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Abstract. The maximum common subgraph problem is to find the
largest subgraph common to two given graphs. This problem can be
solved either by constraint-based search, or by reduction to the maximum
clique problem. We evaluate these two models using modern algorithms,
and see that the best choice depends mainly upon whether the graphs
have labelled edges. We also study a variant of this problem where the
subgraph is required to be connected. We introduce a filtering algorithm
for this property and show that it may be combined with a restricted
branching technique for the constraint-based approach. We show how to
implement a similar branching technique in clique-inspired algorithms.
Finally, we experimentally compare approaches for the connected ver-
sion, and see again that the best choice depends on whether graphs have
labels.

1 Introduction

Maximum common subgraph problems arise in biology and chemistry [16,20,40],
in computer vision [7,9], in the analysis of source code [12], binary programs [19],
and circuit designs [9], in character recognition problems [27], and in many other
domains [49], both directly and as a way of measuring the similarity or differ-
ence between two graphs [5,18,23]. We illustrate two variants of this problem in
Fig. 1—in both cases we are finding an induced subgraph and maximising the
number of vertices selected, but in the second variant the common subgraph
must be connected.

1.1 Definitions and Notation

We introduce definitions and algorithms on undirected and unlabelled graphs;
the extension to general graphs is straightforward and is discussed in Sect. 2.3.
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Fig. 1. A maximum common induced subgraph of the first two graphs has eight ver-
tices, shaded. However, if we require the common subgraph to be connected, only seven
vertices may be selected—one way to do this is shown in the third and fourth graphs.

An undirected graph G is defined by a finite set of vertices V(G) and a set of
undirected edges E(G) ⊆ V(G) × V(G), where (u, v) ∈ E(G) ⇒ (v, u) ∈ E(G).
The neighbourhood of a vertex v, written N(G, v), is the set of vertices to which
it is adjacent, so N(G, v) = {u ∈ V(G) : (u, v) ∈ E(G)}. Given a graph G, two
vertices vs, ve ∈ V(G) are connected by a path in G if there exists a sequence of
vertices (v0, v1, . . . , vk) such that v0 = vs, vk = ve, and each pair of successive
vertices is connected by an edge, i.e. ∀i ∈ {1 . . . k}, (vi−1, vi) ∈ E(G). A graph G
is connected if every distinct pair of vertices is connected by a path.

The subgraph of a graph G induced by a set H ⊆ V(G), written G[H], is the
graph with vertex set H, and with every edge in G which has both endpoints in
G, i.e. E(G[H]) = E(G)∩(V(H)×V(H)). We will consider only subgraphs which
are induced by some set. It is also possible to permit removing edges which are
not incident to removed vertices, thus leading to partial subgraphs—we do not
consider this possibility in this paper, although everything we discuss may be
extended to the partial case [34,54].

A graph G is isomorphic to another graph H if there exists a bijective func-
tion f : V(G) → V(H) which preserves edges and non-edges, i.e. ∀(u, v) ∈
V(G) × V(G), (u, v) ∈ E(G) ⇔ (f(u), f(v)) ∈ E(H). A common subgraph of two
graphs G and H is a graph isomorphic to subgraphs of both G and H. A com-
mon connected subgraph is a common subgraph which is connected. A Maximum
Common Subgraph, or MCS (resp. Maximum Common Connected Subgraph, or
MCCS) is a common subgraph (resp. common connected subgraph) which has
a maximum number of vertices.

1.2 Overview

In Sect. 2, we review existing approaches for solving the MCS problem, with a
specific focus on Constraint Programming (CP)-based techniques, and on reduc-
tions of the problem to finding a maximum clique in an association graph.

Previous experimental evaluations have used simple maximum clique algo-
rithms, or even enumeration algorithms—for example, Vismara and Valery [54]
compare a modified form of the Bron-Kerbosch maximal clique enumeration
algorithm [3] with a CP optimisation approach. Our experience suggests that
a modern maximum clique algorithm could give many orders of magnitude
improvement, due to a strong bound function which prunes the search space.
Therefore, in Sect. 3, we re-evaluate the clique-based approach using a modern
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algorithm, and we show that it outperforms CP on labelled graphs, and that it
is competitive with CP on unlabelled graphs, contradicting earlier conclusions.

