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    Chapter 6   
 Cellular Approaches to Adult Mammalian 
Heart Regeneration                     

     Justin     Judd      and     Guo     N.     Huang    

6.1           Introduction 

6.1.1     Human  Heart Failure   

  Cardiomyopathies   are a major cause of death throughout the world, due in part to 
the inability of the human heart to signifi cantly regenerate. Improvements in the 
management of acute myocardial infarction (MI) have led to drastic improvements 
in short-term mortality rates since the 1960s [ 1 ]. However, due to a scarcity of effec-
tive long-term therapeutic options, the 5-year survival after diagnosis of heart fail-
ure is only 50 % [ 2 ]. Thus, heart failure remains an incurable condition and a major 
cause of death. 

 The etiology of heart failure is complex, but the  syndrome   is characterized by 
cardiac output that is insuffi cient to meet the metabolic demands of the body. A 
central  complication   of heart failure in general is the loss of cardiomyocytes through 
various cell death mechanisms (reviewed in [ 3 ]). In acute myocardial infarction, 
catastrophic cell death is incurred due to the occlusion of coronary vasculature, 
which deprives the infarcted region of oxygen and nutrient rich blood.  Cardiomyocytes   
die from both apoptosis and necrosis, though the percent contribution of each death 
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mechanism is unclear. Necrotic myocardium is eventually replaced by scar tissue, 
which lacks the contractile and elastic properties needed for optimal heart function. 
 Ischemic reperfusion   is  thought   to contribute to cell death [ 4 ] through infl ammation 
[ 5 ], radical oxygen species generation [ 6 ], and abnormal calcium handling [ 7 ]. 
Strategies to mitigate peripheral myocardial cell death could potentially be imple-
mented during surgical reperfusion [ 8 ,  9 ]. However, due to the acute lack of blood 
supply, reperfusion therapy is typically too late to save the dying infarcted myocar-
dium, and fi brotic remodeling follows. 

 In  chronic   heart failure,  cell death   is thought to slowly contribute to deterioration 
of the ventricular myocardium, thus reducing its ability to effectively contract. This 
is further complicated in many cases by several aspects of remodeling, such as pro-
liferation of fi broblasts, conversion to myofi broblasts [ 10 ], and accompanying alter-
ations in extracellular matrix composition [ 11 ]. The re-expression of fetal-specifi c 
genes during heart failure has been described by several groups, including a switch 
from α-myosin heavy chain to β-myosin heavy chain (reviewed in [ 12 ]). Metabolic 
remodeling of cardiomyocytes is also seen in heart failure, such as a shift from fatty 
acid oxidation to glycolysis (reviewed in [ 13 ]). Collectively, these aspects of  myo-
cardial remodeling   can result in gross morphological changes and associated  altera-
tions   in tissue mechanics, such as myocardial stiffening, thickening or thinning of 
the ventricular myocardium, and ventricular dilation, as well as alterations in cal-
cium handling and contractility; all of which can severely affect heart function and 
feedback on disease progression.  

