
Advances in Computer Vision and Pattern Recognition

Hà Quang Minh
Vittorio Murino Editors

Algorithmic
Advances in
Riemannian
Geometry and
Applications
For Machine Learning, Computer Vision,
Statistics, and Optimization

Advances in Computer Vision and Pattern
Recognition

Founding editor

Sameer Singh, Rail Vision, Castle Donington, UK

Series editor

Sing Bing Kang, Microsoft Research, Redmond, WA, USA

Advisory Board

Horst Bischof, Graz University of Technology, Austria
Richard Bowden, University of Surrey, Guildford, UK
Sven Dickinson, University of Toronto, ON, Canada
Jiaya Jia, The Chinese University of Hong Kong, Hong Kong
Kyoung Mu Lee, Seoul National University, South Korea
Yoichi Sato, The University of Tokyo, Japan
Bernt Schiele, Max Planck Institute for Computer Science, Saarbrücken, Germany
Stan Sclaroff, Boston University, MA, USA

More information about this series at http://www.springer.com/series/4205

http://www.springer.com/series/4205

Hà Quang Minh • Vittorio Murino
Editors

Algorithmic Advances
in Riemannian Geometry
and Applications
For Machine Learning, Computer Vision,
Statistics, and Optimization

123

Editors
Hà Quang Minh
Pattern Analysis and Computer Vision
Istituto Italiano di Tecnologia
Genoa
Italy

Vittorio Murino
Pattern Analysis and Computer Vision
Istituto Italiano di Tecnologia
Genoa
Italy

ISSN 2191-6586 ISSN 2191-6594 (electronic)
Advances in Computer Vision and Pattern Recognition
ISBN 978-3-319-45025-4 ISBN 978-3-319-45026-1 (eBook)
DOI 10.1007/978-3-319-45026-1

Library of Congress Control Number: 2016948260

© Springer International Publishing Switzerland 2016
This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part
of the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations,
recitation, broadcasting, reproduction on microfilms or in any other physical way, and transmission
or information storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar
methodology now known or hereafter developed.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this
publication does not imply, even in the absence of a specific statement, that such names are exempt from
the relevant protective laws and regulations and therefore free for general use.
The publisher, the authors and the editors are safe to assume that the advice and information in this
book are believed to be true and accurate at the date of publication. Neither the publisher nor the
authors or the editors give a warranty, express or implied, with respect to the material contained herein or
for any errors or omissions that may have been made.

Printed on acid-free paper

This Springer imprint is published by Springer Nature
The registered company is Springer International Publishing AG
The registered company address is: Gewerbestrasse 11, 6330 Cham, Switzerland

Preface

Overview and Goals

The theme of this volume is the application of the rich and powerful theories and
techniques of Riemannian geometry to the problems in machine learning, statistics,
optimization, computer vision, and related fields.

Traditional machine learning and data analysis methods often assume that the
input data can be represented by vectors in Euclidean space. While this assumption
has worked well for many applications, researchers have increasingly realized that
if the data is intrinsically non-Euclidean, ignoring this geometrical structure can
lead to suboptimal results.

In the existing literature, there are two common approaches for exploiting data
geometry when the data is assumed to lie on a Riemannian manifold.

In the first direction, often referred to as manifold learning, the data is assumed
to lie on an unknown Riemannian manifold and the structure of this manifold is
exploited through the training data, either labeled or unlabeled. Examples of
manifold learning techniques include manifold regularization via the graph
Laplacian, locally linear embedding, and isometric mapping.

In the second direction, which is gaining increasing importance and success, the
Riemannian manifold representing the input data is assumed to be known explicitly.
Some manifolds that have been widely used for data representation are the manifold
of symmetric, positive definite matrices, the Grassmannian manifold of subspaces
of a vector space, and the Kendall manifold of shapes. When the manifold is
known, the full power of the mathematical theory of Riemannian geometry can be
exploited in both the formulation of algorithms as well as their theoretical analysis.
Successful applications of this approach are numerous and range from brain
imaging, kernel learning, and low rank matrix completion, to computer vision tasks
such as object detection and tracking.

This volume focuses on the latter research direction. The forthcoming chapters
were written by researchers currently active in the fields. Overall, the book
describes some of the latest algorithmic advances using Riemannian geometry, both

v

theoretically and computationally, with potentially large impact on many research
areas in these fields.

The volume targets a broad audience, consisting of Ph.D. students and
researchers in machine learning, statistics, optimization, computer vision, and
related fields.

Acknowledgments

We wish to thank all the authors for contributing some of their latest works to the
volume. We also wish to thank Pierre-Antoine Absil, Gregory Chirikjian, Mark
Girolami, Pavan Turaga, Bart Vandereycken, and Baba Vemuri, for their help in
reviewing the manuscript. Finally, we wish to thank Simon Rees and the Springer
editing team for helping us bring this volume to fruition.

Genoa, Italy Hà Quang Minh
June 2016 Vittorio Murino

vi Preface

Contents

1 Bayesian Statistical Shape Analysis on the Manifold of
Diffeomorphisms . 1
Miaomiao Zhang and P. Thomas Fletcher

2 Sampling Constrained Probability Distributions Using Spherical
Augmentation . 25
Shiwei Lan and Babak Shahbaba

3 Geometric Optimization in Machine Learning 73
Suvrit Sra and Reshad Hosseini

4 Positive Definite Matrices: Data Representation and Applications
to Computer Vision . 93
Anoop Cherian and Suvrit Sra

5 From Covariance Matrices to Covariance Operators: Data
Representation from Finite to Infinite-Dimensional Settings 115
Hà Quang Minh and Vittorio Murino

6 Dictionary Learning on Grassmann Manifolds 145
Mehrtash Harandi, Richard Hartley, Mathieu Salzmann
and Jochen Trumpf

7 Regression on Lie Groups and Its Application to Affine Motion
Tracking. 173
Fatih Porikli

8 An Elastic Riemannian Framework for Shape Analysis of Curves
and Tree-Like Structures . 187
Adam Duncan, Zhengwu Zhang and Anuj Srivastava

Index . 207

vii

http://dx.doi.org/10.1007/978-3-319-45026-1_1
http://dx.doi.org/10.1007/978-3-319-45026-1_1
http://dx.doi.org/10.1007/978-3-319-45026-1_1
http://dx.doi.org/10.1007/978-3-319-45026-1_2
http://dx.doi.org/10.1007/978-3-319-45026-1_2
http://dx.doi.org/10.1007/978-3-319-45026-1_2
http://dx.doi.org/10.1007/978-3-319-45026-1_3
http://dx.doi.org/10.1007/978-3-319-45026-1_3
http://dx.doi.org/10.1007/978-3-319-45026-1_4
http://dx.doi.org/10.1007/978-3-319-45026-1_4
http://dx.doi.org/10.1007/978-3-319-45026-1_4
http://dx.doi.org/10.1007/978-3-319-45026-1_5
http://dx.doi.org/10.1007/978-3-319-45026-1_5
http://dx.doi.org/10.1007/978-3-319-45026-1_5
http://dx.doi.org/10.1007/978-3-319-45026-1_6
http://dx.doi.org/10.1007/978-3-319-45026-1_6
http://dx.doi.org/10.1007/978-3-319-45026-1_7
http://dx.doi.org/10.1007/978-3-319-45026-1_7
http://dx.doi.org/10.1007/978-3-319-45026-1_7
http://dx.doi.org/10.1007/978-3-319-45026-1_8
http://dx.doi.org/10.1007/978-3-319-45026-1_8
http://dx.doi.org/10.1007/978-3-319-45026-1_8

Contributors

Anoop Cherian ARC Centre of Excellence for Robotic Vision, Australian
National University, Canberra, Australia

Adam Duncan Department of Statistics, Florida State University, Tallahassee, FL,
USA

P. Thomas Fletcher University of Utah, Salt Lake City, UT, USA

Mehrtash Harandi College of Engineering and Computer Science, Australian
National University, Canberra, ACT, Australia

Richard Hartley College of Engineering and Computer Science, Australian
National University, Canberra, ACT, Australia

Reshad Hosseini School of ECE, College of Engineering, University of Tehran,
Tehran, Iran

Shiwei Lan Department of Statistics, University of Warwick, Coventry, UK

Hà Quang Minh Pattern Analysis and Computer Vision (PAVIS), Istituto Italiano
di Tecnologia (IIT), Genoa, Italy

Vittorio Murino Pattern Analysis and Computer Vision (PAVIS), Istituto Italiano
di Tecnologia (IIT), Genoa, Italy

Fatih Porikli Australian National Univeristy, Canberra, Australia; Data61/CSIRO,
Eveleigh, Australia

Mathieu Salzmann CVLab, EPFL, Lausanne, Switzerland

Babak Shahbaba Department of Statistics and Department of Computer Science,
University of California, Irvine, CA, USA

Suvrit Sra Laboratory for Information & Decision Systems (LIDS),
Massachusetts Institute of Technology, Cambridge, MA, USA

ix

Anuj Srivastava Department of Statistics, Florida State University, Tallahassee,
FL, USA

Jochen Trumpf College of Engineering and Computer Science, Australian
National University, Canberra, ACT, Australia

Miaomiao Zhang Massachusetts Institute of Technology, Cambridge, MA, USA

Zhengwu Zhang SAMSI, Research Triangle Park, Durham, NC, USA

x Contributors

Introduction

Themes of the Volume

The aim of this book is to present some of the most recent algorithmic advances in
Riemannian geometry in the context of machine learning, statistics, optimization,
computer vision, and related fields. The unifying theme of the different chapters in
the book is the exploitation of the geometry of data using the mathematical
machinery of Riemannian geometry. As demonstrated by all the subsequent
chapters, when the data is intrinsically non-Euclidean, the utilization of this geo-
metrical information can lead to better algorithms that can capture more accurately
the structures inherent in the data, leading ultimately to better empirical
performance.

This book is not intended to be an encyclopedic compilation of the applications
of Riemannian geometry. Instead, it focuses on several important research direc-
tions that are currently actively pursued by researchers in the field. These include
statistical modeling and analysis on manifolds, optimization on manifolds,
Riemannian manifolds and kernel methods, and dictionary learning and sparse
coding on manifolds. We now describe these topics in more detail, noting that a
particular chapter in the book may cover more than one of them.

1. Statistical modeling and analysis on manifolds. This research direction seeks
to develop theories and techniques for statistical modeling and analysis on
Riemannian manifolds by utilizing the intrinsic geometry of the underlying
manifolds. This theme is covered by several chapters in the book. First, it is
considered in the chapter by Lan and Shahbaba, which develops Hamiltonian
Monte Carlo on the sphere, using spherical geometry, for sampling constrained
probability distributions. Second, it is covered in the chapter by Zhang and
Fletcher, which develops Bayesian models for shape analysis, with shape
variability being represented as random variables on the manifold of diffeo-
morphic transformations. Statistical shape analysis is also the theme of the
chapter by Duncan et al., which presents a Riemannian framework for curves in
Euclidean and Hilbert spaces and for tree-like structures. Finally, the chapter by

xi

Porikli treats regression on the matrix Lie group of affine transformations, with
applications in computer vision.

2. Optimization on manifolds. This research direction is concerned with the
generalization of the theories and algorithms for optimization in Euclidean space
to the manifold setting. This is the theme of the chapter by Sra and Hosseini,
which deals with optimization on the manifold of symmetric, positive definite
(SPD) matrices by exploiting its geometric structure. From an application per-
spective, this theme is considered in the chapter by Cherian and Sra for the
problem of Riemannian Dictionary Learning and Sparse Coding.

3. Riemannian manifolds and kernel methods. Kernel methods are among the
most powerful paradigms in machine learning and its applications. However,
most of the kernels employed in the literature are defined on Euclidean space
and applying them directly to data that lies on a nonlinear manifold generally
leads to suboptimal results. In order to capture the manifold structure in the data,
it is necessary to define kernels on the manifold itself, using a notion of distance
that captures its intrinsic geometry. This theme is pursued in the chapter by
Harandi et al, which considers kernels defined on Grassmann manifolds, and the
chapter by Minh and Murino, which discusses kernels defined on the manifold
of SPD matrices. Moreover, the interplay between kernels and Riemannian
manifolds can also go in the direction of kernels giving rise to manifolds. In the
chapter by Minh and Murino, it is shown how a positive definite kernel gives
rise to covariance operators, which lie on the infinite-dimensional manifold of
positive definite operators, on which another kernel can be defined, leading to a
two-layer kernel machine.

4. Dictionary learning and sparse coding on manifolds. This research direction
seeks to generalize the algorithms for dictionary learning and sparse coding on
Euclidean space to the Riemannian manifold setting by utilizing the intrinsic
geometry of the underlying manifold. This is the theme of the chapter by
Cherian and Sra, which considers dictionary learning and sparse coding on the
manifold of SPD matrices, and the chapter by Harandi et al, which considers this
problem on the Grassmann manifolds.

Organization of the Volume

We now give a summary of the chapters in the book, in order of appearance.
The chapter by Zhang and Fletcher is titled Bayesian Statistical Shape Analysis

on the Manifold of Diffeomorphisms. In this chapter, the authors present two
recently introduced Bayesian models for the statistical analysis of anatomical
shapes through diffeomorphic transformations on the image domain. The first
model, namely Bayesian diffeomorphic atlas building, is a probabilistic formulation
for computing an atlas, or template image, that is most representative of a set of
input images. In this model, the distance between images is measured via an energy

xii Introduction

function, whose regularization term is defined using a Riemannian metric on the
manifold of diffeomorphisms. The model parameters are estimated via Monte Carlo
expectation maximization (EM) algorithm, with the E step carried out via
Hamiltonian Monte Carlo sampling on the manifold of diffeomorphisms. The
mathematical formulation is accompanied by numerical examples involving atlas
building for 3D images. The second model, namely Bayesian principal geodesic
analysis (BPGA), generalizes the Bayesian formulation of principal component
analysis (PCA) to the manifold of diffeomorphisms. Using experimental results on
the task of reconstructing 3D brain MRI, the authors demonstrate that BPGA results
in a much more compact representation compared with both linear PCA and tangent
PCA.

The chapter by Lan and Shahbaba is titled Sampling Constrained Probability
Distributions using Spherical Augmentation. In this chapter, the authors present
their recently introduced approach, namely spherical augmentation, for sampling
from constrained probability distributions. In this approach, the constrained
domain, defined by norm or functional constraints, is mapped to a sphere in an
augmented space. Sampling algorithms then generate new proposals on the sphere,
using the spherical metric, which satisfy the required constraints when mapped back
to the original space. The authors use this approach to obtain several novel Monte
Carlo sampling algorithms, namely spherical Hamiltonian Monte Carlo and
spherical Lagrangian Monte Carlo. The mathematical formulation is accompanied
by many numerical examples, including Bayesian Lasso, Bayesian bridge regres-
sion, and latent Dirichlet allocation (LDA) for topic modeling, tested in particular
on the Wikipedia corpus, among others.

The chapter by Sra and Hosseini is titled Geometric Optimization in Machine
Learning. In this chapter, the authors report some of the most recent algorithmic
developments in solving optimization problems on the manifold of positive definite
matrices. Two key mathematical concepts involved are geodesic convexity, which is
the generalization of Euclidean convexity to the Riemannian manifold setting, and
Thompson nonexpansivity, for a class of nonconvex functions that are not neces-
sarily geodesically convex. Together, these concepts enable the global optimization
of many functions that are nonconvex in the Euclidean sense. In particular, the
authors exploit geodesic convexity in the problem of fitting Gaussian mixture
models (GMMs), leading to an algorithm with substantial improvement in perfor-
mance compared to the classical expectation minimization (EM) algorithm.

The chapter by Cherian and Sra is titled Positive Definite Matrices: Data
Representation and Applications to Computer Vision. In this chapter, the authors
consider positive definite matrices in the form of covariance descriptors, a powerful
data representation paradigm in computer vision. In particular, the authors present
their recent approach on Riemannian dictionary learning and sparse coding on the
manifold of positive definite matrices, using the affine-invariant Riemannian metric
and the Riemannian conjugate gradient algorithm. Using experimental results
involving face recognition, person re-identification, and 3D object recognition, the
authors demonstrate that the Riemannian approach performs substantially better
than its Euclidean counterpart.

Introduction xiii

The chapter by Minh and Murino is titled From Covariance Matrices to
Covariance Operators: Data Representation from Finite to Infinite-Dimensional
Settings. In this chapter, the authors report on the recent generalization of the
covariance matrix representation for images to the infinite-dimensional setting,
using covariance operators in reproducing kernel Hilbert spaces (RKHS). In par-
ticular, the authors describe the generalizations of the affine-invariant Riemannian
and Log-Euclidean distances between positive definite matrices to the
infinite-dimensional manifold of positive definite operators. In the case of RKHS
covariance operators, these distances admit closed form expressions via the Gram
matrices corresponding to the reproducing kernels. The mathematical formulation is
accompanied by numerical examples in image classification, demonstrating that the
infinite-dimensional framework substantially outperforms its finite-dimensional
counterpart.

The chapter by Porikli is titled Regression on Lie Groups and Its Application to
Affine Motion Tracking. In this chapter, the author treats regression on matrix Lie
groups, which are used in most of the transformations in computer vision, such as
affine motions and rotations. The proposed formulation goes beyond the typical
Euclidean approximation in the literature by providing a solution consistent with
the underlying topology. The mathematical formulation is accompanied by
numerical examples in a fundamental computer vision task, namely affine motion
tracking.

The chapter by Harandi, Hartley, Salzmann, and Trumpf, is titled Dictionary
Learning on Grassmann Manifolds. In this chapter, the authors present their recent
work on dictionary learning and sparse coding on the Grassmann manifolds of
subspaces of Euclidean space. In particular, the authors propose to embed
Grassmann manifolds into reproducing kernel Hilbert spaces (RKHS) by defining a
family of positive definite kernels on these manifolds. Thus, the problems of dic-
tionary learning and sparse coding on the Grassmann manifolds are transformed
into the corresponding ones in kernel spaces, which can be solved efficiently. The
mathematical formulation is accompanied by numerical examples in action
recognition in videos.

The chapter by Duncan, Zhang, and Srivastava is titled An Elastic Riemannian
Framework for Shape Analysis of Curves and Tree-like Structures. In this chapter,
the authors present a Riemannian framework for shape analysis that is invariant
under the action of re-parametrization for three different types of objects. The
chapter begins with the elastic Riemannian metric framework for shape analysis of
Euclidean curves using square-root velocity functions. This framework is then
extended to trajectories in Hilbert spaces and tree-like structures, which are treated
as composite trajectories in Hilbert spaces. The mathematical formulation is
accompanied by numerical examples involving planar shapes and neuron mor-
phology, using digital 3D neuronal reconstructions.

Hà Quang Minh
Vittorio Murino

xiv Introduction

Chapter 1
Bayesian Statistical Shape Analysis
on the Manifold of Diffeomorphisms

Miaomiao Zhang and P. Thomas Fletcher

Abstract In this chapter, we present Bayesian models for diffeomorphic shape
variability in populations of images. The first model is a probabilistic formulation of
the image atlas construction problem, which seeks to compute an atlas image most
representative of a set of input images. The second model adds diffeomorphic modes
of shape variation, or principal geodesics. Both of these models represent shape
variability as random variables on the manifold of diffeomorphic transformations.
We define a Gaussian prior distribution for diffeomorphic transformations using the
inner product in the tangent space to the diffeomorphism group. We develop a Monte
Carlo Expectation Maximization (MCEM) algorithm for the Bayesian inference, due
to the lack of closed-form solutions, where the expectation step is approximated via
Hamiltonian Monte Carlo (HMC) sampling of diffeomorphisms. The resulting infer-
ence produces estimates of the image atlas, principal geodesic modes of variation,
and model parameters. We show that the advantage of the Bayesian formulation is
that it provides a principled way to estimate both the regularization parameter of the
diffeomorphic transformations and the intrinsic dimensionality of the input data.

1.1 Introduction

The key philosophy in computational anatomy is to quantify anatomical shapes in
images through diffeomorphic transformations of the image domain. These diffeo-
morphic transformations are smooth, bijective mappings with smooth inverses, which
guarantee topological consistency between images, e.g., no folding or tearing. An
elegant mathematical formulation for estimating diffeomorphism transformations
between images is Large Deformation Diffeomorphic Metric Mapping (LDDMM),

M. Zhang (B)
Massachusetts Institute of Technology, Cambridge, MA, USA
e-mail: miao86@mit.edu

P.T. Fletcher
University of Utah, Salt Lake City, UT, USA
e-mail: fletcher@sci.utah.edu

© Springer International Publishing Switzerland 2016
H.Q. Minh and V. Murino (eds.), Algorithmic Advances in Riemannian
Geometry and Applications, Advances in Computer Vision
and Pattern Recognition, DOI 10.1007/978-3-319-45026-1_1

1

2 M. Zhang and P.T. Fletcher

proposed by Beg et al. [6]. In this setting, the space of diffeomorphisms of an image
domain forms an infinite-dimensional Lie group equipped with a right-invariant
Riemannian metric. This gives rise to a variational principle that expresses the opti-
mal registration between two images as a geodesic flow.

Computing a representative image for a population, or atlas, is an important first
step in shape analysis, with the goal of finding a common coordinate system for
comparisons across individuals. Principal modes of variation, represented in the
tangent space of the diffeomorphism group, provide second-order statistics of shape
variability. Many diffeomorphic shape models of images are set up as optimization
problems, rather than as statistical inference problems. These approaches (1) perform
poorly in the presence of noises or outliers, (2) have free parameters that are difficult
and time consuming to select, even for experienced users, and (3) do not provide
probabilistic conclusions about the data. To address these problems, this chapter
presents a Bayesian framework of statistical shape analysis including diffeomorphic
atlas building and principal geodesic analysis of diffeomorphisms.

Previous methods often formulate diffeomorphic atlas building as a maximum a
posterior (MAP) optimization problem [15, 16, 29] with an image matching like-
lihood of the atlas and each input image, as well as a prior arising from a metric
on an infinite-dimensional manifold of diffeomorphisms that encourages smooth
deformations. The regularity of smoothness is typically controlled by parameters
describing the metric on the tangent space of the diffeomorphism group. However,
Allassonniére et al. [1] pointed out that the common mode approximation scheme per-
forms poorly under image noise, even for a simple 1D template estimation problem
where the transformations are discrete shifts. Besides this, the regularity parameters
were specified in an ad hoc manner rather than being estimated directly from data, due
to the fact that the log posterior of the metric parameters does not have a closed form
and is computationally problematic to solve using direct optimization. To overcome
these disadvantages, several works [14, 20, 21, 28] have then developed Bayesian
formulations of the atlas estimation problem in a small deformation setting. They
estimated the atlas by marginalizing over the posterior distribution of image trans-
formations using a Monte Carlo sampling procedure. Furthermore inference of the
level of regularization in nonrigid registration by a Bayesian model were developed
in [3, 23, 24].

Image atlas is a mean point estimation and it does not encode the group shape vari-
ability. Extracting an efficient low-dimensional, second-order statistics from high-
dimensional diffeomorphisms is critical to improve the power and interpretability
of further statical analysis. A standard way to analyze manifold data variability is
principal geodesic analysis (PGA) [11, 12], which generalizes principal component
analysis (PCA) in Euclidean space to nonlinear manifolds. PGA estimates lower
dimensional geodesic subspaces by minimizing the sum-of-squared geodesic dis-
tance to the data. Based on this work, exact solutions to PGA were developed in
[22, 26]. To give a probabilistic interpretation of these geodesic analysis, Zhang and
Fletcher [33] developed a latent variable model for PGA that provides a probabilistic
framework for factor analysis on finite-dimensional manifolds called PPGA. Pre-
vious methods [13, 19, 27] performed the dimensionality reduction after the fact,

1 Bayesian Statistical Shape Analysis on the Manifold of Diffeomorphisms 3

i.e., as a PCA of diffeomorphisms in the tangent space as a second stage after the
estimation step. All these models have two major disadvantages. First, they do not
explicitly optimize the fit of the principal modes to the data intrinsically in the space
of diffeomorphisms, which results in a suboptimal fit to the data. Second, the number
of dimensions to use is selected manually rather than inferred directly from the data.
A related Bayesian model of PCA (BPCA) [7] for Euclidean data was proposed
to automatically learn the dimension of the latent space from data by including a
sparsity-inducing prior on each component of the factor matrix. This linear factor
analysis model, however, is not applicable to nonlinear diffeomorphic transforma-
tions. The main difficulty of generalizing the model definition of BPCA to generic
manifolds is the lack of an explicit formulation for the normalizing constant of dis-
tributions on manifolds.

The following sections present an integrated framework for two recently intro-
duced statistical shape models, Bayesian diffeomorphic atlas building [36] and
Bayesian principal geodesic analysis (BPGA) of diffeomorphisms [34, 35]. We
first introduce a posterior distribution of diffeomorphisms, followed by methods for
MCMC sampling of diffeomorphisms, as well as parameter estimation via marginal-
ization of the diffeomorphic transformations. There has been some work on stochastic
flows of diffeomorphisms [8], which are Brownian motions, i.e., small perturbations
integrated along a time-dependent flow. A similar idea of using Gaussian Process
prior on the stochastic velocity field to generate random transformations is developed
in [31]. This chapter focuses on a different prior distribution on the tangent space
of initial velocity fields rather than on the entire time-dependent flow, which leads
to random geodesics in the space of diffeomorphisms. Other prior distributions can
also be adapted to this Bayesian framework such as control points parameterization
of diffeomorphisms [2]. We next describe the BPGA model, which treats the dimen-
sionality reduction step as a probabilistic inference problem on discrete images, and
an inference procedure that jointly estimates the image atlas and principal geodesic
modes of variation. This model goes beyond the PPGA algorithm by introducing
automatic dimensionality reduction and extending from finite-dimensional mani-
folds to the infinite-dimensional case of diffeomorphic image registration.

1.2 Mathematical Background

In this section, we briefly review the basic concepts of diffeomorphisms and their
applications in image analysis.

1.2.1 Space of Diffeomorphisms

Consider a d-dimensional torus Ω = R
d/Zd as the domain in which we define

images. A diffeomorphism is a bijective smooth invertible mapping φ : Ω → Ω

4 M. Zhang and P.T. Fletcher

Fig. 1.1 Space of
diffeomorphisms

with its smooth inverse φ−1. We denote by Diff(Ω) the space of diffeomorphisms
whose derivatives of all orders exist and are square-integrable. This space forms an
infinite-dimensional Lie group. The Lie algebra of Diff(Ω) is the tangent space at
the identity transform, V = TidDiff(Ω), and consists of all vector fields equipped
with the Lie bracket operation. Most of the computations w.r.t. the diffeomorphism
group are done in the space of the Lie algebra because it is a linear vector space.

Given a flow of time-varying velocity field, vt : [0, 1] → V , we generate a flow
of diffeomorphisms, t �→ φt ∈ Diff(Ω) (see Fig. 1.1), as a solution to the ordinary
differential equation,

dφt

dt
(x) = vt ◦ φt(x). (1.1)

Note that we use subscripts for the time variable, i.e., vt(x) = v(t, x), and φt(x) =
φ(t, x).

1.2.2 Metrics on Diffeomorphisms

A distance metric provides a way to measure the difference between diffeomor-
phisms, which forms the mathematical foundation for statistical analysis of diffeo-
morphisms such as the Fréchet mean, variability quantification, and regression. We
first define an inner product on the tangent space of diffeomorphisms at identity,
V = TeDiff(Ω), where e ∈ Diff(Ω) is the identity transformation. This inner prod-
uct is of the form

〈v,w〉V =
∫

Ω

(Lv(x),w(x))dx,

for v,w ∈ V , and a symmetric, positive-definite differential operator L : V → V∗,
mapping to the dual space, V∗. The dual to the vector v is a momentum, m ∈ V∗,
such that m = Lv or v = Km, where K is the inverse of L. In this chapter, we use

1 Bayesian Statistical Shape Analysis on the Manifold of Diffeomorphisms 5

Fig. 1.2 Metrics on
diffeomorphisms

L = −αΔ + β, where Δ is the discrete Laplacian, and α and β are positive numbers.
A major advantage of using Laplacian is that it is a diagonal matrix in the Fourier
space, thus makes the inverse of L much easier to compute.

Next we define a right-invariant metric as an inner product at any other point
φ ∈ Diff(Ω), by pulling back the velocities at φ to the identity by right composition.
For v,w ∈ TφDiff(Ω), the right-invariant metric is given by

〈v,w〉TφDiff(Ω) = 〈v ◦ φ−1,w ◦ φ−1〉V .

A geodesic curve {φt} ∈ Diff(Ω), illustrated in Fig. 1.2, is a flow of diffeomor-
phisms that minimizes the energy

E(φt) =
∫ 1

0

∥∥∥∥dφt

dt
◦ φ−1

t

∥∥∥∥
2

V

dt,

and it is characterized by the Euler–Poincaré equations (EPDiff) [5, 17],

∂v

∂t
= −K

[
(Dv)Tm + Dm v + m div v

]
, (1.2)

where D denotes the Jacobian matrix and div is the divergence operator.
Given an initial velocity, v0 ∈ V , at t = 0, the EPDiff equation (1.2) can be inte-

grated forward in time, resulting in a time-varying velocity vt : [0, 1] → V , which
itself is subsequently integrated in time by the rule (1.1) to arrive at the geodesic
path, φt ∈ Diff(Ω). This process is known as geodesic shooting.

1.2.3 Diffeomorphic Atlas Building with LDDMM

Before introducing the diffeomorphic atlas building problem in the setting of
LDDMM [6] with geodesic shooting [25, 30, 32], we first review a distance metric

6 M. Zhang and P.T. Fletcher

between pairwise images. Consider images I0, I1 ∈ L2(Ω,R) as square-integrable
functions defined on a domain Ω , we compute the diffeomorphic matching from a
source image I0 and a target image I1 by minimizing an energy function of sum-of-
squared distance function plus regularization term as

E(v0, I0, I1) = 1

2σ 2
‖I0 ◦ φ−1

1 − I1‖2
L2 + 1

2
‖v0‖2

V , (1.3)

where σ 2 represents image noise variance.
When the energy above is minimized over all initial velocities, it yields a squared

distance metric between the two input images, i.e.,

d(I0, I1)
2 = min

v0∈V
E(v0, I0, I1).

Using this distance metric between images, we find the Fréchet mean of a group of
images J1, . . . , JN ∈ L2(Ω,R) and the initial velocities {vk0 ∈ L2([0, 1],V)}k=1...N

that minimize the distances function, i.e.,

arg min
I,vk0

1

N

N∑
k=1

d(I, Jk)2. (1.4)

Putting (1.3) and (1.4) together, we have

E(vk0, I) =
N∑

k=1

1

2σ 2

∥∥I ◦ (φk
1)

−1 − Jk
∥∥2

L2 + 1

2
‖vk0‖2

V , (1.5)

where the deformation φk
1 is defined in (1.1) as the integral flow of vk0 with φk

0 = Id.
Because the distance function between images is itself a minimization problem, the
atlas estimation is typically done by alternating between the minimization to find the
optimal vk0 and the update of the atlas, I . Note that for notation simplicity, we denote
vk0 as vk and φk

1 as φk in the following sections.

1.3 A Bayesian Model for Atlas Building

For a continuous domain Ω ⊂ R
n, direct interpretation of (1.3) as a negative log

posterior is problematic, as the image match term would be akin to isotropic Gaussian
noise in the infinite-dimensional Hilbert space L2(Ω,R). This is not a well-defined
probability distribution as it has an infinite measure. More appropriately, we can
instead consider our input images, Jk , and our atlas image, I , to be measured on
a discretized grid, Ω ⊂ Z

n. That is, images are elements of the finite-dimensional
Euclidean space l2(Ω,R). We will also consider velocity fields vk and the resulting

1 Bayesian Statistical Shape Analysis on the Manifold of Diffeomorphisms 7

diffeomorphisms φk to be defined on the discrete grid, Ω . Now our noise model is
i.i.d. Gaussian noise at each image voxel, with the likelihood given by

p(Jk | vk, I) = 1

(2π)M/2σM
exp

(
−‖I ◦ (φk)−1 − Jk‖2

2σ 2

)
, (1.6)

where M is the number of voxels, and the norm inside the exponent is the Euclidean
norm of l2(Ω,R).

The negative log prior on the vk is a discretized version of the squared Hilbert
space norm above. Now consider L to be a discrete, self-adjoint, positive-definite
differential operator on the domain Ω . The prior on each vk is given by a multivariate
Gaussian,

p(vk) = 1

(2π)
M
2 |L−1| 1

2

exp

(
− (Lvk, vk)

2

)
, (1.7)

where |L| is the determinant of L. In the sequel, we could put noninformative priors
on θ = (α, σ 2, I) and jointly marginalize them out with vk . Instead, we simply treat θ
to be parameters that we wish to estimate. We fix β to a small number to ensure that
the L operator is nonsingular. Putting together the likelihood (1.6) and prior (1.7),
we arrive at the log joint posterior for the diffeomorphisms, via initial velocities, vk ,
as

log
N∏

k=1

p
(
vk | Jk; θ

) = N

2
log |L| − 1

2

N∑
k=1

(Lvk, vk) − MN

2
log σ

− 1

2σ 2

N∑
k=1

‖I ◦ (φk)−1 − Jk‖2 + const. (1.8)

1.4 Estimation of Model Parameters

We now present an algorithm for estimating the parameters, θ , of the probabilistic
image atlas model specified in the previous section. These parameters include the
image atlas, I , the smoothness level, or metric parameter, α, and the variance of the
image noise, σ 2. We treat the vk , i.e., the initial velocities of the image diffeomor-
phisms, as latent random variables with log posterior given by (1.8). This requires
integration over the latent variables, which is intractable in closed form. We thus
develop a Hamiltonian Monte Carlo procedure for sampling vk from the posterior
and use this in a Monte Carlo Expectation Maximization algorithm to estimate θ . It
consists of two main steps:

1. E-step

We draw a sample of size S from the posterior distribution (1.8) using HMC with the
current estimate of the parameters, θ(i). Let vkj, j = 1, . . . , S, denote the jth point in

8 M. Zhang and P.T. Fletcher

this sample for the kth velocity field. The sample mean is taken to approximate the
Q function,

Q(θ | θ(i)) = Evk |Jk;θ(i)

[
N∑

k=1

log p
(
vk | Jk; θ

)]

≈ 1

S

S∑
j=1

N∑
k=1

log p
(
vkj | Jk; θ

)
. (1.9)

2. M-step

Update the parameters by maximizing Q(θ | θ(i)). The maximization is closed form
in I and σ 2, and a one-dimensional gradient ascent in α.

Image Matching Gradient

In our HMC sampling procedure, we will need to compute gradients, with respect to
initial momenta, of the diffeomorphic image matching problem in (1.3), for matching
the atlas I to an input image Jk .

Following the optimal control theory approach in [30], we add Lagrange multi-
pliers to constrain the diffeomorphism φk(t) to be a geodesic path. This is done by
introducing time-dependent adjoint variables, m̂, Î and v̂, and writing the augmented
energy,

Ẽ(m0) =E(Km0, I, J
k)+∫ 1

0
〈m̂, ṁ + ad∗

vm〉dt +
∫ 1

0
〈Î, İ + ∇I · v〉dt +

∫ 1

0
〈v̂,m − Lv〉dt,

where E is the diffeomorphic image matching energy from (1.3), and the other terms
correspond to Lagrange multipliers enforcing: (a) the geodesic constraint, which
comes from the EPDiff equation (1.2), (b) the image transport equation, İ = −∇I · v,
and c) the constraint that m = Lv, respectively.

The optimality conditions for m, I, v are given by the following time-dependent
system of ODEs, termed the adjoint equations:

− ˙̂m + advm̂ + v̂ = 0, −˙̂I − ∇ · (Îv) = 0, −ad∗
m̂m + Î∇I − Lv̂ = 0,

1 Bayesian Statistical Shape Analysis on the Manifold of Diffeomorphisms 9

subject to initial conditions

m̂(1) = 0, Î(1) = 1

σ 2
(I(1) − Jk).

Finally, after integrating these adjoint equations backwards in time to t = 0, the
gradient of Ẽ with respect to the initial momenta is

∇m0 Ẽ = Km0 − m̂0. (1.10)

1.4.1 Hamiltonian Monte Carlo (HMC) Sampling

Hamiltonian Monte Carlo [9] is a powerful MCMC sampling methodology that
is applicable to a wide array of continuous probability distributions. It utilizes
Hamiltonian dynamics as a Markov transition probability and efficiently explores
the space of a target distribution. The integration through state space results in more
efficient, global moves, while it also uses gradient information of the log probabil-
ity density to sample from higher probability regions. In this section, we derive a
HMC sampling method to draw a random sample from the posterior distribution
of our latent variables, vk , the initial velocities defining the diffeomorphic image
transformations from the atlas to the data.

To sample from a pdf f (x) using HMC, one first sets up a Hamiltonian H(x, μ) =
U(x) + V(μ), consisting of a “potential energy,” U(x) = − log f (x), and a “kinetic
energy”, V(μ) = − log g(μ). Here g(μ) is some proposal distribution (typically
isotropic Gaussian) on an auxiliary momentum variable, μ. An initial random
momentum μ is drawn from the density g(μ). Starting from the current point x
and initial random momentum μ, the Hamiltonian system is integrated forward in
time to produce a candidate point, x̃, along with the corresponding forward-integrated
momentum, μ̃. The candidate point x̃ is accepted as a new point in the sample with
probability

P(accept) = min(1, exp(−U(x̃) − V(μ̃) + U(x) + V(μ)).

This acceptance–rejection method is guaranteed to converge to the desired density
f (x) under fairly general regularity assumptions on f and g.

In our model, to sample vk from the posterior in (1.8), we equivalently sample
mk from the dual momenta, using vk = Kmk , so we define our potential energy as
U(mk) = − log p(mk|Jk; θ). We use the prior distribution on the dual momenta as
our proposal density, in other words, we use p(Kμ) defined as in (1.7), taking care
to include the appropriate change-of-variables. As shown in [18], the form of the
kinetic energy can be chosen to enforce certain conditions in the sampling. In our
work, we define V(μ) = (μ,Kμ), which helps to enforce that the velocity samples
be smooth vector fields via application of the low-pass filter K . This gives us the

10 M. Zhang and P.T. Fletcher

following Hamiltonian system to integrate in the HMC:

dmk

dt
= ∂H

∂μ
= Kμ,

dμ

dt
= − ∂H

∂mk
= −∇mk Ẽ,

where the last term comes from the gradient defined in (1.10). As is standard prac-
tice in HMC, we use a “leap-frog” integration scheme, which better conserves the
Hamiltonian and results in high acceptance rates.

1.4.2 The Maximization Step

We now derive the M-step for updating the parameters θ = (α, σ 2, I) by maximizing
the HMC approximation of the Q function, which is given in (1.9). This turns out
to be a closed-form update for the noise variance σ 2 and the atlas I , and a simple
one-dimensional gradient ascent for α.

From (1.9), it is easy to derive the closed-form update for σ 2 as

σ 2 = 1

MNS

S∑
j=1

N∑
k=1

‖I ◦ (φkj)−1 − Jk‖2. (1.11)

For updating the atlas image I , we set the derivative of the Q function approxima-
tion which with respect to I to zero. The solution for I gives a closed-form update,

I =
∑S

j=1

∑N
k=1 J

k ◦ φkj|Dφkj|∑S
j=1

∑N
k=1 |Dφkj| .

The gradient ascent over α requires that we take the derivative of the metric
L = −αΔ + βI , with respect to α. We do this in the Fourier domain, where the
discrete Laplacian is a diagonal operator. For a 3D grid, the coefficients Axyz of the
discrete Laplacian at coordinate (x, y, z) in the Fourier domain is

Axyz = −2

(
cos

2πx

W − 1
+ cos

2πy

H − 1
+ cos

2πz

D − 1

)
+ 6,

where W ,H,D are the dimension of each direction. Hence, the determinant of the
operator L is

|L| =
∏
x,y,z

Axyzα + β.

1 Bayesian Statistical Shape Analysis on the Manifold of Diffeomorphisms 11

The gradient of the HMC approximated Q function, with respect to α, is

∇αQ(θ | θ(i)) ≈ 1

2

S∑
j=1

N∑
k=1

[∑
x,y,z

Axyz

Axyzα + β
− 〈−Δvkj, vkj

〉]
.

1.5 Bayesian Principal Geodesic Analysis

Before introducing our BPGA model for diffeomorphisms, we first review BPCA
[7] for Euclidean data. The main idea of BPCA is to formulate a generative latent
variable model for PCA that automatically selects the appropriate dimensionality
of the model. Note that since our main goal is to quantify the data variability in
this section, we fix the regularity parameter α estimated as described in Sect. 1.3.
Consider a set y of n-dimensional Euclidean random variables {yj}j=1,...,N ∈ R

n, the
relationship between each variable yj and its corresponding q-dimensional (q < n)
latent variable xj is

yj = μ + Bxj + ε, (1.12)

where μ is the mean of dataset {yj}, xj is conventionally defined as a random variable
generated from N(0, I), B is an n × q factor matrix that relates xj and yj, and ε ∼
N(0, σ 2I) represents error. This definition gives a data likelihood as

p(y | x;B, μ, σ 2) ∝
N∏
j=1

exp

(
−

∥∥yj − μ − Bxj
∥∥2

2σ 2

)
.

To automatically select the principal components from data, BPCA includes a
Gaussian prior over each column of B, which is known as an automatic relevance
determination (ARD) prior. Each such Gaussian has an independent variance asso-
ciated with a precision hyperparameter γi, so that

p(B | γ) =
q∏

i=1

(γi

2π

)n/2
exp

(
−1

2
γiB

T
i Bi

)
,

where Bi denotes the ith column of B.
The inference of BPCA is an EM algorithm that iteratively estimates the model

parameters. At each iteration the value of γi is approximated by γi = n
‖Bi‖2 , using the

current estimate ofBi. This induces sparsity by driving the corresponding component
Bi to zero. More specifically, if γi is large, Bi will be effectively removed in the latent
space. This arises naturally because the larger γi is, the lower the probability of
Bi will be. Notice that the columns of B define the principal subspace of standard
PCA, therefore, inducing sparsity on B has the same effect as removing irrelevant
dimensions in the principal subspace.

12 M. Zhang and P.T. Fletcher

1.5.1 Probability Model

We formulate the random initial velocity for the kth individual as vk = Wxk , where
W is a matrix with q columns of principal initial velocities, and xk ∈ R

q is a latent
variable that lies in a low-dimensional space, with

p(xk |W) ∝ exp

(
−1

2

∥∥Wxk
∥∥2

V

)
. (1.13)

Compared to BPCA, the difference of this latent variable prior is incorporating W
as a conditional probability, which guarantees smoothness of the geodesic shooting
path.

Our noise model is based on the assumption of i.i.d. Gaussian at each image voxel,
much like [16, 19, 36]. This can be varied under different conditions, for instance,
spatially dependent model for highly correlated noise data. In this chapter, we will
focus on the commonly used and simple Gaussian noise model, with the likelihood
given by

p(Jk | I, σ 2, xk) = 1

(2π)M/2σM
exp

(
−

∥∥I ◦ (φk)−1 − Jk
∥∥2
L2

2σ 2

)
. (1.14)

The prior onW is a sparsity prior that suppresses the small principal initial velocity
to zero. This prior is analogous to the hierarchical sparsity prior proposed by [10],
with the difference that we use the natural Hilbert space norm for the velocity. The
prior is based on Laplacian distribution, a widely used and exploited way to achieve
sparse estimation. It presses the irrelevant or redundant components exactly to zero.
As first introduced by [4], the Laplace distribution is equivalent to the marginal
distribution of a hierarchical-Bayes model: a Gaussian prior with zero mean and
exponentially distributed variances. Let i denote the ith principal component of W .
We define each component Wi as a random variable with the hierarchical model
distribution

p(Wi | τi) ∼ N(0, τi),

p(τi | γi) ∼ Exp
(γi

2

)
,

After integrating out τi, we have the marginalized distribution as

p(Wi | γi) =
∫ ∞

0
p(Wi | τi)p(τi | γi)dτi =

√
γi

2
exp

(−√
γi ‖Wi‖1

)
,

which is a Laplacian distribution with scale parameter γi/2. The degree of sparsity is
controlled by the hyperparameter γi on the l1 penalty. However, the sparsity parameter
is specified in an ad hoc manner. As in [10], an effective model is proposed to remove

1 Bayesian Statistical Shape Analysis on the Manifold of Diffeomorphisms 13

Fig. 1.3 Graphical
representation of BPGA for
the kth subject Jk

γi by adopting a Jeffreys’ noninformative hyperprior as p(τi) ∼ 1/τi. This has the
advantages that (1) the improper hyperprior is scale-invariant, and (2) the model is
parameter-free. Using this hierarchical sparsity prior on the columns of W for the
automatic mode selection, we formulate the problem as

p(W , x | τ) ∝ exp

(
−1

2

N∑
k=1

∥∥Wxk
∥∥2

V −
q∑

i=1

‖Wi‖2
V

2τi

)
, (1.15)

p(τ) ∝ 1

τ
,

where x = [x1, . . . , xk], τ = [τ1, . . . , τq]. We will later integrate out the latent vari-
able τ using expectation maximization.

We can express our model for the kth subject using the graphical representation
shown in Fig. 1.3.

1.5.2 Inference

Due to the high computational cost of treating θ = {I, σ 2} as random variables and
sampling them, we use MAP estimation to determine θ as model parameters. After
defining the likelihood (1.14) and prior (1.15) in the previous section, we now arrive
at the joint posterior for BPGA as

N∏
k=1

p
(
W , x, τ | Jk; θ

) ∝
[

N∏
k=1

p(Jk | xk, θ) p(xk |W)

]
p(W |τ) p(τ). (1.16)

In order to treat the W , xk and τ as latent random variables with the log poste-
rior given by (1.16), we would ideally integrate out the latent variables, which are
intractable in closed form for W , xk . Instead, we develop an expectation maximiza-
tion algorithm to compute a closed-form solution to integrate out τ first, and then
use a mode approximation for W , xk to the posterior distribution. It contains two
alternating steps:

14 M. Zhang and P.T. Fletcher

E-step

Using the current estimate of the parameters θ̂ , we compute the expectation Q of the
complete log posterior of (1.16) with respect to the latent variables τ as

Q(W , xk, θ | θ̂ , Ŵ) ∝ − 1

2σ 2

N∑
k=1

∥∥I ◦ (φk)−1 − Jk
∥∥2

L2 − MN

2
log σ

− 1

2

N∑
k=1

∥∥Wxk
∥∥2

V −
q∑

i=1

‖Wi‖2
V

2‖Ŵi‖2
V

. (1.17)

Note that we use the same approach to integrate out τ in [10]. Details are in Appen-
dix A.

M-step: Gradient Ascent for W, xk

We introduce a gradient ascent scheme to estimate W , xk , and θ = (I, σ 2) simulta-
neously. We compute the gradient with respect to the initial momentum mk of the
diffeomorphic image matching problem in (1.5), and then apply the chain rule to
obtain the gradient term w.r.t. W and xk . Following the same derivation in (1.10), we
obtain the gradient of Q with respect to W after applying the chain rule as

∇WQ = −
N∑

k=1

K(mk − Km̂k)(xk)T − WΛ,

where Λ is a diagonal matrix with diagonal element 1∥∥∥Ŵi

∥∥∥2

V

. The gradient with respect

to xk is
∇xkQ = −WTK(mk − Km̂k).

Closed-Form Solution for θ

We now derive the maximization for updating the parameters θ . This turns out to be
a closed-form update for the atlas I , noise variance σ 2. For updating I and σ 2, we set
the derivative of the expectation with respect to I, σ 2 to zero. The solution for I, σ 2

gives an update

I =
∑N

k=1 J
k ◦ φk|Dφk|∑N

k=1 |Dφk| , σ 2 = 1

MN

N∑
k=1

∥∥I ◦ (φk)−1 − Jk
∥∥2

L2 .

1 Bayesian Statistical Shape Analysis on the Manifold of Diffeomorphisms 15

1.6 Results

In this section, we first demonstrate the effectiveness of our proposed model and
MCEM estimation routine using both 2D synthetic data and real 3D MRI brain
data. Because we have a generative model, we can forward simulate a random sam-
ple of images from a distribution with known parameters θ = (α, σ 2, I). Then, in
the next subsection, we test if we can recover those parameters using our MCEM
algorithm. Figure 1.4 illustrates this process. We simulated a 2D synthetic dataset
starting from an atlas image, I , of a binary circle with resolution 100 × 100. We
then generated 20 smooth initial velocity fields from the prior distribution, p(vk),
defined in (1.15), setting α = 0.025 and β = 0.001. Deformed circle images were
constructed by shooting the initial velocities by the EPDiff equations and transform-
ing the atlas by the resulting diffeomorphisms, φk . Finally, we added i.i.d. Gaussian
noise according to our likelihood model (1.14). We used a standard deviation of
σ = 0.05, which corresponds to an SNR of 20 (which is more noise than typical
structural MRI).

Parameter Estimation on Synthetic Data

In our estimation procedure, we initialized α with 0.002 for noise free, and 0.01 for
noise corrupted images. The step size of 0.005 for leap-frog integration is used in
HMC with 10 units of time discretization in integration of EPDiff equations.

Figure 1.5 compares the true atlas and estimated atlases in the clean and noisy case.
Figure 1.6 shows the convergence graph for α and σ estimation by using 100 samples.
It shows that our method recovers the model parameters fairly well. However, the
iterative mode approximation algorithm does not recover the α parameter as nicely
as our method. In the noisy case, the mode approximation algorithm estimates α as

Fig. 1.4 Simulating synthetic 2D data from the generative diffeomorphism model. From left to
right the ground truth template image, random diffeomorphisms from the prior model, deformed
images, and final noise corrupted images

16 M. Zhang and P.T. Fletcher

Fig. 1.5 Atlas estimation results. Left ground truth template. Center estimated template from
noise-free dataset. Right estimated template from noise-corrupted dataset

Fig. 1.6 Estimation of α, σ . Left α estimation. Right σ estimation. In our MCEM method, final
estimated α and σ for noise free data are 0.028, 0.01, and for noise data are 0.026, 0.0501. Compared
with max-max method, for the noise data, estimated α and σ are 0.0152, 0.052

0.0152, which is far from the ground truth value of 0.025. This is compared with our
estimation of 0.026. In addition, in the noise-free example, the mode approximation
algorithm blows up due to the σ dropping close to 0, thus making the image match
term numerically too high and the geodesic shooting unstable.

Atlas Building on 3D Brain Images

To demonstrate the effectiveness of our method on the real data, we apply our MCEM
atlas estimation algorithm to a set of brain MRI from ten healthy subjects. The MRI
have resolution 108 × 128 × 108 and are skull stripped, intensity normalized, and
co-registered with rigid transforms. We set the initial α = 0.01, β = 0.001 with
15 time steps. Due to the massive computational cost of sampling in the high-
dimensional image space, we implement a message passing interface (MPI) parallel
programming on a GPU cluster. The entire inference costs approximately a week to
complete.

The left side (the first five columns) of Fig. 1.7 shows coronal and axial view of
the 3D MRI used as input. The right side shows the initialization (greyscale average
of the input images), followed by the final atlas estimated by our method. The final
atlas estimate correctly aligns the anatomy of the input images, producing a sharper
average image. The algorithm also jointly estimated the smoothness parameter to be
α = 0.028 and the image noise standard deviation to be σ = 0.031.

1 Bayesian Statistical Shape Analysis on the Manifold of Diffeomorphisms 17

(a) (b)

Fig. 1.7 Left (the first five columns) coronal and axial view of the input 3D MRIs. Right (a) initial
greyscale average of the input images. Right (b) final atlas estimated by our MCEM estimation
procedure

Image Matching Accuracy

Finally, we demonstrate that another benefit of our HMC sampling methodology
is improved performance in the standard image registration problem under large
deformation shooting. Rather than using a direct gradient descent to solve the image
registration problem, we instead can find the posterior mean of the model (1.16),
where for image matching we fix the “atlas,” I , as the source image and have just
one target image, I1. The stochastic behavior in the sampling helps to get out of
local minima, where the direct gradient descent can get stuck. We compared our pro-
posed method with direct gradient descent image registration by geodesic shooting
from [30]. We used the authors’ uTIlzReg package for geodesic shooting, which is
available freely online. For the comparison, we registered the image pair shown in
the first two panels of Fig. 1.8, which requires a large deformation. The source and

Fig. 1.8 The first two images from left to right are the source and target image, respectively. Third
is the matched image obtained by geodesic shooting method using [30]. Last image is the matched
image from our MCEM method

18 M. Zhang and P.T. Fletcher

target images are 50 × 50. We used α = 0.02, β = 0.001 for smoothing kernel, and
h = 40 time steps between t = 0 and t = 1. Note that we only want to compare the
image matching here, so we fix the α and σ parameters.

Figure 1.8 demonstrates the results of the direct geodesic shooting registration
with our HMC posterior mean. It shows that the geodesic shooting method gets stuck
in a local minima and cannot make it to the target image even with a large number of
time steps (h = 60) in the time discretization (we tried several time discretizations
up to 60, and none worked). Though our method did not match perfectly in the tip of
the “C,” it still recovers the full shape while retaining a diffeomorphic transformation.

Principal Geodesics Estimation on OASIS Brain Data

We then demonstrate the effectiveness of BPGA model by applying it to a set of
brain magnetic resonance images (MRI) from the 3D OASIS brain database. The
data consists of MRI from 130 subjects between the age of 60 and 95. The MRI have
a resolution of 128 × 128 × 128 with an image spacing of 1.0 × 1.0 × 1.0 mm3 and
are skull stripped, intensity normalized, and co-registered with rigid transforms. To
set the parameters in L operator, we did initial step of estimating α = 0.01 using the
Bayesian atlas building procedure introduced in Sect. 1.3. We used 15 time steps in
geodesic shooting and initialize the template I as the average of image intensities,
with W as the matrix of principal components from tangent PCA (TPCA) [19].

The proposed BPGA model automatically determined that the latent dimensional-
ity of the data was 15. Figure 1.9 displays the automatically estimated modes, i = 1, 2,
of the brain MRI variation. We forward shoot the constructed atlas, I , by the estimated
principal momentum aiWi along the geodesics. For the purpose of visualization, we
demonstrate the brain variation from the atlas by ai = −3,−1.5, 0, 1.5, 3. We also
show the log determinant of Jacobians at ai = 3, with red representing regions of
expansion and blue representing regions of contraction. The first mode of varia-
tion clearly shows that ventricle size change is a dominant source of variability in
brain shape. Our algorithm also jointly estimated the image noise standard deviation
parameter as σ = 0.04.

Image Reconstruction Accuracy

We validated the ability of our BPGA model to compactly represent the space of brain
variation by testing how well it can reconstruct unseen images. After estimating the
principal initial velocity and parameters from the training subjects above, we used
these estimates to reconstruct another 20 testing subjects from the same OASIS
database that were not included in the training. We then measured the discrepancy
between the reconstructed images and the testing images. Note that our reconstruction
only used the first 15 principal modes, which were automatically selected by our
algorithm.

We use the first fifteen dimensions to compare our model with linear PCA (LPCA)
on image intensities and TPCA. Examples of the reconstructed images and their error
maps from these models are shown in Figs. 1.10 and 1.11. Table 1.1 shows the com-
parison of the reconstruction accuracy as measured by the average and standard

1 Bayesian Statistical Shape Analysis on the Manifold of Diffeomorphisms 19

F
ig

.1
.9

To
p

to
bo
tt
om

ax
ia

l,
co

ro
na

l,
an

d
sa

gi
tta

l
vi

ew
s

of
sh

oo
tin

g
th

e
at

la
s

by
th

e
fir

st
an

d
se

co
nd

pr
in

ci
pa

l
m

od
es

.
L
ef
t

to
ri
gh
t

B
PG

A
m

od
el

of
im

ag
e

va
ri

at
io

n
ev

al
ua

te
d

at
a i

=
−3

,
−1

.5
,
0,

1.
5,

3,
an

d
lo

g
de

te
rm

in
an

to
f

Ja
co

bi
an

s
at
a i

=
3

20 M. Zhang and P.T. Fletcher

(a) Observed (b) LPCA (c) TPCA (d) BPGA

Fig. 1.10 Left to right original data, reconstruction by LPCA, TPCA, and BPGA

(a) LPCA (b) TPCA (c) BPGA

Fig. 1.11 Left to right absolute value of reconstruction error map by LPCA, TPCA, and BPGA

Table 1.1 Comparison of mean squared reconstruction error between LPCA, TPCA, and BPGA
models. Average and standard deviation over 20 test images

LPCA TPCA BPGA

Average MSE 4.2 × 10−2 3.4 × 10−2 2.8 × 10−2

Std of MSE 1.25 × 10−2 4.8 × 10−3 4.2 × 10−3

1 Bayesian Statistical Shape Analysis on the Manifold of Diffeomorphisms 21

5 10 15 20 25 30 35 40
0.02

0.025

0.03

0.035

0.04

0.045

0.05

0.055

0.06

0.065

number of principal modes

re
co

ns
tru

ct
io

n
er

ro
r

LPCA
TPCA
BPGA

Fig. 1.12 Averaged mean squared reconstruction error with different number of principal modes
by LPCA, TPCA, and BPGA over 20 test images

deviation of the mean squared error (MSE). The table indicates that our model out-
performs both LPCA and TPCA in the diffeomorphic setting. We also display the
reconstruction error with increasing number of principal modes. Figure 1.12 shows
that TPCA requires approximately 32 principal modes, more than twice as much as
our model does, to achieve the same level of reconstruction accuracy. LPCA cannot
match the BPGA reconstruction accuracy with even 40 principal modes. This reflects
that our model BPGA gains a more compact representation than TPCA and LPCA.

Acknowledgments This work was supported by NIH Grant R01 MH084795, NIH Grant
5R01EB007688, and NSF CAREER Grant 1054057.

References

1. S. Allassonnière, Y. Amit, A. Trouvé, Toward a coherent statistical framework for dense
deformable template estimation. J. R. Stat. Soc. Ser. B 69, 3–29 (2007)

2. S. Allassonniere, S. Durrleman, E. Kuhn, Bayesian mixed effect atlas estimation with a diffeo-
morphic deformation model. SIAM J. Imaging Sci. 8(3), 1367–1395 (2015)

3. S. Allassonnière, E. Kuhn, Stochastic algorithm for parameter estimation for dense deformable
template mixture model. ESAIM-PS 14, 382–408 (2010)

4. D.F. Andrews, C.L. Mallows, Scale mixtures of normal distributions. J. R. Stat. Soc. Ser. B
(Methodological) 36, 99–102 (1974)

5. V.I. Arnol’d, Sur la géométrie différentielle des groupes de Lie de dimension infinie et ses
applications à l’hydrodynamique des fluides parfaits. Ann. Inst. Fourier 16, 319–361 (1966)

6. M.F. Beg, M.I. Miller, A. Trouvé, L. Younes, Computing large deformation metric mappings
via geodesic flows of diffeomorphisms. Int. J. Comput. Vis. 61(2), 139–157 (2005)

22 M. Zhang and P.T. Fletcher

7. C.M. Bishop, Bayesian PCA, in Advances in neural information processing systems (MIT
press, Cambridge, 1999), pp. 382–388

8. A. Budhiraja, P. Dupuis, V. Maroulas, Large deviations for stochastic flows of diffeomorphisms.
Bernoulli 16, 234–257 (2010)

9. S. Duane, A. Kennedy, B. Pendleton, D. Roweth, Hybrid Monte Carlo. Phys. Lett. B 195,
216–222 (1987)

10. M.A.T. Figueiredo, Adaptive sparseness for supervised learning. IEEE Trans. Pattern Anal.
Mach. Intell. 25(9), 1150–1159 (2003)

11. P.T. Fletcher, C. Lu, S. Joshi, Statistics of shape via principal geodesic analysis on Lie groups,
inComputer Vision and Pattern Recognition (IEEE Computer Society, Washington, DC, 2003),
pp. 95–101

12. P.T. Fletcher, C. Lu, S.M. Pizer, S. Joshi, Principal geodesic analysis for the study of nonlinear
statistics of shape. IEEE Trans. Med. Imaging 23(8), 995–1005 (2004)

13. P. Gori, O. Colliot, Y. Worbe, L. Marrakchi-Kacem, S. Lecomte, C. Poupon, A. Hartmann,
N. Ayache, S. Durrleman, Bayesian atlas estimation for the variability analysis of shape com-
plexes, inMedical Image Computing and Computer-Assisted Intervention, vol. 8149 (Springer,
Heidelberg, 2013). pp. 267–274

14. J.E. Iglesias, M.R. Sabuncu, K. Van Leemput, ADNI, Incorporating parameter uncertainty in
Bayesian segmentation models: application to hippocampal subfield volumetry, in MICCAI,
(Springer, Heidelberg, 2012)

15. S. Joshi, B. Davis, M. Jomier, G. Gerig, Unbiased diffeomorphic atlas construction for com-
putational anatomy. NeuroImage 23(Supplement 1), 151–160 (2004)

16. J. Ma, M.I. Miller, A. Trouvé, L. Younes, Bayesian template estimation in computational
anatomy. NeuroImage 42, 252–261 (2008)

17. M.I. Miller, A. Trouvé, L. Younes, Geodesic shooting for computational anatomy. J. Math.
Imaging Vis. 24(2), 209–228 (2006)

18. R.M. Neal, MCMC using Hamiltonian dynamics. Handb. Markov Chain Monte Carlo 2, 113–
162 (2011)

19. A. Qiu, L. Younes, M.I. Miller, Principal component based diffeomorphic surface mapping.
IEEE Trans. Med. Imaging 31(2), 302–311 (2012)

20. P. Risholm, S. Pieper, E. Samset, W.M. Wells, Summarizing and visualizing uncertainty in
non-rigid registration, in MICCAI (Springer, Heidelberg, 2010)

21. P. Risholm, E. Samset, W.M. Wells, Bayesian estimation of deformation and elastic parameters
in non-rigid registration, in WBIR (Springer, Heidelberg, 2010)

22. S. Said, N. Courty, N. Le Bihan, S.J. Sangwine, Exact principal geodesic analysis for data
on SO(3), in Proceedings of the 15th European Signal Processing Conference (2007). pp.
1700–1705

23. I.J.A. Simpson, M.J. Cardoso, M. Modat, D.M. Cash, M.W. Woolrich, J.L.R. Andersson, J.A.
Schnabel, S. Ourselin, Alzheimers Disease Neuroimaging Initiative et al., Probabilistic non-
linear registration with spatially adaptive regularisation. Med. Image Anal. 26(1), 203–216
(2015)

24. I.J.A. Simpson, A.S. Julia, R.G. Adrian, L.R.A. Jesper, W.W. Mark, Probabilistic inference of
regularisation in non-rigid registration. NeuroImage 59, 2438–2451 (2012)

25. N. Singh, J. Hinkle, S. Joshi, P. Thomas Fletcher, A vector momenta formulation of diffeomor-
phisms for improved geodesic regression and atlas construction, in International Symposium
on Biomedial Imaging (ISBI), April 2013

26. S. Sommer, F. Lauze, S. Hauberg, M. Nielsen, Manifold valued statistics, exact principal
geodesic analysis and the effect of linear approximations, in Proceedings of the European
Conference on Computer Vision (2010). pp. 43–56

27. M. Vaillant, M.I. Miller, L. Younes, A. Trouvé, Statistics on diffeomorphisms via tangent space
representations. NeuroImage 23, S161–S169 (2004)

28. K. Van Leemput, Encoding probabilistic brain atlases using Bayesian inference. IEEE Trans.
Med. Imaging 28, 822–837 (2009)

1 Bayesian Statistical Shape Analysis on the Manifold of Diffeomorphisms 23

29. F.-X. Vialard, L. Risser, D. Holm, D. Rueckert, Diffeomorphic atlas estimation using Kärcher
mean and geodesic shooting on volumetric images, in MIUA (2011)

30. F.-X. Vialard, L. Risser, D. Rueckert, C.J. Cotter, Diffeomorphic 3d image registration via
geodesic shooting using an efficient adjoint calculation. Int. J. Comput. Vis. 97, 229–241
(2012)

31. D. Wassermann, M. Toews, M. Niethammer, W. Wells III, Probabilistic diffeomorphic reg-
istration: representing uncertainty, in Biomedical Image Registration (Springer, Switzerland,
2014). pp. 72–82

32. L. Younes, F. Arrate, M.I. Miller, Evolutions equations in computational anatomy. NeuroImage
45(1S1), 40–50 (2009)

33. M. Zhang, P.T. Fletcher, Probabilistic principal geodesic analysis, in Advances in Neural Infor-
mation Processing Systems (2013). pp. 1178–1186

34. M. Zhang, P.T. Fletcher, Bayesian principal geodesic analysis in diffeomorphic image reg-
istration, in Medical Image Computing and Computer-Assisted Intervention–MICCAI 2014
(Springer, Heidelberg, 2014). pp. 121–128

35. M. Zhang, P.T. Fletcher, Bayesian principal geodesic analysis for estimating intrinsic diffeo-
morphic image variability. Med. Image Anal. 25, 37–44 (2015)

36. M. Zhang, N. Singh, P.T. Fletcher, Bayesian estimation of regularization and atlas building
in diffeomorphic image registration, in Information Processing in Medical Imaging (Springer,
Heidelberg, 2013). pp. 37–48

Chapter 2
Sampling Constrained Probability
Distributions Using Spherical Augmentation

Shiwei Lan and Babak Shahbaba

Abstract Statistical models with constrained probability distributions are abun-
dant in machine learning. Some examples include regression models with norm
constraints (e.g., Lasso), probit, many copula models, and latent Dirichlet alloca-
tion (LDA). Bayesian inference involving probability distributions confined to con-
strained domains could be quite challenging for commonly used sampling algorithms.
In this work, we propose a novel augmentation technique that handles a wide range
of constraints by mapping the constrained domain to a sphere in the augmented
space. By moving freely on the surface of this sphere, sampling algorithms handle
constraints implicitly and generate proposals that remain within boundaries when
mapped back to the original space. Our proposed method, called Spherical Augmen-
tation, provides a mathematically natural and computationally efficient framework
for sampling from constrained probability distributions. We show the advantages
of our method over state-of-the-art sampling algorithms, such as exact Hamiltonian
Monte Carlo, using several examples including truncated Gaussian distributions,
Bayesian Lasso, Bayesian bridge regression, reconstruction of quantized stationary
Gaussian process, and LDA for topic modeling.

