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   Foreword   

 I am delighted to introduce the fi rst volume devoted to Mathematics Education in 
our budding Association for Women in Mathematics (AWM) Series with Springer. 
The idea and the philosophy of the series is to highlight important work by women 
in the mathematical sciences as refl ected in the activities supported by the 
AWM. Ensuring the mathematics education of the next generation of humans is 
surely one of the most important roles of our profession. Thus I am very proud of all 
of the work in mathematics education done by AWM members in mathematical sci-
ences departments as well as the ongoing work of the AWM Education Committee. 

 This volume was inspired by the panel at the 2016 Joint Mathematics Meetings on 
“Work in Mathematics Education in Departments of Mathematical Sciences,” co-
sponsored by the AWM Education Committee and the American Mathematical 
Society Committee on Education, and co-organized by two of the editors of this vol-
ume. The editors sought out contributors from across the mathematical community. 

 The table of contents reveals the broad scope of the work discussed in the 25 
chapters, and the introductory chapter provides further context for the volume. 
Topics covered refl ect ongoing work on mentoring; outreach; policy change; devel-
opment of faculty, content, and pedagogy; and mathematics education research. It 
spans work affecting students and teachers of mathematics at all levels. I have high 
hopes that this volume will advance the discussion of  the value  of this work in math-
ematics education to our community and to society.

     Redmond, WA, USA     Kristin     Lauter
AWM President (2015-2017)    
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  Organizers, panelists, and moderator of the 2016 Joint Mathematics Meetings panel, “Work in 
Mathematics Education in Departments of Mathematical Sciences,” co-sponsored by the AWM 
Education Committee and the AMS Committee on Education  
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    Chapter 1   
 Opening Lines: An Introduction to the Volume                     

     Jacqueline     Dewar     ,     Pao-sheng     Hsu     , and     Harriet     Pollatsek    

    Abstract     In this opening chapter, the editors set the stage for the wide-ranging 
description and discussion of work in mathematics education awaiting readers of 
this volume. They defi ne how the phrase “work in mathematics education” is to be 
understood for this volume and explain how the 25 chapters are grouped according 
to intended benefi ciaries of the work. The editors describe the genesis of the book: 
how the idea arose in June 2015 and how it was intended to be an extension of the 
conversation that would take place at the 2016 Joint Mathematics Meetings panel on 
“Work in Mathematics Education in Departments of Mathematical Sciences,” co- 
sponsored by the Association for Women in Mathematics (AWM) Education 
Committee and the American Mathematical Society Committee on Education. To 
entice the reader to explore the volume, the editors highlight some of the contents 
and note common themes and connections among the chapters. This chapter also 
summarizes the multi-stage process that brought the idea for this book to fruition so 
that the reader may understand the selection and peer review process. As many of 
the chapters do, this one closes with a fi nal refl ection by its authors on their involve-
ment in this project.  

  Keywords     Work in mathematics education   •   Mathematical sciences departments   
•   AWM Education Committee  
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1.1        Introduction 

 Many members of the mathematics  community   in the United States are involved in 
mathematics education in various capacities. Indeed, through its professional soci-
eties and many of their committees, the mathematics  community   has been working 
for many decades on improving mathematics education at all levels (See Sect. 
  25.4.2)    . Government agencies, private foundations, and the professional societies 
themselves have funded a great many projects with this goal. Many of these projects 
involved the efforts and contributions of members of departments of mathematical 
sciences. 

 This volume focuses at the level of the people doing the work, often collabora-
tively, in mathematics education. The contributors tell how their work has been 
informed by  research   fi ndings and educational theories. They describe impacts that 
go well beyond their own classrooms; some have published articles in professional 
journals about their work. Some authors discuss how their work might be adapted 
for use elsewhere or direct the interested reader to additional resources. This volume 
does not contain  research   articles; instead the authors narrate their efforts and suc-
cesses (supported in many cases with  data   collected locally). The volume seeks to 
initiate a conversation in the mathematical  community   about diffi cult issues of how 
 work in mathematics education   is perceived and valued.  

1.2     Our Defi nition of Work in Mathematics Education 

 This volume in Springer’s Association for Women in Mathematics Series, 
 Mathematics Education: A Spectrum of Work in Mathematical Sciences Departments , 
offers a sampling of the  work in mathematics education   undertaken by members of 
departments of mathematical sciences. 1  For the purposes of this volume, we will 
take the phrase “ work in mathematics education  ” to mean:

   endeavors concerning the teaching or learning of mathematics, done by mathematical sci-
entists or mathematics educators in their professional capacity . 

   Examples of work encompassed by our defi nition (and appearing in this volume) 
include:

•    Mathematical  outreach  ,  
•   Mentoring of those learning or  doing mathematics  ,  
•   Work with  pre-service   and  in-service teachers   of mathematics,  
•   Development or  dissemination   of instructional content, materials, activities or 

 teaching practices   in mathematics,  

1   Throughout the volume, the word “mathematics” is often used as shorthand for “mathematical 
sciences.” 

J. Dewar et al.
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•   Efforts aimed at effecting departmental or disciplinary change relative to the 
teaching and learning of mathematics,  

•   Scholarly study (whether considered  scholarship   of teaching and learning or 
mathematics education  research  ) of any of the above.    

 Each chapter illustrates one or more of these to varying degrees.  

1.3     The Organization and Goal of the Volume 

 The participants in and the intended  benefi ciaries   of any work in mathematics edu-
cation are an important consideration. Collectively, the work described in this vol-
ume involves students at all levels from kindergarten through graduate school, K-12 
teachers, college and university faculty and administrators, and in some cases the 
general  public  . To emphasize this, we have organized the book into fi ve parts 
according to the primary benefi ciaries of the work:

•    The readers of this volume (Part I),  
•    Pre-service   and  in-service teachers   and graduate student instructors (Part II),  
•   STEM majors (Part III),  
•   Students in  general education courses   (Part IV), and  
•   The general  public   and the mathematical  community   at large (Part V).    

 The writing style is  expository  , not technical, and should be accessible to and 
inform a diverse audience of faculty, administrators, and graduate students. 
Contributors were asked to describe their  work  , its impact, and how it has been 
perceived and valued. Some have been willing to be quite candid about the last of 
these. The overarching goal for publishing this volume is to inform the readership 
of the breadth of this work and to encourage discussion of its value to the mathemat-
ical  community   and beyond to society at large.  

1.4     The Genesis of this Volume 

 In early June 2015, Kristin Lauter, then President of the Association for  Women in 
Mathematics   (AWM), emailed two of the editors, Jacqueline Dewar and Pao-sheng 
Hsu, in their capacity as co-chairs of the  AWM Education Committee  . She wrote:

  Maura [Mast] and I met with Springer at the AWM Symposium and we discussed ideas for 
new volumes [in the Springer AWM Series]. Maura suggested the idea of a volume on math 
education, and it would be natural for you to lead this effort, and perhaps tie it to the panel 
you are organizing in January and get contributions from the speakers on your panel. You 
could also solicit other contributions from people in the  community   (personal communica-
tion, June 9, 2015). 

1 Opening Lines: An Introduction to the Volume
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   So from the very beginning, this volume was envisioned as an extension of the 
conversation that would take place at the 2016 Joint Mathematics Meetings 2  (JMM) 
panel, “ Work in Mathematics Education   in Departments of Mathematical Sciences.” 
Dewar and Hsu agreed to undertake the task of putting together such a volume and 
invited Harriet Pollatsek, a member of the  AWM Education Committee  , to join them 
in this effort. 

1.4.1     The Panel that Inspired this Volume 

 Discussions within the  AWM Education Committee   during 2014–2015 prompted 
and shaped the proposal for the panel. The panel, which took place on January 7, 
2016, in Seattle, WA, was co- sponsored   with the American Mathematical  Society  ’s 
Committee on Education. Beth Burroughs, Professor, Montana State University, a 
member of the AWM Education Committee and a contributor to this volume, moder-
ated the panel. Four panelists discussed their  work in mathematics education   and 
refl ected on its  impact   and how it has been received in their respective departments:

•    Curtis Bennett, Professor and former Associate Dean for Faculty Development 
and Graduate Studies, Loyola Marymount University,  

•   Brigitte Lahme, Professor and  Department Chair  , California State University, 
Sonoma,  

•   Yvonne Lai, Assistant Professor, University of Nebraska, Lincoln,  
•   Kristin Umland, then Associate Professor, University of New Mexico.    

 Three of the panelists (Bennett, Lai, and Umland) contributed to this volume. 
Other commitments prevented the fourth panelist from doing so, but she provided 
other support. A summary of the panelists’ remarks can be found in Dewar and Hsu 
( 2016 ). At the end of the panel a lively discussion with the audience of approxi-
mately 60 people ensued.   

1.5     The Process that Resulted in this Volume 

 Prior to this, the volumes in the Springer AWM Series grew out of  research   confer-
ences or symposia and are collections of  research   papers. This one, inspired by the 
JMM Panel, is the fi rst book in the series on mathematics education and is 

2   The Joint Mathematics Meetings conference is jointly  sponsored  by two major professional soci-
eties: the American Mathematical Society and the Mathematical Association of America . It also 
hosts sessions by other associations, such as the Association for Symbolic Logic, the Association 
for Women in Mathematics, the National Association for Mathematicians, and the Society for 
Industrial and Applied Mathematics. Approximately 6000 have attended each year from 2014 to 
2016. 

J. Dewar et al.
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 expository  . In order to present a broad spectrum of  work in mathematics education  , 
we recruited beyond the original panel participants. Throughout the process we 
sought to represent a wide  diversity   in terms of the type of  work in mathematics 
education  , the career stage (early, mid, or late) of the contributor, the institutional 
type of the contributor (liberal arts, comprehensive and  research  -intensive institu-
tions, and several secondary schools), as well as gender and ethnicity. The three 
editors, all mathematicians who have had long careers in mathematics and colle-
giate education, drew upon many networks of  colleagues   and scoured abstracts of 
papers presented at national meetings to develop a list of potential contributors. 
Thirty-four invitations were extended to submit a 500–1000 word proposal for an 
expository contribution about their  work in mathematics education   including how it 
is received by and affects its intended audience, how the work has affected the pro-
poser’s career, and how it has been received by the proposer’s  colleagues  , depart-
ment, and institution. 

 The three editors reviewed and discussed each proposal and gave feedback for 
expanding the proposal into a full chapter draft. Meanwhile, we recruited 41 math-
ematical scientists and a social scientist as reviewers for the chapters that would be 
submitted. We aimed to enlist reviewers who had expertise in the type of  work in 
mathematics education   that would appear in the volume, and also reviewers who 
would, in essence, be “general readers.” Each submitted chapter was then subjected 
to a single-blind review by at least three individuals—one expert reviewer, one gen-
eral reviewer, and at least one editor. In addition, each editor read all of the submis-
sions. The editors discussed the reviews and returned all the formal review material 
along with a joint editorial  report   and advice for revising the chapter. The revised 
submissions were again read by all three editors, and some further editing was done 
or requested. The result of a nearly year-long intensive process is this volume.  

1.6     Refl ections on the Volume 

 With any  work in mathematics education  , mathematics and its related sciences 
should be a central feature. Equally important are the participants involved: stu-
dents, faculty, and sometimes the general  public  . This volume represents a selection 
of  work in mathematics education   by members in departments of mathematical 
sciences. 

 For some authors, the work focuses on courses or topics in the core undergradu-
ate mathematics  curriculum  , including those for the  mathematics  majors      3  and non- 
majors:  calculus  (Cohen et al., Tomlinson),  statistics   (Johnson, Williams and 
Martonosi), linear algebra (Bremser, Wawro),  differential equations   (Sumner, 
Tomlinson),  group theory   (Maycock, Yackel),  number theory      (Bremser), non- 
Euclidean geometry for teachers (Burroughs and Burke), introduction to  mathemat-

3   The words in bolded italic in the next few paragraphs are the 11 items listed as aspects of a depart-
ment’s work by the AMS  Task Force on Excellence (Ewing  1999 , p. 12). 

1 Opening Lines: An Introduction to the Volume
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ical modeling   (Sumner),  complex variables   (Tomlinson), and history of mathematics 
(Sumner). Also included are fi rst-year seminars (Bremser, Catepillán, Fung, 
Sumner) and  capstone courses   (Bennett, Cohen et al., Williams and Martonosi). 

   Teacher preparation    is an important  mission   of a department and plays a critical 
role in the health of the discipline. Several chapters (Bennett, Bremser, Burroughs 
and Burke) document different aspects of this work within the department, includ-
ing one (Lai et al.) that describes the preparation of  graduate teaching assistants   to 
be future mathematics faculty. Bremser, Karakok et al., Seshaiyer and Kappmeyer, 
and Umland and Black work with K-12 teachers outside of the physical space of a 
department. 

 Indeed,   outreach    takes different forms: in addition to  Math Circles   for teachers 
and Math Circles for students (Karakok et al.), there are talks with the  public   at the 
National Museum of Mathematics (Greenwald) and traveling workshops for teach-
ers and college faculty (von Renesse). 

 Several authors include designs of a  graduate  course for teachers: Bremser, 
Sumner, and Wawro. 

 For the large number of students who need a course that is mathematically before 
the   precalculus    level, there is a discussion about teaching  college algebra   and inter-
mediate algebra (Lai et al.). For  general education  students, there are two versions 
of a quantitative  reasoning   course, a class that serves many in place of  college alge-
bra   (Lopez et al.) and an interdisciplinary seminar (Fung). There are also a course 
for liberal arts students using dance movement (von Renesse) and a course in ethno-
mathematics (Catepillán) on mathematics in non-Western  cultures  . 

 Several authors (Catepillán, Fung, von Renesse) describe  interdisciplinary  
courses they created. Sometimes the  fi rst-year seminar   is the venue for these courses. 

 In terms of teaching methods, many authors discuss their preference for inquiry- 
based methods (Bremser, von Renesse), several want students to discover the math-
ematics they are learning (Maycock, von Renesse, Yackel), several use “tactile” 
techniques (Karakok et al., Tomlinson, Yackel), and one employs a  fl ipped   or 
 blended   approach (Tomlinson). Many use student  projects   and  research   (Bennett, 
Bremser, Catepillán, Cohen et al., Johnson, Sumner, Williams and Martonosi). 
Several chapters in the volume (Chaps.   11,       12,       20,       22,     and   23    ) 4  focus on the use of 
writing. Another format in the form of a “ Clinic  ” is discussed in the chapter by 
Williams and Martonosi (Chap.   12    ) where students produce “ deliverables  ” for real 
 clients  . Greenwald describes some mathematical activities she and a  colleague   have 
developed from animated sitcoms, bringing  popular culture   into the classroom. 

 We asked our authors to provide any information on assessments of what they 
have done. Quantitative methods were used in two chapters (Chaps.   17     and   22    ) and 
many others employed qualitative methods to assess some aspects of the work. 

 One kind of work that this volume does not contain is a  research   paper, although 
some authors (Bennett, Burroughs and Burke, Johnson, Wawro)  report   on the 
  research    they did. All use  research   or professional guidelines to support and inform 

4   The reader will fi nd both “write to learn” and “ write-to-learn ” appearing in a chapter, as they do 
in many texts in the literature in writing across the curriculum. 
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their work. As editors, we made no attempt to distinguish what is from what is not 
“ research  ” or “scholarly”  work in mathematics education  . Instead, there is a chapter 
on language use among different communities (Chap.   2,     Hauk and Toney). As a 
 research   mathematician, Bennett (Chap.   4    ) gives a glimpse of his struggle with the 
language in mathematics education. 

 We want the reader to evaluate each piece of work on its merits. Two mathemati-
cians (Cordero and Mast) who have moved to administration provide their perspec-
tives as  academic leaders   on the value of the kind of work described in the volume. 
The chapter by Umland and Black delineates several categories of work that they 
label “scholarly” while noting that “traditionally [these would not be] considered 
 research  ” (Chap.   9    , p. 127). The authors then detail specifi c ways to evaluate each 
type of work based on the tangible product it produces. 

  External    funding    does make a difference in much of the work. In fact, over half 
of our chapters acknowledge that the work was supported by outside funding. One 
entire chapter is devoted to a description of the  Carleton College Summer 
Mathematics Program  , a funded program that has built a  community   of women 
becoming mathematicians (Richardson). 

 Several authors also connect their work with a “ social justice  ” theme in paying 
special attention to students in groups underrepresented in mathematics: ethnic 
minorities such as Native American, Hispanic, African American and those with 
economic hardship. Also included are fi rst- generation   college and university stu-
dents, as well as students who work or are considered “ non-traditional  ” (Bremser, 
Catepillán, Lopez et al., Cohen et al., Johnson, von Renesse). Catepillán’s ethno-
mathematics course qualifi es as a   diversity    course at her university. Some programs 
are specifi cally aimed at  underrepresented groups   (Seshaiyer and Kappmeyer). 

 The word “change” used to describe an institutional transformation appears 
explicitly in two chapters in the volume. In one, Cohen et al. describe how their 
department managed a change in departmental  culture  : faculty collaborated, shared 
ideas and results, and provided mutual support. In the other, Holm discusses efforts 
toward achieving systemic change in the teaching of undergraduate mathematics. 
Our authors are from different types of institutions that vary in governance,  mission  , 
and  culture  . From the descriptions of their work, we also get a glimpse of the com-
plexities in the enterprise we call mathematics education. 

  Collaboration   is a key word in this volume. Even in chapters with one author, 
many describe the work they do as a collaborative effort. Support from their institu-
tions,  colleagues  , and students is also crucial for the work that these authors do. 
From their  reports  , we see that the authors have different backgrounds, with a 
majority on a more or less straight-forward career path, some with a small twist 
(Bennett, Bremser). Black was and Kappmeyer is a K-12 teacher. Some have 
changed their careers: Kappmeyer was a civil engineer; Johnson worked as a statis-
tician in medical and in marketing  research  ; Craviotto left a university position to 
work in a school district; more recently, Umland has moved from academia to a 
non-profi t organization working on K-12 curricular materials. 

 While some of the courses and work described in this volume are not preparing 
students for the content of a next mathematics course per se, they will shape stu-

1 Opening Lines: An Introduction to the Volume

http://dx.doi.org/10.1007/978-3-319-44950-0_2
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dents’ views of mathematics and their habits of learning mathematics. These views 
and habits are important for all students whether or not they continue with a course 
of studies in or using mathematics. All of them will carry experiences from the 
courses into their lives as parents, members of the work force, citizens who vote, or 
decision-makers in society.  

1.7     Refl ection on Our Involvement 

 From the start, our primary goal has been to draw attention to the breadth and vari-
ety of  work in mathematics education   done in departments of mathematical sci-
ences and to encourage discussion of its value. We will be very satisfi ed if the 
volume creates opportunities for those discussions. But, we also hope that the many 
examples contained in this volume will not just inform, but inspire, readers. 

 Through our involvement in this project we have learned about a great deal of 
notable  work in mathematics education  . We have been impressed by the imagina-
tion and dedication, not just of our contributors, but also of all those involved in the 
work that is described in this volume. Our original belief in the value of this work 
to the mathematical  community  , the academy, and society has been further strength-
ened through the examples presented here. We offer this volume to our readers for 
their consideration.     
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    Chapter 2   
 Communication, Culture, and Work 
in Mathematics Education in Departments 
of Mathematical Sciences                     

     Shandy     Hauk      and     Allison     F.     Toney    

    Abstract     Communication is much more than words—written, spoken, or unspo-
ken. It is also in how a person participates in or orchestrates discussion (in a hallway 
or in a meeting). Conversation is shaped by what a person knows or anticipates 
about colleagues’ previous experiences and how to attend to that in the context of 
the goals of a given professional interaction. This chapter builds a foundation of 
ideas from discourse theory and intercultural competence development as aspects of 
communication. The presentation is grounded in two vignettes and several small 
examples of discourse about work in mathematics education. The ideas and vignettes 
provide touchstones for noticing and understanding what happens when people 
communicate across professional cultures within departments of mathematics.  

  Keywords     Professional cultures   •   Post-secondary mathematics education   
•   Intercultural orientation   •   Discourse  

2.1            Introduction to Noticing  This  and  That  

 The human  capacity            to reason includes a reliance on comparison, on noticing differ-
ence:  this  is, or is not, like  that . Grouping makes for comparison of  these  and  those , 
for  us  and  them . When we compare, we discern similarity and difference. With 
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practice, more fi ne-grained noticing happens. In mathematics, the noticing happens 
about elements (propositions) that are fairly stable. A theorem, once proved in a 
particular axiomatic system, pretty much stays proved. 

 In education, the noticing happens about elements (people) that are quite 
dynamic. Any lesson learned from work in mathematics education is subject to revi-
sion, debate, reframing, and change. 

 The chapter is about becoming aware of nuance in the observation of this and 
that. Yet, the path to awareness is fraught with pitfalls. A unifying feature of these 
pitfalls is over-reliance on the polarizing of  this  and  that  into  this  VERSUS  that . In 
fact, dissimilar perspectives on what constitutes work in mathematics education—
even among collaborators on a single project—can result in uncertainty that becomes 
confusion, turmoil, or  confl ict  . The journey begins with a question for the reader: 
Would everyone in your department agree that the communication about work in 
mathematics education in the department is effective, appropriate, inclusive, and 
respectful?  

2.2     Noticing Difference 

 Successful  professional communication   involves interacting with the multiplicity of 
discourse styles that  colleagues  , curriculum, and department history bring to a con-
versation. Some faculty work in largely monocultural departments in the sense that 
most  colleagues   share experience of a common set of personal and professional 
norms and practices. However, in the US, departments may have a dozen different 
foci of professional work. It means faculty, staff, and students are destined to have 
regular opportunities for cross-cultural experience that, for many, may be fraught 
with unavoidable uncertainty. 

2.2.1     A Note on “Cases” 

 We ground our discussion of uncertainty in two  vignettes  , real examples of com-
munication in departments of mathematical sciences (all names have been changed). 
These are gleaned from the authors’ own work in mathematics education. It is our 
hope to offer windows (and possibly mirrors) on the experiences of those navigating 
the challenges of communicating across different sub-cultures in mathematics 
departments. 

 A  vignette  -based case is not just a short story. A case combines a  vignette   that is 
a context-rich description of a dilemma, challenge, or epitome with an analysis of 
the  vignette  . A worthwhile case will give rise to discomfort for the reader. An effec-
tive case generates dissonance between what case users thought they knew to be 
true and what they experience in the  vignette   and analysis. Such cognitive disso-
nance is the basis on which new  understanding   is constructed.  
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2.2.2      Top Tier Journals : Noticing Across Two Professional 
Sub-cultures 

 As academics, we have within-professional-group standards for communication 
about our work. Standards can be seen, for example, in the ways faculty generate 
and disseminate the various publications they create. Yet, norms vary across differ-
ent sub-communities within a department (e.g., researchers in undergraduate math-
ematics education, mathematicians,  statistics   education researchers, statisticians, 
teacher educators, etc.). Getting a paper into a particular peer- reviewed   journal 
involves different activities for the author than publishing a book, contributing to a 
grant proposal, or conducting and  reporting   on a program change. What they all 
share, however, is the scholarly standard of  peer review  . The tricky bit is who is a 
“peer” and who decides the standards for review? Uncertainty in this aspect of inter-
action across professional sub-cultures and how some might handle it are illustrated 
in the fi rst  vignette  ,  Top Tier Journals .

   Top Tier Journals  
 A tenure-track  colleague   of mine was preparing for her third-year review. Because the 
 department chair   was not familiar with her research area, he told her to put together “a list 
of the top tier journals in the fi eld of math education.” 
 The  colleague   immediately sought advice from her peers. She asked questions of 20 faculty 
members across the US who worked in mathematics education: “What is on the top 10 list 
for sharing research work, the top 10 list for sharing applied and program-level work (like 
the report of how we redesigned our sequence of courses for  pre-service   elementary teach-
ers), and the top 10 list for sharing course-level work (like particular lesson materials or 
advice on how to use certain approaches in teaching such as inquiry-based learning ( IBL  )       
Learning (primary) inquiry-based (secondary)?” 
 This group of 20 people agreed on a list of 30 dissemination outlets, though not necessarily 
on the ordering within a list. Then my  colleague   came to me. She described what she had 
done, and said, “Would you go over these lists and let me know what you think? Is there 
anything obvious that is left out or something you would move from one list to another?” 
 My fi rst hint this was going to be an unusual conversation  should have been  noticing that 
she had taken the chair’s instructions and made a task of not one list, but three—one for 
research, one for applied program work, and one for materials development work. But no, 
I only noticed that in passing, thinking, “Well the fi rst list is what she was asked for, the 
other two are useless.” Then, reading the fi rst list, I was stunned to see that the  Journal of 
Mathematics Teacher Education  ( JMTE ), what I would consider—what  my  peers would 
consider—the top tier journal in our fi eld, was absent from the list. 
 At fi rst I was very angry. I thought to myself, “Oh, this is a typical demonstration of the 
narrowness of the fi elds and the ignorance of some of my  colleagues   and the fact that they 
don’t pay attent…”—then I stopped myself. 
 I realized, “Wait a minute: She came to me and  asked  me.” She recognized there might be 
something she doesn’t know. She is saying it would be worthwhile for her to understand my 
values. She asked me for help. 
 So, while she and I were both surprised she didn’t know about  JMTE , I ended up being 
ashamed (quietly, to myself) when I refl ected on my fi rst response to the other two lists as 
“useless.” In reviewing them, I realized there was a lot of sharing going on out there through 
open- source   resources and conferences and organizations like the Mathematical Association 
of America (MAA) and the  American Mathematical Association of Two-Year Colleges 
(AMATYC)   about which I was completely ignorant. I had trouble coming up with outlets I 
could add to the last two lists and, to mitigate my shame, I am proud to say it occurred to 
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me to say, “Let’s go talk with Pat and Xie. I remember them talking about  IBL  . I don’t know 
much about it, but I wonder if the outlets are on the lists.” 
 In the end, it actually turned out to be a positive experience. In part, this was because I was 
careful not to go off into a rant (except in my head, perhaps). It was an opportunity for us to 
unpack the subtle and not-so-subtle differences between our work worlds, the way  scholar-
ship   is valued and the locations in which work in mathematics education is valued. 

   The fi rst part of the  vignette   highlights the ways different sub-communities exist 
within departments—specifi cally, within the fi eld of research in  mathematics   educa-
tion. For both the narrator and her  colleague  , what was valued depended on what 
respected peers saw as valuable. Also, note that the  colleague   was aware of and valued 
other forms of dissemination, beyond research products, in a way the narrator did not. 
In the second part of the  vignette  , the narrator noticed, refl ected, and then acted on the 
difference between what she valued and what the  colleague   asserted as valuable. 

  Top Tier Journals  highlights the fact that meaning is  situated . Consider how to 
interpret each of these statements: “The coffee spilled, get a mop” and “The coffee 
spilled, get a broom” (Gee  1999 , p. 48). In each case, context-based storylines that 
may or may not be consciously considered are connected to the word “coffee.” In 
the fi rst statement, the cue of “mop” is likely to trigger a situated meaning for coffee 
as a liquid while, depending on one’s experience and available storylines, “broom” 
may be more likely to bring to mind dried beans (perhaps whole, or perhaps ground 
up). Meaning also is situated in larger conversations of current and historical social 
experiences and cultural practices. Situated meanings are dynamic in that they are 
assembled on the spot, based on past and present experience, “customized in, to, 
and for context, used always against a rich store of cultural knowledge (cultural 
models) that are themselves ‘activated’ in, for, and by contexts.” (Gee  1999 , p. 63).  

2.2.3      Department Dynamics : Noticing About Department 
Norms 

 In each department a variety of norms exist for how we talk with each other about 
teaching. A department’s norms for respectful communication about other work 
may be quite different. Consider the uncertainty of the narrator in  Departmental 
Dynamics , in noticing the habits sanctioned by her department’s norms.

   Departmental Dynamics  
 I was so totally caught by surprise when two  colleagues   made snarky comments about our 
 colleague   Bea’s recent work to include attention to  social justice   in her liberal arts math 
class. Partly my surprise came from the fact that earlier the same day, in a department meet-
ing, they had spoken up in favor of her efforts to put together summer support for graduate 
students to be research assistants on various department projects. But a few hours later in 
the hallway, they were snide and disrespectful. 
 I had to ask myself:  Why did these people feel comfortable making offensive statements in 
front of me in the fi rst place? Are they really that free-of-clue?  
 Instead of doing or saying anything, I froze – not knowing what to say, what to do, how to 
respond. 
 Then I thought about my freezing up. I felt like a bystander at a robbery. I asked myself: 
 Have I been clear about  my  values?  
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 And I answered:  Um, no . 
 Why not? What am I afraid of? What about this department and how communication hap-
pens is pumping “frozen in the headlights” juice through my veins? And then I realized I 
didn’t know whom I could talk with about it. 
 Who could I turn to and have a reasonable expectation for a productive conversation about 
examining and possibly modifying communication in the department? We have norms for 
feedback on research, on teaching, and on service. But what are the department norms for 
constructive feedback on communication about our work within the department – or even 
the university? Who decides? How are the norms changed? 

   Unexamined customs can encourage unexamined habits. Being informed is the 
fi rst step in challenging a habit. As obvious as this is, it  confl icts   with one common 
conversational practice in departments: to speculate about what others think based 
on conclusions drawn from a few interactions. In scholarly work, such incomplete 
 data   gathering would be considered intellectually sloppy. 

 How might the narrator in  Departmental Dynamics  learn about the habits on 
which the observed norm rests? What are the (unspoken) assumptions about how 
people view and discuss teaching? A fi rst step might be to gather more information. 
She might have conversations with one or two  colleagues   at a time, as a fact-fi nding 
 mission  , driven by questions like: “What makes teaching worth talking about? What 
is good teaching? How do you know it when you see someone else do it?” The onus 
would be on the narrator to avoid evaluating or judging the answers she gets—the 
purpose is to discover how others think, not to persuade them to think like she does. 
How people answer can help make explicit some assumptions and provide informa-
tion for shaping subsequent change-oriented discussions. 

 This section gave two  examples   of communication about the contexts in which 
the work of mathematics education is conducted. The next four sections address 
ways of being aware of nuance within such interactions.   

2.3     Discourse (Big D)       and discourse (Little d) 

 Interactions with other people are shaped by our orientation to noticing and engag-
ing with difference. In the present case, interactions are situated in the tensions 
among types of work in a mathematics department. Professional awareness includes 
noticing what a  colleague   says, and also is present in how a person participates in or 
orchestrates conversation and discussion (in a hallway or in a meeting). Effective, 
professionally aware, conversation is molded by what a person knows or anticipates 
about  colleagues  ’ previous experiences and how to attend to that in the context of 
the goals of a given interaction. For example, knowing how to launch a discussion 
and negotiate the  confl icts   that can emerge from a department’s norms about each 
variety of work in mathematics education can require well-developed awareness of 
multiple professional cultures. 

 Gee ( 1996 ) distinguished between “little d” discourse and “big D” Discourse. “Little 
d” discourse is about written and spoken language-in-use. It is what we say and what 
we write. In post-secondary mathematics and mathematics education, this may include 
connected stretches of utterances, symbolic statements, and mathematical diagrams. 
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 In  Top Tier Journals , discourse (little d) between the narrator and  colleague  , 
what each person said, is absent. Instead, it is summarized by the narrator. Similarly, 
in  Departmental Dynamics , the discourse in the narrator’s witnessing of what was 
said by  colleagues   in two different contexts is summarized. In both cases, the nature 
of the interaction involved more than the words spoken. 

 Discourse (big D) describes  situated discourse . Written with the capital D, 
Discourse indicates language  and  the norms infl uencing its use  and  the processes 
for perpetuating or changing both, in context. Little d discourse is a subset of big D 
 Discourse     . 

 In  Top Tier Journals , the Discourse included the ways the narrator’s interaction 
with her junior  colleague   challenged her existing notions about what was valuable 
in  reporting   on work in mathematics education. The result was twofold. First was 
the expansion of the narrator’s awareness, noticing and acknowledging the value of 
types of work other than her own. Second was the willingness to seek advice from 
others, just as the junior  colleague   sought her advice. Big D Discourse appears in 
 Departmental Dynamics  in that the narrator refl ected on her desire to contribute to 
the norms for  professional communication   in her department. Her inner dialogue 
examined the kinds of conversation she thought might be needed with her  col-
leagues  . The  vignette   highlights her awareness of herself as a part of the Discourse, 
rather than a non-participant observer of discourse. As a result, at the end of the 
 vignette   she formulated questions whose answers she needed to move forward. In 
each case, the narrator in the  vignette   sought ways to use language  and  ways of 
thinking and valuing that were associated with a group in which the narrator saw 
herself participating. As Gee described it:

  A Discourse is a socially accepted association among ways of using language, other sym-
bolic expressions, and ‘artifacts’, of thinking, feeling, believing, valuing, and acting that 
can be used to identify oneself as a member of a socially meaningful group or ‘social net-
work’, or to signal (that one is playing) a socially meaningful ‘role’ (Gee  1996 , p. 131). 

   As in any culture, a department culture has a set of values, beliefs, behaviors, and 
norms in use by a group that can be reshaped and handed along to others (e.g., exist-
ing and new faculty, graduate  students     , and administrative staff can contribute to the 
reshaping and handing along). Not everyone in a department may describe or experi-
ence the culture in the same way. As evidenced by  Top Tier Journals , Discourses 
may differ from person to person or group to group within a department. The narra-
tor in  Departmental Dynamics  thought there was something to navigate, refl ected on 
what needed navigating, but did not yet know how to do the navigation. The Discourse 
in  Departmental Dynamics  included aspects of the departmental cultural context.  

2.4     Framework for Intercultural Awareness 
and Competence 

 The ways we are aware of and respond to Discourse is a consequence of our   inter-
cultural orientation   . This is not a reference to our beliefs about culture or about the 
doing, teaching, or learning of mathematics. Rather,  intercultural orientation   is the 
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perspective about  difference  each person brings to interacting with other people, in 
context. For faculty, it includes perceptions about the differences between their own 
views and values around various types of work in mathematics education, and the 
views of their  colleagues  . 

 To build skill at establishing and maintaining relationships in, and exercising 
judgment relative to, cross-cultural situation requires the development of  intercul-
tural sensitivity   (Bennett  2004 ). The developmental continuum for  intercultural sen-
sitivity   has fi ve milestone orientations to noticing and making sense of difference: 
  denial   ,   polarization   ,   minimization   ,   acceptance   , and   adaptation   . 

 With mindful experience a person can develop from ethno-centric ignoring or 
  denial    of differences, moving through an equally ethno-centric   polarization    orienta-
tion that views the world through an us-versus-them mindset. With growing aware-
ness of commonality, a person enters the less ethno-centric orientation of 
  minimization    of difference, which may over-generalize sameness and commonali-
ties. From there, development leads to an ethno-relative   acceptance    of the existence 
of intra- and intercultural differences. Further development aims at a highly ethno- 
relative   adaptation    orientation in which differences are anticipated and responses to 
them readily come to mind. 

2.4.1      Denial   

 As noted earlier, a central part of awareness is to observe. In the context of a conver-
sation with  colleagues  , the   denial    orientation might take the form: “I know the math 
and the math ed discourse I use, I don’t really notice any other discourse.” Such an 
orientation is not  denial   in the sense of “I’m going to say it is not there” but  denial   
as in “I can’t even see it.” The view is “we’re all members of the department and we 
all do our work” without attention to what “our work” might mean to others.  

2.4.2     Polarization 

 The   polarization    orientation towards orchestrating conversation might be character-
ized as: “There’s a RIGHT way to talk about things and there’s a WRONG way to 
talk about things. And we’re going to make sure we use the right way.” For example, 
depending on the experience and values of the conversant, the “right” way to talk 
about work in mathematics education may or may not include education discourse 
or the language of assessment, curriculum, program, or teacher development. 
Nonetheless, enacting a polarized orientation in talking about work in mathematics 
education would mean seeing, for instance, that a practice is happening or noticing 
a norm being developed. 

 Perhaps, when a faculty member strongly identifi es with a particular sub-culture, 
like research in computational proof,  scholarship   of teaching and learning ( SoTL     ), 
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or assessment development, that person is loyal to it. And, when focused on right 
ways and wrong ways of talking, a person may not attend to what is done by people 
in another group: “What they say they are doing in mathematics education is not 
worthy of my time or energy.” In transitioning from  polarization   to a  minimization   
of difference, a person may come to a new, still polarized, sense of things: “What 
you do in math education is so different from what I do, I can’t possibly understand, 
review, or evaluate it.”  

2.4.3     Minimization 

 From a   minimization    orientation, in minimizing differences and paying attention to 
similarities,  colleagues   may also be very true to their own version of professional 
culture and valued ways of communicating. For someone mathematically trained, 
this might be characterized as, “Look how this stuff called math ed is LIKE math-
ematics teaching. It has a lot in common with teaching, even if the way it is said is 
a little different. Let’s talk about how it is similar. Let’s leverage the fact that we 
have seen this before.” From this perspective, any work in mathematics education is 
similar to all other work in mathematics education—whether one is refl ecting on 
teaching a mathematics class, writing a textbook, engaging in  SoTL  , leading  profes-
sional development   workshops for  in-service teachers  , or is researching how stu-
dents learn to validate proofs. 

 Consider a basic example in the representation of effective teaching. Suppose the 
standard in the department is that teaching is successful when numbers from a stu-
dent evaluation are high. Yet some faculty members, who are also familiar with 
educational theories, say that teaching is effective when students demonstrate learn-
ing in some directly measurable way, such as on a common fi nal exam. It may be 
characteristic of a  minimization   orientation to consider both representations once 
and then note “But these are basically the same, so we’ll use the one I know, the one 
commonly used in the department, the student  evaluations  .”  

2.4.4     Acceptance 

 In developing an   acceptance    orientation, it might be more characteristic to notice 
and accept either representation of “effective teaching” and suggest faculty use 
whichever makes most sense for them. A well-developed  acceptance   orientation 
might be evidenced when a faculty member alternated between using student evalu-
ations and direct measures of student learning when talking with a  colleague  . 
Additionally, she might encourage peers to accept and understand the difference in 
the two ways of thinking about teaching effectiveness. 

 More generally, an  acceptance   orientation might be characterized by statements 
like: “I’m a mathematician, but am accepting the fact that not all of my  colleagues   
are going to be mathematicians” or “I’m a researcher in mathematics education, but 
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am accepting the fact that not all of my  colleagues   are going to be interested in that 
approach” and “I’m accepting the fact that there may be other ways, teacher ed, 
assessment, or math ed research ways, of talking about the idea of effectiveness in 
teaching that are valuable and may be even more valuable to my  colleagues   than my 
way of talking about it. I can accept that those various ways will come out in the 
conversation in the department.” But a general intention of accepting the different 
ways may not provide guidance about how to make decisions about which 
Discourse(s) are useful in a given context (e.g., solving problems in teaching pre- 
service  teachers   may not be facilitated by a research mathematics vocabulary, and 
vice versa).  

2.4.5     Adaptation 

 A further developmental orientation is   adaptation   . Now, not only does one accept 
that there are these differences,  adaptation  -oriented people seek for themselves, and 
fi nd ways to give  colleagues  , opportunities in noticing, articulating, and responding 
to those differences. This might be characterized by statements such as, “I am look-
ing for ways to work with  colleagues   to pursue the opportunities that arise from 
variety in approach or strategy. I don’t have to assert or defend many, or even one 
method. Effective teaching is a relative thing. My goals are for teaching and learn-
ing of rigorous math and those goals include the standard math language and repre-
sentations. How my  colleagues   and I connect ideas and access, organize, or value 
ideas is not necessarily strictly limited to the ways valued by my perspective.” In 
 adaptation  , a person can converse well with people of differing mindsets,  under-
standing   and appropriately using Discourse familiar to conversational partners.  

2.4.6     Integration 

 Though not yet fully tested by researchers, the theory of  intercultural competence   
development also hypothesizes something called an  integration  orientation. This is 
something that is likely to be very rare. This perspective might be characterized by 
a statement like: “Okay, that particular approach to this problem of what effective 
teaching is, that is a whole other way of looking at the world. It’s internally consis-
tent, which I value. So, it’s okay. And I’m going to integrate what I can while 
remaining true to mathematics and to my own work in mathematics education. I’m 
going to be myself as a professional, in that environment.” We suspect such a view 
might be analogous to the ultimate  mission   of the  scholarship   of theology: studying 
a variety of belief systems, without disagreement or approval of the system, while 
remaining authentic in one’s own beliefs. In the research about  intercultural compe-
tence   development, examples of how an integration orientation might be realized 
come in the shape of expert and effective negotiators in high stakes endeavors (e.g., 
diplomat, hostage negotiator).   
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2.5     Being Intentional in Noticing Professional Differences 

 In a recently concluded project, we spent time and attention on dealing with the 
realities of navigating the multiple cross-cultural relationships in creating and run-
ning graduate courses for  secondary   mathematics teacher  professional development   
(Hauk et al.  2011 ,  2014 ,  2015 ). Project participants included university staff (26 
faculty members and graduate students) in three departments of mathematical sci-
ences whose work included research mathematics, research in  mathematics   educa-
tion and teacher education,  curriculum development   for undergraduate and graduate 
mathematics, and  professional development   of in- and  pre-service secondary   math-
ematics teachers. Some of the university staff developed and taught courses for 
teachers and teacher leaders (71 teachers, 23 leaders) while others conducted 
research on the teaching and learning in those courses. 

2.5.1     Example of Difference in Orientation 
Across Professional Groups 

 All staff, teachers, and teacher leaders completed a valid and reliable measure of 
 intercultural sensitivity   (Hammer  2009 ). In Fig.  2.1  are the distributions of  intercul-
tural orientation   for the university staff on the project (faculty members and gradu-
ate students). As a group, their orientations were largely in  minimization  .

   In Fig.  2.2 , the distribution for university staff is situated in the larger view of 
 intercultural orientations   for all of the participants in the project. Notice that the 
orientations of teachers were more evenly distributed between  polarization   and 
 minimization   while the distribution for teacher leaders was more like that of univer-
sity staff.
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  Fig. 2.1    Distribution of university faculty and graduate student intercultural orientations       
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   As part of the project, we conducted a debriefi ng session with each group. The 
session explained the framework and the fi ve milestone orientations for  intercultural 
sensitivity  . In each case, the group saw the distribution of their orientations and that 
of the other two groups. Each group discussed in their session what knowing this 
information could contribute to knowledge about themselves and about working 
with the other two groups. 

 In particular, university faculty members and graduate students said they felt a 
challenge in getting teachers to see the connections, the similarities, among ideas. 
The large proportion of teachers with a  polarization   orientation meant teacher- 
participants were willing and able to notice difference. University staff (who were 
mostly minimizers seeking common ground) often found themselves uncomfort-
able with this attention to difference. They were stymied about how to negotiate 
conversations with teachers whose Discourse was framed to highlight difference 
using right-wrong, strong-weak, good-bad  polarization  . In the debriefi ng session, 
university staff learned that noticing differences within and among things that may 
appear to be similar is a hallmark of  acceptance  . The opportunity existed to encour-
age more detailed exploration of difference and similarity in ways that would sup-
port intercultural development for polarizers and minimizers. 

 With knowledge of the intercultural developmental continuum, and their mostly 
 minimization   orientation, the group of university staff also explored the assumption 
that  equality   and  equity   are the same. One approach to teasing apart the two ideas is 
to think about the distinctions between “fairness” and  equality  . Consider the follow-
ing example. 

 One university faculty member had broken a leg skiing and was using a small 
cart under one knee when walking. If each program faculty member was expected 
to give teacher-participants a 40-min walking tour of some part of the university, 
then the cart-bound faculty member was unfairly burdened. An alternate way to 
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  Fig. 2.2    Distributions of all three groups’ intercultural orientations       
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fulfi ll the responsibility was needed. An unequal but fair solution: the  colleague   
would sit with participants during their fi rst lunch in the dining hall. Not only would 
this be an excellent addition to the “tour” of the campus, it would give participants 
a chance to talk informally with a program faculty member (an opportunity absent 
in the previous plan).  

2.5.2     Connecting to the Vignettes 

 Given these experiences in the recent project, for this chapter we selected material 
for the two case  vignettes   to highlight communication across the  polarization  - 
 minimization  -  acceptance   orientations. In  Top Tier Journals , the narrator was chal-
lenged in a way that might be seen as moving her from  polarization   towards 
 minimization  , while the  colleague   generating the lists had a  minimization   orienta-
tion, perhaps moving towards  acceptance  —she was seeking to understand the large 
and small differences across some types of work in mathematics education. In 
 Departmental Dynamics , the  acceptance   orientation of the narrator might be seen in 
that she noticed difference and wanted to learn how to negotiate the difference—
these are earmarks of early  adaptation  . 

 What is more, the  vignettes   were designed to keep other aspects of Discourse in 
the background, such as  gender  . While a deep discussion of the role of  gender   in 
communication is beyond the scope of this chapter, communication about work in 
mathematics education in a department of mathematical sciences may be  gender   
connected in several ways.   

2.6     Gender, Discourse, and Professional Culture 

 By one estimate, two-thirds of the mathematics department faculty who do profes-
sional work in mathematics education are women (Reys  2008 ). This has conse-
quences for how the work is communicated, perceived, and valued. The Discourse 
resources of women are often different from those of men. In fact, “there are two 
abiding truths on which the general  public   and research scholars fi nd themselves in 
uneasy agreement: (a) men and women speak the same language, and (b) men and 
women speak that language differently” (Mulac  1998 , p. 127). And, we would add, 
(c) not all women “speak that language differently” in the same way! 

2.6.1     Women Speak Differently in Different Ways 

 International and national variation means factors of ethnic, racial, and other types 
of group and institutional enculturation and socialization are involved in same- 
 gender   professional intergroup communication. For example, one comparison of 

S. Hauk and A.F. Toney



23

African American and European American women found a direct communication 
style to be more common among African American women than the indirect fram-
ing most used by their European American peers. Both groups of women had a goal 
of reducing potential  confl ict   in the workplace (or, largely in the case of the European 
American participants,  confl ict   avoidance), but their methods for how to articulate 
and achieve it were different (Shuter and Turner  1997 ). 

 From a  gender  -as-culture perspective, communication habits emerge from a 
childhood and adolescence fi lled with same-sex conversational partners and a life-
time of social expectation (Maltz and Borker  1982 ). Review of the literature on 
studies of language and  gender   has found that women may have access to power 
(and more  acceptance  ) in a majority culture context when using indirect language, 
uncertainty, and hedges in relatively long sentences: “Well, I was wondering if…,” 
“Perhaps we might…,” “It’s kind of…,” while men fulfi ll expectations by referenc-
ing quantity or judgments in direct statements: “An evaluation of 3.8…,” “It’s 
good…,” “Write it down.” (Mulac et al.  2001 , p. 125). 

 The fact that interaction in most universities occurs in the context of historically 
male Discourses makes every interaction between the sexes a  doing  of  gender   in 
some way (Uchida  1992 ). Consequently, gendered communication structures can be 
(dis)empowering depending on context. For example, one “ironic consequence” for 
women who adopt a more direct communication style is that they “are rated as less 
warm and likeable, and evaluators indicate less willingness to comply with their 
requests” (von Hippel et al.  2011 , p. 1312). 

 Additionally, those whose work focuses on teaching tend to value a pragmatic 
approach and may seek career rewards based on personal  motivation   rather than 
external distinction (Wang et al.  2015 ). Some have written about the importance of 
women seeking to participate in the career reward structures and other status quo 
value systems in the academy (Nicholson and de Waal‐Andrews  2005 ; Olsen et al. 
 1995 ). However, embracing the status quo without also attempting to change it has 
the danger of derailing progress in the intellectual and professional work of mathe-
matics education.  

2.6.2     Views of Work in Mathematics Education 

 What does work in mathematics education in a department of mathematical sci-
ences look like from the various intercultural perspectives, taking  gender   as an 
aspect of the Discourse? From a polarized orientation, the situation regarding work 
in a department may seem to be one of unending  confl ict  , of the male-dominated 
status quo (them) versus women (us). 

 From a  minimization   view, the situation would seem mutable, if slowly, towards 
a goal of commonality. The more equivocal each type of language use becomes, the 
more that women use male language features and vice versa, the closer the depart-
ment comes to an  equality   in talk. The problem in this over-reliance on commonal-
ity is that  equality   in discourse style is not  equity   in Discourse. As Marilyn 
Cochran-Smith and  colleagues   have recently described it, “With the former, the 

2 Communication, Culture, and Work in Mathematics Education in Departments…



24

valence of the terms is primarily about sameness ( equality  ) or difference (inequal-
ity), while with the latter, the valence of the terms has primarily to do with fairness 
and justice ( equity  ) or unfairness and injustice (inequity)” (Cochran-Smith et al. 
 2016 , p. 69). 

 From an  acceptance   orientation,  gender  -as-culture and  gender  -as-power are over-
lapping ways of seeing the world and the goal might be a hazy one of “better com-
munication” (though it would be diffi cult to know what steps to take to move towards 
the goal). Additionally, in the  acceptance   view, noticing of differences in language 
usage would be a tool to  understanding   the intentions and perceptions of  colleagues  , 
with such  understanding   seen as contributing to “better communication.” 

 Building on this noticing of difference in communication, the  adaptation   orienta-
tion would attend to creating infrastructure that validates and leverages the subtle-
ties of difference and uses variety in Discourses to mitigate marginalization. Here is 
a very small example: in preparation for every run-of-the-mill department meeting, 
the chair might provide faculty with the agenda a few days in advance and have each 
person email her back with a short written summary statement (25–100 words) 
about one agenda item, perhaps addressing “The things I am wondering about topic 
 X ” or “Where I’d like to see the department in two years regarding topic  Y .” Creating 
the norm of considering one’s perspective and how to communicate it as preparation 
for a meeting becomes profoundly useful when the department faces a meeting 
where a highly charged or high stakes topic will be discussed. It can position the 
meeting as a place to air ideas and to collaborate on solving a  community   problem 
(rather than a place to air grievances).   

2.7     Conclusion 

 Central to effective communication across multiple professional cultures is the 
strategy of information gathering. We cannot notice nuances in difference until we 
have enough information to see difference. Tackling the ideas of  equity  , diversity, 
and inclusion are current challenges in U.S. schools, colleges, and universities 
(Darling-Hammond  2015 ). In the latter-half of the twentieth century, “ equality  ” was 
the watchword—a  minimization   orientation concept. In the twenty-fi rst century, 
more people are developing an  acceptance   orientation, in which gradations of com-
monality and difference are noticed. This has brought attention to fairness and 
 equity  . Further progress along the continuum foreshadows a need, in the not too 
distant future, to have conversational resources that allow  adaptation   to the diversity 
of Discourses we encounter daily. 

 In providing information about the  intercultural orientation   continuum in this 
chapter, we have offered language and perspective for examining professional inter-
actions. Keep in mind, the continuum is  developmental . This means a person can 
take intentional and mindful action to move along the continuum towards adaptive 
 intercultural competence  . What is more, such personal growth can support greater 
effectiveness as an agent of change in a department. 
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 As noted at the start, humans compare, including comparison of themselves to 
others. In fact, this book is an effort in that direction. Readers get to see some of  this  
and some of  that  without being put in the position of having to pit  this  and  that  
against each other.         
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    Chapter 3   
 Valuing and Supporting Work in Mathematics 
Education: An Administrative Perspective                     

     Minerva     Cordero     and     Maura     B.     Mast    

    Abstract     In this chapter we refl ect on the roles and responsibilities of academic 
leaders in encouraging faculty in mathematics departments to value contributions to 
mathematics teaching and learning. We discuss how academic leaders can and 
should use their perspective, position and infl uence to: encourage productive dia-
logue between practitioners of mathematics and mathematics education; use assess-
ment of student learning as an opportunity to further this dialogue; and value and 
reward work in mathematics teaching and learning in the hiring, evaluation, tenure, 
promotion, and merit processes.  

  Keywords     Assessment   •   Mathematics education   •   Scholarship of teaching and 
learning  

3.1            Introduction 

 Faculty at US colleges and  universities      are responsible for teaching, research, and 
service, or what the American Association of University Professors (AAUP) 
describes as “student -centered work  ,” “disciplinary- or  professional-centered work  ,” 
and “ community  -centered  work  ” ( AAUP n.d. , p. 1).  Academic leaders   in today’s 
colleges and universities, especially deans, are responsible for supporting this tri-
partite work of the faculty with the overall goal of promoting excellence in their 
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institutions and advancing institutional  mission  . As such, an  academic leader   must 
have a future-oriented perspective; take a wide, cross-campus view; and prioritize 
the support and nurturing of activities that contribute to the institution’s broad and 
strategic  goals  . 

 In this chapter, we discuss how  academic leaders   can use their perspective, posi-
tion, and infl uence to encourage and value the work of mathematics faculty in math-
ematics education. In keeping with the approach taken in this volume, we regard the 
defi nition of mathematics education and the associated contributions to be intention-
ally broad and to encompass work in pedagogy, curricula, and  outreach  , as well as 
research  in mathematics education  . We focus primarily on approaches to supporting 
the  professional-centered work   of the mathematician in mathematics education, as 
this connects more closely with our backgrounds and experiences. We also provide 
examples to illustrate what  academic leaders   actually do and what results they achieve. 

 An important note: for convenience, we will often refer to the  academic leader   in 
this chapter as the  dean  . In reality, the  academic leader   could be a  department chair  , 
a program director, a division head, an associate  dean  , an associate or vice president 
for academic affairs, a provost, or even a president. What matters here is that the 
individual is a respected leader, has some fi nancial discretion and some infl uence, 
and possesses a viewpoint that can encompass both local issues (at the department 
level) and global issues (at the campus or  community   level). 

 In Sect.  3.2  we consider the role of  academic leaders   in facilitating  productive 
interactions   and discuss their contributions to this area. In Sect.  3.3  we address the 
increasing emphasis on assessment  of student learning   in  higher education   and the 
relationship between assessment and  disciplinary-centered work  . In Sect.  3.4  we 
discuss contributions to the teaching and learning of mathematics in the context of 
a faculty member’s professional and career development, with particular attention 
to how these contributions may be evaluated. Throughout the chapter, we highlight 
the important role of  academic leaders   in supporting and valuing all forms of con-
tributions to mathematics education.  

3.2      Mathematics and Mathematics Education: Facilitating 
 Productive Interactions   

3.2.1     Building Productive Interactions: Diffi cult 
but Essential Work 

 Our fundamental conviction is that practitioners in  mathematics   and mathematics 
education have much to learn from one another; in fact, these practitioners could 
and should be extended to include  in-service teachers  , education faculty, psychol-
ogy faculty, and policy makers. We acknowledge the diffi culties of past interactions 
as summarized, for example, by Ralston ( 2004 ): “…instead of cooperation, we have 
had for the past decade… the Math Wars, which pit (mainly) research mathemati-
cians against (mainly) college and university mathematics educators and school 
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mathematics teachers” (p. 403). But we agree with Ralston and others that coopera-
tion is essential for real progress to be made in K-12 and, therefore, post-secondary 
mathematics education in the US. 

 A signifi cant challenge in this context is that research mathematicians have not 
always demonstrated an  understanding   of, or appreciation for, the nature of work in 
mathematics education. Ball and Forzani ( 2007 ) addressed this challenge and noted:

  One impediment is that solving educational problems is not thought to demand special 
expertise. Despite  persistent   problems of quality,  equity  , and scale, many Americans seem 
to believe that work in education requires common sense more than it does the sort of dis-
ciplined knowledge and skill that enable work in other fi elds. Few people would think they 
could treat a cancer patient, design a safer automobile, or repair a bridge, for these obvi-
ously require special skill and expertise (p. 529). 

   In mathematics departments, this misunderstanding frequently results in an 
undervaluing of the work performed by mathematics faculty whose focus has 
shifted to mathematics education. As McCallum diplomatically put it, “Collaborative 
efforts between mathematicians and mathematics educators are sometimes ham-
pered by a general lack of mutual respect between the two fi elds” ( 2003 , p. 1097). 

 Hyman Bass ( 2005 ) articulated the challenges further, arguing that there are two 
common myths regarding research mathematicians becoming involved in mathe-
matics education. Mathematicians promulgate the fi rst myth, sharing “… a common 
belief … that attention to education is a kind of pasturage for mathematicians in 
scientifi c decline.” Educators are responsible for the second myth, with doubts 
about “… the relevance of contributions made by research mathematicians, whose 
experience and knowledge is so remote from the concerns and realities of school 
mathematics education” (p. 418). Bass acknowledged that mathematics and math-
ematics education are not the same, but that “ productive interactions  ” between these 
fi elds can (and do) exist (p. 430). 

 Mathematics departments should bear the primary responsibility for supporting 
these  collaborations   and “ productive interactions  .” Sometimes, however, they need 
help in initiating or sustaining these efforts. The silo-like  nature   of today’s  higher 
education   makes this a challenge. The prevalent organizational structure in US 
 higher education   is one of departments within colleges or schools. This somewhat 
vertical structure supports discipline-based teaching and  research  , but isolates 
departments and inhibits  collaboration  . As a result, faculty may not see opportuni-
ties to work with  colleagues   in other departments (sometimes even within their own 
department!) or in other areas of the institution.  

3.2.2     The Role of the Academic Leader in Initiating 
and Sustaining  Collaborations   

 Our experience is that an  academic leader   who resides outside the department and 
who has an  understanding   of the need for cooperation across different areas of the 
university can bring faculty together around projects that may lead to deeper 

3 Valuing and Supporting Work in Mathematics Education: An Administrative…



30

 collaborations  . We have seen this at several different institutions, including our 
own. In each of the following examples, an  academic leader   identifi ed, encouraged, 
or brought together faculty members from across the institution to work on a com-
mon project. In several cases, the results went beyond the immediate project to 
include the deepening of interdisciplinary  understandings  , the implementation of 
curricular change, or the advancement of new research  partnerships  .

•    Education faculty wanted to develop a graduate degree in education for  in- 
service   high school mathematics teachers. Because such a degree needed to have 
a signifi cant amount of mathematics content (both as a good practice and as a 
requirement for advanced certifi cation), the input of mathematics faculty was 
vital. The resulting  collaboration   led to the  development   of a joint graduate 
degree.  

•   In a different institution, faculty in the mathematics department sought out a  col-
laboration   with faculty in education to design a subject-based master’s degree in 
mathematics education for in- or  pre-service teachers  . The resulting discussions 
brought mathematics and education faculty together in new ways, leading to 
other joint projects that included grant proposals and  curriculum development  .  

•   With support from a federal grant, mathematics and education faculty at a 4-year 
institution and a  community   college met over the period of a year to compare 
syllabi for fi rst- and second-year mathematics courses, discuss student success 
concerns, and review transfer policies.  

•   Mathematics and mathematics education faculty served together on a state-wide 
committee charged with evaluating mathematics placement testing and the role 
of developmental mathematics in  public    higher education   in that state.  

•   A mathematics  department chair      initiated a  collaboration   with education faculty 
and K-12 teachers, supported by  National Science Foundation      funding, to verti-
cally bridge the school curriculum to research-level mathematics. The innovative 
 partnership   benefi tted graduate students and faculty at the institution, as well as 
teachers and students in local K-12 schools, and provided a model for other 
institutions.    

 How can deans help? The nature of their role is that they take a cross-institutional 
perspective. This perspective gives them insights into connections and opportuni-
ties, as well as synergies, across a college or university. With this perspective, deans 
bring together groups of faculty to initiate new  programs         or build out areas of poten-
tial strength. In this context,  collaborations   that connect mathematics faculty and 
mathematics education faculty, or that support mathematics faculty with research 
interests in teaching and learning, should be connected to specifi c programs (such 
as the graduate education programs mentioned earlier) or focused to support assess-
ment  of student learning   (more on that below), student retention  goals  , or revisions 
of academic support services. 

 Bennett’s chapter in this volume describes work with education faculty who had 
concerns about a required course for a mathematics education program. The request 
to replace this course with a “mathematically rigorous  capstone course   for  second-
ary   mathematics teachers that would make  explicit   connections between  college 
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and high school mathematics” (Chap.   4    , p. 45) gave Bennett the opportunity to not 
only think carefully about what these students should learn, but to begin a research 
project in the  scholarship   of teaching and  learning  . 

 Sultan and Artzt ( 2005 ) presented an example of how faculty from two different 
departments, with two different worldviews, can collaborate. What began as an ini-
tial discussion about the preparation of  secondary   mathematics teachers led to 
National Science  Foundation   funding for a project to recruit high school seniors into 
a mathematics  teacher preparation   program. As they noted, “If there is one thing 
that we have learned it is that  collaboration   is a complex process. We have to be 
willing to learn from each other, we have to respect each other, and we have to be 
willing to change” (p. 53). 

 Holm’s chapter in this volume echoes this sentiment. She wrote, “I believe 
strongly that the mathematical sciences  community   must maintain the bridges 
between researchers in mathematics education and  practitioners   of mathematics 
education, particularly at the post-secondary level. Moving forward we need to 
improve our  communication   and  collaboration  ” (Chap.   25    , p. 377). (In this context, 
a practitioner of mathematics  education   is someone who strives to use mathematics 
education research in his or her teaching.)   

3.3      Using Assessment of Student Learning to Build 
Productive Interactions 

3.3.1     The Pressure of Assessment 

 The call for  assessment       of student learning   in  higher education   has grown across the 
United States over the last decade. A recent survey by the Association of American 
Colleges and Universities (AAC& U  )  reported   that “[t]he proportion of AAC& U   
member institutions assessing learning outcomes both in general education and 
more broadly at the institutional  level   has increased from 6 years ago” (AAC& U   
 2016 , p. 2). The use of business terminology in this context, such as “return on 
investment” and “value-added,” is increasingly common at the administrative level 
and this usage suggests that non-academic models and approaches are being 
imposed on  higher education  . Colleges and universities are under tremendous pres-
sure to not only articulate student  learning outcomes   in general education and in the 
major, but to assess progress toward these learning outcomes and to  demonstrate   
that this progress is a direct result of the educational experience. These pressures 
come from regional accreditors, federal and state agencies including the United 
States Department of Education, the media and the  public   (see, for example, the 
U. S. Department of Education’s report ( 2006 ) by the Spellings Commission and 
Stratford’s  Inside Higher Ed  article ( 2015 )). 

 At the departmental level, regular  program reviews   may include an expectation 
for assessment of the  curriculum     , of student learning, and of other areas such as 
tutoring and other academic support. While the immediate pressure for assessment 
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and departmental reviews may be external, or from the higher administration, there 
are potential benefi ts to a department that engages seriously in this work. The guide-
lines prepared by the  Mathematical Association of America’s (MAA    2010 ) 
 Committee on Departmental Reviews      frames a self-study as an opportunity for 
renewal, suggesting that, “…it provides an opportunity for members of a depart-
ment to move forward together with a shared  understanding  , a shared set of  goals  , 
and a shared commitment” (p. 5).  

3.3.2     Finding Value in the Assessment of Student Learning: 
The Role of Faculty 

 Faculty may rightly argue about the emphasis on  assessment   in today’s  higher edu-
cation   world, raising questions about time and effort along with the concern that 
“the entire premise of ‘assessment to improve instruction’—especially if it is offered 
by outsiders—is that there is something wrong with instruction to begin with” 
(Hutchings  2010 , p. 4). But when faculty have signifi cant roles in assessment, the 
results can be meaningful. Discussions about assessment should become conversa-
tions about student learning, which then should become transformative conversa-
tions about curricula and teaching. The MAA has long supported assessment of 
learning in undergraduate mathematics with workshops, publications (Gold et al. 
 1999 ; Steen  2006 ), and other resources. As Steen noted in his introduction to Gold 
et al., “Assessment not only places value on things, but also  identifi es      the things we 
value” (p. 1). The value of assessment itself is described by Pat Hutchings of the 
Carnegie Foundation for the Advancement of Teaching, as follows: “… the real 
promise of assessment—and the area in which faculty involvement matters fi rst and 
most—lies precisely in the questions that faculty, both individually and collectively, 
must ask about their students’  learning   in their regular instructional work: what 
purposes and  goals   are most important, whether those  goals   are met, and how to do 
better” (Hutchings  2010 , p. 7).  

3.3.3     Assessment as an Opportunity for  Productive 
Interactions   

 Deans should use assessment expectations (or mandates) as opportunities to bring 
faculty together to have discussions to identify what is valued, to ask questions 
about students learning within the context of their discipline, and to think deeply 
about course and curriculum  goals  . The assessment discussions also present an 
opportunity for deans to demonstrate to faculty involved in mathematics education 
that their work is valued. 

 The chapter by Sumner in this volume provides one example of how an  under-
standing   of student  learning outcomes   can and does inform teaching and curricu-
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lum. She described several examples of aspects of integrating writing and speaking 
into courses to address student  learning outcomes  . Sumner noted that her success in 
introducing these alternative forms of assessment led to changes in how she taught 
and assessed expectations in mathematics major courses such as  differential equa-
tions   (Chap.   11    ). In their chapter in this volume, Lopez et al. discussed how three 
faculty in the department used research literature and the experiences of other insti-
tutions to design a quantitative  reasoning   course that would “strengthen the quanti-
tative and  fi nancial literacy   of the students” (Chap.   17    , p. 249). This group not only 
focused on the student  learning outcomes   in  designing      the course, but thought care-
fully about the pedagogy and the learning environment. Catepillán’s chapter in this 
volume outlined a different challenge: how to use her background in ethnomathe-
matics to develop a mathematics course that also met the student  learning outcomes   
to qualify as a  diversity   course (Chap.   19    ). 

 Deans play a role in supporting these discussions and this work in multiple ways. 
The most fundamental should be the encouragement, if not the expectation, for 
broad faculty involvement and  leadership   in the development and assessment  of 
student learning   outcomes. In the context of mathematics, this assessment work 
presents a very natural opportunity for mathematicians with interests in and experi-
ence with mathematics education to take meaningful and signifi cant roles. Deans 
should provide fi nancial support to begin and sustain these activities. This can take 
several forms beyond offering stipends or course releases for assessment work; the 
results often last well beyond the initial activity. We have seen faculty who receive 
funding to attend conferences and workshops on the assessment  of student learning   
and the  scholarship   of teaching and learning return energized and excited. This 
enthusiasm can be infectious, leading to real change in teaching and learning at the 
institution. In some cases this  engagement   revitalizes a faculty member’s research 
interests, leading to new work in the  scholarship   of teaching and learning. We are 
most familiar with the positive impact resulting from participation in activities such 
as  Project Kaleidoscope   and AAC& U    conferences      with a focus on science and 
mathematics, MAA’s  Project NExT   (New Experiences in Teaching), and the work-
shops and resources offered by Science Education for New Civic Engagements and 
Responsibilities ( SENCER  ), but this is not an exhaustive list. 

 Deans should use grant or institutional funding to bring in respected speakers to 
work with faculty on engaging in meaningful assessment. As Hutchings noted:

  Clearly there are productive bridge-building possibilities here, as the  scholarship   of teach-
ing and  learning   and assessment share overlapping agendas, practices, and institutional 
constituencies and as growing faculty involvement in the former shifts  understandings   of 
the latter to more clearly align assessment with what faculty actually do as teachers 
(Hutchings  2010 , p. 11). 

   Deans should also lead conversations about recognition and rewards for faculty 
work in assessment (see below for a broader discussion of this). This can take many 
forms: providing guidance to  hiring      committees as they write position descriptions; 
supporting graduate program directors in the incorporation of assessment into the 
preparation of graduate students (see Chap.   6     in this volume by Lai et al. for more 
information about professional development for mathematics graduate  teaching 
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assistants     );  working   with faculty to incorporate  student self-assessment   (in the form 
of an e-portfolio, for example) into the  curriculum  ; and leading campus-wide dis-
cussions about assessment as  scholarship   and as part of the departmental and  insti-
tutional reward system  . These discussions may fi t naturally within a larger campus 
discussion about  scholarship  . In  1990 , Boyer called for a rethinking of how  higher 
education   institutions prioritize the “activities of the professoriate” (p.  xi ). He 
argued for a new, shared vision of  scholarship  , one that defi nes “the work of the 
faculty in ways that refl ect more realistically the full range of  academic      and civic 
 mandates  ” (p. 16). These discussions are as “vital” now (in Boyer’s terminology) as 
they were more than 25 years ago.   

3.4      Faculty Professional and Career Development 

3.4.1     The Arc of a Faculty Member’s Career 

 Many faculty (ourselves included) tend to view faculty careers in a traditional pro-
gression: fi rst fi nish graduate school, then perhaps have a post-doctoral position or 
other short-term experience, then move to a  tenure  -track position as an assistant 
professor. From there, the steps are  tenure  , promotion to associate professor, and 
then promotion to full professor. (And as we can attest, a move to the administration 
may be part of a faculty member’s academic journey.) Of course there are many 
versions of this progression, and alternate career paths could include an appoint-
ment as a full-time lecturer or instructor (perhaps a “ professor of the practice  ,” as 
the teaching-intensive positions are commonly called), working in industry or in 
government before taking a position as a faculty member, or laboring as an adjunct 
at several different institutions. Regardless of the path, an individual faculty mem-
ber’s  professional development   should never stop.  Department chairs   and deans 
should not only recognize this, but should work actively with faculty at all stages of 
their career to help them refl ect on their own  professional development   and to set 
short- and long-term  goals  . 

 Bremser’s chapter in this volume provides a compelling refl ection of how faculty 
may naturally change focus and direction as their careers develop. Educated as a 
research mathematician, Bremser described how she “…began to direct more intel-
lectual energy toward educational issues, with the explicit goal of fi nding construc-
tive ways to get involved” (Chap.   23    , p. 336). This led to participation in a workshop 
on  social justice  , which in turn led to scholarly  engagement   in a number of new and 
unexpected ways. 

 The chapter by Karakok et al. provides another example of how careers develop 
and are shaped in unanticipated ways by joint work between mathematics and math-
ematics education faculty (Chap.   7    ). The authors outlined their  collaboration   to 
develop a  Math Teachers’ Circle  . The program grew out of an identifi ed need to 
improve the mathematical and pedagogical content knowledge of local  middle 
school   mathematics teachers. The approach meant doing something new: designing 
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an interactive and in-depth experience of mathematics for these teachers using the 
 Math Circle   model. As the authors noted, the impact of this work went beyond the 
audience of  middle school      teachers. All three authors benefi tted from the experience 
and saw positive impacts on their careers. It also benefi tted the department, since the 
authors brought their refl ections about the program back to the department through 
discussions at department meetings. 

 Bass noted that “… the knowledge, practices, and habits of mind of research 
mathematicians are not only relevant to school mathematics education, but … this 
mathematical sensibility and perspective is essential for maintaining the mathemati-
cal balance and integrity of the educational process—in  curriculum development  , 
teacher education, assessment, etc.” (Bass  2005 , p. 418). We know many mathema-
ticians who have become engaged in very natural ways with K-12 education, often 
with support and encouragement from senior leaders on campus. These have ranged 
from informal  presentations   in local schools to structured programs like the ones 
described by Karakok et al. and Seshaiyer and Kappmeyer (Chaps.   7     and   8    ). Deans 
should support this type of work for multiple reasons: it represents a valuable fac-
ulty contribution; it is a form of  community    engagement  , something that is often a 
key piece of an institution’s  mission  ; and this type of work has great impact on 
today’s K-12 students, who are tomorrow’s college and university students.  

3.4.2     Valuing and Rewarding Work in Mathematics Education 
Done by Mathematics Faculty 

 Mathematics faculty face inherent challenges when undertaking work in mathemat-
ics teaching and learning. A primary concern is that neither mathematics faculty nor 
education faculty will perceive this work as  scholarship     . Because faculty evaluation 
of these contributions heavily infl uences how the higher administration appraises 
them, the result is that the institution as a whole may not value this work. Furthermore, 
departments used to evaluating mathematics research as part of a portfolio for  ten-
ure   or promotion may not feel equipped to adequately assess work in mathematics 
education. A faculty member may view his or her work in mathematics education as 
contributing to the department’s  mission   (and perhaps the larger institutional  mis-
sion  ), but other members of the department may not share this perception or agree 
that this should be a priority. Faculty may feel uncomfortable with a  colleague’s   
focus on undergraduate teaching, concerned that the outcome may be an increase in 
their  workload   due to changes in curriculum or pedagogy, or a criticism of their own 
teaching. Faculty hired under one set of expectations may move in a different direc-
tion as their career progresses, leading to concerns about teaching responsibilities 
and research  coherence   within the department. Finally, different members of the 
same department may have very different perspectives and  understandings   of words 
such as  scholarship   and research, effective teaching, and  outreach   (see Chap.   2     by 
Hauk and Toney in this volume). 
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 Mathematics faculty members need to think carefully about work in mathemat-
ics teaching and learning and how this activity aligns with both their  professional 
development   and with departmental expectations. This is a particularly important 
concern for pre- tenure         faculty. Bremser’s advice in this regard is so good that we 
repeat it here: “…start with a careful assessment of your own department and insti-
tution, as well as your tolerance for risk” (Chap.   23    , p. 344). Holm sounds a similar 
caution, from the perspective of a faculty member at an Ivy League institution: “I 
count myself lucky to be a member of a supportive research department where fac-
ulty members are encouraged to contribute to all aspects of the profession. I have no 
illusions: my work with the  AMS   and  TPSE Math   did not get me  tenure   or promo-
tion to full professor. It was considered a favorable part of my dossier, but my 
research is the  sine qua non ” (Chap.   25    , p. 378). Each faculty member needs to 
assess his or her  institutional culture   and the expectations for professional advance-
ment, whether for  tenure   or for  reappointment   (either working toward  tenure   or as 
part of a renewable fi xed term lecturer position). A  mentor   should play a crucial role 
in this regard, both in helping to understand institutional expectations and in provid-
ing guidance. 

 The  dean   has a responsibility to ensure that  reappointment  , merit,  tenure and 
promotion   expectations are clearly articulated and communicated. When a new fac-
ulty position is proposed, a  dean   should talk with the department about how the 
individual will contribute to larger departmental  goals  ; this conversation should go 
well beyond the usual (and sometimes pressing) concerns of research and teaching 
needs. This conversation could include a discussion about how open the department 
is to work in mathematics education or how a new faculty member could contribute 
to course and  curriculum development     , or, more broadly, to the  scholarship   of teach-
ing and learning. If a recent departmental or general education review includes a 
recommendation for  curriculum revision  , a  dean   should use this as an opportunity 
to work with the department to shape a position description that emphasizes this 
interest or experience. This discussion must be in the context of the departmentally- 
formulated norms for  tenure and promotion  , where they exist, or in the context of 
institutional norms. The expectations for the new faculty member need to be made 
explicit in the position description, in the interview, and in subsequent reviews of 
the faculty member. As departmental leadership changes, the  dean   will need to 
ensure that the personnel or review committee knows that this individual was hired 
with a certain set of expectations; a clear, written, permanent paper trail is essential 
in this case. A  dean   could also use a department’s interest and strength in mathemat-
ics education to advocate for a new hire, perhaps with a joint appointment in a 
school of education. In this case, the  dean   should work carefully with the other  dean   
so that both the candidate and the departments have a clear and consistent  under-
standing   of  tenure   and promotion expectations. These expectations should be clearly 
articulated so that there are no surprises during the  tenure and promotion   process. 
(Of course, such an approach benefi ts all  tenure  -track faculty.) If the appointment is 
a joint appointment, this articulation should address which department has respon-
sibility for leading the  tenure   and promotion process and how input from the other 
department will be utilized in that  process  .  
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3.4.3     Evaluating Work in Mathematics Education: 
Recommendations and Examples 

 How should  mathematicians  ’ efforts in mathematics education be encouraged, sup-
ported and rewarded? The chapter by Umland and Black in this volume addresses 
this issue. This chapter is a good resource for departments looking for a framework 
for assessing a wide variety of education-related work. Its authors describe methods 
for evaluating these contributions. They also refl ect on the challenges:

  Unfortunately, many faculty in departments of mathematical sciences are unaware of the 
complexity of the problems, the dire need for mathematical experts to be involved, and the 
diffi culty of such experts to fi nd meaningful ways to make contributions to these problems. 
… Typical promotion and  tenure      guidelines do not address (or inadequately address) the 
types of scholarly work discussed here. Even when such work is recognized as appropriate, 
adequate methods for evaluating it are often lacking (Chap.   9    , p. 129). 

   These authors are clear that  academic leaders   can and should play a signifi cant role in 
encouraging (or pushing) departments to have these discussions, outline their standards 
and expectations, and identify how and when to reward the  diversity   of faculty work. 

 We also agree with McCallum’s suggestion ( 2003 ) that departments looking for 
examples should consider the guidelines developed by the University of Arizona 
College of  Science   for promoting mathematics faculty whose work is in mathe-
matics education ( 1992 ). The university received a National Science  Foundation   
Recognition Award for the Integration of Research and Education in 1997. The 
 guidelines   were one of two successful initiatives highlighted in the university’s 
application, which stated:

  The University recognizes that science and mathematics educators face special obstacles to 
career enhancement because traditionally more weight has been given to research than to 
education. … In 1992, the College of Science formally adopted guidelines and procedures 
for evaluating faculty members who play a substantial role in mathematics and science 
education. The guidelines put educational issues on a par with research expectations, estab-
lishing standards of national reputation and impact in the educational arena. … [These 
guidelines and implementation] have had broad impact in terms of dissolving boundaries 
between teaching and research (University of Arizona  1996 ). 

   The University of Arizona College of Science guidelines highlight the distinction 
between research, teaching, and service for faculty whose interests lie in mathemat-
ics education; more specifi cally, the guidelines state:

  Traditional categories (research, teaching, service) may be inappropriate for evaluating sci-
ence and mathematics educators because the lines between the categories are often blurred. 
If these categories are to be used, however, caution must be exercised to avoid assigning 
 creative scholarly   work to the service or teaching category (where it ordinarily receives less 
weight in the overall process) simply because it is different from  traditional    research      
(University of Arizona College of Science  1992 , p. 2). 

   This document provides guidelines for evaluating the research, teaching and ser-
vice work of faculty who have a substantial role in mathematics education. The 
document also outlines procedures, including the expectation of a written  agreement 
between the faculty member and the chair regarding the portion of time to be spent 
on  work in mathematics education  .   
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3.5     Conclusion 

 As  academic leaders  , we see major changes affecting  higher education  , including 
increased attention to the assessment  of student learning   and a growing scrutiny of 
faculty workload and “productivity.” With change comes uncertainty and risk. As 
Dan Butin ( 2016 ) of Merrimack College noted, “[a]cademics tend to be risk-averse.” 
Deans, on the other hand, must be comfortable with assessing the relative risks of 
stasis and change, with determining when change is necessary, and with leading 
necessary change. 

 We argue that with change, there is also opportunity. In the context of mathemat-
ics teaching and learning,  academic leaders   should have the institutional perspective 
and resources to bring mathematics faculty and mathematics education faculty 
together to have productive conversations and to collaborate on strong projects. 
They can use the call for assessment as an opportunity to strengthen these  collabora-
tions  . Deans should encourage departments to explicitly discuss how the tripartite 
work of the faculty should be recognized and rewarded. 

 The  dean  ’s perspective, advocacy, and, in some cases, resources should serve as 
driving forces for recognizing work in mathematics education as situated fi rmly in 
the  mission   of a department of mathematics and as a vital aspect of a mathematics 
department’s teaching  mission  . Good work is already happening at many institu-
tions. Deans can and should celebrate this work locally and publicize it widely.     
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Chapter 4
Effects of a Capstone Course on Future 
Teachers (and the Instructor): How a SoTL 
Project Changed a Career

Curtis D. Bennett

Abstract In this chapter, I revisit my first scholarship of teaching and learning project 
as a 2000–2001 Carnegie Academy for the Scholarship of Teaching and Learning 
scholar. I describe my experience as a pure mathematician taking on a pedagogical 
research project and the effects of this project and of doing the scholarship of teaching 
and learning on my teaching and career. The project studied student development in a 
novel mathematics capstone course for future teachers. Student teams worked on 
semester-long mathematics research problems, while simultaneously completing a con-
tent-heavy course on how advanced mathematics informs the teaching of high school 
(and earlier) mathematical subjects. The course changed behaviors of the students by 
giving voice to students with prior negative classroom experiences. In addition, one 
student had a surprising change in attitude towards proof and its value to secondary 
mathematics teachers. Working through the context of the original study, I reflect on the 
effects of the course on the students and of the project on the next 15 years of my career.

Keywords Scholarship of teaching and learning • SoTL • Mathematics teachers  
• Mathematics capstone • Doing mathematics

4.1  Introduction

Scholarship of teaching and learning (SoTL) dates back to the 1990s and Ernest 
Boyer’s (1990) book Scholarship Reconsidered. In order to expand the nature of 
scholarship, Boyer argued that scholarly teaching should be valued as an important 
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aspect of what faculty do. He noted that a professor’s teaching is scholarly in nature 
as it involves reading texts, preparing appropriate examples, analyzing arguments, 
comparing and judging pedagogical methods for teaching topics, etc. Over time 
scholarly teaching evolved to the scholarship of teaching and learning with faculty 
as expert teacher-practitioners capable of generating pedagogical scholarship in the 
discipline. Such practitioner scholarship brings valuable insights and contributions 
to pedagogical knowledge. In Dewar and Bennett (2015), Doing the Scholarship of 
Teaching and Learning in Mathematics, (Doing SoTL), SoTL is defined as:

the intellectual work that faculty members do when they use their disciplinary knowledge 
(in our case, mathematics) to investigate a question about their students’ learning (and their 
teaching), submit their findings to peer review, and make them public for others to build 
upon.

As a pure mathematician whose research focus is in the areas of groups and 
geometries and combinatorics, I have no formal training in pedagogical research. 
However, I have always put great effort into my teaching, and thus I am perhaps the 
perfect example of a mathematician who should be interested in SoTL.

4.2  The Carnegie Scholars Program

In 1999, the Carnegie Foundation for the Advancement of Teaching invited its first 
mathematicians as Carnegie Scholars in the Carnegie Academy for the Scholarship 
of Teaching and Learning (CASTL) program (Carnegie Foundation for the 
Advancement of Teaching n.d.). The purpose of the program was to “create a com-
munity of scholars, diverse in all the ways that matter in teaching and learning, 
whose work will advance the profession of teaching and deepen student learning” 
(Carnegie Foundation for the Advancement of Teaching 1999). Over the last 16 years, 
SoTL in mathematics has gained significant traction as evidenced by Mathematical 
Association of America (MAA) contributed paper sessions and minicourse offer-
ings on SoTL in mathematics from 2006 to 2016, and the 2015 publication of 
Doing SoTL in the MAA Notes series.

With funding from the Pew foundation, the CASTL scholars program welcomed 
its first cohort of 15 scholars in the summer of 1998. During its first 4 years, the 
CASTL scholars program brought together over 100 scholars from more than 20 
disciplines. Each cohort first received a 2-week introduction to SoTL. After the ini-
tial training the scholars conducted a SoTL project during the academic year. The 
following summer they returned for a 2-week program during which they presented 
their results, discussed how to move forward with their work, and met with the 
incoming cohort of scholars. Initially, the call for applications to the program tar-
geted particular disciplines. Mathematicians were first invited in 1999, and that year 
the mathematics scholars were Peter Alexander from Heritage College, Thomas 
Banchoff from Brown University and then president of the MAA, Bruce Cooperstein 
from the University of California, Santa Cruz, and Anita Salem from Rockhurst 
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University. The mathematics scholars in the 2000 cohort were Jack Bookman from 
Duke University, John Holcomb then from Youngstown State University, Marilyn 
Repsher from Jacksonville University, and the author, then at Bowling Green State 
University.

