representation is a generalization of
the covariance matrix representation, since for the linear kernel K(x, y) = 〈x, y〉 on
R

n × R
n, we have Φ(x) = x and CΦ(x) = Cx.

A crucial feature of the RKHS covariance operator representation is that it is
implicit, that is neither the matrix of features Φ(x) nor the covariance operator CΦ(x)

is ever computed. Instead, all the necessary computations involving Φ(x) and CΦ(x)

are done via the Gram matrices of the kernel K on the original data matrix x. We
show that this is indeed the case for the distances between the covariance operators.
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5.4 Distances Between RKHS Covariance Operators

Having described the image representation framework by RKHS covariance opera-
tors, we now describe the distances between covariance operators. These distances
can then be directly employed in a practical application, e.g. image classification.

Since covariance operators are Hilbert–Schmidt operators, a natural distance
between them is the Hilbert–Schmidt distance, which is the infinite-dimensional
generalization of the Euclidean distance given by the Frobenius norm || ||F . How-
ever, just like the Euclidean distance, the Hilbert–Schmidt distance does not capture
the positivity of covariance operators. In order to do so, as with Sym++(n), we need
to consider the manifold setting of covariance operators.

As a generalization from the finite-dimensional setting, it can be shown [22] that
regularized covariance operators lie on an infinite-dimensional Hilbert manifold,
namely the manifold of positive definite unitized Hilbert–Schmidt operators on a
separable Hilbert space H . Each point on this manifold has the form A + γI > 0,
γ > 0, where A is a Hilbert–Schmidt operator on H . As we now show, both the
affine-invariant distance in Eq. (5.6) and the Log-Euclidean distance in Eq. (5.8)
admit a generalization on this manifold. However, there are several key differences
between the finite and infinite-dimensional settings:

1. In the finite-dimensional case, the regularization (Cx + γI) is often necessary
empirically since in generalCx is not guaranteed to be positive definite. In contrast,
when dim(H ) = ∞, the regularization form (A + γI) is always needed, both
theoretically and empirically, even if A is strictly positive. This is because log(A)

is unbounded and we must always consider log(A + γI). We explain this in detail
in Sect. 5.4.2.1.

2. When dim(H ) = ∞, the identity operator I is not Hilbert–Schmidt and therefore
the Hilbert–Schmidt norm of log(A + γI) is generally infinite. Furthermore, the
distance between any two different multiples of I would be infinite. This problem
is resolved by the introduction of the extended Hilbert–Schmidt inner product.
We explain this in detail in Sect. 5.4.2.2.

In general, the distance formulas for the finite and infinite-dimensional cases are
different and the infinite-dimensional formulas are generally not the limits of the
finite-dimensional ones as the dimension approaches infinity. For RKHS covariance
operators, all three distances admit closed forms in terms of Gram matrices.

5.4.1 Hilbert–Schmidt Distance

Wefirst consider the generalization of the Frobenius norm inEq. (5.4) to the separable
Hilbert space setting. We recall that a bounded linear operator A : H → H is said
to be a Hilbert–Schmidt operator if
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||A||2HS = tr(A∗A) =
∞∑

k=1

||Aek||2 < ∞, (5.27)

for any countable orthonormal basis {ek}k∈N in H . || ||HS is called the Hilbert–
Schmidt norm, which is the infinite-dimensional version of the Frobenius norm in
Eq. (5.4).

Let HS(H ) denote the class of all Hilbert–Schmidt operators onH . TheHilbert–
Schmidt norm corresponds to the Hilbert–Schmidt inner product on HS(H ), which
is defined by

〈A,B〉HS = tr(A∗B) =
∞∑

k=1

〈Aek,Bek〉, A,B ∈ HS(H ). (5.28)

For a self-adjoint operator A ∈ HS(H ), A is compact and hence possesses a count-
able spectrum {λk}∞k=1, with limk→∞ λk = 0, and

||A||2HS =
∞∑

k=1

λ2
k < ∞. (5.29)

It is clear then that if dim(H ) = ∞, then the identity operator I is not Hilbert–
Schmidt, since obviously

||I||HS = ∞.

We explain the consequence of this fact on the infinite-dimensional generalization
of the affine-invariant and Log-Euclidean distances in Sect. 5.4.2.2.

For two RKHS covariance operators CΦ(x) and CΦ(y), their Hilbert–Schmidt dis-
tance is expressed explicitly in terms of Gram matrices, as follows. Let K[x], K[y],
K[x, y] denote the m × m matrices defined by

(K[x])ij = K(xi, xj), (K[y])ij = K(yi, yj), (K[x, y])ij = K(xi, yj). (5.30)

By definition of feature maps, we have K(x, y)=〈Φ(x),Φ(y)〉HK ∀(x, y) ∈ X ×X ,
so that the Gram matrices and the feature maps are closely related as follows

K[x] = Φ(x)∗Φ(x), K[y] = Φ(y)∗Φ(y), K[x, y] = Φ(x)∗Φ(y). (5.31)

Lemma 1 The Hilbert–Schmidt distance between two RKHS covariance operators
CΦ(x) and CΦ(y) is given by

||CΦ(x) − CΦ(y)||2HS = 1

m2
〈JmK[x],K[x]Jm〉F − 2

m2
〈JmK[x, y],K[x, y]Jm〉F

+ 1

m2
〈JmK[y],K[y]Jm〉F . (5.32)
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Remark 3 For the linear kernel K(x, y) = 〈x, y〉Rn , we have Φ(x) = x, Φ(y) = y
and thus Eq. (5.32) gives us the Euclidean distance ||Cx − Cy||F .

