
Compact-Table: Efficiently Filtering Table
Constraints with Reversible Sparse Bit-Sets

Jordan Demeulenaere1, Renaud Hartert1, Christophe Lecoutre2,
Guillaume Perez3, Laurent Perron4, Jean-Charles Régin3,

and Pierre Schaus1(B)

1 UCLouvain, Louvain-la-Neuve, Belgium
pschaus@gmail.com

2 CRIL, Univ. Artois and CNRS, 62300 Lens, France
3 University of Nice, Nice, France

4 Google, Paris, France

Abstract. In this paper, we describe Compact-Table (CT), a bitwise
algorithm to enforce Generalized Arc Consistency (GAC) on table con-
straints. Although this algorithm is the default propagator for table
constraints in or-tools and OscaR, two publicly available CP solvers,
it has never been described so far. Importantly, CT has been recently
improved further with the introduction of residues, resetting operations
and a data-structure called reversible sparse bit-set, used to maintain
tables of supports (following the idea of tabular reduction): tuples are
invalidated incrementally on value removals by means of bit-set opera-
tions. The experimentation that we have conducted with OscaR shows
that CT outperforms state-of-the-art algorithms STR2, STR3, GAC4R,
MDD4R and AC5-TC on standard benchmarks.

1 Introduction

Table constraints, also called extension(al) constraints, explicitly express the
allowed combinations of values for the variables they involve as sequences of
tuples, which are called tables. Table constraints can theoretically encode any
kind of constraints and are among the most useful ones in Constraint Pro-
gramming (CP). Indeed, they are often required when modeling combinatorial
problems in many application fields. The design of filtering algorithms for such
constraints has generated a lot of research effort, see [1,10,12,17,20,21,23,30,33].

Over the last decade, many developments have thus been achieved for enforc-
ing the well-known property called Generalized Arc Consistency (GAC) on
binary and/or non-binary extensionally defined constraints. Among successful
techniques, we find:

– bitwise operations that allow performing parallel operations on bit vectors.
Already exploited during the 70’s [27,32], they have been applied more recently
to the enforcement of arc consistency on binary constraints [3,22].

c© Springer International Publishing Switzerland 2016
M. Rueher (Ed.): CP 2016, LNCS 9892, pp. 207–223, 2016.
DOI: 10.1007/978-3-319-44953-1 14

208 J. Demeulenaere et al.

– residual supports (residues) that store the last found supports of each value.
Initially introduced for ensuring optimal complexity [2], they have been shown
efficient in practice [18,19,24] when used as simple sentinels.

– tabular reduction, which is a technique that dynamically maintains the tables
of supports. Based on the structure of sparse sets [4,16], variants of Simple
Tabular Reduction (STR) have been proved to be quite competitive [17,20,33].

– resetting operations that saves substantial computing efforts in some particu-
lar situations. They have been successfully applied to the algorithm GAC4 [30].

In this paper, we introduce a very efficient GAC algorithm1 for table con-
straints that combines the use of bitwise operations, residual supports, tabular
reduction, and resetting operations. It is called Compact-Table (CT), and origi-
nates from or-tools, the Google solver that won the latest MiniZinc Challenges. It
is important to note that or-tools developers prefer to focus on highly-optimized
implementations of a few important (global) constraints instead of having many
of them. Through the years, CT has reached a good level of maturity because
it has been continuously improved and extended with many cutting edge ideas
such as those introduced earlier. Unfortunately, the core algorithm of CT has
not been described in the literature so far2 and is thus seldom used as a reference
for practical comparisons. The first version of CT implemented in or-tools, with
a bit-set representation of tables, dates back to 2012, whereas the version of CT
presented in this paper is exactly the last one implemented in OscaR [29].

Outline. After presenting related works in Sect. 2, we introduce some technical
background in Sect. 3. Then, we recall in Sect. 4 usual state restoration mech-
anisms implemented in CP solvers, and describe reversible sparse bit-sets in
Sect. 5. In Sect. 6, we describe our algorithm CT. Before concluding, we present
in Sect. 7 the results of an experimentation we have conducted with CT and its
contenders on a large variety of benchmarks.

2 Related Work

Propagators for table constraints are filtering procedures used to enforce GAC.
Given the importance of table constraints, it is not surprising that much research
has been carried out in order to find efficient propagators. This section briefly
describes the most efficient ones.

Generic Algorithms. On the one hand, GAC3 is a classical general-purpose GAC
algorithm [25] for non-binary constraints. Each call to this algorithm for a con-
straint requires testing if each value is still supported by a valid tuple accepted
by the constraint. Several improvements to fasten the search for a support gave
birth to variants such as GAC2001 [2] and GAC3rm [19]. Unfortunately, the

1 We are aware of an independent work [34] on a similar topic, but hadn’t the oppor-
tunity of reading it at the time of writing our paper.