A major goal of the program was to help foster an expanding notion of scholar-
ship along the lines of Ernest Boyer’s call (1990). In addition to the scholars pro-
gram, the Carnegie Foundation worked with disciplinary societies, including the 
MAA, with disciplinary scholars chosen to help this endeavor. After the first 4 years 
of the program, the funding mechanism changed. Consequently, there was no 2002 
cohort, but two more cohorts of CASTL scholars were recruited in 2003 and 2005 
under the theme of liberal learning. Three mathematicians, Mike Axtell from 
Wabash College, Jacqueline Dewar from Loyola Marymount University (LMU), 
and the author (now at LMU) were part of the 2003 cohort, and one mathematician, 
Michael Burke from the College of San Mateo, was in the 2005 cohort. This chapter 
will focus on the SoTL work I completed as part of my 2000 CASTL Scholar fel-
lowship, its findings, and the impact of that work on me, on my students, and on my 
career.

4.3  My CASTL Proposal

I first became aware of the CASTL program when Cooperstein recommended I 
apply to the 2000 cohort. In reading the application materials, I discovered that I 
needed a teaching project for the submission, which led me to looking at my cap-
stone class for future teachers.

The capstone course arose as a result of a 1997 change in teacher certification 
requirements in Ohio. Both mathematics and mathematics education faculty at 
Bowling Green State University (BGSU) had concerns about the existing program. 
The education faculty perceived the content of the real analysis class (primarily 
taught as a graduate preparation course) as inappropriate for future secondary teach-
ers. As a required course in the secondary mathematics education program, educa-
tion professors saw real analysis as a roadblock for future teachers. Meanwhile, 
BGSU mathematics faculty felt students should be exposed to the mathematical 
rigor of real analysis and wanted to add three units of mathematics to the program. 
The two groups compromised by adding three more units of mathematics content to 
the program and replacing the real analysis requirement with a mathematically rig-
orous capstone course for secondary mathematics teachers that would make explicit 
connections between college and high school mathematics. As a member of the 
departmental curriculum committee, I volunteered to develop the new course.

I chose to design the course around mathematical topics appropriate for future 
teachers, such as solving a cubic equation (and the invention of complex numbers), 
proofs of the irrationality of π and e, and the impossibility of trisecting an angle. The 
class focused on the mathematical topics needed to prove these results and how to 
apply the mathematical understandings gained to issues in Grades 7–12. I piloted 
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the course in 1998 with ten individually selected students. The pilot went well (for 
a new course), but I was disappointed, as I felt that the students didn’t really experi-
ence doing mathematics. In addition, I didn’t tie the mathematics to the high school 
curriculum as well as I had wanted to.

The students in the first iteration produced notes for the class, and I used these 
notes for the class in both the fall and spring terms of 1999. After discussing my 
concerns regarding students having the experience of doing mathematics with my 
colleague David Meel, I decided to add semester-long mathematics research proj-
ects that students would complete in teams. These projects were to be independent 
of the content of the class. However, they would (ideally) be on some problem in 
mathematics that would prove interesting to future secondary teachers. I piloted the 
projects during the fall term of 1999, and I was happy with the outcome, if not my 
student evaluations (some students objected to the heavy workload and were 
unhappy about their grades). This class and these projects became the centerpiece 
of my successful application to the 2000 CASTL Scholars program, leading to my 
undertaking a study of the projects and the underlying course. While on sabbatical 
leave at Michigan State University (MSU), I arranged to teach the course as a cap-
stone for their secondary education program in the fall 2000 semester.

Once I was named a CASTL fellow, panic set in. Being a research mathematician 
focusing on group theory and combinatorics with little formal education in under-
standing teaching and learning, I was about to embark on a project with little idea 
how to research what I wanted to know. I was extremely fortunate to have friends, 
colleagues, and a brother, who knew a lot more about doing this type of work than 
I did, and I often turned to them for help with my project. In addition, while I was 
at MSU, I had the great fortune to be able to ask for help from, and collaborate with, 
a number of mathematics education specialists, and of course, my Carnegie col-
leagues also helped me out tremendously. While there are too many to mention all 
of them individually, I owe special thanks to David Meel and Daniel Chazan, both 
researchers in mathematics education, who provided assistance on the course and 
the project at different stages.

4.4  The CASTL Research Project

As frequently happens with SoTL projects taken on by disciplinary scholars with no 
experience in studying teaching and learning, my project idea was ill-defined and 
naively constructed. Although my intent was to “prove” that the capstone research 
projects helped students think like mathematicians, the Carnegie project ended up 
being a more comprehensive look at the capstone course (Bennett 2003).

After my 2-week summer initiation to SoTL, I felt a little more prepared for the 
project itself. I applied for human subjects research approval for the project from 
both BGSU, my home institution at the time, and MSU, where the research was to 
be done. I then had (subject to student consent) approval to record all discussions 
with students during office hours on course material, record class meetings as 
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appropriate, collect student surveys, conduct student interviews, and collect and 
report on student work.

My initial goal was to show that students thought more like mathematicians at 
the end of the course than they did at the beginning and to somehow attribute this 
change to the research projects students completed in the class. In hindsight, this 
was hopelessly naïve. However, this starting point led me to collect a great deal of 
data on what was happening during the course, leading to my eventual CASTL 
project, the production of an electronic course portfolio (Bennett 2003).

Fourteen students took the course, 13 of whom were prospective teachers (the 
other changed his major the summer before the class). Two of the students had done 
very well in previous mathematics classes and two of them reported low confidence 
in mathematics. Twelve students were traditional 4th year seniors, one was a 5th 
year senior, and the last was a senior who had returned to college after working for 
several years.

From the first assignment, a mathematical biography together with four other 
prompts, I learned that most of the 14 students believed: “we study mathematics to 
learn how to solve problems, and because it is useful.” However, on a separate pre- 
survey, few students could give examples of applications of higher-level mathemat-
ics. Some students reported bad experiences in other mathematics courses, and at 
least two claimed they needed a grade better than C in the class to be allowed to 
student teach. The pre-survey also revealed that most students considered mathe-
matics problems to be interesting only if they corresponded to applications (either 
real-world or expanding on a previously learned concept).

Evidence collected hinted at an underlying issue: many of the students in the 
capstone course appeared to feel that they could not take part in discussions about 
mathematics in the college classroom. In discussing his willingness to ask questions 
in a post-course interview (the entire class participated in one interview), Ron (all 
names are pseudonyms) mentioned that students know what the “pecking order” of 
a class is. The subtext of his comment was that in many other courses, “weaker” 
students are at the bottom of the pecking order and are afraid to ask questions 
because it would be considered “silly.” What stood out in their discussions was that 
in the capstone class the students felt they could ask questions they always had 
about mathematics and mathematics teaching. Alan stated this most clearly, explain-
ing how in previous courses, “there were so many things I never knew (about math-
ematics)… I always wished I could ask them, but I never asked them.” These 
statements indicated how students’ previous classroom cultures promoted avoid-
ance behaviors in the future teachers. Covington (1992) documented such avoid-
ance behaviors in adolescents in mathematics classes.

Few of the students perceived themselves as “doers of mathematics” at the start 
of this class, and most felt little authority to alter the discussion in any class. These 
future teachers had had experiences in which they learned to sit passively in the 
classroom for fear of looking foolish or stupid. When the course portfolio (Bennett, 
2003) was produced, I was unaware of Boaler’s (1999) work on personal identity 
and mathematics learning —and Cobb, Gresalfi and Hodge’s (2009) paper on nor-
mative and personal identities had yet to be written. Thus I lacked the knowledge of 
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the vocabulary from the pedagogical literature to express the results of students’ 
prior experiences with words such as agency and personal identity. But looking at 
the student interview comments today, those are the terms I would use.

By the end of the capstone class, these students felt empowered to take part in 
and direct mathematical discussions as well as saw themselves as “doers” of math-
ematics. At least three times during the semester, the students stopped me in class to 
ask for more detailed discussion (and outlines of the proofs) of mathematical topics 
that were only tangentially related to the course content, including Gödel’s incom-
pleteness theorem, the transcendence of 2 2 , and infinitesimal arithmetic. Moreover, 
Alan suggested that he felt that “we as a class decided… what was going to come 
up the next day.” While other students might not have used these exact words, they 
clearly felt more in control of the class than usual. This change in “agency” was 
likely also affected by a new perception of themselves as “doers” of mathematics as 
evidenced by two student groups that referred to themselves as “mathematicians” in 
their project papers (Bennett 2003).

The post-course interview discussion about how some students felt when the 
class went off-topic showed me the important roles that pecking order and personal 
identities played in the classroom. John, the most successful student heading into 
the class (and one whose personal identity included asking questions in mathemat-
ics classes previous to this) started the discussion by stating that when the class got, 
in his words “sloppy,” it was less fun. Other students agreed, but had a different 
sense of “sloppy.” As it turned out, for John, “sloppy” meant when we were discuss-
ing issues related to educational policy (e.g., tracking in mathematics in high school 
mathematics classes) or any time the discussion was not about mathematics. On the 
other hand, for Jim, a student who had been less successful previously, “sloppy” 
meant any time the class strayed from what he needed to know for the upcoming 
homework set, particularly when the mathematics was more complicated. 
Meanwhile Neal, a student closer to Jim in background, suggested that the different 
kinds of tangential discussions were important as they “reach out to different kinds 
of people.” For more detailed analysis of the change in conversations, see Bennett 
(2003). This better understanding of what was happening in the classroom conver-
sations and the importance of student agency and personal identities were major 
revelations of the SoTL project for me—even though I then lacked the language to 
describe them.

A second key outcome of the project was in presenting what the SoTL literature 
refers to as “a vision of the possible,” in this case a story of something unusual that 
happened in a class. The first week of class, Neal, came to my office to ask about 
how he could succeed in the class. Neal commented to me that he had always been 
pretty good at mathematics until he hit the “proof stuff.” Moreover, he was very 
worried about his grade in the class, because he needed a B in the class to qualify 
for student teaching. I was quite concerned. I had often seen pre-service teachers 
like Neal in my upper division mathematics classes at BGSU. While they would 
often persevere and make it through the class with lots of hard work on both of our 
parts, never had such a student left class with an appreciation of “the proof stuff.” 
On the pre-survey question: state the most interesting mathematics problem he had 
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ever worked on, Neal wrote, “To be honest, I can’t remember—probably very 
largely due to the fact that my success in mathematics has not been spectacular in 
the past 2 years—ones that I thought were interesting I always did wrong.”

By the end of the class, Neal had a much richer view of mathematics and the 
importance of proof. On the final examination problem about deriving the quadratic 
formula and using it in classrooms, Neal’s response included the statement, “we 
need to help students envision the steps of the proof [as] useful as the end itself.” 
This answer appeared to embrace the notion of proof as something important. 
Further evidence of a change in Neal came from an unexpected avenue. To help me 
see the class as it unfolded, not just how I perceived or planned it, I obtained copies 
of student notes from Neal and one other student at the end of the semester. Neal’s 
notes included marginalia, that is, comments he wrote down in class that were not 
on the board. The other student’s notes were essentially a copy of what was written 
on the board each day. Neal’s added comments went through an astonishing transi-
tion. Coding of his marginalia showed that in the first 4 weeks of the class, it con-
sisted almost entirely of trivia, brief statements about mathematicians, numerical 
coincidences, etc. On the other hand, at the end of the term, the marginalia con-
tained an amazing number of statements about teaching mathematics. Moreover, the 
point during the semester at which the change appears to occur coincided with a 
discussion in my office hours about how I, the professor, saw proofs inform 
teaching.

Another change I saw in Neal was his perspective on mathematics as problem- 
solving versus calculating. At the post-course interview (I conducted an individual 
interview with Neal), when asked how the course (and project) would influence his 
teaching, he stated:

So one thing I definitely want to apply as a teacher is to try to instill the idea with kids, with 
students, encourage them to bounce ideas off of each other. So in creating lessons, in creat-
ing discussions, group work when bringing up challenging ideas, see what kind of ques-
tions they have. Trying to spark an interest with the students themselves, but letting them do 
the exploration so they can create a sense of ownership – perhaps.

The pre- and post-survey showed him to be more mathematical in his perspec-
tives on what aspects make up good mathematical problems and how mathematics 
is done (Bennett 2003). I do not know whether this change in attitude led to a dra-
matic difference in Neal’s teaching, but the statement suggests that Neal would be 
more likely to create a classroom where the normative behavior is for students to 
explore and discover mathematics.

What I took away from this SoTL investigation was a firmer understanding of 
many of the aspects of this capstone course in mathematics that I found valuable. At 
the start of the investigation, I knew that the student projects “worked.” Unfortunately, 
I had no idea what that meant. Consequently, I moved from wanting to show what 
worked in my class to giving a detailed description of what was happening in my 
class, and why I valued it. In the taxonomy of SoTL questions (Huber and Hutchings 
2005), I moved from a “what works” question to a “what is” question. Disentangling 
various aspects of the course to decide what created the value, however, was (and 
remains) far more difficult. The students seemed to agree that there was great benefit 
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to having a project that they spent most of the semester on, as it made it easier for 
them to wrestle with the mathematical question rather than looking immediately for a 
solution. However, to me the greatest successes in this class were helping the students 
discover that they could be doers of mathematics and giving them the experience of a 
classroom where the normative behavior for all students was to ask questions.

These results had a dramatic effect on me as a teacher. Today I am far more aware 
of the importance of focusing on student attitudes, behaviors, and concerns beyond the 
course material being taught. While my student evaluations saw little change, I believe 
that I am a far better teacher than I was before doing this work. That said, I don’t 
believe that I do a significantly better job in getting students to learn the mathematical 
content of the course, but rather I am much improved in helping students understand 
mathematics as a discipline and seeing themselves as doers of mathematics.

This work also gave me a deeper understanding of and respect for those engaging 
in pedagogical research in mathematics. In part, this came from reading the deeper 
pedagogical literature as opposed to what was popularized, but more importantly it 
came from engaging in some of the research methods myself. Trying to code data 
taught me both the care with which such analysis is done to ensure transparency and 
the difficulty in doing so. Doing this work also gave me a better understanding of 
the language of mathematics education and taught me to see it as more than jargon. 
For example, prior to my SoTL work, I saw triangulation as a word used to give a 
veneer of scientific methodology for pedagogical research. However, through work-
ing on my project, I came to a new understanding: triangulation of data means that 
multiple types of evidence or research methods lead to the same conclusions. 
Consequently, in pedagogical research triangulation makes results more likely to be 
reproducible (and valid). I also became aware of the language of mathematicians 
that can lead to misunderstandings in conversations with non-mathematicians. I 
once used the word “fundamental,” meaning foundational, but was surprised that 
my education colleague took the word to mean the underlying mathematics was 
simple. This understanding of the communication differences between mathematics 
education and mathematics practitioners has proven vital to my collaboration with 
mathematics education specialists.

4.5  Effect the Project Had on my Career

Doing SoTL work, particularly with a focus on the preparation of future secondary 
teachers, has affected me profoundly in multiple ways. It has led to a larger network 
of colleagues, my changing jobs, expanding my scholarly work in multiple direc-
tions, and national recognition. It has also created complications for my efforts to 
continue my mathematical research.

As a faculty member at BGSU, which has a PhD granting program in mathematics, 
one of my primary responsibilities was to participate in and support our PhD 
 program in my research field of group theory and combinatorics. My colleagues 
there were supportive of my doing SoTL as an addition to my traditional mathematics. 
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I too was concerned that it not detract too much from my mathematics research. 
Thus, while I was conducting the SoTL project on my sabbatical, I worked hard to 
publish traditional mathematics papers too. Even after I left BGSU, doing tradi-
tional mathematics research has been important to me. Splitting time between two 
(or more) endeavors makes it harder to keep up with any one of them, and it is fair 
to say that my focus on SoTL has decreased my productivity in traditional 
mathematics.

Despite this decrease in mathematics research productivity, I am grateful for the 
many opportunities SoTL work has brought me. Initially I had some difficulty in 
getting BGSU to support my application to the program. Once the CASTL 
Fellowship was announced, however, I received a great deal of administrative sup-
port. Consequently, I was able to organize a SoTL conference at BGSU.

As part of the CASTL program, I was introduced not only to other mathemati-
cians in the SoTL movement, but also to interesting scholars in a variety of fields. 
Consequently, I had the opportunity to meet with historians, biologists, physicists, 
sociologists, and others who were interested in SoTL, some of whom were also 
prominent in their research fields. As a result of one of these connections, I met 
Deborah Ball and was invited to participate in her education seminar at the University 
of Michigan, which improved my thinking about teaching and learning. Later, she 
suggested I apply to her workshop on teaching mathematics for elementary educa-
tion majors to be held after the Joint Mathematics Meetings in 2002. My new pro-
fessional connections also led to me being invited to many teaching and learning 
conferences and building a network of colleagues in SoTL. And perhaps most sig-
nificantly, as a result of my participation in the Deborah Ball workshop, I met 
Jacqueline Dewar, leading to a job offer from Loyola Marymount University (LMU) 
and a significant future collaboration.

The reception of SoTL by the mathematics department as LMU was very differ-
ent from that at the BGSU department. At BGSU, my work was appreciated by my 
colleagues and the administration, and had I stayed, I am convinced it would have 
been accepted as part of my portfolio for promotion to full professor. However, I 
perceived that many of my colleagues viewed it as of lesser importance than my 
traditional mathematics. I was very fortunate that my BGSU mathematics education 
colleagues were very welcoming of my interest and helped me discover and under-
stand the existing literature.

When I arrived at LMU in 2002, the entire department embraced my interest in 
SoTL. In my first year, the CASTL program put out a new call for applications, and 
I was able to apply jointly with Dewar, who was new to SoTL at the time. Thereafter, 
we started a SoTL brown bag group at the university, and faculty members from 
across the university took an interest, including faculty members from most of the 
science disciplines as well as psychology and economics. In addition, the Center for 
Teaching Excellence at LMU was quick to embrace our forming such a group. In 
contrast, the Center for Teaching at BGSU did not embrace my efforts to expand 
SoTL (likely because prior to my joining the CASTL program I had little contact 
with BGSU’s Center for Teaching). I saw the difference in the responses to my 
SoTL work as reflective of the administrations’ attitudes at the two universities. 
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However, today I believe this had more to do with the size of the institution and 
administrative bureaucracy (BGSU is roughly 5 times the size of LMU) than spe-
cific goals of the administration. Moreover, by the time I arrived at LMU, I was less 
naïve and more knowledgeable about how to position myself and my work with the 
administration.

The CASTL project and my focus on future teachers also created professional 
and career opportunities for me. Professionally, embarking on this work opened up 
new avenues of scholarship and national recognition for me. For example, I am sure 
my SoTL work played a significant role in my winning the MAA Haimo award, and 
it has led to my presenting minicourses at JMM and at various universities. In addi-
tion, I have been fortunate enough to find a number of collaborators in this work, 
and at this time, SoTL works are an important part of my publication record, includ-
ing the MAA book Doing SoTL in Mathematics (Dewar and Bennett 2015). But it 
isn’t the recognition or opportunities for publications that drive me. As with my 
mathematics research, my publications are a consequence of my interest. The differ-
ence is when I work on SoTL, the focus of my interest is on student learning, and 
when I work on my mathematics research, the focus is on more traditional areas of 
mathematics.

Pursuing SoTL also means I have less time to do mathematics research. Since so 
much in my career has changed over the last 16 years, capturing the full effect of 
splitting my time between endeavors is impossible. However, striking a balance 
between doing mathematics and doing SoTL is difficult and, at times, frustrating. 
As all teachers know, doing a good job in the classroom will absorb as much time 
as we allow it to. Consequently, even before engaging in SoTL work, I would have 
to divide my time between class preparation and scholarship. I find that engaging in 
SoTL makes that partitioning of time much more difficult, because the line between 
SoTL and class preparation is often blurry. This contrasts with my experience in a 
doctoral granting department where mathematics research and directing disserta-
tions and theses support each other. The goal of directing doctoral students was for 
them to successfully solve a mathematics problem, and thus such work supple-
mented my research. At a primarily undergraduate institution like LMU however, 
such teaching and (mathematics) research synergies are less common. This makes 
it more challenging to manage two distinct areas of work.

Perhaps the most dramatic effect of my undertaking SoTL work has been 
expanded career opportunities for me. As previously mentioned, my SoTL work led 
very directly to my current position at LMU. However, it also led to administrative 
opportunities. As a result of my work, I was invited to apply for the Center for 
Teaching Excellence director position at LMU, which I did not follow up on. Later, 
I was asked to serve as Associate Dean for Faculty Development in the Seaver 
College of Science and Engineering at LMU, a position I held for 4 years. While the 
SoTL work was not the primary reason for my selection, it contributed to the dean’s 
view that I would be a good fit. My SoTL experiences also contributed greatly to my 
success in that position. Having already worked with scholars in other disciplines in 
SoTL helped me to work with LMU colleagues in other disciplines. In addition, I 
was much better prepared to pursue grant opportunities that involved revising 
courses and to plan faculty development activities.
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For me the benefits of working on issues of teaching and learning have far 
outweighed the costs to my research program. I see teaching and research as two 
equally valuable aspects of being a mathematician. In pursuit of my vocation as a 
teacher, contributing more widely to the teaching and learning enterprise is a mis-
sion for me. Moreover, I have found in my collaborations with pedagogical spe-
cialists and researchers that we all improve the enterprise of teaching, and that we 
do this best when collaborating together with respect for the expertise that each of 
us brings.
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    Chapter 5   
 By Defi nition: An Examination of the Process 
of Defi ning in Mathematics                     
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    Abstract     Our work as mathematics education researchers in a department of 
 mathematical sciences rests upon a foundation of refl ections on our own teaching 
practices and on the mathematical practices that our preservice mathematics teach-
ers are expected to learn. In the nexus of these refl ections sit issues relevant to the 
learning and teaching of mathematics, and the understanding of these issues requires 
sustained and systematic research that includes and goes beyond refl ecting on prac-
tices. We present an example of a teaching episode focused on preparing secondary 
mathematics teachers to better understand mathematical defi nitions and the process 
of creating mathematical defi nitions. We then examine some historical develop-
ments in mathematical practice related to defi nitions and the defi ning process and 
relate these developments to challenges entailed in teaching practice. We conclude 
with examples of researchable areas embedded in these issues and comment on the 
impact of our work.  
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 “What is a good defi nition? For the philosopher or the scientist, 
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logic. But in education it is not that; it is one that can be 
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5.1         Introduction 

 In this chapter, we offer an example of one type of mathematical work we engage in 
as members of a mathematics education research group within a department of 
mathematical sciences that includes mathematics,  statistics  , and mathematics edu-
cation as separate but related disciplines. Our research focuses on the preparation of 
secondary mathematics  teachers   and the expertise required for teaching school 
mathematics. The research and teaching aspects of our academic careers are inter-
twined: our work is informed but not determined by our own teaching. We take 
mathematics teaching as a scholarly unit of study that goes beyond our own refl ec-
tive practices. 

 Mathematics education research is rooted in the  scholarship   of two disciplines: 
mathematics and educational theory. It is grounded in mathematics content through 
the study of curriculum and mathematical practice. It is generally carried out 
through social science research methods, including both qualitative and quantitative 
analysis, but it also includes the study of mathematical ideas. In this chapter we 
address a research area—the use of defi nitions by undergraduate secondary mathe-
matics teaching majors—by describing some researchable issues that arise from 
refl ections on both  teaching practice   and mathematical practice. 

 Our interest in the topic of mathematical defi nitions stems from classroom obser-
vations made during a study of student conceptions of limits after a standard engi-
neering calculus treatment. These informal observations led us to feel uneasy about 
a traditional mathematical pedagogy in which instructors provide students crucial 
mathematical defi nitions with no attention paid to the broader context of defi ning. 
In such a pedagogy, novices do not grasp the nuances of defi nitions, nor are they 
given the opportunity to do so, and they fi nd themselves fl oundering in their own 
attempts to draw valid conclusions and follow inferences made by their teachers. 
This observation led us to refl ect on our own practices in the mathematical prepara-
tion of secondary mathematics  teachers  . 

 Refl ective teaching can take many forms:   action research    (Mertler,  2009 ) and 
  lesson study    (Hurd and Lewis,  2011 ) are two somewhat formal methods for deep 
analysis of one’s own teaching, and we teach both methods to students in our mas-
ter’s program for mathematics teachers. But refl ective practice also occurs on a 
more regular and less formal basis within our own teaching. 

 An example of this kind of informal refl ection is presented in Sect.  5.2 . We 
describe a teaching episode regarding mathematical defi nitions and frame its out-
comes within a broader refl ection on mathematical practices that ultimately deter-
mine much of what we hope to achieve in  teaching practice  . Mathematical practice 
is complex and consists of at least fi ve historically evolving components: language, 
sets of accepted statements, sets of accepted reasonings, sets of questions selected 
as important, and meta-mathematical views, which includes standards of proof and 
defi nitions and beliefs or claims about the scope and structure of mathematics 
(Kitcher,  1984 , p. 163). For the purposes of this chapter, we limit ourselves to 
refl ecting on some historical developments within the last component, that is, meta- 
mathematical views, since these developments are especially useful in identifying 
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critical issues for  teaching practice   regarding defi nitions. These historical refl ec-
tions are presented in Sect.  5.3 . 

 Mathematics education research is often situated in issues at the nexus of  teach-
ing practice   and mathematical practice. In Sect.  5.4  we conclude the chapter with 
examples of such research and a description of some of the impacts of our work.  

5.2      Teaching Activity Focused on Defi nitions and Defi ning 

 The activity focused on defi ning a “ square  ” in the context of hyperbolic geometry, 
where there are no quadrilaterals satisfying the defi nition “… four right angles and 
four congruent sides.” It engaged our undergraduate students in constructing defi ni-
tions, examining their equivalence or non-equivalence, and carefully evaluating 
their usefulness in different settings. 

5.2.1      Student Conceptions 

 In designing the activity we started with some preliminary notions about our stu-
dents, their mathematical conceptualizations regarding defi nitions, and  goals   we 
thought were important in the defi ning process. We had in mind the following hypo-
thetical proof, similar to ones we had received from former students: 

      Statement to be proved: The diagonals of a  square   have equal lengths. 
 Proof: Let      ABCD be a  square  . 

 AC and BD are diagonals of the  square   by defi nition of diagonal. 
 AC = BD by defi nition of  square  .  

 From the perspective of researchers in the fi eld (Przenioslo,  2004 ; Tall and 
Vinner,  1981 ), such a student might lack a sense of the role of defi nitions in math-
ematics, placing personally held concept images for   square    on par with the mathe-
matical defi nition in determining what is implied “by defi nition of  square  .” Tall and 
Vinner describe a concept image as “all the cognitive structure in [an] individual’s 
mind that is associated with a given concept” ( 1981 , p. 151). Suppose the student’s 
textbook defi ned a  square   as a rectangle with equal sides. The student might be 
assuming that this implies any property of rectangles that is part of a personally held 
concept image, including everything previously proved about rectangles, all become 
part of a defi nition “bundle” for the term   square   . Hence, the student concludes that 
properties like  diagonals are equal in length  or  diagonals bisect each other  are true 
of squares “by defi nition,” because they are true of rectangles. Properties like  diago-
nals are perpendicular  are not true by this defi nition of  square   but need to be proved. 
Notice that if the textbook defi ned a  square   as  a quadrilateral which is both a rect-
angle and a rhombus , these latter properties would not have to be proved either, 
according to such reasoning. 
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 The hypothetical student’s way of reasoning indicates a misunderstanding of the 
specifi city and minimality intentions of mathematical defi nitions (see Sect.  5.2.2 ). 
Specifi city is lacking because two individuals may have quite different lists of math-
ematical properties of rectangles in their own concept images, rendering the neces-
sary conditions stipulated in any mathematical defi nition dependent on an individual 
and hence indeterminate. Minimality is lacking because the only properties neces-
sary in the fi rst defi nition of  square   (“a rectangle with equal sides”) are the assump-
tion of congruent sides and the necessary conditions for being a rectangle stipulated 
by the defi nition of rectangle.  

5.2.2      Mathematical Considerations 

 In designing the activity, we also included preliminary ideas we had about mathe-
matical practice regarding defi nitions. In mathematics, proving is a process of  war-
ranting  statements as logically valid conclusions and a process of  explaining  or 
making sense of why a statement is true based upon prior notions that are under-
stood (Weber,  2008 ). These prior notions are typically defi nitions, axioms, and pre-
viously proved statements. Hence, defi nitions play a crucial role in proof and are 
often strategically selected from a set of competing defi nitions in order to simplify 
proofs.

  Mathematical defi nitions are “equivalent” when they determine the same set of elements or 
processes within a particular mathematical system. In this activity, we wanted students to 
understand when two defi nitions are equivalent and to understand that the choice between 
equivalent defi nitions is not arbitrary, but strategic. We also intended them to understand 
that mathematicians have choices in deciding between competing non-equivalent defi ni-
tions, such as whether to defi ne  trapezoid  as a quadrilateral having at least one pair of paral-
lel sides or as a quadrilateral having exactly one pair of parallel sides (Usiskin and Griffi n, 
 2008 , p. 27). 

   We began with the notion that a defi nition must be specifi c:

   Specifi city  . A mathematical defi nition provides unambiguous conditions for identifying and 
classifying elements of interest that exist in the system. 

   We continued with three additional commonly used criteria impacting decisions 
about mathematical defi nitions (Usiskin and Griffi n,  2008 ).

   Minimality  . A defi nition tries to minimize redundancies in the stipulated properties (p. 37). 
  Generality  . A defi nition generalizes to or is easily extended to other closely related sys-

tems. For example, when defi ning the  interior of an angle  in Euclidean geometry, the 
 defi nition based on the intersection of two half-planes nicely extends to hyperbolic geom-
etry (p. 40). 

 Hierarchical  effi ciency  . A defi nition fi ts into a nested set of defi nitions to avoid redun-
dancy of proofs within the system. For example, when defi ning  rectangle , the defi nition 
“parallelogram with a right angle” is preferred over “quadrilateral with four right angles” 
since a property proved for all parallelograms can be inferred for all rectangles (p. 37). 

E.A. Burroughs and M.J. Burke



59

   To these, we added a fi fth criterion, particularly important in teaching.

   Referential clarity  . A defi nition has easily identifi able examples and is closely related to its 
natural-language usage. For example,  Euclid  ’s defi nition of a  square   as a quadrilateral with 
four right angles and four equal sides is easier to unambiguously visualize and connect to 
natural-language  usage   than defi ning it as a quadrilateral with four congruent angles and 
two adjacent sides with the same length. 

   We did not make this list explicit to students before the activity; rather, we relied 
on their experiences within the activity to create an  understanding   of the need for 
these fi ve  criteria  .  

5.2.3     The Teaching Episode 

 The undergraduate geometry course uses selected chapters from Reynolds and 
Fenton ( 2008 )  College Geometry Using the Geometer’s Sketchpad  and relies on stu-
dents’ use of dynamic geometry  software   to provide interactive, manipulable models 
of Euclidean geometry. These  software   programs provide a setting for exploration, 
generalization, and refutation of properties of geometric objects. We introduce stu-
dents to the  Poincaré   disk  model   of hyperbolic geometry through a dynamic web 
applet called “Non- Euclid  ” (  https://www.cs.unm.edu/~joel/NonEuclid/NonEuclid.
html    ). Our students use their knowledge of Euclidean geometry to discover things that 
are true in both Euclidean and hyperbolic geometries and things that are different. 
They thereby gain a critical appreciation of the Parallel Postulate in the geometry 
that is studied in secondary mathematics, where they will be teaching. 

 Approximately two-thirds of the way through the course, when students had 
completed a study of Euclidean geometry and had just been introduced to hyper-
bolic geometry, we asked them to fi nd as many alternate defi nitions of a  square   in 
Euclidean geometry as they could. They generated the following list.

    1.    A  square   is a quadrilateral with four 90° angles and four congruent sides in 
which the intersection of the diagonals is 90°.   

   2.    A  square   is a rectangle with four congruent sides.   
   3.    A  square   is the result of refl ecting a right isosceles triangle across its 

hypotenuse.   
   4.    A  square   is a rhombus with at least one right angle.   
   5.    A  square   is a quadrilateral with diagonals that are angle bisectors and at least one 

right angle.   
   6.    A  square   is a quadrilateral whose diagonals form four congruent isosceles 

triangles.   
   7.    A  square   is a quadrilateral with four congruent angles and a pair of adjacent sides 

congruent.   
   8.    A  square   is a four-gon with all equal angles and all sides of equal length.   
   9.    A  square   is a quadrilateral with four congruent sides and four congruent angles.    
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  This list was not meant to be exhaustive; rather, it was the result of whole-class 
brainstorming. The class agreed that these were “equivalent defi nitions.” The lack of 
specifi city in defi nition (3), which seems to suggest the points on the hypotenuse are 
also on the  square  , initially did not bother the students. 

 In the course of the discussions, students occasionally proposed defi nitions as 
equivalent and then rejected them based on “counterexamples,” which in the context 
of this activity meant examples of quadrilaterals that satisfy one of the proposed 
defi nitions but not the other. For instance, one student proposed the defi nition that a 
 square   was a quadrilateral with diagonals that were “equal and perpendicular to 
each other.” Others responded with counterexamples, i.e., quadrilaterals that they 
agreed were not squares by  Euclid  ’s defi nition, yet fi t the student’s defi nition. For all 
students the ultimate test of equivalence was whether the defi nitions determined the 
same set of quadrilaterals, and most were satisfi ed with informal justifi cations based 
on the lack of counterexamples. 

 In the next class period, students investigated their nine defi nitions when applied 
in hyperbolic geometry; they were already familiar with using the  Poincaré   disk 
model of the hyperbolic plane represented in the web applet Non- Euclid  . Already 
knowing that no quadrilaterals in hyperbolic geometry satisfi ed Defi nitions 1 and 2, 
they discovered that the other defi nitions, equivalent in Euclidean geometry, led to 
different classes of quadrilaterals in hyperbolic geometry. They categorized them as 
follows (See Figs.  5.1  and  5.2 ):

  Fig. 5.1    A quadrilateral in the  Poincaré   disk that satisfi es the defi nition of SQT1       
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•      Defi nitions 1 and 2 determine objects that do not exist in hyperbolic geometry.  
•   Defi nitions 3, 4 and 5 determine objects the class named “Special Quadrilateral 

Type 1” (SQT1). These are rhombi with at least one right angle. These quadrilat-
erals are equilateral and have two pairs of opposite angles congruent. Their diag-
onals are not equal in length but are perpendicular bisectors of each other. Their 
opposite sides are parallel.  

•   Defi nitions 6, 7, 8 and 9 determine objects the class named “Special Quadrilateral 
Type 2” (SQT2). These are quadrilaterals with four congruent sides and four 
congruent angles. These quadrilaterals are equilateral and equiangular. Their 
diagonals are equal in length and perpendicular bisectors of each other. Their 
opposite sides are parallel.    

 We asked the class: what is the proper defi nition of a  square   in hyperbolic geom-
etry? Students conducted a technology-enabled investigation of properties of SQT1 
and SQT2. The students decided that SQT2 possessed more of the  symmetry   they 
associate with the word  square  . Thus, from the point of view of deciding which defi -
nition generalized better, the “equal sides and equal angles” defi nition won out. 
However, the students decided that neither of these fi gures should be called a   square    
since the word was already enshrined in natural-language usage as a fi gure with four 
right angles. 

 We asked students to decide upon the best defi nition of a  square   in Euclidean 
geometry. After some discussion, they decided the answer depended on context. 

  Fig. 5.2    A quadrilateral in the  Poincaré   disk that satisfi es the defi nition of SQT2       
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For high school geometry students, they felt the best defi nition would be  Euclid  ’s 
defi nition: A  square   is a quadrilateral with four right angles and four congruent 
sides. As a defi nition for themselves, they preferred “A  square   is a quadrilateral 
with four congruent angles and four congruent sides.” In both cases referential clar-
ity was of utmost importance—they appreciated the intuitive picture that the words 
painted. For high school geometry students, they preferred the explicit wording 
“four right angles” as opposed to “rectangle” since the former was more specifi c 
and direct; moreover, the word “rectangle” conjured up oblong shapes. But for 
themselves, clarity and generality won out, preferring defi nition (9) to defi nition (2) 
since rectangles do not exist in hyperbolic geometry. It was clear in the discussions 
that students recognized the value of minimality but understood that some redun-
dancies were acceptable as long as they contributed to referential clarity.  

5.2.4     Discussion of the Teaching Episode 

 Based on our observations of student work and discussions, we determined that this 
activity achieved the  goal   of clarifying for students what it means for two mathe-
matical defi nitions to be equivalent. By taking them out of the realm of Euclidean 
geometry and asking them to apply defi nitions in hyperbolic geometry, the activity 
revealed how a set of equivalent defi nitions in Euclidean geometry generalized to 
non-equivalent defi nitions in hyperbolic geometry. The activity also seemed to have 
helped the students to develop an  understanding   of how considerations of specifi c-
ity, minimality, generality and referential clarity work with the system of axioms 
and other contextual factors in the process of mathematical defi nition making. 
Indeed it is fair to say that the activity led students to a greater appreciation of 
 Poincaré  ’s attitude given at the beginning of this chapter. Finally, the activity clari-
fi ed the notion that depending on the axioms, a defi nition might not defi ne anything; 
it also drew students’ attention to interdependence of defi nitions and axioms in 
establishing mathematical terrain. 

 The activity, however, left things unsettled with respect to many of our other 
goals. It did not lead students to an appreciation for the hierarchical effi ciency cri-
terion. It did not elicit a formal strategy for proving when two defi nitions are equiva-
lent—we had assumed students learned such a strategy in the foundations of 
mathematics course they had taken as a prerequisite of the geometry course. It was 
not clear whether and to what extent our students could articulate a distinction 
between a defi nition and an axiom, even though they had increased sensitivity to the 
role of axioms in formulating a defi nition. Finally, even though students had devel-
oped a greater appreciation for the specifi city and minimality traits of defi nition, it 
was not clear how our students would assess such proofs as the one given in 
Sect.  5.2.1  regarding diagonals of a  square  . 

 This episode illustrates how easy it can be for mathematics instructors to take for 
granted student  understanding   of the critical nuances of a mathematical idea where 
such  understanding   does not exist. As we refl ect on the guided-exploration peda-
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gogy of the activity in which an instructor poses strategic questions but otherwise 
lets students take ownership of the activity and the critique of emerging ideas, we 
can identify many didactical issues, including what instructors can and do conclude 
from the multifaceted information resulting from the activity. Tasks involving stu-
dent discovery and exploration, though engaging, might not generate anticipated 
outcomes because of cognitive barriers, insuffi cient preparation, or simply failure to 
notice. In the latter case, we wondered why the class did not generate defi nitions of 
  square    embodying traits of Saccheri and Lambert quadrilaterals, which they had 
recently encountered in the course. 

 Following a guided exploration, students often welcome their instructor’s input, 
and a refl ective  teaching practice   might take advantage of this to address defi cien-
cies like those mentioned above. By direct questioning in an instructor-led discus-
sion, the instructor can assess the student  understanding   of critical aspects of the 
concepts involved. In the case of our students, they had grappled with issues at a 
suffi cient depth for us to follow the activity with an instructor-led discussion on 
mathematical practices. Such a follow-up was used to clarify traits attributed to 
good defi nitions, including the fi ve criteria we identifi ed, and retroactively apply 
them to the students’ own work in the guided exploration. Other appropriate follow-
 up lessons could require students to evaluate the proof given by the hypothetical 
student. Or, while honoring students’ use of counterexample reasoning in assessing 
the equivalence of defi nitions, the instructor could take this natural opportunity to 
review methods for formally proving two defi nitions are equivalent. 

 To conclude the chapter here might give the reader an idea of how we approach 
our mathematics teaching. But our work as scholars in mathematics education goes 
beyond our teaching. In spite of our best efforts, refl ective  teaching practice   tends to 
leave us with more questions than answers. When put in perspective with analysis 
of mathematical practices from which they gain their relevance, the questions 
accentuate a need for systematic study—that is, they invite mathematics education 
research.   

5.3      Mathematical Practices Surrounding Defi nitions 

 The mathematical act of defi ning has evolved over the course of the  history of math-
ematics  . Our investigation of history highlights three challenges: the challenge of 
rigor; the challenge of clarity; and the challenge of axiomatic systematization. We 
fi nd parallel challenges in teaching  defi ning  in a modern sense, where the mathe-
matical practice of defi ning has emerged from the practice of mathematics by math-
ematicians. We identify researchable areas within each challenge. 

 We delve into these historical developments in mathematical practice regarding 
defi nitions intending to provide the background necessary to stake out a vantage 
point from which to view the mathematics education research questions we identify. 
As we turn to history, we note that when talking about the deep meaning of terms 
used by people in ancient times and  cultures  , we are standing on thin ice. We adapt 
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Wittgenstein’s rope metaphor (Wittgenstein, 1953/ 1986 , Inv. 67): think of the 
meanings of a term for our predecessors as many threads of meaning twisted and 
braided together throughout history from them to us, with possibly no thread run-
ning the full length of the rope. This is particularly important as we talk about what 
the ancient Greeks thought about “defi nition.” It would be nice to fi t their defi nitions 
into modern categories found in philosophical discourse (Gupta,  2015 ; Robinson, 
1954/ 1962 ) such as  descriptions ,  stipulations ,  explications , and  lexical . However, it 
is clear from the scant primary sources that exist that these categories don’t quite fi t. 
Furthermore, ancient mathematicians, scholiasts, and philosophers were inconsis-
tent in how they used the terms ascribed to the Euclidean axiomatic system:  defi ni-
tion ,  postulate , and  axiom  (Szabó,  1978 , pp. 222–223). Since historians and 
philologists argue over what the Greeks meant by these terms, the account we are 
giving necessarily includes room for debate. 

5.3.1     The Challenge of Rigor 

 Defi nitions have played a primary role in the rigorization of mathematics.  Thales   
(ca. 640–542 BCE), the acknowledged founder of Greek mathematics, is credited 
with having proved fi ve basic theorems about angles, triangles, and circles. 
Historians debate whether he could have actually deduced these theorems or if he 
used more empirical, inductive, and intuitive arguments. But either way, the propo-
sitions about angles had to distinguish between angles formed by two straight lines 
and angles formed by other “lines” (i.e., curves), such as horned angles formed by 
intersecting a circle with a straight line (and discussed in  The Elements  of  Euclid  ). 
The word “angle” may have been used indiscriminately to refer to both kinds of 
angles, just as there is evidence that Greeks at the time of Thales considered the 
deltoid-shaped fi gure formed by three intersecting circles to be a triangle. For his 
“theorems” to be credible, empirically or deductively, when sensory evidence and 
common usage in language dictated that they were patently false, Thales would 
have had to employ a defi ning process to place restrictions on the meaning of the 
terms he used and eliminate the obvious counterexamples. Specifi cally, he would 
have had to distinguish the meanings of angle and triangle from their common 
usages.  Poincaré   said it best: “Exactness cannot be established in the arguments 
unless it is fi rst introduced into the defi nitions” (1914/ 1952 , p. 124). 

 The earliest mathematical defi nition on record is attributed to  Pythagoras   (ca. 
580–500 BCE, alleged to have been tutored by  Thales  ): A point is “unity having 
position.” The classicist James Gow concluded, “To them [the Pythagoreans] is 
probably due the introduction of defi nitions of some kind and the use of ordinary 
deductive proofs in geometry” (1884/ 2010 , p. 153). More forcefully conjectured, 
Szabó claims: “I am inclined to think that the ‘earliest mathematical principles’ were 
the defi nitions. The foundation of mathematics as a deductive science seems to have 
started, in the historical development, by formulating defi nitions” ( 1964 , p. 127). 

E.A. Burroughs and M.J. Burke



65

 To say the least, the practice of defi ning terms and using defi nitions in logical 
arguments played a pivotal role in the transformation of mathematics in classical 
times (600–200 BCE) from an intuitive practical activity of scribes, merchants, and 
surveyors to a deductive science. We note that K–12 teachers are challenged to help 
students make a similar transition in the rigorization of their own mathematical 
reasoning over the course of their precollege educations. Thus as we consider our 
undergraduate secondary mathematics teaching majors who are to become teachers 
of mathematics, we identify some researchable areas that arise at this juncture:

•    The infl uence of the natural language foundation on most precollege mathemati-
cal language development, and the impacts of various curricular and pedagogical 
interventions on that development.  

•   The role of  examples and counterexamples   in the heuristics for developing pre-
cise defi nitions, and the relationship of precision in defi nition to the level of rigor 
in the reasoning of students who are beginning to learn mathematical language.     

5.3.2     The Challenge of Clarity 

 By the time  Euclid   systematized geometry (ca. 300 BCE), defi nitions and other 
hypotheses were the hallmark of mathematics and philosophy. The Greek word for 
“hypothesis” is often simultaneously used for defi nitions and foundational princi-
ples (Szabó,  1978 ). It is signifi cant that  Plato  , using “hypothesis” in this sense, 
seems annoyed when he writes:

  “I fancy that you know that those who study geometry and calculation and similar subjects, 
take as hypotheses the  odd  and the  even , and  fi gures , and three kinds of  angles , and other 
similar things in each different inquiry. They make them into hypotheses as though they 
knew them, and will give no further account of them either to themselves or to others on the 
ground that they are plain to everyone. Starting from these, they go on till they arrive by 
agreement at the original object of their inquiry (Republic VI/510 c-d, in Szabó,  1978 ). 

    Plato   seems to think of the referents of these words “the even” or the “three kinds 
of angles” as ideal objects and is annoyed that these objects are assumed to be 
understood when given only the briefest description, or none at all. They are given 
without an explanation of their essential properties. 

 Consider an example.  Euclid   defi ned  point  as “that which has no part.” Euclid 
states his defi nition at the beginning of his text, his fi rst premise before any postu-
lates or axioms are given, and intends it to be taken as a “primary premise,” proba-
bly in  Aristotle’s   sense of primary premise—a basic truth to be assumed. It is stated 
as a hypothesis without the justifi cation  Plato   would have liked. To Aristotle, and 
likely to Euclid in many cases, such a defi nition is stated as a declarative sentence 
asserting the essential identity of a point as an idealized object within the category 
of spatial objects: every point shares that essence and everything that shares that 
essence is a point. 

 Defi nitions that are  unclear   as to their status as mathematical claims or ambig-
uous in their meanings were common in mathematics until the late 19 th  century. 
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For example,  Euclid   defi ned a number as a “multitude of unities,” which excludes 
one from being a number.  Newton   refers to Euclid in his own defi nition:

  By number we understand, not so much a Multitude of Unities, as the abstracted Ratio of 
any Quantity, to another Quantity of the same Kind, which we take for Unity. And this is 
threefolds integer, fracted, and surd: An Integer, is what is measured by Unity; a Fraction, 
that which a submultiple Part of Unity measures; and a Surd, to which Unity is incommen-
surable” ( Newton    1769 , p. 2). 

   Here the defi nition is not a stipulation, but rather an explication of  Newton  ’s 
meaning of  number . It is an explication that, today, would be considered too vague. 
One can say it is an intuitive defi nition of  real numbers , but it is too imprecise to be 
of any use in settling issues regarding limits and continuity and other questions: for 
example, “Are all surds algebraic numbers?” as asked by Leibnitz, or “Do the least 
upper bound property and the nested set principle hold for numbers given by this 
defi nition?” as asked by Bolzano, Cauchy, Weierstrass, Dedekind and others (see 
Bressoud,  2007 , for a historical development of these issues). 

 By the end of the nineteenth century, defi nitions had become stipulations, to use 
 Poincaré  ’s term, “baptizing” with a name mathematical constructs of the stipula-
tor’s design, thereby giving those constructs an identity. In many cases the stipula-
tions are nominal or notational in the sense that they merely decree certain notations, 
words or expressions to be synonymous with a notation, word, or phrase, thereby 
providing convenient abbreviations. Either way, unlike ancient Greek views, mod-
ern mathematical defi nitions do not assert identity as a truth founded upon the 
apprehension of some referent’s essential nature. Defi nitions identify a mathemati-
cal construct that satisfi es conditions of logical consistency and eliminability. Like 
axioms and theorems, they are formulated from previously introduced terms, 
defi ned or undefi ned, so that, in the end, all theorems can be logically reduced to 
statements given strictly in terms of the undefi ned terms of the axiomatic system. 
Unlike axioms, defi nitions do not stipulate a truth value for statements given strictly 
in the undefi ned or primitive terms of the system. Instead, they stipulate an identity 
for constructs described in those primitive terms. 

 We note that our students—future teachers—come to us with a naïve realism 
coupled with many  natural language usages   of most terms related to the mathemati-
cal concepts they are to learn. Our students often accept the conventional defi nitions 
given to them by teachers and texts as facts describing some ideal but specifi c world, 
or even simply as arbitrary laws that hold within the context of school mathematics. 
Researchable areas salient to the preparation of mathematics teachers are:

•    The optimal use of intuitive defi nitions and meta-mathematical justifi cations of 
defi nitions, for engaging students in the defi ning process that concludes in a 
stipulation, without giving the impression that the justifi cations are proofs and 
textbook defi nitions are theorems; and the extent to which students prefer the 
intuitive defi nitions or descriptions as the “real meaning” and try to assimilate 
mathematical defi nitions to these meanings instead of the other way around.  

•   The cognitive developments in students over the course of K–12 education, and 
appropriate teaching methodologies and curriculum needed for moving them 
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from the notion of a mathematical defi nition as a factual assertion about real 
objects, to the notion of a defi nition as an assertion about an ideal object, and 
fi nally to the notion of a defi nition as the formation and naming of a mathemati-
cal construct that is arrived at through agreements within the mathematical 
 community  .     

5.3.3     The Challenge of Axiomatic Systematization 

 In the Greek axiomatic system, particularly for  Euclid  , defi nitions came before pos-
tulates presumably because the fundamental entities in the postulates had to be 
identifi ed. In other words, these fundamental entities did not depend in any way 
upon the axioms for their essential defi nitions. This creates interesting contrasts 
with the modern axiomatic system. Euclid seems to take for granted the existence of 
the things he defi nes, except in a few cases such as the infi nitude of primes, where 
he proves, by contradiction, the existence of a prime number that does not belong to 
an arbitrarily given fi nite set of primes. In modern axiomatic systems, defi nitions 
follow the postulates, and it is considered good practice, at least since Leibnitz, to 
demonstrate that defi nitions are consistent with the postulates by proofs of “exis-
tence within the system.” This is most often done by producing an example, before 
or right after the defi nition is given. 

 The mathematical practice of  Euclid  ’s time, as depicted above, leads to interest-
ing variations in the standards for defi nitions. For example, Euclid classifi es quadri-
laterals in one of his early defi nitions given before the postulates:

  Of quadrilateral fi gures, a   square    is that which is both equilateral and right-angled; an 
 oblong  that which is right-angled but not equilateral; a  rhombus  that which is equilateral but 
not right-angled; and a  rhomboid  that which has its opposite sides and angles equal to one 
another but is neither equilateral nor right-angled. And let quadrilaterals other than these be 
called  trapezia  ( Elements  I.19). 

   The fi rst thing to note is that the genus of quadrilaterals is divided into disjoint 
species or categories, somewhat fi tting  Aristotle’s   ideal for the defi ning process. The 
fi rst four categories are given as essential defi nitions while the remaining quadrilat-
erals are left undifferentiated and stipulated to be referenced by the name  trapezia . 
The second thing to note in the above defi nition is that  Euclid   was not trying to give 
an effi cient defi nition, per his axioms, such as “a  square   is equilateral with a right 
angle,” knowing that he would be able to prove all of the angles were right angles. 
This suggests that for Euclid, it is not an  accidental quality  of squares, in Aristotle’s 
sense, to have four right angles (Aristotle,  Posterior Analytics , trans. 2002, Part 22). 
It is an  essential quality . The third thing we note is that the above defi nition is inef-
fi cient within a deductive system. Modern textbooks present students with an inten-
tionally hierarchical system that classifi es quadrilaterals in such a way that makes 
the set of proofs of all their standard properties very lean. 

 Therefore, the ideal of giving minimal conditions needed in a defi nition, though 
a common value for ancient and modern practices, meant something different in 
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ancient practice from what it means in modern practice. In modern axiomatic 
systems, the minimal conditions criterion decouples the defi nition from any domi-
nant concept image or “essence” and is allowed to rely on logical effi ciency within 
an axiomatic system. Consequently, the hierarchical organization of defi nitions in 
the ancient axiomatic system is different from that found in the modern. 

 A common feature of ancient and modern practices is the institutionalizing effect 
of successful axiomatizations. Similar to the infl uence set theory has on modern 
axiomatizations,  Euclid  ’s  Elements  had a huge institutionalizing effect on mathe-
matics, even to the present. Some of his defi nitions were so institutionalized that 
they became laws not to be questioned. Simon Stevin in his 1585  L’arithmetique  
felt the need to give a philosophical and mathematical argument for changing 
Euclid’s defi nition of number so that  one  could be considered a number. He con-
cluded it should be a number, but conceded on somewhat Platonic grounds that  zero  
should not be a number, even though he admitted that  zero  was useful in calculation 
and notation ( Klein    1968 , pp. 191–197). 

 Another practice common to ancient and modern axiomatic systems is the value 
placed on defi nitions that extend other defi nitions to new terrain and are fruitful in 
quickly enabling meaningful deductions in those domains. In this respect, the defi -
nition of proportion usually attributed to  Eudoxus   ( Elements , V.5) is the most 
important defi nition given in the  Elements . In this defi nition, Eudoxus extended the 
notion of being  in proportion  to include the ratios of incommensurable magnitudes 
by simply saying that two ratios were in proportion provided they were not out-of- 
proportion, i.e., one ratio was not greater than the other or less than the other. 
Eudoxus’ defi nition is so fruitful, deductively speaking, that it has had a huge infl u-
ence and inundates mathematical practice with double  reductio ad absurdum  proofs 
of proportionality showing one ratio is (a) not larger than the other and (b) not 
smaller than the other, and hence the two ratios are in proportion. 

 The axiomatic systematization of mathematics has implications for teaching. As 
mathematics education researchers we know that in geometry, for instance, students 
are very affected by visual concept images and often assume squares are not rect-
angles or rhombuses or parallelograms because of dominant images they associate 
with the terms (van Hiele, 1957/ 2004 ), much like the images suggested in  Euclid  ’s 
classifi cation of quadrilaterals. Even a fi gure’s alignment on the page where it 
appears affects students’ judgment of its identity (Battista,  2009 ). Students often do 
not take advantage of hierarchical properties of fi gures to simplify their arguments 
or draw immediate conclusions from textbook defi nitions that are hierarchical. 
Students don’t naturally check for consistency or existence when considering defi -
nitions. And they don’t naturally inquire about alternative defi nitions since their 
belief that the defi nitions are facts is bolstered by the institutional status bestowed 
on them as statements from their textbooks to be memorized. 

 These observations, coupled with our analysis of relevant mathematical prac-
tices, open up further researchable areas:

•    The curricular and pedagogical supports needed for developing in  preservice   
teachers the ability to create and critique defi nitions for purposes of systematiz-
ing mathematics using criteria such as specifi city, minimality, hierarchical 
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 organization, clarity, and generalizability, given  Poincaré  ’s admonition quoted at 
the start of this chapter.  

•   The development of an  understanding   that textbook defi nitions are conventions, 
some of which become institutionalized, while balancing this with an  under-
standing   that defi ning is a vital creative process in mathematics.      

5.4      Mathematics Education Research and Impacts 
of Our Work 

 The teaching episode illustrates the potentials and limitations of refl ective  teaching 
practices  for shedding light on a range of issues whose relevance emerges from 
 mathematical practice . Simply put, constructing a knowledge base that adequately 
addresses those issues we identifi ed, and many others we did not mention for lack 
of space, requires much more than refl ective  teaching practice  . Systematic research 
is required. Indeed, research related to each of the researchable areas we identifi ed 
can be found in mathematics education journals. For instance, Edwards and Ward 
( 2004 ) and Vinner ( 1977 ) provide two straightforward examples related to the chal-
lenge of clarity. These two studies reveal that many undergraduate mathematics 
majors think mathematical defi nitions are theorems, laws, or facts, and many fre-
quently resort in their proofs to personal defi nitions extracted from mathematical 
experiences and intuitions instead of formal mathematical defi nitions. 

 Our work in a department of mathematical sciences is built on a foundation of 
trust with our  colleagues   from  statistics  , applied mathematics, and theoretical math-
ematics. We share the trust that our expertise as scholars of mathematics education is 
distinct from theirs as mathematicians or statisticians, and that our expertise is neces-
sary for the robust research, teaching, and  outreach   programs in the department. 

 When considering our scholarly work within a department of mathematical sci-
ences, we note that we refl ect on the impact of our work much as any researchers 
might refl ect on the impact of theirs: there are scholars within our subdiscipline who 
read and cite our work; when we publish in practitioner journals, there is an imme-
diate application of our work; and, like all active scholars, we use our expertise in 
making decisions about the teaching emphasis and curriculum for courses we teach. 
Perhaps unlike mathematicians who join a mathematics department with the expec-
tation of research in mathematics and then later contribute to mathematics  education, 
our positions were appointed with the expectation that our research contributions 
would be in mathematics education. A natural outlet for our work is in practitioner 
journals—that is, journals whose intended audience is teachers or others who expect 
to use the results of mathematics education research in their own teaching. Our 
department considers these contributions equally valuable as those that appear in 
research journals. 

 This particular work that we have done surrounding defi nitions has impacted the 
work of others in mathematics education. For example, a colleague was pursuing 
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research on student conceptions of infi nite series in calculus. Our focus on defi nitions 
helped him to pinpoint some cognitive troubles students were having in  under-
standing   that infi nite series required new defi nitions, and that students were not 
attuned to this underlying need. 

 The nature of our mathematics education research is solidly grounded in math-
ematics. For instance, this work in defi nitions stemmed from observations of stu-
dents in mathematics courses, but quickly turned to an examination of the features 
of mathematical defi nitions themselves. Some  work in mathematics education   is 
grounded in sociological aspects of schooling or in the psychological aspects of 
learning; our research is concerned with  teaching practice   and the  doing  of mathe-
matics. We view the content of school mathematics as a worthy focus of academic 
study, grounded in mathematics itself, and fi nd satisfaction in the relevance of our 
research to mathematics classroom practices.     
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Abstract Exemplary models to inform novice instruction and the development of 
graduate teaching assistants (TAs) exist. What is missing from the literature is the 
process of how graduate students in model professional development programs 
make sense of and enact the experiences offered. A first step to understanding TAs’ 
learning to teach is to characterize how and whether they link observations of stu-
dent work to hypotheses about student thinking and then connect those hypotheses 
to future teaching actions. A reason to be interested in these connections is that their 
strength and coherence determine how well TAs can learn from experiences. We 
found TAs can connect observations and future teaching, but that the connections 
vary in quality. Our analysis suggests future revisions to TA development programs, 
which we discuss in the conclusion.
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6.1  Introduction

One theory for how instructors learn from their own and others’ teaching experience 
is that learning occurs through deliberately connecting future teaching plans and 
prior experience. Specifically, instructors create opportunities to learn when they 
articulate future actions in terms of observations based on previous experience (e.g., 
Hall & Horn, 2012; Horn, Kane, & Wilson, 2015). Under this theory, enhancing the 
ability to learn from experience requires both improving how instructors conceive 
of teaching and tightening connections between future plans and current thinking.

Our goal is to improve TAs’ ability to learn by reflecting on their experiences. 
We report on a study of novice mathematics graduate student teaching assistants 
(TAs), who were teaching college algebra and intermediate algebra and were all 
enrolled in a seminar as part of a TA development program. The program aims to 
help TAs to teach from the principles that: (a) student learning occurs through the 
student’s lens, and observation of student learning occurs through the observer’s 
lens; (b) understanding the experiences that shape students' thinking is important to 
teaching; and (c) learning occurs through building on prior knowledge. Our study 
explored the question:

How do these TAs connect observations and beliefs about their students, hypotheses about 
student thinking, and proposed next teaching actions?

We open this chapter with one TA’s reflections about her students’ learning, 
based on a paper written as part of the TA development program. We use this TA’s 
work to illustrate how we model TA thinking so as to study the opportunities they 
created to learn from experience. After describing our model for TA thinking, we 
discuss the literature informing our work and the context in which this study took 
place. We then describe how we collected and analyzed data to study TA thinking. 
Finally, we describe paths of TA thinking that we found useful in considering how 
to improve our TA development program. We reflect on our future actions in terms 
of observations and beliefs about TAs and hypotheses about TA thinking.

6.2  Modeling TA Thinking

6.2.1  One TA’s Reflection

At the time of the study, TA12 was a first time instructor who taught College 
Algebra. She had recently assigned this quiz problem:

Determine whether the following function is a rational function:

 
f x

x

x

x
( ) = − +

−
+

1
6 2
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If it is a rational function, write it in the form f x
p x

q x
( ) = ( )

( ) , where p(x) and q(x) are 
polynomials.

On the same quiz, she had also asked her students to express the following as a 
single fraction:
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In a report of her students’ performance, TA12 first explained that she had 
designed the quiz purposefully: the fraction expression is equivalent to evaluating 
the function f at x = 2 . She then observed that most students simplified the expres-
sion in mathematically valid ways; a typical solution was:
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However, many students—including some who had performed a valid calculation 
for fractions—simplified the rational expression as follows:
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She hypothesized that students’ thinking about rational functions did not draw on 
their experiences with fractions:

While there are some students who struggle with combining these fractions, most of my 
students are able to do so successfully. That shows me that they are familiar with and able 
to use fraction operations, so the root of the misconception in this case is not that they have 
misconceptions concerning the fraction operations … For some reason, the introduction of 
variables into the fraction numerator and/or denominator causes a breakdown in their rea-
soning, which I believe is the root of the misconception. (TA12 Final paper, p. 4)

In TA12’s interpretation, students have productive knowledge to build upon, 
because they can work with closely related numerical expressions in mathemati-
cally valid ways. At the same time, students may separate their knowledge of frac-
tions from their knowledge of rational expressions. TA12 then speculated how her 
own teaching or others’ instruction may enforce this separation, calling out the role 
of emphatically distinguishing operations with numbers from operations with vari-
ables (e.g., stressing that 3 2 5+ = , but 3 2 5a b ab+ ≠ ). TA12 thus hypothesized 
that students may benefit from experiences in which they explicitly connect opera-
tions on fractions with operations on rational functions.

As a next step, TA12 proposed to hold a structured conversation with her stu-
dents. TA12 scripted a hypothetical conversation, a portion of which follows:
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T: Now, even though we used mathematical operations specifically to combine fractions, 
the truth is that we can use these mathematical operations with any ratio. What exactly are 
the mathematical operations we used to combine the fractions?

S: First we found a common denominator. Then we changed each individual fraction so 
that it had the common denominator. Last we added together the changed numerators to get 
one faction.

T: Exactly! Let’s see if we can use those same operations to solve the problem we 
started with. How could we find a common denominator?

S: I don’t really know.
T: How did you find a common denominator of (1, 3, and 4)?
S: I multiplied them together.
T: Exactly! So, you actually did this previously, but we could find the common denomi-

nator in our problem by multiplying the denominators together. Just because they have 
variables in them doesn’t change our process. What would our new common denominator 
be?

S: x x3 4+( )
T: Correct! So, think back to the second operation you said you used for combining 

fractions: “change each individual fraction so that it has the common denominator.” How do 
you think we could do this with our problem with variables?

S: We could figure out what we need to multiply each fraction by to get the common 
denominator!

TA12 envisioned guiding the student in identifying fraction operations used 
while working with different denominators, and then building concrete connections 
between fractions and rational expressions. TA12 emphasized that plan was not to 
stick to the script but rather to ask “purposeful, guiding questions” that allowed as 
much as possible for “the students to… generate as much knowledge on their own” 
(TA12 Final paper, p. 8).

6.2.2  Modeling TA Thinking

To explain how we model TAs’ thinking about instruction, we use TA12’s reflection 
as an example. Our model has four components: data, student thinking, hypothesis, 
and future teaching actions. Figure 6.1 displays this model. We define data to consist 
of written and oral expressions made by students that are observed by an instructor. In 
the case of TA12, the data are her students’ performance on a quiz. Student thinking is 
an interpretation of the data. For example, TA12 interprets the combination of math-
ematically valid work with fractions and mathematically incorrect work with rational 
expressions as an indication that her students did not draw on their knowledge of 

Fig. 6.1 Model for TA thinking
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fractions when working with rational expressions. A hypothesis is a conjecture about 
likely experiences that have shaped or could shape the student thinking. TA12’s 
hypothesis is that students may benefit from explicit connections between operations 
on fractions and on rational functions. Future teaching actions describe how the 
instructor might work with students in the future, given their interpretation of student 
thinking. TA12 proposed to hold a structured conversation in which she would guide 
students toward describing properties of rational functions based on properties of frac-
tions, and then give students an opportunity to use these properties.

We use TA12’s reflection as an example because it shows how the components of 
the model fit together, even if there are places where the reflection can be improved 
or may be unrealistic. The interpretation of the data is reasonable: students are not 
applying their knowledge of numeric fraction operations to fractions that have vari-
ables. The hypothesis addresses the interpretation directly: TA12 interprets that stu-
dent do not use their knowledge of fractions when working with rational functions, 
even though this knowledge is useful, and so TA12 proposes that students construct 
and then use parallels between fractions and rational expressions. The future teach-
ing actions are envisioned to elicit the relevant similarities between fractions and 
rational expressions. There are places where the dialogue may seem contrived or 
where the instructor may be appearing to do too much of the students’ work. TA12’s 
interpretation that the students separate their knowledge of fractions from rational 
expressions may be overly simplistic. However, in making these judgments, we 
should keep in mind that TA12 is a first time instructor, and that on the whole, the 
components do lead from one to the other. As we discuss later in this chapter, there 
are examples of TA reflections whose components are not as well connected.

6.3  Literature Informing the Study

In this section we summarize the literature informing our model for TA thinking and 
the rationale for drawing on results from K-12 teacher education and professional 
development. The goal of our model is to describe TAs’ claims about future teach-
ing actions as potential opportunities to learn. Thus, our model connects two litera-
ture bases: one on argumentation and the other on teachers’ opportunities to learn 
from teaching.

6.3.1  Literature on Argumentation

Toulmin (1958) is a foundational reference about modeling argumentation. Toulmin 
originally created his model to analyze legal arguments, and it has since been used 
for other fields, including mathematics education (e.g., Inglis et al., 2007). The three 
key components of Toulmin’s model are: the grounds, the claim, and the warrant. 
The grounds are the evidence on which the claim is made, and the warrant is the 
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reason that the grounds support the claim. Toulmin uses the following claim as an 
example: “I am a British citizen.” Possible grounds for this argument include, “I was 
born in Bermuda;” a warrant could be, “British law states that persons born in 
Bermuda are British citizens.” In our model, we consider both the data and the inter-
pretation to be the grounds of the TA’s argument. The future teaching actions are a 
claim about what instruction may be beneficial. The warrant is the hypothesis about 
experiences that might shape or have shaped the students’ understanding. The way 
we map our model to Toulmin’s components is consistent with the cognitive theory 
that learning involves the interpretations a person ascribes to their experiences and 
the inferences made from these interpretations (see Thompson, 2016 for an over-
view of this theory, which is based on work of the psychologist Piaget).

6.3.2  Literature on Opportunities to Learn from Experience

Our model is also shaped by studies of K-12 teachers, especially the research of 
Horn and colleagues (e.g., Hall & Horn, 2012; Horn et al., 2015). Their work 
focuses on describing the “opportunities to learn” that teachers create in conversa-
tion about student data and previous experiences, including how some opportunities 
may be stronger than others.

6.3.2.1  Opportunities to Learn

In the theory developed by Horn and her colleagues described in the papers cited 
above, learning opportunities for improving one’s teaching are strongest when: 
teachers marshal observations and stances about teaching experiences to mobilize 
themselves for future plans, and these plans represent skillful teaching. “Stances” 
refer to what the teachers believe is important for them to know about learning and 
teaching, and how to come by this knowledge. To put this in terms of our model, 
when the data and interpretation are strongly linked to the hypothesis and future 
teaching actions, in a way that is consistent with what is known about teaching qual-
ity, there is greater opportunity to learn.

6.3.2.2  Features of Skillful Teaching

In our view, which is consistent with the writing of Horn and colleagues, skillful 
teaching includes: responsiveness to and respect for student thinking; providing 
opportunities for students to articulate their thinking and respond to others’ think-
ing; maintaining cognitive demand (e.g., if an assigned question is challenging, the 
teacher helps the student work on the question without stripping away the diffi-
culty); focusing students on core mathematical ideas, especially the meaning behind 
expressions and procedures; and inclusiveness (all students are attended to). 
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Additionally, when students work on problems based on real-world scenarios, the 
instructor helps the students understand the real-world context, how mathematics 
could model this context, and develop common terms to refer to key ideas in the 
context. Our views are informed by studies of teaching complex tasks (e.g., Jackson 
et al., 2013; Stein et al., 1996); studies linking qualities of teaching to student out-
comes (Learning Mathematics for Teaching Project, 2011); and studies that identify 
and describe components of tasks of teaching (Boerst et al., 2011; Sleep, 2012).

6.3.3  Parallels Between K-12 and Post-Secondary Education

Commonalities between pre-calculus courses at the undergraduate level and the 
high school level make it reasonable to hypothesize that results from K-12 teacher 
education and professional development are also promising for development of 
instructors of undergraduates. After all, K-12 teachers and undergraduate course 
TAs share some challenges, especially when TAs teach a course such as college 
algebra. Students typically enroll in college algebra through requirement rather than 
by choice; often they are placed in the course through a combination of assessments 
and previous coursework. Students are likely to need many opportunities to break 
unproductive habits. College algebra is also a gateway to many courses needed for 
scientifically-oriented careers.

We now discuss the particular TA development context in which we collected 
data on TAs’ thinking.

6.4  Context, Data, and Method

6.4.1  Context

The TAs in this study were enrolled in a seminar on teaching and learning mathemat-
ics at the post-secondary level. The TAs all taught college algebra or intermediate 
algebra in sections of approximately 40 students, consisting primarily of first-year 
college students. With few exceptions, every college algebra or intermediate algebra 
TA participates in the seminar. Each TA is the sole instructor for his or her section. 
The lessons in all sections feature small group discussions and small group work led 
by the TAs. Each beginning TA teaches only one section of the course; in subsequent 
years TAs would teach two courses in the fall and one in the spring. There are a few 
adjunct instructors (mostly former or current high school mathematics teachers), 
who teach college algebra, but TAs teach the majority of the sections. The adjunct 
instructors do not participate in the TA development program.

The seminar met two hours per week in the fall semester, when the study was 
conducted. To help develop language for reflecting on teaching, TAs read 
 educational literature describing examples and theories for understanding student 
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learning. These include Erlwanger’s (1973) classic account of a child’s arithmetic 
understanding, and Tsay and Hauk’s (2013) exposition of constructivism. In the 
seminar, TAs were asked to discuss teaching experiences in terms of the readings.

6.4.2  Data

We collected final papers written by all 16 TAs enrolled in the seminar. In these 
papers they were asked to (a) report on student performance on a quiz they assigned, 
(b) interpret student thinking in the quiz performance, (c) hypothesize about experi-
ences that contributed to the students’ thinking, and (d) propose future teaching 
actions to refine student thinking. In the assignment, the TAs were asked to focus on 
interpreting student work that was not mathematically valid.

6.4.3  Rationale

Recall that our aim is to study TAs’ thinking, and that we model TA thinking with 
four components (as shown in Fig. 6.1): data, interpretation, hypothesis, and future 
teaching actions. The intention of the assignment was for TAs to hypothesize how 
or why students may have found their way to mathematically invalid reasoning, and 
for TAs to describe future teaching actions that are built on productive ways of 
thinking and provide settings where new ways of thinking might be useful. The 
assignment is designed to elicit TA thinking for each component and how it related 
to the previous component: (a) data (b) interpretation (c) hypothesis (d) future 
teaching actions.

6.4.4  Analysis

We analyzed the TAs’ papers in two parts. First, we examined the components of the 
model represented, including whether TAs articulated the components and their 
connections clearly or if components were missing or conflated with other compo-
nents, and to what degree they represented skillful teaching (as described in 
Sect. 6.3.2.2). Second, we examined the internal consistency or inconsistency (i.e., 
at least two components contradict each other) of the components. As discussed 
previously (in Sect. 6.2), TA12’s paper is an example of an internally consistent 
paper. The paper written by TA13 (discussed in more detail in Sect. 6.5) provides an 
example of inconsistency as well as conflated components. TA13 interpreted that 
students see equations as “a string of symbols to memorize.” Later TA13 stated 
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several hypotheses, including “When my students see an equation, their first thought 
is that they have to memorize it” and that students were “uncomfortable” with func-
tion notation (TA13 Final paper, pp. 1–2). Thus the hypothesis and interpretation 
are conflated. Furthermore, she then described future teaching actions that deliber-
ately avoided addressing or using function notation. These future teaching actions 
are inconsistent with the hypothesis and interpretation, because they seek to address 
students’ use of function notation without opportunities for students to use function 
notation.

We compared the consistency and connectedness of papers relative to each other, 
rather than to an external standard. The reasons for this approach were twofold. 
First, to our knowledge, there is no widely-accepted rubric for judging the coher-
ence of pedagogical argument, though there are theories about the components of 
such an argument (which we used as a foundation for this study, as discussed in 
Sect. 6.3.2). Second, it is a well-established cognitive science result that people are 
more reliable comparing impressions against one another than judging an impres-
sion of quality in isolation (Laming, 1984; Thurstone,1927). The relative compari-
sons can then be used to sort objects into categories of relative quality and identify 
attributes contributing to the impression of quality (e.g., McMahon & Jones, 2015). 
We classified papers into “high”, “medium”, and “low” connectedness by consen-
sus, in which at least four of the chapter authors weighed in on each paper, with 
more authors discussing controversial papers. Highly connected papers articulated 
all four components with internal consistency. Papers with medium connectedness 
conflated components (for instance, TA13) and were not entirely internally consis-
tent. Low connectedness papers did not specify the reasoning between each compo-
nent, for instance leaping from data to future teaching actions (as is the case with 
TA02, to be discussed further in Sect. 6.5).

During this analysis, we discovered a highly connected paper that did not feature 
a coherent argument. Although we agreed that the TA attempted to connect all com-
ponents, and we also agreed on the specific weaknesses of the argument, we dis-
agreed on the plausibility of the connections, and we never resolved our disagreement. 
We called this type “highly connected with low coherence.” We classified two other 
papers in this way.

6.5  Results

We asked: How do TAs connect observations and beliefs about their students, 
hypotheses about student thinking, and proposed next teaching actions? Table 6.1 
summarizes the TAs’ papers by category. Figure 6.2 shows the connectedness paths 
exhibited in our data. We now illustrate each path with an example paper. To retain 
anonymity of the TAs, we use the same pronoun, “she”, to refer to all TAs. (Of the 
16 TAs in the cohort studied, nine were female.)
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Table 6.1 TA papers by category

Connectedness Which TAs’ final papers exhibited this connectedness

High TA04, TA05, TA08, TA11, TA12, TA15
High, with low coherence TA02, TA10, TA14
Medium TA01, TA06, TA13, TA16
Low TA03, TA07, TA09

Path D ST H FT

H1 High connectivity

/
H 1

? ? ?
H 2

High connectivity with low coherence

⊕M1

M2

M3
XM4

XM5

Medium connectivity

⊕L1

L2

XL3

X XL4

Low connectivity

Path D ST H FT

Fig. 6.2 Connectedness of TA papers. Key: D = data, ST = student thinking, H = hypothesis, 
FT = future teaching actions, X = component absent, ⊕  = conflated components, •—• = link was 

attempted and satisfied criteria, •—•
?

 = no consensus from research team on whether link is plau-
sible, • / •− −  = future teaching actions do not plausibly address student thinking identified in 
data
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6.5.1  Illustrations of Paths of TAs’ Thinking

6.5.1.1  High Connectedness (H1 in Fig. 6.2; TA12)

TA12’s paper (described in Sect. 6.2) is highly connected. She described all four 
components, and the components and her reasoning from one to the next were inter-
nally consistent.

6.5.1.2  High Connectedness with Low Coherence (H’1; TA02)

TA02 posed the quiz problem, “How would you find the y-intercept of a function f? 
Explain why your method gives the y-intercept.” Several students responded simi-
larly to: “You would plug in a zero into the x. By putting zero into the x, the y- 
intercept would be the only thing left.” TA02 concluded, “It seems that they view 
‘plug in 0 for x’ as a way to get rid of the x, rather than a consequence of the fact that 
if a point is on the y-axis, its x-value must be 0” (TA02 Final paper, p. 2). As a result, 
TA02 hypothesized, “They see the graph and the equation as two distinct objects—
related, because you can sketch the graph given the equation, but not exactly repre-
senting the same mathematical relationship. The confusion about how to find the 
y-intercept is probably a special case of this disconnect” (p. 2). TA02’s interpreta-
tion and hypothesis are plausibly linked to the data.

TA02 proposed that in the future, she would design a worksheet that asked stu-
dents to sketch a graph of a given function, complete an input/output table, and 
sketch vertical lines on the graph. The intention would be for students to experience 
finding outputs of a function both using its defining equation and using intersecting 
the graph of the function with vertical lines. While the worksheet does link to the 
hypothesis, it did not plausibly address the TA’s interpretation of student thinking. 
The first worksheet question asked students to graph a function defined by an equa-
tion. However, assuming TA02’s interpretation of student thinking, the student most 
likely would struggle with graphing. It is possible that the remainder of the work-
sheet would have helped the student recognize the connection between graphs and 
equations, but this assumes that the student would be able to begin the work. We 
classified this paper as an example of an H’1 pathway where despite plausible links 
between components, the argument still does not hold together.

6.5.1.3  Medium Connectedness (M1; TA13)

Using data from a unit exam question involving revenue, profit, and cost (denoted 
R(n), P(n), C(n) respectively), TA13 observed:

… many of them seemed to think that an equation was a string of symbols to memorize, as 
opposed to something that they were capable of understanding or even constructing on their 
own. … During the exam I had students raise their hands and tell me, ‘I forgot the formula 

from class!’ They wrote down things like P n R n C n( ) = ( ) + ( ) , P n C n R n( ) = ( ) − ( )
, … This was very surprising because I am confident that every one of them has an intuitive 
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understanding of the concept of ‘net gain’. This reminded me very much of the situation 
described in the paper Mathematics in the Streets and in Schools [Carraher et al., 1985], in 
which kids were perfectly capable of doing arithmetic in the marketplace, but when handed 
pencil and paper and asked to work the same problems out symbolically, were frequently 
flummoxed. (TA13 Final paper, p. 1)

To address the students’ conception of equation, TA13 proposed to use a story 
about a renter saving up money for an upcoming vacation to derive a formula involv-
ing rent R, living expenses L, monthly income I, savings S, and the cost T of round 
trip plane tickets. As the students arrived at expressions to solve the problem, TA13 
would ask students to justify their findings. TA13 explained that this task

requires students to create something, as opposed to manipulating a formula that is given … 
It would get students used to the idea that equations are not divinely inspired, can be written 
by ordinary people, and used as shorthand to describe events that are entirely understand-
able (p. 4).

Prior to describing these future teaching actions, TA13 put forth several hypoth-
eses, including students’ discomfort with the terms “revenue” and “profit,” with 
function notation, and with the notion of inputs and outputs of a function. However, 
these hypotheses do not link plausibly to the future teaching actions; TA13 notes 
that she purposefully designed the worksheet to avoid function notation, even if 
there are variables used. There is also no mention of revenue and profit.

TA13 proposed one more hypothesis that she emphasized as the most probable 
cause: “When my students see an equation, their first thought is that they have to mem-
orize it” (p. 1). TA13 described other situations where schooling mandated memoriza-
tion because the information was in some sense arbitrary, such as naming the 50 states 
and their capitals. Although this last hypothesis does connect to the future teaching 
actions proposed, it only restates the interpretation of student thinking.

TA13 interpreted student thinking in a way that was consistent with the data. The 
future teaching actions are connected to the interpretation of student thinking and 
the data. Although she attempted to describe experiences that shaped student think-
ing, the only applicable hypothesis restated the description of student thinking. In 
other words, TA13’s paper conflated interpretation of student thinking and hypoth-
esis. For these reasons, we categorized TA13’s paper as an example of medium 
connectedness.

6.5.1.4  Low Connectedness (L2; TA03)

On a quiz given by TA03, students were unable to articulate the difference between 
the word “constant” and the phrase “constant rate of change.” Concerned that the 
students may not understand that these terms denote fundamentally different ideas, 
TA03 allowed students time to discuss the difference between the terms in groups. 
However, confusion persisted. TA03 attributed this misunderstanding to lack of pre-
cision in language and grammar, leading students to gloss over verbal differences 
between the two terms. TA03 went on to suggest that lack of precision causes 
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 students to group together similar looking functions, even to the extreme of “gloss-
ing over the distinction between lines with slope zero and lines with nonzero slope” 
(TA03 Final paper, p. 1). Generally, TA03 was concerned that imprecise language 
leads to confused mathematical thinking.

TA03 then proposed that in the future, she would ask students to graph the 
monthly profits of two businesses in a story problem, one whose monthly profits are 
a constant function of time ($1000 each month), and the other whose monthly prof-
its have a constant (nonzero) rate of change over time ($1000, $1200, $1400, etc.). 
TA03 reasoned, “Get students to admit that the second business is much different 
than the first; in fact, it’s much better! Then, and only then, broaden out the discus-
sion to include the actual words ‘constant’ and ‘constant rate of change’. … By 
building a common starting point through discussing which business is doing better 
than the other, the teacher can buy themselves enough goodwill to introduce the 
more abstract terminology” (p. 3). This activity targets the confusion encountered in 
class with regard to the two terms. However, the activity neither addresses precision 
of language or precision in a students’ view of functions in any significant way. That 
is, this activity does not build on the hypothesis. Hence, the future teaching actions 
are connected to the data, but not to any component between data and future teach-
ing actions, despite an effort on the part of TA03 to do so. We speculate that one 
source of this issue for TA03 is that she genuinely believes that addressing precision 
of language in general would solve many problems. Perhaps this view pervaded her 
thinking so strongly that TA03 struggled to identify a hypothesis that provided more 
guidance for future teaching actions.

6.5.2  Summary of Findings

We modeled TAs’ final papers as a practical argument with four components. We 
found that components could be present, absent, or conflated, and we found that 
connections could be present, absent, internally consistent, or internally inconsis-
tent. In some cases, we found TAs connected components that were non-adjacent in 
our model without connecting adjacent components. We also found one final paper 
in which the research team arrived at consensus on weaknesses of the TA’s argument 
but could not arrive at consensus on whether links were plausible. In total, our data 
of the 16 TAs’ final papers exhibited 12 paths in four categories. We illustrated one 
example path for each category.

6.6  Reflections on TA Education

As we specifically analyzed TAs' written reflections to an assignment from the TA 
pedagogy course, we detected different levels of TA reflection, as well as different 
patterns of components and connections. We were able to categorize papers as high 
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connectedness, high connectedness with low coherence, medium connectedness, 
and low connectedness.

We believe these results are valuable for TA development. First, in terms of 
research, they extended theory from the K-12 teacher education literature on oppor-
tunity to learn to post-secondary instruction. As far as we know, theorizing on 
opportunity to learn in the context of TA development is novel. Second, more practi-
cally, our results support research into TA learning by describing ways in which TAs 
may, or may not, connect their experiences to future teaching.