6.1.2     Species Variability in Heart Regeneration 

 Although adult mammals exhibit an insuffi cient natural ability to repair damaged myo-
cardium, several lower vertebrates, such as zebrafi sh, newt, and axolotl, maintain a 
remarkable regenerative capacity, even in later stages of life. These species- specifi c 
differences in  regenerative capacity   (reviewed in [ 14 ,  15 ]) are an important topic of 
study in the pursuit of human regeneration. Due to the availability of transgenic models, 
zebrafi sh is the best characterized of these species. Mechanistically, genetic lineage 
tracing experiments show that  zebrafi sh   heart regeneration relies primarily on the dedif-
ferentiation and expansion of pre-existing differentiated cardiomyocytes [ 16 ,  17 ]. Poss 
and colleagues showed this myocardial dedifferentiation involves re-expression of early 
developmental markers such as  gata4  with an accompanying reduction in myocardial 
conduction velocity at the injury site [ 16 ]. Furthermore, a cryoinjury model demon-
strated enhanced cell cycling in a fraction of cardiomyocytes expressing embryonic 
cardiac myosin heavy chain [ 18 ].  Epicardial signaling   seems to play a role in the regen-
erative response to injury [ 19 ,  20 ], but myocyte contributions from epicardial cells 
directly are apparently limited. The role of a dynamic extracellular matrix was shown to 
be important in mediating zebrafi sh heart regeneration [ 21 ]. Specifi cally,  fi bronectin   
was upregulated in the myocardium following injury and was required for regeneration. 
Interestingly, fi bronectin deposition in adult mammalian hearts has also been observed 
post-injury [ 22 ,  23 ], but may signal a fi brotic response in this context [ 24 – 26 ]. 
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 Several reports have also demonstrated a strong regenerative ability in adult newt 
[ 27 – 30 ] and  axolotl   hearts [ 31 ] using various injury models. Due to a lack of lineage 
tracing transgenic tools in these organisms, the source of new myocardium has not 
been defi nitively shown. However, Braun and colleagues showed a reduction in 
contractile protein expression after injury [ 32 ], reminiscent of the  cardiomyocyte 
dedifferentiation   observed in zebrafi sh heart regeneration [ 16 ,  17 ], suggesting a pos-
sible common mechanism. Not surprisingly, changes in  extracellular matrix protein 
expression   were also shown to accompany adult newt heart regeneration. Of particu-
lar interest, tenascin C was found to increase newt cardiomyocyte cell cycle re-entry 
in vitro [ 33 ]. However, evidence for  cytokinesis   was not shown. Interestingly, matrix 
production and remodeling enzymes were shown to change along with differentia-
tion of immortalized CPCs in vitro, providing a direct link between the state of 
cardiomyocyte maturation and extracellular matrix remodeling [ 34 ]. 

 Some reports have suggested that accelerated lower vertebrate regeneration is a 
consequence of  cellular plasticity  . For example, adult newt cardiomyocytes have 
been shown to transdifferentiate toward skeletal myocyte or chondrocyte lineages 
after transplantation into regenerating limb blastema [ 32 ]. Conversely,  transdiffer-
entiation   was not observed during in vitro culture or after transplantation into intact 
limbs. It would be interesting to see if adult mammalian cardiomyocytes can be 
transdifferentiated by  amphibian blastema  ; this would indicate a conserved intrinsic 
regenerative program within vertebrate cardiomyocytes and a non-conserved 
extrinsic tissue response to injury. 

 Although adult mammalian hearts do not effi ciently regenerate, Olson and col-
leagues showed in 2011 that neonatal mice (up to postnatal day 7) can regenerate their 
heart after apical resection [ 35 ].  Genetic lineage tracing   experiments showed that, simi-
lar to zebrafi sh, the cardiomyocytes are repopulated by pre-existing cardiomyocytes. 
 Immunostaining   with anti-Troponin antibodies demonstrated sarcomeric disassembly 
in myocytes, again suggesting dedifferentiation and expansion of resident cardiomyo-
cytes as a driver of regeneration. Notably, there has been some controversy over the 
extent of neonatal cardiac regeneration, where it has been suggested that neonatal hearts 
heal by scarring after apical resection [ 36 ]. However, several investigators report the 
reproducibility of  neonatal   heart regeneration in an apical resection model and have 
suggested technical differences as a source of variability [ 37 ]. Furthermore, it is not 
surprising that the severity of injury infl uences the effi ciency of regeneration [ 38 ]. 