2 Note that some parts of this paper were published in a Master Thesis report [7].

Compact-Table: Efficiently Filtering Table Constraints 209

worst-case time complexity of all these algorithms grows exponentially with the
arity of the constraints. On the other hand, GAC4 [28] is a value-based algorithm,
meaning here that for each value, it maintains a set of valid tuples supporting
it. Each time a value is removed, all supporting tuples are removed from the
associated sets, which allows us to identify values without any more supports.
GAC4R is a recent improvement of GAC4 [30], which recomputes the sets of
supporting tuples from scratch (referred to as a resetting operations) when it
appears to be less costly than updating them based on the removed values.

AC5 Instantiations. In [12], Mairy et al. introduce several instantiations of
the generic AC5 algorithm for table constraints, the best of them being AC5-
TCOptSparse. This algorithm shares some similarities with GAC4 since it pre-
computes lists of supporting tuples which allows us to retrieve efficiently new
supports by iterating over these lists. Note that a reversible integer, i.e., an inte-
ger storage location with a facility to restore its successive values, is used to
indicate the current position of a support in each list. This algorithm is imple-
mented in Comet, and has been shown to be efficient on ternary and quaternary
constraints.

Simple Tabular Reduction. STR1 [33] and STR2 [17] are algorithms that glob-
ally enforce GAC by traversing the constraint tables while dynamically main-
taining them: each call to the algorithm for a constraint removes the invalid
tuples from its table. The improvements brought in STR2 avoid unnecessary
operations by considering only relevant subsets of variables when checking the
validity of a tuple, and collecting supported values. Contrary to its predecessors,
STR3 [20] is a fine-grained (or value-based) algorithm. For each value, it initially
computes a static array of tuples supporting it, and keeps a reversible integer
curr that indicates the position of the last valid tuple in the array. STR3 also
maintains the set of valid tuples. STR3 is shown to be complementary to STR2,
being more efficient when the tables are not reduced drastically during search.

Compressed Representations. Other algorithms gamble on the compression of
tables to reduce the time needed to ensure GAC. The most promising data
structure allowing a more compact representation is the Multi-valued Decision
Diagram (MDD) [31], but note that the order of variables used to build an
MDD may significantly impact its size. Two notable algorithms using MDDs
as main data structure are mddc [6] and MDD4R [30]. The former does not
modify the decision diagram and performs a depth-first search of the MDD
during propagation to detect which parts of the MDD are consistent or not.
MDD4R dynamically maintains the MDD by deleting nodes and edges that do
not belong to a solution. Each value is matched with its corresponding edges in
the MDD, so, when a value has none of its edges present in the MDD, it can be
removed. On the other hand, some other forms of compression have been studied
from the concepts of compressed tuples [14,35], short supports [13] and sliced
tables [11].

210 J. Demeulenaere et al.

3 Technical Background

A constraint network (CN) N is composed of a set of n variables and a set of
e constraints. Each variable x has an associated domain, denoted by dom(x),
that contains the finite set of values that can be assigned to it. Each constraint c
involves an ordered set of variables, called the scope of c and denoted by scp(c),
and is semantically defined by a relation, denoted by rel(c), which contains the
set of tuples allowed for the variables involved in c. The arity of a constraint c is
|scp(c)|, i.e., the number of variables involved in c. A (positive) table constraint
c is a constraint such that rel(c) is defined explicitly by listing the tuples that
are allowed by c.

Example 1. The constraint x �= y with x ∈ {1, 2, 3} and y ∈ {1, 2} can be
alternatively defined by the table constraint c such that scp(c) = {x, y} and
rel(c) = {(1, 2), (2, 1), (3, 1), (3, 2)}. We also write:

〈x, y〉 ∈ T with T = 〈(1, 2), (2, 1), (3, 1), (3, 2)〉
Let τ = (a1, a2, . . . , ar) be a tuple of values associated with an ordered set

of variables X = {x1, x2, . . . , xr}. The ith value of τ is denoted by τ [i] or τ [xi].
The tuple τ is valid iff ∀i ∈ 1..r, τ [i] ∈ dom(xi). An r-tuple τ is a support on
the r-ary constraint c iff τ is a valid tuple that is allowed by c. If τ is a support
on a constraint c involving a variable x and such that τ [x] = a, we say that τ
is a support for (x, a) on c. Generalized Arc Consistency (GAC) is a well-known
domain-filtering consistency defined as follows:

Definition 1. A constraint c is generalized arc consistent (GAC) iff ∀x ∈
scp(c),∀a ∈ dom(x), there exists at least one support for (x, a) on c. A CN
N is GAC iff every constraint of N is GAC.