Learning from experience is the goal of many TA development programs, but as 
the research in K-12 teacher education and our own results show, the potential for 
TAs to learn from experience can vary. What we have added to this conversation is 
particular examples of how TA learning opportunities can vary, even when the TAs 
are asked to do similar tasks. TAs whose papers were categorized as high connect-
edness were able to clearly articulate the four assignment components, as well as 
explicit links and connections among the components. TAs in this category have 
illustrated their capacity to act as reflective practitioners, and use their understand-
ing of student thinking to support student learning. TAs whose papers were catego-
rized as high connectedness with low coherence were able to articulate components, 
but the links were weaker or implicit. These TAs were on their way to becoming 
more reflective as teachers: they have the components, but need to learn to better 
articulate connections or links among those components. Given the limitation of 
analyzing written reflections, we can only conclude the TAs did not write about the 
connections among the components; it may be the TAs did see those connections, 
but need further practice in expressing teaching reflections in writing.

Other TAs were still at a stage in which written reflections did not capture the 
type of components and connections intended, but instead revealed the struggles of 
novice instructors trying to make sense of student thinking and determining how to 
respond. These TAs at the mid and low connectedness prompt us to think about how 
we might better support TAs in being explicit in their writing, and help TAs to both 
see and express connections among the components. When we do not see explicit 
links or components, we do not always have enough information to judge whether 
the omission was truly a reflection of the TAs’ maturity as a practitioner, or instead, 
a reflection of the TAs’ skills in reporting their thoughts and actions in a written 
reflection. We sometimes find TAs who are pursuing doctorates in mathematics 
profess to “not be good at writing” and who struggle to express their thoughts in 
coherent written paragraphs.

In considering what we have learned and others who might learn from our expe-
rience, we turn to our model of TA thinking. In this meta analysis, the data are the 
TAs’ final papers. We interpret that while TAs are invested in helping their students 
learn and are committed to helping students construct knowledge, their proposed 
teaching actions do not always align with their interpretations of student thinking. 
We hypothesize that seminar discussions, in which TAs practiced describing their 
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experiences in terms of literature on constructivism, fostered the TAs’ dedication to 
giving students experiences to develop their own mathematical knowledge. Across 
the cohort of TAs, we saw this evidenced in their proposed teaching. We also 
hypothesize that these seminar discussions did not support TAs in selecting hypoth-
eses or connecting components because they emphasized the components rather 
than the connections. Several TAs suggested hypotheses that they did not design 
instruction to address. In each of these cases, the hypotheses were general state-
ments about students’ ways of doing mathematics that would be difficult to mediate 
in the span of a lesson, rather than hypotheses that specifically applied to student 
performance on quiz problems.

We propose that in the future, TAs continue to read literature that encourages 
them to see the value of students discovering mathematics. We also propose that 
TAs hold seminar discussions in front of their peers, where they make explicit the 
connections between future teaching actions to hypotheses. In these discussions, the 
facilitator and peers would help revise one TA’s hypotheses and teaching actions to 
be better defined and more strongly connected. This public revision is reminiscent 
of discussions between mentor and mentees to design action research, where the 
goal is to define addressable research questions and design data collection and anal-
ysis that address the research questions. In this analogy, research question is to 
hypothesis as data collection and analysis are to future teaching actions. Holding a 
public discussion aligns with research on K-12 teachers’ learning suggesting that 
when groups of teachers reflect on experience, they create a “collective zone of 
proximal development” (Engeström, 1987) where they learn more than would be 
possible individually.

Finally, we comment that it is reasonable to wonder whether having TAs focus 
on student error is productive: will that reinforce deficit-views of student thinking? 
In our experience, many TAs enter graduate school believing that students’ mathe-
matical thinking is either right or wrong, and student learning can be accomplished 
by exposure to “right” ways. For instance, when discussing why students might 
struggle with composition of functions, TAs at the beginning of the semester have 
often proposed, “The students just need to learn the rule.” We have found that dis-
cussing student errors has helped TAs move away from black and white judgments 
of student thinking. The TAs’ final papers, even those of low connectedness, dis-
played more potential for sensitivity to student thinking than at the start of the 
semester. We also have the impression that the cohorts have become more sensitive 
to student thinking over time, which we attribute in part to new graduate students 
entering a culture where a critical mass of TAs hold a more constructivist orienta-
tion. We are optimistic that this trend will grow in the future. To continue encourage 
this trend to continue, we propose two changes. The first is to focus seminar discus-
sions and assignments on unexpected correct solutions to complex tasks, and the 
second is focusing TAs’ hypotheses more explicitly on what about the student 
thinking can be built on in future teaching actions.
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Chapter 7
Lessons Learned from a Math Teachers’ Circle

Gulden Karakok, Katherine Morrison, and Cathleen Craviotto

Abstract In this chapter, we describe our experience running the Northern 
Colorado Math Teachers’ Circle (NoCOMTC), founded in 2011. The goal of the 
NoCOMTC is to improve middle school mathematics teachers’ mathematical and 
pedagogical content knowledge through interactive mathematical problem-solving 
professional development sessions. Our leadership team is an effective collabora-
tion between university mathematics and mathematics education professors and 
middle and high school mathematics teachers. In this chapter, we describe our lead-
ership team’s journey from founding the NoCOMTC through four academic years 
of monthly evening mathematics teachers’ circle sessions and three residential sum-
mer immersion workshops. We also discuss our recently initiated student circle pro-
gram. We focus on aspects that were essential to forming and sustaining our 
program. In addition, we highlight lessons we have learned while planning and 
facilitating both mathematical problem-solving sessions and activities designed to 
help teachers’ implementation of problem solving.
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7.1  Introduction

Inspired by a shared interest in giving back to the local community through work with 
teachers, Cathleen Craviotto and Gulden Karakok founded the Northern Colorado 
Math Teachers’ Circle (NoCOMTC) in 2011 together with three local district teach-
ers. Katherine Morrison joined this leadership team in 2013 shortly after she began 
working at University of Northern Colorado. While all three authors had been 
involved in different forms of professional development in the past, we were particu-
larly inspired by the Math Teachers’ Circle (MTC) model. We thought this model 
would provide us the opportunity to share our personal excitement about mathemati-
cal problem solving while stimulating teachers’ interest in solving problems. In addi-
tion, we believed that this professional development model could support our local 
middle school mathematics teachers’ implementation of problem solving in their 
classrooms by way of their personal experience in our sessions. This support for 
mathematics teachers was especially important for our local school district where all 
of the middle schools rank low both in students’ mathematics achievement and 
growth as measured by state mathematical assessments. The goal of the NoCOMTC 
is to respond to these issues by improving middle school mathematics teachers’ 
mathematical and pedagogical content knowledge (i.e., specific knowledge of how to 
teach mathematics) through interactive mathematical problem- solving sessions.

To achieve this goal, we have been offering monthly evening problem-solving 
sessions and annual weeklong residential summer workshops for middle school 
teachers. In these settings, the participants collaboratively solve challenging math-
ematics problems and discuss solutions and problem-solving strategies. In addition, 
we facilitate discussions on ways to implement these problem-solving tasks in par-
ticipants’ classrooms. The following quote from one of our summer workshop par-
ticipants captures the learning process in our MTC’s problem-solving environment. 
Similar to the reactions of many of our participants, this participant made connec-
tions between this experience and students’ experience:

I struggled, I felt uncomfortable, I was anxious and I was nervous. BUT … I LEARNED a 
lot about math topics and concepts that I was not necessarily familiar with. I was able to 
understand concepts that were presented to me in college that I never understood before and 
this is because I was encouraged to discover. I made sense of the things we were doing 
because I was able to think, communicate, and “digest” the new information in my own 
way… I think this is all the same for my students! I need to teach them to problem solve, 
discover, and explore information in their own way. I need to allow them plenty of time to 
process and discover, and I need to make sure that I guide and facilitate (vs. tell).

7.2  Our Experience Starting

Math Teachers’ Circles (MTCs) are an American adaptation of an idea that origi-
nated in Bulgaria and Russia. Math Circles began over 100 years ago as a way for 
professional mathematicians to work on problem solving with secondary students. 
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Emigrants who had been inspired by these sessions as teenagers then initiated cir-
cles in the US. Many teachers began transporting students to Math Circle activities 
in the Bay Area, but the teachers were not allowed to participate in these exciting 
problem-solving sessions. Soon they requested that Math Circles be created for 
teachers too, so they could have a similar experience. In 2006, the American Institute 
of Mathematics (AIM) began its first Math Circle for teachers and, in 2007, AIM 
began to organize workshops to teach others how to run MTCs (Math Teachers’ 
Circle n.d.).

At the 2011 Joint Mathematics Meetings, Craviotto attended sessions featuring 
MTCs and was inspired to explore this form of professional development for teach-
ers. Her love of problem solving and her past experiences teaching middle school 
students, where she was frequently impressed by their flexible thought processes, 
drew her to this work and got her excited about sharing these experiences. Also, she 
had substantial experience working with pre-service teachers, as this is the primary 
target population of University of Northern Colorado (UNC), where she was a 
mathematics professor. Thus, she set out to recruit a leadership team and create a 
local MTC. At the time, Karakok was a newly hired mathematics education profes-
sor in the mathematics department at UNC. She had significant experience facilitat-
ing professional development for in-service teachers and teaching mathematics 
content courses for pre-service teachers. Karakok was also excited by the problem- 
solving focus of the MTC model, and together they invited two local middle school 
mathematics teachers and a district mathematics coach, forming the initial leader-
ship team. As Craviotto was leaving the university setting in May 2013, they invited 
newly hired mathematics professor Morrison to replace her in the faculty role on the 
team. (Despite no longer being at the university, Craviotto continues to be a key 
member of the team.) Morrison had previously been involved in teaching summer 
mathematics courses for in-service teachers and was excited to work with the mid-
dle school teacher population.

The initial leadership team attended a weeklong workshop at AIM on How to 
Run a Math Teachers’ Circle in 2011. This workshop was an exciting time for the 
team to coalesce, to get to know each other better and to enjoy doing mathematics 
together. We gained firsthand experience with the MTC model as participating 
teams worked together on challenging mathematics problems. This experience 
helped our team learn about each other’s mathematical thinking and communica-
tion. The workshop also helped us learn how to best capitalize on the strengths of 
our team members to structure our circle activities. For example, as we worked on 
mathematics problems we experienced the frustration of not having enough think 
time. We discussed the importance of explicitly supporting think time, then having 
each person share their approach, and discussing all of our approaches. We learned 
how to create a collaborative space for all of us to solve problems, respecting each 
of our different mathematical backgrounds and experiences. These experiences 
helped us to create a similar environment for our participants in which they can col-
laborate and learn from each other’s distinct mathematical backgrounds.

The following academic year (2011–2012) we focused on fundraising to support 
running a residential summer workshop and building infrastructure to run academic- 
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year sessions and recruit local teachers. We managed to secure sufficient funding to 
have a summer workshop in the summer of 2012; however, quite surprisingly, we did 
not have enough applicants (only three) to run a workshop. To address this recruit-
ment problem, we cultivated stronger connections with our local district personnel 
and teachers and implemented monthly evening sessions. Faculty members on our 
team reached out directly to local district administrators, asking them to advertise 
these sessions to their teachers. The two middle school teachers on our team person-
ally recruited teachers and advertised the program at all district events. The district 
mathematics coach on our team made arrangements to provide district professional 
development hours for participants, which has been a great incentive for teachers.

Since 2012–2013, we have been able to run six academic-year evening sessions 
annually and a weeklong summer residential workshop, which we have opened up 
to teachers statewide. For each of these sessions, we met regularly as a team to dis-
cuss the content of mathematics problems, which were then facilitated by the faculty 
members. In addition, the faculty members continued to work with the university 
foundation office to write multiple grant proposals to support our activities. We have 
secured enough funds annually to provide dinners for participants at each evening 
session, cover the weeklong summer workshop expenses such as room and board for 
each participant, books, supplies and materials, and stipends for the leadership team.

In the 2015–2016 academic year, with the continued success of our circle, we 
expanded our program to host a Math Circle for students. This expansion was pro-
posed by one of our local teacher leaders who wanted us to do more for the local 
school district. We piloted six sessions and experienced tremendous enthusiasm 
from attendees. As a result of this strong interest from students and financial support 
from the community, we ran our first three-day Student Math Circle summer camp 
in June 2016, for students in grades four through eight.

7.3  Structure of Our MTC

We design and lead all of our problem-solving sessions to focus on enhancing the 
content and problem-solving process knowledge of our teacher participants. We 
strategically choose problems that will foster a general enthusiasm for mathematics. 
In particular, the problems that we select are frequently initially challenging and 
exciting for us as well, so we greatly enjoy planning together and engaging in prob-
lem solving with the teacher participants each session. This same sentiment has 
been expressed by many of our teachers, “I really enjoyed doing real math again!! 
It gets boring just doing 7th grade math and never being challenged. I gained an 
appreciation for the importance of developing problem solving skills.”

Since the choice of problems is instrumental to our success, we use problems that 
we find inherently interesting and that fall into three different categories, namely 
those focused on content, advanced content and problem-solving strategies. Content 
problems refer to problems that are directly related to the content of the Common 
Core State Standards of Mathematics (National Governors Association 2010) at the 
middle school level. Advanced content problems include content that is not 
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 necessarily at the middle school level, but may build on topics from that level and 
extend them beyond the typical middle school curricula. The third type focuses on 
problem- solving strategies and approaches rather than on any particular content. 
These strategies are inspired by and aligned with research studies in the area of 
problem solving (e.g., Carlson and Bloom 2005), the Common Core State Standards 
for Mathematics (CCSS-M), and professional mathematicians’ perspectives (e.g., 
Tanton n.d.; Zeitz 1999). Our frequent guest facilitator, Paul Zeitz, has been instru-
mental in bringing such problems to our summer workshops. In the Appendix, we 
give examples of these problem types, and in the following subsections we describe 
how we implement them in our monthly evening and summer workshop sessions.

7.3.1  Monthly Evening Sessions

During each academic year since 2012, we have had six monthly evening sessions 
on Mondays, each lasting two and a half hours including dinner. Each session is 
designed around a content or problem-solving strategy theme. The session begins 
with a warm-up problem that serves as an ice-breaking activity for teachers to get to 
know each other and re-energize after a long workday. Also the warm-up problem 
eases participants into exploration of the main topic or theme of subsequent 
problem(s).

One of the content themes we explored was divisibility. The session began with 
warm-up problems such as “If the five-digit number 5DDDD is divisible by 6, then 
what must be the value of D?” and “If A is odd, which ordered pairs (A, B) will 
make the three-digit number 4AB a multiple of 4? What about making it a multiple 
of 8?” These problems led participants to explore divisibility rules, facilitated dis-
cussions on why these rules work, and prepared them to approach the more chal-
lenging Social Security Number problem listed in the Appendix. These problems 
directly connect to the two domains of the Number System and Expressions and 
Equations in the standards for grades four through eight.

At the end of each session, the last 15 min are reserved for a wrap-up discussion 
on connections to teachers’ curricular practices. This is important as many teachers 
feel that, due to increased content expectations of the district’s implementation of 
the Common Core State Standards, they do not have sufficient time in their classes 
to facilitate problem solving. We typically engage teachers in brainstorming about 
possible ways to modify the session’s problems to integrate them into their curricu-
lum and enable differentiation (i.e., identification of appropriate entry and exit 
points for students at different ability levels) in their classrooms. We also encourage 
them to think about possible connections that they can make to the Standards for 
Mathematical Practice as outlined in CCSS-M while implementing such problem- 
solving lessons. For example, during the wrap-up session of the aforementioned 
Social Security Number problem, we highlighted the specific domains and their 
standards as well as the relevant mathematical practice standards such as “attend to 
precision,” “look for and make use of structure,” and “look for and express regular-
ity in repeated reasoning” (National Governors Association 2010, pp. 7-8).
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7.3.2  Summer Workshop

Our summer workshops bring together teachers from various geographical regions in 
Colorado with differing mathematics and teaching backgrounds. Similar to our eve-
ning sessions, we strive to create an encouraging environment that allows teachers to 
think deeply about mathematics, problem-solving strategies, and their teaching prac-
tices. There is palpable excitement throughout the week as participants get to know 
each other professionally and personally and as they develop a deeper understanding 
of the various aspects of mathematical problem solving. One participant summarized 
this idea by stating, “This workshop was an amazing experience for me! Not only 
was it a great way to form new relationships with other educators in Colorado, but a 
great way to understand how to better help foster problem- solving skills.”

Each of our three residential summer workshops has followed the same overall 
structure suggested in the AIM How to Run a Math Teachers’ Circle workshop. We 
provide some detail of our morning and afternoon sessions first. These sessions 
mainly focus on mathematical problem solving and have remained consistent in 
style throughout all our three workshops. However, the evening sessions have 
changed significantly over the three years. We detail the evolution of these evening 
sessions next.

The morning and afternoon sessions engage teacher participants in solving chal-
lenging mathematical problems in a group setting, with the last 30 min of each 
afternoon dedicated to reflection and discussion of connections to their curricula. 
We have followed a number of guiding principles in our choice of problems for 
these sessions. The first day problems were designed to elicit a variety of problem- 
solving strategies (see sample problems in the Appendix). These problems enabled 
full group discussions of these strategies and of the types of problems that evoke the 
use of different strategies. Having teachers notice or use different problem-solving 
strategies on the first day served two purposes: it prepared them to implement these 
strategies on different problems throughout the week and helped us facilitate discus-
sion on collaborative mathematical problem-solving norms.

Morning and afternoon sessions on other days typically consisted of content and 
advanced content problems, similar to those shared in the Appendix. We sought a 
balance between these types of problems throughout the week so that teachers were 
engaged in problems directly related to their curricula but also experienced solving 
problems with advanced content to see extensions of the content that they teach. 
Even problems that had direct connections to middle school curricula were targeted 
at a higher level than typical middle school problems in order to challenge and pro-
vide teachers with authentic problem-solving experiences.

We have also tried to provide balance among the mathematical domains covered 
by these problems. Each year we made sure that problems were distributed across 
CCSS-M domains such as the Number System (e.g., fractions, place value, divisi-
bility), Geometry (e.g., transformational geometry, lattice polygons, taxicab geom-
etry), Ratios and Proportional Relationships, Expressions and Equations (e.g., patterns 
and expressions), and Statistics and Probability (e.g., mean-absolute deviation). In 
addition to this domain-specific balance, we also incorporated problems that require 
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more hands-on exploration with concrete models such as playing cards with the 
Card Shuffling problem (see Table 7.1) and geoboards for the Pick’s Theorem 
problem (see the Appendix). These hands-on active sessions keep the teachers more 
engaged and energized and are especially valuable in the afternoons.

Table 7.1 Problems of the weeklong Card Shuffling theme

Session time and 
problem type Session focus

Monday 
afternoon 
(Problem-solving 
strategies)

Card shuffling: A perfect shuffle is a card shuffle that is accomplished by 
dividing a deck of cards into two equal piles, and perfectly interleaving the 
two piles, while keeping the top card on top. Explore what happens when 
you perform perfect shuffles with a deck of cards.

Monday evening 
around campfire 
(Content)

Pass the ball: Some number of participants are spread evenly around a 
circle. One person starts with a ball. A “step” is then chosen that will tell 
which person the ball is passed to next; for example, a step of 2 means the 
ball is passed to the person 2 people away clockwise from the person with 
the ball. Repeat this until the ball returns to the starting person. For which 
numbers of participants and which steps will the ball be touched by 
everyone before it is passed back to the starting person?

Tuesday 
afternoon 
(Content)

Threading Pins (Driscoll 1999): A number of pins are spread evenly 
around a circle. A thread is tied to some starting pin. A “step” is then 
chosen that will tell what the next pin is that the thread is looped around. 
The thread is then looped tightly around a next pin so that the step between 
the first two pins equals the step between the next two pins and so on. The 
process is continued until we return to the starting pin. If some pin has not 
yet been used, the process starts again with a new thread.
Notice that for 5 pins with a step of 2, we only need one thread, while 6 
pins with a step of 3 requires three threads. How many pieces of thread will 
be needed in general?

Wednesday 
afternoon 
(Advanced 
content)

Introduction to modular arithmetic: Topics included: addition and 
multiplication tables mod 7 and well-definedness of these operations; 
simple equation solving; powers of 10 mod n and powers of 2 mod n 
(calculated with attention paid to well-definedness).

Thursday 
morning 
(Advanced 
content)

Fractions and decimals in different bases: Topics included: correspondence 
between fractions and decimal expansions, e.g., for which fractions will the 
decimals terminate, for which will they repeat, how many digits may be 

required before the decimal expansion of m

n
 terminates (all questions 

were posed initially in base 10, then in other bases); connection between 

length of the repeated portion of the fraction 1

n
 and powers of 10 mod n; 

connection between length of the repeated portion of the fraction 1

n
 when 

expanded in base 2 and powers of 2 mod n
Friday morning 
(Advanced 
content)

Card shuffling and connections to powers of 2 mod n: Overview: returned 
to card shuffling and the question “How many perfect shuffles are required 
to return a deck of n cards to its original order (for n even)?”; found that 
the formula for position of card k after one shuffle was 2k mod n -1 ; 
found that the first power of 2 that was congruent to 1 mod n gave the 
necessary number of shuffles; solved modular equations to find cards that 
returned to their original position before the rest of the deck, explored zero 
divisors and inverses.
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For our third summer workshop (2015), we collaborated with the Rocky 
Mountain Math Teachers’ Circle (RMMTC), and were inspired to implement a 
weeklong theme for some of our sessions based on RMMTC’s previous positive 
experience with this method. In Table 7.1, we provide the sequencing of problems 
that we used in our 2015 summer workshop in order to develop the mathematical 
content and problem-solving strategies to solve the Card Shuffling problem. On the 
first day, this problem engaged teachers in posing questions and investigating differ-
ent problem-solving strategies such as modeling with mathematics. The content 
type problems, Pass the ball and Threading Pins, prompted discussions on concepts 
such as the greatest common factor (GCF), the least common multiple (LCM), and 
relatively prime, which are directly related to middle school content. In addition, 
these problems prepared teachers to make connections to advanced content and 
problems related to modular arithmetic, which were needed to solve the main prob-
lem of Card Shuffling.

This sequence of themed problems enabled our participants to see connections 
across different mathematical representations (e.g., embodied (physical), concrete, 
algebraic) they encountered. One participant, for example, highlighted this aspect of 
the week by stating the importance of “seeing how, even as an adult, manipulatives 
add to the math experience and …supported my learning.” These thematic problems 
provided participants with the experience of perseverance in problem solving. They 
were well received because of the balance between content and advanced content 
problems. Participants were excited as so many connections emerged across the 
week, and some noted:

I liked the purposeful connection between multiple problems. How different tasks can be 
selected and sequenced is something that I will be thinking about more carefully in the 
future. This type of intentional plan can only help to deepen conceptual understanding.

Today [the last day] tied mod arithmetic into decimals, fractions, and long division. So 
many base concepts that can absolutely tie it together at a much deeper level for me and my 
students. Awesome! It was a combination of many loose ends until today where it all tied 
together and brought closure.

Similar to the morning and afternoon problem-solving sessions, we implemented 
a thematic approach to our two-hour evening sessions during our 2015 summer 
workshop. This approach evolved from the feedback we received in previous sum-
mers regarding the evening sessions. In our first summer workshop (summer 2013) 
during these evening sessions, participants played mathematical games, further 
investigated problems from that day, or had informal discussions of their curricula. 
These sessions were relatively unstructured in 2013 because we hoped this would 
enable stronger community building among the teachers. However, post-workshop 
surveys and our follow-up meetings with teachers indicated that participants desired 
more structured evening sessions centered on pedagogical discussions. For exam-
ple, one participant stated, “Spend some time discussing how the problems we did 
can connect with our common core content.” Another suggested, “Have teachers 
bring their math curriculum and work to make problems more about process.”

As a result of these suggestions, we redesigned our second and third summer 
workshop evening sessions to focus on connections to curriculum. We structured 
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the sessions to help participants develop or modify tasks and lesson plans around 
problem solving using research-based activities. This was a different approach from 
what we had experienced in the AIM How to Run a Math Teachers’ Circle work-
shop, and seemed to be a valuable addition.

For the evening sessions we had participants read and discuss an article on the 
Task Analysis Guide developed by Smith and Stein (1998). Participants found this 
article valuable as it outlines various levels of cognitive demands of mathematical 
tasks and the roles of such tasks in the learning and teaching of mathematics. 
Following this discussion, we asked teachers to modify or develop a task to promote 
problem solving in their curriculum. After identifying and modifying (or develop-
ing) a task, participants generated a lesson plan to implement this task.

At our third summer workshop, we further structured the lesson-planning com-
ponent of the evenings by introducing teachers to the eight Mathematics Teaching 
Practices outlined in Principles to Actions (NCTM 2014). At the end of each after-
noon problem-solving session, we facilitated discussions in which participants 
shared examples of moments when they experienced an implementation of any of 
these teaching practices while they were engaged in solving problems during the 
day. This gave teachers the opportunity to reflect on their daily experience as learn-
ers, but also had them “put their teacher hats back on” to discuss implementation of 
problem-solving tasks in their classrooms. As one participant noted, “To see the 
practices in action and then identify them helped me become more aware of what 
they are and how they may look in my own classroom.”

During evening sessions when participants modified or designed a task and a 
lesson plan for their classrooms, they discussed how to implement the eight teach-
ing practices while teaching their lesson. These revised evening sessions were well 
received by participants as evidenced by their related written comments on the post- 
workshop survey.

As a teacher, the evening sessions were wonderful because we could collaborate and create 
a real, usable task. I also love that we had time to draft, revise, get feedback, revise again 
and create a high quality task. Most of the time teachers do not have the chance to create, 
edit, [and] revise their work for high quality tasks.

7.4  Impacts

7.4.1  Impacts on Participants

Throughout our sessions we have witnessed teachers’ excitement to engage in prob-
lem teachers’ excitement to engage in problem solving and willingness to imple-
ment problem solving in their teaching. The following quotes from summer 
workshops’ post-surveys provide examples of participants’ learning gains in math-
ematical problem-solving skills and strategies:

I was not familiar with parity before but that proved to be quite helpful in solving problems. 
I also experienced an increase in perseverance (Participant, summer 2013).
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It was reinforced to use visuals to solve problems as well as to work backwards. These 
are both strategies that I’d heard of and used before but this week reminded me to use them 
more often (Participant, summer 2015).

All participants indicated a desire to implement problem-solving activities with 
their students or plans to shift their teaching practices to provide their students more 
opportunities to engage deeply with mathematics. Below are selected quotes from 
participants from summer workshops’ post-surveys:

It was so great to be able to just do math, talk about doing math and the best part, learn ways 
to use it to get kids excited about solving math problems (Participant, summer 2014).

I feel I haven’t been pushing or allowing my students to work ahead or challenge them-
selves, and ask the right questions on justifications (Participant, summer 2015).

In addition, each summer some participants commented on how our workshop 
helped them to understand their students’ issues regarding the learning of mathe-
matics. For example, one participant shared this struggle during the workshop:

[The workshop] was very challenging. It has been decades since I’ve been put to task to 
solve harder math problems, much less put so much thought into it, which makes me realize 
how much I need to be aware of this for my students (Participant, summer 2014).

Participants made further connections between their experience as learners dur-
ing the day and their teaching in general:

This workshop really focused on putting the participant in the learner role. This experience 
was then a point for reflection and planning from a teacher role [in the evening sessions]. 
Most workshops only have someone in a teacher role thinking about, but not experiencing 
the learner role. This workshop gave me work as a learner that was challenging at my under-
standing level. … I was able to take my deeper conceptual understanding and make more 
meaningful and appropriate connections to what I teach because of this increase in my own 
understanding (Participant, summer 2015).

Participants also compared their summer workshop experience to their other pro-
fessional development experiences, highlighting the opportunities we provided for 
them to actively engage in mathematics:

Every workshop that I have ever attended, at some point, became boring, but this workshop 
was mentally intensive and fun. I was never bored (Participant, summer 2013).

Differences in the other PD workshop are that we actually got to be the student and do the 
expected tasks instead of being told how to implement the tasks (Participant, summer 2014).

Participants have shared how they implemented our MTC problems and problem- 
solving activities in their classrooms. For example, at the beginning of the second 
summer workshop, three teachers described three different implementations of 
ideas from the first summer workshop. One of these teachers had given problems 
from our summer sessions to her students, and these students then worked on these 
problems throughout the school year. She asked her students to keep problem- 
solving journals to record their progress on each problem. Another teacher explic-
itly tried to improve her question-posing practice after noticing how the facilitators 
of the summer workshop were posing questions throughout each problem-solving 
session. The third teacher posed a problem each week for students to work on, and 
as a class they discussed solutions at the end of the week.
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7.4.2  Impacts on Leadership Team Members

Working with each other and with the teachers has had a significant impact on us. As 
we have planned sessions and workshops and written grants, we have developed a 
camaraderie and mutual trust among the three of us that has sustained our work. We 
have different research backgrounds and teaching experiences. These varied back-
grounds have enabled us to provide meaningful and challenging mathematics prob-
lems and implement research-based teaching practices at our sessions. For example, 
Craviotto’s knowledge gained from writing grants for similar programs helped us to 
secure funding for the first two years of the program, and also helped Karakok and 
Morrison learn how to write such grant proposals through her mentorship. Karakok’s 
background in mathematics education research provided support to structure sessions 
related to curriculum. She also shared with Craviotto and Morrison her approach 
(based on Stein et al. 2008) to implementing productive mathematical discussion in 
her mathematics courses. Morrison’s experience working in programs on problem 
solving with in-service teachers in Nebraska helped to inform our decisions on prob-
lem selection. This reciprocal mentorship has enabled us each to grow significantly 
and has kept the work continually fresh and enjoyable over our past five years together.

The process of facilitating problem solving with teachers has also directly 
affected our teaching. One of the most challenging parts of running the MTC has 
been finding appropriate, interesting high-ceiling low-floor problems (that is, prob-
lems with easy entry points for all, but no significant upper bound on how far stu-
dents can progress) for teachers to investigate. Since Craviotto and Morrison have 
taught university courses such as problem solving, discrete mathematics, and num-
ber theory, we could utilize problems from our MTC in our courses and vice versa. 
Additionally, the process of mentoring struggling teachers and challenging strong 
teachers gave all three of us more insight into differentiating instruction, and that in 
turn improved our university teaching. Furthermore, watching the excitement and 
perseverance of teachers as they solved problems reinvigorated us as teachers and 
motivated us to continue this work.

Our MTC program has also had a positive effect on some of the authors’ careers. 
For example, Karakok has begun to engage in some research on the impacts of dif-
ferent activities in Math Teachers’ Circles, and her work with the MTC led directly 
to new district professional development work. Morrison was asked to take a 
national leadership role in the Math Circles community, and as a result has dramati-
cally increased her connections to other Math Circle organizers.

7.5  Challenges, Sustainability and Support

So far, we have been able to sustain up to six evening sessions each academic year 
and an annual residential summer workshop for our circle. One challenge we con-
tinually face is attracting more local teachers and sustaining the participants’ atten-
dance at our monthly evening sessions. Our local district has a high teacher turnover 
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rate especially among middle school mathematics teachers, with many teachers 
leaving the district each year and new teachers and district personnel hired each 
year. Consequently, each year we need to re-establish our connection with the dis-
trict personnel and advertise our program to the new teachers. Another challenge is 
securing funding. We submit grant proposals to multiple sources each year to sus-
tain our program activities for the following year and usually secure only enough 
funds to cover our program’s expenses for 1 year, requiring us to spend time on 
grant-writing every year.

To overcome these challenges and also reach more teachers, we recently began 
collaborating with another Colorado MTC. We ran the 2015 summer workshop with 
the RMMTC, and we again held a joint summer workshop in 2016. These collab-
orative efforts have helped us to recruit more teachers and increase participants’ 
numbers for monthly sessions of both programs. In addition, this collaboration 
enables us to conserve funds for future summers. More importantly, leadership team 
members of both circles are sharing problems, discussing effective implementation 
methods and occasionally visiting each other’s monthly circle to facilitate 
sessions.

Our department has helped sustain our program for the past four years by provid-
ing classrooms, administrative support, and some materials and supplies. The fac-
ulty has also shown significant support for our program, with a number of faculty 
members facilitating our monthly evening sessions. We have established this fac-
ulty buy- in by frequently discussing the success of the program at department 
meetings. Additional institutional support has been provided by our university’s 
foundation office.

Since fall semester 2015, we have expanded our program to provide a monthly 
student circle, which has proven promising for our sustainability efforts. We decided 
to pilot six sessions for fifth through eight grade students and run them concurrently 
with our evening sessions for teachers. In these concurrent sessions students do 
mathematical problem solving in groups in one room while teachers explore the 
same problem(s) in another room. After an hour, the teachers join the students for 
dinner and a discussion. During this time, students informally present their solu-
tions and strategies on the problem to the teachers, and then teachers join the discus-
sion. After 30 min, the students depart and the teachers continue to work on related 
problems. We believe the conversation between the teachers and the students at 
these sessions is helpful for both. Teachers are able to see that students can engage 
in deep mathematical problem solving of a challenging nature and hear the students’ 
rich mathematical conversations. The middle school students have enthusiastically 
appreciated these sessions, and we have noticed an increase in the number of teach-
ers, especially new teachers, at our evening sessions, because many teachers are 
bringing their students to the student circle.

In June 2016 we facilitated our first 3-day summer camp (non-residential). Quite 
unexpectedly, it attracted 52 local fourth through eighth grade students. We orga-
nized two classrooms of problem solvers based on grade level and prior experience 
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in attending our evening sessions. We also had two undergraduate pre-service ele-
mentary or secondary mathematics teachers and one mathematics education  doctoral 
student in each classroom to be mentors for students throughout the workshop. The 
pre-service teachers were excited to work directly with students on problem solv-
ing. They learned more about the student population they will teach and how to 
implement problem-solving activities for their future students. Similarly, our gradu-
ate students, who will be future faculty members, gained experience working with 
pre-service teachers and students. While the camp was a great success, we will be 
reflecting on our experiences and improving the camp based on journal entries from 
the middle-school students and the mentors.

7.6  Future Goals and Concluding Remarks

Over the years, our circle has grown and changed in ways we did not envision at 
the start. In particular, when we first began our circle at AIM, we fully expected 
to primarily serve teachers from our local school district. We made plans based on 
the assumption that we would establish a cohort of 30–40 local teachers who 
would come to our evening sessions and participate in our summer workshop. We 
never established a local base this large. As a consequence, we invited teachers 
from across our state, which enriched our summer workshop in unexpected ways. 
We had not anticipated that our evening summer workshop sessions would be 
tailored to helping teachers reflect on utilizing problem solving in their class-
rooms. These changes occurred as we reflected on the strengths and weaknesses 
of each workshop and carefully considered feedback from participants. Our 
efforts to be responsive are evidenced by a comment from a participant: “I felt 
like we were heard and not just talked at! We led the learning as much as the 
leaders.”

Similarly, when we began to plan for our MTC, we did not envision creating a 
student circle. It appears that we are filling an important niche as our student enroll-
ment continued to grow during the pilot year. In addition, the student circle has 
reinvigorated our teacher circle by bringing new teacher participants to the circle 
and adding a new level of motivation for teachers to incorporate problem solving in 
their classrooms. We fully expect our student circle and summer problem-solving 
camp to continue for the next few years. We expect to grow and adapt both circles 
in a continuing effort to be receptive to the needs of local students, local teachers 
and teachers across the state.
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 Appendix

The following table gives examples of problems used in the MTC sessions falling 
into three different categories, namely those focused on content, advanced content 
and problem-solving strategies.

Table A.1 Sample problems used in Northern Colorado MTC sessions

Problem 
type Sample problems

Content Social Security Number: My friend has a very unusual social security number. 
Each of the digits 1 through 9 is used exactly once, and if you write out the digits 
of her number as a1a2a3 a4a5 a6a7a8a9 then the number formed by the first i digits 
is always divisible by i. For example, the number a1a2a3a4a5, i.e. 

10 000 1 000 100 101 2 3 4 5, ,a a a a a+ + + + , is divisible by 5. What is my friend's 
social security number?

Fabulous Fractions (MTC website): Find four different decimal digits a, b, c, and 

d so that 
a

b

c

d
+ < 1  and is as close to 1 as possible. Prove that your answer is the 

largest such number less than 1.
Folding Triangles (Posamentier and Schulz 1996): A triangle is cut at random 
from a piece of paper and a vertex is folded to the midpoint of the opposite side. 
What figures can result, and what determines which one appears?
Pentominos (Liljedahl et al. 2007): A pentomino is a shape created by the joining 
of five squares such that every square touches at least one other square along a 
full face. If a pentomino is placed somewhere on a 100’s chart will the sum of the 
numbers it covers be divisible by 5? If not, what will the remainder be? Explain 
how you can know “quickly”!

Advanced 
content

Taxicab Geometry (Krause 1987): What does a circle look like in taxicab 
geometry? In this context, what should the value of π be? Do taxicab equilateral 
triangles always have 3 angles that measure 60°? Do taxicab isosceles triangles 
always have congruent base angles?
Billiards (MTC website): Imagine a pool table with pockets only in the corners. 
Start with a ball at the bottom left corner moving up at an angle of 45°. The ball 
bounces off each side of the pool table until it finally reaches one of the corners 
and rolls into the pocket. For example in a 5 by 10 table (width 5 and height 10), 
the ball will hit and bounce off the middle of the right side and then fall into the 
pocket on the top left corner. We count this as 1 bounce. We do not include going 
into the pocket as a bounce. Suppose a pool table is a by b and a ball is at the 
bottom left corner moving up at an angle of 45°. How many total bounces will the 
ball have before going into the pocket? Which pocket will the ball finally land in?
Pick’s Theorem: What is the area of a lattice polygon (a polygon whose vertices 
lie on lattice points)? It is pretty close to the number of lattice points in the 
interior of the polygon, but this is not exact. The lattice points on the boundary 
also matter. If you know how many lattice points are inside, and how many are 
on the boundary, can you determine the area?
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Problem 
type Sample problems

Problem- 
solving 
strategies

Concentration: The Participant deals out cards in a 4x4 grid, putting some face 
up and some face down randomly. Then the Magician deals a few more cards, 
adding one more row and one more column. The Magician is then blindfolded 
and the Participant picks one card in the grid and turns it over (i.e., if it was face 
up, now it is face down, and if it was face down, now it is face up). The Magician 
takes off the blindfold and is miraculously able to spot the altered card. How?
Shortest Path (MTC website): Find the number of shortest paths from the lower 
left corner to the upper right corner of a 4 × 3 grid.
Basic Takeaway: A set of 16 pennies is placed on a table. Two players take turns 
removing pennies. At each turn, a player must remove between 1 and 4 pennies 
(inclusive). The winner is the last player who makes a legal move. See if you can 
find a winning strategy for one of the players. Try to prove that your strategy 
works. And, always, try to generalize!
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    Chapter 8   
 Transforming Practices in Mathematics 
Teaching and Learning through Effective 
Partnerships                     

     Padmanabhan     Seshaiyer      and     Kristin     Kappmeyer    

    Abstract     This is the story of a partnership between a university professor of math-
ematics (the fi rst author) and a high school mathematics teacher (the second author). 
It started in 2007 through the Teacher Partnership Program of the Association for 
Women in Mathematics. They describe a succession of joint projects designed to 
benefi t students from middle school to college. The partnership began with informal 
visits to one another’s classrooms and engagement with a high school mathematics 
team. The association extended to include a research experiences for undergradu-
ates program in 2009. In 2011 the collaboration continued in the STEM Accelerator 
Program at the College of Science at George Mason University (GMU). The GMU 
collaborative work included a summer camp for middle school girls called FOCUS 
and a transitional program for prospective and incoming college students called 
STEM Boot Camp. They describe these programs and say something about their 
impact on the student participants. The authors also refl ect on what they have 
learned from the collaboration over the years and how their partnership has affected 
their professional lives.  
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8.1        Introduction 

 This is the story of a partnership between Padmanabhan Seshaiyer (Professor of 
Mathematical Sciences and Director of the STEM Accelerator Program at GMU) 
and Kristin Kappmeyer (a high school mathematics  teacher   with Arlington  Public   
Schools), the authors of this chapter. It started in 2007 through the Teacher 
Partnership  Program   (TPP) of the Association for  Women in Mathematics   (AWM) 
and still continues. The authors tell of a succession of joint projects designed to 
benefi t students from  middle school   to college level. Emphases of their work 
together include focusing on student inquiry, connecting mathematics to other dis-
ciplines and increasing the  diversity   of successful STEM students. 

 Two of the joint projects described in this  chapter   are part of the STEM Accelerator 
program at GMU, which Seshaiyer directs. The STEM Accelerator was created by 
the College of Science in 2011. The program has four major goals: increasing the 
number of STEM majors, improving retention rates of STEM students, reducing 
their time to graduation, and helping them join the STEM workforce or continue 
their education upon completion of their Bachelor’s degree in STEM disciplines. It 
has become a hallmark program for GMU, impacting over 5000 students per semes-
ter through various initiatives. These include the undergraduate Learning Assistants 
tutoring program, which has helped improve retention of STEM majors and transfer 
students from Northern Virginia Community College. This  peer-to-peer   tutoring ini-
tiative has improved on-time graduation rates for the college. 

 The STEM Accelerator program runs many initiatives at all levels, ranging from 
STEM Mania, a summer camp for students in grades 3–5, to STEM teacher  profes-
sional development   programs engaging teachers in effective pedagogical practices 
through problem solving and  lesson study  . The STEM Accelerator program received 
the “Programs That Work” award of the Virginia Mathematics and Science Coalition 
in 2015 for being one of the exemplary STEM programs in Virginia. It also received 
the 2016 Programs that Work award for two of their novel initiatives: the STEM 
Boot Camp and FOCUS camp, which are described in this work. 

 In Sect.  8.2  the authors describe their initial work in the TPP of the AWM. They 
started with informal visits to each other’s classrooms and engagement with a high 
school mathematics team. The next two sections describe the STEM Accelerator 
projects. Section  8.3  concerns a summer camp for  middle school   girls of color 
called FOCUS. Section  8.4  is about a transitional program for  prospective   and 
incoming college students called STEM Boot Camp. Section  8.5  describes a 
research experiences for  undergraduates   program. In each of these three sections, 
Seshaiyer and Kappmeyer describe the programs and what they know about their 
impact on the student participants and how each program helped to sustain the  col-

P. Seshaiyer and K. Kappmeyer



107

laboration  . Finally, in Sect.  8.6  they refl ect on what they have learned from the col-
laboration over the years and how it has affected their professional lives.  

8.2      The Teacher Partnership Program of the AWM 

 The AWM TPP (Hsu et al.  2009 ) was launched in August 2006 to link teachers of 
mathematics in schools, museums, technical institutes, 2-year colleges, and univer-
sities with other teachers working in an environment different from their own and 
with mathematicians working in business, government, and industry. Participant 
activities included electronic  communications  , teaching projects, classroom visits 
when feasible, and outside-of-classroom mathematics activities. Mathematicians 
and K-12 teachers with common interests were matched by the Partnership  organiz-
ers  . The authors were matched in August 2007 (Seshaiyer  2008 ). 

 Kappmeyer invited Seshaiyer to make a  presentation   to the high school mathe-
matics team that she and her  colleague  , Mark Dickson, had started the previous 
year. The team met once a week during lunch to work on American Mathematics 
Competitions (AMC) and Virginia Mathematics League (VML) practice problems. 
The students competed monthly in the VML contests and annually in the AMC 10 
and AMC 12 contests, for students in grade levels 10 and below and grade levels 12 
and below, respectively. Seshaiyer offered students insights into some common 
types of problems, and he gave them some entertaining ways to remember number 
facts. Two of those students (see Fig.  8.1 ) earned scores that qualifi ed them to  par-

  Fig. 8.1    Seshaiyer and Kappmeyer working with the students (Seshaiyer  2008 )       
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ticipate   in the American Invitational Mathematics Examination. Both of those stu-
dents are currently working on their doctorates at the University of Texas, Austin, 
one in mathematics and the other in government. The mathematics student’s 
research is in geometric  topology  , on distinguishing “mutant pretzel knots.” The 
government student’s research involves how price fl uctuations prompt protests and 
political shifts in resource-dependent nations.

   In addition to helping students prepare for mathematics contests, Seshaiyer lec-
tured on the usefulness of mathematics in solving  real-world   problems. He men-
tored one inspired student from Kappmeyer’s school in her science and engineering 
fair project, and that will be described in Sect.  8.5 .  

8.3      FOCUS: STEM Summer Camp for  Middle School   Girls 
of Color 

  The Females Of Color Underrepresented in STEM (FOCUS)   Camp was designed 
to pique the interest in STEM of middle school girls of color by offering them edu-
cational and social enrichment with positive role models to build their  confi dence   
and enhance their knowledge in STEM. The FOCUS Camp has been offered each 
summer since 2014. Campers participated in a coordinated set of  inquiry-based   
STEM activities each day over a 5-day period. 

 An inquiry-based mathematics classroom incorporates well-researched student- 
centered approaches. They are often driven by questions and the use of thoughtful 
investigations designed to help students make sense of the information as they 
develop new  understanding   (Diggs  2009 ). Investigations can also help teachers 
answer common classroom questions from students such as “why do I need to know 
this?” or “when will I ever use this?” Students need opportunities to explain their 
thinking processes to the teacher and class, and it is this exchange of ideas that pro-
vides the foundation for true understanding of mathematical concepts (Chapko and 
Buchko  2004 ). Not only does this process help students think like mathematicians, 
developing new knowledge by creating or discovering mathematics, but it also helps 
the  educators   learn to elicit and analyze their students’ thinking. 

 The camp was run by the STEM Accelerator Program at GMU in  collaboration   
with Girls Inspired and Ready to Lead (GIRL Inc.,   http://www.girlsinc.org/    ). GIRL 
Inc. is a non-profi t organization whose  mission   is to  mentor   and empower teen girls 
for future success through promoting academic excellence, leadership skills,  com-
munity   service, a healthy lifestyle, and self- esteem  . 

8.3.1     FOCUS Camp Activities 

 Each of the fi rst 4 days of camp was dedicated to science, technology, engineering 
and mathematics respectively. The fi fth day was set aside for the girls to create post-
ers showing what they had learned and to present those posters to their  peers  , 

P. Seshaiyer and K. Kappmeyer

http://www.girlsinc.org/


109

undergraduate and graduate students, faculty and parents. In 2015 this program 
attracted 74 middle school girls and 20 undergraduate women as STEM counselors. 
The program grew over 300 % from 2014 when there were only 18 middle school 
girls and 5 undergraduate women counselors. One of the main reasons for this 
growth was that participants from 2014 not only wanted to come back, but they also 
wanted to bring their friends so that they could also be impacted by it. 

 Nationwide, around 19 % of engineers are women. Negative perceptions of 
women engineers may play a role in explaining these low numbers (Graham and 
Smith  2005 ). Research has also revealed that high school- and college-age women 
commonly see the STEM environment as “chilly, male-dominated,” highly imper-
sonal and unsympathetic to women’s unique needs (Morganson and Jones  2010 ). 
Therefore an important component of the FOCUS program was career counseling. 
To excite the students about engineering, the Vice President of Aerospace 
Corporation, Catherine Steele, came to share her experiences in engineering, includ-
ing her education and her path to a position of leadership. On the last day of  camp  , 
there was a career panel consisting of fi ve prominent women who represented a 
range of careers in STEM. The panelists gave advice to the participants, judged the 
participants’ poster  presentations   and provided feedback on the girls’ work. See 
Sect.  8.3.2  for the girls’ reactions to the panel. 

 Each day of camp included a dedicated block of time for building an underwater 
remotely operated vehicle called a SeaPerch (For the program that originated it, see 
  http://www.seaperch.org/    ). The students were divided into 18 teams, and each team 
built their own SeaPerch (see Fig.  8.2 ). This hands-on building  exercise   not only 
helped students learn to  work in groups   to solve a problem, but it also increased 
their  understanding   of the engineering concepts behind the SeaPerch. On the last 
day of the camp, the 18 teams competed against each other in an underwater  mis-
sion   coordinated at the aquatic center at the GMU recreational center.

  Fig. 8.2    FOCUS participants testing their SeaPerch in the lab       
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   Throughout the camp the students were engaged in a variety of activities, each 
with an emphasis on science and engineering, including an introduction to 3D print-
ing, an investigation of a polymer, modeling the forces of fl ight, and a drone activity, 
which is described in more detail next. 

 The drone activity involved building models of drones using simple items such 
as paper plates, thumb tacks, popsicle sticks and pencils. Camp participants learned 
about real drones and their various electronic parts: fl ight  controllers  , motors, pro-
pellers, electronic speed controllers and all their respective functions. After demon-
strating how drones work, the high school presenter (shown in Fig.  8.3 ) explained 
how drones can be very useful in identifying poachers who are killing  elephants   and 
rhinos in Africa for their tusks and horns respectively.

   Many of the students’ science and engineering activities were connected to 
mathematics. In building SeaPerch, the students investigated the relationships 
among distance, rate and time and different kinds of variation: inverse, direct and 
joint. In the slime activity the students worked with proportions and percentages of 
chemicals being mixed. In the drone activity students discovered how to use the 
Pythagorean Theorem and coordinate geometry to explore  uniform   motion and 
average speed. Students solved problems such as:

  A drone identifi es a poacher hiding behind a tree 3 miles west of the Alpha Station which 
receives all  communications   from the drones and relays it to rangers close by. A ranger is 

  Fig. 8.3    FOCUS drone 
activity  presentation         

 

P. Seshaiyer and K. Kappmeyer



111

located 4 miles south of the Alpha Station. If the drone uses a global positioning system 
(GPS) to communicate to the Alpha Station about the location of the tree, what is the short-
est distance the ranger has to travel to catch the poacher that is hiding behind the tree? 

   Students also learned how GPS works and how it can be used to identify the loca-
tions of animals, poachers, and rangers. A related example the  students   solved was,

  Rangers A and B are 3 miles apart. A drone has received information that a poacher is 
located 2 miles from Ranger A and 2 miles from Ranger B. Is this information enough for 
the drone to communicate to the rangers the exact location of the poacher? 

   Such problems provided an opportunity for the students to learn about the con-
cept of a perpendicular bisector that identifi es two possible locations for the poach-
ers—something that most students did not expect. This type of hands-on, 
 inquiry-based   and conceptual learning not only helped them to appreciate mathe-
matics more, but it also helped them understand how it can be used to solve major 
 real-world   problems that impact society. 

 After hearing about poachers killing elephants and rhinos in Africa, the students 
brainstormed potential strategies to prevent this harmful practice. Engaging the stu-
dents in such real-world problems, and showing them how to use the mathematics 
they have learned in school in pursuit of solutions, made the students’  learning   more 
meaningful. The brainstorming led to some powerful ideas such as using cameras 
on drones to take pictures of poachers and using multiple drones that can communi-
cate and work in teams. These are creative ideas that can potentially impact the 
development of new technology that can help prevent  poaching  .  

8.3.2      Evaluating the FOCUS Camp Experience 

 The advice offered by the members of the career panel on the last day of camp had 
a great impact on the girls. The panelists’ comments and feedback on the girls’ 
poster  presentations   were very inspirational, and the question and  answer   session 
that followed the panel motivated the girls to think about their own goals and aspira-
tions. The panelist who spoke last asked the girls to stand up and state their own 
dreams. There was such overwhelming response to the question that the girls were 
asked to form a line to the microphone. The line extended to the back of the audito-
rium. Their dreams included becoming cancer researchers with the hope of ending 
cancer, environmental scientists working to stem global warming, medical doctors 
serving local and overseas communities, and engineers of all types working to 
design and maintain the built environment. It was a special moment that inspired 
great confi dence in the future. 

 Seshaiyer and Kappmeyer evaluated some aspects of the effectiveness of the 
week-long summer camp using focus group interviews and pre- and post-surveys. 
The post-survey questions focused on whether the camp helped them (1) to have a 
better idea what they will do after graduating from high school and what their career 
 goals   are, and (2) to decide to take different classes in school from what they had 
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previously planned. Also, the authors wanted to know if the camp increased students’ 
interest in studying STEM in college or made them more confi dent in their ability in 
projects and activities. Many of these questions were explored with  statements to 
which the students responded: “a great deal,” “moderately,” “slightly,” or “not at all.” 
For every question of this type on the survey about 50 % of the students responded “a 
great deal,” about 30 % of the students responded “moderately,” and about 15 % 
responded “slightly.” Students were also asked to rate the FOCUS camp overall and 
more than 89 % of the participants indicated that the camp was much better than they 
had expected. At least in the short term, the camp had an impact.  

8.3.3     The Authors’ Roles in the FOCUS Camp 

 Kappmeyer received an Arlington Community Foundation STEM Workforce 
Development Fellowship in 2015 to work with the FOCUS  camp  . Her primary goal 
was to increase a bank of STEM-related  problems   for her and her Arlington  Public   
School  colleagues   to use in the years ahead. To this end she developed lessons on 
sequences of nucleotides that form a unit of genetic code in DNA and RNA and on 
global positioning systems. She is continuing this work by developing a unit on 
ocean acidifi cation with the chemistry and biology teachers at her school. The 
teachers plan to embed challenging mathematics in regular and Advanced Placement 
science lessons. Another goal of her Workforce Development Fellowship was to 
increase the district’s  outreach   to students who are under-represented in STEM 
fi elds. These goals are consistent with those of the FOCUS camp organizers. 

 Kappmeyer contributed to many aspects of the FOCUS program. She greeted 
presenters, helped with activities, improved  communication      among camp counsel-
ors, and encouraged the camp participants. She even prepared a crossword puzzle 
that incorporated the week’s activities to engage the students on the last day. She 
also was an informal evaluator, creating a written record of each activity over the 
course of the week. Her thorough notes helped the organizers of the camp who were 
conducting sessions, and therefore could not attend every activity. Her  report   served 
as anecdotal evidence of the positive outcomes of the program. 

 Seshaiyer was the coordinator of the FOCUS camp along with two other STEM 
Accelerator faculty members. He worked with them to recruit students, communicate 
with parents, book rooms on campus for each session, recruit undergraduate student 
counselors, and coordinate FOCUS sessions for each day of the program. He worked 
with presenters, ordered necessary materials for each session and provided other 
important logistical support necessary for the event to be a  success  . Seshaiyer worked 
with Kappmeyer to coordinate the informal evaluation that she was conducting for 
each activity during the week. He was also responsible for securing a grant from 
Northern Virginia Community Foundation’s women’s giving circle that supported the 
undergraduate counselors. He visited all sessions to make sure that they were going as 
planned. He was a co-presenter in the Drones and Math session, where he worked 
with the participants. Finally, he was responsible for completing a fi nal  report   of the 
FOCUS event that was successfully approved by the women’s giving  circle  .   
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8.4      STEM Boot Camp for Students Beginning College 

 In July 2015, they collaborated on the second annual STEM Boot Camp offered by 
the STEM Accelerator program at GMU. The STEM Boot Camp is a 1-week pre- 
college program for incoming freshmen and high school students who are dual- 
enrolled in GMU. The Boot Camp program gives students a preview of the fi rst 
semester of college by introducing them to content from introductory gatekeeper 
classes such as calculus, general chemistry, cell biology, and physics. The students 
engage in hands-on laboratory projects and other skills needed to be ready for col-
lege, such as how to study, take an exam, and manage their time. The Boot Camp 
program also makes students aware of  undergraduate   research opportunities. 

 The  goals   of the Boot Camp are to improve retention of students in STEM majors 
and to increase the likelihood of successful completion of STEM degrees in 4 years. 
Results from the fi rst and second cohorts (2014 and 2015) of incoming fi rst year GMU 
students show that over 83 % of those who declared a STEM major are currently in their 
major. In the Boot Camp the authors participated in, most of the  students   in the calculus 
group were planning to major in engineering. In keeping with national trends, the biol-
ogy group had the highest proportion of women and the calculus group had the lowest. 

 There were 36 students enrolled in calculus. Preparation varied widely among 
these students, and therefore the group was subdivided. Another STEM Accelerator 
faculty member worked with a small group of students, reviewing  pre-calculus   top-
ics so that they could qualify for placement in calculus in the fall. Seshaiyer and 
Kappmeyer worked with a larger group of students, introducing some of the essen-
tial ideas in calculus. In their group of 25 students there were three women, two of 
whom were African-American. During the weeklong Boot Camp, each of the three 
young women approached Kappmeyer to discuss their career aspirations. They 
were identifying with the female instructor, who refl ected on her own undergraduate 
civil engineering education in which she had not a single female instructor. 

 Bernard L. Madison’s article “Mathematics at the School-to-College Transition” 
(Madison  2016 ) called attention to differences between high school and college 
instruction in mathematics. He claimed, “The transition from school to college 
mathematics is one of the most troublesome in all of U.S. education. More students 
 report   diffi culty succeeding in college mathematics than in any other discipline, and 
more students are dissatisfi ed with their college mathematics than with any other 
subject.” He added, “The problem is not the lack of  agreement   in topics covered; it 
is more too much agreement and too much overlap.” Indeed he noted that “80–90 % 
of enrollments in college mathematics courses are in courses whose content is 
taught in high schools,” with the geometry, algebra, trigonometry and calculus 
sequence dominating mathematics in both venues. 

 In their  collaboration  , the authors saw fi rst-hand that while high school and col-
lege calculus content may be the same, instruction can vary dramatically. GMU 
does not allow the use of graphing calculators in entry-level calculus classes. 
However, graphing calculators are used extensively in high school  AP Calculus   
classes. The AP Calculus course description reads, in part, “Technology should be 
used regularly by students and teachers to reinforce the relationships among the 
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 multiple representations      of functions, to confi rm written work, to implement experi-
mentation, and to assist in interpreting results.” (CollegeBoard  2012 ) In addition, 
college-level courses place more responsibility on the student, and they move 
through the material at a faster pace. 

 The planning of the Boot Camp classes took into account the “too much of the 
same thing” effect that Madison ( 2016 ) described. Some of the students had already 
taken AB or BC Calculus in high school. Others had not even taken an introduction 
to calculus. Every effort was made to challenge each student at his or her own level. 

8.4.1     STEM Boot Camp Activities 

 Seshaiyer and Kappmeyer’s class of calculus students worked in self-selected 
groups of 6 to 8. As a result, the groups were heterogeneous, which elevated the 
discussion at each table. The authors worked to challenge each group at an appropri-
ate level, even writing different fi nal exams for different groups. Throughout the 
week, they posed open-ended problems such as “How can we fi nd the area of this 
 amorphous   shape?” and “How can we fi nd the rate of change of this quantity at this 
one instant in time?” The walls of the classroom consisted of fl oor-to-ceiling white 
boards (see Fig.  8.4 ). The students worked on the walls as they hashed out their 
thoughts and then presented their work to their classmates. This inquiry-based for-
mat allowed for a variety of approaches to problem solving, with each student think-
ing creatively and collaboratively. The fi nal exams were exploratory problem sets 
that required students to apply all that they had learned that week. Time was allotted 
for students to present their thinking to the entire class. Students gained an impor-
tant glimpse of what they should expect in college. They worked on their  communi-
cation skills   and developed poise and self-confi dence as the week progressed. They 
learned as much, if not more, from one another as they did from the instructors.

   The STEM Boot Camp students had many  opportunities to learn   about GMU 
resources such as the Learning Assistant system, which provides help and reinforce-
ment outside of STEM classes. As they do during the academic year, graduate stu-
dents support the students throughout the week, helping them learn how to  study   
effectively in groups. In a question and answer session with GMU faculty, students 
were encouraged to talk with their professors if they found themselves struggling. 
Students also attended  presentations   about how to fi nd research opportunities and 
develop relationships with mentors. The STEM Boot Camp offered rich learning 
opportunities that went far beyond those of a traditional classroom.  

8.4.2     Evaluating STEM Boot Camp 

 For assessing the impact of the program, students were asked to complete a pre- 
camp survey prior to their arrival on campus. In 2015, the majority of the students 
were engineering majors. Ninety-six percent of all the participants were eager or 
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very eager to begin their freshman year. Although they were eager to begin the 
semester, the confi dence level was split between somewhat confi dent (45 %) and 
confi dent (45 %). 93 % believed that their major courses would be diffi cult or very 
diffi cult. Regarding degree completion, 76 % plan to complete their BS degree, 
53 % plan to complete a master’s degree and 22 % intend to complete a doctorate 
degree in a STEM discipline. When asked why they registered for the STEM Boot 
Camp, some of the reasons were to prepare for their hard science classes and to 
meet people with similar interests. Students also completed post-surveys the last 

  Fig. 8.4    Boot Camp calculus participants (in (a) and (b)) collaborating and communicating their 
solutions via white walls       
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day of camp. Large gains were made in clarifying what is expected of them as 
students; moderate-large gains were made in  skills   such as taking notes during 
lecture, studying for exams, and learning how to manage time. The STEM Boot 
Camp was held again in July of 2016.   

8.5       Undergraduate Research Experiences 

 In 2009 GMU received grants from the  research experiences for undergraduates 
(REU)   program of the National Science  Foundation   (NSF) and the Department of 
Defense for a program titled “Multidisciplinary  REU   Program in Computational 
Mathematics and Nonlinear Dynamics of Biological, Bio-inspired and Engineering 
Systems.” In this program Seshaiyer and Kappmeyer worked together in new ways. 

 Eight college undergraduates from across the country spent the summer of 2009 
learning sophisticated numerical methods and the fundamental principles that gov-
ern the physical phenomena behind their research projects. GMU faculty members, 
graduate, and undergraduate  students   were their mentors. 

 The  REU   students were four men and four women. They came from varied insti-
tutions including the large University of Maryland, the mid-size Southern Methodist 
University, and the small Alma College. Every effort was made to create a group 
with a wide range of experience so that they could learn from one another. To add 
to the breadth of background experiences of the group, Kappmeyer was selected as 
a high school teacher participant who would work alongside the undergraduates. 
Her research mentors were Seshaiyer and his undergraduate student Minerva Venuti. 

 In addition to researching their own topics,  learning   to use MATLAB® (a com-
puter algebra system widely used for computations in science and engineering), 
meeting with mentors, and exploring all that the Washington, DC environs had to 
offer, the  REU   students attended weekly  presentations   by faculty members in the 
GMU Department of Mathematical Sciences covering a wide range of research top-
ics and methodologies. Students gained insight into the application process for 
graduate school, and they learned about applying for grants to fund their own 
research in the future. They spent one full day touring the National Institutes of 
Health (NIH), where they visited the  mathematical modeling   laboratory and saw 
how the NIH was using modeling in its research practices to improve  public   health. 
They also visited the National Institute of Standards and Technology nearby. 

 The eight  REU   students and Kappmeyer spent the fi rst couple of weeks investi-
gating their topics and formulating their own questions. With support from their 
faculty  advisors  , the students made roadmaps for reaching their destinations. Their 
projects included medical applications like “A Mathematical Approach for the 
Reconstruction of Neural Networks,” industrial applications like “A Computational 
Model for Batten Behavior in Micro Air Vehicles” and applications that transcended 
a single categorization like “Synchronization and Coherence of Dynamical 
Systems.” Kappmeyer’s project was titled “Viscoelastic Modeling of Biological 
Tissue in an Idealized Cerebral Aneurysm.” She worked alongside one of the  REU   
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students whose project was “Applying Numerical Methods to Fluid Structure 
Interactions in Biological Systems.” They worked with Venuti and Seshaiyer as 
their mentors. Venuti’s project “Modeling, Analysis and Computation of Fluid 
Structure Interaction Models for Biological Systems” received three national awards 
for outstanding undergraduate research. In further recognition, Seshaiyer, 
Kappmeyer, and Venuti received letters from the Governor of Virginia’s offi ce com-
mending their  contributions   to the study of STEM fi elds. 

 The  REU   program inspired these eight undergraduates to continue their mathe-
matical studies while discovering their own interests. One of them is completing his 
PhD at the University of Arizona with plans to teach at the university level when he 
fi nishes his studies. He said “My  REU   experience infl uenced signifi cantly my deci-
sion to pursue a graduate degree. I found the research experience interesting and 
worthwhile. Also, coming from a small undergraduate institution, before participat-
ing in the  REU  , I was not entirely sure that I could make it at the next level. The 
REU experience showed me that, yes, I could.” One student earned a Ph.D. in 
France researching gene regulatory networks, and she is now working in industry. 
Another is an  NSF   Postdoctoral Fellow at the University of Pennsylvania where he 
is a researcher and instructor, and two other women are currently fi nishing their 
Ph.D. studies at the University of Illinois Urbana Champaign and Volgneau School 
of Engineering at GMU respectively. Clearly, the passion for research was sparked 
by their  REU   experiences. Such research experiences also help to develop quantita-
tively literate citizens and change agents (Seshaiyer  2012 ) while providing opportu-
nities for students to enhance their  real-world   problem solving abilities.  

8.6      Refl ections 

 In this section the authors refl ect on what they have  learned   over the course of their 
9-year partnership, focusing on the activities described in the earlier sections. 

 The issue of  gender   and  minority   participation in STEM fi elds came home to 
them when considering the composition of their calculus class in the STEM Boot 
Camp. Out of 25 students, about 30% were either women or African-American. The 
authors believe that the encouragement of women and minorities to enter STEM 
fi elds happens at the middle and high school levels. Kappmeyer advises her inter-
ested young female and  minority   students to consider engineering fi elds. She noti-
fi es her students of university programs that introduce engineering and computer 
science in summer camps, and she advises them of universities that offer support for 
 underrepresented groups  . 

 The Boot Camp gave the authors the opportunity to team-teach calculus. Not 
only did they plan the complete curriculum together, but they also debriefed each 
day, discussing student progress and how to enhance the following day’s lesson. 
They developed a synchronous teaching style: as one presented review topics, the 
other spontaneously generated related example problems on the board for students 
to consider. Over the course of the week, as gaps in student  understanding   or back-
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ground became apparent, one of the instructors would generate such examples. 
In this fashion students were able to integrate their  understanding   of geometry, alge-
bra, and trigonometry into the new work at hand. 

 In terms of teaching style, the authors discovered a shared desire to encourage 
intellectual curiosity. Seshaiyer sees Kappmeyer as a very conscientious teacher, 
and the Boot Camp students clearly respected her. She has a very effective personal 
style, and she presents herself as an enthusiastic teacher and researcher. Kappmeyer 
sees Seshaiyer as a passionate teacher and  mentor  . His ability to inspire students to 
ask deep questions and go solve them is commanding. Together they were able to 
 make   use of the state-of-the-art Active Learning with Technology room, allowing 
them to engage the students in twenty-fi rst century skills including  communication  , 
 collaboration  ,  critical thinking   and creativity. 

 The Boot Camp experience allowed Kappmeyer to see what knowledge, skills, and 
attitudes university students need to succeed. At the same time it allowed Seshaiyer to 
see the knowledge, skills, and attitudes of some current Virginia high school students. 
This exchange encouraged each of them to view mathematics education as a contin-
uum that need not have a sharp boundary between high school and college. 

 In the  REU   experience, Kappmeyer’s research project built on her undergraduate 
 mentor   Venuti’s project that involved mathematical and computational modeling of 
cerebral aneurysms—thin, balloon-like widenings of arterial walls. The rupture of 
these aneurysms is the most common cause of bleeding into the space between the 
brain and the skull, resulting in strokes. Predicting the potential of aneurysms to 
rupture is fundamental to clinical diagnosis and treatment. In her research, Venuti 
solved coupled partial  differential equations      for fl uids (modeling blood and cerebral 
spinal fl uid) interacting with elastic structures modeling aneurysms. It had been 30 
years since Kappmeyer had studied  differential equations   as a civil engineering stu-
dent. It was a huge undertaking to relearn the mathematics and computational tech-
niques necessary to understand the biological model of the aneurysm. In becoming 
the student, she refl ected on how exciting it was to have a real problem to motivate 
her learning. She wanted to share that feeling with her students. When she observed 
Seshaiyer’s interactions with his undergraduate and  REU   students, she noted that 
his  role   was more that of a  mentor   than teacher. He asked probing questions that led 
students on a path towards answers to their own questions. He rarely answered a 
question directly—rather he asked questions that opened new areas of inquiry. 
When a student really had trouble  understanding   a concept, he described an analo-
gous situation so that the student could make sense of his or her own problem. 
Kappmeyer has strived to incorporate such an approach to teaching ever since her 
 REU   experience. 

 In the fall of 2009, she developed a lesson for her Intensifi ed  Pre-Calculus   classes 
based on the aneurysm research. Kappmeyer, Seshaiyer and Venuti came to partici-
pate in a  lesson study  , a form of classroom inquiry in which several teachers collab-
oratively plan, teach, observe, revise and share the results of a single class lesson. 
The lesson introduced slope fi elds and ordinary  differential equations   to the students. 
It broadly explained partial  differential equations      to give students a sense of what 
modeling the idealized cerebral aneurysm entailed. The students had already read 
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excerpts from George Pólya’s book  How to Solve It: A New Aspect of Mathematical 
Method  and applied his four problem solving steps to explorations in class. The 
steps, simply stated, are: understand the problem, devise a plan, carry out the plan, 
and look back (Pólya  1945 ). These are the steps that Kappmeyer applied to her REU 
project, and in the lesson, she modeled them for her students. While she had previ-
ously assigned open-ended projects to these students, her  REU   research allowed her 
to see just how far she could push the notion that students should fi nd the mathemat-
ics to solve their own problems. In this way, they become mathematicians. 

 The goal of her  REU   research project was applying sound methods to investigate 
three broad areas: mathematics, teaching, and biological modeling. The authors’ 
partnership focused on the educational  possibilities   of using  mathematical model-
ing   to promote active, student-directed learning. 

 The research into  mathematical modeling   of cerebral aneurysms continued after 
the summer  REU  . Venuti worked on it the following year, as did four of Seshaiyer’s 
undergraduate students. One of Kappmeyer’s high school students was inspired to 
continue working with Seshaiyer on aneurysm modeling in her science fair project 
that year. Her project won the grand prize in the Northern Virginia Science and 
Engineering Fair in 2009, and she was invited to the Intel International Science and 
Engineering Fair that year. The student went on to pursue her undergraduate studies 
at Stanford University. 

 Participation in this aneurysm project included one high school student, one high 
school teacher, four undergraduates, and one graduate student. Five of the seven 
researchers were women. Two of the seven were African-Americans. Undergraduate 
research is one way to encourage women and under-represented minorities to pur-
sue multidisciplinary mathematical careers that bridge the scientifi c and engineer-
ing communities. 

 Seshaiyer’s work on these projects with Kappmeyer is based on decades of expe-
rience teaching and conducting research in  mathematical modeling  . His primary goal 
in working with students has always been to help them  appreciate   the importance of 
advanced mathematics and computational techniques to solve complex  real-world   
problems. He strives to give students the necessary foundation in mathematical mod-
eling, to help them analyze the models they create, and to engage them in using 
appropriate technology to simulate the problem situation. He also employs active 
learning in class, where the students learn by doing, using cooperative learning and 
learning by discovery. He motivates students to participate in his classes by asking 
them questions, giving extra-credit work, and using group-assignments. His class-
room assessment techniques help the students to learn about multiple  problem-  solving 
strategies      and representations (including algebraic, graphical, verbal, pictorial, tabu-
lar). Seshaiyer teaches STEM subjects by developing and making explicit for stu-
dents the ideas they might have already picked up and used in informal settings and 
other practical scenarios. All of these teaching experiences informed the work he and 
Kappmeyer did together and were, in turn, reinforced by the successes they shared. 

 In its 2012 National Curriculum Survey  report   ACT wrote, “A large gap still 
exists between how high school teachers perceive the college readiness of high 
school graduates and how college instructors perceive the readiness of their  incoming 
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fi rst-year students” (ACT  2012 , p. 4). Policy recommendations from that survey 
include the recommendation that “K-12 and postsecondary educators must collabo-
rate to ensure that course curricula and classroom materials refl ect the skills needed 
for college and career readiness and that these materials are seamlessly aligned 
across grade levels and the two systems” (ACT  2012 , p. 13). The authors feel very 
fortunate that the AWM promoted such a  collaboration   through which they have been 
able to exchange ideas to enhance the learning experiences for their  students  .     
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    Chapter 9   
 Developing Collaborations Among 
Mathematicians, Teachers, and Mathematics 
Educators                     

     Kristin     Umland      and     Ashli     Black    

    Abstract     Mathematics education is a discipline in the overlap between mathemat-
ics and education, and solving problems in mathematics education requires exper-
tise from both domains. Scholarly work in mathematics education is accomplished 
either by individual scholars who have expertise in both areas or as a collaboration 
among scholars who collectively have the necessary kinds of expertise. Illustrative 
Mathematics, an example of an organization that supports such collaborations, is 
described as one model for supporting scholarly work in mathematics education. 
Reasons why departments of mathematical sciences should actively support such 
scholarship are explored.  

  Keywords     Mathematics education   •   Collaboration   •   K-12 mathematics   •   Illustrative 
Mathematics  

9.1          Introduction   

 The discipline of mathematics education is broad, including work in K-12, under-
graduate, and graduate mathematics. Each of these areas requires different types of 
expertise, both mathematical and pedagogical. In the next section, we describe a 
collaboration of mathematicians, mathematics educators, and K-12 teachers work-
ing to improve  K-12 mathematics education   in the US. This example serves as the 
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backdrop for a broader discussion in the following section about how to evaluate 
and support the work of faculty members in departments of mathematical sciences 
involved in mathematics education. 

 There are many examples of mathematicians working on problems in mathemat-
ics education; Felix  Klein’s   reforms in the early 1900s in Germany (Chislenko and 
Tschinkel  2007 ) and Andrey  Kolmogorov’s   reform in the Soviet Union in the 1970s 
(Boyko  2013 ) are two famous examples. Mathematicians were also the architects of 
the  New Math   reform movement in the US that ran parallel to the Kolmogorov 
reforms in the Soviet Union, although the  New Math   reform was broadly regarded as 
a failure (Boyko  2013 ). It is important to learn from these examples and think care-
fully about how mathematicians can be more effective when working on problems in 
mathematics education. Issues in school mathematics are complex: they involve chil-
dren’s learning, school systems, and educational policy. These are issues that a pro-
fessional mathematician may be ill-equipped to deal with. For this reason, many 
believe that the best way for mathematicians to contribute to  K-12 mathematics edu-
cation   is in  partnership   with others, including K-12 teachers and education experts. 

 The forces that shape  K-12 mathematics education   in the United States are unfa-
miliar to many people who have not worked in this area, so we include some rele-
vant background here.

   Mathematics    standards    describe the mathematics that students should know and be able to 
do. Sometimes standards are described as  learning standards . 

  Mathematics    curriculum    is used both to name the mathematics that students study and the 
materials that are used to present mathematics to students. 

   The curriculum describes the day-to-day mathematical work that students do, 
while standards describe the end-state we hope students will achieve as a result of 
their study. 

 Federal policies in the United States require each state to set learning standards 
in mathematics and English language arts for K-12 students. For many years, math-
ematics  standards   varied greatly from state to state. For example, an analysis of the 
standards from 42 states indicated that the introduction of addition and subtraction 
of fractions might happen as early as grade 1 or as late as grade 7 (Reys  2006 ). In 
response to this situation, there were various  reports   and publications aimed at 
aligning standards and bringing greater  coherence   to school mathematics:   Adding it 
Up    (National Research Council  2001 )      , The American Diploma Project (Achieve 
 2004 ), the Curriculum Focal Points for Prekindergarten through Grade 8 
Mathematics (NCTM  2006 ), reports by College Board ( 2006 ) and ACT ( 2007 ), the 
 Report   of the National Mathematics Advisory Panel ( 2008 ), and Focus in High 
School Mathematics (NCTM  2009 ). 

 In 2009, 48 states signed on to an initiative of the National Governors Association 
and the Council of Chief State School Offi cers to write “college-and-career-ready” 
school standards for mathematics and English  language arts  . The fi nal draft of the 
 Common Core State Standards   for Mathematics (National Governors Association 
 2010 ) was fi rst released on June 2, 2010, and 45 of those states have since adopted 
them or a set of standards very similar to them. These standards were informed by 
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many sources, including mathematics education research, studies of what is necessary 
for college and career readiness, comparisons to standards from  high- performing 
states and nations, the input of many different stakeholders, and the structure of the 
discipline itself (McCallum  2012 ). 

 These standards have a well-developed structure that sets them apart from the 
majority of state standards that came before them. The highest level structure consists 
of domains that typically span multiple years. For example, one of the domains that 
spans K-5 is “Numbers and Operations Base Ten.” Within each grade level, there are 
clusters of standards within each domain. For example, in grade 4 there is a cluster 
“Generalize place value  understanding   for multi-digit whole numbers,” and within 
this cluster there are three standards about understanding the relationship between 
places in a multi-digit whole number, reading and writing base-ten numbers, and using 
base-ten structure to round numbers. Each level in this hierarchy has a purpose.  

9.2       Illustrative Mathematics   

 Founded by William McCallum, a mathematician and the lead writer of the Common 
Core State Standards for Mathematics, Illustrative Mathematics began as a project 
in the Department of Mathematics at the University of Arizona. The purpose of the 
project was to enhance  public    understanding   of the standards by providing mathe-
matical  tasks   that illustrate the expectations for mathematical work that the stan-
dards describe. Initially, it appeared to be a simple project to write some K-12 
mathematics problems and post them on a website. Later, as more people reviewed 
more problems, it became clear that mathematics problems are often like Rorschach 
tests: what different individuals see in a problem varies, and often refl ects more 
about the observer than the problem. Part of the reason for this is that mathematics 
problems are always used for particular purposes in particular contexts. Consider 
this problem:

  Fufa had 4 bags with 5 marbles in each. How many marbles did she have altogether? 

   In grade 1, this is an advanced problem that students could solve by drawing 
pictures or with addition. In grade 2, it could be used to teach students about skip 
counting (in preparation for grade 3 work on multiplication). At the beginning of 
grade 3, it could be used to introduce the concept of multiplication. In the middle of 
grade 3, it could be used to demonstrate the associative property of multiplication 
by viewing 4 as 2 times 2. At the end of grade 3, it could be used to assess  under-
standing   of basic multiplication facts. In grade 4, it could be used for review. A 
particular task may be appropriate for one use but not another, so the quality of a 
task cannot be judged without  understanding   its intended use. 

 It also became clear that just posting mathematics problems on a website would 
do little to clarify the expectations of the standards. Each problem needed to be 
presented in a context of use and have one or more examples of how students would 
be expected to solve it in that context. Thus, the team of mathematicians (including 
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the fi rst author, who was then in the Department of Mathematics and  Statistics   at the 
University of New Mexico), mathematics educators, and classroom teachers (includ-
ing the second author, who was then a high school mathematics teacher in Seattle, 
Washington) working on the project decided that rather than post mathematics prob-
lems, they would post  mathematical    tasks    composed of a  problem  coupled with an 
explicitly stated  purpose  (or context of use) along with detailed commentary and 
solutions for each task. The team consisted of dozens of people from all over the US. 

 From the inception of the project, the tasks were reviewed by at least two peo-
ple: one with mathematical expertise, and another with classroom expertise. The 
team developed a set of eight criteria (  http://www.achievethecore.org/page/310/
illustrative- mathematics-task-review-tool       ) to evaluate each task and asked each 
reviewer to make judgments about whether a particular task met each criterion:

    1.    The task illustrates the specifi ed standard, cluster, domain, or conceptual category. 
 An  illustration  is a set of tasks that clarify the intention, depth, breadth, mean-

ing, or faithful implementation of a standard, cluster, or domain, or conceptual 
category. No single task can illustrate a standard by itself, so this criterion is met 
if the task is appropriate to include as part of a complete illustration.   

   2.    The task’s purpose is clearly stated in the commentary and is likely to be 
fulfi lled. 

 We will call the mathematical idea and/or habit of mind that a task is intend-
ing to develop or assess, along with its intended use,  the purpose of the task .   

   3.    The task has at least one appropriate solution. 
 The solutions for tasks should be mathematically correct and refl ect the kind 

of reasoning students could be expected to show. Other possible solutions should 
be indicated.   

   4.    The mathematics is correct. 
 A task must be mathematically correct in the context of the  Common Core 

State Standards  , both in the obvious sense of having correct calculations, but also 
in the use of correct mathematical reasoning and terminology. For example, a 
task solution should not confuse equations and expressions or congruence and 
equality.   

   5.    Any diagrams or pictures have a clear mathematical or pedagogical purpose 
which they are likely to fulfi ll. 

 Tasks should only include diagrams, pictures, or illustrations that support 
comprehension of or provide mathematical meaning for the problem. If a dia-
gram (such as a tape diagram or number line) is meant to represent a quantity, it 
should be well-labeled so that its interpretation is not ambiguous.   

   6.    The context supports the purpose of the task. 
 Contexts can be either mathematical or real-world, and they can play different 

roles in different tasks. Contexts can variously:

    (a)    Support students in  understanding   the mathematics,   
   (b)    Motivate students to work on the mathematics, or   
   (c)    Provide an opportunity to apply their knowledge in a novel context.       
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   7.    The task write-up appropriately addresses units and numerical precision. 
 While one might argue that attending to units and numerical precision could 

fall under the rubric of being mathematically correct, it is such a common prob-
lem in tasks and so easily overlooked that it has been explicitly included.   

   8.    The language of the task is unambiguous and grade-appropriate. 
 In some cases, the purpose of a task is to require students to take a context that 

does not have an unambiguous mathematical interpretation and make a choice 
about what mathematical interpretation would be appropriate (for example, in a 
very complex modeling task, there may be more than one reasonable mathemati-
cal model). However, the  language   of the task should not be ambiguous in any 
case.    

  Not surprisingly, the team found that a group of people with different kinds of 
expertise were collectively able to provide more detailed, critical analysis related to 
the different criteria. This confi rmed that both mathematical and classroom perspec-
tives were essential for shaping the tasks appropriately. For example, here is the task 
statement and commentary for a grade 4 task written by one of the authors:

  Historians estimate that there were about 7 million people on the earth in 4,000 BCE. Now 
there are about 7 billion! We write 7 million as 7,000,000. We write 7 billion as 
7,000,000,000. How many times more people are there on the earth now than there were in 
4,000 BCE? 

   The commentary that accompanies the task states:

  The purpose of this task is to help students understand the multiplicative relationship 
between commonly used large numbers (millions and billions) by using their  understanding   
of place value. This task also builds on students’ work on multiplicative comparison from 
4th grade. The task “Thousands and Millions of Fourth Graders” is a good task to do before 
this one as it requires the same kind of reasoning but the numbers are smaller. The popula-
tion estimates come from Historical Estimates of World Population from the US Census 
Bureau. 

   The fi rst review of an earlier version of the task coming from a mathematician 
states:

  I am a little worried about [the standards alignment] because although it fi ts this category 
for the mathematics, it does not for the numbers involved, which are too big. I don't know 
when students start to see these numbers so don’t know if this is more generally problem-
atic. It is defi nitely multiplicative comparison though. An alternative would be to link it to 
[some grade 5 standards]. Though not the focus of the problem, I wonder if it is worth 
showing the associative property of multiplication, which is implicitly being used when you 
multiply the three factors of 10? 

 Finally, I understand the sentence, “Every time we move one place to the left we multi-
ply by 10” at the very beginning of the solution, but maybe something a little more precise 
would be better, for example, “The value of each place is ten times the value of the place 
immediately to the right.” 