2.1 Introduction

Many commonly used statistical models in Bayesian analysis involve high dimen-
sional probability distributions confined to constrained domains. Some examples
include regression models with norm constraints (e.g., Lasso), probit, many copula
models, and latent Dirichlet allocation (LDA). Very often, the resulting models are

S. Lan (B)
Department of Statistics, University of Warwick, Coventry CV4 7AL, UK
e-mail: s.lan@warwick.ac.uk

B. Shahbaba
Department of Statistics and Department of Computer Science,
University of California, Irvine, CA 92697, USA
e-mail: babaks@uci.edu

© Springer International Publishing Switzerland 2016
H.Q. Minh and V. Murino (eds.), Algorithmic Advances in Riemannian
Geometry and Applications, Advances in Computer Vision
and Pattern Recognition, DOI 10.1007/978-3-319-45026-1_2

25

26 S. Lan and B. Shahbaba

intractable and the imposed constraints add another layer of complexity. Therefore,
in these problems simulating samples for Monte Carlo estimation is quite challenging
[12, 40, 41, 47, 57]. Although the literature on improving the efficiency of compu-
tational methods for Bayesian inference is quite extensive see, for example, [1–3,
5, 7, 9, 11, 14, 15, 18, 20, 22, 25–28, 32, 33, 35, 37, 39, 42–46, 51–53, 56, 63–
65, 67], these methods do not directly address the complications due to constrained
target distributions. When dealing with such distributions, MCMC algorithms typ-
ically evaluate each proposal to ensure it is within the boundaries imposed by the
constraints. Computationally, this is quite inefficient, especially in high dimensional
problems where proposals are very likely to miss the constrained domain. Alterna-
tively, one could map the original domain to the entire Euclidean space to remove the
boundaries [49]. This approach too is computationally inefficient since the sampler
needs to explore a much larger space than needed.

In this chapter, we study a novel technique, Spherical Augmentation (SA), for a
family of MCMC algorithms to handle a specific class of constraints. SA was recently
proposed by [34] for Hamiltonian Monte Carlo (HMC) [23, 46] to handle constraints
involving norm inequalities (Fig. 2.1). SA method augments the parameter space and
maps the constrained domain to a sphere in the augmented space. The sampling algo-
rithm explores the surface of this sphere. This way, it handles constraints implicitly
and generates proposals that remain within boundaries when mapped back to the
original space. Here, we generalize the work of [34] to handle a broader class of
constraints, which are still convertible to norm constraints. We will also discuss an
improved version of Spherical HMC [34] designed specifically for box-type con-
straints. Additionally, we will show how SA can be applied to Lagrangian Monte
Carlo [35] with application to LDA problems and sampling from probability simplex.

There have been some related works recently. Reference [46] discusses modifying
standard HMC such that the sampler bounces off the boundaries by letting the poten-

q = Inf q = 4 q = 2

q = 1 q = 0.5 q = 0.1

Fig. 2.1 q-Norm constraints

2 Sampling Constrained Probability Distributions … 27

tial energy go to infinity for parameter values that violate the constraints. This creates
“energy walls” at boundaries. This approach, henceforth called Wall HMC, has lim-
ited applications and tends to be computationally inefficient, because the frequency
of hitting and bouncing increases exponentially as dimension grows. Reference [47]
follow the idea of Wall HMC and propose an exact HMC algorithm specifically for
truncated Gaussian distributions with constraints. Reference [12] on the other hand
propose a modified version of HMC for handling holonomic constraint c(θ) = 0 by
using Lagrange multipliers. Reference [13] discuss an alternative approach for situ-
ations where constrained domains can be identified as sub-manifolds. In particular,
Spherical HMC [34] is motivated by [13] but removes the requirement of embedding,
thus it is applicable to more general settings. All these methods provide interesting
solutions for specific types of constraints. In contrast, our proposed method offers a
general and efficient framework applicable to a wide range of problems.

The chapter is structured as follows. Before presenting our methods, in Sect. 2.2 we
provide a brief overview of HMC and one of its variants, namely, Lagrangian Monte
Carlo (LMC) [35]. We then present the underlying idea of Spherical Augmentation,
first for two simple cases, ball type (Sect. 2.3.1) and box type (Sect. 2.3.2) constraints,
then for more general q-norm type constraints (Sect. 2.3.3), as well as some functional
constraints (Sect. 2.3.4). In Sect. 2.4, we apply the SA technique to HMC (Sect. 2.4.2)
and LMC (Sect. 2.4.3) for sampling from constrained target distributions. We evaluate
our proposed methods using simulated and real data in Sect. 2.5. Finally, Sect. 2.6 is
devoted to discussion and future directions.

2.2 Preliminaries

2.2.1 Hamiltonian Monte Carlo

HMC improves upon random walk Metropolis (RWM) by proposing states that are
distant from the current state, but nevertheless accepted with high probability. These
distant proposals are found by numerically simulating Hamiltonian dynamics, whose
state space consists of its position, denoted by the vector θ , and its momentum,
denoted by the vector p. Our objective is to sample from the continuous probability
distribution of θ with the density function f (θ). It is common to assume that the
fictitious momentum variable p ∼ N (0,M), where M is a symmetric, positive-
definite matrix known as the mass matrix, often set to the identity matrix I for
convenience.

In this Hamiltonian dynamics, the potential energy, U (θ), is defined as minus the
log density of θ (plus any constant), that is U (θ) := − log f (θ); the kinetic energy,
K (p) for the auxiliary momentum variable p is set to be minus the log density of
p (plus any constant). Then the total energy of the system, Hamiltonian function, is
defined as their sum,

H(θ ,p) = U (θ) + K (p) (2.1)

28 S. Lan and B. Shahbaba

Given the Hamiltonian H(θ ,p), the system of (θ,p) evolves according to the fol-
lowing Hamilton’s equations

θ̇ = ∇pH(θ ,p) = M−1p

ṗ = − ∇θ H(θ ,p) = − ∇θU (θ)
(2.2)

In practice when the analytical solution to Hamilton’s equations is not available,
we need to numerically solve these equations by discretizing them, using some small
time step ε. For the sake of accuracy and stability, a numerical method called leapfrog
is commonly used to approximate the Hamilton’s equations [46]. We usually solve
the system for L steps, with some step size, ε, to propose a new state in the Metropolis
algorithm, and accept or reject it according to the Metropolis acceptance probability.
[See [46], for more discussions].

2.2.2 Lagrangian Monte Carlo

Although HMC explores the target distribution more efficiently than RWM, it does
not fully exploit the geometric properties of the parameter space. Reference [28]
propose Riemannian HMC (RHMC), which adapts to the local Riemannian geometry
of the target distribution by using a position-specific mass matrix M = G(θ). More
specifically, they setG(θ) to the Fisher information matrix. In this chapter, we mainly
use the spherical metric instead, to serve the purpose of constraint handling. The
proposed method can be viewed as an extension to this approach since it explores
the geometry of sphere.

Following the argument of [4, 28] define Hamiltonian dynamics on the
Riemannian manifold endowed with metric G(θ). With the non-flat metic, the
momentum vector becomes p|θ ∼ N (0,G(θ)) and the Hamiltonian is therefore
defined as follows:

H(θ,p) = φ(θ) + 1

2
pTG(θ)−1p, φ(θ) := U (θ) + 1

2
log det G(θ) (2.3)

Unfortunately the resulting Riemannian manifold Hamiltonian dynamics becomes
nonseparable since it contains products of θ and p, and the numerical integrator,
generalized leapfrog, is an implicit scheme that involves time-consuming fixed-point
iterations.

Reference [35] proposes to change the variables p �→ v := G(θ)−1p and define
an explicit integrator for RHMC by using the following equivalent Lagrangian
dynamics:

θ̇ = v

v̇ = − vTΓ (θ)v − G(θ)−1∇θφ(θ)
(2.4)

2 Sampling Constrained Probability Distributions … 29

where the velocity v|θ ∼ N (0,G(θ)−1). Here, Γ (θ) is the Christoffel symbols
derived from G(θ).

The proposed explicit integrator is time reversible but not volume preserving.
Based on the change of variables theorem, one can adjust the acceptance probability
with Jacobian determinant to satisfy the detailed balance condition. The resulting
algorithm, Lagrangian Monte Carlo (LMC), is shown to be computationally more
efficient than RHMC [See [35] for more details].

Throughout this chapter, we express the kinetic energy K in terms of velocity, v,
instead of momentum, p [9, 35].

2.3 Spherical Augmentation

In this section, we introduce the Spherical Augmentation technique for handling
norm constraints implicitly. We start with two simple constraints: ball type (2-norm)
and box type (∞-norm). Then, we generalize the methodology to arbitrary q-norm
type constraints for q > 0. Finally, we discuss some functional constraints that can
be reduced to norm constraints.

2.3.1 Ball Type Constraints

Consider probability distributions confined to the D-dimensional unit ballBD
0 (1) :=

{θ ∈ R
D : ‖θ‖2 =

√∑D
i=1 θ2

i ≤ 1}. The constraint is given by restricting the 2-norm
of parameters: ‖θ‖2 ≤ 1.

θ

A B

θ~=(θ,θD+1)
θD+1=(1−||θ||

2)0.5

θ

θD+1

A

B

Fig. 2.2 Transforming the unit ball BD
0 (1) to the sphere S D

30 S. Lan and B. Shahbaba

The idea of SA is to augment the original D-dimensional manifold of unit ball
BD

0 (1) to a hypersphere S D := {θ̃ ∈ R
D+1 : ‖θ̃‖2 = 1} in a (D + 1)-dimensional

space. This can be done by adding an auxiliary variable θD+1 to the original
parameter θ ∈ BD

0 (1) to form an extended parameter θ̃ = (θ, θD+1) such that

θD+1 =
√

1 − ‖θ‖2
2. Next, we identify the lower hemisphere S D− with the upper

hemisphere S D+ by ignoring the sign of θD+1. This way, the domain of the tar-
get distribution is changed from the unit ball BD

0 (1) to the D-dimensional sphere,
S D := {θ̃ ∈ R

D+1 : ‖θ̃‖2 = 1}, through the following transformation:

TB→S : BD
0 (1) −→ S D

± , θ �→ θ̃ =
(

θ,±
√

1 − ‖θ‖2
2

)
(2.5)

which can also be recognized as the coordinate map from the Euclidean coordinate
chart {θ ,BD

0 (1)} to the manifold S D .
After collecting samples {θ̃} using a sampling algorithm (e.g., HMC) defined on

the sphere, S D , we discard the last component θD+1 and obtain the samples {θ} that
automatically satisfy the constraint ‖θ‖2 ≤ 1. Note that the sign of θD+1 does not
affect our Monte Carlo estimates. However, after applying the above transformation,
we need to adjust our estimates according to the change of variables theorem as
follows: [58] ∫

BD
0 (1)

f (θ)dθB =
∫
S D+

f (θ̃)

∣∣∣∣ dθB

dθSc

∣∣∣∣ dθSc (2.6)

where
∣∣∣ dθB

dθSc

∣∣∣ = |θD+1| as shown in Corollary 2.1 in Appendix “Canonical Metric

in Cartesian Coordinates”. Here, dθB and dθSc are volume elements under the
Euclidean metric and the canonical spherical metric, respectively.

With the above transformation (2.5), the resulting sampler is defined and moves
freely on S D while implicitly handling the constraints imposed on the original
parameters. As illustrated in Fig. 2.2, the boundary of the constraint, i.e., ‖θ‖2 = 1,
corresponds to the equator on the sphere S D . Therefore, as the sampler moves on
the sphere, e.g., from A to B, passing across the equator from one hemisphere to the
other translates to “bouncing back” off the boundary in the original parameter space.

2.3.2 Box-Type Constraints

Many constraints are given by both lower and upper bounds. Here we focus on a
special case that defines a hyper-rectangle RD

0 := [0, π]D−1 × [0, 2π); other box
type constraints can be transformed to this hyper-rectangle. This constrained domain
can be mapped to the unit ball BD

0 (1) and thus reduces to the ball type constraint
discussed in Sect. 2.3.1. However, a more natural approach is to use spherical coor-
dinates, which directly maps the hyperrectangle RD

0 to the sphere S D ,

2 Sampling Constrained Probability Distributions … 31

TR0→S : RD
0 −→ S D, θ �→ x, xd =

{
cos(θd)

∏d−1
i=1 sin(θi), d < D + 1∏D

i=1 sin(θi), d = D + 1

(2.7)

Therefore, we use {θ,RD
0 } as the spherical coordinate chart for the manifold S D .

Instead of being appended with an extra dimension as in Sect. 2.3.1, here θ ∈ R
D is

treated as the spherical coordinates of the point x ∈ R
D+1 with ‖x‖2 = 1.

After obtaining samples {x} on the sphere S D , we transform them back to {θ} in
the original constrained domain RD

0 using the following inverse mapping of (2.7):

TS→R0 : S D −→ RD
0 , x �→ θ , θd =

⎧⎪⎨
⎪⎩

arccot xd√
1−∑d

i=1 x2
i

, d < D

2 arccot
xD+

√
x2

D+1+x2
D

xD+1
, d = D

(2.8)

Similarly, we need to adjust the estimates based on the following change of variables
formula:

∫
RD

0

f (θ)dθR0 =
∫
S D

f (θ)

∣∣∣∣dθR0

dθSr

∣∣∣∣ dθSr (2.9)

where
∣∣∣ dθR0

dθSr

∣∣∣ = ∏D−1
d=1 sin−(D−d)(θd) as shown Proposition 2.7.3 in Appendix “Round

Metric in the Spherical Coordinates”. Here, dθR0 and dθSr are volume elements
under the Euclidean metric and the round spherical metric, respectively.

With the above transformation (2.7), we can derive sampling methods on the
sphere to implicitly handle box-type constraints. As illustrated in Fig. 2.3, the red
vertical boundary of RD

0 collapses to the north pole of S D , while the green vertical
boundary collapses to the South pole. Two blue horizontal boundaries are mapped to
the same prime meridian of S D shown in blue color. As the sampler moves freely
on the sphere S D , the resulting samples automatically satisfy the original constraint
after being transformed back to the original domain.

2.3.3 General q-Norm Constraints

The ball and box-type constraints discussed in previous sections are in fact special
cases of more general q-norm constraints with q set to 2 and ∞ respectively. In
general, these constraints are expressed in terms of q-norm of the parameter vector
β ∈ R

D ,

‖β‖q =
{

(
∑D

i=1|βi |q)1/q , q ∈ (0,+∞)

max1≤i≤D|βi |, q = +∞ (2.10)

32 S. Lan and B. Shahbaba

θπ

2π

A

B

x1 = cosθ1
x2 = sinθ1cosθ2
…
xD = sinθ1…sinθD−1cosθD
xD+1 = sinθ1…sinθD−1sin D

x

x1

A

B

Fig. 2.3 Transforming the hyperrectangle RD
0 to the sphere S D

This class of constraints is very common in statistics and machine learning. For exam-
ple, when β are regression parameters, q = 2 corresponds to the ridge regression and
q = 1 corresponds to Lasso [61].

Denote the domain constrained by general q-norm as QD := {β ∈ R
D : ‖β‖q ≤

1}. It could be quite challenging to sample probability distributions defined on QD

(see Fig. 2.1). To address this issue, we propose to transform QD to the unit ball
BD

0 (1) so that the method discussed in Sect. 2.3.1 can be applied. As before, sampling
methods defined on the sphere S D generate samples that automatically fall within
BD

0 (1). Then we transform those samples back to the q-norm domain, QD , and
adjust the estimates with the following change of variables formula:

∫
QD

f (β)dβQ =
∫
S D+

f (θ̃)

∣∣∣∣ dβQ

dθSc

∣∣∣∣ dθSc (2.11)

where
∣∣∣ dβQ

dθSc

∣∣∣ =
∣∣∣ dβQ

dθT
B

∣∣∣
∣∣∣ dθB

dθSc

∣∣∣ =
∣∣∣ dβQ

dθT
B

∣∣∣ |θD+1|. In the following, we introduce the

bijective mappings between QD and BD
0 (1) and specify the associated Jacobian

determinants
∣∣∣ dβQ

dθT
B

∣∣∣.

2.3.3.1 Norm Constraints with q ∈ (0,+∞)

For q ∈ (0,+∞), q-norm domain QD can be transformed to the unit ball BD
0 (1)

bijectively via the following map (illustrated by the left panel of Fig. 2.4):

TQ→B : QD → BD
0 (1), βi �→ θi = sgn(βi)|βi |q/2 (2.12)

2 Sampling Constrained Probability Distributions … 33

θ = sgn(β)|β|(q 2)

||β||q≤ 1

||θ||2≤ 1

0 < q < ∞

θ = β
||β||∞
||β||2

||β||∞≤ 1

||θ||2≤ 1

q = ∞

Fig. 2.4 Transforming q-norm constrained domain to unit ball. Left from unit cube C D to unit ball
BD

0 (1); Right from general q-norm domain QD to unit ball BD
0 (1)

The Jacobian determinant of TB→Q is
∣∣∣ dβQ

dθT
B

∣∣∣ =
(

2
q

)D (∏D
i=1 |θi |

)2/q−1
. See Appen-

dix “Jacobian of the transformation between q-norm domains” for more details.

2.3.3.2 Norm Constraints with q = +∞

When q = +∞, the norm inequality defines a unit hypercube, C D := [−1, 1]D =
{β ∈ R

D : ‖β‖∞ ≤ 1}, from which the more general form, hyper-rectangle, RD :=
{β ∈ R

D : l ≤ β ≤ u}, can be obtained by proper shifting and scaling. The unit
hypercube C D can be transformed to its inscribed unit ball BD

0 (1) through the
following map (illustrated by the right panel of Fig. 2.4):

TC→B : [−1, 1]D → BD
0 (1), β �→ θ = β

‖β‖∞
‖β‖2

(2.13)

The Jacobian determinant of TB→R is
∣∣∣ dβR

dθT
B

∣∣∣ = ‖θ‖D
2

‖θ‖D∞

∏D
i=1

ui −li
2 . More details can

be found in Appendix “Jacobian of the transformation between q-norm domains”.

2.3.4 Functional Constraints

Many statistical problems involve functional constraints. For example, [47] discusses
linear and quadratic constraints for multivariate Gaussian distributions. Since the tar-
get distribution is truncated Gaussian, Hamiltonian dynamics can be exactly simu-
lated and the boundary-hitting time can be analytically obtained. However, finding the

34 S. Lan and B. Shahbaba

hitting time and reflection trajectory is computationally expensive. Some constraints
of this type can be handled by the spherical augmentation method more efficiently.
Further, our method can be used for sampling from a wide range of distributions
beyond Gaussian.

2.3.4.1 Linear Constraints

In general, M linear constraints can be written as l ≤ Aβ ≤ u, where A is M × D
matrix, β is a D-vector, and the boundaries l and u are both M-vectors. Here, we
assume M = D and AD×D is invertible. (Note that we generally do not have A−1l ≤
β ≤ A−1u.) Instead of sampling β directly, we sample η := Aβ with the box-type
constraint: l ≤ η ≤ u. Now we can apply our proposed method to sample η and
transform it back to β = A−1η. In this process, we use the following change of
variables formula:

∫
l≤Aβ≤u

f (β)dβ =
∫
l≤η≤u

f (η)

∣∣∣∣dβ

dη

∣∣∣∣ dη (2.14)

where
∣∣∣ dβ

dη

∣∣∣ = |A|−1.

Figure 2.5 illustrates that both exact HMC [47] and HMC with spherical augmen-

tation can handle linear constraints, here l = 0, A =
[−0.5 1

1 1

]
and u = 2, imposed

on a 2D Gaussian distribution N (μ,Σ) with μ =
[

0
1

]
and Σ =

[
1 0.5

0.5 1

]
(first

row). They all yield good estimates (colored heatmaps) that match the truth (solid
contour curves) very well. However, the exact HMC is not applicable to more compli-
cated distributions such as the damped sine wave distribution (second row in Fig. 2.5)
with the following density:

f (β) ∝ sin2 Q(β)

Q(β)
, Q(β) = 1

2
(β − μ)TΣ−1(β − μ) (2.15)

Therefore, there is no colored density estimation plot in the second row and second
column subfigure. However, it is worth noting that for truncated Gaussian distribu-
tions, since the exact HMC method of [47] does not require A to be square invertible,
it can handle a wider range of linear constraints compared to our method.

2.3.4.2 Quadratic Constraints

General quadratic constraints can be written as l ≤ βTAβ + bTβ ≤ u, where l, u >

0 are scalars. We assume AD×D symmetric and positive-definite. By the spectral
theorem, we have the decomposition A = QΣQT, where Q is an orthogonal matrix

2 Sampling Constrained Probability Distributions … 35

β1

β 2

−2 −1 0 1 2

0.0
0.5

1.0
1.5

2.0

 0.
08

 0.
08

 0.
1

 0.
1

 0.
12

 0.
12

 0.14

 0.14

 0.16

 0.
18

Truth

β1

β 2

−2 −1 0 1 2

0.0
0.5

1.0
1.5

2.0

Estimate by exact HMC

β1

β 2

−2 −1 0 1 2

0.0
0.5

1.0
1.5

2.0

Estimate by c−SphHMC

β1

β 2

−2 −1 0 1 2

0.0
0.5

1.0
1.5

2.0

Estimate by s−SphHMC

β1

β 2

−2 −1 0 1 2

0.0
0.5

1.0
1.5

2.0

 0.1

 0.2

 0.
2

 0.
3

 0.3

 0.
4

 0.
5

 0.
6

 0.
7

 0.
7

Truth

β1

β 2

−2 −1 0 1 2

0.0
0.5

1.0
1.5

2.0

Estimate by exact HMC

β1

β 2

−2 −1 0 1 2

0.0
0.5

1.0
1.5

2.0

Estimate by c−SphHMC

β1

β 2

−2 −1 0 1 2

0.0
0.5

1.0
1.5

2.0

Estimate by s−SphHMC

Fig. 2.5 Sampling from a Gaussian distribution (first row) and a damped sine wave distribution
(second row) with linear constraints. Solid elliptical curves always show true unconstrained proba-
bility density contours. Dashed lines define linear constrained domains. Colored heatmaps indicate
constrained probability density based on truth or estimation from MCMC samples. First column
shows the true distributions. The results of exact HMC method [47] are shown in the second column
(not applicable in the second row). The last two columns show the results of our proposed methods

and Σ is a diagonal matrix of eigenvalues of A. By shifting and scaling, β �→ β∗ =√
ΣQT(β + 1

2A
−1b), we only need to consider the ring type constraints for β∗,

� : l∗ ≤ ‖β∗‖2
2 = (β∗)T

β∗ ≤ u∗, l∗ = l + 1

4
bTA−1b, u∗ = u + 1

4
bTA−1b

(2.16)
which can be mapped to the unit ball as follows:

T�→B : BD
0 (

√
u∗)\BD

0 (
√

l∗) −→ BD
0 (1), β∗ �→ θ = β∗

‖β∗‖2

‖β∗‖2 − √
l∗√

u∗ − √
l∗

(2.17)

We can then apply our proposed method in Sect. 2.3.1 to obtain samples {θ} inBD
0 (1)

and transform them back to the original domain with the following inverse operation
of (2.17):

TB→� : BD
0 (1) −→ BD

0 (
√

u∗)\BD
0 (

√
l∗), θ �→ β∗ = θ

‖θ‖2
((

√
u∗ − √

l∗)‖θ‖2 + √
l∗)

(2.18)

36 S. Lan and B. Shahbaba

In this process, we need the change of variables formula

∫
l≤βTAβ+bTβ≤u

f (β)dβ =
∫
S D+

f (θ)

∣∣∣∣ dβ

dθSc

∣∣∣∣ dθSc (2.19)

where
∣∣∣ dβ

dθSc

∣∣∣ =
∣∣∣ dβ

d(β∗)T

∣∣∣
∣∣∣ dβ∗

dθT
B

∣∣∣
∣∣∣ dθB

dθSc

∣∣∣ = |A|− 1
2 αD−1(α − √

l∗)|θD+1|, α = √
u∗ +

(1/‖θ‖2 − 1)
√

l∗.

2.3.4.3 More General Constraints

We close this section with some comments on more general types of constraints.
In some problems, several parameters might be unconstrained, and the type of con-
straints might vary across the constrained parameters. In such cases, we could group
the parameters into blocks and update each block separately using the methods dis-
cussed in this section. When dealing with one-sided constraints, e.g., θi ≥ li , one can
map the constrained domain to the whole space and sample the unconstrained para-
meter θ∗

i , where θi = |θ∗
i | + li . Alternatively, the one-sided constraint θi ≥ li can be

changed to a two-sided constraint for θ∗
i ∈ (0, 1) by setting θi = − log θ∗

i + li .

2.4 Monte Carlo with Spherical Augmentation

In this section, we show how SA can be used to improve Markov Chain Monte Carlo
methods applied to constrained probability distributions. In particular, we focus on
two state-of-the-art sampling algorithms, namely Hamiltonian Monte Carlo [23, 46],
and Lagrangian Monte Carlo [35]. Two types of Spherical HMC algorithms are
designed for different types of constraints. Spherical LMC is introduced specifi-
cally for probability simplex, with application to LDA [10]. Note however that our
proposed method is generic so its application goes beyond these two algorithms.

2.4.1 Common Settings

Throughout this section, we denote the original parameter vector as β , the constrained
domain as D , the coordinate vector of sphere S D as θ . All the change of variables
formulae presented in the previous section can be summarized as

∫
D

f (β)dβD =
∫
S

f (θ)

∣∣∣∣dβD

dθS

∣∣∣∣ dθS (2.20)

2 Sampling Constrained Probability Distributions … 37

where
∣∣∣ dβD

dθS

∣∣∣ is the Jacobian determinant of the mapping T : S −→ D and dθS is

some spherical measure.
For energy based MCMC algorithms like HMC, RHMC, and LMC, we need

to investigate the change of energy under the above transformation. The original
potential energy function U (β) = − log f (β) should be transformed to the following
φ(θ)

φ(θ) = − log f (θ) − log

∣∣∣∣dβD

dθS

∣∣∣∣ = U (β(θ)) − log

∣∣∣∣dβD

dθS

∣∣∣∣ (2.21)

Consequently the total energy H(β, v) in (2.1) becomes

H(θ, v) = φ(θ) + 1

2
〈v, v〉GS (θ) (2.22)

The gradient of potential energy U , metric and natural gradient (preconditioned
gradient) under the new coordinate system {θ,S D} can be calculated as follows

∇θU (θ) = dβT

dθ
∇βU (β) (2.23)

GS (θ) = dβT

dθ
GD(β)

dβ

dθT
(2.24)

GS (θ)−1∇θU (θ) =
[

dβT

dθ

]−1

GD(β)−1∇βU (β) (2.25)

In subscripts, we use notation B := BD
0 (1); S := S D . Sc indicates the sphere

endowed with the canonical metric (Appendix “Canonical Metric in Cartesian Coor-
dinates”) and Sr with the round metric (Appendix “Round Metric in the Spherical
Coordinates”). The upper dot˙means taking derivative with respect to time t .

2.4.2 Spherical Hamiltonian Monte Carlo

We define HMC on the sphere S D in two different coordinate systems: Cartesian
coordinates and the spherical coordinates. The former is applied to ball type con-
straints or those that could be converted to ball type constraints; the later is more
suited for box-type constraints. Besides the merit of implicitly handling constraints,
HMC on sphere can take advantage of the splitting technique [9, 13, 56] to fur-
ther improve its computational efficiency. In particular, Geodesic Monte Carlo [13]
works on the cotangent bundle and relies on the embedding of the manifold into
a larger Euclidean space; in contrast, our proposed methods work on the tangent
bundle without such requirement.

38 S. Lan and B. Shahbaba

2.4.2.1 Spherical HMC in Cartesian Coordinates

We first consider HMC for the target distribution with density f (θ) defined on the
unit ballBD

0 (1) endowed with the Euclidean metric I. The potential energy is defined
as U (θ) := − log f (θ). Associated with the auxiliary variable v (i.e., velocity), we
define the kinetic energy K (v) = 1

2v
TIv for v ∈ TθB

D
0 (1), which is a D-dimensional

vector sampled from the tangent space of BD
0 (1). Therefore, the Hamiltonian is

defined on BD
0 (1) as

H(θ, v) = U (θ) + K (v) = U (θ) + 1

2
vTIv (2.26)

Under the transformation TB→S in (2.5), the above Hamiltonian (2.26) onBD
0 (1)

will be changed to the following Hamiltonian H(θ̃, ṽ) on S D as in (2.22):

H(θ̃ , ṽ) = φ(θ̃) + 1

2
vTGSc(θ)v = U (θ̃) − log

∣∣∣∣ dθB

dθSc

∣∣∣∣ + 1

2
vTGSc(θ)v (2.27)

where the potential energy U (θ̃) = U (θ) (i.e., the distribution is fully defined in
terms of the original parameter θ , which are the first D elements of θ̃), andGSc(θ) =
ID + θθT/(1 − ‖θ‖2

2) is the canonical spherical metric.
Viewing {θ ,BD

0 (1)} as the Euclidean coordinate chart of manifold (S D,GSc(θ)),

we have the logarithm of volume adjustment, log
∣∣∣ dθB

dθSc

∣∣∣ = − 1
2 log |GSc | = log |

θD+1| (See Appendix “Canonical Metric in Cartesian Coordinates”). The last two
terms in Eq. (2.27) is the minus log density of v|θ ∼ N (0,GSc(θ)−1) (See [28,
35] for more details). However, the derivative of log volume adjustment, θ−1

D+1, con-
tributes an extremely large component to the gradient of energy around the equator
(θD+1 = 0), which in turn increases the numerical error in the discretized Hamil-
tonian dynamics. For the purpose of numerical stability, we instead consider the
following partial Hamiltonian H∗(θ̃ , ṽ) and leave the volume adjustment as weights
to adjust the estimation of integration (2.20):

H∗(θ̃ , ṽ) = U (θ) + 1

2
vTGSc(θ)v (2.28)

After obtaining samples θ̃ ∼ f (θ̃)dθSc , we apply the importance weights
∣∣∣ dθB

dθSc

∣∣∣ to

obtain samples from the correct target distribution:

θ ∼ f (θ̃)dθSc

∣∣∣∣ dθB

dθSc

∣∣∣∣ = f (θ)dθB (2.29)

If we extend the velocity as ṽ = (v, vD+1) with vD+1 = −θTv/θD+1, then ṽ

falls in the tangent space of the sphere, Tθ̃S
D := {ṽ ∈ R

D+1|θ̃T
ṽ = 0}. Therefore,

2 Sampling Constrained Probability Distributions … 39

vTGSc(θ)v = ṽTṽ. As a result, the partial Hamiltonian (2.28) can be recognized as
the standard Hamiltonian (2.26) in the augmented (D + 1) dimensional space

H∗(θ̃ , ṽ) = U (θ̃) + K (ṽ) = U (θ̃) + 1

2
ṽTṽ (2.30)

This is due to the energy invariance presented as Proposition 2.7.1 in Appen-
dix “Spherical Geometry”. Now we can sample the velocity v ∼ N (0,GSc(θ)−1)

and set ṽ =
[

I
−θT/θD+1

]
v. Alternatively, since Cov[ṽ] =

[
I

−θT/θD+1

]
GSc(θ)−1

[
I − θ/θD+1

] = ID+1 − θ̃ θ̃
T

is idempotent, we can sample ṽ by (ID+1 − θ̃ θ̃
T
)z with

z ∼ N (0, ID+1).
The Hamiltonian function (2.28) can be used to define the Hamiltonian dynamics

on the Riemannian manifold (S D,GSc(θ)) in terms of (θ,p), or equivalently as the
following Lagrangian dynamics in terms of (θ, v) [35]:

θ̇ = v

v̇ = − vTΓ Sc(θ)v − GSc(θ)−1∇θU (θ)
(2.31)

where Γ Sc(θ) are the Christoffel symbols of second kind derived from GSc(θ). The
Hamiltonian (2.28) is preserved under Lagrangian dynamics (2.31). (See [35] for
more discussion).

Reference [13] split the Hamiltonian (2.28) as follows:

H∗(θ̃, ṽ) = U (θ)/2 + 1

2
vTGSc(θ)v + U (θ)/2 (2.32)

However, their approach works with (θ,p) on the cotangent bundle and requires the
manifold to be embedded in the Euclidean space. To avoid this assumption, instead of
splitting the Hamiltonian dynamics of (θ ,p), we split the corresponding Lagrangian
dynamics (2.31) in terms of (θ , v) as follows (See Appendix “Splitting Hamiltonian
(Lagrangian) Dynamics on S D” for more details):

⎧⎨
⎩

θ̇ = 0

v̇ = − 1

2
GSc(θ)−1∇θU (θ)

(2.33a)

{
θ̇ = v
v̇ = − vTΓ Sc(θ)v

(2.33b)

Note that the first dynamics (2.33a) only involves updating velocity ṽ in the tangent
space Tθ̃S

D and has the following solution (see Appendix “Splitting Hamiltonian
(Lagrangian) Dynamics on S D” for more details):

40 S. Lan and B. Shahbaba

θ̃(t) = θ̃(0)

ṽ(t) = ṽ(0) − t

2

([
ID

0T

]
− θ̃(0)θ(0)T

)
∇θU (θ(0))

(2.34)

The second dynamics (2.33b) only involves the kinetic energy and has the geodesic
flow that is a great circle (orthodrome or Riemannian circle) on the sphere S D as its
analytical solution (See Appendix “Geodesic on a Sphere in Cartesian Coordinates”
for more details):

θ̃(t) = θ̃(0) cos(‖ṽ(0)‖2t) + ṽ(0)

‖ṽ(0)‖2
sin(‖ṽ(0)‖2t)

ṽ(t) = − θ̃(0)‖ṽ(0)‖2 sin(‖ṽ(0)‖2t) + ṽ(0) cos(‖ṽ(0)‖2t) (2.35)

This solution defines an evolution, denoted as gt : (θ(0), v(0)) �→ (θ(t), v(t)). Both
(2.34) and (2.35) are symplectic. Due to the explicit formula for the geodesic flow on
sphere, the second dynamics in (2.33b) is simulated exactly. Therefore, updating θ̃

does not involve discretization error so we can use large step sizes. This could lead to
improved computational efficiency. Because this step is in fact a rotation on sphere, it
can generate proposals that are far away from the current state. Algorithm 1 shows the
steps for implementing this approach, henceforth called Spherical HMC in Cartesian
coordinates (c-SphHMC). It can be shown that the integrator in the algorithm has
order 3 local error and order 2 global error (See the details in Appendix “Error
Analysis of Spherical HMC”).

Algorithm 1 Spherical HMC in Cartesian coordinates (c-SphHMC)

Initialize θ̃
(1)

at current θ̃ after transformation TD→S

Sample a new velocity value ṽ(1) ∼ N (0, ID+1)

Set ṽ(1) ← ṽ(1) − θ̃
(1)

(θ̃
(1)

)
T
ṽ(1)

Calculate H∗(θ̃ (1)
, ṽ(1)) = U (θ (1)) + K (ṽ(1))

for � = 1 to L do

ṽ(�+ 1
2) = ṽ(�) − ε

2

([
ID

0T

]
− θ̃

(�)
(θ (�))

T
)

∇θU (θ (�))

θ̃
(�+1) = θ̃

(�)
cos(‖ṽ(�+ 1

2)‖ε) + ṽ(�+ 1
2)

‖ṽ(�+ 1
2)‖

sin(‖ṽ(�+ 1
2)‖ε)

ṽ(�+ 1
2) ← −θ̃

(�)‖ṽ(�+ 1
2)‖ sin(‖ṽ(�+ 1

2)‖ε) + ṽ(�+ 1
2) cos(‖ṽ(�+ 1

2)‖ε)
ṽ(�+1) = ṽ(�+ 1

2) − ε
2

([
ID

0T

]
− θ̃

(�+1)
(θ (�+1))

T
)

∇θU (θ (�+1))

end for
Calculate H∗(θ̃ (L+1)

, ṽ(L+1)) = U (θ (L+1)) + K (ṽ(L+1))

Calculate the acceptance probability α = min{1, exp[−H∗(θ̃ (L+1)
, ṽ(L+1)) + H∗(θ̃ (1)

, ṽ(1))]}
Accept or reject the proposal according to α for the next state θ̃

′

Calculate TS→D(θ̃
′
) and the corresponding weight |dTS→D |

2 Sampling Constrained Probability Distributions … 41

2.4.2.2 Spherical HMC in the Spherical Coordinates

Now we define HMC on the sphere S D in the spherical coordinates {θ ,RD
0 }. The

natural metric on the sphere S D induced by the coordinate mapping (2.7) is the
round spherical metric,1 GSr (θ) = diag[1, sin2(θ1), . . . ,

∏D−1
d=1 sin2(θd)].

As in Sect. 2.4.2.1, we start with the usual Hamiltonian H(θ , v) defined on (RD
0 , I)

as in (2.26) with v ∈ TθR
D
0 . Under the transformation TR0→S : θ �→ x in (2.7),

Hamiltonian (2.26) on RD
0 is changed to the following Hamiltonian H(x, ẋ) as in

(2.22):

H(x, ẋ) = φ(x) + 1

2
vTGSc(θ)v = U (x) − log

∣∣∣∣dθR0

dθSr

∣∣∣∣ + 1

2
vTGSr (θ)v (2.36)

where the potential energy U (x) = U (θ(x)) and GSr (θ) is the round spherical met-
ric.

As before, the logarithm of volume adjustment is log
∣∣∣ dθR0

dθSr

∣∣∣ = − 1
2 log |GSr | =

−∑D−1
d=1 (D − d) log sin(θd) (See Appendix “Round Metric in the Spherical Coor-

dinates”). The last two terms in Eq. (2.36) is the minus log density of v|θ ∼
N (0,GSr (θ)−1). Again, for numerical stability we consider the following partial
Hamiltonian H∗(x, ẋ) and leave the volume adjustment as weights (2.29) to adjust
the estimation of integration (2.20):

H∗(x, ẋ) = U (θ) + 1

2
vTGSr (θ)v (2.37)

Taking derivative of TR0→S : θ �→ x in (2.7) with respect to time t we have

ẋd =
{

[−vd tan(θd) + ∑
i<d vi cot(θi)]xd , d < D + 1∑

i<D+1 vi cot(θi)xD+1, d = D + 1
(2.38)

We can show thatx(θ)Tẋ(θ, v) = 0; that is, ẋ ∈ TxS D . Taking derivative of TS→R0 :
x �→ θ in (2.8) with respect to time t yields

vd := θ̇d =

⎧⎪⎨
⎪⎩

− xd√
1−∑d

i=1 x2
i

[
ẋd
xd

+
∑d−1

i=1 xi ẋi

1−∑d−1
i=1 x2

d

]
, d < D

xD ẋD+1−ẋD xD+1

x2
D+x2

D+1
, d = D

(2.39)

Further, we have vTGSr (θ)v = ẋTẋ. Therefore, the partial Hamiltonian (2.37) can be
recognized as the standard Hamiltonian (2.26) in the augmented (D + 1)dimensional
space, which is again explained by the energy invariance Proposition 2.7.1 (See more
details in Appendix “Spherical Geometry”)

1Note, vTGSr (θ)v ≤ ‖v‖2
2 ≤ ‖ṽ‖2

2 = vTGSc (θ)v.

42 S. Lan and B. Shahbaba

H∗(x, ẋ) = U (x) + K (ẋ) = U (x) + 1

2
ẋTẋ (2.40)

Similar to the method discussed in Sect. 2.4.2.1, we split the Hamiltonian (2.37),
H∗(θ̃, ṽ) = U (θ)/2 + 1

2v
TGSr (θ)v + U (θ)/2, and its corresponding Lagrangian

dynamics (2.31) as follows:

⎧⎨
⎩

θ̇ = 0

v̇ = − 1

2
GSr (θ)−1∇θU (θ)

(2.41a)

{
θ̇ = v
v̇ = − vTΓ Sr (θ)v

(2.41b)

The first dynamics (2.41a) involves updating the velocity v only. However, the
diagonal term ofGSr (θ)−1,

∏d−1
i=1 sin−2(θi) increases exponentially fast with respect

to d. This will cause the velocity updated by (2.41a) to have extremely large compo-
nents. To avoid such issue, we use small time vector ε = [ε, ε2, . . . , εD], instead of
scalar ε, in updating Eq. (2.41a). The inhomogeneous discretization step sizes may
not yield an accurate solution to (2.31), but they nevertheless provide a numer-
ically stable proposal that is valid in the standard Metropolis–Hastings scheme.
The second dynamics (2.41b) describes the same geodesic flow on the sphere S D

as (2.33b) but in the spherical coordinates {θ ,RD
0 }. Therefore it should have the

same solution as (2.35) expressed in {θ,RD
0 }. To obtain this solution, we first apply

T̃R0→S : (θ(0), v(0)) �→ (x(0), ẋ(0)), which consists of (2.7), (2.38). Then, we use
gt in (2.35) to evolve (x(0), ẋ(0)) for some time t to find (x(t), ẋ(t)). Finally, we use
T̃S→R0 : (x(t), ẋ(t)) �→ (θ(t), v(t)), composite of (2.8), (2.39), to go back to RD

0 .

Algorithm 2 Spherical HMC in the spherical coordinates (s-SphHMC)

Initialize θ (1) at current θ after transformation TD→S

Sample a new velocity value v(1) ∼ N (0, ID)

Set v(1)
d ← v(1)

d

∏d−1
i=1 sin−1(θ

(1)
i), d = 1, . . . , D

Calculate H∗(θ (1), v(1)) = U (θ (1)) + K (v(1))

for � = 1 to L do

v
(�+ 1

2)

d = v(�)
d − εd

2
∂

∂θd
U (θ (�))

∏d−1
i=1 sin−2(θ

(�)
i), d = 1, . . . , D

(θ (�+1), v(�+ 1
2)) ← T̃S→R0 ◦ gε ◦ T̃R0→S (θ (�), v(�+ 1

2))

v(�+1)
d = v

(�+ 1
2)

d − εd

2
∂

∂θd
U (θ (�+1))

∏d−1
i=1 sin−2(θ

(�+1)
i), d = 1, . . . , D

end for
Calculate H∗(θ (L+1), v(L+1)) = U (θ (L+1)) + K (v(L+1))

Calculate the acceptance probability α = min{1, exp[−H∗(θ (L+1), v(L+1)) + H∗(θ (1), v(1))]}
Accept or reject the proposal according to α for the next state θ ′
Calculate TS→D(θ ′) and the corresponding weight |dTS→D |

2 Sampling Constrained Probability Distributions … 43

Algorithm 2 summarizes the steps for this method, called Spherical HMC in the
spherical coordinates (s-SphHMC). In theory, the hyperrectangle RD

0 can be used as
a base type (as the unit ball BD

0 (1) does) for general q-norm constraints for which
s-SphHMC can be applied. This is because q-norm domain QD can be bijectively
mapped to the hypercube C D , and thereafter to RD

0 . However the involved Jacobian
matrix is rather complicated and s-SphHMC used in this way is not as efficient as
c-SphHMC. Therefore, we use s-SphHMC only for box-type constraints.

2.4.3 Spherical LMC on Probability Simplex

A large class of statistical models involve defining probability distributions on the
simplex ΔK ,

ΔK :=
{

π ∈ R
D| πk ≥ 0,

K∑
k=1

πd = 1

}
(2.42)

As an example, we consider latent Dirichlet allocation (LDA) [10], which is a hier-
archical Bayesian model commonly used to model document topics. This type of
constraints can be viewed as a special case of the 1-norm constraint, discussed in
Sect. 2.3.3.1, by identifying the first orthant (all positive components) with the oth-
ers. Therefore, the underlying idea of c-SphHMC (algorithm 1) can be applied to
generate samples {θ} on the sphereS K−1. These samples can be transformed as {θ2}
and mapped back to the simplex ΔK .

More precisely, we should consider the following root mapping to transform ΔK

to its root space
√

Δ
K := {θ ∈ S K−1|θk ≥ 0, ∀ k = 1, . . . , K } ⊂ S K−1 (i.e., the

first orthant of the sphere S K−1)

TΔ→√
Δ : ΔK −→ √

Δ
K
, π �→ θ = √

π (2.43)

Note,
√

Δ
K

is introduced for the simplicity of discussion. The sampler is run on the
whole sphere S K−1. Each sample on the sphere S K−1 will be mapped to a point in
the simplex ΔK via square map regardless of its corresponding orthant.

In what follows, we show that the canonical spherical metricGSc (θ) is the same as

the Fisher metric on
√

Δ
K

up to a constant. In this sense, it is more natural to define the
sampling algorithms on the sphereS K−1 and it connects to Lagrangian Monte Carlo
[35]. We start with the toy example discussed in [49]. Denote the observed data as
x = {xi }N

i=1, where each data point belongs to one of the K categories with probability
p(xi = k|π) = πk . We assume a Dirichlet prior on π : p(π) ∝ ∏K

k=1 π
αk−1
k . The pos-

terior distribution is p(π |x) ∝ ∏K
k=1 π

nk+αk−1
k , where nk = ∑N

i=1 I (xi = k) counts
the points xi in category k. Denote n = [n1, . . . , nK]T and n := |n| = ∑K

k=1 nk . For
inference, we need to sample from the posterior distribution p(π |x) defined on the
probability simplex.

44 S. Lan and B. Shahbaba

Proposition 2.4.1 links the canonical spherical metric to the Fisher metric on√
Δ

K
.

Proposition 2.4.1 If n ∼ Multinom(n,π) for π ∈ ΔK , then the Fisher metric

G√
Δ(θ) defined on

√
Δ

K
has the following form:

G√
Δ(θ) = 4nGSc(θ) (2.44)

where n = |n|.
Proof The Fisher metric on ΔK is a function of π−K (here, ‘−K ’ means all but the
K -th components) and is calculated as follows:

GF(π−K) = −E[∇2 log p(x|π−K)]
= −E[∇2(nT

−K log(π−K) + (n − nT
−K1) log(1 − πT

−K1))]
= −E[∇(n−K /π−K − 1(n − nT

−K1)/(1 − πT
−K1))] (2.45)

= −E[− diag(n−K /π2
−K) − 11T(n − nT

−K1)/(1 − πT
−K1)

2]
= n[diag(1/π−K) + 11T/πK]

Now we use (2.43) to map the simplex to the sphere (the first orthant). Note that
dπ−K

dθT
−K

= 2 diag(θ−K). Therefore, by coordinate transformation, Fisher metric on
√

Δ
K

can be written as follows:

G√
Δ(θ) = dπT

−K

dθ−K
GF(π−K)

dπ−K

dθT
−K

= 4n[IK−1 + θ−K θ−K
T/θ2

K] = 4nGSc(θ)

(2.46)
�

Remark 2.1 The scalar 4n properly scales the spherical metric in high-dimensional
data intensive models. In LDA particularly, n could be the number of words counted
in the selected documents. Hence, we use G√

Δ(θ) instead of GSc(θ).

Recall that in the development of Spherical HMC algorithms, we decided to

omit the log volume adjustment term log
∣∣∣ dβD

dθS

∣∣∣, in the partial Hamiltonian (2.28)

and (2.37), and regard it as the weight to adjust the estimate of (2.20) or resample.
Although a similar numerical issue posed by the volume term still exists here, it is
much alleviated by the scaling term 4n. More importantly, afterward reweighting is
not feasible if the LDA model is going to be used in an online setting. Therefore, we
use φ(θ) in (2.21), as opposed to U (θ) to avoid the reweighting step. In this case,
the natural gradient in (2.34) for updating velocity becomes

2 Sampling Constrained Probability Distributions … 45

φ(θ) = U (π(θ)) − log

∣∣∣∣dπ

dθ

∣∣∣∣ = −2(n + α − 0.5)T log |θ |
[

IK−1

−θT−K /θK

]
G√

Δ(θ)−1∇θ−K φ(θ−K) = [(n + α − 0.5)/θ − θ ∗ |n + α − 0.5|](2n)−1

(2.47)
We refer to the resulting method as Spherical Lagrangian Monte Carlo (SphLMC)
which is summarized in Algorithm 3.

Algorithm 3 Spherical LMC for Simplex (SphLMC)

Initialize θ (1) at current θ = √
π

Sample a new velocity value v(1) ∼ N (0, IK)

Set v(1) ← v(1) − θ (1)(θ (1))
T
v(1)

Calculate H(θ (1), v(1)) = φ(θ (1)) + K (v(1))

for � = 1 to L do

v(�+ 1
2) = v(�) − ε

2

[
IK−1

−(θ)(�)
T
−K /θ

(�)
K

]
G√

Δ(θ (�))−1∇θ−K φ(θ
(�)
−K)

θ (�+1) = θ (�) cos(‖v(�+ 1
2)‖ε) + v(�+ 1

2)

‖v(�+ 1
2)‖

sin(‖v(�+ 1
2)‖ε)

v(�+ 1
2) ← −θ (�)‖v(�+ 1

2)‖ sin(‖v(�+ 1
2)‖ε) + v(�+ 1

2) cos(‖v(�+ 1
2)‖ε)

v(�+1) = v(�+ 1
2) − ε

2

[
IK−1

−(θ)(�+1)T
−K /θ

(�+1)
K

]
G√

Δ(θ (�+1))−1∇θ−K φ(θ
(�+1)
−K)

end for
Calculate H(θ (L+1), v(L+1)) = φ(θ (L+1)) + K (v(L+1))

Calculate the acceptance probability α = min{1, exp[−H(θ (L+1), v(L+1)) + H(θ (1), v(1))]}
Accept or reject the proposal according to α for the next state θ ′ and π ′ = (θ ′)2

To illustrate our proposed method, we consider the toy example discussed above.
For this problem, [49] propose a Riemannian Langevin Dynamics (RLD) method,
but use an expanded-mean parametrization to map the simplex to the whole space.
As mentioned above, this approach (i.e., expanding the parameter space) might not
be efficient in general. This is illustrated in Fig. 2.6. Here, we set α = 0.5 and run
RMW, WallHMC, RLD, and SphLMC for 1.1 × 105 iterations; we discard the first
104 samples. As we can see in Fig. 2.6, with similar acceptance rates,2 RLD takes
longer time to reach the high density region (upper left), while SphLMC reaches
the region almost immediately (upper right). Compared to alternative algorithms,
SphLMC method provides better probability estimates (lower left). Further, SphLMC
generates samples with a substantially lower autocorrelation (lower right).

2Metropolis test is done for this toy example as in [49], but will be omitted in stochastic mini-batch
algorithms in Sect. 2.5.5.

46 S. Lan and B. Shahbaba

-1 -0.5 0 0.5 1

0

0.2

0.4

0.6

0.8

1

1.2

Riemannian Langevian Dynamics
p

1

p
2

p
3

-1 -0.5 0 0.5 1

0

0.2

0.4

0.6

0.8

1

1.2

Spherical Lagrangian Monte Carlo
p

1

p
2

p
3

0 1 2 3 4 5 6 7 8 9 10
Category

-0.6

-0.5

-0.4

-0.3

-0.2

-0.1

0

0.1

P
ro
b
a
b
ili

ty
 e
s
ti
m
a
te
s
 a

d
ju
s
te

d
 b

y
 t
h
e
 t
ru

e
 v
a
lu

e
s

RWM
WallHMC
RLD
SphLMC
Truth

0 5 10 15 20
Lag

-0.2

0

0.2

0.4

0.6

0.8

1

A
C

F
 o

f
p

1

RWM

0 5 10 15 20
Lag

-0.2

0

0.2

0.4

0.6

0.8

1

A
C

F
 o

f
p

1

WallHMC

0 5 10 15 20
Lag

-0.2

0

0.2

0.4

0.6

0.8

1

A
C

F
 o

f
p

1

RLD

0 5 10 15 20
Lag

-0.2

0

0.2

0.4

0.6

0.8

1

A
C

F
 o

f
p

1

SphLMC

0 5 10 15 20
Lag

-0.2

0

0.2

0.4

0.6

0.8

1

A
C

F
 o

f
p

2

0 5 10 15 20
Lag

-0.2

0

0.2

0.4

0.6

0.8

1

A
C

F
 o

f
p

2

0 5 10 15 20
Lag

-0.2

0

0.2

0.4

0.6

0.8

1

A
C

F
 o

f
p

2

0 5 10 15 20
Lag

-0.2

0

0.2

0.4

0.6

0.8

1

A
C

F
 o

f
p

2

0 5 10 15 20
Lag

-0.2

0

0.2

0.4

0.6

0.8

1

A
C

F
 o

f
p

9

0 5 10 15 20
Lag

-0.2

0

0.2

0.4

0.6

0.8

1

A
C

F
 o

f
p

9

0 5 10 15 20
Lag

-0.2

0

0.2

0.4

0.6

0.8

1

A
C

F
 o

f
p

9

0 5 10 15 20
Lag

-0.2

0

0.2

0.4

0.6

0.8

1

A
C

F
 o

f
p

9

Fig. 2.6 Dirichlet-Multinomial model: first 10 steps by RLD (upper left), first 10 steps by SphLMC
(upper right), probability estimates (lower left) and autocorrelation function for MCMC samples
(lower right)

2.5 Experimental Results

In this section, we evaluate our proposed methods using simulated and real data.
To this end, we compare their efficiency to that of RWM, Wall HMC, exact
HMC [47], and the Riemannian Langevin dynamics (RLD) algorithm proposed
by [49] for LDA. We define efficiency in terms of time-normalized effective sam-
ple size (ESS). Given N MCMC samples, for each parameter, we define ESS =
N [1 + 2Σ K

k=1ρ(k)]−1, where ρ(k) is sample autocorrelation with lag k [26]. We use
the minimum ESS normalized by the CPU time, s (in seconds), as the overall measure
of efficiency: min(ESS)/s. All computer codes are available online at http://www.
ics.uci.edu/~slan/SphHMC/Spherical_Augmentation.html or at http://bitbucket.org/
lanzithinking/sphericalaugmentation.

http://www.ics.uci.edu/~slan/SphHMC/Spherical_Augmentation.html
http://www.ics.uci.edu/~slan/SphHMC/Spherical_Augmentation.html
http://bitbucket.org/lanzithinking/sphericalaugmentation
http://bitbucket.org/lanzithinking/sphericalaugmentation

2 Sampling Constrained Probability Distributions … 47

2.5.1 Truncated Multivariate Gaussian

For illustration purpose, we start with a truncated bivariate Gaussian distribution

(
β1

β2

)
∼ N

(
0,

[
1 0.5

0.5 1

])
, 0 ≤ β1 ≤ 5, 0 ≤ β2 ≤ 1

This is box-type constraint with the lower and upper limits as l = (0, 0) and u =
(5, 1) respectively. The original rectangle domain can be mapped to 2D unit disc
B2

0(1) to use c-SphHMC, or mapped to 2D rectangle R2
0 where s-SphHMC can be

directly applied.
The upper leftmost panel of Fig. 2.7 shows the heatmap based on the exact density

function, and the other panels show the corresponding heatmaps based on MCMC
samples from RWM, Wall HMC, exact HMC, c-SphHMC and s-SphHMC respec-
tively. All algorithms generate probability density estimates that visually match the
true density. Table 2.1 compares the true mean and covariance of the above truncated
bivariate Gaussian distribution with the point estimates using 2 × 105 (2 × 104 for
each of 10 repeated experiments with different random seeds) MCMC samples in
each method. Overall, all methods estimate the mean and covariance reasonably well.

To evaluate the efficiency of the above-mentioned methods, we repeat this exper-
iment for higher dimensions, D = 10, and D = 100. As before, we set the mean to
zero and set the (i, j)-th element of the covariance matrix to Σi j = 1/(1 + |i − j |).
Further, we impose the following constraints on the parameters,

β1

β 2

−2 −1 0 1 2

−2
−1

0
1

2

 0.
02

 0.
06

 0.1

 0.12
 0.16

Truth

β1

β 2

−2 −1 0 1 2

−2
−1

0
1

2

Estimate by RWM

β1

β 2

−2 −1 0 1 2

−2
−1

0
1

2

Estimate by Wall HMC

β1

β 2

−2 −1 0 1 2

−2
−1

0
1

2

Estimate by exact HMC

β1

β 2

−2 −1 0 1 2

−2
−1

0
1

2

Estimate by c−SphHMC

β1

β 2

−2 −1 0 1 2

−2
−1

0
1

2

Estimate by s−SphHMC

Fig. 2.7 Density plots of a truncated bivariate Gaussian using exact density function (upper left
most) and MCMC samples from RWM, Wall HMC, exact HMC, c-SphHMC and s-SphHMC
respectively. Solid elliptical curves always show true unconstrained probability density contours.
Dashed lines define linear constrained domains. Colored heatmaps indicate constrained probability
density based on truth or estimation from MCMC samples

48 S. Lan and B. Shahbaba

Table 2.1 Comparing the point estimates for the mean and covariance of a bivariate truncated
Gaussian distribution using RWM, Wall HMC, exact HMC, c-SphHMC and s-SphHMC

Method Mean Covariance

Truth

[
0.7906

0.4889

] [
0.3269 0.0172

0.0172 0.08

]

RWM

[
0.7796 ± 0.0088

0.4889 ± 0.0034

] [
0.3214 ± 0.009 0.0158 ± 0.001

0.0158 ± 0.001 0.0798 ± 5e−04

]

Wall HMC

[
0.7875 ± 0.0049

0.4884 ± 8e−04

] [
0.3242 ± 0.0043 0.017 ± 0.001

0.017 ± 0.001 0.08 ± 3e−04

]

exact HMC

[
0.7909 ± 0.0025

0.4885 ± 0.001

] [
0.3272 ± 0.0026 0.0174 ± 7e−04

0.0174 ± 7e−04 0.08 ± 3e−04

]

c-SphHMC

[
0.79 ± 0.005

0.4864 ± 0.0016

] [
0.3249 ± 0.0045 0.0172 ± 0.0012

0.0172 ± 0.0012 0.0801 ± 0.001

]

s-SphHMC

[
0.7935 ± 0.0093

0.4852 ± 0.003

] [
0.3233 ± 0.0062 0.0202 ± 0.0018

0.0202 ± 0.0018 0.0791 ± 9e−04

]

0 ≤ βi ≤ ui

where ui (i.e., the upper bound) is set to 5 when i = 1; otherwise, it is set to 0.5.
For each method, we obtain 105 MCMC samples after discarding the initial 104

samples. We set the tuning parameters of algorithms such that their overall acceptance
rates are within a reasonable range. As shown in Table 2.2, Spherical HMC algorithms
are substantially more efficient than RWM and Wall HMC. For RWM, the proposed
states are rejected about 95 % of times due to violation of the constraints. On average,
Wall HMC bounces off the wall around 3.81 (L = 2) and 6.19 (L = 5) times per
iteration for D = 10 and D = 100 respectively. Exact HMC is quite efficient for
relatively low dimensional truncated Gaussian (D = 10); however it becomes very
slow for higher dimensions (D = 100). In contrast, by augmenting the parameter
space, Spherical HMC algorithms handle the constraints in a more efficient way.
Since s-SphHMC is more suited for box-type constraints, it is substantially more
efficient than c-SphHMC in this example.

2.5.2 Bayesian Lasso

In regression analysis, overly complex models tend to overfit the data. Regularized
regression models control complexity by imposing a penalty on model parameters.
By far, the most popular model in this group is Lasso (least absolute shrinkage and
selection operator) proposed by [61]. In this approach, the coefficients are obtained

2 Sampling Constrained Probability Distributions … 49

Ta
bl
e
2.
2

C
om

pa
ri

ng
th

e
ef

fic
ie

nc
y

of
R

W
M

,W
al

lH
M

C
,e

xa
ct

H
M

C
,c

-S
ph

H
M

C
an

d
s-

Sp
hH

M
C

in
te

rm
s

of
sa

m
pl

in
g

fr
om

tr
un

ca
te

d
G

au
ss

ia
n

di
st

ri
bu

tio
ns

D
im

en
si

on
M

et
ho

d
A

Pa
s/

ite
rb

E
SS

(m
in

,m
ed

,m
ax

)c
M

in
(E

SS
)/

sd
Sp

ee
du

p

D
=

10
R

W
M

0.
62

5.
72

E
-0

5
(4

8,
69

1,
73

6)
7.