5.4.2 Riemannian Distances Between Covariance Operators

We now show how the affine-invariant and Log-Euclidean distances in Eqs. (5.6) and
(5.8), respectively, canbegeneralized to the infinite-dimensional settings, specifically
to self-adjoint, positive Hilbert–Schmidt operators on a separable Hilbert spaceH .
These generalizations were carried out recently in [21, 22], for the affine-invariant
metric, and in [28], for the Log-Euclidean metric. As a special case of these for-
mulations, we obtain the respective distances between infinite-dimensional covari-
ance operators on Hilbert spaces, which assume explicit forms in the RKHS setting
[26, 28].

Looking at Eqs. (5.6) and (5.8), we see that generalizing them to the infinite-
dimensional setting requires the following two steps

1. Generalization of the set Sym++(n) of all n × n SPD matrices and the corre-
sponding generalization for the principal matrix logarithm.

2. Generalization of the Frobenius norm || ||F .
We shownext that the first step leads us to the concept of positive definite operators

and the second to the concept of extended Hilbert–Schmidt norm.

5.4.2.1 Positive Definite Operators

We first consider the bounded operators A : H → H that generalize n × n SPD
matrices and the corresponding generalization for the principal matrix logarithm. To
this end, we first recall the definition of the principal matrix logarithm for an SPD
matrix A of size n × n. Let {λk}nk=1 be the eigenvalues of A, which are all positive,
with corresponding normalized eigenvectors {uk}nk=1. Then A admits the spectral
decomposition

A =
n∑

k=1

λkukuT
k .

The principal matrix logarithm of A is then given by

log(A) =
n∑

k=1

log(λk)ukuT
k . (5.33)

To generalize this formula to the Hilbert space setting, let us assume that A : H →
H is a self-adjoint, compact operator, so that it possesses a countable spectrum
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{λk}∞k=1, with corresponding normalized eigenvectors {uk}∞k=1. The eigenvalues λk’s
are all real and satisfy limk→∞ λk = 0. We assume next that A is strictly positive,
that is

〈x,Ax〉 > 0 ∀x ∈ H , x 
= 0. (5.34)

Then the eigenvalues {λk}∞k=1 of A are all strictly positive. However, in contrast to
the case dim(H ) < ∞, when dim(H ) = ∞, strict positivity is not a sufficient
condition for log(A) to be well-defined. To see why, consider the following direct
generalization of the principal matrix logarithm in Eq. (5.33),

log(A) =
∞∑

k=1

(logλk)uk ⊗ uk : H → H , (5.35)

whereuk ⊗uk : H →H is a rank-oneoperator definedby (uk ⊗ uk)w = 〈uk,w〉uk ,
which directly generalizes the rank-one matrix ukuT

k . Thus

log(A)w =
∞∑

k=1

(logλk)〈uk,w〉uk ∀w ∈ H . (5.36)

However, since limk→∞ logλk = −∞, this operator is unbounded. Thus in particu-
lar, if A is a covariance operator, then log(A) is unbounded.

This problem can be resolved via regularization as follows. Instead of considering
log(A), we consider log(A + γI), γ > 0, and we see immediately that

log(A + γI) =
∞∑

k=1

[log(λk + γ)]uk ⊗ uk : H → H , (5.37)

is a bounded operator∀γ > 0. The operatorA + γI is an example of a positive definite
operator, that is it is a member of the set

P(H ) = {B ∈ L (H ) : ∃MB > 0 such that 〈x,Bx〉 ≥ MB||x||2 ∀x ∈ H }.
(5.38)

Clearly, if B ∈ P(H ), then the eigenvalues of B, if they exist, are all bounded below
by the constantMB > 0. Thus in the infinite-dimensional setting, positive definiteness
is a stronger requirement than strict positivity. In fact, it can be shown that

B positive definite ⇐⇒ B strictly positive and invertible. (5.39)

Subsequently, we use the notation B > 0 for B ∈ P(H ).
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5.4.2.2 Extended Hilbert–Schmidt Inner Product and Norm

Wenowconsider operators of the formA + γI > 0,whereA is a self-adjoint, compact
operators, so that log(A + γI), as given by Eq. (5.37) is well-defined and bounded.
To generalize Eq. (5.8), we then need to have

|| log(A + γI)||2HS =
∞∑

k=1

[log(λk + γ)]2 < ∞. (5.40)

We show below that this is also sufficient for the generalization of Eq. (5.6). For
γ = 1, this holds if and only if A ∈ HS(H ), as shown by the following.

Proposition 2 Assume that A + I > 0, with A being a self-adjoint, compact opera-
tor. Then log(A + I) ∈ HS(H ) if and only if A ∈ HS(H ).

However, for γ 
= 1, γ > 0, log(A + γI) cannot be a Hilbert–Schmidt operator for
any compact operator A with A + γI > 0, as shown in the following.