   A later review by a classroom expert suggested additional solutions refl ecting 
how real students might approach the task. Subsequently  public   comments con-
fi rmed that the task should be moved to grade 5, so it was moved to a grade 5 stan-
dard soon after publication on the website. 
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 As they worked together, the team realized that the  community   of mathemati-
cians, teachers, and mathematics educators forming around the work was an out-
come of the project equal in importance to the tasks themselves. They applied for a 
larger grant to enlarge this  community   and extend its work to a more comprehensive 
set of tasks. The expanded project included plans to create a behind-the-scenes 
“automated task delivery system” to move tasks through the review process, assur-
ing that the right kinds of expertise were applied to their development along the way. 

 The original ambitious project was funded on a declining scale: 80 % for the fi rst 
year, 60 % for the second year, and 20 % for the third year. However, fi nding addi-
tional foundation funding for the project to develop an elaborate review process that 
could train hundreds of people and produce many more tasks proved challenging. 
The team did secure funding to create middle and high school course outlines, but 
working within the structure of a mathematics department in a university proved to 
be a challenge. In 2013, the team incorporated into an organization named  Illustrative 
Mathematics  , which received its non-profi t status the following summer. 

 As a non-profi t organization, it was easier for Illustrative Mathematics to pursue 
multiple projects in collaboration with a variety of different organizations. In addi-
tion to publishing tasks and course outlines, the team worked on a variety of large- 
scale projects related to both formative and summative assessment, including 
reviewing and giving guidance to national assessment companies, and provided  pro-
fessional development   to teachers all over the United States. In some cases, the mate-
rials that were created and reviewed have had an impact on millions of children in the 
US. One of the advantages of the way the work of the organization is structured is 
that mathematicians can be involved in small or large ways. Some mathematicians 
just review material on a project-by-project basis as their schedule allows. Some 
mathematicians (as with one of the authors) are involved in almost every project. 

 An important outcome of the collaborative work of the organization is that math-
ematicians develop greater respect for the work of both teachers and mathematics 
educators while at the same time bringing their particular expertise to the work in 
appropriate ways. The  culture   of mutual respect is most evident with the interaction 
between teachers, mathematics educators, and mathematicians, which is one of 
trusted peers. 

 Both of the authors have been working with  Illustrative Mathematics   from its 
earliest days. Umland was involved at the very beginning of the project as the  mid-
dle school   mathematics lead. She has worked on many different projects, including 
writing and reviewing tasks and other content for the organization. She is now the 
Vice President for Content Development. Black has been a long-time classroom 
expert for the project and then for the organization, involved in reviewing,  profes-
sional development  , and now curriculum content development. Having helped build 
this  community   from the ground up, both authors are happy to now call the organi-
zation their professional home. 

 How do faculty in departments of mathematical sciences get involved in such 
work? How do their  colleagues   regard their participation in this type of work? We 
have talked about the kinds of work in education to which mathematicians can con-
tribute; next we will talk about how such work is recognized and rewarded in aca-
demic departments.   
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9.3     Evaluating  Work in Mathematics Education      

 Universities have long recognized that the nature of scholarly and professional work 
varies from discipline to discipline; what counts as scholarly work and how its value 
and  impact   is assessed is typically left to individual academic departments to decide. 
While research articles in peer- reviewed   journals have long been accepted as schol-
arly work in almost every discipline, there has also been a decades-long discussion 
about what other activities should count as well (Boyer et al.  2015 ). There are arti-
cles and books about the impact of  communication   technology on the nature and 
evaluation of scholarly work in different disciplines (e.g., Brown and Simpson  2014 ; 
Priem  2013 ) as well as discussions about the impact of economic changes on institu-
tions of  higher education   (e.g., Greenstein  2013 ; McGee  2015 ). These forces have, 
for better or worse, affected the way many people both inside and outside of aca-
demia view and value  scholarship  . So such issues in mathematics and education are 
framed by this larger, long-term discussion about scholarship in  higher education  . 

 How should we evaluate scholarly  work in mathematics education  ? There are 
several common methods for evaluating the quality of a research article. Both  peer 
reviews   and the opinions of widely recognized experts in the discipline are consid-
ered important. This second approach only works in disciplines where there is con-
sensus about who the experts are; such consensus is harder to fi nd in interdisciplinary 
domains. Another evaluation option is the use of measures of scale and impact, some 
of which are called “ impact factors  ” and are based on citation metrics applied both 
at the article level and the journal level. While many scholars think that using metrics 
like impact factors to evaluate the quality of research is a fl awed methodology (e.g., 
Amin and Mabe  2004 ; Seglen  1997 ), it does point to a desire among scholars to 
equate “quality” with the importance, infl uence, and applicability of the work. In the 
case of scholarly work that does not have its fi nal output format in research journals, 
this suggests two ways we might measure quality: through an expert or peer- review   
process, or by identifying metrics of the infl uence and impact that the work has on 
the communities that are affected by the work. However it is done, measuring the 
quality of scholarly work is necessarily complex and should not be taken lightly. 

 In order to evaluate this kind of work, there fi rst must be a tangible product of the 
work. Let’s examine different categories of scholarly work that are not traditionally 
considered research and discuss what such artifacts might look like and how they 
might be evaluated. 

9.3.1     Writing and Evaluating Instructional Materials 

 One possible measure of the quality and impact of instructional materials is how 
widely adopted they are, although this speaks more to the impact than the quality of 
such materials. Another potential measure is research that evaluates their quality. To 
do this well requires the help of experts in education research. It is also possible to 
set up rigorous  peer-review   processes for such materials. 
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 The set of tasks on the  Illustrative Mathematics   website provides an example of 
both of these kinds of measures. As with a research article, the tasks are reviewed 
by people with appropriate expertise, so there is an expert  peer-review   process. The 
website itself gets over 100,000 visits per month, and is linked to by state depart-
ments of education and many other websites, so it is possible to get a sense of the 
scale and impact of the site. And as is the case with  journals  , different sources for 
online materials develop different reputations for overall quality, and the  Illustrative 
Mathematics   website is frequently recommended as a general resource for teachers 
by various experts and organizations around the country.  

9.3.2     Teaching Undergraduate and Graduate Courses 
in Mathematics 

 Teaching is clearly an important part of scholarly work. To evaluate it, there must be 
residual artifacts that can be examined in order to determine its quality or impact. In 
principle, peer observations could be used, but in practice these are often not per-
formed in a systematic way, and are therefore diffi cult to compare. A more system-
atic way of observing teaching in college classrooms is needed. There are also 
 peer-reviewed   journals dedicated to the  scholarship   of teaching and learning that 
provide a mechanism for scholars to document the impact of their teaching in a way 
that can be more easily evaluated.  

9.3.3     Writing and Evaluating K-12 Policy Documents 

 Examples of the types of policy documents that require substantial commitment and 
mathematical expertise include K-12 mathematics  standards   and teacher education 
and licensure requirements. Working on state or national policy documents neces-
sarily has a great impact because so many teachers and students are affected by 
them. Research on the effect of such materials can be done (Cross et al.  2004 ; 
Schmidt et al.  2005 ), and such research necessarily requires the input of mathemati-
cal experts.  

9.3.4      Outreach Projects   

 Outreach projects are often hard to evaluate on an individual level, but aggregating 
measures across multiple sites can help show impact. For example,  Math Circles   
and  Math Teachers’ Circles   bring K-12 students or K-12 mathematics teachers 
together with mathematically sophisticated leaders in an informal setting to work on 
interesting problems or topics in mathematics (National Association of Math Circles 
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 2016 ). Because these groups are often small and informal, it is diffi cult to evaluate 
the impact of a single one, but the national networks of people involved in Math 
Circles and Math Teachers’ Circles gives access to resources that can help evaluate 
the impact of such work.   

9.4     Supporting the Involvement of Mathematicians 
in Mathematics Education 

 The problems in  K-12 mathematics education   are thornier and more complex than 
many mathematicians realize (Beckmann  2011 ; Yong  2012 ). Couple the complexity 
of an individual classroom with the complexities of schools, communities, and state 
and national government, and it can seem impossible to make a difference, or to 
imagine that the mathematical aspects of the work really matter. Yet we have seen 
that the mathematical quality of standards, assessments, and curriculum materials 
depends on mathematics experts getting involved in their creation and review in 
appropriate ways. So how do we make it possible for mathematicians to get involved 
in this work, and how can we be sure they are prepared to do it well? First, it is 
important for both the mathematics  community   and the broader mathematics educa-
tion community that mathematicians be involved at varying levels of time and com-
mitment. Even a simple  outreach   program benefi ts not only the participants, but also 
the mathematicians involved. Many mathematicians fi nd they have as much to learn 
as to impart in their interactions with teachers and mathematics educators. For 
example, organizing a  Math Teachers’ Circle   is a way to build trust and goodwill 
between the mathematical community and the teaching community. It is also a way 
for mathematicians to share their love of mathematics and learn more about teach-
ers, teaching, and school systems. Keeping the lines of  communication   open makes 
it possible for mathematicians to get involved in other types of projects at whatever 
level of commitment interests them. 

 As much as there is a role for mathematicians to be involved at varying levels in 
scholarly  work in mathematics education  , there is an equally important role for their 
 colleagues   to support such work, even when they are not involved themselves. 
Unfortunately, many faculty members in departments of mathematical sciences are 
unaware of the complexity of the problems, the need for mathematical experts to be 
involved, and the diffi culty experts may have in fi nding  meaningful   ways to make 
contributions to these problems. Still others are overwhelmed by the complexity and 
are unsure how to contribute. Typical promotion and  tenure         guidelines do not 
address (or inadequately address) the types of scholarly work discussed here. Even 
when such work is recognized as appropriate, adequate methods for evaluating it are 
often lacking. Of course there are exceptions, and departments and universities that 
have found ways to recognize and reward this kind of work do exist. For example, 
University of Arizona College of  Science   ( 1992 ) adopted guidelines for evaluating 
faculty members who play a substantial role in pre-collegiate mathematics and sci-
ence education that include the following  language  :
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  Worthy contributions could include scholarly books that make a signifi cant contribution, 
textbooks that are substantially different from, and better than, previous textbooks (if any) 
on a worthy subject, articles in refereed respected journals that describe and advocate better 
practice or that present research results relating to learning science or mathematics, 
improved methods and instruments for evaluation, computer  software  , movie or  television   
productions that enhance education, and so on. 

 No one person, of course, will make contributions in all of these ways, but any of these 
activities, and many similar ones, should be thought of as legitimate research or creative 
activities. The quality and impact of the work must be seen as the important issues. 

   Such guidelines should be the norm rather than the exception. Given that the 
 culture   in some mathematics departments is more insular than others, college 
administrators who see the value in supporting diverse perspectives and activities 
within departments can help set guidelines that encourage departments to reward 
such work. There are even examples of institutions that have set up administrative 
structures that bridge departments, connecting the small number of faculty across 
different disciplinary departments that work at the intersection of their individual 
disciplines and education. 

 Mathematicians should be concerned about these issues both for altruistic and 
selfi sh reasons. Not only do mathematicians have a responsibility to support the 
mathematical well-being of the people in their communities, the mathematical  com-
munity   itself suffers when people in those broader communities do not understand 
and value mathematics. To put this into perspective, imagine a world where the 
medical experts made sure that the health care system worked well for them, but 
didn’t concern themselves with how well it worked for anybody else. Mathematicians 
like  Klein   and  Kolmogorov   displayed the intellectual and moral leadership needed 
to bring these issues to light, but the hard, painstaking work is done by a community 
of mathematicians, teachers, and mathematics educators working together. This can 
only happen with the concrete support of departments of mathematical sciences 
everywhere.      
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Chapter 10
Finding Synergy Among Research, Teaching, 
and Service: An Example from Mathematics 
Education Research

Megan Wawro

Abstract Being a faculty member in higher education involves the balance and 
integration of various roles and demands. In this chapter I present my own story, as 
a mathematics education researcher in the teaching and learning of undergraduate 
mathematics focusing on linear algebra. Using my experience as an example, I 
describe how synergy among research, teaching, and service can impact career 
goals and institutional needs.

Keywords Research in undergraduate mathematics education • RUME • Linear 
algebra • Research • Teaching and service

10.1  Introduction

I am passionate about understanding how undergraduate students learn and partici-
pate in mathematics. What are the various ways in which they reason about new 
mathematics content? How do they grow as learners from lower division to upper 
division courses? In what ways do they become fluent in the practices that charac-
terize the discipline of mathematics? How do they make sense of and use 
mathematics in other STEM disciplines? Compatible with these interests are related 
explorations regarding university faculty: How do we modify instruction so as to 
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best assist students in learning new content? How can we model what it means to be 
a mathematician? What supports do we need as we transition to more student- 
centered instruction at the university level? How can we assist students in connect-
ing the mathematics content they learn in our mathematics classes with content they 
learn in other STEM courses? Not only have these curiosities driven my research in 
the learning and teaching of undergraduate mathematics, they have also become 
integrated in my teaching and university service.

In this chapter I present my own story, as a mathematics education researcher, as 
an example of how synergy between research, teaching, and service can impact 
career goals and institutional needs. After a brief personal introduction, I begin by 
summarizing my research program in the teaching and learning of linear algebra. 
Next, I describe some of my current responsibilities as a teacher in a mathematics 
department and how they influence and are influenced by my research program. I 
then briefly highlight some of the ways in which this interplay between research and 
teaching has prepared me to influence my department and institution through 
service.

My personal involvement in mathematics education has spanned both secondary 
and university levels. After teaching high school mathematics for 3 years, I earned 
a master’s degree in mathematics and taught university mathematics courses. It was 
then that I became fascinated with investigating how students learn undergraduate 
mathematics and how that research could affect teaching practices at the university 
level. Since earning a Ph.D. in mathematics and science education, I have been a 
faculty member in the Department of Mathematics at Virginia Tech.

Virginia Tech, a research-intensive land-grant state university with over 30,000 
students, provides a productive environment for mathematics education research. 
The very active mathematics education research community has faculty housed in 
either the Department of Mathematics in the College of Science or in the School of 
Education in the College for Liberal Arts and Human Sciences. It also has two 
Ph.D. options: one through the Mathematics Department and one through the 
School of Education’s Faculty of Teaching and Learning. It is in this supportive set-
ting that my own opportunities for rich interplays between teaching, research, and 
service have been fostered.

10.2  Research

My research centers on the learning and teaching of undergraduate mathematics, 
with a specific focus on linear algebra. In general, the research my colleagues and I 
conduct explores the development of mathematical meaning over time for both indi-
vidual students and the classroom community at the undergraduate level. A primary 
assumption we make in our work is that students’ mathematical development is a 
process of individuals actively constructing their own knowledge as they participate 
in and contribute to the mathematical activities in the classroom community of prac-
tice. The theoretical framework upon which these assumptions are based is the 
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Emergent Perspective, which is further described in Sect. 10.2.1. Consequently, 
many of our research publications about student reasoning in linear algebra explore 
how individual students understand specific content (Plaxco and Wawro 2015; 
Wawro 2015), how communities of learners make mathematical progress (Wawro 
2014; Zandieh et al. 2016), or a coordination of the two (Rasmussen et al. 2015). In 
Sect. 10.2.1, I highlight this body of work through two examples of student reason-
ing in linear algebra: a study investigating individual students’ understanding of the 
notions of span and linear independence, and a study investigating students’ math-
ematical progress at both the individual and the collective level.

The aforementioned body of work about student learning in linear algebra 
informs and complements our research in developing instructional materials for 
student-centered, active learning classrooms in linear algebra. As detailed in Wawro 
et al. (2013), my colleagues and I rely on the close integration between theory and 
practice as we engage in the cyclical process of alternating between analyzing stu-
dent reasoning and creating and modifying task sequences that support student rein-
vention of key ideas. One of the main products of this work is instructional materials; 
in Sect. 10.2.2, I highlight our unit on the concepts of span and linear independence 
as an example of this work.

10.2.1  Student Reasoning in Linear Algebra

In Plaxco and Wawro (2015), we characterized students’ conceptions of span and 
linear independence, framed in light of their mathematical activity, to provide 
insight into their understanding. Data came from individual interviews with linear 
algebra students. We organized the wide range of student conceptions of span and 
linear independence into four categories: travel (described in Sect. 10.2.2.1), geo-
metric, vector algebraic, and matrix algebraic. To further illuminate participants’ 
conceptions of span and linear independence, we classified the participants’ engage-
ment into five types of mathematical activity: defining, proving, relating, example 
generating, and problem solving. By coordinating these two categories, we were 
able to produce fine-grained analyses of students’ conceptions and the potential 
value or limitations of such conceptions in certain contexts.

The second example from our research documents the mathematical progress, at 
both the individual and collective levels, of a particular community of learners. A 
challenge in mathematics education research is to coordinate different analyses to 
develop a more comprehensive account of teaching and learning. In Rasmussen 
et al. (2015), we contribute to these efforts by offering four constructs to analyze 
learning: classroom mathematical practices, disciplinary practices, individual par-
ticipation, and individual conceptions. The first two constructs document mathe-
matical activity at the collective level. We describe the mathematical concepts and 
ways of reasoning that come to function as if they are mathematical truths in the 
classroom (classroom mathematics practices). We also describe how the class’s 
mathematical behaviors align with the practices that typify the common activities of 

10 Finding Synergy Among Research, Teaching, and Service: An Example…



138

professional mathematicians, such as defining, symbolizing, and conjecturing 
(disciplinary practices). The second two constructs document mathematical activity 
at the individual level by describing how individual students participate in the 
 classroom mathematics and disciplinary practices (individual participation) and by 
describing individual students’ understanding of the mathematical concepts being 
developed (individual conceptions). These four constructs arise from and align with 
the Emergent Perspective (Cobb and Yackel 1996), a theoretical framework in 
which learning is viewed as “a process of both active individual construction and 
enculturation” (p. 186) that occurs as “students participate in and contribute to the 
practices of the local community” (p. 185). Thus, mathematical development at the 
collective level and the individual level are reciprocally related in that they are inex-
tricably bound together in their respective developments.

In Rasmussen et al. (2015), we illustrated these four constructs for making sense 
of students’ mathematical progress using data from the same undergraduate math-
ematics course in linear algebra as in Plaxco and Wawro (2015). In particular, we 
considered video recordings of whole class discussion, small group work, and indi-
vidual student interviews to document students’ mathematical progress as they 
engaged in a task sequence on span and linear independence. (This task sequence, 
referred to as the “Magic Carpet Ride sequence,” is described in detail in 
Sect. 10.2.2.) First, we documented various classroom mathematical practices that 
emerged as the classroom community reasoned about linear independence and span, 
such as “For a given set of n vectors in ℝm, if m n< , the set must be linearly depen-
dent.” Second, we described analysis of individual mathematical conceptions by 
summarizing results from Plaxco and Wawro (2015), which focused on how indi-
vidual students from this same classroom understood span and linear independence. 
Next, we described individual participation by characterizing students’ roles (such 
as author or relayer) in the production and spread of mathematical ideas at the class-
room level. Finally, we highlighted students’ work on Task 4 of the task sequence as 
an example of the disciplinary practice of “theoremizing” (which consists of activ-
ity related to both conjecturing and proving) in which students generated their own 
conjectures related to linear dependence and justified them.

10.2.2  Instructional Materials in Linear Algebra

Because of the importance of the transitional role that linear algebra plays in stu-
dents’ mathematical development, effective instruction at this juncture is para-
mount. Research has shown that classrooms in which students are central participants 
lead to learning gains (e.g., Mazur 2009; National Research Council 2012), and 
inquiry-oriented instruction has been shown to offer more equitable learning oppor-
tunities than traditional lecture-based approaches in that it diminishes the achieve-
ment gap (Laursen et al. 2014; Tarr et al. 2008). In our Developing Inquiry-Oriented 
Instructional Materials for Linear Algebra project, which is based on and 
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contributes to the research about student thinking, we embrace these recommendations 
to engage students in learning mathematics through inquiry.

In this project we produce curricular materials, known as Inquiry-Oriented 
Linear Algebra (IOLA), that promote a student-centered, inquiry-oriented approach 
to the teaching and learning of introductory linear algebra. This effort is guided by 
the instructional design theory of Realistic Mathematics Education (RME) 
(Freudenthal 1991). A central tenet of RME is that mathematics is first and foremost 
a human activity, as opposed to being a predetermined collection of truths. Two 
RME heuristics—guided reinvention and emergent models—help navigate our cur-
riculum design efforts. The notion of guided reinvention emphasizes the active role 
an instructor plays in utilizing student ideas and justifications to move forward the 
mathematical development of the class. The notion of emergent models emphasizes 
that classroom endeavors should support students in developing models of their 
mathematical activity that can in turn be used as models for subsequent mathemati-
cal activity. These are both facilitated by drawing on task sequences that are based 
on realistic starting points and are designed to support students in making progress 
toward a set of associated mathematical learning goals. As such, students’ activity 
evolves toward the reinvention of formal notions and ways of reasoning about the 
mathematics initially investigated. In IOLA, this framework facilitates a transition 
from students’ current, informal ways of reasoning about key concepts in linear 
algebra towards more formal, mathematically mature ways of reasoning.

At present, three units comprise the IOLA materials1. The tasks within each unit 
were informed by our engagement in a cyclical process of alternating between ana-
lyzing student reasoning and creating and modifying task sequences that support 
student reinvention of key ideas. Each unit focuses on a deep conceptual under-
standing of particular mathematical concepts, as well as how the ideas relate to each 
other. Unit 1, informally referred to as “The Magic Carpet Ride sequence,” supports 
student reinvention of linear independence and span (Wawro et al. 2012). Unit 2, 
informally referred to as “The Italicizing N sequence,” facilitates student explora-
tion of matrices as linear transformations (Andrews-Larson et al. 2016). Unit 3, 
referred to as “The Blue to Black sequence,” supports students’ reinvention of diag-
onalization, eigenvectors, and eigenvalues (Zandieh et al. 2016). The units are inde-
pendent of each other in the sense that an instructor could use one without using 
another; however, if an instructor chose to use all three plus the bridging material on 
systems of equations and row reduction, the majority of topics that one would 
expect to address in an introductory level linear algebra course (in Rn) would be 
explored.

A summary of Unit 1 follows as an example of this body of work. Unit 1 is 
intended to start on the first day of class, prior to any formal instruction, and consists 
of four main tasks. The tasks are grounded in a “realistic” scenario (of vectors relat-
ing to modes of transportation) that allows students to build rich imagery and formal 
definitions, both of which students use to reason throughout the semester. 

1 Interested faculty can gain access to the password-protected IOLA materials at http://iola.math.
vt.edu by requesting an account.
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Throughout, small group work (3–5 students per group) is alternated with whole 
class discussions in which students explain their tentative progress, listen to and 
attempt to make sense of others’ progress, and finally come to justified conclusions 
on the various tasks and related questions that arise from their investigations.

10.2.2.1  Task 1: Investigating Vectors and Their Properties

In Task 1, students are asked to imagine they are young travelers leaving home with 
two modes of transportation at their disposal. They are asked to investigate whether 
it is possible to reach where Old Man Gauss lives, a location 107 miles east and 64 
miles north of their home. One of the modes of transportation is a magic carpet. Its 

movement, when ridden forward for one hour, is denoted by the vector 
1

2








  to indi-

cate motion along a “diagonal” path resulting from displacement of 1 mile east and 
2 miles north of its starting location. The other mode of transportation, a hover-

board, is defined similarly along the vector 
3

1








 . The goals of Task 1 are to (a) have 

students present and discuss multiple solution strategies; (b) have the instructor 
label student work and introduce formal notation for scalar multiplication, linear 
combinations, vector equations, and system of equations; and (c) coordinate geo-
metric and algebraic views of the problem situation and its solution. This underly-
ing metaphor of “travel” explored with vectors in R2 often becomes a grounding 
imagery for students as they learn about linear combination, span, and linear inde-
pendence not just in R2 but in Rn as well.

10.2.2.2  Task 2: Reinventing the Notion of Span

The second task in the instructional sequence asks students to determine if there is 
any location (in the plane) where Old Man Gauss could hide so that they would be 
unable to reach him using the same two modes of transportation from the previous 
task. The goal of Task 2 is to help students develop the notion of span in a two- 
dimensional setting before formalizing the concept with a definition. As students 
work on this task, they begin to conceptualize movement in the plane using linear 

combinations of the vectors 
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  to determine that there is nowhere for 

Gauss to hide. This involves developing a coherent geometric interpretation for a 
linear combination of vectors with all possible sign combinations of scalar coeffi-

cients, as well as an algebraic interpretation of a b
x
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real numbers x and y. Class discussion of this task sets the stage for the instructor to 
label the students’ work with the term “span” and introduce a more formal and gen-
eral definition of span, such as: The span of a set of vectors is all possible linear 

M. Wawro



141

combinations of those vectors, or in other words, all places you could reach with 
those vectors. Furthermore, any vector v that can be written as v v v v= + +…+c c cp p1 1 2 2  
for scalars c1, … cp is in the span of {v1, v2, …, vp}.

After the class experience with span has been aligned with the formal notion of 
span, the students are positioned to engage in problems and theorems related to span 
not only in R2 but also, with the guidance of the instructor, in Rn. Student feedback 
regarding this introduction to the concept of span is quite positive. For instance, on 
a written portfolio assignment in which students were asked to explain three encoun-
ters in linear algebra (either in class or in homework with problems, examples, 
proofs, etc.) that helped document their progress in understanding linear algebra, 
one student wrote:

I would have to say that the problem for this class that has made the most impact on me was 
the very first problem that we did. The reason why I think it had the most impact was 
because of how the problem set us up to understand the underlying principles that the class 
would be working with in the coming weeks. By thinking about what points the two vectors 
could and could not reach formed the basis for understanding the span of a set of vectors, 
which in terms of the carpet ride problem would simply be the set of all points that the vec-
tors could reach.

10.2.2.3  Task 3: Reinventing Linear Dependence and Independence

In this task, students are asked to determine if, using three given vectors v1, v2 and v3 
that represent modes of transportation in a three-dimensional world, they can take a 
journey that starts and ends at home. They are also given the restriction that the 
modes of transportation could only be used once for a fixed amount of time (repre-
sented by the scalars c1, c2, and c3). The purpose of the task is to provide an oppor-
tunity for students to develop geometric imagery for linear dependence and linear 
independence that can be leveraged in the development of the formal definitions of 
these concepts. Initial progress on this task is made when the class establishes that 
a trip that begins and ends at home could be represented by a homogeneous vector 
equation, which enables connections to previous algebraic activity. Students often 
encounter obstacles with the notions of linear independence and dependence 
because of the difficulty in interpreting the formal definitions and using formal sys-
tems (Dorier 1998). In the Magic Carpet Ride sequence, students’ work provides 
them with rich geometric and algebraic imagery for linear independence and exis-
tence of solutions that is strongly connected to the formal definitions.

10.2.2.4  Task 4: Generating Examples and Generalizing

The handout for Task 4 asks students to generate sets of vectors that satisfy three 
varying constraints: number of vectors (2, 3, or 4), vector space (R2 or R3), and lin-
early independent or dependent. The main goal of Task 4 is to guide students to 
develop generalizations and supporting justifications regarding linear independence 
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and dependence for any given set of vectors, shifting away from a reliance on the 
Magic Carpet Ride scenario. Although worded in terms of R2 and R3, the students’ 
reasoning behind the strategies should inform the development of generalizations 
that extend to any Rn as they work on and discuss Task 4. A couple of examples of 
conjectures frequently created and justified by students are: “If the zero vector is 
included in a set of vectors, then the set is linearly dependent” and “If a set of 2 (or 
3) vectors in R2 (or 3 )  spans R2 (or 3 ) , then the set is linearly independent.” A 
secondary goal is to develop an intellectual need for efficient computational strate-
gies and sophisticated solution techniques; this need arises when students want an 
efficient way to check the linear independence of one of their generated example 
sets, such as three vectors in R3.

In summary, the “Magic Carpet Ride” sequence starts with students’ limited 
experience with vectors in R2 and R3 and, through the metaphor of travel, fosters 
deep student understanding of the concepts of linear combination, span, and linear 
independence. In addition to students learning about this concepts, the design of the 
curriculum—around the notion of inquiry—students are exposed to the mindset that 
mathematics is a human activity in which they can have an active role in knowledge 
creation. For instance, one student wrote in his portfolio assignment (mentioned in 
Sect. 10.2.2.2) that after working on Unit 1 Task 4:

It was at this moment that I realized that … there were generalizations that could apply to 
this table of sets and linearly independencies and that we, mere students, were practically 
coming up with theories. It felt just like being a mathematician except with really basic 
concepts!

10.3  Teaching

For me, teaching and research are interconnected because each informs the other. 
This reciprocal relationship motivates me to investigate how students learn particu-
lar ideas in mathematics, as well as to seek out and develop tools and lessons that 
meet my pragmatic needs as a teacher. Teaching is never a fully developed static 
state; it is under constant alteration, being affected by research, by myself and by 
others, on how people learn. I ground my teaching in the tenet that mathematics is a 
human activity and, as such, believe that mathematics is more than a body of facts 
and skills to acquire. Mathematics also involves participation in the mathematical 
practices that typify the discipline. In line with my desire to promote students’ view 
of themselves as active learners and participants in the practice of mathematics, I 
aim to assist students in developing from their current or naïve ways of reasoning 
towards more formal mathematical reasoning via engaging in mathematical prac-
tices in the classroom.

My role as a teacher is to start where students are and help guide them, through 
engaging in mathematical practices, towards the reinvention of mathematical ideas. 
This process requires two types of inquiry; as the teacher, I learn about where stu-
dents are by inquiring into their thinking, as the students simultaneously inquire into 
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the mathematics (Rasmussen and Kwon 2007). In the classroom, students often 
work on tasks in small groups and then present their ideas, defend their solutions, 
and ask others about their thinking or strategies during whole class discussion. As 
the teacher, I help move the development of the mathematical content forward by 
bringing out key ideas and identifying the ways in which the ideas brought forth by 
students connect to the language, notation, and conventions of the broader mathe-
matical community. In this way, the mathematical content is also moved forward. 
By looking for opportunities for students to reinvent significant mathematical ideas 
through their own creative ways of thinking, I aim to promote my students’ views of 
themselves as doers of mathematics. In every new situation, the interrelationship of 
research and practice changes me in that as I realize more about how students learn 
mathematics, I am motivated to adjust and improve my teaching practice.

At my current institution, my teaching spans three course types: linear algebra 
(both an introductory, sophomore-level first course and a proof-based second 
course) for undergraduate majors from across the STEM disciplines, mathematics 
content for pre-service secondary mathematics teachers, and mathematics educa-
tion research for graduate students. With respect to the first category, my investiga-
tions into student reasoning in linear algebra have allowed me to know not only 
when and how students often struggle but also that they are capable of thinking 
creatively and effectively in solving problems. Locally, our research effort in cur-
riculum design resulted in a recent collaboration with a colleague in my department. 
My colleague taught a morning section and I taught an afternoon section of the 
department’s introductory course in linear algebra. Each class during the semester, 
we attended and videotaped each other’s class, as well as debriefed twice a day 
(immediately after each of us had taught). During the debriefs we would discuss 
what we noticed about student thinking that day, our impressions of how the day 
went with respect to our learning goals, and our plans for subsequent lessons based 
on the students’ mathematical progress. That intense collaboration, which provided 
a space for us to jointly reflect on and invest in not only our own teaching but also 
each other’s, has had lasting effects on us as instructors and as colleagues.

With respect to mathematics content for pre-service secondary mathematics 
teachers, my knowledge of the research corpus has a positive impact on course con-
tent. The course goals include developing a deeper understanding of high school 
mathematics content, which is facilitated by: (a) explicitly drawing connections 
between mathematics they learn at university and that which they will teach at the 
high school level; and (b) learning what the research says about student learning in 
those content areas. Regarding (a), for instance, we use Unit 2 (Matrices as 
Transformations) from the IOLA materials (Andrews-Larson et al. 2016) as a start-
ing point for exploring the ideas of one-to-one, onto, composition, and inverses of 
linear transformations—concepts that the students will teach as high school teach-
ers for real-valued functions—and connecting that to research on student under-
standing of function (Oehrtman et al. 2008). The pairing of these two activities 
prompts preservice teachers to ponder their own understanding of linear transfor-
mations in light of Oehrtman et al.’s explanation of action and process views of 
function, as well as their role as a teacher in promoting their future students’ deep 
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understanding of functions. Regarding (b), I find great value in having preservice 
teachers read and digest research on student thinking. Within a given course, for 
instance, they read research on the teaching and learning of graph theory (McDuffie 
2001), combinatorics (Lockwood 2014), and probability (Shaughnessy 2003).

10.4  Service

Finally, my role as a teacher is not independent from my responsibilities as a math-
ematics department faculty member. Furthermore, the aforementioned synergy 
between research and teaching allows me to have an impact on my department and 
institution through service that relies on that interplay. For instance, I have had the 
opportunity to actively participate in shaping undergraduate and graduate curricula: 
contributing substantially in the development of both the introductory and proof- 
based linear algebra courses; leading the development of a doctoral course in 
research on undergraduate mathematics education (RUME). In addition, I view 
mentoring graduate and undergraduate students as an integral aspect of my role as a 
faculty member. I enjoy seeing graduate students from both PhD options find the 
research area they want to be involved in so that they can contribute to and make a 
difference in our field’s collective body of knowledge.

10.5  Reflection

In this chapter I presented my own story, as a mathematics education researcher in 
a mathematics department, as a case study of integration among research, teaching, 
and service. After reflecting on my experiences, I believe that finding balance in 
these academic responsibilities has positively impacted my own professional goals 
and my local institution. I am fortunate to be able to grow as a faculty member in a 
department and university that value the information discovered through research in 
the teaching and learning of undergraduate mathematics. I am inspired by others 
who continue to seek out opportunities in which their research expertise and pas-
sions could have an impact on the growth of their local department, college, and 
university. I look forward with hopeful anticipation towards the future and to seeing 
all that can be accomplished in our field through continued balance and integration 
of the various aspects of our research, teaching, and service.
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    Chapter 11   
 Communicating Mathematics Through 
Writing and Speaking Assignments                     

     Suzanne     Sumner    

    Abstract     This chapter contains examples of writing and speaking assignments in 
mathematics courses at all levels, from a fi rst-year seminar to a graduate course for 
teachers of mathematics. Courses in chaos theory, differential equations, history of 
mathematics, and mathematical modeling are illustrated as case studies for imple-
menting writing and speaking assignments. These assignments are described, along 
with grading guides and refl ections on the impact of these forms of assessment.  

  Keywords     Communication in mathematics   •   First-year seminar   •   Speaking in 
mathematics   •   Writing in mathematics  

11.1          Introduction   

 The University of Mary Washington (UMW) is a small  public   liberal arts institution 
of 4000 undergraduate and 500 graduate students. UMW is committed to develop-
ing better researchers, writers, and speakers, starting with our  fi rst-year seminars   
and continuing throughout the students’ college experience. Through writing and 
speaking assignments in mathematics classes, my  colleagues   and I develop the 
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students’ ability to research information, assess its quality, and communicate that 
information. Communicating quantitative ideas forces students to articulate their 
mathematical knowledge and compels them to fi nd the meaning in the mathematics 
and to demonstrate their  understanding   (Barrass  2006 ; Montgomery  2003 ; Walters 
and Walters  2004 ). 

 Written assignments in mathematics classes can serve two purposes:  writing to 
learn   and learning to write (i.e.,  writing in the discipline  ). As Connolly and Vilardi 
( 1989 , p. 4) stated, “‘ Writing to learn  ’ in science or mathematics classes is most basi-
cally about developing students’ conceptual  understanding      of these subjects by 
developing their capacity to use the languages of these fi elds fl uently,” and they 
added, “The writing-to-learn movement is fundamentally about using words to 
acquire concepts” ( 1989 , p. 5). If we can teach our students how to become better 
writers (and speakers) in addition to teaching them mathematics, so much the better. 

 The same dual purposes hold for speaking assignments in mathematics classes: 
speaking to learn and learning to speak. Smith ( 1997 , p. 49) wrote, “The use of 
speaking assignments across the curriculum beginning in the fi rst year of college not 
only develops the ability to speak coherently and persuasively, but also helps students 
learn course content.” This explanation resonates with my own experience teaching 
the last 30 years: “we learn by doing…We understand concepts better and retain 
them longer when we express these concepts in our own words” (Smith  1997 , p. 49). 

 My teaching builds on the two pillars of written and oral  communication  , along 
with a third pillar: interdisciplinary applications. I enliven the mathematics by con-
necting it to applications in art, biology, ecology, education, environmental science, 
geology, history, and physics. I want my students to link their interests with the 
mathematics I teach, knowing their engagement is the key to their learning. 

 Overall, my students appreciate having multiple forms of assessment, especially 
assignments that demonstrate their creativity. I can tell if students really understand 
the mathematics when articulating it in writing or speaking, much better than if they 
memorize rote techniques for test problems. My courses are structured so that 25 % 
of the grade originates from writing and speaking assignments and 75 % of the 
grade originates from traditional quizzes, tests, and exams. This mixture allows 
students who are not good test-takers to demonstrate their knowledge through 
coursework that plays to their strengths (Weimer  2002 ). Conversely, for the students 
who are weak in their  communication skills  , the writing and speaking assignments 
require them to strengthen these areas through continued practice (Bean  1996 ).  

11.2       First-Year Seminars  : The Mathematics of Chaos 

 UMW requires all incoming fi rst-year students to take a First-Year Seminar, with these 
specifi c  learning outcomes  : to utilize research techniques for retrieving and synthesiz-
ing information and to communicate their results via writing and speaking. To achieve 
these  goals  , the fi rst-year seminars have an enrollment cap of 15 students, designed to 
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alleviate the workload associated with grading numerous writing and speaking assign-
ments. The small class size is one of the enticements to teach the course. 

 Another enticement: UMW faculty members have great freedom in the seminar 
topics offered; we can explore compelling topics we might not normally teach. Each 
fall the mathematics department offers three or four sections from the following sem-
inars: The Art of Mathematics; Cryptology; Game Theory; Infographics; Numbers 
Rule Your World; Pirates, Liars, and Pigeons; and The Mathematics of Chaos. 

 My fi rst-year seminar, The Mathematics of Chaos, includes the butterfl y effect, 
iterative processes, fractal geometry, chaotic dynamics, and the mathematical defi -
nition of chaos. This content has remained fairly constant over time (since fi rst cre-
ated by my  colleague   Jeffrey Edmunds), although new research in  chaos theory   is 
added as appropriate. Students begin by reading popular articles from primary 
sources where the mathematics is not too technical, and important ideas are 
explained in an intuitive manner (May  1976 ; Smale  1998 ). By the end of the semes-
ter they are reading more technical articles (Costantino et al.  1997 ; Li and Yorke 
 1975 ; Vellekoop and Berglund  1994 ). 

 Over the course of the semester, students complete four short writing  assign-
ments   to investigate different problems using  A First Course in Chaotic Dynamical 
Systems    Software   :  Labs 1 - 6™ . Then the students explain their conclusions about 
whether the dynamics lead to patterns or chaos and about what patterns are hidden 
within chaos, while defi ning the necessary mathematical terminology. Through 
these papers, the students have many opportunities to improve their mathematical 
 understanding   and their writing mechanics. I assess the papers on the completeness 
of the response, along with the correctness of the mathematics and the quality of the 
writing (please see Appendix  A.1  for more details). 

 For another assignment, students create their own fractal design using matrices 
and the  Fractal Attraction™   software      and present their design in class 
(Appendix  A.2 ). This project allows the students’ creativity to shine. Examples of 
students’ fractal creations are found in Fig.  11.1 .

   The seminar culminates with a research project consisting of a paper and a  pre-
sentation   (Appendix  A.3 ). With my approval, students choose a topic related to 
 chaos theory   and submit an annotated bibliography that performs our library’s 

  Fig. 11.1    “UMW Eagle,” David Peworchik and “UMW Runner,” Holden Vanderveer, The 
Mathematics of Chaos       
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 recommended CRAAP Test to evaluate their sources’ Currency, Relevance, 
Authority, Accuracy, and Purpose (Blakeslee  2004 ). After my comments on their 
sources and corrections on their writing, students submit a draft of their project 
paper for more feedback. (To prevent students from interpreting the word “draft” 
too freely, I tell them they are submitting their fi nal paper, and after receiving my 
feedback, they can submit a revision.)   

11.3      Writing and Mathematics:  History of Mathematics   

 UMW’s general education curriculum requires that all students take at least four 
Writing Intensive (WI) courses, because writing enhances learning across all disci-
plines and instructors across disciplines share a collective responsibility to help 
students become skilled writers. A course that is WI must require multiple writing 
 assignments   with frequent instructor feedback. 

 Some sections of introduction to  statistics  ,  probability   and statistical inference, 
 abstract algebra     , and directed study have been taught as WI. History of Mathematics 
is the only UMW mathematics course designated WI, regardless of instructor. This 
sophomore-level course runs every semester at one or two sections. I focus this 
course on great mathematicians’ lives and important historical problems. 

 For example, one assignment in History of Mathematics is to write a biographi-
cal paper on a mathematician from an under-represented group and to deliver an 
in-class poster  presentation   (Appendix  B.1 ). Students describe the mathematician’s 
life story and accomplishments. Figure  11.2  shows an example of a student’s mixed 
media poster featuring the mathematician Omar Khayyam.

   A  National Science Foundation (NSF)   grant reviewer once attended my class on 
poster  presentation   day. The grant reviewer commented that the students really took 
ownership of “their” mathematicians and made their stories their own. 

 The majority of the writing in History of Mathematics occurs in daily journals 
where the students write a paragraph about what they fi nd interesting in that day’s 
reading (Burton  2011 ). Each class begins with a discussion of the journals, forming 
a natural segue into that day’s material and using the reading as a fi rst exposure to 
the course material. To hold the students accountable for the reading, I ask each 
student, each class, to discuss their favorite part of the reading. I write encouraging 
and specifi c comments in their journals so they know I really do read their entries. I 
also use these journals to correct writing mistakes without a grade deduction, in the 
hope students will subsequently avoid these mistakes on their formal writing  assign-
ments   (Appendix  B.2 ). One student remarked that the journals “allowed me to fi nd 
something interesting in each chapter and help evolve my writing style…They were 
helpful with…correcting grammar and style.” Another student wrote, “I liked the 
comments [on the journals] because it made it seem more like a conversation rather 
than just a grade.” 

 In a semester-long research project, students reenact Galileo’s measurement of 
Earth’s gravity and Eratosthenes’ measurement of Earth’s radius to ultimately mea-
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sure the Earth’s density (Vacher  2012 ). Students, in groups of four, design and con-
duct the necessary experiments and then individually write a laboratory  report   on 
the results (Appendix  B.3 ). Many students are nervous about writing a scientifi c 
report, claiming they are not familiar with writing in that format. However, they 
soon discover that scientifi c writing is not that mysterious; they are merely to 
explain the experiments and the experimental outcomes. Students are instructed to 
imagine they are writing this  report   to guide a fellow UMW student to perform the 
same experiments. 

 For the most part, students’ grades on the Earth Density research project are 
higher than or at the same level as their overall course grades. In fact,  data   collected 
since Fall 2002 when I fi rst initiated this project shows that 86.5 % of 689 students 
performed at a higher level or the same level as their overall course grade. 

 I can offer several likely reasons for students’ improved performance on their 
research projects. First, this assignment is spread throughout the entire semester, 
starting with group online discussions. This format prevents a last minute rush job, 
and shows students the beauty of taking a large problem and breaking it up into 
manageable parts. (My hope is that they carry this idea to their other courses and 
assignments. One student agreed, “Everybody knows that you want to start your 
research as early as possible, but this process makes it happen. Our experiment was 
unsuccessful but the paper was a success.”) Second, for students who feel stronger 
in their writing than in science, the  report   gives them an opportunity to shine. Third, 

  Fig. 11.2    “Omar Khayyam,” Kellie Hurley,  History of Mathematics         
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the online discussions and the experiments are performed in groups. In my experi-
ence, working with peers is a powerful motivator. Students appear to be more con-
scientious on work they know their peers will see, and they work harder if their work 
affects their peers' grades, compared to when they think I am the only one seeing 
their work. Last, I like to think that the students fi nd this assignment fun and out of 
the ordinary–we actually spend a class session outside taking Global Positioning 
System (GPS) readings to measure the Earth's radius and dropping balls out of win-
dows to measure the Earth's gravitational acceleration–a novelty among mathemat-
ics classes. Students have made the following comments on anonymous surveys:

  It was fun to include a topic dealing with  astronomy   and the physical traits of the Earth, as 
those have always been interests of mine. 

 The project itself was helpful for visualizing things we learned in class. It was also nice 
to break up the monotony of a math class. 

 We even replicated the famous ancient experiment of Eratosthenes measuring the 
Earth’s circumference (well, slightly tweaked since Eratosthenes did not use GPS). 

   Students in my History of Mathematics class come from every conceivable major 
and have widely different mathematics backgrounds. This course counts as a major 
and minor elective, so mathematics and other science students take the class. The 
dual general education designations as WI and Human Experience and Society (for 
courses exploring the forces shaping human activity, relationships, social structures, 
and intellectual systems) attract the mathematics and science students who are hop-
ing to fi nd an interesting course in a topic they enjoy. And the additional designation 
of Quantitative  Reasoning   entices the non-science students wanting to fi nd a friendly 
mathematics course.   

11.4      Speaking and Mathematics: Introduction 
to  Mathematical Modeling   

 UMW’s general education curriculum requires that all students take at least two 
Speaking Intensive (SI) courses, for active participation in their learning, for 
increased  motivation     , and for better  understanding   of course material. For the SI 
designation, a course must provide multiple opportunities for speaking assignments 
and instructor feedback. 

 Specifi c sections of fi nite mathematics with applications ,  statistical methods, 
 number theory  , discrete  mathematics  , and numerical analysis are taught as SI .  Some 
professors use whole class discussions and small group discussions as ways to sat-
isfy the speaking requirement, in addition to, or as alternatives to, traditional class 
 presentations  . 

 My Introduction to  Mathematical Modeling   ,  a fi rst-year course, is SI. This class 
originated through an  NSF   grant awarded to our  colleague  , Marie Sheckels, to 
revise our curricula to improve how we prepare  pre-service   teachers in mathematics 
and science, so that they in turn are better mathematics and science teachers for their 
own students. We fi rst offered the course in 1998, and we offer several sections each 
semester. 
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  Colleagues   Patricia Dean, Debra Hydorn, and I designed this course with the 
environment as a focus. Every example and  data   set used in this course describes 
some environmental issue, such as overpopulation, endangered species, pollution, 
limited resources, natural disasters, and epidemiology. The mathematical topics 
used to understand these problems are linear regression, curve fi tting, and difference 
equations (Gordon et al.  2004 ). According to course  evaluations   and informal feed-
back, students really appreciate such a narrowly focused mathematics course. One 
semester after the fi nal exam, a history major shook my hand to thank me for pre-
senting the mathematics within a common theme. Apparently every other mathe-
matics class he had ever taken felt like a sequence of disparate topics, and this class 
had been the fi rst time mathematics had made sense to him. 

 Speaking opportunities in Introduction to  Mathematical Modeling   take various 
forms: group work in class, two group projects with papers and poster  presentations  , 
and a formal presentation; group sizes are three to four students. The fi rst project 
involves fi nding the best-fi t model (linear, exponential, power, or logarithmic) to a 
data set from Pfaff’s Sustainability Math website (Pfaff  2014 ). I usually select data 
sets about carbon emissions, global temperature, grain production, oil consumption, 
ozone depletion, and wind power production. Groups use logarithmic transforma-
tions and linear regression to fi nd their best-fi t curves, with  Excel ™    and graphing 
calculators. Then they must decide which of the four models is the best-fi t overall to 
the data and justify their selection by assessing each model’s goodness of fi t 
(Appendix  C.1 ). Figure  11.3  shows an example of a group poster for a tree ring  data   
set used in Patricia Dean’s class.

   For the second project, I provide the student groups with various environmental 
scenarios and ask them to create difference equations to describe these scenarios. 
The environmental topics generally are pollution, recycling, overpopulation, and 
invasive species. In one scenario, the group imagines that it is a wildlife organiza-
tion studying goose overpopulation. For a summary of that assignment, see 
Appendix  C.2 . Figure  11.4  shows an example of a group poster for a goose over-
population model.

   For these projects, the groups work together to analyze the mathematical models 
and to create posters summarizing the environmental issues and their mathematical 
work. Then each student presents the group’s poster individually in the poster ses-
sion. The poster sessions follow the conference poster session model, i.e., the class-
room is fi lled with posters, and multiple  presentations   occur simultaneously. The 
atmosphere in the room buzzes with activity, a departure from the usual sedate 
mathematics classroom. Grading all these presentations occurring at the same time 
is a challenge as well. I enlist friendly faculty and former students to grade the 
poster  presentations   (after training them on the grading rubric). My student graders 
love that I trust them with this responsibility, and I make sure to mention their help 
in letters of recommendation. 

 The third formal speaking assignment is an individual  presentation   to the entire 
class about an infectious disease, a topic of their choice. The student is given a col-
lection of images about the disease to use in their presentation; at least one image is 
some type of mathematical graph that they must explain. Other images are micro-
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scopic pictures of the disease, geographical maps of affected regions,  public   health 
posters, etc. The student creates a summary handout and posts it on the class’s 
online discussion board (Appendix  C.3 ). After the  presentations  , the class has a bet-
ter  understanding   of the biology of infectious diseases, which makes it easier for us 
to model the spread of disease with a Susceptible-Infective-Removed (SIR) differ-
ence equation model. 

 In Spring 2016 the following comments were made on anonymous surveys about 
the speaking assignments:

  I feel like the  presentations   were  super  helpful for gaining speaking skills. I would want 
 more  of them! 

 Projects were helpful to understand the importance of environmental issues and how the 
issues can be mathematically expressed. 

 I think group interactions teach us a lot of the material by working in groups. 

   When we fi rst created the Introduction to  Mathematical Modeling   course at 
UMW, we collected  data   in two semesters for two classes through pre- and post- 
course surveys to measure the impact of the course, through its material and peda-
gogy, on student perception of their confi dence and skill in mathematics (Dean et al. 
 1999 ). Both classes showed signifi cant improvement ( p -value < 0.05) in students’ 

  Fig. 11.3    Tree ring  data   analysis poster, Patricia Dean’s Introduction to Mathematical Modeling 
students       
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confi dence in their mathematical abilities. The post-course survey contained two 
additional questions assessing students’ perceptions of greater insight into the inte-
gration of mathematics and science and of better  understanding   of environmental 
issues. On these questions, the combined classes averaged 4.25 on the former and 
4.00 on the latter (where the scale was 5 = strongly agree, 4 = agree, 3 = neutral, 
2 = disagree to 1 = strongly disagree).   

11.5     At the Upper-Level: Ordinary  Differential Equations      

 Due to the success I have had using writing and speaking assignments in  History of 
Mathematics   and Introduction to  Mathematical Modeling  , I now assign writing or 
speaking assignments in all of my mathematics classes. 

 In my junior-level Ordinary Differential Equations course, I assign a paper about 
problems famously solved by differential equations (e.g. the van Meegeren art forg-
eries or atomic waste disposal) for students to summarize (Braun  1993 ). The assign-
ment comes early in the semester before the students have learned the mathematics 
for solving the differential equations. Instead of assessing students’  understanding   
of particular mathematics topics, I urge the class to  concentrate      on the real  world   

  Fig. 11.4    Goose overpopulation poster, Patricia Dean’s Introduction to Mathematical Modeling 
students       
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problem to be solved and how to state that problem in terms of differential equa-
tions, being careful to explain the variables and parameters involved and why the 
equations describe that problem. Then I ask them to omit the mathematics involved 
in solving the problem and rather explain what the solution tells them about the real 
world application. My intention is to have the students recognize the rich variety of 
problems that differential equations can describe, along with gaining an apprecia-
tion for the modeling process and giving them a preview of the mathematics to 
come. Not all assignments need to be in the format of students explaining mathe-
matics that is new to them. 

 Other writing in Ordinary Differential Equations comes by means of  computer 
laboratory   assignments, using  Mathematica™   software      to investigate modeling 
applications such as  Newton's   Law of Cooling, population growth, the AIDS epi-
demic, forced harmonic oscillators, and predator-prey interactions. I chose these 
topics in consultation with my  colleagues   in biology, chemistry, and physics for 
strengthening areas where our students need more reinforcement. In these assign-
ments, students fi t different models to  data   sets, study the effects of changing  param-
eters     , and then explain their results in short two-page essays.  

11.6     At the Graduate Level:  History of Mathematics   
for Teachers 

 At the request of UMW’s College of Education, I developed a History of Mathematics 
for Teachers graduate-level course for a master’s degree in mathematics education 
cohort of K-12 mathematics teachers. This course was the last course before the 
 capstone course   where the graduate students completed their master’s projects. To 
prepare the graduate students for their upcoming projects, this course emphasized 
writing, speaking, and  research skills  , much as the  fi rst-year seminar   does, but from 
the opposite end of their college experience. I have also modifi ed this course to act 
as an independent study for  pre-service   K-12 teachers. 

 Students write a (graded) daily journal about a topic from the reading that they 
could incorporate into their teaching. Another assignment is a “Number Biography,” 
meaning students research a number or class of numbers and answer the following 
questions: What is this number? When and where was this number born (the times, 
places, and cultures involved)? What is its life story (the history of its develop-
ment)? Who were the mathematicians involved? Why is this number special? In 
addition to a summary paper, the students prepare a poster or bulletin board for use 
in their classroom. 

 The fi nal research project for History of Mathematics for Teachers allows the 
students to investigate a research question from either the history of mathematics or 
the pedagogy of mathematics, pursuing it in more detail, using primary sources. 
Students can pick from a list of topics or follow their own interests. The requirements 
to write an annotated bibliography and submit an initial draft provide opportunities 

S. Sumner



157

for instructor feedback. At the end of the semester, students write a paper and make 
a  presentation   to the class. Throughout the years students have researched topics 
such as: how the stereotype that mathematicians do their best work before 30 argues 
against women  doing mathematics   and how child  prodigies   support that stereotype; 
the impact of Hitler and Nazism on mathematics before, during, and after World War 
II; mathematics ability and  gender  ; and the Four-Color Conjecture and Kepler’s 
Conjecture and whether computer-aided proofs can be considered real proofs.  

11.7     Lessons Learned 

 Over the years I struggled with spending hours reading and commenting on stu-
dents’ writing, only to have my comments ignored and the same mistakes reappear 
on later assignments. I have arrived at a partial solution to that problem. In the 
classes where students have done research for a written  report   to present in class, I 
tell students that they will have an essay question on the next test where they will 
discuss another student's topic (of their choosing). So for  History of Mathematics  , 
students write an essay on the life and achievements of another student’s chosen 
mathematician from an  underrepresented group  . For Introduction to  Mathematical 
Modeling  , the essay is to explain one of the other environmental issues and how and 
why that group chose their best-fi tting model. To help each other with their respec-
tive essays, I ask the class to post their revised papers to the class discussion board. 

 The advantages to this approach are twofold: students are motivated to read my 
comments and make my suggested revisions, and they pay better attention to each 
other’s  presentations  , knowing they are responsible for the material later. Similarly, 
for the disease presentation in Introduction to Mathematical Modeling, students 
post their summary handouts to the class discussion board. The fi nal exam contains 
an essay question asking students to compare and contrast their disease topic with 
another disease presented in class. This question often leads to interesting essays 
that showcase students’ critical analysis skills. The fact that students tend to write 
very good essays on tests when they know the topic ahead of time is a reward for 
both student and instructor.  

11.8     Refl ections on Departmental Impact 

 Because  First-Year Seminars  , WI, and SI courses are requirements in our general 
education curriculum, my work in these areas has been well received and supported 
by my  colleagues   campus-wide since this work addresses learning outcomes the 
university values. UMW provides excellent resources for both students and faculty 
through our library, Speaking Center and Writing Center. 

 Within the mathematics department, however, because the majority of my work 
with  First-Year Seminars   and WI and SI courses occurs for lower-level courses, it 
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has been pretty much overlooked by departmental colleagues. The fi rst WI and SI 
mathematics courses were taught by four women in the department, either for the 
lower-level non-major courses or for major elective courses. We had a great deal of 
freedom and fl exibility in designing the content and pedagogy of these courses; 
these courses did not involve the others in the department who mostly taught calcu-
lus or upper-level courses. In recent years, to spread out the lower-level teaching 
load, each department member, each semester, is now assigned at least one course 
at the lower level, raising interest in different teaching approaches. 

 Department members also noticed that WI and SI courses and sections had 
healthy enrollment numbers compared to those without them. In addition, we 
wanted to make it easier for our mathematics and science majors to meet their gen-
eral education requirements. Now we have WI and SI courses throughout our math-
ematics  curriculum  , albeit on an ad hoc basis. 

 If we seek to be more intentional in providing WI and SI courses in the mathe-
matics major, the department must consider the following issues carefully. We 
should not violate academic freedom by forcing an unwilling department member 
to teach a course in this manner. We also must weigh the risk that a WI or SI desig-
nation on a required major course might lower enrollments on major elective 
courses, with or without one of these designations. UMW’s mathematics depart-
ment currently offers a wide variety of electives in the major, a fl exibility that should 
be kept. 

 Also, some  department chairs   value a professor’s willingness to teach these WI 
and SI courses (in merit pay raises), whereas others believe the reduced class sizes 
are reward enough. A typical lower-level mathematics class at UMW ranges from 
25 to 35 students, and we are fortunate our upper-level mathematics classes are 
capped at 15. Admittedly, our class sizes are enviably small. However, when our 
lower-level SI and WI classes were capped at 15 students, that size reduction really 
was suffi cient reward for the added workload of grading writing and speaking 
assignments. But it feels less like parity to teach a WI section of  History of 
Mathematics   at 20 students rather than a normal section of Calculus I at 25. 

 Furthermore, we have seen an increase in the enrollment limits for WI and SI 
courses. When WI and SI designations were fi rst approved at UMW, faculty mem-
bers were assured that SI and WI class sizes would not exceed 15. Now the SI and 
WI class sizes are capped at 20, a 33 % increase in students. Aside from the obvious 
increase in grading for the written and oral assignments, it is impossible to schedule 
20 individual student  presentations   in one class period for a 75-min class, let alone 
a 50-minute class. It may seem petty to grumble about class sizes this small, given 
the large class sizes faculty at other institutions face. But at UMW we have a teach-
ing load of 12 credit hours (typically four 3-credit courses) per semester. Each 
increase in  workload   is another lost opportunity to pursue our research interests. 
And therein lies the rub. 

 The reality is that research accomplishments are generally more valued than 
teaching accomplishments, even at a self-proclaimed teaching institution such as 
UMW. My former chair, Debra Hydorn, decided to change the  culture   of our depart-
ment to interweave both pedagogy and research, by expanding our emphasis on 

S. Sumner



159

undergraduate research. With an increased number of students completing honors 
theses, the result was more students needing assistance with their writing and  pre-
sentation   skills (D. Hydorn, personal communication, February 20, 2016).  

11.9     Refl ections on Student Impact 

 Still, my students are the most important audience of these pedagogical efforts. 
Mathematics major Aaron Thomas (personal communication, March 9, 2016) noted 
the courses discussed in this chapter have given him the opportunity to research math-
ematical topics and communicate quantitative information with models and in words, 
skills not taught in high school but would be advantageous in his future career as an 
actuary. Another student, Kellie Hurley (personal communication, May 4, 2016), 
remarked that these courses have helped her learn about different  presentation   tech-
niques from watching the other students’ presentations. Mathematics graduate 
Kimberly Hildebrand (personal communication, May 7, 2016) stated, “Taking WI 
and SI classes helped me to better communicate technical work, both in college and 
in my career [in government]. Being able to formally explain problems, whether tech-
nical in nature or not, is something I do on a daily basis,” adding, “I would not be as 
effective of a communicator in my career whether it be over email, in a paper, or at a 
 presentation   or meeting, without having the experiences of taking WI and SI classes.” 

 For these reasons, I doubt I could return to teaching mathematics in the traditional, 
100 % test and examination, format. I learn so much more about my students and 
their abilities through their  communication   assignments, and their research assign-
ments never fail to teach me something new–what more could a professor want?     
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ers for their insightful comments on this chapter, as well as my students for being a continual 
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     Appendix A: Grading Guides for The Mathematics 
of Chaos Seminar 

     Short Writing  Assignments   

 These four papers have a length of two to three pages and are worth 10 points each 
(10 % of the course grade each). For mistakes in mathematics and grammar, my 
fi rst-year student grading deductions are: 1 to 4 mistakes = 0.5 point, 5 to 8 mis-
takes = 1 point, 9 to 12 mistakes = 1.5 points, 13 to 16 mistakes = 2  points  , etc.  
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     Fractal Design  Presentation   

 This fi ve-minute presentation is graded on a √ + = 1 point, √ = 0.5 point, √– = 0 
points scale for a total of 5 points (5 % of the course grade) with the following cri-
teria (modifi ed from a UMW Speaking Center rubric):

    1.    Explanation of how the fractal design is self-similar   
   2.    Description of the fractal design (number of transformations used, their size, 

placement, rotation, shearing, color)   
   3.    Material is presented clearly and use of visual aids is effective   
   4.    Presenter is well prepared and organized and responds well to questions   
   5.    Mannerisms are appropriate and not distracting (dress, posture, gestures, voice, 

eye contact)      

     Research Project 

 I assess the four-page project paper for correctness in mathematics, writing, and 
citation. The fi rst draft is worth 5 points (5 % of the course grade) and the revised 
project paper is worth 10 points (10 % of the course grade). The  presentation   is 
graded on a √ + = 0.5 point, √ = 0.25 point, √– = 0 points scale for a total of 5 
points (5 % of the course grade) with the following criteria (modifi ed from a UMW 
Speaking Center rubric):

    1.    Introduction   
   2.    Background information   
   3.    Description of the topic   
   4.    Information from References and Resources   
   5.    Conclusion   
   6.    Material is presented clearly   
   7.    Use of visual aids is effective   
   8.    Presenter is well prepared and organized   
   9.    Presenter responds well to questions   
   10.    Mannerisms are appropriate and not distracting (dress, posture, gestures, voice, 

eye contact)    

       Appendix B: Grading Guides for The  History of Mathematics   

     Biography Project 

 The two-page biography paper is 8 points (4 % of the course grade) and deductions 
for mistakes in mathematics, writing, and citation are: 1 to 2 mistakes = 0.5 point, 3 
to 4 mistakes = 1 point, 5 to 6 mistakes = 1.5 points, etc. The biography  presentation   
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is 4 points (2 % of the course grade) and is graded on a √ + = 1 point, √ = 0.5 point, 
√– = 0 points scale with the following criteria:

    1.    Description of mathematician’s personal life and educational training   
   2.    Description of the times and  culture     
   3.    Obstacles faced as a  minority  /if not minority, status within culture   
   4.    Indication of the mathematician’s accomplishments    

       Daily Journal 

 The journal counts for 13 points  total   (6.5 % of the course grade), because Burton’s 
text  The History of Mathematics :  An Introduction  has 52 sections counted at 1/4 
point per section (Burton  2011 ). I award credit just for completing the assignment.  

     Earth Density Research Project 

 This Earth density project counts for 25 points (12.5 % of the course grade), 10 
points for fi ve online discussions to design the experiments to measure the Earth's 
density and 15 points for the scientifi c  report   on the experimental results. Each 
online discussion consists of four questions the group of four students answers to 
design their experiments (2 points total). Each student earns one point for contribut-
ing an answer and then earns the second point if all questions are answered correctly 
by the deadline. I grade the six-page scientifi c report using a checklist (title, intro-
duction, hypothesis, methods, experimental protocol, materials, results,  data   tables, 
discussion section, conclusion about the hypothesis, error analysis, reference  list  , 
and all the formulas needed for the calculations) with my usual grading deduction 
for writing mistakes (Appendix  B.1 ).   

    Appendix C: Grading Guides for Introduction 
to  Mathematical Modeling   

     Project #1: Curve Fitting to a  Data   Set 

 The four-page Project #1 paper is 10 points (5 % of the course grade) and is graded 
as in Appendix  B.1 . The 5-min poster  presentation   is 10 points (5 % of the course 
grade) and is graded on a √ + = 1 point, √ = 0.5 point, √– = 0 points scale with the 
following criteria:

    1.    Description of environmental issue   
   2.    Description of data set (variables, units, patterns)   
   3.    Results of model fi tting   
   4.    Justifi cation of best-fi t model   
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   5.    Using best-fi t model to make a prediction   
   6.    Material is presented clearly   
   7.    Use of visual aids is  effective     
   8.    Presenter is well prepared and organized   
   9.    Presenter responds well to questions   
   10.    Mannerisms are appropriate and not  distracting   (dress, posture, gestures, voice, 

eye contact)    

       Project #2: Modeling with Difference Equations 

 Assessing Project #2 is done in essentially the same way as with Project #1 
(Appendix  C.1 ). An example of Project #2 is: 

 “Suppose the goose population in a wildlife refuge grows exponentially with an 
annual growth rate of 50 %. Each year hunters eliminate 60 % of the geese. The 
state’s wildlife department moves 200 new geese into the region each year by 
restocking. Suppose the initial number of geese is 750. The wildlife refuge wants to 
keep the number of geese below 1500 within 20 years. For each  scenario  , write the 
difference equation for the number of geese  x   n+1   in the next year in terms of  x   n   and 
graph the solution for 20 years.

    1.    Find the equilibrium value for your difference equation. What does this value 
represent?   

   2.    If the restocking is held at 200 geese annually, what percentage of the geese 
should be harvested annually to keep the number below 1500 within 20 years?   

   3.    If the annual harvesting/hunting rate is held at 60 % annually, at what level should 
the geese be restocked annually to keep the number below 1500 within 20 years?   

   4.    Suppose budget cuts force the refuge to suspend its restocking program. Your 
wildlife organization studies the  model   with no restocking. What long-term pre-
diction does your organization make about the goose population?   

   5.    Your wildlife organization successfully lobbies to reinstate restocking, although 
at a reduced level of 100 geese annually. What annual percentage of hunting do 
you recommend to keep the goose population below 1500 within 20 years?   

   6.    Which scenario is better, #3 or #5? Predict the goose population in 20 years 
using your answer.   

   7.    Solve your best difference equation in #6 to fi nd the formula for the solution. 
Check your prediction for  n  = 20 using the formula for the solution.”    

          Infectious Disease  Presentation   

 This fi ve-minute presentation counts as 10 points (5 % of the course grade) and is graded 
on a √ + = 1 point, √ = 0.5 point, √– = 0 points scale with the following criteria:

    1.    Description of the infectious disease (symptoms, transmission, mortality, etc.)   
   2.    Distribution of the disease; epidemic/endemic   
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   3.    Increasing, decreasing, or constant problem   
   4.    Cure/treatment/prevention   
   5.    Impact on society/ culture  /economics/history   
   6.    Material is presented clearly   
   7.    Appropriate  mannerisms  , gestures, voice, eye contact   
   8.    Presenter is well prepared and organized   
   9.    Presenter responds well to questions   
   10.    Mature approach to the subject matter        
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    Chapter 12   
 Real Clients, Real Problems, Real Data: 
Client-Driven Statistics Education                     

     Talithia     D.     Williams      and     Susan     E.     Martonosi    

    Abstract     In this chapter we describe two client-focused educational experiences at 
Harvey Mudd College that offer students the opportunity to work on real problems 
for real clients using real data. The fi rst is the Harvey Mudd College Clinic capstone 
program, in which teams of students spend an academic year working on a project 
for an external sponsor. The second is a course project in an upper level statistics 
elective in which the students analyze data provided by a campus partner. For both 
of these, we describe their structure, recent projects, as well as student and client 
feedback. We also offer our refl ections on how providing these educational experi-
ences has infl uenced us personally and professionally.  

  Keywords     Course projects   •   Capstone   •   Statistics education   •   Client projects  

12.1            Introduction         

 Demand has recently surged for data-savvy individuals in organizations ranging 
from government agencies to start-up businesses to nonprofi t organizations. The 
rise of data science, an interdisciplinary fi eld that combines computer science, sta-
tistics, and mathematics to gain insights from large data sets, has led to a surplus of 
jobs for data scientists, but the supply of workers who are equipped to solve data- 
driven problems is limited. The skills needed to be a successful data scientist 
increasingly depend on a combination of technical expertise, effective  communica-
tion  , teamwork, and attention to the client’s needs. While the phrase “data-driven 
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statistics education” might seem redundant, the reality is that statistics is often 
taught without requiring the analysis of real data and seldom taught with consider-
ations of the needs of a client. At Harvey Mudd College (HMC), we have created 
client-focused data science experiences both in the classroom and in the senior level 
 capstone course     , known as “ Clinic  .” 

 HMC is an undergraduate liberal arts college of science, engineering and math-
ematics that is part of the Claremont Consortium consisting of four other under-
graduate colleges and two graduate institutions. All HMC students complete a 
common core curriculum in the technical disciplines represented on campus (math-
ematics, computer science, chemistry, biology, physics, and engineering) and an 
extensive sequence in the humanities, social sciences, and the arts. Therefore, we 
have a student body that is profi cient in the STEM fi elds and for whom data analysis 
is likely to become an integral part of their future careers. 

 The purpose of this chapter is twofold. First, we illustrate two types of data 
analysis course experiences: a client-sponsored fi eld  capstone   program in Sect.  12.2 , 
and a project run within a statistical  linear models   elective in Sect.  12.3 . We provide 
the reader with implementation models that they could adapt to their own institu-
tion. Second, we refl ect on our experiences teaching these courses and describe 
some of the challenges and opportunities they have yielded. Williams, the fi rst 
author, has taught the statistical  linear models   course using client-based projects, so 
in Sect.  12.3  the narration changes to the fi rst person. Sect.  12.4  concludes the chap-
ter by looking to the future of  statistics   education. Throughout this chapter, we use 
the term   deliverable   , commonly used in industry, to denote a  report  , a  presentation  , 
an algorithm, or other work product that is delivered to a client in the course of a 
project.  

12.2      The Harvey Mudd College  Clinic Program   

  The Harvey Mudd College Clinic program started in the HMC engineering depart-
ment in 1963. Drawing its name from the training of medical students, in which they 
practice their skills during clinical rotations on real patients under the watchful eye 
of an experienced physician, the HMC Clinic was developed to give students the 
opportunity to practice their skills on a real engineering problem  sponsored   by an 
external client under the supervision of a faculty member. This experience helps 
students synthesize their classroom knowledge and bridge the gap between the the-
ory of the classroom and the real world. 

 In 1973, the HMC mathematics department adopted Clinic in its curriculum, and 
since then, the departments of physics and computer science have followed suit 
(Borrelli  2010 ). Participation in Clinic is a graduation requirement for engineering, 
computer science, and computer science/mathematics joint majors, while mathe-
matics and physics majors can choose either Clinic or a traditional thesis to fulfi ll 
their  capstone   requirement. (Biology and chemistry majors typically complete a 
traditional thesis, although some have participated in Clinic when an appropriate 
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project was available.) Our departments work collaboratively to recruit interesting 
Clinic projects. When a project requires interdisciplinary skills as is increasingly 
the case, we create cross-departmental Clinic teams. 

 Coming from applications-driven disciplines ( statistics   and operations research), 
both authors were naturally drawn to Clinic. In our disciplines, the word “research” 
does not always imply proof-based theoretical advances, and often refers to the 
creative application of existing methodologies in new ways to solve real problems. 
This is the heart and soul of Clinic. Given our skills and interests, we have been 
involved in the program as faculty  advisors  , director, or associate director for six 
and ten years, respectively. 

 We often hear that HMC’s unique focus on science, engineering and mathemat-
ics make it diffi cult for instructors at other institutions to implement programs like 
Clinic. However, as surveyed by Martonosi ( 2012 ), and by Martonosi and Williams 
( 2016 ), other institutions have taken notice of the HMC Clinic program and have 
successfully emulated it. The Olin College website describes their Senior Capstone 
Program in Engineering, which was modeled very closely after HMC’s Clinic (Olin 
College  2016 ). Moreover, in recognition of the broad impact the program has had 
on engineering education worldwide, the professors who cofounded the program in 
1963 were awarded the 2012 Bernard M. Gordon Prize for Innovation in Engineering 
and Technology Education by the National Academy of Engineering (Harvey Mudd 
College  2012 ). Our hope is that readers can adapt some of the characteristics 
described in this chapter to create a Clinic-like program at their own institution. 

 We outline the structure of the program in Sect.  12.2.1 , describe some of the 
projects that have been completed in Sect.  12.2.2 , provide excerpts of student and 
 liaison   feedback in Sects.  12.2.3  and  12.2.4 , and refl ect on our personal experiences 
in the program in Sect.  12.2.5 . 

12.2.1      Structure of the Mathematics Clinic Program 

 We start by listing the cast of characters involved in the Mathematics Clinic: the 
team, the team’s project manager, the team’s  faculty advisor  , the  sponsoring   organi-
zation of the project, the sponsor’s  liaison  , and the director and associate director of 
the Mathematics Clinic program. We describe each of these in more detail in the 
subsequent paragraphs. 

 In Clinic, teams of four to six students, mostly seniors, work for a full academic 
year on a problem posed by an external sponsoring organization. The students are 
responsible for determining the appropriate methodology for solving the problem, 
conducting relevant literature review, managing the project timeline, and preparing 
all  deliverables   in a professional manner. The teams are formed by the Clinic direc-
tor and faculty  advisors   to balance student project preferences (as determined by a 
survey), background in skills needed for the project, grade point averages, student 
interest in serving as a team’s project manager, and to avoid known personality 
 confl icts  . Clinic strengthens students’ technical skills by exposing them to a com-
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plex, real problem. Additionally, Clinic builds professional skills by requiring stu-
dents to communicate clearly both orally and in writing, manage a large project, and 
work effectively in a team. 

 One student on the team is appointed to serve as the team’s project manager, act-
ing as the primary point of communication between the team and the sponsor’s 
 liaison     . The project manager also ensures that the team is making steady progress 
towards deliverables and intermediate deadlines. He or she does this in addition to 
technical contributions to the project alongside the other team members. 

 The teams are advised by a faculty member and by a  liaison   from the sponsoring 
organization. The faculty member serves primarily as a coach, mentoring the stu-
dents on their research habits, team dynamics and  communication  . Because we feel 
that lessons learned from mistakes often have more impact than those learned from 
successes, the  faculty advisor   intervenes in the specifi cs of a project only when the 
team is heading far off course. For this reason, the  faculty advisor   need not have 
expertise in the mathematical methodology used in the project. The role of the spon-
sor’s  liaison      is to provide domain expertise and context to the students throughout 
the year. The team meets weekly with the  liaison   by teleconference or Skype to 
share intermediate results and to ensure that the team’s direction aligns with the 
project’s goals. The  liaison   must also provide the team with data and background 
information in a timely fashion. 

 The Mathematics Clinic director and, in some years, an associate director oversee 
the three to fi ve Clinic projects being run in the department each year. Their primary 
responsibility is to recruit projects of suffi cient quantity and quality, working together 
with the other departmental Clinic directors and HMC’s Director of Corporate 
Relations. The directors leverage the HMC alumni network and make site visits to 
companies across the west coast and, occasionally, other parts of the country. We 
charge a substantial fi xed fee per project, which covers administrative costs, travel 
(for recruiting trips and for the teams to visit the  sponsors  ), computing equipment and 
 software  , and other supplies. Because of the fee, we seek sponsors who are invested 
in the outcome of the project and, accordingly, we assign them the intellectual prop-
erty rights to the completed work. We advise potential sponsors to propose projects 
whose results are not critically needed in the short-term, but the outcomes of which 
will be very useful to them in a few years’ time. This mitigates some of the risk asso-
ciated with relying on a team of undergraduates to complete a project that the com-
pany cares about. We also require the sponsor to identify a  liaison   who will be able 
to dedicate suffi cient time and energy to the team to ensure that the team will have 
consistent access to contextual information needed to produce a useful product. 

 Clinic counts as a regular three-unit course in each semester, and we expect the 
students to devote approximately 10 h per week on the project. Of these 10 h, one 
hour is spent in a weekly meeting with the  faculty advisor  , one is spent in a weekly 
teleconference with the  liaison  , and one is spent in a weekly classroom session. The 
remaining 7 h are spent working on the project, and we strongly encourage the 
teams to schedule those 7 h as a team. We have found that the team can work more 
productively and resolve obstacles more quickly if everyone is in the same room 
working at the same time. Moreover, we have found fewer issues of students relying 
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on their teammates to do most of the work when they are held accountable to the 
rest of the team for their work hours. 

 The weekly classroom sessions involve  professional development   workshops that 
we created as director and associate director and which continue to be used. The top-
ics are effective team dynamics, teleconference and site visit etiquette, project man-
agement tools, and effective oral  presentations  . To keep the students engaged and 
help them retain the information, we structure these workshops as comical, improvi-
sational skits. In these skits, faculty  advisors   portray students having traits and 
behaviors we have observed over the years as being detrimental to a team’s success, 
such as interrupting teammates, arriving late to meetings, or not allowing every 
member of the team to contribute. The class discusses what they saw and what the 
characters should have done differently. The students enjoy the  humor   in a full pano-
ply of bad behaviors parodied in a series of two-minute skits. At the start of the year, 
it is hard for them to realize how true-to-life these skits are; however, over the year, 
most of these behaviors do indeed arise on some of the teams, and the memory of the 
skits gives the students a starting point for addressing them. During the spring semes-
ter, Clinic teams from all departments (approximately 45 teams per year) assemble 
together for the weekly classroom sessions, which are dedicated to team  presenta-
tions  . Each team makes one 15–20 min  presentation   over the semester, allowing the 
students to review each other’s work and practice giving oral presentations. 

 Imposing intermediate milestones and  deliverables   helps students manage the 
large, open-ended project:

•    Clinic and  Liaison   Orientation: In early fall, liaisons are invited to campus to 
debrief the team on the context of the problem.  

•   Fall and Spring Site Visits: Each team travels to the  sponsor’s   site early in the fall 
semester and again late in the spring semester. The teams gain insight into the 
context of their project and make  presentations   to the sponsoring organization.  

•   Marathon Push: In the fi rst month of the project, teams devote time to the project 
beyond the required ten hours per week to immerse themselves in the project and 
write the team’s Statement of Work (SOW).  

•   SOW: This document summarizes the team’s  understanding   of the problem, lit-
erature review, proposed methodology, and timeline for the year. The  liaison   
reads and approves the SOW in writing.  

•   Fall and Spring  Presentations  : In November, each team gives a presentation to 
the full group of Mathematics Clinic students about the progress they have made 
on their project. Throughout the spring semester, each Clinic team on campus 
makes a presentation to all Clinic students, faculty  advisors   and special visitors.  

•   Projects Day: In early May, all  liaisons   are invited to campus for our annual cel-
ebration of Clinic. Each team makes several  presentations   of their fi nal project 
and presents a poster of their work in a general poster session. Receptions and a 
celebratory dinner conclude the event.  

•    Reports   and  Deliverables  : At the end of the fall semester, the team submits a 
midyear  report   to the  liaison  . At the end of the academic year, the team delivers 
to the  sponsor   a fi nal  report  , along with all  software  , computer code, data and 
other intellectual property of the project.     

12 Real Clients, Real Problems, Real Data: Client-Driven Statistics Education



170

12.2.2      Recent Projects 

 The range of mathematical disciplines represented in the completed Mathematics 
Clinic projects over the past 40 years is breathtaking, including modeling pollutant 
transport in the atmosphere, fraud detection, and optimal control of satellite motion. 
Abstracts for all past Mathematics Clinic projects can be viewed on the Mathematics 
Clinic website (Harvey Mudd College Mathematics Clinic  2016 ). Although our 
Mathematics Clinic program does not recruit solely  statistics    projects  , we have seen 
a rise in data-focused Clinic projects in recent years. For example, in the past 5 
years (2010–2015), exactly half (11 out of 22) of our Mathematics Clinic projects 
(or those run jointly between mathematics and another department) fall in the cate-
gory of data  analytics  , while in the preceding 5 years, that percentage was closer to 
20 % (Harvey Mudd College Mathematics Clinic  2016 ), (Harvey Mudd College 
Computer Science Clinic  2016 ). 

 This shift towards data projects poses some challenges to our department. First, 
there is a sense of loss for the more traditional applied  mathematics projects   in the 
areas of fl uid mechanics,  differential equations     , and  linear algebra  . While these 
areas of mathematics are still relevant, current  sponsors   are more interested in areas 
pertaining to analytics. This is especially the case for federal sponsors such as 
national laboratories, where funding that can be used to pay the Clinic fee is more 
plentiful in cutting-edge research areas like data science. A second problem is that 
some of our faculty feel ill-equipped to advise data-focused projects. Although the 
 faculty advisor   is not responsible for completing the project, many advisors prefer a 
project in their general research area. In the past, it was easier to match faculty  advi-
sors   to projects in their areas of expertise. Third, for the authors, who serve as two 
of only a handful of statistical experts at HMC, the rise in data-related Clinics across 
campus results in a lot of ad hoc advising of Clinic teams on matters of experimental 
design and data analysis. This can take up a great deal of time on top of our regular 
teaching responsibilities, particularly during the spring semester when Clinic teams 
are completing their analyses.  

12.2.3      Student Experience and Feedback 

 The Clinic experience is often a seminal one for students, motivating them and 
boosting their confi dence before they venture into the “real world.” At the end of 
each semester, students complete peer- and self-evaluations in which they refl ect on 
the Clinic experience. In addition to showing appreciation for the technical knowl-
edge gained in the experience, the evaluations invariably emphasize the professional 
skills gained and the students’ satisfaction in having worked on a real problem for a 
real client:

  I have learned a lot about machine learning and  software   development, but also about docu-
mentation, working in a team, and research in industry. … It has been fascinating to study 
mathematical ideas that are applied so readily to an industrial problem. 
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 I enjoyed in particular the aspects of heuristic design and  adaptation  , as well as the 
practice doing things like teleconferences,  presentations  , and  reports   on our progress, all 
clearly refl ecting the sorts of work we can expect to do in industry. 

   The evaluations also commonly refer to the challenge of Clinic, and the satisfac-
tion that arises from meeting that challenge:

  We’ve certainly run into our share of issues along the way, but I don’t think the clinic expe-
rience would have been nearly as valuable if we didn’t have those challenges to overcome. 

 Our advisor held us to a very high standard, which was sometimes stressful but I think 
it encouraged us to work very hard and resulted in a fi nal product which we are proud of. 

   Most often, student complaints about the Clinic experience stem from the diffi -
culties in working with a team:

  I feel like our clinic team may have had a fair bit of trouble keeping on top of deadlines this 
year, but that we have produced a good result. I'm not sure why we were so often behind, 
but if I had to hazard [a guess], I would say  communication   troubles. 

   Despite the stress of Clinic, it is an experience that shapes a student’s profes-
sional trajectory. Moreover, because our Clinic program is well-known, we often 
hear prospective students speak of Clinic as one of the deciding factors in choosing 
to attend HMC.  

12.2.4      Client Feedback 

 It is not only the students who fi nd the experience rewarding. Each year, we survey 
the  liaisons  , asking them how well the team met the project’s goals, managed the 
project, and communicated with the liaison, and how they rate their overall satisfac-
tion with Clinic. On a fi ve-point scale, fi ve being the best, the College scores higher 
than four, on average, on these questions. 