Then, in Sect. 4, we consider the MCCS problem. For the CP approach, we
may add a global connectedness constraint to the model. Alternatively, we may
use a special branching rule [54] to grow connected subgraphs only. These two
techniques may be combined, and we experimentally show that the best results
are in fact obtained when combining them. When solving the MCCS problem
with a clique-based approach, neither technique seems directly viable with an
association graph encoding. However, we show that it is possible to adapt the
combined branching and bounding rule used by modern clique algorithms to
maintain connectedness during search. We compare the clique-based approach
with the best CP variant for MCCS, and we show that it outperforms CP on
labelled graphs, whereas it is outperformed by CP on unlabelled graphs.

2 Existing Complete Approaches for MCS

There are two main approaches for solving MCS. The first approach (described
in Sect. 2.1) is based on CP, whilst the second (described in Sect. 2.2) is based on
a reformulation of MCS into a maximum clique problem. Both approaches are
described for undirected, unlabelled graphs; their extension to richer graphs is
discussed in Sect. 2.3. Other approaches have been tried, mixed integer program-
ming [37] and heuristics [17]; SAT encodings seem to struggle even for subgraph
isomorphism [31].

2.1 Constraint Programming Models for MCS

McGregor [32] proposed a branch and bound algorithm: each branch of the
search tree corresponds to the matching of two vertices, and a bounding function
evaluates the number of vertices that still may be matched so that the current
branch is pruned as soon as this bound becomes lower than the size of the largest
known common subgraph. CP approaches may be viewed as enhancements of
this branch and bound algorithm.

Vismara and Valery [54] introduced the first explicit CP model. Given two
graphs G and H, this model associates a variable xv with every vertex v of G,
and the domain of this variable contains all vertices of H, plus an additional
value ⊥: variable xv is assigned to ⊥ if vertex v is not matched to any vertex
of H; otherwise xv is assigned to the vertex of H to which it is matched. Edge
constraints are introduced in order to ensure that variable assignments preserve
edges and non-edges between matched vertices, i.e. ∀u, v ∈ V(G), (xu = ⊥) ∨
(xv = ⊥) ∨ ((u, v) ∈ E(G) ⇔ (xu, xv) ∈ E(H)). Difference constraints are
introduced in order to ensure that each vertex of H is assigned to at most one
variable, i.e. ∀u, v ∈ V(G) distinct, (xu = ⊥) ∨ (xv = ⊥) ∨ (xu �= xv).

This CP model was improved by Ndiaye and Solnon [34] by replacing binary
difference constraints with a soft global allDifferent constraint which maximizes
the number of xu variables that are assigned to values different from ⊥, while
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Fig. 2. A maximum common induced subgraph between the two graphs on the left
has three vertices—one solution is highlighted. On the right, the association graph
encoding: the highlighted clique of size three shows the same solution. The “missing”
vertices correspond to assignments which are impossible due to the presence or absence
of loops.

ensuring they are all different when they are not assigned to ⊥. They find
that the combination “MAC+Bound” (resp. “FC+Bound”) obtains the best
results on labelled (resp. unlabelled) graphs and outperforms the two previous
approaches. The combination “MAC+Bound” maintains arc consistency [41]
of edge constraints, whereas the combination “FC+Bound” simply performs
forward-checking on these constraints. In both combinations, the “Bound” filter-
ing checks whether it is possible to assign distinct values to enough xu variables to
surpass the best cost found so far—it is a weaker version of GAC(softAllDiff ) [36]
which computes the maximum number of variables that can be assigned distinct
values.

2.2 Reformulation of MCS to a Maximum Clique Problem

An alternative approach to MCS is to reduce the problem to finding a maximum
clique in an association graph [2,15,24,40]. An association graph (or compati-
bility graph, or weak modular product) of two graphs G and H is an undirected
graph G�H with vertex set V(G�H) = {(v, v′) ∈ V(G) × V(H) : (v, v) ∈
E(G) ⇔ (v′, v′) ∈ E(H)}—to avoid confusing vertices of G�H with vertices
of the two original graphs, we call vertices of G�H matching nodes, as each
vertex (u, u′) of G�H denotes the matching of u with u′. The edges of G�H
connect matching nodes which denote compatible assignments, so two matching
nodes (u, u′) and (v, v′) are adjacent if u �= v and u′ �= v′, and if they preserve
both edges and non-edges, so (u, v) ∈ E(G) ⇔ (u′, v′) ∈ E(H). We illustrate this
in Fig. 2.