Proposition 3 Assume that A + γI > 0, γ > 0, γ 
= 1, with A being a self-adjoint,
compact operator. Then log(A + γI) /∈ HS(H ).

The result given in Proposition3 is due to the fact that ||I||HS = ∞, as can be viewed
via the decomposition

log(A + γI) = log

(
A

γ
+ I

)
+ log(γ)I. (5.41)

On the right handside, the first term log
(
A
γ

+ I
)
is Hilbert–Schmidt if and only if A

is Hilbert–Schmidt, as guaranteed by Proposition2. However, for γ 
= 1, the second
term log(γ)I cannot be Hilbert–Schmidt, since ||I||HS = ∞ for dim(H ) = ∞.

Thus, taken together, Propositions2 and 3 show that to generalize Eqs. (5.6) and
(5.8), we need to consider operators of the form A + γI > 0, where A is Hilbert–
Schmidt, and at the same time, extend the definition of the Hilbert–Schmidt inner
product and norm so that the norm of the identity operator I is finite.

The desired extension is called the extendedHilbert–Schmidt inner product 〈 , 〉eHS
[21, 22], which is defined by

〈A + γI,B + μI〉eHS = 〈A,B〉HS + γμ. (5.42)

Under the extended Hilbert–Schmidt inner product, the scalar operators γI are
orthogonal to the Hilbert–Schmidt operators. The corresponding extended Hilbert–
Schmidt norm is then given by

||A + γI||2eHS = ||A||2HS + γ2. (5.43)
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One can see that this is a form of compactification, which gives ||I||eHS = 1, in
contrast to the infiniteHilbert–Schmidt norm ||I||HS = ∞. Thus instead of theHilbert
space of self-adjoint Hilbert–Schmidt operators, we consider the Hilbert space of
self-adjoint extended (or unitized) Hilbert–Schmidt operators

HR = {A + γI : A∗ = A, A ∈ HS(H ), γ ∈ R}, (5.44)

under the extended Hilbert–Schmidt inner product. By the decomposition given in
Eq. (5.41), we immediately obtain the following.

Proposition 4 Assume thatA + γI > 0whereγ > 0andA is a self-adjoint, compact
operator. Then

log(A + γI) ∈ HR ⇐⇒ A + γI > 0, A ∈ HS(H ), A∗ = A. (5.45)

Furthermore, when dim(H ) = ∞,

|| log(A + γI)||2eHS =
∥∥∥∥log

(
A

γ
+ I

)∥∥∥∥
2

HS

+ (log γ)2. (5.46)

5.4.2.3 The Hilbert Manifold of Positive Definite Unitized
Hilbert–Schmidt Operators

In summary, to generalize Eqs. (5.6) and (5.8) to the Hilbert space setting, we need to
consider operators of the form A + γI > 0, whereA is self-adjoint, Hilbert–Schmidt,
so that log(A + γI) is well-defined and bounded, along with the extended Hilbert–
Schmidt norm || ||eHS, so that || log(A + γI)||eHS is finite. We have thus arrived at
the following generalization of Sym++(n)

�(H ) = P(H ) ∩ HR = {A + γI > 0 : A∗ = A, A ∈ HS(H ), γ ∈ R},
(5.47)

which was first introduced by [21, 22]. This is an infinite-dimensional Hilbert man-
ifold, with the tangent space at each point TP(�(H )) ∼= HR ∀P ∈ �(H ). By
Proposition4,

A + γI ∈ �(H ) ⇐⇒ log(A + γI) ∈ HR. (5.48)
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5.4.3 The Affine-Invariant Distance

The affine-invariant Riemannian metric was introduced on the Hilbert manifold
�(H ) by [21, 22]. Under thismetric, the geodesic distance between any two positive
definite operators (A + γI), (B + μI) ∈ �(H ) is given by

daiHS[(A + γI), (B + μI)] = || log[(A + γI)−1/2(B + μI)(A + γI)−1/2]||eHS.
(5.49)

The following result confirms that the distance daiHS[(A + γI), (B + μI)] is
always finite for any pair of operators (A + γI), (B + μI) ∈ �(H ).

Proposition 5 For any two operators (A + γI), (B + μI) ∈ �(H ), we can write
(A + γI)−1/2(B + μI)(A + γI)−1/2 = Z + νI > 0 for ν = μ

γ
and Z = (A + γI)−1/2

B(A + γI)−1/2 − μ
γ
A(A + γI)−1 satisfying Z = Z∗, Z ∈ HS(H ). Thus the affine-

invariant geodesic distance

daiHS[(A + γI), (B + μI)] = || log(Z + νI)||eHS (5.50)

is always finite. Furthermore, when dim(H ) = ∞,

d2aiHS[(A + γI), (B + μI)] =
∥∥∥∥log

(
Z

ν
+ I

)∥∥∥∥
2

HS

+ (log ν)2. (5.51)

In the RKHS setting, the affine-invariant distance between regularized RKHS
covariance operators daiHS[(CΦ(x) + γI), (CΦ(y) + μI)] admits a closed form, which
was given by [26], as follows.