Enforcing GAC is the task of removing from domains all values that have
no support on a constraint. Many algorithms have been devised for establishing
GAC according to the nature of the constraints. For table constraints, STR [33]
is such an algorithm: it removes invalid tuples during search of supports using
a sparse set data structure which separates valid tuples from invalid ones. This
method of seeking supports improves search time by avoiding redundant tests
on invalid tuples that have already been detected as invalid during previous
GAC enforcements. STR2 [17], an optimization of STR, limits some operations
concerning the validity of tuples and the identification of supports, through the
introduction of two sets called Ssup and Sval (described later in Sect. 6).

4 Reversible Objects and Implementation Details

Trail and Timestamping. The issue of storing related states of the solving process
is essential in CP. In many solvers3, a general mechanism is used for doing and
undoing (on backtrack) the current state. This mechanism is called a trail and
3 One notable exception is Gecode, a copy-based solver.

Compact-Table: Efficiently Filtering Table Constraints 211

it was first introduced in [9] for implementing non-deterministic search. A trail
is a stack of pairs (location, value) where location stands for any piece of mem-
ory (e.g., a variable), which can be restored when backtracking. Typically, at each
search node encountered during the solving process, the constraint propagation
algorithm is executed. A same filtering procedure (propagator) can thus be exe-
cuted several times at a given node. Consequently, if one is interested in storing
some information concerning a filtering procedure, the value of a same memory
location can be changed several times. However, stamping that is part of the “folk-
lore” of programming [15] can be used to avoid storing a same memory location
on the trail more than once per search node. The idea behind timestamping is
that only the final state of a memory location is relevant for its restoration on
backtrack. The trail contains a general time counter that is incremented at each
search node, and a timestamp is attached to each memory location indicating the
time at which its last storage on the trail happened. If a memory location changes
and its timestamp matches the current time of the trail then there is no need to
store it again. CP solvers generally expose some “reversible” objects to the users
using this trail+timestamping mechanism. The most basic one is the reversible
version of primitive types such as int or long values. In the following, we denote
by rint and rlong the reversible versions of int and long primitive types.

Reversible Sparse Sets. Reversible primitive types can be used to implement
more complex data structures such as reversible sets. It was shown in [16] how
to implement a reversible set using a single rint that represents the current
size (limit) of the set. In this structure, which is called reversible sparse set, an
array of size n is used to store the permutation from 0 to n − 1. All values in
this permutation array at indices smaller than or equal to a variable limit are
considered as part of the set, while the others are considered as removed. When
iterating on current values of the set (with decreasing indices from limit to 0),
the value at the current index can be removed in O(1) by just swapping it with
the value stored at limit and decrementing limit. Making a sparse set reversible
just requires managing a single rint for limit. On backtrack, when the limit is
restored, all concerned removed values are restored in O(1).

Domains and Deltas. In OscaR [29], the implementation of domains relies on
reversible sparse sets. One advantage is that one can easily retrieve the set of val-
ues removed from a domain between any two calls to a given filtering procedure.
All we need to store in the filtering procedure is the last size of the domain. The
delta set (set of values removed between the two calls) is composed of all the
values located between the current size and the last recorded size. More details
on this cheap mechanism to retrieve the delta sets can be found in [16].

5 Reversible Sparse Bit-Sets

This section describes the class RSparseBitSet that is the main data structure
for our algorithm to maintain the supports. In what follows, when we refer to
an array t, t[0] denotes the first element (indexing starts at 0) and t.length the
number of its cells (size). Also, 0k will stand for a sequence of k bits set to 0.

212 J. Demeulenaere et al.

Algorithm 1. Class RSparseBitSet
1 words: array of rlong // words.length = p

2 index: array of int // index.length = p

3 limit: rint
4 mask: array of long // mask.length = p

5 Method isEmpty(): Boolean
6 return limit = −1

7 Method clearMask()
8 foreach i from 0 to limit do
9 offset ← index[i]

10 mask[offset] ← 064

11 Method reverseMask()
12 foreach i from 0 to limit do
13 offset ← index[i]
14 mask[offset] ← ˜mask[offset] // bitwise NOT

15 Method addToMask(m: array of long)
16 foreach i from 0 to limit do
17 offset ← index[i]
18 mask[offset] ← mask[offset] — m[offset] // bitwise OR

19 Method intersectWithMask()
20 foreach i from limit downto 0 do
21 offset ← index[i]
22 w ← words[offset] &mask[offset] // bitwise AND

23 words[offset] ← w
24 if w = 064 then
25 index[i] ← index[limit]
26 index[limit] ← offset

27 limit ← limit − 1

28 Method intersectIndex(m: array of long): int
/* Post: returns the index of a word where the bit-set

intersects with m, −1 otherwise */

29 foreach i from 0 to limit do
30 offset ← index[i]
31 if words[offset] & m[offset] �= 064 then
32 return offset

33 return −1

The class RSparseBitSet, which encapsulates four fields and 6 methods, is
given in Algorithm 1. One important field is words, an array of p 64-bit words
(actually, reversible long integers), which defines the current value of the bit-set:

Compact-Table: Efficiently Filtering Table Constraints 213

the ith bit of the jth word is 1 iff the (j − 1) × 64 + ith element of the (initial)
set is present. Initially, all words in this array have all their bits at 1, except
for the last word that may involve a suffix of bits at 0. For example, if we want
to handle a set initially containing 82 elements, then we build an array with
p = �82/64� = 2 words that initially looks like:

Because, in our context, only non-zero words (words having at least one bit
set to 1) are relevant when processing operations on the bit-set, we rely on the
sparse-set technique by managing in an array index the indices of all words:
the indices of all non-zero words are in index at positions less than or equal to
the value of a variable limit, and the indices of all zero-words are in index at
positions strictly greater than limit. For our example, we initially have:

If we suppose now that the 66 first elements of our set above are removed,
we obtain:

The class invariant describing the state of a reversible sparse bit-set is the
following:

– index is a permutation of [0, . . . , p − 1], and
– words[index[i]] �= 064 ⇔ i ≤ limit, ∀i ∈ 0..p − 1

Note that the reversible nature of our object comes from (1) an array of
reversible long (denoted rlong) (instead of simple longs) to store the bit words,
and (2) the reversible prefix size of non-zero words by using a reversible int
(rint).

A RSparseBitSet also contains a local temporary array, called mask. Is is
used to collect elements with Method addToMask(), and can be cleared and
reversed too. A RSparseBitSet can only be modified by means of the method
intersectWithMask() which is an operation used to intersect with the elements
collected in mask. An illustration of the usage of these methods is given in next
example.

214 J. Demeulenaere et al.

Fig. 1. RSparseBitSet example

Example 2. Figure 1 illustrates the use of Methods addToMask() and intersect
WithMask(). We assume that the current state of the bit-set is given by the value
of words, and that clearMask() has been called such that mask is initially empty.
Then two bit-sets are collected in mask by calling addToMask(). The value of mask
is represented after these two operations. Finally intersectWithMask() is executed
and the new value of the bit-set words is given at the last row of Fig. 1.

We now describe the implementation of the methods in RSparseBitSet.
Method isEmpty() simply checks if the number of non-zero words is different
from zero (if the limit is set to −1, it means that all words are non-zero). Method
clearMask() sets to 0 all words of mask corresponding to non-zero words of words,
whereas Method reverseMask() reverses all words of mask. Method addToMask()
applies a word by word logical bit-wise or operation. Once again, notice that
this operation is only applied to words of mask corresponding to non-zero words
of words. Method intersectMask() considers each non-zero word of words in turn
and replaces it by its intersection with the corresponding word of mask. In case
the resulting new word is zero, it is swapped with the last non-zero word and
the value of limit is decremented. Finally, Method intersectIndex() checks if a
given bit-set (array of longs) intersects with the current bit-set: it returns the
index of the first word where an intersection can be proved, −1 otherwise.

6 Compact-Table (CT) Algorithm

As STR2 and STR3, Compact-Table (CT) is a GAC algorithm that dynamically
maintains the set of valid supports regarding the current domain of each variable.
The main difference is that CT is based on an object RSparseBitSet. In this set,
each tuple is indexed by the order it appears in the initial table. Invalid tuples
are removed during the initialization as well as values that are not supported by
any tuple. The class ConstraintCT, Algorithm 2, allows us to implement any
positive table constraint c while running the CT algorithm to enforce GAC.

6.1 Fields

As fields of Class ConstraintCT, we first find scp for representing the scope of
c and currTable for representing the current table of c by means of a reversible
sparse bit-set. If 〈τ0, τ1, . . . , τt−1〉 is the initial table of c, then currTable is a

Compact-Table: Efficiently Filtering Table Constraints 215

RSparseBitSet object (of initial size t) such that the value i is contained (is set
to 1) in the bit-set if and only if the ith tuple is valid:

i ∈ currTable ⇔ ∀x ∈ scp(c), τi[x] ∈ dom(x)

We also have three fields Sval, Ssup and lastSizes in the spirit of STR2. The
set Sval contains variables whose domains have been reduced since the previous
invocation of the filtering algorithm on c. To set up Sval, we need to record the
domain size of each modified variable x right after the execution of CT on c: this
value is recorded in lastSizes[x]. The set Ssup contains unfixed variables (from
the scope of the constraint c) whose domains contain each at least one value
for which a support must be found. These two sets allow us to restrict loops on
variables to relevant ones.

We also have a field supports containing static data. During the set up of the
table constraint c, CT also computes a static array of words supports[x, a], seen
as a bit-set, for each variable-value pair (x, a) where x ∈ scp(c) ∧ a ∈ dom(x):
the bit at position i in the bit-set is 1 if and only if the tuple τi in the initial
table of c is a support for (x, a).

Fig. 2. Illustration of the data structures after the initialization of 〈x, y, z〉 ∈ T . The
tuple (a, c, b) will not be indexed and d will be removed from dom(y).