A clique is a subgraph whose vertices are all pairwise adjacent. A clique is
maximal if it is not strictly included in any other clique, and it is maximum if
it is a largest clique of a given graph, with respect to the number of vertices.
A clique in an association graph corresponds to a set of compatible matchings.
Therefore, such a clique corresponds to a common subgraph, and a maximum
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clique of G�H is an MCS of G and H. It follows that any method able to find
a maximum clique in a graph can be used to solve the MCS problem.

Note that the association graph is a partial subgraph of the microstruc-
ture [21] associated with the CP model of Vismara and Valery [54]: the
microstructure has more matching nodes than the association graph because
it has a matching node (u,⊥) for each vertex u of G. Each clique of size |V(G)|
in the microstructure corresponds to a common subgraph, the size of which is
defined by the number of matching nodes that do not contain ⊥.

2.3 Extension to Labelled or Directed Graphs

In some applications, labels may be associated with vertices or edges. We denote
λ(u) and λ((u, v)) the label of a vertex u and an edge (u, v), respectively. Where
graphs are labelled, any isomorphism f must additionally preserve labels, so
we require λ(f(v)) = λ(v) for any vertex v, and λ((f(u), f(v))) = λ((u, v))
for any edge (u, v). This kind of label compatibility constraint is handled in
a straightforward way in both CP and clique-based approaches to MCS. For
CP, we restrict the domain of every variable xu to vertices with compatible
labels, and ensure that edge labels are preserved in edge constraints. For clique-
based approaches, label compatibility is handled through the definition of the
association graph, by restricting the set of matching nodes to pairs of vertices
with compatible labels, and the set of matching edges to pairs of edges with
compatible labels.

The extension of MCS algorithms to directed graphs, where isomorphisms
must preserve directed edges, is similarly straightforward.

Labels and directed edges usually simplify the solution process, both for
CP and clique-based approaches: vertex labels reduce domain sizes for CP,
and the number of matching nodes in association graphs; edge labels tighten
edge constraints for CP, and make the association graph sparser for clique-based
approaches. It is worth noting that edge constraints do not help CP approaches
to do more filtering so long as ⊥ remains in variable domains: every pair of
variables (xi, xj) having ⊥ ∈ D(xj) is arc consistent, since ⊥ is a support for
any value u ∈ D(xi). However, as soon as ⊥ is removed from domains (i.e. when
the number of variables assigned to ⊥ has reached the best known bound on the
size of the MCS), maintaining arc consistency may filter values, and then tighter
constraints increase the opportunities for filtering.

3 Re-evaluating the Clique Model for MCS

Previous experimental evaluations of the association graph model have used
either maximal clique enumeration algorithms [22,54] (even when the maximi-
sation problem was being considered), or very simple maximum clique algo-
rithms [6,8], and so their conclusions may now be overly pessimistic. Thus we
re-evaluate the approach using a modern maximum clique algorithm. Association
graphs are dense, even if the input is sparse, so we will using (the single-threaded,
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Fig. 3. The cumulative number of MCS instances solved in under a certain time: on the
top, 33 % labelled graphs, and then unlabelled and undirected graphs. On the bottom,
an instance-by-instance comparison of the clique model with the best CP model, with
33% labelled graphs (with MAC) on the left, and unlabelled and undirected graphs
(with FC) on the right.

bit-parallel version of) the maximum clique solver by McCreesh and Prosser [30],
which implements Prosser’s [38] “MCSa1” variant of a series of algorithms due to
Tomita et al. [51–53], using a bitset encoding due to San Segundo et al. [45,47].
We compare this to the “FC+Bound” and “MAC+Bound” (simply referred to
as FC and MAC) CP implementations of Ndiaye and Solnon [34], using smallest
domain first for variable ordering, and a value ordering which prefers vertices of
most similar degree. We perform our experiments on machines with Intel Xeon
E5-2640 v2 CPUs and 64GBytes RAM; software was compiled using GCC 4.9,
and a timeout of one hour was used.