 Whether or not neonatal hearts exhibit complete regeneration in response to 
injury, their apparent  neomyogenic capacity   is a major point of focus that could 
potentially be used clinically if similar mechanisms can be exploited in the adult 
myocardium. Thus, it is important to critically evaluate not only the functional 
recovery after MI, but also the extent of new cardiomyocyte generation in neonatal 
mice. To that end, cell cycle re-entry of neonatal cardiomyocytes has been thor-
oughly demonstrated. Soonpaa et al. used tritiated thymidine to demonstrate a spike 
in S-phase DNA synthesis in neonatal murine cardiomyocytes, beginning near birth 
and persisting throughout the fi rst week of life [ 39 ]. The fraction of binucleated 
cardiomyocytes increased steadily during this period as the cells lost the ability to 
complete cytokinesis.
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   In contrast to S-phase re-entry, the study of cell division is currently more techni-
cally challenging.  Cytokinesis   has traditionally been evaluated using antibodies 
against cleavage furrow markers such as Aurora B kinase. These techniques can be 
diffi cult to interpret with in vivo or in vitro samples, since staining in closely associ-
ated non-cardiomyocytes could contribute to false-positive results. This has led 
investigators to explore alternative methods, such as  mosaic analysis with double 
markers (MADM)  , to genetically trace divided cardiomyocytes [ 40 ]. Interestingly, 
pulsing of MADM transgenic mice with tamoxifen between postnatal day 2 and 8 
revealed that 5 % of labeled MYH6-expressing cardiomyocytes had undergone 
cytokinesis, giving rise to single labeled (GFP +  or RFP + ) cells. Due to differential 
sorting of chromosomes, as well as non-sortable labeling in G0/G1, this fi gure 
likely underestimates the actual rate of  cytokinesis   in labeled cardiomyocytes. 
Furthermore, it is unclear whether Cre-mediated interchromosomal recombination 
is unbiased with respect to different cellular states in the heterogeneous cardiomyo-
cyte population. Thus, at this time it is diffi cult to quantify the actual rate of cardio-
myocyte cell division. Nonetheless, it is generally accepted that a signifi cant 
proportion of neonatal cardiomyocytes have the ability complete cell division and 
contribute to cardiac regeneration. However, by postnatal day 7, murine cardiomyo-
cytes have mostly exited the cell cycle [ 39 ] and lost their ability to regenerate 
injured myocardium [ 35 ]. 

 Interestingly, it has been suggested that altered  cardiac circulation   accompanies 
newt heart regeneration, where blood is shunted away from the left ventricle [ 41 ]. 
This is reminiscent of enhanced cardiomyocyte cell cycle and myocardial remodel-
ing in patients with ventricular assist device [ 42 ,  43 ], where a reduction in load may 
allow partial induction of a regenerative response. It would be interesting to see if 
neonatal mice exhibit a similar phenomenon during cardiac regeneration. For exam-
ple, although functional closure of the  ductus arteriosus   occurs within 3 h post-birth 
in mice, remodeling takes place over several weeks [ 41 ]. Thus, additional studies 
would be prudent to evaluate the possibility of compensatory shunting of circulation 
during ventricular regeneration in neonatal mice.  

6.1.3     Developments in Induced Heart Regeneration 

 Despite signifi cant progress in understanding regenerative processes in lower verte-
brates and in neonatal mice, it is still unclear how many of these fi ndings can be 
applied to induce cardiac regeneration in adult mammals. The observation that  neo-
natal mouse hearts   can regenerate cardiac injuries is alluring, but there are major 
differences between neonates and adults with respect to cardiac physiology at the 
cellular, tissue, and neurohumoral levels. A modest degree of cell cycle re-entry has 
been observed in adult human and mouse cardiomyocytes [ 39 ,  44 – 46 ], but evidence 
for cardiomyocyte cell division in adult mammals is scant. To estimate human car-
diomyocyte turnover, Bergmann et al. took advantage of a period of nuclear bomb 
testing in the 1950s and 1960s, which resulted in a pulse of atmospheric  14 C 
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eventually being incorporated into newly synthesized DNA in human  cardiomyo-
cytes   [ 44 ,  45 ]. They found that less than 1 % cardiomyocytes were turned over 
annually in adult humans. Additionally, they showed that DNA content increased in 
the fi rst 10 years of human life, until most cardiomyocytes were tetraploid [ 44 ]. In 
contrast to mice, most adult human  cardiomyocytes   are mononucleate [ 47 ]. 
Together, these results indicate that most human cardiomyocytes terminally exit the 
cell cycle before karyokinesis, whereas mouse cardiomyocytes tend to exit the cell 
cycle after karyokinesis, but before cytokinesis [ 48 ]. 

 Although measurement of  cell division   in human cardiomyocytes is extremely 
diffi cult, recent advances in lineage tracing technology have enabled defi nitive 
labeling of divided cardiomyocytes in mice. A recent study using mosaic analysis 
with double markers [ 49 ] showed that approximately 1 % of labeled adult cardio-
myocytes had undergone cell division after 2 weeks of daily tamoxifen induction 
[ 40 ]. However, as discussed above, potential bias of interchromosomal recombina-
tion could obscure quantifi cation of cell division. Importantly, myocardial infarc-
tion prior to labeling did not increase cell division, indicating a lack of regeneration 
in adult mouse hearts. Still, the immense burden on human health has warranted an 
abundance of investigations seeking the ultimate feat of cardiovascular medicine: 
induced adult human heart regeneration. 