Example 3. Figure 2 shows an illustration of the content of those bit-sets after
the initialization of the following table constraint 〈x, y, z〉 ∈ T , with:

– dom(x) = {a, b}, dom(y) = {a, b, d}, dom(z) = {a, b, c}
– T = 〈(a, a, a), (a, a, b), (a, b, c), (b, a, a), (a, c, b), (a, b, b), (b, a, b), (b, b, a), (b,

b, b)〉
The tuple (a, c, b) is initially invalid because c /∈ dom(y), and thus will not be
indexed. Value d will be removed from dom(y) given that it is not supported by
any tuple.

Finally, we have an array residues such that for each variable-value pair
(x, a), residues[x, a] denotes the index of the word where a support was found
for (x, a) the last time one was sought for.

216 J. Demeulenaere et al.

Algorithm 2. Class ConstraintCT
1 scp: array of variables // Scope

2 currTable: RSparseBitSet // Current table

3 Sval, Ssup // Temporary sets of variables

4 lastSizes // lastSizes[x] is the last size of the domain of x
5 supports // supports[x, a] is the bit-set of supports for (x, a)
6 residues // residues[x, a] is the last found support for (x, a)

7 Method updateTable()
8 foreach variable x ∈ Sval do
9 currTable.clearMask()

10 if |Δx| < |dom(x)| then // Incremental update

11 foreach value a ∈ Δx do
12 currTable.addToMask(supports[x, a])

13 currTable.reverseMask()

14 else // Reset-based update

15 foreach value a ∈ dom(x) do
16 currTable.addToMask(supports[x, a])

17 currTable.intersectWithMask()
18 if currTable.isEmpty() then
19 break

20 Method filterDomains()
21 foreach variable x ∈ Ssup do
22 foreach value a ∈ dom(x) do
23 index ← residues[x, a]
24 if currTable.words[index] & supports(x, a)[index] = 064 then
25 index ← currTable.intersectIndex(supports[x, a])
26 if index �= −1 then
27 residues[x, a] ← index

28 else
29 dom(x) ← dom(x) \ {a}

30 lastSize[x] ← |dom(x)|

31 Method enforceGAC()
32 Sval ← {x ∈ scp : |dom(x)| �= lastSize[x]}
33 foreach variable x ∈ Sval do
34 lastSize[x] ← |dom(x)|
35 Ssup ← {x ∈ scp : |dom(x)| > 1}
36 updateTable()
37 if currTable.isEmpty() then
38 return Backtrack

39 filterDomains()

Compact-Table: Efficiently Filtering Table Constraints 217

6.2 Methods

The main method in ConstraintCT is enforceGAC(). After the initialization of
the sets Sval and Ssup, CT updates currTable to filter out (indices of) tuples
that are no more supports, and then considers each variable-value pair to check
whether these values still have a support.

Updating the Current Table. For each variable x ∈ Sval, i.e., each variable x
whose domain has changed since the last time the filtering algorithm was called,
updateTable() performs some operations. This method assumes an access to
the set of values Δx removed from dom(x) since the last call to enforceGAC().
There are two ways of updating currTable, either incrementally or from scratch
after resetting. Note that the idea of using resets has been proposed in [30] and
successfully applied to GAC4 and MDD4, with the practical interest of saving
computational effort in some precise contexts. This is the strategy implemented
in updateTable(), by considering a reset-based computation when the size of the
domain is smaller than the number of deleted values.

In case of an incremental update (line 10), the union of the tuples to be
removed is collected by calling addToMask() for each bit-set (of supports) cor-
responding to removed values, whereas in case of a reset-based update (line 14),
we perform the union of the tuples to be kept. To get a mask ready to apply,
we just need to reverse it when it has been built from removed values. Finally,
the (indexes of) tuples of currTable not contained in the mask, built from x,
are directly removed by means of intersectWithMask(). When there are no more
tuples in the current table, a failure is detected, and updateTable() is stopped
by means of a loop break.

Filtering of Domains. Values are removed from the domain of some vari-
ables during the search of a solution, which can lead to inconsistent values in
the domain of other variables. As currTable is a reversible and dynamically
maintained structure, the value of some bits changes from 1 to 0 when tuples
become invalid (or from 0 to 1 when the search backtracks). On the contrary,
the supports bit-sets are only computed at the creation of the constraint and
are not maintained during search. It follows from the definition of those bit-sets
that (x, a) has a valid support if and only if

(currTable ∩ supports[x, a]) �= ∅ (1)

Therefore, each time a tuple becomes invalid, the constraint must check this
condition for every variable value pair (x, a) such that a ∈ dom(x), and remove
a from dom(x) if the condition is not satisfied any more. This operation is effi-
ciently implemented in filterDomains() with the help of residues and the method
intersectIndex().