 Additionally, the Clinic Advisory Council, a committee of approximately 20 rep-
resentatives from industry who have engaged with the Clinic program in the past, 
conducts phone interviews of all  liaisons   to discuss their experience with the pro-
gram. Some comments from recent Mathematics Clinic liaisons are:

  I was very impressed by the level of enthusiasm and knowledge of the students. Very well 
done. 

 [The  liaison  ] realizes the quality of the "scarce resource" of [HMC students] and is 
intent upon identifying and  hiring   the best fi ts for his company, using the Clinic Program as 
a way to get to know the team members. 

   Of course, not every project is completed successfully. In some instances, the 
 liaison   and the team realize that the original proposal is infeasible or no longer in 
the  sponsor’s   interests, so they work collaboratively to redefi ne the project scope. In 
other instances, however, the team simply does not meet the project’s goals, usually 
because of poor team  communication   or project management. Fortunately, truly 
unsuccessful instances comprise only 5–10 % of all projects. One reason for our 
high success rate is that Clinic directors thoroughly vet projects in advance to ensure 
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they are of an appropriate scope for the team. Another reason is that teams are 
encouraged to distinguish in their SOW between achievable baseline goals and 
“stretch goals” that will be completed if time permits. A third reason is that teams 
communicate regularly with the  liaison   so that expectations can be effectively man-
aged if the project scope needs to be adjusted during the year.  

12.2.5      Our Experiences 

 We have both served as faculty  advisors   of Clinic teams several times. Additionally, 
the second author served as Clinic director for 5 years, and the fi rst author served as 
associate Clinic director for 1 year. In this section, we describe some of the personal 
impacts these roles have had on us. 

 As faculty  advisors  , we have found two primary challenges. The fi rst is knowing 
when to be the “good guy” and when to be the “bad guy” in our team interactions. 
Generally, we try to observe from a distance to allow the students to direct the fl ow 
of the project. At times, however, when a team repeatedly fails to follow our sugges-
tions, misses deadlines, or engages in unproductive habits or behaviors that are dis-
respectful to the liaison’s time, we step in more assertively. The second challenge 
has been keeping the team and the  liaison   focused on the project scope. We have 
occasionally encountered liaisons that push students beyond what is expected from 
a three-unit course and have had to intervene on the students’ behalf. 

 Being a Clinic  faculty advisor   sometimes forces us to step out of our comfort zones 
when the project ventures into an area of mathematical sciences we are less familiar 
with, but it is rewarding to broaden our knowledge. The opportunity to work directly 
with many of the companies that hire our students has provided us insight into the 
future needs and directions for mathematical sciences in industry. This allows us to 
develop new course materials that are relevant and cutting-edge for our students. 

 During our time administering Clinic as director and associate director, we 
developed valuable leadership and administrative skills, balancing the needs of stu-
dents, faculty  advisors  ,  liaisons  , and college administrators. The development of 
these skills was accompanied by a similar development of confi dence. Directing the 
Clinic dramatically reduced time for scholarly activities such as research, but it was 
enjoyable work, from learning about the fascinating work done at prospective  spon-
soring   organizations, to mentoring the student teams as they developed project man-
agement and  communication skills  .    

12.3       Client Projects in  Statistics Courses   

 Clinic is one model for offering statistics students client-driven projects at a depart-
mental scale. On the scale of an individual instructor, fi nal projects in beginning and 
upper level statistics courses can be used to gauge students’  understanding   and 
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 mastery of the material. One such course that began from this frame of reference 
was the HMC statistical  linear models   course (Math 158). I (the fi rst author) based 
the course on the  Guidelines for Assessment and Instruction in Statistics Education 
(GAISE)   (American Statistical Association  2005 ), whose six broad recommenda-
tions include:

    1.    Emphasize statistical literacy and develop statistical thinking.   
   2.    Use real data.   
   3.    Stress conceptual  understanding  , rather than mere knowledge of procedures.   
   4.    Foster active learning in the classroom.   
   5.    Use technology for developing concepts and analyzing data.   
   6.    Use assessments to improve and evaluate student learning.    

  When I fi rst taught the course, I assigned a project based on an interesting dataset 
I could fi nd and tested students on their ability to correctly analyze the data and 
present their results before their classmates. While this model proved suffi cient in 
meeting course objectives, the  GAISE   guidelines, and student assessment, it lacked 
a connection to a data-driven client experience that would challenge students by 
placing them in unfamiliar territory. Lazar et al. ( 2011 ) have documented the 
improvement in the statistical analysis and quality of work of students who engage 
in a consulting-like experience. Much of the noted improvement is a result of incor-
porating real, messy data into projects and emphasizing the responsibility that stu-
dents have to clients. 

 To give the students a more authentic data analysis experience, I restructured the 
course project to involve a local client with a real problem needing data  analytics  . In 
the remainder of this section, I describe that project. Section  12.3.1  describes its 
structure, Sect.  12.3.2  gives some examples of recent problem statements, Sects.  12.3.3  
and  12.3.4  describe the student and client experience, and Sect.  12.3.5  provides some 
of my personal refl ections and advice from having run such a project. 

12.3.1      Structure of Community Client Engagement 

12.3.1.1     Team Structure 

  In a  typical   semester of statistical  linear models  , students come from several of the 
Claremont Colleges with varying backgrounds. While an  introductory statistics      
course is a prerequisite, the style of the course depends on the institution in which it 
was taken. Some courses are full semester and use the open- source   statistical pro-
gramming language R. Others are half semester and teach statistical analysis using 
 Minitab®  . This poses a challenge when constructing teams that must coalesce to 
effectively tackle a project and produce tangible results. 

 A solution I have found is to intentionally place students in teams based on their 
strengths. I give a survey to students at the beginning of the semester that asks for 
their previous computing experience, past  statistics   courses, and perceived strengths 
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when working in teams. I use this information to create teams that have at least one 
strong computing person, a strong statistical person, and an effective oral and writ-
ten communicator. While all students experience all aspects of the project, this dis-
tribution helps teams manage more independently by providing them in-house 
experts in areas of critical need. Teams are typically made up of three to fi ve stu-
dents, depending on the size of the course. 

 Once the teams are in place, they are responsible for scheduling additional time 
outside of class to work on the project together. All students are required to evaluate 
their teammates’ contribution and I take the overall evaluation into account when 
determining the fi nal project grade. I also try to be especially sensitive to women 
and underrepresented students by not placing them in groups where they are the 
only  minority  . Instead I place them on teams with at least two women, at least two 
minorities, or some combination of the two.  

12.3.1.2     In-Class Lab Experience 

 I typically reserve two classes per month for an in-class lab where I present a new 
topic or type of data analysis that needs to be performed on their project dataset. 
Students bring their personal laptop to class and I reserve additional laptops for 
students that don’t have one. The in-class lab allows me to observe how the teams 
are working together, gauge their progress so far and answer questions that often 
arise during their external meetings. I’m also able to observe and intervene if stu-
dents are having diffi culties or becoming disengaged. If the client is local, I often 
invite them to class to be available to answer questions and provide direction, espe-
cially during the fi rst few lab sessions. 

 The structure of the in-class lab usually begins with stated goals for the session, 
for instance, to write an R program that will perform an exploratory data analysis 
and produce various plots. While the analysis of the data occurs over the entire 
semester, by setting up-front, measurable goals for the lab sessions, students under-
stand that I expect them to have a  deliverable   by the end of class. To help novice R 
users get up to speed, it might sound counterintuitive that I tend to pair them together 
rather than pair a novice with a strong R programmer. However, except in cases 
where the strong R programmer is also a good  mentor   and tutor, pairing the novices 
together often leads to better  collaboration  .  

12.3.1.3     Final  Presentation   Experience 

 Final presentations in semester-long  statistics   courses are commonly used to evalu-
ate students’  understanding   of the material and their ability to communicate results 
effectively (Khachatryan  2015 ). What makes the fi nal presentation experience par-
ticularly relevant in a client consulting environment is that students have to explain 
potentially complicated statistical analysis to people who are not experts in the fi eld. 
Students learn that they must omit theoretical details and instead deliver results that 
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are clear, concise, and visually appealing. The rich details of the analysis are included 
in a fi nal written  report   that each team submits both to me and to the client. 

 The program and location for the fi nal presentations can be used to create a 
meaningful closing experience for both the students and the client. Each team, 
dressed in business casual attire, presents its results and fi elds any questions that 
arise. For the past four years, we have had an on-site meeting at the end of the 
semester where the client invited all staff to the presentation and provided light 
refreshments.  

12.3.1.4     Building Client  Partnerships   

 A key aspect of the success of the course project has been the connection to the 
community-based client. In response to my solicitation to various constituencies 
around the Consortium for large-scale data analysis, Sam Kome, the Director of 
Strategic Initiatives and Information Technology at the Claremont Colleges Library 
contacted me. The library had large amounts of data and was seeking someone to 
analyze it. 

 The steps taken to build the community client relationship and provide a rich 
experience for students can easily be replicated in other data-driven courses:

    1.    Send an email to faculty and staff at your campus soliciting data. 
 For example, an introductory  statistics      class could work with the cafeteria staff 

members to visualize demand by hour of the day, day of the week, or menu items.   
   2.    Involve the community client in  developing   the project with the students. 

 I found that staff members were excited to talk to the class about their data 
and project goals.   

   3.    Be proactive in getting data at the beginning of the course. 
 Students can immediately begin exploratory analysis and apply more 

advanced techniques as the semester progresses.   
   4.    Create in-class lab days where students work in teams on the fi nal project. 

 While this required removing some lecture topics from the syllabus, the 
hands-on project time was an opportunity for the community client to attend 
class and answer individual teams’ questions.   

   5.    Encourage your client to remain available throughout the semester. 
 Our client encouraged the students to contact him by email to review initial 

results or answer additional questions.   
   6.    Set up a meaningful  presentation    experience  . 

 Presentations normally occur at the client facility or in a nice room on campus. 
Ample time is set aside for informal conversations, and light refreshments are 
provided.     

 Although the dedication of class time to the project reduces the number of topics 
we can treat in the course, the quality of the fi nal project and  presentation   never 
ceases to amaze me. Giving students an unknown, unrefi ned dataset forces them to 
become  researchers  , ask their own questions, and go in multiple directions.   
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12.3.2      Recent Projects 

 In a recent project, the client provided patrons’ library Wi-Fi usage data, and each 
team independently determined the type of analysis required to address the client’s 
needs. Once teams formulated a project direction, they shared among themselves to 
prevent overlap, and with the client to verify that the analysis would meet their 
needs. Three approaches to this problem are summarized below as examples:

   Team 1: This team established a heuristic for deciding between active and passive 
connection and defi ned a metric for wireless usage based on the data transferred 
and amount of time used. With this metric, the team determined how various fac-
tors, such as roles (student, faculty, staff), radio types, and signal quality impacted 
wireless use.  

  Team 2: This team performed a comparative analysis specifi c to Apple products, 
since they comprise the majority of products connecting to the Wi-Fi. They 
examined how Macs, iPods, iPads, and iPhones successfully connected to the 
network and the subsequent signal strength. They compared the performance 
activity common to each of these device types in terms of data usage and connec-
tion time.  

  Team 3: This team examined measures of connectivity success, including time 
spent connected, megabytes of data used, number of attempts made to connect, 
and signal strength, to determine the quality of the Wi-Fi connection.    

 Through these different approaches, the teams were able to visualize the ways in 
which various devices connected to the library Wi-Fi and better understand the 
duration of library visits by campus, day of the week and time of day.  

12.3.3      Student Experience and Feedback 

 Through conversations with students and the written course  evaluations   I have 
received, students:

•    Appreciated the active learning aspect of the in-class labs;  
•   Felt a sense of purpose by working with real data for clients who valued their 

solutions;  
•   Were genuinely surprised to see the excited reactions of the staff to their results; 

and  
•   Realized that there are many types of analyses that can be done on a single 

dataset.    

 One student sent an email the following semester stating:

  I just wanted to send you a quick note saying thanks for the statistical skills you helped hone 
in Math 158 last semester. I am doing an experiment for a cognitive science class and I’ve 
relied heavily on the techniques and tools you showed us throughout the class in order to 
analyze the results. It is very useful to be comfortable analyzing data, so thank you for 
imparting that ability throughout the course. 
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   However, some students were frustrated by the open ended approach, the time it 
took to clean the dataset, and having to rely on team members who were less 
dependable.  

12.3.4      Client Feedback 

 We have worked with the Claremont Colleges Library for the past fi ve years and 
they have been very pleased with the  partnership  . Below is an excerpt from a letter 
that Sam Kome sent to the Harvey Mudd College Dean of the Faculty highlighting 
the experience from the Library’s perspective:

  The wireless analysis identifi ed and described a signifi cant authentication issue that actu-
ally affected all the Claremont campuses. The library was disproportionately affected, and 
was able to use the analysis to adjust wireless provision and nearly eliminate complaints. 
We very much look forward to continuing this fruitful  collaboration  . … We have found 
Professor Williams students’ work to be thorough and thoughtful, and each  presentation   
yields novel and directly useful information. We also appreciate that the students become 
deeply engaged with the data and they frequently express gaining a greater  understanding   
of the complexity of today’s academic library. 

12.3.5         The Instructor’s Experience 

 Creating an authentic data-driven experience required me to rethink my role in the 
classroom and allow my students to take ownership of the experience. I vividly 
recall the moment that students took charge of the project with the Claremont 
Colleges Library. I had invited the staff members to class to talk about the data. 
After the staff did a very brief  presentation  , there was an awkward silence as stu-
dents looked to me for direction. I told them, “I’m not analyzing their data, so I 
don’t have any questions for them. But in three months, you get to stand up and 
present your results in front of the entire staff. This is your time. We can take as 
much or as little of it as you need.” This was the moment that the students took 
ownership of their project. 

 One closing thought on this experience would be the following:

   Make the mundane meaningful . 

   Although necessary, the process of cleaning real-world big data is often tedious 
and frustrating. Students frequently spend hours writing code to parse the data into a 
readable format to fi nally begin performing the statistical analysis. During one par-
ticular in-class lab day, two recent HMC alumni, Kyle and Russell, were visiting 
campus for a recruiting trip and asked to observe the class. The students were cleaning 
data that day and although I constantly reminded them that this is a necessary process 
of data analysis, they were obviously frustrated and disappointed with the task. 

 I asked Kyle and Russell if they would like to look at the data, and the two of 
them began cleaning the data as I continued helping students. After a short time, 
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Kyle and Russell had written a script that read in the data, parsed it, corrected the 
formatting issues, and produced a multiple time series plot. I asked them to display 
their code on the screen and walk the students through their process. Russell told the 
class, “I wish I would have had a class like this back when I was at Mudd. In a typi-
cal fi ve-day work week, we spend four days just cleaning the data. The stats is pretty 
easy after that.” The mood of the class changed following their  presentation  . 

 As a professor, this moment was signifi cant because it provided immediate pur-
pose to a typically mundane classroom lab session by merging it with a real-life 
career experience. In every lecture, lab and  presentation   experience, students are 
learning statistical methodologies to prepare them for their careers. I now intention-
ally invite former students back to allow them to provide that rich perspective.    

12.4      Looking Ahead 

 What does the future hold for  statistics   education? The need for computational and 
 analytics   skills to mine large data sets is expected to grow (McKinsey Global 
Institute  2011 ). Although HMC is unique amongst liberal arts colleges in that its 
only offered majors are in science, engineering and mathematics, we believe fer-
vently that statistics is itself a liberal art (Moore  1998 ). It is no longer reserved for 
specialists, or even just for scientists and engineers. Rather, in the Information Age, 
it is imperative that all students learn to understand and critically interpret data put 
before them. Refl ecting this trend, data science courses offered at HMC and other 
Claremont Colleges are routinely fi lled to capacity with students from many majors, 
and we are seeking ways to offer more data science electives while still maintaining 
our existing mathematics  curriculum  . Client-focused experiences such as Clinic and 
projects in upper-level  statistics   electives are one avenue to help prepare students to 
work effectively with data. We encourage our readers to consider how these types of 
experiences can be incorporated in their own curricula.        
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Chapter 13
A Montessori-Inspired Career in Mathematics 
Curriculum Development: GeoGebra, 
Writing-to-Learn, Flipped Learning

Kathy A. Tomlinson

Abstract With an overview of Montessori education, I set the stage for curriculum 
materials aimed at improving undergraduate mathematics education. I describe four 
ways to enhance student learning with the dynamical mathematics software 
GeoGebra: classroom demonstrations, student activities with instructor-created 
applets, student activities with applets that students create by following podcast 
instructions, and student-created applets that more advanced students generate inde-
pendently to solve problems. I discuss two types of writing-to-learn assignments: 
guided reflection and journaling. I also describe collaborative classroom activities, 
including associated video lessons that I constructed to implement a flipped or 
blended learning environment. Connections are made between current mathematics 
education research findings, Montessori principles and the curriculum materials that 
I designed. The chapter closes with a reflection on my career path. I discuss my pas-
sion for mathematics and social justice, how this led to professional opportunities in 
mathematics education including a project in the scholarship of teaching and learn-
ing, and how my work in mathematics education is useful as I assume leadership as 
chair of my department.
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13.1  Introduction

In a career that is inspired by Maria Montessori’s ideas, I design and implement 
mathematics curriculum materials that attempt to respond to current mathematics 
education research. Most of my work seeks to improve instruction in mathematics 
courses taken by Science, Technology, Engineering and Mathematics (STEM) 
majors including calculus, differential equations, linear algebra, mathematical mod-
eling, complex variables and discrete mathematics.

As I develop mathematics curriculum I am guided by questions about how stu-
dents learn and what teaching methods and strategies work for them. How can we 
help students get a deep conceptual understanding through work with concrete ideas 
in a way that helps them move to greater abstraction? How can we get students to 
spend more productive time on task? How can we teach in ways that help students 
retain knowledge? How can we lower the number of students who withdraw from 
or fail our classes, while maintaining high learning expectations? How can we help 
students become engaged with and committed to mathematics?

These questions led me to three forms of curriculum work. The first uses the 
open source dynamical mathematics software GeoGebra. I have created four types 
of GeoGebra1 modules ranging in level of student involvement from the instructor 
demonstrating in class while students make observations and connections, to stu-
dents creating their own applets (small computer applications that demonstrate 
mathematical concepts), making decisions and discoveries along the way. The sec-
ond focuses on writing-to-learn assignments,2 encouraging students to reflect and 
engage with mathematical ideas at many levels. In my third form of curriculum 
work, I have implemented flipped or blended learning pedagogy, creating collabora-
tive classroom activities supported by video lessons.

13.2  Inspiration from Montessori Mathematics

13.2.1  Principles of Montessori Education

Since Montessori principles have had such a strong influence on the ways I think 
about teaching and learning, I will outline some key Montessori ideas. While 
Montessori education is designed for children ages birth through 18, I have found 
that some Montessori principles translate to the university setting. At the ele mentary 
level, Montessori education is characterized by its distinctive classroom environ-
ment, teacher role and cognitive goals.

1 I have created a GeoGebra Book for this chapter: https://www.geogebra.org/book/title/id/RdxKWn
2R?doneurl=https%3A%2 F%2Fwww.geogebra.org%2Fmaterial%2Fedit%2Fid%2FRdxKWn2R#
2 Sample writing assignments are available at https://www.uwrf.edu/MATH/SampleMathematics 
Activities.cfm
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The classroom space is a cross between a cozy living room and a science labora-
tory. There are open spaces where children spread out their work on rugs, small 
tables that seat between one and four children, and low shelves where children 
retrieve beautiful materials that they use in discovery style learning activities. The 
furniture is arranged to create attractive spaces for each part of the curriculum. 
Children spend three years in a single room, normally with the same instructor. This 
enables younger children to benefit from the influence of older children while older 
children gain leadership experience.

The role of the Montessori teacher is to prepare and organize the learning envi-
ronment, to provide brief lessons on how to complete learning activities, and above 
all, to skillfully observe children. Based on these observations, the teacher chooses 
lessons that capture the child’s attention and help each child to make progress at a 
pace that is appropriate for that child. Using carefully designed hands-on materials, 
the teacher gives lessons to small groups of children. The children then work auton-
omously, responsible to practice with the materials over time until mastery is 
achieved. The teacher serves as a critical link between the child and the prepared 
learning environment, facilitating the child’s construction of his or her own 
understanding.

Even the cognitive goals in Montessori education are distinctive. They include 
helping children become self-disciplined, caring, independent, self-motivated, com-
fortable with error, and able to focus for extended periods. These goals are less 
tangible than the usual academic content goals and very difficult to measure, espe-
cially in a public school setting. Yet giving greater emphasis to these goals often 
results in higher levels of academic success (Dohrman et al. 2007; Lillard and Else- 
Quest 2006). One way these goals are attained is through a three-hour uninterrupted 
work cycle in which children are free to choose what to work on and how much time 
to devote to it. This promotes problem-solving and concentration by encouraging 
children to choose challenging work, knowing they will have plenty of time to com-
plete it.

13.2.2  Montessori Principles and College Mathematics

How can these ideas about educating children find relevance in college-level math-
ematics instruction? While many Montessori practices are specific to the education 
of children, some of the principles behind the practices are applicable at the college 
level. Montessori recognizes an important connection between movement and cog-
nition. Materials are designed to be self-correcting. In a college classroom, I have 
found that hands-on activities using dynamic mathematics software provides stu-
dents a way to check their work by examining multiple representations. Montessori 
values choice and requires children to create their own mathematics exercises. I 
design mathematics curriculum materials that give students some choices about 
what mathematical objects to work with and require them to create some of their 
own exercises. By removing competition and grading systems, Montessori also 
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promotes within the child an intrinsic motivation to learn. Inspiring college mathe-
matics students to learn simply because the ideas are so beautiful, important and 
engaging is one of my greatest challenges. Perhaps the greatest gift of Montessori 
principles for college level mathematics instruction is its view on the progression 
from concrete to abstract.

As a mathematician, I think about concrete understandings versus abstract under-
standings in two ways. First, there is the idea of using specific concrete examples to 
motivate a general abstract principle. We can notice that 23 45+  is even, that 
237 841+  is even, and eventually conjecture and then prove, that the sum of any 
two odd numbers is even. Using pattern recognition to generalize provides one way 
to progress from the concrete to the abstract.

My second thought about concrete versus abstract relates to the idea of underly-
ing mathematical structure. Mathematicians observe the salient properties of a 
mathematical object and then generalize to a more abstract version of that object. 
For example, we notice that Euclidean distance between two points in the Cartesian 
plane is non-negative, symmetric, zero only when the points are identical, and satis-
fies a triangle inequality. Based on this observation, we define an abstract metric to 
be a real-valued function that has these same four properties.

Montessori adds to these understandings of concrete versus abstract in two 
important ways. First, in the progression from concrete to abstract, there are inter-
mediate steps. Montessori mathematics manipulatives are used to guide children 
gradually from concrete to abstract understanding through a series of small abstrac-
tions. Tactile work is associated with the concrete end of the spectrum while purely 
mental work is on the abstract end. Second, we can teach and learn a single math-
ematical concept or process along this progression, scaffolding student understand-
ing. The mathematics itself is not necessarily getting more abstract, rather the way 
the student comprehends the mathematics gets progressively more abstract.

In Fig. 13.1 the children are learning to think about place value with a number 
they chose themselves: 7777. At the most concrete level, they represent 7777 with 
the “golden beads” (base ten blocks); each golden bead represents one, a bar of ten 
beads represents 10, a flat of one hundred beads represents 100, a cube of one thou-
sand beads represents 1000. In this representation 7777 is a very tactile concept; 
there are 7777 beads to touch. Children take the next step in the progression to 
abstraction with the “stamp game,” color-coded tiles with values 1, 10, 100 or 1000 
imprinted on them. The stamp game is a more abstract representation of place value 
than the golden beads because color and numeral, rather than size show the distinc-
tion. In another step towards abstraction, the children represent the abstract numeral 
using color-coded cards whose colors align with the stamp game. The cards with 
7000, 700, 70 and 7 are stacked to make 7777. The next material in the progression 
to abstraction is the “small bead frame,” an abacus consisting of four wires each 
with ten color-coded beads, according to hierarchy. This material is at the abstract 
end of the spectrum because the numerals imprinted on the stamps are gone and the 
restriction of ten beads requires the child to do any exchanging between place  values 
immediately. When children work with number operations there are other materials 
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(not shown in Fig. 13.1) that help students make the transition from concrete under-
standing of algorithms to abstract paper-and-pencil computations. In all of these 
representations the child is learning the same concept of place value. The mathe-
matics itself isn’t getting any more abstract. However, the child’s concept of place 
value makes a gradual progression on a spectrum from concrete to abstract.

13.3  GeoGebra as a Tool to Improve Conceptual 
Understanding

GeoGebra, dynamic mathematics open source software, serves as a tool to create 
Montessori-style activities (think: hands-on, self-correcting) that help students gain 
abstract understanding through concrete work. Part of the power of GeoGebra is 
that information may be entered in any one of three ways: symbolically (in the 
Algebra View using the Input Box), visually (using tools in the Graphics View) or 
numerically (in the Spreadsheet View). GeoGebra automatically provides the other 
representations of that same information, cleverly color-coding matching objects in 
the different representations. Another key aspect is that GeoGebra is dynamic. Once 
dependent objects have been constructed the user can change one part and the rest 
of the objects change in a corresponding manner. All of these aspects of GeoGebra 
work together to provide an experience for students that is hands-on and 
self-correcting.

Fig. 13.1 Progression from concrete to abstract
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13.3.1  Classroom Demonstrations

I began using GeoGebra with classroom demonstrations that I hoped would help 
students understand the ideas behind the mathematics we were exploring. The 
GeoGebra software is used to create GeoGebra applets. While there are many such 
applets available online (GeoGebraTube 2011) for this purpose, I found that writing 
my own applets gave me better intuition about the power of GeoGebra to support 
student learning.

One classroom demonstration supports student solutions of an optimization exer-
cise in first-semester calculus. In the exercise students are asked to maximize the area 
of a rectangle that has its base on the x-axis and its other two vertices above the x-axis 
and lying on the parabola y x= −8 2  (Stewart 2008). As with many optimization 
exercises, the greatest challenge for students is creating the objective function and its 
domain. Figure13.2 shows one visual result from a GeoGebra applet designed to help 
students create the objective function, find the domain of the objective function and 
make sense of their final answer. The applet helps students visualize a concrete sam-
ple rectangle. This aids them in understanding the more abstract general rectangle, 
guiding them next to the discovery that an appropriate expression for the width of the 
rectangle is 2x, and then to an appropriate objective function: A x x x( ) = -( )2 8 2 .  
As the instructor experiments with the dynamic point (x, y), using the mouse to drag 
it up and down the parabola, students can discover that an appropriate domain for the 
objective function is approximately 0 2 8£ £x . . The applet also supports the students’ 

Fig. 13.2 Optimization exercise with GeoGebra
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understanding that the upper endpoint of the domain can be found at an x-intercept 
of the function y x= -8 2 ,  guiding them to the precise domain, 0 8≤ ≤x . After 
students have found the critical number of their objective function and tested that 
their critical number truly maximizes the function, they can make sense of their 
answer when the instructor experiments with the dynamic point (x, y), observing that 
the maximum area of the shaded region is approximately 17.4.

This classroom demonstration helps students begin to see how they can create 
their own objective functions and make sense of their final answers. The dynamic 
nature of GeoGebra plays an important role in helping students progress from 
understanding how to think about optimization problems both concretely (a specific 
rectangle) and more abstractly (a general rectangle).

13.3.2  Student Activities with Instructor-Created Applets

As I created more classroom demonstrations (Tomlinson 2014) and used applets 
created by others, I realized that it was important for students themselves to interact 
with the applets. If the research that validates the Montessori principle of movement 
and cognition (Lillard 2005) is applicable to college students, then students need to 
get their own hands on the applets. Hence I began to develop student activities with 
instructor-created applets that students access through a learning management sys-
tem and use to complete exercises both inside and outside of class.

For example, my differential equations students complete exercises outside of 
class using an applet I developed that illustrates the Euler Approximation Method 

for first order initial value problems of the form 
dy

dx
f x y y x y= ( ) ( ) =, , 0 0  (see 

Fig. 13.3). Students complete exercises in which they experiment with different 
initial value problems, different step sizes and different numbers of steps to get 
approximate solutions. Their exploration helps them see the connection between the 
step size and the number of steps. They can also view either an analytic (in the case 
of an algebraic f(x, y)) or a numerical solution, which allows them to make connec-
tions between their approximate solution and a more precise solution.

It is fairly easy for students to simply memorize the formulas for Euler’s Method: 

x x h y y hf x yn n n n nn+ += = + ( )+1 1, ,,  work exercises from a textbook and correctly 

solve similar exercises on a test without having even a small clue of what they are 
doing and what it means. By having students explore Euler’s Method exercises with 

the GeoGebra applet, they begin to make sense of the “ f x yn n,( ) ” in the formulas 

and understand that it represents the slope of a line segment. One of the reasons that 
a unit on Euler’s Method is included in a differential equations course is to empha-
size that, while many symbolic approaches for solving differential equations are 
studied, it is important to be able to think about differential equations and their 
 solutions graphically and numerically as well. Thinking in all three modes gives 
students better intuition about what it means to solve a differential equation. The 
Euler’s Method applet demonstrates these multiple representations very clearly with 
side-by-side views demonstrating symbolic, visual and numerical representations.

13 A Montessori-Inspired Career in Mathematics Curriculum Development…



188

13.3.3  Student-Created Applets Following Detailed 
Instructions

The third way I use GeoGebra to support student learning is by having students cre-
ate their own applets, outside of class, by following podcast instructions. I provide 
podcasts instead of live instructions because students can make their applets much 
more efficiently if they have the ability to pause and re-start my instructions. Once 
they have created their applets, they bring them to class for exploration to learn 
mathematics.

Figure 13.4 shows visual output from a student-made applet designed to con-
struct the limit definition of the derivative. In GeoGebra, students graph a function, 
create a slider, use their slider to draw a dynamic secant line PQ,  and compute the 
slope of their secant line. Several gains result from having students create the applet 
themselves. Creating the applet gives students a more concrete understanding of 
how the coordinates of the points P and Q arise and where the formula for the slope 
of the secant line comes from. It also helps them understand that for a given point P 
there is a progression of secant lines. So creating an applet helps students gain a 
deeper understanding of the mathematics. In addition, creating their own applet and 
assigning colors of their choice gives students a sense of ownership of the 
knowledge.

In class, students use their sliders to explore the connection between slope of 
secant line and slope of tangent line. They begin to develop the limit definition of 
the derivative in a very concrete, visual way. Students explore the results of moving 
the slider that controls the values of h towards values that are close to 0. This is a 
tactile version of the abstraction lim

h→0
. By working with the slider students make 

connections between the slope of a secant line, average rate of change, slope of a 

Fig. 13.3 Euler approximation method with GeoGebra

K.A. Tomlinson



189

tangent line and instantaneous rate of change. They come to understand, at a very 
concrete level, that

 
" " lim" ."slope of tangent line slope of secant line =

®h 0  

The dynamic aspect of GeoGebra next allows students to easily explore the limit 
definition of the derivative for a variety of functions and points on the functions. 
Through this exploration students progress from the more concrete formula

 

" "slope of secant line =
( ) - ( )
( ) - ( )

y Q y P

x Q x P
 

to the more abstract formula

 
" " .slope of secant line =

+( ) - ( )f x h f x

h  

GeoGebra experiences guide students to combine their rich ideas about the slope of 
the secant line with their rich ideas about limits to develop the limit definition of the 
derivative.

13.3.4  Independently-Generated Student Applets

The last type of GeoGebra module I have developed is one for students in more 
advanced classes to generate applets independent of detailed instructions. An 
example of this type of module is the study of images of lines and circles under 

Fig. 13.4 Rate of change with GeoGebra
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complex mappings in a complex variables course. Working with students who are 
adept at parameterizing lines and circles, I demonstrated how to use GeoGebra to 
make a conjecture about the image of a line or a circle under the complex mapping 
f z z( ) = 2  I followed this by showing the students how to prove those conjectures.

Their out-of-class assignment was to explore the images of circles and lines 
under the inversion mapping: f z z( ) =1 /  by producing their own applets. Students 
create an appropriate slider to use as a parameter (see Fig. 13.5) and then use this 
slider to create a complex number, on a circle or a line (in Fig. 13.5, z eit1 2 0 5= + . ). 
Students use the Trace feature in GeoGebra and the slider to create a line or a circle 
in the complex plane. Next they define the image of the point z1. in the GeoGebra 
Input Box, using the function: z z2 11= /  Using the Trace feature for the point z2. 
students make a conjecture about the image of their line or circle. (In Fig. 13.5 this 

image is the circle centered at 
8

15
0+ i  with radius 

2

15
) In the assignment students 

find images of lines and circles under inversion through this progression: (1) a line 
through the origin of their own choice; (2) circle centered at the origin of their own 
choice; (3) a particular line that doesn’t go through the origin; (4) a particular circle 
not centered at the origin. By experimenting with these lines and circles students 
conjecture that the image under inversion of any line or circle is another line or a 
circle. Working with specific concrete lines and circles, students generalize what 
happens to any line or circle under inversion.

13.4  Writing-to-Learn Mathematics

When I was an undergraduate majoring in mathematics, my very kind physics 
instructor attempted to engage me in some casual conversation by asking what we 
were studying in my advanced calculus class. I was flummoxed. The only answer I 

Fig. 13.5 Complex image of circle z − =2
1

2
 under inversion with GeoGebra
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could seem to provide was something along the lines of “Section 2.5 exercises 3, 11 
and 17.” I knew there were some epsilons and deltas involved. I could complete 
those exercises completely to the satisfaction of my advanced calculus instructor. 
Yet, there was no way I could give a reasonable response like, “We are learning how 
to think about continuity in a rigorous, symbolic way. This sharpens the notion of 
‘arbitrarily close’ that we used for limits in calculus class and opens the door to 
proving theorems about continuous functions.” I was woefully inarticulate about 
what I was learning. Furthermore, I didn’t even know what I could have been doing 
that would help me gain this ability to articulate the mathematics.

As a professor, one lesson I could have taken from this conversation is: “Don’t 
try to make pleasant conversation with your students.” Joking aside, for me the real 
lesson is that if I want my students to learn in a robust way that helps them retain 
knowledge, I need to find ways to encourage them to articulate what they are learn-
ing. By developing writing-to-learn mathematics materials, I help students do this. 
I am also motivated because these activities have the potential to help students 
spend more productive time on task. Part of the beauty of writing-to-learn activities 
is that they can simultaneously help weaker students succeed and provide stronger 
students with a challenge (Meier and Rishel 1998; Sterret 1992).

The writing-to-learn activities that I use require students to reflect on the math-
ematics they are learning in ways that facilitate construction of their own under-
standings. Some writing-to-learn assignments encourage students to verbalize their 
ideas in dialogue with one another and capture that dialogue on paper. Other assign-
ments involve prompts for inner dialogue resulting in deeper mathematics compre-
hension. These writing activities help scaffold understanding in the same way that 
Montessori mathematics materials do for children. While the child in a Montessori 
classroom is progressing from tactile work (concrete) to mental work (abstract), the 
college student is progressing from working practice exercises (concrete) to con-
structing mathematical insights (abstract).

Writing-to-learn assignments differ greatly from proof writing that I explicitly 
teach in some courses (linear algebra, discrete mathematics, etc.) and from report 
writing done at the culmination of a semester-long research project in other courses 
(mathematical modeling, senior capstone, etc.) Descriptions of two types of writing- 
to- learn exercises I developed follow.

13.4.1  Cooperative Guided Reflection

The first involves projects that I call “cooperative guided reflection” (CGR). In these 
projects, students work in teams solving textbook exercises and then use a list of 
prompting questions to guide them in a reflection process. Because CGR is time- 
consuming, typically students will complete only two CGR projects in a semester. 
Thus, I choose topics for CGR carefully. A CGR topic should be challenging for 
students, help students synthesize several ideas, and involve either problem solving 
or strategizing. Here I will describe how CGR has worked for teaching integration 
strategies in a second-semester calculus course.
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After introducing students to a variety of integration techniques (integration by 
parts, substitution, etc.) we have a classroom discussion about strategies for decid-
ing which techniques to use. Previously, I would assign about 20 exercises for stu-
dents to practice with and be done with the topic. To employ CGR, I still assign 20 
exercises, but I ask them to complete additional activities in assigned groups of two 
to four students.

The CGR activities begin with teams of students selecting eight of their 20 inte-
gral exercises and creating two integral exercises of their own according to definite 
guidelines. For example, they must make sure that, broadly speaking, their ten inte-
grals show all of the integration techniques we have studied. They must make sure 
that they have an integral whose solution requires more than one technique. I pro-
vide significant support as students create their own integrals. I give them sugges-
tions that include thinking about the inverse relationship between differentiation 
and integration, deciding on their technique before they create the integral, and 
making a variation on an integral from their textbook. They are also expected to 
check their answers to the integrals they create using technology such as GeoGebra 
or WolframAlpha®.

The next part of the CGR activities is to reflect on and analyze their ten integrals. 
They complete a grid in which I list the techniques and they supply a corresponding 
integral with some verbal explanation to help classify their work. In the last part of 
the guided reflection, they respond to three prompts asking them to reflect on one 
integral, one technique and one strategy. The prompts include questions about what 
they find interesting, how making mistakes helps them learn, and how their decision 
process works. The writing may be considered informal as students are exploring 
the way they think about the mathematics in addition to analyzing the mathematics 
itself. Teamwork promotes student dialog that informs the written reflections.

From the point of view of Bloom’s Taxonomy and Webb’s Depth of Knowledge 
(DOK), CGR activities provide higher cognitive demand to students than simply 
working integration exercises (Hess et al. 2009; Webb 2006). With enough practice, 
a single integration technique requires low cognitive demand, not much more than 
recalling and organizing (DOK levels one and two, respectively). Strategizing about 
which technique to use and using multiple techniques to complete an integral 
requires higher cognition, as students learn to make decisions and revisions in their 
integration techniques (DOK level three). CGR activities engage students in the 
highest cognitive demand, because they extend their thinking, by creating their own 
integrals and analyzing their integral exercises (DOK level four).

13.4.2  Journaling

The other type of writing-to-learn exercise I have implemented is journaling in the 
introductory differential equations class. Although the value of mathematics journ-
aling has been written about extensively (Meier and Rishel 1998; Sterret 1992), in 
my experience it is not a common practice at the college level. Undoubtedly, this is 
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because it can be time-consuming for students and instructors alike. So rather than 
explain journaling in detail, I will describe how I made this activity manageable 
both for myself and my students.

In my class, students submit ten journal entries with homework sets. I provide 
overall guidelines along with some general writing ideas for them. General writing 
ideas include open-ended instructions to summarize a section of the textbook and to 
connect differential equations with other disciplines. In the guidelines, I describe 
the purpose of their journaling: to learn by exploring, organizing and synthesizing 
mathematical ideas. In addition to such general writing ideas, with each homework 
set I provide two or three content-specific prompts from which students can choose 
(Farlow 1994). Although some instructors have used mathematics journals to 
explore the affective realm, I emphasize that their journal is not a place to discuss 
course mechanics or exam results, that students are expected to confer with me 
about such concerns.

Scoring for the journals is based on complete, thoughtful entries. Mostly stu-
dents get full credit, saving instructor time. I take time to provide positive feedback 
that emphasizes students’ best ideas. I also provide corrections for misconceptions 
or mistakes. When it is clear that students have put thought into their entries, I do 
not deduct points for such errors.

Both CGR and journaling reveal student thinking and confusion that can become 
prompts for classroom discourse. The first time I used CGR with the Integration 
Strategy topic, I had no idea that students conflated integration technique with inte-
gration strategy. Groups of students wrote that technique and strategy were two 
words for the same thing. Our subsequent in-class conversation helped them begin 
to distinguish between when they were using a technique and when they were mak-
ing a decision about what technique to use next. I often share some of the best stu-
dent writing with the entire class by displaying it on a document camera. This 
provides students with models for how to reflect on mathematics and how to articu-
late their thoughts. One of the most illuminating student journal entries stated, “I 
can do all of the assigned exercises, but I don’t really understand it well enough to 
journal about it yet.” In the absence of the journaling activity, students may equate 
working routine homework exercises with truly understanding mathematics. This 
student realized that he needed to do some more thinking, reflecting, or talking to 
make complete sense of what we were learning.

13.5  Flipped or Blended Learning

13.5.1  Principles and Goals of Blended Learning

Some of my most recent curriculum work involves implementing flipped or blended 
learning, as a way to improve interactive engagement during class time. Interactive 
engagement teaching methods involve activities that yield immediate feedback 
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through discussion with peers or instructors (Epstein 2013). Primarily, the term 
flipped refers to a flip between learning from lectures in class and then practicing at 
home to learning from lectures at home and practicing in class with instructor sup-
port. In my classes, this means using technology (video lessons) so that students see 
ideas at home and then work on exercises in groups in class. A second interpretation 
of the term flipped is that it is a flip between the classroom activities being centered 
on the teacher to being centered on the student activity. The term blended means 
that there is a mix between a flipped classroom and the more traditional approach. 
For me, blended learning always involves some practice exercises at home.

There are many pointers guiding us in the direction of interactive engagement 
teaching methods, from Montessori’s focus on student-centered learning to work by 
science colleagues to incorporate more active learning in their classrooms (Freeman 
et al. 2014). Research on the Calculus Concept Inventory (CCI) is especially com-
pelling. The CCI is a way to measure students’ conceptual (but not necessarily 
procedural) understanding of calculus. Researchers found that students in US col-
leges did very poorly on CCI and that none of the following had an effect on CCI 
score: class size, instructor experience, time spent in class, student preparation at 
entrance. However, interactive engagement teaching methods did improve student 
performance on CCI (Epstein 2013). A national study of calculus instruction also 
points toward the efficacy of active learning (Bressoud et al. 2015).

Thinking about using flipped learning to help students who were not succeeding 
in my classes led me to Bergman and Sams’ (2012) delineation of three types of 
students who do poorly in school. There are students whose time is over-extended; 
many of my students work more than 20 h per week, while taking a full load of chal-
lenging coursework. There are students who have an insufficient background. (This 
is my personal favorite excuse for students doing poorly in my classes, since it takes 
the onus off of me.) Helping students who need to fill in missing gaps is a significant 
part of my teaching. The third kind of student Bergman and Sams identified as 
“playing school.” These students come to class, but don't want to learn, aren’t trying 
to learn, and are instead really just trying to figure out how to get a certain grade, by 
doing the least amount of work possible. It never occurs to them that learning is in 
their own best interest. Bergmann and Sams argued that they are able to reach all 
three types of students through flipped learning. As I design materials to implement 
flipped learning, I keep these three kinds of students in mind along with the students 
who have great success in more traditional college learning environments.

When I began to implement flipped learning I had already been creating online 
video content (accessible through a learning management system), in the form of 
annotated notes, to support my students as they worked on homework exercises. 
Students appreciated hearing my voice helping them work an assigned exercise, 
emphasizing the ways I wanted them to think about various aspects of the work. My 
strongest students used them occasionally; I could see real gains for students who 
were underprepared. But students who were very busy or who were “playing school” 
were not benefiting.
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13.5.2  Blended Learning in Calculus I

With flipped or blended learning, some of the lessons are provided to students 
before class. This frees up class time to support students as they interact with the 
material, helping diverse learners. This is how the flip worked for me in a first- 
semester calculus unit on areas. Students were assigned four 5-min podcasts to 
watch before class. In the video lessons, I explained the general ideas and demon-
strated two examples. Students were expected to take notes and be prepared to show 
them to me at the beginning of class.

When students came to class I distributed a packet of exercises consisting of the 
same examples I had worked on the chalkboard when teaching this unit in a more 
traditional format. Students worked on the packet with each other using their notes 
from the podcasts. Students who had not watched the podcasts (or not taken notes) 
moved next to a classmate with notes. This arrangement worked well because most 
students had notes (knowing that there were points associated with them) but those 
who didn’t still had a way to be fully engaged. I began to circulate around the room, 
checking podcast notes and talking to students. Every few minutes I took a break to 
write down some solutions, projected onto the document camera. This gave students 
a way to check their work and also kept them on task. A few times, I paused the 
class work briefly to direct a whole group discussion, addressing an idea that had 
arisen. As I circulated through the room, I answered individual questions about both 
the video lessons and the packet of exercises, many of which I would have been 
unlikely to hear in my more traditional format. I had a personal interaction with 
each one of my 32 students that day.

There was one student in my class who I knew led a very busy life and who had 
also missed some class days because of illness. When I checked in with her during 
class that day, she said, “I’m doing fine with areas, but I am still having problems 
with integration by substitution,” the topic we had been working with the previous 
week. Normally, I might have asked her to come to my office hours (which was 
unlikely to actually happen because of her schedule). In the flipped format, I could 
see that everyone was on task with areas, so I had time to address her questions 
immediately.

For me, flipped or blended learning is a way to lower the number of students 
who do poorly in my classes, while maintaining high learning expectations. It is a 
way to help all students become engaged with and committed to mathematics. 
There is one major drawback: the amount of instructor time required to prepare 
video lessons and in-class activities. I did not use materials that others have posted 
on the internet, because I believe I can create a video lesson in less time than I can 
find a suitable version online and because of recommendations about students’ 
need to connect with their instructor (Moore et al. 2014). With flipped or blended 
learning, I have more meaningful interaction with my students, the most pleasur-
able part of teaching.
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13.6  Career Trajectory

My career has been fueled by passions for mathematics and for social justice. I started 
as a researcher in partial differential equations, investigating questions about the heat 
equation with space variables that are complex. While I have had a lifelong interest 
in political, social and economic equality for all, I didn’t originally see this as part of 
my career. However, when my campus was looking for someone to lead our Women’s 
Studies Program, I saw a way to realize my passion for social justice and I took the 
opportunity to take my career on a brief excursion. As Director of Women’s Studies, 
I taught women’s studies courses and coordinated women’s studies programming 
with faculty from a wide array of disciplines. This work led me to the epiphany that 
mathematics education is a social justice issue. By creating high- quality mathematics 
classrooms that spark curiosity and foster long-term interest in mathematics, we are 
helping to create equal access to our economy (Halpern et al. 2007).

The next detour in my career path was motivated by the birth of my children, 
leading me to a study of Maria Montessori’s idea that the most effective education 
is supported by materials and activities that are hands-on, self-directed, self- 
correcting and self-chosen. I became an advocate for Montessori education, pre-
senting to community groups and serving on school committees. Through 
grant-funded work with the College of Education on my campus and volunteering 
in local schools, I work to bring Montessori mathematics into mainstream class-
rooms. Eventually, I began using Montessori’s ideas in my own college mathemat-
ics classrooms.

The opportunity to do mathematics education research presented itself when I 
participated in a regional scholarship of teaching and learning (SoTL) in mathemat-
ics workshop. I completed a project addressing the question of how a cooperative 
guided reflection (CGR) activity in first-semester calculus improved problem- 
solving skills by doing a literature review, a quasi-experiment, student surveys 
about problem-solving, and an analysis of student work. I found that there was a 
positive impact, qualitatively, on students’ mathematical belief systems, as well as 
quantitatively, on students’ ability to solve optimization problems (Tomlinson 
2008). This gave me impetus to continue experimenting with CGR.

Another important aspect of my career has been coaching 19 successful mathe-
matical modeling teams. It is a joy to help these students develop skills in mathe-
matics, internet research, teamwork, mathematical technology, and technical 
writing. Working closely with these students informs my thinking about how to 
create instructional materials for students at their level.

When GeoGebra, became available, it was a perfect fit, providing another way to 
implement Montessori principles. The fact that GeoGebra is open source was espe-
cially attractive to me because it means that everyone has access. As we are learning 
more about the importance of interactive engagement classrooms and flipped learn-
ing, I am creating curriculum materials to implement these pedagogies as well.
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Regular exchange of ideas with colleagues has been key to my success and my 
continued energy for creating instructional materials. This takes many forms: infor-
mal comparison of topic treatment with colleagues in my department who teach the 
same courses I am teaching, formal discussions with faculty in science departments 
about how mathematics courses support their work, participation in grant-funded 
work with colleagues in Teacher Education, and discussions with colleagues outside 
of my campus at conferences.

My work has been well received on my campus. Any work that improves student 
engagement usually results in improved retention and recruitment—priorities at 
most colleges and universities. I have given faculty development presentations on 
GeoGebra for adjunct and regular faculty, and served as the contact person for peo-
ple with technology and pedagogy questions about this software. This has been 
appreciated by faculty and administrators alike. I have accepted invitations to lead 
GeoGebra workshops for faculty at a local high school and a regional two-year col-
lege. Survey responses of students on my work with flipped pedagogy are very 
positive.

My career has gradually shifted from esoteric, but definitive, questions about 
partial differential equations to broad-reaching, but nebulous questions about better 
ways to teach mathematics. It is a comfort to start with a mathematical premise, 
logically arrive at a conclusion and know that this work is entirely repeatable. On 
the other hand, it is exciting to create materials that help at least some students 
become committed and engaged in mathematics, even if we cannot always be cer-
tain that the same materials will work for a different instructor or a different set of 
students.

In the next phase of my career, I am learning how to provide leadership to an 
academic department of nine tenure-track faculty and 11 other instructional staff 
members as I begin to serve as chair. While I continue my work developing instruc-
tional materials, I am taking on a greater role promoting high-impact mathematics 
education practices in my department. I believe that this focus will, over time, 
strengthen my department by making our graduates more employable and attracting 
more students to our programs. I have started this emphasis by using our curriculum 
review process as a way to share research results from mathematics education 
among my faculty. I am learning that through internal grants and personnel pro-
cesses, I have new opportunities to encourage my faculty to pursue work that 
improves mathematics education in all of our classrooms.
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    Chapter 14   
 “The Wild Side of Math”: Experimenting 
with Group Theory                     

     Ellen     J.     Maycock    

    Abstract     Group theory has traditionally been taught to mathematics majors using 
the “theorem-proof-example” format. Although this method of presentation is satis-
fying to a mathematician, many students have diffi culty learning the concepts of 
group theory this way. More than 20 years ago, I transformed my abstract algebra 
classroom into an active learning environment by using the software package 
 Exploring Small Groups.  In this chapter, I describe my approach, illustrating it with 
a specifi c example, and discuss its impact on my students, my career and other 
mathematicians.  

  Keywords     Group theory   •   Teaching with technology   •   Inquiry-based learning   
•   Computer laboratories  

14.1          Introduction   

 In the spring of 1990, I obtained the  software   package  Exploring Small Groups 
(ESG)     (Geissinger,  1989 ) to use for demonstration purposes in my  abstract algebra      
course at DePauw University. One day, in the midst of trying to explain the  com-
mutator subgroup   to my class, I stopped and sent the students to the computer lab to 
try to generate some  conjectures   about commutator subgroups using  ESG . The next 
day, they brought their conjectures to class. I picked three promising ones and asked 
my students to prove or disprove them for homework. One student raised her hand 
and said, "How can we do this? We don't know whether they are true or not!" I real-
ized then that there was something terribly wrong—not with the student, but with 
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how I was teaching the material. After that experience, I changed how I structured 
the class: I incorporated a weekly computer lab so that students could construct 
some of the basic structures of group theory using   ESG   . The addition of a lab com-
ponent changed the dynamics of the classroom, allowing students to participate 
more fully in the course. 

 This chapter details my experiences teaching group theory with a  computer labo-
ratory   component. The materials that I developed were eventually compiled into a 
lab manual that I published with the Mathematical Association of America (Parker 
 1996 ). I explain the rationale for using such an approach and describe specifi c 
details of one lab session. I also discuss the success of this approach, share some 
comments made by students, assess the broader impact of the materials, and describe 
the reactions of  colleagues   in the mathematics  community   to teaching  abstract alge-
bra      this way.  

14.2      Software   

 A major factor for the success of my laboratory component was the  software,  ESG   , 
which was designed as a tool to teach group theory. Key aspects of the software were 
that (1) it was exceptionally easy to use; (2) it had a signifi cant visual component; and 
(3) the answers to queries, such as “what are the subgroups of this group” were not 
given immediately but had to be generated by the students. Other faculty members 
have been successful using a variety of software— ISETL ©    (Dubinsky and Leron 
 1994 ),   Mathematica™    (Hibbard and Levasseur  1999 ),   Group Explorer  ©    (Carter and 
Emmons  2005 ), and  GAP   (Rainbolt and Gallian  2013 ), for example—to teach this 
course. However, I found   ESG    ,  and subsequently   Finite Group Behavior  ( FGB )   
(Webb and Keppelmann,  2000 ), to be especially  appropriate   for beginning students 1 .  

14.3     Basic Approach 

 The idea of teaching abstract mathematical concepts by beginning with concrete 
material is not new. In February 1894, a professor at Dickinson College wrote in 
“Application of the New Education to Differential and  Integral Calculus  ” in the 
 American Mathematical Monthly  (Durell  1894 ):

  The method proceeds from the concrete to the abstract. It gives the student at the outset some-
thing which he can see, make and count, and hence, develops his self activity. He proceeds to 
other ideas not mechanically or under dictation but for the sake of clear realized advantages. 

1   Although the software  ESG  is now obsolete, Bayard Webb, a student of Edward Keppelmann of 
the University of Nevada, Reno, wrote a Windows version of  ESG  entitled  Finite Group Behavior  
(Webb and Keppelmann  2000 ). This  software  is still available and can be used effectively with my 
laboratory materials. My remarks about  ESG  also apply to  FGB  in this chapter. 
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   A century later, I embraced the same approach in my  abstract algebra      class: I 
wanted students to investigate concrete examples and then move to the abstract 
theory. Of course, my ultimate goal was to introduce the basic concepts and con-
structions of group theory. With the laboratories, students could develop an intuitive 
sense of the concepts as they investigated examples generated by hand and with the 
 software  . Conjecture-posing was an excellent way for students to explore the ideas. 
To make  conjectures  , students needed some  understanding   of the nature of the 
mathematical objects under consideration. Developing conceptual  understanding   
and formalizing concepts were done simultaneously in my  abstract algebra      course; 
technology was an aid in the process. 

 Each weekly computer lab was discovery-oriented and had three parts. “Before 
the Lab” contained instructions for some paper-and-pencil work so that the com-
puter’s output would not seem so mysterious. “In the Lab” directed students to work 
in pairs in the  computer laboratory  . One student typed in the   ESG    commands and 
the other recorded the  data  , discussing the questions together as they worked. The 
fi nal step was for each student to individually write a lab  report   and answer the 
questions posed in “Further Work.” These labs appear in detail in Parker ( 1996 ). 

 I now believe that the real learning takes place when students write up their lab 
 reports  . The process of carefully writing their results in complete sentences forces 
students to think in an organized way about what they observed in the computer 
laboratory. At the end of their lab  reports  , students were asked to make  conjectures   
based on the patterns they perceived. Their conjectures sometimes anticipated mate-
rial in the text, often with different phrasing and notation. In the classroom session 
that followed the computer lab, I made sure that the students understood the con-
cepts that they had encountered. Students wrote formal proofs as well as the less 
formal, expository paragraphs in their lab  reports  . Often, in addition to the standard 
material for the course, we worked through proofs of their conjectures.  

14.4      Example: A Laboratory on  Quotient Groups   

 The concept of quotient or factor groups is a diffi cult idea for undergraduate stu-
dents to grasp. How can one explain the idea of creating new groups (distinct from 
subgroups) from the original group? One of my favorite labs took advantage of 
  ESG   ’s use of color to illustrate this concept. 

 The lab on quotient groups usually fell in the middle of the semester. By then, my 
students knew the structure of many small groups of orders 3–16 (see  Appendix ) 
and had constructed the subgroup lattices of these groups. They had also identifi ed 
the center and  commutator subgroup   of each group. 

 In the classroom, we worked together on some of the questions found in “In the 
Lab.” We worked out the example of the group  D   3  , or  symmetries   of an equilateral 
triangle, by hand before the lab. First, we named the elements of  D   3   according to 
their geometrical actions: Rotations were named  r1  and  r2 ; refl ections (mirrors) 
were named  m1, m2  and  m3 . The identity was denoted by 1. The Cayley or group 
table for  D   3   appears in Table  14.1  and the subgroup lattice for  D   3   appears in Fig.  14.1 .
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    Next, we created the right and left  cosets   of the subgroup of order three consist-
ing of the rotations of the triangle, and observed that the set of left cosets is the same 
as the set of right cosets: { 1, r1, r2 } and { m1, m2, m3 }. I then explained the coset 
operation used to multiply two cosets together, and created a Cayley table for the set 
of cosets, shown in Table  14.2 .

   Finally, we tried to do the same construction with the subgroup of order two 
generated by one of the refl ections of the triangle, { 1, m1 } .  The left cosets of { 1, m1 } 
are { 1, m1 } ,  { r1, m3 }, and { r2, m2 }. In this case, the operation on cosets is not well-
defi ned. For example, { r1, m3 } * { r2, m2 } could be either the coset { 1, m1 } or the 
coset { r2, m2 }, depending on the choice of the coset representative. So, of course, 
we were not able to construct the Cayley table for the set of left cosets of { 1, m1 } .  
Alternatively, I showed that the left and right cosets for this subgroup do not agree. 
But it was not easy for the students to understand the concept of a group created 
from cosets from this  presentation  , especially if a student was not comfortable with 
abstract symbolic notation. 

   Table 14.1     Cayley table   for  D   3     

  *    1    r1    r2    m1    m2    m3  

  1    1    r1    r2    m1    m2    m3  
  r1    r1    r2    1    m3    m1    m2  
  r2    r2    1    r1    m2    m3    m1  
  m1    m1    m2    m3    1    r1    r2  
  m2    m2    m3    m1    r2    1    r1  
  m3    m3    m1    m2    r1    r2    1  

D3

{1, r1, r2}

{1, m1} {1, m2} {1, m3}

{1}

  Fig. 14.1    Subgroup lattice for  D   3         

  Table 14.2     Cayley table   for 
the  cosets   of the subgroup 
{ 1 ,  r1, r2 } of  D   3    

 *  { 1, r1, r2 }  { m1, m2, m3 } 

 { 1, r1, r2 }  { 1, r1, r2 }  { m1, m2, m3 } 
 { m1, m2, m3 }  { m1, m2, m3 }  { 1, r1, r2 } 
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 Due to the visual nature of   ESG   , all of this became much clearer in the computer 
lab. Together, the students and I used the  software   to work out the example of  D   4  , 
the  symmetries    of a square   (group 0804 in the Group Library of  ESG ). In Tables  14.3  
and  14.4  and Figs.  14.4 ,  14.5  and  14.6 , element A is the 90 o  rotation of the square; 
B is the 180 o  rotation; C is the 270° rotation; elements D, E, F, and G are refl ections 
of the square. Figure  14.2  shows the Cayley table of  D   4   and Fig.  14.3  shows the 
subgroup lattice of  D   4   .  The screen shots for this example (Figs.  14.2  and  14.4 ) have 
been obtained from  ESG. 

       Using the computer, we constructed the left and right  cosets   for several sub-
groups. In   ESG   , for each subgroup, the elements along the top and the left-hand side 
of the  Cayley table   are rearranged by cosets, and the elements of each coset are 
identifi ed by a color. 

   Table 14.3    The left  cosets   of 
{1, E} in  D   4   with assigned 
colors  

 Left 
coset  Color 

 {1, E}   green  
 {A, F}   red  
 {B, G}   yellow  
 {C, D}   blue  

  Fig. 14.2     Cayley table   for  D   4   ( ESG   image  )       

   Table 14.4    The left  cosets   of 
{1, B} in  D   4   with assigned 
colors  

 Left 
coset  Color 

 {1, B}   green  
 {A, C}   red  
 {D, F}   yellow  
 {E, G}   blue  
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 Figure  14.4  shows the  Cayley table   of  D   4   rearranged by the left cosets of the 
subgroup {1, E} and colored by the assignments in Table  14.3 . The subgroup {1, E} 
is not normal. This can be seen, for example, by noting that  yellow * red  =  blue , if 
we choose B to be the representative of  yellow . But  yellow * red  =  red  if we choose 
G to be the representative of  yellow . Thus, the coset operation is not well-defi ned. 
The non-square blocks of color in Fig.  14.4  illustrate this fact. 

 In the case of a normal subgroup, however, the coset operation is well-defi ned. 
We can see this in the group table for the subgroup {1, B} (the identity and the 180 o  
rotation), shown in Fig.  14.5 , with the coloring described in Table  14.4 . The blocks 
of colored letters form 2 × 2 squares and show the normality of the subgroup {1, B}.

D4

{1,B,D,E} {1,A,B,C} {1,B,F,G}

{1,D} {1,E} {1,B} {1,F} {1,G}

{1}

  Fig. 14.3    Subgroup lattice for  D   4         

  Fig. 14.4     Cayley table   for the left  cosets   of the subgroup {1, E} of  D   4   (  ESG    image)       
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   When “Y” was typed in response to the question “Would you like to see the 
quotient table (Y/N)?”   ESG    displayed the colorful new group created from the 
cosets, as seen in Fig.  14.6 .

   By the time my students were working on this lab, they were familiar with the 
patterns of most of the groups of low order. So it was easy for them to recognize that 
Fig. 14.6  gives the pattern of  Z   2    × Z   2  , or  V , the  Klein Four-Group  . 

 The “In the Lab” section then instructed the students to work through a number 
of different groups, identifying which subgroups of those groups were normal based 
on the evidence of the computer screen. For each normal subgroup, they were asked 
to examine the table for its  cosets   and identify the familiar group that has the same 
 Cayley table  . Frequently, student pairs split up the work so that they could generate 
a larger number of examples. 

 Finally, students had to write up the computer lab in a lab  report   individually. 
The report always included a summary of the  data   obtained from the computer lab 
and the responses to questions in the “Further Work” section of my lab manual. For 
the lab on  quotient groups  , students were directed to come up with several  conjec-
tures   as follows:

    1.    Make at least two conjectures about the kinds of subgroups that always seem to 
be normal in a fi nite group.   

   2.    Make at least two conjectures about the factor groups  D   n   /H , where  D   n   is the 
group of  symmetries   of a regular  n -gon and  H  is either the  commutator subgroup   
or center of  D   n  .    

  Fig. 14.5     Cayley table   for the left  cosets   of the subgroup {1, B} of  D   4   (  ESG    image)       
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  In response to these prompts, students in one of my classes generated these 
conjectures:

•    Every subgroup  H  of a fi nite group  G  which has index 2 in  G  is a normal sub-
group of  G .  

•   The commutator subgroup of any group is normal.  
•   The center of any group is normal.  
•   Let  n  be odd and let  H  be the commutator subgroup of  D   n  . Then  D   n   /H  ≈  Z   2  .  
•   Let  n  be even and let  K  be the commutator subgroup of  D   n  . Then  D   n   /K  ≈  Z   2    × Z   2  .  
•   Let  n  be even and let  C  = { r   0  ,  r   n/2  } (the identity and the 180 o  rotation) be a sub-

group of  D   n  . Then  C  is normal in  D   n   and  D   n   /C  ≈  D   n/2  .    

 Most of these conjectures were actually proposed by more than one student, and 
all were correct. In some cases, the students had enough background to prove the 
conjectures. In other cases, they would have to wait until later in the semester to 
complete the proofs or provide a counterexample. Sometimes we would only be 
able to partially prove a conjecture at the time of the classroom session following 
the lab. As we added to the class’s knowledge base, we would return to the proof to 
complete it.   

14.5     Impact on Students 

 I observed that   ESG    allowed my students to investigate examples more easily, 
because it facilitated computation and enhanced visualization. Instead of working 
through one example with paper and pencil, a student could generate many in an 
hour with the computer and subsequently detect patterns based on the examples. In 

  Fig. 14.6    The  quotient group    D   4  /{1, B} (  ESG    image)       
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comparison to students who had learned  abstract algebra      in my classes before I 
began to use technology, the students whose class had a laboratory component were 
much more able to understand the concepts behind the formalism and the theory. 

 Signifi cantly, the laboratories changed the dynamics of my classrooms. The 
unpredictability of the lab experience meant that I had to be prepared to discard my 
lesson plans for the day and respond to my students’ comments and questions. 
Students felt empowered by their own discoveries and were pleased to discern that 
they had more control of the learning environment. 

 At the end of the fi rst semester of incorporating a substantial laboratory compo-
nent for the  abstract algebra      course at DePauw University, I asked each student to 
respond to the following question: “Please give your overall impressions of the 
laboratory component of this course.” The responses below, from about one-third of 
the students in the class, were representative:

  The laboratories were a  gigantic  help with my  understanding   of the subject matter. The 
thought process involved helped me see the material in a more concrete way. By fi rst writ-
ing the computer’s action out ourselves we could understand what the computer was doing. 
The computer then allowed us to understand higher functions in the group theory and most 
importantly recognize patterns in group theory. 

 I believe the lab was very helpful for letting us see the parallels between many different 
groups. It was something tangible, that did not seem as abstract. This was especially true of 
the  cosets   lab. Being able to see the blocks of color provided an immediate link to the group 
tables that we had already seen. We did discover that our work in the lab made a lot more 
sense if we worked out a few examples by hand fi rst. Otherwise, the computer was just spit-
ting out random combinations of numbers and we did not understand where they were 
coming from. I strongly believe that the lab has greatly increased my  understanding   of this 
class. 

 Overall, I defi nitely think that the lab was a success. It enabled us to examine lots of 
groups through the use of the computer. If we would have had to look at all of these exam-
ples by hand, we would not have had as much evidence to base our many  conjectures   on. 
But with the quick-working computers, we were able to look at numerous groups. We were 
able to see many patterns that would help to solidify our newfound knowledge. More 
importantly, the labs allowed us to break up the normal classroom routine of lecturing and 
notetaking. 

 I’m not quite sure how to react to the labs. In one sense, the topics discussed on the labs 
helped enable me to better deal with the concepts of class. On the other hand, the labs 
sometimes confused and frustrated me. I sometimes could not distinguish between perti-
nent info and busy-work. 

 I myself am truly grateful for the laboratory component. The labs were a tremendous aid 
in helping to understand and gain a grasp of the material. Work on the computers helped to 
make the abstract theory of the course more concrete. It was also a nice alternative to 
straight lecture. One of the best things about the labs was that we formed our own  conjec-
tures   about the patterns we saw. Even though the labs were somewhat “directed”, we still 
had the opportunity to exercise creativity. I believe that the progression of 1) lab, 2) conjec-
ture, 3) class discussion, 4) proof was highly benefi cial in gaining  understanding   of the 
abstract material of the course. 

   A few years later, a group of my students (those who had taken the  abstract alge-
bra      course as well as a geometry course with a laboratory component) participated 
in a taped discussion about creativity in mathematics. They described the frustrating 
and exhilarating experiences of coming up with conjectures and then trying to prove 
them. As one student commented, these experiences were a challenge and an adven-
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ture—and made the rest of the mathematics  curriculum   seem “really boring.” As he 
said, this was the “wild side of math.”  

14.6     Impact on My Career 

 This project provided an excellent opportunity for me to combine classroom teach-
ing with activity in the area of the  scholarship   of teaching and learning—essential 
for me while at an institution with a heavy teaching load but also with expectations 
of scholarly work. I gave at least ten talks on the project in a variety of venues, and 
taught mini-courses using my materials and   ESG    at the 1996 Joint Mathematics 
Meetings (JMM) and at the International Conference on Technology in Collegiate 
Mathematics (1995, 1997, 1998, 1999). Clifton Corzatt of St. Olaf College and I 
received an  NSF   grant (DUE-9554636) to run a conference on using technology to 
teach algebra and  geometry  , held at DePauw University in June, 1996. Allen 
Hibbard of Central College and I co-organized contributed paper sessions on using 
technology to teach  abstract algebra      at the 1997 and 1999 JMM. We co-edited the 
volume  Innovations in Teaching Abstract Algebra  (Hibbard and Maycock  2002 ) 
based on those two paper sessions. Edward Keppelmann of the University of 
Nevada, Reno, and I taught a mini-course at the 2006 JMM using my laboratory 
materials and  FGB . 

 This project was only one part of my efforts to use technology to teach mathe-
matics at the undergraduate level. I had previously participated in the Associated 
Colleges of the Midwest and the Great Lakes College Association calculus reform 
project in the late 1980s and early 1990s, and I was eager to see if some of these 
ideas could be transported to upper-level courses. After the lab manual was com-
pleted, I taught real analysis and modern  geometry   using technology, using 
  Mathematica™    in the former and  Geometer’s Sketchpad   ®   in the latter. I summarized 
my experiences in the online paper “Technology in the Upper-Level Curriculum” 
(Maycock  2002 ). Students who were not  mathematics majors   in the interdisciplin-
ary Honors Scholars program at DePauw University and enrolled in my sophomore- 
level honors seminar were especially grateful for the insights that technology gave 
them in trying to understand abstract mathematical concepts.  

14.7     Reception of this Approach 

 DePauw University was quite supportive of my efforts: I was awarded two course 
remissions during my time at DePauw to work on the laboratories; the completion 
of the lab manual was my sabbatical project during the academic year 1994–1995. 
Since faculty members in my department were always allowed signifi cant indepen-
dence in course design, especially for upper-level courses, I could develop and test 
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the course materials without objections. No  colleagues   in my department, however, 
used my materials. 

 In April, 1994, I was invited to give a talk on my approach to teaching group 
theory at Purdue University, where I received my doctorate. I was unprepared for 
the negative reception that I received from several senior faculty members. One 
particularly hostile questioner asked, “What do you do if the students look in the 
book?” It wasn’t until after the talk that I realized I should have said, “I’d be 
delighted if my students looked in the book!” In fact, it was usually quite diffi cult 
for students to match their  conjectures   to the formal theorems presented in the text-
book. Afterwards, I realized that I was, of course, proposing a dramatically new 
approach to teaching a very abstract and structured course. Another aspect of my 
approach that some faculty members found threatening was that students often 
came up with surprising and unfamiliar conjectures. In those cases, I’d occasionally 
have to say, “I don’t know if they are true,” something that can be diffi cult for a 
faculty member to say to a class. Ultimately, there is a power shift in the classroom 
when student discovery is the focus. Because the feedback that I received from stu-
dents was so positive, I was undeterred by those negative reactions to my laboratory 
approach.  

14.8     Conclusion 

 By the mid-twentieth century, group theory was being presented very abstractly in 
the classroom—a satisfying method for the mathematics professor but challenging 
for students. Many students in a college classroom are not able to learn abstract 
concepts via lectures that follow the “theorem-proof-example” format—they need 
to begin with concrete examples before they can grasp theory. I began to realize that 
my own approach to learning was not the norm and I changed my pedagogy to bet-
ter reach my students. Beginning with examples and then moving to theory, with 
students actively involved in discovery learning, was more successful in my own 
classroom. Not only did my students fi nd that this approach facilitated learning, 
they also had a glimpse of the excitement of mathematics research. Although using 
technology is not necessary for a discovery approach, computer labs made the class 
much more engaging and dynamic. 

 Now, more than two decades after I began experimenting with a laboratory com-
ponent in an  abstract algebra      course, discovery learning or  Inquiry-Based Learning 
(IBL)   has become less threatening and more acceptable to faculty members and 
departments. There are now signifi cant support structures, such as the Academy of 
Inquiry Based Learning (http://www.inquirybasedlearning.org), to aid faculty mem-
bers in the transition to this approach. While IBL may never be universally adopted, 
it is gaining  acceptance   in mathematics classrooms. I hope that the positive recep-
tion that students had to my laboratory approach will encourage other faculty mem-
bers to experiment with a laboratory component in a group theory course.      
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     Appendix: Group Library of   ESG   , Orders 3–16 

 Table A.1 lists all groups in the Group Library of  Exploring Small    Groups   . The 
four- digit codes refer to group tables contained in the  software  . The fi rst two digits 
of the code give the size of the group. Common names are given with most of the 
groups.

   Table A.1    Group Library of  ESG , orders 3–16   

 0301— Z   3   Cyclic  1204— A   4   Alternating Subgroup of  S   4   

 0401— Z   4   Cyclic  1205— Q   6   Dicyclic 
 0402— Z   2   ×  Z   2  ,  Klein Four-Group    V   1301— Z   13   Cyclic 
 0501— Z   5   Cyclic  1401— Z   14   Cyclic 
 0601— Z   6   Cyclic  1402— D   7   Dihedral 
 0602— D   3   Dihedral/ S   3   Symmetric  1501— Z   15   Cyclic 
 0701— Z   7   Cyclic  1601— Z   16   Cyclic 
 0801— Z   8   Cyclic  1602— Z   8   ×  Z   2   
 0802— Z   4   ×  Z   2    1603— Z   4   ×  Z   4   
 0803— Z   2   ×  Z   2   ×  Z   2   Elementary  1604— Z   4   ×  Z   2   ×  Z   2   
 0804— D   4   Dihedral/Octic  1605— Z   2   ×  Z   2   ×  Z   2   ×  Z   2   Elementary 
 0805— Q   4   Dicyclic/Quaternion  1606— D   4   ×  Z   2   
 0901— Z   9   Cyclic  1607— Q   4   ×  Z   2   
 0902— Z   3   ×  Z   3   Elementary  1608—A subgroup of  GL   2   (Z   5   )  
 1001— Z   10   Cyclic  1609—Sylow 2-Sg of  SL   2   (Z   4   )  
 1002— D   5   Dihedral  1610—Semidirect product of  Z   4   by  Z   4   
 1101— Z   11   Cyclic  1611—A subgroup of  GL   2   (Z   5   ) ,  M  
 1201— Z   12   Cyclic  1612— D   8   Dihedral 
 1202— Z   6   ×  Z   2    1613—Sylow 2-Sg of  GL   2   (Z   3   )  
 1203— D   6   Dihedral  1614— Q   8   Dicyclic 
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    Chapter 15   
 A Departmental Change: Professional 
Development Through Curricular Innovation                     

     Steve     Cohen     ,     Bárbara     González-Arévalo     , and     Melanie     Pivarski    

    Abstract     Roosevelt University is a private, comprehensive master’s institution 
with a social justice mission. Faculty are expected to cultivate excellent teaching, 
create signifi cant amounts of research, and perform much service work. It is chal-
lenging to fi nd time for all three when they are approached as distinct tasks. The 
mathematics department has developed creative activities that integrate all of these 
professional responsibilities resulting in a signifi cant change in departmental cul-
ture. Faculty have added large- and small-scale projects to courses. They are now 
working with more students on undergraduate research and have created a venue, 
the Math x-Position, to showcase student work. This was all accomplished by ongo-
ing faculty mentoring, combining teaching and research, and by fostering a safe 
environment for innovation.  
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15.1        The Institution and the Department 

15.1.1     Roosevelt University: Social Justice 

    Roosevelt    University’s    social   justice  mission   began at its founding in 1945, when 
faculty and administrators walked out of Central YMCA College after refusing to 
implement a racial and religious quota system (Weiner  2005 ). Roosevelt is located 
on two campuses, one in downtown Chicago and the other in Schaumburg, Illinois. 
It has a diverse student population in terms of ethnicity and age, including many 
fi rst- generation   students, students from underperforming high schools, ones with 
economic hardships, working students, and students with family responsibilities. 
We work to serve them all. 

 The university aims to inspire students to be active citizens who effect positive 
social change. The Department of Mathematics and Actuarial Science wants stu-
dents to see how mathematical knowledge can help them  understand   quantitative 
aspects of social issues. We motivate mathematical topics through specifi c problems 
that provide a convincing answer to the question, “Why are we learning this?” 
Projects in our courses provide a  communication   component in which students 
explain the problem they are solving as well as how to model it. These projects 
satisfy Roosevelt’s three university-wide learning goals: (1) effective communica-
tion, (2) knowledge of discipline-focused content, and (3) awareness of social jus-
tice and engagement in civic life. 

 Roosevelt has many institutes and centers dedicated to studying societal issues 
such as the Illinois Consortium on Drug Policy and the Mansfi eld Institute for 
Social Justice and Transformation. They connect with students and faculty across 
the university, enhance research, and provide resources for transformational service- 
learning experiences. Historically, our department was not involved with these insti-
tutes, even though many social issues have a quantitative aspect to them and thus 
provide a context for connecting mathematics to the  community  . Recently, our 
Preparation for Industrial Careers in Mathematical Sciences 1  ( PIC Math)      class has 
started to work with both the university’s sustainability committee and the 
Consortium on Drug Policy. 

 Roosevelt supports incorporating social justice and  civic engagement   into 
classes. There are workshops on service learning, a day-long internal conference 
on teaching, and support for local conferences. Roosevelt regularly sends faculty 
to the  Science Education for New Civic Engagements and Responsibilities 

1   PIC Math  is “a Mathematical Association of America and Society for Industrial and Applied 
Mathematics program with support provided by the National Science Foundation  (DMS-1345499). 
It aims to prepare mathematical sciences students for industrial careers by engaging them in 
research problems that come directly from industry. A strong component of PIC Math involves 
students working as a group on a semester-long  undergraduate research  problem from business, 
industry, or government” ( PIC Math   n.d. ). 
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(SENCER)      2  conferences, acts as a local host for some of the regional and national 
conferences, and has many faculty serving as SENCER Leadership Fellows. 
Roosevelt provides internal funds for semester-long research leaves and summer 
grants. 

 The expectation that Roosevelt faculty do research is relatively new. In 1990, the 
university reduced the annual  teaching   load from eight to seven classes and began 
to require scholarly work for  tenure and promotion     . Mathematics research at 
Roosevelt includes peer-reviewed works in the areas of pure and applied mathemat-
ics, as well as  pedagogical research  . In 2004 the teaching load decreased to six 
classes while research expectations increased.  

15.1.2     The Mathematics Department: Background 
and Change 

 For the past several years, the Roosevelt mathematics department has consisted of 
six to eight tenured and tenure-track faculty, two to four lecturers, and a varying 
number of adjunct faculty. The tenure-track faculty consist of one full professor, 
three to fi ve associate professors and one to three assistant professors with back-
grounds in  statistics  ,  fi nancial mathematics  , analysis and  probability  , algebra, and 
mathematical engineering. The department offers Bachelor’s and Master’s degrees 
in mathematics and actuarial science. The actuarial courses are designed and regu-
larly updated to conform to the guidelines of the  Society of Actuaries   (  https://www.
soa.org/     )  and the  Casualty Actuarial Society   (  http://www.casact.org/    ). Mathematics 
courses have more fl exibility in content compared to actuarial ones, but in the past 
they have tended to be taught traditionally. A decade ago, there was little faculty 
 collaboration   on teaching innovations. A couple of senior mathematics faculty were 
on the planning committee for the Chicago Symposium Series (Chicago  2016 ) and 
worked independently on  active learning   in their classrooms. They also collabo-
rated on a project in which  pre-service   mathematics teachers taught a lesson to a 
college developmental mathematics class. Although collaboration was limited, 
there was a  culture   of support for new initiatives. Instructors did not experience any 
signifi cant opposition from either the department or the university when trying new 
things. 

2   SENCER  is the signature program of the National Center for Science and Civic Engagement 
(NCSCE). “SENCER applies the science of learning to the learning of science, all to expand civic 
capacity. SENCER courses and programs connect science, technology, engineering, and mathe-
matics content to critical local, national, and global challenges” (SENCER  n.d. ). NCSCE is a 
“national organization that supports a  community  of teachers and learners. Through grant funding, 
we help educators in and outside the classroom make connections between the content they teach 
and real world issues of civic importance” (NCSCE  n.d. ). 
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 Starting in 2006, there were several retirements and new hires; only three 
current faculty members were in the department a decade ago. In addition to 
replacing the retirees we hired experienced full-time lecturers to concentrate on 
developmental and  general education courses  . These non-tenure-track  faculty   
have contracts that are renewable every 4–5 years. They teach eight courses per 
year and have  signifi cant service expectations. Although they are not expected 
to do research, at Roosevelt they participate in  pedagogical research   activities 
by giving talks at conferences, publishing non-peer-reviewed papers, and writ-
ing grant proposals. 

 As the department changed and grew, faculty brought new ideas. The department 
was open to discussions, allowing instructors to experiment with their teaching. As 
different people began to teach a course, there were natural opportunities for discus-
sions. One of our lecturers introduced an innovative way of teaching  quantitative 
literacy   with applied examples and a group  project  . An NSF-STEP grant funded 
several science and mathematics faculty to attend the annual  SENCER   Summer 
Institute (SSI) (SENCER  n.d. ). The institute provided an orientation for new faculty 
on  active learning  , course development, and civic issues that motivate course con-
tent, which reinforced the importance of teaching excellence, research-based prac-
tices, and creative work in the classroom. The institute gives small implementation 
awards for course development that we used to incorporate semester-long projects 
into  integral calculus   and later into  fi nancial mathematics  . 

 The idea of creating projects spread to other courses. We added mini-projects 
to fi nite mathematics and the honors  statistics   course. Two senior faculty mem-
bers developed a semester-long problem-motivated industrial modeling course 
through the  PIC Math   project (PIC  2016 ). We joined the  Engaging Mathematics   
 project  , 3  redesigning our  college algebra   course into a  fl ipped   format 4  using 
questions that make a connection to Chicago (Engaging Mathematics  n.d. ). Our 
faculty supported each new development, sharing their work and learning from 
each other. 

 With each new experience of adding projects to courses, we gained more infor-
mation about student capabilities and the time required to implement the projects. 
This helped us know when and how to ask for external support and to see how 
incremental change can lead to signifi cant work. The high level of activity offered a 

3   “Funded through the National Science Foundation’s  TUES-II program (DUE-1322883), the 
Engaging Mathematics 3-year initiative aims to signifi cantly increase the use of the  SENCER  
model, and other reformative pedagogies, by a national  community  of mathematics scholars capa-
ble of creating, implementing, and sustaining reforms in mathematics education. Engaging 
Mathematics is an initiative of the NCSCE” (Engaging Mathematics  n.d. ). 
4   “ Flipping the classroom  is a pedagogical strategy that replaces the standard lecture-in-class for-
mat with opportunities for students to review, discuss, and investigate course content with the 
instructor in class. There are many ways in which a classroom can be fl ipped, but the underlying 
premise is that students review lecture materials outside of class and then come to class prepared 
to participate in instructor-guided learning activities” (Hughes  2014 , p. 137). 
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    Table 15.1    Timeline of mathematics courses with an additional pure or applied project component. 
Courses that are primarily in computer science are not included. Unless noted, all listed courses 
continue to incorporate the additional component   

 Pre- 
2009 

  History of Mathematics  : Motivated by a university writing requirement, groups 
create papers and in-class  presentations   on historical topics. 
 Baseball  Statistics  : Groups create papers and in-class presentations analyzing an 
aspect of baseball, such as designing a team with a cost constraint, based on 
predictions of statistical performance. 

 2009   Quantitative Literacy     : Groups create a poster interpreting  data   on a social issue such 
as education, homicide, or obesity. 

 2010  Calculus II: Groups create a semester-long project with a paper and poster on topics 
such as AIDS, the oil spill, population growth, and the Gini index. 
 Math x-Position begins. 
  Differential Equations      and Modeling: Individuals or groups create projects on topics 
such as predator-prey systems, writing papers or creating posters. 
  Number Theory     : Groups present posters on topics such as the golden ratio and the 
Fibonacci sequence. 

 2011   Combinatorics  : Individuals write papers on the Enigma machine and scratch lotto 
games. 
  Financial Mathematics  : Groups complete a semester-long project modeling the 
mortgage crisis, writing a group paper and poster. (Some semesters.) 
 Geometry: Individuals or groups write short papers or posters on a geometric 
application, or create YouTube videos on geometric constructions and map 
projections. (Varies by semester.) 

