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Preface

In the past decade, we have witnessed tremendous growth in biomedical data
generation and substantial improvement of computational capacities (both hardware
and computational methods) that can be used to handle these data. As a result, these
“Big Data” provide great opportunities to health informatics and healthcare in
general. In particular, the available data and the data-driven approach have started
to empower precision medicine, which provides personalized disease treatment and
prevention by taking into account individual variability in genes, environment, and
lifestyle. On the other hand, the huge amount of the data and how to use these data
raise unparalleled challenges to data scientists and informatics researchers. It is
highly nontrivial to provide useful computer-aided analyses of heterogeneous
biomedical datasets accumulated in various databases and electronic health records
(EHRs). The biomedical data are notorious for its diversified scales, dimensions and
volumes, and require interdisciplinary technologies for visual illustration and digital
characterization. Various computer programs and servers have been developed for
these purposes. But how to choose and use them are often difficult, especially for
beginners. In addition, integrating different data and tools together to assist medical
diagnosis and treatment is even more challenging.

A number of edited books have been published to discuss different aspects of
health informatics data analysis. However, these books typically focus more on
individual research. The authors of each chapter often emphasize their own
methods. There is lack of comprehensive overview for the field, and hence the
existing books are often difficult for beginners. This book is an attempt to sys-
tematically review the computational methods and tools for different aspects of
health informatics data analyses. We have designed this handbook to comprehen-
sively cover major topics in the field, as well as to provide concrete examples. Each
chapter provides the detailed review of the state-of-the-art computer programs and
an example procedure of data analysis and data fusion for each of 13 important
biomedical questions. By following the step-by-step procedure, you will be
exploring the biomedical questions with various programs and servers like a pro.
Each chapter in the book is a self-contained review of a specific topic. Hence, a
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reader does not need to read through the chapters sequentially. A brief description
of each chapter is given below.

Chapter “ECG Annotation and Diagnosis Classification Techniques” reviews the
general techniques of ECG beat annotation and classification. It shows a prelimi-
nary study on deep learning application in ECG classification, which leads to better
results and has a high potential both for performance improvement and unsuper-
vised learning applications.

Chapter “EEG Visualization and Analysis Techniques” presents the current
status of EEG research with projected applications in the areas of health care. As an
example, it describes a method of quick prototyping an EEG headset in a
cost-effective way and with state-of-the-art technologies.

Chapter “Biomedical Imaging Informatics for Diagnostic Imaging Marker
Selection” discusses challenges and techniques of biomedical imaging informatics
in the context of imaging marker extraction. In particular, it focuses on how to
regulate image quality, extract image features, select useful features, and validate
them.

Chapter “Big Health Data Mining” demonstrates different data levels involved in
health informatics and introduces some general data mining approaches. An
example case study is illustrated for mining long-term EHR data in epidemiological
studies.

Chapter “Computational Infrastructure for Telehealth” introduces telehealth
systems and their computational architecture, as well as challenges associated with
creation of the ‘complete-loop’ solution. It also includes a practical use case
describing an application for monitoring patients with hypertension.

Chapter “Healthcare Data Mining, Association Rule Mining, and Applications”
introduces popular data mining algorithms and their applications in health care. It
focuses on association rule mining that can provide a more flexible solution for
personalized and evidence-based clinical decision support.

Chapter “Computational Methods for Mass Spectrometry Imaging: Challenges,
Progress, and Opportunities” examines current and emerging methods for analysis
of mass spectrometry imaging (MSI) data. It highlights associated challenges and
opportunities in computational research for MSI, especially in proteomics, lipi-
domics, and metabolomics with spatially resolved molecular information.

Chapter “Identification and Functional Annotation of lncRNAs in Human
Disease” describes the current bioinformatics methods to identify long noncoding
RNAs (lncRNAS) and annotate their functions in mammal. It also provides several
ways to further analyze the interactions between lncRNAs and targets, such as
miRNAs and protein coding genes.

Chapter “Metabolomics Characterization of Human Diseases” summarizes
popular bioinformatics analysis tools for characterizing human diseases based on
their metabolomics profiles. Pathway analysis using metabolite profiles and disease
classification using metabolite biomarkers are presented as two examples.

Chapter “Metagenomics for Monitoring Environmental Biodiversity:
Challenges, Progress, and Opportunities” gives an overview of metagenomics,
with particular emphasis on the steps involved in a typical sequence-based
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metagenome project. It describes and discusses sample processing, sequencing
technology, assembly, binning, annotation, experimental design, statistical analysis,
and data storage and sharing.

Chapter “Global Nonlinear Fitness Function for Protein Structures” examines
the problem of constructing fitness landscape of proteins for generating amino acid
sequences that would fold into a structural fold for protein sequence design. It
introduces two geometric views and proposes a formulation using mixture of
nonlinear Gaussian kernel functions.

Chapter “Clinical Assessment of Disease Risk Factors Using SNP Data and
Bayesian Methods” reviews new statistical methods based on Bayesian modeling,
Bayesian variable partitioning, and Bayesian graphs and networks. As an example,
it outlines how to use Bayesian approaches in clinical applications to perform
epistasis analysis while accounting for the block-type genome structure.

Chapter “Imaging Genetics: Information Fusion and Association Techniques
between Biomedical Images and Genetic Factors” covers recent studies of correl-
ative and association analysis of medical imaging data and high-throughput
genomic data. It also provides an example of parallel independent component
analysis in an imaging genetic study of schizophrenia.

We have selected these topics carefully so that the book would be useful to a
broad readership, including students, postdoctoral fellows, faculty and professional
practitioners in bioinformatics, medical informatics, and other biomedical studies.
We expect that the book can be used as a reference for upper undergraduate-level or
beginning graduate-level bioinformatics/medical informatics courses.

We would like to thank the chapter authors for their excellent contributions to
the book. We also would like to thank all the reviewers for their helpful comments
and suggestions. This book would not have been possible without the professional
support from Springer International Publishing AG, Cham.

Columbia, USA Dong Xu
Atlanta, USA May D. Wang
Changchun, China Fengfeng Zhou
Shenzhen, China Yunpeng Cai
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Global Nonlinear Fitness Function
for Protein Structures

Yun Xu, Changyu Hu, Yang Dai and Jie Liang

Abstract We examine the problem of constructing fitness landscape of proteins for
generating amino acid sequences that would fold into an a priori determined
structural fold. Such a landscape would be useful for engineering proteins with
novel or enhanced biochemistry. It should be able to characterize the global fitness
landscape of many proteins simultaneously, and can guide the search process to
identify the correct protein sequences. We introduce two geometric views and
propose a formulation using mixture of nonlinear Gaussian kernel functions. We
aim to solve a simplified protein sequence design problem. Our goal is to distin-
guish each native sequence for a major portion of representative protein structures
from a large number of alternative decoy sequences, each a fragment from proteins
of different folds. The nonlinear fitness function developed discriminates perfectly a
set of 440 native proteins from 14 million sequence decoys, while no linear fitness
function can succeed in this task. In a blind test of unrelated proteins, the nonlinear
fitness function misclassifies only 13 native proteins out of 194. This compares
favorably with about 3–4 times more misclassifications when optimal linear func-
tions are used. To significantly reduce the complexity of the nonlinear fitness
function, we further constructed a simplified nonlinear fitness function using a
rectangular kernel with a basis set of proteins and decoys chosen a priori. The full
landscape for a large number of protein folds can be captured using only 480 native
proteins and 3200 nonprotein decoys via a finite Newton method, compared to
about 7000 proteins and decoys in the original nonlinear fitness function. A blind
test of a simplified version of sequence design was carried out to discriminate
simultaneously 428 native sequences with no significant sequence identity to any
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training proteins from 11 million challenging protein-like decoys. This simplified
fitness function correctly classified 408 native sequences, with only 20 misclassi-
fications (95% correct rate), which outperforms several other statistical linear fitness
functions and optimized linear functions. Our results further suggested that for the
task of global sequence design, the search space of protein shape and sequence can
be effectively parameterized with a relatively small number of carefully chosen
basis set of proteins and decoys. For example, the task of designing 428 selected
nonhomologous proteins can be achieved using a basis set of about 3680 proteins
and decoys. In addition, we showed that the overall landscape is not overly sen-
sitive to the specific choice of the proteins and decoys. The construction of fitness
landscape has broad implication in understanding molecular evolution, cellular
epigenetic state, and protein structures. Our results can be generalized to construct
other types of fitness landscape.

Introduction

We aim to construct a global fitness function of the protein universe based on
knowledge of protein structures. Such a fitness function can be used to study protein
evolution and to design sequences of novel proteins. For example, the fundamental
problem of protein sequence design, also called the inverse protein folding problem,
aims to identify sequences compatible with a given protein fold and incompatible to
alternative folds [11, 15, 61]. It has attracted considerable interests [7, 13, 25, 29,
30, 35–37, 42, 45, 64, 68, 70, 71, 92]. With successful design, one can engineer
novel protein molecules with improved activities or new functions. There have been
many fruitful design studies reported in the literature [1, 10, 12, 18, 41, 74].

A successful protein design strategy needs to solve two problems. First, it needs to
explore both the sequence and structure spaces and efficiently generate candidate
sequences. Second, a fitness or scoring function needs to identify sequences that are
compatible with the desired structural fold (the “design in” principle) but are
incompatible with any other competing folds (the “design out” principle) [36, 37, 92].
To achieve this, an ideal fitness function would maximize the probabilities of protein
sequences taking their native fold, and reduce the probability that these sequences
take any other fold. Because many protein sequences with low sequence identity can
adopt the same protein fold, a full-fledged design fitness function should theoretically
identify all sequences that fold into the same desired structural fold from a vast
number of sequences that do fold into alternative structures, or that do not fold.
Furthermore, an ideal fitness function should be able to characterize the properties of
fitness landscape of many proteins simultaneously. Such a fitness function would be
useful for designing novel proteins with novel functions, as well as for studying the
global evolution of protein structures and protein functions.

Several scoring functions that can be used as fitness functions for protein design
have been developed based on physical models. For redesigning protein cores,
hydrophobicity and packing specificity are the main ingredients of the scoring
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functions [12]. Van der Waals interactions and electrostatics have also been incor-
porated for protein design [36, 37]. A combination of terms including Lennard-Jones
potential, repulsion, Lazaridis–Karplus implicit solvation, approximated electro-
static interactions, and hydrogen bonds is used in an insightful computational protein
design experiment [40]. Model of solvation energy based on surface area is a key
component of several other design scoring functions [36, 37, 88].

A variety of empirical scoring functions based on known protein structures have
also been developed for coarse-grained models of proteins. In this case, proteins are
not represented in atomic details but are often represented at the residue level.
Because of the coarse-grained nature of the protein representation, these scoring
functions allow rapid exploration of the search space of the main factors important
for proteins, and can provide good initial solutions for further refinement where
models with atomistic details can be used.

Many empirical scoring functions for protein fitness were originally developed
for the purposes of protein folding and structure prediction. Because the principles
are somewhat similar, they are often used directly for protein design. One promi-
nent class of empirical scoring functions is knowledge-based scoring functions,
which are derived from statistical analysis of database of protein structures [49, 56,
65, 75]. Here the interactions between a pair of residues are estimated from its
relative frequency in database when compared with a reference state or a null
model. This approach has found many successfully applications [28, 44, 47, 49, 57,
65, 72, 73, 89]. However, there are several conceptual difficulties with this
approach. These include the neglect of chain connectivity in the reference state, as
well as the problematic implicit assumption of Boltzmann distribution [5, 76, 77].

An alternative approach for empirical scoring function is to find a set of
parameters such that the scoring functions are optimized by some criterion, e.g.,
maximized score difference between native conformation and a set of alternative (or
decoy) conformations [4, 14, 22, 50, 54, 76, 78, 84, 85]. This approach has been
shown to be effective in protein fold recognition, where native structures can be
identified from alternative conformations [54]. However, if a large number of native
protein structures are to be simultaneously discriminated against a large number of
decoy conformations, no such scoring functions can be found [78, 85].

There are three key steps in developing an effective empirical fitness or scoring
function using optimization: (1) the functional form, (2) the generation of a large set
of decoys for discrimination, and (3) the optimization techniques. The initial step of
choosing an appropriate functional form is often straightforward. Empirical pair-
wise scoring functions are usually all in the form of weighted linear sum of
interacting residue pairs. In this functional form, the weight coefficients are the
parameters of the scoring function, which are optimized for discrimination. The
same functional form is also used in statistical potential, where the weight coeffi-
cients are derived from database statistics. The optimization techniques that have
been used include perceptron learning and linear programming [78, 85]. The
objectives of optimization are often maximization of score gap between native
protein and the average of decoys, or score gap between native and decoys with
lowest score, or the z-score of the native protein [22, 24, 38, 39, 55].

Global Nonlinear Fitness Function for Protein Structures 3



Here we are concerned with the problem of constructing a global fitness function
of proteins based on solving a simplified version of the protein design problem. We
aim to develop a globally applicable scoring function for characterizing the fitness
landscape of many proteins simultaneously. We would like to identify a protein
sequence that is compatible with a given three-dimensional coarse-grained structure
from a set of protein sequences that are taken from protein structures of different
folds. We will also discuss how to proceed to develop a full-fledged fitness function
that discriminates similar and dissimilar sequences adopting the same fold against
all sequences that adopt different folds and sequences that do not fold. In this study,
we do not address the problem of how to generate candidate template structural fold
or candidate sequence by searching either the conformation space or the sequence
space.

To develop an empirical fitness function that improves discrimination of native
protein sequence, we examine an alternative formulation of a scoring function, in
the form of mixture of nonlinear Gaussian kernel functions. We first use an opti-
mization technique based on quadratic programming. Instead of maximizing the
score gap, an objective function related to bounds of expected classification errors is
optimized [8, 67, 80, 83]. Experimentation shows that the derived nonlinear
function can discriminate simultaneously 440 native proteins against 14 million
sequence decoys. In contrast, a perfect scoring function of weighted linear sum
cannot be found using the interior point solver of linear programming following
[52, 78]. We also performed blind tests for native sequence recognition. Taking 194
proteins unrelated to the 440 training set proteins, the nonlinear fitness function
achieves a success rate of 93.3%. This result compares favorably with those when
using optimal linear scoring function (80.9 and 73.7% success rate) and statistical
potential (58.2%) [4, 57, 78].

However, this nonlinear fitness function is parameterized by about 350 native
proteins and 4700 nonprotein decoys, with a rather complex form. It is computa-
tionally expensive to evaluate the fitness of a candidate sequence using this func-
tion. Although obtaining a good answer at high computational cost is acceptable for
some tasks, it is difficult to incorporate a complex function in a search algorithm. It
is also difficult to characterize globally the landscape properties of proteins using a
complex function.

To simplify the nonlinear function for characterizing the fitness landscape of
proteins, we further developed a nonlinear kernel function using a rectangular
kernel, with proteins and decoys chosen a priori via a finite Newton method. The
total number of native proteins and decoy conformations included in the function
was reduced to about 3680. In the blind test of sequence design to discriminate 428
native sequences from 11 million challenging protein-like 18 misclassified? decoy
sequences, this fitness function misclassified only 20 native sequences (correct rate
95%), which far outperforms statistical function [58] and linear optimal functions
[4, 79]. It is also comparable to the results of 18 misclassifications (correct rate
91%) using the more complex nonlinear fitness function with >5000 terms [27].

Our chapter is organized as follows. We first describe: the theory and the models
of linear and nonlinear functions, including the kernel and rectangle kernel models
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and the optimization techniques for sequence design. We then explain details of
computation. Results of training and blind tests are then presented. We conclude
with discussion and remarks.

Theory and Models

Modeling Protein Fitness Function

To model a protein computationally, we first need to describe its geometric shape
and its sequence of amino acid residues. A protein can be represented by a d-
dimensional vector c 2 R

d . For example, a vector of number count of nonbonded
contacts between different types of amino acid residues in a protein structure. In this
case, the count vector c 2 R

d; d ¼ 210 is used as the protein descriptor. Once the
structures of a protein s and its amino acid sequence a are given, the protein
description f: ðs; aÞ 7!R

d will give the d-dimensional vector c. In the case of contact
vector, f corresponds to the mapping provided by specific contact definition, e.g.,
two residues are in contact if their distance is below a specific cutoff threshold
distance.

To develop fitness functions or scoring functions that allow the identification of
sequences most compatible with a specific given coarse-grained three-dimensional
structure, we can use a model analogous to the Anfinsen experiments in protein
folding. We require that the native amino acid sequence aN mounted on the native
structure sN has the best (lowest) fitness score compared to a set D ¼ sN ; aDf g of
alternative sequences, called sequence decoys, which are taken from unrelated
proteins known to fold into a different fold when mounted on the same native
protein structure sN :

Hðf ðsN ; aNÞÞ\Hðf ðsN ; aDÞÞ for all aD 2 D:

Equivalently, the native sequence will have the highest probability to fit into the
specified native structure. This is the same principle described in [13, 45, 69].
Sometimes we can further require that the difference in fitness score must be greater
than a constant b[ 0:

Hðf ðsN ; aNÞÞþ b\Hðf ðsN ; aDÞÞ for all ðsD; aNÞ 2 D:

A widely used functional form for H is the weighted linear sum of pairwise
contacts [49, 56, 65, 75, 78, 84]:

Hðf ðs; aÞÞ ¼ HðcÞ ¼ w � c; ð1Þ

Global Nonlinear Fitness Function for Protein Structures 5



where “�” denotes inner product of vectors. As soon as the weight vector w is
specified, the scoring function is fully defined. For such a linear fitness function, the
basic requirement is then

w � ðcN � cDÞ\0;

or

w � ðcN � cDÞþ b\0; ð2Þ

if we require that the difference in fitness between a native protein and a decoy must
be greater than a real value b. An ideal function therefore would assign the value
“−1” for native structure/sequence, and the value “+1” for decoys.

Two Geometric Views of Linear Protein Potentials

There is a natural geometric view of the inequality requirement for weighted linear
sum functions. A useful observation is that each of the inequalities divides the space
of Rd into two halfs separated by a hyperplane (Fig. 1a). The hyperplane of Eq. (2)
is defined by the normal vector ðcN � cDÞ and its distance b=jjcN � cDjj from the
origin. The weight vector w must be located in the half-space opposite to the
direction of the normal vector ðcN � cDÞ. This half-space can be written as
w � ðcN � cDÞþ b\0. When there are many inequalities to be satisfied simultane-
ously, the intersection of the half-spaces forms a convex polyhedron [16]. If the
weight vector is located in the polyhedron, all the inequalities are satisfied. Fitness
functions with such a weight vector w can discriminate the native protein sequence
from the set of all decoys. This is illustrated in Fig. 1a for a two-dimensional toy
example, where each straight line represents an inequality w � ðcN � cDÞþ b\0 that
the scoring function must satisfy.

For each native protein i, there is one convex polyhedronPi formed by the set of
inequalities associated with its decoys. If a scoring function can discriminate
simultaneously n native proteins from a union of sets of sequence decoys, the
weight vector w must be located in a smaller convex polyhedron P that is the
intersection of the n convex polyhedra:

w 2 P ¼
\n
i¼1

Pi:

There is yet another geometric view of the same inequality requirements. If we
now regard ðcN � cDÞ as a point in R

d , the relationship w � ðcN � cDÞþ b\0 for all
sequence decoys and native proteins requires that all points fcN � cDg are located
on one side of a different hyperplane, which is defined by its normal vector w and
its distance b=jjwjj to the origin (Fig. 1b). Such a hyperplane exists if the origin is
not contained within the convex hull of the set of points fcN � cDg (see appendix of
Ref. [27] for a proof).
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Fig. 1 Geometric views of the inequality requirement for protein scoring function. Here we use a
two-dimensional toy example for illustration. a In the first geometric view, the space R

2 of
w ¼ ðw1;w2Þ is divided into two half-spaces by an inequality requirement, represented as a
hyperplane w � ðcN � cDÞþ b\0. The hyperplane, which is a line in R

2, is defined by the normal
vector ðcN � cDÞ, and its distance b=jjcN � cDjj from the origin. In this figure, this distance is set to
1.0. The normal vector is represented by a short line segment whose direction points away from
the straight line. A feasible weight vector w is located in the half-space opposite to the direction of
the normal vector ðcN � cDÞ. With the given set of inequalities represented by the lines, any weight
vector w located in the shaped polygon can satisfy all inequality requirements and provides a linear
scoring function that has perfect discrimination. b A second geometric view of the inequality
requirement for linear protein scoring function. The space R

2 of x ¼ ðx1; x2Þ, where
x � ðcN � cDÞ, is divided into two half-spaces by the hyperplane w � ðcN � cDÞþ b\0. Here
the hyperplane is defined by the normal vector w and its distance b=jjwjj from the origin. All points
fcN � cDg are located on one side of the hyperplane away from the origin, therefore satisfying the
inequality requirement. That is, a linear scoring function w such as the one represented by the
straight line in this figure can have perfect discrimination. c In the second toy problem, a set of
inequalities are represented by a set of straight lines according to the first geometric view. A subset
of the inequalities require that the weight vector w to be located in the shaded convex polygon on
the left, but another subset of inequalities require that w to be located in the dashed convex polygon
on the top. Since these two polygons do not intersect, there is no weight vector w that can satisfy
all inequality requirements. That is, no linear scoring function can classify these decoys from
native protein. d According to the second geometric view, no hyperplane can separate all points
fcN � cDg from the origin. But a nonlinear curve formed by a mixture of Gaussian kernels can
have perfect separation of all vectors fcN � cDg from the origin: It has perfect discrimination
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The second geometric view looks very different from the first one. However, the
second view is dual and mathematically equivalent to the first geometric view. In the
first view, a point cN � cD determined by the pair of native structure–sequence
cN ¼ ðsN ; aNÞ and decoy structure–sequence cD ¼ ðsN ; aDÞ corresponds to a
hyperplane representing an inequality. A solution weight vector w corresponds to a
point located in the final convex polyhedron. In the second view, each native–decoy
pair is represented as a point cN � cD in R

d , and the solution weight vector w is
represented by a hyperplane separating all the pointsC ¼ fcN � cDg from the origin.

Optimal Linear Fitness Function

There are many optimization methods for finding the weight vector w of linear
function. The Rosenblatt perceptron method works by iteratively updating an initial
weight vector w0 [54, 84]. Starting with a random vector, e.g., w0 ¼ 0, one tests
each native protein and its decoy structure. Whenever the relationship w � ðcN �
cDÞþ b\0 is violated, one updates w by adding to it a scaled violating vector
g � ðcN � cDÞ. The final weight vector is therefore a linear combination of protein
and decoy count vectors:

w ¼
X

gðcN � cDÞ ¼
X
N2N

aNcN �
X
D2D

aDcD: ð3Þ

Here N is the set of native proteins, and D is the set of decoys. The set of
coefficients faNg[ faDg gives a dual form representation of the weight vector w,
which is an expansion of the training examples including both native and decoy
structures.

According to the first geometric view, if the final convex polyhedron P is
nonempty, there can be an infinite number of choices of w, all with perfect dis-
crimination. But how do we find a weight vector w that is optimal? This depends on
the criterion for optimality. The weight vector w that minimizes the variance of
score gaps between decoys and natives, argw min 1

jDj
P

w � ðcN � cDÞð Þ2�
1
jDj

P
D w � ðcN � cDÞð Þ

h i2
; is used in Ref. [78]. Other criteria include minimizing

the Z-score of a large set of native proteins, minimizing the Z-score of the native
protein and an ensemble of decoys [9, 55], maximizing the ratio R between the
width of the distribution of the score, and the average score difference between the
native state and the unfolded ones [22, 23]. Effective linear sum scoring functions
were obtained using these optimization techniques [14, 19, 22, 78, 84].

Here we describe yet another optimality criterion according to the second geo-
metric view.We can choose the hyperplane ðw; bÞ that separates the points fcN � cDg
with the largest distance to the origin. Intuitively, we want to characterize proteins
with a region defined by the training set points fcN � cDg. It is desirable to define this
region such that a new unseen point drawn from the same protein distribution as
fcN � cDg will have a high probability to fall within the defined region. Nonprotein
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points following a different distribution, which is assumed to be centered around the
origin when no a priori information is available, will have a high probability to fall
outside the defined region. In this case, we are more interested in modeling the region
or support of the distribution of protein data, rather than estimating its density dis-
tribution function. For linear scoring function, regions are half-spaces defined by
hyperplanes, and the optimal hyperplane ðw; bÞ is then the one with maximal distance
to the origin. This is related to the novelty detection problem and single-class support
vector machine studied in statistical learning theory [67, 82, 83]. In our case, any
nonprotein points will need to be detected as outliers from the protein distribution
characterized by fcN � cDg. Among all linear functions derived from the same set of
native proteins and decoys, an optimal weight vector w is likely to have the least
amount of mislabeling. This optimal weight vector w can be found by solving the
following quadratic programming problem:

Minimize 1
2 kwk2 ð4Þ

subject to w � ðcN � cDÞþ b\0 for all N 2 N and D 2 D: ð5Þ

The solution maximizes the distance b=jjwjj of the plane ðw; bÞ to the origin.

Relation to Support Vector Machines

There may exist multiple w′s if P is not empty. We can use the formulation of a
support vector machine to find a w. Let all vectors cN 2 R

d form a native training
set and all vectors cD 2 R

d form a decoy training set. Each vector in the native
training set is labeled as −1 and each vector in the decoy training set is labeled as
+1. Then solving the following support vector machine problem will provide an
optimal solution to inequalities (7):

Minimize 1
2 kwk2

subject to w � cN þ b� � 1
w � cD þ b� 1:

ð6Þ

Note that a solution of the above problem satisfies the system of inequalities (7)
below, since subtracting the second inequality from the first inequality in the
constraint conditions of (6) will give us w � ðcN � cDÞ� � 2\ 0.

w � ðcN � cDÞ\0: ð7Þ

Equation (6) is related to the standard support vector machine formulation [8, 67,
80].
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Nonlinear Scoring Function

However, it is possible that the weight vector w does not exist, i.e., the final convex
polyhedron P ¼ Tn

i¼1 Pi may be an empty set. First, for a specific native protein i,
there may be severe restriction from some inequality constraints, which makes Pi

an empty set. For example, some decoys are very difficult to discriminate due to
perhaps deficiency in protein representation. It would be impossible to adjust the
weight vector so the native protein has a lower score than the sequence decoy.
Figure 1c shows a set of inequalities represented by straight lines according to the
first geometric view. A subset of inequalities (black lines) require that the weight
vector w to be located in the shaded convex polygon on the left, but another subset
of inequalities (green lines) require that w to be located in the dashed convex
polygon on the top. Since these two polygons do not intersect, there is no weight
vector that can satisfy all these inequality requirements. That is, no linear scoring
function can classify all decoys from the native protein. According to the second
geometric view (Fig. 1d), no hyperplane can separate all points (black and green)
fcN � cDg from the origin.

Second, even if a weight vector w can be found for each native protein, i.e., w is
contained in a nonempty polyhedron, it is still possible that the intersection of
n polyhedra is an empty set, i.e., no weight vector can be found that can dis-
criminate all native proteins against the decoys simultaneously. Computationally,
the question whether a solution weight vector w exists can be answered unam-
biguously in polynomial time [33]. When the number of decoys reaches millions,
no such a weight vector can be found in a computational study [27].

A fundamental reason for this failure is that the functional form of linear sum is
too simplistic. Additional descriptors of protein structures such as higher order
interactions (e.g., three-body or four-body contacts) should help [6, 46, 59, 93].

Here we take an alternative approach. We still limit ourselves to pairwise contact
interactions, although it can be naturally extended to include three or four body
interactions [46]. We introduce a nonlinear fitness function analogous to the dual
form of the linear function in Eq. (3), which takes the following form:

Hðf ðs; aÞÞ ¼ HðcÞ ¼
X
D2D

aDKðc; cDÞ �
X
N2N

aNKðc; cNÞ; ð8Þ

where aD � 0 and aN � 0 are parameters of the scoring function to be determined,
and cD ¼ f ðsN ; aDÞ from the set of decoys D ¼ fðsN ; aDÞg is the contact vector of a
sequence decoy D mounted on a native protein structure sN , and cN ¼ f ðsN ; aNÞ
from the set of native training proteins N ¼ fðsN ; aNÞg is the contact vector of a
native sequence aN mounted on its native structure sN . The difference of this
functional form from linear function in Eq. (3) is that a kernel function Kðx; yÞ
replaces the linear term. A convenient kernel function K is
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Kðci; cjÞ ¼ e�c ci�cjk k2

for any vectors ci and cj 2 N[D; ð9Þ

where c is a constant. The fitness function HðcÞ can be written compactly as

HðcÞ ¼
X
D2D

aDe
�c c�cDk k2 �

X
N2N

aNe
�c c�cNk k2 þ b ¼ Kðc;AÞDsaþ b; ð10Þ

where A is the matrix of training data: A ¼ ðcT1 ; . . .; cTDj j; c
T
Dj j þ 1; . . .; c

T
Dj j þ Nj jÞT , and

the entry Kðc; cjÞ of Kðc;AÞ is e�cjjc�cjjj2 . Ds is the diagonal matrix with +1 and −1
along its diagonal representing the membership class of each point Ai ¼ cTi . Here a
is the coefficient vector: a ¼ ða1; . . .; a Dj j; a Dj j þ 1; . . .; a Dj j þNjÞT .

Intuitively, the fitness landscape has smooth Gaussian hills of height aD centered
on location cD of decoy contact vector D 2 D, and has smooth Gaussian cones of
depth aN centered on the location cN of native contact vector N 2 N. Ideally, the
value of the fitness function will be −1 for contact vectors cN of native proteins, and
will be +1 for contact vectors cD of decoys.

Optimal Nonlinear Fitness Function

To obtain such a nonlinear function, our goal is to find a set of parameters faD; aNg
such that HðcÞ has fitness value close to −1 for native proteins, and has fitness
values close to +1 for decoys. There are many different choices of faD; aNg. We use
an optimality criterion developed in statistical learning theory [8, 66, 81]. First, we
note that we have implicitly mapped each protein and decoy from R

d ; d ¼ 210 to
another high-dimensional space where the scalar product of a pair of mapped points
can be efficiently calculated by the kernel function Kð:; :Þ. Second, we find the
hyperplane of the largest margin distance separating proteins and decoys in the
space transformed by the nonlinear kernel [8, 66, 81, 83]. That is, we search for a
hyperplane with equal and maximal distance to the closest native protein sequence
and the closest decoys. Such a hyperplane has good performance in discrimination
[81]. It can be found by using support vector machine to obtain the parameters faDg
and faNg from solving the following primal form of quadratic programming
problem:

min
a2Rm

þ ;b2;R n2Rm

C
2 e � nþ 1

2 a � a
subject to Ds K A;Að ÞDsaþ beð Þþ n� e

n� 0;

ð11Þ

where m is the total number of training points: m ¼ Dj j þ Nj j, C is a regularizing
constant that limits the influence of each misclassified conformation [8, 66, 81, 83],
and the m� m diagonal matrix of signs Ds with +1 or −1 along its diagonal
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indicating the membership of each point Ai in the classes +1 or −1; and e is an m-
vector with 1 at each entry. The variable ni is a measurement of error for each input
vector with respect to the solution: ni ¼ 1þ yiHðciÞ, where yi = −1 if i is a native
protein, and yi = +1 if i is a decoy.

Rectangle Kernel and Reduced Support Vector Machine
(RSVM)

The use of nonlinear kernels on large datasets typically demands a prohibiting size
of the computer memory in solving the potentially enormous unconstrained opti-
mization problem. Moreover, the representation of the landscape surface using a
large data set requires costly storage and computing time for the evaluation of a new
unseen contact vector c. To overcome these difficulties, the reduced support vector
machines (RSVM) developed by Lee and Mangasarian [43] use a very small ran-
dom subset of the training set to build a rectangular kernel matrix, instead of the use
of the conventional m� m kernel matrix KðA;AÞ in Eq. (11) for a training set of
m examples. This model can achieve about 10% improvement on test accuracy over
conventional support vector machine with random data sets of sizes between 1 and
5% of the original data [43]. The small subset can be regarded as a basis set in our
study. Suppose that the number of contact vectors in our basis set is �m, with
�m � m. We denote �A as an �m� d matrix, and each contact vector from the basis set
is represented by a row vector of �A. The resulting kernel matrix KðA; �AÞ from A and
�A has size m� �m. Each entry of this rectangular kernel matrix is calculated by
Kðci;�cjÞ, where cTi and �cTj are rows from A and �A, respectively. The RSVM is
formulated as the following quadratic program:

min
�a2R�m

þ ;b2R;n2R�m

C
2 n � nþ 1

2 ð�a � �aþ b2Þ
subject to DsðKðA; �AÞ�Ds�aþ beÞþ n� e

n� 0;

ð12Þ

where �Ds is the �m� �m diagonal matrix with +1 or −1 along its diagonal, indicating
the membership of each point �Ai in the classes +1 or −1; and e is an m-vector with 1
at each entry. As shown in [43], the zero level set surface of the fitness function is
given by

HðcÞ ¼ Kðc; �AÞ�Ds�aþ b ¼
X
cD2�A

�aDe
�ckc�cDk2 �

X
cN2�A

�aNe
�ckc�cNk2 þ b ¼ 0; ð13Þ

where ð�a; bÞ 2 R
�mþ 1 is the unique solution to (12). This surface discriminates

native proteins against decoys. Besides the rectangular kernel matrix, the use of
2-norm for the error n and an extra term b2 in the objective function of (12)
distinguishes this formulation from conventional support vector machine.
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Smooth Newton Method

In order to solve Eq. (12) efficiently, an equivalent unconstrained nonlinear pro-
gram based on the implicit Lagrangian formulation of (12) was proposed in [20],
which can be solved using a fast Newton method. We modified the implicit
Lagrangian formulation and obtain the unconstrained nonlinear program for the
imbalanced RSVM in Eq. (12). The Lagrangian dual of (12) is now [51]:

min
�a2R�m

þ

1
2
�a � ðQþ �DsðKðA; �AÞTKðA; �AÞþ eeT �DsÞ�a� e � �a; ð14Þ

where Q ¼ I=C 2 R
�m��m, and I 2 R

�m��m is a unit matrix. Note that R�m
þ is the set of

nonnegative �m-vectors. Following [20], an equivalent unconstrained piecewise
quadratic minimization problem of the above positively constrained optimization
can be derived as follows:

min
�a2R�m

Lð�aÞ
¼ min

�a2R�m

1
2 �a � Q�a� e � �aþ 1

2 bðkð�b�aþQ�a� eÞþ k2 � kQ�a� ek2Þ: ð15Þ

Here, b is a sufficiently large but bounded positive parameter to ensure that the
matrix bI � Q is positive definite, where the plus function ð�Þþ replaces negative
components of a vector by zeros. This unconstrained piecewise quadratic problem
can be solved by the Newton method in a finite number of steps [20]. The Newton
method requires the information of the gradient vector 5Lð�aÞ 2 R

�m and the gen-
eralized Hessian @2Lð�aÞ 2 R

�m��m of Lð�aÞ at each iteration. They can be calculated
using the following formula [20]:

5Lð�aÞ ¼ ðQ�a� eÞþ 1
b ðQ� bIÞððQ� bIÞ � eÞþ � 1

bQðQ�a� eÞ
¼ ðbI�QÞ

b ððQ�a� eÞ � ððQ� bIÞ�a� eÞþ Þ;
ð16Þ

and

@2Lð�aÞ ¼ bI � Q
b

ðQþ diagððQ� bIÞ�a� eÞ	ðbI � QÞÞ; ð17Þ

where diagð�Þ denotes a diagonal matrix and ðaÞ	 denotes the step function, i.e.,
ðaiÞ	 ¼ 1 if ai [ 0; and ðaiÞ	 ¼ 0 if ai � 0.

The main step of the Newton method is to solve iteratively the system of linear
equations

�5 Lð�aiÞþ @2Lð�aiÞð�aiþ 1 � �aiÞ ¼ 0; ð18Þ

for the unknown vector �aiþ 1 with given �ai.
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We present below the algorithm, whose convergence was proved in [20]. We
denote @2Lð�aiÞ�1 as the inverse of the Hessian @2Lð�aiÞ.

Start with any �a0 2 R
�m. For i ¼ 0; 1. . .:

(i) Stop if 5Lð�ai � @2Lð�aiÞ�1 5 Lð�aiÞÞ ¼ 0.
(ii) �aiþ 1 ¼ �ai � ki@2Lð�aiÞ�1 5 Lð�aiÞ ¼ �ai þ kidi, where ki ¼ maxf1; 12 ; 14 ; � � �g is

the Armijo step size [60] such that

Lð�aiÞ � Lð�ai þ kidiÞ� � dki 5 Lð�aiÞ � di; ð19Þ

for some d 2 ð0; 12Þ, and di is the Newton direction

di ¼ �aiþ 1 � �ai ¼ �@2Lð�aiÞ�1 5 Lð�aiÞ; ð20Þ

obtained by solving (18).

(iii) i ¼ iþ 1. Go to (i).

Computational Procedures

Protein Data

Protein Data for Linear and Full Nonlinear Fitness Function.

Following reference [86], we use protein structures contained in the WHATIF data-
base [21] in this study. WHATIF database contains a representative set of
sequence-unique protein structures generated from X-ray crystallography.
Structures selected for this study all have pairwise sequence identity <30%,
R-factor <0:21, and resolution <2:1 Å. This provides a good representative set of all
known protein structures.

Specifically, we use a list of 456 proteins compiled from the 1998 release
(WHATIF98) of the WHATIF database [85]. There are 192 proteins with multiple
chains in this dataset. Some of them have extensive interchain contacts. For these
proteins, it is possible that their conformations may be different if there are no
interchain contacts present. Thirteen protein chains are removed because they all
have extensive interchain contacts. We further remove three proteins because each
has >10% of residues missing with no coordinates in the Protein Data Bank file.
The remaining set of 440 proteins are then used as training set for developing
functions. Using the threading method described in section “Contact Maps and
Sequence Decoys”, we generated a set of 14,080,766 sequence decoys.
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Protein Data for Simplified Nonlinear Fitness Function

For constructing the simplified nonlinear fitness function using the rectangular
kernel, we used a list of 1515 protein chains compiled from the PISCES server [87].
Protein chains in this data set have pairwise sequence identity <20%, a resolution
� 1.6 Å, and an R-factor � 0.25. We removed incomplete proteins (i.e., those with
missing residues), and proteins with uncertain residues, as well as proteins with
fewer than 46 and more than 500 amino acids. In addition, we removed protein
chains with more than 30% extensive interchain contacts. The remaining set of
1228 proteins are then randomly divided into two sets. One set includes 800 pro-
teins and the other one includes 428 proteins. Using the sequence threading method,
we generated 36,823,837 nonprotein decoys, together with 800 native proteins as
the training set, and 11,144,381 decoy nonproteins with 428 native proteins as the
test set.

As there is a wide range of protein chain length in this dataset, we normalize the
number of contacts for each type of pairwise contact of a protein using Eq. (21) in
the study of nonlinear fitness function using rectangle kernel. This equation is
obtained from a linear regression on the relationship between the number of total
contacts and the length of the protein,

Ncontacts ¼ 3:090 � Lprotein � 76:182; ð21Þ

where Ncontacts is the number of contacts for a protein, and Lprotein is the number of
the protein residues.

Contact Maps and Sequence Decoys

Alpha Contact Maps

Because protein molecules are formed by thousands of atoms, their shapes are
complex. We use the count vector of pairwise contact interactions. Here contacts
are derived from the edge simplices of the alpha shape of a protein structure [17, 47,
48]. These edge simplices represent nearest-neighbor interactions that are in
physical contacts. They encode precisely the same contact information as a subset
of the edges in the Voronoi diagram of the protein molecule. These Voronoi edges
are shared by two interacting atoms from different residues, but intersect with the
body of the molecule modeled as the union of atom balls. We refer to references
[17, 47, 48] for further theoretical and computational details.

Generating Sequence Decoys by Threading

We use the gapless threading method to generate a large number of decoys [32, 50,
59]. We thread the sequence of a larger protein through the structure of a smaller
protein, and obtain sequence decoys by mounting a fragment of the sequence of the
large protein to the full structure of the small protein. We therefore have for each
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native protein ðsN ; aNÞ a set of sequence decoys ðsN ; aDÞ (Fig. 2). Because all native
contacts are retained in this case, sequence decoys obtained by gapless threading are
challenging.

