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Abstract. Given a Satisfiability Modulo Theories (SMT) formula, a
minimum satisfying assignment (MSA) is a partial assignment of min-
imum size that ensures the formula is satisfied. Minimum satisfying
assignments find a number of practical applications that include software
and hardware verification, among others. Recent work proposes the use
of branch-and-bound search for computing MSAs. This paper proposes a
novel counterexample-guided implicit hitting set approach for computing
one MSA. Experimental results show significant performance gains over
existing approaches.

1 Introduction

For a propositional formula, represented in conjunctive normal form (CNF), a
minimum size prime implicant can be computed with a logarithmic number of
calls to a SAT oracle [18], e.g. by solving unweighted partial maximum satisfiabil-
ity. For arbitrary propositional formulae it is unclear how to solve the problem.
Nevertheless, for formulas expressed in decidable fragments of first order logic
(FOL), the same problem has been investigated as computing a minimum satis-
fying assignment (MSA), which represents a partial assignment of minimum cost
to the formula’s variables such that, for any assignment to the remaining vari-
ables, the formula is true [8]. The MSA problem finds application in software
verification, hardware verification, but also in abductive inference [7]. Recent
work identified other uses of MSAs [15,24].

Earlier work proposed a branch-and-bound algorithm for computing MSAs
of logic formulas expressed in decidable fragments of FOL, being applied in
relatively small-scale test cases. Given the potential for wider use in software
verification, but also in abductive inference, and with the goal of targeting more
challenging problem instances, this paper investigates alternative approaches for
computing MSAs. Concretely, the paper builds on the recent work on implicit
hitting sets [5,12–14,16,19,23], and develops an implicit hitting set approach for
computing MSAs, where implicit hitting sets are obtained by refining identified
counterexamples to the general goal of computing one MSA. The experimental
results, obtained on existing but also novel suites of problem instances, show per-
formance gains when compared with the existing branch-and-bound approach.

The paper is organized as follows. Section 2 introduces the notation used
throughout the paper. The use of implicit hitting sets for computing MSAs is
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detailed in Sect. 3, resulting in a new tool referred to as MINT. Section 4 com-
pares the MINT solver with the existing tool MISTRAL [8]. Section 5 concludes
the paper and identifies research directions.

2 Preliminaries

This section introduces the concepts used throughout the paper. Standard defi-
nitions commonly used in first-order logic apply. We follow [3,8], since we build
on this earlier work. The paper assumes basic knowledge of first-order logic, but
some basic definitions are presented to make the paper more self-contained. A
first-order theory T is a set of first-order sentences over a signature S, where
the signature S specifies a set of predicates and function constants. A first-order
model M is a pair 〈U , I〉, where the set U represents a universe, and I represents
an interpretation that assigns a semantics to every symbol in S. V denotes the
set of variables (which are distinct from S). Given a model M, a valuation ω is
a partial map from V to U . For simplicity, we assume V to be the set of variables
that occur free in the formula. In what follows, F denotes a first-order formula
modulo a theory defined over variables var(F). If ω is a valuation in V → U , we
write M, ω � F to indicate that the formula F is true, according to the usual
semantic of first-order logic, in model M, with ω giving the valuation of the free
variables in F . We say that M is a model of F when every sentence of F is true
in M.

Definition 1. Formula F is satisfiable modulo T when there exists a model
M = 〈U , I〉 of T and an assignment ω ∈ V → U such that M, ω � F . We say
that the pair 〈M, ω〉 is a satisfying assignment (SA) for F .

A concept used throughout the paper is that of partial satisfying assignment :

Definition 2. A partial satisfying assignment for a formula F is a pair 〈M, ω〉,
where M is a model and ω is a valuation over M such that dom(ω) ⊆ V and
such that for any valuation of α ∈ V \ dom(ω) → U , we have that 〈M, (ω ∪ α)〉
is a satisfying assignment for F .

Definition 3. A partial satisfying assignment 〈M, ω〉 for F is said to be min-
imal (mSA) if for any valuation α ∈ V → U s.t. dom(α) ⊂ dom(ω), the pair
〈M, α〉 is not a satisfying assignment for F . A Minimum Satisfying Assignment
(MSA) is an mSA of smallest size.