58
1.

00

W
al

lH
M

C
0.

83
1.

19
E

-0
4

(3
19

04
,8

62
75

,8
73

11
)

24
41

.7
2

32
2.

33

E
xa

ct
H

M
C

1.
00

7.
60

E
-0

5
(1

e+
05

,1
e+

05
,1

e+
05

)
11

96
0.

29
15

78
.8

7

c-
Sp

hH
M

C
0.

82
2.

53
E

-0
4

(6
26

58
,8

55
70

,8
62

95
)

22
53

.3
2

29
7.

46

s-
Sp

hH
M

C
0.

79
2.

02
E

-0
4

(7
60

88
,1

e+
05

,1
e+

05
)

34
29

.5
6

45
2.

73

D
=

10
0

R
W

M
0.

81
5.

45
E

-0
4

(1
,4

,5
4)

0.
01

1.
00

W
al

lH
M

C
0.

74
2.

23
E

-0
3

(1
77

77
,5

29
09

,5
57

13
)

72
.4

5
51

30
.2

1

E
xa

ct
H

M
C

1.
00

4.
65

E
-0

2
(9

79
63

,1
e+

05
,1

e+
05

)
19

.1
6

13
56

.6
4

c-
Sp

hH
M

C
0.

73
3.

45
E

-0
3

(5
56

67
,6

85
85

,7
28

50
)

14
6.

75
10

39
0.

94

s-
Sp

hH
M

C
0.

87
2.

30
E

-0
3

(7
44

76
,9

96
70

,1
e+

05
)

29
4.

31
20

83
9.

43
a A

cc
ep

ta
nc

e
pr

ob
ab

ili
ty

b
Se

co
nd

s
pe

r
ite

ra
tio

n
c (m

in
im

um
,m

ed
ia

n,
m

ax
im

um
)

ef
fe

ct
iv

e
sa

m
pl

e
si

ze
d
M

in
im

al
E

SS
pe

r
se

co
nd

50 S. Lan and B. Shahbaba

by minimizing the residual sum of squares (RSS) subject to a constraint on the
magnitude of regression coefficients,

min‖β‖1≤t
RSS(β), RSS(β) :=

∑
i

(yi − β0 − xT
i β)2 (2.48)

One could estimate the parameters by solving the following optimization problem:

min
β,λ

RSS(β) + λ‖β‖1 (2.49)

where λ ≥ 0 is the regularization parameter. [30, 48] have proposed a Bayesian
alternative method, called Bayesian Lasso, where the penalty term is replaced by
a prior distribution of the form P(β) ∝ exp(−λ|β|), which can be represented as
a scale mixture of normal distributions [66]. This leads to a hierarchical Bayesian
model with full conditional conjugacy; therefore, the Gibbs sampler can be used for
inference.

Our proposed spherical augmentation in this chapter can directly handle the con-
straints in Lasso models. That is, we can conveniently use Gaussian priors for model
parameters, β|σ 2 ∼ N (0, σ 2 I), and let the sampler automatically handle the con-
straint. In particular, c-SphHMC can be used to sample posterior distribution of β

with the 1-norm constraint. For this problem, we modify the Wall HMC algorithm,
which was originally proposed for box-type constraints [46]. See Appendix “Bounce
in Diamond: Wall HMC for 1-Norm Constraint” for more details.

We evaluate our method based on the diabetes data set (N = 442, D = 10) dis-
cussed in [48]. Figure 2.8 compares coefficient estimates given by the Gibbs sam-
pler [48], Wall HMC, and Spherical HMC, respectively, as the shrinkage factor
s := ‖β̂Lasso‖1/‖β̂OLS‖1 changes from 0 to 1. Here, β̂OLS denotes the estimates
obtained by ordinary least squares (OLS) regression. For the Gibbs sampler, we

−3
0

−2
0

−1
0

0
10

20
30

Shrinkage Factor

Co
eff

icie
nts

0 0.2 0.4 0.6 0.8 1

2
1

10
8

4
6

Bayesian Lasso
 Gibbs Sampler

−3
0

−2
0

−1
0

0
10

20
30

Shrinkage Factor

Co
eff

icie
nts

0 0.2 0.4 0.6 0.8 1

5
2

7
1

10
4

3

Bayesian Lasso
 Wall HMC

−3
0

−2
0

−1
0

0
10

20
30

Shrinkage Factor

Co
eff

icie
nts

0 0.2 0.4 0.6 0.8 1

5
2

7
1

10
6

4
3

9

Bayesian Lasso
 Spherical HMC

Fig. 2.8 Bayesian Lasso using three different sampling algorithms: Gibbs sampler (left), Wall
HMC (middle) and Spherical HMC (right)

2 Sampling Constrained Probability Distributions … 51

0
50

0
10

00
15

00

Shrinking Factor

Mi
n(

ES
S)

/s

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Gibbs Sampler
Wall HMC
Spherical HMC

Fig. 2.9 Sampling efficiency of different algorithms for Bayesian Lasso based on the diabetes
dataset

choose different λ so that the corresponding shrinkage factor s varies from 0 to
1. For Wall HMC and Spherical HMC, we fix the number of leapfrog steps to 10
and set the trajectory length such that they both have comparable acceptance rates
around 70 %.

Figure 2.9 compares the sampling efficiency of these three methods. As we impose
tighter constraints (i.e., lower shrinkage factors s), Spherical HMC becomes substan-
tially more efficient than the Gibbs sampler and Wall HMC.

2.5.3 Bridge Regression

The Lasso model discussed in the previous section is in fact a member of a family of
regression models called Bridge regression [24], where the coefficients are obtained
by minimizing the residual sum of squares subject to a constraint on the magnitude
of regression coefficients as follows:

min‖β‖q≤t
RSS(β), RSS(β) :=

∑
i

(yi − β0 − xT
i β)2 (2.50)

For Lasso, q = 1, which allows the model to force some of the coefficients to become
exactly zero (i.e., become excluded from the model). When q = 2, this model is
known as ridge regression. Bridge regression is more flexible by allowing different
q-norm constraints for different effects on shrinking the magnitude of parameters
(See Fig. 2.10).

While the Gibbs sampler method of [30, 48] is limited to Lasso, our approach
can be applied to all bridge regression models with different q. To handle the general
q-norm constraint, one can map the constrained domain to the unit ball by (2.12)
and apply c-SphHMC. Figure 2.10 compares the parameter estimates of Bayesian
Lasso to the estimates obtained from two Bridge regression models with q = 1.2
and q = 0.8 for the diabetes dataset [48] using our Spherical HMC algorithm. As

52 S. Lan and B. Shahbaba

−3
0

−2
0

−1
0

0
10

20
30

Shrinkage Factor

Co
eff

icie
nts

0 0.2 0.4 0.6 0.8 1

5
2

7
1

10
6

4
3

9

Beysian Bridge
 Lasso (q=1)

−3
0

−2
0

−1
0

0
10

20
30

Shrinkage Factor

Co
eff

icie
nts

0 0.2 0.4 0.6 0.8 1

5
2

1
10

8
6

3
9

Beysian Bridge
 q=1.2

−3
0

−2
0

−1
0

0
10

20
30

Shrinkage Factor

Co
eff

icie
nts

0 0.2 0.4 0.6 0.8 1

7
5

1
4

9

Beysian Bridge
 q=0.8

Fig. 2.10 Bayesian Bridge Regression by Spherical HMC: Lasso (q = 1, left), q = 1.2 (middle),
and q = 0.8 (right)

expected, tighter constraints (e.g., q = 0.8) would lead to faster shrinkage of regres-
sion parameters as we decrease s.

2.5.4 Reconstruction of Quantized Stationary Gaussian
Process

We now investigate the example of reconstructing quantized stationary Gaussian
process discussed in [47]. Suppose we are given N values of a function f (xi), i =
1, . . . , N , which takes discrete values from {qk}K

k=1. We assume that this is a quan-
tized projection of a sample y(xi) from a stationary Gaussian process with a known
translation-invariant covariance kernel of the form Σi j = K (|xi − x j |), and the quan-
tization follows a known rule of the form

f (xi) = qk, if zk ≤ y(xi) < zk+1 (2.51)

The objective is to sample from the posterior distribution

p(y(x1), . . . , y(xN)| f (x1), . . . , f (xN)) ∼ N (0,Σ) trunctated by rule (51)

(2.52)
In this example, the function is sampled from a Gaussian process with the following
kernel:

K (|xi − x j |) = σ 2 exp

{
−|xi − x j |2

2η2

}
, σ 2 = 0.6, η2 = 0.2

We sample N = 100 points of {y(xi)} and quantize them with

2 Sampling Constrained Probability Distributions … 53

0 10 20 30 40

−1
.5

−0
.5

0.5
1.5

0 10 20 30 40

−2
−1

0
1

2 Truth
RWM
Wall HMC

exact HMC
c−SphHMC
s−SphHMC

Fig. 2.11 Quantized stationary Gaussian process (upper) and the estimates of the process (lower)

q1 = −0.75, q2 = −0.25, q3 = 0.25, q4 = 0.75,

z1 = −∞, z2 = −0.5, z3 = 0, z4 = 0.5, z5 = +∞

This example involves two types of constraints: box-type (two sided) constraints and
one-sided constraints. In implementing our Spherical HMC algorithms, we transform
the subspace formed by components with both finite lower and upper limits into unit
ball and map the subspace formed by components with one-sided constraints to the
whole space using absolute value (discussed at the end of Sect. 2.3).

Figure 2.11 shows the quantized Gaussian process (upper) and the estimates
(lower) with 105 samples given by different MCMC algorithms. Overall, all the meth-
ods recover the truth well. Table 2.3 summarizes the efficiency of sampling 1.1 × 105

and burning the first 104 with RWM, Wall HMC, exact HMC, c-SphHMC and s-
SphHMC. Exact HMC generates more effective samples but takes much longer time
even though implemented in C. Spherical HMC algorithms outperform it in terms of
time-normalized ESS. Interestingly, Wall HMC performs well in this example, even
better than exact HMC and c-SphHMC.

Table 2.3 Comparing efficiency of RWM, Wall HMC, exact HMC, c-SphHMC and s-SphHMC
in reconstructing a quantized stationary Gaussian process

Method APa s/iterb ESS(min,med,max)c Min(ESS)/sd Speedup

RWM 0.70 7.11E-05 (2,9,35) 0.22 1.00

Wall HMC 0.69 9.94E-04 (12564, 24317, 43876) 114.92 534.48

Exact
HMC

1.00 1.00E-02 (72074, 1e+05, 1e+05) 65.31 303.76

c-SphHMC 0.72 1.73E-03 (13029, 26021, 56445) 68.44 318.32

s-SphHMC 0.80 1.09E-03 (14422, 31182, 81948) 120.59 560.86
aAcceptance probability
bSeconds per iteration
c(minimum, median, maximum) effective sample size
dMinimal ESS per second

54 S. Lan and B. Shahbaba

2.5.5 Latent Dirichlet Allocation on Wikipedia Corpus

LDA [10] is a popular hierarchical Bayesian model for topic modeling. The model
consists of K topics with probabilities {πk} drawn from a symmetric Dirichlet prior
Dir(β). A document d is modeled by a mixture of topics, with mixing proportions
ηd ∼ Dir(α). Document d is assumed to be generated by i.i.d. sampling of a topic
assignment, zdi , from ηd for each word wdi in the document, and then drawing the
word wdi from the assigned topic with probability πzdi [49]. Reference [60] integrate
out η analytically to obtain the following semi-collapsed distribution:

p(w, z, π |α, β) =
D∏

d=1

Γ (Kα)

Γ (Kα + nd··)

K∏
k=1

Γ (α + ndk·)
Γ (α)

K∏
k=1

Γ (Wβ)

Γ (β)W

W∏
w=1

π
β+n·kw−1
kw

(2.53)
where ndkw = ∑Nd

i=1 δ(wdi = w, zdi = k). Here, “·” denotes the summation over the
corresponding index. Given π , the documents are i.i.d so the above equation can be
factorized as follows [49]:

p(w, z, π |α, β) = p(π |β)

D∏
d=1

p(wd , zd |α, π)

p(wd , zd |α, π) =
K∏

k=1

Γ (α + ndk·)
Γ (α)

W∏
w=1

π
ndkw
kw

(2.54)

To evaluate our proposed methods, we compare them with the state-of-the-art
method of [49]. Their approach, called stochastic gradient Riemannian Langevin
dynamics (sg-RLD) is an extension of the stochastic gradient Langevin dynam-
ics (SGLD) proposed by [65]. Because this approach uses mini-batches of data to
approximate the gradient and omits the accept/reject step of Metropolis-Hastings
while decreasing the step size, we follow the same procedure to make our meth-
ods comparable. Further, because Langevin dynamics can be regarded as a single
step Hamiltonian dynamics [46], we set L = 1. We refer the resulting algorithms
as sg-SphHMC and sg-SphLMC, which are modified versions of our SphHMC and
SphLMC algorithms. sg-SphLMC uses the following stochastic (natural) gradient
(gradient preconditioned with metric) derived by setting θ = {θkw}, n = {n∗

kw}, and
α = β in Eq. (2.47)

gkw = [(n∗
kw + β − 1/2)/θkw + θkw(n∗

k· + W (β − 1/2))]/(2 ∗ n∗
k·)

n∗
kw = |D|

|Dt |
∑
d∈Dt

Ezd |wd ,θ,α[ndkw] (2.55)

2 Sampling Constrained Probability Distributions … 55

where 1/2 comes from the logarithm of volume adjustment. For sg-SphHMC, the
exact Hamiltonian (2.27), as opposed to the partial Hamiltonian (2.28), is used so
that the associated Hamiltonian dynamics preserves the correct target distribution.
Therefore, sg-SphHMC only differs from sg-SphLMC in terms of missing the scaling
term 4n in Eq. (2.47) and the stochastic gradient for sg-SphHMC is 4gkwn∗

k· (See
Sect. 2.4.3) The expectation in Eq. (2.55) is calculated using Gibbs sampling on the
topic assignment in each document separately, given the conditional distributions [49]

p(zdi = k|wd , θ, α) = (α + n\i
dk·)πkwdi∑

k(α + n\i
dk·)πkwdi

(2.56)

where \i means a count excluding the topic assignment variable currently being
updated. Step size is decreased according to εt = a(1 + t/b)−c.

We use perplexity [49, 62] to compare the predictive performance of different
methods in terms of the probability they assign to unseen data,

perp(wd |W , α, β) = exp

{
−

nd··∑
i=1

log p(wdi |W , α, β)/nd··

}

p(wdi |W , α, β) = Eηd ,π [
∑

k

ηdkπkwdi]
(2.57)

where W is the training set and wd is the hold-out sample. More specifically, we use
the document completion approach [62], which partitions the test document wd into
two sets, wtrain

d and wtest
d ; we then use wtrain

d to estimate nd for the test document and
use wtest

d to calculate perplexity.
We train the model online using 50000 documents randomly downloaded from

Wikipedia with the vocabulary of approximately 8000 words created from Project
Gutenberg texts [31]. The perplexity is evaluated on 1000 held-out documents. A
mini-batch of 50 documents is used for updating the natural gradient for 4 algorithms:
sg-RLD, sg-wallLMC,3 sg-SphHMC and sg-SphLMC.

Figure 2.12 compares the above methods in terms of their perplexities. For each
method, we show the best performance over different settings (Settings for best
performance are listed in Table 2.4.). Both sg-wallLMC and sg-SphLMC have lower
perplexity than sg-RLD at early stage, when relatively a small number of documents
are used for training; as the number of training documents increases, the methods
reach the same level of performance. As expected, sg-SphHMC does not perform
well due to the absence of a proper scaling provided by the Fisher metric.

3The stochastic gradient for sg-wallLMC is [(n∗
kw + β − 1/2) + πkw(n∗

k· + W (β − 1/2))]/n∗
k· cal-

culated with (2.45).

56 S. Lan and B. Shahbaba

10000 20000 30000 40000 50000

10
00

20
00

30
00

50
00

number of documents

Pe
rp

le
xi

ty

�

�

�

�
�

� � � � �

�

�
�

� � � � � � �

�

�

�

�

�
�

�
�

� �

�

�
�

� � � � � � �

sg−RLD
sg−wallLMC
sg−SphHMC
sg−SphLMC

10000 20000 30000 40000 50000

50
10

0
50

0
20

00
50

00

number of documents

Ti
m

e

sg−RLD
sg−wallLMC
sg−SphHMC
sg−SphLMC

Fig. 2.12 Test-set perplexity and computation time (in log scale) based on the Wikipedia corpus

Table 2.4 Parameter settings for best performance in Wikipedia experiment

Algorithm a b c α β K Gibbs
samples

sg-RLD 0.01 1000 0.6 0.01 0.5000 100 100

sg-wallLMC 0.20 1000 2.0 0.01 0.5000 100 100

sg-SphHMC 0.01 1000 0.6 0.01 0.0100 100 100

sg-SphLMC 0.25 1000 1.5 0.01 0.5000 100 100

2.6 Discussion

We have introduced a new approach, Spherical Augmentation, for sampling from
constrained probability distributions. This method maps the constrained domain to a
sphere in an augmented space. Sampling algorithms can freely explore the surface of
sphere to generate samples that remain within the constrained domain when mapped
back to the original space. This way, our proposed method provides a mathematically
natural and computationally efficient framework that can be applied to a wide range
of statistical inference problems with norm constraints.

The augmentation approach proposed here is based on the change of variables
theorem. We augment the original D-dimensional space with one extra dimension by
either inserting slack variables (c-SphHMC) or using embedding map (s-SphHMC),
The augmented Hamiltonian is the same under different representations (2.30), (2.40)
due to the mathematical fact that the energy is invariant to the choice of coordinates
(Proposition 2.7.1). To account for the change of geometry, a volume adjustment
term needs to be used, either as a weight after obtaining all the samples (SphHMC)
or as an added term to the total energy (SphLMC).

Our proposed scheme takes advantage of the splitting strategy to further improve
computational efficiency. We split the Lagrangian dynamics and update velocity
in the tangent space, rather than momentum in the cotangent space. Even though

2 Sampling Constrained Probability Distributions … 57

the embedding S D ↪→ R
D+1 is used to state the energy invariance (Proposition

2.7.1) and to derive spherical metrics (Appendices “Canonical Metric in Cartesian
Coordinates” and “Round Metric in the Spherical Coordinates”), splitting Lagrangian
dynamics alone does not require embedding as in [13] and could be used as a general
method in manifold MCMC.

Although we did not explicitly explore the effect of increasing dimensionality, one
would expect that the benefits of our proposed methods would diminish as dimen-
sion grows. First, standard Metropolis algorithms defined on finite-dimensions have
diminishing acceptance probability for fixed step size and increasing dimension [50,
54, 55]. Second, the surface of unit D-sphere, S D , diminishes as D → +∞, which
means an increasingly constrained space for proposals. Third, the importance weights
(2.29) may become extreme around boundaries. These issues impose challenges on
scaling up the proposed methods. The first issue can be resolved by recent devel-
opment of dimension-independent MCMC algorithms [8, 9, 17]. The second issue
could be resolved by considering a D-sphere with radius r ∝ √

D (hence, the sur-
face area A(S D(r)) = 2π(D+1)/2r D

Γ ((D+1)/2)
�→ 0). The last one may be resolved by techniques

from particle filtering [6, 16, 19].
In developing Spherical HMC, we start with the standard HMC, using the

Euclidean metric I on unit ball BD
0 (1). Then, spherical geometry is introduced to

handle constraints. One possible future direction could be to directly start with
RHMC/LMC, which use a more informative metric (i.e., the Fisher metric GF),
and then incorporate the spherical geometry for the constraints. For example, a pos-
sible metric for the augmented space could be GF + θθT/θ2

D+1. However, under
such a metric, we might not be able to find the geodesic flow analytically, which
could undermine the added benefit from using the Fisher metric. Another interesting
extension could be defining HMC on D-torus T D := S 1 × · · ·S 1︸ ︷︷ ︸

D

for box-type

constraints. Change of variables (2.7), (2.8) can be avoided but again it might be
challenging to find analytical geodesic solutions on T D .

In future, we also intend to explore the possibility of applying the spherical
augmentation to Elliptical Slice sampler [38] in order to generalize it to Spher-
ical Slice sampler (SSS). The resulting algorithm can be applied to truncated
Gaussian process models. In general, we can extend our proposed methods to infinite
dimensional function spaces. This would involve the infinite dimensional manifold
S ∞ := { f ∈ L2(�)| ∫ f 2dμ = 1}. In this setting it is crucial to ensure that the
acceptance probability does not drop quickly as dimension increases [9].

Acknowledgments SL is supported by EPSRC Programme Grant, Enabling Quantification of
Uncertainty in Inverse Problems (EQUIP), EP/K034154/1. BS is supported by NSF grant IIS-
1216045 and NIH grant R01-AI107034.

http://www2.warwick.ac.uk/fac/sci/maths/research/grants/equip/

58 S. Lan and B. Shahbaba

Appendix

Spherical Geometry

We first discuss the geometry of the D-dimensional sphere S D := {θ̃ ∈ R
D+1 :

‖θ̃‖2 = 1} ↪→ R
D+1 under different coordinate systems, namely, Cartesian coordi-

nates and the spherical coordinates. Since S D can be embedded (injectively and
differentiably mapped to) inRD+1, we first introduce the concept of ‘induced metric’.

Definition 2.1 (induced metric) If Dd can be embedded to M m (m > d) by f :
U ⊂ D ↪→ M , then one can define the induced metric, gD , on TD through the
metric gM defined on TM :

gD(θ)(u, v) = gM (f (θ))(d fθ (u), d fθ (v)), u, v ∈ TθD (2.58)

Remark 2.2 For any f : U ⊂ S D ↪→ R
D+1, we can define the induced metric

through dot product on R
D+1. More specifically,

gS (u, v) = [(D f)u]T(D f)v = uT[(D f)T(D f)]v (2.59)

where (D f)(D+1)×D is the Jacobian matrix of the mapping f . A Metric induced from
dot product on Euclidean space is called a “canonical metric”. This observation leads
to the following simple fact that lays down the foundation of Spherical HMC.

Proposition 2.7.1 (Energy invariance) Kinetic energy 1
2 〈v, v〉G(θ) is invariant to the

choice of coordinate systems.

Proof For any v ∈ TθD , suppose θ(t) such that θ̇(0) = v. Denote the pushforward
of v by embedding map f : D → M as ṽ := f∗(v) = d

dt (f ◦ θ)(0). Then we have

1

2
〈v, v〉G(θ) = 1

2
gM (f (θ))(ṽ, ṽ) (2.60)

That is, regardless of the form of the energy under a coordinate system, its value is
the same as the one in the embedded manifold. In particular, when M = R

D+1, the
right hand side simplifies to 1

2‖ṽ‖2
2. �

Canonical Metric in Cartesian Coordinates

Now consider the D-dimensional ball BD
0 (1) := {θ ∈ R

D : ‖θ‖2 ≤ 1}. Here,
{θ,BD

0 (1)} can be viewed as the Cartesian coordinate system forS D . The coordinate
mapping TB→S+ : θ �→ θ̃ = (θ, θD+1) in (2.5) can be viewed as the embedding map

into R
D+1, and the Jacobian matrix of TB→S+ is dTB→S+ = d θ̃

dθT =
[

ID

−θT/θD+1

]
.

Therefore the canonical metric of S D in Cartesian coordinates, GSc(θ), is

2 Sampling Constrained Probability Distributions … 59

GSc(θ) = dT T
B→S+dTB→S+ = ID + θθT

θ2
D+1

= ID + θθT

1 − ‖θ‖2
2

(2.61)

Another way to obtain the metric is through the first fundamental form ds2 (i.e.,
squared infinitesimal length of a curve) for S D , which can be expressed in terms of
the differential form dθ and the canonical metric GSc(θ),

ds2 = 〈dθ , dθ〉GSc
= dθTGSc(θ)dθ

On the other hand, ds2 can also be obtained as follows [59]:

ds2 =
D∑

i=1

dθ2
i + (d(θD+1(θ)))2 = dθTdθ + (θTdθ)2

1 − ‖θ‖2
2

= dθT[I + θθT/θ2
D+1]dθ

Equating the above two quantities yields the form of the canonical metric GSc(θ) as
in Eq. (2.61). This viewpoint provides a natural way to explain the length of tangent

vector. For any vector ṽ = (v, vD+1) ∈ Tθ̃S
D = {ṽ ∈ R

D+1 : θ̃
T
ṽ = 0}, one could

think of GSc(θ) as a mean to express the length of ṽ in terms of v,

vTGSc(θ)v = ‖v‖2
2 + vTθθTv

θ2
D+1

= ‖v‖2
2 + (−θD+1vD+1)

2

θ2
D+1

= ‖v‖2
2 + v2

D+1 = ‖ṽ‖2
2

(2.62)
This indeed verifies the energy invariance Proposition 2.7.1.

The following proposition provides the analytic forms of the determinant and the
inverse of GSc(θ).

Proposition 2.7.2 The determinant and the inverse of the canonical metric are as
follows:

|GSc(θ)| = θ−2
D+1, GSc(θ)−1 = ID − θθT (2.63)

Proof The determinant of the canonical metric GSc(θ) is given by the matrix deter-
minant lemma

|GSc(θ)| = det

[
ID + θθT

θ2
D+1

]
= 1 + θTθ

θ2
D+1

= 1

θ2
D+1

The inverse ofGSc(θ) is obtained by the Sherman-Morrison-Woodbury formula [29]

GSc(θ)−1 =
[
ID + θθT

θ2
D+1

]−1

= ID − θθT/θ2
D+1

1 + θTθ/θ2
D+1

= ID − θθT

�

60 S. Lan and B. Shahbaba

Corollary 2.1 The volume adjustment of changing measure in (2.6) is

∣∣∣∣ dθB

dθSc

∣∣∣∣ = |GSc(θ)|− 1
2 = |θD+1| (2.64)

Proof Canonical measure can be defined through the Riesz representation theorem
by using a positive linear functional on the space C0(S D) of compactly supported
continuous functions on S D [21, 59]. More precisely, there is a unique positive
Borel measure μc such that for (any) coordinate chart (BD

0 (1), TB→S+),

∫
S D+

f (θ̃)dθSc =
∫
BD

0 (1)

f (θ)
√|GSc(θ)|dθB

where μc = dθSc , and dθB is the Euclidean measure. Therefore we have

∣∣∣∣dθSc

dθB

∣∣∣∣ = |GSc(θ)| 1
2 = |θD+1|−1

Alternatively,
∣∣∣ dθB

dθSc

∣∣∣ = |θD+1|. �

Geodesic on a Sphere in Cartesian Coordinates

To find the geodesic on a sphere, we need to solve the following equations:

θ̇ = v (2.65)

v̇ = −vTΓ Sc(θ)v (2.66)

for which we need to calculate the Christoffel symbols, Γ Sc(θ), first. Note that the
(i, j)-th element of GSc is gi j = δi j + θiθ j/θ

2
D+1, and the (i, j, k)-th element of

dGSc is gi j,k = (δikθ j + θiδ jk)/θ
2
D+1 + 2θiθ jθk/θ

4
D+1. Therefore

Γ k
i j = 1

2
gkl[gl j,i + gil, j − gi j,l]

= (δkl − θ kθ l)θl/θ
2
D+1[δi j + θiθ j/θ

2
D+1]

= θk[δi j + θiθ j/θ
2
D+1] = [GSc(θ) ⊗ θ]i jk

Using these results, we can write Eq. (2.66) as v̇ = −vTGSc(θ)vθ = −‖ṽ‖2
2θ . Fur-

ther, we have

θ̇D+1 = d

dt

√
1 − ‖θ‖2

2 = − θT

θD+1
θ̇ = vD+1

v̇D+1 = − d

dt

θTv
θD+1

= − θ̇
T
v + θTv̇
θD+1

+ θTv

θ2
D+1

θ̇D+1 = −‖ṽ‖2
2θD+1

2 Sampling Constrained Probability Distributions … 61

Therefore, we can rewrite the geodesic equations (2.65), (2.66) with augmented
components as

˙̃
θ = ṽ (2.67)

˙̃v = −‖ṽ‖2
2θ̃ (2.68)

Multiplying both sides of Eq. (2.68) by ṽT to obtain d
dt ‖ṽ‖2

2 = 0, we can solve the
above system of differential equations as follows:

θ̃(t) = θ̃(0) cos(‖ṽ(0)‖2t) + ṽ(0)

‖ṽ(0)‖2
sin(‖ṽ(0)‖2t)

ṽ(t) = −θ̃(0)‖ṽ(0)‖2 sin(‖ṽ(0)‖2t) + ṽ(0) cos(‖ṽ(0)‖2t)

Round Metric in the Spherical Coordinates

Consider the D-dimensional hyperrectangleRD
0 := [0, π]D−1 × [0, 2π) and the cor-

responding spherical coordinate system, {θ,RD
0 }, for S D . The coordinate map-

ping TR0→S : θ �→ x, xd = cos(θd)
∏d−1

i=1 sin(θi), d = 1, . . . , D + 1, (θD+1 = 0)
can be viewed as the embedding map into R

D+1, and the Jacobian matrix of TR0→S

is dx
dθT with the (d, j)-th element [− tan(θd)δd j + cot(θ j)I (j < d)]xd . The induced

metric of S D in the spherical coordinates is called round metric, denoted as GSr (θ),
whose (i, j)-th element is as follows

GSr (θ)i j

=
D+1∑
d=1

[− tan(θd)δdi + cot(θ j)I (i < d)][− tan(θd)δd j + cot(θ j)I (j < d)]x2
d

=
{− tan(θ j) cot(θi)x2

j + cot(θi) cot(θ j)
∑

d> j x2
d = 0, i < j

tan2(θi)x2
i + cot2(θi)

∑
d>i x2

d = (tan2(θi) + 1)x2
i = ∏d−1

i=1 sin2(θi), i = j

=
d−1∏
i=1

sin2(θi)δi j

(2.69)

Therefore, GSr (θ) = diag[1, sin2(θ1), . . . ,
∏D−1

d=1 sin2(θd)]. Another way to obtain
GSr (θ) is through the coordinate change

GSr (θ) = dθT
Sc

dθSr

GSc(θ)
dθSc

dθT
Sr

(2.70)

Similar to Corollary (2.1), we have

62 S. Lan and B. Shahbaba

Proposition 2.7.3 The volume adjustment of changing measure in (2.9) is

∣∣∣∣dθR0

dθSr

∣∣∣∣ = |GSr (θ)|− 1
2 =

D−1∏
d=1

sin−(D−d)(θd) (2.71)

Jacobian of the Transformation Between q-Norm Domains

The following proposition gives the weights needed for the transformation from QD

to BD
0 (1).

Proposition 2.7.4 The Jacobian determinant (weight) of TB→Q is as follows:

|dTS→Q| =
(

2

q

)D
(

D∏
i=1

|θi |
)2/q−1

(2.72)

Proof Note
TB→Q : θ �→ β = sgn(θ)|θ |2/q

The Jacobian matrix for TB→Q is

dβ

dθT
= 2

q
diag(|θ |2/q−1)

Therefore the Jacobian determinant of TB→Q is

|dTB→Q| =
∣∣∣∣ dβ

dθT

∣∣∣∣ =
(

2

q

)D
(

D∏
i=1

|θi |
)2/q−1

�

The following proposition gives the weights needed for the change of domains
from RD to BD

0 (1).

Proposition 2.7.5 The Jacobian determinant (weight) of TB→R is as follows:

|dTB→R| = ‖θ‖D
2

‖θ‖D∞

D∏
i=1

ui − li

2
(2.73)

Proof First, we note

TB→R = TC→R ◦ TB→C : θ �→ β ′ = θ
‖θ‖2

‖θ‖∞
�→ β = u − l

2
β ′ + u + l

2

2 Sampling Constrained Probability Distributions … 63

The corresponding Jacobian matrices are

TB→C : dβ ′

dθT
= ‖θ‖2

‖θ‖∞

[
I + θ

(
θT

‖θ‖2
2

− eT
arg max |θ |

θ arg max |θ |

)]

TC→R : dβ

d(β ′)T
= diag

(
u − l

2

)

where earg max |θ | is a vector with (arg max |θ |)-th element 1 and all others 0. Therefore,

|dTB→R| = |dTC→R| |dTB→C | =
∣∣∣∣∣

dβ

d(β ′)T

∣∣∣∣∣
∣∣∣∣ dβ ′

dθT

∣∣∣∣ = ‖θ‖D
2

‖θ‖D∞

D∏
i=1

ui − li

2

�

Splitting Hamiltonian (Lagrangian) Dynamics on S D

Splitting the Hamiltonian dynamics and its usefulness in improving HMC is a well-
studied topic of research [13, 36, 56]. Splitting the Lagrangian dynamics (used in our
approach), on the other hand, has not been discussed in the literature, to the best of
our knowledge. Therefore, we prove the validity of our splitting method by starting
with the well-understood method of splitting Hamiltonian [13],

H∗(θ,p) = 1

2
U (θ) + 1

2
pTGSc(θ)−1p + 1

2
U (θ)

The corresponding systems of differential equations,

⎧⎨
⎩

θ̇ = 0

ṗ = − 1

2
∇θU (θ)

⎧⎨
⎩

θ̇ = GSc(θ)−1p

ṗ = − 1

2
pTGSc(θ)−1dGSc(θ)GSc(θ)−1p

can be written in terms of Lagrangian dynamics in (θ , v) as follows:

⎧⎨
⎩

θ̇ = 0

v̇ = − 1

2
GSc(θ)−1∇θU (θ)

64 S. Lan and B. Shahbaba

{
θ̇ = v
v̇ = − vTΓ Sc(θ)v

We have solved the second dynamics (on the right) in Appendix “Geodesic on a
Sphere in Cartesian Coordinates”. To solve the first dynamics, we note that

θ̇D+1 = d

dt

√
1 − ‖θ‖2

2 = − θT

θD+1
θ̇ = 0

v̇D+1 = − d

dt

θTv
θD+1

= − θ̇
T
v + θTv̇
θD+1

+ θTv

θ2
D+1

θ̇D+1 = 1

2

θT

θD+1
GSc (θ)−1∇θU (θ)

Therefore, we have

θ̃(t) = θ̃(0)

ṽ(t) = ṽ(0) − t

2

[
I

− θ(0)T

θD+1(0)

]
[I − θ(0)θ(0)T]∇θU (θ)

where

[
I

− θ(0)T

θD+1(0)

]
[I − θ(0)θ(0)T] =

[
I − θ(0)θ(0)T

−θD+1(0)θ(0)T

]
=

[
I
0T

]
− θ̃(0)θ(0)T.

Finally, we note that ‖θ̃(t)‖2 = 1 if ‖θ̃(0)‖2 = 1 and ṽ(t) ∈ Tθ̃(t)S
D

c if ṽ(0) ∈
Tθ̃(0)S

D
c .

Error Analysis of Spherical HMC

Following [36], we now show that the discretization error en = ‖z(tn) − z(n)‖ =
‖(θ(tn), v(tn)) − (θ (n), v(n))‖ (i.e., the difference between the true solution and the
numerical solution) is O(ε3) locally and O(ε2) globally, where ε is the discretization
step size. Here, we assume that f(θ , v) := vTΓ (θ)v + G(θ)−1∇θU (θ) is smooth;
hence, f and its derivatives are uniformly bounded as z = (θ , v) evolves within finite
time duration T . We expand the true solution z(tn+1) at tn:

z(tn+1) = z(tn) + ż(tn)ε + 1

2
z̈(tn)ε2 + O(ε3)

=
[

θ(tn)
v(tn)

]
+

[
v(tn)

−f(θ(tn), v(tn))

]
ε + 1

2

[−f(θ(tn), v(tn))
−ḟ(θ(tn), v(tn))

]
ε2 + O(ε3)

(2.76)

We first consider Spherical HMC in Cartesian coordinates, where f(θ, v) = ‖ṽ‖2θ +
[I − θθT]∇θU (θ). From Eq. (2.34) we have

v(n+1/2) = v(n) − ε

2
(I − θ (n)(θ (n))

T
)∇θU (θ (n))

‖ṽ(n+1/2)‖2 = ‖ṽ(n)‖2 − ε(v(n))
T∇θU (θ (n)) + O(ε2) (2.77)

2 Sampling Constrained Probability Distributions … 65

Now we expand Eq. (2.35) using Taylor series as follows:

θ (n+1) = θ (n)[1 − ‖ṽ(n+1/2)‖2ε2/2 + O(ε4)]
+ v(n+1/2)ε[1 − ‖ṽ(n+1/2)‖2ε2/3! + O(ε4)]

v(n+3/4) = − θ (n)‖ṽ(n+1/2)‖2ε[1 − ‖ṽ(n+1/2)‖2ε2/3! + O(ε4)]
+ v(n+1/2)[1 − ‖ṽ(n+1/2)‖2ε2/2 + O(ε4)]

Substituting (2.77) in the above equations yields

θ (n+1) = θ (n) + v(n+1/2)ε − θ (n)‖ṽ(n+1/2)‖2ε2/2 + O(ε3)

= θ (n) + v(n)ε − 1

2
f(θ (n), v(n))ε2 + O(ε3)

v(n+3/4) = v(n+1/2) − θ (n)‖ṽ(n+1/2)‖2ε − v(n+1/2)‖ṽ(n+1/2)‖2ε2/2 + O(ε3)

= v(n) − [(I − θ (n)(θ (n))
T
)∇θU (θ (n))/2 + θ (n)‖ṽ(n)‖2]ε

+ [θ (n)(v(n))
T∇θU (θ (n)) − v(n)‖ṽ(n)‖2/2]ε2 + O(ε3)

With the above results, we have

v(n+1) = v(n+3/4) − ε

2
(I − θ (n+1)(θ (n+1))

T
)∇θU (θ (n+1))

= v(n) − f(θ (n), v(n))ε + [θ (n)(v(n))
T∇θU (θ (n)) − v(n)‖ṽ(n)‖2/2]ε2 + O(ε3)

− 1

2
[(I − θ (n)(θ (n))

T
)∇2

θ U (θ (n))v(n) − (θ (n)(v(n))
T + v(n)(θ (n))

T
)∇θU (θ (n))]ε2

= v(n) − f(θ (n), v(n))ε − 1

2
ḟ(θ (n), v(n))ε2 + O(ε3)

where for the last equality we need to show (v(n))
T∇θU (θ (n)) = −2 d

dt ‖ṽ(n)‖2. This
can be proved as follows:

d

dt
‖ṽ‖2 = d

dt
[‖ṽ‖2 + v2

D+1] = 2[−vTf + vD+1v̇D+1]

= 2

[
−vTf +

(
− θ̇

T
v + θTv̇
θD+1

+ θTv

θ2
D+1

θ̇D+1

)
vD+1

]

= −2

[(
v − vD+1

θD+1
θ

)T

f + vD+1

θD+1
‖ṽ‖2

]

= −2

[(
vTθ − vD+1

θD+1
(‖θ‖2 − 1)

)
‖ṽ‖2 +

(
v − vD+1

θD+1
θ

)T

[I − θθT]∇θU (θ)]
]

= −2

[
vT∇θU (θ) +

(
−vTθ − vD+1

θD+1
(1 − ‖θ‖2)

)
θT∇θU (θ)

]

= −2vT∇θU (θ)

66 S. Lan and B. Shahbaba

Therefore we have

z(n+1) :=
[
θ (n+1)

v(n+1)

]
=

[
θ (n)

v(n)

]
+

[
v(n)

−f(θ (n), v(n))

]
ε + 1

2

[−f(θ (n), v(n))

−ḟ(θ (n), v(n))

]
ε2 + O(ε3)

(2.78)
The local error is

en+1 = ‖z(tn+1) − z(n+1)‖
=

∥∥∥∥
[
θ(tn) − θ (n)

v(tn) − v(n)

]
+

[
v(tn) − v(n)

−[f(tn) − f (n)]
]

ε + 1

2

[−[f(tn) − f (n)]
−[ḟ(tn) − ḟ (n)]

]
ε2 + O(ε3)

∥∥∥∥
≤ (1 + M1ε + M2ε

2)en + O(ε3)

(2.79)

where Mk = ck supt∈[0,T] ‖∇kf(θ(t), v(t))‖, k = 1, 2 for some constants ck > 0.
Accumulating the local errors by iterating the above inequality for L = T/ε steps
provides the following global error:

eL+1 ≤ (1 + M1ε + M2ε
2)eL + O(ε3) ≤ (1 + M1ε + M2ε

2)2eL−1 + 3O(ε3) ≤ · · ·
≤ (1 + M1ε + M2ε

2)L e1 + LO(ε3) ≤ (eM1T + T)ε2 → 0, as ε → 0
(2.80)

For Spherical HMC in the spherical coordinates, we conjecture that the integrator
of Algorithm 2 still has order 3 local error and order 2 global error. One can follow
the same argument as above to verify this.

Bounce in Diamond: Wall HMC for 1-Norm Constraint

Reference [46] discusses the Wall HMC method for ∞-norm constraint only. We
can however derive a similar approach for 1-norm constraint. As shown in the left
panel of Fig. 2.13, given the current state θ0, HMC makes a proposal θ . It will hit the
boundary to move from θ0 towards θ . To determine the hit point ‘X’, we are required
to solve for t ∈ (0, 1) such that

‖θ0 + (θ − θ0)t‖1 =
D∑

d=1

|θd
0 + (θd − θd

0)t | = 1 (2.81)

One can find the hitting time using the bisection method. However, a more efficient
method is to find the orthant in which the sampler hits the boundary, i.e., find the
normal direction n with elements being ±1. Then, we can find t ,

‖θ0 + (θ − θ0)t‖1 = nT[θ0 + (θ − θ0)t] = 1 =⇒ t∗ = 1 − nTθ0

nT(θ − θ0)
(2.82)

2 Sampling Constrained Probability Distributions … 67

Fig. 2.13 Wall HMC bounces in the 1-norm constraint domain. Left given the current state θ0, Wall
HMC proposes θ , but bounces of the boundary and reaches θ ′ instead. Right determining the hitting
time by monitoring the first intersection point with coordinate planes that violates the constraint

Therefore the hit point is θ ′
0 = θ0 + (θ − θ0)t∗ and consequently the reflection point

is

θ ′ = θ − 2n∗〈n∗, θ − θ ′
0〉 = θ − 2n(nTθ − 1)/D (2.83)

where n∗ := n/‖n‖2 and nTθ ′
0 = 1 because θ ′

0 is on the boundary with the normal
direction n∗.

It is in general difficult to directly determine the intersection of θ − θ0 with
boundary. Instead, we can find its intersections with coordinate planes {πd}D

d=1,
where πd := {θ ∈ R

D|θd = 0}. The intersection times are defined asT = {θd
0 /(θd

0 −
θd)|θd

0 �= θd}. We keep those between 0 and 1 and sort them in ascending order
(Fig. 2.13, right panel). Then, we find the intersection points {θ k := θ0 + (θ − θ0)Tk}
that violate the constraint ‖θ‖ ≤ 1. Denote the first intersection point outside the
constrained domain as θ k . The signs of θ k and θ k−1 determine the orthant of the
hitting point θ ′

0.
Note, for each d ∈ {1, . . . D}, (sign(θd

k), sign(θd
k−1)) cannot be (+,−) or (−,+),

otherwise there exists an intersection point θ∗ := θ0 + (θ − θ0)T ∗ with some coor-
dinate plane πd∗ between θ k and θ k−1. Then Tk−1 < T ∗ < Tk contradicts the order
of T.4 Therefore any point (including θ ′

0) between θ k and θ k−1 must have the same
sign as sign(sign(θ k) + sign(θ k−1)); that is

n = sign(sign(θ k) + sign(θ k−1)) (2.84)

After moving from θ to θ ′, we examine whether θ ′ satisfies the constraint. If it
does not satisfy the constraint, we repeat above procedure with θ0 ← θ ′

0 and θ ← θ ′

4The same argument applies when Tk = 1, i.e. θ is the first point outside the domain among {θk}.

68 S. Lan and B. Shahbaba

until the final state is inside the constrained domain. Then we adjust the velocity
direction by

v ← (θ ′ − θ ′
0)

‖v‖
‖θ ′ − θ ′

0‖
(2.85)

Algorithm 4 summarizes the above steps.

Algorithm 4 Wall HMC for 1-norm constraint (Wall HMC)

Initialize θ (1) at the current state θ after transformation
Sample a new velocity value v(1) ∼ N (0, ID)

Calculate H(θ (1), v(1)) = U (θ (1)) + K (v(1))

for � = 1 to L do
v(�+ 1

2) = v(�) − ε
2 ∇θU (θ (�))

θ (�+1) = θ (�) + εv(�+ 1
2)

set hit ← false
while ‖θ (�)‖ > 1 do

find times intersecting with coordinate planes: T = {Td := θ
(�)
d /(θ

(�)
d − θ

(�+1)
d)|θ(�)

d �=
θ

(�+1)
d }

sort those between 0 and 1 in ascending order: T = {0 ≤ Tk ↑≤ 1}
find the first point in {θk := θ (�) + (θ (�+1) − θ (�))Tk} that violates ‖θ‖ ≤ 1 and denote it as

θk
set normal direction as n = sign(sign(θk) + sign(θk−1))

find the wall hitting time t∗ = (1 − nTθ (�))/(nT(θ (�+1) − θ (�)))

θ (�) ← θ (�) + (θ (�+1) − θ (�))t∗ and θ (�+1) ← θ (�+1) − 2n〈n, θ (�+1) − θ (�)〉/‖n‖2
2

set hit ← true
end while
if hit then
v(�+ 1

2) ← (θ (�+1) − θ (�))‖v(�+ 1
2)‖/‖θ (�+1) − θ (�)‖

end if
v(�+1) = v(�+ 1

2) − ε
2 ∇θU (θ (�+1))

end for
Calculate H(θ (L+1), v(L+1)) = U (θ (L+1)) + K (v(L+1))

Calculate the acceptance probability α = min{1, exp[−H(θ (L+1), v(L+1)) + H(θ (1), v(1))]}
Accept or reject the proposal according to α for the next state θ ′

References

1. Y. Ahmadian, J.W. Pillow, L. Paninski, Efficient Markov chain Monte Carlo methods for
decoding neural spike trains. Neural Comput. 23(1), 46–96 (2011)

2. S. Ahn, Y. Chen, M. Welling, Distributed and adaptive darting Monte Carlo through regen-
erations, in Proceedings of the 16th International Conference on Artificial Intelligence and
Statistics (AI Stat) (2013)

3. S. Ahn, B. Shahbaba, M. Welling, Distributed stochastic gradient MCMC, in International
Conference on Machine Learning (2014)

4. S. Amari, H. Nagaoka, Methods of Information Geometry, in Translations of Mathematical
Monographs, vol. 191 (Oxford University Press, Oxford, 2000)

2 Sampling Constrained Probability Distributions … 69

5. C. Andrieu, E. Moulines, On the ergodicity properties of some adaptive MCMC algorithms.
Ann. Appl. Probab. 16(3), 1462–1505 (2006)

6. C. Andrieu, A. Doucet, R. Holenstein, Particle Markov chain Monte Carlo methods. J. R. Stat.
Soc.: Ser. B (Stat. Methodol.) 72(3), 269–342 (2010)

7. M.J. Beal, Variational algorithms for approximate Bayesian inference. Ph.D. thesis, University
College London, London (2003)

8. A. Beskos, G. Roberts, A. Stuart, J. Voss, MCMC methods for diffusion bridges. Stoch. Dyn.
8(03), 319–350 (2008)

9. A. Beskos, F.J. Pinski, J.M. Sanz-Serna, A.M. Stuart, Hybrid Monte Carlo on Hilbert spaces.
Stoch. Process. Appl. 121(10), 2201–2230 (2011)

10. D.M. Blei, A.Y. Ng, M.I. Jordan, Latent Dirichlet allocation. J. Mach. Learn. Res. 3, 993–1022
(2003)

11. A.E. Brockwell, Parallel markov chain monte carlo simulation by Pre-Fetching. J. Comput.
Gr. Stat. 15, 246–261 (2006)

12. M.A. Brubaker, M. Salzmann, R. Urtasun, A family of MCMC methods on implicitly defined
manifolds, in Proceedings of the Fifteenth International Conference on Artificial Intelligence
and Statistics (AISTATS-12), vol. 22, ed. by N.D. Lawrence, M.A. Girolami (2012), pp. 161–
172

13. S. Byrne, M. Girolami, Geodesic Monte Carlo on embedded manifolds. Scand. J. Stat. 40(4),
825–845 (2013)

14. B. Calderhead, M. Sustik, Sparse approximate manifolds for differential geometric MCMC,
in Advances in Neural Information Processing Systems, vol. 25, ed. by P. Bartlett, F. Pereira,
C. Burges, L. Bottou, K. Weinberger (2012), pp. 2888–2896

15. O. Cappé, R. Douc, A. Guillin, J.M. Marin, C.P. Robert, Adaptive importance sampling in
general mixture classes. Stat. Comput. 18(4), 447–459 (2008)

16. N. Chopin, A sequential particle filter method for static models. Biometrika 89(3), 539–552
(2002)

17. S.L. Cotter, G.O. Roberts, A. Stuart, D. White et al., MCMC methods for functions: modifying
old algorithms to make them faster. Stat. Sci. 28(3), 424–446 (2013)

18. R.V. Craiu, J. Rosenthal, C. Yang, Learn from thy neighbor: parallel-chain and regional adaptive
MCMC. J. Am. Stat. Assoc. 104(488), 1454–1466 (2009)

19. P. Del Moral, A. Doucet, A. Jasra, Sequential Monte Carlo samplers. J. R. Stat. Soc.: Ser. B
(Stat. Methodol.) 68(3), 411–436 (2006)

20. N. de Freitas, P. Højen-Sørensen, M. Jordan, R. Stuart, Variational MCMC, in Proceedings
of the 17th Conference in Uncertainty in Artificial Intelligence, UAI ’01 (Morgan Kaufmann
Publishers Inc., San Francisco, 2001), pp. 120–127

21. M.P. do Carmo, Riemannian Geometry, 1st edn (Birkhäuser, Boston, 1992)
22. R. Douc, C.P. Robert, A vanilla rao-blackwellization of metropolis-hastings algorithms. Ann.

Stat. 39(1), 261–277 (2011)
23. S. Duane, A.D. Kennedy, B.J. Pendleton, D. Roweth, Hybrid Monte Carlo. Phys. Lett. B 195(2),

216–222 (1987)
24. I.E. Frank, J.H. Friedman, A statistical view of some chemometrics regression tools. Techno-

metrics 35(2), 109–135 (1993)
25. A. Gelfand, L. van der Maaten, Y. Chen, M. Welling, On herding and the cycling perceptron

theorem. Adv. Neural Inf. Process. Syst. 23, 694–702 (2010)
26. C.J. Geyer, Practical Markov Chain Monte Carlo. Stat. Sci. 7(4), 473–483 (1992)
27. W.R. Gilks, G.O. Roberts, S.K. Sahu, Adaptive Markov chain Monte Carlo through regenera-

tion. J. Am. Stat. Assoc. 93(443), 1045–1054 (1998)
28. M. Girolami, B. Calderhead, Riemann manifold Langevin and Hamiltonian Monte Carlo meth-

ods. J. R. Stat. Soc. Ser. B (with discussion) 73(2), 123–214 (2011)
29. G.H. Golub, C.F. Van Loan, Matrix Computations, 3rd edn. (Johns Hopkins University Press,

Baltimore, 1996)
30. C. Hans, Bayesian lasso regression. Biometrika 96(4), 835–845 (2009)

70 S. Lan and B. Shahbaba

31. M. Hoffman, F.R. Bach, D.M. Blei, Online learning for latent dirichlet allocation, in Advances
in Neural Information Processing Systems (2010), pp. 856–864

32. M.D. Hoffman, A. Gelman, The No-U-Turn sampler: adaptively setting path lengths in Hamil-
tonian Monte Carlo. J. Mach. Learn. Res. 15(1), 1593–1623 (2014)

33. K. Kurihara, M. Welling, N. Vlassis, Accelerated variational Dirichlet process mixtures, in
Advances of Neural Information Processing Systems – NIPS, vol. 19 (2006)

34. S. Lan, B. Shahbaba, Spherical hamiltonian Monte Carlo for constrained target distributions,
in The 31st International Conference on Machine Learning, Beijing (2014), pp. 629–637

35. S. Lan, V. Stathopoulos, B. Shahbaba, M. Girolami, Markov chain Monte Carlo from
Lagrangian dynamics. J. Comput. Gr. Stat. 24(2), 357–378 (2015)

36. B. Leimkuhler, S. Reich, Simulating Hamiltonian Dynamics (Cambridge University Press,
Cambridge, 2004)

37. J. Møller, A. Pettitt, K. Berthelsen, R. Reeves, An efficient Markov chain Monte Carlo method
for distributions with intractable normalisation constants. Biometrica 93, 451–458 (2006) (To
appear)

38. I. Murray, R.P. Adams, D.J. MacKay, Elliptical slice sampling. JMLR:W&CP 9, 541–548
(2010)

39. P. Mykland, L. Tierney, B. Yu, Regeneration in Markov chain samplers. J. Am. Stat. Assoc.
90(429), 233–241 (1995)

40. P. Neal, G.O. Roberts, Optimal scaling for random walk metropolis on spherically constrained
target densities. Methodol. Comput. Appl. Probab. 10(2), 277–297 (2008)

41. P. Neal, G.O. Roberts, W.K. Yuen, Optimal scaling of random walk metropolis algorithms with
discontinuous target densities. Ann. Appl. Probab. 22(5), 1880–1927 (2012)

42. R.M. Neal, Probabilistic inference using Markov Chain Monte Carlo methods. Technical Report
CRG-TR-93-1, Department of Computer Science, University of Toronto (1993)

43. R.M. Neal, Bayesian Learning for Neural Networks (Springer, Secaucus, 1996)
44. R.M. Neal, Slice sampling. Ann. Stat. 31(3), 705–767 (2003)
45. R.M. Neal, The short-cut metropolis method. Technical Report 0506, Department of Statistics,

University of Toronto (2005)
46. R.M. Neal, MCMC using Hamiltonian dynamics, in: Handbook of Markov Chain Monte Carlo,

ed. by S. Brooks, A. Gelman, G. Jones, X.L. Meng. Chapman and Hall/CRC (2011), pp. 113–
162

47. A. Pakman, L. Paninski, Exact Hamiltonian Monte Carlo for truncated multivariate Gaussians.
J. Comput. Gr. Stat. 23(2), 518–542 (2014)

48. T. Park, G. Casella, The Bayesian lasso. J. Am. Stat. Assoc. 103(482), 681–686 (2008)
49. S. Patterson, Y.W. Teh, Stochastic gradient riemannian langevin dynamics on the probability

simplex, in Advances in Neural Information Processing Systems (2013), pp. 3102–3110
50. N.S. Pillai, A.M. Stuart, A.H. Thiéry et al., Optimal scaling and diffusion limits for the Langevin

algorithm in high dimensions. Ann. Appl. Probab. 22(6), 2320–2356 (2012)
51. J.G. Propp, D.B. Wilson, Exact sampling with coupled Markov chains and applications to

statistical mechanics (1996), pp. 223–252
52. D. Randal, G. Arnaud, M. Jean-Michel, R.P. Christian, Minimum variance importance sampling

via population Monte Carlo. ESAIM: Probab. Stat. 11, 427–447 (2007)
53. G.O. Roberts, S.K. Sahu, Updating schemes, correlation structure, blocking and parameterisa-

tion for the Gibbs sampler. J. R. Stat. Soc. Ser. B 59, 291–317 (1997)
54. G.O. Roberts, A. Gelman, W.R. Gilks, Weak convergence and optimal scaling of random walk

metropolis algorithms. Ann. Appl. Probab. 7(1), 110–120 (1997)
55. G.O. Roberts, J.S. Rosenthal et al., Optimal scaling for various metropolis-hastings algorithms.

Stat. Sci. 16(4), 351–367 (2001)
56. B. Shahbaba, S. Lan, W.O. Johnson, R.M. Neal, Split Hamiltonian Monte Carlo. Stat. Comput.

24(3), 339–349 (2014)
57. C. Sherlock, G.O. Roberts, Optimal scaling of the random walk metropolis on elliptically

symmetric unimodal targets. Bernoulli 15(3), 774–798 (2009)
58. M. Spivak, Calculus on Manifolds, vol. 1 (WA Benjamin, New York, 1965)

2 Sampling Constrained Probability Distributions … 71

59. M. Spivak, A Comprehensive Introduction to Differential Geometry, vol. 1, 2nd edn (Publish
or Perish, Inc., Houston, 1979)

60. Y.W. Teh, D. Newman, M. Welling, A collapsed variational bayesian inference algorithm for
latent dirichlet allocation, in Advances in Neural Information Processing Systems (2006), pp.
1353–1360

61. R. Tibshirani, Regression shrinkage and selection via the lasso. J. R. Stat. Soc. Ser. B 58(1),
267–288 (1996)

62. H.M. Wallach, I. Murray, R. Salakhutdinov, D. Mimno, Evaluation methods for topic models,
in Proceedings of the 26th Annual International Conference on Machine Learning (ACM,
2009), pp. 1105–1112

63. G.R. Warnes, The normal kernel coupler: an adaptive Markov Chain Monte Carlo method for
efficiently sampling from multi-modal distributions. Technical Report No. 395, University of
Washington (2001)

64. M. Welling, Herding dynamic weights to learn, in Proceeding of International Conference on
Machine Learning (2009)

65. M. Welling, Y.W. Teh, Bayesian learning via stochastic gradient Langevin dynamics, in Pro-
ceedings of the 28th International Conference on Machine Learning (ICML) (2011), pp. 681–
688

66. M. West, On scale mixtures of normal distributions. Biometrika 74(3), 646–648 (1987)
67. Y. Zhang, C. Sutton, Quasi-Newton methods for Markov Chain Monte Carlo, in Advances in

Neural Information Processing Systems, ed. by J. Shawe-Taylor, R.S. Zemel, P. Bartlett, F.C.N.
Pereira, K.Q. Weinberger, vol. 24 (2011), pp. 2393–2401

Chapter 3
Geometric Optimization in Machine
Learning

Suvrit Sra and Reshad Hosseini

Abstract Machine learning models often rely on sparsity, low-rank, orthogonality,
correlation, or graphical structure. The structure of interest in this chapter is geomet-
ric, specifically the manifold of positive definite (PD) matrices. Though these matri-
ces recur throughout the applied sciences, our focus is on more recent developments
in machine learning and optimization. In particular, we study (i) models that might
be nonconvex in the Euclidean sense but are convex along the PD manifold; and (ii)
ones that are neither Euclidean nor geodesic convex but are nevertheless amenable to
global optimization. We cover basic theory for (i) and (ii); subsequently, we present
a scalable Riemannian limited-memory BFGS algorithm (that also applies to other
manifolds). We highlight some applications from statistics and machine learning that
benefit from the geometric structure studies.

3.1 Introduction

Fitting mathematical models to data invariably requires numerical optimization. The
field is thus replete with tricks and techniques for better modeling, analysis, and
implementation of optimization algorithms. Among other aspects, the notion of
“structure,” is of perennial importance: its knowledge often helps us obtain faster
algorithms, attain scalability, gain insights, or capture a host of other attributes.

Structure has multifarious meanings, of which perhaps the best known is spar-
sity [5, 54]. But our focus is different: we study geometric structure, in particular
where model parameters lie on a Riemannian manifold.

Geometric structure has witnessed increasing interest, for instance in optimization
over matrix manifolds (including orthogonal, low-rank, positive definite matrices,

S. Sra (B)
Laboratory for Information & Decision Systems (LIDS),
Massachusetts Institute of Technology, Cambridge, MA, USA
e-mail: suvrit@mit.edu

R. Hosseini
School of ECE, College of Engineering, University of Tehran, Tehran, Iran
e-mail: reshad.hosseini@ut.ac.ir

© Springer International Publishing Switzerland 2016
H.Q. Minh and V. Murino (eds.), Algorithmic Advances in Riemannian
Geometry and Applications, Advances in Computer Vision
and Pattern Recognition, DOI 10.1007/978-3-319-45026-1_3

73

74 S. Sra and R. Hosseini

among others) [1, 12, 51, 57]. However, in distinction to general manifold opti-
mization, which extends most Euclidean schemes to Riemannian manifolds [1, 55],
we focus on the specific case of “geometric optimization” problems that exploit the
special structure of the manifold of positive definite (PD) matrices. Two geometric
aspects play a crucial role here: (i) non-positive curvature of the manifold, which
allows defining a global curved notion of convexity along geodesics on the manifold;
and (ii) convex (Euclidean) conic structure (e.g., as used in Perron–Frobenius theory,
which includes the famous PageRank algorithm as a special case).

One of our key motivations for studying geometric optimization is that for many
problems it may help uncover hidden (geodesic) convexity, and thus provably place
global optimization of certain nonconvex problems within reach [51]. Moreover,
exploiting geometric convexity can have remarkable empirical consequences for
problems involving PD matrices [48]; which persist even without overall (geodesic)
convexity, as will be seen in Sect. 3.5.1.

Finally, since PD matrices are ubiquitous in not only machine learning and sta-
tistics, but throughout the applied sciences, the new modeling and algorithmic tools
offered by geometric optimization should prove to be valuable in many other settings.
To stoke the reader’s imagination beyond the material described in this chapter, we
close with a short list of further applications in Sect. 3.5.3. We also refer the reader
to our recent work [51], that develops the theoretical material related to geometric
optimization in greater detail.

With this background, we are now ready to recall the geometric concepts at the
heart of our presentation, before moving on to detailed applications of our ideas.

3.2 Manifolds and Geodesic Convexity

A smooth manifold is a space that locally resembles Euclidean space [30]. We focus
on Riemannian manifolds (smooth manifolds equipped with a smoothly varying
inner product on the tangent space) as their geometry permits a natural extension of
many nonlinear optimization algorithms [1, 55].

In particular, we focus on the Riemannian manifold of real symmetric positive
definite (PD) matrices. Most of the ideas that we describe apply more broadly to
Hadamard manifolds (i.e., Riemannian manifolds with non-positive curvature), but
we limit attention to the PD manifold for concreteness and due to its vast importance
in machine learning and beyond [6, 17, 46].

A key concept on manifolds is that of geodesics, which are curves that join points
along shortest paths. Geodesics help one extend the notion of convexity to geodesic
convexity. Formally, suppose M is a Riemmanian manifold, and x, y are two points
on M . Say γ is a unit speed geodesic joining x to y, such that

γxy : [0, 1] → M , s.t. γxy(0) = x, γxy(1) = y.