Learning Linear Fitness Function

For comparison, we have also developed an optimal linear fitness function fol-
lowing the method and computational procedure described in reference [78]. We
apply the interior point method as implemented in BPMD package by Mészáros
[53] to search for a weight vector w. We use two different optimization criteria as
described in Ref. [78]. The first is

Identify w
subject to w � ðcN � cDÞ\e and jwij � 10;

where wi denotes the i-th component of weight vector w, and e ¼ 1� 10�6. Let
C ¼ fcN � cDg, and jCj the number of decoys. The second optimization criterion is

Minimize min 1
jCj

P
w � ðcN � cDÞð Þ2� 1

jCj
P

w � ðcN � cDÞð Þ
h i2

subject to w � ðcN � cDÞ\e:

... ... ... ...

... ... ... ...

Fig. 2 Decoy generation by gapless threading. Sequence decoys can be generated by threading
the sequence of a larger protein to the structure of an unrelated smaller protein. As an illustration,
here the sequences of different portions of the larger protein structure (top), which have different
native substructures (middle), are threaded onto the same unrelated smaller protein (bottom).
Specifically, for a small protein of length n and a large protein of length N, we first take the
subsequence from 1 to n of the larger protein and map it onto the structure of the small protein. We
then start at position 2 and take the subsequence from 2 to nþ 1. This is repeated until the last
decoy is generated by taking the subsequence from N � nþ 1 to N from the larger protein.
Altogether, we can obtain a total of N � nþ 1 decoys from this protein pair

16 Y. Xu et al.



Learning Full Nonlinear Fitness Function

We use SVMlight (http://svmlight.joachims.org/) [31] with Gaussian kernels and a
training set of 440 native proteins plus 14,080,766 decoys to obtain the optimized
parameter faN ; aDg. The regularization constant C takes the default value, which is
estimated from the training set N[D:

C ¼ jN[Dj2=
X

x2N[D

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Kðx; xÞ � 2 � Kðx; 0ÞþKð0; 0Þ

p" #2

: ð22Þ

Since we cannot load all 14 millions decoys into computer memory simulta-
neously, we use a heuristic strategy for training. Similar to the procedure reported in
[78], we first randomly selected a subset of decoys that fits into the computer
memory. Specifically, we pick every 51st decoy from the list of 14 million decoys.
This leads to an initial training set of 276,095 decoys and 440 native proteins. An
initial protein fitness function is then obtained. Next the scores for all 14 million
decoys and all 440 native proteins are evaluated. Three decoy sets were collected
based on the evaluation results: the first set contains the violating decoys which
have lower score than the native structures; the second set contains decoys with the
lowest absolute score, and the third set contains decoys that participate in HðcÞ as
identified in previous training process. The union of these three subsets of decoys is
then combined with the 440 native proteins as the training set for the next iteration
of learning. This process is repeated until the score difference to native protein for
all decoys is greater than 0.0. Using this strategy, the number of iterations typically
is between 2 and 10. During the training process, we set the cost factor j in
SVMlight to 120, which is the factor training errors on native proteins, outweighs
training errors on decoys.

The value of r2 for the Gaussian kernel Kðx; yÞ ¼ e�jjx�yjj2=2r2 is chosen by
experimentation. If the value of r2 is too large, no parameter set faN ; aDg can be
found such that the fitness scoring function can perfectly classify the 440 training
proteins and their decoys, i.e., the problem is unlearnable. If the value of r2 is too
small, the performance in blind test will deteriorate. The final design fitness
function is obtained with r2 set to 416.7.

Learning Simplified Nonlinear Fitness Function

Selection of matrix A for iterative training

We used only a subset of the 36 million decoys and native structures so they could
fit into the computer memory during training. These structures formed the data
matrix A, which was used to construct the kernel matrix KðA; �AÞ. We used a
heuristic iterative approach to construct matrices A and �A during each iteration.
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Initially, we randomly selected 10 decoys for each of the j-th native protein from
the set of decoys Dj. We have then m 
 8000 decoys for the 800 native proteins.
We further chose only 1 decoy from the selected 10 decoys for each native protein
j. These 800 decoys were combined with the 800 native proteins to form the initial
matrix A. The contact vectors of a subset of 480 native proteins (60% of the original
800 proteins) and 320 decoys (40% of the 800 selected decoys) were then randomly
chosen to form �A. An initial fitness function HðcÞ was then obtained using A and �A.
The fitness values of all 36 million decoys and the 800 native proteins were then
evaluated using HðcÞ. We further used two iterative strategies to improve upon the
fitness function HðcÞ.

[Strategy 1] In the i-th iteration, we selected the subset of misclassified decoys
fromDj associated with the j-th native protein and sorted them by their fitness value
in descending order, so the misclassified decoys with least violation, namely,
negative but smallest absolute values in HðcÞ, are on the top of the list. If there are
fewer than 10 misclassified decoys, we add top decoys that were misclassified in the
previous iteration for this native protein, if they exist, such that each native protein
has 10 decoys.

A new version of the matrix A was then constructed using these 8000 decoys and
the corresponding 800 native proteins. To obtain the updated �A, from these 8800
contact vectors, we randomly selected 480 native proteins (60%) and 3200 unpaired
decoy nonproteins (40%) to form �A.

The iterative training process was then repeated until there was no improvement
in the classification of the 36 million decoys and the 800 native proteins from the
training set. Typically, the number of iterations was about 10. In subsequent studies,
we experimented with different percentages of selected decoys, ranging from 10 to
100% to examine the effect of the size of �A on the effectiveness of the fitness
function HðcÞ.

[Strategy 2] In the i-th iteration, we selected the top 10 correctly classified
decoys sorted by their fitness value in ascending order for each native protein,
namely, those correctly classified decoy with positive but smallest absolute values
are selected. These contact vectors of 8000 selected decoys are combined with the
800 native proteins to form the new data matrix A.

To construct �A, we first selected the most challenging native proteins by taking
the top 80 correctly classified native proteins (10%) sorted by their fitness value in
descending order, namely, those that are negative but with smallest absolute values
in HðcÞ. We then randomly took 400 native proteins (50%) from the rest of the
native protein set, so altogether we have 480 native proteins (60%). Similarly, we
selected the top one decoy that is most challenging from the 10 chosen decoys in
A for each native protein, namely, the top decoy that is correctly classified with
positive but smallest value of HðcÞ. We then randomly selected three decoys for
each native protein from the remaining decoys in A to obtain 3200 decoy non-
proteins (40%). The matrix �A is then constructed from the selected 480 native
proteins and 3200 decoy nonproteins. The iterative training process was repeated
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until there was no improvement in classification of the 36 million decoys and 800
native proteins in the training set. Typically, the number of iteration was about 5.

In the subsequent studies, we evaluated our method with different choices of
challenging native proteins. The selection ranges from the top 10 to 60% most
challenging native proteins. The choice of the challenging decoys was also varied,
where we experimented with choosing the top one to the top four most challenging
decoys for each native protein, while the number randomly selected decoys varies
from three to zero.

Learning parameters

There are two important parameters: the constant c in the kernel function e�cjjci�ck2 ,
and the cost factors C, which is used during training so errors on positive examples
were adjusted to outweigh errors on negative examples. Our experimentation
showed that c ¼ 5:0� 10�5 and C ¼ 1:0� 104 were reasonable choices.

Results

Linear Fitness Functions

To search for the optimal weight vector w for the linear fitness function, we used
linear programming solver based on interior point method as implemented in
BPMD by Mészáros [53]. After generating 14,080,766 sequence design decoys for
the 440 proteins in the training set, we searched for an optimal w that can dis-
criminate native sequences from decoy sequences, namely, parameters w for
Hðs; aÞ ¼ w � c, such that w � cN\w � cD for all sequences. However, we failed to
find a feasible solution for the weight vector w. That is, no w exists capable of
discriminating perfectly 440 native sequences from the 14 million decoy sequences.
We repeated the same experiment using a larger set of 572 native proteins from
reference [78] and 28,261,307 sequence decoys. The result was also negative.

Full Nonlinear Fitness Function

We used the set of 440 native proteins and 14 million decoys to derive nonlinear
kernel fitness functions. We succeeded in finding a function in the form of Eq. (8)
that can discriminate all 440 native proteins from 14 million decoys.

Unlike statistical scoring functions where each native protein in the database
contributes to the empirical scoring function, only a subset of native proteins
contribute and have aN 6¼ 0. In addition, a small fraction of decoys also contribute
to the fitness function. Table 1 lists the details of the fitness function, including the
numbers of native proteins and decoys that participate in Eq. (8). These numbers
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represent about 50% of native proteins and \0:1% of decoys from the original
training data.

Discrimination Tests for Sequence Design Using Full Nonlinear Fitness Function.

Blind test in discriminating native proteins from decoys for an independent test set
is essential to assess the effectiveness of design fitness or scoring functions. To
construct such a test set, we first take the entries in WHATIF99 database that are not
present in WHATIF98. After eliminating proteins with chain length less than 46
residues, we obtain a set of 201 proteins. These proteins all have <30% sequence
identities with any other sequence in either the training set or the test set proteins.
Since 139 of the 201 test proteins have multiple chains, we use the same criteria
applied in training set selection to exclude 7 proteins with extensive interchain
contacts, or with >10% residues missing in the PDB files. This leaves a smaller set
of 194 test proteins. Using gapless threading, we generate a set of 3,096,019
sequence decoys from the set of 201 proteins. This is a superset of the decoy set
generated using 194 proteins.

To test design fitness functions for discriminating native proteins from sequence
decoys in both the 194 and the 201 test sets, we take the sequence a from the
conformation–sequence pair ðsN ; aÞ for a protein with the lowest score as the
predicted sequence. If it is not the native sequence aN , the discrimination failed and
the design fitness function does not work for this protein.

For comparison, we also test the discrimination results of optimal linear scoring
function taken as reported in Ref. [78], as well as the statistical potential developed
by Miyazawa and Jernigan. Here we use the contact definition reported in [78], that
is, two residues are declared to be in contact if the geometric centers of their side
chains are within a distance of 2.0–6.4 Å.

The nonlinear design fitness function capable of discriminating all of the 440
native sequences works well for the test set (Table 2). It succeeded in correctly
identifying 93.3% (181 out of 194) of native sequences in the independent test set
of 194 proteins. This compares favorably with results obtained using optimal linear

Table 1 Derivation of kernel
fitness function

Design Scoring Function

r2 ¼ 416:7

Num. of Vectors Natives 220

Decoys 1685

Range of Score
Values

Natives 0:9992� 4:598

Decoys �9:714� 0:7423

Range of Smallest Score Gap 0:2575� 11:53

Details of derivation of nonlinear kernel design scoring functions.
The numbers of native proteins and decoys with nonzero ai
entering the scoring function are listed. The range of the score
values of natives and decoys are also listed, as well as the range
of the smallest gaps between the scores of the native protein and
decoy. Details for nonlinear kernel folding scoring function are
also listed
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folding scoring function taken as reported in [78], which succeeded in identifying
80.9% (157 out of 194) of this test set. It also has better performance than optimal
linear scoring function based on calculations using parameters reported in reference
[4], which succeeded in identifying 73.7% (143 out of 194) of proteins in the test
set. The Miyazawa–Jernigan statistical potential succeeded in identifying 113
native proteins out of 194 (success rate 58.2%).

Running time

The evaluation of the nonlinear fitness function requires more computation than
linear function, but the time requirement is modest: on an AMD Athlon MP1800+
machine of 1.54 GHz clock speed with 2 GB memory, we can evaluate the fitness
function for 8130 decoys per minute.

Results of Simplified Nonlinear Fitness Function

Performance in discrimination

We used the set of 428 native proteins and 11,144,381 decoys for testing the
designed fitness function. We took the sequence a for a protein such that c ¼
f ðsN ; aÞ has the best fitness value as the predicted sequence. If it is not the native
sequence aN , then the design failed and the fitness function did not work for this
protein.

The simplified nonlinear fitness function for protein design we obtained is
capable of discriminating 796 of the 800 native sequences (Table 2). It also suc-
ceeded in correctly identifying 95% (408 out of 428) of the native sequences in the
independent test set. Results for other methods were taken from literature obtained
using much smaller and less challenging data set. Overall, the performance of our
method is better than results obtained using the optimal linear scoring function
taken as reported in [79] and in [4], which succeeded in identifying 78% (157 out of
201) and 71% (143 out of 201) of the test set, respectively. Our results are also

Table 2 Number of misclassification compared with other methods

Method Training set
800/36 M

Training set
440/14 M

Test set
428/11 M

Test set 201/3
M

Nonlinear function 4/988 NA 20/218 NA

Tobi et al. NA 192/39,583 NA 44/53,137

Bastolla et al. NA 134/47,750 NA 58/29,309

Miyazawa and
Jernigan

NA 173/229,549 NA 87/80,716

The number of misclassifications using simplified nonlinear fitness function, optimal linear scoring
function taken as reported in [4, 79], and Miyazawa–Jernigan statistical potential [58] for both
native proteins and decoys (separated by “/”) in the test set and the training set. The simplified
nonlinear function is formed using a basis set of 3680 (480 native + 3200 decoy) contact vectors
derived using Strategy 2
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better than the Miyazawa–Jernigan statistical potential [58] (success rate 58%, 113
out of 201). This performance is also comparable with the full nonlinear fitness
function, with >5000 terms [27], which succeeded with a correct rate of 91% (183
out of 201).

Effect of the size of the basis set �A using Strategy 1

The matrix �A contains both proteins and decoys from A and its size is important in
discrimination of native proteins from decoys. We examined the effects of different
sizes of �A using Strategy 1. For a data matrix A consisting of 800 native proteins
and 8000 sequence decoys derived following the procedure described earlier, we
tested different choices of �A on the performance of discrimination. With the data
matrix A, we fixed the selection of the 480 native proteins (60%) and experimented
with random selection of different numbers of decoys, ranging from 800 (10%) to
8000 (100%) to form different �As.

The results of classifying both the training set of 800 native proteins with 36
million decoys and the test set of 428 native proteins with 11 million decoys are
shown in Table 3. When 60% (480) native proteins and 100% (8000) decoys are
included, there are only 5 native proteins misclassified in the training set and 24
native proteins in the test set.

Effect of the size of the preselection of dataset using Strategy 2

We also examined the effects of different choices in constructing matrix �A using
Strategy 2. We varied our selection of the most challenging native proteins from the
top 10 to 60%, and varied selection of the most challenging decoys from the top one
to the top four decoys for each native protein. Results are shown in Table 4. We
found that the performances of the discrimination of both the training set and test set
have little changes when either native proteins selection rate is changed from 10 to
60%, or decoys selection rate is changed from the top 1 to the top 4. Overall, these
results suggest that a fitness function with good discrimination can be achieved with
about 480 native proteins and 3200 decoys, along with 400 preselected native
proteins and 800 preselected top-1 decoys. Our final fitness function used in Table 2
is constructed using a basis set of 3680 contact vectors. The average number of
iterations is about 5 using Strategy 2, which is much faster than Strategy 1.

Overall, using Strategy 2 leads to overall better performance compared to using
Strategy 1 (Table 4 vs. Table 3). That is, the fitness function formed by preselecting
the top 1 decoys and top 50% native proteins using Strategy 2 works well to
discriminating native proteins from decoys. Furthermore, our method is robust. The
overall performance using either Strategy 1 or Strategy 2 is stable when decoy
selection rate changes from 5 to 90%.

Discrimination against a different decoy set

We further examine how well decoys generated by a different approach can be
discriminated using the nonlinear fitness function. We selected 799 training proteins
and 428 test proteins for this further test. Figure 4a shows the length distribution of
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these 1227 proteins. To generate decoys, we fixed the composition of each of these
proteins and permute its sequence by carrying out n swaps between random resi-
dues, with n ¼ 1; 2; 4; 8; 16; 32; 64, and 128. The resulting decoys all have the same
amino acid composition as the original native proteins, but have progressively more
point mutations. We generate 1000 random sequence decoys at each swap n for
each protein. We call this Decoy Set 2.

Our results show that the number of misclassified decoys decreases rapidly as
the number of swaps increases. When n increases from 1 to 32, the percentage of
misclassified decoys for protein of length � 250 is about 30% or less. Less than
30% of the decoys of all lengths are misclassified when n ¼ 64, with the rate of
misclassification much smaller than 10% among those with length <350 (Fig. 4b).
Only 62 decoys are misclassified among 1,227,000 decoys when N� 128 (Fig. 4b).

It is informative to examine the number of misclassified decoys and the sequence
identity of the decoys with their corresponding native proteins at different protein
lengths. Figure 4c shows that the percentage of misclassified decoys decreases

Table 3 Effects of the size of basis set �A on performance of discrimination using Strategy 1

Select decoys
rate (%)

Iteration Training set
Native/Decoy 800/36 M

Fb Test set Native/Decoy
428/11 M

Fb

0 4 21/1374 0.958 26/387 0.931

2 5 19/1029 0.964 27/219 0.933

5 5 17/1303 0.963 21/317 0.944

8 5 13/1246 0.969 23/274 0.941

10 5 14/922 0.972 24/216 0.940

20 6 16/902 0.969 28/250 0.930

30 6 10/1037 0.975 29/304 0.926

40 10 16/812 0.970 27/199 0.933

50 10 13/1112 0.971 25/269 0.936

60 12 15/802 0.972 27/237 0.932

70 9 13/947 0.973 24/256 0.939

80 8 11/1078 0.973 28/278 0.929

90 9 12/690 0.977 27/170 0.934

100 5 5/2681 0.962 24/609 0.931

The number of misclassifications of both native proteins and decoys (separated by “/”) with select
native proteins rate 60% in both training set and test set is listed. Misclassifications as well as the
Fb scores in two tests using different numbers of native proteins and decoys are listed (see text for
details). Here the Fb score is used to evaluate the performance of predictions. Fb is defined as

Fb ¼ ð1þ b2Þ Precision�Recall
b2�PrecisionþRecall ;

where TP is the number of true positives, FP is the number of false positives, FN is the number of

false negatives, Precision is calculated as TP
ðTPþFNÞ, and Recall is calculated as TP

ðTPþFNÞ. When

b[ 1, recall is emphasized over precision. When b\1, precision is emphasized over recall.
Because of the imbalanced nature of the data set with much more decoys than native proteins, we
assign more weight on the small set of native proteins, with b set to 10. The Fb scores are then
calculated accordingly
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rapidly with the sequence identity to the native proteins. When decoys have a
sequence identity of � 60% with the native protein, <10% of the decoys are
misclassified, and all decoys can be discriminated against at 40% identity for
proteins of length � 150. For proteins of length � 150, most decoys with � 50%

Table 4 Effect of the size of the preselection of dataset using Strategy 2

Preselect native
proteins top
(%)

Preselect
decoys
top

Iteration Training Set
Native/Decoy
800/36 M

Fb Test set
Native/Decoy
428/11 M

Fb

0 1 6 8/1010 0.978 25/212 0.938

2 1 5 5/1079 0.981 24/266 0.939

5 1 5 5/1038 0.981 24/247 0.939

8 1 5 5/1093 0.981 24/249 0.939

10 1 5 5/997 0.982 24/242 0.939

20 1 6 9/625 0.981 26/174 0.936

30 1 6 9/689 0.980 24/211 0.940

40 1 6 8/869 0.980 25/218 0.937

50 1 5 4/988 0.983 20/218 0.949

60 1 5 6/1039 0.980 24/280 0.938

10 1 5 5/997 0.982 24/242 0.939

10 2 5 6/1270 0.977 22/372 0.941

10 3 7 9/934 0.978 22/247 0.944

10 4 5 5/1071 0.981 24/210 0.944

Test results using Strategy 2 with different sizes of the preselected native proteins, which range
from 0 to 60% while the preselected decoys are fixed as the top 1 level, and with different
preselected decoys, which ranges from the top 1s to the top 4s while the preselected native proteins
are fixed at 10%. Misclassifications as well as the Fb scores in two tests using different numbers of
native proteins and decoys are listed (see text for details)

Table 5 Discriminating large proteins from decoys

pdb N n aDesign Decoy
by KDF

cSwissProt Decoy by KDF

H Dscore n H Dscore

1cs0.a 1073 0 2.67 N/A 8232 2.67 2.42

1g8k.a 822 545 2.07 4.18 11,997 2.07 1.69

1gqi.a 708 1002 3.03 5.16 13,707 3.03 2.16

1kqf.a 981 93 2.19 5.17 9612 2.19 1.82

1lsh.a 954 148 1.97 4.57 10,017 1.97 2.01

Discrimination of five large proteins against sequence decoys generated by gapless threading, and
against additional sequence decoys generated by threading unrelated long proteins (length from
1124 to 2459) to the structures of these five proteins. Here pdb is the PDB code of the protein
structure, N is the size of protein, n is the number of decoys, H is the predicted value of the scoring
function, Dscore is the smallest gap of score between the native protein and its decoys. The results
show that all decoys can be discriminated from natives, and the smallest score gaps between native
and decoys are large
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sequence identity can be corrected discriminated against. These observations are
consistent with current understanding of protein structures, where most proteins
with � 70% sequence identity belong to the same family [26], and those with
� 30% sequence identity have similar structure [63].

To examine whether misclassified decoy sequences are actually more native-like
and therefore more likely to potentially adopt the correct structures than those
correctly classified as nonnatives, we selected 5.5 M misclassified decoys and 4.3
M correctly classified decoys from all decoys in Decoy Set 2, and examined their
energy values. We use the DFIRE energy function that was developed in [90, 91].
These decoys all have values of net DFIRE energy difference of decoys to native
proteins between [0.0, 1.0] kcal/mol. Our results (Fig. 4d) show that overall,
misclassified decoys have much lower average DFIRE energy values than correctly
classified decoys, indicating that they are potentially more native-like than those
correctly classified as decoys.

Running Time

For the simplified nonlinear fitness function derived from a rectangular kernel, the
algorithm was implemented in the C language. It called Lapack [2] and used LU
decomposition to solve the system of linear equations. It also called an SVD routine
to determine the 2-norm of a matrix for calculating b ¼ 1:1ð1=Cþ jjDA� ejj22Þ.
Once matrices A and �A were specified, the fitness function HðcÞ can be derived in
about 2 h and 10 min on a 2 Dual Core AMD Opteron(tm) Processors of 1800 MHz
with 4 Gb memory for an A of size 8800� 210 and an �A of size 3680� 210. The
evaluation of the fitness of 14 million decoys took 2 h and 10 min using 144 CPUs
of a Linux cluster [2 Dual Core AMD Opteron(tm) Processors of 1.8 GHz with 2
Gb memory for each node]. Because of the large size of the data set, the bottleneck
in computation is disk IO.

Discussion

Full Nonlinear Fitness Function for Global Fitness Function of Proteins

A basic requirement for computational studies of protein design is an effective
fitness or scoring function, which allows searching and identifying sequences
adopting the desired structural templates. The goal of this study is to explore ways
to improve the sensitivity and/or specificity of discrimination.

There are several routes toward improving empirical fitness functions. One
approach is to introduce higher order interactions, where three-body or four-body
interactions are explicitly incorporated in the fitness function [6, 47, 59, 62, 93]. We
develop a different framework for developing empirical protein fitness functions,
with the goal of simultaneous characterization of fitness landscapes of many
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proteins. We use a set of Gaussian kernel functions located at both native proteins
and decoys as the basis set. Decoy set in this formulation is equivalent to the
reference state or null model used in statistical potential. The expansion coefficients
faNg;N 2 N and faDg;D 2 D of the Gaussian kernels determine the specific form
of the fitness function. Since native proteins and decoys are nonredundant and are
represented as unique vectors c 2 R

d , the Gram matrix of the kernel function is full
rank. Therefore, the kernel function effectively maps the protein space into a
high-dimensional space in which effective discrimination with a hyperplane is
easier to obtain. The optimization criterion here is not Z-score, rather we search for
the hyperplane in the transformed high-dimensional space with maximal separation
distance between the native protein vectors and the decoy vectors. This choice of
optimality criterion is firmly rooted in a large body of studies in statistical learning
theory, where expected number of errors in classification of unseen future test data
is minimized probabilistically by balancing the minimization of the training error
(or empirical risk) and the control of the capacity of specific types of functional
form of the fitness function [8, 67, 80].

This approach is general and flexible, and can accommodate other protein rep-
resentations, as long as the final descriptor of protein and decoy is a d-dimensional
vector. In addition, different forms of nonlinear functions can be designed using
different kernel functions.

Nonlinear Fitness Function Generalizes Well: Global Fitness Function Can
Discriminate Dissimilar Proteins

As any other discrimination problems, the success of classification strongly depends
on the training data. If the fitness function is challenged with a drastically different
protein than proteins in the training set, the classification may fail. To further test
how well the nonlinear fitness function performs when discriminating proteins that
are dissimilar to those contained in the training set, we take five proteins that are
longer than any training proteins (lengths between 46 and 688). These are obtained
from the list of 1261 polypeptide chains contained in the updated Oct. 15, 2002
release of WHATIF database. The first test is to discriminate the 5 proteins from 1728
exhaustively generated design decoys using gapless threading. The second test is to
discriminate these 5 proteins from exhaustively enumerated sequence decoys
generated by threading 14 large protein sequences of unknown structures obtained
from SwissProt database, whose sizes are between 1124 and 2459 (Table 5). This is
necessary since structures of the longest chains otherwise have few or no threading
decoys. Table 5 lists results of these tests, including the predicted score value and
the smallest gap between the native protein and decoys. For the first test, the
nonlinear design fitness functions can discriminate these 5 native proteins from all
decoys. For the second test, the design fitness function can also discriminate all 5
proteins from a total of 53,565 SwissProt sequence decoys, and the smallest score
gaps between native and decoys are large.
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It is infrequent for an unknown test protein to have low similarity to all reference
proteins. For each protein in the 440 training set, we calculate its Euclidean distance
to the other 439 proteins. The distribution of the 440 maximum distances for each
training protein to all other 439 proteins is shown in Fig. 3a. We also calculate for
each protein in the 201 test set its maximum distance to all training proteins
(Fig. 3b). It is clear that for most of the 201 test proteins, the values of maximum
distances to training proteins are similar to the values for training set proteins. The
only exceptions are two proteins, ribonuclease inhibitor ( 1a4y.a) and
formaldehyde ferredoxin oxidoreductase ( 1b25.a). Although they are correctly
classified, the former has significant amount of unaccounted interchain contact with
another protein angiogenin, and the latter has iron/sulfur clusters. It seems that the
set of training proteins provide an adequate basis set for characterizing the global
fitness landscape of sequence design for other proteins.

Simplified Nonlinear Fitness Function

We have also developed a simplified nonlinear kernel function for fitness landscape
of protein design using a rectangular kernel and a fast Newton method. The results
in a blind test are encouraging. They suggest that for a simplified task of designing
simultaneously 428 proteins from a set of 11 million decoys, the search space of
protein shape and sequence can be effectively parameterized with just about 3680
basis set of contact vectors. It is likely that the choice of matrix A is important. We
showed that once A is carefully chosen, the overall design landscape is not overly
sensitive to the specific choice of the basis set contact vectors for �A.

The native protein list in both training and test sets for the simplified nonlinear
fitness function come from the PISCES server, which has the lowest pairwise
identity (20%), finer resolution cutoff (1.6 Å), and lower R-factor cutoff (0.25). This
native dataset is better than the dataset derived from the WHATIF database, which has
looser constraints: pairwise sequence identity <30%, resolution cutoff <2:1 Å, and
R-factor cutoff <2:1. We compared our results with classic studies of Tobi et al.
[79], Bastolla et al. [4], and Miyazawa and Jernigan [58]. Although the training set
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Fig. 3 The distribution of maximum distances of proteins to the set of training proteins. a The
maximum distance for each training protein to all other 439 proteins. b The maximum distance for
each protein in the 201 test set to all 440 training proteins. These two distributions are similar
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and test set are different, we observed that our simplified nonlinear function
detected 95% (208) native proteins from 11 million decoys and only misclassified
218 decoys as native proteins, which outperformed Tobi et al. [79] (78% correct
rate for native proteins, 53,137 misclassification for decoys), Bastolla et al. [4]
(71% correct rate for native proteins, 29,309 misclassification for decoys), and
Miyazawa and Jernigan [58] methods (57% correct rate for native proteins, 80,716
misclassification for decoys) on much smaller blind test set of 201 native proteins
and 3 million decoys.

Our final fitness landscape using rectangle kernel can correctly classify most of
the native proteins, except 4 proteins (1ft5 chain A, 1gk9 chain A, 2p0s chain A,
2qud chain A) in the training set and 20 proteins in the test set. Of the 4 mis-
classified training proteins, all have ligand or organic molecules bound. For
example, cytochrome C554 (1ft5, chain A) is a electron transport protein with 4
hemes bound, and ABC transporter (2p0s, chain A) has a Mg ion bound. Overall,
among the misclassified proteins, 14 proteins contain metal ions and organic
compounds. We note that the interactions between these organic compounds, metal
ions, and rest of the protein are also not reflected in the protein description. In
addition, 4 proteins have >20% contacts due to interchain interactions. It is likely
that substantial unaccounted interactions with other protein chains, DNA, or
cofactors contributed to the misclassifications. The conformations of these proteins
may be different upon removal of these contacts. Altogether, 21 of the 24 mis-
classified proteins have explanations, and the fitness function truly failed only for 3
proteins.

The representation of protein structures will likely have important effects on the
success of protein design. The approach of the reduced nonlinear function is general
and applicable when alternative representations of protein structures are used, e.g.,
adding solvation terms, including higher order interactions.

The nonlinear fitness function and computational procedure we developed per-
mit more accurate and rapid recognition of designed proteins which can fold into
desired structures. It generalizes well and can recognize novel protein folds that are
not encountered in the training process. Such an improvement in algorithms for
computational protein design is essential for the success of large-scale efforts in
identifying sequences for improved biochemical functions or new enzymes, so the
appropriate scaffold can be constructed to which the necessary catalytical mecha-
nism can be inserted [3]. A drawback of this nonlinear fitness function is that
training is based on only native sequences of known protein structures, and
therefore there is no guarantee that it can distinguish high-resolution sequences with
just a few deleterious point mutations that cannot fold. Further improvement can be
achieved by incorporating in training high-density homologous sequences that are
known to fold into the same structural fold, as well as information on critical
residues whose mutations would unfold the proteins. Protein design has had
numerous successes in introducing new proteins and peptides for therapeutic
applications [34], and will continue to be important for developing effective
therapeutics.
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Conclusion

Our findings show that there is no fitness function that can discriminate a training
set of 440 native sequence from 14 million sequence decoys generated by gapless
threading. The success of nonlinear fitness function in perfect discrimination of this
training set proteins and its good performance in an unrelated test set of 194
proteins is encouraging. It indicates that it is now possible to characterize simul-
taneously the fitness landscape of many proteins, and nonlinear kernel fitness
function is a general strategy for developing effective fitness function for protein
sequence design.

Our study of fitness function for sequence design is a much smaller task than
developing a full-fledged fitness function, because we study a restricted version of
the protein design problem. We need to recognize only one sequence that folds into
a known structure from other sequences already known to be part of a different
protein structure, whose identity is hidden during training. However, this simplified
task is challenging, because the native sequences and decoy sequences in this case
are all taken from real proteins. Success in this task is a prerequisite for further
development of a full-fledged universal fitness function. A full solution to the
sequence design problem will need to incorporate additional sequences of structural
homologs as native sequences, as well as additional decoys sequences that fold into
different folds, and decoy sequences that are not proteins (e.g., all hydrophobes).
Results presented in Fig. 4b provide some indication, where it was found that
homologs generated by multiple random residue swaps of � 80–85% overall
sequence identities are likely to be correctly classified. Furthermore, an additional
interesting test of our nonlinear function is to discriminate decoys generated by a
method independent of the threading method used for generating training sequence
decoys. For example, decoys generated by a protein design tool can be used to test
how well our nonlinear scoring function can discriminate those that would fold
from those that would not. This, however, requires experimental knowledge of
which of these decoys indeed would fold into stable structures and which do not. It
would be desirable if such data can be used at a large scale for globally all known
protein folds. It is our hope that the functional form and the optimization technique
introduced here will also be useful for such purposes.

We also showed that a simplified nonlinear fitness function for protein design
can be obtained using a simplified nonlinear kernel function via a finite Newton
method. We used a rectangular kernel with a basis set of native proteins and decoys
chosen a priori. We succeeded in predicting 408 out of the 428 (95%) native
proteins and misclassified only 218 out of 11 million decoys in a large blind test set.
Although the test set used is different, other methods were based on relatively small
blind test sets (e.g., 201 native proteins and 3 million decoys). Our result outper-
forms statistical linear scoring function (87 out of the 201 misclassifications, 57%
correct rate) and optimized linear function (between 44 and 58 misclassifications
out of the 201, 78 and 71% correct rate). The performance is also comparable with
results obtained from a far more complex nonlinear fitness function with [ 5000
terms (18 misclassifications, 91% correct rate). Our results further suggest that for
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the task of global sequence design of 428 selected proteins, the search space of
protein shape and sequence can be effectively parameterized with just about 3680
carefully chosen basis sets of native proteins and nonnative protein decoys.

Fig. 4 Discriminating a different decoy set using the nonlinear fitness function. Sequence decoys
in this set are generated by swapping residues at different positions. a The length distribution of the
1227 native proteins in the set; b The relationship between the number of swaps N and the
percentage of misclassified decoys grouped by protein length binned with a width of 50 residues
shown in different curves. c The relationship between the sequence identity binned with width 0.1
and the percentage of misclassification grouped by protein length shown in different curves. The
fitness function was derived using Strategy 2, with top 50% preselected native proteins, and top 1
preselected decoys. dMisclassified sequence decoys have overall lower DFIRE energy values than
correctly classified sequence decoys and therefore are more native-like. The x-axis is the net
DFIRE energy difference of decoys to native proteins, and the y-axis is the number count of decoys
at different net DFIRE energy differences. The solid black line represents decoys misclassified by
our fitness function and the dashed red line represents decoys correctly classified by our fitness
function
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In summary, we show a formulation of fitness function using a mixture of
Gaussian kernels. We demonstrate that this formulation can lead to effective design
scoring function that characterize fitness landscape of many proteins simultane-
ously, and perform well in blind independent tests. Our results suggest that this
functional form different from the simple weighted sum of contact pairs can be
useful for studying protein design. In addition, the approach of the rectangle kernel
matrix with a finite Newton method works well in constructing fitness landscape.
We also showed that the overall landscape is not overly sensitive to the specific
choice of the dataset. Our approach can be generalized for any other protein rep-
resentation, e.g., with descriptors for explicit hydrogen bond and higher order
interactions, and our strategy of reduced kernel can be generalized to constructing
other types of fitness function. Overall, constructing a universal fitness landscape
that explains all major protein structural folds is a fundamental problem. In our
study, an overly simplistic assumption is made, in which the only determinant of
protein fitness function is the ability to fold correctly. More realistic fitness function
should include functional fitness such as efficiencies in biochemical reactions.
Furthermore, once a fitness function is constructed, it will be important to analyze
the evolutionary landscape of proteins globally and to decipher the corresponding
structural implications. It would also be useful to identify most probable transition
paths among different protein folds to gain understanding on how protein structures
evolve and how new folds are acquired, as well as possible timing of the emergency
of such new folds.
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Computational Methods for Mass
Spectrometry Imaging: Challenges,
Progress, and Opportunities

Chanchala D. Kaddi and May D. Wang

Abstract Mass spectrometry imaging (MSI) is a rapidly growing field of research,
with applications in proteomics, lipidomics, and metabolomics. The benefit of MSI
is its capacity to measure spatially resolved molecular information. Computational
methods are important to extracting information from MSI data for basic and
translational research. In this chapter, we examine current and emerging methods
for analysis of MSI data, and highlight associated challenges and opportunities in
computational research for MSI.

Introduction

Mass spectrometry imaging (MSI) is a large-scale experimental technique that can
yield spatially resolved information about the molecular composition of a biological
sample. MSI datasets are generated by acquiring the complete mass spectrum at
multiple points across the sample surface, yielding a three-dimensional (x, y: spatial,
e.g., tissue, and z: spectral or m/z) dataset as shown in Fig. 1.

The MSI dataset includes valuable information which is not obtainable through
similar analyses using immunohistochemistry staining or non-imaging mass spec-
trometry. In traditional histological analysis, tissue is typically stained for a small
number of molecular targets; in contrast, MSI is capable of simultaneously tracking
thousands of m/z (mass-to-charge ratio) values. Depending on the MSI acquisition
modality, each m/z value can be interpreted as a molecule or molecular fragment.
Additionally, staining can only identify known molecular targets, while the
large-scale data acquired by MSI enables discovery of sample components (and
hence, potential biomarkers). Compared to mass spectrometry alone, MSI preserves
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the sample’s spatial and morphological information. Thus, spectra corresponding to
different regions of organs, or to tumor, marginal, or normal sections of biopsies,
can be differentiated, enabling more detailed and target-specific analysis. Due to
these benefits, MSI is emerging as a popular experimental technique in proteomics
[1], lipidomics [2], and metabolomics [3] research.

Because MSI is spatially resolved, it is particularly relevant for research into
diseases which have spatially localized characteristics—particularly cancer.
Recent MSI studies have investigated cancers of the head and neck [4], brain [5],
breast [6], renal [7], stomach [8], prostate [9], colon [10], pancreas [11], and bladder
[12]. Other recent MSI studies have targeted diseases including Tay-Sachs/Sandhoff
disease [13], Behçet disease [14], Parkinson’s disease [15, 16], Alzheimer’s disease
[17], Duchenne muscular dystrophy [18, 19], Fabry disease [20], atherosclerosis
[21], and stroke and ischemic injury [22–24]. In addition, MSI has been used to
study bio-implant interfaces [25, 26] and drug distribution within tissues [27–32].

The spectral dimension of MSI data can be very large (e.g., tens of thousands of
m/z values), making computational analysis essential to interpretation. It is critical
to identify and to develop effective analytical methods for large-scale data mining,
pattern recognition, and exploration. This chapter begins by discussing several key
open challenges in MSI research. Next, the current state-of-the-art in MSI analysis
will be described, including techniques such as principal component analysis,
clustering, and classification. Additionally, several emerging methods for MSI
analysis, such as non-negative matrix factorization, will be introduced. All methods
are discussed in the context of recent MSI studies which apply them, spanning
several MSI modalities, such as Matrix-Assisted Laser Desorption/Ionization
(MALDI)-MSI and Desorption Electrospray Ionization (DESI)-MSI. Finally, a case
study in applying unsupervised analysis methods for pattern detection in MSI will
be provided.
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Fig. 1 (Left) Three-dimensional structure of MSI data. (Right) False-color visualizations of
multiple m/z values from MSI datasets of mouse models of Tay-Sachs/Sandhoff disease
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Challenges

As will be described in greater detail in the following sections, much progress has
been made in identifying and developing analytical methods for pattern detection in
MSI data. Research on this topic is still highly active. In particular, we highlight
three new areas of interest in computational MSI research.

Challenge 1: Integration of MSI Data with Complementary
Imaging Modalities

An emerging area of interest in MSI data analysis is the integration of MSI data to
other images, such as those acquired via different MSI modalities or non-MSI data
types. One example is the combination of MALDI-MSI data with magnetic reso-
nance images [33]; another is integration of DESI-MSI data with histology images
[34]. This type of integration harnesses the different strengths of the data types—for
example, MRI imaging yields much higher resolution data than MSI, but does not
measure molecular information like MSI. Similar reasoning is behind efforts to
combine different MSI modalities: PCA and CCA have also been used to link
low-mass SIMS-MSI data with high-mass MALDI-MSI data from the same brain
tissue sample [35]. Because of the inherent differences in imaging modalities,
several important computational challenges are in the image processing domain: for
example, image alignment algorithms used to ‘stich together’ multiple
MALDI-MSI images obtained from a large sample [36], and registration algorithms
to map consecutive optical images in order to construct MSI datasets for
three-dimensional samples [37].

Challenge 2: Movement Toward MSI
from Three-Dimensional Samples

The movement toward MSI analysis of three-dimensional samples, as just men-
tioned, is an important development in the field. The studies described thus far have
all implemented MSI on two-dimensional samples, e.g., very thin slices of tissue. If
multiple spatially consecutive slices are taken from an organ or tumor, m/z images
from multiple MSI datacubes can be stitched together to track the spatial distri-
bution and expression of an m/z value through the original three-dimensional
sample. We refer readers to the recent publication [4–32] for an example of this
technique and discussion of the computational challenges associated with MSI for
three-dimensional data.
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Challenge 3: Reproducibility, Data Standardization,
and Community Resources

MSI also provides a rich opportunity for biomarker identification. However,
reproducibility of results is a major challenge. Many MSI studies consider a small
number of samples, making it difficult to generalize the suitability of the analytical
methods used. It would be valuable to examine alternative analytical pipelines for
MSI data in a systematic manner on a variety of different MSI datasets, similar to
the MAQC-II study conducted for microarray-based predictive modeling [38].
However, in addition to the obstacle of scale, such efforts are hindered because
unlike microarray and RNA sequencing data, MSI data is not readily shared in
public repositories. The development of community resources and infrastructure—
as well as standards for quality control and transparency like Minimum Information
protocols (http://mibbi.sourceforge.net/)—would facilitate this process. The recent
release of mzML [39], a standardized data format for mass spectrometry, and the
PRIDE proteomics data repository from the European Bioinformatics Institute for
MS/MS proteomics datasets (http://www.ebi.ac.uk/pride/archive/), are therefore
encouraging developments.

