Modelling and Solving Multi-mode
Resource-Constrained Project Scheduling

Ria Szeredi! and Andreas Schutt!-2(®)

! The University of Melbourne, Melbourne, Australia
ria.szeredi@student.unimelb.edu.au
2 Decision Sciences, Data61, CSIRO, Canberra, Australia
andreas.schutt@data6l.csiro.au

Abstract. The resource-constrained project scheduling problem is a
fundamental scheduling problem which comprises activities, scarce
resources required by activities for their execution, and precedence rela-
tions between activities. The goal is to find an optimal schedule satisfy-
ing the resource and precedence constraints. These scheduling problems
have many applications, ranging from production planning to project
management. One of them concerns multi-modes of activities, in which
each mode represents a different time-resource or resource-resource trade-
off option. In recent years, constraint programming technologies with
nogood learning have pushed the boundaries for exact solution meth-
ods on various resource-constrained scheduling problems, but, surpris-
ingly, have not been applied on multi-mode resource-constrained project
scheduling. In this paper, we investigate different constraint program-
ming models and searches and show the superiority of such technologies
in comparison to the current state of the art. Our best approach solved
all remaining open instances from a well-established benchmark library.

1 Introduction

The multi-mode resource-constrained project scheduling problem (MRCPSP) is
an extension of the well-studied resource-constrained project scheduling problem
(RCPSP), which comprises a set of non-preemptive activities, a set of resources
with a constant capacity over time, and precedence relations between pairs of
activities. For both problems, a start-time schedule for the activities is sought
that respects the precedence relations, does not overload a resource at any
point in time, while minimising the project duration (makespan). The differ-
ences between these problems are that activities can be executed in different
modes and resources can be non-renewable in MRCPSP, while activities have
a single mode and all resources are renewable in RCPSP. Different modes for
an activity model time-resource and resource-resource trade-offs. These schedul-
ing problems are NP-hard and have numerous applications, such as production
planning, manufacturing, chemical processing, and project management [16].
An excellent overview of different and state of the art methods can be found
in [5]. Most exact solution methods for solving MRCPSP are based on integer pro-
gramming using branch-and-bound or branch-and-cut. The best methods were

© Springer International Publishing Switzerland 2016
M. Rueher (Ed.): CP 2016, LNCS 9892, pp. 483-492, 2016.
DOI: 10.1007/978-3-319-44953-1_31

484 R. Szeredi and A. Schutt

published in [1,16]. Zhu et al. [16] present an exact branch-and-cut algorithm based
on integer linear programming (ILP). They apply several pre-processing steps in
order to reduce the number of variables in their models, pre-compute cuts from
resource conflicts and precedence relations. In addition, a dedicated branching rule
is developed for taking the different modes into account. To the best of our knowl-
edge, it is the best exact method so far. Coelho et al. [1] propose a solution app-
roach that decomposes the problem into two sub-problems. The first sub-problem
consists of the assignment of the modes of execution solved by a Boolean Satisfi-
ability (SAT) solver. The second sub-problem considers the fixed modes from the
first sub-problem and solves the remaining problem using a local search method.

Closely related problems to MRCPSP are RCPSP and MRCPSP with gen-
eralised precedence relations (MRCPSP/max). In both cases, the best exact
solution methods are based on constraint programming (CP) technologies incor-
porating nogood learning. For RCPSP, [12,13] present a branch-and-bound app-
roach that is based on lazy clause generation (LCG) [2,7]. LCG is a CP solver
that incorporates, amongst others, conflict analysis, conflict-driven search, and
unit propagation on conjunction of clauses from SAT solvers. Exact solution
approaches based on LCG are the best exact solution methods for various
scheduling and packing problems [4,10,11,13-15].

For MRCPSP /max, [8] recently proposed a branch-and-bound approach for-
mulated as a constraint integer program and implemented in the SCIP frame-
work, which also has nogood learning facilities. In order to solve the problem,
they implemented two new global constraints for generalised precedence rela-
tions and renewable resources, taking the multiple modes of an activity into
account. The latter one is an extension of the global constraint cumulative.
Their method is the best exact solution method for MRCPSP /max.

Surprisingly, no CP technology with nogood learning has been applied to
MRCPSP. This paper addresses this gap and not only shows such a method
outperforms the state of the art in [16], but also discusses different models and
search strategies. In addition, we close all remaining open instances from the
well-established benchmark library PSPLib.