 Numerous strategies have been devised to induce adult mammalian heart regen-
eration and typically rely on mouse models of  myocardial infarction  , such as perma-
nent left anterior descending (LAD) artery ligation [ 50 ,  51 ]. Ischemia-reperfusion 
(IR) models [ 52 ] are an even better representation of human myocardial infarction, 
due to post-MI surgical intervention [ 8 ,  9 ]. Large animal models [ 53 ,  54 ] are useful 
to translate fi ndings in mice and to test regenerative strategies that are diffi cult in 
rodent models due to differences in anatomy, physiology or scalability. 

 Here, we discuss various therapeutic approaches (summarized in Fig.  6.1 ) to 
induce mammalian heart regeneration, including strategies that augment endoge-
nous cardiac regeneration, or supply an exogenous source of cardiomyocyte replace-
ment, consisting of allografts or the re-introduction of modifi ed autologous cells.  

6.1.4     Cardiac Progenitor  Cells   

 Attempts to stimulate  endogenous   heart regeneration and replenish lost cardiomyo-
cytes has been in part motivated by the hypothetical existence of a population of resi-
dent or non-resident cardiac progenitor cells (CPCs), which were thought to be a 
renewable source of committed cardiomyogenic cells. In theory, either autologous or 
allogeneic CPCs could conceivably be grafted into ischemic injuries to facilitate car-
diac regeneration. However, several supposed CPC cell types have ultimately been 
found to represent at best a very rare contributor to new cardiomyocytes in vivo. For 
example,  Lin   −   c-kit   +   CPCs initially showed promise for adult mammalian heart regen-
eration [ 55 ]. However, these cells were later reported to have limited utility in induced 
adult mammalian heart regeneration, despite their potential to support regeneration in 
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neonates [ 56 ,  57 ]. A recent article confi rmed the lack of signifi cant direct contribution 
by cardiac resident c-kit +  progenitors to new cardiomyocytes [ 58 ]. Specifi cally,  c-kit   +   
cells did not co-express  Nkx2.5  or sarcomeric proteins at any stage, but were consis-
tently found to co-express the endothelial marker CD31. Furthermore, endothelial-
specifi c  Tie2- driven expression of Cre completely abolished a  c-kit  driven fl oxed LacZ 
reporter. Thus, despite the observation of c-kit +  cells in both the developing and adult 
heart, they were found to contribute  mostly   to endothelial cells, rather than cardiomyo-
cytes. As an exogenous cell therapy for heart regeneration [ 59 ], it seems likely that any 
potential benefi t of  c-kit   +   progenitor cells to cardiac function would be indirect, for 
example through paracrine signaling. Other potential endogenous adult murine  CPCs   
have been described, such as  Sca1   +   cells [ 60 ,  61 ]. However ectopic Cre-expression 
may have confounded initial interpretations of  Sca1   +   CPCs, and the lack of a human 
ortholog limits the application to human heart failure therapy (reviewed in [ 62 ]). 

 By contrast,  Isl1   +   cells are a true cardiomyocyte progenitor population derived 
from the second heart fi eld and have been shown to give rise to a majority of 
cardiomyocytes in the developing mouse heart [ 63 ,  64 ]. Cre-based lineage tracing 

  Fig. 6.1     Autologous cellular approaches   to cardiac regeneration. Promising sources of autologous 
patient cells for therapeutic cardiac regeneration include dermal fi broblasts and bone marrow cells, 
which can be delivered to the infarct via intracoronary (IC) or intramyocardial (IM) injection. 
Bone marrow cells are thought to act via paracrine effects to encourage regeneration. Fibroblasts 
can be converted directly to cardiomyocyte-like cells via GHMT or small molecules (SCPF) and 
Oct4. An expandable population of cardiac progenitors can be created using cell activated and 
signaling-directed (CASD) lineage conversion. CPCs and cardiomyocytes can also be created via 
embryonic stem cells created using somatic cell nuclear transfer (SCNT). ( Inset ) In vivo repro-
gramming can be used to convert resident cardiac fi broblasts into cardiomyocyte-like cells in situ 
using GHMT factors       
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experiments showed that by embryonic day 9.75,  Isl1   +   progenitor cells generated 
nearly all cells in the outfl ow tract and right ventricle, as well as 65 % of the left 
atria and 20 % of the left ventricle [ 63 ]. Moretti et al. showed that  Isl1   +   precursors 
are multipotent and could give rise to smooth muscle and endothelial  lineages   in 
addition to cardiomyocytes [ 65 ]. They also demonstrated that  Isl1   +   cells could be 
differentiated in vitro from ES cells and propagated on cardiac mesenchyme 
feeder layers, indicating a  potential   source of therapeutic progenitor cells for 
heart failure. A majority of the remaining heart, including the left ventricle, is 
derived from  Isl1   −   progenitors from the primary heart fi eld, characterized by 
expression of early developmental markers such as GATA4, NKX2.5, and TBX5 
(reviewed in [ 66 ]). 