Theorem 1 ([26]) Assume that dim(HK) = ∞. Let γ > 0,μ > 0. Then

d2aiHS[(CΦ(x) + γI), (CΦ(y) + μI)] = tr

⎧
⎨

⎩log

⎡

⎣

⎛

⎝
C11 C12 C13

C21 C22 C23

C11 C12 C13

⎞

⎠ + I3m

⎤

⎦

⎫
⎬

⎭

2

+
(
log

γ

μ

)2

, (5.52)

where the m × m matrices Cij, i, j = 1, 2, 3, are given by

C11 = 1

μm
JmK[y]Jm,

C12 = − 1√
γμm

JmK[y, x]Jm
(
Im + 1

γm
JmK[x]Jm

)−1

,

C13 = − 1

γμm2
JmK[y, x]Jm

(
Im + 1

γm
JmK[x]Jm

)−1

JmK[x, y]Jm,
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C21 = 1√
γμm

JmK[x, y]Jm,

C22 = − 1

γm
JmK[x]Jm

(
Im + 1

γm
JmK[x]Jm

)−1

,

C23 = − 1

γm
JmK[x]Jm

(
Im + 1

γm
JmK[x]Jm

)−1 1√
γμm

JmK[x, y]Jm.

Theorem 2 ([26]) Assume that dim(HK) < ∞. Let γ > 0,μ > 0. Then

d2aiHS[(CΦ(x) + γI), (CΦ(y) + μI)] = tr

⎧
⎨

⎩log

⎡

⎣

⎛

⎝
C11 C12 C13

C21 C22 C23

C11 C12 C13

⎞

⎠ + I3m

⎤

⎦

⎫
⎬

⎭

2

− 2

(
log

γ

μ

)
tr

⎧
⎨

⎩log

⎡

⎣

⎛

⎝
C11 C12 C13

C21 C22 C23

C11 C12 C13

⎞

⎠ + I3m

⎤

⎦

⎫
⎬

⎭ +
(
log

γ

μ

)2

dim(HK), (5.53)

where the m × m matrices Cij’s, i, j = 1, 2, 3, are as in Theorem1.

We see that the formula for the affine-invariant distance for the case dim(HK) =
∞ is generally different from that for the case dim(HK) < ∞, exceptwhen γ = μ, in
which case they are identical. One can see that form ∈ N fixed, γ 
= μ, the right hand
side of Eq. (5.53) approaches infinity as dim(HK) → ∞. Thus for γ 
= μ, one cannot
approximate the infinite-dimensional distance in Eq. (5.52) by the finite-dimensional
distance in Eq. (5.53).

5.4.3.1 Log-Hilbert–Schmidt Distance

Similar to the affine-invariance distance in Eq. (5.49), the generalization of the Log-
Euclidean distance [4] is the Log-Hilbert–Schmidt distance

dlogHS[(A + γI), (B + μI)] = || log(A + γI) − log(B + μI)||eHS, (5.54)

which was recently formulated by [28]. The well-definedness of this distance for any
pair of operators (A + γI), (B + μI) ∈ �(H ) is confirmed by the following result.

Proposition 6 For any pair of operators (A + γI), (B + μI) ∈ �(H ), the distance
dlogHS[(A + γI), (B + μI)] = || log(A + γI) − log(B + μI)||eHS is always finite.
Furthermore, when dim(H ) = ∞,

|| log(A + γI) − log(B + μI)||2eHS =
∥∥∥∥log

(
A

γ
+ I

)
− log

(
B

μ
+ I

)∥∥∥∥
2

HS
+

(
log

γ

μ

)2
.

As in the case of the affine-invariant distance, in the case of regularized RKHS
covariance operators, the Log-HS distance
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dlogHS[CΦ(x) + γI,CΦ(y) + μI] = || log(CΦ(x) + γI) − log(CΦ(y) + μI)||eHS
(5.55)

also admits an explicit form, expressed via the Gram matrices corresponding to x
and y [28]. To state this explicit form, we first define the following operators

A = 1√
γm

Φ(x)Jm : Rm → HK , B = 1√
μm

Φ(y)Jm : Rm → HK , (5.56)

so that

A∗A = 1

γm
JmK[x]Jm, B∗B = 1

μm
JmK[y]Jm, A∗B = 1√

γμm
JmK[x, y]Jm.

(5.57)

Let NA and NB be the numbers of nonzero eigenvalues of A∗A and B∗B, respectively.
Let �A and �B be the diagonal matrices of size NA × NA and NB × NB, and UA and
UB be the matrices of size m × NA and m × NB, respectively, which are obtained
from the spectral decompositions

1

γm
JmK[x]Jm = UA�AU

T
A ,

1

μm
JmK[y]Jm = UB�BU

T
B . (5.58)

Let ◦ denote the Hadamard (element-wise) matrix product and define

CAB = 1TNA
log(INA + �A)�

−1
A (UT

AA
∗BUB ◦ UT

AA
∗BUB)�

−1
B log(INB + �B)1NB .

(5.59)

In terms of the quantities just defined, the Log-HS distance can be expressed as
follows. As in the case of the affine-invariant distance, the distance formulas are dif-
ferent for the cases dim(HK) = ∞ and dim(HK) < ∞, with the finite-dimensional
distance approaching infinity as dim(HK) → ∞.