2 MRCPSP Model

MRCPSP cousists of a set of non-preemptive activities V= {1,2,...,n}, a set of
precedence relations E C V xV and a set of resources R. The set of resources is
partitioned into the set of renewable resources R and the set of non-renewable
resources RY. A resource k € R has a discrete resource capacity Ry,. An activity i
has a fixed set of modes M;. For each mode m € M;, the activity has a discrete
non-negative duration (processing time) p?” and a discrete non-negative resource
requirement 77}, for each resource k € R over the planning horizon. The discrete
non-negative start time S; and the mode of execution M; must be determined
by the solution approach. The planning horizon starts at time period 0.

Modelling and Solving Multi-mode Resource-Constrained Project Scheduling 485

Definition 1 (Solution of MRCPSP). A solution of MRCPSP is an assign-
ment of start times S; and modes of executions M; for each activity © such that
the following constraints hold

YieV:0<S, A M eM,;

V(i,5) € E: S +pMi < S (1)
R >0: M; <
Vk e RE Vr >0 Ziev:sigdﬁp% rMi < Ry, (2)
N . M;
vkeRN Y rit < Ry (3)

where constraint (1) ensures the satisfaction of the precedence constraints and
constraints (2-3) respectively guarantee a non-overload of renewable and non-
renewable resources. An optimal solution additionally minimises the project dura-
tion (makespan), i.e., min max;cy (S; + pM).

2.1 Solver Independent Model

For the sake of readability, we present a “simplified” model and the “user-
defined” searches using the solver-independent modelling language MiniZinc [6].
An MRCPSP instance is represented by the following parameters, whose
meaning is given in the comment next to them where the arrays mact and mode
respectively map a mode to its activity and an activity to its set of modes.

set of int: Res; % Set of resources

set of int: Act; % Set of activities

set of int: Mod; % Set of modes

array [Res] of int: rcap; % Resource capacity

array [Res] of int: rtype; % Resource type (1: renewable; 2: non—renewable)

set of int: RRes = {k | k in Res where rtype[k] = 1};

set of int: NRes = {k | k in Res where rtype[k] = 2};

array [Mod] of Act: mact; % Corresponding activity of a mode

array [Mod] of int: mdur; % Duration of modes

array [Res,Mod] of int: mrreq; % Resource requirements of modes

array [Act] of set of Mod: mode = [{m | m in Mod where mact[m] = i} | i in Act
15 % Set of modes for each activity

array [Act] of set of Act: succ; % Set of successors

Variables. Three variables are created for each activity i reflecting its start
time start [i], its duration adur [i], and its resource requirements arreq[k,i]
for each resource k. The duration and resource requirements are determined by
the mode of execution. A Boolean variable mrun[m] models whether the mode
m is executed in the final schedule. Lastly, the objective variable is defined as
makespan.

array [Mod] of var bool: mrun;
array [Act] of var 0..UB: start;

array [Act] of var int: adur = [let {var {mdur[m] | m in mode[i]}: x} in x | i
in Act];

array [Res,Act] of var int: arreq = array2d(Res,Act,[let {var {mrreq[k,m] | m
in mode[i]}: x} in x k in Res, i in Act]);

var 0..UB: makespan;

486 R. Szeredi and A. Schutt

The variables in start and the variable makespan have an initial domain 0. .UB
where UB is the initial upper bound on the objective. Unless otherwise stated,
UB is initialised by sum(i in Act) (max([mdur[m] | m in mode[il]));.

Activities and mode constraints. The duration and resource requirements of
an activity are linked via a set of linear constraints, encapsulated in the first two
constraints below. The last constraint ensures that exactly one mode is executed
for each activity.

constraint forall(i in Act)(adur[i] = sum(m in mode[i]) (mdur[m] % mrun[m]));

constraint forall(i in Act, k in Res)(arreq[k,i] = sum(m in mode[i]) (mrreq[k,
m] % mrun[m]));

constraint forall(i in Act)(sum(m in mode[i]) (mrun[m]) = 1);

Alternatively, we can create an auxiliary variable mi and replace the first two
constraints above by element constraints (elem) for modelling adur and arregq.

constraint forall(i in Act)(let {var mode[i]: mi} in (mrun[mi] = 1 /\ adur[i
] = mdur[mi] /\ forall(k in Res)(arreq[k,i] = mrreq[k,mi])));