Current Techniques in MSI Analysis

Analytical methods for data and knowledge mining are divided into two main
classes: supervised and unsupervised learning. In supervised learning, a predictive
model is constructed from annotated training data, such that when a new sample is
provided, the model can correctly predict the annotation of the sample. Supervised
methods are further divided into two main categories: classification, in which the
predicted annotation is a group label (e.g., “healthy” or “diseased”), or regression,
in which it is a numerical value. For example, classification models have been
developed using MALDI-MSI data to distinguish HER2 positive and
HER2-negative tissues [6]; to distinguish cancerous and non-cancerous prostate
tissue [40]; and to classify breast cancer sample regions as necrotic, viable/active
tumor, or tumor interface region, while distinguishing them from embedding gelatin
and glass or holes, using SIMS-MSI data [41]. In contrast, unsupervised learning
requires no annotation or prior knowledge of the data structure. Unsupervised
methods are used for exploration of the data and the identification of potential
patterns; the results of these analyses can be a precursor to supervised analysis.
Common unsupervised methods include dimensionality reduction and clustering.
The remainder of this section will introduce unsupervised methods for MSI data
analysis.
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A. Dimensionality reduction

Principal component analysis

Principal component analysis (PCA) is currently one of the most popular techniques
for exploratory data analysis in MSI. The utility of PCA is in its ability to highlight
different spatial patterns present in the data, and the m/z values which contribute to
them. Given a data matrix X of dimensions M � N (i.e., M mass spectra each
containing N m/z values), PCA performs a linear transformation that projects the
data into a different, potentially more meaningful, spectral coordinate space. The
axes directions in this transformed space are defined by a set of orthogonal M-
dimensional basis vectors (the principal components), and are related to the variance
in X. The first principal component is the direction in which the variance of the data
is maximized, and can be interpreted as the most prominent pattern in the data. The
second principal component corresponds to the direction of the second highest
variance in the data, and so on. After performing PCA, the p principal components
which contribute to the majority of the variance in the dataset are retained. Since p is
typically chosen to be �N, PCA produces a dimensionally reduced M � p dataset.

Non-negative matrix factorization

Non-negative matrix factorization (NMF) is another method that can be used for
dimensionality reduction. In NMF, a data matrix X of dimensions (M � N) is fac-
tored into two matrices W (M � k) and H (k � N), such that X � WH. This is done
iteratively by minimizing the residual X �WHk k2 such that W ;H� 0 [42]. The
user-selected parameter k is the number of components into which the data is sep-
arated. The matrix W is a set of basis vectors describing the m/z values which
comprise each component. The k columns of matrix W can be interpreted as
groupings of m/z values corresponding to prominent spatial patterns in the data.
NMF has been assessed on both MALDI and DESI-MSI data [43–46]. A web-based
tool, omniSpect, is also available for performing NMF on MSI data [47].

Other Dimensionality Reduction Methods

Independent component analysis (ICA) separates a mixture into components, based
on the assumption that the mixture is a linear combination of statistically inde-
pendent components with non-Gaussian distributions [48]. ICA has been assessed
for studying intratumor heterogeneity via MSI data [46] and compared with PCA
and NMF on MALDI-MSI data [43]. Like PCA, ICA presents an obstacle in terms
of interpretation of the components, which can be negative. In canonical correlation
analysis (CCA), two datasets, each with different dimensions, may be projected
onto the feature space of the other such that the project data has maximum corre-
lation [49]. CCA has also been used to correlate low-mass SIMS-MSI data with
high-mass MALDI-MSI data, which improved image contrast and interpretation of
the data [35]. Parallel factor analysis (PARAFAC) is another method often used in
chemometrics for decomposing high-dimensional data; it has been tested on SIMS
and LDI MSI datasets [50].
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B. Clustering

Clustering is an unsupervised method for data analysis in which a sample (e.g., an
individual mass spectrum) is allocated into a specific group (e.g., a cluster) based on
a quantitative measure of the similarity. Clustering can reveal potentially mean-
ingful structures and patterns within the data. For example, using MALDI-MSI data
of gastric cancer, hierarchical clustering was used both to cluster spectra within a
single tissue dataset, and also to cluster tumors from different patients [51].
LA-ICP-MSI data of rat brain tissue was analyzed by k-means clustering, revealing
meaningful patterns in which clusters corresponded to known anatomical features
[52]. Similarly, high dimensional discriminant clustering (HDDC) was applied to
MALDI-MSI data of a rat brain and an intestinal-invading neuroendocrine tumor to
find spectral clusters corresponding to morphological structures [53]. This type of
mapping, termed spatial segmentation, is discussed further in a recent review [54].
While numerous algorithms exist for separating data into clusters [55], two of the
most commonly applied methods are hierarchical and k-means approaches. In
hierarchical clustering, a dataset X is separated into different levels of clusters,
culminating in a dendrogram or cluster tree. The terminal leaf nodes each corre-
spond to a single sample. In k-means, the dataset is separated into a predefined
number k of clusters.

C. Spatial similarity

While similarity measures (in the spectral dimension) are utilized in clustering,
another independent application of similarity measures is to identify m/z images
with similar expression patterns in the spatial dimension. Figure 2 shows an

1. m/z  889.6 2. m/z  907.6 3. m/z  891.7 4. m/z  905.6

5. m/z  892.5 6. m/z  890.4 7. m/z  890.8 8. m/z  879.9

9. m/z  864.6 10. m/z  880.7 11. m/z  908.9 12. m/z  807.3

Fig. 2 Highly similar m/z images, as identified by the multivariate hypergeometric similarity
measure [58]
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example of similarity measure-based retrieval of m/z images with a spatial pattern
similar to that of the m/z value of interest. For MALDI-MSI data, the similarity of
m/z images to each other has been assessed using Pearson correlation [56] and using
similarity measures based on the hypergeometric and multivariate hypergeometric
distributions [57, 58]. Multivariate least-squares-based query has also been applied
for this task [59].

Case Study

The following case study compares and contrasts PCA and NMF for finding
potentially relevant patterns in MSI data. The data used in this example is
MALDI-MSI, from a mouse model of Tay-Sachs disease [17].

Example 1 A step-by-step implementation of PCA in MATLAB R2014a to find
patterns in MSI data.

Step 1: After loading the three-dimensional MSI dataset into MATLAB, restruc-
ture it into a two-dimensional matrix. Here, a and b are the spatial
dimensions (i.e., the number of pixels in the horizontal and vertical
directions), and c is the spectral dimension (i.e., the number of m/z values).
In the restructured M � N matrix, M is the number of spectra ðM ¼ a�bÞ
and N = c.

[a,b,c] = size(data);
reshaped = double(reshape(data,a*b,c));
[M,N] = size(reshaped);

Step 2: Mean-center the data by subtracting the mean in the spectral dimension
(i.e., the average of each m/z value).

mean_reshaped = mean(reshaped,1);
reshaped = reshaped − repmat(mean_reshaped,M,1);

Step 3: Calculate the covariance matrix and the find its eigenvectors and eigen-
values; these are the principal components and their weights. Sort the
principal components in order of descending eigenvalue magnitude.

covariance_matrix = (1 /(N−1)) * (reshaped’ *
reshaped);
[PC,V] = eig(covariance_matrix);
V = diag(V);
[*, indices] = sort(−1*V);
V = V(indices); PC = PC(:,indices);

Step 4: Retain the top 3 principal components, and project the original data onto
these components. The reduced dataset will have dimensions a � b � 3.
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projected = reshaped * PC(:,1:3);
PCA_datacube = reshape(projected,a,b,3);

The plots in Fig. 3 show the three images in the PCA-processed datacube (top
row), and the principal components themselves (bottom row). PCA reveals different
structures within the data—primarily the tissue versus non-tissue regions in PC 1
and PC 3, and cerebellum structure in PC 2.

Example 2 A step-by-step implementation of NMF in MATLAB to find patterns
in MSI data.

For brevity, the MATLAB function ‘nnmf’ is used to perform the analysis in this
example.

Step 1: Load and reshape the datacube into an M � N matrix as before.

[a,b,c] = size(data);
reshaped = double(reshape(data,a*b,c));

Step 2: Define k, the number of components, and perform NMF:

k = 3;
[w,h] = nnmf(reshaped,k);
NMF_datacube = reshape(w,a,b,k);

Figure 4 shows the three images in the NMF-processed data, i.e., the component
matrix w (top row), and the corresponding row of the weight matrix h (bottom row).
Similar to PCA, NMF reveals tissue versus. non-tissue patterns in the Factor 1 and
Factor 2, and the cerebellum structure in Factor 3. Factor 2 also contains some
information on the tissue interior. Unlike in PCA, the numerical labeling of NMF

principle component 1

10 20 30 40 50 60 70 80

10
20
30
40
50
60
70
80
90

500 1000 1500 2000 2500 3000 3500
-0.5
-0.4
-0.3
-0.2
-0.1

0
0.1
0.2

m/z value

m
ag

ni
tu

de
principle component 2

10 20 30 40 50 60 70 80

20

40

60

80

500 1000 1500 2000 2500 3000 3500
-0.2

0

0.2

0.4

0.6

0.8

m/z value

m
ag

ni
tu

de

principle component 3

10 20 30 40 50 60 70 80

20

40

60

80

500 1000 1500 2000 2500 3000 3500
-0.8
-0.6
-0.4
-0.2

0
0.2
0.4
0.6

m/z value

m
ag

ni
tu

de

Fig. 3 The first three principal components reveal different spatial patterns and associated m/z
values in an MSI dataset (false-color visualization)
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factors is arbitrary. Additionally, as its name indicates, the spectral profiles found
by NMF are constrained to be non-negative. This is a useful property for MSI, since
the data is also non-negative. In contrast, the negative values in the PCA-generated
components in Fig. 3 can be difficult to interpret in terms of biology or chemistry.

Conclusion

MSI is a rapidly developing area of research with exciting implications for our
understanding of numerous biological processes and diseases. In this chapter, we
have described the key role of computational analyses in extracting meaningful
information from MSI data. State-of-the-art techniques were described and a case
study was examined. Finally, we have highlighted several challenges for compu-
tational research for MSI. In conclusion, there exist numerous opportunities for
researchers to become involved in the development of computational methods and
tools for MSI. Ongoing research into more effective and informative analytical
techniques will help to harness the power of MSI for accelerating both basic and
translational research.
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Identification and Functional Annotation
of LncRNAs in Human Disease

Qi Liao, Dechao Bu, Liang Sun, Haitao Luo and Yi Zhao

Abstract Accumulated evidence suggests that long noncoding RNAs (lncRNAS)
play a key role in most of the biological processes. By the advance of sequencing
technology, more and more lncRNAs are identified. However, only a few has
known functions. It is still a challenge to annotate the functions of lncRNAs for
both bioinformaticians and biologists. In this chapter, we gave a comprehensive
review of the current bioinformatics methods to identify lncRNAs and annotate
their functions in mammals. The identification of lncRNAs was mainly based on the
technologies of microarray and RNA-seq. While for the functional annotations of
lncRNAs, a method based on the co-expression network of both coding and non-
coding genes was illustrated. We also reviewed several ways to analyze the
interactions between lncRNAs and targets such as miRNAs and protein-coding
genes. An example of identifying and annotating human lncRNAs was given to
illustrate the whole process.

Background

Long noncoding RNAs (lncRNAs) are a kind of noncoding RNAs with lengths longer
than 200nt [1]. LncRNAs were regarded as mRNA-like ncRNAs for a period as their
sequence characters are similar to mRNAs, e.g., being transcribed from RNA poly II,
splicing, acquiring poly-A tails and 5’caps except for encoding proteins, etc. [1]. During
the last several years, numerous lncRNAs were identified in mammalian genomes
through cDNA sequencing, RNA-seq and computational methods [2–6]. These
lncRNAs, together with protein-coding genes, constitute the complex architecture of
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mammalian genome [3]. For example, the lncRNAs located in intronic, intergenic
regions or the exons of protein-coding gene regions with converse transcription direc-
tion are called intronic lncRNAs, large intergenic longnoncodingRNAs (lincRNAs and
antisense lncRNAs, respectively). A considerable number of studies reported that these
lncRNAs play an important role in the regulation of protein-coding genes including
modifying the expression, activity and location of protein-coding genes [7]. Therefore,
lncRNAs participate in a variety of biological processes such as development, gene
imprinting, immune response, and so on [7–9].

The essential role of lncRNAs in the molecular biological processes attracts
researchers to investigate whether the lncRNAs have differential expressions in
human diseases, compared with the healthy controls. Some of them may serve as
biomarkers for disease diagnosis and prognosis. For example, upregulated
expression of the lncRNA MALAT1 was considered as a biomarker of poor
prognosis in colorectal cancer [10], while decreased expression of the lncRNA
GAS5 also indicated a poor prognosis in gastric cancer [11]. Although quite a few
novel lncRNAs have been identified in various human diseases, the biological
functions of most lncRNAs remain unknown. Through decades of efforts, scientists
have developed some efficient technologies to detect disease-associated lncRNAs.
This chapter will introduce the state-of-the-art technologies to identify novel
lncRNAs and annotated their functions in human diseases.

Current Bioinformatics Methods

Identify Associated lncRNAs in Human Diseases

By Microarray

Microarray is a widely used method to simultaneously detect the expression levels of
all genes (protein-coding genes in usual) in a whole genome. Based on the technology
of microarray, researchers are able to find differently expressed protein-coding genes
in a variety of biological processes associated with human diseases. Microarrays can
be classified as DNA microarray, RNA microarray, and protein microarray, etc. The
major microarray service providers include Affymetrix, Agilent, and Illumina.
The RNA microarray from the Affymetrix company was designed based on the
sequence databases of Refseq, EST, and Unigene. We have observed that some
probes corresponding to EST sequences in the Affymetrix microarrays match per-
fectly with known lncRNAs [12]. Therefore, by re-annotating the probes of the
Affymetrix microarrays, the expression signals of these probe-matching lncRNAs
may have already been screened in the publicly available microarray datasets.

In order to get the expression profiles of lncRNAs, first we need to create a new
Chip Description File (CDF) in which probes of both protein-coding genes and
lncRNAs are included. That is to say, the probe sequences are annotated to match
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lncRNAs as well as protein-coding genes using alignment tools like BLASTn. The
alignment results are filtered by the following steps: (1) Only probes perfectly
matched to known transcripts will be retained. (2) All transcripts corresponding to
the retained probes should be mapped to the genome and annotated on the gene
level. For example, the Refseq transcripts should be mapped to the Entrez Gene.
(3) Genes matching fewer than three probes are excluded. By the above three steps,
a new CDF package is created in R software, which is a statistical analysis pro-
gram and is frequently used in the bioinformatics data analysis.

So the new CDF annotation file translates the expression profile of only
protein-coding genes in the GEO database into an expression profile of both
lncRNAs and protein-coding genes. By analyzing the microarray datasets of human
disease samples, we can detect the expression levels these annotated lncRNAs and
investigate the differentially expressed lncRNAs associated with human diseases.
We have created a web server called ncFANs to calculate the coding and noncoding
gene expression profiles and to identify aberrantly expressed both protein-coding

Fig. 1 The workflow of ncFANs. The ncFANs server consists of two parts: data preprocessing
and lncRNA function annotation. Data preprocessing mainly transforms the original microarray
expression profiles into the coding noncoding gene expression profiles. While function annotation
provides two strategies: based on co-expression network and finding aberrantly expressed genes
including both lncRNAs and protein-coding genes. By use of ncFANs, users can select a
microarray dataset of Affymetrix in certain disease from GEO database, and find the differently
expressed lncRNAs or predict the functions of associated lncRNAs in human disease. The figure is
derived from the ncFANs website (http://www.bioinfo.org/ncfans/about.php)
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genes and lncRNAs (Fig. 1, http://www.bioinfo.org/ncfans/) [18]. For example,
GSE19826 is an expression dataset with different stages of gastric cancer and
corresponding adjacent tissue [13]. If we format it as the expression profiles of
protein-coding genes and lncRNAs using the ncFANs server, we can apply t-test or
fold change analysis to find the differentially expressed lncRNAs in different
development stages of gastric cancer. A set of examples for uploading files and
preprocessing tools are also provided in ncFANs (http://www.bioinfo.org/ncfans/
download.php).

By RNA-seq

RNA-seq is a recently developed technology for deep profile the transcriptome
including mRNA transcripts and other different populations of RNAs such as
miRNAs and tRNAs. So RNA-seq can detect the expression levels of both
protein-coding genes and lncRNAs. Many novel lncRNAs have been identified in
mammals such as humans and other species at an accelerated speed using the
RNA-seq technology [4–6, 14, 15].

During the last few years, several computational pipelines were developed to
identify novel lncRNAs in biological processes of interest based on the RNA-seq
data. The procedure of identifying lncRNAs using the RNA-seq data is summarized
in Fig. 2. First, RNA-seq reads are mapped to the reference genome by the com-
puter program Tophat [16] and the uniquely matched reads are de novo assembled
into transcripts by the computer program Cufflinks [17]. After filtering out the
transcripts with low coverage, the remaining transcripts are merged using the

Fig. 2 The pipeline of
identifying novel lncRNAs
from RNA-seq dataset
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computer program Cuffmerge. Then the transcripts are selected as candidate
lncRNAs if they do not overlap with the genomic regions of known protein-coding
genes and other noncoding RNAs.

Finally, the following four steps are employed to determine whether a transcript is
a lnRNA. (1) The length of the transcript is longer than 200 nt. (2) The length of the
predicted ORFs by ORFfinder or other ORF prediction programs is not longer than
100 aa on either the positive or the negative strand. (3) The transcript sequence is not
homologous to any known proteins, using the BLAST program and 30% as the
cutoff for both the similarity and identity length ratios. (4) The transcript is predicted
to be “noncoding” using the Codon Potential Score (CPC) program (available in web
server, http://cpc.cbi.pku.edu.cn/) with default parameters. The coding potentiality
may also be predicted using other similar programs. The lncRNA annotations in
human disease RNA-seq datasets demonstrate accurate prediction and functional
characterization of lncRNAs associated with human diseases.

Annotated the Functions of Associated lncRNAs in Human
Diseases Based on Co-expression Network

If multiple time points or experimental conditions are available, we may annotate
the functions of novel lncRNAs associated with human diseases through
co-expression network analysis. First, we may construct a gene co-expression
network. The Pearson correlation coefficient (Pcc) is frequently employed to
measure how a pair of genes is co-expressed. The Pcc p-value needs to be adjusted
by the Bonferroni or other statistical methods. Then the co-expression relationships
with adjusted P-values of smaller than a cutoff (0.05 or 0.01) are selected to
construct a gene co-expression network. If several datasets are available, the overall
co-expression relationship may be determined by whether the co-expression rela-
tionship between two genes is detected in at least a certain number of dataset.

When the co-expression network is constructed, genomic co-location,
hub-based, and module-based methods can be utilized to predict the functions of
novel lncRNAs within the network. These three methods have been integrated with
the co-expression network to annotate the functions of novel lncRNAs in the mouse
genome and were comprehensively verified by different technologies [12]. The
genomic co-location refers to two genes that are co-expressed and spaced by at
most 100 kb in their genomic locations. If a lncRNA is co-expressed and co-located
with a nearby protein-coding gene, the lncRNA may regulate the protein-coding
gene which has similar functions. In the hub-based method, lncRNAs are predicted
based on the functions of first-level associated protein-coding genes with known
Gene Ontology (GO) annotation, including GO Biological Process (BP), Cellular
Component (CC), and Molecular Function (MF). The enriched GO terms calculated
in the set of near coding genes were annotated to the lncRNA in the center node. In
the module-based method, the MCL algorithm can be used to mine out the modules
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of the co-expression network. Then, for each module, the method similar to
hub-based method can be used to obtain enriched functions to annotate the func-
tions of lncRNAs within the module. In order to conveniently annotate the func-
tions of lncRNAs for biological researchers, we have developed a web server called
ncFANs [18].

Further Analysis of LncRNAs After Identification
and Functional Annotation

LncRNAs may interact with other large molecules such as protein-coding genes and
miRNAs through various mechanisms. After the identification and annotation of
lncRNAs, we may want to know the targets of lncRNAs or how lncRNAs are
regulated. There are several scientific questions to be investigated, after the
detection of novel lncRNAs.

(1) Identification of transcription factor (TF) binding sites of lncRNAs.
The transcription factor (TF) is a protein that binds to the promoter of a
protein-coding gene and regulates the expression levels of this gene. LncRNAs
may be regulated by TFs in the same way. By screening for the binding sites of
some TFs using the biological technologies like ChIP-chip or ChIP-seq, we
may also detect the transcriptional regulation relationships between TFs and
lncRNAs in the genome scale. For example, Yang JH et al. identified tens of
thousands of TF-lncRNA regulatory relationships and developed a database
called ChIPBase to visualize the data [19].

(2) Identification of miRNA-lncRNA interaction.
MiRNAs regulate the expression levels of protein-coding genes by targeting the
3’ Un-Translated Regions (UTRs) of the genes’ mRNAs. The sequences of
miRNA and the targeting UTR may be partially matched in mammals or per-
fectly identical in plants. Genome-wide screening of argonaute proteins binding
genomic regions found that 5% were located in the noncoding genes [20], so
some lncRNAs may be regulated by miRNAs. The regulatory relationship
between microRNAs and lncRNAs may be predicted using the miRNA target
prediction programs or co-expression relationships. For example, Liran Juan
et al. found 90 pairs of lncRNA-miRNAs regulations with strong reverse
expression correlation [21].

(3) Target identification of lncRNAs acting as ceRNAs.
Competing endogenous RNAs (ceRNAs) regulate the targets by competing for
the binding sites of miRNAs. MiRNAs can regulate both protein-coding genes
and lncRNAs, and lncRNAs may act as ceRNAs to regulate the targets who
share the same microRNA target sites. For example, the lncRNA HOTAIR
regulates the expression of HER2 in gastric cancer by acting as ceRNA [22].
And the lncRNA linc-MD1 can act as a ceRNA to regulate MAML1 and
MEF2C to control the differentiation of muscle [23]. Based on the relationships
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between microRNA-lncRNAs and microRNA-mRNAs, we can predict
lncRNA(ceRNA)-target interactions. For example, Li et al. predicted *10,000
ceRNA-target interactions based on the 108 CLIP-seq datasets and developed a
web server called ceRNAFunction (http://starbase.sysu.edu.cn/ceRNAFunctio.
php) [24]. Das et al. constructed a database called lncCeDB to record the
lncRNAs acting as ceRNAs (http://gyanxet-beta.com/lncedb/) [25].

Challenges and Current Problems

1. LncRNAs are abundant in mammalian genomes, and usually do not encode
peptides. The current technologies do not work well on determining the exact
transcript start site, transcript terminal site, and splice site of the lncRNAs.

2. Microarray-based revised annotation strategy can only identify a limit number
of lncRNAs that match to the designed probes in the microarray platform.

3. Although a number of computational pipelines were developed to identify
lncRNAs from the assembled transcripts of RNA-seq data, the prediction
accuracy remains to be improved. More accurate and efficient program is needed
to detect novel lncRNAs by integrating the OMIC data.

4. Accurate functional annotations of lncRNAs are also in urgent need to develop.

Example

Identification of Differentially Expressed lncRNAs in Gastric
Cancer

(1) Data
The gastric cancer microarray dataset was profiled using the Affymetrix plat-
form HgU133Plus2, and downloaded from the database GEO with the ID
GSE19826. The dataset consists of four different stages (I, II, III and IV) of
gastric cancer samples and the paired adjacent noncancer tissues. Each sample
has three replicates.

(2) Method
The raw data was downloaded from the database GEO (http://www.ncbi.nlm.
nih.gov/geo/query/acc.cgi?acc=GSE19826) and preprocessed in a local com-
puter using the R script downloaded from the web server ncFANs. Then the
pre-processed profile was uploaded to the web server ncFANs to analyze the
gene expression profile and detect differentially expressed lncRNAs between
different cancer stages. T-test was utilized to measure the differential signifi-
cance, and the cutoff of P-value was set as 0.05.
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(3) Results
The numbers of differentially expressed protein-coding genes and lncRNAs are
shown in Tables 1 and 2. We found that MALAT1 was upregulated in the
cancer stage III compared against the paired adjacent tissues. It has been
reported that MALAT1 was abnormally highly expressed in gastric cancer cell
lines previously [26]. These differentially expressed lncRNAs may represent
complementary diagnosis biomarkers in gastric cancer.

Conclusion

LncRNAs regulate the protein-coding genes through diverse mechanisms. Some
known lncRNAs were observed to be statistically significantly associated with
human diseases, but many more lncRNAs remain to be functionally characterized.

Table 1 The numbers of differentially expressed protein-coding genes and lncRNAs between
different stages of gastric cancer

Downregulated
lncRNAs

Downregulated
code genes

Upregulated
lncRNAs

Upregulated
code genes

Stage I versus
Stage II

12 154 11 219

Stage I versus
Stage III

19 111 6 69

Stage I versus
Stage IV

24 172 7 88

Stage II versus
Stage III

45 251 5 134

Stage II versus
Stage IV

35 219 6 92

Stage III versus
Stage IV

7 106 16 91

Table 2 The numbers of differentially expressed protein-coding genes and lncRNAs comparing
with paired adjacent tissues in different stages of gastric cancer

Downregulated
lncRNAs

Downregulated
code genes

Upregulated
lncRNAs

Upregulated
code genes

Stage
I

7 204 37 370

Stage
II

13 108 18 146

Stage
III

8 95 18 105

Stage
IV

15 292 22 366
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Re-annotated microarray profile and RNA-seq based detection are two major
bioinformatics strategies to identify novel lncRNAs. Researchers are actively
working on more efficient and accurate technologies to screen the novel lncRNAs in
the mammalian genomes.
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Metabolomics Characterization of Human
Diseases

Masahiro Sugimoto

Abstract Recent omics technologies have realized the comprehensive identifica-
tion and quantification of metabolites, named metabolomics. Mass spectrometry
with molecular separation system is commonly used and hundreds of metabolite
concentrations should be dealt with in this field. To help interpreting these data, the
development of variety of data processing tools, database resources, visualization
software, and pathway analyses are still active. Here, we review the typical data
analyses of metabolomics data and introduce step-by-step tutorials of (1) metabolic
pathway analysis to understand aberrance of multiple metabolites in individual
pathways, and (2) development and validation of a discrimination model using
multiple markers to differentiate patients with diseases from healthy controls. These
tools and protocols are versatile and can be used for the analyses for any other
diseases and datasets.

Background

Omics technologies provide a holistic view of the complex interactions between
thousands of molecules within a biological system. Metabolomics, one of the more
recent omics technologies, deals with the quantitative global profiling of metabo-
lites. Although analytical and bioinformatics technologies in genomics, transcrip-
tomics, and proteomics are well established and widely used in biological and
medical researches, these approaches do not provide a complete picture.
Metabolomics is considered to fill a gap between phenotype and genotype, more
directly reflecting the immediate status of a biological system because metabolite
profiles are controlled by all of the upstream information contained within the
“central dogma”. Thus, metabolomics has been used to explore the dynamic

M. Sugimoto (&)
Institute for Advanced Biosciences, Keio University, 246-2 Mizukami, Kakuganji, Tsuruoka,
Yamagata 997-0052, Japan
e-mail: msugi@sfc.keio.ac.jp

© Springer International Publishing Switzerland 2017
D. Xu et al. (eds.), Health Informatics Data Analysis, Health Information Science,
DOI 10.1007/978-3-319-44981-4_4

61



response of living systems under diverse physiological and pathological conditions,
and to characterize human disease.

Among multiple analytical platforms for profiling metabolites, nuclear magnetic
resonance (NMR) and mass spectrometry (MS) are the major types currently
available. One clear advantage of NMR is its ability to measure biological samples
in a nondestructive manner; it can thus provide a wealth of biochemical information
not observable by MS. NMR is therefore currently the most popular method being
used in half of the reported metabolomics studies [1]. Separation systems such as
gas chromatography (GC), liquid chromatography (LC), and capillary elec-
trophoresis (CE) are usually used prior to MS for separating molecules by chemical
features. These separation–detection approaches, known as hyphenated MS tech-
nologies, are becoming dominant because of their higher sensitivity and separation
abilities compared with NMR. However, because of the large diversity of chemical
features in metabolites, no single analytical approach can profile all metabolites
comprehensively [2]. GC–MS is the most well established among the hyphenated
MS systems and can identify and quantify hundreds of volatile metabolites. LC–MS
has rapidly become prevalent in metabolomics for profiling a wider range of
metabolites, such as sugars, lipids, amino acids, and a variety of secondary
metabolites usually observed in plants. CE–MS is still minor but has an ability to
separate and quantify hundreds of charged metabolites simultaneously using only
two charge (positive and negative) modes. Data processing pipelines starting from
file conversion of raw data to generating a metabolite concentration matrix
(metabolite � samples) depend on each individual approach, or on the technology.
The individual techniques and variety of software tools for data processing have
been reviewed elsewhere [3–5]. In this chapter, subsequent bioinformatics analyses
that are commonly used, and can be applied independently to each measurement
approach, are described. Of particular relevance to characterizing human diseases
based on their metabolomics profiles, two typical data analysis flows and
step-by-step procedures to use several software tools are introduced.

Challenges

To use metabolomics for understanding human diseases, two typical scenarios are
considered. The first is to identify a metabolic aberrance (usually in data obtained
from cultured cells or organs) based on information regarding metabolic pathways,
i.e., pathway analysis. The second is to identify the ability of metabolites to dis-
criminate depending on the phenotypes of the measured samples, i.e., biomarker
discovery. The development of classification model using multiple metabolite
markers is included in this scenario. In addition to these analyses, interpretation of
interesting metabolites is performed using several databases that include relevant
information.
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(a) Pathway analysis

When comparing metabolomics profiles between two phenotypes, e.g., with and
without diseases, there are rare cases in which a single metabolite shows a major
difference between the two groups. When this is not the case, a consistent change of
several metabolites occurring in a functionally categorized pathway, such as gly-
colysis, the citric acid cycle, or the pentose phosphate pathway, can be helpful to
understand changes of metabolic profile patterns. The interactions of many
metabolites with their regulatory elements, such as enzymes and transporters, have
already been well documented and are available in several public and commercial
databases. In a typical pathway analysis, quantified metabolite concentrations are
projected onto these metabolic pathways to identify the aberrant metabolic path-
ways. Such an approach is now frequently used for the analysis of metabolic data in
cultured cell or tissue samples [6].

(b) Biomarker discovery

Metabolomics profiles of biofluids obtained in a minimally invasive manner, such
as blood, urine, and saliva, have the potential to differentiate specific diseases. Thus,
biomarker discovery, or the development of classification models, has frequently
been used to diagnose diseases. For example, GC–MS profiles of serum metabolites
have been used to diagnose pancreatic cancer cases from healthy controls [7].
A combination of multiple salivary metabolites differentiated between oral cancers
and healthy controls [8]. These applications were analyzed using multivariate
analyses such as principal component analysis (PCA) and multiple logistic
regression (MLR).

Current Techniques

Analysis techniques commonly used for metabolomics data are introduced here.

(a) Data visualization to understand metabolic profiles

To visualize overall data, PCA is probably the most widely used in metabolomics
studies. This converts high-dimensional data into fewer dimensions, maintaining as
much variance as possible from the original data. The data plots distributed on the
principal component (PC) space help to understand the similarity of metabolite
patterns among samples, especially for samples representing multiple phenotypes
(� 3). This is not a classification method per se, but PC values are frequently used
to differentiate samples with/without diseases. For example, a PCA model con-
sisting of GC/MS metabolite profiles differentiated gastric cancer patients from
healthy controls [9]. This method is used to understand the correlation between
sample and phenotype, and also to detect outlier samples that show widely different
patterns compared with the majority of samples.
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Data visualization in a pathway form facilitates understanding of metabolomic
aberrance due to disease. MetaboAnalyst [10, 11], Pathway Projector [12], and
KEGG [13] provide web-based data mapping functions on metabolic pathways.
KEGG provides wide range of pathways in various species including human as well
as various data accessible ways, which facilitates the utility of registered data
through the users’ programs. Pathway Projector utilizes this function and enables
the visualization of the given metabolic data in a large pathway. MetaboAnalyst
provides integrated data analytical environment, including data visualization and
pathway analysis. Vanted, an application that works on a local machine, has a
canvas on which users can edit any metabolic pathway to visualize experimental
data [14]. Metabolite set enrichment analysis (MSEA) [15] is becoming popular for
identifying aberrance not of single metabolites, but of pathways including multiple
metabolites. This idea was inspired by gene set enrichment analysis (GSEA), which
identifies the enrichment of gene sets belonging to a specific ontology, a technique
widely used in the analysis of transcriptomics data [16].

(b) Classification methods to differentiate samples based on metabolomics
profiles

Partial least squares (PLS) is a regression-based supervised classification method,
while PCA is an unsupervised method. PLS suits the analysis of relatively few
samples compared with the number of observable features, and is therefore com-
monly used for developing classification models based on metabolomics profiles.
PLS-discriminant analyses (PLS-DA) have been widely used to discriminate
between two phenotypes, e.g., samples with diseases from healthy controls.
Random forests (RF), a new machine learning method integrating multiple decision
trees, is also frequently used for the same purpose [17], e.g., a RF approach using
blood lipid metabolite profiles was used for discriminating pancreatic cancers from
healthy controls [18]. Decision trees are also used for the development of classi-
fication models [19]. A multivariate statistical analysis tool, MLR models, has also
been used frequently. Usually a minimal number of independent metabolites are
selected and used for the model’s inputs. Therefore, only a small number of
metabolites need to be quantified, which is a definitive advantage for clinical use of
this approach. For example, serum metabolites profiled by GC/MS were analyzed
by MLR to discriminate pancreatic cancer from chronic pancreatitis and healthy
controls [20]. MLR models using serum short peptides, such as c-glutamyl
dipeptides, profiled by LC–MS/MS are able to differentiate between a variety of
liver diseases, including drug-induced liver injury, asymptomatic hepatitis B virus
infection, chronic hepatitis B, cirrhosis type C, and hepatocellular carcinoma [21].

(c) Interpretation databases for the metabolite of interest

Once metabolites of interests are found, users will investigate their biological
functions reported in the literature and can obtain information on related entities,
such as precursor and product metabolites, enzymes, regulatory factors, and
transporters. KEGG [13], MetaCyc [22], SMPDB [23], and Reactome [24] include
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these data. The former two include information on a variety of species while the
latter two include human-specific datasets. As an example of a commercial data-
base, MetaCore [25] contains metabolites and their regulatory factors retrieved from
a number of published papers.

For metabolomics analysis, detected peaks are usually annotated by matching of
standard compounds or registered information in public database. To assign pos-
sible candidate metabolites to these peaks, several databases provide a library of
mass spectra. HMDB stores a number of raw mass spectrum data and provides mass
spectrum data matching functions [26]. Mass Bank also stores a range of mass
spectrum data obtained from a variety of MS platforms under different measure-
ment conditions [27]. We have developed the MMMDB to provide both CE–MS
spectra and metabolite profiles, i.e., sets of metabolite concentrations obtained from
multiple tissues from single mice to understand the balance of metabolite con-
centrations in metabolic pathways among these tissues [28].

(d) Simulation analysis in systems biology

To understand the complicated interactions among metabolites in biological sys-
tems, mathematical modeling with simulation is the most advanced sophisticated
analytical way. One approach uses only static information, i.e., flux of metabolites
under steady-state condition. Usually, isotope-labeled metabolites were injected
into cultured cells and flux was estimated based on the transition of labeled
metabolite, by utilizing the ability of MS to differentiate labeled and unlabeled
metabolites [29, 30]. Meanwhile, the other approach utilized dynamic information,
i.e., the kinetics of metabolic reactions, e.g., Michaelis–Menten equations [31]. As
an example, metabolic pathway in erythrocytes were mathematically modeled using
kinetic parameters collected from various literatures and compared the simulated
and the experimentally observed time courses of multiple metabolites in primary
pathways [32]. Both analyses require highly reproducible and accurately quantified
values of individual metabolites in the pathway of interests with correct assignment
of metabolite names; however, such simulations would deeply contribute to the
understanding of interactions in the given biological systems.

Example One—Pathway Analysis To Understand
the Change of Pattern in Metabolomics Profiles

As a first example, pathway analysis of metabolomics data using the MSEA website
(http://www.msea.ca/MSEA/) [15], which can analyze data obtained from human
samples, is shown. The step-by-step operation starting from preparing an input file
to visualizing results is described in Figs. 1 and 2. The procedure to use this
analysis tool using sample data [available at the MSEA website (Fig. 1c)] is
described here. This sample file is used for example one, and (with slight
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modification) for example two. The data include metabolite concentrations and
phenotype labels.

Input data: A data matrix including metabolite concentrations (sample
names � metabolite names) must be prepared (Fig. 1a). Two types of phenotype

Fig. 1 Analytical flow for MSEA. a A data file (csv format) used for MSEA is available as an
example at the website (c). The first column includes sample information, such as the patient ID.
The second column includes a phenotype label. For example, labels “Y” and “N” are used for
samples obtained from patients with or without cancer, respectively. The other columns include
metabolite concentrations; either absolute concentration or relative quantified values are acceptable
here. The first row of each column with metabolite concentration data contains the relevant
metabolite name. b Selection of analysis type. For this example, the button labeled “Quantitative
Enrichment Analysis (QEA)” would be selected. c Input file and data type selection. Two data
examples are provided here; the first one labeled “Dataset 1” should be selected, followed by the
“Submit” button. In the case of uploading the user’s own data, the “File select” button shown in
the dashed circle should be used. d Quality check for uploaded data. First, all metabolite names in
the upload file are compared with those in the MSEA database, and the metabolites that do not
match any entries are highlighted in red. Ambiguously matched metabolite names are highlighted
in yellow and approximate matches are indicated instead. A list of candidate metabolite names is
displayed when the highlighted metabolite is clicked. After confirming all such ambiguous
metabolites, the “Submit” button at the bottom of the website is selected. Overall data are
visualized by PCA and PLS. Subsequently, the “Next” button should be selected. e Metabolite
library selection. The first button, “Pathway-associated metabolite sets”, is selected and the
“Submit” button at the bottom of website clicked. f Result overview page. The pathway names are
listed according to their enrichment ranking. The bar graph indicates both fold enrichment and
statistical significance of individual pathways. The bottom table has links to show the detail of
individual pathways. The metabolite names (a) and details icons (b) are linked to Fig. 2a, b,
respectively
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for characterizing samples are acceptable; discrete (e.g., healthy or patient in a
binary case) or continuous (e.g., body mass index).

What is available after the analysis?: A list of enriched pathways is obtained.
These pathways are ranked based on their level of enrichment, identifying which
pathways show a strong correlation with the given phenotype. The results website is
well linked to relevant information, facilitating the collection of suitable literature.

Overall analytical flow: Users first select the type of analysis (Fig. 1b). A data
file is then uploaded and a quality check of the data is conducted (Fig. 1c, d).
Subsequently, the metabolite library or libraries to be used for the analysis(such as
blood, urine, and cerebral spinal fluid (CSF) metabolites)are selected (Fig. 1e), after
which the ranking of pathways is available (Fig. 1f). On the results page, the user
can access individual metabolic pathways stored on SMPDB [23]. Each node, e.g.,
metabolite or enzyme, on the website is fully linked to the entry on HMDB [26].
Thus, through this analysis, the user can readily access both SMPDB and HMDB
databases (Fig. 2).

Fig. 2 Results of pathway analysis using MSEA. The panels are fully linked to the output table
shown in Fig. 1f, which describes the enriched pathway list. a Pathway name and metabolite
names. The “SMPDB” at the right column is linked to the pathway database in SMPDB (see panel
c). b Enrichment levels of individual metabolites in a pathway. In this case, three metabolites in the
example file (uploaded as described in the legend to Fig. 1) matched metabolites in the galactose
pathway (myoinositol, D-glucose, and sucrose). Myoinositol showed the largest fold change
difference between the two phenotypes. c Pathway visualization in SMPDB. Individual
metabolites (circled on the figure) are linked to the appropriate entry in the HMDB.
d Description of an individual metabolite registered in HMDB
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Options:

MSEA provides three analytical approaches (Fig. 1b):

(1) Over representation analysis (ORA). This method simply maps the given
metabolite list onto the stored metabolite library in the database. This analysis
does not consider metabolite concentration data, but can be used for any type of
sample to identify which pathways include the user’s data.