3 Geometric Optimization in Machine Learning 75

Table 3.1 Summary of key Riemannian objects for the PD matrix manifold

Definition Expression for PD matrices

Tangent space Space of symmetric matrices

Metric between two tangent vectors ξ, η at � g�(ξ, η) = tr(�−1ξ�−1η)

Gradient at � if Euclidean gradient is ∇f (�) gradf (�) = 1
2 �(∇f (X) + ∇f (X)T)�

Exponential map at point � in direction ξ R�(ξ) = � exp(�−1ξ)

Parallel transport of tangent vector ξ from �1 to �2 T�1,�2 (ξ) = EξET , E = (�2�
−1
1)1/2

Then, we call a set A ⊆ M geodesically convex, henceforth g-convex, if geodesics
between arbitrary pairs of points in A lie completely in A . We note that the PD
manifold has unique geodesics globally. We say f : A → R is g-convex if for all
x, y ∈ A , the composition f ◦ γxy : [0, 1] → R is convex in the usual sense. On the
manifold Pd under its usual trace Riemannian metric (see Table 3.1) the geodesic γXY
between X,Y ∈ Pd has the beautiful closed-form [6, Chap. 6]:

γXY (t) := X1/2(X−1/2YX−1/2)tX1/2, 0 ≤ t ≤ 1. (3.1)

It is common to write X�tY ≡ γXY (t), and we also use this notation for brevity.
Therewith, a function f : Pd → R is g-convex if on a g-convex set A it satisfies

f (X�tY) ≤ (1 − t)f (X) + tf (Y), t ∈ [0, 1], X,Y ∈ A . (3.2)

G-convex functions are remarkable in that they can be nonconvex in the Euclidean
sense, but can still be globally optimized. Such functions on PD matrices have already
proved important in several recent applications [17, 18, 23, 45, 49, 50, 59, 60, 64].
We provide several examples below drawn from [51]; the reader should consult [51]
for a detailed and more systematic development of g-convexity on PD matrices.

Example 1 The following functions are g-convex on Pd : (i) tr(eA); (ii) tr(Aα) for
α ≥ 1; (iii) λmax(eA); (iv) λmax(Aα) for α ≥ 1.

Example 2 Let X ∈ C
d×k be an arbitrary rank-k matrix (k ≤ d), then A
→ tr X∗AX

is log-g-convex, that is,

tr X∗(A�tB)X ≤ [tr X∗AX]1−t[tr X∗BX]t, t ∈ [0, 1]. (3.3)

Inequality (3.3) depends on a nontrivial property of �t proved e.g., in
[51, Theorem 2.8].

Example 3 If h : R+ → R+ is nondecreasing and log-convex, then the map A
→∑k
i=1 log h(λi(A)) is g-convex. For instance, if h(x) = ex, we obtain the special case

that A
→ log tr(eA) is g-convex.

Example 4 Let Ai ∈ C
d×k with k ≤ d be such that that map X
→ ∑m

i=1 A
∗
i XAi is

strictly positive; let B � 0. Then φ(X) := log det(B + ∑
i A

∗
i XAi) is g-convex on Pd .

76 S. Sra and R. Hosseini

Example 5 The Riemannian distance δR(A,X) := ‖log(X−1/2AX−1/2)‖F between
A,X ∈ Pd [6, Chap. 6] is well-known to be jointly g-convex, see e.g.,
[6, Corollary 6.1.11]. To obtain an infinite family of such g-convex distances see
[51, Corollary 2.19].

Consequently, the Fréchet (Karcher) mean and median of PD matrices are
g-convex optimization problems. Formally, these problems seek to solve

min
X�0

∑m

i=1
wiδR(X,Ai), (Geometric Median),

min
X�0

∑m

i=1
wiδ

2
R(X,Ai), (Geometric Mean),

where
∑

i wi = 1, wi ≥ 0, and Ai � 0 for 1 ≤ i ≤ m. The latter problem has received
extensive interest in the literature [6–8, 26, 40, 42, 49]. Its optimal solution is unique
owing to the strict g-convexity of its objective.

3.3 Beyond g-Convexity: Thompson Nonexpansivity

We highlight now a special class of nonconvex functions that is amenable to global
optimization without requiring g-convexity. Specifically, we consider functions that
admit “sup norm” contractions, namely contractions under the Thompson metric:

δT (X,Y) := ‖log(Y−1/2XY−1/2)‖, (3.4)

where ‖·‖ is the usual operator norm (hence the ‘sup’). This metric is an object of
great interest in nonlinear Perron–Frobenius theory [29, 31].

We consider maps nonexpansive under the Thompson metric (3.4). Since the
metric space (Pd, δT) is complete [53], nonexpansive maps under this metric provide
fertile grounds for designing convergent fixed-point algorithms without necessarily
relying on g-convexity. We say Φ : Pd → Pd is Thompson nonexpansive if

δT (Φ(X),Φ(Y)) ≤ qδT (X,Y), 0 ≤ q ≤ 1. (3.5)

If q < 1, then Φ is called q-contractive. Since the Thompson metric is generated by
the operator norm, it turns out to satisfy a larger body of properties (than δR) that
are useful for analyzing fixed-point iterations. We recall some of these properties
below—for details please see [29, 31, 32, 51].

Proposition 1 Unless noted otherwise, all matrices are assumed to be PD.

3 Geometric Optimization in Machine Learning 77

δT (X−1,Y−1) = δT (X,Y) (3.6a)

δT (B∗XB,B∗YB) = δT (X,Y), B ∈ GLn(C) (3.6b)

δT (Xt,Yt) ≤ |t|δT (X,Y), for t ∈ [−1, 1] (3.6c)

δT

(∑
i
wiXi,

∑
i
wiYi

)
≤ max

1≤i≤m
δT (Xi,Yi), wi ≥ 0,w �= 0 (3.6d)

δT (X + A,Y + A) ≤ α

α + β
δT (X,Y), A � 0, (3.6e)

where α = max{‖X‖, ‖Y‖} and β = λmin(A). Moreover, for X ∈ C
d×k (k ≤ d) with

full column rank we have the compression inequality [51, Theorem 4.3]:

δT (X∗AX,X∗BX) ≤ δT (A,B). (3.6f)

3.3.1 Why Thompson Nonexpansivity?

Below we review a setting where Thompson nonexpansivity is useful. Consider the
optimization problem minS�0 Φ(S), where Φ is continuously differentiable on Pd .
Since the constraint set is open, a necessary condition of optimality of a point S∗ is
that its gradient vanishes, that is,

∇Φ(S∗) = 0. (3.7)

Various approaches could be used for solving the nonlinear (matrix) equation (3.7).
And among these, fixed-point iterations may be particularly attractive. Here, one
designs a map G : Pd → Pd , using which we can rewrite (3.7) in the form

S∗ = G (S∗), (3.8)

that is, S∗ is a fixed-point of G , and by construction a stationary point of Φ.
Typically, finding fixed-points is difficult. However, if the map G can be chosen

such that it is Thompson-contractive, then simply running the Picard iteration

Sk+1 ← G (Sk), k = 0, 1, . . . , (3.9)

will yield a unique solution to (3.7)—both existence and uniqueness follow from
the Banach contraction theorem. The reason we insist on Thompson contractivity is
because many of our examples fail to be Euclidean contractions (or even Riemannian
contractions) but end up being Thompson contractions. Thus, studying Thompson
nonexpansivity is valuable. We highlight below a concrete example that arises in
some applications [15–18, 63], and is not a Euclidean but a Thompson contraction.

78 S. Sra and R. Hosseini

3.3.1.1 Application: Geometric Mean of PD Matrices

Let A1, . . . ,An ∈ Pd be input matrices and wi ≥ 0 be nonnegative weights such
that

∑n
i=1 wi = 1. A particular geometric mean of the {Ai}ni=1, called the S-mean, is

obtained by computing [15, 18]

min
X�0

h(X) :=
∑n

i=1
wiδ

2
S(X,Ai), (3.10)

where δ2
S is the squared Stein-distance

δ2
S(X,Y) := log det

(
X+Y

2

) − 1
2 log det(XY), X,Y � 0. (3.11)

It can be shown that δ2
S is strictly g-convex (in both arguments) [49]. Thus,

Problem (3.10) is a g-convex optimization problem. It is easily seen to possess a
solution, whence the strict g-convexity of h(X) immediately implies that this solu-
tion must be unique. What remains is to obtain an algorithm to compute this solution.

Noting (3.11) while differentiating h(X), we obtain the nonlinear matrix equation

0 = ∇h(X) ⇐⇒ X−1 =
∑

i
wi

(X+Ai
2

)−1
,

from which we naively obtain the Picard iteration (see e.g., [15, 49] for details):

Xk+1 ←
[∑

i
wi

(Xk+Ai
2

)−1
]−1

. (3.12)

Applying (3.6a), (3.6d), and (3.6e) in sequence one sees that (3.12) is a Thompson
(but not Riemannian) contraction, which immediately shows its validity as a Picard
iteration and its linear rate of convergence to the global optimum of (3.10).

3.4 Manifold Optimization

Creating fixed-point iterations is somewhat of an art, and it is not always clear how
to obtain one for a given problem. Therefore, developing general purpose iterative
optimization algorithms is of great practical importance.

For Euclidean optimization a common recipe is to iteratively perform the fol-
lowing:(a) find a descent direction; and (b) obtain sufficient decrease via line-search
which also helps ensure convergence. We follow a similar recipe for Riemannian
manifolds by replacing Euclidean concepts by their Riemannian counterparts. For
example, we now compute descent directions in the tangent space. At a point X, the
tangent space TX is the approximating vector space (see Fig. 3.1). Given a descent
direction, ξX ∈ TX , we perform line-search along a smooth curve on the manifold (red
curve in Fig. 3.1). The derivative of this curve at X provides the descent direction ξX .
We refer the reader to [1, 55] for an in depth introduction to manifold optimization.

3 Geometric Optimization in Machine Learning 79

S
d
+

X

TX

ξX

Fig. 3.1 Line-search on a manifold:X is a point on the manifold, TX is the tangent space at the point
X , ξX is a descent direction at X; the red curve is the curve along which line-search is performed

Euclidean methods such as conjugate-gradient and LBFGS combine gradients at
the current point with gradients and descent directions at previous points to obtain a
new descent direction. To adapt such algorithms to manifolds we need to define how
to transport vectors in a tangent space at one point to vectors in a tangent space at
another point.

On Riemannian manifolds, the gradient is a direction in the tangent space, where
the inner product of the gradient with another direction in the tangent space gives
the directional derivative of the function. Formally, if gX defines the inner product in
the tangent space TX , then

Df (X)ξ = gX(gradf (X), ξ), for ξ ∈ TX .

Given a descent direction the curve along which we perform line-search can be a
geodesic. A map that combines the direction and a step-size to obtain a corresponding
point on the geodesic is called an exponential map. Riemannian manifolds also come
equipped with a natural way to transport vectors on geodesics that is called parallel
transport. Intuitively, a parallel transport is a differential map with zero derivative
along the geodesics.

Using these ideas, and in particular deciding where to perform the parallel trans-
port we can obtain different variants of Riemannian LBFGS. We recall one specific
LBFGS variant from [51] (presented as Algorithm 1), which yields the best perfor-
mance in our applications, once we combine it with a suitable line-search algorithm.
The LBFGS method explained in [25] is the same as the method in [51]. We also
implemented LBFGS variant of BFGS method explained in [45] and observed that
it has worse running time.

In particular, to ensure Riemannian LBFGS always produces a descent direction,
we must ensure that the line-search algorithm satisfies the Wolfe conditions [45]:

f (RXk (αξk)) ≤ f (Xk) + c1αDf (Xk)ξk, (3.13)

Df (RXk (αξk))TXk ,RXk (αξk)(ξk) ≥ c2Df (Xk)ξk, (3.14)

80 S. Sra and R. Hosseini

where 0 < c1 < c2 < 1.The first condition (3.13) is called the sufficient-decrease
condition and the coefficient c1 is typically chosen to be a small number. The sufficient
decrease condition does not ensure that the algorithm makes sufficient progress. The
second condition (3.14) is called the curvature condition and together with the other
condition, they ensure convergence to a stationary point. We tried different values of
c1 and c2 and observed that like in Euclidean case choosing c1 = 10−4 and c2 = 0.9
works reasonable well in practice. Note that αDf (Xk)ξk = gXk (gradf (Xk), αξk), i.e.,
the derivative of f (Xk) in the direction αξk is the inner product of descent direction
and gradient of the function. Practical line-search algorithms implement a stronger
(Wolfe) version of (3.14) that enforces

|Df (RXk (αξk))TXk ,RXk (αξk)(ξk)| ≤ c2Df (Xk)ξk. (3.15)

We also implemented a line-search algorithm satisfying strong Wolfe conditions.
Key details of a practical way to implement this line-search may be found in [23].

Algorithm 1 Pseudocode for Riemannian LBFGS

Given:Riemannian manifold M with Riemannian metric g; parallel transport T on M ; exp-map
R; initial value X0; a smooth function f
Set initial Hdiag = 1/

√
gX0 (gradf (X0), gradf (X0))

for k = 0, 1, . . . do
Obtain descent direction ξk by unrolling the RBFGS method
Compute ξk ← HessMul(−gradf (Xk), k)
Use line-search to find α such that it satisfies Wolfe conditions
Calculate Xk+1 = RXk (αξk)

Define Sk = TXk ,Xk+1 (αξk)

Define Yk = gradf (Xk+1) − TXk ,Xk+1 (gradf (Xk))

Update Hdiag = gXk+1 (Sk,Yk)/gXk+1 (Yk,Yk)
Store Yk ; Sk ; gXk+1 (Sk,Yk); gXk+1 (Sk, Sk)/gXk+1 (Sk,Yk); Hdiag

end for
return Xk
function HessMul(P, k)
if k > 0 then

P̃ = P − gXk+1 (Sk ,P)

gXk+1 (Yk ,Sk)
Yk

P̂ = TXk ,Xk+1HessMul(T −1
Xk ,Xk+1

P̃, k − 1) return P̂ − gXk+1 (Yk ,P̂)

gXk+1 (Yk ,Sk)
Sk + gXk+1 (Sk ,Sk)

gXk+1 (Yk ,Sk)
P

else
return HdiagP

end if
end function

3 Geometric Optimization in Machine Learning 81

3.5 Applications

We are ready to present two applications of geometric optimization. Section 3.5.1
summarizes recent progress in fitting Gaussian Mixture Models (GMMs), for which
g-convexity proves remarkably useful and ultimately helps Algorithm 1 to greatly
outperform the famous Expectation Maximization (EM) algorithm—this is remark-
able as previously many believed it impossible to outdo EM via general nonlinear
optimization techniques. Next, in Sect. 3.5.2 we present an application to maxi-
mum likelihood parameter estimation for non-Gaussian elliptically contoured dis-
tributions. These problems are Euclidean nonconvex but often either g-convex or
Thompson nonexpansive, and thus amenable to geometric optimization.

3.5.1 Gaussian Mixture Models

The material of this section is based on the authors’ recent work [23]; the interested
reader is encouraged to consult that work for additional details.

Gaussian mixture models (GMMs) have a long history in machine learning and
signal processing and continue to enjoy widespread use [10, 21, 37, 41]. For GMM
parameter estimation, expectation maximization (EM) [20] still seems to be the
de facto choice—although other approaches have also been considered [44], typ-
ical nonlinear programming methods such as conjugate gradients, quasi-Newton,
Newton, are usually viewed as inferior to EM [61].

One advantage that EM enjoys is that its M-Step satisfies the PD constraint on
covariances by construction. Other methods often struggle when dealing with this
constraint. An approach is to make the problem unconstrained by performing a
change-of-variables using Cholesky decompositions (as also exploited in semidefi-
nite programming [14]). Another possibility is to formulate the PD constraint via a
set of smooth convex inequalities [56] or to use log-barriers and to invoke interior-
point methods. But such methods tend to be much slower than EM-like iterations,
especially in higher dimensions [50].

Driven by these concerns the authors view GMM fitting as a manifold optimiza-
tion problem in [23]. But surprisingly, an out-of-the-box invocation of manifold
optimization completely fails to compete with and to outdo EM, further work is
required: g-convexity supplies the missing link.

3.5.1.1 Problem Setup

Let N denote the Gaussian density with mean μ ∈ R
d and covariance � ∈ Pd , i.e.,

N (x;μ,�) := det(�)−1/2(2π)−d/2 exp
(− 1

2 (x − μ)T�−1(x − μ)
)
.

82 S. Sra and R. Hosseini

A Gaussian mixture model has the probability density

p(x) :=
∑K

j=1
αjN (x;μj, �j), x ∈ R

d,

where α ∈ �K , the K-dimensional probability simplex, and {μj ∈ R
d, �j � 0}Kj=1.

Given i.i.d. samples {x1, . . . , xn}, we wish to estimate these parameters by maximum
likelihood. This leads to the GMM optimization problem

max
α∈�K ,{μj,�j�0}Kj=1

∑n

i=1
log

(∑K

j=1
αjN (xi;μj, �j)

)
. (3.16)

Problem (3.16) is well-known to be a difficult nonconvex problem. So like EM, we
also seek only efficient computation of local solutions. As alluded to above, before we
can successfully apply manifold optimization (in particular, our LBFGS algorithm)
to solve (3.16), we need to expose its g-convexity.

To that end, we begin with maximum likelihood estimation for a single Gaussian

max
μ,��0

L (μ,�) :=
∑n

i=1
logN (xi;μ,�). (3.17)

Although (3.17) is Euclidean convex, it is not g-convex. In [23] a simple reformu-
lation1 is used that makes (3.17) g-convex and ends up having far-reaching impact
on the overall GMM problem. More precisely, we augment the sample vectors xi to
instead consider yTi = [xTi 1]. Therewith, problem (3.17) turns into

max
S�0

L̂ (S) :=
∑n

i=1
log N̂ (yi; S), (3.18)

where N̂ (yi; S) := √
2π exp(1

2)N (yi; 0, S). Theorem 1 shows that (3.18) is
g-convex and its solution yields the solution to the original problem (3.17).

Theorem 1 ([23]) The map −L̂ (S) is g-convex. Moreover, if μ∗, �∗ maxi-
mize (3.17), and S∗ maximizes (3.18), then L̂ (S∗) = L (μ∗, �∗) for

S∗ =
(

�∗ + μ∗μ∗T μ∗
μ∗T 1

)
.

Theorem 2 states a local version of this result for GMMs.

Theorem 2 ([23]) A local maximum of the reparameterized GMM log-likelihood

L̂ ({Sj}Kj=1) :=
∑n

i=1
log

(∑K

j=1
αjN̂ (yi; Sj)

)
(3.19)

is a local maximum of the original log-likelihood (3.16).

1This reformulation essentially uses the “natural parameters.”

3 Geometric Optimization in Machine Learning 83

−1.5 −1 −0.5 0 0.5 1 1.5 2
−1.5

−1

−0.5

0

0.5

1

1.5

2

(a) low separation
−1 −0.5 0 0.5 1 1.5 2

−1

−0.5

0

0.5

1

1.5

2

2.5

(b) medium separation
0 1 2 3 4 5 6 7

−1

0

1

2

3

4

5

6

7

8

(c) high separation

Fig. 3.2 Data clouds for three levels of separation: c = 0.2 (low); c = 1 (medium); c = 5 (high)

3.5.1.2 Numerical Results

We solve the reparameterized problem (3.19)2 using Algorithm 1. We illustrate the
performance through experiments on real and simulated data. All compared methods
are initialized using k-means++ [3], and all share the same stopping criterion. The
methods stop when the difference of average log-likelihood (i.e., log-likelihood/n)
between iterations falls below 10−6, or when the iteration count exceeds 1500.

Since EM’s performance depends on the degree of separation of the mixture
components [33, 61], we also assess the impact of separation on our methods. We
generate data as proposed in [19, 58]. The distributions are chosen so that their means
satisfy the following separation inequality:

∀i �=j : ‖μi − μj‖ ≥ cmax
i,j

{tr(�i), tr(�j)}.

The parameter c shows level of separation; we use e to denote eccentricity, i.e., the
ratio of the largest eigenvalue of the covariance matrix to its smallest eigenvalue. A
typical 2D data with K = 5 created for different separations is shown in Fig. 3.2.

We tested both high eccentricity (e = 10) and spherical (e = 1) Gaussians.
Table 3.2 reports the results, which are obtained after running 20 different random
initializations. Without our reformulation Riemannian optimization is not compet-
itive (we omit the results), while with the reformulation our Riemannian LBFGS
matches or exceeds EM. We note in passing that a Cholesky decomposition based
formulation ends up being vastly inferior to both EM and our Riemannian methods.
Numerical results supporting this claim may be found in [23].

Next, we present an evaluation on a natural image dataset, for which GMMs have
been reported to be effective [66]. GMMs is used to fit the density of natural images
patches. We extracted 200K image patches of size 6 × 6 from random locations
in the images and subtracted the DC component. Therefore, each training datum
is a 35-dimensional vector corresponding to a DC-subtracted image patch. GMM
fitting results obtained by different algorithms are reported in Table 3.3. As can be
seen, manifold LBFGS performs better than EM and manifold CG. Moreover, our

2Actually, we solve a slightly different unconstrained problem that also reparameterizes αj .

84 S. Sra and R. Hosseini

Table 3.2 Speed and average log-likelihood (ALL) comparisons for d = 20, e = 10, and e = 1.
The numbers are averaged values for 20 runs over different sampled datasets, therefore the ALL
values are not comparable to each other. The standard-deviation are also reported in the table

EM (e = 10) LBFGS (e = 10) EM (e = 1) LBFGS (e = 1)

Time (s) ALL Time (s) ALL Time (s) ALL Time (s) ALL

c = 0.2 K = 2 1.1 ± 0.4 −10.7 5.6 ± 2.7 −10.7 65.7 ± 33.1 17.6 39.4 ± 19.3 17.6

K = 5 30.0 ± 45.5 −12.7 49.2 ± 35.0 −12.7 365.6 ± 138.8 17.5 160.9 ± 65.9 17.5

c = 1 K = 2 0.5 ± 0.2 −10.4 3.1 ± 0.8 −10.4 6.0 ± 7.1 17.0 12.9 ± 13.0 17.0

K = 5 104.1 ± 113.8 −13.4 79.9 ± 62.8 −13.3 40.5 ± 61.1 16.2 51.6 ± 39.5 16.2

c = 5 K = 2 0.2 ± 0.2 −11.0 3.4 ± 1.4 −11.0 0.2 ± 0.1 17.1 3.0 ± 0.5 17.1

K = 5 38.8 ± 65.8 −12.8 41.0 ± 45.7 −12.8 17.5 ± 45.6 16.1 20.6 ± 22.5 16.1

reformulation proves crucial: without it manifold optimization is substantially slower.
The Cholesky-based model without our reformulation has the worst performance (not
reported), and even with reformulation it is inferior to the other approaches.

Figure 3.3 visualizes evolution of the objective function with the number of iter-
ations (i.e., the number of log-likelihood and gradient evaluations, or the number of
E- and M-steps). The datasets used in Fig. 3.3 are the “magic telescope” and “year
prediction” datasets,3 as well as natural image data used in Table 3.2. It can be seen
that although manifold optimization methods spend time doing line-search they catch
up with the EM algorithm in few iterations.

3.5.2 MLE for Elliptically Contoured Distributions

Our next application is maximum likelihood parameter estimation for Kotz-type
distributions. Here given i.i.d. samples (x1, . . . , xn) from an Elliptically Contoured
Distribution Eϕ(S), up to constants the log-likelihood is of the form

L (x1, . . . , xn; S) = − 1
2n log det S +

∑n

i=1
log ϕ(xTi S

−1xi), (3.20)

where ϕ is a so-called density generating function (dgf). We write Φ ≡ −L , so that
computing the MLE amounts to minimizing Φ. But this is in general difficult: Φ

can be nonconvex and may have multiple local minima. However, under suitable
assumptions on ϕ, we can still maximize (3.20) to global optimality. Some examples
are already known [27, 43, 65], and geometric optimization yields results that are
more general than previously known examples. We refer the reader to [51] for the
precise details, and provide a quick summary of the main ideas below.

The “suitable assumptions” alluded to above cover two main classes of dgfs:

3Available at UCI machine learning dataset repository via https://archive.ics.uci.edu/ml/datasets.

https://archive.ics.uci.edu/ml/datasets

3 Geometric Optimization in Machine Learning 85

Ta
bl
e
3.
3

Sp
ee

d
an

d
A

L
L

co
m

pa
ri

so
ns

fo
r

na
tu

ra
li

m
ag

e
da

ta
d

=
35

E
M

A
lg

or
ith

m
L

B
FG

S
re

fo
rm

ul
at

ed
C

G
re

fo
rm

ul
at

ed
C

G
or

ig
in

al
C

G
C

ho
le

sk
y

re
fo

rm
ul

at
ed

T
im

e
(s

)
A

L
L

T
im

e
(s

)
A

L
L

T
im

e
(s

)
A

L
L

T
im

e
(s

)
A

L
L

T
im

e
(s

)
A

L
L

K
=

2
16

.6
1

29
.2

8
14

.2
3

29
.2

8
17

.5
2

29
.2

8
94

7.
35

29
.2

8
47

6.
77

29
.2

8

K
=

4
16

5.
77

31
.6

5
10

6.
53

31
.6

5
15

3.
94

31
.6

5
63

80
.0

1
31

.6
4

26
73

.2
1

31
.6

5

K
=

8
59

6.
01

32
.8

1
33

2.
85

32
.8

1
53

6.
94

32
.8

1
14

28
2.

80
32

.5
8

93
06

.3
3

32
.8

1

K
=

10
21

59
.4

7
33

.0
5

65
8.

34
33

.0
6

10
48

.0
0

33
.0

6
17

71
1.

87
33

.0
3

74
63

.7
2

33
.0

5

86 S. Sra and R. Hosseini

0 50 100 150 200 250 300
10−5

10−4

10−3

10−2

10−1

100

101

102

function and gradient evaluations

A
L
L

∗
-
A
L
L

EM, Usual MVN
LBFGS, Reparameterized MVN
CG, Reparameterized MVN

0 50 100 150 200
10−5

10−4

10−3

10−2

10−1

100

101

102

function and gradient evaluations

A
L
L

∗
-
A
L
L

EM, Original MVN
LBFGS, Reformulated MVN
CG, Reformulated MVN

0 50 100 150 200 250
10−5

10−4

10−3

10−2

10−1

100

101

102

function and gradient evaluations

A
L
L

∗
-
A
L
L

EM, Original MVN
LBFGS, Reformulated MVN
CG, Reformulated MVN

Fig. 3.3 The objective function with respect to the number of function and gradient evaluations.
The objective function is the Best ALL minus current ALL values. Left “magic telescope” (K =
5, d = 10). Middle “year predict” (K = 6, d = 90). Right natural images (K = 8, d = 35)

(i) Geodesically convex (g-convex): This class contains functions for which the
negative log-likelihood Φ(S) is g-convex. Some members of this class have
been previously studied (possibly without exploiting g-convexity);

(ii) Log-Nonexpansive (LN): This class was introduced in [51]. It exploits the “non-
positive curvature” property of the PD manifold and it covers several ECDs
outside the scope of previous methods [27, 59, 65]. This class is essentially the
same as what we call Thompson nonexpansive in this chapter.

In [51], the authors also discuss the class Log-Convex (LC), for which the dgf ϕ is
log-convex, whereby Φ is nonconvex. But since Φ is now a difference of convex
functions it is amenable to majorization-minimization.

Several examples of strictly g-convex ECDs are (i) Multivariate Gaussian; (ii)
Kotz with α ≤ d

2 (its special cases include Gaussian, multivariate power exponential,
multivariate W-distribution with shape parameter smaller than one, elliptical gamma
with shape parameter ν ≤ d

2); (iii) Multivariate-t; (iv) Multivariate Pearson type II
with positive shape parameter; (v) Elliptical multivariate logistic distribution.

For the class LN, we can circumvent the machinery of manifold optimization and
obtain simple fixed-point algorithms as alluded to in Sect. 3.3.

As an illustrative example, consider the problem of finding the minimum of neg-
ative log-likelihood solution of Kotz-type distribution (which is a particular ECD):

Φ(S) = n
2 log det(S) + (d2 − α)

∑n

i=1
log(xTi S

−1xi) +
∑n

i=1

(
xTi S

−1xi
b

)β

, (3.21)

where α, β, and b are (known) fixed parameters. To minimize Φ, following Sect. 3.3,
we seek to solve ∇Φ(S) = 0. This amounts to the nonlinear matrix equation

S = 2
n

∑n

i=1
xih(x

T
i S

−1xi)x
T
i , (3.22)

where h(·) = (d2 − α)(·)−1 + β

bβ (·)β−1. If (3.22) has positive definite solution, then
it is a candidate MLE. If it is unique, then it is the desired minimum of (3.21).

The question now is whether upon setting G := 2
n

∑n
i=1 xih(x

T
i S

−1xi)xTi and sim-
ply iterating Sk+1 ← G (Sk), we can obtain a solution to (3.22). This is where the

3 Geometric Optimization in Machine Learning 87

theory developed in Sect. 3.3 comes into play. We mention below a slightly stronger
result.

Let τ = 1 − β and c = bβ (d/2−α)

β
. Knowing that h(·) = g((d2 − α)(·)−1) has the

same contraction factor as g(·), it can be shown that h in the iteration (3.22) for
Kotz-type distributions for which 0 < β < 2 and α < d

2 is Thompson-contractive.
Therewith, one can show the following convergence result.

Theorem 3 ([51]) For Kotz-type distributions with 0 < β < 2 and α < d
2 , Itera-

tion (3.22) converges to a unique fixed point.

3.5.2.1 Numerical Results

We compare now the convergence speed of fixed-point (FP) MLE iterations for dif-
ferent sets of parameters α and β. For our experiments, we sample 10,000 points from
a Kotz-type distribution with a random scatter matrix and prescribed values of α and
β. We compare the fixed-point approach with four different manifold optimization
methods: (i) steepest descent (SD); (ii) conjugate gradient (CG); (iii) limited-memory
RBFGS (LBFGS); (iv) trust-region (TR). All methods are initialized with the same
random covariance matrix.

The first experiment (Fig. 3.4) fixes α, β, and shows the effect of dimension on
convergence. Next, in Fig. 3.5, we fix dimension and consider the effect of varying α

and β. As it is evident from the figures, FP and steepest descent method could have
very slow convergence in some cases. FP2 denotes a re-scaled version of the basic
fixed-point iteration FP (see [51] for details); the scaling improves conditioning and
accelerates the method, leading to an overall best performance.

3.5.3 Other Applications

To conclude we briefly mention below additional applications that rely on geometric
optimization. Our listing is by no means complete, and is biased toward work more

−1.8 −1.4 −1 −0.6 −0.2 0.2
 −5

−3.16

−1.32

0.52

2.36

4.21

log Running time (seconds)

lo
g

Φ
(S

)−
Φ

(S
m

in
)

FP

LBFGS

CGS
D

TR

FP
2

−1.4 −0.98 −0.56 −0.14 0.28 0.7
 −5

−2.98

−0.96

1.06

3.08

5.11

log Running time (seconds)

lo
g

Φ
(S

)−
Φ

(S
m

in
)

FP

LBFGS

CG

S
D

T
R

F
P
2

−1.1 −0.54 0.02 0.58 1.14 1.7
 −5

−2.82

−0.63

1.55

3.73

 5.9

log Running time (seconds)

lo
g

Φ
(S

)−
Φ

(S
m

in
) FP

L
B
F
G
S C
G

S
DT
R

F
P
2

Fig. 3.4 Running times comparison between normal fixed-point iteration (FP), fixed-point iteration
with scaling factor (FP2) and four different manifold optimization methods. The objective function
is Kotz-type negative log-likelihood with parameters β = 0.5 and α = 1. The plots show (from left
to right), running times for estimating S ∈ Pd , for d ∈ {4, 16, 64}

88 S. Sra and R. Hosseini

−1.5 −0.9 −0.3 0.3 0.9 1.5
 −5

 −3

 −1

 1

3.01

5.01

log Running time (seconds)

lo
g

Φ
(S

)−
Φ

(S
m

in
)

FP

L
B
F
G
S

C
G

S
DT

R

F
P
2

−1.4 −1.04 −0.68 −0.32 0.04 0.4
 −5

−2.94

−0.87

1.19

3.24

5.31

log Running time (seconds)

lo
g

Φ
(S

)−
Φ

(S
m

in
) FP

LB
FG

S

CG
SD

TR

F
P
2

−1.3 −0.96 −0.62 −0.28 0.06 0.4
 −5

−2.8

−0.59

 1.6

3.81

6.01

log Running time (seconds)

lo
g

Φ
(S

)−
Φ

(S
m

in
)

F
P

LB
FG

S

C
GS
D

TR

F
P
2

Fig. 3.5 Running time variance for Kotz-type distributions with d = 16 and α = 2β for different
values of β ∈ {0.1, 1, 1.7}

closely related to machine learning. However, it should provide a starting point for the
interested reader in exploring other applications and aspects of the rapidly evolving
area of geometric optimization.

Computer vision. Chapter 4 (see references therein) describes applications to image
retrieval, dictionary learning, and other problems in computer vision that involve PD
matrix data, and therefore directly or indirectly rely on geometric optimization.

Signal processing. Diffusion Tensor Imaging (DTI) [28]; Radar and signal process-
ing [2, 42]; Brain Computer Interfaces (BCI) [62].

ML and Statistics. Social networks [47]; Deep learning [34, 36]; Determinantal
point processes [24, 35]; Fitting elliptical gamma distributions [52]; Fitting mixture
models [22, 38]; see also [11].

Others. Structured PD matrices [9]; Manifold optimization with rank constraints [57]
and symmetries [39]. We also mention here two key theoretical references: general
g-convex optimization [4], and wider mathematical background [13].

Acknowledgments SS acknowledges partial support from NSF grant IIS-1409802.

References

1. P.A. Absil, R. Mahony, R. Sepulchre,Optimization Algorithms onMatrix Manifolds (Princeton
University Press, Princeton, 2009)

2. M. Arnaudon, F. Barbaresco, L. Yang, Riemannian medians and means with applications to
radar signal processing. IEEE J. Sel. Top. Signal Process. 7(4), 595–604 (2013)

3. D. Arthur, S. Vassilvitskii, K-means++: the advantages of careful seeding, in Proceedings of
the Eighteenth Annual ACM-SIAM Symposium on Discrete Algorithms (SODA) (2007), pp.
1027–1035

4. M. Bacák, Convex Analysis and Optimization in Hadamard Spaces, vol. 22 (Walter de Gruyter
GmbH & Co KG, Berlin, 2014)

5. F. Bach, R. Jenatton, J. Mairal, G. Obozinski, Optimization with sparsity-inducing penalties.
Foundations and Trends® in Machine Learning 4(1), 1–106 (2012)

6. R. Bhatia, Positive Definite Matrices (Princeton University Press, Princeton, 2007)
7. R. Bhatia, R.L. Karandikar, The matrix geometric mean. Technical report, isid/ms/2-11/02,

Indian Statistical Institute (2011)

http://dx.doi.org/10.1007/978-3-319-45026-1_4

3 Geometric Optimization in Machine Learning 89

8. D.A. Bini, B. Iannazzo, Computing the Karcher mean of symmetric positive definite matrices.
Linear Algebra Appl. 438(4), 1700–1710 (2013)

9. D.A. Bini, B. Iannazzo, B. Jeuris, R. Vandebril, Geometric means of structured matrices. BIT
Numer. Math. 54(1), 55–83 (2014)

10. C.M. Bishop, Pattern Recognition and Machine Learning (Springer, New York, 2007)
11. N. Boumal, Optimization and estimation on manifolds. Ph.D. thesis, Université catholique de

Louvain (2014)
12. N. Boumal, B. Mishra, P.A. Absil, R. Sepulchre, Manopt, a matlab toolbox for optimization

on manifolds. J. Mach. Learn. Res. 15(1), 1455–1459 (2014)
13. M.R. Bridson, A. Haefliger, Metric Spaces of Non-positive Curvature, vol. 319 (Springer

Science & Business Media, Berlin, 1999)
14. S. Burer, R.D. Monteiro, Y. Zhang, Solving semidefinite programs via nonlinear programming.

part i: transformations and derivatives. Technical report, TR99-17, Rice University, Houston
TX (1999)

15. Z. Chebbi, M. Moahker, Means of Hermitian positive-definite matrices based on the log-
determinant α-divergence function. Linear Algebra Appl. 436, 1872–1889 (2012)

16. A. Cherian, S. Sra, Riemannian dictionary learning and sparse coding for positive definite
matrices. IEEE Trans. Neural Netw. Learn. Syst. (2015) (Submitted)

17. A. Cherian, S. Sra, Positive definite matrices: data representation and applications to computer
vision, Riemannian Geometry in Machine Learning, Statistics, Optimization, and Computer
Vision, Advances in Computer Vision and Pattern Recognition (Springer, New York, 2016)
(this book)

18. A. Cherian, S. Sra, A. Banerjee, N. Papanikolopoulos, Jensen-Bregman logdet divergence for
efficient similarity computations on positive definite tensors. IEEE Trans. Pattern Anal. Mach.
Intell. (2012)

19. S. Dasgupta, Learning mixtures of Gaussians, in 40th Annual Symposium on Foundations of
Computer Science (IEEE, 1999), pp. 634–644

20. A.P. Dempster, N.M. Laird, D.B. Rubin, Maximum likelihood from incomplete data via the
EM algorithm. J. R. Stat. Soc. Ser. B 39, 1–38 (1977)

21. R.O. Duda, P.E. Hart, D.G. Stork, Pattern Classification, 2nd edn. (Wiley, New York, 2000)
22. R. Hosseini, M. Mash’al, Mixest: an estimation toolbox for mixture models (2015).

arXiv:1507.06065
23. R. Hosseini, S. Sra, Matrix manifold optimization for Gaussian mixtures, inAdvances in Neural

Information Processing Systems (NIPS) (2015)
24. J.B. Hough, M. Krishnapur, Y. Peres, B. Virág et al., Determinantal processes and independence.

Probab. Surv. 3, 206–229 (2006)
25. W. Huang, K.A. Gallivan, P.A. Absil, A Broyden class of quasi-Newton methods for Rie-

mannian optimization. SIAM J. Optim. 25(3), 1660–1685 (2015)
26. B. Jeuris, R. Vandebril, B. Vandereycken, A survey and comparison of contemporary algorithms

for computing the matrix geometric mean. Electron. Trans. Numer. Anal. 39, 379–402 (2012)
27. J.T. Kent, D.E. Tyler, Redescending M-estimates of multivariate location and scatter. Ann. Stat.

19(4), 2102–2119 (1991)
28. D. Le Bihan, J.F. Mangin, C. Poupon, C.A. Clark, S. Pappata, N. Molko, H. Chabriat, Diffusion

tensor imaging: concepts and applications. J. Magn. Reson. Imaging 13(4), 534–546 (2001)
29. H. Lee, Y. Lim, Invariant metrics, contractions and nonlinear matrix equations. Nonlinearity

21, 857–878 (2008)
30. J.M. Lee, Introduction to Smooth Manifolds, vol. 218, GTM (Springer, New York, 2012)
31. B. Lemmens, R. Nussbaum,Nonlinear Perron-Frobenius Theory (Cambridge University Press,

Cambridge, 2012)
32. Y. Lim, M. Pálfia, Matrix power means and the Karcher mean. J. Funct. Anal. 262, 1498–1514

(2012)
33. J. Ma, L. Xu, M.I. Jordan, Asymptotic convergence rate of the EM algorithm for Gaussian

mixtures. Neural Comput. 12(12), 2881–2907 (2000)
34. Z. Mariet, S. Sra, Diversity networks (2015). arXiv:1511.05077

http://arxiv.org/abs/1507.06065
http://arxiv.org/abs/1511.05077

90 S. Sra and R. Hosseini

35. Z. Mariet, S. Sra, Fixed-point algorithms for learning determinantal point processes, in Inter-
national Conference on Machine Learning (ICML) (2015)

36. J. Masci, D. Boscaini, M.M. Bronstein, P. Vandergheynst, ShapeNet: convolutional neural
networks on non-Euclidean manifolds (2015). arXiv:1501.06297

37. G.J. McLachlan, D. Peel, Finite Mixture Models (Wiley, New Jersey, 2000)
38. A. Mehrjou, R. Hosseini, B.N. Araabi, Mixture of ICAs model for natural images solved by

manifold optimization method, in 7th International Conference on Information andKnowledge
Technology (2015)

39. B. Mishra, A Riemannian approach to large-scale constrained least-squares with symmetries.
Ph.D. thesis, Université de Namur (2014)

40. M. Moakher, A differential geometric approach to the geometric mean of symmetric positive-
definite matrices. SIAM J. Matrix Anal. Appl. (SIMAX) 26, 735–747 (2005)

41. K.P. Murphy, Machine Learning: A Probabilistic Perspective (MIT Press, Cambridge, 2012)
42. F. Nielsen, R. Bhatia (eds.), Matrix Information Geometry (Springer, New York, 2013)
43. E. Ollila, D. Tyler, V. Koivunen, H.V. Poor, Complex elliptically symmetric distributions:

survey, new results and applications. IEEE Trans. Signal Process. 60(11), 5597–5625 (2011)
44. R.A. Redner, H.F. Walker, Mixture densities, maximum likelihood, and the EM algorithm.

Siam Rev. 26, 195–239 (1984)
45. W. Ring, B. Wirth, Optimization methods on Riemannian manifolds and their application to

shape space. SIAM J. Optim. 22(2), 596–627 (2012)
46. B. Schölkopf, A.J. Smola, Learning with Kernels (MIT Press, Cambridge, 2002)
47. A. Shrivastava, P. Li, A new space for comparing graphs, in IEEE/ACM International Con-

ference on Advances in Social Networks Analysis and Mining (ASONAM) (IEEE, 2014), pp.
62–71

48. S. Sra, On the matrix square root and geometric optimization (2015). arXiv:1507.08366
49. S. Sra, Positive definite matrices and the S-divergence, in Proceedings of the American Math-

ematical Society (2015). arXiv:1110.1773v4
50. S. Sra, R. Hosseini, Geometric optimisation on positive definite matrices for elliptically con-

toured distributions, in Advances in Neural Information Processing Systems (2013), pp. 2562–
2570

51. S. Sra, R. Hosseini, Conic geometric optimisation on the manifold of positive definite matrices.
SIAM J. Optim. 25(1), 713–739 (2015)

52. S. Sra, R. Hosseini, L. Theis, M. Bethge, Data modeling with the elliptical gamma distribution,
in Artificial Intelligence and Statistics (AISTATS), vol. 18 (2015)

53. A.C. Thompson, On certain contraction mappings in partially ordered vector space. Proc. AMS
14, 438–443 (1963)

54. R. Tibshirani, Regression shrinkage and selection via the Lasso. J. R. Stat. Soc. Ser. B
(Methodol.) 58, 267–288 (1996)

55. C. Udrişte, Convex Functions and Optimization Methods on Riemannian Manifolds (Kluwer,
Dordrecht, 1994)

56. R.J. Vanderbei, H.Y. Benson, On formulating semidefinite programming problems as smooth
convex nonlinear optimization problems. Technical report, Princeton (2000)

57. B. Vandereycken, Riemannian and multilevel optimization for rank-constrained matrix prob-
lems. Ph.D. thesis, Department of Computer Science, KU Leuven (2010)

58. J.J. Verbeek, N. Vlassis, B. Kröse, Efficient greedy learning of Gaussian mixture models.
Neural Comput. 15(2), 469–485 (2003)

59. A. Wiesel, Geodesic convexity and covariance estimation. IEEE Trans. Signal Process. 60(12),
6182–6189 (2012)

60. A. Wiesel, Unified framework to regularized covariance estimation in scaled Gaussian models.
IEEE Trans. Signal Process. 60(1), 29–38 (2012)

61. L. Xu, M.I. Jordan, On convergence properties of the EM algorithm for Gaussian mixtures.
Neural Comput. 8, 129–151 (1996)

62. F. Yger, A review of kernels on covariance matrices for BCI applications, in IEEE International
Workshop on Machine Learning for Signal Processing (MLSP) (IEEE, 2013), pp. 1–6

http://arxiv.org/abs/1501.06297
http://arxiv.org/abs/1507.08366
http://arxiv.org/abs/1110.1773v4

3 Geometric Optimization in Machine Learning 91

63. J. Zhang, L. Wang, L. Zhou, W. Li, Learning discriminative Stein Kernel for SPD matrices and
its applications (2014). arXiv:1407.1974

64. T. Zhang, Robust subspace recovery by geodesically convex optimization (2012).
arXiv:1206.1386

65. T. Zhang, A. Wiesel, S. Greco, Multivariate generalized Gaussian distribution: convexity and
graphical models. IEEE Trans. Signal Process. 60(11), 5597–5625 (2013)

66. D. Zoran, Y. Weiss, Natural images, Gaussian mixtures and dead leaves, in Advances in Neural
Information Processing Systems (2012), pp. 1736–1744

http://arxiv.org/abs/1407.1974
http://arxiv.org/abs/1206.1386

Chapter 4
Positive Definite Matrices: Data
Representation and Applications
to Computer Vision

Anoop Cherian and Suvrit Sra

Abstract Numerous applications in computer vision and machine learning rely on
representations of data that are compact, discriminative, and robust while satisfying
several desirable invariances. One such recently successful representation is offered
by symmetric positive definite (SPD) matrices. However, the modeling power of SPD
matrices comes at a price: rather than a flat Euclidean view, SPD matrices are more
naturally viewed through curved geometry (Riemannian or otherwise) which often
complicates matters. We focus on models and algorithms that rely on the geometry of
SPD matrices, and make our discussion concrete by casting it in terms of covariance
descriptors for images. We summarize various commonly used distance metrics on
SPD matrices, before highlighting formulations and algorithms for solving sparse
coding and dictionary learning problems involving SPD data. Through empirical
results, we showcase the benefits of mathematical models that exploit the curved
geometry of SPD data across a diverse set of computer vision applications.

4.1 Introduction

Efficient representations that compactly capture salient properties of data form the
basis of every algorithm in computer vision and machine learning. Consider for
instance the task of tracking a person across video frames given (i) a video sequence,
and (ii) a bounding box around the object to be tracked (see Fig. 4.1). Methods for this
task typically first generate a representation (descriptor) of the image patch inside the
bounding box and then proceed further. Success of the tracking application relies on
several desirable properties, for instance (i) ability of the representation to uniquely

A. Cherian (B)
ARC Centre of Excellence for Robotic Vision, Australian National University,
Canberra, Australia
e-mail: anoop.cherian@anu.edu.au
URL: http://www.roboticvision.org

S. Sra
Massachusetts Institute of Technology, Cambridge, MA, USA
e-mail: suvrit@mit.edu

© Springer International Publishing Switzerland 2016
H.Q. Minh and V. Murino (eds.), Algorithmic Advances in Riemannian
Geometry and Applications, Advances in Computer Vision
and Pattern Recognition, DOI 10.1007/978-3-319-45026-1_4

93

94 A. Cherian and S. Sra

Fig. 4.1 An illustrative application: people tracking in a video sequence. We are given a video
sequence and a bounding box of the person to be tracked (dark box), and the problem is to track
the person along the sequence, i.e., to generate the lighter (yellow) boxes in subsequent frames

characterize the contents of the tracked patch against any other patch in a video
frame; (ii) robustness of the descriptor to camera sensor noise; (iii) stability despite
changes in illuminations; (iv) tolerance for occlusions; and (v) robustness to affine
deformations of the object.

A simple descriptor for tracking could be the normalized color histogram of an
image patch. This choice partially satisfies properties such as (i), (ii), and (iii). We
can improve this naive color descriptor by adding additional statistics of the image
patch, such as the shape and pose of the object, texture of the patch, edge orienta-
tions, etc. However, each of these additional data features requires high-dimensional
descriptors for its representation, whereby the final augmented data descriptor can
be extremely large. This in turn raises storage concerns, while also complicating
learning, recognition, and tracking due to the curse of dimensionality.

A simple but effective alternative representation that fuses such multi-modal cues
was introduced in [53], dubbed region covariance descriptors. The key idea is to
model an image patch using correlations between different low-level features. To
this end, we extract raw image features such as color, intensity gradients, etc., from
every pixel within the desired patch. Then we stack these raw features and compute
their covariance matrix, resulting in the covariance descriptor (for the patch).

Although it seems surprising that such a simple approach can lead to a pow-
erful descriptor, we must note that the diagonal of the covariance matrix captures
the statistical variance of each individual feature and the off-diagonals capture the
correlation between different features. Thus, this descriptor captures second-order
co-occurrences of multimodal features. Since this matrix has size quadratic only in
the number of features, it is independent of the number of pixels in the patch and is
thus very compact. Also, since the features means are subtracted when computing
the covariance, this descriptor implicitly applies mean-filtering to the data, providing
noise robustness. Due to these unique properties, the use of covariance descriptors
has proliferated into several applications in computer vision and beyond.

We note that SPD matrices also play an important role as data descriptors in several
other non-vision applications, such as, diffusion tensor imaging [3], brain-computer

4 Positive Definite Matrices: Data Representation … 95

interfaces [17], sound compression [45], polarimetric image modeling [24], virus
classification [21], and as quantum density matrices [20].

While constructing covariance descriptors is simple (see Sect. 4.1.1), using them
can be demanding. The key difficulty arises due to the non-Euclidean nature of
covariances. Although it is tempting to simply view SPD matrices using the geometry
of their embedding (Euclidean) space [1], the corresponding manifold is not complete
(i.e., under this geometry, not all Cauchy sequences will converge within the SPD
cone) which can lead to irrelevant solutions for certain applications [4]. Therefore,
several alternative geometries for SPD matrices have been considered—Sect. 4.1.2
outlines some of the more widely used choices.

Subsequently, in Sect. 4.2 we illustrate use of these geometries on the concrete
tasks of sparse coding and dictionary learning. These problems have been widely
studied (for vectors) and are important to a variety of applications [36]. However,
their extension to SPD matrix data is non-trivial and less studied; we describe two
different frameworks that achieve these extensions.

4.1.1 Covariance Descriptors and Example Applications

Before delving into theoretical details, we recall below details on construction of
covariance descriptors and summarize two illustrative applications.

Definition 1 (Covariance Descriptor) Suppose we have a data instance I ∈ R
n

(image patch, video snippet, etc.). Let f j1, f
j

2, . . . , f
j
d , (each f ji ∈ R, j = 1,

2, . . . , n) represent d features computed for the j-th component of I (such as image

intensity gradients, filter outputs, etc.). Let f j =
[
f j1, f

j
2, . . . , f

j
d

]T
; then the Covari-

ance Descriptor S for I is the d × d covariance matrix given by:

S = 1
n

∑n

j=1
(f j − μ)(f j − μ)T , (4.1)

where μ = 1
n

∑n
j=1 f

j is the mean feature vector. We will assume that the features
are linearly independent, in which case S ∈ S

d+, the cone of d × d SPD matrices.

4.1.1.1 Illustrative Application 1: People Tracking

We continue with our example of people tracking described in Fig. 4.1. One impor-
tant choice that we must make is what features to use for constructing the descriptor.
For people tracking, we will first consider a texture based approach as described
in [53] that uses raw image intensity features from each pixel. Given a patch I, let
Ir(x, y), Ig(x, y), Ib(x, y) represent the red, green, and blue color intensities respec-
tively of pixel at spatial coordinates (x, y) in the patch. Further, let Ix(x, y), Iy(x, y)
represent the gray scale image intensity gradients in the horizontal and vertical direc-
tions respectively. Then, we define

96 A. Cherian and S. Sra

f (x, y) = [
Ir(x, y), Ig(x, y), Ib(x, y), Ix(x, y), Iy(x, y)

]T
(4.2)

as the feature vector. A covariance descriptor capturing color and shape of the objects
in I is then given by:

Stracking = 1
|I|

∑
x,y

(f (x, y) − μ)(f (x, y) − μ)T , (4.3)

where μ = 1
|I|

∑
x,y f (x, y) is the mean feature, and |I| is the patch size. Note that the

order of the pixels in the patch are ignored when computing the covariance matrix,
thus providing invariance to changes in the pose of the object. However, we may
associate additional spatial correlations between the pixel features by including the
(x, y) coordinates as well into (4.2). In case, rotational invariance is desired, instead
of including (x, y) coordinates, we could include

√
x2 + y2 as an additional feature

for a pixel at location (x, y). Curvature information could be easily included by
computing the second-order gradients for every pixel and augmenting (4.2). This
illustration shows the flexibility of the covariance descriptor to blend any feature of
choice into the framework easily. The next example shows a richer set of features.

4.1.1.2 Illustrative Application 2: Face Recognition

While using raw features such as gradients could be sufficient to capture textures,
recognizing faces require much more expressive and discriminative feature sets.
In [39], the authors propose to use covariance descriptors for this task where the
features are generated from Gabor wavelets. These filters are believed to reflect the
human visual system [37] and measures the energy distribution in the image patch
at various scales and orientations. These filters have been previously shown to be
useful to extract discriminative and subtle features suitable for recognition [33];
using them within a covariance descriptor setup is shown to lead to significantly
better recognition performance in [39], via capturing their second-order statistics.
To this end, 40 Gabor wavelet filters are first designed consisting of 8 orientations
and 5 different scales. Next, small patches centered at each pixel in the face patch
are convolved with these filters, thus forming a 40 dimensional feature vector for
each pixel, which precedes applying the steps described above to generate 40 × 40
covariance descriptors.

Covariance descriptors have been found to be useful in several other vision appli-
cations, such as visual surveillance [35, 51, 52], object recognition [23, 29], action
recognition [25, 47, 50], image set classification [54], and emotion classification [55],
to name a few. Almost all these works use a similar setup for computing the covari-
ances, except that they use various features suitable for the application.

4 Positive Definite Matrices: Data Representation … 97

4.1.2 Geometry of SPD Matrices

To effectively use covariance descriptors we must next define schemes to com-
pute similarity/distance between two descriptors. Intuitively, the distance measure
enforces some geometry on the space of these descriptors, and which particular geom-
etry is preferable depends on the application. As alluded to previously, a variety of
SPD geometries have been explored, the simplest of which is the usual Euclidean
geometry where the distance between SPD matrices X and Y is simply the Frobenius
distance given by

dF(X,Y) := ‖X − Y‖F . (4.4)

However, dF is neither affine invariant nor does it lead to a complete metric space (due
to singular boundary). Affine invariance is important in applications such as diffusion
MRI [40] while completeness is crucial when defining convergent sequences on the
SPD manifold.

Two basic alternative distances popular in computer vision are (i) the affine invari-
ant Riemannian metric (AIRM) [40], and (ii) the log-Euclidean Riemannian metric
(LERM) [4]. Both measures induce a Riemannian geometry; the former induces a
curved geometry while the latter “flattens” the manifold by mapping into the tan-
gent space at the identity matrix (which is Euclidean). The corresponding distance
functions are

dR(X,Y) := ∥∥LogX−1/2YX−1/2
∥∥
F

, (4.5)

dLE(X,Y) := ‖LogX − LogY‖F , (4.6)

where X−1/2 is the matrix square-root of SPD matrix X−1 and Log is the princi-
pal matrix logarithm. Distance (4.5) is affine invariant, and enjoys a host of other
remarkable properties [7, Chap. 6]. LERM, however, is not affine invariant though it
is rotation and scale invariant separately. Both AIRM and LERM are computation-
ally demanding: for d × d SPD matrices, assuming approximately 4d3/3 flops for
eigendecomposition and d3 for matrix multiplication, both these distances require
approximately 14d3/3 flops.

To reduce the computational cost, while preserving affine invariance and other
geometric properties, the Stein distance was introduced in [15, 48]; it is defined as

dS(X,Y) := [
log det

(
X+Y

2

) − 1
2 log det(XY)

]1/2
. (4.7)

Computing dS requires only three Cholesky decompositions, at a total cost of d3 flops.
Moreover, dS is analytically simpler to work with, as its gradients are also simpler
to obtain than either AIRM or LERM. Consequently, it has found application is a
number of recent works, some of which we will refer to in the sequel.

98 A. Cherian and S. Sra

4.2 Application to Sparse Coding and Dictionary Learning

After outlining a few basic SPD geometries, we are now ready to describe concrete
applications where specific properties of SPD matrices play a role. In particular, we
discuss sparse coding and dictionary learning for SPD valued data. The first model we
cover is generalized dictionary learning (GDL), a direct extension of usual (vector)
dictionary learning.

Our second model uses the natural Riemannian geometry of SPD matrices, and
measures sparse reconstruction loss using the AIRM distance. There are other for-
mulations for dictionary learning and sparse coding on SPD matrices, for instance
[25–28, 46]; these differ from our model primarily in the formulation of the sparse
reconstruction loss.

4.2.1 Dictionary Learning with SPD Atoms

Traditional dictionary learning takes vectors xi ∈ R
p (1 ≤ i ≤ m) and constructs a

matrix B ∈ R
p×n and code vectors αi ∈ R

n (usually n � p), so that

xi ≈ Bαi, and αi is sparse, for 1 ≤ i ≤ m.

The sparsity requirement on αi is commonly enforced using �0- or �1-norm penalties
or constraints. Since both B and αi are unknown dictionary learning usually results
in a difficult nonconvex optimization task. Nevertheless, it has found remarkable
success toward sparse coding and other applications [18].

We depart from the above setup in that we consider input matrices Xi ∈ R
p×q,

1 ≤ i ≤ m. Then, instead of a dictionary matrix B we learn a tensor B, which we
identify with a linear operator B : Rn×r → R

p×q so that

Xi ≈ B(Ai), and Ai is sparse, for 1 ≤ i ≤ m. (4.8)

Using (4.8), one model of GDL is the following [49]:

minA1,...,Am,B
1
2

∑m

i=1
‖Xi − B(Ai)‖2

F +
∑m

i=1
βisp(Ai), (4.9)

where βi > 0 are scalar hyperparameters while sp(A) enforces some notion of spar-
sity. For instance, sp(A) could be the cardinality function ‖A‖0 (which computes
the number of non-zero entries in A), its convex relaxation ‖A‖1, the matrix-rank
rank(A) or its convex relaxation, the trace-norm ‖A‖tr.

Formulation (4.9) requires one more modification for SPD valued inputs. Specifi-
cally, we need to ensure that the approximation B(Ai) � 0. In this chapter, we explore
two variants of this approximation: (i) based on conic combinations of rank-one pos-
itive semi-definite matrices (as detailed below) and (ii) based on conic combinations

4 Positive Definite Matrices: Data Representation … 99

of full-rank SPD matrices (as explored in Sect. 4.2.2). For the first option, let us
define B via

B(A) := BABT , for some matrix B, (4.10)

and additionally restricting to A � 0. Observe that (4.10) can be written as

vec(BABT) = (B ⊗ B) vec(A), (4.11)

where vec stacks columns of its argument and the operator B is encoded (isomorphi-
cally) by the product B ⊗ B.

It is easy to show that (4.11) requires md2 + d2n + mn storage for m covariance
matrices of size d × d, while (4.10) takes md2 + dn + mn. Computationally, also the
first formulation is cheaper, so we prefer it. As to A, we consider two choices:

1. A = Diag(α1, . . . , αn) where αi ≥ 0; and
2. A = ∑k

j=1 αjα
T
j , a potentially low-rank (if k < n) SPD matrix.

Although diagonal A might appear to be simple, it is quite powerful. Indeed, with
it GDL models SPD matrices as weighted sums of rank-one matrices since

X ≈ BABT =
∑n

i=1
αibib

T
i , where αi = Aii, (4.12)

which offers a rich yet computationally tractable model.

4.2.1.1 Stochastic Gradient Descent for GDL

Now we derive a stochastic-gradient descent procedure for approximately solving
GDL. We use the convex function sp(A) = ‖A‖1 for enforcing sparsity. Then, using
representation (4.12) with diagonalAi, the GDL optimization problem (4.9) becomes

min
A1,...,AN≥0,B

1
2

∑m

i=1
‖Xi − BAiBT‖2

F +
∑m

i=1
βi‖Ai‖1. (4.13)

Problem (4.13) is nonconvex and difficult. However, for a fixed dictionary B, it
is individually convex in (A1, . . . ,Am). It is thus amenable to the idea of alternating
between updating B and optimizing over (A1, . . . ,Am). But in many applications
the number of input data points m is very large, so the alternating steps can easily
become rather costly. Therefore, we follow a stochastic gradient approach that can
scale to large data sets, as long as the stochastic gradients can be obtained efficiently.

To prevent degenerate solutions we also impose normalization constraints
‖bj‖2 ≤ 1 on each column of matrix B. We denote these requirements by the feasible
setB. We run stochastic gradient usingK “mini-batches,” for which we rewrite (4.13)
as

min
B∈B

�(B) :=
∑K

b=1
φb(B), (4.14)

100 A. Cherian and S. Sra

where φb denotes the objective function for batch b. Let kb be the size of batch b
(1 ≤ b ≤ K) containing the matrices

{
Xj(i)|1 ≤ i ≤ kb

}
, where j(i) is an appropriate

index in 1, . . . ,m. With this notation, the objective function for batch b is

φb(B) := min
Aj(1),...,Aj(k)≥0

1
2

∑kb

i=1
‖Xj(i) − BAj(i)BT‖2

F + βj(i)‖Aj(i)‖1. (4.15)

We apply stochastic-gradient to (4.14), which performs the iteration

Bt+1 = �B(Bt − ηt∇Bφb(t)(Bt)), b(t) ∈ [1..K], t = 0, 1, . . . , (4.16)

where �B denotes orthogonal projection onto B, i.e., normalizing each column
of the dictionary matrix to have unit norm. Assuming (4.15) has a unique solution,
the gradient ∇Bφb(t) is well defined. Specifically, let (A∗

j(1), . . . ,A
∗
j(k)) be the argmin

of (4.15). Then, writing b ≡ b(t), we have

∇Bφb(B) = 2
∑kb

i=1

(
BA∗

j(i)B
T − Xj(i)

)
BA∗

j(i). (4.17)

The computationally intensive part is to compute (4.17), which we now consider.

4.2.1.2 Sparse Coding: Computing ∇φb

Observe that (4.15) is a sum of kb independent problems, so it suffices to describe
the computation for a subproblem of the form

min
A≥0

f (A) := 1
2‖X − BABT‖2

F + β‖A‖1. (4.18)

Since A ≥ 0 and diagonal, problem (4.18) is nothing but a regularized nonnegative
least-squares (NNLS) problem. There exist a variety of solvers for NNLS, for exam-
ple, LBFGS-B [34], or Spectral Projected-Gradient (SPG) [8]. We prefer to use the
latter, as it is not only simple, but also exhibits excellent empirical performance.
In a nutshell, SPG minimizes a given objective in a closed and convex set via a
sequence of steepest descent and projection steps. Each descent iteration uses a non-
monotone line search for stepsize selection with the well-known Barzellai–Borwein
secant algorithm.

In Sect. 4.3, we will apply this sparse coding scheme to the problem of nearest
neighbor retrieval on covariance datasets. But, before proceeding to the experiments,
we will elucidate a much richer and more powerful dictionary learning and sparse
coding scheme on SPD matrices that leads to significantly better results on vari-
ous applications; this scheme uses the natural Riemannian geometry for the sparse
construction loss instead of the Euclidean distance as in (4.9).