Precedence constraints. The precedence constraints are modelled as usual
using the start time and duration variables.

constraint forall(i in Act, j in succ[i])(start[i] + adur[i] <= start[j]); ‘

Renewable resource constraints. There are two options for modelling renew-
able resources using the global constraint cumulative. The first option (ract) cre-
ates one activity in the cumulative constraint for each activity, in which the
durations and resource requirements are variables.

constraint forall(k in RRes)(cumulative(start , adur, [arreq[k,i] | i in Act],
rcap [k]));

The second option (rmode) creates one activity for each mode, resulting in a
greater number of activities generated in the cumulative constraint, but having
only the resource requirements as variables. These variables can be created as a
variable view on the Boolean variables in mrun.

constraint forall(k in RRes) (cumulative ([start [mact[m]] | m in Mod], mdur, [
mrreq [k,m] * mrun[m] | m in Mod], rcap[k]));

On the one hand, a cumulative propagator can exploit the knowledge of the
duration-resource-requirement pairing in rmode. On the other hand, it loses the
knowledge that exactly one mode has to be executed. Note that [8] extended
the cumulative propagator for taking multi-modes for activities into account.
However, the considered solvers in this paper do not provide this extension.

Non-renewable resource constraints. Non-renewable resources are simply
modelled by linear constraints. As for the renewable resource constraints, there
are again two options. The first option (nact) models it via the activities using
the variables for the resource requirements,

constraint forall(k in NRes) (sum(i in Act)(arreq[k,i]) <= rcapl[k]);

Modelling and Solving Multi-mode Resource-Constrained Project Scheduling 487

whereas the second option (nmode) models via the modes using the Boolean
variables mrun.

constraint forall(k in NRes) (sum(m in Mod) (mrreq[k,m] % mrun[m]) <= rcap[k]);

Pairwise non-overlapping constraints. Pairwise non-overlapping constraints
for activities might speed up the solution process and be advantageous for
learning solvers. These are redundant constraints with respect to the renew-
able resource constraints. Two activities i and j cannot be run concurrently
and are disjunct iff Vm; € M;,Vm; € M;, 3k € R . ¢l +r;;;j > Rj.. The next
constraint (disj) ensures that one of such activities is run before the other one.

predicate post_noc_disj(int: i, int: j) = (start[i] 4+ adur[i] <= start[j] \/
start [j] + adur[j] <= start[i]);

Other pairs of activities that might be a disjunct in some modes are modelled
by following half-reified constraints.

predicate post_-noc_mode(int: i, int: j) = forall(mi in mode[i], mj in mode[]]
where exists(k in RRes)(mrreq[k,mi] + mrreq[k,mj] > rcap[k]))((mrun[mi]
/\ mrun[mj]) —> (start[i] 4+ mdur[mi] <= start[j] \/ start[j] + mdur[m]j]
<= start[i]));

predicate post_noc_rres(int: i, int: j) = forall(k in RRes)((arreq[k,i] +

arreq [k,j] > rcap[k]) —> (start[i] + adur[i] <= start[j] \/ start[j] +
adur[j] <= start[i]));

The predicate post_noc_mode (nocm) models non-overlapping constraints for
each mode pair, while post_noc_rres (nocr) only for each renewable resource.

Objective constraints. The objective variable is constrained by the latest end
time of an activity as follows.

constraint makespan = max(i in Act where succ[i]={})(start[i] + adur[i]);
constraint forall(i in Act where succ[i]={})(start[i] + adur[i] <= makespan);

Search strategies. We investigated different search strategies including the
default ones of the considered solvers.

ann: mode.s = bool_search(mrun, input_-order, indomain_max, complete);

ann: start_.s = int_search(start, smallest, indomain_min, complete);

ann: adur-s = int_search (adur, smallest, indomain_min, complete);

ann: arreq_s = int_search ([arreq[k,i] | k in NRes, i in Act], smallest,
indomain_min, complete);

ann: modeThenStart = seq-_search ([mode.s, start_s]);

ann: arreqThenMode = seq-search ([arreq-s, modes_s]);

ann: arreqThenStart = seq-search ([arreq-s, start_s]);

ann: arreqThenModeThenStart = seq_search ([arreq-s, mode.s, start_s]);

ann: durThenStart = seq-search ([adur.s, modes_.s]);

ann: durThenModeThenStart = seq_search ([adur_s, mode.s, start_s]);

The search modeThenStart splits the search into two stages. First, it assigns
the mode to each activity and then solves the remaining RCPSP by searching
on the start times. The next three searches arreqThenMode, arreqThenStart
and arreqThenModeThenStart assign the smallest resource requirements of
activities for non-renewable resources first, before continuing the search on the
modes and/or the start times. The last two searches assign the shortest duration
of each activity before assigning the mode and/or the start times. Note that if
a search does not assign all variables, then the solver uses its default search to
assign the remaining variables.