(2) Single sample profiling (SSP). This analysis requires a list of the metabolite
concentration data from a single biofluid sample, e.g., blood and urine. The
metabolite concentrations uploaded by the user are compared with the normal
range of concentrations reported in the literature. As a typical example,
potential metabolite biomarkers showing abnormal concentrations correlated
with a particular phenotype can be uploaded, and the specificity of this aber-
rance among multiple studies can be investigated.

(3) Quantitative enrichment analysis (QEA). This analysis uses a metabolite con-
centration matrix with either discrete binary or continuous phenotype labels.
The rank of enrichment of each pathway is calculated based on the statistical
significance of the enrichment.

Depending on the analytical option, the information required as input data is
different, e.g., only a list of metabolite names is necessary for ORA. In addition to
these analytical approaches, metabolite libraries used for the analysis can be
selected (Fig. 1e).

Example Two—Development of a Classification Model
Using Metabolite Biomarkers for Discriminating Disease
Samples from Controls

The second example addresses the development and validation of a classification
model to discriminate patients with a disease from controls, based on observable
metabolite patterns. There are often only subtle metabolite changes between two
groups, in which case, mathematical models combining multiple metabolites may
be useful to improve the ability to discriminate. Here, we use Weka, a freely
available software providing a variety of machine learning methods (http://www.cs.
waikato.ac.nz/ml/weka/) [33] to build an if-then type decision tree to discriminate
metabolite data from humans with/without a disease.

Datasets as inputs: The data matrix used here (Fig. 3a) is slightly modified from
the sample file available at the MSEA website (Fig. 1c). The data include
metabolite concentrations without any patient ID column. Phenotype labels should
be placed in the far right column.

What is available after the analysis?: A classification model discriminating the
samples based on their phenotype labels. Their classification accuracies, such as
sensitivity and specificity, are also available.
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Overall analytical flow: Through the Weka software, a data file is read, a
classification model is selected, and training and evaluation of the model performed
(Fig. 3b–c). To evaluate the generalization ability of the developed model, the
prediction accuracy is calculated in a cross-validation (CV) manner where a subset
of the data is used for model development and the remainder for model evaluation.
This process is repeated until all data have been selected to evaluate the model
(Fig. 3d, e). The discrimination model is visualized in tree format, including nodes
and links, which facilitates understanding the relationship among the metabolites
used in the classification model (Fig. 3f). Prediction accuracy is visualized by
receiver operating characteristic (ROC) curves to indicate both the sensitivity and
specificity of the developed model (Fig. 3f).

Other options: A variety of classification models are implemented on Weka,
e.g., support vector machine, artificial neural network, Bayesian network, classifi-
cation and regression trees (CART), RF, and MLR. Various methods for clustering,

Fig. 3 Analytical flow of Weka software. a Data file used for Weka, which is generated by a
slight modification of the data for MSEA (Fig. 1a). The first column includes sample information,
such as patient ID. The second column includes a phenotype label. For example, labels “Y” and
“N” are used for the samples obtained from patients with or without cancer, respectively. The latter
columns include metabolite concentrations, the first row of which contains the relevant metabolite
name. This file is saved in csv format. b Startup panel. The “Explorer” button on the startup pane
should be selected. c Main panel for data selection. The “Open file” button is selected to load a
data file, and the “Classify” tab selected. d Main panel for selecting analytical options. After
pressing the “Choose” button, “weka-classifiers-trees-J48” is selected, followed by
“Cross-validation” in the Test options. e The “Start” button (labeled 1) runs training and
validation of the model, and a newly added result can be selected from the “Result list” (labeled 2).
Pressing the right mouse button on this result enables visualization of the results. f Decision tree
and ROC curves
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feature selection, and resampling of samples are also available. Classification
methods that contain a feature selection procedure in their development algorithm,
e.g., decision tree, will select only important features for the discrimination.
However, other methods, such as MLR, do not select any features and feature
selection prior to development of an MLR should be conducted independently. To
routinely perform Weka analyses with different options, the calculation program in
Weka can be accessed through both an application programmable interface (API) of
the Java language, and via command line.

Conclusions

Two commonly used analyses of metabolomics profiles for characterizing human
diseases have been introduced. Pathway analysis is used for understanding the
enrichment of multiple metabolites categorized into pathways. Development of a
classification model incorporating multiple metabolites may be used for the diag-
nosis and detection of disease. To assess metabolomics profiles, a number of factors
are important in addition to analyses such as these, including quality assessment at
both a qualitative level (especially for metabolite name assignment) and a quanti-
tative level (by visualizing overall datasets).
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Metagenomics for Monitoring
Environmental Biodiversity: Challenges,
Progress, and Opportunities

Raghu Chandramohan, Cheng Yang, Yunpeng Cai and May D. Wang

Abstract Metagenomics, as the genomic analysis of DNA materials from envi-
ronmental samples containing multiple genomic components, is attracting more and
more interests due to its wide applications on microbial, cancer, and immunology
researches. This chapter provides an overview on the topic covering the major steps
involved in data collection, processing, and analysis. We describe and discuss
experiment design, sample processing and quality control, sequencing and assem-
bly, annotation, and downstream analyses. For each step, we summarize the current
points of views, key issues, and popular tools. A step-by-step tutorial is then given
using the popular QIIME pipeline on a bacterial 16S rRNA study case, which
would benefit new scientists of the field for the startup of a successful metagenome
project.

Introduction

The field of microbial ecology has grown immensely in the past decade with the
advent and development of metagenomics. Metagenomics is defined as the direct
genetic analysis of genomes contained within an environmental sample [1]. The
preliminary projects in the area, involved cloning of environmental DNA, func-
tional expression screening, and then later on lead to the use of shotgun sequencing
of these environmental samples’ DNA. The technology is a major boon for sci-
entists as it broadened their research focus and gave access to study microbes that
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cannot be cultured in vitro (only 1% of the microbes can be cultured in vitro) at the
sequence level [2]. This innovative approach of studying the microbial population
in the environment unveiled the colossal functional gene diversity in microbes.

Metagenomics provides access to the functional gene composition of microbial
communities and thus gives a much broader description than phylogenetic surveys,
which are often based only on the diversity of one gene, for instance the 16S rRNA
gene for bacteria, 18S rRNA or ITS genes for fungus. The data generated from
metagenomics is immense and has hastened research in the area of microbial
ecology. Some of the applications of metagenomics include identifying novel gene
and gene products, genome engineering, understanding cell structure and function,
studying the evolution of the genomes in an environmental sample and also elu-
cidating their metabolic network, understanding protein–protein interaction with the
help of metaproteomics, and also performing expression studies using metatran-
scriptomics. With the rapid development of sequencing technology and substantial
reduction in cost, metagenomics has become the standard tool in laboratories and
scientist working in microbial ecology.

This chapter gives an overview of the field of metagenomics, with particular
emphasis on the steps involved in a typical sequence-based metagenome project.
We describe and discuss sample processing, sequencing technology, assembly,
binning, annotation, experimental design, statistical analysis, and data storage and
sharing. This chapter summarizes the current thinking in the field and introduces
current practices and key issues that those scientists new to the field need to
consider for a successful metagenome project.

Sampling and Experimental Design

Earlier computational genomics project was more exploratory and did give the due
importance to the reproducibility of the experiment. But as we go forward in this
era, we see the rising importance of proving our experiments with statistical rigor.
Likewise in metagenomics, we need to perform sampling in such a way that our
results can be reproduced and are statistically significant. Before beginning an
experiment, a power analysis must be performed to decide the number of samples
required to perform a meaningful analysis. The procedure we employ to sample is
also just as important as the number of samples we need for our experiment. Since
we are dealing with environmental samples, we must not bias the DNA we are
collecting. The sample collected must have accurate quantities representing the true
composition of the microbial environment. The bias can be reduced by taking
replicates of sample as we do not initially know which organisms we are trying to
capture. It should not be that we take a sample and separate it into aliquots before
sequencing to get replicates, i.e., they must be picked individually. Also, using
extremely high depth/coverage used in sequencing does not correlate with increased
accuracy of the true observation. When considering environmental sample, it is also
critical to consider temporal variations. Since the environment changes over time,
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the sampling for the experiment must be done in a preferably similar time frame to
avoid factors involved with time. If we are to perform sampling on a host, the
primary problem we observe here is that the host DNA overwhelms the microbial
DNA, especially if it is large.

Typical factors that should be considered in metagenomic experiments include
the choice of sampling spots (dimension of sample materials, number of samples,
and distribution of spots), sampling time, sequencing type, and sequencing depth.
Metagenomic objects can be very sensitive to slight fluctuations of environmental
factors. For example, in soil or human microbe sampling, a small shift of sampling
position may result in dramatic changes in microbe components. Hence, a clear and
rigid protocol for choosing sampling spots is necessary in order to properly reflect
the goal of the experiment. On the other hand, the biodiversity of the metagenomic
objects under investigation can be often far above the expectation of the
researchers, and the key components of the object which carry the desired property
may take up only a small portion of the biological community. A poor designed
sequencing scheme will lead to inadequate precision on profiling the key compo-
nents, which may be disastrous to the entire experiment. To alleviate this situation,
a wise strategy is to carry out a pilot study [3] for acquiring knowledge about the
biodiversity and variations of the environmental materials, and revise the experi-
ment design according to the outcome of the pilot data.

Prior statistical tests developed in quantitative ecology of higher organisms were
among the first to be employed for metagenomic data analyses such as SIMPER
and ANOSIM. Statisticians have since then come up with statistical tests which
give an insight into the core composition of the metagenomic sample and to per-
form other statistical analysis. As metagenomic data does not follow a normal
distribution and has a long skewed tail, we cannot employ directly many of the
parametric tests. Thus, statisticians continuously develop nonparametric tests
through simulations, resampling, or permutations that fit the data better.

There have been many experiments in the past which have been poorly designed
and whose results could not be reproduced. The area of metagenomics is exciting to
statisticians in that each experiment is unique and designing a meaningful test is
much appreciated.

Metagenomic Sequencing and Preprocessing

Sequencing technologies employed in metagenomic studies can be generally clas-
sified into three categories: whole genome shotgun (WGS) sequencing, amplicon
sequencing, and transcriptome sequencing. Whole genome shotgun sequencing
explores the entire gene material without any predefined filter, resulting in a survey
on the distribution of gene components. Amplicon sequencing, on the other hand,
focuses on a small specific region on the genome starting with a conservative tag
sequence (called primer) to achieve detailed knowledge of the region with ultra high
sequencing coverage. Amplicon sequencing has been a powerful tool for in-depth
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analysis of phylogenetic and evolutionary details. Transcriptome sequencing, also
called RNA-seq, adopts a RNA-specific primer to extract and clone the message
RNA components of the sampled material, and perform shotgun sequencing
resulting in a quantitative spectrum of the RNA transcription activities. Researchers
typically discriminate the usages of these sequencing techniques according to the
following purposes [4]: “Who are they?”—for amplicon sequencing; “What can they
do?”—for whole genome sequencing; and “What are they doing?”—for transcrip-
tome sequencing. However, this distinction is not rigid. For example, by using many
samples, species tag (e.g., 16S rRNA) amplicon sequencing can also be adopted to
model the interactions between microbial species in the nature environments.

Preprocessing of metagenomic sequencing data usually includes three basic
steps: quality control, removing barcodes, and removing chimeric sequences.

• Quality control: Nucleotides with low quality scores should be treated unreliable
and marked as an ambiguous nucleotide, or removed for the sequence. On the
other hand, if a sequence does not contain a continuous high quality segment
with sufficient length (the threshold should be determined by the researcher
himself), the entire sequence should be abandoned.

• Removing barcodes: Currently, in order to save sequencing cost, most
metagenomics projects employ barcode techniques to sequence multiple sam-
ples in the same run. A barcode is a predesigned short sequence attached to one
end of a sequence to identify its source. Barcode is not part of the original
sequence and should be removed before analyses, which can be done using
simple program codes.

• Chimera removal: Chimera is a phenomenon that happens in the library
preparing phase of sequencing and causes structural error in sequencing.
Chimera happens when a DNA copying is interrupted midway and the partly
copied segment is detached from the source A, then reattached to a difference
source B, resulting in a chimeric sequence with one part analogue with A and
others with B. Because metagenomic sequencing, especially amplicon
sequencing, involves lots of similar sequence components, the impact of chi-
mera is considerable. Currently, there is not golden standard for identifying
chimeric sequences. Nevertheless, a number of tools do exist to help identifying
sequences that are potentially chimeric.

Metagenomic Data Analyses

a. Identification of Metagenomics Community Composition

The first step in metagenomics study is typically to provide a detailed description of
the population composition about studied sample. This can be generally carried out
from two aspects: the ecological scope and the functional scope. In this subsection,
we will introduce the idea of ecological analysis before talking about functional
analysis in the next subsection (metagenomics annotation). The basic task of
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ecological study is to identify the taxonomic compositions of the sampled material
and their abundances from the sequence data, which is called sequence binning.
Existing technologies of metagenomic sequence binning can be classified into two
categories: taxonomy-dependent approaches, which match sequences to a reference
library to determine their sources, and taxonomy-independent approaches, which
adopt clustering technology to group the sequences into operational taxonomy units
(OTUs) based on their internal similarities without external references. The most
frequently used technique for taxonomy-dependent analysis is to adopt sequence
alignment tools such as BLAST [5] or BLAT [6] to find a most similar reference for
each sequence, and use the annotation of the reference as the taxonomy assignment.
More advanced techniques, such as CARMA [7], AMPHORA [8], and INFERER
[9], adopt probabilistic models such as Hidden Markov models to reflect the
sequence characters of a reference taxon with intra-taxon variation considered, and
align query sequences against the model, which usually achieves better assignment
but with high computational burden. Due to the nature of metagenomics that
unknown species may take up a significant portion of the studied community,
taxonomy-independent analysis is often preferred in providing a complete
description of the biological community. Dozens of methods have been proposed
for this purpose and the underlying techniques are quite diverse. Currently, TETRA
[10], CompostBin [11], and MetaCluster [12] are leading methods for
taxonomy-independent binning of whole genome or transcription sequences, while
USEARCH [13] and ESPRIT-Tree [14] are currently two most up-to-date algo-
rithms for amplicon sequences that can handle millions of reads.

b. Metagenomics Annotation

Metagenomic annotation usually consists of two steps: (1) ORF (open reading
frame) calling or gene prediction from contigs and (2) functional annotation of
ORFs or genes. Gene prediction can be categorized into two groups, including
(1) evidence-based methods relying on homology search, which can find only
previously known genes; and (2) ab initio algorithms, which are capable of
detecting novel genes [15]. For evidence-based metagenomic gene prediction
methods, the selections can be comparisons against known protein databases with
BLAST packages, CRITICA [16], and Orpheus [17]. As for ab initio algorithms,
considerable methods have been designed specifically for metagenomic DNA
fragments such as MetaGeneMark [18], MetaProdigal [19], Glimmer-MG [20],
Orphelia [21], MetaGUN [15], and FragGeneScan [22]. Most algorithms use
Hidden Markov models and machine learning approaches to approximate optimized
parameters from training sets for prediction. The ab initio algorithms show reliable
performance (accuracy around 97%) on the long DNA fragments (>500 bp), while
the performance (accuracy around 89%) declines severely for short fragments
(<120 bp) [15], indicating it necessary to proceed assembly for the NGS sequence.
Note that the development in NGS techniques and metagenomic assembly have
already been able to produce long enough contigs [23, 24], enhancing the feasibility
of gene prediction.
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For most metagenomic projects, one of the major computation challenges is
function annotation [25]. Annotation is typically done with homology searches by
mapping to gene or protein databases, such as COG/KOG [26], eggNOG [27],
KEGG [28], PFAM [29], and TIGRFAM [30]. But as estimated, less than 50% of a
metagenomic sequence can be annotated [31]. Until now, no reference database can
cover all biological functions. Therefore, visualizing and merging the interpreta-
tions of all database searches within a single framework is an essential task [25], as
implemented in several metagenomic analysis platforms that will be introduced in
later sections.

c. Downstream Analyses

By sequence binning and annotation, the taxonomy and function compositions of
the metagenomics have been identified, which enable downstream analyses of the
sequence data. Typically, metagenomics sequences are reduced into a summary
table with row representing the operational taxonomic unit (OTU) and the columns
representing the category (organism classification, gene function classification,
enzyme classification, pathways classification), on which many statistical tests that
can handle this kind of data.

Ecological statistics is one of the most frequently used analyses that provide a full
picture of the metagenomic community from sequencing results. The key task of
ecological statistics is to infer the taxon diversity of the environment from the
samples. Because biological communities usually follow a long-tail distribution and
the samples cannot guarantee to cover all taxa due to limited sample depth, statistical
inferences should be employed to estimate the number of potential taxa. The alpha
diversity describes the estimated taxon diversity of an environment sample inferred
from sequencing results. Typical statistics indices include the CHAO1 estimation
[32], the ACE estimation [33], and the rarefaction curve [34]. The beta diversity, on
the other hand, measures the differentiations among samples. Simple metrics of beta
diversity include Jaccard index, Sorensen index, Simple Matching Coefficient, etc.
These indices are too rough to reflect the quantitative variation between samples.
The Unifrac distance [35] was proposed specifically for evaluating the inter-sample
dissimilarities in metagenomics, which measures the similarity between two samples
by merging their data together and performing clustering.

In contrast to statistical inferences, phylogenetic analysis studies the relationship
between individual taxa within a sample or among different samples and reveals
their evolutionary relationship based on sequence similarities, in the form of a
phylogenetic (evolutionary) tree. Currently, practical approaches of constructing
phylogenetic trees can be classified into two categories: minimal evolution ones
(NINJA [36], QuickTree [37], FASTTree [38]), which minimize the overall span of
the phylogenetic tree, and maximum likelihood ones (PhyML [39], RAxML [40],
FASTTree-2 [41]), which find an evolutionary relationship that maximizes the
probability of generating the observed data.

Principle coordinate analysis (PCoA) and interaction networks are another two
frequently used techniques for in-depth studies of the interactions between the
metagenomics community and the environment or among community components.
Matching the principle coordinates of variation to environment factors has led to
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various important metagenomic discoveries such as the entero-types of human gut
microbe [42]. On the other hand, interaction networks are usually the starting point
for describing how the influence of environments propagates within the studied
community and what kind of compositions play important roles in it.

d. Data Visualization

“Communicating information clearly and effectively” is the main goal of data
visualization [43], which has become an essential part of metagenomic analysis.
Some metagenomics analysis platforms, such as IMG/M [44] and MEGAN [45],
have integrated visualization tools. However, as metagenomic analysis platforms
must consider other aspects of analysis, which might limit their performance on
visualization. Here, we confine to the tools designed specifically for metagenomic
visualization, such as Krona [46], MetaSee [47], and VAMPS [48]. Most
metagenomic visualization tools focus on the phylogenetic annotation [49] and the
assignment of taxonomy or gene function [46, 48]. With the visualization of
phylogenetic information and taxonomic or functional hierarchies, researchers can
obtain an overview of the microbial population structures and articulate the dif-
ference of samples. However, metagenomic samples comprise numerous known or
unknown species, and this uncertainty increases the “levels of granularity inherent
in these classifications” [46]. To address this challenge, Krona [46] proposed to use
radial space-filling displays that can illustrate hierarchical data with zoomable pie
charts in an intuitive interactive way. Even though Krona can display the structure
of single sample vividly, displaying only one sample in a window at a time limits
the convenience of comparing samples [47]. Therefore, MetaSee [47] presented a
toolbox, which includes a critical part that integrates various views for the com-
parison of multiple samples, for metagenomic visualization. As for recently
developed VAMPS [48] and Amphora Vizu [49], they both allow using marker
genes to analyze the diversity of microbial communities and phylogenetic classi-
fication, respectively. Apart from these aforementioned visualization tools for
metagenomic, many other tools, such as Explicet [50] and SynTView [51], are still
waiting to be explored by researchers. Facilitated by the next generation sequencing
technologies, a large amount of available metagenomic data require more efficient,
interactive, and extendable visualization.

Platforms

IMG/M is an integrated metagenome data management and comparative analysis
system which integrates metagenome data sets with isolate microbial genomes from
IMG [44, 52]. It integrates all datasets into a single protein level abstraction [25].
As for MG-RAST, it provides the functions of data repository, analysis pipeline,
and genomics comparison. “It has been optimized for achieving a trade-off between
accuracy and computational efficiency for short reads” [25]. Until March 2014,
MG-RAST has over 12,000 registered users, 110,593 data sets, 110,593
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metagenomes, and 43.74 Terabase. These statistics demonstrate MG-RAST’s rep-
resentative status in the standardize pipeline. “CAMERA [53] offer more flexible
annotation schema but require that individual researchers understand the annotation
of data and analytical pipelines well enough to be confident in their interpretation”
[25]. Recently EBI metagenomics—a new resource for the analysis and archiving
of metagenomics data [54] was lunched; it is the first metagenomics analysis
pipeline in Europe, which also undergoes quality control checks, and functional and
taxonomic analyses. All the above resources (IMG/M, MG-RAST, CAMERA, EBI
metagenomics) “have representatives in the Genomic Standards Consortium
(GSC) [55] and have all adopted and implemented the MIxS (minimum information
about any sequence) [56] checklists” [54]. As the state-of-the-art resources, all the
platforms share almost the same workflow, and the following effort is to “establish a
platform for next generation collaborative computational infrastructures, called M5
(Metagenomics, Metadata, MetaAnalysis, Models and MetaInfrastructure) in which
all parties are involved” [54, 57]. With multiple choices, no doubt it will be more
easily for users to access and interpret the data.

For metagenomics analyses of bacteria 16S rRNA sequences, established
pipelines include QIIME [58], mother [59], and RDP-pyro [60].

Example: Bacteria 16S RRNA Metagenomics Pipeline

In this section, we provide a simple example of analyzing bacteria 16S rRNA
metagenomics sequences using popular bioinformatic tools. Suppose you are going
to study the differences of gut bacteria composition between patient and healthy
people, and you choose the V4 region of the 16S rRNA as the sequencing target.
The first step is to design a sequencing scheme as below:

#SampleID BarcodeSequence LinkerPrimerSequence Treatment ReversePrimer

Sample1 CGCTTATCGAGA GTGTGCCAGCMGCCGCGGTAA patient GGACTACHVGGGTWTCTAAT

Sample2 CATACCAGTAGC GTGTGCCAGCMGCCGCGGTAA patient GGACTACHVGGGTWTCTAAT

Sample3 CTCTCTACCTGT GTGTGCCAGCMGCCGCGGTAA healthy GGACTACHVGGGTWTCTAAT

……………………

……………………

The above scheme adopts the 515F/806R primer pair to capture the V4 hyper-
variation region, and assign a barcode sequence to each sample. Moreover, a
two-base linker ‘GT’ is attached to the forward primer to ensure the quality of
sequencing the primer and the barcode. The choice of barcodes and linkers is
device-specific and should consult the device guideline for optimal solutions. Note
that although the reverse primer is not always needed for sequencing, it is preferred
for helping with validating the integrity of the sequences obtained. We record the
scheme in a text file ‘samplemapping.txt’.
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Step 1: Preprocessing

Suppose you used a 454 GS FLX sequencer, the sequencing results are composed
of two major files: a ‘.fna’ file containing the sequences in FASTA format and a ‘.
qual’ file containing the quality score of each nucleotide base. We process the data
in the QIIME environment using the following command:

$ split_libraries.py -m samplemapping.txt -f samples.fna -q
samples.qual –z truncate_remove -w 50 -g -o preproc

The above command produces an output file preproc/seqs.fna which
contains filtered sequences. The barcodes and primers are removed from the
sequences and the sample name is attached to the sequence label. Moreover,
sequences with insufficient length or poor quality sores are excluded from the data.
We further perform chimera removal:

$ identify_chimeric_seqs.py -i preproc/seqs.fna -m use-
arch61 -o chimeras/-r reflib.fna

$ filter_fasta.py -f preproc/seqs.fna -o seqs_filtered.fna
-s chimeras/chimeras.txt -n

Here ‘reflib.fna’ is a reference library of reliable bacteria 16S rRNA
sequences. A set of libraries have been provided by QIIME and other tools.

Step 2: OTU picking and annotation

The following command generates operational taxonomy units (OTUs) using
USEARCH under the QIIME environment:

$ pick_de_novo_otus.py -m usearch61 -i seqs_filtered.fna -
o otus

The above command generates a file with suffix ‘_otu.txt’ in the otus/
uclust_picked_otus directory which contains the sequence labels of each
taxonomy unit per line. Moreover, for each OUT, a representative sequence is
generated in otus/rep_set directory, along with their taxonomy annota-
tions. The presentative sequences are further aligned and a phylogenetic tree is
generated, which is required for downstream analyses. Finally, a taxonomy sum-
mary table about the distribution of microbial compositions in different samples is
given in the file otus/otu_table.biom, which is a JSON file in BIOM format.

Step 3: Visualization and downstream analyses

The following command parses the taxonomy table generated in the above step and
generates a series of figures describing the distributions of known taxonomy
components in different biological taxonomy levels:

$ summarize_taxa_through_plots.py -i otus/otu_table.
biom -o taxa_summary -m samplemapping.txt
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Figure 1 depicts the results of a taxonomy distribution graph on phylum and
family levels, respectively. The results are stored in .html format under the
/taxa_summary directory.

The following command provides more detailed information about taxonomy
compositions among samples in the form of a heat map. The results are stored in a
PDF format. Figure 2 depicts an example of the execution results.

$ make_otu_heatmap.py -i taxa_summary/otu_table_L4.biom
-o taxa_summary

Fig. 1 Example of a taxonomy distribution graph on different levels: (left) phylum, (right) family

Fig. 2 Example of a taxonomy heatmap on family level
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The following command analyzes the alpha diversity of each sample and plots a
set of rarefaction curves with CHAO1 estimation on various sample depths.
Figure 3 depicts an example of the obtained rarefaction curve plots. The results
figures are stored in the/alpha directory.

$ alpha_rarefaction.py –p param.txt -i otu_table.biom -m
samplemapping.txt -o alpha

Fig. 3 Example of a rarefaction curve plot, blue healthy group, red patient group (color figure
online)

Fig. 4 Example of principle coordinate analysis to describe the similarity and differences between
sampled environments. Blue healthy, Red patients. We see the two groups are separated clearly
(color figure online)
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The following command analyzes the beta diversity between samples and per-
forms principle coordinate analysis (PCoA) to visualize the differences. Figure 4
depict the results of PCoA. The results figures are stored in the/beta directory.

$ beta_diversity_through_plots.py -i otu_table.biom -m
samplemapping.txt -o beta

Conclusion

Genome sequencing is now a common tool in biological and biomedical research.
In the past few years, the data generation capacity of high-throughput sequencing
has increased dramatically at a speed exceeding the Moore’s law and with sharply
reduced cost. The extensive accumulation of genomic information represents a
valuable source for expanding biological knowledge. As a result, metagenomics has
become an explosive increasing topic for dramatically changing the traditional
paradigm of ecological studies. Bioinformatics plays an important role in this area
for providing powerful tools to handle the massive amount of data. As introduced in
this section, dozens of tools have been proposed to aid various steps of metage-
nomic analysis covering from preprocessing to biological statistics. Nevertheless, it
should be pointed out that existing tools are still far from optimal in accurately
detecting the composition of the metagenomics communities, even with very simple
cases. Serious challenges persist regarding the accuracy and computational speed of
existing data processing pipelines. Hence, developing of efficient bioinformatic
methods for fast and accurate analyses of huge and growing sequencing data will be
an essential task in the future development of metagenomics.
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Clinical Assessment of Disease Risk
Factors Using SNP Data and Bayesian
Methods

Ivan Kozyryev and Jing Zhang

Abstract Recent groundbreaking technological and scientific achievements
impelled the field of personalized medicine (PM), which promises to start a new era
in clinical disease treatment. However, the degree of success of PM strongly
depends on the establishment of a vast resource library containing the connections
between many common complex diseases and specific genetic signatures.
Particularly, these connections can be discovered performing whole-genome
association studies, which attempt to link diseases to their genetic origins. Such
large-scale surveys, combined with modern advanced statistical methods, have
already identified many disease-related genetic variants. In this review, we describe
in detail novel statistical methods based on Bayesian data analysis ideas—Bayesian
modeling, Bayesian variable partitioning, and Bayesian graphs and networks—
which are promising to help shine light on complex biological processes involved
in disease formation and development. Particularly, we outline how to use Bayesian
approaches in the context of clinical applications to perform epistasis analysis while
accounting for the block-type genome structure.

Promise and Complexity of Personalized Medicine

Simple and inexpensive genetic tests capable of showing person’s risks to develop
certain diseases would help to effectively target clinical treatments to each indi-
vidual patient in order to achieve the best possible results [1, 2]. Consequently,
efficient technologies and software for uncovering treatment-related mutations in
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illness-inducing viruses as well as disease-related variants in patient’s DNA will
play important roles in the future of medicine. Improved disease prevention and
diagnosis as well as novel routes to therapies are the main motivations for extensive
studies aimed at finding disease-related genetic signatures.

Presently, the estimated disease risks via characterization of known genetic risk
factors can provide only a limited help in clinical applications [1, 3]. Even though a
large amount of resources has been directed in this direction recently, the genetic
basis of common human diseases has not been identified for the most part [4, 5].
Recent emergence of successful experimental and statistical strategies for the
genome-wide association studies was supposed to provide the necessary tools for
deciphering genetic causes of complex human illnesses like type 1 and 2 diabetes
[6], rheumatoid arthritis, and bipolar disorder [4, 7]. However, the presence of
complicated multi-locus interactions immensely complicates the task of discovering
disease-related variants in patient’s genome [8, 9]. Thus, biochemical and statistical
understanding of genetic interactions will play a crucial role in future clinical
applications.

Whole-Genome Association Studies

An examination of a large number of genetic markers across the whole genome for
multiple individuals with the goal of identifying variants-disease associations is
known as genome-wide association study (GWAS). Novel scientific and techno-
logical advances in high-throughput biotechnologies such as microarrays and
next-generation sequencing [10–12] made GWAS a powerful tool for unlocking the
genetic basis of complex diseases. Particularly, development of International
HapMap resource [13] that simplified design and analysis of association studies,
emergence of dense genotyping chips [10, 14], and assembly of large and char-
acterized clinical samples [4] should be singled out as important factors in recent
successful progress for GWAS. While many disease loci have been identified in
such surveys [4, 15], discovered variants explain only a small proportion of the
observed familial aggregation [2, 16], thus posing a famous problem of missing
disease heritability [17]. While there are a few proposed solutions to the encoun-
tered challenge [5], an urgent contemporary question that still needs to be solved is
regarding the architecture of complex human traits. While, “common variant”
hypothesis has come under a lot of criticism lately [1, 17], it is now necessary to
devise experimental and computational methods to determine which one of the
proposed disease architectures describes the reality in order to help develop future
clinical medicine applications of bioinformatics technologies [1, 3, 17].

The most common type of DNA change is known as the single-nucleotide
polymorphism (SNP), which arises when a single base (A, T, C, or G) is replaced
by another one at a specific DNA position. Some SNPs can directly lead to disease
formation; others increase the chance of disease statistically [18]. Analysis of SNP
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data is complicated because of a large number of possible interaction combinations
as well as by the presence of correlation with the nearby SNPs.

Beyond Single-Locus Analysis

Despite striking success in the twentieth century in pinpointing genes responsible
for Mendelian diseases, genetic origins of common complex diseases are, in fact,
non-Mendelian in nature [9, 19]. Particularly, gene–gene interactions are involved
in many complex biological processes like metabolism, signal transduction and
gene regulations; thus, genetic variants in multiple loci may contribute to the dis-
ease formation together [20, 21]. For example, breast cancer and type 2 diabetes
have been linked to multi-SNP interactions [21–23]. While most current bioinfor-
matics approaches focus on detecting single-SNP associations, advanced statistical
methods are necessary for multi-SNP association mapping because single-variant
methods not only lose power when interactions exist but are, in fact, helpless in
detecting rare mutations [24]. Also, the number of possible interactions is so vast
that it is computationally unrealistic to search through all possible interactions in the
genome for a large-scale case-control study [8, 25].

Additional challenge for disease origin discovery comes from the statistical
correlation between nearby variants known as linkage disequilibrium or LD [25, 26].
LD patterns have many important applications in genetics and biology [27] and arise
due to shared ancestry for contemporary chromosomes [13]. Due to LD patterns, it is
likely that there will be a lot of redundant positive signals in dense studies [24]. Later
on we address in detail how Bayesian strategies can address the burning problems in
genetics while dealing with epistasis and linkage disequilibrium.

Modern Bioinformatics Approaches

Currently, most of the approaches to disease association mapping employ the
standard “frequentist” attitude to the evaluation of significance [2]. Particularly,
such algorithms use hypothesis testing procedures to deal with one variant at a time
[24]. However, failures of such “frequentist” methods to account for the power of a
study and the number of likely true positives [2] combined with the increased
likelihood to report a multitude of redundant associations [24] sparked a wide
interest in the Bayesian procedures. In this review, we survey the challenges facing
statistical geneticists while analyzing the GWAS data and outline how recently
emerged Bayesian methods can help with the process. In addition to outlining the
main differences between various proposed approaches, we highlight limitations
and advantages of each method and describe future prospects in the field and how
Bayesian approaches can aid in answering outstanding questions in biomedicine.
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Bayesian Data Analysis Methods

In Fig. 1, we have shown multiple complicated interactions that have to be con-
sidered while developing statistical models for understanding of the multi-locus
interactions resulting in the disease development. The ultimate goal is to be able to
accurately understand all the shown connections in large-scale case-control studies
while also comprehending the biological processes that lead to disease develop-
ment. Thus, while statistical understanding is important, developing methods that
can point in the direction of the appropriate biological processes taking place is the
ultimate goal.

Overview of Bayesian Data Analysis

Statistical conclusions about an unknown parameter h (or unobserved data xunobs) in
the Bayesian approach to parameter estimation are described utilizing probability
statements, which are conditional on the observed data x: p(h|x) and p(xunobs|x).
Additionally, implicit conditioning is performed on the values of any covariates

Fig. 1 Genetic interaction graph showing possible paths to disease formation. SNPs are
represented as circles with color and shading indicating disease connection: “red solid” ones are
marginally associated with the phenotype under consideration, “red shaded” ones are leading to
disease formation through epistasis or are in linkage disequilibrium (LD) with such variants, and
finally “green circles” are not associated with the phenotype. LD blocks are shown as square
brackets and interactions are depicted as double-headed arrows
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[28]. The concept of conditioning on the observed data is what separates Bayesian
statistics from other inference approaches which estimate unknown parameter over
the distribution of the possible data values while conditioning on the true, yet
unknown parameter values [28, 29].

At the heart of all the Bayesian approaches for detection of gene–gene inter-
actions lies the concept of Bayesian inference and model selection. The goal is to
determine the posterior distribution of all parameters in the problem (disease
association, epistatic interactions, gene–environment interactions and others), given
the common variants data for the case-control study while incorporating prior
believes about parameter values. The conditional probability of all parameters
ðParamsÞ given the observed data ðDataÞ is given by the product of the likelihood
function of the data and prior distribution on the parameters, as well as the nor-
malization constant:

P ParamsjDatað Þ ¼ P DatajParamsð ÞP Paramsð Þ
P Datað Þ ð1Þ

For most high-dimensional data sets encountered in large-scale studies, PðDataÞ
cannot be explicitly calculated [9] and, therefore, PðParamsjDataÞ can be evaluated
analytically only up to the proportionality constant. However, advanced computa-
tional techniques (iterative sampling methods) can be used to determine posterior
distribution of parameters [29, 30]. The main task is to make appropriate choices of
statistical models to describe the likelihood expression and also to choose appro-
priate prior distributions on the values of parameters, PðParamsÞ.

Overview of Bayesian Variable Partition

Instead of testing each SNP set in a stepwise manner [31, 32], Bayesian approaches
fit a single statistical model to all of the data simultaneously [9, 25, 33] allowing for
increased robustness when compared to hypothesis testing methods [2, 24]. Another
advantage of Bayesian approach to the problem is the ability to quantify all the
uncertainties and information, and to incorporate previous knowledge about each
specific SNP marker into the statistical model through priors [9, 29].

In the Bayesian model selection framework, we are interested in figuring out
which of the set of models Mif gNi¼1 is the most likely one given the observed Data.
The posterior probability for a particular model Mi given Data is described by:

P MijDatað Þ / P DatajMið ÞP Mið Þ ð2Þ

Thus, through comparison of the posterior odds ratio for PðMijDataÞ and
PðMjjDataÞ it can be determined whether model Mi or Mj is more likely [29]. It is
important to note that the normalization constant in Eq. 2 involves summation over
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all possible models: P Datað Þ ¼PN
i¼1 P DatajMið ÞPðMiÞ. For example, consider the

case of a genome-wide study containing 1500 SNPs each of which can take one of
the three possible states; thus, N ¼ 31500 � 5� 10715 is the total number of feasible
models to sum over. In such instances, it is necessary to use stochastic methods to
sample from the posterior distribution. Now let us consider how this conceptual
framework is applied in practice to the determination of multi-locus interactions in
case-control studies.

Epistasis Analysis Methods

While statistical methods like BGTA [34], MARS [35], and CPM [36] are capable
of detecting epistatic associations, the Bayesian epistasis association mapping
(BEAM) algorithm [9] was the first practical approach capable of handling
genome-wide case-control data sets. BEAM algorithm gives for each SNP marker
posterior probabilities for disease association and epistatic interaction with other
markers given the case-control genotype SNP data. Figure 2 shows the input file
format necessary for application of the algorithm. The core of the Bayesian marker
partition model used can be briefly summarized as follows.

BEAM can detect both interacting and noninteracting disease loci among a large
number of variants. It is an application of Bayesian model selection procedure.
Particularly, all the markers are split into three groups: (1) markers not associated
with the disease, (2) marginally disease-associated variants, and (3) those with
interaction associated disease effect. Thus, using the priors on the marker mem-
berships and Markov Chain Monte Carlo (MCMC) methods, posterior probabilities
for group memberships are determined. Specifically, by interrogating each SNP
marker conditionally on the current status of others via MCMC method, the
algorithm produces posterior probabilities [9]. Particularly, the genotype counts

ID Chr Pos 1 1 1... 1000...
rs100102 chr1 4924223 1 -1 0... 1-120...
... ... ... ...

disease status indicator

SNPdata
"-1": for missing data

D
a
ta

fo
r
m
u
lt
ip
le

S
N
P
s

Fig. 2 Input data format for
BEAM software [9] which
uses MCMC to analyze
case-control genetic studies.
Label “1” denotes patients
while “0” denotes controls.
Note that it is not a
requirement to provide the
SNP ID and location
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are modeled by the multinomial distribution with frequency parameters
h ¼ h1; h2; h3f g, P3

i¼1 hi ¼ 1 described by the Dirichlet prior:

PðhjaÞ /
Y3
i¼1

hai�1
i ð3Þ

In order to determine the posterior probability of each marker’s group mem-
bership (represented by I), the Metropolis–Hastings (MH) algorithm [30] is used to
sample from PðIjD;HÞ as given in Eq. 3:

P IjD;Hð Þ / PðD1jIÞPðD2jIÞPðD0;HjIÞPðIÞ; ð4Þ

where D is the patient data set (with disease), H is the control data set (healthy), and
then D0, D1, and D2 are correspondingly partitions of the patient data set into the
three categories described above. The assumption is that case genotypes at the
disease-associated markers will have different distributions when compared to
control genotypes. Furthermore, the likelihood model assumes independence
among markers in control group.

While BEAM algorithm was one of the first few to be able to handle GWAS
data, it suffered from an assumption that SNPs dependence structure could be
described by the Markov chain [9, 25]. In fact, SNP markers are highly correlated
within haplotype blocks which are separated by recombination events [13, 37].
Therefore, despite its success, BEAM model is unable to capture the block-like
human genome structure.

Incorporating Block-Type Genome Structure

Given that nearby SNPs are strongly correlated due to linkage disequilibrium, a
new Bayesian model [25] that infers diplotype blocks and chooses SNP markers
within blocks that are disease-associated becomes much more powerful when
compared to other similar approaches. Here, we review the statistical Bayesian
model for the LD-block structure determination [25, 26]. The main assumption is
that diplotypes of individuals come from a multinomial distribution with frequency
parameters described by the Dirichlet prior and that genotype combinations of
SNPs in different blocks are mutually independent. The compact expression for the
marginal probability of the data for a specific block is given by:

P D s;b½ Þj s; b½ Þ ¼ block
� � ¼ Y3b�s

i¼1

C ni þ aið Þ
C aið Þ

 !
C
P

aið Þ
C
P

ni þ aið Þð Þ ; ð5Þ

where a block of SNPs considered consists of the SNPs (s, …, b − 1); C is the
gamma function,~a is the vector of Dirichlet parameters and ni refers to the number
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of counts for a specific diplotype. For joint inference of diplotype blocks and
disease association status, we use the joint statistical model for the observed
genotype data in cases and controls, the marker membership and block partition
variable:

P H;D;B; Ið Þ ¼ P H;DjB; Ið ÞP Bð ÞPðIÞ ð6Þ

Finally, in order to determine the posteriors PðBjD;HÞ and PðIjD;HÞ the model
uses a combination of MH algorithm and Gibbs sampler [25].