4 Positive Definite Matrices: Data Representation … 101

4.2.2 Riemannian Dictionary Learning and Sparse Coding

Recall that we wish to compute a dictionary with “SPD atoms”. We work on manifold
M

d
n = ∏n

i=1 S
d+ ⊂ R

d×d×n, which is the Cartesian product of n SPD manifolds. Our
goals are (i) to learn a dictionary B ∈ M

d
n in which each slice represents an SPD

dictionary atom Bj ∈ S
d+ 1 ≤ j ≤ n; and (ii) to approximate each Xi as a sparse conic

combination of atoms in B; i.e., Xi ∼ B(αi) where αi ∈ R
n+ and B(α) := ∑n

i=1 αiBi.
With this notation our dictionary learning and sparse coding (DLSC) problem is

min
B∈Md

n ,α∈Rn×m+

1
2

∑m

j=1
dR

2
(
Xj, Bαj

) + Sp(αj) + Ω(B), (4.19)

where Sp and Ω regularize the codes αj and the dictionary tensor B respectively.
Formulation (4.19) is a direct SPD analog of the vector DL setup. Instead of

learning a dictionary matrix for vectors, we learn a third-order tensor dictionary
as our input is matricial data. We constraint the sparse codes to be non-negative
to ensure that the linear combination B(α) remains SPD. In contrast to usual DL
problems where the dictionary learning and sparse coding subproblems are convex,
problem (4.19) is much harder: it is neither convex in itself nor are its subproblems
convex.

Pragmatically speaking, this lack of subproblem convexity is not too damaging:
we just need a set of dictionary atoms that can sparse code the input data, and such
a set can still be computed by performing an alternating minimization (actually, just
descent here). We describe the details below.

4.2.2.1 Dictionary Learning Subproblem

Assuming that the sparse code vectors α are available, the subproblem of updating
the dictionary atoms can be separated from (4.19) and written as:

min
B∈Md

n

Ψ (B) := 1
2

∑m

j=1
d2

R

(
Xj, Bαj

) + Ω(B),

= 1
2

∑m

j=1

∥∥∥Log
(
X−1/2

j

(
Bαj

)
X−1/2

j

)∥∥∥2

F
+ Ω(B). (4.20)

Due to its good empirical performance we choose Ω(B) := λB
∑n

i=1 Tr(Bi).

Riemannian CG

Due to the excellent empirical performance observed for the Riemannian Conju-
gate Gradient (RCG) algorithm [1, Chap. 8] for optimizing over the SPD atoms (in
comparison to other first-order alternatives such as the steepest-descent, trust-region
methods [2], etc.), we decided to use RCG. For completeness of our presentation,
we provide below a brief review of this optimization technique.

102 A. Cherian and S. Sra

For some non-linear function ψ(x), x ∈ R
n, the CG method uses the following

recurrence at step k + 1
xk+1 = xk + γkξk, (4.21)

where the descent direction ξk is

ξk = −grad ψ(xk) + μkξk−1, (4.22)

with grad ψ(xk) defining gradient of ψ at xk (ξ0 = −grad ψ(x0)), and μk given by

μk = (grad ψ(xk))T (grad ψ(xk) − grad ψ(xk−1))

grad ψ(xk−1)Tgrad ψ(xk−1)
, (4.23)

The step-size γk in (4.21) is usually found via a line-search method [6]. When ψ is
quadratic with a Hessian Q, the directions generated by (4.22) are Q-conjugate to
previous directions of descent ξ 0, ξ 1, · · · , ξ k−1 (i.e., ξ k−1Qξ k = 0); thereby (4.21)
providing the exact minimizer of f in fewer than d iterations (d is the manifold
dimension) [6, Sect. 1.6].

For B ∈ M
d
n and referring back to (4.20), the recurrence in (4.21) uses the

Riemannian retraction [1, Chap. 4] and the gradient grad Ψ (Bk) is the Riemannian
gradient (here Bk represents the dictionary tensor at the k-th iteration). This leads to
an important issue: the gradients grad Ψ (Bk) and grad Ψ (Bk−1) belong to two dif-
ferent tangent spaces TBkM and TBk−1M respectively, and thus cannot be combined
as in (4.23). Thus, following [1, Chap. 8] we resort to vector transport – a scheme to
transport a tangent vector at P ∈ M to a point ExpP(S) where S ∈ TPM and ExpP is
the exponential map with foot at P. The resulting formula for the direction update
becomes

ξBk = −grad Ψ (Bk) + μkTγkξk−1(ξk−1), (4.24)

where

μk =
〈
grad Ψ (Bk), grad Ψ (Bk) − Tγkξ k−1(grad Ψ (Bk−1))

〉
〈grad Ψ (Bk−1), grad Ψ (Bk−1)〉 . (4.25)

Here for Z1,Z2 ∈ TPM, the map TZ1(Z2) defines the vector transport given by:

TZ1(Z2) = d

dt
Exp
P

(Z1 + tZ2)

∣∣∣∣
t=0

. (4.26)

It remains to derive an expression for the Riemannian gradient grad Ψ (B).

Riemannian Gradient

Lemma 1 connects the Riemannian gradient to the Euclidean gradient of Ψ (B).

Lemma 1 For dictionary tensor B ∈ M
d
n , let Ψ (B) be a differentiable function.

Then, the Riemannian gradient grad Ψ (B) satisfies:

4 Positive Definite Matrices: Data Representation … 103

〈grad Ψ (B), ζ 〉B = 〈∇Ψ (B), ζ 〉I ,∀ζ ∈ TPM
d
n, (4.27)

where ∇Ψ (B) is the Euclidean gradient of Ψ (B). The Riemannian gradient for the
i-th dictionary atom is given by grad iΨ (B) = Bi∇BiΨ (B)Bi.

Proof See [1, Chap. 5]. The final result is obtained by substituting the definition of
the Riemannian metric (4.5) to the LHS of (4.27).

The Euclidean gradient ∇Ψ (B) is obtained as follows: let Sj = X−1/2
j and

Mj(B) := B(αj) = ∑n
i=1 αi

jBi. Then,

Ψ (B) = 1
2

∑m

j=1
Tr(Log(SjMj(B)Sj)2) + λB

∑n

i=1
Tr(Bi). (4.28)

The derivative ∇BiΨ (B) of (4.28) w.r.t. to atom Bi is:

∑m

j=1
αi
j

(
SjLog(Mj(B))

(
Mj(B)

)−1
Sj

) + λBI. (4.29)

4.2.2.2 Sparse Coding Subproblem

Referring back to (4.19), we now consider the sparse coding subproblem. Given a
dictionary tensor B and a data matrix Xj ∈ S

d+, this subproblem requires solving

min
αj≥0

φ(αj) := 1
2 d2

R

(
Xi, B(αj)

) + Sp(αj)

= 1
2

∥∥∥Log
(∑n

i=1
αi

jX
−1/2BjX−1/2

)∥∥∥2

F
+ Sp(αj),

(4.30)

where αi
j is the i-th component of αj and Sp is a sparsity inducing function. For sim-

plicity, we use Sp(α) = λ‖α‖1, where λ > 0 is a regularization parameter. Since we
are working with α ≥ 0, we replace this penalty by λ

∑
i αi, which is differentiable.

Problem (4.30) measures reconstruction quality offered by a sparse non-negative
linear combination of the atoms to a given input point X. It will turn out (see exper-
iments in Sect. 4.3) that the reconstructions obtained via this model actually lead to
significant improvements in performance over sparse coding models that ignore SPD
geometry. But this gain comes at a price: objective (4.30) is difficult to optimize, and
remains difficult even if we take into account geodesic convexity of dR.

While in practice this non-convexity does not seem to hurt our model, we digress
below to show a surprising but intuitive constraint under which Problem (4.30)
actually becomes convex. Although we do not exploit this observation to save on
computation, we highlight it here due to its theoretical appeal.

Theorem 1 ([14]) The function φ(α) := d2
R(

∑
i αiBi,X) is convex on the set

A := {α |
∑

i
αiBi � X, and α ≥ 0}. (4.31)

104 A. Cherian and S. Sra

4.2.2.3 Optimizing Sparse Codes

We minimize (4.30) using a projected gradient method. Specifically, we run the
iteration

αk+1 ← P[αk − ηk∇φ(αk)], k = 0, 1, . . . , (4.32)

where P[·] denotes the projection operator defined as

P[α] ≡ α �→ argminα′ 1
2‖α′ − α‖2

2, s.t. , α′ ∈ A . (4.33)

To implement iteration (4.32) we need to specify three components: (i) the stepsize
ηk; (ii) the gradient ∇φ(αk); and (iii) the projection (4.33). Lemma 2 shows how
to compute the gradient. The projection task (4.33) is a special least-squares (dual)
semidefinite program (SDP), which can be solved using any SDP solver. However,
in the interest of speed, we avoid the heavy computational burden imposed by an
SDP, and drop the constraint α ∈ A . Although this sacrifices convexity, the resulting
computation is vastly easier, and works well empirically. With this change, we simply
have P[α] = max(0, α).

It remains to specify how to obtain the stepsize ηk . There are several choices in
the nonlinear programming literature [6], but most of them can be expensive in our
setting. We wish to avoid expensive iterative algorithms for computing ηk , and thus
choose to use Barzilai-Borwein stepsizes [5] that have closed forms and that often
work remarkably well in practice [5, 44]. In particular, we use the Spectral Projected
Gradient (SPG) method [9] by adapting a simplified implementation of [44].

Lemma 2 Let B, C, and X be fixed SPD matrices. Consider the function f (x) :=
d2

R(xB + C,X). The derivative f ′(x) is given by

f ′(x) = 2 Tr(log(S(xB + C)S)S−1(xB + C)−1BS), where S = X−1/2. (4.34)

Proof Introduce the shorthand M(x) ≡ xB + C. Using (4.5) we have

f (x) = Tr([log(SM(x)S)]T [log(SM(x)S)]),

The chain-rule of calculus then immediately yields the desired result

f ′(x) = 2 Tr(log(SM(x)S)(SM(x)S)−1SM ′(x)S).

Writing M(αp) = αpBp + ∑
i �=p αiBi and using Lemma 2 we obtain

∂φ(α)

∂αp
= Tr

(
log

(
SM(αp)S

)(
SM(αp)S

)−1
SBpS

) + λ. (4.35)

4 Positive Definite Matrices: Data Representation … 105

Computing (4.35) for all α is the dominant when running SPG. A a naïve imple-
mentation of (4.35) costs O(nd3), but with slight care this cost can be reduced
O(nd2) + O(d3) [14].

4.3 Applications of Sparse Coding

In this section, we describe an application of sparse coding for covariances, namely
nearest neighbor (NN) retrieval. This is a fundamental task in several computer vision
and machine learning applications in which the goal is to find a data point closest to
a given query point within a large database.

4.3.1 Nearest Neighbors on Covariance Descriptors

Suppose we have obtained a sparse code matrix A using either GDL or Riemannian
DLSC for an input matrix X. Since, we use an overcomplete dictionary typically
only a few dictionary atoms participate in the reconstruction of X. Thus, with high
probability dissimilar input points will obtain different sparse codes. In other words,
suppose that we use a dictionary with n rank-one atoms and that only r of these
matrices are used to obtain a reconstruction for a given input. Then, there are

(n
r

)
unique basis combinations possible. With appropriate choices of n and r, we will
likely obtain a unique set of rank-one matrices that encode X.

Using this intuition, we propose a sorted integer tuple representation to encode
an input covariance matrix; the integers simply index the dictionary atoms used in
the encoding. Formally, let X ∈ S

d+ be the input, B an overcomplete dictionary, and
ui (i ∈ [n]) a unique identifier for the i-th atom of B. If α = (α1, α2, . . . , αn)

T is the
coefficient vector corresponding to X ≈ B(α), then the tuple h(X) = 〈ui, . . . ,uk〉 is
the hash code of X. We choose only those identifiers for which the code αj is larger
than a threshold ε ≥ 0.

In our case, we assume that the ui’s are just integers in {1, . . . , n} corresponding to
the dimension index of the respective αj > 0, and that the hash code is thus a sorted
tuple of these indices. For example, suppose α1, α10, α12 are the sparse coefficients
that are greater than a threshold ε after the sparse coding of a given data point
X. Then, the hash code will be h(X) = 〈1, 10, 12〉. The threshold ε helps select
significant coefficients from the sparse coding, and makes the chosen code robust
to noise. This coded representation enables the use of hash tables for fast locality
sensitive hashing. Let us see how. Each column of the dictionary is identified by its
index number; so each hash-key is a set of integers encoded as a character string.
To tackle collisions in the hash buckets, the colliding input matrices are organized
as a linked list. If the linked list gets too long, the data within a hash bucket can be
further organized using a metric tree or any other efficient data structure. This idea
of hashing is a direct adaptation of the scheme proposed in [12].

106 A. Cherian and S. Sra

Given a query SPD matrix, we solve the sparse coding problem to first obtain
the corresponding sparse coefficients. From these coefficients we compute the above
hash code query the hash table. If there are several entries in a matching bucket, we
run a linear scan using the AIRM distance (4.5) to find the best matches (the bucket
can also be organized for faster than linear scans, if desired).

4.3.2 GDL Experiments

This section illustrates nearest neighbor search based upon our dictionary learning
examples. We use the following datasets:

• Face recognition. The FERET face dataset [41, 42] contains facial appearances
segregated into multiple classes. Each class has different views of the face of the
same person for varying poses. We selected six images from each class. Inspired by
the success of covariances created from Gabor filters for face recognition [33], we
applied 40 Gabor filters on each image, later combining the filters into a covariance
of size 40 × 40. We created a covariance dataset of approximately 10 K descriptors
using this approach.

• Texture classification. Texture is an essential cue in many data mining appli-
cations like satellite imagery, industry inspection systems, etc. Thus, we used a
combination of the Brodatz dataset [11] and the Current dataset [16] for creating
a texture covariance dataset. Brodatz dataset contains approximately 111 texture
classes, while Curret dataset contains 60 classes. To create the covariances data,
we used the feature vector F = [x, y, I, Ix, Iy], where the first two dimensions are
the relative location of the pixel with respect to the texture patch, the third dimen-
sion encodes the grayscale intensity, and the last two dimensions capture the pixel
gradients. Thus, each covariance is 5 × 5, and we created approximately 40 K such
covariances.

Methods Compared. We compare against locality sensitive hashing (LSH) of vec-
torized covariances (VEC), hashing after log-Euclidean embedding (L2LSH), and
kernelized LSH [30] using an RBF kernel using the AIRM distance.

4.3.2.1 GDL Experimental Setup

We implemented GDL in Matlab. For L2LSH, VEC, and HAM we used the C-
implementation from the Caltech Toolbox.1 Since the programs have different com-
putational baselines, we cannot compare their retrieval speed. Rather, we show in
Table 4.1 the average portion of each of the datasets scanned by GDL to find the
nearest neighbor. The geodesic distance was used to resolve hash table collisions. As
is seen from the table, the percentage coverage is low, which is exactly as desired.

1http://www.vision.caltech.edu/malaa/software/research/image-search/.

http://www.vision.caltech.edu/malaa/software/research/image-search/

4 Positive Definite Matrices: Data Representation … 107

Table 4.1 Percentage of the database searched to find the nearest neighbor using sparse codes
generated by GDL

Dataset Faces Texture

Avg. coverage (%) 3.54 6.26

L2LSH HAM VEC KLSH GDL
0

20

40

60

80

100

A
cc

ur
ac

y
(%

)

(a)

L2LSH HAM VEC KLSH GDL
0

20

40

60

80

100

A
cc
ur
ac

y
(%

)

(b)

Fig. 4.2 Plots demonstrating nearest neighbor classification accuracy of GDL generated sparse
codes compared to various standard techniques; a on faces dataset and b on texture dataset

Next, we substantiate the effectiveness of our NN retrieval scheme. To this end,
we split each of the datasets into a gallery and query sets (approximately 5 % of the
data for the latter). To compute the ground truth, we use a linear scan over the entire
gallery set using geodesic distances to measure nearness. Since ensuring exact NN
is hard, we restrict our search to Approximate Nearest Neighbors (ANN). Assume Q
is a query point, Xls is the exact NN found by a linear scan and Xalgo is the neighbor
returned by an NN algorithm. Using dAIRM as the geodesic distance computed using
AIRM distance, we classify an NN as correct if dAIRM (Q,Xls)

dAIRM (Q,Xalgo)
> ε; we use ε = 0.75

below. Figure 4.2 shows the accuracy of different methods, where

Accuracy := #correct matches

#query size
. (4.36)

The plots indicate that GDL performs well across the datasets, while performance
of the other methods varies. Vectorizing input matrices fails on all datasets, while
KLSH performs reasonably well. We note, however, that KLSH needs to compute
the kernel matrix for the query point against the entire dataset—this can drastically
slow it down. On the face dataset, all methods had high accuracy, most probably
because this dataset is noise free.

4.3.3 Riemannian Dictionary Learning Experiments

Next, we evaluate the Riemannian DLSC setup, and denote below dictionary learn-
ing by DL and sparse coding by SC. We compare our Riemannian (Riem) for-
mulation against combinations of several state-of-the-art DLSC methods on SPD

108 A. Cherian and S. Sra

matrices, namely (i) log-Euclidean (LE) metric for DLSC [25], (ii) Frobenius norm
(Frob) which discards the manifold structure, (iii) kernel methods such as the Stein-
Kernel [48] proposed in [26], and the log-Euclidean kernel [32].

We experiment on data available from three standard computer vision applications:
(i) 3D object recognition on the RGBD objects dataset [31]; (ii) texture recognition
on the standard Brodatz dataset [38]; and (iii) person re-identification on the ETHZ
people dataset [19]. We describe (i) and (iii) below.

• Person re-identification task. We use the benchmark ETHZ dataset [43] for
evaluating people re-identification. This dataset consists of low-resolution images
of tracked people from a real-world surveillance setup. The images are from 146
different individuals. There are about 5–356 images per person. There are a total
of 8580 images in this dataset. Rather than detailing the results on several feature
combinations, we describe here the feature combination that worked the best in
our experiments. For this purpose, we used a validation set of 500 covariances
and 10 true clusters from this dataset. The performance was evaluated using the
Log-Euclidean SC setup with a dictionary learning via Log-Euclidean K-Means.
We used a combination of nine features for each image as described below:

FETHZ = [
x, Ir, Ig, Ib, Yi, |Ix|,

∣∣Iy∣∣ , |sin(θ) + cos(θ)| , ∣∣Hy

∣∣] ,

where x is the x-coordinate of a pixel location, Ir, Ig, Ib are the RGB color of a pixel,
Yi is the pixel intensity in the YCbCr color space, Ix, Iy are the gray scale pixel
gradients, and Hy is the y-gradient of pixel hue. We also use the gradient angle θ =
tan−1(Iy/Ix) in our feature set. Each image is resized to a fixed size 300 × 100, and
divided into upper and lower parts. We compute two different region covariances
for each part, which are combined as two block diagonal matrices to form a single
covariance of size 18 × 18 for each appearance image.

• 3D Object Recognition. The goal of this experiment is to recognize objects in
3D point clouds. We use the public RGB-D Object dataset [31], which consists of
about 300 objects belonging to 51 categories and spread across ∼250K frames.
We used approximately 15 K frames for our evaluation with approximately 250–
350 frames devoted to every object seen from three different viewpoints (30,
45, and 60 degrees above the horizon). Following the procedure suggested in [22,
Chap. 5], for every frame, the object was segmented out and 18 dimensional feature
vectors generated for every 3D point in the cloud (and thus 18 × 18 covariance
descriptors); the features we used are as follows:

FRGBD = [
x, y, z, Ir, Ig, Ib, Ix, Iy, Ixx, Iyy, Ixy, Im, δx, δy, δm, νx, νy, νz

]
, (4.37)

where the first three dimensions are the spatial coordinates, Im is the magnitude of
the intensity gradient, δ’s represent gradients over the depth-maps, and ν represents
the surface normal at the given 3D point.

4 Positive Definite Matrices: Data Representation … 109

4.3.3.1 Evaluation Techniques

We evaluate our algorithms for nearest neighbor (NN) retrieval against a gallery
set via computing the Euclidean distances between sparse codes. We use the stan-
dard Recall@K accuracy defined as follows: Given a gallery X and a query set Q.
Recall@K computes the average accuracy when retrieving K nearest neighbors from
X for each instance in Q. Suppose Gq

K is the set of ground truth class labels associ-
ated with the qth query, and SqK is the set of labels associated with the K neighbors
found by some algorithm, then

Recall@K := 1

|Q|
∑
q∈Q

|Gq
K ∩ SqK |
|Gq

K | . (4.38)

All the experiments used fivefold cross-validation in which 80 % of the datasets were
used for training the dictionary, 10 % for generating the gallery set, and the rest as
queries. The size of the dictionary was considered to be twice the number of classes in
the respective dataset. This scheme was considered for all the comparison methods
as well. Our DLSC scheme was implemented in MATLAB. We used the Manopt
optimization toolbox [10] for implementing the CG method for our DL subproblem.
We found that initializing the dictionary learning setup using K-Means clustering
(using the Karcher mean algorithm [40]) led to faster convergence of CG.

4.3.3.2 Results

We compare below performance of our Riem-DL and Riem-SC against several prior
DLSC schemes on the three datasets described above. In particular, we compare (i)
Riemannian geometric methods such as log-Euclidean (LE-DL + LE-SC), (ii) Ker-
nelized methods using the Stein kernel (Kernel-Stein-DL and kernel-Stein-SC), (iii)
Euclidean DLSC (Frob-DL + Frob-SC), and using a dictionary generated by ran-
dom sampling the dataset followed by sparse coding using our Riemannian method
(Random-DL + Riem-SC). In Fig. 4.4, we show the performance comparison for the
task of K-NN where K is increased from 1 to 25.

A commonly adopted alternative to dictionary learning is to approximate the dic-
tionary using centroids of a K-Means clustering of the dataset. Such a method is
faster than Riemannian DL, and also demonstrate reasonable performance [13, 46].
Thus, an important experiment is to ensure that learning the dictionary actually pro-
vides superior performance compared to the ad hoc clustering setup. In Fig. 4.3, we
plot the K-NN retrieval when we use a clustering scheme to generate the dictionary.

110 A. Cherian and S. Sra

1 5 10 25
50

60

70

80

90

100

(a) (b) (c)

K nearest neighbors

R
ec

al
l@

K
 (
%

)

Riem DL + Riem SC
LE−KMeans + Riem−SC
Frob−KMeans + Riem−SC
Riem−KMeans + Riem−SC

Brodatz textures

1 5 10 25
60

70

80

90

100

K nearest neighbors

R
ec

al
l@

K
 (
%

)

RGB 3D objects

1 5 10 25
60

70

80

90

100

K nearest neighbors

R
ec

al
l@

K
 (
%

)

ETHZ people

Fig. 4.3 Results of Nearest neighbor recall@K accuracy against increasing number of retrieved
points (K). Comparisons of Riem-DL and Riem-SC against other DL learning schemes based on
clustering, while using our Riem-SC for sparse coding

1 5 10 25
20

40

60

80

100

(a) (b) (c)

K nearest neighbors

R
ec

al
l@

K
 (
%

)

LE−DLSC
Frob−DLSC
Kernelized Stein [Harandi,2015]
Kernelized LE [Li,2013]
GDL (ours)
TSC [Sivalingam,2010]
Riemannian DLSC (ours)

Brodatz textures

1 5 10 25
40

60

80

100

K nearest neighbors

RGB 3D objects

1 5 10 25
60

70

80

90

100

K nearest neighbors

ETHZ people

Fig. 4.4 Results of k-nearest neighbor retrieval accuracy against an increasing number of retrieved
points (K). Comparisons of Riem-DL and Riem-SC against other dictionary learning and sparse
coding combinations

4.3.3.3 Discussion of Results

With regard to Fig. 4.4, we found that the performance of different methods is diverse
across datasets. For example, the log-euclidean DLSC variant (LE-DL+LE-SC) is
generally seen to show good performance, but its performance is inferior when the
number of data instances per class is small (as in the ETHZ people dataset). The ker-
nelized DLSC method (Kernel-Stein-DL) [27] performs favorably on most datasets.
Note that this is the current state of the art sparse coding algorithm for SPD matrix
valued data and has shown to be better than alternatives such as [28]. From the plots
in Fig. 4.4, it is clear that our Riemannian sparse coding demonstrates competitive
(or even better on the texture dataset) to this scheme and to other kernelized schemes
such as the kernelized-LE scheme [32]. Moreover, given that there is no need to
construct any kernel matrix in our scheme, it is more scalable to very large datasets
in comparison to these other kernelized alternatives.

The most surprising of the results that we found was for Frob-DL. It is gener-
ally assumed that using Frobenius distance for comparing SPD matrices leads to
poor accuracy, a view echoed by Fig. 4.4a and b. However, when the matrices are

4 Positive Definite Matrices: Data Representation … 111

ill-conditioned, taking the logarithm (as in the LE-DL scheme) of these matrices
results in amplifying the influence of the smaller eigenvalues, which is essentially
noise. When learning a dictionary, the atoms will be learned to reconstruct this noise
against the signal, thus leading to inferior performance than for FrobDL (which do
not use the logarithm0. In comparison to all the compared methods, Riem-DL+Riem-
SC was found to produce consistent and competitive performance, substantiating the
usefulness of our model. While running the experiments, we found that the initial-
ization of our DL sub-problem (using Riemannian K-Means) played an important
role in achieving this superior performance.

We further compare Riem-DL against alternative DL schemes via clustering in
Fig. 4.3. We see that learning the dictionary using Riem-DL demonstrates the best
performance against the next best and efficient alternative of using LE-KMeans as
was done in [13]. Using Frob-KMeans or using a random dictionary are generally
seen to have inferior performance compared to other learning methods.

4.3.4 GDL Versus Riemannian Sparse Coding

Finally, we compare sparse coding via our GDL model and the Riem-SC setup.
We use the Brodatz and RGB-D Object recognition datasets. Tables 4.2 and 4.3
show the results. As is clear from the table, the Riemannian approach leads to much
higher accuracy. However, GDL using the diagonal sparse coefficient formulation is
generally seen to be much faster to solve than the Riemannian setup.

Comparison of the average classification accuracy using a linear SVM.

Table 4.2 Brodatz texture dataset

Method Accuracy (%)

Frob-SC 32.3 (4.4)

TSC [46] 35.6 (7.1)

GDL 43.7 (6.3)

Riem-SC 53.9 (3.4)

Table 4.3 RGB-D object recognition

Method Accuracy (%)

Frob-SC 80.3 (1.1)

TSC [46] 72.8 (2.1)

GDL 61.9 (0.4)

Riem-SC 84.0 (0.6)

112 A. Cherian and S. Sra

4.4 Conclusion and Future Work

In this chapter, we reviewed the steps for constructing covariance descriptors, fol-
lowed by a brief exposition of SPD matrix geometry motivated by the design of novel
machine learning models on these descriptors. We covered the concrete problems
of dictionary learning and sparse coding, and noted two approaches: (i) a frame-
work that uses Euclidean embedding of SPD matrices for sparse coding; and (ii) a
Riemannian geometric approach. Our experiments demonstrated that designing
machine learning algorithms for SPD matrices that respect the Riemannian geometry
fares significantly better than using Euclidean embedding.

That said, Riemannian optimization algorithms are usually computationally more
expensive. This is mainly due to the need for operating in the tangent space of the
SPD manifold, which involves matrix exponentials and logarithms that requireO(d3)

flops. Designing faster Riemannian machine learning algorithms is a challenge that
needs to be addressed for these algorithms to be more widely accepted.

Acknowledgments AC is funded by the Australian Research Council Centre of Excellence for
Robotic Vision (number CE140100016). SS acknowledges support from NSF grant IIS-1409802.

References

1. P.A. Absil, R. Mahony, R. Sepulchre,Optimization Algorithms onMatrixManifolds. (Princeton
University Press, Princeton, 2009)

2. P.A. Absil, C.G. Baker, K.A. Gallivan, Trust-region methods on riemannian manifolds. Found.
Comput. Math. 7(3), 303–330 (2007)

3. D.C. Alexander, C. Pierpaoli, P.J. Basser, J.C. Gee, Spatial transformations of diffusion tensor
magnetic resonance images. IEEE Trans. Med. Imaging 20(11), 1131–1139 (2001)

4. V. Arsigny, P. Fillard, X. Pennec, N. Ayache, Log-Euclidean metrics for fast and simple calculus
on diffusion tensors. Magn. Reson. Med. 56(2), 411–421 (2006)

5. J. Barzilai, J.M. Borwein, Two-point step size gradient methods. IMA J. Num. Analy. 8(1),
141–148 (1988)

6. D.P. Bertsekas, Nonlinear Programming, 2nd edn. (Athena Scientific, Belmont, 1999)
7. R. Bhatia, Positive Definite Matrices. (Princeton University Press, Princeton, 2007)
8. E. Birgin, J. Martínez, M. Raydan, Nonmonotone spectral projected gradient methods on convex

sets. SIAM J. Optim. 10(4), 1196–1211 (2000)
9. E.G. Birgin, J.M. Martínez, M. Raydan, Algorithm 813: SPG-Software for Convex-constrained

Optimization. ACM Trans. Math. Softw. 27, 340–349 (2001)
10. N. Boumal, B. Mishra, P.A. Absil, R. Sepulchre, Manopt, a matlab toolbox for optimization

on manifolds. J. Mach. Learn. Res. 15(1), 1455–1459 (2014)
11. P. Brodatz, Textures: a photographic album for artists and designers, vol. 66. (Dover, New

York, 1966)
12. A. Cherian, Nearest neighbors using compact sparse codes,in Proceedings of the International

Conference on Machine Learning, pp. 1053–1061 (2014)
13. A. Cherian, S. Sra, Riemannian sparse coding for positive definite matrices, in Proceedings of

the European Conference on Computer Vision. Springer (2014)
14. A. Cherian, S. Sra, Riemannian dictionary learning and sparse coding for positive definite

matrices. (2015). arXiv preprint arXiv:1507.02772

http://arxiv.org/abs/1507.02772

4 Positive Definite Matrices: Data Representation … 113

15. A. Cherian, S. Sra, A. Banerjee, N. Papanikolopoulos, Jensen-bregman logdet divergence with
application to efficient similarity search for covariance matrices. IEEE Trans. Pattern Anal.
Mach. Intell. 35(9), 2161–2174 (2013)

16. K. Dana, B. Van Ginneken, S. Nayar, J. Koenderink, Reflectance and texture of real-world
surfaces. ACM Trans. Graph. (TOG) 18(1), 1–34 (1999)

17. L. Dodero, H.Q. Minh, M.S. Biagio, V. Murino, D. Sona, Kernel-based classification for brain
connectivity graphs on the Riemannian manifold of positive definite matrices, in Proceedings
of the International Symposium on Biomedical Imaging, pp. 42–45. IEEE (2015)

18. M. Elad, M. Aharon, Image denoising via learned dictionaries and sparse representation, in
Proceedings of the EEE Computer Society Conference on Computer Vision and Pattern Recog-
nition, vol. 1, pp. 895–900. IEEE (2006)

19. A. Ess, B. Leibe, L.V. Gool, Depth and appearance for mobile scene analysis, in Proceedings
of the International Conference on Computer Vision. IEEE (2007)

20. U. Fano, Description of states in quantum mechanics by density matrix and operator techniques.
Rev. Mod. Phys. 29(1), 74–93 (1957)

21. M. Faraki, M. Harandi, Bag of riemannian words for virus classification. Case Studies in
Intelligent Computing: Achievements and Trends. pp. 271–284 (2014)

22. D.A. Fehr,Covariance Based Point Cloud Descriptors for Object Detection and Classification.
University Of Minnesota, Minneapolis (2013)

23. D. Fehr, A. Cherian, R. Sivalingam, S. Nickolay, V. Morellas, N. Papanikolopoulos, Compact
covariance descriptors in 3d point clouds for object recognition, in Proceedings of the IEEE
International Conference on Robotics and Automation, pp. 1793–1798. IEEE (2012)

24. L. Ferro-Famil, E. Pottier, J. Lee, Unsupervised classification of multifrequency and fully
polarimetric SAR images based on the H/A/Alpha-Wishart classifier. IEEE Trans. Geosci.
Remote Sens. 39(11), 2332–2342 (2001)

25. K. Guo, P. Ishwar, J. Konrad, Action recognition using sparse representation on covariance
manifolds of optical flow, inProceedings of the Advanced Video and Signal Based Surveillance.
IEEE (2010)

26. M.T. Harandi, R. Hartley, B. Lovell, C. Sanderson, Sparse coding on symmetric positive definite
manifolds using bregman divergences. IEEE Trans. Neural Netw. Learn. Syst. PP(99), 1–1
(2015)

27. M. Harandi, M. Salzmann, Riemannian coding and dictionary learning: Kernels to the rescue,
in Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR),
pp. 3926–3935 (2015)

28. J. Ho, Y. Xie, B. Vemuri, On a nonlinear generalization of sparse coding and dictionary learning,
in Proceedings of the International Conference on Machine Learning (2013)

29. S. Jayasumana, R. Hartley, M. Salzmann, H. Li, M. Harandi, Kernel methods on the Riemannian
manifold of symmetric positive definite matrices, in Proceedings of the Computer Vision and
Pattern Recognition. IEEE (2013)

30. B. Kulis, K. Grauman, Kernelized locality-sensitive hashing for scalable image search. ICCV,
October 1, 3 (2009)

31. K. Lai, L. Bo, X. Ren, D. Fox, A large-scale hierarchical multi-view RGB-D object dataset, in
Proceedings of the International Conference on Robotics and Automation (2011)

32. P. Li, Q. Wang, W. Zuo, L. Zhang, Log-euclidean kernels for sparse representation and dic-
tionary learning, in Proceedings of the International Conference on Computer Vision. IEEE
(2013)

33. C. Liu, Gabor-based kernel PCA with fractional power polynomial models for face recognition.
Pattern Anal. Mach. Intell. 26(5), 572–581 (2004)

34. D. Liu, J. Nocedal, On the limited memory BFGS method for large scale optimization. Math.
program. 45(1), 503–528 (1989)

35. B. Ma, Y. Su, F. Jurie, BiCov: a novel image representation for person re-identification and
face verification, in Proceedings of the British Machine Vision Conference (2012)

36. J. Mairal, F. Bach, J. Ponce, Sparse modeling for image and vision processing (2014). arXiv
preprint arXiv:1411.3230

http://arxiv.org/abs/1411.3230

114 A. Cherian and S. Sra

37. S. Marčelja, Mathematical description of the responses of simple cortical cells*. JOSA 70(11),
1297–1300 (1980)

38. T. Ojala, M. Pietikäinen, D. Harwood, A comparative study of texture measures with classifi-
cation based on featured distributions. Pattern Recogn. 29(1), 51–59 (1996)

39. Y. Pang, Y. Yuan, X. Li, Gabor-based region covariance matrices for face recognition. IEEE
Trans. Circuits Syst. Video Technol. 18(7), 989–993 (2008)

40. X. Pennec, P. Fillard, N. Ayache, A Riemannian framework for tensor computing. Int. J. Com-
put. Vis. 66(1), 41–66 (2006)

41. P. Phillips, H. Wechsler, J. Huang, P. Rauss, The FERET database and evaluation procedure
for face-recognition algorithms. Image Vis. Comput. 16(5), 295–306 (1998)

42. P. Phillips, H. Moon, S. Rizvi, P. Rauss, The FERET evaluation methodology for face-
recognition algorithms. Pattern Anal. Mach. Intell. 22(10), 1090–1104 (2000)

43. W. Schwartz, L. Davis, Learning Discriminative Appearance-Based Models Using Partial Least
Squares, in Proceedings of the XXII Brazilian Symposium on Computer Graphics and Image
Processing (2009)

44. M. Schmidt, E. van den Berg, M. Friedlander, K. Murphy, Optimizing costly functions with
simple constraints: a limited-memory projected Quasi-Newton algorithm, in Proceedings of
the International Conference on Artificial Intelligence and Statistics (2009)

45. Y. Shinohara, T. Masuko, M. Akamine, Covariance clustering on Riemannian manifolds for
acoustic model compression, in proceedings of the International Conference on Acoustics,
Speech and Signal Processing (2010)

46. R. Sivalingam, D. Boley, V. Morellas, N. Papanikolopoulos, Tensor sparse coding for region
covariances, in Proceedings of the European Conference on Computer Vision. Springer (2010)

47. G. Somasundaram, A. Cherian, V. Morellas, N. Papanikolopoulos, Action recognition using
global spatio-temporal features derived from sparse representations. Comput. Vis. Image
Underst. 123, 1–13 (2014)

48. S. Sra, Positive Definite Matrices and the S-Divergence, in Proceedings of the American Math-
ematical Society (2015). arXiv:1110.1773v4

49. S. Sra, A. Cherian, Generalized dictionary learning for symmetric positive definite matrices
with application to nearest neighbor retrieval, in Proceedings of the European Conference on
Machine Learning. Springer (2011)

50. J. Su, A. Srivastava, F. de Souza, S. Sarkar, Rate-invariant analysis of trajectories on riemannian
manifolds with application in visual speech recognition, inProceedings of the Computer Vision
and Pattern Recognition, pp. 620–627. IEEE (2014)

51. D. Tosato, M. Farenzena, M. Spera, V. Murino, M. Cristani, Multi-class classification on Rie-
mannian manifolds for video surveillance, in Proceedings of the European Conference on
Computer Vision (2010)

52. O. Tuzel, F. Porikli, P. Meer.: Covariance Tracking using Model Update Based on Lie Algebra
in Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern
Recognition (2006)

53. O. Tuzel, F. Porikli, P. Meer.: Region covariance: a fast descriptor for detection and classifica-
tion. in Proceedings of the European Conference on Computer Vision (2006)

54. R. Wang, H. Guo, L.S. Davis, Q. Dai, Covariance discriminative learning: A natural and
efficient approach to image set classification, in Proceedings of the Computer Vision and
Pattern Recognition. IEEE (2012)

55. W. Zheng, H. Tang, Z. Lin, T.S. Huang, Emotion recognition from arbitrary view facial images,
in Proceedings of the European Conference on Computer Vision, pp. 490–503. Springer (2010)

http://arxiv.org/abs/1110.1773v4

Chapter 5
From Covariance Matrices to Covariance
Operators: Data Representation from Finite
to Infinite-Dimensional Settings

Hà Quang Minh and Vittorio Murino

Abstract This chapter presents some of the recent developments in the
generalization of the data representation framework using finite-dimensional covari-
ance matrices to infinite-dimensional covariance operators in Reproducing Kernel
Hilbert Spaces (RKHS). We show that the proper mathematical setting for covari-
ance operators is the infinite-dimensional Riemannian manifold of positive definite
Hilbert–Schmidt operators, which are the generalization of symmetric, positive def-
inite (SPD) matrices. We then give the closed form formulas for the affine-invariant
and Log-Hilbert–Schmidt distances between RKHS covariance operators on this
manifold, which generalize the affine-invariant and Log-Euclidean distances, respec-
tively, between SPD matrices. The Log-Hilbert–Schmidt distance in particular can
be used to design a two-layer kernel machine, which can be applied directly to a
practical application, such as image classification. Experimental results are provided
to illustrate the power of this new paradigm for data representation.

5.1 Introduction

Symmetric Positive Definite (SPD) matrices, in particular covariance matrices, play
an important role in many areas of mathematics, statistics, machine learning, and their
applications. In practice, the applications of SPD matrices are numerous, including
brain imaging [3, 12, 34], kernel learning [19] in machine learning, object detection
[39, 40] and image retrieval [11] in computer vision, and radar signal processing
[5, 15].

In the field of computer vision and image processing, covariance matrices
have recently been utilized as a powerful image representation approach, which is

H.Q. Minh (B) · V. Murino
Pattern Analysis and Computer Vision (PAVIS),
Istituto Italiano di Tecnologia (IIT), Genova, 16163, Italy
e-mail: minh.haquang@iit.it

V. Murino
e-mail: vittorio.murino@iit.it

© Springer International Publishing Switzerland 2016
H.Q. Minh and V. Murino (eds.), Algorithmic Advances in Riemannian
Geometry and Applications, Advances in Computer Vision
and Pattern Recognition, DOI 10.1007/978-3-319-45026-1_5

115

116 H.Q. Minh and V. Murino

commonly called covariance descriptor. In this approach, an image is compactly
represented by a covariance matrix encoding correlations between different features
extracted from that image. This representation has been demonstrated to work very
well in practice and consequently, covariance descriptors have been applied with
success to many computer vision tasks, including tracking [33], object detection and
classification [39, 40], and image retrieval [11]. A more detailed discussion of the
covariance matrix representation can be found in the chapter by Cherian and Sra in
this volume.

Riemannian geometric framework for covariancematrices. Covariance matri-
ces, properly regularized if necessary, are examples of SPD matrices. In the follow-
ing, we denote by Sym++(n) the set of all n × n SPD matrices. A key mathematical
property of Sym++(n) is that it is not a vector subspace of Euclidean space under
the standard matrix addition and scalar multiplication operations. Instead, it is an
open convex cone, since it is only closed under positive scalar multiplication, and at
the same time admits a differentiable manifold structure. Consequently, in general,
the optimal measure of similarity between covariance matrices is not the Euclid-
ean distance, but a metric that captures the geometry of Sym++(n). Among the most
widely used metrics for Sym++(n) is the classical affine-invariant Riemannianmetric
[6, 7, 23, 30, 31, 40], under which Sym++(n) becomes a Riemannian manifold with
nonpositive curvature. Another commonly used Riemannian metric for Sym++(n)
is the recently introduced Log-Euclidean metric [3, 4], which is bi-invariant and
under which the manifold is flat. Compared to the affine-invariant metric, the Log-
Euclidean metric is faster to compute, especially on large datasets, and can be used
to define many positive definite kernels, such as the Gaussian kernel, allowing kernel
methods to be applied directly on the manifold [17, 24].

Positive definite kernels and covariance operators. While they have been shown
to be effective in many applications, one major limitation of covariance matrices is
that they only capture linear correlations between input features. In order to encode
nonlinear correlations, we generalize the covariance matrix representation frame-
work to the infinite-dimensional setting by the use of positive definite kernels defined
on the original input features. Intuitively, from the viewpoint of kernel methods in
machine learning [37], each positive definite kernel, such as the Gaussian kernel,
induces a feature map that nonlinearly maps each input point into a high (generally
infinite) dimensional feature space. We then represent each image by an infinite-
dimensional covariance operator, which can be thought as the covariance matrix of
the infinite-dimensional features in the feature space. Since the high-dimensional fea-
ture maps are nonlinear, the resulting covariance operators thus encode the nonlinear
correlations between the original input features. A key property of this framework, as
is common for kernel methods, is that the infinite-dimensional feature maps and the
corresponding covariance operators are all implicit, and all necessary computations
are carried out via the Gram matrices associated with the given kernels.

Infinite-dimensional Riemannian manifold setting for covariance operators.
Having represented each image by a covariance operator, we need to define a notion of
distances between these operators. Instead of the finite-dimensional manifold setting
for covariance matrices, in the infinite-dimensional setting, regularized covariance

5 From Covariance Matrices to Covariance Operators: Data Representation … 117

operators lie on an infinite-dimensional Hilbert manifold. This is the manifold of
positive definite unitized Hilbert–Schmidt operators, which are scalar perturbations
of Hilbert–Schmidt operators on a Hilbert space and which are infinite-dimensional
generalizations of SPD matrices. On this manifold, the generalization of the affine-
invariant Riemannian metric on Sym++(n) was recently carried out by [1, 21, 22]
from a purely mathematical viewpoint. For the case of RKHS covariance operators,
the explicit formulas for the affine-invariant distance, in terms of the Gram matrices,
were obtained in [26]. The generalization of the Log-Euclidean metric, called the
Log-Hilbert–Schmidt metric, was formulated by [28], including the explicit formulas
for the distances between RKHS covariance operators. As with the Log-Euclidean
metric, the Log-Hilbert–Schmidt metric can be used to define many positive definite
kernels, such as the Gaussian kernel, allowing kernel methods to be applied on
top of the infinite-dimensional manifold and effectively creating a two-layer kernel
machine.

Differences between the finite and infinite-dimensional settings. In [32], in the
context of functional data analysis, the authors discussed the difficulty of generaliz-
ing the affine-invariant and Log-Euclidean metrics to the infinite-dimensional setting
and proposed several other metrics instead. As we analyze in [26, 28] and below,
this difficulty is due to the fundamental differences between the finite and infinite-
dimensional cases. The reason is that many concepts, such as principal matrix loga-
rithm, determinant, and norm, all involve infinite sums and products and therefore are
well-defined only on specific classes of infinite-dimensional operators. In particular,
the infinite-dimensional distance formulas are not the limits of the finite-dimensional
ones as the dimension approaches infinity.

The aim of this chapter. In the present chapter, we first show how to gener-
alize the data representation framework by covariance matrices to RKHS covari-
ance operators. We then report on the recent development in mathematical theory of
infinite-dimensional positive definite operators [1, 21, 22, 28], which successfully
resolves the problems of extending the affine-invariant and Log-Euclidean metrics
to the infinite-dimensional setting. We then show how this theory can be applied to
compute distances between RKHS covariance operators. In particular, we describe
in detail the two-layer kernel machine which arises from the Log-Hilbert–Schmidt
distance between RKHS operators, which can be used in a practical application such
as image classification.

Related work. In the literature on kernel methods in machine learning, it is
well-known that RKHS covariance operators defined on nonlinear features, which
are obtained by mapping the original input data into a high-dimensional feature
space, can better capture input correlations than covariance matrices defined on the
original input data, see e.g. KernelPCA [36]. However, the use of RKHS covariance
operators for data representation is quite recent and has its origin in computer vision
[14, 16, 41]. The main problem with the approaches in [14, 16, 41] is that they lack the
theoretical foundation provided by the mathematical theory of infinite-dimensional
operators and infinite-dimensional manifolds. As such, they are necessarily heuristic
and many results obtained are only valid in the finite-dimensional setting.

118 H.Q. Minh and V. Murino

Organization. We start by recalling the data representation framework using
covariance matrices in Sect. 5.2. Then in Sect. 5.3, we show how this framework
generalizes to RKHS covariance operators which are induced by positive definite
kernels and their associated feature maps. In Sect. 5.4, we give the closed form for-
mulas for the Hilbert–Schmidt, affine-invariant, and Log-Hilbert–Schmidt distances
between RKHS covariance operators. The two-layer kernel machine resulting from
the Log-Hilbert–Schmidt distance is described in Sect. 5.5, with experimental results
illustrating its power in Sect. 5.6. Mathematical proofs are given in the Appendix.

5.2 Covariance Matrices for Data Representation

Before presenting covariance operators for data representation, we first recall how
covariance matrices are employed as a form of image representation. For each image,
at every pixel (or a subset of the pixels), we extract an image feature vector consisting
of n features, for example intensity, gradient, and colors. Suppose that we perform
feature extraction atm pixels, each one giving a feature vector xi ∈ R

n, i = 1, . . . ,m,
we then obtain a data matrix of size n × m, given by

x = [x1, . . . , xm], (5.1)

with each column consisting of image features extracted at one pixel. The n × n
covariance matrix

Cx = 1

m
xJmxT = 1

m

m∑
j=1

(xj − μ)(xj − μ)T , (5.2)

then encodes linear correlations between all the different extracted features and is
used as the representation for the image. Here Jm is the centering matrix, defined by
Jm = Im − 1

m1m1
T
m, where 1m = (1, . . . , 1)T ∈ R

m and μ = 1
m

∑m
j=1 xj ∈ R

n denotes
the mean column of x. In general, Cx is a symmetric, positive semi-definite matrix.

In a practical application, such as classification, we need to have a similarity
measure between images. By representing images as covariance matrices, this means
that we need to compute distances between covariance matrices. Let A and B be two
symmetric, positive semi-definite matrices. A straightforward distance between A
and B is the Euclidean distance, given by

dE(A,B) = ||A − B||F . (5.3)

Here || ||F denotes the Frobenius norm, which, for A = (aij)ni,j=1, is defined by

||A||2F = tr(ATA) =
n∑

i,j=1

a2
ij. (5.4)

5 From Covariance Matrices to Covariance Operators: Data Representation … 119

It is clear from the definition of the Frobenius norm that the distance ||A − B||F
depends only on the entries of A − B, without taking into account any structure
of A and B. Furthermore, the set of symmetric, positive semi-definite matrices is
not a vector subspace of Euclidean space under the standard matrix addition and
scalar multiplication operations, but a convex cone, since it is only closed under
positive scalar multiplication. By simply vectorizing A and B, the Euclidean distance
||A − B||F reflects neither the positivity of A and B nor the convex cone structure of
the set of positive matrices.

We note that, empirically, by a simple regularization, the regularized covariance
matrix (Cx + γI) for any constant γ > 0 is an element of Sym++(n), which has
been studied extensively, both mathematically and computationally. Thus, we can
apply to the set of regularized covariance matrices any distance on Sym++(n) that
reflects its intrinsic geometry as a set of SPD matrices. The regularization (Cx + γI)
is called diagonal loading in the literature (see [2, 13] for more general forms of
regularizations). We show in Sect. 5.4 below that for infinite-dimensional covariance
operators, this form of regularization is always necessary, both theoretically and
empirically.

Let Sym++(n) denote the set of SPD matrices of size n × n. LetA,B ∈ Sym++(n)
be arbitrary. We now review three distances that exploit the geometry of Sym++(n),
namely the affine-invariant distance, Log-Euclidean distance, and Bregman diver-
gences.

Affine-invariant metric. In the first approach, the set Sym++(n) is equipped
with a Riemannian metric, the so-called affine-invariant metric [6, 7, 23, 30, 31].
For each P ∈ Sym++(n), the tangent space at P is TP(Sym++(n)) ∼= Sym(n), the
space of symmetric matrices of size n × n. The affine-invariant metric is defined by
the following inner product on the tangent space at P

〈A,B〉P = 〈P−1/2AP−1/2,P−1/2BP−1/2〉F, ∀P ∈ Sym++(n),A,B ∈ Sym(n).
(5.5)

Under the affine-invariant metric, Sym++(n) becomes a Riemannian manifold with
nonpositive sectional curvature. The affine-invariant geodesic distance between A
and B is given by

daiE(A,B) = || log(A−1/2BA−1/2)||F, (5.6)

where log denotes the principal matrix logarithm.
Log-Euclidean metric. In the second approach, the set Sym++(n) is equipped

with a bi-invariant Riemannian metric, the so-called Log-Euclidean metric [4]. This
metric arises from the following commutative Lie group multiplication on Sym++(n)

� : Sym++(n) × Sym++(n) → Sym++(n),

A � B = exp(log(A) + log(B)). (5.7)

120 H.Q. Minh and V. Murino

Under the Log-Euclidean metric, the geodesic distance between A and B is given by

dlogE(A,B) = || log(A) − log(B)||F . (5.8)

Along with the group operation �, one can also define the scalar multiplication

� : R × Sym++(n) → Sym++(n),

λ � A = exp(λ log(A)) = Aλ, λ ∈ R. (5.9)

Endowed with the commutative group multiplication � and the scalar multiplication
�, (Sym++,�,�) becomes a vector space [4]. Furthermore, we can endow this
vector space with the Log-Euclidean inner product.

〈A,B〉logE = 〈log(A), log(B)〉F = tr[log(A) log(B)]. (5.10)

along with the corresponding Log-Euclidean norm

||A||2logE = 〈log(A), log(A)〉F = tr[log2(A)], (5.11)

giving us the inner product space

(Sym++(n),�,�, 〈 , 〉logE). (5.12)

This inner product space structure was first discussed in [24]. The Log-Euclidean
distance in Eq. (5.8) is then expressed as

dlogE(A,B) = || log(A) − log(B)||F = ||A � B−1||logE. (5.13)

With this viewpoint, it follows that Sym++(n) under the Log-Euclidean metric is
flat, that is it has zero sectional curvature. Furthermore, the map

log : (Sym++(n),�,�, 〈 , 〉logE) → (Sym(n),+, ·, 〈 , 〉F)

A → log(A). (5.14)

is an isometrical isomorphism between inner product spaces, where (+, ·) denote
the standard matrix addition and scalar multiplication operations, respectively.

Log-Euclidean versus Euclidean. The previous discussion shows that the Log-
Euclidean metric essentially flattens Sym++(n) via the map A → log(A). However,
the vector space operations (�,�) are not the Euclidean space operations (+, ·) and
(Sym++(n),�,�, 〈 , 〉logE) is not a vector subspace of Euclidean space. Further-
more, (Sym++(n), || ||E) is an incomplete metric space, whereas, since || ||logE is an
inner product distance, the metric space (Sym++(n), || ||logE) is complete, which is
a desirable property when dealing with converging sequences of SPD matrices.

5 From Covariance Matrices to Covariance Operators: Data Representation … 121

One can also clearly see that the SPD property of the matrices A and B is encoded
by the principal matrix logarithms in the distance formula || log(A) − log(B)||F (if
A has a negative eigenvalue, for example, its principal matrix logarithm is not even
defined). This is in strong contrast to the Euclidean distance formula ||A − B||F ,
which depends only on the entries ofA − B and therefore does not reflect any inherent
structure in A and B.

Kernel methods with the Log-Euclidean metric. For the purposes of kernel
methods in machine learning and applications, since (Sym++(n),�,�, 〈 , 〉logE) is
an inner product space, one can define positive definite kernels on Sym++(n) using
the inner product 〈 , 〉logE and the corresponding norm || ||logE. This enables us to
apply kernel methods directly on Sym++(n), as is done in [17, 18, 24]. In particular,
we have the following result.

Proposition 1 The following kernelsK : Sym++(n) × Sym++(n) → R are positive
definite

K(A,B) = (c + 〈A,B〉logE)d = (c + 〈log(A), log(B)〉F)d, c ≥ 0, d ∈ N. (5.15)

K(A,B) = exp
(
−||A � B−1||plogE

)
, σ
= 0, 0 < p ≤ 2,

= exp

(
−|| log(A) − log(B)||pF

σ2

)
. (5.16)

Remark 1 The proofs of Proposition 1 and all subsequent propositions are given
in the Appendix. The kernel K in Eq. (5.16) in particular generalizes the results in
[17, 18, 24], which show that K is positive definite for p = 2.

Bregman divergences. In the third approach, one defines distance-like functions
based on the convex cone structure of Sym++(n). One well-known example of this
approach is the Stein divergence, defined by [38]

d2
stein(A,B) = log

det(A+B
2)√

det(A) det(B)
. (5.17)

The Bregman divergences do not arise from Riemannian metrics on Sym++(n) and,
apart from special cases such as dstein in Eq. (5.17), they are generally not metric
distances. However, they can be computed efficiently and have been shown to work
well in diverse applications [11, 19].

In this chapter, we show how to generalize both the affine-invariant distance in
Eq. (5.6) and the Log-Euclidean distance in Eq. (5.8) to the infinite-dimensional set-
ting, in particular to RKHS covariance operators. The generalization of the Bregman
divergences to the infinite-dimensional setting will be presented in a separate work.

122 H.Q. Minh and V. Murino

5.3 Infinite-Dimensional Covariance Operators

Having reviewed the data representation framework using finite-dimensional covari-
ance matrices, we now present infinite-dimensional covariance operators in RKHS
and show how they can be used as a form of data representation. This framework is
grounded in the setting of positive definite kernels and their associated RKHS and
feature maps, which we discuss first.

5.3.1 Positive Definite Kernels, Reproducing Kernel Hilbert
Spaces, and Feature Maps

Positive definite kernels. Let X be an arbitrary non-empty set. A function K :
X × X → R is said to be a positive definite kernel if it is symmetric and satisfies

N∑
i,j=1

aiajK(xi, xj) ≥ 0 (5.18)

for any set of points x = {xi}Ni=1 in X and any set of real numbers {ai}Ni=1. In other
words, the N × N matrix K[x] defined by (K[x])ij = K(xi, xj) is symmetric, positive
semi-definite.

Examples of commonly used positive definite kernels include the Gaussian kernel

K(x, y) = exp
(
−||x−y||2

σ2

)
, σ
= 0, and polynomial kernels K(x, y) = (〈x, y〉 + c)d ,

c ≥ 0, d ∈ N, for x, y ∈ R
n, n ∈ N.

Reproducing kernel Hilbert spaces (RKHS). Each positive definite kernel K
corresponds to a unique Hilbert space of functions onX as follows. For each x ∈ X ,
there corresponds a functionKx : X → R defined byKx(y) = K(x, y). Consider the
set H0 of all linear combinations of functions of the form Kx, x ∈ X , that is

H0 =
⎧⎨
⎩

N∑
j=1

ajKxj : aj ∈ R, xj ∈ X ,N ∈ N

⎫⎬
⎭ . (5.19)

On H0, we define the following inner product

〈
N∑
i=1

aiKxi ,

M∑
j=1

bjKyj 〉HK =
N∑
i=1

M∑
j=1

aibjK(xi, yj). (5.20)

This inner product is well-defined by the assumption that K is a positive definite
kernel, making H0 an inner product space. Let HK be the Hilbert completion of
H0, obtained by adding the limits of all the Cauchy sequences in H0, then HK

5 From Covariance Matrices to Covariance Operators: Data Representation … 123

is a Hilbert space of functions on X , called the reproducing kernel Hilbert space
(RKHS) induced by the kernel K .

The terminology RKHS comes from the reproducing property, which states that
for all f ∈ HK and all x ∈ X ,

f (x) = 〈f ,Kx〉HK . (5.21)

Feature maps. A very useful and intuitive geometrical view of positive definite
kernels is that of feature maps, which comes from machine learning and pattern
recognition. In this viewpoint, a function K : X × X → R is a positive definite
kernel if and only if there exists a Hilbert space H , called feature space, and a map
Φ : X → H , called feature map, such that

K(x, y) = 〈Φ(x),Φ(y)〉H ∀x, y ∈ H . (5.22)

As the simplest example, consider the quadratic polynomial kernel K : R2 × R
2 →

R defined by K(x, y) = 〈x, y〉2 = (x1y1 + x2y2)
2. It can be readily verified, via a

simple algebraic calculation, that this kernel possesses the 3-dimensional feature
map Φ : R2 → R

3, defined by

Φ(x) = (x2
1,

√
2x1x2, x

2
2) ∈ R

3.

For a general positive definite kernel K , from the definition of RKHS above, it
follows that the RKHS HK induced by K is a feature space associated with K , with
corresponding feature map Φ : X → HK , defined by

Φ(x) = Kx ∀x ∈ X , (5.23)

which is called the canonical feature map [27] associated with K . If X ⊂ R
n is a set

with non-empty interior, then dim(HK) = ∞ (see [25]), so that the feature map Φ is
infinite-dimensional. We refer to [27] for a more detailed discussion of feature maps,
including their equivalence to the canonical feature map, and many other examples.

The feature map viewpoint is particularly useful from an algorithmic perspective,
since it allows one to transform any linear algorithm, which is expressed in terms of
the inner product 〈x, y〉 of input examples in Euclidean space, into a nonlinear algo-
rithm, simply by replacing 〈x, y〉 with 〈Φ(x),Φ(y)〉HK = K(x, y) for some nonlinear
kernel K .

For our present purposes, feature maps enable us to generalize covariance matri-
ces, which encode linear correlations between input features, to covariance operators
in RKHS, which encode nonlinear correlations between input features.

124 H.Q. Minh and V. Murino

5.3.2 Covariance Operators in RKHS and Data
Representation

With the kernels and feature maps in Sect. 5.3.1, we now define RKHS covariance
operators using these feature maps and show how they are employed for image repre-
sentation. This framework is a generalization of the covariance matrix representation
described in Sect. 5.2.

As in Sect. 5.2, for each image, let x = [x1, . . . , xm] be the data matrix of size
n × m, with each column being the vector of features xi ∈ R

n sampled at pixel i,
1 ≤ i ≤ m. Now let K : Rn × R

n → R be a positive definite kernel, such as the
Gaussian kernel, which induces implicitly a feature map Φ : Rn → HK , where HK

is the RKHS induced by K . The map Φ gives us the matrix of features in HK

Φ(x) = [Φ(x1), . . . , Φ(xm)], (5.24)

which can be viewed informally as a (potentially infinite) matrix of size dim(HK)×m.
Formally, it is a bounded linear operator Φ(x) : Rm → HK , defined by

Φ(x)b =
m∑
i=1

biΦ(xi), (5.25)

with corresponding adjoint operator Φ(x)∗ : HK → R
m. The operator Φ(x) gives

rise to the RKHS covariance operator

CΦ(x) = 1

m
Φ(x)JmΦ(x)∗ : HK → HK , (5.26)

which can be viewed informally as a (potentially infinite) matrix of size dim(HK) ×
dim(HK). The covariance operatorCΦ(x) is now the representation for the image and
encodes, for a nonlinear kernel K , nonlinear correlations between all the different
extracted features.

Remark 2 We say that the covariance operator representation is a generalization of
the covariance matrix representation, since for the linear kernel K(x, y) = 〈x, y〉 on
R

n × R
n, we have Φ(x) = x and CΦ(x) = Cx.

A crucial feature of the RKHS covariance operator representation is that it is
implicit, that is neither the matrix of features Φ(x) nor the covariance operator CΦ(x)

is ever computed. Instead, all the necessary computations involving Φ(x) and CΦ(x)

are done via the Gram matrices of the kernel K on the original data matrix x. We
show that this is indeed the case for the distances between the covariance operators.

5 From Covariance Matrices to Covariance Operators: Data Representation … 125

5.4 Distances Between RKHS Covariance Operators

Having described the image representation framework by RKHS covariance opera-
tors, we now describe the distances between covariance operators. These distances
can then be directly employed in a practical application, e.g. image classification.

Since covariance operators are Hilbert–Schmidt operators, a natural distance
between them is the Hilbert–Schmidt distance, which is the infinite-dimensional
generalization of the Euclidean distance given by the Frobenius norm || ||F . How-
ever, just like the Euclidean distance, the Hilbert–Schmidt distance does not capture
the positivity of covariance operators. In order to do so, as with Sym++(n), we need
to consider the manifold setting of covariance operators.

As a generalization from the finite-dimensional setting, it can be shown [22] that
regularized covariance operators lie on an infinite-dimensional Hilbert manifold,
namely the manifold of positive definite unitized Hilbert–Schmidt operators on a
separable Hilbert space H . Each point on this manifold has the form A + γI > 0,
γ > 0, where A is a Hilbert–Schmidt operator on H . As we now show, both the
affine-invariant distance in Eq. (5.6) and the Log-Euclidean distance in Eq. (5.8)
admit a generalization on this manifold. However, there are several key differences
between the finite and infinite-dimensional settings:

1. In the finite-dimensional case, the regularization (Cx + γI) is often necessary
empirically since in generalCx is not guaranteed to be positive definite. In contrast,
when dim(H) = ∞, the regularization form (A + γI) is always needed, both
theoretically and empirically, even if A is strictly positive. This is because log(A)

is unbounded and we must always consider log(A + γI). We explain this in detail
in Sect. 5.4.2.1.

2. When dim(H) = ∞, the identity operator I is not Hilbert–Schmidt and therefore
the Hilbert–Schmidt norm of log(A + γI) is generally infinite. Furthermore, the
distance between any two different multiples of I would be infinite. This problem
is resolved by the introduction of the extended Hilbert–Schmidt inner product.
We explain this in detail in Sect. 5.4.2.2.