 The persistence of a clinically useful population of resident CPCs in adult mam-
malian hearts has been an elusive and ongoing pursuit. However, more tangible 
applications of developmental CPC research in heart regeneration have come 
through the use of CPC markers to identify potential alternative therapeutic cellular 
sources of neomyogenesis. Such induced CPCs can now be obtained by pretreat-
ment of ES and iPS cells, as discussed below. Furthermore, the understanding of 
fetal heart  development      on the molecular level has led to the discovery of fetal gene 
re-expression during heart failure [ 12 ], which could  represent   failed attempts to 
regenerate the adult heart through developmental recapitulation.  

6.1.5     Bone-Marrow Derived Cells 

  Bone marrow-derived cells (BMCs)   represent an attractive source of regenerative 
therapy, since autologous donor tissue can be easily and safely  obtained  . Initial 
promise came from an early study that showed 5-azacytidine treatment could induce 
cardiomyocyte differentiation from immortalized BMCs in vitro [ 67 ]. Subsequently, 
it was shown that autologous BMCs could improve recovery after myocardial 
infarction in rats [ 68 ,  69 ]. A 2001 study showed a low rate of myocardial engraft-
ment in an ischemia-reperfusion model after bone marrow transplantation of sup-
posed multipotent  CD34   -/low  ,  c-kit   +  ,  sca1   +   side population (SP) cells, obtained from 
 Rosa26-lacZ  donor mice [ 70 ]. The purity of the SP cells was high at 91 %, but a 
even a low rate of contamination by other cell types could confound the interpreta-
tion that SP cells themselves give rise to cardiomyocytes. Nevertheless, the observa-
tion that bone marrow derived cells could contribute to endothelial cells and 
cardiomyocytes at all was encouraging for future developments. 

 Numerous other pre-clinical and clinical studies have investigated the safety and 
 effi cacy   of bone marrow-derived cell  therapy      on acute myocardial infarction and 
heart failure. Results from some individual clinical trials have been positive [ 71 ], 
but large-scale meta-analyses have shown either modest or no benefi t on cardiac 
function or mortality [ 72 ,  73 ]. Looking forward, it will be interesting to see the 
results of an ongoing large scale phase III clinical trial testing the effi cacy of intra-
coronary delivery of autologous BMCs [ 74 ].  
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6.1.6     Embryonic Stem Cells 

 Human embryonic stem (hES) cells can be obtained from sperm-fertilized blasto-
cysts [ 75 ] or, more conveniently, produced from adult fi broblasts by somatic cell 
nuclear transfer into oocytes [ 76 ,  77 ]. Being pluripotent,  ES cells      have the ability to 
give rise to all three germ layers, including all cell types of the heart. Thus, ES cells 
are a promising source of cardiomyocyte replacement in the failing heart. However, 
teratoma formation from direct ES cell injection demonstrates that neither normal 
nor failing myocardium lacks the developmental signals for faithful differentiation 
into myocardial lineages [ 78 ,  79 ]. ES cell-derived cardiomyocytes (ES-CMs) can be 
differentiated from hES cells in vitro by treatment with activin A and BMP4 [ 80 ]. 
In an athymic rat IR model, it was shown that infarcted myocardium could be 
grafted with hES-CMs by direct cardiac injection [ 80 ]. Importantly, a pro-survival 
cocktail (containing cell adhesion promoting Matrigel, mitochondrial death inhibi-
tors Bcl-KL peptide and cyclosporine A, vasodilator pinacidil, AKT activator IGF-
1, and caspase inhibitor ZVAD-fmk) was used to improve graft survival and 
functional recovery. 