Detailed Interaction Partition Structure Determination

While successful in inferring epistatic interactions in large-scale case-control
studies, both BEAM and its newer version BEAM2 had a disadvantage of using
saturated models which limited the ability of the algorithms to accurately determine
the epistatic interactions structure. Recent studies showed [4, 33, 38] that such
interaction details arising due to encoding of the complicated regulatory mecha-
nisms might play an important role in the disease formation. In order to carefully
explore the etiopathogenesis and genetic mechanisms of diseases, a novel algorithm
named Recursive Bayesian Partition (RBP) was proposed [33]. The RBP approach
employs a Bayesian model to discover independence groups among interacting
markers: first, it recursively infers all the marginally independent interaction groups,
and then determines the conditional independence within each group using a chain
dependence model. RBP therefore successfully recursively determines dependence
structure among interacting variants in GWAS. Figure 3 shows an example of the
possible outcomes of the RBP algorithm applied to GWAS data when determining
the epistatic interactions independence structure.

V1,V2,V 3,V4,V5,V 6

V3 V4 V2V5

V1,V6V2,V3,V 4,V5

Fig. 3 Inference of the detailed dependence structure using Recursive Bayesian Partition
(RBP) method. The individual independence groups among five variants are pointed out using
separate solid blocks. A group with conditional independence is denoted using a dotted shape
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Bayesian Graph Models and Networks

In order to improve disease mapping sensitivity and specificity, BEAM3 algorithm
[24] uses a graph model to allow for flexible interaction structures for multi-SNP
associations. Through the use of Bayesian networks, BEAM3 detects flexible
interaction structures instead of using saturated models (like BEAM and BEAM2),
therefore, highly reducing the interaction model complexity. Moreover, because
only the disease association graphs are constructed, BEAM3 provides for higher
computational efficiently in the whole-genome association settings [24].

In detail, BEAM3 allows for higher order couplings via saturated interactions
within cliques (nonoverlapping partition of SNPs) and pairwise interactions
between them. It can be shown [24] that the joint probability of all SNPs X,
parameters, including disease graph and association status (G, I), and disease status
indicator (Y) is given by:

PðX; Y ;G; IÞ / PAðX1jY ;GÞPðYÞPðGjIÞPðIÞ=P0ðX1Þ; ð7Þ

where G ¼ ðC;DÞ is an undirected disease graph constructed on disease-associated
SNPs (X1) and including partition of SNPs into cliques (C) and interaction between
cliques (Δ); probability function of X1 set under the phenotype association
hypothesis is described by PA. Therefore, as can be seen from Eq. 7, only a few
disease-associated SNPs are modeled (in set X1), and hence a significant portion of
computational time is saved by avoiding explicit modeling of complicated depen-
dence structures of all SNPs which could be millions [19, 24, 39]. Additionally,
through the choice of a proper baseline probability function P0(X1), the model
automatically accounts for the complex LD effects among dense SNPs employing
graphs. Thus, a significant number of repetitive false interactions are avoided
reducing computational burden [24]. Specifically, summing over all G0 graphs, the
expression for the baseline model becomes:

P0 X1ð Þ ¼
X
G0

P0 X1jG0ð ÞPðG0Þ ð8Þ

An alternative approach toward learning disease inducing gene–gene interac-
tions is using binary classification trees. Bayesian methodology has been recently
applied [21] to identification of multi-locus interactions in the large-scale data sets
using a Bayesian classification tree model. Specifically, this kind of machine
learning approach produces tree structure models, where each nonterminal node
determines the splitting rule based upon the predictor variables like SNPs, and
edges between nodes correspond to different possible values for the variable in the
top parent node. A path along such a tree till the terminal node represents a specific
combination of predictor variables along the path, therefore, automatically
accommodating for epistasis [8, 21].

There are various ways for searching through the feasible tree space in such
recursive partitioning approaches including greedy algorithms [40], random forests
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approach [8, 41], and MCMC [42, 43]. Bayesian variable partition and Bayesian
classification trees are conceptually similar in that prior is assigned to all the tree
models with the purpose of controlling the tree size [21]. One main advantage of
this approach is in a possible enhancement of finding probability for multi-locus
interactions with weak marginal effects due to ensuring the variable splitting
through the prior specification. Moreover, due to the adaptivity of the MCMC
algorithm, such Bayesian tree models detect higher order interactions by per-
forming thorough searches near trees with the interacting variables determined in
previous iterations [21]. It is important to point out that classification tree
approaches do not test for epistatic interactions directly [8].

Clinical Applications of Bayesian Methodology

Even though practical Bayesian approaches for whole-genome multi-locus inter-
actions analysis have emerged relatively recently, such methods have already
helped to make important advances in determination of disease etiology. Table 1
succinctly summaries and compares all the statistical methods described above as

Table 1 Comparison of modern Bayesian approaches for whole-genome association analysis
with possible clinical applications

SNP analysis method Brief description Interactions
model

Detected
loci/Epistatis

Bayesian Epistasis
Association Mapping
(BEAM) [9]

Epistasis detection Saturated More powerful than
previous approaches

Bayesian Epistasis
Association Mapping 2
(BEAM2) [25]

Epistasis/LD-block
detection

Saturated Many previous
loci + new two-way
associations

Recursive Bayesian
Partition (RBP) [33]

Detailed
independence
structure of
epistasis

Marginal and
conditional
independence
groups

Confirmed
previously known
saturated interactions

BEAM3 [24] Bayesian graph
model for
epistasis/LDa

Flexible graph
structure

All previous IBDb

loci + 2 new + 2
interchr.c interactions

Bayesian Classification
Tree [21]

Classification tree
model/recursive
partitioning

Classification
tree

Possible epistasis
identified

BEAM + BEAM2 [44] Interchromosomal
epistatic
interactions study

Saturated 319 high-order
interactions found

As can be seen from the table, studies applying Bayesian methodology have already identified
potential multi-locus interactions in high-dimensional datasets
aLinkage-disequilibrium; bInflammatory bowel disease; cInterchromosome
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well as their success in determination of the previously known disease loci and,
more importantly, in the discovery of new multi-locus interactions responsible for
complex diseases. We specifically note what interaction model each method uti-
lizes. For example, Bayesian analysis strategy combining BEAM and BEAM2
software [44] allowed for the discovery of 319 high-order interactions across the
genome that can potentially explain the missing genetic component of the
rheumatoid arthritis susceptibility. Moreover, their findings indicate that nervous
system, in addition to autoimmune one, potentially performs a crucial role in the
disease development. Figure 4 shows a schematic diagram of the combined
Bayesian strategy used for the analysis. This is an example of the statistical study in
which disease underlying biological processes can be extracted from determined
statistical associations. For sure, many more studies will follow in the near future
that apply Bayesian methods either to existing GWAS data or to new large-scale
studies.

Conclusions and Future Prospects

Certain issues need to be considered when using Bayesian approaches described
above. For example, the combination of genotyping errors, disease heterogeneities,
and population substructures could have adverse effects on the statistical results of
the methods [9]. Currently, the major problem in the field is that the determined
disease-associated genetic variants explain only a small part of the disease heri-
tability [3, 4]. However, it is conceivable that the usage of the software tools
outlined above will help with the detailed understanding of the interactions
involved. Additionally, recent development of Bayesian models should allow for
the elucidation of the detailed etiopathogenesis of the disease formation and the
underlying causal biology.

Apply BEAM2 software to each chromosomese parately

List of all disease-associated SNPs

Apply BEAM software to search for interchromosomal high-order interactions

Validate discovered interactions

Fig. 4 A schematic diagram of the Bayesian analysis strategy combining multiple software
applications [44]. In order to account for linkage disequilibrium, BEAM2 algorithm [25] was used
to discover chromosome-wise interactions. However, a more efficient BEAM algorithm [9] was
used on the determined SNPs across all chromosomes
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Improvements to the Bayesian approaches mentioned in this article can include
incorporation of environmental factors and population structures as covariates in the
statistical model [33, 45]. Another possible improvement is to impute untyped
SNPs and missing genotypes [46]. Efficient incorporation of prior biological
knowledge into the Bayesian model can increase the probability of making dis-
coveries in association studies [47]. Finally, recent computational proposals attempt
to apply Bayesian methodology specifically toward efficient identification of causal
rare variants in GWAS [48, 49].

It is important to keep in mind that the clinical applications of the statistical
methods will arise from the understanding of the relationship between determined
mathematical couplings and their biochemical underpinnings. The biological
interpretation of the determined single- and multi-variant effects is currently a
crucial area of research in genetics [8]. Modern statistical approaches to the analysis
of the SNP data from whole-genome association studies have potential to play an
important role in the future of bioinformatics and genomics research. Specifically,
such methods will contribute to novel understandings of disease pathogenesis and
provide crucial information for drug discovery [50], thus leading to important
clinical applications.
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Imaging Genetics: Information Fusion
and Association Techniques Between
Biomedical Images and Genetic Factors

Dongdong Lin, Vince D. Calhoun and Yu-Ping Wang

Abstract The development of advanced medical imaging technologies and
high-throughput genomic measurements has enhanced our understanding of their
interplay as well as their relationship with human behavior. In this chapter, we
review the recent work of fusing imaging and genetic data for the correlative and
association analysis as well as the diverse statistical models in these studies from
univariate to multivariate methods. We also discuss future directions and challenges
in integrative analysis of imaging and genetic data and finally give an example of
parallel independent component analysis (ICA) in an imaging genetic study of
schizophrenia.

Background

Imaging genetics, as a new field to bridge imaging with genetics, aims to identify
genetic factors that influence the intermediate quantitative measures from
anatomical or functional images, and further the cognition and psychiatric disorders
in humans. It provides a comprehensive understanding of neurobiological systems
from genetic mutations to cellular processes, to the system level changes (e.g., brain
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structure, function and integrity), and eventually to human behavior. Many complex
psychiatric disorders are heritable. The merge of imaging and genetics will facilitate
the early diagnosis of psychiatric disorders, understanding of their pathophysiology
and improvement of treatment in a personalized manner.

In recent imaging genetic studies, neural imaging measurements or endophe-
notypes are commonly used for genetic analysis [1, 2], i.e., brain structure and
change, functional variation, connectivity and network. Compared to the diagnostic
results from self-reported and questionnaire-based clinical assessments, the imaging
endophenotypes are usually considered to be closer to the biology of genetic
function; therefore, the penetrance of genetic variation at this level will be higher,
which helps to boost the causal variants detection power [3, 4]. Some quantitative
endophenotypes derived from brain imaging are reproducible and reliable with high
heritability, and can accommodate highly heterogeneous symptoms from patients in
the same group. Moreover, due to the high resolution of brain imaging (e.g.,
structural magnetic resonance imaging (MRI)), we can explore the genetic influence
on specific regions of interest (ROI) across the entire brain, which refines the
understanding of underlying neurobiological mechanism of psychiatric disorders.

Challenges

There are many challenges in integrative analysis of imaging and genetic data. For
example, (1) the high dimensionality of datasets. Both imaging data (e.g., structural
or functional MRI) and genetic data (e.g., single nucleoid polymorphism (SNP) or
gene expression) have thousands of features which are usually much larger than the
number of subjects. Such an overdetermined system imposes a challenge for con-
ventional statistical methods; (2) multiple interactions of features. There are inter-
actions among various subsets of these data sets such as SNPs within a linkage
disequilibrium (LD) block, genes with co-expression, and brain regions with
functional connectivity. There are also some nonlinear relationships such as epis-
tasis of gene–gene interaction, SNP–SNP interaction and SNP diagnosis interac-
tion. These interactions need to be carefully considered in the modeling in order to
accurately explain the heritability of a given endophenotype and (3) other factors
such as heterogeneity of data sets, environmental effects and rare causal variants [4,
5]. Therefore, a powerful statistical method is demanded. Currently, most imaging
genetics studies are divided into four major categories: candidate gene-candidate
phenotype analysis, candidate gene-whole brain analysis, candidate phenotype-
whole genome analysis, and whole brain-whole genome analysis. We will review
and summarize these methods in the following sections.
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Current Techniques

Recent methodological developments in imaging genetics have evolved from
candidate approaches to whole genome and whole brain methods, which we will
focus on. The advantages and disadvantages of these methods are summarized in
Table 1. For candidate approaches, they start from the candidate gene-candidate
phenotype analysis. Candidate approaches are usually used to test a hypothesis
regarding how the genetic variants influence the target imaging phenotype at
specific brain regions [6]. It is costly and potential association may be missed due to
incomplete prior knowledge. Candidate gene, whole brain analysis is to construct a
statistical brain-wide parametric map by performing significant association test
between each brain measure and candidate genetic variant. Such an approach is also
based on high resolution of imaging for localization [7]. Candidate phenotype-
whole genome analysis is a typical genome-wide association (GWA) study on
quantitative imaging phenotype. The overall significance of each genetic variant
effect is assessed by a genome-wide correction for multiple comparisons [8].
Usually Bonferroni-corrected p-values (e.g., often cited genome-wide significance
level 5 � 10−8) are used to select significant genetic variants due to the multiple
testing. A large sample size is needed to improve the detection power and
meta-analysis can also be performed to get more robust evidence [9].

The brain-wide, genome-wide association analysis is of great interest, however
challenges for data analysis arise due to their high dimensionality and complexity.
As shown in Fig. 1, there are mainly three types of methods proposed in current
works: univariate-imaging and univariate-genetic association analysis (Fig. 1a),
univariate-imaging and multivariate-genetic association analysis (Fig. 1b), and
multivariate-imaging and multivariate-genetic association analysis (Fig. 1c).

A. Univariate-imaging univariate-genetic association analysis

This is an unbiased but exhausted method by performing independent test on each
pair of imaging measurements and genetic variants. Stein et al. proposed a
voxel-wise genome-wide association study (vGWAS) to screen each pair of SNP
and voxel in maps of regional brain volume calculated by tensor brain morphometry
(TBM) [10, 11]. This extensive searching results in a total of more than 1010

statistic tests with 27 h running on 500 CPUs. FDR was used to correct for multiple
comparisons across the image and detect the effective variants [12]. Several top
SNPs were found to be interesting; however, numerous multiple comparisons
decreased the detection power dramatically so that none significant association
could be found. Such a univariate-imaging univariate-genetic method ignores the
spatial correlation of voxels in imaging data and LD structure along the genome,
which will also decrease the power due to weak effect of single SNP. Instead of
voxel level scan, Shen et al. [13] explored the genetic influence on ROI-based brain
measures by averaging the voxel-based morphometry (VBM) values within ROI as
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Table 1 Advantages and disadvantages of methods in imaging genetic study

Model Selected methods Advantages Disadvantages

Candidate imaging/genetic factor analysis

Candidate
approaches

Candidate
gene-candidate
phenotype
analysis/Candidate
gene-whole
brain-wide
analysis/Candidate
phenotype-whole
genome analysis

Test specific brain
regions or genes of
interest; well
established
statistical methods

Need strong prior
knowledge of
interested features;
the view of
biological
mechanism is
limited

Whole brain genome-wide analysis

Univariate
imaging-Univariate
genetic

vGWAS No pre-filtering
needed; no prior
hypothesis; well
established
statistical methods

Computational
extensive; multiple
testing; ignore
inter-collection
among features;
usually need large
sample size

Univariate
imaging-multivariate
genetic

Set based test:
GSEA-SNP
GSA-SNP
Plink set based test

Incorporate the LD
of SNPs; reduce the
dimension and the
number of multiple
comparison;
computational
complexity is
reduced

Need prior
knowledge on
grouping features;
need pre-filtering of
features; spatial
correlation of
imaging phenotype
is not considered

Regression based
method:
vGeneWAS
PCReg
Regularized
regression with
group lasso, sparse
group LASSO
penalties

Multivariate
imaging-multivariate
genetic

Two block
analysis:
Parallel ICA, pICA
with reference,
three-way pICA
Regularized
CCA/PLS

Consider the
inter-collections
among both
imaging and genetic
features; reduce the
feature dimension
and multiple
comparison

Involve some
parameters for
model selection;
potential over-fitting
issue; results may be
hard to interpret;
need prior
knowledge on
grouping features

Multivariate sparse
regression
methods:
Sparse reduced
rank regression
Sparse multitask
regression
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traits for GWA scans. This ROI-based genome scan can reduce the effect of mul-
tiple comparisons and identify some significant associations, however, there may be
only part of voxels within ROI having genetic factors and the simple average will
induce noise into the imaging phenotype for detecting genetic biomarkers.
Therefore, a more sophisticated multivariate method is needed to account for the
intricate structure in both imaging and genetic features.

Fig. 1 Schematic illustration of brain-wide and genome-wide association analysis
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B. Univariate-imaging multivariate-genetic association analysis

Multivariate methods are commonly used to combine the effects of multiple SNPs
as well as their interactions to model the joint effects on imaging phenotype. There
are generally two ways to group SNPs: one is based on prior biological knowledge
such as grouping SNPs from the same gene, pathway or network. The other is
data-driven to group SNPs such as hierarchical clustering methods.

One way of constructing a SNP set-based test is inferring set-based test statistics
or p-value from individual SNP test [14] such as a plink set-based test, gene set
enrichment analysis (GSEA-SNP) and gene set analysis (GSA-SNP), as reviewed in
[15]. Increase of sensitivity is expected for a SNP set-based test since it reduces the
number of multiple comparisons and utilizes joint effect of SNPs with LD.
However, the method may be sensitive to the way of grouping SNPs. In particular,
if SNPs from the same group have weak LD and only some of them have causal
effects, this set-based statistical analysis will not improve the performance.

An alternative way of testing the overall effect of SNP set is to construct a
multiple linear regression (MLR) model. The challenges for MLR in imaging
genetics are high dimensionality of genomic data and multi-collinearity between
co-segregated SNPs within a LD block [16]. The linear system is underdetermined
so that the estimates on the parameters are unreliable and sensitive to the
collinearity among SNPs. A dimensional reduction technology such as principle
component analysis (PCA) or sparse regression methods is needed. By PCA
transformation, the SNPs will be projected to several orthogonal directions to form
new regressors (principle components). These new regressors are ordered by their
explained variance and can be applied for further association analysis, known as PC
regression (PCReg). Chen et al. used PCA to reduce the dimension of almost 1
million SNPs before imputing them into a parallel ICA method [17]. Hibar et al.
proposed voxel-wise gene-wide association study (vGeneWAS) to perform PCReg
at each voxel [18]. They grouped SNPs based on gene membership and performed
PCReg of each gene on each voxel to test the gene-wide association. The results
show increased power and fewer tests than vGWAS but still none gene passing the
multiple correction. Another voxel-wise GWAS method proposed by Ge et al. is a
multi-locus model based on least squares kernel machines to associate the joint
effect of multiple SNPs and their interactions on imaging traits [19].

Sparse regression methods have also gained increasing interests in recent years
for approaching the large-scale data set. These include l-1 norm penalized regres-
sion (e.g., LASSO [20]) and elastic net [21], which could provide greater power by
selecting a small number of genetic variants associated with imaging phenotype.
Recently, in order to account for the group structure of genetic variants, some
group-based penalization methods such as group LASSO (or structural LASSO)
regression and sparse group LASSO regression are proposed. For example, Wang
et al. [22] proposed a sparse multimodal multitask learning method with group
LASSO penalty to identify associated SNPs for VBM, volumetric and cortical
thickness, and memory scores. Silver et al. [23] applied a sparse group LASSO
penalization regression method to identify genes and pathways related to
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high-density lipoprotein cholesterol. The results show better performance of the
model than LASSO regression and a number of candidate gene/pathways were
identified.

C. Multivariate-imaging and multivariate-genetic association analysis

As an extension of voxel-wide genetic association study, it is natural to consider the
feature correlations or interactions between imaging and genetic data sets. One
widely used approach is parallel ICA (pICA) [24]. pICA starts with PCA on both
imaging measure and the SNPs. Then pICA is applied to both modalities to explore
independent components from each modality respectively and maximize the cor-
relation of the independent components between two modalities simultaneously.
This is more powerful than univariate methods since the number of tests is reduced
dramatically. Meda et al. [25] applied pICA to a whole brain genome-wide analysis.
Liu applied pICA to identify those SNP components significantly associated with
fMRI networks in schizophrenia and demonstrated that the selected components
were discriminative. Extensions of pICA include pICA with reference [26] and
3-way pICA [27].

Other widely used methods include canonical correlation analysis (CCA) and
partial least squares (PLS) with sparse penalizations to handle the high dimen-
sionality and collinearity of data. Both methods assume that imaging and genetic
data are linked by two latent variables (a linear combination of voxels and SNPs,
respectively) and aim to estimate these latent variables by maximizing the corre-
lation (CCA) or covariance (PLS) between the latent variables. Le Floch et al. [28]
compared the performance of different methods such as univariate approach, sparse
PLS, regularized kernel CCA and their combinations with PCA and pre-filters. The
results show the best performance of filtering plus sparse PLS. Lin et al. proposed a
group sparse CCA model for incorporating group structure into both imaging and
genetic features. The performance of group sparse CCA is shown to be better than
the existing sparse CCA methods. Two pairs of latent variables from imaging
features and genetic variants in schizophrenia with significant correlation were
identified [29].

Another promising approach is multivariate multiple regression, i.e., regressing
the entire genetic variants on whole brain imaging measures with penalizations
imposed on the coefficient matrix. Vounou et al. proposed a sparse reduced rank
regression method (sRRR) to impose a low rank penalty on coefficient matrix
and decompose it into two full-rank matrices which are also constrained to be
sparse (l-1 norm) [30]. SRRR was tested to have higher sensitivity than univariate
method and then was further applied to a whole brain-whole genome data set to
identify those genetic variants associated with some AD-related imaging
biomarkers [31]. Pathway sparse reduced rank, refined from sRRR, was developed
to consider the joint effects of SNPs within the same pathway [32]. Lin et al.
recently proposed a collaborative sparse reduce rank regression (c-sRRR) to
incorporate more completed protein–protein interaction information into the
grouping of SNPs and the method can perform bi-level selection on both SNP- and
module-levels [33]. Several top genetic modules were identified to be associated
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with functional networks including postcentral and precentral gyri. In addition,
sparse multimodal multitask regression [22] and group sparse multitask regression
[34] proposed by Wang et al. can also be used to account for the group structure
within predictors to improve the prediction performance.

Multivariate imaging-multivariate genetic methods have been shown to improve
the detection power since it can search the whole brain and genome information,
and account for the group structure among features in both modalities. Dimensional
reduction is usually suggested to alleviate computational demand.

Conclusion

To summarize, imaging genetics is a new but promising field in exploring genetic
effects on neurobiology and etiology of brain structure and function, and thus the
human behavior and psychiatric disorders. A number of heritable imaging
endophenotypes can improve our understandings of genetic influence on different
brain patterns. Statistical methods in imaging genetics evolve from candidate
approaches to whole brain-whole genome analysis, which enriches our discovery
but also imposes challenges to develop powerful and efficient methods.

For the future imaging genetics studies, more types of genetic and epigenetic
data (i.e., copy number variations and DNA methylation) are expected to integrate
with brain imaging to provide more information in order to explain human behavior
and their underlying biological mechanism. In addition, epistasis effect in genomic
data and the interaction with environmental factors can be incorporated into the
model to increase the detection power.

Example: Using Parallel ICA to Analyze fMRI and SNP
Data Sets in Schizophrenia

The parallel ICA toolbox is developed based on MATLAB, which is freely
available at http://mialab.mrn.org/software/fit/. FMRI and SNP data sets are also
provided online as example datasets. There are 43 schizophrenia patients and 20
healthy controls under the folder named ‘SZ’ and ‘Healthy’ respectively. We will
describe step-by-step approaches on how to perform pICA on these datasets.

Step A. Parameter setup

Open the interface shown in Fig. 2a, click the ‘Setup Analysis’ to select the output
directory and then a window shown in Fig. 2b will pop up for setting up the
parameters:
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(1) Set ‘Aod’ as the prefix for all the output files.
(2) Set ‘2’ for number of groups as shown in Fig. 2c and move to set the names of

groups and features. Group names are ‘SZ’ and ‘Healthy’ and features are
‘fmri’ and ‘gene’ as shown in Fig. 2d. Then select the data files for each
modality by using file pattern and directory selection. In the example data, the
data files of two modalities from the same group are stored in the same folder
and the file pattern (.img for fMRI data and .asc for SNP data) are the same in
both groups. Finally, set the file directory for each group separately.

(3) Select the mask: ‘myMask_t3.img’ file for fMRI and indices (1:367) for SNP.

(a) Main Interface (b) Parameter Set up

(c) Set Group Number

(d) Set Names of Groups and features

Fig. 2 Parameters set up for parallel ICA analysis
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(4) Set 8 as the number of principle components to be extracted from the modality
fMRI and gene, respectively.

(5) Select Type of Parallel ICA as ‘AA’ for measuring correlation between mixing
coefficients of two modalities.

Genetic Component

(a)  Display GUI (b) Components Sorted by Correlation

(c) Components with Maximum Correlation

fMRI Component

Fig. 3 Display of pICA results for fMRI and SNP analysis
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(6) Select ‘Reference’ option for PCA with entering -1’s for SZ group and 1’s for
healthy group.

(7) Select ‘Average’ as type of ICA and set ‘Number of times ICA will run’ as 10
to use averaged components across runs.

Step B. Run Analysis

Click ‘Run Analysis’ and select the parameter file (‘Aod_para_ica_fusion.mat’) to
run pICA. The results are stored in ‘Aod_para_ica_ica.mat’ file.

Step C. Display

After the analysis is done, we can display the results by the component number or
features.

We can sort 8 components by the measured correlation as shown in Fig. 3a. For
each pair of components, fMRI and genetic components are shown as well as their
mixing coefficients, correlation value and two sample t-test value on the pair of
mixing coefficients. Figure 3b shows all the components extracted and Fig. 3c
shows the pair of components with the largest correlation.
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Biomedical Imaging Informatics
for Diagnostic Imaging Marker Selection

Sonal Kothari Phan, Ryan Hoffman and May D. Wang

Abstract With the advent of digital imaging, thousands of medical images are
captured and stored for future reference. In addition to recording medical history of a
patient, these images are a rich source of information about disease-related markers.
To extract robust and informative imaging markers, we need to regulate image
quality, extract image features, select useful features, and validate them. Research and
development of these computational methods fall under the science of biomedical
imaging informatics. In this chapter, we discuss challenges and techniques of
biomedical imaging informatics in the context of imaging marker extraction.

Introduction

Biomedical imaging informatics is a field of science that provides the computational
means for handling, analyzing, and exploring images and their associated data to
achieve a medical goal, e.g., diagnostic, therapeutic, or prognostic applications
[1, 2]. Biomedical images can be broadly categorized into two groups: (1) macro-
scopic organ images such as MRI, CT, and PET and (2) microscopic tissue images
such as histopathology, immunohistochemistry, and multispectral images. For
analysis of these different types of images, researchers have developed and vali-
dated different imaging informatics methods. Therefore, several reviews and book
chapters discuss research developed for different biomedical image types, including
fluorescent microscopy [3–6], organ [7–9], and histopathology [1, 10–14].
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Although informatics methods vary with the data characteristics, the basic com-
ponents of the system are the same, including quality control, feature extraction,
feature selection, and validation. In this book chapter, we will discuss specialized
methods in these components for histopathological images.

Histopathology is the study of microscopic anatomical changes in diseased tissue
samples. Tissue samples are usually obtained during surgery, biopsy, or autopsy and
stained with one or more stains. Hematoxylin and Eosin (H&E) staining protocol is
the most commonly used protocol for morphological analysis of tissue samples.
H&E staining enhances four colors in histopathological images: blue-purple, white,
pink and red (Fig. 1). These colors are associated with specific cellular structures.
Basophilic structures—ribosome and nuclei—appear blue-purple; eosinophilic
intra- and extracellular proteins in cytoplasmic regions appear bright pink; empty
spaces—the lumen of glands—do not stain and appear white; and red blood cells
appear intensely red. When studying histopathological images, pathologists study
different types of image patterns such as shape of glands, density of nuclei, number
of nucleoli, and morphology of cytoplasm (i.e., clear vs. granular cytoplasm).

Challenges

Image Artifacts

Errors in biopsy-slide preparation or microscope parameters may lead to anomalies,
known as image artifacts, in histopathological images. Common image artifacts
include tissue folds, blurred regions, pen marks, shadows, and chromatic aberra-
tions [2, 14, 15]. These artifacts have unpredictable effects on image segmentation
and feature extraction methods. Therefore, it is essential to either eliminate or
correct these artifacts. Figure 2 illustrates pen marks and tissue folds in the
whole-slide images (WSIs) from The Cancer Genome Atlas (TCGA) [16].

Fig. 1 A sample histopathological image stained with H&E stains. a WSI, and b 512x512-pixel
rectangular section, where nuclei, cytoplasm, and glands appear blue-purple, pink, and white,
respectively
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Batch Effects

Differences in the setups used for slide preparation and acquisition systems between
two batches of data may lead to differences in image appearance and properties
between the two batches [2]. Histopathological images most commonly suffer from
color and scale batch effects. Because of these batch effects, parameters and models
optimized on one batch may not be optimal for other batches [17].

Object Detection

Image segmentation, the process of detecting objects in images, is an important
step in pattern recognition applications. The performance of downstream feature
extraction algorithms highly depends on the performance of image segmentation
algorithms, which segment tissue regions, artifacts, stains, and nuclei. However,
even after years of research, accurate image segmentation is a rather challenging task,
which is further complicated by biological and technical variation in the data [18].

Semantic Gap

Image descriptors capture informative patterns that can predict disease using
machine learning models. However, it is difficult to interpret these descriptors
biologically because they are very different from the human interpretation of an
image. This difference is often described as a semantic gap in the literature [9].
Because of this semantic gap, clinicians find it difficult to interpret and use the
imaging markers.

Fig. 2 Tissue fold and pen mark artifacts in whole-slide images provided by TCGA
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Marker Selection

Feature extraction often results in thousands of image features due to the numerous
feature extraction methods in the literature. Moreover, these image features often
have multiple parameters and statistics. The challenge then is to select the most
informative and robust features with limited available samples [19].

Marker Validation

After selecting a short list of imaging markers, the challenge is to validate them on
larger datasets and establish them as biomarkers. Currently, most researchers only
perform a cross-validation on a single batch of data with few samples. When
applied to separately acquired data, most of these markers fail. It is essential to
establish a strict marker validation guideline with rigorous cross-validation on a
large dataset and blind validation on separately acquired dataset [19].

Current Techniques

Quality Control Methods for Addressing Image Artifacts
and Batch Effects

Quality control methods extract useful tissue portions from images by eliminating
or correcting image artifacts. Quality control is part of the data preprocessing
methods, which often depend on the acquisition setups. Here, we discuss some
commonly used quality control steps for histopathological images. If the images
under study are WSIs, the first step of quality control is to locate tissue portions
from the slide. Because tissue portions are colored and the remaining slide is white,
they can be segmented using a saturation threshold for every pixel. The next step is
to eliminate tissue folds caused by the layering of non-adherent tissue on the slide.
Because of the tissue layering, pixels in fold regions have high saturation and low
intensity. Tissue folds can be segmented by thresholding the difference value of
saturation and intensity [20, 21]. Kothari et al. proposed an automated method that
adaptively calculates optimal threshold for tissue-fold artifact detection [18]. Both
of the above quality control steps should be performed on a low resolution image
because these artifacts are evident on low resolution images and methods will run
faster because of the smaller image size. The next step of quality control is to
normalize color and brightness that may vary along the slide due to uneven slide
illumination. Brightness can be normalized by subtracting a background function
from the image [22] while the color of an image can be normalized to the color of a
reference image [23–25].

118 S.K. Phan et al.



Image Segmentation Methods for Object Detection

Image segmentation is an important step for object-level pattern recognition.
Cellular structures in histopathological images can be easily distinguished based on
stain colors. Therefore, structures can be segmented by classifying or clustering
individual pixels using various color properties. Because of batch effects, stain
colors may appear different from image to image. Therefore, for more accurate
segmentation, researchers often use semi-automated methods, where the user
selects colors or pixels of different structures [26, 27]. However, user interaction
may introduce subjectivity in segmentation results. Some automatic segmentation
methods overcome the color variation challenge by using more robust color
properties and/or color normalization [28–30]. In addition to color properties, local
texture properties, such as gradient, can further improve segmentation performance
[31]. Since most objects are seldom made of a single pixel, segmentation perfor-
mance can be further improved by considering pixel neighborhood properties using
graph-cut [32], object-graph [33], and Markov models [34]. Characterizing object
shape can further improve segmentation performance compared to basic pixel-
based techniques. This is especially useful for accurate segmentation of nuclei,
which are often characterized using elliptical shape models [35, 36]. Figure 3c
illustrates a pseudo-colored segmentation mask and nuclear segmentation result for
the histopathological image of kidney renal clear cell carcinoma tumor in Fig. 3a.
In the segmentation mask, blue, pink, white, and red represent nuclear, cytoplasmic,
no-stain/gland, and red blood cells regions, respectively.

Fig. 3 Object segmentation and feature extraction in a portion of kidney renal clear cell
carcinoma image. a Original image, b Red, green, blue color channel histograms, c Segmented
stains and nuclear shapes, d Wavelet submatrices capturing information at different scales,
e Delaunay triangulation and Voronoi diagrams using nuclear centers
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Image Feature Extraction for Biologically Interpretable
Markers

Color is an important aspect of pattern recognition in histopathological images, in
which cellular structures appear in different colors. Color features extract color
channels for every pixel in the image or for pixels in a region of interest. Although
most images are represented in RGB color space (with red, green, and blue
channels) [37, 38], they are often converted into different color spaces including
HSV, LUV, and LAB [39–43]. Informative color features include color spread,
prominence, and co-occurrence, which are captured using statistics and frequencies
of color histograms (Fig. 3b).

Local variations in a flat plane or solid color of an image are characterized by
texture properties such as image sharpness, contrast, changes in intensity, and
discontinuities or edges. Different texture patterns emerge in cellular structures with
disease progression; e.g., nuclear texture is informative for grading cancer [44, 45].
Texture features are usually extracted using grayscale images but recent work
illustrated the utility of color texture, which was extracted from a color quantized
image rather than grayscale quantized images [32]. Texture feature extraction
methods include gray-level intensity profiles, Haralick Gray-level Co-occurrence
Matrix (GLCM) features [27, 46, 47], properties of wavelet sub-matrices (Fig. 3d)
[47, 48], properties of Gabor filter responses [46, 47], and Fractal dimensions [47].
Using a combination of these measures and parameters, informative image patterns
can be captured for various image processing applications.

Shape cognition is an important aspect of human pattern recognition in images
[49]. Pathologists routinely study nuclear and gland shapes for making their deci-
sions. After object segmentation, shape-based features can be easily extracted using
object contours and/or object regions (Fig. 3c) [49]. Contour-based features can
either be extracted directly from shape boundaries or from parametric shape models
such as Fourier shape descriptors and elliptical models. Contour-based features
include model parameters, perimeter, boundary fractal dimension, and bending
energy. Region-based shape features include solidity, Euler number, convex hull,
area, and Zernike moments [50].

As a disease evolves, the spatial distribution of cellular structures often changes,
e.g., when a normal tissue is invaded by tumor cells, nuclei multiply rapidly and
nuclear density increases; after prolonged growth, tumor cells die in a local region
leading to necrosis and decrease in nuclear density. These spatial patterns can be
captured by topological or architectural features. To capture topology, spatial
graphs such as Delaunay triangulations (Fig. 3e), Voronoi diagrams (Fig. 3e),
minimum spanning trees, Gabriel graphs, and Ulam trees are often developed using
centers of cellular objects as nodes [51, 52]. Thereafter, topological features are
extracted from the graphs including edge length, connectedness, and compactness
[53–55]. Topology can also be characterized using average distance between
objects and number of objects within a given neighborhood [53].
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Feature Selection for Imaging Marker Selection

It is important to identify the most informative markers in the feature set. One
benefit of identifying the most informative markers or features is that it allows the
dimensionality of the feature space to be reduced, simplifying models and
improving overall performance. In addition, identifying the most informative
features can provide insight into the system being modeled and inform future
designs [56].

Feature selection algorithms can be subdivided into three classes: filters, wrap-
pers, and embedded methods [19]. Filter methods can use a single statistical test or
property for each feature and establish a threshold for rejection, or may consider
multiple features together. Examples of filtering methods include t-tests, ANOVA,
chi-square tests [57], minimum redundancy maximum relevance (mRMR) selection
[58], and relief-F [59]. Filtering methods are computationally inexpensive as they
do not require the training of a classifier for each feature or feature set, however this
may also be a weakness in that the features are being selected independent of the
specific classifier under consideration. Wrapper methods address this deficiency by
generating sets of features and testing their performance directly using a classifier.
Wrapper methods are typically applied in conjunction with search algorithms, such
as sequential backward estimation, randomized hill climbing [60], genetic algo-
rithms [61], or simulated annealing [62]. Wrapper methods suffer from a risk of
over-fitting and are computationally expensive. Embedded methods seek to
improve performance by using the classifier to identify the most important features,
such as examining the weight vector of a SVM [63].

Classification for In-Silico Marker Validation

After feature selection, features often undergo in-silico validation using classifi-
cation models. Classifiers are trained using a pathologist’s annotations or other
ground truth knowledge, combined with feature vectors whose true classes are
known. Common classifiers used in biomedical applications are k-nearest neighbors
(k-NN), support vector machines (SVM), Bayesian methods, neural networks, and
decision trees [64]. It is difficult to predict which classifier will perform best for a
specific application. As such, it is common to implement several of these algorithms
and compare their accuracy [37, 47]. It is also possible to use boosting algorithms
[46] or ensemble methods to combine multiple weaker classifiers and improve
overall decision accuracy [42]. Cross-validation techniques should always be used
when evaluating classifiers, so as to avoid biases from testing a classifier against its
training data set [65].
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Case Study: Imaging Marker Selection for Tumor Versus
Nontumor Classification

A typical marker selection problem is differentiating between tumor and nontumor
regions of histopathology images. In this case, an SVM classifier is trained to
classify 512 � 512 segments of ovarian serous adenocarcinoma WSIs from the
TCGA repository as tumor/nontumor using the following steps:

(1) Quality control algorithms are applied to eliminate from consideration any tiles
that contain no tissue or image artifacts. First, any tile which contains more than
20% empty space or pen markings is eliminated. Next, tissue folds were
identified and any tile found to contain 10% or more tissue fold by area was
excluded from any further analysis.

(2) Features are extracted from artifact-free tissue tiles. In all, 461 features were
extracted for each WSI tile including nine feature subsets as listed in Table 1
[66]. Color and global texture capture global image properties while other
subsets capture object-specific biologically interpretable image properties.

(3) The next step is feature selection and validation. The mRMR method with two
optimization functions—mutual information quotient and mutual information
difference—and SVM classifier (LIBSVM) with linear kernel were used for
feature selection and classification, respectively [67]. Feature vector length was
considered in increments of 5, from 5 to 50 features. The following SVM cost
weights were considered: 2−5, 2−4,…, and 210. The internal loop of a 3-fold, 10
iteration nested cross-validation technique was used to select optimal feature
size and SVM cost function weight, where preference was given to the lowest

Table 1 Contribution of different feature subsets in final feature list

Feature Type Proportional
representation in full
feature set

Proportional
representation in
informative feature list

p-value
(Fisher’s
exact test)

Color 0.15835141 31.3547619 9.30E-06

Global texture 0.299349241 16.8521164 0.9999008

Eosinophilic-object
shape

0.110629067 5.232804233 0.994548

Eosinophilic-region
texture

0.039045553 3.147883598 0.7881413

No-stain-object
shape

0.110629067 0.207407407 1

Basophilic object
shape

0.110629067 16.22063492 0.0587052

Basophilic-region
texture

0.039045553 6.429100529 0.1735985

Nuclear shape 0.056399132 0 1

Nuclear topology 0.075921909 20.55529101 1.92E-06
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feature size and the smallest cost [66]. Based on the model selected, the optimal
feature set was selected using train set in external loop. After all 30 (3 fold, 10
iteration) external loops were completed, 30 optimal feature lists were gener-
ated. In large-scale experiments, this method has been found to have SVM
classification accuracy of 95% or more [66].