Example 4. The same set of tuples as in Example 3 is considered. Suppose now
that a was removed from dom(x) (by another constraint) after the initialization.

218 J. Demeulenaere et al.

Given that the domain of x is reduced, when updateTable() is called by enforce-
GAC(), all tuples supporting a (because Δx = {a}) will be invalidated. Figure 3a
illustrates the intermediary bit-sets used to compute the new value currTableout

from currTablein and supports[x, a]. Then filterDomains() computes for each
variable-value pair (xi, ai) (with xi ∈ Ssup and ai ∈ dom(x)) the intersection of
its associated set of supports with currTable as shown in Fig. 3b. Given that
the intersection for supports[z, c] and currTable is empty, c is removed from
dom(z).

Fig. 3. Illustration of enforceGAC() after the removal of a from dom(x).

6.3 Improvements

The algorithm in Sect. 6.2 can be improved to avoid unnecessary computations
in some cases.

Filtering Out Bounded Variables. The initialization of Sval at line 32 can be only
performed from unbound variables (and the last assigned variable), instead of
the whole scope. We can maintain them in a reversible sparse set.

Last Modified Variable. It is not necessary to attempt to filter values out from
the domain of a variable x if this was the only modified variable since the last
call to enforceGAC(). Indeed, when updateTable() is executed, the new state of
currTable will be computed from dom(x) or Δx only. Because every value of
x had a support in currTable the last time the propagator was called, we can
omit filtering dom(x) by initially removing x from Ssup.

7 Experiments

We experimented CT on 1, 621 CSP instances involving (positive) table con-
straints (15 GB of uncompressed files in format XCSP 2.1). This corresponds to
a large variety of instances, taken from 37 series. For guiding search, we used
binary branching with domain over degree as variable ordering heuristic and
min value as value ordering heuristic. A timeout of 1,000 s was used for each

Compact-Table: Efficiently Filtering Table Constraints 219

instance. The tested GAC algorithms are CT, STR2 [17], STR3 [20], GAC4
[28,30], GAC4R [30], MDDR [30] and AC5TCRecomp [26]. All scripts, codes
and benchmarks allowing to reproduce our experiments are available at https://
bitbucket.org/pschaus/xp-table. The experiments were run on a 32-core machine
(1400MHz cpu) with 100GB using Java(TM) SE Runtime Environment (build
1.8.0 60-b27) with 10GB of memory allocated (-Xmx option).

Performance Profiles. Let ti, s represent the time obtained with filtering algo-
rithm s ∈ S on instance i ∈ I. The performance ratio is defined as follows: ri, s =

ti, s
min{ti, s|s∈S} . A ratio ri, s = 1 means that s was the fastest on instance i. The
performance profile [8] is a cumulative distribution function of the performance
of s (speedup) compared to other algorithms: ρs(τ) = 1

|I| × |{i ∈ I|ri, s ≤ τ}|.
Our results are visually aggregated to form a performance profile in Fig. 4

generated by means of the online tool [5] http://sites.uclouvain.be/performance-
profile. Note that we filtered out the instances that (i) could not be solved within
1,000 s by all algorithms (ii) were solved in less than 2 s by the slowest algo-
rithm, and (iii) required less than 500 backtracks. The final set of instances
used to build the profile is composed of 227 instances. An interactive perfor-
mance profile is also available at https://www.info.ucl.ac.be/∼pschaus/assets/
publi/performance-profile-ct to let the interested reader deactivate some family
of instances to analyze the results more closely.

Fig. 4. Performance profile

Table 1 reports the speedup statistics of CT over the other algorithms. A first
observation is that CT is the fastest algorithm on 94.47 % of the instances.
Among all tested algorithms, AC5TCRecomp obtains the worse results. Then it
is not clear which one among STR2, STR3, GAC4 and GAC4R is the second
best algorithm. Based on the geometric mean speedup, STR3 seems to be the
second best algorithm followed by STR2, GAC4R and MDD4R. Importantly,

https://bitbucket.org/pschaus/xp-table
https://bitbucket.org/pschaus/xp-table
http://sites.uclouvain.be/performance-profile
http://sites.uclouvain.be/performance-profile
https://www.info.ucl.ac.be/~pschaus/assets/publi/performance-profile-ct
https://www.info.ucl.ac.be/~pschaus/assets/publi/performance-profile-ct

220 J. Demeulenaere et al.

Table 1. Speedup analysis of CT over the other algorithms. Column ‘Best2’ corre-
sponds to a virtual second best solver (minimum time of all algorithms except CT).

Speedup STR2 STR3 GAC4 GAC4R MDD4R AC5-TC Best2

Geometric mean 5.09 4.03 7.05 6.15 6.57 19.22 2.75

Min 0.76 1.09 0.92 1.13 0.13 1.05 0.13

Max 88.58 51.04 173.24 208.52 50.84 1850.82 15.99

St. dev 10.64 4.36 19.67 18.57 9.46 134.13 2.87

one can observe that the geometric mean speedup of CT over the best of the
other algorithms is about 2.75.