488 R. Szeredi and A. Schutt

3 Experiments

We conducted experiments on the well-studied MRCPSP benchmark set from
the PSPLib available at www.om-db.wi.tum.de/psplib/. The benchmark set con-
tains different test sets, which differ in their characteristics. Except for the test
set j30, all instances are closed. In the remainder of this paper, we concen-
trate on j20 and j30. Instances from these test sets are composed of 20 and
30 activities having between one and three modes, two renewable resources, two
non-renewable resources, and a number of precedence relations.

All experiments were run on machines operating CentOS 6.5 with AMD 6-
Core Opteron 4334 clocking 3.1 GHz, and 64 GB memory. A runtime limit of
10 min was imposed unless otherwise stated. For compiling the MiniZinc model
into the solver-specific FlatZinc format, we used MiniZinc 2.0.13 downloaded
from www.minizinc.org. The following CP solvers were investigated Gecode 4.4.1
(gecode), Opturion CPX 1.0.2 (ocpx), G12/LazyFD (lazyfd), and Chuffed rev.
885 (chuffed) where the last three are LCG solvers.

3.1 Comparison of Models

Section 2.1 presents two ways of modelling renewable resource, non-renewable
resource and pairwise non-overlapping constraints. Since the behaviour of non-
learning and learning solvers can be significantly different, we present the results
for gecode and chuffed as representatives for each kind.

Table 1 shows the results for both solvers using the search modeThenStart in
two parts. Part I shows the different combinations for the renewable (rres) and
non-renewable (nres) resource constraints. For both solvers, the best combination
in terms of number of optimal solutions (#opt), mean runtime in seconds (m.rt.),
and mean number of explored nodes (m.#nodes) is to use the activity represen-
tation (act) for both constraints. Interestingly, chuffed performance drastically
decays when using the mode representation (nmode) for non-renewable resource
constraints, while gecode only worsens slightly. This could indicate that chuffed
misses some propagation. Note that we also run the experiments with both activ-
ity and mode representations, but the runtime increased substantially while the
number of explored nodes did not change significantly.

Part II in Table 1 lists the results when the redundant non-overlapping con-
straints are used. In each setting, it is advantageous to use the redundant con-
straints. The best option is to use constraints for non-overlapping (disj, nocr)
and activity representations (ract, nact), which gives the lowest mean runtimes
for both solvers and the highest number of optimally solved instances in the case
for gecode. Part III shows that using element constraints (elem) for the activity
and mode constraints performs similar to the best option in Part II. For the
remainder, we consider the model in Part III, which performs at best on the test
set j30.

http://www.om-db.wi.tum.de/psplib/
http://www.minizinc.org

Modelling and Solving Multi-mode Resource-Constrained Project Scheduling 489

Table 1. Comparison of different models on 554 instances from test set j20.

% 3 g |z g g £ chuffed gecode
al = 2 |© 2 c|o|#opt m.rt. m.#nodes|#opt m.rt. m.#nodes
ract nact 554 1.36s 21k| 469 99s 6615k
| ract nmode 525 56.7s 1544k| 457 134s 9577k
rmode nact 554 2.41s 40k| 464 104s 3509k
rmode nmode 516 61.2s 1421k| 435 152s 5444k
ract nact |V 554 1.15s 19k| 472 98s 6610k
=| ract nact |V V 554 2.03s 18k| 477 94s 4388k
ract nact |V @V 554 1.15s 13k| 478 92s 5495k
Bl ract nact |V V|v]| 554 1.16s 13k| 478 92s 5139k

Table 2. Comparison of different search strategies on test set j30.