 2012  Real Analysis: Individuals give oral  presentations   on advanced analysis topics. 
 2013   Abstract Algebra     : Individuals create a portion of a poster on a concrete application of 

a group, ring, fi eld, or monoid such as solving the Rubik’s cube, quaternions in 
computer graphics, card shuffl ing, and Boolean algebra in programming. 
 Finite Mathematics: Individuals write a short paper on their choice of topic, such as 
analyzing poker hands, calculating odds for a game, or applying Venn diagrams or 
least square lines. 
 ANOVA/Experimental Design: Individuals write papers about their experience 
designing, running, and analyzing an experiment. (Some semesters.) 

 2014   College Algebra  : Individuals or small groups apply algebra studying Chicago-themed 
problems on population, homicide rates, temperature, and skyway tolls. 
 Honors Elementary  Statistics  : The entire class collaborates to analyze a dataset, 
presenting their results in a group poster. This course is primarily for non-majors and 
is cross-listed with economics and sociology. 

 2015  Industrial Applications of Mathematics ( PIC Math   course): Groups complete a 
semester-long research project for an  industrial partner  , creating a video and a written 
project  report .  

 Future  Models for Life Contingencies/Actuarial Mathematics I: Project in development. 

real advantage. If a faculty member was off for a semester or left, a robust collection 
of student experiences still occurred. Table  15.1  lists chronologically all the courses 
(from before 2009) into which we have introduced projects and gives some informa-
tion about the project topics and implementation.
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15.2         Our Curricular Work Over the Past Decade 

15.2.1     First Signifi cant Project Experience:  Integral Calculus   

 In 2009,  SENCER   granted us a small sub-award to develop semester-long integral 
 calculus projects   (González-Arévalo and Pivarski  2013 ). The grant provided struc-
ture for our work, a need for accountability, and visibility to different university 
offi ces. We originally planned a  partnership   with a local museum, but we could not 
make that work. Instead of creating a new project, we modifi ed an existing one on 
the spread of HIV/AIDS (Janke  1993 ) to match the backgrounds of our audience of 
mathematics, actuarial science, chemistry, and biology majors. The HIV problem 
requires that students model the HIV problem with a separable  differential equa-
tion     ; solve the differential equation using partial fractions; and derive the logistic 
function. They fi nd  data   sources, fi t real data to the curve, make predictions, and 
assess the strengths and weaknesses of their model. 

 Modifying an existing project was a good choice for our fi rst experience, given 
the number of logistical challenges we were to  encounter  . The planning phase went 
smoothly. We considered the course topics at that time, their ordering, and in-class 
time needed for the project. We divided the project into parts, distributed them 
throughout the semester and removed physics applications to create time for the 
project. We developed and tested  Maple ™ (version 12) worksheets on numerical 
integration and curve fi tting. We arranged for university librarians to talk with our 
class about background research. We felt prepared for the new semester. 

 Unfortunately, a newly installed version of   Maple    (version 13) was incompatible 
with the worksheets we had prepared. As a result, our fi rst computer lab was a disas-
ter. Not only did  Maple  commands that had worked perfectly in the fall not work in 
the spring, but also water literally rained into the classroom from the upstairs biol-
ogy lab. Our labs needed to be revised and run again. We updated the  commands   
and made a list of common programming errors. Students still had problems in 
programming, but it was a good learning experience, and the list of common errors 
helped them troubleshoot each other’s work. 

 Students collected  data   from online sources, such as the Centers for Disease 
Control and Prevention. Reporting techniques changed over the years, and so the 
number of people with HIV/AIDS reported was not consistent; sometimes the 
cumulative number of cases would decrease, even though mathematically it should 
be an increasing function. Although we did not anticipate this, it led to a stronger 
experience for the students. They learned about the diffi culties involved in obtaining 
a consistent dataset. When we created the  Maple  worksheets, we used a small data-
set to fi t a logistic curve. When our students tried it,   Maple    was unable to fi t their 
much larger dataset. Pressed for time, we fi t the curve ourselves and told students 
that this is what an additional collaborator would do. In future semesters, students 
estimated the infl ection point and carrying capacity from the data to fi t the  curve  . At 
the end of the semester, students presented group posters at the university-wide 
Science Research Day and wrote group papers. 
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 Students left the class with a substantial modeling experience, which acted as a 
 capstone   mathematics experience for many of the science majors. We expected stu-
dents to learn about  differential equations     , models, and integration techniques. We 
did not anticipate they would gain so much insight into the limitations involved in 
datasets. There is an expectation that computers can magically solve everything, 
and our students saw that this was not the case. As a condition of our sub-award, 
students self-reported their learning gains via an anonymous online survey, the 
 Student Assessment of Learning Gains (SALG)      instrument (SALG  n.d. ). Only 
seven out of about 30 responded, but their description of their learning gains mir-
rored our impressions. They enjoyed the integration of biology and mathematics, 
and they appreciated the need to go beyond mathematical knowledge to create a 
model. All of the survey respondents felt that the use of a real-world issue signifi -
cantly helped their  learning  . 

 We left with many ideas about how to modify the class and improve the experi-
ence. Students were capable of more than we anticipated; their work demonstrated 
a signifi cant level of  understanding  . It was energizing!  

15.2.2     Developing a Problem-Based Course 

 After implementing successful project experiences in a number of courses 
(Table  15.1 ), our department wanted to create a  capstone   experience for our majors 
that incorporated the university’s interest in transformational learning. The  PIC 
Math   project was ideal. Teams of students in the class analyze real  data   from an 
 industrial partner   and create a useful solution to a problem. The problem drives the 
course content, with students  learning   mathematical and statistical techniques to 
model their specifi c situation. Students communicate mathematics by writing a 
project  report   and creating a video explaining their work. 

 We found two willing faculty members with complementary interests to apply 
for training and team-teach the class. One is a senior faculty member and an engi-
neer who teaches advanced  statistics   courses; he was a natural fi t for the potential 
statistical content. The other had experience working with students in  history of 
mathematics  ,  geometry  , and  calculus   group projects, as well as grant experience. 
We were accepted into the  PIC Math   program. 

 The grant supported one instructor’s travel to a 3-day program orientation and 
one student’s travel to present at the Mathematical Association of America’s (MAA) 
summer meeting ( MathFest  ). It also provided an external structure for the course, 
with deadlines for papers and videos. In applying for the grant, it was important that 
our institution made a commitment to offering the course, so we could plan the class 
without fear of a last-minute cancellation. As the semester began, the class had 13 
students teleconferencing between the university’s two campuses. 

 One group of students worked with a  PIC Math  -provided  industrial partner   to 
model Ebola and the strategic location of treatment centers. We found a second 
industrial partner when an alumnus connected us with a biology professor who 
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knew a  Field Museum   scientist with an interesting dataset. The  Field Museum   has 
a Zooniverse project that crowd-sources measurements of microscopic plants 
(MicroPlants  2016 ). Our  PIC Math   students analyzed the data’s reliability. One stu-
dent presented a poster on his group’s microplant work at  MathFest  . His project 
experience made him feel more confi dent at his summer internship at a market 
research company. 

 In Spring 2016 three projects occurred in the class, each with a compelling social 
component: preservation of species, responsible energy use, and access to drug 
treatment. Each had a challenging mathematical component as well:  data   mining, 
weather and energy use modeling, and regression analysis.  

15.2.3     Student  Research   

 Historically,  undergraduate research   was rare in our department. Our work with the 
 calculus projects   helped to stimulate it. We discussed how to employ students to 
research calculus projects and independently wrote two different job descriptions 
for research positions. In one, students would investigate qualitative research meth-
ods for measuring the effectiveness of new course components. In the other, stu-
dents would study the different types of  calculus projects  , identify mathematical 
concepts and how they fi t into the calculus curriculum, and, time-permitting, create 
a project for use in the calculus course. These two different job descriptions paved 
the way for students to do a literature search from educational and mathematical 
perspectives during the spring semester. During the summer students began to 
develop their own calculus projects for use in our classes. Each new batch of student 
 researchers   learned from the previous student researchers’ work and projects used 
in class. They drew upon their recent student experiences for insights that eluded us. 
This helped us to improve as teachers. We were able to fund student research 
through an NSF-STEP grant during the summer and the honors program throughout 
the entire year. 

 We gained the personal experience and confi dence we needed to expand into 
other forms of undergraduate research. Some students who began designing  calcu-
lus projects   then branched out into projects with more mathematical depth. Our 
main diffi culty was that some students prioritized outside work commitments over 
their research time; this could be mitigated by paying students by the hour rather 
than in a lump sum. Regardless, the overall outcome was good; most student  proj-
ects   progressed to a reasonable point. We used two student projects in class, and 
others became honors theses and internal and external student talks. The students 
who designed the  calculus projects   were excited to see other students make direct 
use of their work. Our work has affected about a dozen student  researchers  , approxi-
mately 100 students in courses with projects, and around 200 audience members in 
student talks and poster sessions. Although these student research experiences dif-
fered from a traditional form, they allowed students to gain  communication   and 
organizational skills, self-motivation, and mathematical breadth and depth.  
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15.2.4     Student Research Day: Math x- Position      

 We wanted an internal venue for students to present mathematical work. We had 
worked with the science faculty on a combined research day and learned the plan-
ning process. In 2010, we created the Math x-Position; this pun emphasizes that it 
is a conference for everyone, majors and non-majors alike. The day-long event con-
sists of a student poster session, student research talks, a career panel, a keynote 
address, and some mathematical games and puzzles. Having applied projects in our 
courses helped to build both content and an audience. The bulk of the poster session 
comes from the projects in  integral calculus   and  quantitative literacy        . Our student 
speakers come from independent studies, student research, summer Research 
Experiences for  Undergraduates  , the  PIC Math   course, and internships. When stu-
dents see others present their work, they start thinking about trying to do their own 
research project. 

 Faculty who teach advanced courses, such as  number theory      and  differential 
equations     , took advantage of the dedicated  mathematics      venue by adding a poster 
component to their courses. This event required a signifi cant amount of faculty ser-
vice activity; they arranged for speakers, catering, marketing, attendee registration, 
room arrangements, funding, and poster printing. 

 Math x-Position makes our students’ work  public  , demonstrating the broad 
appeal of mathematics to university leaders. When we initiated this event, our  dean  , 
provost, and president all came from the humanities and the arts and had little per-
sonal experience with mathematics. They were pleasantly surprised by how well the 
students communicated about mathematics and that non-majors came willingly to a 
math-themed event. Seeing the students explain their work publicly gave our admin-
istrators an increased  appreciation      for our students’ and our department’s efforts.   

15.3     Mentoring Faculty in a Changing Environment 

15.3.1     Faculty Challenges 

  At Roosevelt,    new faculty members have a range of responsibilities: prepare new 
classes, advise students, perform service activities, and develop a research program 
beyond their thesis. Over a 6-year period, faculty must demonstrate growth in all 
areas. The transition from a doctoral program to one focused on teaching under-
graduates and master’s students can be challenging. In graduate school, one devel-
ops the ability to explain high-level mathematics to other mathematicians, who 
already know the importance of mathematical research and that conference atten-
dance is essential for developing collaborations and new research ideas. At a teach-
ing university, colleagues from other departments, typically from outside the STEM 
fi elds, decide who receives internal grants. Mathematics faculty must be able to 
explain the utility of mathematics and the importance of their own research. 
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 Experienced faculty members have a different set of challenges. After earning 
tenure, faculty no longer have an urgent, external motivator. Until recently, in our 
own institution, full professorship was diffi cult to attain and provided little reward. 
It can be easy to develop a sense of inertia, continuing to teach courses without 
updating them. It was common for faculty members to always teach the same 
courses, with no opportunity to collaborate with peers teaching the same course. 
This practice was suitable for our pre-1990s institutional culture, when mathematics 
faculty had no research expectation. With new demands, senior faculty needed some 
kind of supportive structure to restart their research programs. Most external  fund-
ing   programs are geared towards early career faculty. Internally, travel was only 
funded once there were results to present. Summer research funding and research 
leaves required an already active research program.  

15.3.2     Integrating Teaching and Research 

 While improving student experiences is our main  motivation      for integrating projects 
into the mathematics  curriculum  , these projects also provide natural opportunities 
for scholarly work in the  scholarship of teaching and learning (SoTL)  . 5  During the 
transition period when there were no senior research mentors and no support, fac-
ulty relied on themselves or connections with  colleagues   from other universities. At 
the university level, faculty decided that  pedagogical research   was as valuable as 
content-based research. Faculty also explored research as a way to contribute to the 
broader metropolitan  community  , and  SENCER   presented a natural connection by 
bringing  civic engagement   into science and mathematics classes. The sciences sent 
several faculty members to SSI, resulting in the creation of new and redesigned 
courses for their students (Kim and Szpunar  2010 ; Wentz-Hunter  2009 ). This 
inspired the mathematics department to use SSI as an orientation program, engaging 
faculty in curricular innovation work from the outset. 

 SSI provided a structure for faculty who had not previously done  pedagogical 
research  . The institute held workshops on how to use, modify, and access  data   from 
the  SALG   survey. Our science peers shared their successful grant application and 
 Institutional Review Board (IRB)      paperwork, which helped us to complete our own. 
This was our fi rst direct experience with securing IRB approval. Using the  SALG   
survey gave us a sense of what we could expect from a survey; even in a good 
semester, the response rate was about 20 %. Survey information was different from 
mathematics research; it did not tell us about the entire class, but we could get some 
information about student impressions. We began to think about what we wanted to 
study, and how we could get reasonable  data   for it. 

5   SoTL  is the intellectual work that faculty members do when they use their disciplinary knowledge 
(in our case, mathematics) to investigate a question about their students’  learning  (and their teach-
ing), submit their fi ndings to  peer review , and make them  public  for others to build upon (Dewar 
and Bennett  2015 ). 
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 We submitted a project  report   about our  integral calculus   redesign to a  SENCER   
journal (González-Arévalo and Pivarski  2013 ), and we learned from the refereeing 
process. Next, we studied the impact of projects on the students who were project 
designers as well as on students who were tutors for the calculus class. Given the 
small number of these students, a qualitative study was most appropriate. We 
learned about qualitative research from a workshop at SSI and discussions with 
psychology  colleagues  . We learned about coding, designed a series of interview 
questions, and received summer support from our provost’s offi ce for a student 
worker to transcribe our interviews. We debated coding categories and worked indi-
vidually, cross-checking for consistency. We presented our work several times 
before writing it up (Cohen et al.  2016 ); the audience questions gave us a sense of 
what interested others. We particularly enjoyed collaborating on these  SENCER   
projects within our university and learning in a more substantive way about the 
outcomes of our work. 

 As we integrated more projects and student  research   into the curriculum, more 
faculty became involved with  pedagogical research  : between 2010 and 2016 six 
 tenured   and tenure-track faculty and two lecturers presented at conferences and 
wrote papers. Recently, fi ve faculty members submitted three papers on calculus 
and  fi nancial mathematics      projects to an MAA volume with a theme of  social jus-
tice   in mathematics in the  Classroom Resource Materials   book series. Three worked 
on a grant with a larger group of mathematics educators in the  Engaging Mathematics   
 project   to redesign our  college algebra   course (Engaging  2016 ). About half of our 
mathematics faculty, including  tenured  , tenure-track, and lecturers, now teach col-
lege algebra in a fl ipped format. They are creating a course manual for wider dis-
semination. As faculty produced  SoTL   research, the amount of content-based 
research required for  tenure and promotion   decreased to a level that was more in 
line with their teaching load. 

 The most satisfying aspect of  pedagogical research   is the potential to bring 
immediate value to students. By adding applied components to courses, we gener-
ated examples of how mathematics is used at all levels. This helped us provide 
memorable experiences, tie course content to broader societal issues, and give ben-
efi cial career advice to  mathematics majors  . As an added benefi t, these applied proj-
ects help us justify internal funding for mathematics research.  

15.3.3     Creating a Safe Environment for Innovation 

 Much has been written about how student attitudes can affect their learning. They 
benefi t when they realize that skills can be developed and occasional failure can 
help them grow (Kooken et al.  2015 ). We found that this also applies to teaching 
innovation. We overcome challenges, in part, by  mentoring   one another. We rotate 
courses, so both new and experienced faculty can collaborate with a teaching 
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partner. We share project and computer activities. Monthly departmental seminars 
provide a low-stakes opportunity to speak about  SoTL   or pure and applied math-
ematics research; having an audience provides  motivation  . 

 Our department encourages groups of faculty to attend professional development 
workshops such as the regional  SENCER   meetings and the Chicago Symposium 
Series. Groups of faculty attend, hear and present talks, gain new ideas, and refi ne 
old ones. We discuss with one another how we can improve our courses, and we 
discuss our curriculum and  teaching practices   in our department meetings. We go to 
longer conferences such as SSI,  MathFest  , and the Joint Mathematics Meetings; 
these act as teaching retreats. New faculty members are encouraged to apply to the 
national and regional New Experiences in Teaching project ( Project NExT  ); this 
experience provides a valuable disciplinary peer network for them and fosters their 
professional development. 

 The senior lecturers lead our developmental and general education mathematics 
programs. They present at conferences dedicated to these areas and to helping under-
prepared students. Their work is supported by our department, the dean’s offi ce and 
the provost’s offi ce, enabling them to act confi dently and decisively even without the 
protection of  tenure  . We work as peers with them to improve our curriculum. Our 
non-tenure-track  faculty   hold a meeting each semester where all faculty, including 
adjuncts, discuss our developmental mathematics courses and how to improve them. 
As a result, we regularly update the topics in our developmental mathematics course. 
We chat informally throughout the semester about teaching, and all full- time faculty 
take turns observing each other’s classes as formative evaluation. 

 As a department, we consider many factors when evaluating teaching. We do 
not rely exclusively on numerical course evaluations to determine the quality of 
an instructor. Evaluation numbers can be infl uenced by student bias (Boring 
et al.  2016 ). When a faculty member has low ratings, we do peer observations to 
see how the course is going. In these, the observers comment on what happened 
in the classroom, what aspects they would like to emulate, and their suggestions 
for improvement. We also look at student comments to learn the nature of their 
concerns. Sometimes, students are uncomfortable with a new format, but signifi -
cant learning is observed to be taking place in the classroom. Their discomfort 
can lead to low evaluation numbers, while the teaching quality is high (Stark and 
Freishtat  2014 ). 

 By talking with our peers about what works and what does not, we create a space 
where risk- taking   is allowed. Everyone understands that there will be bad days. 
Mathematicians are professional problem solvers, so we are able to help fi nd solu-
tions to teaching issues. For example, when faculty felt that there was too little time 
in the  integral calculus   course to treat the material and do a project, we spent time 
discussing the issues involved, such as scheduling, faculty work load, and major 
requirements. Ultimately, we increased the credit hours from four to fi ve. We feel 
comfortable asking each other for assistance, and this openness helps us improve 
our teaching and strengthen our courses.  
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15.3.4     Refl ections: Best Practices for Seeking Departmental 
Change 

 All these experiences and pedagogical experiments promoted a  culture   where  SoTL   
infused all our academic activities: several faculty started publishing mathematics 
education papers. All started incorporating best practices and pedagogical innovations 
into their teaching, and many of these activities added to the service provided to the 
department, the university, and the  community  . While refl ecting on our work, we cre-
ated a list of our best practices for others seeking change in their own department:

    1.    Send groups of faculty to local professional development conferences. These 
are generally inexpensive and easy to travel to. Designate a time, either at the 
conference or soon after for faculty to share their experiences with the 
department.   

   2.    Be aware of the university’s objectives and  mission   and fi nd ways to align goals 
with them.   

   3.    Start small. Short activities and projects are easier to add.   
   4.    Go big. Projects where students have an opportunity to revise after feedback 

can yield strong student work.   
   5.    Make mistakes. Learning from mistakes makes better teachers.   
   6.    Ask for advice. Articulating experiences can help to clarify them. Most people 

like to share expertise, and asking for help can put the focus on problem solving 
rather than criticism.   

   7.    Share examples of things that did not work. One of the best ways to  mentor   
peers is to share experiences. When more experienced faculty share their trou-
bles, it can help to put junior ones at ease.   

   8.    Do not assume agreement. Taking the time to express and listen to others can 
lead to more robust ideas.   

   9.    Use classroom work to motivate student activities outside of class. Collaborative 
projects and classroom activities help students develop friendships, making 
them more likely to attend events and fi eldtrips.   

   10.    Let students help improve teaching. They are useful as researchers and can 
provide a fresh perspective on classes.   

   11.    Make teaching  public   by giving talks about teaching projects at conferences. 
This can help stimulate new ideas, connecting   teaching to  scholarship.    
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    Chapter 16   
 SMP: Building a Community of Women 
in Mathematics                     

     Pamela     A.     Richardson    

    Abstract     On the surface, the Carleton College Summer Mathematics Program for 
Women Undergraduates (SMP) looks like many other summer programs: students 
spend several weeks engaging with mathematics with peers from a variety of insti-
tutions. However, SMP offers both formal and informal mentoring activities that go 
far beyond one summer, providing support to participants through critical stages of 
their mathematical careers. The result is a strong community of successful women 
in mathematics.  

  Keywords     SMP   •   Community   •   Mentoring  

16.1           Introduction      

 In January of 1999, I was a sophomore mathematics major at Bowling Green State 
University. I knew that I loved mathematics, but I had absolutely no idea what I 
wanted to  do  with it. Like many young mathematicians, I didn’t know much about 
mathematical career opportunities outside of high school teaching. I applied to sev-
eral summer programs and was thrilled to be accepted to the  Carleton College 
Summer Mathematics Program (SMP)  . At the time, I didn’t understand the need for 
a women’s program in mathematics; I was mostly just excited to get out of Ohio for 
a few weeks. However, deciding to accept the invitation to SMP was the best deci-
sion that I ever made. Since 1999, I have been involved in SMP in many ways: as a 
mentor, a workshop leader, and an instructor. Each role provided me with experi-
ences that shaped my career.  
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16.2     The Summer Mathematics Program 

 The  Carleton College Summer Mathematics Program   was founded in 1995 by 
Deanna Haunsperger and Stephen Kennedy, faculty members of Carleton College. 
This National-Science-Foundation-funded  program   typically runs from mid-June to 
mid-July and is held on the Carleton College campus in Northfi eld, MN. SMP is 
designed as an intensive mathematical experience: participants take two rigorous 
mathematics courses; attend colloquia, panel discussions and problem-solving ses-
sions; participate in a conference with alumnae of the program; and engage in 
numerous social activities. 

 Each year, the program directors select 18 or 19 young women who have only 
fi nished one or two years of college. To be eligible for the program, students typi-
cally must have taken calculus and  linear algebra  , and they must be “US citizens, 
nationals, or permanent residents” (Summer Mathematics Program  2016 ). The pro-
gram is quite selective, as usually around 120 women apply. Academic merit as well 
as the program’s potential benefi t to the applicant are taken into account. For exam-
ple, SMP participants are frequently chosen from small colleges that do not have 
broad mathematical offerings. The directors hire a staff consisting of two instruc-
tors, two  teaching assistants  , and a program assistant. The instructors are female 
mathematicians selected for their teaching and  mentoring   abilities. The teaching 
assistants are typically alumnae of the program who are currently in graduate school 
in the mathematical sciences, and the program assistants are often alumnae of 
Carleton College. 

 The SMP schedule keeps the participants immersed in mathematics. Class ses-
sions are held Monday through Friday mornings from 8:30 a.m. to 12:00 p.m. 
Courses are designed by the instructors to be accessible to sophomores on a topic 
not usually introduced in the undergraduate curriculum. For example, I taught a 
course on Lie theory that introduces the concept of a Lie group and its associated 
Lie algebra (developed via the tangent space) and exposes students to the quaterni-
ons and octonions, matrix-valued functions,  symmetry  , and even Jordan algebras. 
Other SMP instructors taught courses on coding theory, geometric  topology  , low- 
dimensional dynamics, Morse theory,  p -adic analysis, and supermetric spaces. Most 
courses have an emphasis on mathematical abstraction, preparing students to bridge 
the gap between more computational mathematics courses like calculus and more 
theoretical courses like algebra and analysis. 

 Other formal academic events include semi-weekly colloquia given by dynamic 
female mathematicians with a wide range of specialties. . When I was a student 
participant, SMP colloquia introduced me to exciting mathematical topics like ordi-
nal numbers, knot theory, group automorphisms, cryptography, and the  history of 
mathematics  . At least three panel discussions are held on these topics: opportunities 
for undergraduate mathematics majors (research experiences, study-abroad pro-
grams, conferences, etc.), applying to and surviving graduate school, and career 
options for  mathematics majors  . Each week, an optional but well-attended recre-
ational problem solving session is offered in which participants tackle fun but 
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 challenging problems. Most afternoons and evenings are spent working on homework 
and class projects, seeing instructors during their offi ce hours, and otherwise think-
ing about mathematics. The program has a collaborative nature: the participants are 
encouraged (and often even required) to work together in and out of class. 

 In 2005, the directors added SMPosium, a 3-day reunion conference, to the sum-
mer program schedule. Alumnae of the program who earned doctorates (PhD’s) in 
the mathematical sciences are invited to Carleton to interact with each other and 
with the current participants. The conference program includes research  presenta-
tions   given by the PhD’s as well as discussions on graduate school and career issues. 
More details on SMPosium are provided in Sect.  16.3.3 . 

 SMP integrates scholarly activities and social opportunities. Group dinners are 
held after each colloquium. Friday evenings and Saturdays have scheduled social 
events, including dinners and game nights, as well as outings to area parks, 
Minneapolis, and the Mall of America. All of the students, staff, and visitors engage 
in these events, and by the end of SMP, the program participants know each other 
very well and form a tight-knit community.  

16.3       Mentoring in SMP   

 From the beginning, Haunsperger and Kennedy designed the Carleton Program to 
emphasize support for young women in mathematics. During the summer program, 
staff members immerse themselves in program activities along with the students, 
and signifi cant time is devoted to mentoring. 

 Being an instructor for SMP is an enormous responsibility. Before the program 
begins, each instructor must design a course that introduces specialized mathemat-
ics at a level far below the usual approach to the topic. I fi rst encountered Lie theory 
in my second year of graduate school, when I took several courses on Lie algebras 
and Lie groups. At the graduate level, these courses required fi rm knowledge of 
algebra and differential  topology   that went far beyond anything I learned as an 
undergraduate (and I was lucky enough to take four semesters of algebra and one 
semester of topology at Bowling Green). Since most SMP students have taken nei-
ther  abstract algebra      nor topology, my SMP course clearly required a different 
approach. With assistance from texts by Pollatsek ( 2009 ) and Stillwell ( 2008 ), I 
developed a course that introduced the ideas of Lie theory through methods that 
require only basic knowledge of calculus,  linear algebra  , and complex number sys-
tems. Instructors also have to maintain a delicate balance between challenging the 
students and building their confi dence: an SMP course needs to be challenging, but 
not so diffi cult that the participants leave the program feeling defeated. 

 Teaching is just a small part of the SMP instructor’s job. Outside of the class-
room, the instructors spend a signifi cant amount of time having  conversations  with 
the participants. As an instructor at SMP, I spent every weekday afternoon holding 
offi ce hours. The participants made good use of my offi ce hours, but a typical visit 
did not just focus on class material. The students wanted to chat about practical 
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things like graduate school, courses they might want to take at their home institu-
tions, career options, and research areas. They also stopped by to talk about private 
struggles and triumphs or just to tell me about things that were happening in their 
lives. SMP instructors get to know their students on a deep personal level, which 
allows instructors to give participants individual advice. When asked on the end-of- 
program survey what she liked about SMP, a recent SMPer wrote, “Pam and Erica 
[Flapan] were  fantastic , not just as teachers but as life coaches.” 

 The  teaching assistants  , program assistants, and directors are additional “life 
coaches” to the SMP participants. The teaching assistants probably spend the most 
time with the students, as they live in a dorm with them in addition to helping in class 
and holding offi ce hours. They, too, develop close personal relationships with the stu-
dents. Each week, Haunsperger holds a “Deanna Chat,” a discussion with the partici-
pants and assistants (instructors and visitors are not invited) focusing on the purpose of 
SMP and on how the program is going. When I was a student, I recall Deanna Chat 
being a welcoming and open discussion of anything from frustrations with courses to 
the state of women in mathematics. The numerous social events also provide opportu-
nities for staff members to mentor the participants through informal conversations. 

 In the early years of the program, the program directors, instructors, and  teaching 
assistants   were the primary source of mentoring in SMP. As the SMP community 
grew, Haunsperger and Kennedy realized the potential for other mentoring activities 
and implemented new formal structures for interaction among alumnae. 

16.3.1      Community Resources 

 SMP excels at keeping alumnae connected. Haunsperger sends a semi-annual news-
letter to all members of the SMP community that includes news from all cohorts. 
When an alumna joins a research program, goes to graduate school, gets a job, gets 
married, etc., it is usually recorded in the newsletter. The program also has a Facebook 
group for members of the SMP community. Through this venue, alumnae can post 
questions for the group, suggest programs or conferences that might be of interest, or 
announce personal news. The newsletter and the Facebook group keep the commu-
nity connected and provide mechanisms for tracking the progress of alumnae. 

 The directors gather  data   on other programs in which the alumnae participate. For 
example, lists are maintained of undergraduate research and graduate programs that 
members of the community have attended, including names and email addresses of 
the women who attended each program. These program lists are annually updated and 
distributed to the SMP participants of that year, and they are available to other mem-
bers of the SMP community by request. If someone from SMP is considering a par-
ticular program, she can contact an appropriate SMPer for advice or information. 

 The SMP community also periodically surveys alumnae to collect  data   on life 
and career events. For example, a document lists alumnae in academic jobs who 
have experience with pre- tenure or tenure   reviews, publishing their research, getting 
grants, creative teaching methods, etc. A similar document exists for women in 
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industry jobs, detailing an alumna’s employer and type of position as well as listing 
courses, programs, or training that she found relevant to her job. All alumnae can 
volunteer information on life events like solving a “two-body problem,” having chil-
dren, work-life balance, etc. The survey results are stored in Google Docs so that 
members of the community can update their responses as needed. The  motivation   
for collecting this information is so that members of the SMP community can share 
their experiences. For example, an alumna who is approaching her tenure review 
can contact other SMPers for advice. 

 Maintaining these resources requires absolutely no funding. However, the suc-
cess of these resources relies on the willingness of the community members to par-
ticipate. When an SMPer contacts another to discuss a program or problem, even if 
the two have never met, it is likely that an enthusiastic response will be received. It 
is a testament to the strength of the SMP community that the program alumnae are 
so passionate about supporting their SMP sisters.  

16.3.2     Reunions 

 The SMP family is fortunate to have several opportunities for reunions each year. 
National conferences, notably the Joint Mathematics Meetings (JMM) and 
 MathFest  , provide a natural vehicle for these reunions. Each year at the JMM, 
Haunsperger organizes a reunion for any SMP community members who are attend-
ing the conference. My fi rst SMP reunion at the JMM was in New Orleans in 2001. 
That year, Haunsperger, Kennedy, and a handful of alumnae gathered in a hotel 
lounge to chat. A few years later, there were enough alumnae present at the confer-
ence that this kind of informal gathering was not practical, so the directors  spon-
sored   a dinner at a local restaurant. In 2016, nearly 50 people attended this reunion 
dinner. The reunion dinners allow members of the same SMP class to reconnect and 
provide an opportunity for networking across SMP cohorts. In 2005, for example, I 
was fi nishing my PhD and applying for jobs. At the SMP reunion, I met several 
other SMPers who were either currently on the job market or who had recently 
completed a successful job search. We spent most of the dinner discussing strategies 
for interviewing and for stress management. Exchanging ideas with other women 
was very valuable, and I left the dinner feeling much more confi dent about my 
upcoming interviews. 

 In recent years, members of the SMP community held smaller, regional reunions 
in locations with many SMP alumnae and instructors, such as Los Angeles, 
Minneapolis, and even Budapest. Regional reunions are not funded by the SMP 
grant. Individuals pay for their own meals and any necessary travel expenses, but 
participants value interaction with their SMP family enough to fund themselves. 

 The reunions held by SMP truly strengthen the bond among its members. 
Conversations at SMP dinners do not just focus on career topics; the women share 
all aspects of their lives. Frequently, a dinner attendee can see alumnae passing 
around pictures of their children or hear a passionate discussion about sports. I seek 
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advice from my SMP friends about my interests outside of mathematics, like knitting, 
dog training, and fi lm. These personal interactions help SMPers feel like they are 
indeed part of a supportive family.  

16.3.3      SMPosium 

 The 2005 SMP reunion at JMM inspired the next program innovation. Haunsperger 
and Kennedy described their revelation in an article in  Math Horizons  (2007).

  When we arrived, most of the SMPers were already there, and the natural thing was happen-
ing. They were talking to each other. … We didn’t need to do any introductions; in fact, we 
couldn’t have because no one could talk over the roar of conversation. … We had not fully 
realized, until this dinner in Atlanta, that over the years what we had actually built was an 
incipient community ready to interact, ready to support itself, and it just needed a tiny push 
to get it going full strength. 

   To give the SMP community this “tiny push,” the directors created the SMPosium, 
an annual 3-day reunion conference that occurs during the summer program. 

 The fi rst SMPosium was held in the summer of 2005. That year, the 12 SMP 
alumnae and  teaching assistants   with doctorates were invited, and nine were able to 
attend. The PhDs gave short research talks at a level that was accessible to the SMP 
students, served on panel discussions on graduate school and careers, and had infor-
mal conversations with the participants and with each other. 

 I have attended every SMPosium since the initial conference in 2005, and the 
event has grown signifi cantly. Of course, the number of SMP alumnae with PhDs 
increases each year, so attendance swells. In 2014, 68 alumnae were invited, and 25 
were able to attend. The formal program for the conference also evolved. A recent 
addition is a session only for PhD’s that includes higher-level research talks and 
structured conversations about career and life issues. The current participants and 
alumnae have many opportunities for discussion. Group dinners were held each 
evening, and the entire third day of the conference is devoted to informal social 
interaction. Everyone goes to a local park or beach to canoe, swim, play games, and 
talk to each other. Signifi cant mentoring occurs during the outing: an observer 
would fi nd participants talking to alumnae about what graduate school is like, alum-
nae talking to each other about job issues or favorite teaching methods, and every-
one sharing stories about their mathematical experiences. 

 The students consistently  report   that SMPosium is inspiring. In fact, many men-
tion the conference as their favorite part of the program. When asked for feedback 
about the summer program overall, one student responded as follows:

  SMPosium was absolutely my favorite part. Talking to alumnae about what their careers 
and lives look like had the most impact for me. It helped me to be able to imagine myself in 
their career and see if it would be a good fi t for me. 

   The participants learn a lot of new, exciting mathematics. They learn about the 
struggles the PhD’s faced and know they are not alone in their own struggles. They 
hear multiple perspectives on surviving graduate school, choosing a career, and 
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study abroad programs. Most importantly, though, the participants get to interact 
with women who were once in their shoes and succeeded. 

 The PhD’s also express that SMPosium is an invigorating experience. They, too, 
learn a lot of new, exciting mathematics. They get to meet more members of their 
SMP clan and reunite with some that they already know well. They are enthusiastic 
about sharing their stories and mentoring both the participants and each other.  

16.3.4     Mathematicians in Residence 

 SMPosium is amazing, but it is also very short. The participants and PhD’s have 
only 3 days together, which often means that the students are just starting to get to 
know their role models when it is time to leave. Extending SMPosium is not feasi-
ble, as feeding and housing many guests would be prohibitively expensive. However, 
the directors saw the positive interactions that were occurring during SMPosium 
and sought a way to prolong them. 

 In 2009, Haunsperger and Kennedy invited a few alumnae to try out a new posi-
tion in SMP: the Mathematician in Residence (otherwise known as “MiR”). That 
summer, Jennifer Bowen, Alissa Crans, Katherine Crowley, and I each visited the 
program for 2–3 weeks to act as role models for the participants and show them 
what a mathematician actually  does . During the day, we worked on our research or 
other professional projects while the students were in class or doing homework. We 
went to every program colloquium, panel, and social event, and we worked in the 
same places that the participants did, making ourselves visible and accessible. 

 The participants were a bit shy at fi rst but soon warmed up to us. We found our-
selves answering their questions about graduate school, giving them advice about 
classes to take or programs in which to participate, telling stories from our fi rst jobs, 
and discussing our research with them. We learned about their families, their inter-
ests outside of mathematics, and their favorite parts of their classes. Our presence 
gave the participants an additional friend to talk to when they felt overwhelmed or 
had other concerns. The same interactions occur at SMPosium, but the extended 
time allowed us to form deeper bonds with the participants and put less pressure on 
the students to ask all of their questions within a 3-day window. 

 The experiment was a success, so in the subsequent years, fi ve additional SMP 
alumnae were invited to be Mathematicians in Residence. Each alumna visits for 
1–3 weeks of the program. Mathematicians in Residence are not compensated 
fi nancially outside of housing and travel; alumnae serve as MiRs because they 
believe in the program  mission   and enjoy the mentoring opportunity it provides.  

16.3.5     Graduate Education Mentoring (GEM) Workshop 

 Before 2010, SMP alumnae interested in graduate school could benefi t from men-
toring events before they entered graduate school and after they completed a 
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PhD. However, no formal mentoring activities existed for arguably the most critical 
time:  during  graduate school. To fi ll this gap, the annual Graduate Education 
Mentoring (GEM) Workshop was created. The inaugural 2010 program was orga-
nized by Bowen, Crans, and Crowley, and I became a workshop leader in 2012. 

 The GEM Workshop is a full-day event held every January, on the day before the 
start of the Joint Mathematics Meetings. SMP alumnae who are currently in gradu-
ate programs in the mathematical sciences are invited, and about 14 alumnae attend 
each year. Approximately seven SMPers with PhD’s are invited to participate as 
mentors, in addition to the workshop leaders. The GEM program features talks, 
panels, and small-group discussions. 

 The GEM schedule typically includes six or seven talks given by the graduate 
student participants. Each speaker has 20 min to give a general-audience talk on her 
research and is assigned two mentors to provide feedback. The mentors complete a 
written evaluation of the  presentation  , commenting on organization, clarity, and 
delivery, and the speakers and mentors discuss the results. Mentors are specifi cally 
asked to give supportive advice and to mention strengths as well as weaknesses of 
the presentations. Most of the GEM participants have not given many professional 
talks, and the workshop evaluations indicate that the speakers appreciate having a 
friendly audience for practicing their  presentation   skills. 

 Themes for panel discussions are determined by the graduate student partici-
pants. Each year, the women attending GEM are surveyed about topics they want to 
discuss, and the workshop leaders use this information to choose panelists and 
guide the session. Previous panels covered choosing an advisor, preparing for quali-
fying exams, changing programs or advisors, navigating the job market, fi nding 
research collaborators, publishing research, career options outside of academia, 
dealing with imposter syndrome (feeling that one’s accomplishments are not 
deserved and fear of being exposed as an imposter) and stereotype threat (concern 
that one’s behavior will confi rm negative stereotypes), and fi nding a successful 
work/life balance. The mentors are always happy to share their perspectives and 
advice, and the panels are consistently noted as a highlight of the workshop. 

 The GEM attendees are often in different stages of their graduate school experi-
ence. Recent workshops included informal small-group discussions organized by 
year in graduate school: fi rst- and second-years in one group, third- and fourth-years 
in another, and fi fth-years and beyond in the last group. The mentors are distributed 
among the subsets. Separating the women this way allows for more targeted  men-
toring  . The women in their fi rst few years of graduate studies can discuss issues like 
fi nding an advisor and choosing a research area, while the women nearing the end 
of their graduate studies can concentrate on career issues and the job market. The 
small-group discussions have been extremely popular, and feedback collected from 
the workshop attendees indicates an interest in more small-group discussions, per-
haps based on research area or geographic location. 

 When the formal workshop is over, all GEM attendees are invited to a dinner to 
allow time for continued discussions among the participants, the mentors, the work-
shop leaders, and the directors of SMP. The participants appreciate these informal 
interactions as much as the offi cial workshop events, as the dinner strengthens the 
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friendships formed during the day. All GEM meals are funded by the SMP grant. 
The graduate student participants and workshop leaders also receive modest 
amounts of travel support to attend the event, while the mentors volunteer their time 
with no travel support from SMP. 

 At the end of each GEM workshop, the participants and mentors evaluate the 
program, and the responses are unanimously positive. All indicate enthusiastically 
that they would attend the event again and would recommend the workshop to other 
SMP alumnae. Many of the graduate students say that they feel less “alone” after 
the workshop and that knowing that other women are going through similar circum-
stances is comforting. Even the mentors note that they learn from the workshop. On 
a recent evaluation, a mentor had the following comment:

  The small-group discussions helped remind me how different are the issues faced by 1st 
year grad students compared to 4th and 5th years (the time that’s fresher in my mind!). It 
will be helpful to me as I advise my students who are deciding whether to attend graduate 
school. 

   In all years since the fi rst workshop, the GEM feedback demonstrates an appre-
ciation for the support of the SMP community and for the program’s spirit of 
 collaboration  .    

16.4      Evidence of Success 1  

 SMP has many objectives: introducing students to new areas of mathematics; hon-
ing students' mathematical reasoning, proof writing, problem solving, and  presenta-
tion   skills; building self-confi dence, encouraging enthusiasm for mathematics, and 
increasing awareness of opportunities for continued study in the mathematical sci-
ences; and connecting students into a supportive network of other female college 
math majors, graduates and professionals to support them through their graduate 
studies in mathematics (Summer Mathematics Program  2016 ). Underlying all of 
these goals is an aim to help women  persist  in graduate school and mathematical 
careers. 

 To date, the SMP family includes 337 alumnae,  teaching assistants  , and program 
assistants who have completed their undergraduate degrees. Of these, 91 have doc-
torates, 62 have terminal master’s degrees, and 55 are currently in graduate school 
in the mathematical sciences. Five have doctorates and eight are in graduate school 
in cognate disciplines. Thus, approximately 47 % of SMPers with bachelor’s degrees 
already have an advanced degree in mathematics or a cognate discipline, and we 
expect that number to grow to 65 %. Among those who did not pursue a graduate 
degree, 19 are  secondary teachers     , and 51 have mathematics-related industry or 

1   All SMP  statistics  in this section are from raw unpublished  data  compiled by the program 
directors. 
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government jobs. We anticipate nearly 87 % of the SMP alumnae,  teaching assis-
tants  , and program assistants will have a graduate degree or a mathematical career. 

 The success of SMP alumnae in mathematics doctoral programs is particularly 
remarkable. Nationally, the participation of women in degree programs in mathe-
matics decreases dramatically at the PhD level. In 2014, approximately 41 % of 
undergraduate degrees and about 41 % of master’s degrees in mathematics were 
earned by women (Vélez et al.  2016 ). However, only approximately 26 % of PhD’s 
(Vélez et al.  2015 ) were earned by women. These  data   imply that mathematics grad-
uate programs are “losing” women before they earn their PhD’s. 

 Calculating a persistence rate for women in PhD programs is diffi cult, as only 
aggregate  data   is reported in national surveys. However, we can estimate a rate 
using data from the  American Mathematical Society (AMS)    Annual Survey of the 
Mathematical Sciences . Between academic years 1995–1996 and 2008–2009, the 
surveys  report   that 21,858 women were fi rst-year graduate students in the mathe-
matical sciences (Annual Survey  2016 ). Assuming approximately six years to com-
plete a PhD, we consider academic years 2000–2001 through 2013–2014, during 
which 6040 women earned a PhD (Annual Survey  2015 ). See the  Appendix  for 
these data. This gives us a persistence rate of about 28 %. 

 The SMP directors track alumnae progress and have individual data that provides 
a more accurate persistence rate for members of the SMP community. Assuming 
approximately 8 years between the summer program and a PhD, we consider the 
181 alumnae from SMP 1995–2005; from these years, 72 of the 118 alumnae who 
entered PhD programs in the mathematical sciences persisted to a PhD, giving SMP 
a persistence rate of 61 %. In the fi ndings of SMP’s program assessments, many of 
these women specifi cally cite that SMP had a direct infl uence on her success in 
graduate school. 

 In addition to tracking the progress of the participants, the directors assess the 
components of SMP. During the summer program, the participants take both pre- 
and post-program surveys to gauge their perception of their mathematical skills and 
self-confi dence, their knowledge of graduate school and career opportunities, and 
their experience overall in SMP. Feedback forms are also used to assess the GEM 
Workshop and the SMPosium. Many of the survey questions are qualitative rather 
than quantitative, and the responses are overwhelmingly positive. When asked, 
“What did you gain from participating in the SMP program?” most participants 
specifi cally mention an increased confi dence in their mathematical abilities and in 
their likelihood to pursue graduate school, without being prompted to address those 
goals. A recent SMPer’s response to this question included the statement, “I gained 
a lot of new knowledge, a lot of new friends, and most importantly a lot of confi -
dence. I came in knowing little about graduate school and feeling inadequate, but 
my confi dence has skyrocketed.” The feedback collected from all events related to 
SMP is evidence that the program is meeting all of its goals. 

 The mathematics profession frequently recognizes the success of both SMP and 
the women involved in the program. Most notably, in 2014, the American 
Mathematical  Society   named SMP one of its “Programs that Make a Difference,” an 
honor that is awarded to programs that succeed in bringing “more persons from 
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underrepresented backgrounds into some portion of the pipeline beginning at the 
undergraduate level and leading to advanced degrees in mathematics and profes-
sional success, or retain[ing] them once in the pipeline” (AMS Committee  2016 ). 
The award citation states, “Through all of their activities, the organizers of SMP 
have been able to form an impressive vertically-integrated network of support and 
 mentoring   for and by the members of the SMP community” (AMS Mathematics 
Programs  2014 ). In 2012, Haunsperger was awarded the Association for Women in 
Mathematics Second Annual M. Gweneth Humphreys Award, given each year to a 
mathematics teacher in recognition of superb  mentoring   of female undergraduates 
in mathematics. The award citation ends with the following remark (Second Annual 
M. Gweneth  2012 ):

  The AWM is pleased to honor Deanna Haunsperger for her wonderful achievements and 
unwavering efforts over decades in the mentoring of undergraduate women in mathematics, 
in particular in attracting them into the study of mathematics and creating a thriving com-
munity which supports them throughout their mathematical careers. 

   Erica Flapan and Margaret Robinson, two regular instructors in SMP, have been 
awarded the Mathematical Association of America’s (MAA) Deborah and Franklin 
Tepper Haimo Award, given to college or university faculty “who have been widely 
recognized as extraordinarily successful and whose teaching effectiveness has been 
shown to have had infl uence beyond their own institutions” ( Deborah and Franklin 
n.d. ). Flapan, a mathematics professor at Pomona College and twelve-time instruc-
tor at SMP, was a 2011 recipient of the Haimo Award. Robinson, a mathematics 
professor at Mount Holyoke College and three-time instructor at SMP, was a 2013 
recipient of the Haimo Award. The citations for both awards explicitly mention 
involvement in SMP as evidence of their excellent teaching (January  2011  Prizes 
2011; January  2013  Prizes 2013).  

16.5     Career Impact 

 Involvement in SMP had a profound effect on my career. When I attended as a stu-
dent, I was certain that I loved mathematics, but I didn’t know how I could turn that 
interest into a career. Through the panel discussions at the program, I learned about 
careers in industry and government that I didn’t know existed. My home institution 
had dozens of mathematics faculty, but they were  all  men. Until I met the instructors 
and directors of SMP, I didn’t really consider being a professor as a realistic option. 
I learned about study abroad programs, talked to people who had done undergradu-
ate research programs, and learned about conferences and professional organiza-
tions that would welcome me even while I was an undergraduate. SMP opened my 
eyes to a world of possibilities, and I left the program with both confi dence that I 
had a future in mathematics and a plan to enact that future. 

 I went to graduate school knowing that I had the support of the SMP community. 
During the program in 1999, I became very close friends with some of the partici-
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pants and  teaching assistants  , all of whom were also in graduate school, albeit at 
different schools. My closest friend, Emily (Gamber) Burkhead, was a graduate 
student at the University of North Carolina while I was studying at the University of 
Virginia. Our geographic proximity allowed us to visit each other often, and we 
went on vacations together, roomed together at conferences, and frequently talked 
about our lives. Emily and I could discuss things that were awkward to discuss with 
the other graduate students in our own institutions, like how much funding we were 
getting, how we performed on major examinations, and how supported we felt by 
our departments. Hearing her perspective on these issues was comforting and helped 
me cope with the stress of earning a PhD. I also attended national conferences more 
often during graduate school, which introduced me to members of the SMP com-
munity who were not in my cohort. I knew that I could reach out to these women 
when I had a question or concern, and knowing this resource existed increased my 
confi dence even if I didn’t use it often. 

 I later began a tenure-track position at Westminster College in Pennsylvania, 
where my participation in SMP certainly had an impact on my  tenure   process. By 
the time I went up for tenure, I had been to SMPosium six times, been a MiR once, 
and been an instructor twice. My tenure portfolio required letters of support from 
faculty outside of Westminster, and I was able to get glowing references from 
Haunsperger and Kennedy. Being chosen to be an instructor in SMP is a great honor, 
and being invited to teach four times is more than I ever imagined. My fellow 
instructors are phenomenally talented mathematicians and teachers, and my inclu-
sion in their ranks did not go unnoticed by my home institution. In 2014, Westminster 
College nominated me for the US Professor of the Year program, a national award 
that “salutes the most outstanding undergraduate instructors in the country—those 
who  excel   in teaching and positively infl uence the lives and careers of students” 
(About the Program  2015 ). My work in the SMP community was a signifi cant part 
of my nomination for this award. While I was not a recipient of the national award 
that year, my nomination is a testament to how much my home institution values the 
work that I do in the Carleton program. 

 Being part of the SMP community resulted in several publications and research 
 collaborations   for me. In 2009, while we were both Mathematicians in Residence at 
SMP, Bowen and I began a multi-year research project in non-associative algebra. In 
2015, I collaborated with Robinson, with whom I taught in SMP 2011, on research in 
 number theory     . Both of these collaborations will likely lead to research publications 
soon. In 2013, I was solicited to write an article about the program for  Math Horizons  
(Richardson  2013 ). In 2015, Haunsperger and I collaborated on a short piece for the 
MAA Centennial, variations of which were published on the MAA website,  Focus , 
and  Math Horizons  (Haunsperger and Richardson  2015a ,  b ). These publications and 
research  partnerships   would not have occurred without SMP. 

 My work in SMP provides me with less tangible benefi ts that impact my life but 
are not evidenced through publications or awards. My involvement in the program 
increased my visibility in the mathematical community. My professional network 
expands each time I attend a conference, and most of the new connections I make are 
through an SMPer (often through Haunsperger and Kennedy, who seem to know 
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 everyone ). For example, my fi rst  Math Horizons  article resulted from conversations 
with one of the editors, whom I met through Haunsperger and Kennedy. I was 
appointed to two terms on the MAA’s national Committee on Undergraduate Student 
Activities and Chapters, likely due to the infl uence of SMP. Being an instructor in 
SMP was by far the most rewarding teaching experience of my career; to interact with 
young women who are so in love with mathematics is marvelous. I get to watch the 
students I have mentored or taught in the program “grow up” and succeed in mathe-
matics. I feel an almost parental pride when SMP alumnae get into an undergraduate 
research or graduate program, earn a PhD, get a fantastic job, or publish a paper. As a 
 mentor   in SMP, I am involved in the development of hundreds of young women in 
mathematics, which is a reward on its own. The greatest benefi t is that I genuinely 
have a mathematical  family  in SMP—an extended family for me. When I have good 
news to share, when I face adversity, or when I need support, I turn to SMP.  

16.6     Conclusion 

 In the decades since its creation, SMP has grown to be a strong, supportive com-
munity for its alumnae, instructors, assistants, and directors. The  Carleton College 
Summer Mathematics Program      for Women is absolutely a program that impacts the 
lives of its participants. 

 SMP represents a replicable model for community building. While the program 
enjoyed signifi cant grants from the National Science  Foundation  , many of the events 
that support the SMP community require little funding. All of the online resources 
mentioned in Sect.  16.3.1  are completely free to implement, and events like the 
GEM Workshop could be held locally (e.g., at a single graduate institution or in a 
city with several local graduate schools) with minimal cost. What is required is a 
long-term commitment to building and maintaining a community. 

 I am frequently asked if being a  women’s  program is part of what makes SMP 
successful. I do think that, in the often male-dominated mathematical world, we need 
programs that support women. In my career, I have found that my female mathemat-
ics  colleagues   are more open to discussing their experiences, which is the backbone 
of SMP  mentoring   activities. In these ways, it is important that SMP is a program for 
women. However, I believe that a support community like SMP can be constructed 
for almost any group. What really bonds the women of SMP together is a shared 
experience. Even if we attended SMP in different years, we all went through a simi-
lar, intense program that inspired us, challenged us, and increased our confi dence.       
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      Appendix 

 These  data   were compiled from many years of data at the AMS Department Profi le 
website. The data for years prior to 2009 can be found in the corresponding 
“Graduate Student Profi le” link on the website referenced in Sect.  16.4 .

   Table A.1     AMS   annual survey data   

 Female fi rst-year graduate students  Female PhD recipients 

 1995–1996  1181 
 1996–1997  1208 
 1997–1998  1271 
 1998–1999  1462 
 1999–2000  1549 
 2000–2001  1792  311 
 2001–2002  1820  295 
 2002–2003  2020  307 
 2003–2004  1653  331 
 2004–2005  1511  363 
 2005–2006  1710  394 
 2006–2007  1559  365 
 2007–2008  1558  435 
 2008–2009  1564  462 
 2009–2010  514 
 2010–2011  524 
 2011–2012  554 
 2012–2013  577 
 2013–2014  608 
 Total  21,858  6040 
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    Chapter 17   
 Creating and Sustaining a First-Year Course 
in Quantitative Reasoning                     

     Kathleen     Lopez     ,     Melissa     Myers     ,     Christy     Sue     Langley     , and     Diane     Fisher    

    Abstract     In 2009, the Louisiana Board of Regents ceased to require that all under-
graduate students receive credit for either a version of college algebra or calculus. 
By that time, many universities across the nation had well-established quantitative 
reasoning (QR) courses. Since the Department of Mathematics at the University of 
Louisiana at Lafayette has been active in mathematics reform, it was natural for the 
department to expand fi rst-year course offerings by creating a QR course. This 
chapter describes the development and implementation of this course, which was 
fi rst offered in Spring 2013. It also gives details about continuing challenges and the 
resources created to support course instructors and students. Of particular concern 
was whether students in the QR course would progress through their mathematics 
courses at the same rate as students with similar background who take college alge-
bra. Data collected on student progress suggest that this is the case. The chapter 
discusses campus reactions to the new course and closes with a brief refl ection on 
how working to develop the QR course fi t into the careers of the developers.  
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17.1        Introduction 

 For several years, faculty and administrators at the University of Louisiana at 
Lafayette (UL Lafayette) had contemplated the creation of a fi rst-year Quantitative 
Reasoning (QR) course. This became possible in 2009, when the Louisiana Board 
of Regents (LBOR) ceased to require all undergraduate students to receive credit for 
either a version of  college algebra   (CA) or calculus. Creating a  QR   course that met 
not only the initial faculty vision but also that of the administration posed several 
challenges. Careful consideration was given to creating a course that would benefi t 
students both before and after graduation. Employing a pedagogy that engaged stu-
dents was also important for the QR course. At the same time, it was important that 
students taking QR were completing their mathematics requirement at a rate com-
parable to those taking CA. By preparing the course instructors, utilizing class 
activities, encouraging student discussion, and prompting students to take owner-
ship of their learning, these objectives were achieved.  

17.2     Why Create a Quantitative Reasoning Course? 

 UL Lafayette, a member of the University of Louisiana System, is a  public   institu-
tion designated “R2: Doctoral University—Higher Research Activity” in the 2015 
Carnegie Classifi cation of Institutions of  Higher Education   (  http://carnegieclassifi -
cations.iu.edu    ). UL Lafayette is  accredited   by the Commission on Colleges of the 
Southern Association of Colleges and Schools. Enrollment is nearly 19,000, includ-
ing about 1500 graduate students. The Department of Mathematics offers Bachelor 
of Science, Master of Science, and Doctor of Philosophy degrees. With over 80 
undergraduate degree programs at the university, a large portion of the department’s 
teaching load consists of service courses. The department is committed to providing 
quality instruction and has a rich history of education reform in its mathematical 
preparation of teachers, calculus courses, and college algebra courses. In 1995, with 
fi nancial support from LBOR, the department was the fi rst in the state to offer a 
workshop for Louisiana university faculty to address the reform of CA. Since then, 
the department has presented fi ve more statewide faculty development  workshops   
on the reform of undergraduate mathematics education. Through these workshops 
and faculty  presentations   at regional and national meetings, the department has 
gained recognition for its innovation. 

 While some of our students begin their mathematics education in calculus or  pre- 
calculus  , the majority enroll in Applied College Algebra (ACA). UL Lafayette has 
two formats for its ACA course: a 3-h course and a 5-h course. Students with a 19 or 
20 Mathematics ACT score or credit in intermediate algebra must enroll in the 5-h 
course, while those with scores 21–24 take the 3-h course. There are two paths stu-
dents follow upon completion of ACA. One path is taken primarily by business and 
science-oriented majors, who are required to take more advanced mathematics 
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courses. The second path is for non-technical majors (that is, majors other than busi-
ness or science), such as those in the Colleges of Arts and Liberal Arts, whose second 
courses are more applied in nature. When the LBOR broadened the scope of the 
required fi rst-year mathematics courses, we had the opportunity to implement an 
alternative course designed specifi cally for non-technical majors that allowed us to 
better serve them. Students with weak mathematical backgrounds and little interest 
in mathematics were learning topics in ACA such as fi nding zeros of a polynomial 
function and identifying the multiplicity of each. These same students could not 
compute successive discounts on an item of clothing or understand the consequences 
of choosing a lower loan payment regardless of the interest rate or loan term. Faculty 
agreed that students in non-technical fi elds would benefi t more from a course that 
included quantitative reasoning than they would from a typical CA course. In addi-
tion to our personal experiences, this choice is supported by the  literature  . 

 Much has been written about the importance of QR 1  in education to produce 
effective workers, citizens, and consumers. Since 1983, the need to educate students 
to make sense of and use mathematics in their lives has been the subject of many 
 reports   issued by educational  organizations   in the United States:   A Nation at Risk    
(National Commission on Excellence in Education  1983 ),   Everybody Counts    
(National Research  Council    1989 ),  Curriculum and Evaluation Standards  (National 
Council of Teachers of Mathematics  1989 ),  Principles and Standards  (National 
Council of Teachers of Mathematics  2000 ), and  College Learning for the New 
Global Century  (Association of American Colleges and Universities  2007 ). The last 
 report   defi nes “what contemporary college graduates need to know and be able to 
do” and  QL   is one of six essential Intellectual and Practical Skills listed (p. 12). 

 As editor of the seminal books,   Why Numbers Count    :    Quantitative Literacy     for 
Tomorrow's America  (Steen  1997 ) and  Mathematics and Democracy: The Case for 
Quantitative    Literacy    (Steen  2001 ), Lynn A. Steen argued that innumeracy leads to 
disenfranchisement: " Quantitative literacy   is to mathematics what literacy is to  lan-
guage  . In addition to the skills of reading and writing, today’s society requires logi-
cal reasoning and numerical thinking." (Adults Learning Mathematics  2015 ). In 
January 2004, the Board of Governors of the Mathematical Association of America 
(MAA) approved the formation of a special interest group whose purpose is to 
advance  QL   at the collegiate level (http://sigmaa.maa.org/ql/about.php). Bernard 
L. Madison joined Steen in championing QL. They emphasized that developing 
adults who can reason quantitatively is a responsibility that colleges and universities 
cannot leave to the K-12 educators (Madison and Steen  2003 ,  2008 ). Madison 
( 2009 ) stated, “Reduced  interest   in mathematically intensive disciplines … does not 
diminish the QR burden on college students in their non-mathematically intensive 
majors or in their everyday lives as consumers and citizens of a democracy. These 
circumstances do mean that QR education— absolutely necessary if we are to 
 sustain our democratic processes—cannot be the sole province of one or two 

1   Quantitative reasoning (QR),  quantitative literacy (QL) , and  numeracy  are closely related con-
cepts. QR is the term used to describe UL Lafayette’s course. All three terms occur in the literature 
we cite. 
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disciplines. Whatever students major in, we must ensure that they learn to reason 
quantitatively in their contemporary world” (p. 6). 

 One aspect of QR is  fi nancial literacy  . In summarizing eight articles devoted to 
fi nancial literacy, Lusardi and Wallace ( 2013 ) concluded that fi nancial literacy 
depends on quantitative  literacy   and is correlated with good fi nancial practices. In 
order to become wise consumers, adults need to obtain some literacy concerning 
their personal fi nances while they are developing the ability to reason quantitatively. 
A study of QR activities at universities “suggest[s] that certain students may be at 
greater risk for not developing these important skills, especially women and stu-
dents majoring in non-STEM disciplines” (Rocconi et al.  2013 ). This is exactly the 
audience the new QR course is designed to serve.  

17.3     Development and Description of the New Course 

 While many universities across the nation had well-established QR courses, the 
concept of QR as a fi rst-year course was new to our state. On our campus, discus-
sions about including QR in curricula had been underway since 2006. At the request 
of business faculty in 2008,  QL   topics such as proportional reasoning and applica-
tions involving percentages had been included in the department’s fi nite mathemat-
ics course. These changes were led by one of the authors who became interested in 
 QR   while serving on the university’s steering committee for its upcoming reaccredi-
tation. In that capacity, she had many opportunities to have conversations with fac-
ulty and administrators from numerous departments about the mathematical needs 
of their students. 

 During Fall 2012, the university’s General Education Committee approved the 
creation of a new mathematics course called Quantitative Reasoning. Currently the 
new QR course is an alternative to ACA for approximately 10 % of the university’s 
population, based on declared majors. It was important to inform the university 
 community   about the new course. Efforts included advertising through our campus 
radio station, an article in the alumni magazine, and meetings with advisors. 

 The course is essentially the creation of three mathematics faculty members: an 
Associate Professor with a PhD and 34 years of teaching experience, a Master 
Instructor with an MEd and 27 years of teaching experience, and an Instructor with 
an MS in Mathematics with 11 years of teaching experience. Relevant courses 
taught by these faculty members include not only ACA but also mathematics of 
fi nance and elementary  statistics  . All three faculty members have had extensive 
experience in  curriculum design   and in the implementation of several new mathe-
matics courses. 

 One  goal   was to create a course which students fi nd engaging and useful. Since 
the QR course is much less abstract than traditional algebra, it is more accessible to 
students. It is designed for students in non-technical fi elds and may be used as a 
prerequisite for mathematics of fi nance and elementary  statistics  , which many 
 students take as their required second mathematics course. To provide a better foun-
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dation for these students in their sophomore mathematics courses and in life, many 
topics in ACA were replaced with content that is intended to strengthen the  quanti-
tative   and  fi nancial literacy   of the students. The course content includes typical QR 
material such as number sense,  fi nancial mathematics  , linear and exponential 
growth, and graphical representation of  data  . Each of these topics was chosen for its 
importance in real-life situations or in building a foundation for future college-level 
mathematics courses taken by students. Depending on the students’ and instructors’ 
backgrounds, some special interest topics may be added. For example, one class 
investigated  symmetry   and shapes in architectural styles.  

17.4     Implementation 

 After settling on the content for the course, the developers then turned their atten-
tion to pedagogy. Their goal was to create an interactive learning environment. 
Having taught mathematics for  pre-service teachers  , they knew that this could be 
accomplished through class activities that encouraged  collaboration  ,  classroom dis-
cussion  , and the active engagement of students. Reducing the number of topics 
freed up class time for more in-depth discussion and in-class activities. Collaboration 
among students is facilitated by the design of the classroom itself. Students sit in 
groups at tables and attempt problems. They then discuss their solutions or ques-
tions with their group. By articulating their ideas, students learn to clarify their 
thinking and justify their reasoning. This is carried over to homework and exam 
questions. For instance, given two purchasing scenarios, they must determine math-
ematically the best option and support their choice through written explanation. 

 Class activities with manipulatives help students establish a concrete connection 
to concepts they are learning. In one activity, students use linking cubes to illustrate 
percentage change. As part of a lesson illustrating measurement conversions, an 
effective activity is to give students a bag containing 28 one-centimeter  cubes  , each 
having a mass of one gram. When a student holds one cube in their hand, they get a 
sense of what a gram feels like. Each student also compares the width of their little 
fi nger to the length of one side of the cube thus giving them a sense of what a cen-
timeter looks like. It is then noted that a cubic centimeter can hold a milliliter of 
liquid. With all the cubes back in the bag, each person holds the bag to feel the 
weight of an ounce and learn another conversion fact. 

 The QR course is designed to increase a student’s ability to recognize, use, and 
appreciate mathematics outside the classroom. Instructors have used various meth-
ods to reach this goal. One addition to the course is a  presentation   or two by a rep-
resentative from the campus credit union. The lessons they learn about types of 
bank accounts, types of bank fees including ATM fees, borrowing money, applying 
for a credit card, and credit scores are among students’ favorites. Student  projects   
are incorporated into the course by some instructors to encourage students to explore 
the connection between mathematics and a topic of interest to them. Several  students 
have given class  presentations   about musical rhythm, yet approached it from differ-
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ent mathematical vantage points. Others have explored topics of interest outside 
their majors. For example, one group did an interesting project looking at automo-
tive engines, focusing on torque and horsepower—how they are calculated and what 
to look for based on the planned usage of the vehicle. Some instructors add bonus 
 points   in the students’ homework grade for turning in a written description of an 
actual application of course material to their life or for researching a topic such as 
the interest rate and terms of a “pay-day loan.” The course’s topics along with its 
pedagogy have resulted in an engaging course that the students perceive to be rele-
vant to their lives as citizens and to their future professions.  

17.5     Addressing Faculty Challenges 

 As with any  new   undertaking, the creation and implementation of the course pre-
sented challenges. The fi rst of these was staffi ng the course sections with appropri-
ate faculty. Because the department relies heavily on adjunct instructors and  teaching 
assistants   as teachers of record for many of our fi rst-year classes, maintaining con-
sistency across all sections is a departmental priority. To make teaching the QR 
course less daunting to faculty and to promote uniformity, the developers created 
numerous resources. 

 Template lessons that included introductory information and examples for use in 
class were written for the entire course. Lessons for each topic were designed using 
 software   for an interactive whiteboard. Step-by-step work for each example is ani-
mated in the software so that the class can discuss what the next appropriate step 
would be, students can do the work for themselves, then see only that step appear in 
the  presentation  . Instructors have the option to show additional work by writing 
information on the lesson presentation displayed on the interactive whiteboard. The 
lessons contain notes to instructors reminding them of key ideas and common mis-
takes. A classroom was dedicated for the course and outfi tted with an interactive 
whiteboard and a clicker response system in order to make the template lessons 
accessible to all sections and to allow for more interaction with online resources. 
Some lessons begin with an interactive quiz covering the previous  lesson   and assign-
ment using the response system. 

 Each instructor receives a notebook which includes both digital and hard copies 
of these resources: a detailed instructor syllabus, instructor lessons for use with the 
interactive whiteboard, supplemental exercises, sample quizzes, tests from previous 
semesters, sample class policies, and detailed instructions on using the technology. 
A template QR course is also available for use on the university learning manage-
ment system (LMS). It includes student versions of the lessons, supplemental exer-
cises, quizzes to be used as review for exams, and links to additional student 
resources. 2  Students complete online homework through the textbook publisher’s 

2   These resources will be shared with any interested party upon request; email math@louisiana.
edu. 
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website. A model course, with all online homework assignments created, is avail-
able for faculty to copy. 

 In addition to these resources, a workshop was designed and conducted for 
potential instructors to learn about the course, its goals, pedagogy, use of manipula-
tives, and interactive whiteboard technology. During the workshop, sample lessons 
were modeled and participants worked through activities using manipulatives. 
Participants were also encouraged to practice using the interactive  whiteboard   in 
conjunction with prepared lessons, as well as using the response system clickers.  

17.6     Addressing Challenges with Students 

 The creation and implementation of the course presented several intertwined chal-
lenges for students. After offering the QR course for the fi rst semester, it became 
obvious that many students lacked basic study skills and  motivation  . While some 
study skills are taught in our First-Year Experience seminar, many students are unable 
to transfer the skills to mathematics. A number of strategies are used to help make up 
this defi cit. In an effort to assist students in becoming organized note- takers and to 
allow class time to be spent doing and discussing mathematics rather than copying 
problems, a printable copy of examples for each lesson is available to students. Short 
articles and videos about study skills are assigned. Most readings and videos have a 
quiz or assignment attached but others are used simply for sharing helpful tips. 

 For many college classes, homework is not collected or graded. As a result, stu-
dents often do not complete  assignments  . It is important for them to learn that not 
every assignment must have a formal assessment and that gaining benefi t from any 
assignment, graded or not, is to their advantage. In an effort to increase student com-
pletion of assignments, the QR homework falls into two categories: traditional and 
online. The online homework allows students to receive immediate feedback and to 
request assistance in the form of guided solutions, links to text, and a link to email the 
instructor. Traditional homework is completed in students’ notebooks, and is some-
times collected and graded for correctness. Random homework quizzes are conducted, 
either on paper or using the response system. The response system both engages stu-
dents and provides immediate feedback. Throughout the semester, students are 
encouraged to seek help by referring to the student solutions manual, posting ques-
tions to the forum in the LMS, emailing the instructor, consulting with the instructor 
in person, asking a classmate for help, and utilizing any of the campus tutoring options. 

 The small number of available sections of the QR course means some students 
may fi nd it diffi cult to fi t the QR course into their schedules. Art majors, for  example, 
have infl exible schedules due to studio courses. As a result, many eligible students 
are taking ACA rather than QR. As a rule our department works at meeting the 
student demand for a course by opening sections as needed. Because we feel the QR 
course would be more benefi cial to these students, we are expecting to increase the 
 number   of available sections through increased publicity and education of 
advisors.  
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17.7     Outcomes 

 With the omission of topics, the department was concerned about rigor. The ulti-
mate question was: “Are the students in QR progressing through their  mathematics   
courses at the same rate as similarly prepared students who enroll in the 5-h ACA?” 
Two measures were used to answer this question: comparison of grade distributions 
and the pass rate of each population in the sophomore mathematics courses. If these 
two measures show no differences, then the answer to the question is “yes.”  Data   of 
various types were collected and analyses performed by an Assistant Professor with 
a PhD in  Statistics   (UL Lafayette  IRB   SP15-68 Math). 

 Four semesters of grades were compared between the QR and the 5-h ACA courses. 
Grade distributions were analyzed for a total of 442 QR students and 1695 ACA stu-
dents. In Fall 2014, Fall 2015, and Spring 2016, there were no signifi cant differences 
in failures, withdrawals, or pass rates between courses. (A grade of A, B, C, or D is 
considered passing.) In Spring 2015, there was no signifi cant difference in failure 
rates. However, that semester there were differences in the withdrawal and pass  rates  . 
A 95 %  confi dence interval   for difference in withdrawal rates between these courses 
shows the withdrawal rate for the QR course is 0.7–19.9 % higher than ACA. The pass 
rates were 2.5–28.6 % higher for the ACA students. One possible explanation for the 
different outcomes in the Spring 2015 semester is that the department experimented 
with smaller class sizes in the 5-h ACA course staffed with more experienced instruc-
tors. This resulted in a higher pass rate than in a typical spring semester. 

 The performance of the  students   in their second mathematics courses was also 
examined. Data were collected on all 156 students who passed QR or the 5-h ACA 
in Fall 2014 and then enrolled in their sophomore mathematics course at UL 
Lafayette in Spring 2015. At the end of the second course, there were no signifi cant 
differences between the two groups in failures, withdrawals, or pass rates. Therefore, 
we can conclude that for that group, QR and ACA students were making similar 
academic progress with respect to mathematics. 

 Three additional comparisons that validated the success of the QR course were 
performed. In Fall 2014, two sections of QR and two sections of the 3-h ACA were 
taught by the same instructor. This allowed us to administer a ten-question end-of- 
course quiz covering common concepts (e.g., computing percentage change, deter-
mining the original price if the percentage discount and the sale price are known, 
fi nding the slope of a line given two points, and writing a linear function). There was 
no signifi cant difference in the scores between the groups. In Spring 2015, pre- and 
post-quizzes were given to all sections of QR and to a control section of ACA. For 
the QR students, a 95 %  confi dence interval   showed the average improvement to be 
between 1.2 and 2.8 points on the 10-point quiz. However, for the ACA students, 
there was no signifi cant improvement in the scores. 

 Pre- and post-attitudinal surveys were conducted anonymously in Spring 2015 in 
all sections of QR and two control sections of ACA. There were two items with 
signifi cant differences from pre- to post- surveys  . On the item “I can work any math 
problem if I have a formula,” the QR students went from 40 % agreement to 61 % 
agreement. There was no signifi cant difference in the ACA course. This change for 
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QR students, while not expected and initially disconcerting, is likely the result of 
student success with the  fi nancial literacy   unit where several formulas were used. 
For “An  understanding   of mathematics is important to be an informed citizen,” in 
the QR course the percentage of agreement with the statement changed signifi cantly 
from 68 to 84 %. There was no signifi cant difference for the ACA  course  .  

17.8     Reactions on Campus 

 Student opinions of the course have varied over the semesters. It is worth noting a 
few of the comments from former students:

  As a course designed for students who did not necessarily have an aptitude for math, the 
course has been enjoyable. 

 I think the course was most challenging because it was material I should’ve been famil-
iar enough with to understand the lesson, but I wasn’t. Wonderful class. Challenging but 
necessary for life skills. 

 I loved this class … It made me wish I tried harder in math in high school. 

   After attending the instructor workshop, the Director of Freshman Mathematics 
commented,

  I consider this course to be more in-depth than a traditional ‘ survey   of mathematics’ course or 
a ‘contemporary mathematics’ course because students are required to not only perform the 
calculations of a traditional algebra course, but also understand and explain their reasoning. 

   The course was widely anticipated by faculty in the Colleges of Arts and Liberal 
Arts. In fact, once approval was given to create the course, the university requested the 
course be offered for the fi rst time in Spring 2013 rather than Fall 2013 as initially 
planned. The QR course is different from what most students have seen before in 
mathematics courses and some students and administrators mistakenly took that dif-
ference to mean the course would be easy to pass with little effort. An Assistant Dean 
in the College of Liberal Arts commented, “… when [QR] was fi rst rolled out, some 
of the  students   who took it that fi rst semester it was offered, found it no easier than 
[ACA]. I have not heard that complaint for at least a year now.” We believe this change 
occurred because each semester student expectations are becoming more in line with 
those for other mathematics courses. One Performing Arts faculty member stated:

  Our students are not usually big Math fans, so they seem to have accumulated a dread of 
Algebra. It’s very helpful to be able to give them an alternative in Math that better fi ts their 
needs. Thank you and the Math faculty for being willing to offer it for students like ours. 

17.9        Refl ections 

 The faculty in our department consists of 18 research professors who teach from 3 
to 6 h a  semester   and 21 instructors and teaching professors who teach 12–15 h a 
semester. As in many other departments, some faculty members are innovative and 
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others are more traditional. We are fortunate that even through changes in adminis-
tration, we have been allowed to pursue the teaching methods and course designs 
that we believe best serve the students regardless of their mathematical background 
or choice of major. 

 Determining the impact of the project on the authors’ careers is rather diffi cult to 
do. One of the designers, a  tenured   teaching professor, retired in 2016. Her involve-
ment in the development of the course was a continuation of her dedication to 
improving mathematics service courses at the university and a satisfying fi nal proj-
ect. The other two are mid-career instructors whose previous experiences led them 
naturally into the creation, implementation, and sustaining of this QR  course  . While 
the course was not a departure from their existing paths, the entire process increased 
their confi dence and leadership skills. Since the  QR   course is only seven semesters 
old, its full impact on their careers is yet to be seen.     
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    Chapter 18   
 A Story of Teaching Using Inquiry                     

     Christine     von     Renesse    

    Abstract     This chapter tells my story of learning how to teach mathematics using 
inquiry and becoming a facilitator of professional development (PD) workshops on 
inquiry-based learning (IBL) for teachers of kindergarten to graduate school. I am 
an associate professor at Westfi eld State University in Massachusetts and an integral 
part of the project “Discovering the Art of Mathematics” (DAoM). In this chapter, I 
describe a salsa rueda activity used to teach mathematics via inquiry to liberal arts 
students who often are not interested in or even fear mathematics. I present a 
vignette of a PD workshop activity designed to teach participants in an inquiry- 
based way how to teach using inquiry. The chapter also summarizes results of stu-
dents’ beliefs and attitudes surveys as evidence of the effectiveness of IBL. I close 
with plans for future work and a refl ection on the challenges I face as I step into a 
leadership role.  

  Keywords     Inquiry-based learning   •   IBL   •   Discovering the art of mathematics   • 
  Salsa rueda   •   Inquiry-based learning workshop  

18.1        Introduction 

 This chapter tells my story of learning how to teach mathematics using inquiry and 
becoming a facilitator of  professional development (PD)   workshops on  inquiry- 
based learning   (IBL). According to Laursen et al. ( 2014 ),
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  IBL methods invite students to work out ill-structured but meaningful problems … 
Following a carefully designed sequence of tasks rather than a textbook, students construct, 
analyze, and critique mathematical arguments. Their ideas and explanations defi ne and 
drive progress through the curriculum. In class, students present and discuss solutions alone 
at the board or via structured small-group work, while instructors guide and monitor this 
process (p. 407). 

   This description of IBL fi ts both my mathematics classrooms and my workshop 
environment. 

 Section  18.2  relates my educational background to how I came to teach inquiry- 
based mathematics classes at Westfi eld State University in Massachusetts. 
Section  18.3  describes the project “Discovering the Art of Mathematics” (DAoM)    
that promotes teaching mathematics for liberal  arts   courses using  inquiry-based   
teaching and learning. Through DAoM, I started facilitating  PD   workshops for pro-
fessors and teachers on IBL across the US. The mathematics for liberal  arts   course 
I teach, “Mathematical Exploration”, is explained in detail in Sect.  18.4 , including 
student learning  goals  , the inquiry-based activity “ salsa rueda   dancing” as a teach-
ing sample, and student beliefs and attitudes  evaluations  . In Sect.  18.5  I refl ect on 
collaborating with  colleagues   on teaching techniques. Section  18.6  describes the  PD   
workshops and their goals, includes a workshop  vignette  , and outlines some future 
plans for workshop evaluations. The chapter concludes with a plan for future work 
and some personal refl ections on project leadership.  

18.2      Personal Background 

18.2.1     Education in Germany 

 Besides being educated as an elementary school teacher, I minored in music at the 
HDK (university of arts) and received my Diplom (master) of mathematics at the 
Technical University Berlin. I did my practicum for the elementary licensure in a 
4th grade class that was taught using methods of discovery. The children decided 
themselves what they would work on during the day and the teacher acted as a coach 
rather than a knowledge dispenser. This teaching method inspired me and set the 
base for my desire to teach using discovery or inquiry-based methods in my own 
classes. Parallel to my mathematics education I pursued music and dancing. I led an 
a capella choir, competed in ballroom dancing and composed my own songs. At this 
point in my career, the arts (music and dancing) and mathematics were parallel 
paths that seemed to have little connection with each other.  

18.2.2     Graduate Education in the US 

 In 2003 I immigrated to the US to enter the PhD program in mathematics at the 
University of Massachusetts. I also danced several times a week and learned how to 
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teach  salsa rueda  , a Cuban dance form in which couples dance synchronously in a 
circle. After I received my PhD in algebraic geometry, I was fi nally ready to move 
on to full-time teaching. I was still interested in teaching at the K-12 level but also 
really craved the academic freedom of a college professor. In the German university 
system there are no  tenured    teaching  positions and so I applied for jobs in the US.  

18.2.3     Teaching Position at Westfi eld State University 

 Westfi eld State University (WSU) is a  public   university in Western Massachusetts 
with about 4500 students, mostly undergraduate. Many students are  fi rst generation   
university students and many enter college with fairly low SAT scores. Traditionally 
a teaching college, more than half of our  mathematics majors   are pursuing their 
secondary education teaching license. The mathematics department consists of 12 
full time professors all of whom use progressive teaching methods. The teaching 
position at WSU was, and is, a perfect fi t for me. Most of my new  colleagues   were 
open to  collaboration  , sharing materials, discussing student learning and new teach-
ing ideas: I could fi nally develop into the teacher I wanted to be. I could not have 
become the teacher and facilitator I am today without their support and feedback. 

 At WSU I now teach mathematics for liberal  arts   (MLA) classes in which I use 
my music and dance background to motivate mathematical ideas (see Sect.  18.4 ). I 
was particularly drawn to the teaching methods of my colleagues Julian Fleron, Phil 
Hotchkiss, and Volker Ecke in their MLA classes. Together we started the project 
“Discovering the Art of Mathematics” ( DAoM  ,   www.artofmathematics.org    ) with 
the goal of bringing authentic mathematical inquiry into MLA classes. I describe 
DAoM in the next section. 

 My fi rst years at Westfi eld I avoided the calculus sequence. It seemed more natu-
ral (and easy) to teach using inquiry in MLA, classes for prospective teachers, and 
in upper-level courses. Thanks to the availability of many resources for teaching 
calculus using inquiry (e.g.,   www.iblcalculus.com    ) I now feel very comfortable 
(von Renesse  2014 ). There are always aspects to improve, and treating all the topics 
on the syllabus is a struggle (Yoshinobu and Jones  2012 ). However, compared to the 
way I used to teach calculus, I notice that my students understand the material more 
deeply now. My broad experience in using inquiry methods in many different 
courses and levels enables me to coach other teachers and faculty in adopting 
inquiry. 

 I also teach courses for future K-12 teachers and spend a lot of time coaching and 
co-teaching in K-12 classrooms. Working with K-12 teachers and the workshops I 
lead for college faculty have a surprising overlap. It seems to me that, at the core, 
teaching mathematics using inquiry relies on the same principles, regardless of 
whether the students are children, young adults, college students, teachers or profes-
sors. The many seemingly disconnected areas (music, dance, and mathematics) that 
I have studied over the years have fi nally come together and I enjoy deeply that I can 
use “all of me” in my current position. 
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 I focus the remainder of this chapter on my work with  DAoM  . It has had the big-
gest infl uence on my development as a facilitator of learning mathematics and it 
connects all the professional ideas that I feel passionate about.   

18.3      Discovering the Art of Mathematics 

 DAoM was founded in 2009 by Julian Fleron (PI), Phil Hotchkiss, Volker Ecke and 
myself with this vision:

   Mathematics for Liberal    Arts     students will be actively involved in authentic mathematical 
experiences that 

•     are both challenging and intellectually stimulating,   
•    provide meaningful cognitive and metacognitive gains, and,   
•    nurture healthy and informed perceptions of mathematics, mathematical ways of 

thinking, and the ongoing mathematics not only on STEM fi elds but also on the lib-
eral arts and humanities.     

   DoAM’s website (  www.artofmathematics.org    ) provides a wealth of resources to 
help interested instructors realize this vision in their MLA courses: a library of 11 
 inquiry-based   learning guides, extensive teacher resources, and many professional 
 development   opportunities. Thanks to the  National Science Foundation (NSF)   and 
Mr. Harry Lucas, we can offer our materials and workshops at no cost. DAoM was 
the perfect way to connect my interest in music and dancing to my passion for the 
teaching and learning of mathematics. Over time  DoAM’s   goals have broadened 
and we now support faculty in including more inquiry-based techniques into  all  
their mathematics classes, not just MLA.  