We consider a randomly generated database [8,42] commonly used for bench-
marking maximum common subgraph problems. The dataset contains differ-
ent classes of graphs: randomly connected graphs with different densities; 2D,
3D, and 4D regular and irregular meshes; regular bounded valence graphs, and
irregular bounded valence graphs. For each pair of graphs, there are 3 different
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labellings such that the number of different labels is equal to 33 %, 50 % or 75 %
of the number of vertices. In this paper, we report experiments with unlabelled
graphs (labels are ignored), and with 33 % labellings (the problem becomes very
easy with larger numbers of labels). For unlabelled graphs, we select the 27,500
graph pairs where the number of vertices in each graph is no more than 35;
for labelled graphs, which we find less computationally challenging, we select all
81,400 graph pairs, to include graphs with up to 100 vertices.

The two plots on the top of Fig. 3 display the cumulative number of instances
solved with respect to time. When graphs are labelled, the clique-based approach
clearly outperforms either CP model, and MAC has a slight advantage over FC.
(Recall that edge labels decrease the density of the association graph, which
is typically very beneficial for clique algorithms, but do not help CP until ⊥ is
removed from domains.) For unlabelled graphs, the three approaches are broadly
comparable, and ultimately FC beats MAC, which beats the clique approach.
The bottom row gives a per-instance comparison of the best CP approach with
the clique approach: the heatmaps are similar to scatter plots, but due to the
large number of instances, we colour each point according to the density of solu-
tions around that point. For labelled graphs, the clique approach comes close to
dominating MAC on non-trivial instances (which suggests that there is unlikely
to be scope for per-instance algorithm selection here). For unlabelled graphs,
there is still a broad correlation between the runtimes; the clique approach rarely
wins by more than one order of magnitude, but is sometimes much worse.

A closer inspection of the data suggests that the different randomness models
used to generate instances have little effect on the runtimes for either approach.
However, the relative size of the solution matters, particularly for the clique
algorithm: if the solution is large (i.e. the two input graphs are very similar), the
clique approach finds nearly every labelled instance trivial.

4 Finding Maximum Common Connected Subgraphs

In many applications, the common subgraph must satisfy some additional con-
straints. This is usually handled in a straightforward way in CP, by branch-
ing rules and/or constraint propagation. In clique-based approaches, some con-
straints may be handled by modifying the definition of the association graph—for
example, constraints on pairs of vertices that may be matched are handled by
removing inconsistent pairs from V(G�H). However, more global constraints
cannot be handled by modifying the definition of the association graph.

In this paper, we focus on the connectedness constraint, which occurs in
many applications [16,22,40,54]. Adding the connectedness requirement makes
certain special cases solvable in polynomial time, including outerplanar graphs
of bounded degree [1] and trees [14], but the general case remains NP-hard. As
illustrated in Fig. 1, the MCCS cannot be deduced from the MCS: we need to
ensure connectedness during search. In Sect. 4.1, we show that in CP this may be
done in two different ways that may be combined, and we show in Sect. 4.2 that
the best results are obtained when combining them. In Sect. 4.3, we introduce
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Fig. 4. Suppose we are looking for a connected common subgraph, using the graph
on the left for variables and the graph on the right (which has an isolated vertex) for
values. We initially consider a �→ 1. Our restricted branching rule requires us to select
either variable b or variable c subsequently, not d or e. We try b �→ 2, which adds d to
the branchable variables, and forces c �→ ⊥. We may now only branch on d, and we try
d �→ 4. Now the only remaining variable is unbranchable, and so e = ⊥ is forced, even
though 5 remains in its domain and does not violate any constraints.

a new way for ensuring connectedness in a clique-based approach. Finally, we
compare CP and our clique-based approach in Sect. 4.4.