(4) Optimal feature lists generated in the previous step had varying feature sizes.
Therefore, percent contribution each subset was calculated for each external
loop and averaged. Thereafter, a significance value was calculated for each
subset using Fisher’s exact test [66]. Table 1 shows the proportion of the
informative feature list from each feature class.

Both color features and nuclear topology features were found to be significantly
(p <0.001) overrepresented in the informative feature sets for tumor/nontumor
detection, meaning that those feature types had higher predictive power. On the
other hand, neither nuclear shape nor no-stain object shape features appeared in any
informative feature lists. There are well-documented changes which occur in the
shape of a cell’s nucleus in cancer. An a priori attempt to create a list of useful
features for tumor/nontumor classification would thus most likely have included
nuclear shape features. However, after our analysis, we find that the particular

Fig. 4 (Top-left) A sample WSI. (Top-center) The region of interest, after removing background
and pen marks. (Top-right) Tiles of the slide assessed as containing folded tissue, rendering them
unsuitable for analysis. (Bottom-left) The final quality control results, indicating which image tiles
are to be further processed. (Bottom-center) The predicted tissue type after applying the classifier.
Tumor tissue is shown in green, nontumor tissue such as stroma and necrosis are shown as red.
Black indicates a tile that was excluded by quality control. (Bottom-right) Classified tiles overlaid
on the original WSI, showing the alignment of features between the two
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metrics of nuclear shape examined were either not informative or redundant with
other features, such as color, topology, and general basophilic object shape prop-
erties. This illustrates why it is valuable to start with a comprehensive feature set
and narrow it empirically for each specific problem.

Figure 4 shows the results of the optimal tumor versus nontumor classification
model (trained on all 512 � 512 segments) overlaid on the original WSI [68]. The
tumor region (green) is cleanly separated from the stroma and necrotic tissue (red).
Areas shown without an overlaid color are tiles that were excluded during quality
control. All methods were implemented in MATLAB (Mathworks, Natick, MA).

Conclusion

This chapter highlights key challenges in the field of biomedical imaging infor-
matics and suggests some techniques to overcome these challenges in histopatho-
logical images. Although these techniques perform decently well on smaller
datasets, further research is needed to apply and validate these methods on larger
datasets. With the development of The Cancer Genome Atlas, researchers now have
free access to large public repositories. Therefore, the research community has to
make an active effort to use this resource for thorough validation of their
methodologies. In addition, an effort should be made to distribute the source code
with publications, so that the community can easily use these methods to achieve
their research goals.
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ECG Annotation and Diagnosis
Classification Techniques

Yan Yan, Xingbin Qin and Lei Wang

Abstract ECG annotation has been studied for decades for the development of
signal processing techniques and artificial intelligence methods. In this chapter, the
general technique roadmaps of ECG beat annotation (classification) are reviewed.
The deep neuro network methods are introduced after the mention of supervised
and unsupervised learning methods as well as the deep belief networks.
A preliminary study on deep learning application in ECG classification is proposed
in this chapter, which leads to better results and has a high potential both for
performance improvement and unsupervised learning applications.

Background

The heart is comprised of rhythmically contracting and thus drive the circulation of
blood throughout the human body. A wave of electrical current passes through the
entire heart, which triggers myocardial contraction [15]. Electrical propagation
spreads over the whole heart in a coordinated pattern generate changes on the body
surface potentials which can be measured and illustrated as an electrocardiogram
(ECG, or sometimes EKG). Metabolic abnormalities (a lack of oxygen, or ische-
mia) and pathological changes of the heart engender the variety of ECG.
Consequently, ECG analysis has been a routine of any complete medical evaluation
or healthcare applications.

The automated ECG analysis provides primary assistance in clinical monitoring;
a large number of approaches had been proposed for the task, basically the diag-
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nosis of arrhythmia and further the inspection of heart rate variability or heart
turbulence analysis [31]. Lots of ECG annotation and diagnosis classification
techniques had been proposed in industrial circles and academic communities.
The ECG classification includes data collection, preprocessing, feature extraction,
and classification with a classifier.

Most of the literature described models combined with different classifier with
features extracted by different feature extraction algorithms. The ECG classification
methods develop at the same pace with the development of classification theories in
machine learning and pattern recognition. In medical data collection and data
annotation, ECG classification and detection forms similar research topics as speech
recognition, natural language processing, and image processing.

In this chapter, we first introduce the basic elements and procedures in a typical
ECG classification task, and then we would review shortly about the proposed
literature of ECG classification, in the end, we would introduce new methods in
unsupervised learning for ECG classification.

Technology Roadmap

ECG classification methods had been developed for decades. With the development
of theories of machine learning and data mining, lots of algorithms had been
adopted in this domain. Before the review of the methods, it is quite necessary to
mention the typical experiment settings and data sets, as well as the framework of a
classification problem which illustrated in Fig. 1.

ECG Acquisition

Acquiring and storing ECG data were the base for an analyzing task. Errors might
creep into an analysis at any possible stage, not only the acquisition hardware system
but also the transmission and storage should be carefully designed. The explanation
for the acquisition field could be found in [14]. A raw data acquisition task related
the digital signal processing and hardware design knowledge are out of the scope in
this chapter; a typical ECG signal procurement process was illustrated in [45].

Fig. 1 The technology roadmap of an ECG classification task
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As for the signal acquiring process, different kinds of sample rates might be
involved, for conventional ECG acquisition device, the sample rate would be 128,
250, 340 or 500Hz even higher. In murine studies, a sampling frequency of 2 kHz
is considered sufficiently high [1]. Arbitrary resizing would be an ideal procedure to
handle with the different sampling rate from the different data source to build the
datasets for analysis.

ECG Signal Preprocessing

Before the segmentation and feature extraction process, the ECG signals were
preprocessed. In ECG signals, the baseline wander (caused by Perspiration, respi-
ration and body movements), power line interference and muscle noise were
recorded as well, which had been described in lots of literature [9]. When the
filtering methods were proposed and adopted in the preprocessing, the desired
information should not be altered. The ECG typically exhibits persistent features
like P-QRS-T morphology and average RR interval, and non-stationary features
like individual RR and QT intervals, long-term heart rate trends [15]. Possible
distortions caused by filtering should be quantified in these features.

The filtered ECG signals were segmented into individual heartbeat waveforms.
ECG segmentation can be seen as the decoding procedure of an observation
sequence regarding beat waveforms [2]. Dynamic time warping [51], time warping
[50], Bayesian framework [41], hidden Markov models [2], weighted diagnostic
distortion [54], morphology and heartbeat interval-based methods [17], and auto-
matic and genetic methods [22] had been used in this sub-task. The state accuracies
were close to 100%, which would be accurate enough in most online and offline
applications.

ECG Feature Extraction and Classification

After segmentation for the ECG records, we got plenty of ECG waveform samples
with variety categories. Since different physiological disorder might be reflected in
different type of abnormal heartbeat rhythms. It is quite necessary to determine the
classes. In the early literature, there were no unified class labels for an ECG
classification problem. As in the MIT-BIH arrhythmia database annotations [32,
35], the class label system was build with five beat classes recommended by
ANSI/AAMI EC57:1998 standard, i.e., normal beat, ventricular ectopic beat
(VEB), supraventricular ectopic beat (SVEB), fusion of a normal and a VEB, or
unknown beat type were used in most literature on the classification problems
instead of early diversity subclass labels, which could beappropriate for the task
since the widely acceptance.
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Supervised and Unsupervised Learning Methods in ECG
Classification

The application of supervised learning methods had been widely used in ECG for
the recognition and classification of different arrhythmia types. Lots of solutions
have been proposed for the automated systems to annotate the ECG on real-time
applications (e.g., [38, 41, 51]). Linear discriminate systems (e.g., [43], decision
tree-based methods (e.g., [12, 28]), multilayer perceptron-based methods (e.g.,
[34]), fuzzy or neuro-fuzzy systems (e.g., [19, 48]), support vector machines
classifiers (e.g., [47]), as well as the hybrid systems (e.g., [26, 49]) combined by
those methods had been proposed. The details of these system are out of the scope
of this chapter, later in the application sections, a comparison with some of the
traditional methods had been reviewed in Fig. 2.

In addition to the supervised learning methods, unsupervised learning-based
approaches became crucial in exploratory visualization-driven ECG analysis, which
is useful for the detection of relevant trends, patterns, and outliers (e.g., [29, 44]).
The most widely used methods for unsupervised learning in the recent research
focused on the clustering-based techniques. Clustering-based methods learn the
relevant similarity relationships of patterns which generate collections of clusters
[7]. The clusters can be referred to a group of data vectors and then the similarities
were calculated for the determination of class labels. Recently with the developing
in neural networks techniques, deep learning-based methods would be introduced in
this chapter, as the clustering methods had been described in the recent literature
(e.g., [40, 53]).

Deep Learning in ECG Classification: A Preliminary
Study-Based on Deep Sparse Autoencoder

Deep learning methods attempt to learn feature hierarchies as higher level features
are formed by the composition of lower level features. The electrocardiography
interpretation has been judged by the medical professionals, which was based on
the abstractions of the perceptible features. In this model, we consider the higher
level abstractions as the perceptible features, with whose composition the medical

Fig. 2 An overview of the basic steps constituting a clustering process [15]
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professionals can make arrhythmia judgement. The deep architecture automatic
learning method is of particular importance for high-level abstractions, which
human often do not know how to specify explicitly regarding raw sensory input
[20]. As Collobert and Weston [16] discussed, deep learning methods are being
used in learning internal representations of data. Another significant advantage they
offer is the ability to naturally leverage: (a) unsupervised data and (b) data from
similar tasks to boost performance on large and challenging problems that routinely
suffer from a poverty of labeled data. In the electrocardiography classification
problem, we got plenty of unsupervised data, and the labeled data was limited as
well, so it is a free idea to adopt deep learning method to this problem.

Deep Neural Networks

The artificial neural network had been widely used in different applications, the
basic 3-layer model (with only one hidden layer) is a relatively shallow network
which means only shallow features can be learned via the structure. Deep neural
networks were the structures in which we have multiple hidden layers, with which
we can compute much more complex features from the input. Each hidden layer
computes a nonlinear transformation of the previous layer, a deep network can have
significantly greater representational power (i.e., can learn significantly more
complex functions) than a shallow one. A typical deep neural network structure as
in Fig. 3 makes no different from the normal multi-layer neural network.

Fig. 3 A typical neural network structure
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Autoencoders and Sparsity

An autoencoder is trained to encode the input x into some representation cðxÞ inputs
can be reconstructed from that representation. High-dimensional data can be con-
verted to low-dimensional codes by training a multilayer neural network with a
small central layer to reconstruct high-dimensional input vectors, and such “au-
toencoder” systems work better than principal components analysis as a tool to
reduce the dimensionality of data [25]. Principal Component Analysis (PCA) is a
linear reduction technique that seeks projection of the data into the directions of
highest variability [18], while autoencoders do the same task in a different way with
a wider scope (PCA is method that assumes linear systems whereas autoencoders
do not). Since in the neural network the hidden layer is nonlinear, the autoencoder
behaves differently from PCA, which can capture multi-modal aspects of the input
distribution (the representation of the input). The related literature experiments
reported in Bengio et al. [6] suggest that in practice when trained with stochastic
gradient descent, nonlinear autoencoders with more hidden units than inputs (called
overcomplete) yield useful representations (in the sense of classification error
measured on a network taking this representation in input). A further defense of
autoencoder can be accessed from Bengio [5]. As the theory illustrated, the elec-
trocardiography signal representations can be learned via the autoencoder structure
and learning algorithms.

The structures and learning algorithms used were represented in lots of literature
[8, 18]. Here we impose a sparsity constraint on the hidden units to guarantee the
representations expression ability. So for the neuron in the neuron network would
be “active” if its output value is close to 1, or as being “inactive” if its output value

is close to 0 due to the adopted sigmoid activation function. Here að2Þj ðxÞ denote the
activation of hidden unit j in the autoencoder with the given input of x. Fatherly, let

q̂j ¼
1
m

Xm
i¼1

½að2Þj ðxðiÞÞ� ð1Þ

be the average activation of hidden unit j (averaged over the training set).
Approximately enforce the constraint:

q̂j ¼ q ð2Þ

where q is a sparsity parameter, typically a small value close to zero (such as
q ¼ 0:05), which means the average activation of each hidden neuron j to be close
to zero (0.05 for instance).

The overall cost function of neural network is denoted by JðW ; bÞ which was
defined by:
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JðW ; bÞ ¼ 1
m

Pm
i¼1

1
2 khW ;bðxðiÞÞ � yðiÞk2

� �� �
þ k

2

Pnl�1

l¼1

Psl
i¼1

Psl þ 1

j¼1
W ðlÞ2

ji ð3Þ

as the first term in the definition of JðW ; bÞ is an average sum-of-squares error term.
The second term is a regularization term that tends to decrease the magnitude of the
weights and helps prevent overfitting. The definition of k, s, l, etc., would be
explained in detail in the appendix part. To satisfy the constraint of sparsity, an
additional penalty term to the optimisation objective that penalized q̂j deviating
significantly from q. The Kullback–Leibler (KL) divergence:

Xs2
j¼1

KLðqjjq̂Þ ¼
Xs2
j¼1

q log
q
q̂j

þð1� qÞlog 1� q
1� q̂j

ð4Þ

is chosen as the penalty term. KL-divergence is a standard function for measuring
how different two different distributions are. So in the autoencoder neural network
training, the cost function of JsparseðW ; bÞ was defined as:

JsparseðW ; bÞ ¼ JðW ; bÞþ b
Xs2
j¼1

KLðqjjq̂jÞ ð5Þ

b denotes the weight of the sparsity penalty term. The above theories were cited
from the recent research literature (e.g., [55]) and open source [36] on the topic of
deep learning.

Representation Learning

The autoencoder base network had been used to learn representations (features)
from unlabelled data. Autoencoders have been used as building blocks to build and
initialize a deep multi-layer neural network. The training procedures are illustrated
in Fig. 4 [5]:

1. Train the first layer as an autoencoder to minimize some form reconstruction
error in the raw input. This is unsupervised.

2. The hidden units’ outputs of the autoencoder are now used as input for another
layer, also trained to be an autoencoder. Here unlabelled representations were
used as well.

3. Iterates as in (2) to initialize the desired number of additional layers.
4. Take the last hidden-layer output as input to a supervised layer and initialize its

parameters (either randomly or by supervised training, keeping the rest of the
network fixed).
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5. Fine-tune all the parameters of this deep architecture on the supervised criterion.
Alternately, unfold all the autoencoders into a very deep autoencoder and
fine-tune the global reconstruction error.

The greedy layer-wise approach for pretraining a deep network works by
training each layer in turn as explained in step (2). Assume aðnÞ as the deepest
activation of the autoencoder network, then aðnÞ is a higher level representation than
any lower layers, which contains what we interested. Then the higher level repre-
sentations (the corresponding features in the traditional artificial selected features)
can be used as the classifier input.

Fine-Tuning and Classifier

For training stacked autoencoders, when the parameters of one layer are being
trained, parameters in other layer are kept fixed. Fine-tuning using backpropagation
can be used to improve the model performance by tuning the parameters of all
layers are changed at the same time after the layer-wise train phase. After the
fine-tuning process, the optimized network structure would learn a good repre-
sentation of the inputs, which can be used as the features similar to the traditional

(b)(a)

Fig. 4 A typical autoencoder neural network structure training process
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methods. The cardiac arrhythmia classification problem is a multi-class classifica-
tion problem where the class label y may take more than two possible values. So the
softmax regression is selected as the supervised learning algorithm which would be
adopted as the classifier in conduction with the deep network.

Softmax regression model was generalized from the logistic regression. Similar
to the logistic regression, the training set

fðxð1Þ; yð1ÞÞ; ðxð2Þ; yð2ÞÞ; . . .; ðxðmÞ; yðmÞÞg ð6Þ

of m labeled examples, the input features are xðiÞ 2 <ðnþ 1Þ (with x0 corresponding
to there intercept term). The labels are denoted by

yðiÞ 2 f1; 2; 3; . . .; kg ð7Þ

which means k classes. Given a test input x, the hypothesis to estimate the prob-
ability that pðy ¼ jjxÞ for each value of j ¼ 1; . . .; k. I.e., the probabilities of the
class labels taking on the k different possible values are estimated.

hhðxðiÞÞ ¼
pðyðiÞ ¼ 1jxðiÞ; hÞ
pðyðiÞ ¼ 2jxðiÞ; hÞ

..

.

pðyðiÞ ¼ kjxðiÞ; hÞ

2
6664

3
7775 ð8Þ

¼ 1
Pk
j¼1

eh
T
j xðiÞ

eh
T
1 x

ðiÞ

eh
T
2 x

ðiÞ

..

.

eh
T
k x

ðiÞ

2
6664

3
7775 ð9Þ

in which h1; h2; . . .; hk 2 <ðnþ 1Þ are parameters of the model. The term 1Pk

j¼1
e
hT
j
xðiÞ

was normalizes the distribution, so that it sums to one.
The cost function adopted for softmax regression is:

JðhÞ ¼ � 1
m

Xm
i¼1

Xk
j¼1

1fyðiÞ ¼ jglog eh
T
j x

ðiÞ

Pk
l¼1

eh
T
l x

ðiÞ

2
6664

3
7775 ð10Þ

where 1f�g is the indicator function. There is no known closed-form way to solve
for the minimum of JðhÞ, and an iterative optimisation algorithm synch as gradient
descent of L-BFGS could be used for the minimal value (some other iterative
optimization algorithms were mentioned in Ngiam et al. [37]). So the cost function
and iteration equations would be:
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JðhÞ ¼ � 1
m

Pm
i¼1

Pk
j¼1

1fyðiÞ ¼ jglog e
hT
j
xðiÞPk

l¼1

e
hT
l
xðiÞ

2
64

3
75þ k

2

Pk
i¼1

Pn
j¼0

h2jkðk[ 0Þ ð11Þ

and

rhj JðhÞ ¼ � 1
m

Pm
i¼1

xðiÞð1fyðiÞ ¼ jg � pðyðiÞ ¼ jjxðiÞ; hÞÞ� �þ khjðk[ 0Þ ð12Þ

By minimizing JðhÞ with respect to h, the softmax regression classifier would
work properly for the classification task.

Experiments and Results

Datasets Preparation

As illustrated in the above section, the preprocessing and segmentation had been
described. In the preprocessing stage, filtering algorithms were adapted to remove
the artifact signals from the ECG signal. The signals include baseline wander,
power line interference, and high-frequency noise. The segmentation method based
on the program of Laguna et al.1 was adapted, which also had been validated by
other related work [13] automatic. The experiment was based on three datasets:

1. Ambulatory electrocardiography database was used in this study, which
includes recordings of 100 subjects with arrhythmia along with normal sinus
rhythm. The database contains 100 records, each containing a 3� lead 24�
hour long electrocardiography which was bandpass filtered at 0:1� 100Hz and
sampled at 128Hz. In this study, only the lead I data were adapted after pre-
processing in the classification task. The average reference heart beats for each
sample has 97,855 beats for the 24� hour long recording, and the reference
arrhythmia average is 1810 beats which were estimated by a commercial soft-
ware (these statistics aim to indicate the existence of arrhythmia samples, which
should not be considered as an experiment preset).

2. The MIT-BIH Arrhythmia Database [23] contains 48 half-hour recordings each
containing two 30 min ECG lead signals (lead A and lead B), sampled at
360 Hz. As well only the lead I data were used in the proposed method. In
agreement with the AAMI recommended practice, the four recordings with
paced beats were removed from the analysis. Five records randomly selected
were used to verify the real-time application. The remaining records were
divided into two datasets, with the small part of which were used as the training
set of the fine-tuning process (details would be described in the following part).

1“ecgpuwave”, check the website of Physionet.
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3. The MIT-BIT Long-term Database is also used in this study for training and
verification, which contains seven long-term ECG records (14–22 h each), with
manually reviewed beat annotations and sampled at 128Hz. Similarly, the seven
recordings were divided into two datasets, with part used as the fine-tuning
training set.

After the segmentation for the ambulatory ECG database, three batches of
heartbeat samples listed in Table 1 were acquired for the classification task.

As for pretraining and fine-tuning stage for our proposed task and comparison,
we divided all the samples into three groups: the pretraining group as DS1, the
fine-tuning group as DS2 and test group as DS3 (illustrated in Table 2). Samples
are chosen randomly from the original AR and LT database, the details of the
sample class would be described in the experiment result analysis.

Classification Workflow

The stack autoencoder uses multilayer encoder network to transform high-
dimensional data into low-dimensional code, similarly, a decoder network can be
adopted to recover from the code, which we previously described. For the
one-hidden-layer autoencoder input layer and hidden layer, the output was set equal
to the input, starting with random weights in the one-hidden-layer neural networks,
they can be trained together by minimizing the discrepancy between the original
input data and the reconstruction. The gradients were obtained by using chain rule
of backpropagation error derivatives; the decoder means the raw input data can be
reconstructed by the learned feature with the trained weight. With large initial
weights, autoencoders typically find poor local minima; with small initial weights,
the gradients in the new layers are tiny, making it infeasible to train autoencoders
with many hidden layers. After learning the feature and network weight in the first
layer, we can add hidden layer one by one to get deeper representations, as well the
learned weight can be used to reconstruct the input. When training the weight of

Table 1 Samples after Segementation

Ambulatory ECG Database (AECG) MITBIH-AR MITBIH-LT

9,785,500 100,687 667,343

Table 2 Samples dataset settings

Dataset DS1 DS2 DS3

Useage Pre-training Fine-tuning Test

Source (samples) AECG (9,785,500)

AR (50,193) AR (33,663) AR (16,831)

LT (587,347) LT (50,000) LT (30,000)

Total 10,423,040 83,633 46,831
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layer 2, we take the fixed weights in layer one instead of random initialized weights
because the learned weights are close to a good solution, which means training the
parameters of each layer individually while freezing parameters for the remainder of
the model. In the experiment, we adopted 2-hidden-layer, 3-hidden- layer,
4-hidden-layer stacked autoencoder for the test and verification.

Fine-tuning is a strategy that widely used in deep learning, which can be used to
improve the performance of a stacked autoencoder. After pre-training multiple
layers of feature detectors, the model is unfold to produce encoder and decoder
networks that initially use the same weights. The weights learned can be used for
classification implementation after adding one classifier after the feature layer. In
this study, a softmax classifier was added. The parameters learned in the autoen-
coder pretraining were used in the fine-tuning initialization, and the weights W and
biases b of softmax classifier (the last layer of the network) were initialized ran-
domly. The training set of DS2 were used in the supervised learning pretraining
while the backpropagation algorithm as usual of multi-layer perceptrons to mini-
mize the output prediction error has been adopted.

The MIT-BIT Long-term Database is also used in this study for training and
verification, which contains seven long-term ECG recordings (14–22 h each), with
manually reviewed beat annotations and sampled at 128Hz. Similarly, the seven
records were divided into two datasets, with part used as the fine-tuning training set.

Classifier Performance Assessment

After the pretraining and fine-tuning process, the deep network parameters were
acquired. The parameters and the test data set DS3 to predict the class of samples. It
is necessary to mention that in DS2 and DS3, the labeled data used in pre-training
and fine-tuning were divided randomly, which satisfy the requirement of Holdout
cross-validation scheme so that the test results were meaningful for the classifica-
tion task performance improvement.

The following statistical parameters of test performance were used in the study:

1. Specificity: number of correctly classified normal beats over total number of
normal beats.

2. Sensitivity: number of correctly classified abnormal beats over total number of
the given abnormal beats.

3. Overall classification accuracy: number of correctly classified beats over number
of total beat.

Results

As previously mentioned, we adopted three different layer strategies for the clas-
sification task. In the 2-hidden-layer autoencoder network, we got a accuracy of
99:33%. For the N class the specificity is 99:76%, the sensitivity of S class is
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80:08%, the sensitivity of V class is 98:13%, the sensitivity of F class is 85:48% as
illustrated in Table 3.

In the 3-hidden-layer autoencoder network, we got a accuracy of 99:07%. For
the N class the specificity is 99:64%, the sensitivity of S class is 75:14%, the
sensitivity of V class is 97:58%, the sensitivity of F class is 80:33% as illustrated in
Table 4.

In the 4-hidden-layer autoencoder network, we got a accuracy of 99:34%. For
the N class the specificity is 99:74%, the sensitivity of S class is 82:29%, the
sensitivity of V class is 98:31%, the sensitivity of F class is 87:71% as illustrated in
Table 5.

Table 3 Test result for 2-hidden-layer autoencoder network

Algorithm classified label

N S V F Q T

Reference label N 41,965 39 45 13 6 42,068

S 91 398 6 2 0 497

V 63 3 3940 5 4 4015

F 23 0 13 212 0 248

Q 2 1 0 1 0 3

The test accuracy is about 99:33%

Table 4 Test results for 3-hidden-layer autoencoder network

Algorithm classified label

N S V F Q T

Reference label N 41,721 66 66 19 0 41,872

S 120 405 13 1 0 539

V 74 10 4073 17 0 4174

F 27 2 19 196 0 244

Q 2 0 0 1 0 2

The test accuracy is about 99:07%

Table 5 Test results for 4-hidden-layer autoencoder network

Algorithm classified label

N S V F Q T

Reference label N 41,778 38 48 17 5 41,886

S 93 460 3 1 2 559

V 52 1 4067 11 6 4137

F 15 0 13 214 2 244

Q 1 0 1 1 1 5

The test accuracy is about 99:34%
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Comparison with Other Work

Different kinds of performance assessment criteria had been adopted in the ECG
arrhythmia classification problem. In the comparison part, we adopt several ordi-
nary indicators for the performance assessment, which brought in the above sec-
tions. The accuracies, N-class specificities (N-spe), S-class sensitivities (S-sen),
V-class sensitivities (V-sen), and the F-class sensitivities (F-sen) in Table 6 are
presented for the comparison. The percentages are calculated from the literature’
test results, in which some of the classes are ignored like melgan, we use a *
symbol to represent the unavailable results. In Table 6, we use the highest value (2–
4 hidden-layers structures, which are bold emphasized) for the verification which
illustrated in “proposed” line.

Through the comparisons in Table 6, we can see that the proposed method offers
better accuracy. Since accuracy in lots of the literature is good enough, the veri-
fication parameter depends on mainly on the normal class detection, but with these
methods, this approach provided better performance in another kind of arrhythmia
waveforms classes. Especially in the ventricular ectopic beat sensitivity, a quite
considerable improvement had been made by the proposed method.

Deep Learning in ECG Classification: A Two-Lead ECG
Classification Based on Deep Belief Network

A restricted Boltzmann machine learning algorithm was proposed in the two-lead
heartbeat classification problem. A restricted Boltzmann machine (RBM) is a
generative stochastic artificial neural network that can learn a probability distri-
bution over its set of inputs [21]. In this part, a deep belief network was constructed,
and the RBM-based algorithm was used in the classification problem.

Table 6 Comparisons with other work using deep autoencoder

Approaches Accuracy
(%)

N-spe
(%)

S-sen
(%)

V-sen
(%)

F-sen
(%)

Proposed 99.34b 99.76 82.29 98.31 87.71

Mar et al. [31] 84.63 84.85 82.90 86.72 51.55

Chazal et al. [13] 86.19 86.86 83.83 77.74 89.43
Melgani and Bazi [33] 90.52 89.12 *a 89.97 *

Jiang and Kong [27] 94.51 98.73 50.59 86.61 35.78
a*Means the results were not available
bThe listed percentages are based on the previous described rules Bold emphasized items are the
highest score
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The Deep Belief Network and Classifier

The Restricted Boltzmann Machine

The Restricted Boltzmann Machine is a stochastic neural network with substantial
unsupervised learning ability. In the RBM network structure, each visible unit is
connected to the hidden units without visible-visible or hidden-hidden connections.
There are no links between the visible and hidden layers. The visible units are
independent then the Gibbs sampling method could be used to approximate the
probability distribution. It consists of one layer of visible units with input
X ¼ ðv1; v2; . . .; vnÞ, one layer of hidden units with output Y ¼ ðh1; h2; . . .; hmÞ, and
two bias units whose states are always on and a way to adjusting the value of each
unit.

Boltzmann machine is based on statistical mechanics. The energy function
Eðv; hÞ of an RBM is defined as:

Eðv; hjhÞ ¼ �
Xn
i¼1

aivi �
Xm
j¼1

bihi �
Xn
i¼1

Xm
j¼1

viWijhj ð13Þ

v and h present the state vectors of the visible and hidden layers, ai. bj and Wij are
parameters, define h ¼ fWij; ai; bjg. So based on the energy function, the distri-
bution of v and h is:

Pðv; hjhÞ ¼ e�Eðv;hjhÞ

ZðhÞ ; ZðhÞ ¼
X
v;h

e�Eðv;hjhÞ ð14Þ

The purpose of RBM is to learn the optimal h, according to the probability
distribution, the maximum likelihood function is defined as:

h� ¼ argmax
h

LðhÞ ¼ argmax
h

XT
t¼1

logPðvðtÞjhÞ ð15Þ

LðhÞ ¼
XT
t¼1

ðlog
X
h

exp½�EðvðtÞ; hjhÞ� � log
X
v

X
h

½�Eðv; hjhÞ�Þ ð16Þ

To get the optimal h�, stochastic gradient descent (e.g., [10]) method was used to
maximum the likelihood function LðhÞ. The partial derivative of the parameters is
shown below:
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@ log PðvjhÞ
@Wij

¼ hvihiidata � hvihiimodel;

@ log PðvjhÞ
@ai

¼ hviidata � hhiimodel;

@ log PðvjhÞ
@bj

¼ hhiidata � hhiimodel:

ð17Þ

h:iP denotes the distribution about P. h:idata is easy to be calculated when the
training samples were defined. h:imodel could not be resolved directly, but
approximated by Gibbs sampling. Here we use the contrastive divergence algorithm
(CD) [24] which would achieve better results by only one step of Gibbs sampling.

Classifier and the Training of Multi-layer RBM

This model generalized logistic regression [39] in classification missions which
would be useful in heartbeats arrhythmia classification problems. The softmax
model is a kind of supervised learning method in conjunction with the deep belief
network.

Supposing m samples in the training set:

fðxð1Þ; yð1ÞÞ; ðxð2Þ; yð2ÞÞ; . . .; ðxðmÞ; yðmÞÞg ð18Þ

the inputs were vectors xðiÞ corresponding to the features space. The labels are
denoted by yðiÞ corresponding to the arrhythmia classes of the inputs. The cost
function of softmax regression with a weight decay term was defined as:

JðhÞ ¼ � 1
m

Xm
i¼1

Xk
j¼1

1fyðiÞ ¼ jglog eh
T
j x

ðiÞ

Pk
l¼1

eh
T
l x

ðiÞ

2
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3
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2

Xk
i¼1

Xn
j¼0

h2jkðk[ 0Þ

ð19Þ

and the partial derivative of the parameters were:

rhj JðhÞ ¼ � 1
m

Xm
i¼1

½xðiÞð1fyðiÞ ¼ jg � pðyðiÞ ¼ jjxðiÞ;hÞÞ�

þ khjðk[ 0Þ
ð20Þ
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To train an optimum classifier, an optimization gradient descent algorithm called
L-BFGS was used same as what had been done in the autoencoder classification.

Figure 5 shows that RBMs can be stacked and trained with a greedy manner to
form a deep belief network(DBN) [5, 42]. In the last layer, a softmax classifier is
connected with the DBN. DBN is the graphical model of a hierarchical architecture.
The procedures were:

1. Train the first layer as an RBM which models the raw input X as a visible layer.
2. After training the RBM, representations of the input were obtained.
3. Train the next layer as an RBM which models the transformed data as a visible

layer.
4. Iterate step 2 and 3 for the desired number of layers.

Finally, the RBMs are combined to a DBN with the softmax model. Fine-tuning
then was used as the supervised method to minimize the likelihood function and
improve the adaptability. Here the L-BFGS algorithm [3, 30] was used.

Combined Optimization Algorithm for Multi-lead Classifiers

The ECG wavelet transform performs differently in different channels by the
waveforms. Each heartbeat channel shows diversely due to the P, QRS-complex
and T-wave constituent. Then multi-lead ECG classification is significantly
improved by the voting method. So a weight optimization method is proposed in
two leads ECG signal classification. The method can be used in multi-lead ECG
data classification.

Fig. 5 The RBMs are stacked to from a deep belief network (DBN). The RBM can be trained
layer by layer. It is easy to construct a DBN with the trained RBMs. Also, a softmax model to
fine-tune all parameters behind the last layer
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For each classifier trained with distinct lead, a reliability value is denoted as the
regular rate of the classifier. Let c represent the reliability value. Then the classi-
fier’s reliability is defined as c1; c2; . . .

In the matrix:

ClassSTST ¼
C11 C12 � � � C1n

C21 C12 � � � C2n

� � � � � � . .
. � � �

Cn1 Cn2 � � � Cnn

0
BBB@

1
CCCA ð21Þ

there are n classes and C11 represents the class 1 which is classified as class 1, C12

represents class 1 is classified as 2, etc. The diagonal values are the correct
classification. The purpose is to increase the diagonal values, so we adopt
weights of the outputs for each classifier. The weights of the first classifier is
W1 ¼ ðw11;w12; � � � ;w1nÞ, the second were W2 ¼ ðw21;w22; � � � ;w2nÞ. The con-
straint condition is

P2
i¼1 wik ¼ 1.

First initial the weight to a mean value. Each sample has an output vector
O ¼ o1; o2; . . .; on, the class is decided by the maximum value. Adding the weight
of the value, the output is ðo1w1; o2w2; � � � ; onwnÞ. If the label of the sample is l, we
would like to maximize o1w11 þ o1w21 while correspondingly minimize others.
Through this, the l class accurate is promoted while the false negative rate is also
increased. The optimization algorithm would find a balance between the two
weights of all testing samples. Accordingly, the optimal function is defined as:

FðxÞ ¼ 1ffiffiffiffiffiffi
2p

p
r
x exp�

ðx�lÞ2
2r2 ð22Þ

To find the maximum value of x, the derivative of the equation is:

F0ðxÞ ¼ 0; x ¼ l
2 þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
l2

4 þ r2
q

ð23Þ

Here, l is denoted as initial weights. On the basis of the statistical matrix,
counting the difference of the correct (diffcort) and false negative (diffflneg)
quantities of the two classifiers. If the difference of the difference of the correct and

false negative greater than zero, r2 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
diffcort�diffflsneg

totalnumber

q
, so updating the cor-

responding class weight of the first classifier as w1 ¼ l
2 þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
l2

4 þ r2
q

. Else,

r2 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
diffflsneg�diffcort

totalnumber

q
, updating the weight of the second classifier as

w2 ¼ l
2 þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
l2

4 þ r2
q

. Finally normalize the weights, the optimal combined value is

c1o1w1 þ c2o2w2. Generally, every two classifiers can be used to optimize the
multi-lead ECG classification.
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Experiment and Results

Preprocessing and Segmentation

Here we do the same process as before. The preprocessing include two main parts:
the ECG data filtering and heartbeat segmentation. The filtering task is removing
the artifact signal from the ECG signal, which includes the baseline wander, power
line interference, and high-frequency noise. The massive unlabelled data we col-
lected is extracted and resampled from 128 to 360Hz.

In heartbeat segmentation process, average samples of each beat are 277 sam-
ples. To get more information, we allow partially overlap, and a window with a
length of 340 data points in one beat was defined, the R peak of the wave is located
at 141st point. Most annotations of the MIT-BIH arrhythmia database lied under the
R-wave. For the dataset we collect, an high-accuracy algorithm has been explored
to determine the R pick and then divide into the heartbeat segments according to the
R pick.

Training and Fine-Tuning

The goal of RBM learning is to maximize the product of the probabilities. The
parameters of the network can be initialized by the constructor. This option is useful
when an RBM is used as the building block of the deep belief network, in which
case the weight matrix and the hidden layer bias is shared with the corresponding
layer of the network. The active function of the nodes is the sigmoid function. The
data is batched to train the RBM layer by layer. A single-step contrastive diver-
gence(CD-1) [11] is used in the gradient descent procedure. After calculating the
partial derivative, the weights and bias are updated.

After the learning process, the RMBs can be used to initialize a deep belief
network. Standard backpropagation algorithm can be applied to fine-tune the
model. That can significantly improve the performance of the DBN. The
fine-turning process is a supervised learning procedure, so at the last layer, a
multi-class model called softmax is connected to classify the ECG data. Then using
the fine-tuning method to minimize the cost function.

Experiment Results

In the experiments, we adopted multi-lead ECG signal based on the restricted
Boltzmann machine for the classification task. The MIT-BIH arrhythmia database is
divided into three parts. Half of the beat is added to training the RBMs; one-third is
applied to fine-tune the network, and the left is used to test the model. In the three
hidden layers deep belief network, the classifier outperforms regarding sensitivity
(SPR) 99:35%, specificity (SPC) 95:18%, and accuracy rate (ACC) 98:25% using
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the first channels. Using the second channel, we get the accuracy (ACC) of 97:43%,
sensitivity (SPR) 98:90% and specificity (SPC) 93:36%. At the convergence of the
optimization process, the combining method achieves the accuracy (ACC) of
98:83%, sensitivity (SPR) 99:83%, and specificity (SPC) 96:05% (Table 7).

For we collect a large amount of ECG data from the hospital which contains lots
of regular beats and abnormal beats, the learning method of restricted Boltzmann
machine is used to learning the features from the massive data in an unsupervised
way. Then the RBMs is adapted to build a deep belief network. The optimization
algorithm we propose improves the accuracy of multi-lead ECG signal. In this
comparison, we evaluate the performance on the indicators which put forward in the
above sections: Sensitivity(TPR), specificity(SPC), and overall Accuracy(ACC)
with the SVM, ICA, ANN methods. The * NR symbol represents the result which
were not reported as illustrated in Table 8 and Table 9.

Table 10 shows the performance of different models that used for the heartbeat
classification, the proposed method offers a high accuracy of classification. All the
annotations in the MIT-BIH arrhythmia database are used in our study and Osowski
and Linh [38] only selects seven types. Ye et al. [52] get the highest accuracy but
with a price of rejecting 2054 heartbeats (2:4% rejections). By comparing with
others’ experience, our approach provided higher performance in heartbeat classi-
fication without complex wavelet transform algorithms.

Conclusion

ECG annotation research had been developed for decades, the signal processing
methods, feature extraction, and classifier had been studied diffusely. In this paper,
we first reviewed the technique roadmap for an ECG classification task, which
composed most of the ECG classification research literature. Then we make a
summary on the classification methodology including supervised learning and
unsupervised learning, which included most ECG classification methods. Then two
kinds of new methods in unsupervised learning had been proposed for ECG

Table 10 Comparisons with others’ works

Approaches Accuracy (ACC) (%) Sensitivity (TPR) (%) Specificity (SPC) (%)

Proposed 98.83 99.83 96.05

Tadejko and Rakowki [46] 97.82 99.70 93.10

Banerjee and Mitra [4] 97.60 97.30 98.80

Ye et al. [52] 99.71 *NRa *NR

Osowski and Linh [38] 96.06 98.10 95.53
a*NR means the results were not reported
The listed percentages are based on the assessment rules
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annotations, which improve the state-of-art in accuracy and special arrhythmia beat
detection rate.

Since the deep network autoencoder structure and deep belief network with the
training algorithms had been widely used in modern computing science, an intu-
itionistic idea is an application in great ECG records. This study proposed one
possibility to adopt this method in the health informatics Big Data applications. In
the both structures we get higher performance than the recent research in this
domain. As the evolvability of the system, the performance could be improved as
the dataset grows, from which a new possibility to make use of the considerable
amount of unlabelled ECG data from the long-term clinical monitoring and
healthcare monitoring had been proposed. Since pre-training and fine-tuning bring
the systems with the ability of self-learning, the structures could be better optimized
as the training samples become larger, especially for the rare abnormalities (the S,
V, F class, check Table 6). In the traditional literature, the MIT or AHA datasets
were used which limited the samples of the abnormalities, so there were no good
sensitivities, to the contrary using the unlabelled data and the self-learning ability
the system could be improved in these outlier detections.
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EEG Visualization and Analysis
Techniques

Gregor Schreiber, Hong Lin, Jonathan Garza, Yuntian Zhang
and Minghao Yang

Abstract We present some information depicting the current status of EEG
research with projected applications in the areas of health care. We describe a
method of quick prototyping an EEG headset, in a cost-effective way and with
state-of-the-art technologies. We use meditation research to reach out to the
high-end applications of EEG data analysis in understanding human brain states and
assisting in promoting human health care. Some devotees to the practices of tran-
scendental meditation have shown the ability to control these brain states. We want
to numerically prove or disprove this assumption; the analysis of these states could
be the initial step in a process to first predict and later allow individuals to control
these states. To this end, we begin to build a system for dynamic and onsite brain
state analysis using EEG data. The system will allow users to transit EEG data to an
online database through mobile devices, interact with the web server through web
interface, and get feedback from EEG data analysis programs on real-time bases.
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Background

Using electroencephalographic (EEG) data, cognitive psychologists can visualize
and observe correlations between different active brain states. It is desirable to
create an application that takes EEG data and exposes it to various analytical
techniques so the resultant brain states can be studied and predicted. We present
explanations of the design and implementation offered herein. The presentation will
consist of an extrication of the design of an EEG headset, which can collect EEG,
pulse, and temperature data, and a case study in which EEG signals demonstrate
differences between different brain states.