Theorem 3 ([28]) Assume that dim(HK) = ∞. Let γ > 0, μ > 0. Then

d2logHS[(CΦ(x) + γI), (CΦ(y) + μI)] = tr[log(INA + �A)]2 + tr[log(INB + �B)]2
− 2CAB + (log γ − logμ)2. (5.60)

Theorem 4 ([28]) Assume that dim(HK) < ∞. Let γ > 0, μ > 0. Then

d2logHS[(CΦ(x) + γI), (CΦ(y) + μI)] = tr[log(INA + �A)]2 + tr[log(INB + �B)]2 − 2CAB

+ 2

(
log

γ

μ

)
(tr[log(INA + �A)] − tr[log(INB + �B)])

+ (log γ − logμ)2 dim(HK ). (5.61)
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Remark 4 In the case of the linear kernel K(x, y) = 〈x, y〉, x, y ∈ R
n, Theorem4

gives the Log-Euclidean distance || log(Cx + γI) − log(Cy + μI)||.
Remark 5 We showed in [28] that the two operations � and � on Sym++(n) as
defined in Sect. 5.2 can both be generalized to the Hilbert manifold �(H ), so that
(�(H ),�,�) is a vector space. This vector space can be endowed with the Log-
Hilbert–Schmidt inner product, defined by

〈A + γI,B + μI〉logHS = 〈log(A + γI), log(B + μI)〉eHS. (5.62)

With this inner product, the space (�(H ),�,�, 〈 , 〉logHS) is a Hilbert space and
the distance in this Hilbert space is precisely the Log-Hilbert–Schmidt distance, see
[28] for detail.

5.5 Two-Layer Kernel Machines with RKHS Covariance
Operators

Having presented the explicit formulas for the affine-invariant and Log-Hilbert–
Schmidt distances between RKHS covariance operators, we now show how the Log-
Hilbert–Schmidt distance in particular can be used to design a two-layer kernel
machine for machine learning, with an application in image classification.

5.5.1 The Interplay Between Positive Definite Kernels
and Riemannian Manifolds

The geometric framework forRKHScovariance operators thatwe have just described
reveals a close link between positive definite kernels and Riemannian manifolds, as
follows.

Kernels giving rise to Manifolds. Let X be any non-empty set. Each positive
definite kernel defined onX × X gives rise to a set of RKHS covariance operators,
each of the form CΦ(x), where x is a data matrix sampled from X according to
a probability distribution. The corresponding set of regularized RKHS covariance
operators (CΦ(x) + γI), γ > 0, forms a subset of the Hilbert manifold of positive
definite Hilbert–Schmidt operators.

For the case of the Log-Hilbert–Schmidt distance, we have the link in the other
direction as well.

Distances on Manifolds giving rise to Kernels. Since the Log-Hilbert–Schmidt
distance is a Hilbert space distance, it can be used to define many positive definite
kernels on�(H ) × �(H ). The following result naturally generalizes Proposition1
to the infinite-dimensional setting.
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Proposition 7 ([28]) The following kernels K : �(H ) × �(H ) → R are positive
definite

K[(A + γI), (B + μI)] = (c + 〈log(A + γI), log(B + μI)〉eHS)d, c ≥ 0, d ∈ N,

(5.63)

K[(A + γI), (B + μI)] = exp

(
−|| log(A + γI) − log(B + μI)||peHS

σ2

)
, (5.64)

for 0 < p ≤ 2.

5.5.2 Two-Layer Kernel Machines

The interplay between positive definite kernels and Riemannian manifolds as we
described above allows us to design a two-layer kernel machine by utilizing the
Log-Hilbert–Schmidt distance as follows.

1. In the first layer, a positive definite kernel, such as the Gaussian kernel, is applied
to the original features extracted from each image, giving an implicit covariance
operator representing that image. Using the Log-Hilbert–Schmidt distance, we
then compute the pairwise distances between all the images.

2. In the second layer, using the pairwise Log-Hilbert–Schmidt distances obtained in
the first layer, we define a new positive definite kernel, such as another Gaussian
kernel. We can then apply any kernel method, such as SVM, using this kernel.

Remark 6 The approach in [17, 24], which applies kernel methods on top of the
Log-Euclidean distance, is a special case our our framework, where the kernel in the
first layer is linear (which is equivalent to not having the first layer).

5.6 Experiments in Image Classification

In this section, we report empirical results on the task of image classification using
the two-layer kernel machine with the Log-Hilbert–Schmidt distance, as described in
Sect. 5.5. The results obtained are substantially better than those obtained using the
corresponding one-layer kernelmachinewith theLog-Euclidean distance. These thus
clearly demonstrate the superior power and effectiveness of the covariance operator
representation framework compared to the covariance matrix representation. The
results presented here were first reported in [28].

We recall from our previous discussion that each image is represented by a covari-
ance operator as follows. At every pixel (or a subset of pixels) of the image, we extract
n low-level features, such as intensity and colors, giving us a low-level feature vector
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in R
n. Sampling at m pixels in the image gives us a data matrix x of size n × m.

By applying a positive definite kernel, defined on R
n × R

n, to the low-level feature
vectors, we obtain implicitly a matrix of features Φ(x), as defined in Eq. (5.24), and
the corresponding covariance operator CΦ(x), as defined in Eq. (5.26). The image is
then represented by the covariance operator CΦ(x). In the current experiments, we
used the Gaussian kernel and the resulting covariance operator is called Gaussian-
COV. The distance between two images is the distance between the corresponding
covariance operators, which in this case is the Log-Hilbert–Schmidt distance, given
by Eq. (5.60) when dim(HK) = ∞, e.g. for the Gaussian kernel, and Eq. (5.61) when
dim(HK) < ∞, e.g. for the polynomial kernels.