Note that an MSA can be defined more generally in terms of a cost function.
In this paper we will refer to MSAs in terms of their size (i.e. the cost associated
with each variable is 1). We conclude this section with the definition of a hitting
set:

Definition 4. Given a collection Γ of sets from a universe U, a hitting set h
for Γ is a set such that ∀S ∈ Γ, h ∩ S �= ∅.

A hitting set is minimal when none of its subsets is a hitting set. Let us
denote with HS(Γ ) the set of all hitting sets of Γ . Then a hitting set h ∈ HS(Γ )
is said to be a minimum hitting set if ∀h′ ∈ HS(Γ ) we have that |h| ≤ |h′|.
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3 Computing One MSA with Implicit Hitting Sets

This section proposes an algorithm for computing one MSA by exploiting an
implicit hitting set approach, following the ideas of [21] and similar in spirit to
related recent work in different areas [5,12–14,16,19,23]. However, in contrast to
earlier work related with propositional formulas, our approach exploits implicit
hitting sets for selecting sets of variables and not sets of clauses.

The goal of computing one MSA is to find a minimum size set X ∈ var(F)
such that ∃X∀Y .F holds, with Y = var(F) \ X. Let us consider the set of sets
J , where each set I ∈ J represents the complement of one counterexample to
our goal, i.e. each set I ∈ J is the complement of Xcex such that ∃Xcex∀Y .F is
false. If a solution is to exist, it must use at least one variable from each set I;
otherwise, we would be repeating the complement of set I, namely Xcex, and we
know there is no solution in that case. Thus, any solution set X ∈ var(F) for
which ∃X∀Y .F is true, must hit any set I ∈ J ; otherwise, set X would not be a
solution. Moreover, we can make each set to hit stronger, by finding a maximal
counterexample, i.e. by growing Xcex [14] (and, hence, reducing its complement
I ∈ J ). Thus, the minimal hitting set duality relation between goal sets X and
reduced complements I ∈ J of counterexamples Xcex can be devised, following
the ideas of [21]. In practice, it is unrealistic in many cases to explicitly represent
the set of sets J . Thus, the sets to hit are generated on demand, and this explains
why the approach is referred to as an implicit hitting set approach. The proposed
algorithm is depicted in Algorithm 1. The remainder of this section formalizes
the approach outlined above.

Definition 5. Given a formula F modulo theory T s.t. formula F is defined
over set of variables var(F) = X ∪ Y and ∃X∀Y .F is true, set Y is called a
universal subset (US) for formula F and set X is called an existential subset
(ES) for F .

Algorithm 1. MSA algorithm
input : Formula F
output: One MSA of F

1 H ← ∅
2 while true do
3 X ← MinHS(H)
4 Y ← var(F) \ X
5 (st, µX) ← Solve(∃X∀Y .F)
6 if st then
7 break

8 else
9 I ← var(F) \ Grow(X,F)

10 H ← H ∪ I

11 return MSA ← µX
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An existential subset X (universal subset Y , resp.) is said to be minimal
ES or MinES (maximal US or maxUS, resp.) if ∃X\{z}∀Y ∪{z}.F is false for any
z ∈ X. An ES E of minimum size (US U of maximum size, resp.) is called a
minimum existential subset or MinES (maximum universal subset or MaxUS,
resp.). Observe that given an existential subset for formula F of the smallest size
(i.e. a MinES), one can easily extract an MSA for F . Indeed, it assigns variables
of the existential subset satisfying F , which can be done by calling a decision
procedure for F , i.e. an SMT oracle.

Definition 6. A falsifying subset (FS) for a formula F modulo theory T is a
set of variables Y ⊆ var(F) such that ∃X∀Y .F is false.