In general, the distance formulas for the finite and infinite-dimensional cases are
different and the infinite-dimensional formulas are generally not the limits of the
finite-dimensional ones as the dimension approaches infinity. For RKHS covariance
operators, all three distances admit closed forms in terms of Gram matrices.

5.4.1 Hilbert–Schmidt Distance

We first consider the generalization of the Frobenius norm in Eq. (5.4) to the separable
Hilbert space setting. We recall that a bounded linear operator A : H → H is said
to be a Hilbert–Schmidt operator if

126 H.Q. Minh and V. Murino

||A||2HS = tr(A∗A) =
∞∑
k=1

||Aek||2 < ∞, (5.27)

for any countable orthonormal basis {ek}k∈N in H . || ||HS is called the Hilbert–
Schmidt norm, which is the infinite-dimensional version of the Frobenius norm in
Eq. (5.4).

Let HS(H) denote the class of all Hilbert–Schmidt operators onH . The Hilbert–
Schmidt norm corresponds to the Hilbert–Schmidt inner product on HS(H), which
is defined by

〈A,B〉HS = tr(A∗B) =
∞∑
k=1

〈Aek,Bek〉, A,B ∈ HS(H). (5.28)

For a self-adjoint operator A ∈ HS(H), A is compact and hence possesses a count-
able spectrum {λk}∞k=1, with limk→∞ λk = 0, and

||A||2HS =
∞∑
k=1

λ2
k < ∞. (5.29)

It is clear then that if dim(H) = ∞, then the identity operator I is not Hilbert–
Schmidt, since obviously

||I||HS = ∞.

We explain the consequence of this fact on the infinite-dimensional generalization
of the affine-invariant and Log-Euclidean distances in Sect. 5.4.2.2.

For two RKHS covariance operators CΦ(x) and CΦ(y), their Hilbert–Schmidt dis-
tance is expressed explicitly in terms of Gram matrices, as follows. Let K[x], K[y],
K[x, y] denote the m × m matrices defined by

(K[x])ij = K(xi, xj), (K[y])ij = K(yi, yj), (K[x, y])ij = K(xi, yj). (5.30)

By definition of feature maps, we have K(x, y)=〈Φ(x),Φ(y)〉HK ∀(x, y) ∈ X ×X ,
so that the Gram matrices and the feature maps are closely related as follows

K[x] = Φ(x)∗Φ(x), K[y] = Φ(y)∗Φ(y), K[x, y] = Φ(x)∗Φ(y). (5.31)

Lemma 1 The Hilbert–Schmidt distance between two RKHS covariance operators
CΦ(x) and CΦ(y) is given by

||CΦ(x) − CΦ(y)||2HS = 1

m2
〈JmK[x],K[x]Jm〉F − 2

m2
〈JmK[x, y],K[x, y]Jm〉F

+ 1

m2
〈JmK[y],K[y]Jm〉F . (5.32)

5 From Covariance Matrices to Covariance Operators: Data Representation … 127

Remark 3 For the linear kernel K(x, y) = 〈x, y〉Rn , we have Φ(x) = x, Φ(y) = y
and thus Eq. (5.32) gives us the Euclidean distance ||Cx − Cy||F .

5.4.2 Riemannian Distances Between Covariance Operators

We now show how the affine-invariant and Log-Euclidean distances in Eqs. (5.6) and
(5.8), respectively, can be generalized to the infinite-dimensional settings, specifically
to self-adjoint, positive Hilbert–Schmidt operators on a separable Hilbert space H .
These generalizations were carried out recently in [21, 22], for the affine-invariant
metric, and in [28], for the Log-Euclidean metric. As a special case of these for-
mulations, we obtain the respective distances between infinite-dimensional covari-
ance operators on Hilbert spaces, which assume explicit forms in the RKHS setting
[26, 28].

Looking at Eqs. (5.6) and (5.8), we see that generalizing them to the infinite-
dimensional setting requires the following two steps

1. Generalization of the set Sym++(n) of all n × n SPD matrices and the corre-
sponding generalization for the principal matrix logarithm.

2. Generalization of the Frobenius norm || ||F .

We show next that the first step leads us to the concept of positive definite operators
and the second to the concept of extended Hilbert–Schmidt norm.

5.4.2.1 Positive Definite Operators

We first consider the bounded operators A : H → H that generalize n × n SPD
matrices and the corresponding generalization for the principal matrix logarithm. To
this end, we first recall the definition of the principal matrix logarithm for an SPD
matrix A of size n × n. Let {λk}nk=1 be the eigenvalues of A, which are all positive,
with corresponding normalized eigenvectors {uk}nk=1. Then A admits the spectral
decomposition

A =
n∑

k=1

λkukuT
k .

The principal matrix logarithm of A is then given by

log(A) =
n∑

k=1

log(λk)ukuT
k . (5.33)

To generalize this formula to the Hilbert space setting, let us assume that A : H →
H is a self-adjoint, compact operator, so that it possesses a countable spectrum

128 H.Q. Minh and V. Murino

{λk}∞k=1, with corresponding normalized eigenvectors {uk}∞k=1. The eigenvalues λk’s
are all real and satisfy limk→∞ λk = 0. We assume next that A is strictly positive,
that is

〈x,Ax〉 > 0 ∀x ∈ H , x
= 0. (5.34)

Then the eigenvalues {λk}∞k=1 of A are all strictly positive. However, in contrast to
the case dim(H) < ∞, when dim(H) = ∞, strict positivity is not a sufficient
condition for log(A) to be well-defined. To see why, consider the following direct
generalization of the principal matrix logarithm in Eq. (5.33),

log(A) =
∞∑
k=1

(log λk)uk ⊗ uk : H → H , (5.35)

whereuk ⊗uk : H →H is a rank-one operator defined by (uk ⊗ uk)w = 〈uk,w〉uk ,
which directly generalizes the rank-one matrix ukuT

k . Thus

log(A)w =
∞∑
k=1

(log λk)〈uk,w〉uk ∀w ∈ H . (5.36)

However, since limk→∞ log λk = −∞, this operator is unbounded. Thus in particu-
lar, if A is a covariance operator, then log(A) is unbounded.

This problem can be resolved via regularization as follows. Instead of considering
log(A), we consider log(A + γI), γ > 0, and we see immediately that

log(A + γI) =
∞∑
k=1

[log(λk + γ)]uk ⊗ uk : H → H , (5.37)

is a bounded operator ∀γ > 0. The operatorA + γI is an example of a positive definite
operator, that is it is a member of the set

P(H) = {B ∈ L (H) : ∃MB > 0 such that 〈x,Bx〉 ≥ MB||x||2 ∀x ∈ H }.
(5.38)

Clearly, if B ∈ P(H), then the eigenvalues of B, if they exist, are all bounded below
by the constantMB > 0. Thus in the infinite-dimensional setting, positive definiteness
is a stronger requirement than strict positivity. In fact, it can be shown that

B positive definite ⇐⇒ B strictly positive and invertible. (5.39)

Subsequently, we use the notation B > 0 for B ∈ P(H).

5 From Covariance Matrices to Covariance Operators: Data Representation … 129

5.4.2.2 Extended Hilbert–Schmidt Inner Product and Norm

We now consider operators of the formA + γI > 0, whereA is a self-adjoint, compact
operators, so that log(A + γI), as given by Eq. (5.37) is well-defined and bounded.
To generalize Eq. (5.8), we then need to have

|| log(A + γI)||2HS =
∞∑
k=1

[log(λk + γ)]2 < ∞. (5.40)

We show below that this is also sufficient for the generalization of Eq. (5.6). For
γ = 1, this holds if and only if A ∈ HS(H), as shown by the following.

Proposition 2 Assume that A + I > 0, with A being a self-adjoint, compact opera-
tor. Then log(A + I) ∈ HS(H) if and only if A ∈ HS(H).

However, for γ
= 1, γ > 0, log(A + γI) cannot be a Hilbert–Schmidt operator for
any compact operator A with A + γI > 0, as shown in the following.

Proposition 3 Assume that A + γI > 0, γ > 0, γ
= 1, with A being a self-adjoint,
compact operator. Then log(A + γI) /∈ HS(H).

The result given in Proposition 3 is due to the fact that ||I||HS = ∞, as can be viewed
via the decomposition

log(A + γI) = log

(
A

γ
+ I

)
+ log(γ)I. (5.41)

On the right handside, the first term log
(
A
γ

+ I
)

is Hilbert–Schmidt if and only if A

is Hilbert–Schmidt, as guaranteed by Proposition 2. However, for γ
= 1, the second
term log(γ)I cannot be Hilbert–Schmidt, since ||I||HS = ∞ for dim(H) = ∞.

Thus, taken together, Propositions 2 and 3 show that to generalize Eqs. (5.6) and
(5.8), we need to consider operators of the form A + γI > 0, where A is Hilbert–
Schmidt, and at the same time, extend the definition of the Hilbert–Schmidt inner
product and norm so that the norm of the identity operator I is finite.

The desired extension is called the extendedHilbert–Schmidt inner product 〈 , 〉eHS

[21, 22], which is defined by

〈A + γI,B + μI〉eHS = 〈A,B〉HS + γμ. (5.42)

Under the extended Hilbert–Schmidt inner product, the scalar operators γI are
orthogonal to the Hilbert–Schmidt operators. The corresponding extended Hilbert–
Schmidt norm is then given by

||A + γI||2eHS = ||A||2HS + γ2. (5.43)

130 H.Q. Minh and V. Murino

One can see that this is a form of compactification, which gives ||I||eHS = 1, in
contrast to the infinite Hilbert–Schmidt norm ||I||HS = ∞. Thus instead of the Hilbert
space of self-adjoint Hilbert–Schmidt operators, we consider the Hilbert space of
self-adjoint extended (or unitized) Hilbert–Schmidt operators

HR = {A + γI : A∗ = A, A ∈ HS(H), γ ∈ R}, (5.44)

under the extended Hilbert–Schmidt inner product. By the decomposition given in
Eq. (5.41), we immediately obtain the following.

Proposition 4 Assume thatA + γI > 0whereγ > 0andA is a self-adjoint, compact
operator. Then

log(A + γI) ∈ HR ⇐⇒ A + γI > 0, A ∈ HS(H), A∗ = A. (5.45)

Furthermore, when dim(H) = ∞,

|| log(A + γI)||2eHS =
∥∥∥∥log

(
A

γ
+ I

)∥∥∥∥
2

HS

+ (log γ)2. (5.46)

5.4.2.3 The Hilbert Manifold of Positive Definite Unitized
Hilbert–Schmidt Operators

In summary, to generalize Eqs. (5.6) and (5.8) to the Hilbert space setting, we need to
consider operators of the form A + γI > 0, whereA is self-adjoint, Hilbert–Schmidt,
so that log(A + γI) is well-defined and bounded, along with the extended Hilbert–
Schmidt norm || ||eHS, so that || log(A + γI)||eHS is finite. We have thus arrived at
the following generalization of Sym++(n)

�(H) = P(H) ∩ HR = {A + γI > 0 : A∗ = A, A ∈ HS(H), γ ∈ R},
(5.47)

which was first introduced by [21, 22]. This is an infinite-dimensional Hilbert man-
ifold, with the tangent space at each point TP(�(H)) ∼= HR ∀P ∈ �(H). By
Proposition 4,

A + γI ∈ �(H) ⇐⇒ log(A + γI) ∈ HR. (5.48)

5 From Covariance Matrices to Covariance Operators: Data Representation … 131

5.4.3 The Affine-Invariant Distance

The affine-invariant Riemannian metric was introduced on the Hilbert manifold
�(H) by [21, 22]. Under this metric, the geodesic distance between any two positive
definite operators (A + γI), (B + μI) ∈ �(H) is given by

daiHS[(A + γI), (B + μI)] = || log[(A + γI)−1/2(B + μI)(A + γI)−1/2]||eHS.

(5.49)

The following result confirms that the distance daiHS[(A + γI), (B + μI)] is
always finite for any pair of operators (A + γI), (B + μI) ∈ �(H).

Proposition 5 For any two operators (A + γI), (B + μI) ∈ �(H), we can write
(A + γI)−1/2(B + μI)(A + γI)−1/2 = Z + νI > 0 for ν = μ

γ
and Z = (A + γI)−1/2

B(A + γI)−1/2 − μ
γ
A(A + γI)−1 satisfying Z = Z∗, Z ∈ HS(H). Thus the affine-

invariant geodesic distance

daiHS[(A + γI), (B + μI)] = || log(Z + νI)||eHS (5.50)

is always finite. Furthermore, when dim(H) = ∞,

d2
aiHS[(A + γI), (B + μI)] =

∥∥∥∥log

(
Z

ν
+ I

)∥∥∥∥
2

HS

+ (log ν)2. (5.51)

In the RKHS setting, the affine-invariant distance between regularized RKHS
covariance operators daiHS[(CΦ(x) + γI), (CΦ(y) + μI)] admits a closed form, which
was given by [26], as follows.

Theorem 1 ([26]) Assume that dim(HK) = ∞. Let γ > 0,μ > 0. Then

d2
aiHS[(CΦ(x) + γI), (CΦ(y) + μI)] = tr

⎧⎨
⎩log

⎡
⎣

⎛
⎝C11 C12 C13

C21 C22 C23

C11 C12 C13

⎞
⎠ + I3m

⎤
⎦

⎫⎬
⎭

2

+
(

log
γ

μ

)2

, (5.52)

where the m × m matrices Cij, i, j = 1, 2, 3, are given by

C11 = 1

μm
JmK[y]Jm,

C12 = − 1√
γμm

JmK[y, x]Jm
(
Im + 1

γm
JmK[x]Jm

)−1

,

C13 = − 1

γμm2
JmK[y, x]Jm

(
Im + 1

γm
JmK[x]Jm

)−1

JmK[x, y]Jm,

132 H.Q. Minh and V. Murino

C21 = 1√
γμm

JmK[x, y]Jm,

C22 = − 1

γm
JmK[x]Jm

(
Im + 1

γm
JmK[x]Jm

)−1

,

C23 = − 1

γm
JmK[x]Jm

(
Im + 1

γm
JmK[x]Jm

)−1 1√
γμm

JmK[x, y]Jm.

Theorem 2 ([26]) Assume that dim(HK) < ∞. Let γ > 0,μ > 0. Then

d2
aiHS[(CΦ(x) + γI), (CΦ(y) + μI)] = tr

⎧⎨
⎩log

⎡
⎣

⎛
⎝C11 C12 C13

C21 C22 C23

C11 C12 C13

⎞
⎠ + I3m

⎤
⎦

⎫⎬
⎭

2

− 2

(
log

γ

μ

)
tr

⎧⎨
⎩log

⎡
⎣

⎛
⎝C11 C12 C13

C21 C22 C23

C11 C12 C13

⎞
⎠ + I3m

⎤
⎦

⎫⎬
⎭ +

(
log

γ

μ

)2

dim(HK), (5.53)

where the m × m matrices Cij’s, i, j = 1, 2, 3, are as in Theorem1.

We see that the formula for the affine-invariant distance for the case dim(HK) =
∞ is generally different from that for the case dim(HK) < ∞, except when γ = μ, in
which case they are identical. One can see that form ∈ N fixed, γ
= μ, the right hand
side of Eq. (5.53) approaches infinity as dim(HK) → ∞. Thus for γ
= μ, one cannot
approximate the infinite-dimensional distance in Eq. (5.52) by the finite-dimensional
distance in Eq. (5.53).

5.4.3.1 Log-Hilbert–Schmidt Distance

Similar to the affine-invariance distance in Eq. (5.49), the generalization of the Log-
Euclidean distance [4] is the Log-Hilbert–Schmidt distance

dlogHS[(A + γI), (B + μI)] = || log(A + γI) − log(B + μI)||eHS, (5.54)

which was recently formulated by [28]. The well-definedness of this distance for any
pair of operators (A + γI), (B + μI) ∈ �(H) is confirmed by the following result.

Proposition 6 For any pair of operators (A + γI), (B + μI) ∈ �(H), the distance
dlogHS[(A + γI), (B + μI)] = || log(A + γI) − log(B + μI)||eHS is always finite.
Furthermore, when dim(H) = ∞,

|| log(A + γI) − log(B + μI)||2eHS =
∥∥∥∥log

(
A

γ
+ I

)
− log

(
B

μ
+ I

)∥∥∥∥
2

HS
+

(
log

γ

μ

)2
.

As in the case of the affine-invariant distance, in the case of regularized RKHS
covariance operators, the Log-HS distance

5 From Covariance Matrices to Covariance Operators: Data Representation … 133

dlogHS[CΦ(x) + γI,CΦ(y) + μI] = || log(CΦ(x) + γI) − log(CΦ(y) + μI)||eHS

(5.55)

also admits an explicit form, expressed via the Gram matrices corresponding to x
and y [28]. To state this explicit form, we first define the following operators

A = 1√
γm

Φ(x)Jm : Rm → HK , B = 1√
μm

Φ(y)Jm : Rm → HK , (5.56)

so that

A∗A = 1

γm
JmK[x]Jm, B∗B = 1

μm
JmK[y]Jm, A∗B = 1√

γμm
JmK[x, y]Jm.

(5.57)

Let NA and NB be the numbers of nonzero eigenvalues of A∗A and B∗B, respectively.
Let �A and �B be the diagonal matrices of size NA × NA and NB × NB, and UA and
UB be the matrices of size m × NA and m × NB, respectively, which are obtained
from the spectral decompositions

1

γm
JmK[x]Jm = UA�AU

T
A ,

1

μm
JmK[y]Jm = UB�BU

T
B . (5.58)

Let ◦ denote the Hadamard (element-wise) matrix product and define

CAB = 1TNA
log(INA + �A)�

−1
A (UT

AA
∗BUB ◦ UT

AA
∗BUB)�

−1
B log(INB + �B)1NB .

(5.59)

In terms of the quantities just defined, the Log-HS distance can be expressed as
follows. As in the case of the affine-invariant distance, the distance formulas are dif-
ferent for the cases dim(HK) = ∞ and dim(HK) < ∞, with the finite-dimensional
distance approaching infinity as dim(HK) → ∞.

Theorem 3 ([28]) Assume that dim(HK) = ∞. Let γ > 0, μ > 0. Then

d2
logHS[(CΦ(x) + γI), (CΦ(y) + μI)] = tr[log(INA + �A)]2 + tr[log(INB + �B)]2

− 2CAB + (log γ − log μ)2. (5.60)

Theorem 4 ([28]) Assume that dim(HK) < ∞. Let γ > 0, μ > 0. Then

d2
logHS[(CΦ(x) + γI), (CΦ(y) + μI)] = tr[log(INA + �A)]2 + tr[log(INB + �B)]2 − 2CAB

+ 2

(
log

γ

μ

)
(tr[log(INA + �A)] − tr[log(INB + �B)])

+ (log γ − log μ)2 dim(HK). (5.61)

134 H.Q. Minh and V. Murino

Remark 4 In the case of the linear kernel K(x, y) = 〈x, y〉, x, y ∈ R
n, Theorem 4

gives the Log-Euclidean distance || log(Cx + γI) − log(Cy + μI)||.
Remark 5 We showed in [28] that the two operations � and � on Sym++(n) as
defined in Sect. 5.2 can both be generalized to the Hilbert manifold �(H), so that
(�(H),�,�) is a vector space. This vector space can be endowed with the Log-
Hilbert–Schmidt inner product, defined by

〈A + γI,B + μI〉logHS = 〈log(A + γI), log(B + μI)〉eHS. (5.62)

With this inner product, the space (�(H),�,�, 〈 , 〉logHS) is a Hilbert space and
the distance in this Hilbert space is precisely the Log-Hilbert–Schmidt distance, see
[28] for detail.

5.5 Two-Layer Kernel Machines with RKHS Covariance
Operators

Having presented the explicit formulas for the affine-invariant and Log-Hilbert–
Schmidt distances between RKHS covariance operators, we now show how the Log-
Hilbert–Schmidt distance in particular can be used to design a two-layer kernel
machine for machine learning, with an application in image classification.

5.5.1 The Interplay Between Positive Definite Kernels
and Riemannian Manifolds

The geometric framework for RKHS covariance operators that we have just described
reveals a close link between positive definite kernels and Riemannian manifolds, as
follows.

Kernels giving rise to Manifolds. Let X be any non-empty set. Each positive
definite kernel defined on X × X gives rise to a set of RKHS covariance operators,
each of the form CΦ(x), where x is a data matrix sampled from X according to
a probability distribution. The corresponding set of regularized RKHS covariance
operators (CΦ(x) + γI), γ > 0, forms a subset of the Hilbert manifold of positive
definite Hilbert–Schmidt operators.

For the case of the Log-Hilbert–Schmidt distance, we have the link in the other
direction as well.

Distances on Manifolds giving rise to Kernels. Since the Log-Hilbert–Schmidt
distance is a Hilbert space distance, it can be used to define many positive definite
kernels on �(H) × �(H). The following result naturally generalizes Proposition 1
to the infinite-dimensional setting.

5 From Covariance Matrices to Covariance Operators: Data Representation … 135

Proposition 7 ([28]) The following kernels K : �(H) × �(H) → R are positive
definite

K[(A + γI), (B + μI)] = (c + 〈log(A + γI), log(B + μI)〉eHS)
d, c ≥ 0, d ∈ N,

(5.63)

K[(A + γI), (B + μI)] = exp

(
−|| log(A + γI) − log(B + μI)||peHS

σ2

)
, (5.64)

for 0 < p ≤ 2.

5.5.2 Two-Layer Kernel Machines

The interplay between positive definite kernels and Riemannian manifolds as we
described above allows us to design a two-layer kernel machine by utilizing the
Log-Hilbert–Schmidt distance as follows.

1. In the first layer, a positive definite kernel, such as the Gaussian kernel, is applied
to the original features extracted from each image, giving an implicit covariance
operator representing that image. Using the Log-Hilbert–Schmidt distance, we
then compute the pairwise distances between all the images.

2. In the second layer, using the pairwise Log-Hilbert–Schmidt distances obtained in
the first layer, we define a new positive definite kernel, such as another Gaussian
kernel. We can then apply any kernel method, such as SVM, using this kernel.

Remark 6 The approach in [17, 24], which applies kernel methods on top of the
Log-Euclidean distance, is a special case our our framework, where the kernel in the
first layer is linear (which is equivalent to not having the first layer).

5.6 Experiments in Image Classification

In this section, we report empirical results on the task of image classification using
the two-layer kernel machine with the Log-Hilbert–Schmidt distance, as described in
Sect. 5.5. The results obtained are substantially better than those obtained using the
corresponding one-layer kernel machine with the Log-Euclidean distance. These thus
clearly demonstrate the superior power and effectiveness of the covariance operator
representation framework compared to the covariance matrix representation. The
results presented here were first reported in [28].

We recall from our previous discussion that each image is represented by a covari-
ance operator as follows. At every pixel (or a subset of pixels) of the image, we extract
n low-level features, such as intensity and colors, giving us a low-level feature vector

136 H.Q. Minh and V. Murino

in R
n. Sampling at m pixels in the image gives us a data matrix x of size n × m.

By applying a positive definite kernel, defined on R
n × R

n, to the low-level feature
vectors, we obtain implicitly a matrix of features Φ(x), as defined in Eq. (5.24), and
the corresponding covariance operator CΦ(x), as defined in Eq. (5.26). The image is
then represented by the covariance operator CΦ(x). In the current experiments, we
used the Gaussian kernel and the resulting covariance operator is called Gaussian-
COV. The distance between two images is the distance between the corresponding
covariance operators, which in this case is the Log-Hilbert–Schmidt distance, given
by Eq. (5.60) when dim(HK) = ∞, e.g. for the Gaussian kernel, and Eq. (5.61) when
dim(HK) < ∞, e.g. for the polynomial kernels.

Given a set of images, we then have a corresponding set of covariance operators
and a matrix of pairwise Log-Hilbert–Schmidt distances between these operators.
In the following experiments, the task of image classification was carried out by
applying Gaussian Support Vector Machine (SVM) on top of this distance matrix,
using LIBSVM [10]. Thus this corresponds to a two-layer kernel machine Gaussian-
Gaussian involving two Gaussian kernels, with the first Gaussian kernel defined on
the low-level features and the second Gaussian kernel defined using the Log-Hilbert–
Schmidt distances between the covariance operators of those features. For the sake
of comparison, we also evaluated the kernel machine Gaussian-Laplacian, with the
second kernel being the Laplacian kernel, which corresponds to p = 1 in Eq. (5.64).

In comparison, with the covariance matrix representation, one represents the
image by the covariance matrix Cx defined directly on the data matrix x of low-
level features, which we call linearCOV, since it is precisely the covariance oper-
ator obtained with the linear kernel. Given a set of images, we then obtain a set
of corresponding covariance matrices and a matrix of pairwise Log-Euclidean dis-
tances between these covariance matrices. One can then carry out the task of image
classification by applying Gaussian SVM on top of this distance matrix. Thus this
corresponds to the two-layer kernel machine linear-Gaussian, which is equivalent to
the one-layer kernel machine Gaussian on top of the Log-Euclidean distances, since
the first layer in this case, being linear, has no effect.

Texture classification. The first dataset used is the Kylberg texture dataset [20],
which contains 28 texture classes of different natural and man-made surfaces, with
each class consisting of 160 images. The experimental protocols are the same as
those in [16] and are as follows. Each image is resized to a dimension of 128 × 128,
with m = 1024 observations computed on a coarse grid (i.e., every 4 pixels in the
horizontal and vertical direction). At each pixel, 5 low-level features are extracted:
F(x, y) = [

Ix,y, |Ix| ,
∣∣Iy∣∣ , |Ixx| , ∣∣Iyy∣∣] , where I , Ix, Iy, Ixx and Iyy, are the intensity,

first- and second-order derivatives of the texture image. We randomly selected 5
images in each class for training and used the remaining ones as testing data, repeating
the entire procedure 10 times.

Material classification. The second dataset used is the KTH-TIPS2b dataset
[9], which contains images of 11 materials captured under 4 different illumi-
nations, in 3 poses, and at 9 scales. The total number of images per class is
108. The same experimental protocols as used for the previous dataset [16] are
employed, where at each pixel 23 low-level dense features are extracted: F(x, y) =

5 From Covariance Matrices to Covariance Operators: Data Representation … 137

Table 5.1 Classification accuracies over the 3 datasets. The accuracies shown are the mean accuracy
across all the different splits for each dataset, along with the standard deviation. HereLog-HSdenotes
SVM with the Gaussian kernel on top of the Log-Hilbert–Schmidt distances,Log-HS� denotes SVM
with the Laplacian kernel on top of the Log-Hilbert–Schmidt distances, and Log-E denotes SVM
with the Gaussian kernel on top of the Log-Euclidean distances

Methods Kylberg texture KTH-TIPS2b KTH-TIPS2b
(RGB)

Fish

Gaussian COV Log-HS 92.58%(±1.23) 81.91%(±3.3) 79.94%(±4.6) 56.74%(±2.87)

Log-HS� 92.56 %(±1.26) 81.50 %(±3.90) 77.53 %(±5.2) 56.43 %(±3.02)

linear COV Log-E 87.49 %(±1.54) 74.11 %(±7.41) 74.13 %(±6.1) 42.70 %(±3.45)

[
Rx,y,Gx,y,Bx,y,

∣∣G0,0
x,y

∣∣ , . . . , ∣∣G4,5
x,y

∣∣], where Rx,y,Gx,y,Bx,y are the color intensities
and

∣∣Go,s
x,y

∣∣ are the 20 Gabor filters at 4 orientations and 5 scales. The experiment is
repeated across 4 splits of the dataset.

Fish recognition. The third dataset used is the Fish Recognition dataset [8],
which consists of 27,370 fish images belonging to 23 different classes. The number
of images per class ranges from 21 to 12,112, with a medium resolution of roughly
150 × 120 pixels. The same experimental protocols are employed, where at each
pixel the 3 color intensities are extracted: F(x, y) = [

Rx,y,Gx,y,Bx,y
]
. We randomly

selected 5 images from each class for training and 15 for testing, repeating the entire
procedure 10 times.

Results and discussion. Table 5.1 shows the classification accuracies obtained
on the three tested datasets. As can be seen, the Log-Hilbert–Schmidt distance with
the GaussianCOV displays significant improvements over the Log-Euclidean dis-
tance with the linearCOV. This strong improvement in performance is as expected,
since, as we have discussed previously, covariance operators, by capturing nonlinear
correlations between input features, offer a more general, more powerful, and more
expressive data representation than covariance matrices.

5.7 Discussion, Conclusion, and Future Work

In this chapter, we have reviewed some of the recent progress in the generalization
of the data representation framework using finite-dimensional covariance matrices
to infinite-dimensional RKHS covariance operators, which are induced by positive
definite kernels on the original data. In particular, we treated covariance operators
in the setting of the infinite-dimensional manifold of positive definite operators,
which is the generalization of the Riemannian manifold setting for SPD matrices.
We presented the affine-invariant and Log-Hilbert–Schmidt distances on this mani-
fold, which are generalizations of the affine-invariant and Log-Euclidean distances,
respectively, between SPD matrices. For RKHS covariance operators, these distances

138 H.Q. Minh and V. Murino

admit closed form expressions via the corresponding Gram matrices and thus can be
employed directly in a practical algorithm, such as image classification.

The Log-Hilbert–Schmidt distance, in particular, can be used to define new
positive definite kernels, giving rise to a two-layer kernel machine. Experiments
on the task of image classification have demonstrated that results obtained using
the infinite-dimensional covariance operator representation significantly outperform
those obtained using the finite-dimensional covariance matrix representation.

There are several ongoing and potential future research directions for the data rep-
resentation framework using covariance operators. On the methodological side, one
challenge faced by the framework is that both the affine-invariant and Log-Hilbert–
Schmidt distances between covariance operators are computationally intensive on
large scale datasets. One way to tackle this computational complexity for large
scale applications is by approximating the infinite-dimensional covariance opera-
tors using approximate kernel feature maps. This has recently been carried out by
[14], which effectively computed an approximate version of the affine-invariant dis-
tance, and [29], which computed approximate Log-Hilbert–Schmidt distances, both
using Fourier feature maps. It would be interesting and fruitful to explore other
approximations and computation schemes as well. On the application side, given the
numerous applications of covariance matrices in diverse domains, ranging from sta-
tistics to machine learning to brain imaging, we expect that the covariance operator
framework will find many more applications beyond those that we have presented
or surveyed in this chapter.

Appendix

Proofs of Mathematical Results

Proof (of Proposition1) For the first kernel, we have the property that the sum and
product of positive definite kernels are also positive definite. Thus from the positivity
of the inner product 〈A,B〉F , it follows that K(A,B) = (c + 〈A,B〉logE)d is positive
definite, as in the Euclidean setting.

For the second kernel, since (Sym++(n),�,�, 〈 , 〉logE) is an inner product space,
it follows that the kernel

K(A,B) = exp(−dplogE(A,B)/σ2) = exp(−|| log(A) − log(B)||pF/σ2)

is positive definite for 0 < p ≤ 2 by a classical result due to Schoenberg on positive
definite functions and the imbeddability of metric spaces into Hilbert spaces (see
[35], Theorem 1 and Corollary 1).

Proof (of Lemma1) Recall that we have Φ(x)∗Φ(x) = K[x], Φ(y)∗Φ(y) = K[y],
Φ(x)∗Φ(y) = K[x, y]. By definition of the Hilbert–Schmidt norm and property of
the trace operation, we have

5 From Covariance Matrices to Covariance Operators: Data Representation … 139

||CΦ(x) − CΦ(y)||2HS =
∥∥∥∥ 1

m
Φ(x)JmΦ(x)∗ − 1

m
Φ(y)JmΦ(y)∗

∥∥∥∥
2

HS

= 1

m2
||Φ(x)JmΦ(x)∗||2HS − 2

m2
〈Φ(x)JmΦ(x)∗, Φ(y)JmΦ(y)∗〉HS

+ 1

m2
||Φ(y)JmΦ(y)∗||2HS

= 1

m2
tr[Φ(x)JmΦ(x)∗Φ(x)JmΦ(x)∗] − 2

m2
tr[Φ(x)JmΦ(x)∗Φ(y)JmΦ(y)∗]

+ 1

m2
tr[Φ(y)JmΦ(y)∗Φ(y)JmΦ(y)∗]

= 1

m2
tr[(K[x]Jm)2 − 2K[y, x]JmK[x, y]Jm + (K[y]Jm)2]

= 1

m2
[〈JmK[x],K[x]Jm〉F − 2〈JmK[x, y],K[x, y]Jm〉F + 〈JmK[y],K[y]Jm〉F].

This completes the proof of the lemma. �

Lemma 2 Let B be a constant with 0 < B < 1. Then for all |x| ≤ B,

| log(1 + x)| ≤ 1

1 − B
|x|. (5.65)

Proof For x ≥ 0, we have the well-known inequality 0 ≤ log(1 + x) ≤ x, so clearly
0 ≤ log(1 + x) < 1

1−Bx. Consider now the case −B ≤ x ≤ 0. Let

f (x) = log(1 + x) − 1

1 − B
x.

We have

f
′
(x) = 1

1 + x
− 1

1 − B
≤ 0,

with f
′
(−B) = 0. Thus the function f is decreasing on [−B, 0] and reaches its mini-

mum at x = 0, which is f (0) = 0. Hence we have for all −1 < −B ≤ x ≤ 0

0 ≥ log(1 + x) ≥ 1

1 − B
x ⇒ | log(1 + x)| ≤ 1

1 − B
|x|,

as we claimed. �

Proof (of Propositions2 and 3) We first show that for an operator A + γI > 0,
whereA is self-adjoint, compact, the operator log(A + γI) /∈ HS(H) if γ
= 1. Since
A is compact, it has a countable spectrum {λk}k∈N, with limk→∞ λk = 0, so that
limk→∞ log(λk + γ) = log(γ). Thus if γ
= 1, so that log γ
= 0, we have

140 H.Q. Minh and V. Murino

|| log(A + γI)||2HS =
∞∑
k=1

[log(λk + γ)]2 = ∞.

Hence log(A + γI) /∈ HS(H) if γ
= 1.
Assume now that γ = 1. We show that log(A + I) ∈ HS(H) if and only if

A ∈ HS(H). For the first direction, assume that B = log(A + I) ∈ HS(H). By def-
inition, we have A + I = exp(B) ⇐⇒ A = exp(B) − I = ∑∞

k=1
Bk

k! , with

||A||HS =
∥∥∥∥∥

∞∑
k=1

Bk

k!

∥∥∥∥∥
HS

≤
∞∑
k=1

||B||kHS

k! = exp(||B||HS) − 1 < ∞.

This shows that A ∈ HS. Conversely, assume A ∈ HS(H), so that

||A||2HS =
∞∑
k=1

λ2
k < ∞,

and that A + I > 0, so that log(A + I) is well-defined and bounded, with eigenvalues
{log(λk + 1)}∞k=1. Since limk→∞ λk = 0, for any constant 0 < ε < 1, there exists
N = N(ε) such that |λk| < ε ∀k ≥ N . By Lemma 2, we have

|| log(A + I)||2HS =
∞∑
k=1

[log(λk + 1)]2 =
N−1∑
k=1

[log(λk + 1)]2 +
∞∑

k=N

[log(λk + 1)]2

≤
N−1∑
k=1

[log(λk + 1)]2 + 1

1 − ε

∞∑
k=N

λ2
k < ∞.

This shows that log(A + I) ∈ HS(H), which completes the proof. �

Proof (Proof of Proposition4) Since the identity operator I commutes with any
operator A, we have the decomposition

log(A + γI) = log

(
A

γ
+ I

)
+ (log γ)I.

We first note that the operator log
(
A
γ

+ I
)

is compact, since it possesses a countable

set of eigenvalues {log(λk
γ

+ 1)}k∈N satisfying limk→∞ log(λk
γ

+ 1) = 0.

If A is Hilbert–Schmidt, then by Proposition 2, we have log
(
A
γ

+ I
)

∈ HS(H),

and thus log(A + γI) ∈ HR. By definition of the extended Hilbert–Schmidt norm,

|| log(A + γI)||2eHS =
∥∥∥∥log

(
A

γ
+ I

)∥∥∥∥
2

HS

+ (log γ)2 < ∞.

5 From Covariance Matrices to Covariance Operators: Data Representation … 141

Conversely, if log(A + γI) ∈ HR, then together with the fact that log
(
A
γ

+ I
)

is

compact, the above decomposition shows that we must have log
(
A
γ

+ I
)

∈ HS(H)

and hence A ∈ HS(H) by Proposition 2. �

Proof (of Proposition5) Since (A + γI) > 0, (B + μI) > 0, it is straightforward to
see that (A + γI)−1/2(B + μI)(A + γI)−1/2 > 0. Using the identity

(A + γI)−1 = 1

γ
I − A

γ
(A + γI)−1,

we obtain

(A + γI)−1/2(B + μI)(A + γI)−1/2

= μ

γ
I + (A + γI)−1/2B(A + γI)−1/2 − μ

γ
A(A + γI)−1 = Z + νI,

where ν = μ
γ

and Z = (A + γI)−1/2B(A + γI)−1/2 − μ
γ
A(A + γI)−1. It is clear that

Z = Z∗ and thatZ ∈ HS(H), since HS(H) is a two-sided ideal inL (H). It follows
that log(Z + γI) ∈ HR by Proposition 4. Thus the geodesic distance

daiHS[(A + γI), (B + μI)] = || log[(A + γI)−1/2(B + μI)(A + γI)−1/2]||eHS

= || log(Z + νI)||eHS

is always finite. Furthermore, by Proposition 2, log(Z
ν

+ I) ∈ HS(H) and thus by
definition of the extended Hilbert–Schmidt norm, when dim(H) = ∞,

d2
aiHS[(A + γI), (B + μI)] = || log(Z + νI)||2eHS = || log

(
Z

ν
+ I

)
||2HS + (log ν)2.

This completes the proof. �

Proof (of Proposition6) By Proposition 4, (A + γI), (B + μI) ∈ �(H) ⇐⇒ log
(A + γI), log(B + μI) ∈ HR . It follows that [log(A + γI) − log(B + μI)] ∈ HR,
so that || log(A + γI) − log(B + μI)||eHS is always finite.

Furthermore, by Proposition 2, log
(
A
γ

+ I
)

, log
(
B
μ

+ I
)

∈ HS(H) and by def-

inition of the extended Hilbert–Schmidt norm, when dim(H) = ∞,

|| log(A + γI) − log(B + μI)||2eHS =
∥∥∥∥log

(
A

γ
+ I

)
− log

(
B

μ
+ I

)
+

(
log

γ

μ

)
I

∥∥∥∥
2

eHS

=
∥∥∥∥log

(
A

γ
+ I

)
− log

(
B

μ
+ I

)∥∥∥∥
2

HS
+

(
log

γ

μ

)2
.

This completes the proof. �

142 H.Q. Minh and V. Murino

References

1. E. Andruchow, A. Varela, Non positively curved metric in the space of positive definite infinite
matrices. Revista de la Union Matematica Argentina 48(1), 7–15 (2007)

2. V.I. Arsenin, A.N. Tikhonov, Solutions of Ill-Posed Problems (Winston, Washington, 1977)
3. V. Arsigny, P. Fillard, X. Pennec, N. Ayache, Fast and simple calculus on tensors in the

Log-Euclidean framework, Medical Image Computing and Computer-Assisted Intervention–
MICCAI 2005 (Springer, New York, 2005), pp. 115–122

4. V. Arsigny, P. Fillard, X. Pennec, N. Ayache, Geometric means in a novel vector space structure
on symmetric positive-definite matrices. SIAM J. Matrix Anal. Appl. 29(1), 328–347 (2007)

5. F. Barbaresco, Information geometry of covariance matrix: Cartan-Siegel homogeneous
bounded domains, Mostow/Berger fibration and Frechet median,Matrix InformationGeometry
(Springer, New York, 2013), pp. 199–255

6. R. Bhatia, Positive Definite Matrices (Princeton University Press, Princeton, 2007)
7. D.A. Bini, B. Iannazzo, Computing the Karcher mean of symmetric positive definite matrices.

Linear Algebra Appl. 438(4), 1700–1710 (2013)
8. B.J. Boom, J. He, S. Palazzo, P.X. Huang, C. Beyan, H.-M. Chou, F.-P. Lin, C. Spampinato, R.B.

Fisher, A research tool for long-term and continuous analysis of fish assemblage in coral-reefs
using underwater camera footage. Ecol. Inf. 23, 83–97 (2014)

9. B. Caputo, E. Hayman, P. Mallikarjuna, Class-specific material categorisation, in ICCV (2005),
pp. 1597–1604

10. C.-C. Chang, C.-J. Lin, LIBSVM: a library for support vector machines. ACM Trans. Intell.
Syst. Technol. 2(3), 27:1–27:27 (2011)

11. A. Cherian, S. Sra, A. Banerjee, N. Papanikolopoulos, Jensen-Bregman LogDet divergence
with application to efficient similarity search for covariance matrices. TPAMI 35(9), 2161–
2174 (2013)

12. I.L. Dryden, A. Koloydenko, D. Zhou, Non-Euclidean statistics for covariance matrices, with
applications to diffusion tensor imaging. Ann. Appl. Stat. 3, 1102–1123 (2009)

13. H.W. Engl, M. Hanke, A. Neubauer,Regularization of Inverse Problems, vol. 375, Mathematics
and Its Applications (Springer, New York, 1996)

14. M. Faraki, M. Harandi, F. Porikli, Approximate infinite-dimensional region covariance descrip-
tors for image classification, in IEEE International Conference on Acoustics, Speech and Signal
Processing (ICASSP) (2015)

15. P. Formont, J.-P. Ovarlez, F. Pascal, On the use of matrix information geometry for polarimetric
SAR image classification, Matrix Information Geometry (Springer, New York, 2013), pp. 257–
276

16. M. Harandi, M. Salzmann, F. Porikli, Bregman divergences for infinite dimensional covariance
matrices, in CVPR (2014)

17. S. Jayasumana, R. Hartley, M. Salzmann, H. Li, M. Harandi, Kernel methods on the Riemannian
manifold of symmetric positive definite matrices, in CVPR (2013)

18. S. Jayasumana, R. Hartley, M. Salzmann, H. Li, M. Harandi, Kernel methods on Riemannian
manifolds with Gaussian RBF kernels. IEEE Trans. Pattern Anal. Mach. Intell. 37(12), 2464–
2477 (2015)

19. B. Kulis, M.A. Sustik, I.S. Dhillon, Low-rank kernel learning with Bregman matrix divergences.
J. Mach. Learn. Res. 10, 341–376 (2009)

20. G. Kylberg, The Kylberg texture dataset v. 1.0. External report (Blue series) 35, Centre for
Image Analysis, Swedish University of Agricultural Sciences and Uppsala University (2011)

21. G. Larotonda, Geodesic Convexity, Symmetric Spaces and Hilbert-Schmidt Operators. Ph.D.
thesis, Universidad Nacional de General Sarmiento, Buenos Aires, Argentina (2005)

22. G. Larotonda, Nonpositive curvature: a geometrical approach to Hilbert-Schmidt operators.
Differ. Geom. Appl. 25, 679–700 (2007)

23. J.D. Lawson, Y. Lim, The geometric mean, matrices, metrics, and more. Am. Math. Monthly
108(9), 797–812 (2001)

5 From Covariance Matrices to Covariance Operators: Data Representation … 143

24. P. Li, Q. Wang, W. Zuo, L. Zhang, Log-Euclidean kernels for sparse representation and dictio-
nary learning, in ICCV (2013)

25. H.Q. Minh, Some properties of Gaussian reproducing kernel Hilbert spaces and their implica-
tions for function approximation and learning theory. Constr. Approx. 32, 307–338 (2010)

26. H.Q. Minh, Affine-invariant Riemannian distance between infinite-dimensional covariance
operators, inGeometric Science of Information, vol. 9389, Lecture Notes in Computer Science,
ed. by F. Nielsen, F. Barbaresco (Springer International Publishing, Switzerland, 2015), pp.
30–38

27. H.Q. Minh, P. Niyogi, Y. Yao, Mercer’s theorem, feature maps, and smoothing, in Proceedings
of 19th Annual Conference on Learning Theory (Springer, Pittsburg, 2006)

28. H.Q. Minh, M. San Biagio, V. Murino, Log-Hilbert-Schmidt metric between positive definite
operators on Hilbert spaces, in Advances in Neural Information Processing Systems 27 (NIPS
2014) (2014), pp. 388–396

29. H.Q. Minh, M. San Biagio, L. Bazzani, V. Murino, Approximate Log-Hilbert-Schmidt distances
between covariance operators for image classification, in IEEEConference on Computer Vision
and Pattern Recognition (CVPR) (2016)

30. G.D. Mostow, Some new decomposition theorems for semi-simple groups. Mem. Am. Math.
Soc. 14, 31–54 (1955)

31. X. Pennec, P. Fillard, N. Ayache, A Riemannian framework for tensor computing. Int. J. Com-
put. Vis. 66(1), 41–66 (2006)

32. D. Pigoli, J. Aston, I.L. Dryden, P. Secchi, Distances and inference for covariance operators.
Biometrika 101(2), 409–422 (2014)

33. F. Porikli, O. Tuzel, P. Meer, Covariance tracking using model update based on Lie algebra, in
CVPR, vol. 1 (IEEE, 2006), pp. 728–735

34. A. Qiu, A. Lee, M. Tan, M.K. Chung, Manifold learning on brain functional networks in aging.
Med. Image Anal. 20(1), 52–60 (2015)

35. I.J. Schoenberg, Metric spaces and positive definite functions. Trans. Am. Math. Soc. 44,
522–536 (1938)

36. B. Schölkopf, A. Smola, K.-R. Müller, Nonlinear component analysis as a kernel eigenvalue
problem. Neural Comput. 10(5), 1299 (1998)

37. J. Shawe-Taylor, N. Cristianini, Kernel Methods for Pattern Analysis (Cambridge University
Press, Cambridge, 2004)

38. S. Sra, A new metric on the manifold of kernel matrices with application to matrix geometric
means. Adv. Neural Inf. Process. Syst. 1, 144–152 (2012)

39. D. Tosato, M. Spera, M. Cristani, V. Murino, Characterizing humans on Riemannian manifolds.
TPAMI 35(8), 1972–1984 (2013)

40. O. Tuzel, F. Porikli, P. Meer, Pedestrian detection via classification on Riemannian manifolds.
TPAMI 30(10), 1713–1727 (2008)

41. S.K. Zhou, R. Chellappa, From sample similarity to ensemble similarity: probabilistic distance
measures in reproducing kernel Hilbert space. TPAMI 28(6), 917–929 (2006)

Chapter 6
Dictionary Learning on Grassmann
Manifolds

Mehrtash Harandi, Richard Hartley, Mathieu Salzmann
and Jochen Trumpf

Abstract Sparse representations have recently led to notable results in various visual
recognition tasks. In a separate line of research, Riemannian manifolds have been
shown useful for dealing with features and models that do not lie in Euclidean spaces.
With the aim of building a bridge between the two realms, we address the problem of
sparse coding and dictionary learning in Grassmann manifolds, i.e, the space of linear
subspaces. To this end, we introduce algorithms for sparse coding and dictionary
learning by embedding Grassmann manifolds into the space of symmetric matrices.
Furthermore, to handle nonlinearity in data, we propose positive definite kernels
on Grassmann manifolds and make use of them to perform coding and dictionary
learning.

6.1 Introduction

In the past decade, sparsity has become a popular term in neuroscience, information
theory, signal processing, and related areas [7, 11, 12, 33, 46]. Through sparse rep-
resentation and compressive sensing, it is possible to represent natural signals like
images using only a few nonzero coefficients of a suitable basis. In computer vision,
sparse and overcomplete image representations were first introduced for modeling
the spatial receptive fields of simple cells in the human visual system by [33]. The

M. Harandi (B) · R. Hartley · J. Trumpf
College of Engineering and Computer Science, Australian National University,
Canberra, ACT 2601, Australia
e-mail: mehrtash.harandi@anu.edu.au

R. Hartley
e-mail: richard.hartley@anu.edu.au

J. Trumpf
e-mail: jochen.trumpf@anu.edu.au

M. Salzmann
CVLab, EPFL, Lausanne, Switzerland
e-mail: mathieu.salzmann@epfl.ch

© Springer International Publishing Switzerland 2016
H.Q. Minh and V. Murino (eds.), Algorithmic Advances in Riemannian
Geometry and Applications, Advances in Computer Vision
and Pattern Recognition, DOI 10.1007/978-3-319-45026-1_6

145

146 M. Harandi et al.

linear decomposition of a signal using a few atoms of a dictionary has been shown
to deliver notable results for various visual inference tasks, such as face recognition
[46, 47], image classification [30, 48], subspace clustering [13] and image restora-
tion [31] to name a few. While significant steps have been taken to develop the theory
of the sparse coding and dictionary learning in Euclidean spaces, similar problems
on non-Euclidean geometry have received comparatively little attention [8, 20, 22,
26]. This chapter discusses techniques to sparsely represent p-dimensional linear
subspaces in Rd using a combination of linear subspaces.

Linear subspaces can be considered as the core of many inference algorithms in
computer vision and machine learning. Examples include but not limited to modeling
the reflectance function of Lambertian objects [4, 34], video analysis [9, 14, 18,
21, 41, 42], chromatic noise filtering [39], domain adaptation [16, 17], and object
tracking [37]. Our main motivation here is to develop new methods for analyzing
video data and image sets. This is inspired by the success of sparse signal modeling
and related topics that suggest natural signals like images (and hence video and image
sets as our concern here) can be efficiently approximated by superposition of atoms
of a dictionary. We generalize the traditional notion of coding, which operates on
vectors, to coding on subspaces. Coding with subspaces can then be seamlessly used
for categorizing video data. Toward this, we first provide efficient solutions to the
following two fundamental problems on Grassmann manifolds: (see Fig. 6.1 for a
conceptual illustration):

(a) (b)

Fig. 6.1 A conceptual diagram of the problems addressed in this work. A video or an image set can
be modeled by a linear subspace, which can be represented as a point on a Grassmann manifold.
a Sparse coding on a Grassmannmanifold. Given a dictionary (green ellipses) and a query signal
(red triangle) on the Grassmann manifold, we are interested in estimating the query signal by a
sparse combination of atoms while taking into account the geometry of the manifold (e.g, curvature).
b Dictionary learning on a Grassmann manifold. Given a set of observations (green ellipses) on
a Grassmann manifold, we are interested in determining a dictionary (red triangles) to describe the
observations sparsely, while taking into account the geometry. This figure is best seen in color

6 Dictionary Learning on Grassmann Manifolds 147

1. Coding. Given a subspaceX and a setD = {Di}Ni=1 withN elements (also known
as atoms), where X and Di are linear subspaces, how can X be approximated
by a combination of atoms in D ?

2. Dictionary learning. Given a set of subspaces {Xi}mi=1, how can a smaller set of
subspaces D = {Di}Ni=1 be learned to represent {Xi}mi=1 accurately?

Later, we tackle the problem of coding and dictionary learning on Grassmannian
by embedding the manifold in Reproducing Kernel Hilbert Spaces (RKHS). To this
end, we introduce a family of positive definite kernels on Grassmannian and make
use of them to recast the coding problem in kernel spaces.

6.2 Problem Statement

In this section, we formulate the problem of coding and dictionary learning on the
Grassmannian. Throughout this chapter, bold capital letters denote matrices (e.g X)
and bold lowercase letters denote column vectors (e.g, x). The notation xi (respec-
tively Xi,j) is used to demonstrate the element in position i of the vector x (respec-
tively (i, j) of the matrix X). 1d ∈ Rd and 0d ∈ Rd are vectors of ones and zeros. Id
is the d × d identity matrix. ‖x‖1 = ∑

i |xi| and ‖x‖ = √
xTx denote the �1 and �2

norms, respectively, with T indicating transposition. ‖X‖F =
√

Tr
(
XTX

)
designates

the Frobenius norm, with Tr(·) computing the matrix trace.
In vector spaces, by coding we mean the general notion of representing a vector

x (the query) as some combination of other vectors di belonging to a dictionary.
Typically, x is expressed as a linear combination x = ∑N

j=1 yjdj, or else as an affine

combination in which the coefficients yj satisfy the additional constraint
∑N

j=1 yj = 1.
(This constraint may also be written as 1T y = 1.)

In sparse coding one seeks to express the query in terms of a small number of
dictionary elements. Given, a query x ∈ Rd and a dictionary D of size N , i.e, Dd×N =
{d1, d2, . . . , dN } with atoms di ∈ Rd , the problem of coding x can be formulated as
solving the minimization problem:

�E(x,D) � min
y

∥∥∥x −
∑N

j=1
yjdj

∥∥∥2

2
+ λf (y). (6.1)

The domain of y may be the whole of RN , so that the sum runs over all linear
combinations of dictionary elements (or atoms), or alternatively, the extra constraint
1Ty = 1 may be specified, to restrict to affine combinations.

The idea here is to (approximately) reconstruct the query x by a combination of
dictionary atoms while forcing the coefficients of combination, i.e, y, to have some
structure. The quantity �E(x,D) can be thought of as a coding cost combining the
squared residual coding error, reflected in the energy term ‖ · ‖2

2 in (6.1), along with
a penalty term f (y), which encourages some structure such as sparsity. The function

148 M. Harandi et al.

f : RN → R could be the �1 norm, as in the Lasso problem [40], or some form of
locality as proposed in [43].

The problem of dictionary learning is to determine D given a finite set of obser-
vations {xi}mi=1 , x ∈ Rd , by minimizing the total coding cost for all observations,
namely

h(D) �
m∑
i=1

�E(xi,D) , (6.2)

while enforcing certain constraints on D to be satisfied to avoid trivial solutions.
A “good” dictionary has a small residual coding error for all observations xi while
producing codes yi ∈ RN with the desired structure. For example, in the case of
sparse coding, the �1 norm is usually taken as f (·) to obtain the most common
form of dictionary learning in the literature. More specifically, the sparse dictionary
learning problem may be written in full as that of jointly minimizing the total coding
cost over all choices of coefficients and dictionary:

min
{yi}mi=1,D

m∑
i=1

∥∥∥xi −
N∑
j=1

yijdj
∥∥∥2

2
+ λ

m∑
i=1

‖yi‖1. (6.3)

A common approach to solving this is to alternate between the two sets of variables,
D and {yi}mi=1, as proposed for example by [2] (see [12] for a detailed treatment).
Minimizing (6.3) over sparse codes yi while dictionaryD is fixed is a convex problem.
Similarly, minimizing the overall problem overDwith fixed {yi}mi=1 is convex as well.

In generalizing the coding problem to a more general space M , (e.g, Riemannian
manifolds), one may write (6.1) as

�M (X ,D) � min
y

(
dM

(
X , C(y,D)

)2 + λf (y)
)
. (6.4)

Here X and D = {Dj}Nj=1 are points in the space M , while dM (·, ·) is some
distance metric and C : RN × M N → M is an encoding function, assigning an
element of M to every choice of coefficients and dictionary. Note that (6.1) is
a special case of this, in which C(y,D) represents linear or affine combination,
and dM (·, ·) is the Euclidean distance metric. To define the coding, one need only
specify the metric dM (·, ·) to be used and the encoding function C(·, ·). Although
this formulation may apply to a wide range of spaces, here we shall be concerned
chiefly with coding on Grassmann manifolds.

A seemingly straightforward method for coding and dictionary learning is through
embedding manifolds into Euclidean spaces via a fixed tangent space (the concepts
related to differential geometry, such as tangent spaces will be shortly defined). The

6 Dictionary Learning on Grassmann Manifolds 149

Algorithm 1: Log-Euclidean sparse coding on Grassmann manifolds.

Input: Grassmann dictionary {Di}Ni=1, Di ∈ G (p, d); the query sample X ∈ G (p, d).
Output: The sparse code y∗.

Initialization.
for i ← 1 to N do

di ← logP(Di);
end
A ← [d1|d2| · · · |dN] ;

Processing.
x ← logP(X);

y∗ ← arg miny
∥∥x − ATy

∥∥2
2 + λ ‖y‖1;

embedding function in this case would be logP(·), where P is some default base
point.1

By mapping points in the manifold M to the tangent space, the problem at hand
is transformed to its Euclidean counterpart. For example in the case of sparse coding,
the encoding cost may be defined as follows:

�M (X ,D) � min
y

∥∥∥logP(X) −
N∑
j=1

yj logP(Dj)

∥∥∥2

P
+ λ‖y‖1 (6.5)

where the notation ‖ · ‖P reminds us that the norm is in the tangent space at X .
We shall refer to this straightforward approach as Log-Euclidean sparse coding (the
corresponding steps for Grassmann manifolds in Algorithm 1), following the ter-
minology used in [3]. Since on a tangent space only distances to the base point
are equal to true geodesic distances, the Log-Euclidean solution does not take into
account the true structure of the underlying Riemannian manifold. Moreover, the
solution is dependent upon the particular point P used as a base point.

Another approach is to measure the loss of X with respect to the dictionary D,
i.e, �M (X ,D), by working in the tangent space of X , rather than a fixed point
P [8, 26]. The loss in this case becomes

�M (X ,D) � min
y∈RN

1T y=1

∥∥∥
N∑
j=1

yj logX (Dj)

∥∥∥2

X
+ ‖y‖1 (6.6)

1The function that maps each vector y ∈ TPM to a point X of the manifold that is reached after
a unit time by the geodesic starting at P with this tangent vector is called the exponential map.
For complete manifolds, this map is defined in the whole tangent space TPM . The logarithm
map is the inverse of the exponential map, i.e, y = logP(X) is the smallest vector y such that
X = expP(y).

150 M. Harandi et al.

Following [26], given a set of training data {Xi}mi=1, Xi ∈ M , the problem of
dictionary learning can be written as

min
{yi}mi=1,D

m∑
i=1

∥∥∥∥
N∑
j=1

yij logXi
(Dj)

∥∥∥∥
2

+ λ

m∑
i=1

‖yi‖1 (6.7)

s.t. 1Tyi = 1, i = 1, 2, . . . ,m.

Similar to the Euclidean case, the problem in (6.7) can be solved by iterative optimiza-
tion over {yi}mi=1 and D. Computing the sparse codes {yi}mi=1 is done by solving (6.6).
To update D, [26] proposed a gradient descent approach along geodesics. That is,
the update of Dr at time t while {yi}mi=1 and Dj, j �= r are kept fixed has the form

D (t)
r = expD(t−1)

r
(−η�). (6.8)

In Eq. (6.8) η is a step size and the tangent vector � ∈ TDr (M) represents the direc-
tion of maximum ascent. That is � = gradJ (Dr),2 where

J =
m∑
i=1

∥∥∥
N∑
j=1

yij logXi
(Dj)

∥∥∥2
. (6.9)

Here is where the difficulty arises. Since the logarithm map does not have a closed-
form expression on Grassmann manifolds, an analytic expression for � in Eq. (6.8)
cannot be sought for the case of interest in this work, i.e, Grassmann manifolds.
Having this in mind, we will describe various techniques to coding and dictionary
learning specialized for Grassmann manifolds.

6.3 Background Theory

This section overviews Grassmann geometry and provides the groundwork for tech-
niques described in following sections. Since the term “manifold” itself is often used
in computer vision in a somewhat loose sense, we emphasize that the word is used
in this chapter in its strict mathematical sense.

One most easily interprets the Grassmann manifolds in the more general context
of group actions, to be described first. Consider a transitive (left) group action of
a group G on a set S. The result of applying a group element g to a point x ∈ S is
written as gx. Choose a specific point x0 ∈ S and consider its stabilizer Stab(x0) =

2On an abstract Riemannian manifold M , the gradient of a smooth real function f at a point x ∈ M ,
denoted by gradf (x), is the element ofTx(M) satisfying 〈gradf (x), ζ 〉x = Dfx[ζ] for all ζ ∈ Tx(M).
Here, Dfx[ζ] denotes the directional derivative of f at x in the direction of ζ . The interested reader
is referred to [1] for more details on how the gradient of a function on Grassmann manifolds can
be computed.

6 Dictionary Learning on Grassmann Manifolds 151

{g ∈ G | gx0 = x0}. The stabilizer is a subgroup ofG, which we will denote byH, and
there is a one-to-one correspondence between the left cosets gH and the elements
of S, whereby a point x ∈ S is associated with the coset {g ∈ G | gx0 = x}. The set
of all left cosets is denoted by G/H, which we identify with the set S under this
identification.

The (real, unoriented) Grassmannian G (p, d), where 0 < p ≤ d, is the set of all
p-dimensional linear subspaces (we shall usually call them p-planes, or simply
planes) of the real vector space Rd . A geometric visualization of a point in the
Grassmannian is a p-plane through the origin of d-dimensional Euclidean space.
From this geometric picture, it is obvious that the orthogonal group O(d) of all
real orthogonal transforms of Rd acts on G (p, d), as any element of O(d) trans-
forms a p-plane through the origin to a p-plane through the origin. The action is
transitive, since any plane can be reached in this way from any given one. The
set of elements of O(d) that transforms a given p-plane X to itself, the stabilizer
Stab(X) = {U ∈ O(d) |UX = X }, is a subgroup of O(d) and isomorphic to the
product O(p) × O(d − p), where the factor O(p) corresponds to in-plane transfor-
mations and the factor O(d − p) corresponds to transformations that leave all points
of the plane fixed. The Grassmannian can hence be identified with the coset space
O(d)/(O(p) × O(d − p)).

To make the above discussion more concrete, in terms of matrices, identify O(d)

as the group of orthogonal d × d matrices, a Lie group of dimension d × (d + 1)/2.
In addition, think of p-planes inRd as represented by orthogonal Stiefel matrices, that
is, by rectangular d × p-matricesX with orthonormal columns that form a basis of the
plane. Since a given plane has many different orthogonal bases, two such matrices
X and X ′ represent the same plane if and only if there exists a matrix V ∈ O(p)
such that X ′ = XV . This defines an equivalence relation between matrices X and
X ′, and the planes may be identified with the equivalence classes of d × p matrices
under this equivalence relation. The set of all such equivalence classes constitute the
Grassmannian G (p, d).

A matrix U in O(d) acts on a plane with representative Stiefel matrix X by left
multiplication: X
→ UX. One immediately verifies that if X and X ′ represent the
same plane, then so do UX and UX ′, so this defines a transitive left group action of
O(d) on G (p, d). Of particular interest is the element of the Grassmannian,

X0 = Span(X0) = Span

[
Ip
0

]
,

where Ip is the p × p identity matrix. A transformation U ∈ O(d) acts by left matrix
multiplication and it is immediate that

Stab(X0) =
{[

U1 0
0 U2

]
∈ O(d)

∣∣∣ U1 ∈ O(p), U2 ∈ O(d − p)

}
, (6.10)

showing again that Stab(X0) � O(p) × O(d − p).

152 M. Harandi et al.

Since the action of O(d) is transitive on G (p, d), the elements of G (p, d) (planes)
are in one-to-one correspondence with the set of left cosets of Stab(X0) in O(d).
We think of the Grassmannian as the coset space O(d)/(O(d − p) × O(p)), where
O(d − p) × O(p) is identified with the block-diagonal subgroup in Eq. (6.10).

In this way, it is seen that the Grassmann manifolds form a special case of coset
spaces G/H, in which G = O(d) and H is the subgroup O(d − p) × O(p). In the
Grassmann case, the group G = O(d) is a matrix Lie group, and hence has the topo-
logical structure of a compact manifold. In this situation, G/H inherits a topology, a
smooth manifold structure, and indeed a Riemannian metric from G = O(d).