For MCCS we consider only undirected graphs (and so we treat directed
edges in the inputs as being undirected). For directed graphs, there is more than
one notion of connectivity, and it is not clear which should be selected—the
approaches we consider extend easily to weakly connected directed graphs, but
not to the strongly connected case (for which we know of no applications).

4.1 Ensuring Connectedness in CP

Vismara and Valery [54] implement the connectedness constraint by using a
branching rule which selects the next variable to be assigned. Let A be the
set of variables already assigned to values different from ⊥. The next variable
to be assigned is chosen within the set of unassigned variables which are the
neighbour of at least one vertex of A. When this set is empty, all remaining
unassigned variables are assigned to ⊥. We illustrate this in Fig. 4.

A more traditional CP approach would be to express connectedness as a
conventional constraint. For example, CP(Graph) [13] introduces graph domain
variables and enforces connectivity via the reachable constraint, ensuring that
there is a path from a specified vertex to a specified set of vertices. One such
constraint could be posted for each of the vertices in the graph, encoding the
transitive closure of the graph. Brown et al. [4] explored the use of constraint pro-
gramming in the generation of connected graphs with specified degree sequences.
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Two constraints were combined: the graphical constraint (a backtrackable imple-
mentation of the Havel-Hakimi algorithm), and a connectivity constraint imple-
mented using sets of vertices, where vertex sets A and B are combined when
there exists a pair of vertices v ∈ A and w ∈ B and an edge (v, w) ∈ E. Residual
degree counts are maintained on components and vertices to enforce graphicality
and connectivity. Prosser and Unsworth [39] proposed a connectivity constraint
for connected graph generation where decision variables are edges (the search
process accepts and rejects edges). The constraint employed depth first search
to maintain the set of tree edges and back edges, associating path counters on
these edges. The counters were then used to detect the existence of cut-edges
and protects these by forcing edges.

In all these previous works, the goal was to ensure that a given set of ver-
tices is connected. For MCCS, the problem is slightly different: we have to
ensure that the number of connected vertices that may be matched (in both
graphs) is greater than the size of the largest common subgraph previously
found. Therefore, we introduce a new filtering algorithm to ensure connect-
edness consistency for MCCS. Let us consider two graphs G and H, and let
D be the current domains (we suppose that D(xu) is a singleton when xu is
assigned). Let S and T be the sets of vertices of G and H respectively which
may belong to the common subgraph, i.e. S = {u ∈ V(G) : D(xu) �= {⊥}}, and
T = ∪u∈V(G)D(xu) \ {⊥}. Connectedness consistency ensures that both G[S]
and H[T ] are connected graphs.

Connectedness consistency is ensured only once a first variable has been
assigned, rather than at the root of search. Let xu be the first assigned variable,
and v the value assigned to xu. To ensure connectedness consistency, we perform
a traversal of G (resp. H), starting from u (resp. v), and we initialize S (resp.
T ) with all visited vertices. Then, for each vertex v ∈ V(G) \ S, we set xv to ⊥,
and for each w ∈ V(H) \ T , we remove w from all domains to which it belongs.

During search, each time a variable is assigned to ⊥, we remove the corre-
sponding vertex from S and perform a new traversal of G[S] starting from the
initial vertex u. For each vertex w ∈ S that is not visited by the traversal, we
remove w from S and assign xw to ⊥. Also, each time a value is removed from a
domain so that this value no longer belongs to any domain, we remove it from T ,
and perform a new traversal of H[T ] starting from the initial vertex v. For each
vertex w that is not visited by the traversal, we remove w from T , and remove
w from all domains to which it belongs.

Finally, the two approaches for ensuring connectedness (branching and fil-
tering) are complementary and may be combined: at each step of the search, we
select the next variable to be assigned within the neighbors of A, and each time a
vertex of H is removed from a domain we filter domains to ensure connectedness
consistency. In the example in Fig. 4, after the first assignment, filtering alone
would remove 5 from every domain but would allow branching on any remaining
variable, whilst branching alone would force the next variable to be either b or
c but would not immediately eliminate 5 from the domains of d and e.
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Fig. 5. On top, the cumulative number of MCCS instances solved in under a certain
time using different CP techniques, for 33% labelled (left) and unlabelled undirected
(right) graphs. Below, instance-by-instance comparisons.