As usually, we identify with minFS and MinFS the minimal and minimum
falsifying set, respectively. We can now introduce an important proposition high-
lighting the existing duality between the minESes and the minFSes of a formula:

Proposition 1. Given a formula F , let minES(F) and minFS(F) be the set
of all minESes and minFSes of F. Then the following holds:

1. A subset X ⊆ var(F) is a minES for F iff X is a minimal hitting set of
minFS(F).

2. A subset Y ⊆ var(F) is a minFS for F iff Y is a minimal hitting set of
minES(F).

The intuition1 for the first statement is the following (a dual argument can be
used for the second one). We know that since X is a minES for F then ∃X∀Y .F
is true. This means that for any minFS Y ′ ∈ minFS(F) we have that Y ′ �⊆ Y ,
which implies that for any Y ′ ∈ minFS(F) at least one variable of Y ′ is in X.
If X is a minimal hitting set of minFS(F) then at least one variable of every
Y ′ ∈ minFS(F) is in X. This means that ∃X∀Y .F is true since Y ′ �⊆ Y for any
Y ′ ∈ minFS(F).

Proposition 2. A subset X ⊆ var(F) is a MinES for F iff X is a minimum
hitting set of minFS(F).

Proposition 2 enables us to compute an MSA once we have the set
minFS(F). However, computing minFS(F) is not always feasible due to the
size of the set. Thus, the idea is to compute a subset of minFS(F), from which
an MSA can be extracted. However, a minimum hitting set X on a subset of
S ⊆ minFS(F) does not necessarily correspond to a MinES for F . For X to be
a MinES for F we need two conditions:

Proposition 3. Let Y = var(F) \ X. If (1) X is a minimum hitting set of
S ⊆ minFS(F) and (2) ∃X∀Y .F is true, then X is a MinES of F .

1 Proofs of Propositions 1 and 2 are omitted here due to lack of space. Note that they
can be constructed following the ideas of [12,22] where similar proofs are presented.
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Proof. Since ∃X∀Y .F is true we have that, by definition, X is an ES. We know that
an ES is an hitting set of minFS(F) (see Proposition 1). Since X is a minimum
hitting set of S ⊆ minFS(F) we have that X is also a minimum hitting set of
minFS(F). By Proposition 2, it follows that X is a MinES for F . ��

Condition (2) of Proposition 3 is checked at line 5 of Algorithm 1 when the
SMT oracle is invoked. If this oracle call returns true (line 6) then X is a MinES
for F and, thus, an MSA can be extracted. Otherwise, X is extended2 (line 9)
and its complement (minFS) is added to the set H, which contains the set of
minFSes computed so far.

Table 1. MSA computation for F = ((a+ b ≥ 0)∨ (c ≤ 0))∧ ((a+ b ≥ 0)∨ (b−a ≤ 0))

MinHS(H) Solve(∃X∀Y .F) I ← var(F) \ Grow(X,F) H = H ∪ I

X ← {∅} false I ← {b, c} {{b, c}}
X ← {b} false I ← {a} {{b, c}, {a}}
X ← {a, c} true {a = 1, c = 0} is an MSA of F

An example of a run of Algorithm 1 is shown in Table 1. Column 1 contains
the set X of variables identified by the minimum hitting set of H. Whenever
Solve(∃X∀Y .F) returns true, the set X is extended by the Grow procedure (col-
umn 3) and its complement (minFS) is assigned to I. The last column shows the
current H, representing the set of all minFSes computed so far. In the last row,
Solve(∃{a,c}∀{b}.F) returns true, with a = 1, c = 0. This means that {a, c} is a
MinES, and a = 1, c = 0 is an MSA.

4 Preliminary Experimental Results

This section evaluates the proposed approach to computing a minimum satisfying
assignment. The experiments were performed in Ubuntu Linux on an Intel Xeon
E5-2630 2.60 GHz processor with 64 GByte of memory. The time limit was set
to 3600 s and the memory limit to 10 GByte.

The proposed approach was implemented in a prototype called MINT (Mini-
mum satisfyINg assignmenT extractor). The MINT MSA extractor is written as
a Python script, which instruments the interaction between a minimum hitting
set enumerator and an SMT solver, as described in Algorithm 1. The mini-
mum hitting set enumerator (see line 3 of Algorithm 1) was implemented as an
incremental MaxSAT solver3 following the ideas of [17]. The MaxSAT solver was
2 The Grow procedure is implemented as a sequence of SMT oracle calls, each increasing

set X.
3 Indeed, one can observe that Algorithm 1 requires the minimum hitting set solver