We continue the discussion denoting by G the matrix Lie group O(d) and H =
StabX0, shown in Eq. (6.10), but the reader may bear in mind that the discussion
holds equally well in the case of a general compact (sometimes also non-compact)
Lie group G with Lie subgroup H.3 This topic is treated in Chap. 21 of [29], which
the reader may consult to fill in details.

The natural projection π : G → G/H � G (p, d) can now be used to equip the
Grassmannian with quotient structures. For example, using the standard Lie group
topology onG, the quotient as a quotient topology (the strongest topology such that π
is continuous). Using the differential structure of the Lie groupG, the quotient inherits
a differential structure (the unique one that makes π a smooth submersion). With this
differential structure, the action of G on G/H is smooth. With this smooth structure,
the quotient spaceG/H is a manifold, according to the quotient manifold theorem (see
Theorem 21.10 in [29]). Thus, the Grassmannian (or Grassmann manifold) is thus
a homogeneous space of G. Its dimension is p(d − p) = dim(O(d)) − (dim(O(d −
p)) + dim(O(p))).4

Tangent Space and Riemannian Metric

The homogeneous space structure of the Grassmannian can be used to equip it with
a Riemannian metric, starting from a bi-invariant Riemannian metric on G = O(d).

To this end, think of G as embedded in Rd×d and equip the tangent space TIG at
the identity with the Euclidean inner product inherited from that embedding. This
defines a biinvariant Riemannian metric on G through right (or left) translation. For
subgroup H of G define the Riemannian metric on the quotient G/H by

〈X,Y〉UH = 〈X̃, Ỹ〉U
where U ∈ G and X,Y ∈ TUHG/H. Further, X̃ and Ỹ in TU(G) are the horizontal
lifts of X and Y with respect to π and the Riemannian metric on the group, that is,
π∗
U(X̃) = X and π∗

U(Ỹ) = Y , and both X̃ and Ỹ are orthogonal to the kernel of π∗
U with

respect to the inner product 〈., .〉U . It is easily verified that the above construction
for (left) homogeneous spaces is well defined as long as the Riemannian metric on

3Another situation where this applies in Computer Vision is the study of the essential manifold,
which may be envisaged as the coset space of SO(3) × SO(3) modulo a subgroup isomorphic to
SO(2). For details see [25].
4O(d) has dimension d(d − 1)/2, since its Lie algebra is the set of n × n skew-symmetric matrices.

6 Dictionary Learning on Grassmann Manifolds 153

the Lie group is right invariant under the action of the stabilizer. This is trivially the
case for a biinvariant metric.

The tangent space to G at U ∈ G is TUG = {UΩ ∈ Rd×d | Ω ∈ so(d)}, where
so(d) = {Ω ∈ Rd×d | Ω = −Ω�}, the set of real skew-symmetric d × d-matrices.
The bi-invariant Riemannian metric on G inherited from the embedding of TIG in
Euclidean d-space is given by

〈UΩ1,UΩ2〉U = − Tr Ω1Ω2,

that is, by (left translations of) the Frobenius inner product. The tangent space to the
Grassmannian G (p, d) � G/H at UH is then the quotient

TUG/UTIH =
{
U

([
0 −Ω�

21
Ω21 0

]
+ TIH

)
| Ω21 ∈ R(d−p)×p

}

where

TIH =
{[

Ω1 0
0 Ω2

]
∈ Rd×d | Ω1 ∈ so(p),Ω2 ∈ so(d − p)

}
.

The horizontal subspace of TUG formed by all horizontal lifts of tangent vectors
to the Grassmannian G (p, d) � G/H at UH is

V⊥
U (G) =

{
U

[
0 −Ω�

21
Ω21 0

]
∈ Rd×d | Ω21 ∈ R(d−p)×p

}
.

This is most easily seen atU = I where the elements ofV⊥
I (G) are obviously perpen-

dicular to the vertical subspace VI (G) = Ker π∗
I = TIH with respect to the Frobenius

inner product. The normal Riemannian metric on the Grassmannian is then given by

〈
U

([
0 −Ω�

1
Ω1 0

]
+ TIH

)
,U

([
0 −Ω�

2
Ω2 0

]
+ TIH

)〉
UH

= Tr Ω�
1 Ω2 + Tr Ω1Ω

�
2

= 2 Tr Ω1Ω
�
2

in terms of the horizontal lifts.

Projective Representation of Grassmann

An alternative representation of the Grassmannian G (p, d) is not as a quotient space
ofG, but as a subset of Sym(d), the vector space of all real symmetric d × d-matrices.
In this representation, a p-plane X is represented by the symmetric projection oper-
ator P : Rd → Rd with image Im(P) = X . In terms of matrix representations, P
is a rank p real symmetric d × d matrix with P2 = P and colspan(P) = X . For
example,

X0 = colspan(P0) = colspan

[
Ip 0
0 0

]
.

154 M. Harandi et al.

In general, ifX is represented by the orthogonal Stiefel matrixV then it is also repre-
sented by the symmetric matrixP = VV�. We denote the set of rank p real symmetric
d × d matrix withP2 = P byPG (d, p) and obtain a bijectionPG (d, p) → G (p, d)

via P
→ colspan(P).
The natural inclusion map

i : G (p, d) � PG (d, p) ↪→ Sym(d)

can now be used to equip the Grassmannian with subspace structures. For example,
the Grassmannian inherits a subspace topology (the coarsest topology such that
i is continuous) and a differential structure (the unique one that makes i a smooth
embedding) from the standard topology resp. differential structure on Sym(d). It turns
out that both of these coincide with the respective quotient structures constructed
above. The GrassmannianG (p, d) can hence equally be thought of as a homogeneous
space of G or as an embedded submanifold of Sym(d).

Since Sym(d), as a linear subspace of Rd×d , carries a natural inner product,
namely the restriction of the Frobenius inner product on Rd×d to Sym(d), each tan-
gent space TPPG (d, p) at a pointP ∈ PG (d, p) ⊂ Sym(d) inherits this inner prod-
uct via the inclusion TPPG (d, p) ⊂ TPSym(d) � Sym(d). This provides another
construction for a Riemannian metric on G (p, d) � PG (d, p).

To make this construction more concrete, note that the tangent space

TPPG (d, p) = {[P,Ω] | Ω ∈ so(d)},

where [P,Ω] = PΩ − ΩP is the matrix commutator [24, Theorem 2.1]. In partic-
ular,

TP0PG (d, p) =
{[

0 Ω12

Ω�
12 0

]
∈ Sym(d)

∣∣∣Ω12 ∈ Rp×(d−p)

}
.

Now observe that O(d) acts transitively on PG (d, p) by conjugation since UPU� ∈
PG (d, p) for everyU ∈O(d) and everyP ∈ PG (d, p), and every point inPG (d, p)
can be reached thus from a given one. Note that this action of O(d) is different to
the action by left multiplication that has been used to define the above homogeneous
space structure of G (p, d). Nevertheless, it can be used to more explicitly describe
the tangent space

TUP0U�PG (d, p) =
{
U

[
0 Ω12

Ω�
12 0

]
U� ∈ Sym(d)

∣∣∣Ω12 ∈ Rp×(d−p)

}

at an arbitrary point P = UP0U� ∈ PG (d, p). Note further that the first p columns
of UP0 form an orthogonal Stiefel matrix V (equal to the first p columns of U), and
that P = UP0U� = VV� as observed before. The embedded Riemannian metric on
G (p, d) � PG (d, p) is then given by

6 Dictionary Learning on Grassmann Manifolds 155

〈U
[

0 Ω1

Ω�
1 0

]
U�,U

[
0 Ω2

Ω�
2 0

]
U�〉UP0U� = Tr Ω1Ω

�
2 + Tr Ω�

1 Ω2

in terms of this representation. It is not difficult to see that this Riemannian
metric, in fact, is the same as the normal Riemannian metric constructed above
[24, Proposition 2.3].

The unique geodesic starting at a point U0P0U�
0 ∈ PG (d, p) in direction

U0

[
0 Ω

Ω� 0

]
U�

0

is given by

P(t) = U0 expm

(
t

[
0 −Ω

Ω� 0

])[
Ip 0
0 0

]
expm

(
−t

[
0 −Ω

Ω� 0

])
U�

0 ,

where expm denotes the matrix exponential [24, Theorem 2.2]. Alternatively, it is
given by

U(t)H = U0 expm

(
t

[
0 −Ω

Ω� 0

])
H

in the quotient representation. In particular, the Riemannian exponential map on the
Grassmannian is given by

expU0P0U�
0

(
U0

[
0 Ω

Ω� 0

]
U�

0

)
= U0 expm

[
0 −Ω

Ω� 0

] [
Ip 0
0 0

]
expm

[
0 Ω

−Ω� 0

]
U�

0

in the embedded representation and by

expU0H

(
U0

([
0 −Ω

Ω� 0

]
+ TIH

))
= U0 expm

[
0 −Ω

Ω� 0

]
H

in the quotient representation.

Geodesics

The Grassmannian with the above Riemannian metric is a complete Riemannian man-
ifold, hence any pair of points X1 and X2 on the Grassmannian can be connected by
a length-minimizing geodesic. The geodesic distance dgeod (X1,X2) is then defined
as the length of this minimizing geodesic. Since points on the Grassmannian can be
moved around arbitrarily by application of an orthogonal transformation U ∈ O(d),
and since the above Riemannian metric is invariant under such transformations, it
is sufficient to compute the length of a minimizing geodesic connecting the special
point X0 = colspan(P0) to any other point X = colspan(P). By the above formula
for the exponential map

156 M. Harandi et al.

P = expm

[
0 −Ω

Ω� 0

] [
Ip 0
0 0

]
expm

[
0 Ω

−Ω� 0

]

=
⎡
⎣ cos2

√
ΩΩ� sinc

(
2
√

ΩΩ�
)

Ω

Ω� sinc
(

2
√

ΩΩ�
)

sin2
√

Ω�Ω

⎤
⎦

for some Ω ∈ Rp×(d−p), where we have used [24, Eq. (2.68)] in the second line. The
geodesic distance from X0 to X is then dgeod (X0,X) = √

2 Tr ΩΩ�, that is the
length of the tangent vector

[
0 Ω

Ω� 0

]
∈ TP0PG (d, p)

under the Riemannian metric at P0. In more explicit terms, starting with a block
representation

P =
[
P1 P2

P�
2 P3

]
,

where P1 ∈ Sym(p), compute the eigenvalue decomposition P1 = U1diag
(λ1, . . . , λp)U�

1 with U1 ∈ O(p), then U1diag(λ1, . . . , λp)U�
1 = P1 = cos2

√
ΩΩ�

is equivalent to ΩΩ� = U1diag(arccos2(
√

λ1), . . . , arccos2(
√

λp))U�
1 and hence

dgeod (X0,X) =
√

2 Tr ΩΩ� =
√√√√2

p∑
i=1

arccos2(
√

λi),

cf. [24, Corollary 2.1].
A geometric interpretation of the above distance formula can be obtained as

follows. Swapping back to the quotient representation and using [24, Eq. (2.66)],
it follows that

X = colspan

[
cos

√
ΩΩ�

sin
√

Ω�Ω√
Ω�Ω

Ω�

]
,

where the columns of this matrix have unit length in the 2-norm since they are the
first p columns of an orthogonal matrix. The first principal angle θ1 between the
subspaces X0 and X is given by

6 Dictionary Learning on Grassmann Manifolds 157

cos θ1 = max
u∈X0,v∈X

u�v
‖u‖2‖v‖2

= max‖x‖2=1,‖y‖2=1

[
x� 0

] [cos
√

ΩΩ�
sin

√
Ω�Ω√

Ω�Ω
Ω�

]
y

= max‖x‖2=1,‖y‖2=1
x�U1diag(

√
λ1, . . . ,

√
λp)U

�
1 y

= √
λ1,

assuming that the eigenvalues λi are ordered in nonincreasing order. Similarly, it can
be shown that the ith principal angle θi = √

λi for i = 2, . . . , p. It follows that, in
general,

dgeod (X1,X2) = √
2‖�‖2,

where � = [
θ1 . . . θp

]�
is the vector of principal angles between X1 and X2. Note

that some authors use a different scaling of the Frobenius inner product (usually an
additional factor of 1

2) to arrive at a formula for the geodesic distance without the
factor of

√
2. Obviously, this does not change the geometry.

Principal angles. The geodesic distance has an interpretation as the magnitude of
the smallest rotation that takes one subspace to the other. If � = [θ1, θ2, . . . , θp] is
the sequence of principal angles between two subspaces X1 ∈ G (p, d) and X2 ∈
G (p, d), then dgeod (X1,X2) = ‖�‖2.

Definition 1 (Principal Angles) Let X1 and X2 be two matrices of size d × p with
orthonormal columns. The principal angles 0 ≤ θ1 ≤ θ2 ≤ · · · ≤ θp ≤ π/2 between
two subspaces Span(X1) and Span(X2), are defined recursively by

cos(θi) = max
ui∈Span(X1)

max
vi∈Span(X2)

uTi vi (6.11)

s.t.: ‖ui‖2 = ‖vi‖2 = 1

uTi uj = 0; j = 1, 2, . . . , i − 1

vTi vj = 0; j = 1, 2, . . . , i − 1

In other words, the first principal angle θ1 is the smallest angle between all pairs of
unit vectors in the first and the second subspaces. The rest of the principal angles are
defined similarly.

Two operators, namely the logarithm map logx(·) : M → Tx(M) and its inverse,
the exponential map expx(·) : Tx(M) → M are defined over Riemannian manifolds
to switch between the manifold and the tangent space at x. A key point here is the
fact that both the logarithm map and its inverse do not have closed-form solutions
for Grassmann manifolds. Efficient numerical approaches for computing both maps
were proposed by [5, 15]. In this paper, however, the exponential and logarithm maps
will only be used when describing previous work of other authors.

158 M. Harandi et al.

6.4 Dictionary Learning on Grassmannian

In this part, we propose to make use of the projective representation of
Grassmannian to perform coding and dictionary learning on Grassmannian. We recall
that working with PG (p, d) instead of G (p, d) has the advantage that each ele-
ment of PG (p, d) is a single matrix, whereas elements of G (p, d) are equivalence
classes of matrices. Hereinafter, we shall denote XXT by X̂, the hat representing
the action of the projection embedding. Furthermore, 〈 ·, · 〉 represents the Frobenius
inner product: thus 〈 X̂, Ŷ 〉 = Tr(X̂Ŷ). Note that in computing 〈 X̂, Ŷ 〉 it is not nec-
essary to compute X̂ and Ŷ explicitly (they may be large matrices). Instead, note
that 〈 X̂, Ŷ 〉 = Tr(X̂Ŷ) = Tr(XXTYYT) = Tr(YTXXTY) = ‖YTX‖2

F . This is advan-
tageous, since YTX may be a substantially smaller matrix.

Apart from the geodesic distance metric, an important metric used in this paper
is the chordal metric, defined by

dchord(X̂, Ŷ) = ‖X̂ − Ŷ‖F , (6.12)

This metric will be used in the context of (6.4) to recast the coding and consequently
dictionary-learning problem in terms of chordal distance. Before presenting our pro-
posed methods, we establish an interesting link between coding and the notion of
weighted mean in a metric space.

6.4.1 Weighted Karcher Mean

The underlying concept of coding using a dictionary is to represent in some way
a point in a space of interest as a combination of other elements in that space. In
the usual method of coding in Rd given by (6.1), each x is represented by a linear
combination of dictionary elements dj, where the first term represents the coding
error. For coding in a manifold, the problem to address is that linear combinations
do not make sense. We wish to find some way in which an element X may be
represented in terms of other dictionary elements Dj as suggested in (6.4). For a
proposed method to generalize the Rd case, one may prefer a method that is a direct
generalization of the Euclidean case in some way.

InRd , a different way to consider the expression
∑N

j=1 yjdj in (6.1) is as a weighted
mean of the points dj This observation relies on the following fact, which is verified
using a Lagrange multiplier method.

Lemma 1 Given coefficients y with
∑N

i=1 yi = 1, and dictionary elements {d1, . . . ,

dN } in Rd, the point x∗ ∈ Rd that minimizes
∑N

i=1 yi ‖x − di‖2
F is given by x∗ =∑N

i=1 yi di.

6 Dictionary Learning on Grassmann Manifolds 159

In other words, the affine combination of dictionary elements is equal to their
weighted mean. Although linear combinations are not defined for points on man-
ifolds or metric spaces, a weighted mean is.

Definition 2 Given points Di on a Riemannian manifold M , and weights yi, the
point X ∗ that minimizes

∑N
i=1 yi dg(X ,Di)

2, is called the weighted Karcher mean
of the points Di with weights yi. Here, dg(·, ·) is the geodesic distance on M .

Generally, finding the Karcher mean [28] on a manifold involves an iterative
procedure, which may converge to a local minimum, even on a simple manifold, such
as SO(3) [23, 32]. However, one may replace the geodesic metric with a different
metric in order to simplify the calculation. To this end, we propose the chordal metric
on a Grassman manifold, defined for matrices X̂ and Ŷ in PG (p, d) in Eq. (6.12).
The corresponding mean, as in Definition 2 (but using the chordal metric) is called the
weighted chordal mean of the points. In contrast to the Karcher mean, the weighted
chordal mean on a Grassman manifold has a simple closed form.

Theorem 1 The weighted chordal mean of a set of points D̂i ∈ PG (p, d) with
weights yi is equal to Proj(

∑m
i=1 yiD̂i), where Proj(·) represents the closest point on

PG (p, d) [20].

The function Proj(·) has a closed-form solution in terms of the singular value
decomposition. More specifically,

Lemma 2 Let X be an d × d symmetric matrix with eigenvalue decomposition X =
UDUT , where D contains the eigenvalues λi of X in descending order. Let Up be the
d × p matrix consisting of the first p columns of U. Then Ûp = UpUT

p is the closest
matrix inPG (p, d) to X (under the Frobenius norm) [20].

The chordal metric on a Grassman manifold is not a geodesic metric (that is it is
not equal to the length of a shortest geodesic under the Riemannian metric). However,
it is closely related. In fact, one may easily show that for G (p, d) � X = span(X)

and G (p, d) � Y = span(Y)

2

π
dgeod(X ,Y) ≤ dchord(X̂, Ŷ) ≤ dgeod(X ,Y) .

Furthermore, the path-metric [23] induced by dchord(·, ·) is equal to the geodesic
distance.

Sparse Coding

Given a dictionary D with atoms D̂j ∈ PG (p, d) and a query sample X̂ the problem
of sparse coding can be recast extrinsically as:

�(X ,D) � min
y

∥∥∥X̂ −
N∑
j=1

yjD̂j

∥∥∥2

F
+ λ‖y‖1. (6.13)

160 M. Harandi et al.

The formulation here varies slightly from the general form given in (6.4), in that
the point

∑N
j=1 yjD̂j does not lie exactly on the manifold PG (p, d), since it is not

idempotent nor its rank is necessarily p. We call this solution an extrinsic solution;
the point coded by the dictionary is allowed to step out of the manifold.

Expanding the Frobenius norm term in (6.13) results in a convex function in y:

∥∥∥X̂ −
N∑
j=1

yjD̂j

∥∥∥2

F
= ‖X̂‖2

F +
∥∥∥

N∑
j=1

yjD̂j

∥∥∥2

F
− 2 〈

N∑
j=1

yjD̂j, X̂ 〉 .

The sparse codes can be obtained without explicitly embedding the manifold in
PG (p, d) using �(X). This can be seen by defining [K (X,D)]i = 〈 X̂, D̂i 〉 as an
N dimensional vector storing the similarity between signal X and dictionary atoms
in the induced space and [K(D)]i,j = 〈 D̂i, D̂j 〉 as an N × N symmetric matrix
encoding the similarities between dictionary atoms (which can be computed offline).
Then, the sparse coding in (6.13) can be written as:

�(X ,D) = min
y

yTK(D)y − 2yTK (X,D) + λ‖y‖1 . (6.14)

The symmetric matrix K(D) is positive semidefinite since for all v ∈ RN :

vTK(D)v =
N∑
i=1

N∑
j=1

vivj 〈 D̂i, D̂j 〉 =
〈

N∑
i=1

viD̂i,

N∑
j=1

vjD̂j

〉

=
∥∥∥

N∑
i=1

viD̂i

∥∥∥2

F
≥ 0.

Therefore, the problem is convex and can be efficiently solved. The problem in (6.14)
can be transposed into a vectorized sparse coding problem. More specifically, let
U
UT be the SVD of K(D). Then (6.14) is equivalent to

�(X ,D) = min
y

‖x∗ − Ay‖2 + λ‖y‖1, (6.15)

where A =
1/2UT and x∗ =
−1/2UTK (X,D). This can be easily verified by
plugging A and x∗ into (6.15). Algorithm 2 provides the pseudo-code for performing
Grassmann Sparse Coding (gSC).

A special case is sparse coding on the Grassmann manifold G (1, d), which can be
seen as a problem on d − 1 dimensional unit sphere, albeit with a subtle difference.
More specifically, unlike conventional sparse coding in vector spaces, x ∼ −x,∀x ∈
G (1, d), which results in having antipodals points being equivalent. For this special
case, the solution proposed in (6.13) can be understood as sparse coding in the higher
dimensional quadratic space, i.e, f : Rd → Rd2

, f (x) = [x2
1, x1x2, . . . , x2

d]T . We note
that in the quadratic space, ‖f (x)‖ = 1 and f (x) = f (−x).

6 Dictionary Learning on Grassmann Manifolds 161

Algorithm 2: Sparse coding on Grassmann manifolds (gSC).

Input: Grassmann dictionary {Di}Ni=1, Di ∈ G (p, d) with Di = span(Di); the query
G (p, d) � X = span(X)

Output: The sparse code y∗

Initialization.
for i, j ← 1 to N do

[K(D)]i,j ← ∥∥DT
i Dj

∥∥2
F

end
K(D) = U
UT /* compute SVD of K(D) */

A ←
1/2UT

Processing.
for i ← 1 to N do

[K (X,D)]i ← ∥∥XTDi
∥∥2
F

end
x∗ ←
−1/2UTK (X,D)

y∗ ← arg min
y

‖x∗ − Ay‖2 + λ‖y‖1

Classification Based on Coding

If the atoms in the dictionary are not labeled (e.g, if D is a generic dictionary not tied
to any particular class), the generated sparse codes (vectors) for both training and
query data can be fed to Euclidean-based classifiers like support vector machines [36]
for classification. Inspired by the Sparse Representation Classifier (SRC) [46], when
the atoms in sparse dictionary D are labeled, the generated codes of the query sample
can be directly used for classification. In doing so, let

yc =

⎛
⎜⎜⎜⎝

y0δ
(
l0 − c

)
y1δ

(
l1 − c

)
...

yNδ
(
lN − c

)

⎞
⎟⎟⎟⎠

be the class-specific sparse codes, where lj is the class label of atom G (p, d) � Dj =
span(Dj) and δ(x) is the discrete Dirac function. An efficient way of utilizing class-
specific sparse codes is through computing residual errors. In this case, the residual
error of query sample G (p, d) � X = span(X) for class c is defined as:

εc(X) =
∥∥∥X̂ −

N∑
j=1

yjD̂jδ
(
lj − c

)∥∥∥2

F
. (6.16)

Alternatively, the similarity between query sample X to class c can be defined as
s(X , c) = h(yc). The function h(·) could be a linear function like

∑N
j=1 (·) or even a

162 M. Harandi et al.

nonlinear one like max (·). Preliminary experiments suggest that Eq. (6.16) leads to
higher classification accuracies when compared to the aforementioned alternatives.

6.4.2 Dictionary Learning

Given a finite set of observationsX = {Xi}mi=1 , G (p, d) � Xi = span(Xi), the prob-
lem of dictionary learning on Grassmann manifolds is defined as minimizing the
following cost function:

h(D) �
m∑
i=1

�G (Xi,D), (6.17)

with D = {
Dj
}N
j=1 , G (p, d) � Dj = span(Dj) being a dictionary of size N . Here,

�G (X ,D) is a loss function and should be small if D is “good” at representing X .
In the following text, we elaborate on how a Grassmann dictionary can be learned.

Aiming for sparsity, the �1-norm regularization is usually employed to obtain the
most common form of lG (X ,D) as depicted in Eq. (6.13). With this choice, the
problem of dictionary learning on Grassmann manifolds can be written as:

min
{yi}mi=1,D

m∑
i=1

∥∥∥X̂i −
N∑
j=1

yijD̂j

∥∥∥2

F
+ λ

m∑
i=1

‖yi‖1. (6.18)

Due to the non-convexity of (6.18) and inspired by the solutions in Euclidean spaces,
we propose to solve (6.18) by alternating between the two sets of variables, D and
{yi}mi=1. More specifically, minimizing (6.18) over sparse codes y while dictionary D

is fixed is a convex problem. Similarly, minimizing the overall problem over D with
fixed {yi}mi=1 is convex as well.

Therefore, to update dictionary atoms we break the minimization problem into N
sub-minimization problems by independently updating each atom, D̂r , in line with
general practice in dictionary learning [12]. To update D̂r , we write

m∑
i=1

∥∥∥X̂i −
N∑
j=1

yijD̂j

∥∥∥2

F
=

m∑
i=1

∥∥∥
(
X̂i −

∑
j �=r

yijD̂j

)
− yirD̂r

∥∥∥2

F
. (6.19)

All other terms in (6.18) being independent of D̂r , and since ‖D̂r‖2
F = p is fixed,

minimizing this with respect to D̂r is equivalent to minimizing Jr = −2 〈Sr, D̂r 〉
where

Sr =
m∑
i=1

yir
(
X̂i −

∑
j �=r

yijD̂j

)
. (6.20)

6 Dictionary Learning on Grassmann Manifolds 163

(a)

(b)

Fig. 6.2 a Examples of actions performed by a ballerina. b The dominant eigenvectors for four
atoms learned by the proposed Grassmann Dictionary Learning (gDL) method (grayscale images
were used in gDL)

Finally, minimizing Jr = −2 〈Sr, D̂r 〉 is the same as minimizing ‖Sr − D̂r‖ over
D̂r in PG (n, p). The solution to this problem is given by the p-leading eigenvectors
of Sr according to the Lemma 2. Algorithm 3 details the pseudocode for learning a
dictionary on Grassmann manifolds. Figure 6.2 shows examples of a ballet dance.

To perform coding, we have relaxed the idempotent and rank constraints of the
mapping �(·) since matrix addition and subtraction do not preserve these constraints.
However, for dictionary learning, the orthogonality constraint ensures the dictionary
atoms have the required structure.

6.5 Kernel Coding

In this section, we propose to perform coding and dictionary learning in a repro-
ducing Kernel Hilbert space (RKHS). This has the twofold advantage of yielding
simple solutions to several popular coding techniques and of resulting in a poten-
tially better representation than standard coding techniques due to the nonlinearity
of the approach. Before formulating our kernel solutions, we need to make sure that
positive definite kernels on Grassmann manifolds are at our disposal. Formally,

Definition 3 (Real-valued Positive Definite Kernels) Let X be a nonempty set. A
symmetric function k : X × X → R is a positive definite (pd) kernel on X if and
only if

∑n
i,j=1 cicjk(xi, xj) ≥ 0 for any n ∈ N, xi ∈ X and ci ∈ R.

Definition 4 (Grassmannian Kernel) A function k : G (p, d) × G (p, d) → R is a
Grassmannian kernel, if it is well defined and pd. In our context, a function is well
defined if it is invariant to the choice of basis, i.e, k(XR1,YR2) = k(X,Y), for all
X,Y ∈ G (p, d) and R1,R2 ∈ SO(p), where SO(p) denotes the special orthogonal
group.

164 M. Harandi et al.

Algorithm 3: Grassmann Dictionary Learning (gDL)
Input: training set X= {Xi}mi=1, where each G (p, d) � Xi = span(Xi); nIter: number of

iterations
Output: Grassmann dictionary D = {Di}Ni=1, where G (p, d) � Di = span(Di)

Initialization.
Initialize the dictionary D by selecting N samples from X randomly

Processing.
for t = 1 to nIter do

// Sparse Coding Step using Algorithm 2
for i = 1 to m do

yi ← min
y

∥∥∥X̂i −
N∑
j=1

[y]jD̂j

∥∥∥2

F
+ λ‖y‖1

end
// Dictionary update step
for r = 1 to N do

Compute Sr according to Eq. (6.20).
{λk, vk} ← eigenvalues and eigenvectors of Sr
Srv = λv; λ1 ≥ λ2 ≥ · · · ≥ λd
D∗
r ← [v1|v2| · · · |vp]

end
end

The most widely used kernel is arguably the Gaussian or radial basis function
(RBF) kernel. It is therefore tempting to define a Radial Basis Grassmannian ker-
nel by replacing the Euclidean distance with the geodesic distance. Unfortunately,
although symmetric and well defined, the function exp(−βd2

geod(·, ·)) is not pd [21].
Nevertheless, two Grassmannian kernels, i.e, the Binet–Cauchy kernel [45] and the
projection kernel [18], have been proposed to embed Grassmann manifolds into
RKHS. In this work, we are only interested in the projection kernels5

kp(X,Y) = ∥∥XTY
∥∥2
F . (6.21)

From the previous discussions, kp, defined in Eq. (6.21) can be seen as a linear
kernel in the space induced by the projection embedding. However, the inner products
defined by the projection embedding can actually be exploited to derive many new
Grassmannian kernels, including universal kernels.

Universal Grassmannian Kernels

Although often used in practice, linear kernels are known not to be universal [38].
This can have a crucial impact on their representation power for a specific task.
Indeed, from the Representer Theorem [35], we have that, for a given set of training
data {xj}, j ∈ Nn, Nn = {1, 2, . . . , n} and a pd kernel k, the function learned by any

5In our experiments, we observed that the projection kernel almost always outperforms the Binet–
Cauchy kernel.

6 Dictionary Learning on Grassmann Manifolds 165

algorithm can be expressed as

f̂ (x∗) =
∑
j∈Nn

cjk(x∗, xj) . (6.22)

Importantly, only universal kernels have the property of being able to approximate
any target function ft arbitrarily well given sufficiently many training samples. There-
fore, kp may not generalize sufficiently well for certain problems. Below, we develop
several universal Grassmannian kernels. To this end, we make use of negative definite
kernels and of their relation to pd ones. Let us first formally define negative definite
kernels.

Definition 5 (Real-valued Negative Definite Kernels) Let X be a nonempty set. A
symmetric function ψ : X × X → R is a negative definite (nd) kernel onX if and
only if

∑n
i,j=1 cicjk(xi, xj) ≤ 0 for any n ∈ N, xi ∈ X and ci ∈ R with

∑n
i=1 ci = 0.

Note that, in contrast to positive definite kernels, an additional constraint of the form∑
ci = 0 is required in the negative definite case. The most important example of

nd kernels is the distance function defined on a Hilbert space. More specifically,

Theorem 2 ([27]) Let X be a nonempty set, H be an inner product space,
and ψ : X → H be a function. Then f : (X × X) → R defined by f (xi, xj) =
‖ψ(xi) − ψ(xj)‖2

H is negative definite.

Therefore, being distances in Hilbert spaces, d2
chord is a nd kernel. We now state

an important theorem which establishes the relation between pd and nd kernels.

Theorem 3 (Theorem 2.3 in Chap. 3 of [6]) Let μ be a probability measure on the
half line R+ and 0 <

∫∞
0 tdμ(t) < ∞. Let Lμ be the Laplace transform of μ, i.e,

Lμ(s) = ∫∞
0 e−tsdμ(t), s ∈ C+. Then, Lμ(βf) is positive definite for all β > 0 if

and only if f : X × X → R+ is negative definite.

The problem of designing a pd kernel on the Grassmannian can now be cast as
that of finding an appropriate probability measure μ. Below, we show that this lets
us reformulate popular kernels in Euclidean space as Grassmannian kernels.

RBF Kernels.

Grassmannian RBF kernels can be obtained by choosing μ(t) = δ(t − 1) in
Theorem 3, where δ(t) is the Dirac delta function. This choice yields the Grass-
mannian RBF kernels (after discarding scalar constants)

kr,p(X,Y) = exp
(
β
∥∥XTY

∥∥2
F

)
, β > 0 . (6.23)

166 M. Harandi et al.

Table 6.1 The proposed Grassmannian kernels and their properties

Kernel Equation Properties

Linear kp(X,Y) = ∥∥XTY
∥∥2
F pd

RBF kr,p(X,Y) = exp
(
β
∥∥XTY

∥∥2
F

)
, β > 0 pd, universal

Laplace kl,p(X,Y) = exp

(
− β

√
p − ∥∥XTY

∥∥2
F

)
, β > 0 pd, universal

Laplace Kernels.

The Laplace kernel is another widely used Euclidean kernel, defined as k(x, y) =
exp(−β‖x − y‖). To obtain heat kernels on the Grassmannian, we make use of the
following theorem for nd kernels.

Theorem 4 (Corollary 2.10 in Chap. 3 of [6]) If ψ : X × X → R is negative
definite and satisfies ψ(x, x) � 0 then so is ψα for 0 < α < 1.

As a result dchord(·, ·) is nd by choosing α = 1/2 in Theorem 4. By employing
d2

chord(·, ·) along with μ(t) = δ(t − 1) in Theorem 3, we obtain the Grassmannian
heat kernels

kl,p(X,Y) = exp

(
− β

√
p − ∥∥XTY

∥∥2
F

)
, β > 0 . (6.24)

As shown in [38], the RBF and heat kernels are universal for R
d, d > 0. The

kernels described above are summarized in Table 6.1. Note that many other kernels
can be derived by, e.g, exploiting different measures in Theorem 3. However, the
kernels derived here correspond to the most popular ones in Euclidean space, and
we therefore leave the study of additional kernels as future work.

6.5.1 Kernel-Based Riemannian Coding

Let φ : M → H be a mapping to an RKHS induced by the kernel k(x, y) =
φ(x)Tφ(y). Sparse coding in H can then be formulated by rewriting (6.1) as

�φ(x,D) �min
y

∥∥∥φ(x) −
∑N

j=1
[y]jφ

(
dj)

∥∥∥2

2
+ λ‖y‖1. (6.25)

Expanding the reconstruction term in (6.25) yields

6 Dictionary Learning on Grassmann Manifolds 167

∥∥∥φ(x) −
∑N

j=1
[y]jφ(dj)

∥∥∥2

2
= φ(x)Tφ(x)

− 2
∑N

j=1
[y]jφ(dj)

Tφ(x) +
∑N

i,j=1
[y]i[y]jφ(di)

Tφ(dj)

= k(x, x) − 2yTk(x,D) + yTK(D,D)y, (6.26)

where k(x,D) ∈ R
N is the kernel vector evaluated between x and the dictionary

atoms, and K(D,D) ∈ R
N×N is the kernel matrix evaluated between the dictionary

atoms.
This shows that the reconstruction term in (6.25) can be kernelized. More impor-

tantly, after kernelization, this term remains quadratic, convex, and similar to its
counterpart in Euclidean space. To derive an efficient solution to kernel sparse cod-
ing, we introduce the following theorem.

Theorem 5 ([19]) Consider the least-squares problem in an RKHS H

min
y

∥∥∥φ(x) −
∑N

j=1
[y]jφ(dj)

∥∥∥2

2
⇔

min
y

yTK(D,D)y − 2yTk(x,D) + f (x) , (6.27)

where f (x) is a constant function (i.e, independent of α). Let U
UT be the SVD
of the symmetric positive definite matrix K(D,D). Then (6.27) is equivalent to the
least-squares problem in R

N

min
α

∥∥x̃ − D̃y
∥∥2

2 , (6.28)

with D̃ =
1/2UT and x̃ =
−1/2UTk(x,D).

This theorem lets us write kernel sparse coding as

min
y

∥∥x̃ − D̃y
∥∥2

2 + λ‖y‖1 , (6.29)

which is a standard linear sparse coding problem. Algorithm 4 provides the
pseudocode for performing kernel Sparse Coding (kSC).

6.5.2 Kernel Dictionary Learning

To obtain a dictionary inH , we follow an alternating optimization strategy to update
the codes and the dictionary. Since obtaining the codes with a given dictionary was
discussed in the previous part, here we focus on the dictionary update.

168 M. Harandi et al.

Algorithm 4: Kernel sparse coding (kSC).

Input: Dictionary D = {di}Ni=1, di ∈ M ; the query x ∈ M , a positive definite kernel
k : M × M → R.

Output: The sparse codes y∗

Initialization.
for i, j ← 1 to N do

[K(D,D)]i,j ← k(di, dj)
end
K(D,D) = U
UT /* apply SVD */

A ←
1/2UT

Processing.
for i ← 1 to N do

[k(x,D)]i ← k(x, di)
end
x∗ ←
−1/2UTk(x,D)

y∗ ← arg min
y

‖x∗ − Ay‖2 + λ‖y‖1

Algorithm 5: Learning a generic dictionary.

Input: Training data {xi}Mi=1, xi ∈ M ; kernel function k(·, ·) : M × M → R; size of
dictionary N .

Output: Dictionary φ(D) in the RKHS H described as φ(X)V

Processing.
/* Initialize φ(D) either randomly or through kernel

k-means algorithm. */
for iter ← 1 to nIter do

Compute kernel codes yi, i ∈ [1, . . . ,M] using Algorithm 4.
/* fix kernel codes yi and update dictionary. */

φ(D) = φ(X)A†

K(D,D) ← (A†)TK(X ,X)A†

k(xi,D) ← (A†)T k(xi,X)
end

With fixed codes for the training data (and a fixed kernel parameter), learning the
dictionary can be expressed as solving the optimization problem

min
D

1

M

∑M

i=1
�φ(D; xi). (6.30)

Here, we make use of the Representer theorem [35] which enables us to express the
dictionary as a linear combination of the training samples in RKHS. That is

φ(dj) =
M∑
i=1

vi,jφ(xi), (6.31)

6 Dictionary Learning on Grassmann Manifolds 169

where {vi,j} is the set of weights, now corresponding to our new unknowns. By
stacking these weights for the M samples and the N dictionary elements in a matrix
VM×N , we have

φ(D) = φ(X)V . (6.32)

The only term that depends on the dictionary is the reconstruction error (i.e, the
first term in the objective of (6.25)). Given the matrix of sparse codes AN×M =
[y1|y2| · · · |yM], this term can be expressed as

R(V) = ∥∥φ(X) − φ(X)VA
∥∥2
F (6.33)

= Tr
(
φ(X)(IM − VA)(IM − VA)Tφ(X)T

)
= Tr

(
K(X ,X)(IM − VA − ATVT + VAATVT)

)
.

The new dictionary, fully defined by V , can then be obtained by zeroing out the
gradient of R(V) w.r.t. V . This yields

∇R(V) = 0 ⇔ V = (AAT)−1A = A† . (6.34)

6.6 Experiments

To compare and contrast the proposed techniques against state-of-the-art methods, we
used the Ballet dataset [44] to classify actions from videos. The Ballet dataset contains
44 videos collected from an instructional ballet DVD [44]. The dataset consists of
eight complex motion patterns performed by three subjects, The actions include:
‘left-to-right hand opening’, ‘right-to-left hand opening’, ‘standing hand opening’,
‘leg swinging’, ‘jumping’, ‘turning’, ‘hopping’, and ‘standing still’. Figure 6.3 shows
examples. The dataset is challenging due to the significant intra-class variations in
terms of speed, spatial and temporal scale, clothing, and movement.

We extracted 2200 image sets by grouping 6 frames that exhibited the same
action into one image set. We described each image set by a subspace of order 6 with
histogram of oriented gradients (HOG) as frame descriptor [10] using SVD. To this

Fig. 6.3 Examples from the Ballet dataset [44]

170 M. Harandi et al.

Table 6.2 Average recognition rate on the Ballet dataset.

Method gSC kSC-RBF kSC-Laplace kSC-Poly

Accuracy 64.5 69.7 67.9 68.5

end, frame were first resized to 128 × 128 and HoG descriptor from four 64 × 64
nonoverlapping blocks were extracted. The HoG descriptors were concatenated to
form the 124 dimensional frame descriptor.

Extracted subspaces were randomly split into training and testing sets (the number
of image sets in both sets was even). The process of random splitting was repeated
ten times and the average classification accuracy is reported.

Table 6.2 reports the average accuracies along their standard deviations for the
studied methods. All the results were obtained by training a dictionary of size 128.
To classify the sparse codes, we used a linear SVM. For the kSC algorithm, we used
three different kernels, namely RBF, Laplace and a polynomial kernel of degree 2 as
described in Sect. 6.5.

The highest accuracy is obtained by the universal RBF kernel. Interestingly, the
polynomial kernel performs better than the Laplace kernel. All the kernel methods
outperform the gSC algorithm, implying that the data is highly nonlinear.

References

1. P.A. Absil, R. Mahony, R. Sepulchre,Optimization Algorithms onMatrix Manifolds (Princeton
University Press, Princeton, 2008)

2. M. Aharon, M. Elad, A. Bruckstein, K-SVD: an algorithm for designing overcomplete dictio-
naries for sparse representation. IEEE Trans. Signal Process. 54(11), 4311–4322 (2006)

3. V. Arsigny, P. Fillard, X. Pennec, N. Ayache, Log-Euclidean metrics for fast and simple calculus
on diffusion tensors. Magn. Reson. Med. 56(2), 411–421 (2006)

4. R. Basri, D.W. Jacobs, Lambertian reflectance and linear subspaces. IEEE Trans. Pattern Anal.
Mach. Intell. 25(2), 218–233 (2003)

5. E. Begelfor, M. Werman, Affine invariance revisited, in Proceedings of the IEEE Conference
on Computer Vision and Pattern Recognition (CVPR) (2006), pp. 2087–2094

6. C. Berg, J.P.R. Christensen, P. Ressel, Harmonic Analysis on Semigroups (Springer, New York,
1984)

7. E.J. Candès, J. Romberg, T. Tao, Robust uncertainty principles: exact signal reconstruction from
highly incomplete frequency information. IEEE Trans. Inf. Theory 52(2), 489–509 (2006)

8. H.E. Cetingul, M.J. Wright, P.M. Thompson, R. Vidal, Segmentation of high angular resolution
diffusion MRI using sparse Riemannian manifold clustering. IEEE Trans. Med. Imaging 33(2),
301–317 (2014)

9. S. Chen, C. Sanderson, M. Harandi, B.C. Lovell, Improved image set classification via joint
sparse approximated nearest subspaces, in Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition (CVPR) (2013), pp. 452–459

10. N. Dalal, B. Triggs, Histograms of oriented gradients for human detection, inProceedings of the
IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2005), pp. 886–893

11. D.L. Donoho, Compressed sensing. IEEE Trans. Inf. Theory 52(4), 1289–1306 (2006)

6 Dictionary Learning on Grassmann Manifolds 171

12. M. Elad, Sparse and Redundant Representations - From Theory to Applications in Signal and
Image Processing (Springer, New York, 2010)

13. E. Elhamifar, R. Vidal, Sparse subspace clustering: algorithm, theory, and applications. IEEE
Trans. Pattern Anal. Mach. Intell. 35(11), 2765–2781 (2013)

14. M. Faraki, M. Harandi, F. Porikli, More about VLAD: a leap from Euclidean to Riemannian
manifolds, inProceedings of the IEEEConference onComputer Vision andPatternRecognition
(CVPR) (2015), pp. 4951–4960

15. K.A. Gallivan, A. Srivastava, X. Liu, P. Van Dooren, Efficient algorithms for inferences on
Grassmann manifolds, in IEEE Workshop on Statistical Signal Processing (2003), pp. 315–
318

16. B. Gong, Y. Shi, F. Sha, K. Grauman, Geodesic flow kernel for unsupervised domain adaptation,
in Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR)
(2012), pp. 2066–2073

17. R. Gopalan, R. Li, R. Chellappa, Unsupervised adaptation across domain shifts by generating
intermediate data representations. IEEE Trans. Pattern Anal. Mach. Intell. 36(11), 2288–2302
(2014). doi:10.1109/TPAMI.2013.249

18. J. Hamm, D.D. Lee, Grassmann discriminant analysis: a unifying view on subspace-based
learning, in Proceedings of the International Conference onMachine Learning (ICML) (2008),
pp. 376–383

19. M. Harandi, M. Salzmann, Riemannian coding and dictionary learning: kernels to the rescue,
in Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR)
(2015), pp. 3926–3935

20. M. Harandi, R. Hartley, C. Shen, B. Lovell, C. Sanderson, Extrinsic methods for coding and
dictionary learning on Grassmann manifolds. Int. J. Comput. Vis. 114(2–3), 113–136 (2015)

21. M.T. Harandi, M. Salzmann, S. Jayasumana, R. Hartley, H. Li, Expanding the family of Grass-
mannian kernels: an embedding perspective, in Proceedings of the European Conference on
Computer Vision (ECCV), vol. 8695, Lecture Notes in Computer Science, ed. by D. Fleet, T.
Pajdla, B. Schiele, T. Tuytelaars (Springer International Publishing, Cham, 2014), pp. 408–423.
doi:10.1007/978-3-319-10584-0_27

22. M.T. Harandi, R. Hartley, B.C. Lovell, C. Sanderson, Sparse coding on symmetric positive def-
inite manifolds using Bregman divergences. IEEE Trans. Neural Netw. Learn. Syst. (TNNLS)
PP(99), 1–1 (2015)

23. R. Hartley, J. Trumpf, Y. Dai, H. Li, Rotation averaging. Int. J. Comput. Vis. 103(3), 267–305
(2013)

24. U. Helmke, K. Hper, J. Trumpf, Newton’s method on Gramann manifolds (2007)
25. U. Helmke, K. Hüper, P.Y. Lee, J.B. Moore, Essential matrix estimation using Gauss-Newton

iterations on a manifold. Int. J. Comput. Vis. 74(2), 117–136 (2007). doi:10.1007/s11263-006-
0005-0

26. J. Ho, Y. Xie, B. Vemuri, On a nonlinear generalization of sparse coding and dictionary learning,
inProceedings of the InternationalConference onMachine Learning (ICML) (2013), pp. 1480–
1488

27. S. Jayasumana, R. Hartley, M. Salzmann, H. Li, M. Harandi, Kernel methods on Riemannian
manifolds with Gaussian RBF kernels. IEEE Trans. Pattern Anal. Mach. Intell. 37(12), 2464–
2477 (2015). doi:10.1109/TPAMI.2015.2414422

28. H. Karcher, Riemannian center of mass and mollifier smoothing. Commun. Pure Appl. Math.
30(5), 509–541 (1977)

29. J.M. Lee, Introduction to Smooth Manifolds, vol. 218 (Springer, New York, 2012)
30. J. Mairal, F. Bach, J. Ponce, G. Sapiro, A. Zisserman, Discriminative learned dictionaries for

local image analysis, in Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition (CVPR) (IEEE, 2008), pp. 1–8

31. J. Mairal, M. Elad, G. Sapiro, Sparse representation for color image restoration. IEEE Trans.
Image Process. (TIP) 17(1), 53–69 (2008)

32. J.H. Manton, A globally convergent numerical algorithm for computing the centre of mass on
compact lie groups. Int. Conf. Control Autom. Robot. Vis. 3, 2211–2216 (2004)

http://dx.doi.org/10.1109/TPAMI.2013.249
http://dx.doi.org/10.1007/978-3-319-10584-0_27
http://dx.doi.org/10.1007/s11263-006-0005-0
http://dx.doi.org/10.1007/s11263-006-0005-0
http://dx.doi.org/10.1109/TPAMI.2015.2414422

172 M. Harandi et al.

33. B.A. Olshausen, D.J. Field, Emergence of simple-cell receptive field properties by learning a
sparse code for natural images. Nature 381(6583), 607–609 (1996)

34. R. Ramamoorthi, Analytic PCA construction for theoretical analysis of lighting variability in
images of a Lambertian object. IEEE Trans. Pattern Anal. Mach. Intell. 24(10), 1322–1333
(2002)

35. B. Schölkopf, R. Herbrich, A.J. Smola, A generalized representer theorem, Computational
Learning Theory (Springer, New York, 2001), pp. 416–426

36. J. Shawe-Taylor, N. Cristianini, Kernel Methods for Pattern Analysis (Cambridge University
Press, Cambridge, 2004)

37. S. Shirazi, M. Harandi, B. Lovell, C. Sanderson, Object tracking via non-Euclidean geometry: a
Grassmann approach, in IEEEWinter Conference on Applications of Computer Vision (WACV)
(2014), pp. 901–908. doi:10.1109/WACV.2014.6836008

38. I. Steinwart, A. Christmann, Support Vector Machines (Springer, Berlin, 2008)
39. R. Subbarao, P. Meer, Nonlinear mean shift over Riemannian manifolds. Int. J. Comput. Vis.

84(1), 1–20 (2009)
40. R. Tibshirani, Regression shrinkage and selection via the lasso. J. R. Stat. Soc. Ser. B

(Methodol.) 58, 267–288 (1996)
41. P. Turaga, A. Veeraraghavan, A. Srivastava, R. Chellappa, Statistical computations on Grass-

mann and Stiefel manifolds for image and video-based recognition. IEEE Trans. Pattern Anal.
Mach. Intell. 33(11), 2273–2286 (2011)

42. R. Vemulapalli, J.K. Pillai, R. Chellappa, Kernel learning for extrinsic classification of manifold
features, in Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition
(CVPR) (2013), pp. 1782–1789

43. J. Wang, J. Yang, K. Yu, F. Lv, T. Huang, Y. Gong, Locality-constrained linear coding for
image classification, in Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition (CVPR) (2010), pp. 3360–3367

44. Y. Wang, G. Mori, Human action recognition by semilatent topic models. IEEE Trans. Pattern
Anal. Mach. Intell. 31(10), 1762–1774 (2009)

45. L. Wolf, A. Shashua, Learning over sets using kernel principal angles. J. Mach. Learn. Res. 4,
913–931 (2003)

46. J. Wright, A.Y. Yang, A. Ganesh, S.S. Sastry, Y. Ma, Robust face recognition via sparse repre-
sentation. IEEE Trans. Pattern Anal. Mach. Intell. 31(2), 210–227 (2009)

47. J. Wright, Y. Ma, J. Mairal, G. Sapiro, T.S. Huang, S. Yan, Sparse representation for computer
vision and pattern recognition. Proc. IEEE 98(6), 1031–1044 (2010)

48. J. Yang, K. Yu, Y. Gong, T. Huang, Linear spatial pyramid matching using sparse coding for
image classification, in Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition (CVPR) (2009), pp. 1794–1801

http://dx.doi.org/10.1109/WACV.2014.6836008

Chapter 7
Regression on Lie Groups and Its
Application to Affine Motion Tracking

Fatih Porikli

Abstract In this chapter, we present how to learn regression models on Lie groups
and apply our formulation to visual object tracking tasks. Many transformations used
in computer vision, for example orthogonal group and rotations, have matrix Lie
group structure. Unlike conventional methods that proceed by directly linearizing
these transformations, thus, making an implicit Euclidean space assumption, we
formulate a regression model on the corresponding Lie algebra that minimizes a first
order approximation to the geodesic error. We demonstrate our method on affine
motions, however, it generalizes to any matrix Lie group transformations.

7.1 Introduction

Suppose we are given with a set of pairs {(Mi, fi)} where Mi’s are on an n-dimensional
Lie group G and fi’s are their associated field vectors in R

d . Our goal is to derive
a regression function β : Rd �→ G that approximates the corresponding point M on
the Lie group for a vector f

M = β(f). (7.1)

We take advantage of the Lie algebra g and solve the corresponding linear regression
problem instead

log M = f TΩ. (7.2)

After a brief overview of Lie groups in Sect. 7.2, we define an approximate solution
of (7.1) for matrix Lie groups in Sect. 7.3, and apply it to 2D affine motion tracking
in Sect. 7.4. Part of the discussion can also be found in [24, 30].

F. Porikli (B)
Australian National Univeristy, Canberra, Australia
e-mail: fatih.porikli@anu.edu.au

F. Porikli
Data61/CSIRO, Eveleigh, Australia

© Springer International Publishing Switzerland 2016
H.Q. Minh and V. Murino (eds.), Algorithmic Advances in Riemannian
Geometry and Applications, Advances in Computer Vision
and Pattern Recognition, DOI 10.1007/978-3-319-45026-1_7

173

174 F. Porikli

7.2 Lie Group

A Lie group is a set G that is a group with the topology of an n-dimensional smooth
differentiable manifold, in which the group operations multiplication G × G �→ G :
(X, Y) �→ XY and inversion G �→ G : X �→ X−1 are smooth maps. In other words,
the mapping (X, Y) �→ X−1Y is a smooth mapping of the product manifold G × G
into G.

Some simple examples of Lie groups are the non-zero real numbers, the circle,
the torus, the set of rotations of 3-dimensional space, the 3-sphere, and the set of
square matrices that have nonzero determinant. Consider the sphere S2 ⊂ R

3 under
rotations. The group property means that any two consecutive rotations of the sphere
can also be done by rotating it over a single angle, and any rotation has an inverse,
i.e. rotating the sphere over an opposite angle. This shows the sphere has rotational
symmetries. Since these rotations can be arbitrarily small and many small rotations
adds up for a big rotation, these operations are smooth maps (it is indistinguishable
from ordinary Euclidean space at small scales), therefore the rotation group SO(3)

acting on S2 is a Lie group. This can be observed for the set of square matrices that
have non-zero determinant. Such a matrix corresponds to a transformation of the
space. The set of such transformations for a group: the matrices can be multiplied,
each has an inverse, the multiplication is associative, and the identity transformation
fixes each point of space. From these examples, we abstract the concept of a Lie
group as a set of transformations or symmetries that has the structure of a smooth
manifold, i.e. continuous symmetries.

Any Lie group gives rise to a Lie algebra. There is a corresponding connected Lie
group unique up to covering to any finite-dimensional Lie algebra over real numbers.
This correspondence between Lie groups and Lie algebras allows one to study Lie
groups in terms of Lie algebras then transfer results from algebras back to groups. The
tangent space to the identity element I of the group forms a Lie algebra g, which is a
vector space together with a non-associative multiplication called Lie bracket [x, y].
Lie bracket is a binary operator over g × g �→ g defined as [x, y] := xy − yx and
satisfies the bilinearity, alternativity, and Jacobi identity axioms, i.e. [ax + by, z] =
a[x, z] + b[y, z], [x, x] = 0, [x, [y, z]] + [z, [x, y]] + [y, [z, x]] = 0 for all scalars
a, b and all elements x, y, z ∈ g. We can reinterpret most of the properties of a Lie
group into properties of the bracket on the Lie algebra.

The distances on a manifold are measured by the lengths of the curves connecting
the points, and the minimum length curve between two points is called the geodesic.
There exists a unique geodesic starting with vector m ∈ g at the group element I.
The exponential map exp : g → G maps the vector m to the point reached by this
geodesic. Let exp(m) = M, then the length of the geodesic is given by ρ(I, M) =
‖m‖. In general, the exponential map is onto but not one-to-one. Therefore, the
inverse mapping log : G → g is uniquely defined only around the neighborhood of
I. If for any M ∈ G, there exist several m ∈ g such that M = exp(m), then log(M) is
selected as the vector with the smallest norm. Left multiplication by the inverse of a
group element M−1 : G → G gives way to map the point M to I. The tangent space

7 Regression on Lie Groups … 175

at I is the Lie algebra. The action of M−1 on the tangent space is through the adjoint
action map. See [22] for more explanation.

Using the logarithm map and the group operation, the geodesic distance between
two group elements is measured by

ρ(M1, M2) = ‖ log(M−1
1 M2)‖. (7.3)

The norm above for the Euclidean space R
d with ordinary vector addition as the

group operation is the Euclidean norm. How basis elements in the Lie algebra map
to natural basis elements inRd is not unique, which amounts to a choice of weighting,
as explained in [7].

The exponential and logarithm maps for matrix Lie groups are given by the matrix
exponential and logarithm operators

exp(m) =
∞∑
k=0

1

k!mk , log(M) =
∞∑
k=1

(−1)k−1

k
(M − I)k . (7.4)

A comprehensive discussion on matrix manifolds and higher-order optimization
methods on manifolds can be found in [17].

7.3 Linear Regression on Matrix Lie Groups

The regression function β : Rd �→ G estimates the element M on the matrix Lie
group G for a given d-dimensional feature vector f as M = β(f). This concepts is
illustrated in Fig. 7.1.

The parameters of the regression function are learned from a set of N training
pairs {(Mi, fi)}. Since these matrices are on a differentiable manifold, the sum of the

Fig. 7.1 Conceptual illustration of linear regression on Lie group

176 F. Porikli

squared geodesic distances between the estimations β(fi) and the given matrices Mi

can be used as the loss function

L =
N∑
i=1

ρ2 (β(fi), Mi) . (7.5)

In general, the exponential map does not satisfy the identity exp(m1) exp(m2) =
exp(m1 + m2). The Baker–Campbell–Hausdorff (BCH) formula [21] expresses the
logarithm log(exp(M1) exp(M2)) of the product of two Lie group elements as a Lie
algebra element using only Lie algebraic operations for noncommutative Lie groups.
A first order approximation to the BCH is

log(exp(M1) exp(M2)) = M1 + M2 + 1

2
[M1, M2] + O(M2

1, M2
2) (7.6)

using the Lie bracelet operator. Since the corresponding Lie algebra elements for
M1 and M2 are m1 = log(M1) and m2 = log(M2), the geodesic distance can be
approximated by

ρ(M1, M2) = ‖ log(M−1
1 M2)‖

= ∥∥log
[
exp(−m1) exp(m2)

]∥∥
= ∥∥m2 − m1 + 0.5[−m1, m2] + O(m2

1, m2
2)

∥∥
≈ ‖m2 − m1‖ . (7.7)

Using (7.7), the loss function (7.5) can be approximated as

L ≈
N∑
i=1

∥∥log (Mi) − log
(
β(fi)

)∥∥2
. (7.8)

up to the first-order terms. The approximation is good enough as long as the training
samples are in a small neighborhood of the identity.

To formulate the the loss function in terms of a linear regression in a vector space,
a matrix Ω : Rd �→ R

n that estimates the tangent vectors log (Mi) on Lie algebra is
defined

β(f) = exp
(
f TΩ

)
(7.9)

where Ω is a d × n matrix of linear regression coefficients. Selecting d orthonormal
bases on the Lie algebra, the matrix norm can be computed as the Euclidean distance
between two vectors.

By taking the advantage of the Lie algebra, the tangent vectors at the identity
log (Mi) can be rearranged from matrix to n-dimensional vector form. Let X be a
N × d matrix of row-wise arranged feature vectors, and Y be the corresponding
N × n matrix of vector form mappings of the tangent vectors

7 Regression on Lie Groups … 177

X =
⎡
⎢⎣
f1
...

fN

⎤
⎥⎦ Y =

⎡
⎢⎣

log (M1)
...

log (MN)

⎤
⎥⎦ . (7.10)

Then, the loss function (7.8) can be written as

L ≈ tr
(
(Y − XΩ)T (Y − XΩ)

)
(7.11)

where the trace tr replaces the summation in (7.8). Differentiating the loss function
with respect to Ω , the minimum is achieved at

Ω = (XTX)−1XTY. (7.12)

For rank deficient cases where the number of training samples is smaller than the
dimension of the feature space N < d, the least squares estimate becomes inaccurate
since XTX has determinant zero. To avoid overfitting, a penalty on the magnitude of
the regression coefficients in the loss function is introduced

L ≈ tr
(
(Y − XΩ)T (Y − XΩ)

) + λ‖Ω‖2 (7.13)

which is also known as the ridge regression [11]. The minimizer of the loss function
is given by

Ω = (XTX + λI)−1XTY (7.14)

where I is an d × d identity matrix. The regularization coefficient λ determines the
degree of shrinkage on the regression coefficients.

7.4 Application to Affine Motion Tracking

Locating an image region that undergoes 2D affine transformations is an essential
task for camera motion estimation, pose invariant object recognition, and object
tracking. In addition to challenging problems such as appearance changes, lighting
variations, background clutters, and temporary occlusions, affine motion tracking
confronts with computational issues due to the high dimensionality of the motion
parameter space that induces an intractable number of hypotheses to be tested.

7.4.1 Related Work

Conventional methods often attempt to solve affine motion tracking in a vector space
by state-space estimation [1, 6, 13, 25], template alignment [4, 8, 18] and feature

178 F. Porikli

correspondence [12, 19] approaches. State-space estimators assume affine tracking
as a Markovian process and construct a probability density function of object para-
meters, which is supposed to be a normal distribution in case of Kalman filtering [6].
Due to this assumption, Kalman filters fail to describe multi-modal distributions,
thus, Monte Carlo integration methods such as particle filters [13] are utilized. In
theory, particle filter can track any parametric variation including affine motion. How-
ever, its dependency to random sampling induces degenerate likelihood estimations
especially for the higher dimensional parameter spaces. Moreover, its computational
requirements exponentially grow with the number of the state variables. In template
alignment, the parametrized motion models -often more complex than affine motion-
is estimated using appearance and shape models that are usually fitted by nonlinear
optimization, e.g. iteratively solving for incremental additive updates to the shape
parameters [8] or compositional updates to the warped models [3]. Alternatively,
affine tracking can be formulated as a minimization on a cost function that consists
of the sum of squares differences between the model instance obtained with a lin-
ear transformation and input image. However, rarely the relationship between the
image intensity values and the model variation can be expressed in a linear form. To
accommodate nonlinear transformations, stochastic gradient descent [25], relevance
vector machine [28], Tikhonov regularization [1] are employed. One shortcoming
of these algorithms is that they require computation of partial derivatives, Jacobian,
and Hessian for each iteration, which makes them impractical. Several methods uti-
lize feature point correspondences. Feature point based methods mainly differ in the
type of features and descriptors, e.g. using SIFT [26], SURF [12], a combination
of primitive features like simple differences between intensity values at randomly
chosen locations [19], used for matching the object model to the current frame. The
feature-point based trackers are highly sensitive to the available texture information
on the object.

Tracking in general can also be regarded as a detection and model fitting problem.
A typical tracking-by-detection framework is composed mainly of motion model,
observation model and model updater [23, 27, 29]. Motion model generates a set of
candidates which might contain the target in the current frame based on the estimation
from the previous frame. Observation model judges whether a candidate is the target
based on the features extracted from it. Model updater online updates the observa-
tion model to adapt the change of the object appearance. Conventional models range
from histograms, templates, classifier ensembles, to more intricate appearance mod-
els such as region covariance matrices [20] where the matrix is updated on a manifold.
Model fitting is considered as a classification problem in [2] by training an ensem-
ble of classifiers with object and background pixels and integrating classifiers over
time. More recently, [10] proposed directly predicting the change in object location
between frames by an online structured output support vector machine. This method
uniformly samples the state space to generate positive and negative support vectors.
Such a brute force approach on a larger search window, however, is computationally
intractable.