4.2 Experimental Comparison of CP Connectedness Techniques

Figure 5 compares the three approaches for ensuring connectedness in CP: by
branching (Branch), by filtering (Filter), or by combining branching and filtering
(Both). We show only results using the best variant for each class—that is, MAC
for labelled graphs, and FC for unlabelled graphs (the other results are very
similar). On labelled graphs, we see many instances which are solved very quickly
by branching but not at all by filtering, and vice versa. However, combining both
is rarely much worse than just doing one or the other, and is often much better,
even if on average it is slightly slower. On unlabelled graphs, the three variants
have rather similar performance.



360 C. McCreesh et al.

4.3 Ensuring Connectedness in a Clique-Based Approach

It is not possible to determine connectedness from a raw association graph.
However, we can take a maximum clique algorithm and mimic the CP branch-
ing strategy if we have access to the underlying graphs and can determine the
“meaning” of the association graph vertices.

Most modern maximum clique algorithms for dense graphs use some varia-
tion of greedy graph colouring as a bound—the underlying observation is that
each vertex in a clique must be given a different colour in a colouring, so if we
can colour a subset of vertices using k colours then a maximum clique in this
subset has at most k vertices. However, the colouring is also used as a branching
heuristic: vertices are selected in reverse order from their colour classes in turn,
starting with the last colour class created. Because of this coupling of branching
and the bound (which is important in practice because it mimics a “smallest
domain first” branching heuristic if colour classes are viewed as variables, with-
out requiring a new bound to be calculated for every iteration [29]), if we were
to select only a subset of vertices for branching at each stage inside a clique
algorithm, we would lose completeness. Thus we must adapt the bound in a
non-trivial way to take into account restricted branching.

In Algorithm 1 we present a novel clique-inspired algorithm which finds a
maximum common connected induced subgraph via an association graph. If the
additional branching restrictions are removed, the core of the algorithm is the
same as the “MCSa1” clique algorithm used in the previous section (and we refer
the reader to the previously cited works for implementation details on how to use
bitsets and other data structures to implement the colouring stage with very low
constant factors). The way we extend this algorithm for connectedness differs
considerably from that of Koch [22] and Vismara and Valery [54]: these earlier
approaches worked by classifying labels in the association graph based upon
whether a common vertex is shared, and then constructing cliques with particular
edge properties—this is harder to integrate with a strong bound function.

Our algorithm begins by building the association graph (line 4). The main
part of the algorithm then works by building up candidate cliques in the solution
variable, by recursive calls to the search procedure—starting from the empty set
(line 5), each recursive subcall adds one vertex to solution (line 14) in such a
way that solution is always a clique which corresponds to a connected common
subgraph. The remaining set contains the set of vertices which are adjacent to
every vertex in solution, and which have not yet been accepted or rejected (and
so initially it contains every vertex). The main loops in the search procedure
(lines 10 and 11) have the effect of iterating over each vertex in this set in a
particular order—each vertex v is selected in turn, and then a recursive call is
made to consider the effects of including v in solution (line 18), followed by the
next iteration where v is instead rejected. When v is accepted, we add it to the
new solution ′ (line 14), and create a new remaining ′ containing only the vertices
in remaining which are adjacent to v (line 17).

The connected set contains the set of matching nodes which corre-
spond to vertices adjacent to an already-accepted vertex in the first input
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Algorithm 1. An algorithm for a maximum common connected induced
subgraph isomorphism via an association graph.
1 associationMCCIS :: (Graph G1, Graph G2) → Map
2 begin
3 global incumbent ← ∅
4 G ← G1 �G2

5 search(G, ∅, ∅,V(G))
6 return incumbent

7 search :: (Graph G, Set solution, Set connected , Set remaining)
8 begin
9 colourClasses ← concatenate(

colour(G, remaining \ connected), colour(G, remaining ∩ connected))
10 while length(colourClasses) > 0 do
11 foreach v ∈ last(colourClasses) in reverse order do
12 if |solution| + length(colourClasses) ≤ |incumbent | then return
13 if v /∈ connected and solution 
= ∅ then return
14 solution ′ ← solution ∪ {v}
15 if |solution ′| > |incumbent | then incumbent ← solution ′