search chuffed
f#opt | #feas | #unsat | #unkn | m.rt | m.#nodes

modeThenStart 495 |57 88 0 60.3s | 615k
arreqThenMode 488 |59 88 5 64.0s | 549k
arreqThenStart 491 |61 88 0 61.7s | 580k
arreqThenModeThenStart | 490 | 62 88 0 62.4s | 614k
durThenStart 506 |46 88 0 56.3s | 628 k
durThenModeThenStart 506 |46 88 0 58.3s | 682k

3.2 Comparison of Search Strategies

Table 2 presents the outcome of the different searches when the best model (see
previous sub-section) is used. Searches starting with the assignment of dura-
tion variables (durThenStart and durThenModeThenStart) are the quickest
and optimally solve the greatest number of instances. The next best search is
modeThenStart, while the remaining searches, all of which assign the resource
requirement variables for non-renewable resources first, perform worst. Interest-
ingly, searching over mode variables is slightly worse than leaving them out.
For instance, the mean runtime of durThenStart is slightly less than that of
durThenModeThenStart. Similar results for the search strategies were obtained
on the models presented in Table 1 in preliminary experiments. For chuffed, we
also ran each search in combination with chuffed activity based search, in which
chuffed alternates between the two searches at each restart. The results are sim-
ilar, but with the alternating searches more instances were solved to optimality
and the mean runtime and number of nodes were lower.

3.3 Comparison of Solvers

Table 3 shows the results of the different solvers for the best model in combination
with the solver’s default search and the best search. Clearly, the default searches,

490 R. Szeredi and A. Schutt

Table 3. Comparison of the different solvers on the test set j30.

solver search #opt | #feas | #unsat | #unkn | m.rt | m.#nodes
gecode |durThenStart|422 |105 |40 73 184s | 6056 k
gecode |default 385 |87 0 168 246s | 6184k
ocpx durThenStart | 468 | 84 44 44 151s | >52k
ocpx default 492 |58 88 2 113s | >33k
lazyfd |durThenStart 473 |78 11 78 166s | n/a
lazyfd |default 515 |37 88 0 53.1s|n/a
chuffed | durThenStart | 506 |46 88 0 56.3s | 628k
chuffed | default 540 |12 88 0 18.6s | 148k

which are conflict driven, of the nogood learning solvers drastically outperform
the user-defined searches. Note that chuffed default search alternates between a
conflict driven and the user-defined search. As expected, nogood learning solvers
outperform gecode, because their derived nogoods avoid the re-exploration of
similar search sub-trees proven to be infeasible and information retrieved by
the conflict analysis is used to guide the search. The clear winner is chuffed.
The big difference in the performance of the LCG solvers may be surprising
at first, but can be explained by the differences in the cumulative constraints.
All three LCG solvers implement the cumulative constraint using the time-table
propagation from [13], but only lazyfd and chuffed allow for variable durations
and resource requirements as input as described in [9]. In addition, MiniZinc
does not provide an interface for the cumulative constraint of lazyfd. Hence,
the cumulative constraint is mapped into the time-indexed decomposition when
compiling the model for ocpx and lazyfd.

3.4 Comparison to the State of the Art

Zhu et al. [16] present—to the best of our knowledge—the best exact solution
method for MRCPSP. This method is based on Integer Linear Programming
using a branch-and-cut for minimizing the makespan. It is implemented in the
Mixed Integer Programming solver CPLEX 7.5. They run their method on a
Linux machine with 1.8 GHz Xeon processor. Within one hour, it could optimally
solve 506 instances out of 552 feasible instances with a mean total runtime
of 393.1s. The average runtime was 125.25s for finding the best solution. By
constrast, the best set up of chuffed could optimally solve 540 instances (34
more) within 10 min. In addition, the runtimes of chuffed are drastically lower.
Thus, chuffed outperforms the state of the art.

Closed instances. With respect to [5,16], there are 46 open instances in the
test set j30. Within the 10 min runtime limit, the presented solver was able to
close 34 of them. In preliminary experiments, we ran chuffed without a runtime

Modelling and Solving Multi-mode Resource-Constrained Project Scheduling 491

limit and were able to close all instances. The last instance was closed after 18
hours.

4 Conclusion

We investigated different CP models for solving MRCPSP. To our best knowl-
edge, it is the first published CP model, on which an exact solution method
with nogood learning was applied. The best model uses the activity representa-
tion for modelling the resource constraints via the constraint cumulative and
pairwise non-overlapping constraints for activities that might be in disjunction.
All the considered user-defined searches were inferior to the default search of
the CP solvers. The LCG solver chuffed was the best performing solver, which
also outperformed the state of the art ILP solver [16]. Within 10 min, all open
instances were closed except 12. Relaxing the time limit, all remaining open
instances were closed within 18 h.