 Despite the initial excitement for ES-CM treatment, a later study showed that 
although both allogeneic undifferentiated ES cell and ES-CM treatment pro-
vided improvements to ejection fraction in infarcted mouse myocardium, the 
ES- CM      treated groups had an increased risk of cardiac arrhythmia and death 
[ 81 ]. This observation was presumably due to incomplete maturity of  in vitro  
differentiated hES-CMs, or alternatively to the mismatch in normal heart rate 
between human and mouse cardiomyocytes. A subsequent study using an immu-
nocompromised guinea pig cryoinjury model showed engraftment by hES-
derived cardiomyocytes with reduced arrhythmia [ 82 ]. However, a non-human 
primate model of the more relevant IR injury again showed signifi cant arrhythmia 
after engraftment of hES-CMs [ 83 ]. 

 These exciting developments in ES-derived myocardial grafts show promise 
for future heart failure treatments. However, there is a clear need to better under-
stand cardiomyocyte differentiation and to develop protocols to create more 
mature cardiomyocyte grafts that can recapitulate native pacing. In that light, a 
recent study showed that 1 year old in vitro differentiated ES- CMs      are more 
similar to mature myocardial tissue in vivo and that the let-7 miR family plays 
an important role in the maturation process [ 84 ]. Furthermore, an earlier study 
showed that forced expression of connexin 43 improved conduction not only in 
embryonic cardiomyocyte grafts, but even in skeletal myoblast grafts in infarcted 
mouse hearts [ 85 ]. 

 Despite the use of  ES cells   as a powerful research tool, and the promising results 
of preclinical heart regeneration studies, reluctance to enter clinical trials hinges in 
part on their potential for immune rejection and tumorigenesis [ 86 ], not to mention 
ethical constraints. It will be interesting to see if future developments in autologous 
ES cell creation [ 76 ] and refi nements in differentiation and purifi cation protocols 
will change these perspectives.  
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6.1.7     Induced Pluripotent Stem Cells 

 In 2006, Takahashi and Yamanaka reported that adult fi broblasts could be repro-
grammed to become  induced pluripotent stem (iPS) cells   [ 87 ]. By forced expression 
of  Oct3/4 ,  Sox2 ,  c-Myc , and  Klf4 , adult mouse fi broblasts became competent for 
teratoma formation and differentiation into all three germ layers. However, it was 
still not clear whether the same protocol could be used with human cells. The fol-
lowing year, the same group reported that  iPS cells   could be generated using human 
fi broblasts [ 88 ]. This was a landmark development in regenerative medicine because 
it indicated that dispensable autologous adult donor tissue could be used to poten-
tially regenerate any tissue, including the heart. 

 Although iPS cells theoretically should avoid complications due to immune rejec-
tion when using reprogrammed autologous cells, some evidence has suggested oth-
erwise [ 89 ]. Furthermore, the tumorigenic risk of retrovirus-reprogrammed cells has 
led others to pursue chemical or protein-mediated derivation of reprogrammed cells 
[ 90 ,  91 ]. Still, the pluripotency of iPS  cells      necessitates a better understanding of 
differentiation and the development of robust progenitor purifi cation  before   clinical 
applications can safely use iPS cells. Nonetheless, iPS cells have become an invalu-
able research tool and will continue to change the face of regenerative research.  