16 connected ′ ← connected ∪ {w ∈ G : first(w) ∈ N(G, first(v))}
17 remaining ′ ← remaining ∩ N(G, v)
18 if remaining ′ 
= ∅ then search(G, solution ′, connected ′, remaining ′)

19 removeLast(colourClasses)

20 colour :: (Graph G, Set uncoloured) → List of List of Vertex
21 begin
22 return a greedy colouring of the vertices in uncoloured , using the procedure

of San Segundo et al. [47] with a static degree order from G and kmin = 0.

graph—in constraint programming terms, it is the set of assignments which could
be made next which maintain connectedness. (Using only one of the two input
graphs is sufficient for correctness, and has the advantage that the connected-
ness set may be determined by a simple lookup into a precomputed array which
maps each vertex in the first input graph to a bitset.) At the top of search, this
set is empty, and is not used (our first vertex selection is special, and does not
care about connectedness). At subsequent depths, we may only accept vertices
which are in this set, and if no such vertices remain then we return immediately
(line 13). When recursing, we extend connected with the new vertices permitted
by our acceptance of the branching v (line 16). Note that we are assuming that
inside the main loops, we encounter every vertex in remaining ∩connected before
any vertex in remaining \ connected .

As we proceed, we keep track of the best solution we have found so far—this is
stored in the incumbent variable (lines 3 and 15). We use the incumbent, together
with a colour bound, to prune portions of the search space which cannot contain a
better solution. The colour bound operates as follows: at each entry to the search
procedure, we produce a greedy colouring of the vertices in remaining (line 9,
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a b

c d

e f

1 2

3 4

5

solution

connected

remaining

{(a, 1)}
{b, c, d} × {1 . . . 5}
({b, c, d} × {2, 3}) ∪ ({e, f} × {4, 5})

i) Initial problem ii) Search variables after guessing a → 1

(e, 4) (e, 5)

(f, 4) (f, 5)

(b, 2) (b, 3)

(c, 2) (c, 3) (d, 2) (d, 3)

iii) remaining \ connected iv) remaining ∩ connected

[[(e, 4), (e, 5)], [(f, 4), (f, 5)], [(b, 2),(b, 3)], [(c, 2), (c, 3), (d, 2), (d, 3)]]

v) The resulting colourClasses variable.

Fig. 6. Solving a maximum common connected problem using an association graph.
Suppose we have already mapped vertex a to vertex 1, giving the assignments on the
right. Now we have two subgraphs to colour. We need two colours for remaining \
connected , and we place these two colour classes first in the colourClasses variable. We
can also colour remaining ∩ connected using two colours, since we cannot simultane-
ously map c to 2 and d to 3, or vice-versa. Thus colourClasses becomes a list of four
colour classes. This tells us that if we hope to extend the current common subgraph
by another four vertices, we must pick one assignment from each of the four colour
classes (which is not actually possible, so the bound here gives an overestimate). The
algorithm thus guesses d �→ 3 as its next assignment, and if that fails, d �→ 2, and so
on; once b �→ 3 is reached, the bound decreases by one, and if f �→ 5 were reached we
would stop due to a lack of remaining connected association nodes.

discussed further below). This greedy colouring gives us a list of colour classes,
each of which is a list of pairwise non-adjacent vertices. The two loops (lines 10
and 11) then iterate over each colour class, from last to first, and then over each
vertex in that colour class, again from last to first. (Rather than actually using a
list of lists and removing items, this process should be implemented using a pair
of immutable flat arrays. This technique is described elsewhere [29], so we do not
discuss it here.) Finally, if at any point the number of remaining colour classes
plus the number of vertices currently present in solution is not strictly greater
than the size of the incumbent, then we may backtrack immediately (line 12).