Impact of Resetting Operations. In Algorithm 2, the choice of being incremental
or not, when updating currTable, depends on the size of several sets and is thus
dynamic. We propose to analyze two variants of Algorithm 2 when this choice
is static:

– Full incremental (CTI): only the body of the ‘if’ at line 10 is executed (deltas
are systematically used).

– Full re-computation (CTR): only the body of the ‘else’ at line 14 is executed
(domains are systematically used).

The performance profiles with these two variants are given in Fig. 5, and the
speedup table of the static versions over the dynamic one is given in Table 2.

Fig. 5. Performance Profiles with dynamic (CT), recomputation (CTR) and incremen-
tal (CTI) strategies.

As can be seen from both the performance profiles and the speedup table,
the dynamic version using the resetting operations dominates the static ones.
The geometric mean speedup is around 4 % over CTI and 34 % over CTR.

Compact-Table: Efficiently Filtering Table Constraints 221

Table 2. Speedup analysis of the two static variants over CT.

Speedup CTI CTR Best

Geometric mean 1.04 1.34 0.99

Min 0.44 0.53 0.44

Max 3.23 4.39 1.96

St. dev 0.38 0.65 0.27

Contradiction with Previous Results. In [26], AC5TCRecomp was presented as
being competitive with STR2. When we analyzed the code4 of STR2 used in
[26], it appeared that STR2 was implemented in Comet using built-in sets (trig-
gering the garbage collection of Comet). We thus believe that the results and
conclusions in [26] may over-penalize the performance of STR2. Our results also
somehow contradict the results in [30] where STR3 and STR2 were dominated
by MDD4R and GAC4R. When analyzing the performance of the implementa-
tion of STR2 and STR3 used in [30] with or-tools, it appears that it is not as
competitive as that in AbsCon (sometimes slower by a factor of 3). The results
presented in [30] may thus also over-penalize STR2 and STR3.

One additional contribution of this work is a fined-tuned implementation of
the best filtering algorithms for table constraints. The implementation of these
algorithms in OscaR was optimized, and checked to be close in performance
to the ones by the original authors. For CT, STR2 and STR3, a comparison
was made with AbsCon, and for CT, MDD4R and GAC4R, a comparison was
made with or-tools. Our implementation required a development effort of 10
man-months in order to obtain an efficient implementation of each algorithm.
It involved the expertise of several OscaR developers and a deep analysis of
the existing implementations in AbsCon and or-tools. The implementation of all
algorithms used in this paper is open-source and part of OscaR release 3.1.0.

8 Conclusion

In this paper, we have shown that Compact-Table (CT) is a robust algorithm
that clearly dominates state-of-the-art propagators for table constraints. CT
benefits from well-tried techniques: bitwise operations, residual supports, tabu-
lar reduction and resetting operations. We believe that CT can be easily imple-
mented using the reversible sparse bit-set data structure.

References

1. Bessiere, C., Régin, J.-C.: Arc consistency for general constraint networks: prelim-
inary results. In: Proceedings of IJCAI 1997, pp. 398–404 (1997)

2. Bessiere, C., Régin, J.-C., Yap, R., Zhang, Y.: An optimal coarse-grained arc con-
sistency algorithm. Artif. Intell. 165(2), 165–185 (2005)

4 available at http://becool.info.ucl.ac.be.

http://becool.info.ucl.ac.be

222 J. Demeulenaere et al.

3. Bliek, C.: Wordwise algorithms and improved heuristics for solving hard constraint
satisfaction problems. Technical Report 12–96-R045, ERCIM (1996)

4. Briggs, P., Torczon, L.: An efficient representation for sparse sets. ACM Lett.
Programm. Lang. Syst. 2(1–4), 59–69 (1993)

5. Van Cauwelaert, S., Lombardi, M., Schaus, P.: A visual web tool to perform what-if
analysis of optimization approaches. Technical report, UCLouvain (2016)

6. Cheng, K., Yap, R.: An MDD-based generalized arc consistency algorithm for
positive and negative table constraints and some global constraints. Constraints
15(2), 265–304 (2010)

7. Demeulenaere, J.: Efficient algorithms for table constraints. Technical report, Mas-
ter Thesis, under the supervision of P. Schauss, UCLouvain (2015)

8. Dolan, E.D., Moré, J.J.: Benchmarking optimization software with performance
profiles. Math. Program. 91(2), 201–213 (2002)

9. Floyd, R.W.: Nondeterministic algorithms. J. ACM 14(4), 636–644 (1967)
10. Gent, I.P., Jefferson, C., Miguel, I., Nightingale, P.: Data structures for generalised

arc consistency for extensional constraints. In: Proceedings of AAAI 2007, pp. 191–
197 (2007)