18.4       Mathematics for Liberal  Arts   Course at WSU 

 The MLA course “Mathematical Explorations” at WSU is “an introductory course 
designed to provide the liberal arts major with an opportunity to develop a broader 
appreciation of mathematics by exploring ways in which the artistic, aesthetic, 
intellectual, and humanistic aspects of mathematics are as important as its utility” 
(offi cial WSU course description). The professor can choose the specifi c content 
that he or she would like to use for this purpose. There is no prerequisite for this 
course and students tend to be weak in algebra. The course is part of WSU’s com-
mon core curriculum and we offer about 6 sections of 30 students each semester. 
 DAoM   has developed specifi c student learning  goals   for this course:

    1.    Students will appreciate mathematics as a human endeavor, which is one of our 
most fundamental intellectual  pursuits  .   

   2.    Students will understand that mathematics is a vital, rapidly growing fi eld of 
inquiry with a dedicated cohort of practitioners.   
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   3.    Students will understand the continued impact of mathematics in shaping his-
tory,  culture  , logic, philosophy, and knowledge, as well as its role as a human-
istic and aesthetic discipline.   

   4.    Students will understand the ubiquitous role of mathematics in the world 
around them.   

   5.    Students will strengthen their reasoning skills and become better problem 
solvers.   

   6.    Students will strengthen their skills in reading, writing, argumentation and 
speaking.   

   7.    Students will become more self-monitoring, refl ective learners and take greater 
personal responsibility for their learning.   

   8.    Students will approach mathematics more positively and gain a balanced per-
spective of mathematics.   

   9.    Students will improve their mathematical confi dence.   
   10.    Students will develop awareness of the negative impact of broadly-held societal 

views of mathematics.   
   11.    Students will be capable of and interested in considering mathematics outside 

of the confi nes of the  classroom  ,  understanding   the value of life-long learning 
in mathematics.    

  Students in our course are being assessed through observing their abilities and 
progress during group work and  presentations  , larger student  projects   (e.g. posters, 
papers, art work, solving the Rubik’s cube), journal writing, regular conceptual 
homework and sometimes a fi nal exam (Fleron et al.  2014 ). 

18.4.1     Dancing  Salsa Rueda   

 Using just the existing  DAoM   materials, an instructor could teach different topics 
for 11 semesters. There are so many because we keep inventing activities around 
topics we feel passionate about (von Renesse  2012 ; von Renesse and Ecke  2011 , 
 2016 ; Fleron and Ecke  2011 ; Livingston and Fleron  2012 ; Fleron  2012 ; von Renesse 
& Ecke  2015 ). 

 One of my favorite activities is dancing salsa rueda with my students. Movement 
can be very helpful in learning (Jensen  2000 ). In my class, the movement motivates 
the mathematical questions (see example below). It also helps to engage all stu-
dents, bringing lightness and laughter into the classroom and building a strong 
classroom  community  . Moving together for the fi rst time can be frightening for the 
students and the instructor. Many students have shared with me that they are as 
afraid of dancing as they are of mathematics! But the dancing we do is really about 
moving, with no attachment to “doing it perfectly”. Doing the exact steps at the 
right time is not as important as the desired position in the circle. Similarly, per-
forming arithmetic is not as important in my class as  understanding   a big  idea  . 
Students are often afraid of making mistakes instead of valuing them. Using dancing 
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I can model how to enjoy learning from mistakes and being persistent. In my experi-
ence this translates to valuing mistakes and being more persistent when we are 
learning mathematics: this is important for student learning (Kapur  2011 ). 

 In salsa rueda, 1  pairs of dancers stand in a circle and dance the same salsa moves 
simultaneously. There is a leader of the circle who calls out the moves and everyone 
is supposed to listen and react in time. Each pair has a leader and a follower, which 
students determine by preference and confi dence, instead of by  gender  . 

 The mathematical content goals for this activity include  understanding   how 
greatest common factors and least common multiples are related, fi nding patterns in 
 star polygons  , and making  conjectures   and proving conjectures about star poly-
gons. 2  During the dance move “dame” (“give me” in Spanish) each leader passes 
their follower to the next leader to the left and gets in turn a new follower from the 
right. This can be done skipping one or several leaders, leading to an interesting 
pattern. In fact,  star polygons   emerge from following the dancer’s path. See Fig.  18.1  
for a path of “dame dos” (“give me the second”–skipping one leader), with the black 
circles representing leaders and the gray circles followers. Notice that in each pair 
the follower stands on the leader’s left.

   In the language of the dance we are wondering:

    1.    Does each follower return eventually to his or her original leader? Does the 
answer depend on the number of dancers?   

   2.    Does every follower get to dance with every leader in the circle? Does the answer 
depend on the number of dancers?   

   3.    How many times does the follower move around the circle before returning to his 
or her original leader (if that happens).     

1   The video at  https://artofmathematics.org/media/video-497  shows students dancing salsa rueda in 
my Mathematical Explorations class in Fall 2013. 
2   We create an (n,k)  star polygon  by taking n equidistant points on a circle and connecting each 
point to its kth neighbor (going to the right around the circle). 

  Fig. 18.1    The path of a 
rueda dance using only 
dame dos       
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 Students spend several class  periods   looking for patterns, creating  conjectures  , 
and trying to fi gure out if and why their conjectures are true. At various points, 
whole class discussions allow the students to build on their classmates’ ideas. 3  
Figure  18.2  shows a table where a student recorded the number of partners (P) and 
the kind of dame (D). The “NO” table records all examples where followers don’t 
dance with every leader, the “YES” table all others. She noticed how, for most 
examples, D divides P but that there are some “weird ones” like 6 and 4.

18.4.2        Creating Investigations 

 It is a diffi cult task to invent investigations that are “just right” for our students. If 
we guide the students too much, they don’t do mathematics and lose sight of the 
larger picture. If we don’t guide them enough, they get frustrated and give up. 
Mairead Greene and I (Greene and von Renesse  2016 ) described the processes we 
use to fi ne-tune our tasks and make sure that they align with our goals. The inves-
tigations lead students to make  conjectures   and eventually prove them. A proof 
doesn’t have to be formal, but it has to establish an explanation that helps us make 
sense of  why  the conjecture is always true (Fleron et al.  2016 ). In my class, I 
encourage the students to alternate between thinking about the mathematics and 
returning to the movement to test their conjectures. Students need to consider 
greatest common factors and least common multiples to state their conjectures and 

3   In the video clip at  https://artofmathematics.org/media/video-394 , a student from my class pres-
ents her work on question (2). It shows how she explains her process and how open she is about 
what she doesn’t know (yet). 

  Fig. 18.2    Student presenting her work on question 2       
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their  sense- making   often includes models like the number line, factor trees and  star 
polygons  . Student work from my class is included in von Renesse ( 2016 ).  

18.4.3     Student Evaluation: Does  Inquiry-Based Learning   
Work? 

 Research indicates that  active learning   is effective (Freeman  2014 ; Kogan and 
Laursen  2014 ). But not many studies have been done on the MLA audience. In our 
project we have used pre- and post-surveys to measure changes in students’ beliefs 
and attitudes changes since 2009. Fleron has collected  data   from over 1000 students 
since 1997. The accumulated changes on the survey all occurred in the desired 
direction and some of the differences were statistically signifi cant. The survey ques-
tions we used and many of our results appeared in Ecke ( 2015 ). One of our results 
was that students are much more likely to perceive beauty in mathematics after the 
course: the percent of students agreeing that there is something in mathematics that 
they think is beautiful and that they could describe increased from 15 to 55 % (see 
Fig.  18.3 ). We are also interested in having but struggling to fi nd a written test that 
measures students’ skills (reasoning, creativity, persistence, fl exibility, etc.) inde-
pendently of the content treated during the semester.

   In addition to  data   from the pre-and post-surveys such as that found in Fig.  18.3 , 
we have collected student journals over the years. Journal entries like the following 
show that many  students   have achieved the specifi c learning goals  DAoM   devel-
oped for the course:

  From the very fi rst moment we started the Stone Game, I was able to understand it and was 
actually excited to discover more ways in which a player could win. After the class ended, 
I remember I went back to my dorm room, tore up a piece of paper into little squares, and 
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began to search for more ways that a player could win. After I was fi nished working through 
some of my ideas, I looked around at all the little scraps of paper that were covering my 
desk, and I was amazed with myself. That had been the fi rst time I had ever gotten so 
excited about working on a math problem outside of the classroom. 

 DAoM Student, Fall 2015 

   I agree with Lockhart 4  that students should explore math for themselves and discover 
 equations so that they understand it better than being given a formula sheet and told to 
memorize them. In our class we did not use any equations or formulas and I feel that I 
learned more in this class than any other math class  before  . 

 DAoM Student, Fall 2015 

18.5          Collaborating on Teaching Techniques 

 Being part of the  DAoM   project has taught me much about teaching techniques. 
Visiting my  colleagues  ’ classrooms and collaborating weekly to create inquiry 
materials led to many questions, disagreements and discussions. This process 
helped me discern who  I  want to be in the classroom and why  I  prefer some teaching 
techniques to others. Even though all four of us clearly support inquiry, our teaching 
methods vary. I like to use a “large” investigation prompt to start off a new topic and 
then mix group work with whole class discussions to reach a conclusion (von 
Renesse and Ecke  2013 ). Fleron, on the other hand, prefers to give his students 
handouts with smaller prompts for the groups to work on (Fleron  2014 ), often with-
out whole class discussions. The guiding principle is the same: we act as coaches 
and the students do the mathematics. The difference lies in how much guidance we 
give our students. Through many conversations we have seen the advantages and 
disadvantages of each approach and have found ourselves trying out and liking each 
other’s methods of facilitating inquiry. Lately Fleron has been using my approach of 
the larger prompts in his classes and has really enjoyed the discoveries that his stu-
dents made (Fleron  2015 ). 

 Our approaches to motivating the class also differ. I tend to pick topics that seem 
“easy” and engaging, (music, dance, games,…) or investigations that I know will 
lead students to disagree with each other, for example, wondering if  0 999 1. …=    or 
not. Then I tried out some of Fleron’s materials and noticed that my students were 
not as excited about mathematics. I didn’t know that he likes to choose topics that 
are rooted in pure mathematics ( understanding   the infi nite,  number theory     ,…) and 
generates  motivation   by regularly telling students about “cool” connections in 
mathematics (von Renesse  2015 ). Engaging a crowd by giving exciting minilectures 

4   The students read “A mathematician’s lament” by Paul Lockhart (see  https://www.maa.org/exter-
nal_archive/devlin/LockhartsLament.pdf ). 
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doesn’t come naturally to me yet—but I am improving. The deep  collaboration   in 
our project over the last eight years is clearly visible in the peer- reviewed   publica-
tions and blogs that we have written together.  

18.6      Professional  Development   Workshops 

18.6.1     History of Our Workshop Development 

 When our project  DAoM   made our learning guides freely available (  www.artof-
mathematics.org/books    ) we assumed that now anyone could replicate what we do. 
But it is not easy for teachers and professors to change their teaching style. In addi-
tion to the curriculum materials, there are many teaching decisions that we make 
unconsciously or that we had not communicated in our learning guides. This real-
ization led to the creation of our classroom web page and our traveling workshops. 

 While we developed these resources, I took on more and more the role of a leader 
in our group. As the most senior faculty member of our project, Fleron had been the 
natural leader of our  efforts   but his interests were more focused on  curriculum 
development   than leading workshops or creating pedagogical support. My back-
ground and interest in leading K-12 professional development workshops put me, 
the most junior faculty member and only woman of the project, suddenly in a lead-
ership position.  

18.6.2     Workshop Goals and Description 

 Our short traveling workshops usually include nine offi cial contact hours. 
Additionally we like to plan at least one group meal to give us time to connect and 
network. We also offer to visit classes before the workshop to watch, model, or co- 
teach with the teaching participant. The classroom visits allow us to meet some of 
the participants and assess their needs before the workshops starts. The goals of our 
traveling workshops are to help faculty:

•    Experience as a student what mathematical inquiry can feel like in a MLA class,  
•   Investigate particular content areas that might resonate with their students,  
•   Refl ect on the interaction of teacher, student, mathematics, and inquiry materials 

in the classroom.    

 The 20–30 participants of a typical workshop are mostly professors from 2- to 
4-year colleges and universities near the workshop site. We also ask the on-site 
workshop coordinator to invite some local K-12 teachers and graduate students 
since having a variety of participants promotes richer discussions and 
 collaborations  . 
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 We  believe   that one learns best when using inquiry. Therefore the guiding prin-
ciple for the workshop is to not lecture about how to teach using inquiry but to 
facilitate activities what will lead the participants to discover the teaching ideas 
themselves. As part of our activities we let participants experience what it feels like 
to be students in an inquiry-based learning environment. Participants  report   regu-
larly how eye-opening this was for them and how much it motivated them to change 
their own teaching style. We also let participants practice their  teacher moves   5  with 
the other workshop members, as in the workshop  vignette   in Sect. 18.6.3 . 

 My current research includes fi nding or inventing more workshop activities that 
help teachers and professors become successful in teaching using inquiry. The  salsa 
rueda   activity would be too long for a workshop activity, so we use shorter activities 
that are appropriate in diffi culty level for the audience of teachers and professors. 
As long as the topic is approached via inquiry and the question is posed well (Weiss 
 2003 ) the specifi c content is not relevant for our purpose. The teacher moves that the 
participants engage with can be used with any mathematical topic. 

 In our  workshops  , we also use classroom videos containing other content from 
our MLA learning guides. For example, the video clip   https://artofmathematics.org/
media/video-395     shows how a week after the salsa rueda activity, I am recording 
students’  conjectures   about relating the greatest common factor and the least com-
mon multiple. This video clip is useful at workshops to demonstrate how I record 
ideas that are mathematically incorrect or irrelevant without losing my “poker face”. 
The next section contains a  vignette   that presents a typical interaction that could 
have happened at any of our  workshops  .  

18.6.3      Workshop  Vignette   

 We just watched several classroom video clips to see how teachers use “ talk moves  ” 6  
to facilitate a good discussion. The 10 workshop participants (high school teachers 
and professors from 2- to 4-year colleges) described the  teacher moves   they 
observed, which include the  talk moves   from Susan Chapin’s book Math Talk 
(Chapin et al.  2003 ):

•     Revoicing : Let a student repeat what another student said  
•    Rephrasing : Facilitator rephrases what he/she heard the student say  
•    Agree  or  Disagree : Ask the class whether they agree or disagree with a 

statement  
•    Adding On : Invite students to add any observations, thoughts or questions  

5   A “ teacher move ” is any choice the teacher makes during class to enhance student learning. 
Examples are standing in a particular part of the room or clapping a rhythm to get students’ 
attention. 
6   A “ talk move ” is a particular phrase the facilitator uses during a whole class discussion or a math-
ematical conversation with a student. 
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•    Wait Time : Do nothing for at least 10 s, the hardest thing to do for most 
teachers  

•    Sharing : Decide who gets to share their ideas (and when)  
•    Record : Write/represent the essence of the discussion on the board    

 Some of the participants look a bit nervous since they know they will soon lead 
a discussion using  talk moves   in our group. I explain the goal of the role-playing: 
“This is your chance to practice facilitating a discussion in a space where it doesn’t 
matter when we mess up. There are no students here; we are not trying to cover 
anything. Just see what it feels like.” The fi rst  facilitator     , Professor G, hands his 
problem to the groups of “students.” They are supposed to decide if 0.999.,…=1 or 
not. While he walks between the groups I notice that he seems to “hover” over the 
groups with his arms crossed. I join him and suggest that he can pull up a chair to a 
group and tell them that he is “listening in.” This little meta-conversation with 
Professor G doesn’t distract the groups from playing with different proofs for differ-
ent audiences. I observe that a few participants argue against the equality but are 
quickly shut down by their group  members  . 

 After 10 min of group work Professor G calls his “students” together as a whole 
“class”. He decides to start the discussion with a group that uses the trick of multi-
plying  x = …0 999.    by 10 so that  10 9 999 0 999 9x x− = …− … =. .   , which makes 
 x = 1   . After they explain their idea he asks another participant to repeat their think-
ing. The next group he calls on uses a calculus approach with a geometric series. As 
they take over the board I wonder how the participants who don’t believe in the 
equality are doing. Did Professor G. notice that they are there? Does he have a plan 
to bring them in? It seems to me that he will continue to let the groups share their 
thinking without connecting the ideas or bringing in disagreement. So I decide to 
interrupt him and address the group: “We have heard a lot of arguments in favor of 
equality. I wonder if there is anyone in this room who thinks 0.999… and 1 cannot 
be equal?” One participant immediately raises his hand to share that it doesn’t feel 
right to him that these numbers could really be equal. “It just can never reach 1, 
something with the algebra must be wrong. Maybe we can’t subtract the infi nitely 
many places the way we did?“ Now the energy rises in the room and a member of 
the fi rst group starts to defend her algebraic thinking. Professor G. is busy recording 
their thinking and  calls      on a third group to repeat where the  confl ict   lies. 

 When our allotted time for the discussion is over it is hard for me to get the par-
ticipants to stop discussing the  mathematics  : “Take a deep breath, let go of the 
mathematics, and put your teacher hats back on.” Pause “Thank you. Professor G., 
how did the discussion feel to you?” He shares that it was hard not to tell the “stu-
dents” who was right and to let the confl ict develop. His instinct was to call on the 
students who knew the correct answer and avoid the students who seemed to strug-
gle. The question comes up when to step in and give feedback. Can we agree to 
disagree? Do we need to come to a conclusion before “class is over”? The discus-
sion touches on many important aspects and challenges of an inquiry-based class-
room and I try not to tell the participants how I would deal with this situation. After 
all, this is their moment to inquire about teaching, and not mine.  
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18.6.4     Workshop Evaluation 

 We are currently using pre- and post-workshop evaluations for our short workshops 
to measure the impact right after a workshop and a year later. Results are not com-
piled yet. Comments on our post-surveys suggest that our workshops are well 
received. Conversations with  department chairs   in the year after a traveling work-
shop indicate that participants use our ideas to change their class structure and work 
on their teaching moves. Written comments from  workshop   participants include:

  I believe the most effective aspect [of the workshop] was experiencing IBL as a student and 
unpacking what it is like as the facilitator. I think it gave me a real sense of what kinds of 
activities to utilize with my students. 

 Workshop Participant, 2016 

   [The most effective parts of the workshop were] explicitly looking at and practicing the 
teaching moves with a group of eager learners before I try it with my reluctant students. 

 Workshop Participant, 2016 

   This workshop exceeded my expectations. With a post-secondary focus, I expected a more 
typical ‘quick fi x’ message. I felt the work we experienced here is much more fully and 
authentically aligned with current education research than any post-secondary  PD   I have 
ever experienced. 

 Workshop Participant, 2015 

   I hope in the  future   to use a classroom observation protocol like O-TOP (Wainwright 
et al.  2004 ) or M-SCAN (Merritt et al.  2010 ) and videotape some classes that partici-
pants teach before and after having taken our workshop. Maybe this would allow us 
to measure in greater detail what they learned at our workshop.   

18.7     Larger Audiences and Future Work 

 While the work of  DAoM   was intended to reach MLA instructors nationally we have 
seen huge interest in our materials and workshops from a much larger audience. Over 
the last 4 years, many K-12 schools have reached out to us for professional  develop-
ment  . Mathematics departments from  community   colleges through universities are 
interested in our traveling workshops, international schools and universities have found 
our materials, and we have almost 900 followers of our monthly pedagogy blog. We 
are at the point where four people can’t handle the work anymore, and we need more 
faculty leaders to help with implementing IBL workshops in mathematics. 

 The DAoM team just started collaborating with the  Academy of Inquiry Based 
Learning (AIBL)  . The goal of the new project PRODUCT—PROfessional 
Development and Uptake through Collaborative Teams: Supporting Inquiry Based 
Learning in Undergraduate Mathematics—is to “train the trainers” so that more IBL 
workshops can be offered in the future. PRODUCT, under the leadership of Stan 
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Yoshinobu and Sandra Laursen, is supported by an  NSF   IUSE grant to increase the 
number of facilitators of IBL workshops. 

 DAoM is leading the short workshop development for  PRODUCT     , Professional 
Development and Uptake through Collaborative Teams. We will continue to offer 
short workshops at no cost until 2020 and develop materials that can support profes-
sors and teachers in offering short IBL workshops themselves. While  DAoM   and 
 AIBL   have been offering IBL workshops for the several years, our  guiding princi-
ples differ from one another. Articulating our goals clearly, sharing our facilitation 
experience and deciding on joint strategies will be challenging and productive.  

18.8     Personal Refl ections 

 While I feel very comfortable teaching a class or leading a workshop, I still struggle 
with taking on a leadership role in a project among  colleagues  . How do we hold 
each other accountable for our respective work on the project? What do we do if we 
disagree on something? Where is the line between honesty and diplomacy? How 
does friendship intersect with work relationships? Who determines what is “fair” 
and how we get compensated for our respective contributions? There are more ques-
tions than answers at this point. I know that my strengths are planning ahead, work-
ing effi ciently, getting my work done on time, and being an honest and clear 
communicator. But I am still learning how to be supportive of a colleague and give 
honest feedback (at the same time!), how to be a cheerleader instead of a taskmaster, 
and how to determine a reasonable workload instead of overcommitting.     
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    Chapter 19   
 An Ethnomathematics Course and 
a First- Year Seminar on the Mathematics 
of the Pre- Columbian Americas                     

     Ximena     Catepillán    

    Abstract     As mathematicians know—but, unfortunately, many students don’t—
mathematics can be both fun and culturally relevant. One way to reach more stu-
dents is to teach ethnomathematics, i.e., mathematical thinking found among such 
non-Western peoples as the Maasai of Kenya and Tanzania, and the ancient Maya. 
This chapter describes, and provides a rationale for, two different courses in ethno-
mathematics: an undergraduate ethnomathematics course for non-STEM students, 
and a fi rst-year seminar on the mathematics of pre-Columbian Americans. Also 
included are aspects of the development and structure of the courses, examples of 
ethnomathematics topics, and lists of projects. Feedback from students, alumni, and 
colleagues regarding the value of such courses is provided.  

  Keywords     Ethnomathematics   •   Mapuche   •   Maya   •   Pre-Columbian   •   Warlpiri  

19.1        Introduction 

 One of the biggest challenges for ethnomathematicians is to persuade secondary 
schools and higher-education institutions to teach about the cultural richness of 
mathematics. As our classroom populations grow more culturally diverse, we gain a 
precious opportunity: to teach mathematical ideas that are embedded in some stu-
dents’ heritages. 
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 Frequently, non-STEM oriented students are intimidated by the prospect of taking 
mathematics courses required to fulfi ll their general education requirements. Fortunately, 
such students who enroll in ethnomathematics courses tend to lose their fears and 
eagerly master mathematical concepts. This is particularly true for  minority   students 
when they discover links between contemporary mathematics and the mathematics of 
their ancestors, which boosts their ethnic pride. Caucasian or Western students, who 
constitute 78 % of the student population at Millersville University, benefi t greatly from 
a mathematics course that is not only diverse in its content but also in its  students     . 

  Ethnomathematics , a term popularized by Ubiratan  D’Ambrosio   at the 5th 
International Congress on Mathematics Education 1  in 1984, is the study of mathemat-
ical thinking found outside what, in Western tradition, is traditionally considered to be 
“mathematics.” The term is used to express the relationship between  culture   and math-
ematics. This includes “ideas … involving number, logic, spatial confi guration, and, 
more signifi cant, the combination or organization of these into systems and struc-
tures” ( Ascher   and Ascher  1997 , p. 25). The main reasons for studying ethnomathe-
matics are: “(1) To de-mystify a form of knowledge (mathematics) as being fi nal, 
permanent, absolute, unique…; and, (2) To illustrate intellectual achievement of vari-
ous civilizations, cultures, peoples, professions,  gender  …” (D’Ambrosio  2007 , p. 9). 

 My goals for developing an ethnomathematics course are to illuminate mathe-
matical and scientifi c knowledge of the people of the ancient civilizations, formu-
late problems from these civilizations in symbolic mathematics  language  , increase 
awareness of the cultural  diversity   of mathematics (many of my students are sur-
prised when I point out that our number system is Hindu-Arabic), relate mathemati-
cal ideas of Western and non-Western worlds, and reveal that mathematics can be 
found worldwide. Mathematics epitomizes both diversity and universality—num-
bers hold their value in any  language        .  

19.2     The Mathematics in Non-Western  Cultures   Course 

 The development and structure of the course, a concise description of subjects 
treated, and an example on an ethnomathematics topic will be presented in this sec-
tion. The section concludes with feedback from students, alumni, and  colleagues        . 

19.2.1     Development of the Course 

 While a non-tenured faculty member at Millersville University of Pennsylvania, I 
was asked to develop a mathematics course suitable for the university’s new 
 African- American Studies   minor. In 1993, a series of lectures at Millersville by 
Rutgers’ Arthur Powell on the then-emerging fi eld of Ethnomathematics inspired 
me to create the course Mathematics in non-Western Cultures, treating 

1   http://revistas.ucr.ac.cr/index.php/cifem/article/viewFile/10608/10010 . 
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mathematical notions developed by Africans, Asians, and native North, Central, and 
South Americans, among other non-European peoples. 

 Mathematics in non-Western Cultures is a general education course designed for 
non-STEM students to fulfi ll the required 3-credit general education mathematics 
requirement. For students minoring in African-American Studies and  Latino 
Studies  , the course is strongly recommended. The course also qualifi es as a  diver-
sity   course at Millersville University since it (1) is intercultural and cross-cultural; 
(2) examines historical and environmental factors that underlie cultural differences; 
(3) helps students identify, critically analyze, and apply  scholarship   and experience 
related to cultural diversity; (4) provides academic structure in support of students’ 
positive engagement with peoples of diverse histories; and (5) challenges them to 
evaluate their own  worldview     .  

19.2.2     Course Structure 

 Students who take the course are non-STEM majors and fairly diverse. In a typical 
class of 20 students, 40–50 % are  students   of color, mostly African-Americans, 
Asians, and Hispanic (22 % of the students at Millersville University are students of 
color). Their  ethnic      backgrounds infl uence the topics I choose to teach and the list 
of projects I offer. More than merely providing a survey of the mathematics from 
various cultures, the course teaches students to think critically about the basis of 
their own intercultural differences. During a given semester, I treat at least two 
items under each of the topics listed in Sect.  19.2.3 . The students work on two proj-
ects—each with a different partner—for  presentation   to their classmates. These pre-
sentations are followed by discussions and small-group activities. 

 I have taught the course in three different formats: a traditional face-to-face 
course; a technology-enhanced course, in which 22 % of the course is face-to-face 
and the rest online; and as a study-abroad course based in Mexico, with 20 % of the 
class meetings held at Millersville University (see Sect.  19.4 ).  

19.2.3       Mathematical Topics in the Course 

19.2.3.1        Number Theory      

•      Written numbers  : They include the   grouping  system  , as used by the Egyptians, 
in which the values of the symbols are added; the   alphabetic  system        , as used by 
the ancient Indian katapayadi, whereby numbers are associated with letters of the 
alphabet; the   partially      positional  system   of the Indian Kharosti (Menninger 
 1970 ); and the  positional  system like the Babylonians’.  

•    Spoken numbers           : The methods of counting used by most indigenous groups are 
closely connected with their language structure. Here, the biggest hurdle is the 
formation of large numbers with a reasonable number of words. The Bantu lan-
guages’  number words   of Africa offer excellent examples.  

19 An Ethnomathematics Course and a First-Year Seminar on the Mathematics…
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•    Calendars  : Calendrical forms are universal. Special attention is given to the 
Mesoamerican elaborated system of calendars.  

•   Magic squares: They originated in China and later transferred to Japan. The mys-
terious squares were thought to have special powers, and some cultures used 
them for astrological and divinatory purposes. Extended magic squares methods 
were developed in West Africa in the eighteenth century.     

19.2.3.2      Topology   

•     Graphs: The sona sand-drawings of the Tshokwe of Angola, the designs of the 
Bushoong of Congo, and the rice fl our kolam drawings of the Tamil Nadu in 
India are studied, along with their connections with unicursal Shongo networks.  

•   Mazes: Sand tracing fi gures—nitus—and maze-dances of the Malekula of 
Vanuatu in the South Pacifi c Islands are investigated together with their geo-
metrical transformations.  

•   String fi gures: String fi gure making of the African Batwa Pygmies and  Native 
Americans   are analyzed using a  series   of simple movements called elementary 
 operations         (Vandendriessche  2015 ).     

19.2.3.3      Logical Structures   

•      Kinship  : The  Warlpiri   of Australia and the Tongans of the South Pacifi c Islands 
have unique kinship relation rules that are studied to gain insight into the politi-
cal, social, or ritual organization of their members.  

•   Recording and counting aids: Artifacts like the  Inca    quipu  , the Chinese rods, the 
Japanese soroban, and wooden and bone tally  sticks      are studied. Objects like 
these were instrumental prior to the invention of paper.  

•    Finger counting  : More than 20 variations of fi nger counting are known in Africa 
among such peoples as the Maasai of Kenya and Tanzania. Students explore how 
fi nger counting differs according to region, ethnicity, and historical period.  

•    Body counting  : The use of the body as a counting tool can be found throughout 
the world. For example, tribal people in Papua New Guinea use as many as 74 
body parts in their counting  system  .     

19.2.3.4      Group Theory   

•      Symmetry patterns  : The seven groups of  symmetries   of  strip patterns   are studied 
using non-Western artifacts like ceramics, fabrics, jewelry, and basketry. In two- 
dimensional symmetry patterns—tessellations—most of the 17 wallpaper  sym-
metry   groups are present in non-Western cultures.  
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•    Kinship   relations and magic  squares        : We study the connections found among 
group theory, kinship relations and magic squares.     

19.2.3.5      Probability   

•      Games of chance  : We study dice games like the Nyout from Korea, Tablan from 
India, and Pulic from Central America. Some variations of the African Mancala, 
believed to be the world’s oldest game, are played by the  students        .  

•    Games of strategy  : African and  Native American   games of strategy, like those 
played with stones, bones, or other small objects, are explored.  

•   Puzzles: Puzzles from Africa like the Kpelle, river crossing and  kinship   puzzles 
are solved by drawing  charts   to represent the solutions.  

•   Games are examined using mathematical reasoning, problem-solving, and cul-
tural approaches.    

 Not every topic on this lengthy list is taught each semester—curricula vary 
depending on students’ interests and the projects they present in class. A project 
should include a historical introduction and explain the topic’s mathematical con-
nections. There are always new projects on the list, some suggested by students 
themselves. Student  projects   have included such topics as:

•    Non-Western female mathematicians  
•   Fear of numbers in different cultures  
•   The mathematics on the Ishango Bone  
•   Patterns in American quilts  
•   Calendar conversions among  Maya   dates  
•   Chinese triangles  
•   Basic mathematics using Japanese  origami    
•   Navigation techniques of the  Yup’ik          
•   Golden ratio in non-Western cultures  
•    Pi   and the Babylonians  
•   Tarot and mathematics  
•    Pythagoras’ theorem   in non-Western cultures  
•   The sixteen Hindu sutras  
•   Preparation of a  video   with fi nger counting methods    

 Creativity is key to successfully completing my course. For example, when stu-
dents construct their own number system for a fi ctitious indigenous group, they are 
allowed to use words from their ancestors’ languages for the  spoken numbers  , but 
they also are required to create their own symbolic numerals. 

 We also discuss the advantages and limitations of our own Hindu-Arabic number 
system, and we discuss such topics as how fi nger counting can reveal one’s ethnic-
ity. In counting to three, for example, Germans start with the thumb, Chinese with 
the index fi nger, and Filipinos with the little fi nger.   

19 An Ethnomathematics Course and a First-Year Seminar on the Mathematics…
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19.2.4     An Ethnomathematics Topic in the Course 

 Many ethnomathematics topics appeared in the lists of mathematical topics in 
Sect.  19.2.3 . In  19.2.4.1  we describe one of those in more detail: the elaborate kin 
structure among aboriginal people of Australia’s Northern  Territory        . 

19.2.4.1      The  Warlpiri   of Australia 

 The Warlpiri (Walbiri) people occupied a large block of the arid country northwest 
of Alice Springs in the Northern Territory of Australia until their lands were invaded 
by Europeans in the fi rst half of the twentieth century (Laughren  1982 ). Today most 
Warlpiris live in government-run settlements or ranches. The  Warlpiri            have a com-
plex  kinship   system that encodes their social, political, and ritual organization and 
behavior. 

 Their kinship system consists of eight sections, each divided into a female and a 
male section. The females in a particular section all have the same name, beginning 
with N; this is called a  skin name  . Similarly, the males have a skin name, beginning 
with J. Therefore, following  Ascher   ( 1991 ), we have 16 skin subsections, labeled  iN  
and  iJ ,  1 8£ £i    and eight sections (see Table  19.1 ). Skin names determine people’s 
roles, responsibilities, and obligations in relation to one another and to the elements 
of land, law, language, and ceremony (Ngurra-kurlu). A deceased person’s name 
becomes taboo. Hence they are never referred to by name, but rather by means of 
their kin relation to a living relative.

   Unlike personal names, skin names defi ne sections rather than individuals. 
Having a skin name immediately gives a person a place in Warlpiri society because 
he or she has a known set of relationships. If I were a member of the Warlpiri and in 
Section 4, my name would be Ximena Nungarrayi  Catepillán        . 

 These eight sections obey the following rules:

    (a)    Each person is in only one section.   
   (b)    Marriages take place with a  person            from another specifi ed section.   

   Table 19.1    The female and male numbers and names for the sections   

 Section  Female section  Male section  Female skin name  Male skin name 

 1  1N  1J  Nakamarra  Jakamarra 
 2  2N  2J  Nampijinpa  Jampijinpa 
 3  3N  3J  Napanangka  Japanangka 
 4  4N  4J  Nungarrayi  Jungarrayi 
 5  5N  5J  Napaljarri  Japaljarri 
 6  6N  6J  Napangardi  Japangardi 
 7  7N  7J  Napurrurla  Jupurrurla 
 8  8N  8J  Nangala  Jangala 
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   (c)    Their children are in another section, which depends on the section of the 
mother.     

 In Fig.  19.1 , which summarizes the sections’ rules, an equal sign = indicates mar-
riage partners. For example, a  woman            (man) in section 6 can marry a man (woman) 
in section 2. The symbol < > points from the father’s section to his child’s section and 
vice-versa. For example, if a boy is in section 1, his father is in section 7, and vice 
versa. The arrows point from the mother’s section to her child’s section. Hence, if I 
were in section 8, then both my children would be in section 5 (Laughren et al.  1996 ).

   If a mother is in section 5, her daughter is in section 7, her granddaughter in sec-
tion 6, her great-granddaughter is in section 8, and her great-great-granddaughter is 
again in section 5. If a boy is in section 1, his father is in section 7, and his grandfa-
ther is again in section 1, and so on. 

 Consequently the female sections form two 4-cycles (1, 4, 2, 3) and (5, 7, 6, 8). 
The females whose sections are in a single 4-cycle form a  matrimoiety  . Similarly 
the male sections form four 2-cycles (1, 7), (2, 8), (3, 6), and (4, 5). The four male 
sections in the fi rst two 2-cycles form one patrimoiety and the four sections in the 
second two 2- cycles   form another ( Ascher    1991 ). 

 The following questions help students understand the rules of the Warlpiri kin 
system:

•    Assume that you are a Warlpiri member and in section 1, in which section(s) are:

 –    Your siblings? Uncles on your mother’s side? Aunts on your father’s side?  
 –   Nephews on your sister’s side? Cousins on your father’s side? Your great 

grandmothers? Sisters and brothers in law? The father of the brother of your 
mother in law? Spouse?     

•   List three  members         of your family that are in your section.  
•   Assume you are in section 1. Use the Warlpiri rules to draw a diagram with three 

generations of your own family tree.  

  Fig. 19.1    Diagram of the 
eight sections’ rules       
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•   Is it conceivable for each of us to draw the diagram of our family tree? What are 
the hurdles?  

•   List advantages and disadvantages regarding the Warlpiri  kinship    rules        .    

 Let us designate section 1 as I, and look at the other sections from this stand-
point—that is, through their relationship to I. From the 4-cycle (1, 4, 2, 3) it follows 
that if a female is in section 1, then her mother (m) is in section 3, the mother of her 
mother (m 2 ) is in section 2, the mother of the mother of her mother (m 3 ) is in section 
4, and the mother of the mother of the mother of her mother (m 4 ) is in section 1, 
therefore we can write m 4  = I. It follows from cycle (1, 7) that if a male is in section 
1, then his father (f) is in section 7, and since the mother of someone in 7 is in sec-
tion 5, we can identify section 5 with mf. In addition, if we identify section 5 with 
mf, since the mother of someone in section 5 is in section 8, we can associate sec-
tion 8 with m 2 f. Similarly section 6 is identifi ed with m 3 f. 

 It is also important to clarify that not everyone in section 3, for example, is a 
mother. In fact, there are all types of people in every section: mothers, fathers, chil-
dren, grandparents, etc. Table  19.2  identifi es every section with its (m, f) combina-
tion ( Ascher    1991 ).

   This is a good opportunity to introduce the mathematical concept of  group  and 
its properties. I can consider the   commutativity     property            by asking if mf equals fm. 
Students can use Fig.  19.1  to rewrite any combination of f’s and m’s as one and only 
one of the eight representations in Table  19.2 . In 1978 the  Australian      linguist David 
Nash brought to Laughren’s attention that the resulting structure was the dihedral 
group of order 8, the  symmetry   group  of a square   (Laughren  1982 ).   

19.2.5     Reactions from  Colleagues  , Students and Alumni 

 The following are several comments I have received from students and alumni who 
have traveled to Mexico with me:

•    Your [ethnomathematics] class literally altered my life trajectory, and helped me 
to reframe the entire lens through which I see the world today. It was no small 
thing!  

•   I truly can't overstate the impact you, the course, and our trip to Mexico had on 
my life both personally and professionally. It was the singular most important 
course I ever took at Millersville.  

•   What it meant to be a "history person" as I understood it, was deeply challenged 
by what I learned in that class.  

    Table 19.2    The number sections and their m, f representations   

 1  2  3  4  5  6  7  8 
 I  m 2   m  m 3   mf  m 3 f  f  m 2 f 
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•   The course and trip to Mexico opened my eyes to other worlds and other ways of 
doing things that, given my exclusively Eurocentric education, I took for granted. 
I continue to be astonished by what I learned, years later, and still love to share 
the knowledge that I acquired with my students and others!  

•   … [The course] expanded my knowledge on the celebrating of  diversity  . It 
caused me to think not only about math in other places, but also how that math 
affected the daily lives of the people who used it.    

 I am indebted to my  colleagues            from the Millersville University departments that 
the course serves. It is because of their advising that my course reaches full enroll-
ment soon after registration begins. Here are some of my colleagues’ comments:

•    Without this course, the minor [ African American Studies  ] would not be able to 
fulfi ll its  mission  .  

•   Students  report   that this course has given them a new perspective on mathematics 
and has changed their vantage point from being terrifi ed to being excited and 
open minded about the possibilities.  

•   Their [Art majors] right-brained interpretation of the world seems to readily 
make the leap to viewing the world through the lens of the course. I have seen 
direct infl uences from [the course] in the work my Advanced Sculpture students 
are doing which to me is the most desirable outcome possible and broadens my 
students' view.  

•   It’s exciting for our anthropology majors and minors to explore mathematics in 
non-Western cultures. [The course] provides an added dimension to our pro-
gram’s cross-cultural study. We are extremely fortunate to have this mathematics 
course available for our students, and it is wildly popular among them!  

•   The course provides speech  communication      majors an ideal choice to immerse 
themselves in cultures, including often their own native one. The course main-
tains the rigor of equivalent mathematics offerings while reducing the intimida-
tion level many of our students  possess  .      

19.3     The Freshman Seminar on  Culture  , Science, 
and Mathematics in the pre-Columbian Americas 

 My native South American ancestry played an important role in the development of 
my interest in pre-Columbian  subjects     . I grew up in a large family in which being a 
member of the Catepillán clan meant being strong-willed and proud of our indige-
nous blood. More objectively, I felt compelled to develop this seminar based on 
comments like the following from one of my former ethnomathematics students:

  American history that is pre-1776 like the Ancient  Maya  , is typically (and frustratingly) 
compacted into a single unit in American  public   schools, whereby teachers and textbooks 
fl y through the entirety of pre-Columbian America as if it's something of a boring prequel 
to "the real story.” 
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   In this section, the development, structure, and a list of topics for the seminar will 
be presented. The section ends with two examples of  topics      for the seminar. 

19.3.1     Development of the Seminar 

 In 2008, Millersville University encouraged faculty members to create seminars on 
subjects that we felt passionate about. For me, this offered a great opportunity to cre-
ate a course that combined two of my intellectual passions: mathematics and pre- 
Columbian studies. I proposed a seminar on the mathematics and science of the 
civilizations of the pre-Columbian Americas. The seminar is an introduction to the 
study of the pre-Columbian North, Central, and South Americas, part of the broad 
interdisciplinary fi eld of  Native American   Studies. The emphasis is on the role that 
science and mathematics played in the  cultures   of these indigenous groups. The sem-
inar explores the pre-Columbian world through the eyes of the ancestors, as well as 
those of contemporary students. Special attention is given to archaeoastronomy and 
mathematics, on which all of the great cultures of antiquity have left a mark. 

 The history and culture of the pre-Columbian people motivate students’ interest 
in the mathematical and astronomical achievements of these peoples. Every topic 
treated in class and each project developed by students must begin with a historical 
overview. The objectives guiding the development of the seminar are to demonstrate 
the mathematical and scientifi c knowledge of the people of the pre-Columbian  civi-
lizations     , formulate problems from these civilizations in symbolic mathematics  lan-
guage  , increase awareness of the cultural  diversity   of mathematics, and relate 
mathematical and scientifi c ideas among the people of the pre-Columbian civiliza-
tions. In comparison with the course Mathematics in non-Western Cultures, the 
emphasis in this course is on the indigenous peoples of the pre-Columbian Americas.  

19.3.2     Seminar Structure 

 Students who take the 3-credit seminar are fi rst-year  students   who have not declared 
a major. These students share a designated residence hall and have special program-
ming to aid them during their adjustment to college life and in their search for a 
major. 

 During the semester, students work on two projects that they present to their 
classmates. For the fi rst project (most semesters) they are asked to choose a  Tribal 
College   of the American Indian  Higher Education   Consortium (  http://www.aihec.
org/     ) , study the history of the tribe and a tribal related mathematics or science course 
offered by the college. There are 37 tribal colleges and universities in the United 
States. These institutions are working to strengthen the tribal nations and make a 
lasting difference in the lives of  American   Indians and Alaska Natives. Students 
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compare a selected  tribal college   with their own university and discuss the advan-
tages and disadvantages of each. 

 Marlene Lang, who has  Native American   roots, is a regular speaker at my semi-
nar. She is completing a doctoral dissertation that places the voices of young indig-
enous writers alongside theological models of the church, in search of a deeper 
cultural reconciliation. She described her participation and the students’ reaction as 
follows:

  I have participated in the seminar presenting the  story      of my own Wisconsin Native ancestry. 
My father’s father lived on the portion of the Menominee Reservation given to the 
Stockbridge-Munsee Band of Mohicans. The students were saddened to hear how my 
father’s birth certifi cate was left blank where it asked for name of “father.” They learned of 
the “age of invisibility” stretching into the mid-twentieth century, during which it was con-
sidered good to hide one’s Native identity and blend in with white society. My grandfather’s 
name was likely erased for this purpose. Having met him in person on the reservation was a 
singular event in my life and the students seemed to sense its importance. While my hair is 
black and my eyes are brown, my mother’s Irish heritage left me “not looking like an Indian,” 
to the Millersville freshmen. They were surprised to learn that I did not appreciate Columbus 
Day and that Native Americans have a very different view of the event we call Thanksgiving. 
There were gasps at this information (Personal communication, November 18, 2015). 

   For the second project, a list of topics is available for students’ selection or they 
can suggest their own. The list, as with my Mathematics in non-Western Cultures 
course, varies each semester. Projects have focused on topics such as these:

•    The mathematics of Native American pictography  
•   Preparation of a video on fi nger counting methods of Native Americans  
•    Zero   in  Mesoamerica    
•   Patterns in Native American quilts  
•   Calendar conversions among Maya dates  
•   The concept of infi nity and the indigenous of America  
•   Number systems of the Patagonia becoming extinct  
•   Navigation techniques of the Yup’ik  
•   Golden ratio in the  Maya   culture  
•   Maya dates over billions of years ago  
•   Reckonings on the Inca yupana  
•   Eclipses in the indigenous cultures    

 Students also attend  Native American   Studies and Latino cultural events held at 
the university, and later discuss them in  class     .  

19.3.3     Mathematical Topics in the Seminar 

19.3.3.1      Astronomy   in Ancient American Cultures 

•     Ancient pre-Columbian observatories and astronomical sites: American 
Southwest, Mesoamerica and  Inca   territory among others.  
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•   Building alignments: Structures, temples, tombs and pyramids that were aligned 
with the precession of planets and the solar equinoxes.  

•    Calendars  : Calendrical and religious observances based on phases of the moon 
and solar cycles.  

•   Planets: The  planets      that the ancients could see with the naked eye. Lunar and 
solar eclipses, and how celestial events empowered the leaders.  

•   Navigation: Indigenous navigation techniques. Some indigenous groups have 
navigated for centuries using a combination of geometry, the stars and 
constellations.     

19.3.3.2     Pre-Columbian Number Systems 

•     Written numbers: They include the   grouping  system   like the Aztecs,  partially 
positional  like the Aymará of Bolivia, and  positional  like the  Maya   (see 
Sect.  19.2.3.1 ). Many different bases are used by the pre-Columbian  groups     .  

•    Spoken numbers  : The method of  counting   in most indigenous groups is closely 
connected with their language structure (see Sect.  19.2.3.1 ).     

19.3.3.3     Counting Boards 

•     Boards and recording devices: The  Inca   developed counting boards,  yupanas , to 
make computations before the results were recorded on a   quipu   , a recording 
device consisting of colored cords containing information in the form of knots. 
The  chimpu  of Bolivia and Peru, a quipu variation, is another recording device. 
Patolli, one of the oldest of games played in Mesoamerica, used a board. The 
Maya used grids for reckonings and games (De Landa  2005 ).  

•    Finger counting  : Several variations of fi nger counting like the Yuki of California, 
the Bakairi and Bororo of Brasil, Maidu of the Northwest (Closs  1996 ).  

•    Body counting     : We fi nd this type of counting in a variety of groups throughout 
the Americas.     

19.3.3.4     Calendrical Systems 

•     Celestial calendar: The Sun Dagger site and a celestial calendar of the Pueblo of 
the American Southwest.  

•   The  Maya   system of  calendars  : The Tzolkin, Haab and Round Calendars, and the 
Long Count. Conversions of dates among the calendars, correlations among the 
calendars and the Julian and Gregorian calendars.  

•   Other calendric forms—albeit not as complex as the Maya—are ubiquitous in 
the  Americas     .     
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19.3.3.5     Numerical Representations 

•     Hieroglyphic inscriptions: Hieroglyphic engravings and codices have enabled us 
to learn astronomical and calendrical  data   recorded by the Maya. Ancient monu-
ments like the   stelae    show carved hieroglyphic texts displaying solar and lunar 
calculations, in addition to historical data. There is an enormous amount of his-
torical information, from many pre-Columbian groups, inscribed on buildings, 
stairs, lintels, tombs, pottery, fabrics, etc.  

•   Pictographs and petroglyphs: Pictograph and petroglyph sites of the people of 
the Southwest, the Great Basin, the Checta of Perú and the Cave of the Hands in 
Argentina, among others.     

19.3.3.6     Strip and Planar  Symmetries   

•     Strip symmetries: There are seven strip symmetry groups, and every indigenous 
 strip pattern   used in arts and crafts can be identifi ed with one and only one of the 
seven groups.  

•   Planar  symmetries  : A similar study can be done with planar symmetry groups 
and the 2-dimensional patterns developed by the pre-Columbian societies. 
Cultures have their own pattern styles that identify them; the meaning of these 
patterns is also studied.      

19.3.4     Topics in Ethnomathematics of the Pre-Columbian 
Americas 

 Two examples of topics for the seminar are presented in this section. The fi rst 
describes the number system of an indigenous group from South  America     , and the 
second describes strip patterns of the pre-Columbians. Both of these topics can be 
included in the ethnomathematics course Mathematics in non-Western Cultures. 

19.3.4.1     The  Mapuche   of South America 

 The Mapuche (translation:  people of the earth ) were the fi rst inhabitants of half of 
the area today known as Chile and Argentina, and are the largest ethnic group of 
Chile. Before the Spanish conquest, the Mapuche occupied a vast territory in the 
South American cone, with the population numbering about two million. In the pre- 
Hispanic times, the  Inca   conquered as far south as Cerro Chena, 20 km south of 
Santiago, the capital of Chile (Stehber  2015 ). I am of Chilean origin, and my last 
name, Catepillán, is Huilliche (translation:  people of the south ), a subsection of the 
Mapuche. Mapudungún ( language of the earth ) is the Mapuche language, and their 
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writing number system varies slightly from region to region. The most common 
 number words   in their native language can be seen in Table  19.3  (De Augusta  1903 ).

   It is interesting to note that   Quechua            , the language of the  Inca  , was used for the 
word for 1,000. There was contact, albeit not friendly, between these indigenous 
groups. The Mapudungún language adopted the Spanish word for 1,000,000. There 
are many examples in which the languages have been combined, a smooth merger 
since their number systems have the same base. 

 For numbers combining two or more numbers— compound numbers  —the basic 
rules are: 

 In addition the higher number precedes the lower number whereas in multiplica-
tion the lower number precedes the higher number. 

 Some examples are:

•    kayu mari = 6 × 10 = 60  
•   mari kayu = 10 + 6 = 16  
•   meli pataka pura = 4 × 100 + 8 = 400 + 8 = 408  
•   ailla pataka ailla mari ailla = 9 × 100 + 9 × 10 + 9 = 900 + 90 + 9 = 999  
•   waraŋka = mari pataka = 10 × 100  
•   küla kechu meli = 3 × 5 + 4    

 The following questions explore some of the mathematics involved in this num-
ber system. Many other number systems from indigenous South  American         cultures 
provide options for investigation.

•    What is the base in this number system?  
•   Write the following numbers as Hindu-Arabic numbers: 
•  epu pataka reqle mari meli 

  Table 19.3    A list of 
Mapudungún number  words    

 Mapudungún number 
words  Hindu-Arabic number 

 Kiñe  1 
 Epu  2 
 Küla  3 
 Meli  4 
 Kechu  5 
 Kayu  6 
 Reqle  7 
 Pura  8 
 Ailla  9 
 Mari  10 
 Pataka  100 
 Waraŋka  1,000 
 Pataka waraŋka  100,000 
 Millón  1,000,000 

X. Catepillán



287

•  pura waranka meli pataka kayu mari pura 
•  epu mari meli waraŋka kayu pataka epu mari kiñe  
•   Write the Mapudungún words for 21, 30, 44, 68, 123, and 765. In some cases 

there are several possible answers.  
•   What does 5 × 8 + 4 mean in this system?  
•   Is it possible to write a number as reqle?  
•   Which is the largest number that the  Mapuche   can write?  
•   Compare this system with your own and list advantages and disadvantages.    

  Written numbers   are used by many indigenous groups. Sadly, a number of their 
languages and dialects are either extinct or rapidly disappearing, together with their 
written number systems, e.g., Chumashan of Southern California, Selk’nam of 
Tierra del Fuego, and Nahuatl of Mexico. A popular project among students is to 
choose a language or dialect not discussed in class that is extinct or threatened with 
extinction, and to study its number  system      and culture, along with possible reasons 
for the language’s demise.  

19.3.4.2     Pre-Columbian  Strip Patterns   

 Patterns repeating along a strip extending indefi nitely in both directions can be clas-
sifi ed into seven groups according to their symmetry types ( Ascher    1991 ). A sample 
pattern for each of the seven  symmetry   types can be found in Fig.  19.2 . Strip pat-
terns are present in every pre-Columbian indigenous  community   because their 

Symmetry Type Sample Pattern

1. Translation only

2. Horizontal reflection

3. Vertical reflection

4. Horizontal/vertical reflections

5. Glide reflection

6. Rotation 180

7. Rotation/vertical reflection

q q q q q q q q q q q

q q q q q q q q q q
d d d d d d d d dd

db db db db db db

qp qp qp qp qp

qp qp qp qp

qp

d d

b b b b b b b

d d d d d
q q q q q q q

q q q q q q q

db

db db db db

db db db db db

db

  Fig. 19.2    The seven  symmetry   types       
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 cultural         beliefs are represented in their art; thus, art expression has been a form of 
 communication   for these groups. These people have an enormous respect for nature 
and art for art’s sake is not part of their life.

   Figure  19.3  depicts a strip pattern made with the Andean cross, one of the most 
common symbols in the Andean cultures, which represents the eternity of those 
cultures and is found in pottery, textiles and ponchos worn by leaders– lonkos –of 
indigenous  Mapuche    groups  . The strip pattern has  symmetry   type (4).

   The strip pattern in Fig.  19.4  is based upon the  chakana   Inca    cross        . The cross is 
created in such a way that only the upper half protrudes from the ground; the cross 
is completed by the shadow cast by the upper half. The shadow part represents the 
non-material world. The strip pattern has  symmetry   type (3).

   Strip patterns abound in all pre-Columbian indigenous groups and are a great 
subject for student  projects  , as students study the embedded cultural messages, the 
history of the peoples who created them, and the geometrical classifi cation of the 
seven symmetry types. Students enjoy fi nding all seven  symmetry   types in pre- 
Columbian strip  designs  .    

19.4      Study Abroad Sessions 

 Each summer from 2006 to 2010, with support from the university, I conducted a 
special version of the Mathematics in non-Western  Cultures   course that included a 
weeklong trip to Mexico’s Yucatán Peninsula to study  Maya    civilization        . I resumed 
teaching this version of the course in spring 2016. Archaeologists from the Maya 
Exploration Center (  http://www.mayaexploration.com/index.php     )  have helped to 
teach the course’s study abroad component, by lecturing, conversing with students, 
and guiding them during visits to such sites as:

•    Chichén Itzá, from the Terminal Classic to Post-Classic periods (c. 750–1200AD);  
•   Cobá, a settlement from the Middle and Terminal Classic periods (500–900AD);  
•   Ek-Balam, from the Middle Pre-Classic to Post-Classic periods (500BC–1200AD); 

and  
•   Yaxunah, from the Middle Pre-Classic through the Post-classic periods 

(500BC-1200AD).    

  Fig. 19.3    Andean cross 
 strip pattern   ( left ) and 
Andean cross ( right )       

  Fig. 19.4     Inca   cross  strip 
pattern         
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 One of the highlights of the Mexico trip is  Stela   1 in Cobá. A stela is an inscribed 
stone slab used for commemorative purposes. The stela depicts an unusual  Maya   
date, one that goes back more than 28 octillion and 679 septillion years (Stuart  2011 ). 

 During these study-abroad sessions, students immerse themselves in Maya  cul-
ture  . They sample Maya cuisine, meet descendants of the Maya, who speak Maya 
languages or Spanish, and do most of the work on their major project for the course. 
After we return to campus, students give presentations based on their fi eld experi-
ences— presentations   that are always rewarding and enjoyable, because of the stu-
dents’ high levels of excitement and  motivation  .  

19.5     Conclusions 

 Studying ethnomathematics encourages math-averse students by demonstrating the 
universality of mathematics and showing students how mathematics played a role in 
the lives of the ancestors of some of their non-European classmates. Students of 
European ancestry who take my ethnomathematics course truly enjoy being 
 immersed      in the non-Western cultures of their classmates. 

 In 2014, I co-developed a graduate version of my Ethnomathematics course for 
our Master of Education in Mathematics program at Millersville University. This 
version of the course provides the opportunity for graduate students interested in 
K-12 teaching to learn mathematics and mathematical activities rooted in 
 non- Western cultures. When they become mathematics teachers themselves, gradu-
ates of the course can incorporate these cross-cultural mathematics’ principles and 
activities in their lesson plans. 

 Waclaw Symanski, my co-author for the textbook  Mathematics in a Sample of  
  Cultures    (Catepillán and Szymanski  2016 ) and I were writing additional chapters 
for a second edition when he died unexpectedly in August 2016. Work will continue 
on the new edition. 

 One of my career dreams is to teach my undergraduate and graduate ethnomath-
ematics courses in Spanish, perhaps in an online, bi-lingual format.     
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    Chapter 20   
 First-Year Seminar Writing for Quantitative 
Literacy                     

     Maria     G.     Fung    

    Abstract     This chapter describes a series of writing assignments from two distinct 
fi rst-year seminars at Worcester State University. Both of these seminars focus on 
building quantitative literacy skills. Students research and write about a variety of 
topics related to globalization, population growth, human rights and climate change. 
The impact of these seminars for the students, institution, department, and instruc-
tor is discussed.  

  Keywords     Writing   •   Quantitative literacy   •   Assignment   •   Examples   •   First-year 
seminar  

20.1        Introduction 

 According to the Association of American Colleges & Universities (AAC& U   
 2014a ), quantitative literacy encompasses all the capabilities of an individual to 
work with numerical  data   in a variety of contexts and situations. Students should be 
able to collect, organize, and analyze numerical or statistical evidence, as well as to 
communicate their fi ndings in a number of representations, from tables, charts, and 
graphs to mathematical equations. After considering many different paradigms, 
both historical and semantic, Karaali et al. ( 2016 ) proposed that quantitative literacy 
be conceived as “competence in interacting with myriad mathematical and statisti-
cal representations of the real world, in the contexts of daily life, work situations, 

 MSC Codes 
 97-01 
 97B20 

        M.  G.   Fung      (*) 
  Department of Mathematics ,  Worcester State University , 
  486 Chandler Street ,  Worcester ,  MA   01602 ,  USA   
 e-mail: mfung@worcester.edu  

mailto:mfung@worcester.edu


292

and the civic life”. This framework forces quantitative literacy outside of the 
traditional  mathematics         college courses (such as fi nite mathematics,  college alge-
bra  , and  precalculus  ) into an across-the-curriculum effort, especially suited for 
interdisciplinary endeavors. A fi rst-year seminar, which is at the centerpiece of the 
general education curriculum at many institutions, is a logical venue for focusing on 
quantitative literacy. 

 In today’s  data  -driven world, quantitative literacy is an essential habit of mind. 
According to the 2003 National Assessment of Adult Literacy Survey ( NAAL ), 
22% of American adults scored in the “below basic” category on quantitative liter-
acy, with another 33% in the “basic” category. This constitutes an alarming percent-
age of Americans who are unable to perform simple arithmetic operations (such as 
calculating a gratuity on a bill or a fi guring out a total price for postage) or interpret 
data (such as reading and interpreting simple charts or graphs). The burden falls on 
the K-16 education system to remedy this situation. University mathematics depart-
ments need to become leaders in the efforts to ensure that college graduates are 
numerically literate citizens. According to the recommendations of Committee on 
Undergraduate Programs in Mathematics (CUPM)          of the Mathematical Association 
of America (MAA), mathematics courses for general education should “increase 
quantitative and logical reasoning abilities needed for informed citizenship and in 
the workplace” and “improve every student’s ability to communicate quantitative 
ideas orally and in writing” (MAA CUPM  2004 , p. 28). 

 In  Mathematics and Democracy , Steen ( 2001 ) goes further to distinguish college 
mathematics from quantitative literacy knowledge. He calls for quantitative literacy 
instruction, neither as a replacement nor an alternative to mathematics, but as “an 
equal and supporting partner in helping students learn to cope with the quantitative 
demands of modern society” (p. 135).  Mathematics         faculty profi t both by rethinking 
the general education mathematics tracks and by collaborating with  colleagues   from 
other departments on infusing  general education courses   with a quantitative literacy 
focus (Miller  2012 ).  

20.2     First-Year Seminars at Worcester State University 
(WSU) 

 Steen ( 2004 ) urges mathematics and  statistics   faculty to relate quantitative literacy 
to other “reform” programs such as fi rst-year seminars and  teacher preparation  . As 
a part of its general education program, the fi rst-year program at WSU requires 
every incoming student with fewer than 12 college credits to complete a fi rst-year 
seminar during their fi rst semester of study. These seminars are interdisciplinary, 
discussion-based courses that cover a current or controversial topic within the 
humanities, social sciences, or Science Technology Engineering and Mathematics 
(STEM) disciplines. Each of the more than three dozen seminars offered every fall 
shares the three-part goal of increasing students’ written and oral  communication 
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skills  ,  critical thinking  , and information literacy (the ability to collect, evaluate, and 
use appropriately a variety of supporting sources). Every seminar requires a fi nal 
 capstone   writing  assignment   for  students         to demonstrate their development towards 
achieving its three-part goal. This assignment is referred to as a  signature  assign-
ment, since it serves as an assessment tool for the institution. 

 First-year seminars are seen by the university  community   as opportunities to 
delve deeper into topics of joint interest to instructor and student, without being 
confi ned by a particular discipline.  First-year seminars         also serve a signifi cant role 
in helping students to transition to college life by building up their  communication   
and analysis skills. These seminars foster a very close relationship between students 
and faculty members that appears to persist past the end of the fi rst year. Due to their 
interactive close-knit community character, these seminars are a signifi cant reten-
tion tool for the institution. 

 As a result of their interdisciplinary and discussion-based nature, fi rst-year semi-
nars offer a natural venue for exploring topics in quantitative literacy. Since instruc-
tors have the freedom to weave themes from different subject perspectives, they can 
fi nd ways to engage students in thinking critically about a specifi c topic across dis-
ciplines. Quantitative literacy is a logical extension of all of the components of the 
three-part learning goal for fi rst-year seminars, since it involves: looking critically 
at numerical or statistical  data  ; compiling, evaluating, and analyzing data similarly 
to any other information; and fi nally communicating one’s fi ndings both orally and 
in writing. 

 Two fi rst-year seminars with a quantitative literacy emphasis were taught in the 
fall semesters of 2011 and 2014 at  WSU        . The fi rst seminar was called “Disturbing 
Times in Worcester and the World” and it was a part of the university-wide effort of 
exploring Worcester’s place in the world through a combination of courses, events, 
and speakers. The second was “The Nature of Climate Change: A Quantitative 
Approach.” Both involved explorations of data sources, bias and reliability of data 
collection, and manipulation of results. A variety of written  assignments         and proj-
ects comprised a fundamental part of the curriculum in both courses. 

20.2.1     Disturbing Times in Worcester and the World 

 This course had several themes running through it—globalization, population 
growth, human rights, international security, and environmental issues. All of these 
were examined both locally (in Worcester) and globally (in the world). The required 
texts for the course included  Disturbing Times: the State of the Planet and Its 
Possible Future  by Scott T. Firsing,  What the Numbers Say  by David Boyum and 
Derrick Niederman,  Now or Never: Why We Must Act Now to End Climate Change 
and Create a Sustainable Future  by Tim Flannery, and  Confessions of an Economic 
Hitman  by John Perkins. The last book was a required reading for all fi rst-year stu-
dents, and at the end of the semester the author gave a talk on campus. 
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 A typical class started with discussions of  assigned         readings, both in small 
groups and as a class. Then students worked on short projects and assignments, 
wrote about their fi ndings and presented their ideas. Every class concluded with a 
short debriefi ng of the ideas from the day’s explorations. Occasionally, the  instructor 
gave mini-lectures on topics from descriptive  statistics  , measurement and  probabil-
ity  . Writing permeated virtually every activity in the course. It was done both in and 
outside of class, with feedback from peers and instructor. 

 The quantitative literacy focus in this course included collecting, organizing and 
summarizing  data  , reliability and bias of data sources, percentages and proportions, 
elementary probability theory including conditional  probability   (Niederman and 
Boyum  2003 ).  

20.2.2     The Nature of Climate Change 

 This course formed a learning  community   together with an honors English compo-
sition course. The students were enrolled in both courses in consecutive  time         slots, 
and both classes focused on the same themes of climate change. The fi rst-year semi-
nar had two required readings:  The End of the Long Summer: Why We Must Remake 
Our Civilization to Survive on a Volatile Earth  by Dianne Dumanoski and  Climate 
Myths: The Campaign Against Climate Science  by John J. Berger. The English 
composition course used  Moral Ground: Ethical Action for a Planet in Peril , a col-
lection of essays edited by Kathleen Dean Moore and Michael P. Nelson. Several 
times during the semester, students attended lectures on environmental science and 
watched scientifi c documentaries related to climate change during the combined 
time blocks for the learning community. A joint fi nal essay served as the  signature  
assignment for the fi rst-year seminar and the  capstone   project for the writing course. 

 The class structure was very similar to the “Disturbing Times in Worcester and the 
World” course. Each chapter of the readings was used as a starting point for learning 
and exploring different facets of climate change. At the end of the semester, students 
had the opportunity to meet Diane  Dumanoski.         Speaking with the author of a book 
that the students had carefully read and analyzed was an exceptional experience. The 
question-and-answer session both challenged and delighted the author, who was sin-
cerely impressed by the depth of the students’  understanding  . 

 Similar to the other course, the quantitative literacy component focused on col-
lecting, organizing and summarizing  data,            reliability and bias of data sources, 
percentages and proportions. It also included some modeling and prediction.   

20.3      Writing-to-Learn   

 Writing has long been an essential pedagogical method for learning new material, 
for making connections and for meta-cognition (Walvoord  2014 ). Writing is 
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especially critical when students work in a classroom environment where active 
engagement with the material, explorations and discussions are at the center of 
learning (Bean  1996 ). In college classrooms where the bulk of learning is accom-
plished through student activities, the writing process allows students to compre-
hend the problems they are working on at a deeper level, to synthesize new ideas 
and connections, and to arrive at conclusions, or to generate the next problem to be 
considered (Bean  1996 ). 

 Quantitative literacy tasks always involve  communication   of fi ndings, thus mak-
ing writing a natural way of learning and expanding knowledge. Meier and Rishel’s 
( 1998 ) three categories of mathematical  writing        —personal, refl ective and expres-
sive—apply to the realm of quantitative literacy in a way that corresponds directly 
to the level of complexity and demands on the student  writer  . Examples of personal 
or  informal   writing include personal refl ections on readings or in-class activities, 
and journals.  Expository   writing ideas include short project papers, essays on spe-
cifi c topics from the course, or beginner’s research papers. Expressive writing 
examples include the midterm research projects and the  signature  writing  assign-
ments   from each of the seminars. More details on the quantitative  literacy         writing 
assignments in each of the three categories follow. 

20.3.1      Informal   Writing 

 The informal writing in both fi rst-year seminars took the form of daily refl ections, 
extensions of the assigned readings, journals, check-in or exit cards (short written 
responses to questions posed at the start or end of class), and free writing. Most of 
the time, students had to come to class with a short  paper   that included a summary 
of the reading for the day and their reaction to it. Sometimes students had to write a 
letter to a parent, peer, or political fi gure able to make policy decisions. 

 Here is an example of a typical “Disturbing Times in Worcester and the World” 
assignment:

•    Read Chap.   4     in " Disturbing Times …" on protecting human rights. Write a two- 
paragraph summary of this chapter. Focus on one of the topics in the chapter and 
research it further. Prepare a fi ve-minute  presentation   on this topic of your choice 
to share with the class. Focus on using reliable  data   sources to support your 
claims. Your audience will be your classmates.  

•   Research the organization mentioned in the reading,  Transparency    International.             
Spend some time researching their work. Find three quantitative things of inter-
est to you and write a small paragraph for each. Did any of these fi ndings shock 
you? Discuss.    

 Early in the semester the  students   in “The Nature of Climate Change” were asked 
to fi nd two current online articles that dealt with climate change and to summarize 
each article in several  paragraphs        . They also had to determine if the articles referred 
to  data   sources or other quantitative information and to provide reference for the 
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sources. Students read and commented on each other’s papers, a process that helped 
them assess their own work. Then there was a whole class discussion about the 
 reliability and bias of sources, and therefore in the  presentation   of information to the 
 public  . 

 In their bi-weekly journal assignments, students in the learning  community   were 
asked to write freely about the most signifi cant ideas they have encountered and 
how these ideas were related to both of the linked courses. One requirement of each 
journal entry was to include quantitative information, and to think critically about 
where this information comes from and how this information infl uences the way we 
perceive and think about the issues at hand. 

 Exit and check-in cards are a way to get immediate student feedback on their 
 understanding   and struggles. Short prompts such as “One numerical idea I am still 
struggling with is….”, “The most exciting quantitative concept discussed is….”, or 
“ Statistics   allows us to….” are an effective way to start a conversation or to revisit a 
diffi cult concept. 

 Free writing was typically done in class as a way to focus students’ attention on 
a topic. For instance, students write for fi ve minutes all their ideas about human 
rights’ violations both locally in Worcester and globally in the  world     . Alternatively, 
students write for ten minutes about how technology might be able to help us com-
bat climate change. The  goal   of these assignments is to initiate students’ thinking 
about a topic and to make them aware of their own background knowledge and limi-
tations. It is important for free writing ideas to be shared with a group, so that a 
productive discussion can ensue. 

  Informal   writing  assignments            get students engaged in the material and invested 
in their learning. These assignments represent simple and immediate ways in which 
quantitative literacy topics could be brought to the attention of students to prime 
them for exploring these topics further.  

20.3.2      Expository   Writing 

 Expository writing for both fi rst-year  seminars   comprised longer writing  assign-
ments   that might take from several days to several weeks to complete. The two 
assignments in “Disturbing Times in Worcester and the World” included a Census 
Data project and a population growth project. In the former, the students were tasked 
to compare Worcester, MA Census Data from 2000 to 2010. The fi rst part of this 
assignment was to explicitly discuss any changes that could be observed with 
appropriate numerical measures such as percentage growth. Students had to use 
appropriate graphs and charts to show their comparison. For the second part of the 
assignment, students had to fi nd  data   about the racial and ethnic distribution of stu-
dents in the Worcester  public   schools from  2010  . At the heart of this part of the 
project was the fact that Hispanics, a large group in Worcester, MA, can  report   as 
any race on the Census, thus skewing the numbers of Whites. So,  students         were 
asked to respond to these questions: Was there a discrepancy between the  Census   
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and the Worcester  Public   School population data? How can the discrepancy be 
explained or resolved? Could students support their claims with some further 
research? 

 In the population growth project, students looked at the populations of Worcester, 
of the state of  Massachusetts,         and of the world from 1900 to 2010 in 10-year incre-
ments. They collected and organized this  data   in a way that was easy to understand, 
employing a variety of graphs. Using two different functions of best fi t in   Excel   , 
they were able to predict how the populations would change with time. Which mod-
els are more realistic? Why or why not? Which models have larger errors for inter-
mediate points? Students wrote about the limitations of simple models (linear, 
exponential and logistic) to capture a dynamic process that involves migration and 
a number of external factors that can directly alter a population, such as food and 
water shortages, urbanization, and disease spread. 

 In “The Nature of Climate Change” course, students worked on climate data 
from the Worcester, MA project. The instructions for this project were:

•    Go to the  website           : weather-warehouse.com  
•   Find out information about the average monthly temperatures in Worcester (col-

lected at the regional airport) from the past 50 years. Use this information to 
obtain yearly average temperatures for Worcester from the past 50 years. Enter 
all your data in an  Excel   spreadsheet, where you record the years in the fi rst col-
umn and the yearly average  temperatures   in the second column.  

•   Using Excel, construct a plot of yearly average temperatures on the y-axis. This 
is called a time-series (the years will appear on the x-axis). What trends do you 
see?  

•   Using  Excel  , construct a “scatter with straight lines and markers plot” of the 
average yearly  temperatures        —it will consist of separate dots for each  data   point 
and every adjacent pair of points is connected with a straight-line segment.  

•   Calculate the line of best fi t for the scatter plot. What do you observe about its 
slope? What does this tell you about the trend in temperature for the past 50 
years?  

•   Now split the data up into two groups of 25 years, meaning, for instance, that you 
start with the 1963–1988 fi rst and study it independently. Then do the same, with 
the 1988–2013  group  . Repeat the steps of fi nding the best fi t line. What do you 
notice? Is there a difference for the fi rst 25 years versus the last 25 years? How 
can we explain this difference?  

•   Now calculate the standard deviations in all three cases. How do they compare? 
What could you conclude from your calculations?  

•   Write a two-to-three-page  presentation   of your observations that could be shared 
with a  climate         change doubter.    

 Compared to personal writing  assignments  ,  expository writing   assignments pro-
vide more complex and sophisticated ways of encouraging students to refl ect on 
what they are learning, and to synthesize new ideas. They are an important  tool   in 
any educator’s repertoire and can easily be adapted to a variety of quantitative 
situations.  
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20.3.3     Expressive Writing 

 Expressive writing  assignments            often serve the role of  capstone   projects, whether at 
midterm or at the end of the semester. They are among the most complex indepen-
dent written work students produce in a course. These assignments allow students 
choices for the ideas they want to explore and much more creativity in structuring 
and presenting their fi ndings. 

 In “The Disturbing Times in Worcester and the World” seminar students worked 
on exploring and comparing fi ve different educational challenges of Worcester, 
MA, and of Pakistan, supporting their claims with ample quantitative evidence. 
Then they presented solutions for addressing these challenges and for bringing 
about improvement. The students had to quantitatively estimate the effect of their 
proposed solutions. 

 Another assignment from the same course focused on creating a population 
reduction program for Sudan, a country with high population growth. Students had 
read about the importance of education, government policies, and availability of 
birth control as factors for curbing population growth. They considered the hypo-
thetical impact that improved universal educational programs, better governmental 
 policies,         and ample donations of means of birth control from the United States 
would bring to Sudan within a decade, 50 years, and a century. All essays focused 
on different measures, but shared good predictive numerical calculations about 
change in population growth. Errors of estimation were also discussed. 

 In “The Nature of Climate Change” seminar,  students   completed two  creative   
writing  assignments  . After they had become familiar with the main factors causing 
climate change, students wrote an essay about the impact of one of Mexico, Brazil, 
China, India, Indonesia, or Russia on climate change. These countries were selected 
based on their large populations and growing economic  impact        . The essays included 
the following sections:

•    Introduction: summarize some information about the country’s history, geogra-
phy, and economics.  

•   Climate change impact through:

 –    Use of fossil fuels and other materials that promote greenhouse gases  
 –   Economic development that requires the use of increased resources and spe-

cifi cally leads to deforestation, etc.  
 –   Population change and water/food resources  
 –   For the climate impact, provide  data   that you fi nd and deem reliable; this 

means using at least 3–5 sources (online sources are acceptable but make sure 
the data are reliable).     

•   Projections of how these factors will impact climate change if things are left 
unchanged: please show your reasoning, support your claims with quantitative 
evidence, and describe the immediate and long-term impact of keeping the status 
quo.  
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•   Ideas for change, e.g., policies (both local, regional and global), international pro-
grams, local initiatives, etc. and how these ideas will impact the climate. Include 
short (up to 5 years) and long- term            (10–50 years) projections of the effects of your 
proposed interventions. Support all your claims with numerical calculations and 
estimations.  

•   Conclusion: discuss what have you learned from this project.  
•   Bibliography—you can use MLA, APA, or Chicago but be consistent 

throughout.  
•   Graphs and tables: include them as an appendix rather than in the body of your 

paper.    

 The fi nal shared assignment of the learning  community   also fi ts the category of 
a  creative   writing  assignment.            Assignment details are provided in the  Appendix . 
The topics students chose varied from the production of tidal power, to the system-
atic reduction of red meat consumption, to universal composting, to the creation of 
a national K-12 climate change curriculum.  

20.3.4     Brief Comments on Assessing Writing 

 The personal writing  assignments   are most easily evaluated by a simple check-off 
for work completion and immediate comments in the margins of the paper. The 
 expository   and  creative   assignments could be assessed on a simple 3-point system, 
where 1 is minimal, 2 is emerging and 3 is thoroughly developed. Several compo-
nents of the assignment such as organization, completeness, and clarity could be 
assessed with this 3-point system. Instructors could certainly create more compli-
cated rubrics to fi t any particular assignment. It is critical to provide detailed infor-
mation about the expectations for each  assignment,            so that students understand how 
to be successful.   

20.4     Outcomes of Quantitative Literacy Writing 

20.4.1     Impacts on Students 

 Students from both groups found the  numeracy   focus useful (as noted in their com-
ments to the professor) and some shared their  enthusiasm         with the instructor several 
years after the date of the course’s completion. 

 In terms of grades, students from both quantitative literacy seminars received 
grades with an average not different in a statistically signifi cant way from that of the 
entire fi rst-year seminar cohort. However, the 2014 students’ scores on  critical 
thinking   using the AAC& U   rubric (AAC&U  2014b ) in a university assessment 
effort were consistently above the benchmark for fi rst year students. The English 
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professor in the learning  community   on climate change was impressed with the 
increased detail to argument and greater clarity in the students’ writing, which could 
be partially attributed to their work with quantitative sources. 

 In the fall of 2015, the ten students from the 2011 seminar were surveyed by 
email to answer the following questions: What was the most memorable part of the 
course? What were the most important things you learned in the course? A similar 
survey is planned for the students in the 2014 seminar. 

 Four  students         responded to this survey. A qualitative analysis showed the emer-
gence of three different themes: critical look at numbers and  data  ,  community  - 
building, and awareness of the need for social engagement. The topics of climate 
change and global warming, sustainability, the effects of globalization on world 
 culture  , and critical consideration of numbers and data were mentioned explicitly in 
the responses. 

 One student noted she was most infl uenced by “ the inconsistency of numbers 
(data, surveys, stats) in contrast to my prior  understanding   of its absolutism- and as 
you can imagine that lesson transferred to the rest of my studies and understanding 
of the world.” Another student wrote about how “it is important to question  numbers         
since they can be easily miscalculated or presented in misleading ways.” 

  Collaboration   was also important to students since the course was “a warm class 
and it allowed us to build a mini-community.” A student wrote about how “an indi-
vidual contribution can make all the difference” in resolving the most pressing 
issues of today.  

20.4.2     Department and Institutional Support 

 The mathematics department at WSU has been very supportive of this work. Several 
members of the department led a university-wide initiative to have quantitative lit-
eracy across the curriculum as a larger part of the general education curriculum, as 
opposed to the more narrowly defi ned “quantitative  reasoning  ” category, which 
required a high mathematics placement test score and impeded many departments 
in the  humanities         and social sciences from participating in these efforts. There were 
several  presentations   by mathematics faculty at university-wide conferences about 
the importance of quantitative literacy and the signifi cance of every discipline’s 
involvement in the efforts to create numerically competent graduates. The mathe-
matics department revised the general education mathematics course (MA 105 
Survey of Math) for students in the humanities to include a unit on  statistics  , by 
replacing the section on different numerical systems and bases. 

 There is increased institutional support for quantitative literacy initiatives, 
involving grant money to develop quantitative literacy modules in a variety of  gen-
eral education courses  . WSU is a Liberal Education and America’s Promise institu-
tion (LEAP  2014 ), and the mathematics department will continue to lead and 
oversee efforts to incorporate more quantitative literacy emphasis into the general 
 education         curriculum.  

M.G. Fung



301

20.4.3     Impact on the Author 

 As author of this article, I have learned much from my students since the beginning 
of my quantitative literacy work. My passion for social engagement and my inter-
ests in  writing in mathematics   courses and in collaborative learning naturally led me 
to designing and teaching fi rst-year seminars focused on quantitative literacy. 
Teaching a fi rst-year seminar based on discussion is a challenging yet exciting expe-
rience that impacts my pedagogical decisions in teaching any course. I am incorpo-
rating more discussion and writing  assignments   into all of my mathematics courses. 
I have infused a quantitative literacy emphasis into the sequence of three courses for 
elementary school teachers that I often teach. This has taken the form of focus on 
mental calculation, estimation,  probability   and  statistics projects  , and applied pro-
portional reasoning and percentage problems. 

 There is another fi rst-year seminar planned for the fall semester of 2016. It is 
called “What the Numbers Say” and it will focus throughout on quantitative liter-
acy. Once again, it will be linked with an English composition course with common 
thematic material and a shared  signature  assignment.  Students         will investigate 
quantitative scenarios from the news, politics (amidst the Presidential elections), 
medicine, and sports. 

 The two main texts for the course will be  What the Numbers Say: A Field Guide 
to Mastering Our Numerical World  by David Boyum and Derrick Niederman and 
 The Numbers Game: The Commonsense Guide to    Understanding     Numbers in the 
News, in Politics, and in Life  by Michael  Blastland        . Students will be given a different 
problem every few weeks that would require their use of quantitative methods for 
modeling and generating a proposed solution. They will work collaboratively to pro-
duce a feasible result. They will discuss, present, and write about their solutions. 

 I have also collaborated with members of the history, music, and art departments 
on developing materials for their quantitative literacy modules. I am currently 
involved with a Science Technology Engineering Art and Mathematics (STEAM) 
K-6 school in Groveland, MA, helping the mathematics teachers there to incorpo-
rate more quantitative literacy and writing into their work.   

20.5     Conclusion 

 As a result of the interdisciplinary focus of the two fi rst-year seminars, students 
received plentiful opportunities to explore the signifi cance of quantitative informa-
tion— data   compilations, percentage  statistics  , trend graphs, and numerical modeling, 
among others—in the context of a diverse set of political, environmental and humani-
tarian issues of imminent global concern. The three thematic writing  assignments   
discussed above sharpened the students’ abilities to analyze, synthesize, predict, and 
conclude on the basis of collected quantitative  data  . Similar  assignments         could be 
used successfully in a variety of mathematical and general education contexts.      
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     Appendix: Assignment for an Integrated Project 

    Essay Project 3: Proposing a Solution 

    Part 1 

 Project 3 is an integrated project between LC193H: The Nature of Climate Change 
and EN250: Creative Thinking and Critical  Writing.         This project asks you to offer a 
solution to an identifi ed problem associated with the environment, climate, or 
sustainability. 

 Your solution has to be  feasible.    That is to say, your solution should be focused, 
supported by evidence, and have the possibility of being implemented at some level. 
To this end, you may want to focus on a smaller implementation of a solution, such 
as at the state, local, or even campus level. For example, you could propose (argue) 
that Worcester State University would benefi t from a compost pile. In your essay, 
you would demonstrate through argumentation and the appropriate use of evidence 
that a compost pile is benefi cial to the campus  community  . Another example would 
be to propose (argue) that the colored garbage bag program found in cities such as 
Worcester and towns such as Shrewsbury and Northborough be expanded to the 
entirety of the State of Massachusetts. Once again, you will have to establish that 
there is an exigence that needs to be addressed, and after establishing the exigence 
you then will present your solution.  One way to think about this project is as a 
problem/solution essay  .  

   Particulars  
 Five to seven pages, double-spaced. 

 You should use at least two scholarly  sources         and appropriate  quantitative  and 
 statistical  evidence to support your claims. 

 You will be assessed on the strength of your writing (complexity of main claim 
and supporting claims, topic sentences, paragraph construction, fl uidity and transi-
tions, clarity, and persuasive appeals). 

  And  on the quality and strength of your sources and evidence, particularly your 
quantitative evidence. Indirectly, you will also be assessed on your ability to fi nd 
quality sources for use as evidence, as you will have to demonstrate the strength of 
authority of your sources in your essay.   