An EEG device can record the electric signals from a human scalp. EEG devices
used to be only available in professional healthcare institutions for clinic use. Last
decade witnessed the development of cheap EEG devices, for example, EPOC from
Emotiv (http://www.emotiv.com) and NeuroSky (http://www.neurosky.com/), and
increasing interest in EEG-based brain–computer interfaces (BCI). EEG signals
characterize the result of the neuron activities inside a human brain. Naturally, they
are used to study and understand human brain activities. In particular, EEG signals
indicate that neural patterns of meanings in each brain occur in trajectories of
discrete steps, while the amplitude modulation in EEG wave is the mode of
expressing meanings [1]. Zhou et al. have proposed some novel features for EEG
signals to be used in brain–computer interface (BCI) system to classify left- and
right-hand motor imagery [2]. The experimental results have shown that based on
the proposed features, the classifiers using linear discriminant analysis, support
vector machines, and neural network achieve better classification performance than
the BCI-competition 2003 winner on the same data set in terms of the criteria of
either mutual information or misclassification rate. Dressler et al. studied the
anaesthetics on the brain and the level of sedation [3]. Lin et al. studied the change
of human emotion during music listening through EEG signals [4].

The vast implications of using EEG data to analyze brain states include
designing brain–computer interfaces (BCI) where users can operate on a machine
via brain activities, and using brain state models in healthcare-related activities.
Imagine a world where mere thinking about retrieving information will give you the
results you are looking for; a world that no longer requires a keyboard, mouse, or
traditional hardware input devices to interface with a computer; a place where you
can instantly find out your health information in real time. Imagine a device that can
instantly retrieve your body and mind condition and share this information with a
medical expert that can then immediately analyze the data and make an appropriate
health diagnosis. Instead of reacting to a condition that may already have caused
irreparable health damage after the fact, there is a good chance that this information
could be proactively provided and prevent deteriorating health conditions from
occurring in the first place. Much of the capability and technology is available now
to implement all these thoughts. We may not be able to know exactly what you are
thinking, but we can gather brainwave data and make it available for analysis. We
can control computers with mere thought! The methods may still be somewhat
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primitive and the technology in its infancy, but nevertheless, with only a few
inexpensive off the shelve parts and a little ingenuity we can create a device that is
capable of sensing body conditions and even read brainwaves.

As an example, we present a case study in transcendental meditation [5], a
spiritual development technique, which was popularized by former Hindu ascetic
Mharishi Mahesh Yogi and gained popularity in the west during the 1960s [6]. The
concurrent brain states associated with transcendental meditation have been viewed
as something outside of the world of physical measurement and objective evalua-
tion by most scientific communities. Scientists now have the ability to measure and
register electric potential of the human brain through the use of electroencephalo-
graphic technologies. One approach is to study finite differences within the minds
of those practicing meditation, and those who do not. Such an endeavor is an
avenue towards modeling a wide range of brain states [7]. The combination of
electroencephalographic data with modeling methods in fields such as data mining
and bioinformatics could be used to prove that subjects in a state of transcendental
meditation are in a verifiable and observable state of mind that can be monitored
and predicted [5]. Experiments found that cancer patients that practiced meditation
experienced higher well-being levels, better cognitive function and lower levels of
inflammation than a control group [8].

Challenges

The challenges in EEG-related studies include the design of the measuring tools and
the methodologies in analyzing EEG data. Here we extricate a method to build an
inexpensive headset to measure brainwaves. An EEG is a tool used to capture
brainwave activity while it is performing a cognitive task. This allows the detection
of the location and magnitude of brain activity involved in the various types of
cognitive functions. EEGs allow the viewing and recording of the changes in brain
activity during the time a task is performed. EEGs for this purpose have been
around for many years, albeit only in medical research facilities and typically being
very expensive. The intrigue is being able to inexpensively build an EGG with
off-the-shelf parts and be able to perform the same type of brainwave research at
home as sophisticated medical research facilities.

In addition, a platform for comprehensive EEG data storage and processing is
desirable to promoting applications of using EEG tools in both physiological (e.g.,
clinical uses, sleep evaluation, fatigue detection, etc.) and psychological (cognitive
sciences, BCI, etc.) scopes. Such a platform consists of EEG data collection devices
(viz., EEG headset), communication channels (e.g., smart phones), a web server
that provides a web interface for users to access stored EEG data and activate data
analysis algorithms, and an online database for EEG data storage and processing.

The primary motivation behind this is to know what signals the brain produces
does under certain situations and to know how these signals are consciously
manipulated via controlled thoughts. Additionally it is desirable to know if there is
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a way to enhance studying and learning abilities and being able to retain more
information. As an example, attempts have been made to study the tangible effects
of meditation on human body and behavior, and investigate the possibilities of
applying scientific methods to measure the effects. A direct benefit of this study will
be to extend psychology to develop new methods for healing various mental dis-
eases. This objective is feasible because meditation is efficient in training human
self-control since its goal is having one’s every whim under observation. Through
this study, it is anticipated to start a campaign to establish “measurable” meditation
methods, applying scientific methodology to religions, and eventually making
religions “tangible”.

Current Techniques

A cursory look into the topic revealed a wealth of information, much theoretical and
limited to large government organizations and research facilities with huge budgets.
For instance, the government has a program called the “Brain Research through
Advancing Innovative Neurotechnologies™ (BRAIN)”. The web site states the fol-
lowing: “The Brain Research through Advancing Innovative Neurotechnologies™
(BRAIN) Initiative is part of a new Presidential focus aimed at revolutionizing our
understanding of the human brain. By accelerating the development and application
of innovative technologies, researchers will be able to produce a revolutionary new
dynamic picture of the brain that, for the first time, shows how individual cells and
complex neural circuits interact in both time and space. Long desired by researchers
seeking new ways to treat, cure, and even prevent brain disorders, this picture will fill
major gaps in our current knowledge and provide unprecedented opportunities for
exploring exactly how the brain enables the human body to record, process, utilize,
store, and retrieve vast quantities of information, all at the speed of thought”. The site
even contains funding opportunities for companies and research facilities to partici-
pate and contribute to the program. Examples such as this can be found in abundance
and what quickly becomes apparent is that there is a thirst for more knowledge about
the human brain and how it works.

Very little information exists in the hobby and home space for EEG devices.
Organizations such as OpenEEG and OpenBCI are available and facilitate the
information sharing among hobbyists and attempt to inform the general public
about the subject of gathering brainwave data. Companies like NeuroSky and
Emotive sell headset EEG devices and provide software development kits
(SDK) that include the tools necessary to gather brainwave data, but are limited to
only reading brainwaves. In research perspectives, there is still space to gather more
information, to have an enhanced data model, and see additional dependencies
while the brain performs or reacts to specific tasks.

On the brain state modeling side, two types of research models have been used:
statistical models and micro-models. Statistics models are built by applying sta-
tistical analysis to collected data from meditation practitioners, while micro-models
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try to catch physiological features of the brain state under examination. Current
literatures show that both methods are used in the study of complementary and
alternative medicine, which includes meditation as one of the methods. Loizzo
et al., performed a 20-week contemplative self-healing program study, which
showed that a contemplative self-healing program can be effective in significantly
reducing distress and disability among the testers [9]. Habermann et al., on the other
hand, performed a long-term (5–20 years) project to investigate the use of com-
plementary and alternative medicine and its effects on the testers’ health [10].
Comparisons across different groups of people are also found. For example, in a
6-week mindfulness-based stress-reduction program, subjects assigned to the pro-
gram demonstrated significant improvements in psychological status and quality of
life compared with usual care [11]. Another comparison is found where a group of
Qigong practitioners were compared to a control group and positive indicators were
found in the study [12].

A survey of the literature on cognitive impairment and cancer presented in [13]
suggests that meditation may help improve cancer-related cognitive dysfunction
and alleviate other cancer-related sequelae.

It is well understood that although statistical studies can provide evidence for the
effectiveness of meditation, it fails to provide a systematic view of human’s epis-
temology and psychology. This addresses the needs for micro-models that depict
the inter-relationship between human’s mind and physical body.

To accurately and objectively record moods when one is practicing meditation,
we seek a solution which could objectively measure the effectiveness of meditation
in real time. We start with a project that aims to create an application that takes EEG
data and exposes it to various analytical techniques so the resultant brain states can
be studied and predicted. We anticipate that, upon completion, this software can be
used to produce important and dependable conclusions about a given subject’s
brain states and correlate that to an identified physical or psychological activity, and
ultimately, we will be able to build a brain state model for meditation.

The concurrent brain states associated with transcendental meditation were
viewed as something outside of the world of physical measurement and objective
evaluation by most scientific communities. Due to the easily obtainable EEG
headsets, recording EEG signals can be performed in a large scale. It is therefore
possible to build a model for meditation brain state [14]. By applying data mining
algorithms that quantify psychological states, we expect to analyze brain state
associated with meditation to build models for meditation brain states [5].
Comparisons of the results obtained from different methods can be performed to
fuse different models in order to have a deeper understanding of the central and
peripheral nervous systems’ role in attaining different levels of mediation. The
practical significance of finding a meditation model includes establishment of
the guidance for effective meditation exercises and a methodology for verifying the
effectiveness of meditation methods. A scientific meditation model will advance
studies in natural computer interface, identifying depression and mental illness,
detect fatigue and boredom, and comprehending human emotion, etc. Any advances
in these areas will have great social, economic, and technical significance.
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We have conducted a trial collection of EEG data on a patient who performed
MQ and a few other subjects performing tasks with different levels of brain
activities, including the attempts of resting the brain. The Emotiv EPOC headsets
we used can collect 14 channels of EEG signals. The locations of the contact points
on the scalp, called nodes, are demonstrated in Fig. 1.

The data set analyzed so far comes from a study in which a candidate performed
various tasks alternatively. The individual alternated between idle activity, reading
news headlines, and participating in a mathematics exam limited to basic algebra
every 60 s for 20 min. This data include 123,001 samples for all 20 min. With 129
samples per packet we have approximately 953 packets per node. We can assume
that this leaves approximately 47 packets per node per minute. Then we apply linear
regression to the generated scatter-plot, the positive or negative slope correlates to
an increase or decrease in brain activity for the entire packet of said node. In the first
packet of our data set, we notice correlations between two sets of four nodes ({AF3
F3 FC5 F7} and {AF4 F8 FC6 F4} respectively). By cross examining node position
from Fig. 1 with the first packet of each node in Fig. 2, we can observe similar
scatter-plots that are geometrically symmetric when referencing nodes regarding
both left and right hemispheres of the frontal lobe. This tells us that {AF3 F3 FC5
F7} and {AF4 F8 FC6 F4} are sections of the brain that work together when the
user is in an idle brain state. Our efforts are currently invested into recognizing
repeatable patterns throughout the packets. Our developed signal processing algo-
rithms will be used to determine repeatable characteristics in sets of packets that
belong to each of the idle, news headline, and mathematics test states.

We also have developed a first version of an iOS application for iPad to analyze
and visualize collected EEG data. This application can parse and visualize EEG
data. It is also possible to extend this app to collect EEG data in real time, using a
wireless EEG device. This will enable users to record, visualize, and analyze data in
real time.

Fig. 1 Nodes AF3 through
AF4 (counter clockwise)
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Example One: Composition of EEG Headset

In this section we briefly describe how a simple EEG headset can be built using
open source materials. The prototype multi-functional headset we built consists of
an EEG sensor, a pulse sensor, a temperature sensor, a microprocessor, and a
microprocessor blue tooth shield.

(1) EEG sensor, commercial product from NeuroSky. The NeuroSky technology
was chosen for its dry sensors capabilities. This means that the sensor requires no
special liquid chemicals while making contact with the skin to read brainwaves.

(2) Pulse Sensor, Open Source pulse sensor from pulsesensor.com. The pulse
sensor is a current to voltage converter Op Amp circuit that uses a photodiode
as current source. It has a low-pass Filter for output.

(3) Temperature sensor, commercial integrated circuit sensor, TMP36—Analog
Temperature sensor from Adafruit. The TMP36 temperature sensor is a solid
state device. Meaning it does not use mercury. Instead, it uses the fact that as
temperature increases, the voltage across a diode increases at a known rate. By
precisely amplifying the voltage change, it is easy to generate an analog signal
that is directly proportional to temperature.

(4) Microprocessor: Arduino Mega 2560, Open Source.
(5) Microprocessor Blue Tooth Shield: Bluetooth Low Energy (BLE) Shield from

redbear.com. Added to the Arduino for low-energy bluetooth communications
with the iPhone.

Fig. 2 Packet 1 of Nodes AF3, F7, F3, FC5, F4, FC6, F8, and AF4
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The assembled headset is shown in Fig. 3, where the three sensors are mounted on
the tips of three legs in the forehead, the microprocessor and the microprocessor
bluetooth shield are mounted on the back, and the ear lobe is used as the base of the
EEG sensor.

In order to test and validate that the headset is working properly and that all the
sensors are functioning, a test environment had to be constructed. To simulate a
real-world environment, a mobile Smart Phone application was developed on the
Apple iPhone platform. This platform was chosen for ease of access to development
tools and availability of software development kits (SDK) from all the hardware and
chipset vendors. Both NeuroSky and Red Bear Labs included sample applications
that were then easily transferred to a custom application using a simple view to
display all the sensor values.

To show that the headset sensors are working a custom mobile application was
developed to view the results. Sample screenshots of the application with the actual
results are displayed in Fig. 4. The left snapshot shows the signal strengths of the

Fig. 3 Prototype multi-functional headset

Fig. 4 iOS sensor headset
application
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EEG sensor (the lower number) and the Arduino sensors (the upper number).
Readings of the three sensors are shown on the right snapshot. Since we use the
NeuroSky EEG sensor, the EEG signals are filtered into signals of different fre-
quency intervals.

Example Two: Analysis of Meditation State

The brain emits electrical signals that are caused by neurons firing in the brain. The
patterns and frequencies of these electrical signals can be measured by placing a
sensor on the scalp. For example, the EEG sensor by NeuroSky is able to measure
the analog electrical signals commonly referred to as brainwaves and process them
into digital signals to make the measurements available for further analysis. Table 1
lists the most commonly recognized frequencies that are generated by different
types of brain activity.

Emotions play an essential role in many aspects of our daily lives, including
decision-making, perception, learning, rational thinking and actions. To detect the
emotion of a person, the first approach is based on text, speech, facial expression,
and gesture. This approach, needless to say, is not reliable to detect emotion,
especially when people want to conceal their feelings. Some emotions can occur
without corresponding facial emotional expressions, emotional voice changes, or
body movements. On the contrary, such displays could be faked easily. Using
multi-modality approach can overcome this shortcoming to limited extent.

The new approach is through affective computing, which employs EEG signals
recorded when users perform some brain activities and apply analytical algorithms
to EEG data to detect the emotion. This approach is based on the fact that brain
activities have direct information about emotion and EEG signals can be measured
at any moment and are not dependent on other activities of the user such as
speaking or generating a facial expression. Different recognition techniques can be
used in different situations to maximize recognition rates.

Table 1 Brainwave frequencies

Brainwave type Frequency range (Hz) Mental states and conditions

Delta 0.1–3 Deep, dreamless sleep, non-REM sleep,
unconscious

Theta 4–7 Intuitive, creative, recall, fantasy, imaginary,
dream

Alpha 8–12 Relaxed, but not drowsy, tranquil, conscious

Low Beta 12–15 Formerly SMR, relaxed yet focused, integrated

Midrange Beta 16–20 Thinking, aware of self and surroundings

High Beta 21–30 Alertness, agitation
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An Empirical Study

We measured an experienced meditator’s brainwaves while meditating and com-
pared them to several other states including idle and talking. We found prominent
differences between the experienced meditator’s brainwaves and those of other
states. The experienced meditator’s brainwaves clearly displayed a stable state most
of the time, as shown in Fig. 5a. However, during certain times after the initial
meditation stage, extraordinary high waves were observed, as shown in Fig. 5b.

Figure 6 shows the brainwaves of idle, talking, and meditating from an inex-
perienced meditator. We can clearly see that the irregularities of these states are
higher than the experienced meditator’s state, especially the idle and the talking
states. The inexperienced meditator showed some similarity to the state shown in
Fig. 5a but it did not show the features in Fig. 5b. This initial study indicates that
trained meditators can demonstrate regularity during meditation practice.

(a) Meditating 1 (b) Meditating 2

Fig. 5 An experienced meditator’s brain waves

(a) Idle (b) Talking (c) Inexperienced Meditation 

Fig. 6 Brain waves of other states
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A Platform for Cumulative Brain State Modeling

We are investigating an automatic EEG-based emotion recognition system that can
record the EEG signals from users and measure their emotions. The EEG data are
filtered to get separate frequency bands to train emotion classifiers with the four
well-known classification techniques that are SVMs, Naïve Bayes, kNN and
AdaBoost.M1. Figure 7 shows the typical flowchart of data processing.

Table 2 shows the brain state recognition rate of different algorithms and
Table 3 shows the band-wise recognition rate of the AdaBoost.M1 algorithm.

As depicted above, using EEG data, cognitive psychologists can visualize and
observe correlations between different active brain states. It is desirable to create an
application that takes EEG data and exposes it to various analytical techniques so
the resultant brain states can be studied and predicted. We present the design and
implementation of a system that integrate onsite EEG data collection, analysis,
web-based EEG data storage and modeling tools, and user feedback through mobile
communication devices. Architecture of the system is shown in Fig. 8.

The web server provides a user interface that allows users to view EEG data in
the database and run R program to perform data analysis. Figure 9 shows that data

Fig. 7 EEG data analysis flowchart

Table 2 Brain state recognition rates

SVM (%) kNN (%) Naïve Bayes (%) AdaBoost.M1 (%)

Emotion recognition rate 89.25 83.35 66 92.8

Table 3 Recognition rates of AdaBoost.M1

Delta (%) Theta (%) Alpha (%) Beta (%) All (%)

Emotion recognition rate 69.95 68.4 75.5 89.7 92.8
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Fig. 8 EEG data analysis system architecture

(b) EEG Histogram(a) EEG Wave forms

Fig. 9 EEG data Rendering on web interface

Fig. 10 Running R to Analyze EEG Data
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are rendered in wave form mode and statistical mode, respectively. Figure 10
shows that R is invoked to perform data analysis tasks in interactive mode.

iPhone users can also use the web interface to connect to the database to view
data. Figure 11 shows the two functions, viz., “collect data” and “view data”, that a
user can choose on the iPhone app (Fig. 11a). The user can display data in text
mode by viewing individual data frames (Fig. 11b), or display the wave form of
recorded data in certain time period (Fig. 11c).

Conclusion

We presented some information depicting the current status of EEG research with
projected applications in the areas of health care. We hope this information provides
the reader a bird’s eye view of the potentials of EEG data analysis.

In addition, we described a method of quick prototyping an EEG headset, in a
cost-effective way and with state-of-the-art technologies. This headset is a good
starting foundation for anybody interested in researching body data via sensors. The
Arduino components can be extended and exchanged to any desired configuration.
It is only up to the imagination of the builder to decide what is possible and where
to take the project next.

We used meditation research to reach out to the high-end applications of EEG
data analysis in understanding human brain states and assisting in promoting human
health care. Some devotees to the practices of transcendental meditation have
shown the ability to control these brain states. We want to numerically prove or
disprove this assumption; the analysis of these states could be the initial step in a
process to first predict and later allow individuals to control these states.

(c)Wave form(b)Text mode display (a)Two functions

Fig. 11 iPhone interface to the web server
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Big Health Data Mining

Chao Zhang, Shunfu Xu and Dong Xu

Abstract With the improvement of infrastructures and techniques, “Big Data”
provides great opportunities to health informatics, but at the same time raises
unparalleled challenges to data scientists. As an interdisciplinary field, the health
data are not limited to electronic health record (EHR), as more and more
molecular-level data are used for disease diagnosis and prognosis in clinics.
Effectively integrating and mining these data holds an indispensable key to translate
theoretical models into clinical applications in precision medicine. In this chapter,
we briefly demonstrate different data levels involved in health informatics. Then we
introduce some general data mining approaches applied to different levels of health
data. Finally, a case study is illustrated as an example for applying computational
methods on mining long-term EHR data in epidemiological studies.

Introduction

“Big Data” is a new buzzword without a consensus on its definition, and the
properties of Big Data have changed from 3Vs, Volume, Velocity, and Variety to
5Vs adding Value and Veracity [13]. No matter how much the definition changes,
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no one can deny that health informatics has entered the Big Data era. Previous
studies have detailed that the data in health informatics exhibit all the properties of
5Vs. Big Data not only leads to a major opportunity to create profit for business
intelligence in many industries, such as retail outlets and social media, but also
creates a very challenging problem in the data mining field. With the broader usage
of electronic health records (EHR) and the explosion of other levels of data in the
past two decades, providing health information with easy access and maintenance
has become critical for both patients and physicians. Like other industries, the
secondary usage of rich health data has provided incentives to significantly
accelerate new drug development and clinical trials for pharmaceutical companies
[37]. In addition to its potential marketing value, large-scale health data are also a
valuable asset for research, although there are some challenges that must be
overcome [27]. Mining health data with suitable platforms or algorithms may get
the optimal clinical treatment thereby building connections between phenotypic and
genomic information effectively [15, 38]. These connections are supplemented by
Big Data provision of long-term records with unprecedented coverage, which can
extend clinical epidemiological studies from a city to a state, and even to other
countries [1, 34]. With the rapid improvement of biotechnologies, health data are
not limited to EHR, as more and more molecular-level data are used for disease
diagnosis and prognosis in clinics. Hence, integrating and mining the information
from different sources or levels are urgent challenges in health informatics.

In this chapter, we briefly introduce the different data levels involved in health
informatics. We then list a number of algorithms used in health data analysis to
provide some introduction on health data mining. Finally, instead of demonstrating
a specific algorithm or platform for investigating the relation between health
information and a particular phenotype, we illustrate a case study for applying
statistical learning methods on long-term EHR data in epidemiological studies. In
particular, 127,173 cases across eight years were accessed to evaluate the risk
factors of intestinal metaplasia (IM) for two provinces of southeastern China. IM is
closely related to the occurrence of intestinal-type gastric carcinoma (GC), which is
the third leading cause of cancer mortality in China [4]. Our research focused on a
comprehensive assessment of the status of IM, which helped examine the risk
factors associated with IM.

Data Level

Traditional health informatics focused on the mining or studies of EHR data [20],
but nowadays it has already spanned to many data types using methods from
multiple disciplines. The borderlines between bioinformatics, biostatistics, medical
informatics, and health informatics are not clear anymore. Different levels of data
carrying different characteristics are utilized by different organizations and have
been analyzed by different mining methods. Here, we briefly introduce the data
levels involved in health informatics.
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Molecular Level

During the past decade, the largest “deep” molecular-level datasets are generated by
The Encyclopedia of DNA Elements (ENCODE) [11] and The Cancer Genome
Atlas projects [6‚ 7]. The ENCODE project has generated more than 2600 genomic
datasets from multiple platforms, such as ChIP-seq, RNA-seq, ChIA-PET, CAGE,
high-C, and so on [22]. Although it is just a start, TCGA has already collected more
than 8200 tumor samples with measurements of somatic mutations, copy number
variations, mRNA and miRNA expression, and protein expression. With the help of
these data, the role of aneuploidy (abnormal number of chromosomes) in cancer
development, which was a 100-year-old puzzle in cancer research raised by German
biologist Theodor Boveri in 1914, was finally answered by geneticist Stephen
Elledge [42].

Beside using the above data to solve some basic biological problems, these
genomics data and other ‘-omics’ data have been integrated with clinical data to
provide a platform to improve the treatment in practice, and to discover the com-
plete drug interactions and outcomes in particular populations which could be
missed by clinical trials. For example, cBioPortal [9], an open-access resource for
interactive exploration of multidimensional cancer genomics data sets, contains
more than 18,000 tumor samples from 80 cancer studies. It transforms terabytes of
molecular data from cancer tissues and cell lines into readily understandable
genetic, epigenetic, gene expression, and proteomic events, and it also provides an
intuitive Web interface for querying samples according to different features from
genetic characteristics to clinical outcomes. With the graphical summaries of
gene-level data, it can lower the barriers between biomedical research and clinical
application, and it also makes the data easily accessible to researchers and clinicians
without informatics expertise.

Tissue Level

Unlike the molecular-level data which details the observations of a small group of
specific cells [35], tissue-level data presents the global behavior of multicellular
organisms. Typically, most tissue-level data are imaging data. With the improve-
ment of imaging technology, clinicians and research are not only able to examine
the 2D data of pathology slides and 3D data of patient organisms, but also the 4D
data of dynamically changing mammalian organs [3]. In clinic, high-resolution
medical imaging instruments are widely used for disease diagnosis and monitoring.
Large volumes of imaging data are generated by pathology and radiology depart-
ments, and most of them are from MRIs, Computed Tomography, and X-rays.

Real-time imaging provides more informative data. New analyses of these data
can help map the borders and growth of tumors, and then deliver precise doses of
chemotherapy or radiation within those borders. Aside from the common challenges
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of big data, such as storage and transmission, accurately and effectively processing
imaging data will be helpful to shorten the lag time of medical diagnosis, although
it is very challenging in medical practice. Many different learning algorithms have
been employed to address the different problems, such as medical image analysis,
computer-aided diagnosis, image reconstruction, and image retrieval.

Patient/Person Level

“Patient data come of age” has first been mentioned in the May 2003 issue of
Pharmaceutical Executive (http://www.pharmexec.com/patient-data-come-age). At
the beginning, data were derived from 1.6 billion prescriptions in the United States
annually. The data were studied by pharmaceutical companies to track the pre-
scription activity at the patient level to adjust marketing strategy. With the wide
usage of EHR, physicians can easily access any patient’s medical history including
a history of his or her medications to decide therapy changes or dosing changes. In
some extreme situations, a large volume of real-time patient-level data is generated,
such as the data generated during ICU. These data not only require accurate
real-time processing and analyzing to give treatment advice to the physicians, but
also provide great value for long-term studies, such as the prediction of patient
mortality rate after ICU discharge in 5 years.

Unlike EHR data generated by hospitals, with the improvement of wearable
technology, an incredible amount of person-level data is coming up and generated
by users themselves. According to ABI Research forecasts, 28 million smart
watches would be shipped in 2015 (https://www.abiresearch.com/blogs/apple-
watch-forecasts/). Other types of wearable devices were showcased, such as Smart
watches, Smartbands, Smart Jewelry, glasses, and ear buds. These revolutionary
devices provide unprecedentedly real-time monitoring to not only patients, but also
healthy people. Precision processing of these data can provide most accurate and
comprehensive health and fitness guidance to users, and this information can also
be integrated with EHR data to help physicians to diagnose diseases and take
preventive measures for potential health issues.

Population Level

Traditionally, population-level data in health informatics are gathered from a hos-
pital or clinical researchers, and has been used for answering both clinical questions
and epidemic-scale questions. With the improvement of EHR and data mining
techniques, these data accumulated for years could be used to give some old
questions a more accurate answer, such as the relationship between risk of gas-
trointestinal bleeding and long-term use of aspirin [25]. They can also lead to some
new discoveries, such as reducing risk of colorectal cancer with aspirin [10].
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Besides the increasing EHR data, the explosion of other types of Big Data also
provides additional information for epidemiological studies, such as the data from
Twitter, Facebook, or Google search data. By integrating human mobility data,
Lemey et al. [30] created a better model to predict the global transmission dynamic
of the human influenza virus H3N2.

Currently, population-level data are not limited to EHR data anymore and covers
all large-scale studies of all data levels. Integrating and mining different levels of
data is a most challenging task in health informatics, and it also provides a great
opportunity to enhance the patient care system and improve public health.
CancerLinQ [45], a platform developed by The American Society of Clinical
Oncology (ASCO), keeps gathering cancer patient records including genomic data,
diagnoses, and notes on treatment, and measures how well patients respond to
therapy. Through learning these big data, the system will keep improving and
finally provide the optimal cancer care clinical guidelines.

Heterogeneity of Big Health Data

Heterogeneity is immanent in big data. On one hand, heterogeneity refers to the
variant data sources. In health informatics, heterogeneous data could be either from
multiple medical centers or from multiple data levels. Integrating heterogeneous
data from different sources is the first and very important step of data analysis [29].
Using data from multiple sources might lead to better results than only using one
single data. Especially in healthcare system, disease diagnosis for each patient
always relies on multiple data sources‚ so the accumulated big health data are also
from heterogeneous sources. These data always have different structures, and some
of them could be incomplete or with errors. Carefully processing and integrating
them remain challenging. On the other hand, big health data might represent the
heterogeneous information from different subpopulations‚ so failing to take
heterogeneity into account can easily derail the discoveries from these data. Shah
and coworkers collected 397 heart failure with preserved ejection fraction cases
with 46 continuous phenotypic variables, and then they used computational method
to analyze the data to reveal three mutually exclusive subgroups [43]. Similarly,
Wang and colleagues integrated multiple data for 1500 patients to discover three
novel subgroups of gastric cancer [48].

Techniques

In terms of methodologies used in health data mining, almost all statistical or
learning-based methods have been employed to solve many different problems in
this field.
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Statistic-based methods, especially most regression methods, were widely used
to conquer the most common problem wherein the “parameters P is much larger
than the number of observations N” (e.g., the number of genomic variations is much
larger than biomedical sample size) in genome-wide association studies (GWAS)
[8]. GWAS exploits the significance of associations between small DNA variations
(Single Nucleotide Polymorphism, SNP) and phenotype, by assuming “common
disease, common variant”. In order to accurately and effectively explore the rela-
tionships between millions of SNPs and complex traits/disorders, researchers
extended the methods from simple linear regression to many advanced models,
such as Bayesian linear regression [33], linear mixed models [32], penalized
multiple regression [24], and so on. Those studies have suggested previously
unknown markers or pathways associated with some diseases, such as IL23R with
Crohn’s disease [17] and FGFR2 with breast cancer [26]. Another widely used
model, the generalized linear model, has been adapted by many software packages
for differential analyses on gene expression or DNA methylation. For example, an
unexpected role of miR-7 in cortical growth through its interactions with p53
pathway genes was discovered through a differential gene expression analysis
between the wild-type and miR-7 silenced mouse models [40].

Supervised learning (classification) model uses labeled data (training data) to
produce an inferred function, and then applies it to classify the new samples (un-
labeled test data). We can easily find examples for utilizing popular supervised
learning models, such as Support Vector Machines (SVM), Random Forest, Neural
Networks, and so on. Zhang et al. [50] formulated a residues-based classifier to
access the gastric cancer risk by the Helicobacter pylori (H. pylori) marker gene.
The authors extracted the features from the sequences of the most important vir-
ulence factor CagA of H. pylori and then trained an SVM model with selected key
residues. They tested their model with leave-one-out cross validation, and the result
indicated the relationship between pathogen sequence marker variation and cancer
risk. In another study, Michaelson et al. [36] analyzed whole genome sequencing
data from 10 pairs of monozygotic twins concordant for autism spectrum disorders.
They extracted de novo mutations (DNMs) in affected individuals, and then trained
a Random Forest classifier to evaluate the importance of DNMs contributed to
autism. Their findings suggest that regional hypermutation is a significant factor
involved in autism. Sometimes multiple models have been employed in a single
study to get better performance. For example, Han et al. [23] generated pseudogene
expression profiles in 2808 patient samples from TCGA dataset, and then they
applied three supervised learning methods to predict the cancer subtypes using
pseudogenes with the most variable expression. They found a significant number of
pseudogenes with different expression levels in different cancer subtypes, which
can be used to classify the histological cancer subtypes.

Unsupervised learning (clustering) model attempts to find the underlying
structure in unlabeled data, and it is the best model to discover the molecular types
of some not well-studied diseases. For example, principal components analysis
(PCA) is an unsupervised approach to reduce the dimensionality of data while
identifying hidden features with the most signals, and the first principal component
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has the largest possible variance. PCA analysis has been performed in most
large-scale studies, such as breast cancer studies from TCGA [5]. Besides tradi-
tional unsupervised learning algorithms, such as PCA and K-means, some complex
methods have been developed for integrative clustering samples with different
levels of data. iCluster, a joint multivariate regression model, was originally pro-
posed to cluster lung cancer samples from TCGA using both copy number and gene
expression data, and then identify the subtypes characterized by concordant genes
from two levels of molecular data. In a recently published gastric adenocarcinoma
[7] study from TCGA, DNA methylation data were also analyzed with copy
number, mRNA expression, miRNA expression, and protein expression by
iCluster; moreover, gastric cancer cases have been divided into four subtypes:
Epstein–Barr virus positive, microsatellite instability, genomically stable, and
chromosomal instability.

Other methods, such as the algorithms from information theory and graph
theory, are also widely used to process molecular data. Shannon’s entropy and
Boltzmann’s entropy were employed by different research groups multiple times to
analyze DNA methylation pattern in diseases. Xie et al. [49] calculated the
Shannon’s entropy of the methylation pattern of every four adjacent CpG sites to
evaluate the epigenetic heterogeneity of diseases and find the regions more
accessible for DNA methyltransferases. Li et al. [31] quantified the changes using
the Boltzmann’s entropy difference of every four adjacent CpG sites between
diagnosis and relapse samples from leukemia patients, and according to the dif-
ferences they demonstrated that the global clonality shift might drive the leukemia
relapse. A Bayesian network model has been used to identify cancer driver genes in
the research work of Akavia et al. [2]. They integrated chromosomal copy number
and gene expression data for detecting aberrations that promote cancer progression,
and they further confirmed several known drivers in melanoma samples.

A Showcase

Here we present a study wherein 127,173 upper endoscopies were performed from
2004 to 2011 as an example of mining long-term EHR data. Our research focused
on completing a comprehensive assessment of the status of intestinal metaplasia
(IM) and evaluating the risk factors of IM for two provinces of southeastern China.

Background

The major symptom of gastric IM involves gastric epithelium and gastric glands
that transform into intestinal epithelium and intestinal glands, respectively, under
pathological conditions. The most recognized theory by Correa [16] on the corre-
lation between IM and GC focuses on the occurrence of intestinal-type GC where
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an inflammatory process in the gastric antrum is considered to be the cause of the
initial lesion, which may progress toward chronic atrophic gastritis (AG), IM,
dysplasia, and finally the invasive carcinoma. Thus, IM is the precancerous lesions
of GC. Although in recent years the occurrence of GC has decreased, China remains
a high-risk area. In 2008, the age standardized mortality rate for gastric cancer in
China was 0.486‰, three times higher than the average global rate. The central
region of Jiangsu Province in particular is a high-risk area for GC with a stan-
dardized incidence rate of 1.45‰ in Yangzhong City of the Zhenjiang municipal
area, which also has a GC mortality rate of 0.79‰. Therefore, in this region, the
prevention of GC is still very challenging.

Data and Methods

Records of gastroscopic results in the Digestive Endoscopy Center of the First
Affiliated Hospital of Nanjing Medical University from 2004 to 2011 were retrieved
from their Endoscopy Information System, including the patients’ age, gender,
images of endoscopic examinations, endoscopic and pathological findings, and the
results of rapid urease tests. All data were collected in accordance with the insti-
tutional ethical and clinical guidelines. Personal information will not be disclosed in
this chapter. The following items were assessed according to the updated Sydney
classification system: chronic and acute inflammation, gastric glandular atrophy,
and IM. All items were scored from 0 (absent) to 1 (mild), 2 (moderate), or 3
(marked) [46]. Gastric appearance and histological results were both used for
diagnosis of gastric ulcer (GU), duodenal ulcer (DU), bile reflux, gastritis, IM, GC,
and so on. Multiple analysis methods have been applied to the data for evaluating
the relations between different factors. Odds ratio (OR), chi-square test, and t-test
were carried out to examine correlations between IM status and H. pylori infection,
AG, dysplasia, age, gender, peptic ulcer, bile reflux, chronic inflammatory severity,
degree of acute inflammation, and lymphoid follicle number. The Cochran–
Armitage trend test of IM was also carried out. A linear regression analysis was
applied to geographical information. All p-values calculated were two-tailed and at
a significance level of 0.01.

Previous Reports About the Basic Risk Factors of IM

Risk factors of IM have been the subject of several studies. De Vries et al. [12]
reported that risk factors might increase the incidence of IM, including age,
smoking, obesity, drinking, H. pylori infection, and bile reflux. Den Hoed et al. [14]
found no differences in patients with IM and normal gastric mucosa with respect to
gender, but subjects with IM were significantly (P < 0.001) older than subjects with
either normal gastric mucosa or non-atrophic gastritis. Peleteiro et al. [39] showed
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that in smokers infected with high-virulence H. pylori strains, the risk of IM was
further increased. Felley et al. [19] showed obesity, which was BMI >25 kg/m2 in
males and BMI >27 kg/m2 in females, was also one of the risk factors of IM.

Age

In our study, we grouped the patients into six age groups, <20, 20–29, 30–39, 40–
49, 50–59, and � 60, respectively. As shown in Table 1, the impact of age on IM
also reflected that the older the patient, the higher the incidence rate of IM and the
higher the level of IM. The conclusion was consistent with findings of previous
studies [12, 14]. A Cochran–Armitage test was performed between any two age
groups to measure the trends between the IM development and different age groups.
With increasing age, not only did the incident rate increase, but also the severity of
IM (Fig. 1). It was obvious that IM was not just a common occurrence associated
with aging. This may be due to a variety of known and unknown risk factors,
especially for H. pylori infection, the roles of which accumulate with increasing
age, leading to the appearance and aggravation of IM.

Gender

Gender was reported to be a risk factor for gastric cancer by previous studies [12,
41], but some previous studies also implied that there was no significant relation-
ship between gender and IM, AG, or dysplasia [14]. Our large sample study
revealed that gender might be an independent risk factor for IM. In our study, the
IM incidence rate in the male population was 0.62% higher than in the female
population, and the chi-square test between incidence rates of IM in males and in
females was significant (OR, 1.04; 95% CI: 1.00–1.07; P = 0.03).

Other Diseases

For the correlations between IM and other gastric diseases, the literature reported
that IM occurring on the basis of AG was generally recognized [28], but the
relationship between IM and bile reflux had rarely been reported. Tsukui et al. [47]
reported DU disease reduced the risk of contracting both IM and AG conditions, but
not GU. Dysplasia is a mucosa lesion, which occurs on the basis of IM, and could
progress to GC [28].

In our study, AG showed an extremely high positive correlation with IM inci-
dence. Comparing AG with non-AG cases, the IM incidence rate was 95.70%
versus 18.88%. Except for DU with significant negative correlation, the rest of the
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factors were all positively correlated with IM incidence (P < 0.01). According to
the OR, they had been ranked as follows: dysplasia, GU, H. pylori infection, and
bile reflux.

A Cochran–Armitage test was performed between any disease and contrast
groups to measure the trends between different diseases and IM grades (Table 1).