Given a set of images, we then have a corresponding set of covariance operators
and a matrix of pairwise Log-Hilbert–Schmidt distances between these operators.
In the following experiments, the task of image classification was carried out by
applying Gaussian Support Vector Machine (SVM) on top of this distance matrix,
using LIBSVM [10]. Thus this corresponds to a two-layer kernel machineGaussian-
Gaussian involving two Gaussian kernels, with the first Gaussian kernel defined on
the low-level features and the secondGaussian kernel defined using the Log-Hilbert–
Schmidt distances between the covariance operators of those features. For the sake
of comparison, we also evaluated the kernel machine Gaussian-Laplacian, with the
second kernel being the Laplacian kernel, which corresponds to p = 1 in Eq. (5.64).

In comparison, with the covariance matrix representation, one represents the
image by the covariance matrix Cx defined directly on the data matrix x of low-
level features, which we call linearCOV, since it is precisely the covariance oper-
ator obtained with the linear kernel. Given a set of images, we then obtain a set
of corresponding covariance matrices and a matrix of pairwise Log-Euclidean dis-
tances between these covariance matrices. One can then carry out the task of image
classification by applying Gaussian SVM on top of this distance matrix. Thus this
corresponds to the two-layer kernel machine linear-Gaussian, which is equivalent to
the one-layer kernel machine Gaussian on top of the Log-Euclidean distances, since
the first layer in this case, being linear, has no effect.

Texture classification. The first dataset used is the Kylberg texture dataset [20],
which contains 28 texture classes of different natural and man-made surfaces, with
each class consisting of 160 images. The experimental protocols are the same as
those in [16] and are as follows. Each image is resized to a dimension of 128 × 128,
with m = 1024 observations computed on a coarse grid (i.e., every 4 pixels in the
horizontal and vertical direction). At each pixel, 5 low-level features are extracted:
F(x, y) = [

Ix,y, |Ix| ,
∣∣Iy

∣∣ , |Ixx| ,
∣∣Iyy

∣∣] , where I , Ix, Iy, Ixx and Iyy, are the intensity,
first- and second-order derivatives of the texture image. We randomly selected 5
images in each class for training and used the remaining ones as testing data, repeating
the entire procedure 10 times.

Material classification. The second dataset used is the KTH-TIPS2b dataset
[9], which contains images of 11 materials captured under 4 different illumi-
nations, in 3 poses, and at 9 scales. The total number of images per class is
108. The same experimental protocols as used for the previous dataset [16] are
employed, where at each pixel 23 low-level dense features are extracted: F(x, y) =
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Table 5.1 Classification accuracies over the 3 datasets. The accuracies shownare themean accuracy
across all the different splits for each dataset, alongwith the standard deviation.HereLog-HSdenotes
SVMwith theGaussian kernel on top of theLog-Hilbert–Schmidt distances,Log-HS� denotes SVM
with the Laplacian kernel on top of the Log-Hilbert–Schmidt distances, and Log-E denotes SVM
with the Gaussian kernel on top of the Log-Euclidean distances

Methods Kylberg texture KTH-TIPS2b KTH-TIPS2b
(RGB)

Fish

Gaussian COV Log-HS 92.58%(±1.23) 81.91%(±3.3) 79.94%(±4.6) 56.74%(±2.87)

Log-HS� 92.56%(±1.26) 81.50%(±3.90) 77.53%(±5.2) 56.43%(±3.02)

linear COV Log-E 87.49%(±1.54) 74.11%(±7.41) 74.13%(±6.1) 42.70%(±3.45)

[
Rx,y,Gx,y,Bx,y,

∣∣G0,0
x,y

∣∣ , . . . ,
∣∣G4,5

x,y

∣∣], where Rx,y,Gx,y,Bx,y are the color intensities
and

∣∣Go,s
x,y

∣∣ are the 20 Gabor filters at 4 orientations and 5 scales. The experiment is
repeated across 4 splits of the dataset.

Fish recognition. The third dataset used is the Fish Recognition dataset [8],
which consists of 27,370 fish images belonging to 23 different classes. The number
of images per class ranges from 21 to 12,112, with a medium resolution of roughly
150 × 120 pixels. The same experimental protocols are employed, where at each
pixel the 3 color intensities are extracted: F(x, y) = [

Rx,y,Gx,y,Bx,y
]
. We randomly

selected 5 images from each class for training and 15 for testing, repeating the entire
procedure 10 times.

Results and discussion. Table5.1 shows the classification accuracies obtained
on the three tested datasets. As can be seen, the Log-Hilbert–Schmidt distance with
the GaussianCOV displays significant improvements over the Log-Euclidean dis-
tance with the linearCOV. This strong improvement in performance is as expected,
since, as we have discussed previously, covariance operators, by capturing nonlinear
correlations between input features, offer a more general, more powerful, and more
expressive data representation than covariance matrices.