6.1.8      Direct Reprogramming   

 The discovery of iPS cell reprogramming and the risk of teratoma/tumor formation from 
the use of pluripotent stem cells quickly led others to pursue alternative approaches to 
cellular reprogramming. Related approaches were then used to directly reprogram fi bro-
blasts into induced cardiomyocyte-like (iCM) cells without a pluripotent intermediate. 
The motivation for this type of reprogramming lies in the abundance of fi broblasts in the 
infarcted myocardium that could serve as a source of new cardiomyocytes. A key obser-
vation that led to the discovery of  direct reprogramming   approaches was the recognition 
that several core transcription factors (GATA4, HAND2, MEF2C, MESP1, NKX2-5, 
and TBX5) play a major role in heart development and differentiation. In 2010, a subset 
of these factors, GMT (GATA4, MEF2C, and TBX5), was used to directly reprogram 
mouse cardiac and dermal fi broblasts into iCM cells in vitro [ 92 ]. Subsequently, in vivo 
reprogramming was achieved with either GMT or GHMT (GMT + HAND2), yielding 
improved cardiac function after myocardial infarction in mice [ 93 ,  94 ]. Co-injection of 
thymosin β4 with GMT reprogramming improved myocardial function after MI [ 93 , 
 95 ]. Ding and colleagues showed that small molecules SCPF (SB431542, CHIR99021, 
parnate, and forskolin) and Oct4 alone could achieve direct reprogramming in vitro [ 96 ]. 
Alternative reprogramming formulations have since been developed, including a 
microRNA cocktail that effectively converts adult cardiac fi broblasts [ 97 ]. Importantly, 
Olson and colleagues reported a cardiac reprogramming cocktail that works in human 
cells [ 98 ]. Recently, it was shown that Akt1/protein kinase B enhances GHMT conver-
sion effi ciency and iCM maturity, including increased polynucleation [ 99 ]. 
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 In contrast to iPS  cells  ,  direct reprogramming   offers a source of cardiomyocyte 
replacement that bypasses the teratoma-competent pluripotent stage. However, 
more effi cient methods to convert and target cardiac fi broblasts need to be devel-
oped to move forward in the clinic [ 100 ]. In addition, the use of safe vectors or 
chemical approaches for reprogramming factors would expedite clinical utility of 
direct reprogramming [ 96 ,  100 ]. Furthermore, despite its promising direction, the 
tradeoff of reprogramming fi broblasts into cardiomyocytes must still be critically 
evaluated with respect to the loss of fi broblast function in the failing heart [ 101 ]. 
Perhaps the recent discovery of expandable induced cardiomyocyte-like progeni-
tors [ 102 ] will lead to similar strategies that can address concerns of a fi broblast- 
cardiomycote tradeoff for in vivo conversion.  

6.1.9     Dedifferentiated Adult Cardiomyocytes 

 Dedifferentiation of adult  cardiomyocytes   can be seen through the re-expression of 
fetal gene programs in heart failure [ 12 ]. Thus, it should not be surprising that adult 
mammalian cardiomyocytes can dedifferentiate to some degree in culture [ 103 ,  104 ]. 
Still, evidence for true adult cardiomyocyte cell division, even in the far- removed 
in vitro environment, is scarce. This suggests that despite varying degrees of dediffer-
entiation of adult cardiomyocytes in vitro and in vivo, there may exist an inherent 
block to actually complete cell division. This idea is further supported by the rarity of 
cardiomyocyte-derived cancers. Nevertheless, rare examples of signifi cantly prolifer-
ating adult mammalian cardiomyocytes have been reported, such as rat cardiomyo-
cytes showing high levels of bromodeoxyuridine (BrdU), Ki67 and phosphohistone 3 
(PH3) staining in vitro [ 104 ]. Recently, the dedifferentiation process of these cultured 
myocytes was shown to be regulated by epigenomic reprogramming [ 105 ]. 

 Fascinatingly, explanted cardiac tissue, cultured under non-adhesive conditions, 
has been shown to recapitulate a stem cell-like niche that apparently contributes to 
myocardial repair [ 106 ]. The cell preparations  derived   from such cultures, deemed 
cardiosphere-derived cells (CDCs) are now being evaluated for the treatment of 
heart failure in humans. Phase I clinical trials have shown positive results with an 
increase in viable mass and a reduction in scar size [ 107 ,  108 ]. Interestingly, it was 
recently shown that exosomes from CDCs may help mediate their regenerative 
effects [ 109 ]. It will be interesting to see how ongoing clinical trials could poten-
tially improve patient outcome [ 110 ].  