Table 1 Statistics of risk factors based on IM scores

Characteristics Absent (0) Mild (1) Moderate (2) Severe (3) P value

Num. % Num. % Num. % Num. %

Age

<20 1442 2.17 51 0.34 5 0.14 0 0

20–30 6189 9.33 397 2.63 46 1.33 1 0.42 <0.01

30–40 13,580 20.46 1757 11.66 213 6.18 4 1.69 <0.01

40–50 15,166 22.85 3268 21.68 601 17.43 36 15.19 <0.01

50–60 15,396 23.20 4548 30.17 1075 31.17 82 34.60 <0.01

>60 14,592 21.99 5052 33.52 1509 43.75 114 48.10 <0.01

Gender

Male 34,921 52.62 7903 52.43 1993 57.78 145 61.18

Female 31,444 47.38 7170 47.57 1456 42.22 92 38.82 <0.01

Gastric ulcer

Ulcer 3145 5.55 1313 9.73 351 11.16 31 14.42

Gastritis 53,508 94.45 12,175 90.27 2794 88.84 184 85.58 <0.01

Duodenal ulcer

Ulcer 4630 7.96 928 7.11 111 3.82 6 3.16

Gastritis 53,508 92.04 12,175 92.89 2794 96.18 184 96.84 <0.01

Bile reflux

Reflux 4400 6.63 1036 6.87 279 8.09 20 8.44

Non-reflux 61,965 93.37 14,037 93.13 3170 91.91 217 91.56 <0.01

H. pylori

Positive 20,428 33.37 5661 39.98 1151 35.59 67 31.60

Negative 40,797 66.63 8497 60.02 2083 64.41 145 68.40 <0.01

Atrophic gastritis

None 66,234 99.80 13,536 91.72 1813 54.18 70 30.04

Mild 99 0.15 1066 7.22 832 24.87 47 20.17 <0.01

Moderate 26 0.04 145 0.98 688 20.56 89 38.20 <0.01

Severe 6 0.01 11 0.08 13 0.39 27 11.59 <0.01

Dysplasia

None 63,020 94.99 12,843 87.03 2694 80.54 166 71.24

Mild 2069 3.12 1663 11.27 574 17.16 58 24.89 <0.01

Severe 1253 1.89 251 1.70 77 2.30 9 3.86 0.19

Gastric cancer

Cancer 3722 5.61 587 3.89 177 5.13 12 5.06

Noncancer 62,643 94.39 14,486 96.11 3272 94.87 225 94.94 <0.01
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The relationships of IM grade to bile reflux, GU, DU, dysplasia grade, and AG
grade were described. IM grade increased with GU (P < 0.01), bile reflux
(P < 0.01), and the rising of AG grade (P < 0.01). The trend of the IM grade
correlated with low grade dysplasia (P < 0.01), but not high-grade dysplasia
(P = 0.19). There was a lower IM grade in patients with DU than in patients
without it (P < 0.01).

Several previous studies have reported the correlation between GC and IM [44].
Since a biopsy was not performed on relatively normal parts of the stomach, our
results showed a lower incidence of IM in GC patients. But for endoscopic diag-
nosed GC which also had non-tumor pathological data, the IM incidence was high.
This also showed a significant correlation between GC and IM [21].

Other Potential Factors

In addition to the regular risk factors discussed up to this point, we also evaluated
relationships between IM occurrence and other potential factors, such as Gross
Domestic Product (GDP) and geographic locations. Seventeen municipal areas
were selected for this study—and only cities with more than 200 patients were
considered. These cities covered a very large area with a combined population of
91.6 million and an area of 146,000 km2. Geographical information for 54,351
cases from the chosen 17 areas was collected. Considering the IM incidence rate of
the 17 analyzed municipal areas (Table 2), Xuzhou City had the lowest rate,
10.47%, while Changzhou City had the highest rate, 24.22%. From east to west and
from south to north, IM incidence rate decreased stepwise. In the relationship
between IM incidence and GDP per capita, IM incidence and H. pylori infection

Fig. 1 Trends of IM development in different age groups
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had similar geographical distributions (Data sources: Global CNKI, http://tongji.
cnki.net/kns55/index.aspx). Linear regression analysis was performed to evaluate
the correlation among the above factors, and the results indicated a high correlation
between IM incidence and GDP per capita (r = 0.67; P = 0.0030) and between IM
incidence and H. pylori infection (r = 0.51; P = 0.0385). We also found that H.
pylori prevalence was higher in high-income populations.

Conclusion

Some risk factors discussed in this chapter have been investigated in previous
studies, especially in GC research. Our study involved an unprecedented population
size, and the large sample size gave us sufficient statistical power to not only
validate conclusions of previous studies but also to reveal some new discoveries
(Table 1). In this study, those reported factors with positive correlation to IM
incidence were validated, such as age, GU, H. pylori infection, AG, dysplasia, and
GC. DU is the only factor with a significant negative relation to IM. As a potential
risk factor of IM, bile reflex was rarely mentioned in previous literature. In our
study, bile reflex not only showed a positive relation with IM incidence, but also
had an increase of IM level; furthermore, the percentage of patients with bile reflex

Table 2 IM incidence, H. pylori infection, and GDP per capita in 17 prefecture-level cities

Area
(province)

City IM
(n)

Biopsy
(n)

IM
rate
(%)

H. pylori
infection
rate (%)

GDP
(10,000RMB)

JiangSu Xuzhou 29 277 10.47 28.88 19,480

Suqian 143 1180 12.12 20.68 11,644

Huaian 377 2735 13.78 23.69 16,031

Lian-yungang 57 391 14.58 19.44 14,600

Yancheng 253 1397 18.11 24.62 18,079

Taizhou 166 781 21.25 22.02 25,085

Yangzhou 192 943 20.36 25.03 29,036

Wuxi 66 282 23.40 29.79 64,529

Nantong 79 342 23.10 26.61 28,069

Nanjing 8533 38,250 22.31 34.18 43,888

Zhenjiang 355 1478 24.02 29.03 42,538

Changzhou 187 772 24.22 29.02 43,833

AnHui Chuzhou 553 3133 17.65 24.29 10,535

Hefei 43 226 19.03 30.53 27,342

Chaohu 282 1462 19.29 27.77 9760

Xuancheng 44 211 20.85 30.33 12,960

Ma-anshan 84 391 21.48 27.11 38,231
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increased as well. Although many studies were trying to access the risk factors of
IM, some gaps still remain in the understanding of IM. A large-scale, long-term
study is required to reveal relationships between H. pylori infection/eradication, IM,
GC, and other risk factors. Through research and analysis, we systematically
studied the IM status of southeastern China. Incidence of IM showed a regional
characteristic distribution and was consistent with other reports of H. pylori
infection and income distribution. In the future, we plan to integrate more data, such
as regional characteristics distribution, climate, lifestyles, eating habits, and eco-
nomic status—all of which will be helpful to clarify the pathogenesis of IM and the
relationship between IM and GC.

Summary

Nowadays, “Precision Medicine” has become a new buzz word within the medical
and research community, after President Obama’s recent announcement of the
Precision Medicine Initiative. In the next 50 years, this personalized and precision
medicine might save hundreds of billions of dollars and prevent/treat disease much
more effectively to improve the health in the US [18]. Without the support of big
data in health informatics, personalized precision medicine could remain a theo-
retical hypothesis forever. Big data will be the key to accelerating the progress of
translating the theoretical models to clinical applications in precision medicine.
Although with the tremendous potential of precision medicine and its effect on
health informatics, we are also facing big data challenges in other areas. The
challenges are not limited to volume. They also involve the quality of data, which is
difficult to identify, the speed of data access and connectivity, and the requirement
of infrastructure to adapt to the explosion of incoming data. Finally, the last
challenge, and perhaps the most important one, is finding the right talents and
methods to discover the meaningful insights and interpret them. To conquer above
obstacles, it requires not only an evolution of infrastructure, but also more initiative
ideas for leaning big health informatics data with computational methods. Beyond
that, collaborations among experts in different areas are also very important to
address the challenges.
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for Telehealth
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Abstract Recent developments in society show significant trends in aging
population and prevalence of chronic conditions. It is estimated that disruptive
demographics related to population of middle-aged and older adults will result in
33% of overall EU population by 2025. Advances in technology created innovative
means to support effective management of these challenges through telehealth
model for healthcare delivery. In this chapter we introduce decision support in
hypertension management with ontology describing the structure of the relevant
domain data and analysis of such data using a rule-based system. Telehealth
solution provides a ‘complete-loop’ concept for hypertension management with
sensor device, mobile, and web-based applications providing means for health
status management for both healthcare consumer and healthcare provider.

Introduction to Telehealth

Recent developments in society show two significant trends reflecting in aging
population and prevalence of chronic conditions. It is estimated that disruptive
demographics related to population of middle-aged and older adults will result in
33% of overall EU population by 2025. This is closely associated with increase of
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patients with chronic conditions—CVDs, diabetes, COPD, cancer, epilepsy,
arthritis, asthma, obesity, and overweight [1]. Approximately 90% of seniors have
at least one chronic disease, and 77% have two or more chronic conditions [2].
Based on the data from WHO there are 347 million people with diabetes worldwide
and this number will double by 2030. CVDs represent number one cause of death
globally, more people die annually from these health conditions than from any other
cause [3]. Despite the fact that chronic diseases are among the most common and
costly health problems, they are also among the most preventable and most can be
effectively controlled.

Advances in technology that we have been witnessing for the past decade cre-
ated innovative means to support effective management of the challenges related to
chronic disease management, health and wellness and aging independently through
telehealth model for healthcare delivery [4]. This includes broadband Internet
access (with its adoption by senior citizens), cheap mobile technologies, smart-
phones, miniaturization of sensors, wearable systems (e.g., based on wireless
technology and e-textiles), development of MEMS (including low power con-
sumption—accelerometers, gyroscopes, magnetometers), and off-shelf personal
health monitoring devices. By definition of American Telemedicine Association
telehealth is the use of medical information exchanged from one site to another via
electronic communications to improve a patient’s clinical health status. Telehealth
and telemedicine can be considered as interchangeable terms when addressing a
wider definition of remote healthcare with respect to remote patient monitoring,
referral specialist services in primary care, consumer medical and health informa-
tion, and medical education.

Telehealth applications such as mobile health monitoring, remote ICU, remote
ECG monitoring, teledermatology, and teleradiology generate heterogeneous
biomedical data. Detailed analysis for some of these data (EEG, ECG, image
processing) is covered in several chapters of this book. We will consider compu-
tational infrastructure of telehealth from the perspective of so-called ‘completing
the loop’ related to remote data collection, data transmission, expert review, and
feedback [5]. In the next sections we will illustrate this loop with underlying
technologies, challenges and references to the state-of-the-art computer programs
that can contribute to creation of modern health care through telehealth services.

Architecture of Telehealth Systems

Overview

Telehealth solution that empowers better management of health and wellness may
consist of the following basic components (see Fig. 1): personal health devices
(PHD), gateway device (GD), and remote patient monitoring server (RPM).

Personal health device: a sensor that measures individual’s vital parameters or
daily activities [7]. These are low-powered devices with few processing resources
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that send data to the gateway device. Examples of communication interface
between PHD and GD include USB, Bluetooth, Bluetooth Low Energy, ZigBee,
ANT+, and WiFi. More detailed information about sensing and wearable devices
for telehealth solutions can be found in [6].

Gateway device: the residential gateway and central point of control that include
cell phones (smartphones), personal computers, set-top boxes or other special
devices (e.g., designed for elderly people with larger display and function buttons).
Device is responsible for collecting measurements from the different PHDs and
forwarding them to the remote patient monitoring server. Examples of communi-
cation interface include WiFi, or cellular networks. Some of device functionalities
are local data storage, basic data analysis and graphical user interface for viewing
actual and historical patient’s measurements and management of other contextual
health-related data (text messages containing additional info about patient’s health
status, level of patient’s discomfort, etc.).

Remote patient monitoring server (RPM): this is a backend system of telehealth
service provider that enables healthcare professionals to view, analyze, and manage
patient’s data. The user interface is implemented as web front-end irrelevant on the
device that healthcare professional uses (e.g., laptop, desktop computer, mobile
devices). Service platform is responsible for storing data in a persistent database.
Data can be also forwarded to other components and systems (EHR server at
hospitals or other primary care locations).

Components of personal telehealth systems are supplied by a variety of vendors
that come with proprietary communication protocols and data encodings. Although
this seems reasonable regarding the acceptable development complexity and initial

Fig. 1 Personal telehealth system architecture
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implementation costs it restricts creation of plug and play telehealth solutions and is
one of the reasons that prevent their wider acceptance. The objective is to ensure
interoperability so that a single system is able to collect, process, and analyze data
by various personal health devices, gateway devices, and RPMs.

Continua Health Alliance (CHA) is a nonprofit, open industry organization of
more than 200 leading healthcare and technology companies joining together in
collaboration dedicated to establishing a system of interoperable personal connected
health solutions [7, 8]. The ISO/IEEE Std 11073-20601 and ISO/IEEE Std
11073-20601A-20101 Personal Health Device standards [9] are recommended by
CHA to address the PHD and GD interoperability (Fig. 2). The transport layer is
profiled for Bluetooth, Bluetooth Low Energy, ZigBee, and USB technology. IEEE
standards define messages that travel between PHD (called agent in IEEE termi-
nology or PAN, LAN device in Continua terminology), and gateway device (called
manager in IEEE terminology or Application hosting device in Continua termi-
nology). The agent is modeled as a set of objects. Object attributes represent
measurements and status data that are sent to a manager. Presenting its object
structure (configuration) PHD supports plug and play interoperability.

The object model methodology allows a unique generic mapping to IHE-PCD01
(HL7)1 messages. These can be further transported by the GD to the RPM server
(called WAN Device in Continua terminology) using a number of transport
methods over Internet and private TCP/IP networks including secured web service
interfaces. Patient information can be forwarded from RPM to Electronic Health
Record systems (EHR, called Health Reporting Network Device in Continua

Fig. 2 Continua end-to-end reference architecture

1Integrating the Healthcare Enterprise (IHE) is an initiative by healthcare professionals and
industry to improve the way computer systems in healthcare share information. It promotes
cooridnated use of established standards such as Health Level 7 (HL7).
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terminology). The recommended standards for establishing this communication are
IHE XDR profile and HL7 Personal Health Monitoring Report document
(PHM) [10]. By passing the Continua certification process vendors assure that their
components can be interconnected and can exchange data.

Security and privacy related to collection and processing of personal and health
data is very strictly regulated in number of countries through legislation such as EU
Directive 95/46 and HIPAA in the US. In its guidelines CHA considered advanced
security and privacy requirements such as identity management, non-repudiation of
origin, and consent management. More details on the topic of data structure,
management, privacy, and security of telehealth infrastructure can be found in
Continua Design Guidelines [11].

Information about other available certified devices for interoperable
state-of-the-art telehealth solutions can be found on the Continua web site.2

Data Analytics

Expert review and feedback in telehealth systems can be supported by Clinical
Decision Support Systems (CDSS) that may compete with the increasing load of
clinical data by providing integrated approach to their analyses. These systems
provide information management help focusing clinician’s attention, foster adher-
ence to guidelines, prevent mistakes, provide patient-specific recommendations,
and spread up specialist knowledge to primary care clinicians. For example,
follow-up and early detection of heart failure patient’s decompensation can be
supported by integration of signal and image processing methods by means of a
CDSS [12]. Several architectures have been indicated for CDSS linked with other
systems including stand alone and decision support systems integrated with clinical
systems like EHR [13]. Comprehensive taxonomy of clinical decision support tools
for major nine commercial and four internally developed EHR systems were
evaluated in [14]. Decision support capabilities included medication dosing sup-
port, order facilitators, point-of-care alerts/reminders, relevant information display,
expert systems, and workflow support. Table 1 summarizes surveyed vendors and
institutions.

With the aim to avoid unnecessary further generalization, we introduce example
of decision support for hypertension management based on symbolic paradigm
formalizing expert’s knowledge into ontology and rule-based knowledge base. In
knowledge engineering, ontologies [15] are used to formalize shared understanding
of a domain through definition of concepts and relationships among them. This
enables both software applications and humans to share the knowledge related to a
domain of interest. Ontologies can be seen as semantic vocabularies used to model
a domain providing a set of general categories for classification of data (classes),

2http://www.continuaalliance.org/.

Computational Infrastructure for Telehealth 189

http://www.continuaalliance.org/


and their relations (properties). Objects of certain domain (instances) can be clas-
sified in the ontology (i.e., assigned into classes) and interrelated using the prop-
erties. An important feature of ontologies is that the meaning of each class and of
each property is precisely defined. Ontologies can be complemented by other
representation formalisms such as rules that are the most suitable for expressing
single medical decisions (e.g., alerts occurring in case of significant changes in
values of measured physiological signals) [16].

Knowledge management platforms which can be used to craft decision support
on top of domain data include ontology editors such as Protégé3; ontologically
annotated data can be stored in semantic data stores such as OWLIM4; basic
interface between ontologies and rules can be provided, e.g., by the Apache JENA
platform5; more complex rule engines include XSB6 and DLV.7

Use Case: Telehealth Solution for Hypertension
Management

In this section we introduce an example use case for decision support in hyper-
tension management. In Section “Data Structure and Analytics” we start from a
proposed ontology describing the structure of the relevant domain data. We then

Table 1 Vendors and
institutions

Vendor Product name

Allscripts Allscripts EHR

Cerner PowerChart/PowerWorks

Eclipsys Sunrise Clinical Manager

e-MDs Solution Series

Epic EpicCare Inpatient

NextGen Inpatient Clinicals

GE Centricity EMR

GMT PrimeSuite

Springcharts Springcharts EHR

Institution Product name
Partners Healthcare LMR

Veteran’s affairs Health System VistA

Regenstrief Institute RMRS

Intermountain Healthcare HELP-2

3http://protege.stanford.edu.
4http://www.ontotext.com/owlim.
5http://jena.apache.org.
6http://xsb.sourceforge.net.
7http://www.dlvsystem.com.
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briefly show how analysis of such data (in the structure prescribed by the ontology)
can be done using a rule-based system. Section “Implementation of Telehealth
System for Hypertension Management” covers the implemented telehealth solution
based on this data architecture, which provides a ‘complete-loop’ telehealth solu-
tion concept for hypertension management with sensors, mobile and web based
applications providing means for health status management for both healthcare
consumer and healthcare provider.

Data Structure and Analytics

For the needs of our use case we have developed a simple domain ontology, as
depicted in Fig. 3. Three classes are central in the ontology: Class Patient encap-
sulates data respective to a patient. Class Measurement_Limit and its subclasses
capture limit values for various measurements. Class Reading captures readings
from a measuring device and data about patient subjective feelings (type and level
of discomfort, and stress). Readings from measuring device include time stamp of
measurement, pulse rate, systolic and diastolic blood pressure, and arrhythmia
indication.

Class Patient (see Fig. 4a) groups information about patients. Each patient has a
name and can be associated with one or more readings, one or more diagnosis, and
possibly some instances of (different subclasses of) Measurement_Limit. Note that
the measurement limits are associated via functional properties (i.e., only one limit
of each type can be associated). The instances of Measurement_Limit define
threshold values for various measurements related to the acquisition of patients’
health status. These instances (see Fig. 4b) are strictly split into two subclasses
Personal_Measurement_Limit (specific limits defined for a particular patient) and
Generic_Measurement_Limit (default limits for patients who don’t have the specific
limit set). Instances of Generic_Measurement_Limit class store threshold values for
measurements based on diagnoses. In case there is no specific diagnosis associated
with patient the instance stores a default value. It is important to note that per-
sonalization of threshold values through instances of Personal_Measurement_Limit
is given the highest priority.

Fig. 3 Domain ontology
(class hierarchy)
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Independently, the Measurement_Limit class splits into specific subclasses (e.g.,
Measurement_Limit_BP_Systolic, Measurement_Limit_BP_Diastolic) indicative of
the specific limit type. Further subclasses indicate minimal and maximal limits. See
Fig. 3 for the full overview. The actual value of the limit is given by the value
property.

Instances of Reading (see Fig. 4c) encapsulate data about patients’ subjective
feelings and data received from a measuring (sensor) device. All values measured
and reported at the same time are stored by the system as one Reading instance. The
readings which occurred recently are further classified under the Recent_Reading
subclass.

The ontology is used as a schema for the application data stored in a fact base
(e.g., the information that a patient John Smith has diagnosis “chronic kidney
disease” is stored using the facts: Patient (p555), has_name (p555, “John Smith”),
and has_diagnosis (p555, “chronic kidney disease”). Data in the fact base is then
evaluated with a rule engine. Production rules (stored in the rule base) have the
simple form: IF <condition> THEN <action>.

The rule engine is activated upon addition of new data in the fact base and rules
whose <condition> matches the facts are fired. The execution is over when no
matching rule can be found anymore. Let us see, for example, the following rules
which are responsible for associating a patient with the maximum limit of systolic
pressure:

((a) Class Patient:

Patient
- has_name xsd:String (required)
- has_reading Reading
- has_diagnosis xsd:String
- has_limit_systolic_min Measurement_Limit_BP_Systolic_Min (functional)
- has_limit_systolic_max Measurement_Limit_BP_Systolic_Max (functional)
- has_limit_diastolic_min Measurement_Limit_BP_Diastolic_Min (functional)
- has_limit_diastolic_max Measurement_Limit_BP_Diastolic_Max (functional)

(b) Class Measurement_Limit:

Measurement_Limit
= disjoint union of Generic_Measurement_Limit

and Personal_Measurement_Limit
- value xsd:Real (required)

Generic_Measurement_Limit
(possibly assoc. with multiple Patient instances)

- for_diagnosis xsd:String

Personal_Measurement_Limit
(associated with single Patient instance)

(c) Class Reading:

Reading
- timestamp xsd:DateTime (required)
- pulse rate xsd:Real
- systolic_pressure xsd:Real
- diastolic_pressure xsd:Real
- arrhytmia xsd:Boolean
- discomfort – xsd:String 
- discomfortLevel xsd:Integer range[0..10]
- stress – xsd:Boolean

Fig. 4 Domain ontology (details)
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(1) IF

Patient(?P) AND not has_limit_systolic_max(?P,_)

AND Measurement_Limit_BP_ Systolic_Max(?M)
AND Generic_Measurement_Limit(?M)
AND not for_diagnosis(?M,_)

THEN

store(has_limit_systolic_max(?P,?M))

(2) IF

Patient(?P) AND has_limit_systolic_max(?P,?M)

AND Generic_Measurement_Limit(?M)
AND has_diagnosis(?P, “chronic kidney disease”)
AND Measurement_Limit_BP_Systolic_Max(?O)
AND Generic_Measurement_Limit(?O)
AND for_diagnosis(?O, “chronic kidney disease”)

THEN

store(has_limit_systolic_max(?P,?O))

General objective of Rules (1) and (2) is to always have the most appropriate
assignment of maximum limit for systolic pressure associated with each patient. If
nothing further is known about the patient a default value that is not associated with
any specific diagnosis (stored in the fact base itself) should be linked to the patient.

Rule (1) is responsible for association of default limit of maximum systolic
blood pressure to a patient (in case a patient does not have any other limit already
associated).

It fires whenever the variables ?P and ?M can be bound with a patient with no
limit yet assigned and with the generic default limit, respectively. A new fact about
these bound objects is stored in the fact base in the rule’s action statement. Note that
the sign “_” is a placeholder that matches with any value.

Rule (2) fires in case of patients diagnosed with “chronic kidney disease”. The
rule re-associates any such patient with the more specific default systolic limit
related to this diagnosis.

Note that neither rule (1) or (2) fires for patients for which the most specific
personal limit was already stored in the fact base (by a new Personal_
Measurement_Limit (L) set to a respective value and associating it with the patient).
This is because in such a case Generic_Measurement_Limit (L) is not true. The
analysis of current readings for each patient is then done by the following rule,
which fires if a recent systolic pressure reading respective to some patient is found
and compares its value with the limit associated with the patient:
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(3) IF

Patient(?P) AND has_name(?P,?N)

AND has_limit_systolic_max(?P,?L)
AND value(?L,?X)
AND Recent_Reading(?R)
AND has_reading(?P,?R)
AND systolic_pressure(?R,?Y)
AND ?Y > ?X

THEN

exec(Alert(”High sistolic pressure ?N”))

As a result of Rule (3) an alert is executed if the actual reading surpassed the
limit value. Note that for simplicity we omit rules which compare the timestamps
with current time and distinguish which readings are recent.

The explanation of the rule language and firing mechanism is illustratory and it
is largely simplified in this chapter. For more details on rule-based systems refer to
the literature (e.g., [17, 18, 19, 20]). For further examples of rule-based tele-
medicine systems see [21].

Implementation of Telehealth System for Hypertension
Management

Based on consultations with clinicians we present simple telehealth solution for
hypertension patients. It relies on the simplified version of personal telehealth
system architecture shown on Fig. 1 and consists of a blood pressure sensor, mobile
application implementing the functionality of a gateway device, and a web appli-
cation illustrating the basic features of a remote patient monitoring server.

Patient health device is Boso-Medicus Prestige, the Bluetooth blood pressure
meter that was chosen for the reliability and easiness of interface implementation
with mobile application. Mobile application is running on Android OS (min. ver-
sion 2.2.). It enables patient to enter his subjective situation and feelings (stress,
discomfort—headache, dizziness,…) and to take blood pressure measurements that
are wirelessly transmitted to the gateway device (systolic and diastolic pressure,
pulse rate and arrhythmia indication). More details about blood pressure meter
implementation can be obtained directly from the manufacturer (Boso) in its doc-
ument related to communication protocol [22].

Readings are displayed and stored in local phone memory. By readings we
understand measurements and other health-related information provided by patient.
The GUI allows patient also to input measurements manually (for different type of
sensor without Bluetooth connection). The historical data stored in phone memory
can be viewed in a tabular or graphical form (see Fig. 5).
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Although the mobile application can be used in offline mode, i.e., without the
web application, its main task is to forward readings to RPM where data can be
reviewed by healthcare provider. The mobile application performs some basic data
analytics. For each measured parameter, threshold levels (min., max.) can be
defined so that application can generate alerts. The patient can set thresholds
manually or download recommended personalized values by clinician from RPM.

Remote Patient Monitoring Server comprises three main software components:

(1) RESTfull web-service for client mobile application implements and publishes
operations for:

• the patient registration with preferred healthcare provider,
• receiving, storing, and analyzing readings,
• downloading patient’s personal thresholds for measured parameters.

(2) Web application with interface enable healthcare provider to perform the fol-
lowing activities:

• select a patient, view and edit his personal data and readings, view the
history of readings in tabular and graphical form, Fig. 6a. View the alarm
list displaying alerts from all his patients sorted by time. Alarms can be
marked indicating that have been closed/seen by healthcare provider,
Fig. 6b,

• print table of readings and alarm list.

(3) Alarm generation module uses a rule-based system to evaluate all incoming
readings and generate alerts whenever rules’ conditions are met. The basic
processing calculates the daily average of systolic and diastolic pressure for
each patient. If the average is above a defined limit threshold (3-day Max.)
during three consecutive days, the high pressure 3-days-alarm is generated.

Fig. 5 Graphical User Interface of mobile application
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Generic and personal, patient-specific limits can be defined and stored in a fact
base as described in Section “Data Structure and Analytics”. Healthcare pro-
vider can use web application dialog shown on Fig. 7a to configure both types
of thresholds.

Besides the 3-days-alarms additional production rules for generation of isolated
alarms can be defined using the dialog shown on Fig. 7b. An isolated alarm is
associated with a single reading. Whenever a new reading is received it is instantly
evaluated. If the rule condition is fulfilled the alarm is generated. A simple rule can
have a form of comparison of a measured value with a limit (Min. or Max.):

systolic pressure[ systolic pressure max

or evaluation of additional indicators describing patients feelings and situation.
More complex condition can be composed using logical connectives (AND and
OR):

Fig. 6 a Chart displaying measurement history of a patient; b alarm list
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systolic pressure[ systolic pressure maxAND

ðdiscomfort contains 0Tightness in the chest0 OR discomfort contains 0headache0Þ
Lower and upper thresholds for isolated measurements are also defined in

ontology and configured in the same way as limits for 3-days-alarms (Fig. 7a).

Fig. 7 a Thresholds configuration; b Rules definition
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More detailed information about the telehealth system, mobile, and web demo
applications and user’s manual can be found on the web address http://www.
monitor.mhealth.sk/.

Conclusion

In this chapter we provided an introduction to telehealth systems and overview of
their computational architecture and challenges associated with creation of the
‘complete-loop’ solution. References to available computer programs and devices
should provide the reader with practical tools to develop his own telehealth solu-
tions. We have also included a practical use case describing simple application for
monitoring patients with hypertension, with the aim to illustrate some major areas
of knowledge management. This should help reader to further build the under-
standing of design and implementation of useful systems that can evolve with
development of medical knowledge.

It is important to understand that besides technical challenges mentioned here
there are also nontechnical barriers to adoption of telehealth systems. These are
related to acceptance of new processes of healthcare provision and organizational
change by clinicians, legal liability, reimbursement models, gathering of evidence
regarding the impact of telehealth applications and patients and medical personnel
education. Examples like 3 million lives8 do exist that can serve as basic inspiration
for further development of complex infrastructure for telehealth.
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Healthcare Data Mining, Association Rule
Mining, and Applications

Chih-Wen Cheng and May D. Wang

Abstract In this chapter, we first introduce data mining in general by summarizing
popular data mining algorithms and their applications demonstrated in real
healthcare settings. Afterward, we move our focus on a mining technique called
association rule mining that can provide a more flexible data mining solution for
personalized and evidence-based clinical decision support. Feasibility on how to
use association rule mining is offered along with one example. The chapter con-
cludes with a discussion of challenges that hamper the clinical use of conventional
association rule mining and a few point-by-point solutions are provided.

Background of Data Mining Methods and Challenges

Advanced information technologies promise the massive influx of clinical- and
person-centered data. These rich sources of data grant potential for an increased
understanding of disease mechanisms and patient-centered decision-making so as to
improve the quality of healthcare. However, the size, complexity, and biases of the
data pose new challenges, which makes it difficult to transform the data to useful and
actionable knowledge using conventional statistical analysis. Such a so-called
“Big-Data” era raises an emerging and urgent need for scalable and computer-based
data mining methods and tools that can discover useful patterns in a flexible,
cost-effective, and productive way. In this section, we discuss three main data mining
categories, including classification, clustering, and association rule mining [1].
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Classification

Classification is a common data mining method used to assign data into prespec-
ified categories, called “classes” that usually represent an attribute in which users
are most interested (e.g., suffering from disease vs. healthy). Classification is a
supervised mining method since the class labels in the training dataset are provided.
The goal of a classification algorithm is to create a model consisting of classification
regulations; afterward, when new data (or records) is available, the model can
accurately classify the data. For example, based on observed symptoms and clinical
conditions, a well-trained classifier can help a provider to quantitatively determine
(i.e., diagnose) a patient’s cancer stage or predict prognosis, so as to provide proper
treatment.

Common classification methods include Bayesian classifier [2], neural network [3],
and decision tree [4]. Support vector machine (SVM) is another widely used classi-
fication method. SVM is used when a dataset is represented by two (i.e., binary)
classes in a high-dimensional feature space. SVM searches for an optimal separating
hyperplane as a decision boundary that maximizes the margin between two classes. To
find the hyperplane with maximal margin, SVM uses support vector, and the margin is
determined by using the two-support vector. Basic SVM utilizes linear kernel function
as advanced SVM adopts nonlinear kernel function for better classification accuracy.
The major advantage of SVM is its accuracy since it is proven to provide better
performance than other classification methods [5]. Nevertheless, the performance
highly depends on kernel selection, but selecting a right kernel function is a chal-
lenging issue. In addition, SVM is designed to resolve binary classification problems.
A multi-class dataset should be first divided into multiple binary problems. Finally,
compared with other classification, training step of SVM requires extremely high
computational power, posing the user to tradeoff between performance and accuracy.
Recent studies have adopted SVM in applications of chronic fatigue syndrome using
genetic data [6], ovarian cancer using mass spectrometry data [7], and detecting
abnormal activities in medical wireless sensor networks [8].

Clustering

Unlike classification that has a training dataset with predefined class labels, clus-
tering, or unsupervised learning, refers to determining the hidden structure in an
unlabeled dataset [9]. Clustering can be best used for the studies of large data of
high dimensionality, but in which there is limited knowledge about the data. The
goal of clustering models is to group data entries into a specific number of clusters
so that the entries in each cluster share high similarity and entries from different
clusters have low similarity.

Over the last few decades, studies have introduced a number of clustering
algorithms. These algorithms are categorized in two main groups: agglomerative
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and partitional. Agglomerative clustering merges the most common groups on the
basis of their pairwise similarities and forms a hierarchical structure. Based on
different similarity measures, hierarchical clustering can be further divided into
three types, including single-link, complete-link, and average-link, and among
which average-link has been proven the best regarding the accuracy [10]. Partitional
clustering is another group algorithms that require a user to input a target number of
clusters k so that the clustering process merges data to k clusters. K-means is a
popular partitional clustering algorithm [11]. Based on the user-specified k, the
algorithm starts from randomly selecting k objects as starting centroids. Afterward,
the process iteratively reassigns the objects into k disjoint groups based on the
similarity measure among each centroid and its group objects. The main challenge
of the K-means is to accurately identify the real number of clusters. Clustering is
also a popular method to identify potential groups that have different characteristics
from a disease population, such as asthma [12].

A New Technique for Comprehensive Association
Discovery: Association Rule Mining

Principle of Association Rule Mining

Unlike classification for classifying new data and clustering for discovering hidden
structure of the dataset, association rule mining (ARM) is a method to discover
meaningful relations between variables in databases. Agrawal et al. first introduced
the concept of ARM to extract regularities between products in large-scale ware-
house databases [13]. Association rules are in the form of X)Y, which means that
X implies Y, where X and Y are called antecedent and consequent, respectively [14].
For example, in a cancer study, a rule such as {TumorSize = Large and
Irradiation = No} ) {Recurrence = High} implies that “if a patient has a
large-sized tumor scanned and no record of irradiation treatment, the patient may
have a high chance of cancer recurrence.”

Support and confidence are two important metrics quantifying a rule’s frequency
and the level of association. The support of an association rule is defined as the
fraction of the records in the database that contain both X and Y. A high support of
an association indicates that a high portion of the database is applicable to the rule
(i.e., frequent). The confidence of an association rule measures the ratio of records
that contain all items in both X and Y to the records that only contain items in X,
which reveals the level of association. The mining process requires users to specify
a minimum support (Suppmin) and a minimum confidence (Confmin) to drop infre-
quent and unconfident rules. The ARM process can be divided into six steps, which
is depicted in Fig. 1. We provide a pseudocode of rule generation of frequent
itemsets and confident rules. Interested users can refer to [15] for more detail.
Improving the efficiency of mining of frequent itemset is a main research area in
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ARM. One of the improvements of Apriori algorithm is called FP growth, which is
based on a tree-based (called an FP-tree) representation of the given database of
data tuples to considerably save amounts of memory for storing the data [16].

Fig. 1 Steps of association
rule mining in
neuropsychological dataset
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ARM has several advantages making it suitable for healthcare data mining. First,
unlike conventional statistical analyses that evaluate a null and alternative
hypothesis, ARM can apply a variety of measures that determine the relationship in
a comprehensive and flexible manner. Second, a rule’s antecedent and consequent
imply a direction of the relationship. Third, a rule’s antecedent and consequent can
consist of one or more factors, providing advanced knowledge of flexible factor
interactions instead of monotonic relationship (e.g., logistic regression) [17].
Finally, ARM accepts user-specified inputs, which ensure the interestingness of
each rule to optimize the mining results.

An Example of Association Rule Mining System
for Healthcare Data Mining

A key component of a useful clinical decision support system is an interactive
graphical user interface (GUI). In this section, we provide an application example of
a system developed by our group. The system utilized ARM as the core with an
interactive GUI for effective and real-time evidence search. The tool was imple-
mented in MATLAB and was designed to be highly compatible with comprehen-
sive clinical settings.

The system’s GUI consists of two main windows. The first Item Management
window (Fig. 2a) allows users to construct new items that can be used in rule
antecedents and consequents. The user can specify the position of the new item to
appear only in antecedent, only in consequent, or without constrain. Doing so can
remove non-intuitive rules, such as {IQ < 70} ) {Age < 11} since the age cannot
be the outcome of low IQ scores. The second main window is the Rule Mining
window (Fig. 2b). It allows users to assign defined items in antecedents and con-
sequents and generates all rules that contain these items. The user can prune out
infrequent and/or unconfident rules by increasing Suppmin and/or Confmin,
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respectively. Users can also manipulate rules by specifying rule length (i.e., the
number of items) or sorting rules by their supports or confidences.

An Example of the Association Rule Mining System
in Predictive Health

The feasibility of our ARM system has been demonstrated previously in diverse
healthcare settings, including pediatric neuropsychology [18] and intensive care
units [19]. In this section we provide the third use case in the application of
predictive health setting.

Predictive health (PH) is a new and innovative healthcare model that focuses on
maintaining health rather than curing diseases. Computer-based decision support
systems may benefit this domain by providing more quantitative health assessment,
enabling more objective advice and action plans from predictive health providers.
However, data mining for predictive health is more challenging compared to that
for diseases. For example, because the phenotype of health relies on interactions not
limited to biology, PH data also contains measurements from multiple disciplines to
provide a comprehensive description of human health. However, multidisciplinary
data implies information heterogeneity among measurements, which is a common
challenge in healthcare data mining. This is a reason why decision support systems
are rare in the domain of predictive health.

In this case study we utilize our ARM system to generate quantitative and
objective rules for health assessment and prediction. This case study is conducted in

Fig. 2 a Rule Mining window and b New Item window

Table 1 Rules predicting
general mental problem
(SF36M < 45.91)

Rule # Antecedent Supp (%) Conf (%)

1 BDI + PSSE 6.8 82.0

2 BDI + FAD 5.5 81.9
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conjunction with Emory Center for Health Discovery and Well Being (CHDWB®).
The dataset contains 2‚637 de-identified health reports from 696 healthy partici-
pants with 906 measurement variables. This case study results in 12 rules that
predict mental illness based on five psychological factors, allowing us to provide
important knowledge to prevent the development of mental illness. For example,
Table 1 lists two rules from these 12 rules. By reading these two rules, we know
that if a person has developed depressive symptoms (BDI), providers need to offer
proactive advice for the prevention of the potential development of disorders
especially in perceived empathic self-efficacy (PSSE) and family functioning
(FAD) because they are associated with mental illness risk if comorbid with BDI.
More information about this case study can be referred in [20].

Challenges of Current Association Rule Mining
and Possible Solutions

Although association rule mining techniques can be elegant and powerful tools to
extract meaningful patterns from healthcare data, a few remaining challenges
should be highlighted. Possible solutions to address these challenges would benefit
further adoption of ARM approaches by the community of healthcare informatics.

First, the first step of current ARM requires users to manually specify attributes
of items in antecedents and consequents. However, not all attributes may be
determined to best represent associations. Therefore, the mining results would not
be objective and optimal from such user-specified attributes. This is even more
challenging in high-dimensional healthcare database that consists of hundreds of
attributes so that manual assignment of attributes becomes difficult. To address this
challenge, during the item construction phase, users can first utilize feature selection
to remove redundant or irrelevant features [21]. Given a consequent itemset as a
class, supervised feature selection, such as Minimum redundancy and maximum
relevance (mRMR) algorithm can be considered [22].

The second challenge lies in the manual assignment of cut-points to discretize
numerical attributes into categorical attributes. Since users may not always know
the optimal cut-points that can produce optimal association rules, computer-based
discretization methods are needed to provide optimal cut-points so as to maximize
the interestingness of rules. Researchers can consider the RUDE algorithm that
provides a global discretization strategy that was originally designed for association
rule mining [23]. Given a set of determinant features and optimal cut-points, users
can confidently construct items and generate more reliable rules.

Third, current ARM often produces too many rules. Existing research has shown
that most of the discovered rules are actually insignificant [24, 25]. Some basic
pruning techniques, such as chi-square test [26], can be considered to remove those
spurious or insignificant rules. In addition, being a significant (or nonredundant)
rule, however, does not mean that it is a potentially actionable rule. In some

Healthcare Data Mining, Association Rule Mining, and Applications 207



domains, it is difficult to perform actions using rules with too many conditions,
and/or with attributes that are hard to act upon, even though the rules are confident
and significant. Such non-actionable rules should be further identified [27].

Fourth, a majority of clinical decision-making is influenced by sequential or
causal relationships between events. Current ARM methods that only consider item
coexistence should be expanded to sequential ARM (SARM). Sequential rules are
noted by X)TY to describe patterns of antecedent X followed by the consequent
Y within a specific time window of length T. Methods such as MUTARA can be
considered to mine unexpected temporal association rule (UTAR) from infrequent
sequential patterns [28].

Finally, current ARM mainly represents rules using tables. However, the mining
process often generates too many rules to be handled comfortably by humans.
Clinicians may not easily find the rule that is most relevant to the patient by
browsing rows line-by-line. Many association rule visualization techniques have
been proposed [29–32], but all of them are designed to summarize all rules instead
of searching a specific rule. Therefore, we need to provide interactive, user-friendly,
and real-time visualization techniques for care providers to effectly find specific
rules that can best describe a patient’s conditions.

Conclusion

The healthcare industry today generates large amounts of complex data. The large
amount of data is a key resource to be processed and analyzed into knowledge that
enables accurate, productive, and low-cost support for decision-making. In this
chapter, we have introduced the background of data mining in health care by
providing several key mining methods and applications. We then moved our focus
and described an evidence-based data mining method, called association rule
mining, with its key advantages. Afterward, we provided an example system with
interactive graphical user interface and demonstrated the system’s usability using a
data in Predictive Health setting.
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