5.7 Discussion, Conclusion, and Future Work

In this chapter, we have reviewed some of the recent progress in the generalization
of the data representation framework using finite-dimensional covariance matrices
to infinite-dimensional RKHS covariance operators, which are induced by positive
definite kernels on the original data. In particular, we treated covariance operators
in the setting of the infinite-dimensional manifold of positive definite operators,
which is the generalization of the Riemannian manifold setting for SPD matrices.
We presented the affine-invariant and Log-Hilbert–Schmidt distances on this mani-
fold, which are generalizations of the affine-invariant and Log-Euclidean distances,
respectively, between SPDmatrices. For RKHS covariance operators, these distances
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admit closed form expressions via the corresponding Gram matrices and thus can be
employed directly in a practical algorithm, such as image classification.

The Log-Hilbert–Schmidt distance, in particular, can be used to define new
positive definite kernels, giving rise to a two-layer kernel machine. Experiments
on the task of image classification have demonstrated that results obtained using
the infinite-dimensional covariance operator representation significantly outperform
those obtained using the finite-dimensional covariance matrix representation.

There are several ongoing and potential future research directions for the data rep-
resentation framework using covariance operators. On the methodological side, one
challenge faced by the framework is that both the affine-invariant and Log-Hilbert–
Schmidt distances between covariance operators are computationally intensive on
large scale datasets. One way to tackle this computational complexity for large
scale applications is by approximating the infinite-dimensional covariance opera-
tors using approximate kernel feature maps. This has recently been carried out by
[14], which effectively computed an approximate version of the affine-invariant dis-
tance, and [29], which computed approximate Log-Hilbert–Schmidt distances, both
using Fourier feature maps. It would be interesting and fruitful to explore other
approximations and computation schemes as well.On the application side, given the
numerous applications of covariance matrices in diverse domains, ranging from sta-
tistics to machine learning to brain imaging, we expect that the covariance operator
framework will find many more applications beyond those that we have presented
or surveyed in this chapter.

Appendix

Proofs of Mathematical Results

Proof (of Proposition1) For the first kernel, we have the property that the sum and
product of positive definite kernels are also positive definite. Thus from the positivity
of the inner product 〈A,B〉F , it follows that K(A,B) = (c + 〈A,B〉logE)d is positive
definite, as in the Euclidean setting.

For the secondkernel, since (Sym++(n),�,�, 〈 , 〉logE) is an inner product space,
it follows that the kernel

K(A,B) = exp(−dplogE(A,B)/σ2) = exp(−|| log(A) − log(B)||pF/σ2)

is positive definite for 0 < p ≤ 2 by a classical result due to Schoenberg on positive
definite functions and the imbeddability of metric spaces into Hilbert spaces (see
[35], Theorem 1 and Corollary 1).

Proof (of Lemma1) Recall that we have Φ(x)∗Φ(x) = K[x], Φ(y)∗Φ(y) = K[y],
Φ(x)∗Φ(y) = K[x, y]. By definition of the Hilbert–Schmidt norm and property of
the trace operation, we have
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||CΦ(x) − CΦ(y)||2HS =
∥∥∥∥
1

m
Φ(x)JmΦ(x)∗ − 1

m
Φ(y)JmΦ(y)∗

∥∥∥∥
2

HS

= 1

m2
||Φ(x)JmΦ(x)∗||2HS − 2

m2
〈Φ(x)JmΦ(x)∗, Φ(y)JmΦ(y)∗〉HS

+ 1

m2
||Φ(y)JmΦ(y)∗||2HS

= 1

m2
tr[Φ(x)JmΦ(x)∗Φ(x)JmΦ(x)∗] − 2

m2
tr[Φ(x)JmΦ(x)∗Φ(y)JmΦ(y)∗]

+ 1

m2
tr[Φ(y)JmΦ(y)∗Φ(y)JmΦ(y)∗]

= 1

m2
tr[(K[x]Jm)2 − 2K[y, x]JmK[x, y]Jm + (K[y]Jm)2]

= 1

m2
[〈JmK[x],K[x]Jm〉F − 2〈JmK[x, y],K[x, y]Jm〉F + 〈JmK[y],K[y]Jm〉F].

This completes the proof of the lemma. �

Lemma 2 Let B be a constant with 0 < B < 1. Then for all |x| ≤ B,

| log(1 + x)| ≤ 1

1 − B
|x|. (5.65)

Proof For x ≥ 0, we have the well-known inequality 0 ≤ log(1 + x) ≤ x, so clearly
0 ≤ log(1 + x) < 1

1−Bx. Consider now the case −B ≤ x ≤ 0. Let

f (x) = log(1 + x) − 1

1 − B
x.

We have

f
′
(x) = 1

1 + x
− 1

1 − B
≤ 0,

with f
′
(−B) = 0. Thus the function f is decreasing on [−B, 0] and reaches its mini-

mum at x = 0, which is f (0) = 0. Hence we have for all −1 < −B ≤ x ≤ 0

0 ≥ log(1 + x) ≥ 1

1 − B
x ⇒ | log(1 + x)| ≤ 1

1 − B
|x|,

as we claimed. �

Proof (of Propositions2 and 3) We first show that for an operator A + γI > 0,
whereA is self-adjoint, compact, the operator log(A + γI) /∈ HS(H ) if γ 
= 1. Since
A is compact, it has a countable spectrum {λk}k∈N, with limk→∞ λk = 0, so that
limk→∞ log(λk + γ) = log(γ). Thus if γ 
= 1, so that log γ 
= 0, we have
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|| log(A + γI)||2HS =
∞∑

k=1

[log(λk + γ)]2 = ∞.