6.1.10     Stimulation of Adult Cardiomyocyte Proliferation 

 The induction of  cardiomyocyte proliferation   through cell cycle re-entry and true 
cell division has been a heavily sought goal of research, with the ultimate goal of 
adult human heart regeneration through the expansion and replenishment of 
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endogenous cardiomyocytes. Numerous reports have demonstrated induced re-entry 
into S-phase by adult mammalian cardiomyocytes, for example by cell cycle activa-
tors Cyclin A2 [ 111 ] and E2F [ 112 ]. Although cytokinetic fi gures have been observed, 
robust cardiomyocyte cell division has been diffi cult to achieve. Immortalization 
with SV40TAg indicated that it is possible to induce persistent cell  division   in adult 
rat ventricular myocytes [ 113 ]. However, it is unclear what percentage of adult car-
diomyocytes have the capacity to divide without apoptosis even under oncogenic 
conditions. Since the risk of tumorigenesis precludes serious consideration of 
SV40Tag in the clinic, the search for regulated stimulation of cardiomyocyte prolif-
eration continues. Various approaches have since been used to increase cardiomyo-
cyte proliferation and enhance MI repair, such as those involving miRNAs [ 114 – 116 ] 
and neuregulin [ 117 ,  118 ] signaling. The Hippo pathway has recently become an 
intense subject of investigation in heart regeneration due to its role in organ size 
control [ 119 ]. Modulation of the Hippo pathway has been shown to extend the devel-
opmental window of cardiomyocyte proliferation and offer modest improvements 
when administered after MI in several reports [ 120 – 122 ]. Despite promising results 
from many of these studies, the major cell cycle blocks in adult  mammalian   cardio-
myocytes are largely not well understood. Furthermore, defi nitive regeneration in 
adult mammals is still an active pursuit with room for improvement.  

6.1.11      Tissue Mechanics   

 As mentioned earlier, mechanical stiffness has been associated with reduced ventricular 
function and progressive heart failure. Recombinant elastin production by transduced 
endothelial cell transplants reduced infarct size and improved cardiac function after 
myocardial infarction in rats [ 123 ]. This result corroborates observations of progressive 
heart malfunction as a result of mechanically mediated myofi broblast conversion and 
runaway fi brosis accompanied by cardiomyocyte cell death (reviewed in [ 124 ]). Tissue 
mechanics has been shown to be important in several aspects of cardiomyocyte biology, 
such as contractility [ 125 ], development [ 126 – 128 ], differentiation [ 129 ], and matura-
tion [ 130 ]. Recently, a collagen matrix patch containing FSTL1 was used to promote 
myocardial repair in a porcine myocardial infarction model [ 131 ]. It was found that 
therapeutic effect was  infl uenced   not only by the location of FSTL1 secretion, but also 
by the elasticity of the collagen patch. Thus, it is becoming increasingly clear that tis-
sue/matrix mechanics plays an important role in cardiac disease and remodeling and 
should be carefully considered in future efforts to induce heart regeneration.  

6.1.12     Engraftment 

  Engraftment   of exogenous cells into the heart has been a challenging hurdle to treat 
heart disease via cellular approaches. The dynamic mechanical demands of the 
human heart, forcefully pumping at approximately 1 Hz, likely pose a 
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thermodynamic barrier to cell attachment and integration within the dense extracel-
lular matrix. Not surprisingly, there may be an age-dependence on the success of 
donor cell engraftment, as shown by higher engraftment of fetal and neonatal rat 
cardiomyocytes into injured and non-injured adult rat hearts when compared to adult 
cardiomyocyte engraftment [ 132 ]. Despite a higher rate of engraftment for younger 
donor tissue,  engraftment   cell survival is typically very low, even for stem and pro-
genitor cell grafts [ 133 ]. Nevertheless, an enormous body of work describes various 
attempts to achieve therapeutic benefi t from exogenous cell therapy in heart injury 
models, as reviewed above. Concurrent developments are underway to increase cell 
engraftment in the heart and other tissues, including cell adhesive matrices [ 134 , 
 135 ] as well as cell pretreatment to increase cardiac homing (reviewed in [ 136 ]).   

6.2     Conclusions 

 The fi eld of regenerative  biology   has made enormous progress in understanding 
some of the  species   differences in cardiac regeneration and in the discovery of sev-
eral therapeutic strategies that have shown some effect on mitigating the effects of 
human heart failure. However, the ultimate therapeutic endpoint is still out of reach, 
and further work will be required to obtain a better basic understanding of myocar-
dial biology, including the molecular nature of adult cardiomyocyte cell cycle block, 
the role of tissue mechanics in heart disease, and the interplay between fi brosis and 
cardiomyocyte health. Exciting clinical and preclinical developments in cellular and 
molecular therapies utilizing cardiospheres or miRNA and Hippo signaling could 
be revealing in the oncoming years. Still, it will be crucial to continue the pursuit of 
basic discovery in cardiomyocyte biology and the refi nement of drug, gene, and cell 
delivery approaches to maximize progress toward human heart regeneration.     
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