7 Regression on Lie Groups … 179

7.4.2 Tracking as a Regression Problem on Lie Group

We interpret object tracking task as a supervised learning problem and solve it using a
regression function on the Lie algebra. We focus on 2D region motions that establish a
matrix Lie group structure. The transformations that we are interested (affine motion
Aff(2,R), similarity transform S(2), Euclidean motion SE(2), etc.) are closed sub-
groups of general linear group GL(3,R), which is the group of 3 × 3 nonsingular
square matrices. We develop formulation for 2D affine motion group, however the
tracking method is applicable to any matrix Lie group structured motion transforma-
tion. A two-dimensional affine transformation Aff(2,R) is given by a 3 × 3 matrix
M as

M =
(

θ t
0 1

)
(7.15)

where θ is a nonsingular 2 × 2 rotation matrix and t ∈ R
2 is a translation vector. The

set of all affine transformations forms a matrix Lie group. The structure of affine
matrices in (7.15) is a d = 6 dimensional manifold. The associated Lie algebra is the
set of matrices

m =
(

U v
0 0

)
(7.16)

where, U is a 2 × 2 matrix and v ∈ R
2. The matrix m can be formed into a d = 6

dimensional vector by selecting the entries of U and v as an orthonormal basis.
The set of 2D affine transformations Aff(2,R) do not constitute a vector space,

but rather a manifold that has the structure of a Lie group. Existing methods for
the most part disregard this manifold structure and flatten the topology in a vector
space. Vector forms cannot globally parameterize the intrinsic topology on the man-
ifold in a homogeneous fashion, thus fail to accurately evaluate the distance between
affine motion matrices causing unreliable tracking performance. There are only a
few relevant work for parameter estimation on Lie groups, e.g. [9] for tracking an
affine snake and [5, 15, 24] for tracking a template. However, [5] fails to account
for the noncommutativity of the matrix multiplications thus the estimations are valid
only around the initial transformation. [24] learned the correlation between affine
motions and the observed descriptors using a regression model on Lie algebra. Inher-
ent topology is considered by [15] where a conventional particle filter based tracker
where the state dynamics are defined on a manifold using a log-Euclidean metric.
However, none of these methods incorporate an efficient mechanism to incorporate
object appearance changes.

Our formulation has several advantages. After learning the regression function,
the tracking reduces to evaluating the function at the previous location, therefore it
can be performed very fast. In addition, the framework gives flexibility to use any
region descriptor.

180 F. Porikli

Fig. 7.2 Training samples are generated by applying N affine motions Mi at the object coordinates

Learning Regression Function:

During the initialization of the tracking at frame I0, we generate a training set of N
random affine transformation matrices {Mi} around the identity matrix and compute
their corresponding observed descriptors fi within the initial object region to obtain
the training set samples {fi, Mi}. The process is illustrated in Fig. 7.2.

Specifically, the object coordinates are transformed by multiplying on the right
with M−1

i and the corresponding descriptor fi = f (I0(A
−1
0 .M−1

i)) is computed Using
the initial location of the object A0. The motion matrix A transforms a unit rectangle
at the origin to the affine region enclosing the target object

[xim yim 1]T = A[xob yob 1]T (7.17)

where, the subscripts indicate the object coordinates and image coordinates respec-
tively. The inverse transform A−1 is also an affine motion matrix and transforms the
image coordinates to the object coordinates as illustrated in Fig. 7.3. Notice that, the
transformation A−1

0 moves the object region back to the unit rectangle and the image
in the object coordinates is denoted as I(A−1

0).
The appearance of an object is described with an feature vector. We use only

the pixel values inside the unit rectangle. Since we expect the feature vector to be
an indicator of affine motion, we use a motion sensitive region feature. The target
region is represented with a concatenated set of orientation histograms computed at
a regular grid inside the unit rectangle in object coordinates (see Fig. 7.3). With this,
a d-dimensional vector f

(
I(A−1)

) ∈ R
d is obtained. The unit rectangle is divided

into 6 × 6 = 36 cells and a cell histogram is computed in each of them. Each his-

7 Regression on Lie Groups … 181

Fig. 7.3 The mapping and its inverse, between the object and image coordinates. The gradient
weighted orientation histograms are utilized as region descriptors

togram is quantized at π/4 degrees between 0 and 2π. The size of each histogram
is eight dimensional and the descriptor is d = 288 dimensional. Similar to SIFT
descriptors [16], the contribution of each pixel to the histogram is proportional to its
gradient magnitude. During tracking the peripheral pixels are frequently contami-
nated by the background, hence we leave a 10 % boundary outside the unit rectangle
and construct the descriptor inside the inner rectangle.

After obtaining the training pairs, we form the data matrices as in (7.10) and apply
(7.14) to learn the linear regression function Ω to model the correlation between
the tangent space projection of the affine motion matrices and their corresponding
observed descriptors.

Tracking Region in the Next Frame:

Tracking process estimates the transformation matrix At , given the observations I0...t

up to time t, and the initial location A0. We model the transformations incrementally

At = Mt .At−1 (7.18)

and estimate the increments Mt at each time. The transformation Mt corresponds to
motion of target from time t − 1 to t in the object coordinates. Given the previous
location of the object At−1 and the current image It , we estimate the incremental
motion Mt by the regression function

Mt = exp
(
(f

(
It(A

−1
t−1)

)T
Ω

)
. (7.19)

After learning the regression function Ω , the tracking problem reduces to esti-
mating the motion via (7.19) using current observation It and updating the target
location via (7.18). To better localize the target, at each frame we repeat the motion
estimation using Ω a maximum ofK = 10 times or the estimated incremental motion
Mt becomes equal to identity.

182 F. Porikli

Model Update:

Since objects can undergo appearance changes in time, it is necessary to adapt to
these variations. In our case, we update the regression function Ω .

During tracking, we generate a set of random observations at each frame. The
observations stored for last p = 100 frames constitute the update training set. Let
Xp and Yp be the new training set stored in the matrix form, and Ωp be the previous
model. After each p frames of tracking, we update the coefficients of the regression
function by minimizing the loss

L ≈ tr
(
(Yp − XpΩ)T (Yp − XpΩ

) + λ‖Ω‖2 + γ‖Ω − Ωp‖2.

The error function is similar to (7.13), but another constraint is introduced on the
difference of regression coefficients. The minimum is achieved at

Ω = (XT
pXp + (λ + γ)I)−1(XT

pYp + γΩp) (7.20)

where the parameter γ controls how much change on the regression parameters are
allowed from the last estimation. To take into account the bias terms all the function
estimations are performed using centered data.

A pseudo-code of the tracking algorithm is given in Algorithm 1.

Algorithm 1 Affine motion tracking
Require: Initial location A0, images It , λ, γ, update frequency p, max iteration K
procedure Training(t = 0)

Generate N motion matrices Mi, i = 1 . . .N

Extract features fi = f
(
I0(A

−1
0 .M−1

i)
)

Form X,Y
Learn Ω by Eq. 7.14

procedure Tracking(t > 0)
repeat

Mt = Ωf
(
It(A

−1
t−1)

)
At ← Mt .At−1
k ← k + 1

until Mt = I or k ≤ K
if mod(t, p) = 0 then

Update Ω by Eq. 7.20
t ← t + 1

Experiments:

We compare the Lie algebra based parametrization with the linearization (7.21)
around the identity matrix [8, 14, 28]

M(x0 + δx) ≈ M(x0) + ∂M

∂x
δx (7.21)

7 Regression on Lie Groups … 183

where M(x0) = I, by measuring the estimation errors. We also compare orientation
histograms with the intensity difference features used in optical flow estimation and
tracking.

We generate a training set of N = 200 samples by random affine transformations
of a single object. The motions are generated on the Lie algebra, by giving random
values between −0.2 and 0.2 to each of the six parameters, and mapped to affine
matrices via exponentiation. Since the size of the training set is large enough, there
is no rank deficiency problem. The function Ω is estimated by ridge regression with
λ = 2.10−3 for orientation histograms and λ = 5.0 for intensity features, determined
by cross validation. Each test set consists of NT = 1000 samples. The samples inside
a set have fixed norm. The norms ‖ log(M)‖ vary from 0.025 to 0.35. We perform
a single tracking iteration by each method, and measure the mean squared geodesic
error

1

NT

NT∑
i=1

ρ2 (Ωfi, Mi) (7.22)

between the estimations and the true values.
As shown in Fig. 7.4, the estimation based on the Lie algebra is better than the

linearization for transformation of all norms. The ratio is almost constant and on the
average the linearization have 12 % larger error. This is expected since our approach
minimizes the sum of squared geodesic error. The estimations with orientation his-
tograms are significantly better than the intensity based features.

We show sample tracking examples in Fig. 7.5. In the experiments, the parameters
of the ridge regression were λ = γ = 2.10−3, which were learned offline via cross
validation. The training dataset is generated on the Lie algebra, by giving random
values between −0.1 and 0.1 to each of the six parameters. Although we track the
targets with an affine model, these targets are not planar. Therefore, an affine model
cannot perfectly fit the target but produces the best affine approximation. Since
nonplanar objects undergo significant appearance variations due to pose changes,

Fig. 7.4 Estimation errors
of the Lie algebra and the
linearization methods using
orientation histograms and
intensity features

184 F. Porikli

Fig. 7.5 Sample affine tracking results. Target region boundaries are color-coded

the model update becomes important. The targets have large in-plane and off-plane
rotations, translations, scale changes and occlusions. The estimations are accurate,
which shows the robustness of the tracking approach.

References

1. T. Albrecht, M. Luthi, T. Vetter, A statistical deformation prior for non-rigid image and shape
registration, in Proceedings of the IEEE Conference on Computer Vision and Pattern Recog-
nition (CVPR), 2008

2. S. Avidan. Ensemble tracking, in Proceedings of the IEEE International Conference on Com-
puter Vision and Pattern Recognition (CVPR), 2005

3. S. Baker, I. Matthews, Equivalence and efficiency of image alignment algorithms. Proc. IEEE
Conf. Comput. Vis. Pattern Recogn. Kauai, HI, 1, 1090–1097 (2001)

4. S. Baker, I. Matthews, Lucas-Kanade 20 years on: a unifying framework. Int. J. Comput. Vis.
56(3), 221–255 (2004)

5. E. Bayro-Corrochano, J. Ortegon-Aguilar. Lie algebra template tracking, in Proceedings of the
17th International Conference on Pattern Recognition, vol. 2, pp. 56–59, 2004

6. Y. Boykov, D. Huttenlocher, Adaptive Bayesian recognition in tracking rigid objects (In Pro-
ceedings of the IEEE Conf. on Computer Vision and Pattern Recognition, Hilton Head, SC, II,
2000), pp. 697–704

7. G. Chirikjian, Stochastic Models, Information Theory, and Lie Groups (Birkhauser, Boston,
2011)

8. T. Cootes, G. Edwards, C. Taylor, Active appearance models (In Proc. European Conf. on
Computer Vision, Freiburg, Germany, 1998), pp. 484–498

9. T. Drummond, R. Cipolla, Application of Lie algebras to visual servoing. Int. J. Comp. Vis.
37, 21–41 (2000)

10. S. Hare, A. Saffari, P.H.S. Torr, Struck: Structured output tracking with kernels, in Proceedings
of the IEEE International Conference on Computer Vision (ICCV), 2011

11. T. Hastie, R. Tibshirani, J. Freidman. The Elements of Statistical Learning. (Springer, Berlin,
2001)

7 Regression on Lie Groups … 185

12. W. He, T. Yamashita, H. Lu, S. Lao, SURF tracking, in Proceedings of the International
Conference on Computer Vision (ICCV), 2009

13. M. Isard, I. Blake, Condensation-conditional density propagation for visual tracking. Int. J.
Comp. Vis. 29, 5–28 (1998)

14. F. Jurie, M. Dhome, Hyperplane approximation for template matching. IEEE Trans. Pattern
Anal. Mach. Intell. 24, 996–1000 (2002)

15. J. Kwon, K. M. Lee, F. Park. Visual tracking via geometric particle filtering on the affine group
with optimal importance functions, inProceedings of the IEEEConference onComputer Vision
and Pattern Recognition (CVPR), 2009

16. D. Lowe, Distinctive image features from scale-invariant keypoints. Int. J. Comp. Vis. 60(2),
91–110 (2004)

17. R. Mahony, P.A. Absil, R. Sepulchre. Optimization algorithms on matrix manifolds. (Princeton
University Press, Princeton, 2009)

18. I. Matthews, S. Baker, Active appearance models revisited. Int. J. Comp. Vis. 60, 135–164
(2004)

19. M. Ozuysal, P. Fua, V. Lepetit. Fast keypoint recognition in ten lines of code, in Proceedings
of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2007

20. F. Porikli, O. Tuzel, P. Meer. Covariance tracking using model update based on Lie algebra, in
Proceedings of the IEEE InternationalConference onComputerVision andPatternRecognition
(CVPR), 2006

21. W. Rossmann. Lie Groups: An Introduction Through Linear Groups. (Oxford Press, Oxford,
2002)

22. S.S. Sastry, J. Kosecka, Y. Ma, S. Sastry, An invitation to 3-d vision: from images to geometric
models. (Springer, Berlin, 2003)

23. A.W.M. Smeulders, D.M. Chu, R. Cucchiara, S. Calderara, A. Dehghan, M. Shah. Visual
tracking: an experimental survey. IEEE Trans. Pattern Anal. Mach. Intell. 36(7), 1442–1468
(2014)

24. O. Tuzel, F. Porikli, P. Meer. Learning on Lie groups for invariant detection and tracking, in
Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR),
2008

25. T. Vetter, T. Poggio, Linear object classes and image synthesis from a single example image.
IEEE Trans. Pattern Anal. Machine Intell. 19, 733–742 (1997)

26. D. Wagner, T. Langlotz, D. Schmalstieg. Robust and unobtrusive marker tracking on mobile
phones, in Proceedings of the ACM International Symposium onMixed and Augmented Reality
(ISMAR), 2008

27. N. Wang, S. Li, A. Gupta, and D. Yeung. Transferring rich feature hierarchies for robust visual
tracking. CoRR, 2015

28. O. Williams, A. Blake, R. Cipolla, Sparse Bayesian learning for efficient visual tracking. IEEE
Trans. Pattern Anal. Machine Intell. 27, 1292–1304 (2005)

29. Y. Wu, J. Lim, M.H. Yang. Online object tracking: a benchmark, in Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition (CVPR), 2013

30. G. Zhu, F. Porikli, H. Li. Lie-Struck: affine tracking on Lie groups using structured SVM,
in Proceedings of the IEEE Winter Conference on Applications of Computer Vision (WACV),
2015

Chapter 8
An Elastic Riemannian Framework for Shape
Analysis of Curves and Tree-Like Structures

Adam Duncan, Zhengwu Zhang and Anuj Srivastava

Abstract Shape analysis of complex structures formed by Euclidean curves and
trees are of interest in many scientific domains. The difficulty in this analysis comes
from: (1) Manifold representations of curves and trees, and (2) need for the analy-
sis to be invariant to certain shape-preserving transformations. Additionally, one is
faced with the difficult task of registering points and parts across objects during
shape comparisons. We present a Riemannian framework to solve this problem as
follows: we select an elastic Riemannian metric that is invariant to the action of
re-parameterization group and use a square-root velocity function to transform this
metric into the L

2 norm. Re-parameterization of objects is considered to control
registrations across objects, and an inherited distance on the quotient space of shape
representations modulo shape-preserving transformations forms the shape metric.
The resulting framework is used to compute geodesic paths and sample means, and
to discover modes of variability in sample shapes. We demonstrate these ideas using
some simple examples involving planar shapes and neuron morphology.

8.1 Introduction

Many important scientific endeavors of our time seek to correlate forms with
functionality in biological systems. For instance, one asks, how well does the struc-
ture of an anatomical part or a biomolecule facilitate or predict its role or function-
ality in a biological system? This current era is also characterized by a remarkable
abundance of digital data to be able to potentially hypothesize and validate such

A. Duncan (B) · A. Srivastava
Department of Statistics, Florida State University, Tallahassee, FL, USA
e-mail: a.duncan@stat.fsu.edu

A. Srivastava
e-mail: anuj@stat.fsu.edu

Z. Zhang
SAMSI, Research Triangle Park, Durham, NC, USA
e-mail: zzhang@samsi.info

© Springer International Publishing Switzerland 2016
H.Q. Minh and V. Murino (eds.), Algorithmic Advances in Riemannian
Geometry and Applications, Advances in Computer Vision
and Pattern Recognition, DOI 10.1007/978-3-319-45026-1_8

187

188 A. Duncan et al.

connections. Take, for example, the protein database (PdB) or neuromorpho [1], the
database of neurons, or the human connectome database. These databases represent
tens or even hundreds of thousands of relevant structures that can be analyzed using
formal statistical tools. Consequently, the focus is on data driven research, where
high-dimensional observations of forms and associated functionalities are to be ana-
lyzed jointly. While there is a free availability of data to infer functionality from
structures, the relevant mathematical and statistical tools to discover connections
between forms and functions are severely lacking. This lack of tools forms a bottle-
neck in building broad and ambitious pipelines for validating biological hypotheses.

This chapter will develop computational tools, based on novel mathematical the-
ories, for statistical comparisons of certain complex structures – curves and trees –
that are encountered in different scientific problems. Instances of these structures
include backbones of proteins in protein structure analysis, shape classification of
leaf boundaries for determining species, morphological analysis of neurons for char-
acterizing mutations, shape analysis of skeleton videos for recognition human actions
and activities, and so on. A common thread in these problems is: (1) High level of
complexity and high-dimensionality of the structures of interest. These structures
may differ not only in their geometries and topologies, but also in nuisance variables
such as position, rotation, scale, and parameterization. (2) Tremendous statistical
variability that is exhibited within and across functional classes associated with
these structures. For statistical inferences involving such structures, for instance the
labeling of healthy versus diseased subjects, one needs to develop statistical models
that can efficiently capture the observed variability in those two classes. A direct
consequence of complexity of these structures is that one cannot use tools from tra-
ditional multivariate statistics directly. The representation spaces of these structures
form nonlinear manifolds that are endowed with appropriate Riemannian structures
to in order to define the basic notions of distance, averages, and covariances. The
choice of a metric in a problem is not straightforward either. For instance, the most
commonly used metric in function data analysis, i.e., the Hilbert structure based on
the L

2 norm, is problematic when it comes to analyzing function data under reg-
istration variability (unaligned data). Thus, the task of developing a principled and
a comprehensive framework for statistical analysis and modeling of such complex
structures is a difficult one.

8.1.1 From Discrete to Continuous and Elastic

A large majority of past statistical analyses of shapes uses discrete, point-set represen-
tations, while the more recent trend is to study continuous objects. Since continuous
objects, such as parameterized curves and trajectories, are represented by coordinate
functions, and functional spaces are typically infinite-dimensional, this change intro-
duces an additional complexity of infinite-dimensionality. So, the question arises: Are
we making the problem unnecessarily complicated by going to functional represen-
tations? Let us study the choices more carefully. Say we are given two sets containing

8 An Elastic Riemannian Framework for Shape Analysis … 189

finite number of unregistered points, and our goal is to register them and to compare
their shapes. The problem of registration is a combinatorial one and adds consid-
erable computational complexity to the solution. On the other hand, let us assume
the original objects are parameterized curves: t �→ f1(t), f2(t), for t ∈ [0, 1]. The
interesting part in this approach is the following. For each t , the pair of points, f1(t)
and f2(t) are considered registered. In order to change registration, one simply has to
re-parameterize one of the objects. In other words, find a re-parameterization γ of f2
such that f1(t) is now registered to f2(γ (t)). Thus, we can find optimal registration,
or alignment, of curves by optimizing over the variable γ under a proper objective
function. If this objective function is a metric that is invariant of all shape-preserving
transformations, then we simultaneously achieve a joint solution for registration and
shape comparison. Thus, parameterization controls registration between curves and
an optimal registration can be found using algorithms with complexity much smaller
than those encountered in combinatorial solutions. Similar arguments can be made
for more complex objects such as trees. The optimization over parameterization in
shape analysis of objects, under a metric with proper invariance properties, leads to
a framework called elastic shape analysis.

8.1.2 General Elastic Framework

From here onwards we will focus exclusively on parameterized objects – curves,
trajectories, and trees – and use parameterizations to control registrations. The
re-parameterization set Γ is chosen to be the set of all positive diffeomorphisms
such that γ (0) = 0 and γ (1) = 1. An interesting property of Γ is that it forms a
group action under composition, with the identity element given by the function
γid(t) = t . Therefore, for any two γ1, γ2, the composition γ1 ◦ γ2 is also a valid re-
parameterization, and so is the inverse γ −1 for any γ . The next issue is to decide
the objective function so that the optimal re-parameterization can be found in a vari-
ational framework. A seemingly natural idea of performing alignment is using the
criterion infγ ‖ f1 − f2 ◦ γ ‖, where ‖ · ‖ denotes the L

2 norm, but it turns out to
be problematic. The main issue is that it allows degeneracy, that is, one can reduce
this cost arbitrarily close to zero even when the two functions are quite different.
This is commonly referred to as the pinching problem in the literature [7]. Pinching
implies that a severely distorted γ is used to eliminate (or minimize) those parts of
f2 that do not match with f1; this can be done even when f2 is mostly different
from f1. Another way to state the problem is that one can easily manipulate ‖ f ◦ γ ‖
into a broad range of values, by choosing an appropriate γ . Of course, once can
avoid the pinching problem by imposing a roughness penalty on γ , thus avoiding a
severe distortion of γ s but that leads to other issues including asymmetry. A related
problem from the registration perspective is that ‖ f1 − f2‖ �= ‖ f1 ◦ γ − f2 ◦ γ ‖ in
general. Note that if we warp two functions by the same γ , their registration remains
unchanged but their L2 norm changes. Hence, the L2 norm is not a proper objective
function to help solve the registration problem.

190 A. Duncan et al.

The solution comes from deriving an elastic metric-based objective function that
is better suited for registration and shape analysis. While the discussion of the under-
lying elastic Riemannian metric is complicated, we directly move on to a simplifica-
tion which is based on certain square-root transforms of data objects. Denoted by q,
these objects take different mathematical forms in different contexts, as explained in
later sections. The important mathematical property of these representations is that
‖q1 − q2‖ = ‖(q1, γ) − (q2, γ)‖, for all γ , where each qi represents the object fi ,
and each (qi , γ) represents the warped object (fi ◦ γ). This property allows us to
define a solution for all important problems

inf
γ

‖q1 − (q2, γ)‖. (8.1)

Not only does the optimal γ help register the object f2 to f1, but also the infimum
value of the objective function is a proper metric for shape comparison of the two
objects. (In the case of shape analysis of curves and surfaces one needs to perform
an additional rotation alignment for shape comparisons.) This metric enables statis-
tical analysis of shapes. One can compute mean shapes and the dominant modes of
variations in a shape sample, develop statistical models to capture observed shape
variability, and use these models to perform hypothesis tests. While we focus on
static shapes in this paper, these ideas can also be naturally extended to dynamic
shapes.

In the next few sections we take different examples of this elastic framework in
the contexts of shape analysis of Euclidean curves, curves in infinite-dimensional
Hilbert spaces, and shape analysis of trees with arbitrary number of branches.

8.2 Shape Analysis of Euclidean Curves

Here the objects of interest are curves of the type f : [0, 1] → R
n . (Note that in case

of closed curves it is natural to use S1 as the parameterization domain, rather than an
interval.) The L2 metric is given by 〈 f1, f2〉 = ∫ 1

0 〈 f1(t), f2(t)〉 dt and the resulting

norm ‖ f1 − f2‖ = ∫ 1
0 | f1(t) − f2(t)|2dt , where | · | denotes the vector norm. The

mathematical representation of curves is in form of the square-root velocity function
(SRVF) given by [6, 10]

q(t) = ḟ (t)√
| ḟ (t)|

.

The re-parameterization group here is the set of all positive diffeomorphisms of
[0, 1]. If q is the SRVF of a curve f , then the SRVF of the re-parameterized curve
f ◦ γ is given by (q ◦ γ)

√
γ̇ ; we will denote this by (q, γ).

From the perspective of shape analysis, a re-parameterization of a curve does not
alter its shape. An illustration of different parameterizations of a curve is shown in
Fig. 8.1. The shape of f is exactly same as the shape of f ◦ γ , for any γ . The same

8 An Elastic Riemannian Framework for Shape Analysis … 191

f ◦ γ1 γ1 f ◦ γ2 γ2

Fig. 8.1 An illustration of re-parameterization of a curve on domain D = [0, 2π]

holds for the rigid rotation of a curve. For any O ∈ SO(n), the rotated curve O f (t) has
the same shape as the original curve. This leads to formulation of equivalence classes,
or orbits, of representations that all correspond to the same shape. Let [f] denote
all possible rotations and re-parameterizations of a curve f . The corresponding set
in SRVF representation is given by [q] = {O(q, γ)|O ∈ SO(n), γ ∈ Γ }. Each such
class represents a shape uniquely and shapes are compared by computing a distance
between the corresponding orbits.

As mentioned earlier, the SRVF representation satisfies the property that ‖q‖ =
‖(q, γ)‖, and ‖q1 − q2‖ = ‖(q1, γ) − (q2, γ)‖ for all γ ∈ Γ and all q, q1, q2. Using
this property, the shape distance between any two shapes is given by

d([q1], [q2]) = inf
γ∈Γ,O∈SO(n)

‖q1 − O(q2 ◦ γ)
√

γ̇ ‖. (8.2)

This optimization emphasizes the joint nature of our analysis – on one hand we opti-
mally register points across two curves using re-parameterization and rotation and
other hand we obtain a metric for comparing shapes of the two curves. The optimiza-
tion over SO(n) and Γ is performed using coordinate relaxation – optimizing over
one variable while fixing the other. The optimization over SO(n) uses the Procrustes
method while the optimization over Γ uses the dynamic programming algorithm
(DPA) [10]. In the absence of any other constraints on the curves, a straight line
between q1 and the registered q2, i.e., O∗(q2, γ

∗), with these quantities being the
minimizers in the equation above, forms the desired geodesic. However, if we rescale
the curves to be of unit length or restrict ourselves to only the closed curves, then
the underlying space becomes nonlinear and requires additional techniques for com-
puting geodesics. We have developed a path-straightening for computing geodesics
in the shape space of closed curves under the elastic metric, as described in [10].
Figure 8.2 shows some examples of geodesic paths between several pairs of closed
curves taken from the MPEG7 dataset [4]. One can see that under this joint frame-
work, we deform one shape to another in a natural way – the features are preserved
across shapes and deformations are smooth.

Mean Shape andModes of Variations This framework is amenable to the develop-
ment of tools for statistical analysis of shapes. For example, given a set of observa-
tions of curves, we may want to calculate the sample mean and modes of variations.

192 A. Duncan et al.

Fig. 8.2 Examples of geodesic paths between shapes under the elastic shape metric

Furthermore, we are interested in capturing the variability associated with the shape
samples using probability models. The notion of a sample mean on a nonlinear
manifold is typically defined using the Karcher mean [5]. Let f1, f2, . . . , fn be the
observed sample shapes, and their SRVFs are denoted by q1, q2, . . . , qn , the Karcher
mean is defined as a quantity that satisfies: [μ] = argmin[q]

∑n
i=1 d([q], [qi])2, where

d([q], [qi]) is calculated using Eq. 8.2, and μ is the SRVF representation of the
mean shape f̄ . The search for the optimal mean shape f̄ can be solved using itera-
tive gradient-based algorithm [5, 6, 9]. Figure 8.3 shows some sample mean shapes
calculated using this approach.

In addition to the Karcher mean, the Karcher covariance and modes of variation
can be calculated to summarize the given sample shapes. Since the shape space is
a nonlinear manifold, we use the tangent space at the mean shape μ, which is a

Fig. 8.3 Mean shapes of two different classes of shapes. Each mean shape (shown in magenta
color) is calculated from shapes on its left

8 An Elastic Riemannian Framework for Shape Analysis … 193

Fig. 8.4 Modes of variations: for each class of shapes in mean shape example, we show the variation
along the first and second principle modes. Shape in the center with red color is the mean shape

standard vector space, to perform the statistical analysis. We first map each sample
shape onto the tangent space using inverse exponential map: vi = logμ(qi), then we
define the covariance matrix to be: C = 1

n−1

∑n
i=1 vi v

t
i . Using Principle Component

Analysis (PCA) of C , one can get the modes of shape variation. Let PCk denote the
k-th principal direction, exponential map expμ(tPCksk) shows the shape variation in
PCk principal direction with standard deviation sk . Figure 8.4 shows the modes of
variations for different classes of shapes in Fig. 8.3.

Statistical Shape Models After obtaining the mean and covariance matrix, the fur-
ther step is to develop probability models to capture the distribution of given sample
shapes. It is challenging to directly impose a probability density on the nonlinear
manifold shape space. A common solution is to impose a distribution on the tan-
gent vector space. For example, the tangent space at mean μ can be estimated by a
principal subspace, and each inverse exponential mapped shape in this space can be
expressed as a linear combination of the orthonormal basis obtained from PCA. Then,
we can impose a multivariate Gaussian distribution on the principal subspace with
zero mean and covariance matrix obtained from the sample shapes. Figure 8.5 shows
the examples of random samples using mean and covariance matrices estimated from
shapes shown in Fig. 8.3.

Fig. 8.5 Random samples from the Gaussian shape distribution of different classes of shapes

194 A. Duncan et al.

Traditional shape analysis removes the transformations resulting from rigid
motions and global scaling in shape considerations, while in elastic shape analy-
sis we additionally remove the effects of re-parameterizations. In some situations,
however, there is a need for removing other groups such as the affine and projec-
tive groups. For a discussion on the resulting affine-elastic shape analysis of planar
curves, we refer the reader to the paper [2]. The paper also describes a framework
for projective-invariant shape analysis of planar objects but using point-set represen-
tations rather than continuous curves.

8.3 Shape Analysis of Trajectories in Hilbert Spaces

The framework for comparing Euclidean curves (curves in R
n) can be extended to

compare and analyze trajectories in function spaces, e.g., L2([0, 1],R), in a natural
fashion. Even the computer implementations for Euclidean curves can be adapted to
Hilbert spaces (withL2 norm) with minimal changes. This is because the L2 norm on
the function space, ‖ f ‖2

L2 = ∫ 1
0 f (t)2dt ≈ δ

∑n
i=1 f (ti)2 = δ‖v‖2

Rn , where {ti } is a
uniform partition of [0, 1] with bin size δ and v ∈ R

n is a vector of values { f (ti)}. A
comparison of any two functions under the L2 norm is performed numerically using
the 2-norm of vectors formed by their samples. Thus, in practice, one can treat the
given functions as elements of Rn , for a large n, and use the elastic shape analysis
setup for curves in this space.

8.3.1 Elastic Comparison of Trajectories in L
2([0, 1],R)

Let X : [0, 1] → L
2([0, 1],R) be a trajectory in the space of square-integrable func-

tions. We can also view X : [0, 1] × [0, 1] → R as an indexed family of curves in
R. For each t ∈ [0, 1], the mapping X (t, τ) denotes a curve in R with the parameter
τ ; t forms a continuous indexing of these curves. Define the SRVF of trajectory X
according to

qX (t, τ) =
dX (t,τ)

dt√∥∥∥ dX (t,·)
dt

∥∥∥
L2([0,1],R)

, where

∥∥∥∥dX (t, ·)
dt

∥∥∥∥
L2([0,1],R)

=
√∫ 1

0

∣∣∣∣dX (t, τ)

dt

∣∣∣∣
2

dτ .

We can reconstruct X back from qX (unto a different translation for each t) using

X (t, τ) =
∫ t

0
q(s, τ)‖q(s, ·)‖L2([0,1],R)ds .

8 An Elastic Riemannian Framework for Shape Analysis … 195

Under appropriate smoothness assumptions on the original X , qX is an element of
L

2([0, 1],L2([0, 1],R)). Since they are square-integrable maps, we can extend the
standard L

2 on curve space to measure the differences between these maps

‖qX1 − qX2 ‖2 =
∫ 1

0
‖qX1 (t, ·) − qX2 (t, ·)‖2dt =

∫ 1

0

(∫ 1

0
(qX1 (t, τ) − qX2 (t, τ))2dτ

)
dt .

One can define a geodesic path between any two such SRVFs as a straight line

α : [0, 1] → L
2([0, 1],L2([0, 1],R)), α(s) = (1 − s)qX1 + sqX2 .

In order to perform elastic shape analysis of trajectories in L
2([0, 1],R), define the

action of the re-parameterization group Γ on a trajectory according to (X, γ)(t) =
X (γ (t)) (that is, (X (t, τ), γ (t)) ≡ X (γ (t), τ)). The corresponding action on the
SRVF of X is given by: (qX , γ)(t) = qX (γ (t))

√
γ̇ (t). In order to perform temporal

registration between any two trajectories X1 and X2, we take the associated SRVFs
qX1 and qX2 , and solve the following optimization problem:

inf
γ∈Γ

‖qX1 − (qX2 ◦ γ)
√

γ̇ ‖2 = inf
γ∈Γ

[∫ 1

0

(∫ 1

0
(qX1 (t, τ) − √

γ̇ (t)qX2 (γ (t)), τ)2dτ

)
dt

]
.

(8.3)

The infimum of this objective function provides a distance between the re-parameteri-
zation orbits of qX1 and qX2 , and the geodesic equation mentioned above applies with
qX2 replaced by the optimal element of its orbit.

Figure 8.6 shows an example of this idea. The top left panel shows a path X1 inL2.
For each value of t , we have a unimodal function (as a function of τ) and the location
of peak changes as t changes. We use a time-warping function γ to create a new
path X2 = X1 ◦ γ shown in the bottom left panel. Then, we use the corresponding

1
0.5

00

0.5
t

1.5

1

0.5

0
1

0 0.2 0.4 0.6 0.8 1

t

0

0.2

0.4

0.6

0.8

1

1
0.5

00

0.5
t

4

2

0

-2

-4
1

0 0.5 1
0

0.2

0.4

0.6

0.8

1

X1 (side view) X1 (top view) qX1

1
0.5

00

0.5
t

1.5

1

0.5

0
1

0 0.2 0.4 0.6 0.8 1

t

0

0.2

0.4

0.6

0.8

1

1
0.5

00

0.5
t

5

0

-5
1

X2 (side view) X2 (top view) qX2

∗γ γ,

Fig. 8.6 A simulated example of registration of two trajectories in L
2: here f2 = f1 ◦ γ , a warped

version of f1. The original γ and the estimated γ ∗ are shown in the top right panel

196 A. Duncan et al.

X1 (side view) X1 (top view) qX1

X2 (side view) X2 (top view) qX2

∗γ γ,

Fig. 8.7 Same as Fig. 8.6

SRVFs, shown in the third column, and Eq. 8.3 to perform alignment via DPA. The
estimated optimal γ ∗ is shown in the top right panel, drawn over the original γ . The
high degree of overlap implies a high accuracy in alignment of trajectories. Figure 8.7
shows a similar example in which a bimodal function at t = 0 smoothly turns into a
unimodal function at t = 1.

8.3.2 Elastic Comparison of Trajectories in L
2([0, 1],R)/Γ

Now we consider a situation where we are given trajectories of the type X : [0, 1] →
L

2([0, 1],R)/Γ and our goal is align any two such trajectories. What this means is
that for each t ∈ [0, 1], X (t, ·) ∈ L

2([0, 1],R)/Γ is not just a real-valued function on
[0, 1], it is an elastic function. Additionally, we want to compute geodesics between
them under the elastic framework. In other words, not only we have to match X1(t)
and X2(γ (t)) using a certain γ ∈ Γ , but also we will have to match X1(t, τ) with
X2(t, γt (τ)) using some γt ∈ Γ .

The definition of X and its SRVF qX remains same as above. The only change
is in the metric used and the mechanism for registration of two trajectories. The
norm in the spaceL2([0, 1],R)/Γ is given by ‖ f1 − f2‖2

L2([0,1],R)/Γ
= infγ∈Γ ‖ f1 −√

γ̇ (f2 ◦ γ)‖2, and the corresponding norm between the two SRVFs get modified to

‖qX1 − qX2‖2 =
∫ 1

0
‖qX1(t, ·) − qX2(t, ·)‖2

L2([0,1],R)/Γ dt

=
∫ 1

0
inf
γt∈Γ

(∫ 1

0
(qX1(t, τ) − √

γ̇t (τ)qX2(t, γt (τ)))2dτ

)
dt .

Now, the alignment of trajectories is given by

8 An Elastic Riemannian Framework for Shape Analysis … 197

inf
γ

‖qX1 − (qX2 ◦ γ)
√

γ̇ ‖2 = inf
γ

∫ 1

0
‖qX1 (t, ·) − √

γ̇ qX2 (γ (t), ·)‖2
L2([0,1],R)/Γ

dt

= inf
γ

∫ 1

0
inf

γt∈Γ

(∫ 1

0
(qX1 (t, τ) − √

γ̇ (t)
√

γ̇t (τ)qX2 (γ (t), γt (τ)))2dτ

)
dt .

In Sect. 8.3.1 we noted that a trajectory X : [0, 1] → L
2([0, 1],R) can be alter-

nately notated as a real-valued function on the unit square, X : [0, 1]2 → R. Simi-
larly, the re-parameterizations of trajectories in L

2([0, 1],R)/Γ can be written as a
special class of re-parameterizations of the unit square. Let ξ : [0, 1]2 → [0, 1]2 be
an orientation and boundary-preserving diffeomorphism. We can express ξ in terms
of its two components, ξ(t, τ) = (ξ1(t, τ), ξ2(t, τ)) but for our needs ξ is somewhat
restricted. First, ξ1 is constant with respect to τ for any fixed t and is a function of
t only. In other words, ξ1(t) is a re-parameterization of the interval [0, 1] with t as
the parameter. Second, the second component ξ2 satisfies the following property:
for each t , ξ2(t, τ) is a re-parameterization of [0, 1] with the parameter τ . This ξ

can be written more concisely as ξ(t, τ) = (ξ1(t), ξ2(t, τ)). These two components
correspond to the re-parameterizations mentioned in the last equation ξ1(t) is γ (t),
the trajectory re-parameterization, and ξ2(t, τ) is γt (τ).

For any two trajectories, X1 and X2, and the corresponding SRVFs qX1 and qX2 ,
once the optimal registration ξ has been estimated, the geodesic paths and the geo-
desic distances can be computed rather easily in the corresponding L

2 space between
the registered trajectories.

8.4 Elastic Shape Analysis of Axonal Trees

Now that we have tools for representing and comparing individual curves, both in R
3

andL2([0, 1],R3), we consider problem of comparing shapes of trees. In this section,
we specify a mathematical representation of axonal trees as composite trajectories
and develop a framework for comparing the shapes of these composite trajectories
as described in [3]. Our goal is to develop a metric that can be used to: (1) compare
the geometries of any two axonal trees, i.e., quantify differences in their shapes, (2)
find a geodesic path for morphing one tree into the other, and (3) generate statistical
summaries for any finite collection of trees.

8.4.1 Representing Trees as Composite Trajectories

We start with a definition of a composite trajectory that has two types of objects –
the main branch and an indexed family of side branches. We take the viewpoint that
attached to the main branch is a continuum of branches – at each point t ∈ [0, 1], the
corresponding branch is a curve with a certain shape, scale, and orientation attributes.

198 A. Duncan et al.

Definition 1 (Composite Trajectory)
Define β : [0, 1] × [0, 1] → R

3 to be a composite trajectory with the following com-
ponents:

1. The base curve β0 : [0, 1] → R
3, defined by β0(t) ≡ β(t, 0) is a parameterized

curve in R
3 and denotes the main branch.

2. For each t , β(t)(τ) : [0, 1] → R
3 defined by β(t)(τ) = β(t, τ) is a parameterized

curve in R
3 representing a side branch attached to the main branch at the point

β0(t). In other words, β(t)(0) = β0(t) = β(t, 0).

For each t , we consider the side branch β(t) and represent it by its SRVF

q(t)(τ) =
dβ(t)(τ)

dτ√∥∥∥ dβ(t)(τ)

dτ

∥∥∥
R3

.

We will make enough assumptions on β to ensure that q(t) ∈ L
2([0, 1],R3). Note

that given the SRVF q(t) and the starting point β0(t), we can reconstruct the original
side branch β(t) exactly. Therefore, there is no loss of information in representing
the original tree by the set

{(
β0(t), q

(t)
)∣∣t ∈ [0, 1]} .

Setting P ≡ (R3 × L
2([0, 1],R3)), the product space of all base points in R

3 and
SRVFs of all 3D parameterized curves, we can impose a weighted product norm. For
any P1, P2 ∈ P , where Pi = (P (1)

i , P (2)
i) and P (1)

i ∈ R
3, P (2)

i ∈ L
2([0, 1],R3), for

i = 1, 2, we have

‖P1 − P2‖2
P = (1 − λ)

∥∥∥P (1)
1 − P (1)

2

∥∥∥2

R3
+ λ

∥∥∥P (2)
1 − P (2)

2

∥∥∥2

L2([0,1],R3)
.

where λ ∈ [0, 1] is a parameter which controls the relative importance of the base
point versus the curve.

We will denote the new representation of the tree as Y : [0, 1] → P, Y (t) =
(β0(t), q(t)); Y is a parameterized curve, or a trajectory, in P and we are interested
in studying its shape. Towards this goal, we will use the same idea as in Sect. 8.3.1
except the trajectories have additional information in the form of the base curve β0.
We can form SRVFs of these trajectories according to

QY (t) =
dY (t)
dt√

‖ dY (t)
dt ‖P

=
(
dβ0(t)
dt ,

dq(t)

dt

)
√

‖
(
dβ0(t)
dt ,

dq(t)

dt

)
‖P

.

We will use Q to denote the space L
2([0, 1],P), so that QY ∈ Q.

8 An Elastic Riemannian Framework for Shape Analysis … 199

The L2 norm on P can be extended to impose a norm on space Q as follows: For

any Q1, Q2 ∈ Q, where Qi (t) ≡
(
Q(1)

i (t), Q(2)
i (t)

)
∈ P ≡ R

3 × L
2([0, 1],R3),

define the norm

‖Q1 − Q2‖2
Q =

∫ 1

0
‖Q1(t) − Q2(t)‖2

Pdt

=
∫ 1

0

(
(1 − λ)‖Q(1)

1 (t) − Q(1)
2 (t)‖2

R3 + λ‖Q(2)
1 (t) − Q(2)

2 (t)‖2
L2

)
dt

=
∫ 1

0

(
(1 − λ)‖Q(1)

1 (t) − Q(1)
2 (t)‖2

R3 + λ

(∫ 1

0
‖Q(2)

1 (t)(τ) − Q(2)
2 (t)(τ)‖2

R3 dτ

))
dt .

The geodesic path between any two trees, represented by Q1, Q2 ∈ Q is given by a
straight line

α : [0, 1] → Q, α(s) = (1 − s)Q1 + sQ2,

For each time point s, α(s) ∈ Q is a trajectory in P; it can be written as α(s)(t)
where t is the parameter of the trajectory inP . Furthermore, for each s and t , α(s)(t)
has two components

(
α(1)(s)(t), α(2)(s)(t)

)
where the first component is a point in

R
3 denoting the starting point of a side chain and the second component denotes the

SRVF of that side chain.
Figures 8.8 and 8.9 show examples of the geodesic paths between two trees viewed

as elements of Q. In case when the corresponding points across the two trees – Q1(t)
and Q2(t) – have nontrivial branches, the geodesic will depict one branch deforming
into the other. When only one of these branches is trivial (length zero), and other is

Fig. 8.8 An example of a geodesic path between two axonal trees, shown in top left and bottom-
right, represented as composite trajectories, in the pre-space Q

Fig. 8.9 An example of a geodesic path between two axonal trees, represented as composite
trajectories, in the pre-space Q

200 A. Duncan et al.

not, we see a growth from a point into a branch. Finally, when both the branches are
zero, then there is no change in the structure across geodesics.

8.4.2 Shape Space of Axonal Trees and Geodesic Paths

So far we have not performed any registration across trees but now we look at this
problem using the two-dimensional re-parameterization ξ(t, τ) mentioned in the last
section. Recall that ξ takes a special form so that ξ(t, τ) = (ξ1(t), ξ2(t, τ)). For an ξ

of the type discussed previously, Q̃ ≡ (Q, ξ) denotes a re-parameterization of com-
ponents of Q as follows. Since Q(1)(t) denotes the main branch of that tree and ξ1(t)
is a re-parameterization [0, 1], then Q̃(1)(t) = (Q(1), ξ1)(t) is the re-parameterization
of the main branch. Similarly, for each t , Q̃(2)(t, τ) = Q(2)(ξ1(t), ξ2(t, τ)) denotes
the re-parameterization of the size branches. This sets up the large registration prob-
lem across trees

ξ ∗ = argmin
ξ∈Ξ

‖Q1 − (Q2, ξ)‖2 . (8.4)

The solution of this minimization problem is difficult to reach analytically and we
use a purely numerical approach for solving it. This approach requires nested calls
to DPA as follows: We discretize the parameter domain for the main axis [0, 1]
into a dense, finite partition T ≡ {0, t1, t2, . . . , 1} with a mild assumption that the
parameter values corresponding locations of non-degenerate side branches on both
the trees are included in this set. In general, the size of this partition |T | is much
larger than the number of side branches on either tree. Then, we compute optimal
curve by curve registrations/metric across the two sets of side branches associated
with each partition point, using DPA. In principle, this implies |T | × |T | calls to the
DPA, for computing all potential pairings of the side branches across trees, keeping
in mind that many of the side branches are null curves. In case both the curves being
matched as null, the call to DPA is avoided, and the actual DPA calls is only n × m,
where n, m are the number of non-degenerate side branches. Given these pairwise
registrations of the side branches, we use a final DPA call to register points along the
main branch according to the cost function in Eq. 8.4.

8.4.3 Experimental Results

In this section we present some results on matching and deforming of simple trees
with a small number of branches. To focus on the problem of matching the main
branch, we further reduce the optimization problem stated in Eq. 8.4 by assuming
that ξ2(t, τ) = τ for all t . In other words, the points along the side branches are
matched linearly, and only the main branch is matched elastically. This reduces the
computational cost to a single DPA algorithm.

8 An Elastic Riemannian Framework for Shape Analysis … 201

Fig. 8.10 Upper left Two trees which are same except for the locations of side branches. Upper
right Alignment using λ = 0.9 and λ = 0.999. Bottom Geodesic path between them for λ = 0.999

To start with, we consider two simple artificially created trees. In this example, the
two trees come from identical data. The two trees shown in Fig. 8.10 have the same
main branches and same side branches – the only difference is that side branches of
the second tree have been artificially moved to a new location. The side branches
have the same shape and orientation but are translated to a new position so that they
each start at a different location on the main branch. Using smoothing parameter,
h = 0.5, we examine alignment/geodesic between the two trees with weight λ = 0.9
and λ = 0.999. The top right two panels show the re-parameterizations that optimally
align the two trees under λ = 0.9 and λ = 0.999 respectively. Although λ = 0.9
gives more weight to the side branches, it is low enough in this case that the optimal
re-parameterization does not significantly deviate from identity. With λ = 0.999, the
optimal γ aligns the pairs of identical branches exactly or nearly so.

In the second example we consider two trees that have the same shape side
branches occurring at the same locations along the main branch. The difference
between the trees lies in their main branches, that are completely different curves.
The two trees are depicted in Fig. 8.11, along with their optimal re-parameterizations
under λ = 0.5 and λ = 0.9999 and the geodesic corresponding to λ = 0.5.

Now we show examples of geodesic paths between some simple trees taken
from the neuromorpho [1] database. It is a centrally curated inventory of digitally
reconstructed neurons associated with peer-reviewed publications. It contains con-
tributions from over 100 laboratories worldwide and is continuously updated as
new morphological reconstructions are collected, published, and shared. To date,
NeuroMorpho.Org [1] is the largest collection of publicly accessible 3D neuronal
reconstructions and associated metadata, containing data from human, rat, mice, and
drosophila, between other species. Figure 8.12 shows the two trees to be aligned and

202 A. Duncan et al.

Fig. 8.11 Top left Two trees which have the same side branches in the same positions along the main
branch. Their main branches are completely different curves.Top right Optimal re-parameterizations
using λ = 0.5 (left) and λ = 0.9999 (right). Bottom Geodesic between the two trees using λ = 0.5

Fig. 8.12 Upper left Two trees to be aligned.Upper right re-parameterizations to align the two trees.
On the left is the alignment using λ = 0.999 and on the right is the alignment using λ = 0.5. In each,
the black line is the identity re-parameterization, the red line is the computed re-parameterization,
and the black circles show points of alignment which would match side branches to each other at
the base

8 An Elastic Riemannian Framework for Shape Analysis … 203

optimal re-parameterizations using λ = 0.5 and λ = 0.999. For the λ = 0.999 case
the geodesic path is also shown in Fig. 8.12.

8.5 Karcher Mean of Tree-Like Structures

Given the method of computing distances between trees developed so far, we can
define and compute a Karcher mean the same way that we did for elastic curves.
Given a set of trees Q1, Q2, . . . , Qn ∈ Q, we seek a composite curve Q ∈ Q that
minimizes the sum of square of distances to the given trees

μQ = argmin
Q∈Q

n∑
i=1

(
min
ξi∈Ξ

‖Q − (Qi , ξi)‖2

)
.

To compute μQ , we use an iterative algorithm similar to the one given in Algo-
rithm 2 of [11], which computes the Karcher mean amplitude of a set of functions.
For the case of μQ ∈ Q we give an iterative procedure in Algorithm 1.

Algorithm 1 Karcher Mean of {[Qi]} ∈ Q/Γ

Require: Q1, Q2, . . . , Qn ∈ Q
Ensure: μQ as defined in Eq. (8.5)

1: Initialize μQ = Q j , where j = argmini∈{1,...,n}
∥∥Qi − 1

n

∑n
k=1 Qk

∥∥2
Q

2: For each i = 1, . . . , n, find γ ∗
i ← argminγ∈Γ

∥∥μQ − (Qi , γ)
∥∥2
Q

using DPA.

3: For each i = 1, . . . , n, compute the aligned trajectory Q̃i ← (Qi , γ
∗
i) = (Qi ◦ γ ∗

i)
√

γ̇

4: Assign a new mean estimate from the aligned trajectories: μQ ← 1
n

∑n
i=1 Q̃i

5: Repeat steps 2–4 until the change in μQ is below some small threshold.

Figure 8.13 shows an example result of this algorithm: seven sample trees selected
from [8] and their Karcher mean.

Summary and Discussion

In this paper we describe a Riemannian framework to handle shape analysis for
three different types of objects. We start with the past work on shape analy-
sis of Euclidean curves using elastic Riemannian metric and square-root velocity
functions. The efficiency and utility of this framework in generating statistical sum-
maries and modes of variability of shape data is demonstrated using several exam-
ples. This framework is then naturally extended to include analysis of curves in
Hilbert spaces. These curves denote a continuous sequences of real-valued functions
on [0, 1], and we can compare their shapes by temporally registering points across
curves. With this tool in mind, we present tree-like structures as composite curves in a
Hilbert space, imagining a continuum of side branches along the main branch. Using

204 A. Duncan et al.

Fig. 8.13 Top seven trees from [8]. Bottom Their Karcher mean tree

square-root representations for the curves involved – main branch, side branches,
and the composite curves, we elastically register points across trees and compare
their shapes using the elastic metric.

References

1. G.A. Ascoli, D.E. Donohue, M. Halavi, Neuromorpho.org: a central resource for neuronal
morphologies. J. Neurosci. 27(35), 9247–9251 (2007)

2. D. Bryner, E. Klassen, H. Le, A. Srivastava, 2D affine and projective shape analysis. IEEE
Trans. Pattern Anal. Mach. Intell. 36(5), 998–1011 (2014)

3. A. Duncan, E. Klassen, X. Descombes, A. Srivastava, Geometric analysis of axonal tree struc-
tures, inProceedings of the 1st InternationalWorkshop onDIFFerential Geometry in Computer
Vision for Analysis of Shapes, Images and Trajectories (DIFF-CV 2015) (2015)

4. S. Jeannin, M. Bober, Shape data for the MPEG-7 core experiment ce-shape-1 @ONLINE
(1999)

5. H. Karcher, Riemannian center of mass and mollifier smoothing. Commun. Pure Appl. Math.
30(5), 509–541 (1977)

6. S. Kurtek, A. Srivastava, E. Klassen, Z. Ding, Statistical modeling of curves using shapes and
related features. J. Am. Stat. Assoc. 107(499), 1152–1165 (2012)

7. J.O. Ramsay, B.W. Silverman,Functional Data Analysis, 2nd edn., Springer Series in Statistics
(Springer, New York, 2005)

8. L.F. Santiago, E.G. Rocha, C.L. Santos, A. Pereira Jr., C.W. Picanço-Diniz, J.G. Franca, S1
to S2 hind- and forelimb projections in the agouti somatosensory cortex: axon fragments
morphological analysis. J. Chem. Neuroanat. 40(4), 339–345 (2010)

8 An Elastic Riemannian Framework for Shape Analysis … 205

9. A. Srivastava, S.H. Joshi, W. Mio, X. Liu, Statistical shape analysis: clustering, learning, and
testing. IEEE Trans. Pattern Anal. Mach. Intell. 27(4), 590–602 (2005)

10. A. Srivastava, E. Klassen, S.H. Joshi, I.H. Jermyn, Shape analysis of elastic curves in Euclidean
spaces. IEEE Trans. Pattern Anal. Mach. Intell. 33(7), 1415–1428 (2011a)

11. A. Srivastava, W. Wu, S. Kurtek, E. Klassen, J.S. Marron, Registration of functional data using
Fisher-Rao metric (2011b). arXiv:11033817v2

http://arxiv.org/abs/11033817v2

Index

A
Action recognition, 169
Affine motion tracking, 173, 177–182, 184
Affine-invariant distance, 97, 117, 119, 121,

125, 131–133

B
Bayesian statistics, 2, 3, 6, 11, 18

C
Canonical spherical metric, 58
Constrained probability distribution, 25
Contraction, 76–78, 87
Covariance descriptor, 95, 116
Covariance matrix, 47, 87, 93, 116, 118, 119,

124, 135, 136, 138, 193
Covariance operator, 116–118, 121–128,

131, 132, 134–138

D
Data representation, 93, 117, 118, 122, 137
Diffeomorphisms, 1–5, 7, 8, 11, 15

E
Effective sample size, 46
Elliptically contoured distributions, 81, 84
Energy invariance, 58
Euclidean distance, 97, 116, 118, 119, 121,

125, 127, 132, 135, 148, 176
Exponential map, 75, 79, 102, 155, 174, 193

F
Feature map, 116, 118, 122–124, 126, 138
Frobenius norm, 97, 108, 118, 119, 125–127,

147

G
Gaussian kernel, 116, 117, 122, 124, 135–

137
Gaussian mixture models, 81
Geodesic convexity, 74
Geodesic distance, 107, 119, 120, 131, 141,

155, 175
Geodesic on a sphere, 60
Geometric optimization, 74, 81, 84, 87, 88
Gram matrices, 116, 117, 124–126, 133, 138
Grassmann manifolds

dictionary learning, 162
geodesics, 155
geometry, 150
Laplace kernels, 166
positive definite kernel, 163
projective representation, 153
RBF kernels, 165
sparse coding, 159
tangent space, 153
universal kernels, 164
Weighted Karcher Mean, 158

H
Hamiltonian Monte Carlo, 7–11, 15, 17, 18,

27
Hilbert–Schmidt distance, 125, 126
Hilbert–Schmidt operator, 117, 125–127,

129, 130, 134

© Springer International Publishing Switzerland 2016
H.Q. Minh and V. Murino (eds.), Algorithmic Advances in Riemannian
Geometry and Applications, Advances in Computer Vision
and Pattern Recognition, DOI 10.1007/978-3-319-45026-1

207

208 Subject Index

I
Image classification, 105, 117, 125, 134–

136, 138
Infinite-dimensional manifold, 2, 117, 130,

137

K
Kernel coding on Riemannian manifolds ,

166
Kernel dictionary learning, 167
Kotz-type distribution, 84, 86–88

L
Lagrangian Monte Carlo, 28
Lie algebra, 173–176, 179, 182, 183
Linear regression, 173, 175, 176, 181
Log-Euclidean distance, 97, 106, 119, 121,

125–127, 134–137
Log-Hilbert-Schmidt distance, 118, 132,

134–138

M
Manifold optimization, 74, 78, 81, 82, 84,

86–88
Matrix geometric mean, 78
Matrix Lie groups, 173, 175, 179

N
Non-expansive, 76, 81, 86
Norm constraints, 31

O
Orientation histograms, 180, 181, 183

P
Parallel transport, 75, 79, 80
Positive definite kernel, 116, 121–124, 134–

136, 138, 163
Positive definite operator, 117, 127, 137

Principal angles, 157
Principal geodesic analysis, 2, 3, 11
Probability simplex, 43

R
Reproducing Kernel Hilbert space, 117, 118,

121–127, 131, 132, 134, 137, 147
Ridge regression, 177, 183
Riemannian dictionary learning, 101, 103,

105
Riemannian LBFGS, 79, 80, 83
Riemannian manifold, 1, 28, 74, 80, 97, 116,

119, 130, 134, 135, 137, 150
Riemannian metric, 4, 75, 80, 97, 119, 152,

187
Riemannian sparse coding, 101, 107
Round spherical metric, 61

S
Shape analysis, 1–3, 18, 187, 190, 194, 197
Spherical augmentation, 29
Spherical Hamiltonian Monte Carlo, 37
Spherical Lagrangian Monte Carlo, 43
Splitting Hamiltonian (Lagrangian) dynam-

ics, 63
Symmetric positive definite (SPD) matrices,

73, 74, 78, 93, 97, 115–117, 119, 120,
127, 137

T
Thompson metric, 76
Two-layer kernel machine, 117, 118, 134–

136, 138

V
Volume adjustment, 38

W
Wolfe line-search, 79, 80

	Preface
	Overview and Goals
	Acknowledgments

	Contents
	Contributors
	Introduction
	Themes of the Volume
	Organization of the Volume

	1 Bayesian Statistical Shape Analysis on the Manifold of Diffeomorphisms
	1.1 Introduction
	1.2 Mathematical Background
	1.2.1 Space of Diffeomorphisms
	1.2.2 Metrics on Diffeomorphisms
	1.2.3 Diffeomorphic Atlas Building with LDDMM

	1.3 A Bayesian Model for Atlas Building
	1.4 Estimation of Model Parameters
	1.4.1 Hamiltonian Monte Carlo (HMC) Sampling
	1.4.2 The Maximization Step

	1.5 Bayesian Principal Geodesic Analysis
	1.5.1 Probability Model
	1.5.2 Inference

	1.6 Results
	References

	2 Sampling Constrained Probability Distributions Using Spherical Augmentation
	2.1 Introduction
	2.2 Preliminaries
	2.2.1 Hamiltonian Monte Carlo
	2.2.2 Lagrangian Monte Carlo

	2.3 Spherical Augmentation
	2.3.1 Ball Type Constraints
	2.3.2 Box-Type Constraints
	2.3.3 General q-Norm Constraints
	2.3.4 Functional Constraints

	2.4 Monte Carlo with Spherical Augmentation
	2.4.1 Common Settings
	2.4.2 Spherical Hamiltonian Monte Carlo
	2.4.3 Spherical LMC on Probability Simplex

	2.5 Experimental Results
	2.5.1 Truncated Multivariate Gaussian
	2.5.2 Bayesian Lasso
	2.5.3 Bridge Regression
	2.5.4 Reconstruction of Quantized Stationary Gaussian Process
	2.5.5 Latent Dirichlet Allocation on Wikipedia Corpus

	2.6 Discussion
	References

	3 Geometric Optimization in Machine Learning
	3.1 Introduction
	3.2 Manifolds and Geodesic Convexity
	3.3 Beyond g-Convexity: Thompson Nonexpansivity
	3.3.1 Why Thompson Nonexpansivity?

	3.4 Manifold Optimization
	3.5 Applications
	3.5.1 Gaussian Mixture Models
	3.5.2 MLE for Elliptically Contoured Distributions
	3.5.3 Other Applications

	References

	4 Positive Definite Matrices: Data Representation and Applications to Computer Vision
	4.1 Introduction
	4.1.1 Covariance Descriptors and Example Applications
	4.1.2 Geometry of SPD Matrices

	4.2 Application to Sparse Coding and Dictionary Learning
	4.2.1 Dictionary Learning with SPD Atoms
	4.2.2 Riemannian Dictionary Learning and Sparse Coding

	4.3 Applications of Sparse Coding
	4.3.1 Nearest Neighbors on Covariance Descriptors
	4.3.2 GDL Experiments
	4.3.3 Riemannian Dictionary Learning Experiments
	4.3.4 GDL Versus Riemannian Sparse Coding

	4.4 Conclusion and Future Work
	References

	5 From Covariance Matrices to Covariance Operators: Data Representation from Finite to Infinite-Dimensional Settings
	5.1 Introduction
	5.2 Covariance Matrices for Data Representation
	5.3 Infinite-Dimensional Covariance Operators
	5.3.1 Positive Definite Kernels, Reproducing Kernel Hilbert Spaces, and Feature Maps
	5.3.2 Covariance Operators in RKHS and Data Representation

	5.4 Distances Between RKHS Covariance Operators
	5.4.1 Hilbert--Schmidt Distance
	5.4.2 Riemannian Distances Between Covariance Operators
	5.4.3 The Affine-Invariant Distance

	5.5 Two-Layer Kernel Machines with RKHS Covariance Operators
	5.5.1 The Interplay Between Positive Definite Kernels and Riemannian Manifolds
	5.5.2 Two-Layer Kernel Machines

	5.6 Experiments in Image Classification
	5.7 Discussion, Conclusion, and Future Work
	References

	6 Dictionary Learning on Grassmann Manifolds
	6.1 Introduction
	6.2 Problem Statement
	6.3 Background Theory
	6.4 Dictionary Learning on Grassmannian
	6.4.1 Weighted Karcher Mean
	6.4.2 Dictionary Learning

	6.5 Kernel Coding
	6.5.1 Kernel-Based Riemannian Coding
	6.5.2 Kernel Dictionary Learning

	6.6 Experiments
	References

	7 Regression on Lie Groups and Its Application to Affine Motion Tracking
	7.1 Introduction
	7.2 Lie Group
	7.3 Linear Regression on Matrix Lie Groups
	7.4 Application to Affine Motion Tracking
	7.4.1 Related Work
	7.4.2 Tracking as a Regression Problem on Lie Group

	References

	8 An Elastic Riemannian Framework for Shape Analysis of Curves and Tree-Like Structures
	8.1 Introduction
	8.1.1 From Discrete to Continuous and Elastic
	8.1.2 General Elastic Framework

	8.2 Shape Analysis of Euclidean Curves
	8.3 Shape Analysis of Trajectories in Hilbert Spaces
	8.3.1 Elastic Comparison of Trajectories in mathbbL2([0,1],mathbbR)
	8.3.2 Elastic Comparison of Trajectories in mathbbL2([0,1],mathbbR)/Γ

	8.4 Elastic Shape Analysis of Axonal Trees
	8.4.1 Representing Trees as Composite Trajectories
	8.4.2 Shape Space of Axonal Trees and Geodesic Paths
	8.4.3 Experimental Results

	8.5 Karcher Mean of Tree-Like Structures
	References

	Index