References

1. Coelho, J., Vanhoucke, M.: The Multi-mode resource-constrained project schedul-
ing problem. In: Schwindt, C., Zimmermann, J. (eds.) Handbook on Project Man-
agement and Scheduling. International Handbooks on Information Systems, vol. 1,
pp. 491-511. Springer, Heidelberg (2015)

2. Feydy, T., Stuckey, P.J.: Lazy clause generation reengineered. In: Gent [3], pp.
352-366

3. Gent, LP. (ed.): Principles and Practice of Constraint Programming - CP 20009.
LNCS, vol. 5732. Springer, Heidelberg (2009)

4. Kreter, S., Schutt, A., Stuckey, P.J.: Modeling and solving project scheduling with
calendars. In: Pesant, G. (ed.) CP 2015. LNCS, vol. 9255, pp. 262-278. Springer,
Heidelberg (2015)

5. Mika, M., Waligéra, G., Weglarz, J.: Overview and state of the art. In: Schwindt,
C., Zimmermann, J. (eds.) Handbook on Project Management and Scheduling.
International Handbooks on Information Systems, vol. 1, pp. 445-490. Springer,
Heidelberg (2015)

6. Nethercote, N., Stuckey, P.J., Becket, R., Brand, S., Duck, G.J., Tack, G.R.:
MiniZinc: towards a standard CP modelling language. In: Bessie¢re, C. (ed.) CP
2007. LNCS, vol. 4741, pp. 529-543. Springer, Heidelberg (2007)

7. Ohrimenko, O., Stuckey, P.J.; Codish, M.: Propagation via lazy clause generation.
Constraints 14(3), 357-391 (2009)

8. Schnell, A., Hartl, R.F.: On the efficient modeling and solution of the multi-mode
resource-constrained project scheduling problem with generalized precedence rela-
tions. OR Spectrum 38(2), 283-303 (2015)

9. Schutt, A.: Improving scheduling by learning. Ph.D. thesis, The University of
Melbourne (2011). http://hdl.handle.net/11343/36701

10. Schutt, A., Chu, G., Stuckey, P.J., Wallace, M.G.: Maximising the net present value
for resource-constrained project scheduling. In: Beldiceanu, N., Jussien, N., Pinson,
E. (eds.) CPAIOR 2012. LNCS, vol. 7298, pp. 362-378. Springer, Heidelberg (2012)

http://hdl.handle.net/11343/36701

492

11.

12.

13.

14.

15.

16.

R. Szeredi and A. Schutt

Schutt, A., Feydy, T., Stuckey, P.J.: Scheduling optional tasks with explanation.
In: Schulte, C. (ed.) CP 2013. LNCS, vol. 8124, pp. 628-644. Springer, Heidelberg
(2013)

Schutt, A., Feydy, T., Stuckey, P.J., Wallace, M.G.: Why cumulative decomposition
is not as bad as it sounds. In: Gent [3], pp. 746761

Schutt, A., Feydy, T., Stuckey, P.J., Wallace, M.G.: Explaining the cumulative
propagator. Constraints 16(3), 250-282 (2011)

Schutt, A., Feydy, T., Stuckey, P.J., Wallace, M.G.: Solving RCPSP/max by lazy
clause generation. J. Sched. 16(3), 273-289 (2012)

Schutt, A., Stuckey, P.J., Verden, A.R.: Optimal carpet cutting. In: Lee, J. (ed.)
CP 2011. LNCS, vol. 6876, pp. 69-84. Springer, Heidelberg (2011)

Zhu, G., Bard, J.F., Yu, G.: A branch-and-cut procedure for the multimode
resource-constrained project-scheduling problem. INFORMS J. Comput. 18(3),
377-390 (2006)

	Modelling and Solving Multi-mode Resource-Constrained Project Scheduling
	1 Introduction
	2 MRCPSP Model
	2.1 Solver Independent Model

	3 Experiments
	3.1 Comparison of Models
	3.2 Comparison of Search Strategies
	3.3 Comparison of Solvers
	3.4 Comparison to the State of the Art

	4 Conclusion
	References