Finally, we describe the colouring process—an example is shown in Fig. 6. In
conventional clique algorithms, a simple greedy sequential colouring is used (pos-
sibly with the help of previous colourings to reduce the computational cost [35],
and possibly with shortcuts taken for certain vertices [48], and possibly followed
by a repair step to improve the colouring [53], or stronger bounding rules based
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Fig. 7. The cumulative number of connected instances solved in under a certain time:
on the top, 33 % labelled undirected graphs with up to 100 vertices, and then unlabelled
and undirected graphs with up to 35 vertices. On the bottom, an instance-by-instance
comparison of the association and CP Both approaches, with 33% labelled graphs on
the left, and unlabelled and undirected graphs on the right.

upon MaxSAT inference [25,26,46]). Such colourings will not give us the required
property that vertices in remaining ∩ connected come last (so they are selected
first by the reverse branching order). Thus we produce two greedy sequential
colourings, first considering the non-branching vertices in remaining \connected ,
followed by the branching vertices, and concatenate them (line 9). This produces
a valid colouring, since we do not merge any colour classes between the two
stages, although it may use more colours than a single colouring would.

(What if we did not guarantee that vertices in remaining ∩ connected came
last, and just used a conventional colouring with the branching rule? Suppose
we had four vertices in remaining , and produced a colouring [[v1, v2], [v3], [v4]],
and suppose that extending solution with {v1, v3, v4} gives an optimal solution.
If v4 was not connected yet, we would not branch on that subtree, and the
bound could eliminate branching on v3 and v1, so we would miss the solution.
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Thus we cannot simply add the branching rule without also adapting the com-
bined bound and ordering heuristic.)

Our colour procedure is a simple greedy sequential colouring. We use the
bit-parallel algorithm introduced by San Segundo et al. [47], with the kmin para-
meter set to 0, so we do not describe it here. We use a simple static degree
ordering; other initial vertex orderings have been considered on general clique
problems [38,43], and it is possible that special properties of the association
graph could be exploited in this step (for example, it is always possible to colour
the initial association graph using min(|V(G1)| , |V(G2)|) colours, but with cer-
tain vertex orderings, a greedy sequential colouring will sometimes use many
more colours).

4.4 Experimental Comparison of the CP and Clique Approaches

In Fig. 7 we compare the clique-based approach to the connected problem with
the two CP Both approaches. The trend is broadly similar to the unconnected
problem: for labelled graphs, the clique-based approach is the clear winner, but
for unlabelled graphs the clique approach lags somewhat.

The heatmaps show a more detailed picture. As before, in the unlabelled
case, the association approach is almost never more than an order of magnitude
better, and is often much worse. In the labelled case, however, there are now
many instances where the CP approach does much better than the association
approach, despite the association approach remaining much better overall.

5 Conclusion

Contradicting earlier claims in the literature, we have seen that a modern clique
algorithm can perform competitively for maximum common subgraph problems,
particularly when edge labels are involved. However, the best approaches for
these problems is still far behind the state-of-the-art for subgraph isomorphism,
where we can often scale to unlabelled graphs with thousands of vertices.

To start tackling this gap, we believe there is further scope for tailoring
clique algorithms for association graphs, including specialised inference, a bound
function which is aware that it is working on an association graph, and better
initial vertex orderings. Treating the first branch specially may also be beneficial,
since the first branch has an unusually large effect on the search space with
association graphs [50].

For CP models, using a branching rule for connectedness, rather than simply
as an ordering heuristic, is unconventional and does not cleanly fit into the
abstractions used by toolkits. However, we saw that combining conventional
filtering and the special branching rule was beneficial.

We looked only at single-threaded versions of these algorithms. Maximum
clique algorithms have been extended for thread-parallel search [10,28,44], and
in particular, work stealing strategies designed to eliminate exceptionally hard
instances by forcing diversity at the top of search [30] could be beneficial in
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eliminating some of the rare cases where the clique algorithm is many orders of
magnitude worse than the CP models. On the CP side, the focus for parallelism
has been on decomposition [33], rather than fully dynamic work stealing—it
would be interesting to compare these approaches.

Finally, we intend to investigate larger and more diverse sets of instances,
and other variants of the problem. We have yet to investigate partial or weighted
graphs. Nor have we considered strongly connected common subgraphs—this
would make the branching approach impossible, and filtering would be much
more complicated. From the datasets we selected, there appears to be little
scope for per-instance algorithm selection, but other families of input data could
lead to a different conclusion.
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