to report new hitting sets on demand, i.e. when a new counterexample is detected.
This can be done in an incremental fashion [10], e.g. by adding new clauses when
necessary and computing new solutions on demand while keeping all the information
found during the previous calls.
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implemented on top of the well-known SAT solver Glucose 3.3 [1]. The MINT
extractor was implemented in the PySMT framework [11], which enables it to
use any SMT solver capable of dealing with the theories of input SMT formulas,
e.g. Z3 [6], CVC4 [2], Yices2 [9], etc. In contrast, the state-of-the-art MSA solver
MISTRAL [8] can work only with formulas in the theory of linear arithmetic
over integers (LIA formulas). In the experimental evaluation, CVC4 was used in
MINT as a backend SMT solver because CVC44 performed reasonably well in
the SMT competition SMT-COMP155 winning a few benchmark subcategories
in the QF LIA category, and it also supports LIA formulas with quantifiers.

Additionally, an improved version of MINT was implemented, which is
referred to as MINT+. The only difference between MINT and MINT+ is that
MINT+ tries to bootstrap the main algorithm with sets of size 1 that need
to be hit in order to get an MSA. More precisely, the procedure traverses all
variables of y ∈ var(F) and decides satisfiability of the formula ∀y. F . If the
formula is unsatisfiable than set {y} is a MinFS of F of size 1, i.e. each MSA
of F necessarily hits it. The bootstrapping procedure is called before running
Algorithm 1. To assess the efficiency of MINT and MINT+, they were compared
to the state-of-the-art MSA extractor MISTRAL.6

4.1 Original Benchmark Instances

To evaluate the performance of MINT and MINT+, we used the benchmark set
referred to as CAV12, which was proposed and also considered in [8]. According
to [8], the benchmark constraints were generated by the program analysis tool
Compass (e.g. see [7]). In this setting, MSAs are important for reducing the
number of queries, which help users diagnose error reports as real bugs or false
alarms. Thus, the size of an MSA greatly affects the quality of queries presented
to users (and, hence, also the time spent on debugging users’ programs). The
total number of variables for these instances varies from 1 to 53 and the total
number of instances in the benchmark set is 373.7 The relative size of MSAs for
the CAV12 instances varies from 0 % (i.e. an instance is a tautology) to 100 %
(i.e. an MSA necessarily contains all variables) with the average size ≈ 58%.

The performance of the chosen competitors is shown in Fig. 1. Note that
the Y-axis of Fig. 1 is scaled logarithmically. As one can observe, the CAV12
instances are trivial to solve for all the competitors. All competitors spend about
10 s to solve the hardest instances in the benchmark suite. The averate running
4 https://github.com/CVC4/CVC4.
5 http://smtcomp.sourceforge.net/2015.
6 Note that the original distribution of MISTRAL does not have a command-line

interface. But one can easily create one since the source code of the tool is available
online at https://www.cs.utexas.edu/∼tdillig/mistral.

7 We also tested the proposed approach on the standard SMTLIB benchmarks. How-
ever, minimum satisfying assignments for the majority of benchmarks in the QF LIA
category of the SMTLIB benchmarks have trivial minimum satisfying assignments,
which contain all variables of the original formula. Therefore, considering these
instances makes no sense.

https://github.com/CVC4/CVC4
http://smtcomp.sourceforge.net/2015
https://www.cs.utexas.edu/~tdillig/mistral
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Fig. 1. Performance of MINT, MINT+, and MISTRAL on the CAV12 benchmark
instances.

time for MINT, MINT+, and MISTRAL is 1.59 s, 1.23 s and 0.33 s, respectively.
A possible explanation of why the new approach is about 0.1 second slower
for most of the instances than MISTRAL (it takes 0.1 s vs 0.001 s spent on
these instances by MISTRAL) is that it is implemented as a Python script,
which requires some time to initialize the Python interpreter environment, while
MISTRAL is run as a binary executable written in C++.