11. Gharbi, N., Hemery, F., Lecoutre, C., Roussel, O.: Sliced table constraints: com-
bining compression and tabular reduction. In: Simonis, H. (ed.) CPAIOR 2014.
LNCS, vol. 8451, pp. 120–135. Springer, Heidelberg (2014)

12. Van Hentenryck, P., Mairy, J.-B., Deville, Y.: Optimal and efficient filtering algo-
rithms for table constraints. Constraints 19(1), 77–120 (2014)

13. Jefferson, C., Nightingale, P.: Extending simple tabular reduction with short sup-
ports. In: Proceedings of IJCAI 2013, pp. 573–579 (2013)

14. Katsirelos, G., Walsh, T.: A compression algorithm for large arity extensional con-
straints. In: Proceedings of CP 2007, pp. 379–393 (2007)

15. Knuth, D.E.: The Art of Computer: Combinatorial Algorithms, vol. 4. Addison-
Wesley (2015)

16. de Saint-Marcq, V.C., Schaus, P., Solnon, C., Lecoutre, C.: Sparse-sets for domain
implementation. In: Proceeding of TRICS 2013, pp. 1–10 (2013)

17. Lecoutre, C.: STR2: Optimized simple tabular reduction for table constraints. Con-
straints 16(4), 341–371 (2011)

18. Lecoutre, C., Boussemart, F., Hemery, F.: Exploiting multidirectionality in coarse-
grained arc consistency algorithms. In: Proceedings of CP 2003, pp. 480–494 (2003)

19. Lecoutre, C., Hemery, F.: A study of residual supports in arc consistency. In:
Proceedings of IJCAI 2007, pp. 125–130 (2007)

20. Lecoutre, C., Likitvivatanavong, C., Yap, R.: STR3: A path-optimal filtering algo-
rithm for table constraints. Artif. Intell. 220, 1–27 (2015)

21. Lecoutre, C., Szymanek, R.: Generalized arc consistency for positive table con-
straints. In: Proceedings of CP 2006, pp. 284–298 (2006)

22. Lecoutre, C., Vion, J.: Enforcing arc consistency using bitwise operations. Con-
straint Program. Lett. 2d, 21–35 (2008)

23. Lhomme, O., Régin, J.-C.: A fast arc consistency algorithm for n-ary constraints.
In: Proceedings of AAAI 2005, pp. 405–410 (2005)

24. Likitvivatanavong, C., Zhang, Y., Bowen, J., Freuder, E.C.: Arc consistency in
MAC: a new perspective. In: Proceedings of CPAI 2004 Workshop held with CP
2004, pp. 93–107 (2004)

25. Mackworth, A.K.: Consistency in networks of relations. Artif. Intell. 8(1), 99–118
(1977)

26. Mairy, J.-B., van Hentenryck, P., Deville, Y.: An optimal filtering algorithm for
table constraints. In: Proceedings of CP 2012, pp. 496–511 (2012)

Compact-Table: Efficiently Filtering Table Constraints 223

27. McGregor, J.J.: Relational consistency algorithms and their application in finding
subgraph and graph isomorphisms. Inf. Sci. 19, 229–250 (1979)

28. Mohr, R., Masini, G.: Good old discrete relaxation. In: Proceedings of ECAI 1988,
pp. 651–656 (1988)

29. Team, O.: OscaR: Scala in OR (2012). https://bitbucket.org/oscarlib/oscar
30. Perez, G., Régin, J.-C.: Improving GAC-4 for table and MDD constraints. In:

Proceedings of CP 2014, pp. 606–621 (2014)
31. Srinivasan, A., Kam, T., Malik, S., Brayton, R.K.: Algorithms for discrete function

manipulation. In: Proceedings of ICCAD 1990, pp. 92–95 (1990)
32. Ullmann, J.R.: An algorithm for subgraph isomorphism. J. ACM 23(1), 31–42

(1976)
33. Ullmann, J.R.: Partition search for non-binary constraint satisfaction. Inf. Sci. 177,

3639–3678 (2007)
34. Wang, R., Xia, W., Yap, R., Li, Z.: Optimizing simple table reduction with bitwise

representation. In: Proceedings of IJCAI 2016 (2016)
35. Xia, W., Yap, R.: Optimizing STR algorithms with tuple compression. In: Pro-

ceedings of CP 2013, pp. 724–732 (2013)

https://bitbucket.org/oscarlib/oscar

	Compact-Table: Efficiently Filtering Table Constraints with Reversible Sparse Bit-Sets
	1 Introduction
	2 Related Work
	3 Technical Background
	4 Reversible Objects and Implementation Details
	5 Reversible Sparse Bit-Sets
	6 Compact-Table (CT) Algorithm
	6.1 Fields
	6.2 Methods
	6.3 Improvements

	7 Experiments
	8 Conclusion
	References