Hence log(A + γI) /∈ HS(H ) if γ 
= 1.
Assume now that γ = 1. We show that log(A + I) ∈ HS(H ) if and only if

A ∈ HS(H ). For the first direction, assume that B = log(A + I) ∈ HS(H ). By def-
inition, we have A + I = exp(B) ⇐⇒ A = exp(B) − I = ∑∞

k=1
Bk

k! , with

||A||HS =
∥∥∥∥∥

∞∑

k=1

Bk

k!

∥∥∥∥∥
HS

≤
∞∑

k=1

||B||kHS
k! = exp(||B||HS) − 1 < ∞.

This shows that A ∈ HS. Conversely, assume A ∈ HS(H ), so that

||A||2HS =
∞∑

k=1

λ2
k < ∞,

and that A + I > 0, so that log(A + I) is well-defined and bounded, with eigenvalues
{log(λk + 1)}∞k=1. Since limk→∞ λk = 0, for any constant 0 < ε < 1, there exists
N = N(ε) such that |λk| < ε ∀k ≥ N . By Lemma2, we have

|| log(A + I)||2HS =
∞∑

k=1

[log(λk + 1)]2 =
N−1∑

k=1

[log(λk + 1)]2 +
∞∑

k=N

[log(λk + 1)]2

≤
N−1∑

k=1

[log(λk + 1)]2 + 1

1 − ε

∞∑

k=N

λ2
k < ∞.

This shows that log(A + I) ∈ HS(H ), which completes the proof. �

Proof (Proof of Proposition4) Since the identity operator I commutes with any
operator A, we have the decomposition

log(A + γI) = log

(
A

γ
+ I

)
+ (log γ)I.

We first note that the operator log
(
A
γ

+ I
)
is compact, since it possesses a countable

set of eigenvalues {log(λk
γ

+ 1)}k∈N satisfying limk→∞ log(λk
γ

+ 1) = 0.

If A is Hilbert–Schmidt, then by Proposition2, we have log
(
A
γ

+ I
)

∈ HS(H ),

and thus log(A + γI) ∈ HR. By definition of the extended Hilbert–Schmidt norm,

|| log(A + γI)||2eHS =
∥∥∥∥log

(
A

γ
+ I

)∥∥∥∥
2

HS

+ (log γ)2 < ∞.
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Conversely, if log(A + γI) ∈ HR, then together with the fact that log
(
A
γ

+ I
)
is

compact, the above decomposition shows that we must have log
(
A
γ

+ I
)

∈ HS(H )

and hence A ∈ HS(H ) by Proposition2. �

Proof (of Proposition5) Since (A + γI) > 0, (B + μI) > 0, it is straightforward to
see that (A + γI)−1/2(B + μI)(A + γI)−1/2 > 0. Using the identity

(A + γI)−1 = 1

γ
I − A

γ
(A + γI)−1,

we obtain

(A + γI)−1/2(B + μI)(A + γI)−1/2

= μ

γ
I + (A + γI)−1/2B(A + γI)−1/2 − μ

γ
A(A + γI)−1 = Z + νI,

where ν = μ
γ
and Z = (A + γI)−1/2B(A + γI)−1/2 − μ

γ
A(A + γI)−1. It is clear that

Z = Z∗ and thatZ ∈ HS(H ), sinceHS(H ) is a two-sided ideal inL (H ). It follows
that log(Z + γI) ∈ HR by Proposition4. Thus the geodesic distance

daiHS[(A + γI), (B + μI)] = || log[(A + γI)−1/2(B + μI)(A + γI)−1/2]||eHS
= || log(Z + νI)||eHS

is always finite. Furthermore, by Proposition2, log( Z
ν

+ I) ∈ HS(H ) and thus by
definition of the extended Hilbert–Schmidt norm, when dim(H ) = ∞,

d2aiHS[(A + γI), (B + μI)] = || log(Z + νI)||2eHS = || log
(
Z

ν
+ I

)
||2HS + (log ν)2.

This completes the proof. �

Proof (of Proposition6) By Proposition4, (A + γI), (B + μI) ∈ �(H ) ⇐⇒ log
(A + γI), log(B + μI) ∈ HR . It follows that [log(A + γI) − log(B + μI)] ∈ HR,
so that || log(A + γI) − log(B + μI)||eHS is always finite.

Furthermore, by Proposition2, log
(
A
γ

+ I
)

, log
(
B
μ

+ I
)

∈ HS(H ) and by def-

inition of the extended Hilbert–Schmidt norm, when dim(H ) = ∞,

|| log(A + γI) − log(B + μI)||2eHS =
∥∥∥∥log

(
A

γ
+ I

)
− log

(
B

μ
+ I

)
+

(
log

γ

μ

)
I

∥∥∥∥
2

eHS

=
∥∥∥∥log

(
A

γ
+ I

)
− log

(
B

μ
+ I

)∥∥∥∥
2

HS
+

(
log

γ

μ

)2
.

This completes the proof. �
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