4.2 Hardened Benchmarks

The results for the CAV12 benchmark set suggest to consider harder instances in
order to conduct a reasonable performance evaluation of the proposed approach.
One way to create harder instances is to combine the existing CAV12 benchmarks
with unsatisfiable formulas that are hard to solve, i.e. for each SMT formula F
(from the CAV12 benchmark set) defined over variables X one needs to consider
F ∨ U , where U is an unsatisfiable formula over variables Y s.t. X ∩ Y = ∅.
Notice that, by construction, an MSA of formula F is also an MSA of F ∨U , and
vice versa. As unsatisfiable components U , we considered well-known families of
unsatisfiable formulas, which are proved to be hard to refute by resolution-based
reasoning, namely pigeon-hole principle formulas PHPn [20] and formulas GTn,
which are based on the ordering principle that any partial order on a finite set
must have a maximal element [4]. Given 373 CAV12 instances F , the following
experiments considered n ranging from 5 to 7 for both PHPn and GTn resulting
in 3 combined benchmark sets F ∨ PHPn and 3 benchmark sets F ∨ GTn, each
also having 373 instances. The translation of CNF formulas PHPn and GTn

was done in the standard way of encoding CNF formulas into integer linear
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programming sets of constraints.8 The number of Boolean variables in formulas
PHPn and GTn is n × (n − 1), which results in 2 × n × (n − 1) integer variables
appearing in the integer linear constraints encoding the original CNF formulas.
Thus, the largest number of additional variables in the combination F ∨ U is
84 (for n = 7) and, hence, the largest total number of variables among the
constructed benchmarks is 137.

The performance of the considered solvers shown for the F ∨PHPn formulas
is detailed in Fig. 2. The cactus plot shown in Fig. 2a illustrates how the perfor-
mance of the competitors changes with the growth of n from 5 to 7. (Again, the
Y-axis is scaled logarithmically in the cactus plot shown in Fig. 2a.) Observe that
MINT+ and MINT are almost not affected by the unsatisfiable part of the for-
mulas. However, the performance of MISTRAL drops significantly even for n = 5
(recall that for the CAV12 benchmarks the average running time of MISTRAL
was 0.33 s while for F ∨PHP5 it is 149.4 s). This tendency towards increasing the
running time dramatically for MISTRAL is persistent for n ∈ {6, 7}. The num-
ber of instances of F ∨PHP6 and F ∨PHP7 solved by MISTRAL is 195 and 9,
respectively, whereas MINT+ can solve 373 and 371 and MINT solves 369 and
365 instances, respectively. The advantage of MINT+ over MISTRAL is con-
firmed by the scatter plot shown in Fig. 2b aggregating all instances F ∨PHPn,
n ∈ {5, 6, 7}. As detailed in Fig. 3, similar results are shown by the new approach
for the F ∨ GTn formulas while MISTRAL performs even worse (compared to
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Fig. 2. Performance of MINT, MINT+, and MISTRAL on the F ∨ PHPn instances.

8 For each variable x of the original CNF, two integer variables x+ and x− are intro-
duced s.t. 0 ≤ x+ ≤ 1 and 0 ≤ x− ≤ 1. Variables x+ and x− cannot take value 0 or
1 at the same, which is forced by adding constraints of the form x+ + x− = 1. Each
clause l1 ∨ . . . ∨ lm is translated into constraint x1∗ + . . . + xm∗ ≥ 1, where each xi∗
represents either xi+ or xi− depending on the polarity of literal li.
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Fig. 3. Performance of MINT, MINT+, and MISTRAL on the F ∨ GTn instances.

195 F ∨ PHP6 instances solved it solves only 18 instances of F ∨ GT6). This
confirms that for harder formulas the new approach significantly overperforms
MISTRAL. This clear advantage of the new algorithm over MISTRAL is caused
not only by the hardness of the PHPn and GTn formulas (since it does not
affect the new approach that much) but also by a larger number of variables
compared to the original CAV12 benchmark instances, which means that the
proposed approach scales better in practice being able to solve harder problem
instances.

5 Conclusions

MSAs [8] are generalizations of prime implicants for first-order logic formulas
that find applications in a range of practical settings [7,15,24]. Recent work pro-
posed a branch-and-bound approach for computing MSAs. In contrast, this paper
proposes the use of an implicit hitting set solution [5,12–14,16,19,23] for com-
puting MSAs. Experimental results, collected on challenging problem instances
obtained from those used in earlier work [8], indicate significant performance
gains compared to the earlier work [8].

The work described in this paper can be extended in different ways. First,
more efficient algorithms for MSA will motivate additional applications and
revisiting existing ones. Second, the growing range of uses of implicit hitting
sets motivates devising more efficient algorithms.
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