    Part 2 

 For LC193H, you will need to make a  poster  based on the fi rst part of the project. 
Your poster will be displayed at the First-Year Experience Showcase on December 
9th from 2:00 to 4:00 in the May Street Building. More information on the poster 
session will be provided in class. 
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 For EN250, you will need to re-purpose your information and arguments from 
your essay into a  letter  directed to a specifi c political leader or business leader. You 
will have to research which leader you will write to and plan on explaining how you 
are adapting your rhetorical strategy to a different audience and a different  genre.         

 WRITE WELL!     
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    Chapter 21   
 Tactile Mathematics                     

     Carolyn     Yackel    

    Abstract     Tactile mathematics, defi ned as recognizing deep mathematical concepts 
through engagement with physical objects, can be used to help students discover 
mathematics for themselves. This paper discusses the design of tactile learning 
activities, the insertion of such activities into existing courses, and special consider-
ations for courses to be taught almost entirely with tactile activities. We explain a 
specifi c example activity for a group theory course. A collection of mathematics 
faculty members experienced in tactile learning contribute their thoughts on the 
implementation of largely tactile mathematics courses. We end with the role of tac-
tile mathematics in the author’s career.  

  Keywords     Tactile mathematics   •   Active learning   •   Mathematical art  

21.1        Introduction 

 Imagine being in a classroom listening to a traditional graph theory lecture about 
 Hamiltonian cycles  —paths in a graph that visit each vertex exactly once, starting 
and ending at the same place. Now imagine attending the same class, but sitting 
down to a piece of stryrofoam with pushpins for the vertices of the graph. You are 
instructed to attempt to form Hamiltonian cycles with yarn. The professor has care-
fully crafted a set of questions through which the class together begins to discover 
the basic theorems about Hamiltonian  cycles  . 
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 The second classroom scenario gives an example of tactile mathematics: the pro-
cess of coming to understand deep mathematical ideas through engagement with 
physical objects. Instances of tactile mathematics can include physical models made 
specifi cally for the teaching of various mathematical concepts called manipulatives. 
Other examples of tactile mathematics involve having students engage in a craft, 
such as  origami  , and noticing specifi c aspects of the results of their work. Key fea-
tures of the process are twofold: the hands-on (tactile) facet of the activity and the 
thoughtful mathematical refl ection upon the result of the process. 

 The purpose of this chapter is to introduce the notion of tactile mathematics. 
Section  21.2  is intended to help readers understand how to design lessons involving 
tactile activities. We demonstrate this  lesson design   method with a concrete exam-
ple of a tactile learning activity for a traditional  abstract algebra   classroom in 
Sect.  21.3.1 . Section  21.3.2  contains a list of resources for teachers interested in 
inserting a tactile mathematics activity into the classroom. Section  21.4  discusses 
special considerations for instructors preparing to implement an entire course predi-
cated on the use of tactile activities. Section  21.5  recounts the role of tactile math-
ematics in the author’s career.  

21.2        Lesson Design   

 We take a multi-layered approach to class planning involving identifying the math-
ematical skills and the mathematical concepts to be learned, as well as the mathe-
matical maturity  goals   for our students. We develop our course or  lesson design   to 
meet these learning goals. The teaching method for each lesson is selected to maxi-
mize student learning of the concepts for that  lesson     . Some material might be best 
taught with the lecture method, whereas other material might be most easily 
absorbed by students if they are actively engaged. The process of working from 
goals to lesson plans has been labeled  backward-design  . 

 The pedagogical use of tactile mathematics is one form of what is sometimes 
called  inquiry-based   learning. Inquiry-based learning is a method characterized by 
presenting students with problems for which the solutions require students to fi rst 
assemble new results from information and ideas presented in class and in readings 
(Prince and Felder  2007 ). The results-building phase often involves an experimenta-
tion process in which examples play the role of experiments. Some students fi nd 
working with examples comprised of numbers and functions to be too abstract. 
Examples grounded in physical objects or actions can be more helpful to these 
learners. Making the mathematical model of the physical scenario explicit is the 
most important and frequently the most diffi cult part of the process. If tactile math-
ematics activities are to be effective, instructors must help students navigate appro-
priate use of mathematical ideas, terms and notation (Alfi eri et al.  2011 ). 

 As with most  inquiry-based   learning, tactile activities can take up a signifi cant 
amount of class time. The tactile aspects of the activities need to be simple, allowing 
the majority of class time to be spent on mathematics. Careful planning ensures that 
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activities are targeted at specifi c learning objectives or concepts. The instructor 
needs to plan by envisioning several ways the students might develop the ideas as 
they work through the material (Steffe and  D’Ambrosio    1995 ). Each sequence of 
idea development is called a  learning trajectory        .  

21.3     Incorporating the Tactile into Existing Courses 

 We begin this section with an example and follow up with a list of resources for the 
reader intrigued by the pedagogy and looking for source material. 

21.3.1      Example of a Tactile Activity to Determine 
the  Symmetries   of the Equilateral  Triangle   

 In this section we describe a textbook-independent tactile activity for the fi rst day of 
an  abstract algebra   course with an enrollment of about 15 students. This activity has 
also proven effective half-way through an introduction to proofs course of the same 
size, as we study number systems. We also utilize this activity for mathematics 
enrichment for interested high school students in groups of up to 20. As described in 
this section, the activity will exhibit high levels of student autonomy commensurate 
with the mathematical maturity expected from juniors and seniors enrolled in abstract 
algebra. For use with students at an earlier mathematical stage, we provide more sup-
port in terms of initial defi nitions, notation use, and structuring discussion. 

 The explicit objective of the activity is for students to determine the  symmetry   
group of the equilateral triangle. This group is known both as the dihedral  group   of 
order six, D 3 , and the  symmetric group   on three objects.  Abstract algebra   students 
need to have a good  understanding   of all groups of small order. Having a physical 
interaction with the symmetries of the equilateral triangle helps students internalize 
the surprising fact that the group is not commutative, which runs counter to the 
majority of their previous experiences in  mathematics        . The activity’s counterintui-
tive result is also a nice hook for an enrichment program. The  symmetry   group is an 
important example for students fi rst learning to think carefully about defi nitions, 
such as in an introduction to proofs course. 

 For the remainder of this section, we focus on the  abstract algebra   scenario, trust-
ing the reader to make the necessary adaptions to other situations. The division 
between  skill objectives   and  concept objectives   can be a fi ne line. Below we include 
a list of each followed by a list of student and mathematical maturity goals. The lists 
are provided in keeping with the  lesson design   method outlined in Sect.  21.2 . 

 Skill objectives for the activity: students will

    1.    Recognize and discover  symmetries   of objects,   
   2.    Determine  symmetry   groups of equilateral triangles,   
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   3.    Make a group multiplication table,   
   4.    Learn to use multiple notations for the same idea,   
   5.    Learn 2-line notation (explained below), and   
   6.    Learn group generator notation (explained below).     

 Concept objectives for the activity: students will understand

    1.    The idea of equivalence of two  symmetries  ,   
   2.    Composition as a binary operation we call multiplication,   
   3.    The notion of closure of a set under an operation,   
   4.    The role of the identity element in a group, and   
   5.    That not all groups are commutative.     

 While investigating the  symmetry   groups of equilateral  triangles   through the 
activity, I expect my students to be working on a  number         of student and mathemati-
cal maturity  goals   as well:

    1.    Learning how to hold a mathematical discussion with peers,   
   2.    Learning to give mathematical evidence, such as through examples,   
   3.    Learning how to ask questions of one another and of me,   
   4.    Learning how to grapple with uncertainty, such as when one hasn’t been told 

exactly what to do,   
   5.    Learning how to keep records of mathematical experiments, such as keep track 

of the results of the  symmetries  ,   
   6.    Gaining mathematical authority, such as by making  conjectures   and supporting 

these with evidence,   
   7.    Gaining mathematical autonomy, such as by working individually or disagreeing 

with the group,   
   8.    Taking ownership of mathematics, such as by fi guring out how mathematics is 

working for oneself, and   
   9.     Understanding   the need for mathematical notation.    

  To help my students investigate the  symmetry   group of the equilateral  triangle  , I 
hand out paper triangles with labeled vertices from Fig.  21.1  (right), along with a 
labeled outline triangle copied onto an otherwise blank piece of  paper        , as in Fig.  21.1  
(left), that helps students to keep track of the triangle’s initial position. Teachers 
must have a fl exible  understanding   of many possible learning trajectories so that 
they are able to quickly and accurately interpret student comments and questions in 
class, thereby giving helpful guidance as described by Liping Ma (Ball and Bass 
 2000 ). I will describe a typical  classroom   scenario that includes a  learning trajectory   
through this activity.

   First, students must think through what constitutes a symmetry. How do they 
determine when a  symmetry   occurs? What does the result of a symmetry look like? 
Typically after about a minute of baffl ement, a class conversation emerges. Perhaps 
one student will already know at least one example of a symmetry, which the stu-
dent will present to the others. Alternatively, I will present the idea of rotation by 
120° counter-clockwise, showing this motion of the moving triangle on top of the 
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fi xed background. At this  point        , more discussion ensues over what other motions 
would constitute symmetries. If necessary, I interject that we can also fl ip over the 
triangle. 

 Next, I ask how many symmetries exist and how they can be obtained. After an 
initial discussion, the individuals settle down to make a list. At some point fairly 
early in the process, we have a discussion about how some of the symmetries have 
the same result as others. For example, rotation through 480° counter-clockwise has 
the same result as rotation through 120° counter-clockwise, so we call it the same 
 symmetry  . Our exchange allows a winnowing of the lists. A further discussion of 
the identity ensues. Because this activity typically  marks   my students’ fi rst exposure 
to formal groups, they are often surprised that we will include the identity element 
in our set. A nice discussion of the importance and usefulness of closure under 
composition of symmetries results. 

 Now we are ready to discuss a representation for our symmetries, if this has not 
already happened. Usually two-line notation is the easiest for students to understand 
fi rst. Recall that with the triangle as pictured in Fig.  21.1 , rotating the interior tri-
angle from the starting position of matching vertex labels by 120° in the counter- 

clockwise direction gives the two-line notation  
1 2 3

2 3 1

⎛
⎝⎜

⎞
⎠⎟  

 , because after rotation, 

vertex 3 is now in the location previously occupied by vertex 1, vertex 1 is now in 
the location previously occupied by vertex 2, and vertex 2 is now in the location 
previously occupied by vertex 3. 

 Now I lead a  classroom discussion   on the number of  symmetries   of the equilat-
eral  triangle  . After a bit of debate, students explain to one another the reason that 
there are six. I then point out that if we perform one symmetry and then perform 
another  symmetry  , we should still have a symmetry of the triangle, thus introducing 
the idea of composition as multiplication. Next I ask if this might give us more sym-
metries than we had previously considered, again raising the issue of closure. This 
question allows me to bring in the idea of starting a multiplication table, known as 
a  Cayley table  . 

1
1

2

2

3

3

  Fig. 21.1    Fixed triangle ( left ) and triangle to move ( right ) for investigating D 3        
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 The class members can now begin to fi ll out their Cayley tables individually, not 
knowing if more than the initial six  elements         will need to be added. Oftentimes one 
or more students will realize the helpfulness of conceiving of the symmetries as 
rotations and refl ections. If so, I have individual or small group consultations in 
which I encourage adoption of a different notation, such as the typical group gene-
rators and relations  D r f r f e rf fr3

3 2 2=< = = = >, ,
 
 , where  e  denotes the identity, 

 r  denotes rotation by 120°    counter-clockwise,  f  denotes a specifi c refl ection, and 
these two symmetries satisfy the relation  rf fr= 2

  . Notice the  differentiation   of 
instruction between students who are ready for the concept of the group as described 
by generators and relations and students who need more time to play with groups in 
terms of two-line notation. 

 After 5–8 min, we can discuss the contents of the  Cayley table  . This is an impor-
tant step, as some of the students will have made mistakes based on the assumption 
of  commutativity   of multiplication, on tracking errors as they manipulated the tri-
angle, and on notational errors as they attempted to record the result of the  symme-
tries  . The discussion is always rich with insights as students realize that: this set is 
closed under composition; multiplication by the identity does nothing; multiplica-
tion is not commutative in this group meaning that multiplication does not need to 
commute(!); every element has an inverse in the set; and every row and every col-
umn of the Cayley table contains each element. 

 Finally, we discuss various representations we might have wanted to use instead 
of two-line  notation        . Depending on the class members, we may have written the 
Cayley table in terms of a different representation. In all cases, we are sure to use 
generator-relation notation and cycle notation. Remember that if we rotate the inte-
rior triangle from the starting position of matching vertex labels by 120° in the 
counter-clockwise direction then in cycle notation, we write (123) because vertex 1 
is sent to the location of vertex 2, vertex 2 is sent to the location of vertex 3, and 
vertex 3 is sent to the location of vertex 1. If we refl ect across the vertical altitude 
through vertex 1 so that vertex 1 is fi xed, the  symmetry   would be (23) because ver-
tex 2 is sent to vertex 3 and vice-versa. Vertex 1 is not mentioned because it is fi xed. 

 The  triangle   activity can easily take an entire class period, which could be con-
sidered slow coverage of material. However, the results are excellent, as evidenced 
by subsequent one-on-one conversations, student classroom comments, in-class 
work, homework and exams. All students

    1.    are highly participatory,   
   2.    gain a thorough grounding in what constitutes a symmetry,   
   3.    know at least one way to represent a  symmetry   through notation,   
   4.    understand the diffi culties with choosing a notation, which is a fundamental 

problem of mathematics and certainly an issue for people trying to use mathe-
matics in their lives,   

   5.    understand the physical representation of the  dihedral group  ,   
   6.    understand and can use the notion of a  Cayley table  ,   
   7.    understand and can use the notion of an identity element,   

C. Yackel



311

   8.    have a reference multiplication table for D 3 , which we name at the end of the 
class period, and   

   9.    comprehend that I think they can explore not just this aspect of  group theory           , but 
mathematics in general, make  conjectures  , and fi gure out ideas on their own. 
This point addresses student autonomy and ownership of the subject matter.    

  Most students can

    1.    subsequently operate with all  dihedral groups   in their heads, but those who can-
not make their own physical manifestations to manipulate,   

   2.    remember that the group is not commutative and realize the implication that not 
all groups are commutative,   

   3.    subsequently use the  group   generator notation and two-line notation, and   
   4.    understand composition as a form of multiplication.     

 In the next class period we are quickly able to generalize to state the defi nitions 
of all the fi nite  dihedral groups  . Perhaps more importantly, students pick up on the 
foreshadowing of the ideas and theorems mentioned above:

•    Every group is closed under multiplication.  
•   Every group has an identity element.  
•   The defi nition of an identity element.  
•   Every element of a group has an inverse.  
•   Every row and every column of a  Cayley table   contains each element exactly 

once.    

 I like to call activities that set the stage for a number of further such results   touch-
stone activities   , because students remember them and we can easily refer back to 
the activity and the corresponding mathematical realizations. For example, if I say, 
“Remember the triangle activity?” The  students         recall not just manipulating the 
triangles, but the notation, Cayley tables, non-commutativity of the group, and so 
forth. Tactile activities make excellent touchstone activities because it is simple to 
make them unique by varying the objects or even the color of paper used. The very 
fact that students are using their hands to manipulate objects is novel in a university 
mathematics class, rendering the activity  memorable  .  

21.3.2      Resource List 

 Readers interested in using tactile mathematical activities in the classroom may 
reference numerous books connecting mathematics and other subjects to develop 
interesting activities. Below we include a non-comprehensive list of books with 
ideas ready for the teacher. Individuals will still need to fl esh out specifi cs for class-
room use. Full bibliographical citations for these books can be obtained from the 
chapter end  bibliography  .
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  Books 

•    Tactile Learning Activities in Undergraduate Mathematics: A Recipe Book for 
the Classroom  (Barnes and Libertini  2016 ).  

•    Project    Origami    : Activities for Exploring Mathematics  (Hull  2006 ). 
  This detailed book, soon to have a new edition, is written for the classroom 

instructor using  inquiry-based learning  . Each activity is clearly described, a vari-
ety of handout choices is included, and these are followed by a thorough solution 
and discussion of pedagogy.  

•    Viewpoints: mathematical perspective and fractal geometry in art  (Frantz and 
Crannell  2011 ).  

•    Experiencing Geometry: Euclidean and non-Euclidean with History  (Henderson 
and Taimiņa  2005 ).  

•    Crocheting Adventures with Hyperbolic Planes  (Taimiņa  2009 ). 
  Chapter two concentrates on  hyperbolic   geometry and provides fairly clear 

instructions for how to develop an activity.  
•    Making Mathematics with Needlework: Ten Papers and Ten Projects  (belcastro 

and Yackel  2008 ).  
•    Crafting by Concepts  (belcastro and Yackel  2011 ). 
  Each chapter of  Making Mathematics with Needlework  and  Crafting by Concepts 

a ddresses one or more mathematical concepts through the medium of  fi ber arts  . 
Section three of each chapter contains ideas for how to teach the material, often 
with suggested activities. The fi rst book includes many specifi c exercises for 
students, whereas the second includes possible open-ended projects.  

•    Throughout Geometry from Africa: Mathematical and Educational Explorations  
(Gerdes  1999 ).      

21.4      Courses Designed Around the Tactile 

 This section discusses special considerations for planning a course designed specifi -
cally around the use of tactile activities, such as a mathematics and  origami   course. 
I interviewed three mathematics professors experienced with this pedagogy and will 
offer our collective wisdom. Eve Torrence, of Randolph Macon College, has taught 
several mathematics and art  courses  , including the mathematics of design, mathe-
matical origami, and a course employing mathematical  fi ber arts  . This last course 
utilized the volumes by belcastro and Yackel, and by Taimiņa mentioned above. 
Torrence is a mathematical sculptor with talent in multiple craft domains. She has a 
wealth of experience translating between the realms of mathematics and the tactile. 
Tom Hull, author of  Project Origami , listed above, teaches at Western New England 
University and has many years of experience teaching gifted high school students at 
the summer programs Hampshire College Summer Studies in Mathematics and 
Mathily. His expertise is mathematical origami, which he has taught as course 
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insertions and as full courses at many  levels  . Ruth Favro, of Lawrence Technical 
University, developed a course in Geometry in Art. The author teaches at Mercer 
University, co-edited the volumes by belcastro and Yackel, and created a special 
section of the college’s liberal arts mathematics course that presented essentially the 
material through  fi ber arts   projects. The summary of individual conversations with 
the members of this group of experienced practitioners follows. 

 Each teacher fi rmly believes in using tactile mathematical activities to motivate 
and illustrate mathematical principles. Favro designed her Geometry in Art class for 
a  client   population of architecture majors and visual thinkers. This made her course 
a perfect fi t for the students. Contrastingly, Torrence and Hull developed classes 
around the mathematical material in the art. They mentioned student excitement 
about the method of delivery of the mathematical content.  Students   in future sec-
tions of the courses signed up on the recommendation of past students. Special sec-
tions of standard liberal arts courses, such as the one taught by the chapter author, 
can use student advising to increase the likelihood that students register for tactile 
mathematics sections because of an interest in a craft. By allowing students to self- 
select into courses dedicated to tactile mathematics, concerns about students who 
are averse to tactile learning methods are mitigated. 

 A fear common to instructors considering using tactile activities is that some 
students will lack the requisite manual dexterity to create the physical models. In 
response, we note that  origami      and needlework, such as knitting, crocheting and 
embroidery, require only basic manual dexterity. These crafts have been taught to 
grade-school aged children for centuries. To become a skilled artisan naturally 
requires a great deal of practice and training; therefore, an expert’s level should not 
be expected of the student. Yet a person who has mastered the skill of writing with 
a pencil should be able to perform each of these skills adequately, and the average 
adult should be able to reach basic profi ciency with only a few hours of practice. 

 We recommend steering to different courses students with disabilities that will 
prevent their completion of the tactile component because the point of these courses 
is to integrate the tactile with the mathematics. The  Americans with Disabilities Act   
requires that accommodations in the form of alternative assignments or assessments 
be given to students with disabilities as long as the component is not what is termed 
an  essential element  of the course. In the case of a tactile mathematics course, the 
tactile component is arguably essential, so the student who cannot participate in this 
component could take a different course to satisfy the mathematics requirement. If 
no alternative is available, the instructor will be compelled to offer alternatives to 
each tactile component, thus designing a parallel course. The case of  students   with 
disabilities electing to take a course that clearly does not fi t their abilities is rare, and 
is addressed here only for the sake of completeness. 

 The fi rst big hurdle to learning a physical skill is believing in one’s capacity to 
acquire the skill so that one will engage in sustained practice essential for picking 
up muscle memory. The second is paying attention to detail while performing the 
actions involved so that one can observe helpful nuance and learn from mistakes. 
The idea that attention to detail enables  learning   is one aspect of the concept of 
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 metacognition  , which is sometimes described as thinking about one’s thinking 
(Schoenfeld  1987 ). Interestingly, engaging in sustained practice and developing 
metacognitive skills are both important for learning mathematics as well as for 
learning to craft. As a result, introduction of a tactile dimension into a mathematics 
course poses the same hurdle to accessing mathematical concepts instead of provid-
ing an additional entryway to those concepts. In fact, we often see that the metacog-
nitive abilities and the self-discipline required for practice are prerequisite for both 
the standard mathematics learning and the craft approaches. Thus, students lacking 
in  metacognition   and self-discipline often have a diffi cult time in tactile mathemat-
ics courses, although such courses tend to work on building students’ skills in meta-
cognition and in their self-awareness of the need for self-disciplined practice. 

 Teaching an  active learning   section is typically thought to require more work on 
the instructor’s part in the classroom than teaching in the lecture style, because 
working with spontaneous student comments and questions to help students develop 
the mathematical concepts for the day requires a great deal of ingenuity. More con-
cretely, the teacher must have a deep grasp of the subject matter from multiple per-
spectives to allow her to correctly interpret the students’  words  . Liping Ma calls this 
teacher knowledge   profound understanding of fundamental mathematics    (Ball and 
Bass  2000 ). The teacher must also have a fl exible notion of how students might put 
the mathematical ideas together to reach the goal concepts. This involves having a 
hypothetical  learning trajectory   for individual students and being able to change that 
trajectory in real time (Steffe and  D’Ambrosio    1995 ). 

 Experienced  instructors  , Torrence, Hull, Favro, and I, agree that teaching a tac-
tile mathematics course is even more challenging for the instructor than teaching a 
typical  active learning   style course. In addition to the usual challenges of active 
learning, the instructor must contend with  classroom   management issues of distrib-
uting materials and helping each student to understand the directions for the physi-
cal activity. In lecture classrooms and some active learning classrooms, students 
who get lost often simply quit paying attention. In a tactile activity classroom such 
disengagement is unlikely. Instead, confused students frequently demand help from 
the instructor or fellow students. Theoretically involvement of all students is fantas-
tic, but diversion of the instructor to focus solely on one student’s struggles for a 
long period of time can quickly derail a lesson. Establishing productive classroom 
norms is imperative. Norms should address the need for paying attention when 
directions are given, the speed with which students follow directions, and the 
amount of persistence required before asking for help. Aspects of  classroom   man-
agement relevant for teaching with tactile activities can be learned. Experienced 
instructors new to tactile mathematics will likely require several semesters to gain 
this skill set. 

 Teaching tactile mathematics often requires one to teach a particular skill, such 
as  origami   or needlework. As origamist Hull points out, “folding takes time” (Hull 
 2006 ). In our conversation for this chapter, he elaborated that during each class 
period time needed to be allotted for teaching students the folding they would need 
that day and for students to complete the day’s folding. A similar statement is true 
regardless of the tactile activity. Lesson plans for tactile mathematics courses need 
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to allocate time for skill teaching, activity completion, mathematical refl ection, and 
class discussion. Learning to predict an appropriate pace for each component is 
another aspect of gaining expertise in facilitating tactile  mathematical   activities. 

 A common approach to address all three issues—students lacking manual dex-
terity,  students   who are hopelessly confused, and the time factor—is to have the 
students  work in groups  . If the physical objects are such that different people can 
construct different parts, assembling the pieces at the end, then often the more skill-
ful students can help those who are less skillful gain skill, whether that skill lies in 
the manual realm or the conceptual realm. Groups serve the further function of 
requiring group members to explain and justify the mathematics that they have indi-
vidually developed through interaction with the physical. 

  Active learning   using tactile activities to motivate applications can be natural for 
teachers who are already familiar with the underlying crafting technique, such as 
 origami  , knitting, etc. Moreover, such teachers are usually passionate about their 
craft, and by bringing their craft into the classroom they are sharing an additional 
facet of themselves with their students. As with any discipline, teachers need to 
know the subject at a level substantially deeper than the level at which they plan to 
teach. We include this comment because some readers may inadvertently underesti-
mate the time they will need to devote to mastering the crafting techniques so that 
they will be able to teach them to others. Hull notes that the fi rst instance of teaching 
an  origami   mathematics course takes a great deal of preparation time for the instruc-
tor, especially if that person is not an  origami   expert. To mitigate the time factor, it 
is best to keep the in-class projects very simple. 

 Students will ask wonderful questions about the relationship between the craft 
and mathematics. While the  teacher   does not need to know every answer, a depth of 
experience considering the craft through a mathematical lens will be invaluable to 
answering such queries. Having experience performing the techniques will allow 
the teacher to predict the most likely questions.  

21.5      Personal Experience with Tactile Mathematics 

 I have been a zealous  fi ber artist   since I was a child. After my grandmother taught 
me two crochet stitches, I taught myself to crochet, knit, tat, and make Japanese 
temari balls from reading books. Throughout this time, I was equally fascinated by 
mathematics, which I was learning in parallel to needlework. During graduate 
school, sarah-marie belcastro and I began discussing the similar cognitive skills that 
are required of both successful needleworkers and mathematicians. 

 At the Joint  Mathematics   Meetings in 2001, belcastro and I hosted the fi rst annual 
 Knitting Circle   to bring together mathematical  fi ber artists   of all craft persuasions 
(knitting, crochet, embroidery, quilting, beading, etc.) to practice their crafts and 
converse about the mathematics they observed in their crafting. The initial group of 
fewer than a dozen has grown to a yearly gathering of about 50 mathematicians. 
These include a few just learning a craft, some explaining the mathematics they 
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perceive in their work, and many showing off their craft work. While participants 
craft together, they  mentor   one another in crafting, teaching, writing, and mathemat-
ics. The  Knitting Circle      has encouraged crafters who think deeply about the rela-
tionship of mathematics to their craft to share those thoughts with other 
mathematicians. Other crafters have begun to consider how mathematics relates to 
the construction of their art and how to make mathematics explicit in their fi nished 
projects. The activity spurred by interaction with  colleagues   prompted belcastro and 
me to organize American Mathematics Society ( AMS  ) Special Sessions on 
Mathematics and Mathematics Education in  Fiber Arts   in 2005, 2009, and 2014. 
Our edited volumes mentioned earlier together with a forthcoming volume expand 
greatly on the work presented in those sessions. 

 Connecting my passions for fi ber art and mathematics has been intellectually 
stimulating, a source of signifi cant  community engagement  , and an avenue for 
mathematical writing and editing.  Presentations   of my own mathematical art work 
have included venues beyond  AMS   Special Sessions on Mathematics and 
Mathematics Education in  Fiber Arts  . The Mathematical Association of America’s 
Special Interest Group for Mathematics and the Arts (  http://sigmaa.maa.org/arts/    ) 
provides excellent opportunities, as does the Bridges Organization (  http://www.
bridgesmathart.org    ). The relatively small mathematical art community is enor-
mously supportive. I am grateful for the camaraderie and profusion of  opportunities   
afforded to me by the network of organizations and individuals comprising this 
 community  .     
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    Chapter 22   
 Incorporating Writing into Statistics                     

     Katherine     G.     Johnson    

    Abstract     This chapter describes the work of a statistician who, after a career out-
side the academy, became a teacher of statistics in an urban university. To determine 
if the inclusion of write-to-learn activities improved her working adult students’ 
ability to communicate the results of hypothesis tests in context, the author reviewed 
the literature on using writing-to-learn and conducted a research study on incorpo-
rating such activities in an introductory statistics course. Students’ perceptions of 
the write-to-learn activities were also obtained. The study showed that the write-to- 
learn activities helped students become better at communicating statistical results in 
context, and students had positive impressions of the writing activities, claiming 
that the writing activities were helpful in their learning. Suggestions are offered on 
how to best incorporate write-to-learn activities in an introductory statistics class.  

  Keywords     Write-to-learn   •   Statistics education   •   Introductory statistics  

22.1        Introduction 

 After a career as an applied statistician, I have chosen to teach statistics because I 
want others to have a greater appreciation for my fi eld of study.  Data   and statistics 
have become prevalent in our society, so my  goal   as a statistics educator is for stu-
dents to develop a better  understanding   of statistics and be able to successfully 
interpret and discuss the uses of statistics they encounter in their lives. In particular, 
I want to enable them to be critical thinkers, and to evaluate and question  statistics   
being  reported  . I am continually researching ways to best accomplish this goal. 
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 In this chapter I describe my background and the environment in which I teach. I 
explain what prompted me to review the literature on using writing in the teaching of 
 introductory statistics   and decide to include writing-to- learn   in my classes. I then 
describe a study I undertook of the effects of using  writing-to-learn   in two of my classes.  

22.2     Context for This Work 

22.2.1     Author’s Background 

 After completing a Master of Science in Statistics, I worked for over 20 years as an 
applied statistician. I designed studies and analyzed  data   for cancer research trials, 
created a store location model and analyzed marketing research data for a grocery 
wholesaler, and designed clinical studies and analyzed data as a statistical consul-
tant in the medical device industry. In these positions I did as much writing and 
communicating about my analyses as I did carrying them out. Effective  communi-
cation   is a necessary skill in  statistics  . 

 I decided to change careers and obtained a secondary mathematics teaching 
license while getting a Master of Arts in Education. I taught high school mathemat-
ics for one year and then was hired to teach statistics in a tenure-track position in the 
department of mathematics at Metropolitan State University in St. Paul, MN.  

22.2.2     Institutional Setting 

 I teach at a  public  , urban university known for serving adult students, offering small 
classes and a fl exible class schedule. In 2013 there were approximately 11,000 stu-
dents, 90 % undergraduate. The university has a high enrollment of  fi rst generation   
 students  , minorities (38 % students of color), and older  working adults   (average age 
is 32 years), with many attending part-time (64 % of students). 

 The mathematics department has 11 faculty members, including three in  statis-
tics  . We offer bachelor’s degrees in applied mathematics and mathematics educa-
tion, and minors in applied mathematics and applied statistics. The statistics minor 
provides students with knowledge and skills needed for a future career involving 
 data   evaluation and analysis. It offers a program of study in core areas of statistics 
with an emphasis on applications including statistics programming, regression anal-
ysis, analysis of variance, biostatistics, categorical data analysis, nonparametric 
methods, environmental statistics, and  probability  . The department also supports 
other programs at the university by offering foundational courses, including  intro-
ductory statistics  . We currently offer 11 sections of Statistics 1 each semester, with 
24 students in each class. The students in Statistics 1 major in a variety of programs, 
including nursing, accounting, management, marketing, economics, social work, 
law enforcement, and psychology.   
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22.3     Teaching  Statistics   1 

22.3.1     Description of Statistics 1 

 A student who successfully completes Statistics 1 will know the principles and 
methods of statistics used in the collection and analysis of data, including design of 
experiments, sampling methods, descriptive statistics, normal distributions, regres-
sion and correlation,  probability  ,  confi dence intervals  , and signifi cance  tests  . 

 The course meets once a week for 3 h and 20 min. Classes may involve direct 
instruction and small-group problem solving, along with homework assignments and 
weekly quizzes as formative assessments. The assignments require students to per-
form calculations and graph  data   using online statistics  software   and also to summa-
rize the meaning of their results in the context of the data being analyzed. Summative 
assessments include a midterm, a fi nal examination, and a fi nal project that requires 
students to analyze a set of data and write a  report   summarizing the statistical methods 
used, the results of the analysis, and the interpretation of the results in context. 

 Many of the adult students are anxious about being in the statistics class, and 
they struggle to understand the more diffi cult concepts. I use techniques from my 
education courses, for example scaffolding of all material used during instruction 
and detailed examples, which help students understand the new topics and master 
the calculations required in the course. Despite having done this, I found that the 
students still had diffi culty communicating about  statistics  ; they could perform a 
 hypothesis test  , but had diffi culty writing what the answer obtained means in rela-
tion to the question being asked. These experiences prompted me to investigate how 
I could help my students gain a deeper  understanding   of inference and be more 
effective in writing about statistics in their fi nal projects.  

22.3.2     Review of Literature 

 In determining how to facilitate students’ deeper  understanding   of  statistics  , I con-
sulted the Guidelines for Assessment and Instruction in Statistics Education ( GAISE  ), 
prepared by the American Statistical Association ( ASA    2005 ). The  ASA   guidelines 1  
recommend that educators use classroom activities that promote student inquiry, 
problem-solving, and decision-making; focus on conceptual  understanding  ; and inte-
grate real world  data  . They advise instructors to foster  active learning  , engage stu-
dents in their own learning, and encourage students to explore and ask questions. The 
explorations can be through verbal and written  communication   with instructors and 
peers. Effective communication is a large part of the practice of statistics because the 
practitioner must describe, explain, clarify, and interpret results. 

1   The ASA has updated the guidelines and published a new GAISE   report  (ASA  2016 ). The recom-
mendations involving communication of  statistics  are the same as in 2005. 
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 In my effort to help my students become better communicators I also investi-
gated how writing can be used to help students develop a deeper  understanding   of 
statistics. This type of writing is called  write-to-learn  . In researching writing in 
statistics I found several publications (Beins  1993 ; Delcham and Sezer  2010 ; 
Kågesten and Engelbrecht  2006 ; Radke-Sharpe  1991 ; Rothstein and Rothstein 
 2007 ; and Taylor and McDonald  2007 ) that outline the benefi ts of write-to- learn   
activities for improving students’ statistical thinking and learning. Writing encour-
ages students to think about the concepts they are learning, connect them to what 
they know, and then communicate them to others. The research showed that if stu-
dents think about what they will write, get their thoughts on paper, review what they 
write, refl ect on how the reader will perceive it, and make corrections as needed, 
they gain a deeper  understanding   of  statistics   and become better at communicating 
statistical results. 

 According to Daniels et al. ( 2007 , p. 22), write-to- learn   activities are short, spon-
taneous, exploratory, informal, and non-graded. The idea is that for students to learn 
and understand new concepts, they need to  grapple   with the ideas, transform them, 
and put them into their own words. Delcham and Sezer ( 2010 , p. 611) said that 
exploratory writing encourages meaningful refl ection. Students are able to think 
about the statistical concepts they are learning and develop a deeper  understanding   
of them. In addition, these writing activities give students opportunities to practice 
writing and help students develop confi dence for more formal writing. 

 Another exploratory write-to- learn   activity is journal writing. It engages students 
in critical refl ection on their learning. Langer ( 2002 , p. 339) said journals help stu-
dents gain a better  understanding   of abstract ideas. The writing allows students to 
refl ect on their own progress in understanding topics, to document their successes 
and failures, to summarize what they have learned, and to raise questions they were 
hesitant to ask or had trouble formulating in class. In addition, journal writing gives 
students opportunities to strengthen  communication skills   as well as write about 
anxieties or frustrations with what they are learning (Hammett  1993 , p. 6). 

 However, journal writing may not be easy to incorporate. Langer ( 2002 ) claimed 
journal writing can be diffi cult for  non-traditional   students because they may not 
understand the term “refl ection.” In his study he found adult students were less likely 
to produce journals that are “qualitatively refl ective and collaborative” (p. 349). He 
contended they have not had much exposure to the journal process. Russek ( 1998 ) 
shared examples of prompts to help students refl ect on their learning. For example, 
having students fi nish the statements “I learned that I,” “I was surprised that I,” or “I 
discovered that I” can help students become refl ective. Bean ( 2001 , p. 101) describes 
this type of writing as “guided journals.” In addition, he contended that outlining the 
reason for the writing  assignments   and including the expectations for  students   are 
important to enable them to learn new material. Bossé and Faulconer ( 2008 , p. 12) 
agreed, claiming the purpose of the assignment must be clear for students to gain a 
better  understanding   of any new concepts they are learning. 

 Another way to include exploratory writing is for students to write during class, 
for example by asking them to respond to a question during the last few minutes of 
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class.  Exit slips  , as this type of writing is often called, get students used to writing 
about what they are learning (Daniels et al, p. 35). Holmes ( 2012 ) claimed that 
using “concept  checks  ” deepens students’  conceptual    understanding   of  statistics  . 
This assignment differs from  exit slips   in that after writing, students discuss their 
responses in class. Having students listen to other students’ responses is helpful for 
learning how others are conceptualizing the material. This writing activity can be 
modifi ed to ask students to compare and contrast statistical concepts, like type I and 
type II errors. These activities enable students to review material, but they also pro-
vide instructors information on students’ conceptual  understanding   of  statistics  . The 
writing activities can be used as an alternative  assessment   of students’  learning  . 

 The research also indicated why students have diffi culty with formal writing like 
project papers. Writing about statistics is not similar to other types of collegiate 
writing. It requires students to translate statistics into conversational language, turn-
ing  data   and information into a narrative (Rothstein and Rothstein  2007 , p. 22). 
Students need to communicate conclusions in “ natural language  ” (Forster et al. 
 2005 , p. 1), taking a complex idea and explaining it clearly to a general audience. 
Also, students are not used to presenting arguments supported by numerical reason-
ing (Stromberg and Ramanathan  1996 , p. 160). In their observational study, Lipson 
and Kokonis ( 2005 , p. 8) found  report   writing was diffi cult for students. They 
claimed students think numbers can speak for themselves and do not need to be 
explained.  Students   have diffi culty translating numbers into words because the writ-
ing requires them to have a deeper  understanding   of the  statistics   they are interpret-
ing. Kågesten and Engelbrecht ( 2006 , p. 708) said that to be successful technical 
writers, students need to organize their material and be confi dent in their  under-
standing   of diffi cult concepts.  

22.3.3     Using Writing in Statistics 1 

 In the Statistics 1 classes I studied (see Sect.  22.4 ), all class activities provided 
opportunities to discuss and write about statistics. After the midterm, activities were 
designed to help students describe results in context. For example, when introduced 
to  confi dence intervals  , students were given a two-part assignment: fi rst to defi ne 
the parameter they were estimating and calculate the interval; then to provide a writ-
ten interpretation of the interval in context. Working in small groups, students dis-
cussed their work, and then each student provided a written response. The fi rst part 
was diffi cult for some students. They thought the sample proportion provided in the 
problem was the correct response. Other students were able to provide a written 
description of the parameter but were not able to write about the interval in context. 
They did not make the connection between the two parts of the assignment and did 
not interpret their answer to the fi rst part in context. 

 In addition, when learning about  hypothesis tests   students were given scenarios 
and asked to describe what the  researchers   were trying to determine, provide a writ-
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ten description of the parameter, and then write the hypotheses using correct nota-
tion. The separate questions encouraged students to think about what the problem 
was asking before they tried to develop a hypothesis. The assignment also asked 
students to describe their results in context. Asking them fi rst to describe the param-
eter helped them think about the language to use in answering this fi nal question. 

 Students had many opportunities to write in class and also wrote journal entries 
outside of class. Prompts for writing  assignments   appear in Tables  A.1  and  A.2  in 
the  Appendix .   

22.4      Classroom Research Study 

 The prior research on incorporating writing into  statistics   showed it helped tradi-
tional students’  learning   and  understanding   of statistics. I decided to investigate if 
write-to- learn   activities would help the  fi rst generation  ,  minority  , and adult students 
in my  introductory statistics   classes understand and use statistical inference and 
become better at communicating the results of their analyses. I hoped the activities 
would enable the students to advance from level one to level fi ve of Garfi eld’s 
“Model of Statistical Reasoning” (Garfi eld  2002 ). In level one, students use statisti-
cal terms without  understanding  ; in level two they can describe a concept but cannot 
apply it correctly. Level three students correctly identify a dimension of a statistical 
process, but cannot fully integrate the dimensions of the process. The fourth level 
students can identify the parts of the statistical process without being able to inte-
grate them  correctly  . Finally level fi ve students have a complete understanding of 
statistical inference. 

 The primary objectives of my study were to determine if the activities improved 
students’ ability to:

    1.    Set up accurate hypotheses,   
   2.    Carry out a  hypothesis test  ,   
   3.    Explain the results of a hypothesis test in context.     

22.4.1     Participants and Setting 

 The research study was carried out in two sections of  introductory statistics   during 
the 2013 fall semester at the university. Students self-selected into the course; the 
protocol was approved by the Human Subject Review Board and students consented 
to participate in the study. Students had the option of excluding their  data   from the 
study. 

 Forty-six students were included in the study; 21 (46 %) students were enrolled 
in one section and 25 (54 %) were in the other. The participating students were from 
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a variety of majors and most were older than traditional college students; nearly half 
of the students (45 %) were over 30 years of age, 15 % of them were older than 40. 
Almost two-thirds (65 %) were enrolled full-time. Overall, 33 % had taken a previ-
ous statistics course.  

22.4.2     Materials 

 Both classes were taught by the same instructor and had the same curriculum, 
including the textbook used at that time,  The Practice of Statistics , fourth edition, 
by Starnes et al. ( 2010 ). All statistical  calculations   were performed on a program-
mable calculator. Weekly assignments and quizzes, two exams, and a fi nal project 
were used to evaluate student performance. The study was designed to capture  data   
from two quizzes and fi ve questions from the fi nal exam. The quiz and exam ques-
tions are included in Tables  A.3  and  A.4  in the  Appendix .

    The write-to- learn   activities were added to the existing curriculum. All students 
were asked to complete the write-to-learn activities and received points for partici-
pating. Journal writing was done outside of class and was graded according to a 
rubric designed to encourage thoughtful responses to the writing prompts. The 
 writing activities were included as 10 % of the fi nal grade for the course. 

    In addition, students completed a survey that asked for  gender  , age, primary lan-
guage, and enrollment status, prior knowledge of  statistics  , and level of anxiety in 
taking statistics. A survey at the end of the course asked for students’ level of anxi-
ety and their impressions of including writing in the course.  

22.4.3     Procedures 

 During the fi rst week of the 15-week semester, the study was explained, informed 
consent was obtained, and students completed the initial survey. The fi rst quiz, 
given during the second week, was used as a measure of students’ initial statistical 
knowledge before completing write-to- learn   activities. 

 During the fi rst half of the course, students completed three journal-writing 
activities that were intended to get students used to writing about  statistics  . They 
also completed write-to-learn activities during class, usually at the end of the class. 
These were used to evaluate students’  content   and procedural knowledge. Students 
learned about graphing, summary  statistics  ,  confi dence intervals  , and were intro-
duced to  hypothesis tests   involving proportions. 

 Week ten’s quiz was the baseline for evaluating the objectives of the study. 
During the remaining weeks students completed write-to- learn   activities on one- 
sample and two-sample tests involving means and proportions, correlation, linear 
regression, and Chi-square tests. The second survey was completed in week 14, and 
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the fi nal examination was given in week 15. Students’ scores on the baseline quiz 
were compared to corresponding questions on the fi nal examination.  Data   from 
students who had not consented were not included in the analyses.  

22.4.4     Statistical Methods 

 An analysis was performed to determine if students’ initial knowledge was a possi-
ble confounder in evaluating the objectives of the study. Using an independent  t -test, 
the mean percent correct on the fi ve fi nal exam questions was compared for students 
who scored at least 80 % and students who scored less than 80 % on the fi rst quiz. In 
addition, a Chi-square test was used to determine if there was an association between 
students’ scores on the fi rst quiz and the baseline quiz at week 10. If prior knowl-
edge were a confounder then the remaining analyses would incorporate students’ 
scores on quiz one. 

 To evaluate each objective, analyses were done to determine if students who did 
not correctly answer questions on the baseline quiz answered corresponding ques-
tions correctly on the fi nal. Since the data were paired binomial, McNemar’s Test 
was used to test no association between students’ responses on the baseline and 
 fi nal  . Exact  p  values were  reported  .  

22.4.5     Study Results 

 The  t -test showed there was no signifi cant difference in the mean percentage correct 
on the baseline quiz between students who scored at least 80 % and students who 
scored less than 80 % on the fi rst quiz ( t (42) = −0.16,  p  = 0.87). Similarly, there was 
no signifi cant difference in the mean percent correct on the fi ve fi nal exam questions 
between the groups ( t (42) = −1.64,  p  = 0.11). Thus, students’ prior knowledge was 
not a confounder. 

 Forty students took both the baseline quiz and the fi nal examination. Evaluation 
of objective (1) showed there is no statistical evidence that write-to- learn   activities 
helped students set up accurate hypotheses. On the baseline quiz 68 % and on the 
fi nal 81 % of students defi ned the hypotheses correctly. There was no statistically 
signifi cant difference between these proportions ( p  = 0.30). The power to detect the 
13 % difference was only 27 %. 

 Objective (2) was evaluated by determining if more students calculated the cor-
rect  z -statistic and the correct  p  value for the fi nal exam. On the baseline quiz 72 % 
and on the fi nal 93 % of students calculated the  z -statistic correctly. There was a 
signifi cant difference in these proportions ( p  = 0.02). However, 70 % of the students 
on the baseline quiz and 83 % on the fi nal correctly calculated the  p  value; these 
proportions were not statistically different ( p  = 0.18). Examining why the  p  value 
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was not calculated correctly revealed that students calculated the statistic correctly 
but determined a  p  value for a two-sided alternative hypothesis. Most students were 
successful in performing the calculations, and the write-to- learn   activities were ben-
efi cial in helping students perform a  hypothesis test  . 

 Objective (3) was evaluated by determining if more  students   were able to cor-
rectly interpret the  p  value and write the conclusion in context on the fi nal exam. 
On the baseline quiz and fi nal, 70 % and 83 % of students, respectively, correctly 
interpreted the  p  value; these proportions were not statistically different ( p  = 0.27). 
However, on the baseline quiz 18 % and on the fi nal 55 % of the students explained 
the result of the test in context; these proportions are signifi cantly different ( p  = 0.01). 
The results indicated the write-to-learn activities made a signifi cant difference in 
helping students learn to explain the results of a  hypothesis test   in context.  

22.4.6     Discussion 

 All class assignments had students discuss answers in their small groups. This 
enabled them to clarify their  understanding   of  hypothesis tests   and was intended to 
prepare them to write their own hypotheses. Student feedback indicated that they 
liked working in small groups and felt discussing the problems with their peers 
helped them understand what they were learning. Based on the results from the 
study, the use of  writing-to-learn   was successful. Most students recognized and cor-
rectly defi ned the parameter on the fi nal exam, and defi ned the null hypothesis cor-
rectly. The common mistake made by students was not recognizing a one-sided 
alternative was a more appropriate test to answer the researcher’s question. 

 Students also wrote about inference outside of class. For example, they described 
a situation where they would use a sample to infer something about a population 
parameter.  Students   had gotten used to writing about statistics and most were able 
to provide clear explanations. Students’ responses indicated they had developed an 
 understanding   of how  hypothesis testing   can be used. 

 The last journal assignment asked students to explain in their own words the mean-
ing of a  reported    p  value. Some responses indicated students did not have a clear 
 understanding   of  p  values; they parrotted technical language from the textbook rather 
than using their own words. Students’ diffi culty writing about the  p  value was consis-
tent with their responses on the fi nal exam. Although several students wrote about the 
results in context, not all had mastered this skill. Students understood a small  p  value 
meant evidence against the null hypothesis, but the inability of most to write in context 
was an indication they did not have a complete understanding of statistical inference. 

 Students successfully completed their projects writing about the methods and the 
results used in their analyses. At the beginning of the semester, students were not 
engaged in the topic of statistics. For example, in critiquing a published study, stu-
dents used incomplete sentences and, despite providing their impressions of the 
study, they did not give a reason for their responses. As the class progressed, the 
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journal entries became more detailed, students used terminology correctly, and they 
seemed more engaged in learning. For example, a student who was unable to write 
about the standard Normal distribution in week 2, was able to describe a medical- 
related scenario where a  hypothesis test   could be used in week 9; she correctly 
described the population, sample, the parameter, and the statistic in the scenario. 
Most impressive was that she connected what she learned to her employment expe-
rience in the medical industry.  

22.4.7     Conclusion 

 This study supports previous fi ndings that  writing   helps students become better at 
communicating statistical results (Beins  1993 ; Kågesten and Engelbrecht  2006 ). 
There was an increase in the number of students who correctly performed the calcu-
lations for the  hypothesis test   and wrote about the results in the context of the  data  . 
Students were actively engaged in the write-to- learn   activities and were successful 
in communicating the methods and results in their fi nal project. Including write-to- 
learn activities is a valuable tool for engaging students in learning, improving stu-
dents’  communication skills  , and assessing students’  learning  . 

 Limitations of the study include not being generalizable to other  statistics   classes. 
The two classes cannot be considered equivalent because students self-selected into 
them. There was not a concurrent control group, and there was not enough statistical 
power to detect the small increases for some objectives. Future research would ben-
efi t from use of a no-writing control comparison and a larger sample size.   

22.5     Suggestions 

 Students studying statistics should be expected to discuss and write about  statistics  . 
Write-to- learn   activities enable them to learn about statistics and learn to communi-
cate effectively about statistics. Based on my experience incorporating write-to- 
learn activities into my statistics course I offer the following suggestions:

•    Find opportunities for students to discuss and write about what they are learning, 
encouraging them to refl ect and write on their  understanding  .  

•   Assign more writing activities in the fi rst half of the semester so students become 
familiar with writing about  statistics   and become more confi dent writers.  

•   Demonstrate how to write about  confi dence intervals   and  hypothesis tests   in con-
text; provide an outline of a written summary of an analysis.  

•   Have students analyze real  world    data   and write a paper explaining their methods 
and results.         
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      Appendix: Assessment Questions and Writing Prompts 

   Table A.1    Journal writing prompts   

 Week  Prompt 

 1  Write continuously for ten  minutes   answering the following question: “What is  statistics   
and how is it relevant?” 

 3  The story titled “Researchers fi nd women’s risk of cancer increases with height” which 
is shown below was published in the  Pioneer Press , July 26, 2013. Read the story and 
then write for ten minutes in your journal refl ecting on the following questions 
 • Was the study an experiment, sample, or an observational study? 
 • Identify the key variables that they discussed in the story. 
 • What confounding variable(s) might be present? 
 • What potential bias exists in the study (something about the process that might make 

the conclusion unreliable or incorrect)? 
 • What is your over-all impression of these results? If you were tall should you be 

concerned about your risk of getting cancer? 
 5  Writing continuously for 10 min, in your own words describe what a random variable 

and a  probability   distribution are. Also explain the difference between a discrete random 
variable and a continuous random variable. Consider including your own example to 
help you understand/explain these concepts. 

 8  The journal writing exercise for week 8 is about  confi dence intervals   for an unknown 
parameter, the proportion of successes in a population. The following is an example of a 
possible scenario in which you might need to use inference to estimate an unknown 
proportion. Read the following paragraph, which ends with a few questions that can 
guide you in your refl ection, and then write continually for ten minutes about estimating 
a population proportion using a sample proportion while also addressing the questions. 

 9  The underlying principle of all statistical inference techniques is that one uses sample 
 statistics   to learn something (i.e. infer something) about population parameters. 
Convince me that you understand this statement by writing a paragraph describing a 
situation in which you might use a sample to infer something about a population 
parameter. Clearly identify the sample, population, statistic, and parameter in your 
example. Be as specifi c as possible. 

 10  There are several symbols used in  hypothesis testing  . This week I am asking you to 
write about the symbols we have used most often. First, fi ll in the following table for 
each of the symbols, then choose three symbols and write how they are used together in 
hypothesis testing. 

 11  Does eating more fi ber reduce the blood cholesterol level of patients with diabetes? A 
randomized clinical trial compared normal and high fi ber diets. Here is part of the 
researcher’s conclusion: “The high fi ber diet reduced plasma total cholesterol 
concentrations by 6.7 % ( p  = 0.02), triglyceride concentrations by 10.2 % ( p  = 0.02), and 
very low density lipoprotein cholesterol concentrations by 12.5 % ( p  = 0.01).” A doctor 
who knows no  statistics   says that a drop of 6.7 % in cholesterol isn’t a lot—maybe it’s 
just an accident due to the chance assignment of patients to the two diets. Explain in 
language understandable to someone who knows no statistics how “ p  = 0.02” answers 
this objection. 
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   Table A.2    Class writing prompts   

 Week  Prompt 

 2  In your own words describe the Standard Normal Distribution and how it is used. 

 4  Describe what the Law of Large Numbers mean, in your own words. 

 6  In your own  words   defi ne “sampling distribution of the mean.” Describe in your own 
words how the standard error of the mean (i.e., the standard deviation of the sampling 
distribution of the mean) is calculated? 

 8  A recent Gallop Poll conducted telephone interviews with a random sample of adults.  Data   
were obtained for 1000 people. Of these, 37 % said that football is their favorite sport to watch 
on  television  . Defi ne the parameter p in this setting. Explain why we can’t say that 37 % of all 
adults would say that football is their favorite sport to watch on television. Construct a 95 % 
confi dence interval for p. Interpret the  confi dence interval   in context. 

 9  A bank is testing a new method getting delinquent customers to pay their credit card bills. 
The standard way was to send a letter (costing about $0.46) asking the customer to pay. 
That worked 30 % of the time. They want to test a new method that involves sending a 
 DVD   to customers encouraging them to contact the bank and set up a payment plan. 
Developing and sending the video costs about $10.00 per customer. 
 In your own words describe what the bank hopes to show is true. How can they do this? What is 
the appropriate symbol to use to describe the value 30 %? Or in other words, what is the 
parameter of interest in this scenario? Describe what the parameter represents (defi ne the 
parameter). Describe in your own words the alternative hypothesis that should be used to test 
their new method. Now, write the null and alternative hypotheses using symbols. 

 10  Trying to encourage people to stop driving to campus, the university claims that on average 
it takes people 30 min to fi nd a parking space near campus. You don’t think it takes that 
long to fi nd a parking spot. What are you hoping to show? Defi ne the null and alternative 
hypotheses to test your claim.  Hemoglobin   is a protein in red blood cells that carries 
oxygen from the lungs to body tissues. People with less than 12 g/dl of hemoglobin are 
anemic. A  public   health offi cial in Jordan suspects that Jordanian children are at risk of 
anemia. He measures a random sample of 50 children. What is the Jordanian offi cial 
hoping to show? Defi ne the null and alternative hypotheses 

 11  (a) The drug AZT was the fi rst drug that seemed effective in delaying the onset of 
AIDS. Evidence for AZT’s effectiveness came from a large randomized comparative 
experiment. The subjects were 870 volunteers who were infected with HIV, but did not yet 
have AIDS. The study assigned 435 of the subjects at random to take 500 mg of AZT each 
day and 435 to take a placebo. At the end of the study, 38 of the placebo subjects and 17 of 
the AZT subjects had developed AIDS. Researches want to test the claim that taking AZT 
lowers the proportion of infected people who will develop AIDS in a given period of time. 
Defi ne the hypotheses to test this claim. Carry out a test of this claim at a signifi cance level 
of  α  = 0.05. Interpret your result in context. Construct and interpret a 99 %  confi dence 
interval   for the difference in the proportion of infected  people   who will develop AIDS for 
those who took AZT and those who took the placebo. 

 (b) Millions of dollars are spent each year on diet foods. Trends such as low-fat diet or the 
low-carb diet have led to a host of new products. A study was conducted that compared 
the weight loss between obese patients on a low-fat diet and obese patients on a low-carb 
diet. Let  μ  1  represent the mean number of pounds obese patients on a low-fat diet lose in 
6 months, and  μ  2  represent the mean number of pounds obese patients on a low-carb diet 
lose in 6 months. State the null and alternative hypotheses if you want to test whether or 
not the mean weight loss between the two diets are equal. Suppose that a sample of 100 
obese  patients   on a low-fat diet lose a mean of 7.6 pounds in 6 months with a standard 
deviation of 3.2 pounds, while a sample of 100 obese patients on a low-carb diet lost a 
mean of 6.7 pounds with a standard deviation of 3.9 pounds. Is there evidence of a 
difference in the mean weight loss of obese patients between the low-fat and low-carb 
diets? Use a 0.05 level of signifi cance. Construct and interpret a 95 %  confi dence interval   
estimate for the difference in treatment means. 

(continued)
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Table A.2 (continued)

 Week  Prompt 

 12  The marketing manager of a large supermarket chain would like to use shelf space to 
predict the sales of pet food. A random sample of 12 equal sized stores’ pet food is 
selected, with results shown in the following table: 

 Store  Shelf space (feet)  Weekly sales ($100 s) 

 1  5  1.6 

 …  …  … 

 12  20  3.1 

 Construct a  scatterplot   of the  data   and describe the relationship between shelf space and 
weekly sales. Calculate the regression equation for the data. Describe the meaning of the 
coeffi cients. Graph the residuals against the independent variable. Are there any concerns 
about the regression model? Explain 

 13  For a recent year, the following are the number of homicides that occurred each month in 
New York City: 38, 30, 46, 40, 46, 49, 47, 50, 50, 42, 37, and 37 
 Use a 0.05 signifi cance level to test the claim that homicides in New York City are equally 
likely for each of the 12 months. Is there evidence to support the police commissioner’s 
claim that homicides occur more often in the summer when the weather is better? Explain 

   Table A.3    Quiz questions   

 Week  Questions 

 2  If  data   for a  research   study follow a Normal distribution  N (30, 2) and the researcher 
transferred all his data to  Z  scores, what distribution do those  Z  scores follow? Circle 
the correct response 
 (a)  N (32, 2) 
 (b)  N (30, 2) 
 (c)  N (0, 1) 
 (d)  N (2, 30) 
 Eleanor scores 680 on the SAT Mathematics test. The distribution of SAT scores follows 
a Normal distribution with mean 500 and standard deviation 100. 
 What is Eleanor’s standardized score? What is the proportion of students who got SAT 
Mathematics scores lower than Eleanor’s score? 

 10  A gallop Poll  report   on a national survey of 1028 teenagers revealed that 72 % of teens 
said they seldom or never argue with their friends. Yvonne wonders whether this 
national result would be true at her college. She surveys a random sample of 150 
students at her school. 
 (a) Write the appropriate null and alternative hypotheses to test Yvonne’s question. 

Make sure to defi ne the parameter you are using. 
 (b) For Yvonne’s survey, 96 of the 150 students in the sample said they rarely or never 

argue with their friends. Carry out a signifi cance test using  α  = 0.05. Include the 
values and the calculator function you used for the test. Provide the test statistic and 
 p  value from the test. 

 (c) Do the  data   provide convincing evidence against the null hypothesis? Interpret this 
result in context of the problem. 
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   Table A.4    Final examination questions   

 Number  Question 

 1  A  researcher   performed a one-sided  hypothesis test   to see if the newly developed 
drug is more effective than the standard drug. At the end, he reached the conclusion 
of failing to reject the null hypothesis based on the signifi cance level of 0.05. 
However, his  colleague   found that a two-sided test will be more appropriate to test 
the claim. Based on the information, what decision will the researcher’s colleague 
reach if performing a two-sided test? 
 (a) Reject the null hypothesis based on the signifi cance level of 0.05 
 (b) Fail to reject the null hypothesis based on the signifi cance level of 0.05 
 (c) Reject the null hypothesis based on the signifi cance level of 0.01 
 (d) The researcher’s colleague cannot make any decision 

 2  Why do very small  p  values indicate that the evidence against the null hypothesis is 
strong? 
 (a) Because the  p  value is the  probability   that the null hypothesis is true 
 (b) Because the small  p  value indicates that the data lie within the  confi dence interval   
 (c) Because the small  p  value indicates that  data   like ours would be very uncommon 

if the null hypothesis were true 
 (d) Because the small  p  value indicates that data like ours would be very common of 

the alternative hypothesis were true 
 3  The weight of newborn babies in United States follow a Normal distribution with 

mean 6.5 pounds and standard deviation 1.5 pounds. Emma is a newborn baby and 
weighs 7 pounds. The standardized score for Emma’s weight is  Z . 
 (a) What type of distribution should  Z  follow? 
 (b) What are the mean and the standard deviation of this distribution? 

 4  Resting  pulse   rate is an important measure of the fi tness of a person’s cardiovascular 
system, with a lower rate indicating greater fi tness. The mean pulse rate for all adult 
males is approximately 72 beats per minute. A random sample of 50 male students 
currently enrolled in the Business School at a major university was selected and the 
mean resting pulse rate was found to be 76 beats per minute with a standard deviation 
of 12 beats per minute. The experimenter wishes to test if the students are less fi t, on 
average, than the general population. Following the given steps in (a) through (e), 
carry out an appropriate test to examine whether the students are less fi t than the 
average male. a) Formulate the null and alternative hypotheses, defi ning the 
parameter used. b) What type of test would you choose? c) Find the test statistic. 
d) Find the  p  value. e) Make a decision in context to the problem using a signifi cance 
level of  α  = 0.05 

 5  Economists often track employment trends by measuring the proportion of people 
who are “underemployed,” meaning they are either unemployed or would like to 
work full time but are only working part-time. In the summer of 2010, 18.5 % of 
Americans were “underemployed.” The mayor of Our Town wants to show the voters 
that the situation in his town is not as bad as it is in the rest of the country. His staff 
takes a simple random sample of 300 residents and fi nds that 50 of them are 
underemployed. Following the given steps in (a) through (e), carry out an appropriate 
test to examine the mayor’s claim. a) Formulate the null and alternative hypotheses. 
b) What type of test would you choose? c) Find the test statistic. d) Find the  p  value 
of your test. e) Make the appropriate conclusion in context of the problem; use a 
signifi cance level of 0.05 

K.G. Johnson



333

     References 

   ASA. (2005). Guidelines for assessment and instruction in statistics education: College report. 
Alexandria, VA. Retrieved June 28, 2016 from   http://www.amstat.org/education/gaise/
GaiseCollege_full.pdf    .  

   ASA. (2016). Guidelines for assessment and instruction in statistics education: College report. 
DRAFT February 2016. Alexandria, VA. Retrieved February 28, 2016 from   http://www.amstat.
org/education/gaise/collegeupdate/GAISE2016_DRAFT.pdf    .  

    Bean, J. C. (2001).  Engaging ideas: The professor’s guide to integrating writing, critical thinking, 
and active learning in the classroom . San Francisco: Jossey-Bass.  

     Beins, B. C. (1993). Writing assignments in statistics classes encourage students to learn interpre-
tation.  Teaching of Psychology, 20 (3), 161. doi:  10.1207/s15328023top2003_6    .  

    Bossé, M. J., & Faulconer, J. (2008). Learning and assessing mathematics through reading and 
writing.  School Science & Mathematics, 108 (1), 8–19. doi:  10.1111/j.1949-8594.2008.
tb17935.x    .  

    Daniels, H., Zemelman, S., & Steineke, N. (2007).  Content-area writing: Every teacher’s guide . 
Portsmouth: Heinemann.  

     Delcham, H., & Sezer, R. (2010). Write-skewed: Writing in an introductory statistics course. 
 Education, 130 (4), 603–615.  

   Forster, M., Smith, D. P., & Wild, C. J. (2005). Teaching students to write about statistics.  Proceedings 
of the IASI Satellite Conference: Statistics education and the Communication of Statistics.  
Sydney, Australia .  Retrieved October 16, 2012 from    http://iase-web.org/documents/papers/
sat2005/forster.pdf    .  

   Garfi eld, J. (2002). The challenge of developing statistical reasoning.  Journal of Statistics 
Education, 10 (3). Retrieved June 28, 2016 from   http://www.amstat.org/publications/jse/v10n3/
garfi eld.html    .  

   Hammett, J. E. (1993). Writing to learn statistics: Maintaining learning journals in order to identify 
and address undergraduate students’ misconceptions.  The Proceedings of the Third International 
Seminar on Misconceptions and Educational Strategies in Science and Mathematics . Ithaca, 
NY: Misconceptions Trust. Retrieved June 28, 2016 from   http://www.mlrg.org/proc3pdfs/
Hammett_Statistics.pdf    .  

   Holmes, K. Y. (2012). Tips for incorporating writing into an introductory statistics course. 
 Observer, 25 (1). Washington, DC: Association for Psychological Science. Retrieved June 28, 
2016 from   http://www.psychologicalscience.org/index.php/publications/observer/2012/janu-
ary- 12/tips-for-incorporating-writing-into-an-introductory-statistics-course.html    .  

      Kågesten, O., & Engelbrecht, J. (2006). Supplementary explanations in undergraduate mathemat-
ics assessment: A forced formative writing activity.  European Journal of Engineering 
Education, 31 (6), 705–715. doi:  10.1080/03043790600911803    .  

     Langer, A. M. (2002). Refl ecting on practice: Using learning journals in higher and continuing 
education.  Teaching in Higher Education, 7 (3), 337–351. doi:  10.1080/13562510220144824    .  

   Lipson, K., & Kokonis, S. (2005). The implications of introducing report writing into an introduc-
tory statistics subject.  Proceedings of the IASI Satellite Conference: Statistics Education and 
the Communication of Statistics . Sydney, Australia. Retrieved June 28, 2016 from   http://iase- 
web.org/documents/papers/sat2005/lipson.pdf    .  

    Radke-Sharpe, N. (1991). Writing as a component of statistics education.  The American Statistician, 
45 (4), 292–293. doi:  10.2307/2684457    .  

     Rothstein, A., & Rothstein, E. (2007). Writing and mathematics: An exponential combination. 
 Principal Leadership: High School Edition, 7 (5), 21–25.  

    Russek, B. (1998). Writing to learn mathematics.  Writing Across the Curriculum, 9 , 36–45.  

22 Incorporating Writing into Statistics

http://www.amstat.org/education/gaise/GaiseCollege_full.pdf
http://www.amstat.org/education/gaise/GaiseCollege_full.pdf
http://www.amstat.org/education/gaise/collegeupdate/GAISE2016_DRAFT.pdf
http://www.amstat.org/education/gaise/collegeupdate/GAISE2016_DRAFT.pdf
http://dx.doi.org/10.1207/s15328023top2003_6
http://dx.doi.org/10.1111/j.1949-8594.2008.tb17935.x
http://dx.doi.org/10.1111/j.1949-8594.2008.tb17935.x
http://iase-web.org/documents/papers/sat2005/forster.pdf
http://iase-web.org/documents/papers/sat2005/forster.pdf
http://www.amstat.org/publications/jse/v10n3/garfield.html
http://www.amstat.org/publications/jse/v10n3/garfield.html
http://www.mlrg.org/proc3pdfs/Hammett_Statistics.pdf
http://www.mlrg.org/proc3pdfs/Hammett_Statistics.pdf
http://www.psychologicalscience.org/index.php/publications/observer/2012/january-12/tips-for-incorporating-writing-into-an-introductory-statistics-course.html
http://www.psychologicalscience.org/index.php/publications/observer/2012/january-12/tips-for-incorporating-writing-into-an-introductory-statistics-course.html
http://dx.doi.org/10.1080/03043790600911803
http://dx.doi.org/10.1080/13562510220144824
http://iase-web.org/documents/papers/sat2005/lipson.pdf
http://iase-web.org/documents/papers/sat2005/lipson.pdf
http://dx.doi.org/10.2307/2684457


334

    Starnes, D., Yates, D., & Moore, D. (2010).  The practice of statistics  (4th ed.). New York: W.H. 
Freeman and Company.  

    Stromberg, A. J., & Ramanathan, S. (1996). Easy implementation of writing in introductory statis-
tics courses.  The American Statistician, 50 (2), 159–163. doi:  10.2307/2684429    .  

    Taylor, J. A., & McDonald, C. (2007). Writing in groups as a tool for non-routine problem solving 
in fi rst year university mathematics.  International Journal of Mathematical Education in 
Science & Technology, 38 (5), 639–655. doi:  10.1080/00207390701359396    .    

K.G. Johnson

http://dx.doi.org/10.2307/2684429
http://dx.doi.org/10.1080/00207390701359396


335© Springer International Publishing Switzerland 2016 
J. Dewar et al. (eds.), Mathematics Education, Association for Women in 
Mathematics Series 7, DOI 10.1007/978-3-319-44950-0_23

    Chapter 23   
 An Infusion of Social Justice into Teaching 
and Learning                     

     Priscilla     Bremser    

    Abstract     We present a narrative account of the effects of adopting a social justice 
perspective on one mathematician’s career path. We offer geographic and institu-
tional context, explore interpretations of “social justice” and its intersections with 
mathematics, and describe implications for teaching and professional learning. We 
illustrate our explorations of this perspective in teaching fi rst-year seminars, num-
ber theory for in-service teachers, mathematics for pre-service teachers, as well as 
some standard mathematics courses such as abstract algebra and linear algebra. The 
chapter ends with some refl ections on the author’s professional development.  

  Keywords     Social justice   •   Education   •   Active learning   •   Inquiry-based learning  

23.1        Introduction 

 There is a story about mathematics in which the discipline exists apart from the 
messiness of human society. Answers are right or wrong, debates are not necessary, 
and judgments are impartial. This story was a comfort to me as a teenager; it sug-
gested a calm, if clinical, fairness. Mathematics was a refuge from  confl ict   and 
disagreement, and positive feedback from my teachers and standardized tests 
afforded a sense of safety. 

 The pure objectivity story is, of course, incomplete, and fairness in the practice 
of mathematics is far from a necessary outcome. Mathematics happens in the con-
text of human societies. In this chapter, I explore intersections between mathematics 
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and the search for  equity   in communities, and describe the profound effects such 
explorations have had on my professional life. 

 The dictionary defi nition of “justice”—the quality of being fair and reasonable—
is often applied to individual  people   or specifi c incidents, evaluated according to 
societal norms. The term “ social justice  ” goes further. I take it to mean fairness in 
social systems. It suggests that we develop norms by which we evaluate institutions 
in their treatment of individuals and groups. As an example of this distinction, con-
sider lending practices. Laws prohibiting usury convey a standard, held by many 
societies over many centuries, that interest rates above a certain level are unjust. 
Those laws, however, did not prevent the Federal Housing Authority and the mort-
gage industry from redlining, effectively putting home ownership beyond the reach 
of non-white residents in cities across the United States between 1934 and 1968. 
This is an affront to the ideal of social justice, with lasting consequences (Madrigal 
 2014 ). 

 The evolution of my  understanding   of justice has been shaped by my own experi-
ence. When my high school calculus teacher made it clear that we four girls weren’t 
welcome in his class, I must have been confi dent enough to assume that the problem 
was his, not mine, and naïve enough to regard him as a dinosaur nearing extinction, 
not an agent of persistent attitudes about  women in mathematics  . When I moved 
from a supportive mathematics department at a women’s college to a graduate 
school department with an all-male faculty, the loss of role models affected me 
deeply. By the time my graduate school advisor told me that because I was getting 
married I wouldn’t need a job, I understood that  women in mathematics   didn’t just 
have a role model problem; in fact we could never assume that we would be taken 
seriously. 

 At the time, “ social justice  ” was not part of my vocabulary, but working for fair-
ness in society was part of my  life  . During the summer of 1981, when I was in 
graduate school, I volunteered at the National Organization for Women headquar-
ters in Washington, D.C., as the ratifi cation deadline for the Equal Rights Amendment 
loomed. I have always voted for candidates whose platforms affi rm goals of  gender   
 equity   and human rights, and have supported organizations working to hold our 
institutions to standards of fairness. 

 These activities were, in my mind, distinctly different from my work as scholar 
and teacher of mathematics, though the boundaries blurred at times. During the 
 drive   to a  number theory   conference with  colleagues  , a man asked me why there 
were so few  women in mathematics  . Resenting the expectation that I should have a 
ready response—I did not—I probably said that the mathematics profession was not 
immune to the biases visible throughout our society. At least I hope that’s what I 
said. 

 Perhaps it was that conversation that caused me to pay more attention to ques-
tions of  gender   in mathematics education. Once my sons started school, I paid more 
attention to  K-12 mathematics education   in general. Meanwhile, I was fi nding scant 
satisfaction in pure mathematics research, and began to direct more intellectual 
energy toward educational issues, with the explicit goal of fi nding constructive ways 
to get involved. 
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 By this time, I had gotten to know my adopted state. Vermont ranks 49th in popu-
lation (about 626,000 at present), and 95 % of residents identify as non-Hispanic 
and white, including descendants of French-Canadian, Irish, and Italian immigrants. 
Some relatively urban areas have welcomed more recent refugees from Bosnia and 
Herzegovina, Rwanda, and Somalia. The 2010 the US Census determined that 
61.1 % of Vermont residents lived in rural areas (United States Census Bureau 
 2012 ). Poverty shows up in  pockets  . One local elementary school has 10 % of stu-
dents receiving free or reduced-price lunch; another, feeding into the same high 
school, has 59 % (Vermont  Agency   of Education  2015 ). While agriculture does not 
dominate Vermont’s economy as it once did, farming is a signifi cant part of the 
economy and landscape of Addison County, home of Middlebury College. Local 
dairy farms and orchards employ hundreds of migrant farm workers, some 
undocumented. 

 Middlebury College, founded in 1800, is a highly selective liberal arts institution 
with 2450 undergraduates and a 9:1 student to faculty ratio. Admission is need- 
blind for domestic students, and Middlebury is committed to meeting each student’s 
full fi nancial need (with grants and loans) for all 4 years of study. To earn  tenure  , a 
faculty member must meet high expectations in teaching,  scholarship  , and service. 
The review procedures call for evaluation of scholarly productivity by external 
experts alongside class visits by  colleagues   in other disciplines. I joined the faculty 
in 1984, and in 1990 became the second woman awarded tenure in the natural sci-
ence division. 

 Almost immediately, I was named chair of the mathematics department at 
Middlebury. Enjoying the  culture   of mutual respect and congeniality for which the 
department is known, I began to shift away from the lecture format in one course, a 
process I discuss in the fi nal section of this chapter. Three years on the college’s 
Committee on  Reappointment   had me visiting dozens of classes across many disci-
plines each semester, which informed my own teaching signifi cantly. An upper- 
level Chinese language class is a fascinating place to observe and refl ect on body 
language, eye contact, and who is talking when. 

 During my 2000–2001 sabbatical, immediately after my service on that commit-
tee, I took part in an  Algorithmic    Number Theory    program   at the Mathematical 
Sciences Research Institute in Berkeley, California, where the liberal-arts college is 
a largely unfamiliar concept. While I relished the intellectual recharge of that year, 
I missed the interactions with students. Upon my return to Middlebury I found 
myself on the Educational Affairs Committee, overseeing curricular changes and 
evaluating requests for new faculty positions. Once again, election to a major com-
mittee meant a heavy workload and diffi cult decisions, but also new insights into 
educational systems and how they might support or impede student learning. 

 In the spring of 2006, I saw an announcement for a course development work-
shop called “Mathematics and  Social Justice  ” at Lafayette College in Pennsylvania, 
organized by Rob Root. Intrigued by the pairing of those terms, I signed up. During 
the opening session, I felt a wall start to crumble in my brain. I heard about service 
learning projects in which undergraduates in one class helped low-income neigh-
bors with their tax forms, and in another designed a traffi c fl ow plan for an environ-
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mental museum. Participants presented descriptions of writing  assignments   
connecting quantitative  literacy   with participation in democratic society. 

 In 2007 I co-organized and hosted a sequel  workshop  , where Charles Hadlock, 
editor of  Mathematics in Service to the Community  (Hadlock  2005 ), spoke. The 22 
participants formed small working groups to outline course modules on such topics 
as “lending and access to money” and “criminal justice.” 

 One outcome of the workshops was the publication of “Mathematics of, for, and 
as  Social Justice  ,” a chapter (Bremser et al.  2009 ) in a volume focused on post- 
secondary social justice education (Skubikowski et al.  2009 ). Co-writing the  chap-
ter   helped frame my conception of the intersections between mathematics and social 
justice. We describe the mathematics  of  social justice as a set of quantitative analyti-
cal tools necessary to engage social questions. The redlining of real estate regions 
presents questions in need of such tools. People use mathematics  for  social justice 
to effect change by, for example, helping consumers assess the risks of various loan 
options that target specifi c groups. We regard math  as  a social justice issue because 
of the disparities in access to quality mathematics education. That chapter goes on 
to offer case studies of college courses residing in those intersections. 

 Participants in the two workshops have gone on to develop and refi ne courses 
with  social justice   considerations. Sheila Weaver, at the University of Vermont, 
developed and taught an entry-level Mathematics and Social Justice course with a 
service-learning component. Students worked with the Vermont Campaign to End 
Childhood Hunger to collect and analyze  data   on food stamp recipients, many of 
whom lack transportation to the offi ce distributing the stamps (Bremser et al.  2009 ). 
Weaver also offers a special section of an entry-level  probability      with statistics 
course focusing on social justice issues, including income distribution and poverty, 
political representation, and job discrimination. This course satisfi es a  diversity   dis-
tribution requirement at the university (S. Weaver, personal communication, 
February 23, 2016). 

 Andrew Miller of Belmont University in Tennessee, also a participant in both 
workshops, has presented his work at a Mathematical Association of America 
 MathFest   and elsewhere. In his courses dealing with quantitative  literacy      and con-
sumer fi nance issues, Miller assigns group  projects   with signifi cant writing compo-
nents. For example, he asks students to compare the costs of two credit cards, 
including fi nance charges and late fees, and construct a spreadsheet and guide for 
consumers. For another assignment, the team gathers  data   about student debt, using 
it to write a  report   for high school seniors on paying for college. A third calls for 
students to serve as consultants to a fi ctional company by constructing an automatic 
enrollment retirement plan, including a strategy for advertising the plan to employ-
ees with detailed evidence for the advantages of participation (A. Miller, personal 
communication, May 10, 2016). 

 A signifi cant contribution to the genre comes from Thomas Pfaff of Ithaca 
College, a speaker at the second workshop who maintains a website called 
“Sustainability Math” as a repository of curriculum materials ( Pfaff n.d. ). These 
include units on “The Gini Coeffi cient” and “CO 2  Levels” for fi rst-semester calcu-
lus, and on “Sustainable Fisheries” for  differential equations  . In making his case 
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that sustainability education is imperative, Pfaff states that “(h)umans have reached 
a state where we are negatively impacting the ability of future generations to meet 
their needs and aspirations.” 

 In the remainder of this chapter, I describe particular ways in which engaging the 
intersections of mathematics and  social justice   has affected my professional life. In 
the next three sections I describe creating and teaching a  First-Year Seminar   
(Sect.  23.2 ), teaching  number theory      to  in-service teachers   (Sect.  23.3 ), and devel-
oping and teaching a mathematics course for  pre-service teachers      (Sect.  23.4 ). In 
Sect.  23.5  I describe the broader impact of this work on my teaching of mathemat-
ics, and I conclude with refl ections on my professional  development  .  

23.2      The  First-Year Seminar   

 Middlebury College requires every entering student to enroll in a First-Year Seminar 
(FYS), and all departments contribute courses to the FYS program. Each seminar is 
limited to 15 students, and must have a signifi cant writing component. The 2006 
workshop gave me some resources and the courage to develop a new fi rst-year semi-
nar, incorporating my interest in mathematics and in  equity  , and to include a service- 
learning project. Here is the course description.

    Mathematics for All  What kinds of mathematical knowledge are necessary for full 
participation in contemporary democratic  society  ? How well, and how fairly, do 
our schools educate students in quantitative skills and reasoning? By what mea-
sures might we judge success? We will learn about different approaches to math-
ematics education in light of these questions. Readings will include selections 
from  Mathematics for Democracy: The Case for Quantitative    Literacy       
(L.A. Steen, Editor [Steen  2001 ]), as well as recent articles by education research-
ers. To connect theory and actual practice, students in this class will conduct a 
service-learning  project   in a local school. All are welcome, regardless of mathe-
matical background.    

 In 2007, when I fi rst offered the course, Vermont was using the New England 
Common Assessment Program (NECAP) to measure schools’ effectiveness in 
mathematics and English. The seminar project that year was to learn as much as we 
could about NECAP, visit a local elementary school to  interview   students and teach-
ers, and then to prepare a brochure for parents. We learned that tests designed to 
assess schools may have limited value for assessing individual students, and that 
there was a correlation between NECAP  scores   and household income (measured 
by eligibility for free and reduced-price lunch). 

 The project in 2010 took place at a local high school, where we observed classes 
and  interviewed   teachers and students before designing a website of mathematics 
resources for them. As it happened, the teachers’  union   was in tense negotiations 
with their school board at the time, so we got an unanticipated dose of reality in our 
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conversations about whether an equitable education system can be built on local 
funding mechanisms. 

 In the 2013 version of Mathematics for All, we read and wrote about mathemat-
ics learning for pre-kindergarten children, and had an introduction to Head Start, a 
federal school readiness program for students from low-income families. We volun-
teered at the Head Start classroom in town. After each of my students had visited at 
least once, they designed some math games and then led the  children   in playing 
them. Among my  goals   for my students were to gain some familiarity with the 
mathematical thinking of 3- to 5-year-olds, an  understanding   of the importance of 
play for that age group, and appreciation of the complexities of learning and teach-
ing, all of which were supported by the visits. One unexpected lesson from that 
project was that many children in the program were from households led by women, 
and the young men in my group were greeted with  enthusiasm   every time they 
entered the classroom. Another was that some migrant workers on dairy farms in 
Vermont have small children, who may speak only Spanish at home. 

 While I haven’t done a systematic study of the long-term impacts of the seminar 
on my students, I have heard back from a few former students. One, who is now a 
 secondary   school teacher,  reports   that the seminar “was the perfect fi rst class for a 
prospective math teacher as it exposed me to the various issues and debates in the 
math and education worlds, and provided me with valid arguments for the impor-
tance and relevance of math in education and life.” Another refers to his research 
paper on math anxiety, and says, “I think a big part of studying  math  , perhaps even 
bigger than in other fi elds, is the critical role that being able to teach it plays in 
studying it. So in a lot of that teaching to friends, family and classmates that has 
come along with studying math at an advanced level, I have noticed a lot of math 
anxiety and seen fi rst hand how crippling it can be. So I guess doing all that research 
I did on math anxiety helped me really target the anxiety and make the math I taught 
as accessible as I could, while trying not to use too many big and fancy but intimi-
dating words and methods.” This student, now a mathematics major, conceived and 
organized a tutoring program at the local high school. 

 According to a third  student   from my seminar, “the biggest impact Mathematics 
for All had on me came through the connection to the Head Start classroom. I really 
enjoyed working with the kids in that classroom, and I continued volunteering that 
year and the following on my own time. This may sound silly, but working with that 
classroom made my opinion of children change from a relatively negative one to a 
positive one.”  

23.3      Teaching  Number Theory      to In-Service Teachers 

 In considering mathematics  as   social justice  , and contemplating what I could offer 
to  K-12 mathematics education  , I saw two possible arenas: the preparation of future 
 teachers  , and  professional development            of those already in classrooms. Because I 
decided to begin my contribution with the latter, I knew that I needed to meet Ken 
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Gross, founder of the  Vermont Mathematics Initiative (VMI)   ( University of Vermont 
n.d. ;  Vermont State Mathematics Coalition n.d. ). VMI is a 3-year master’s degree 
program for practicing teachers, who devote 6 weekends during the school year and 
two full weeks in the summer to content courses. In addition, each teacher designs 
and implements an  action research   project, and works with a  mentor   to become a 
mathematics leader in her school. The content courses are taught by teams that 
include both mathematicians and experienced classroom teachers. While my origi-
nal intent was to learn about the program, I ended up signing on as an instructor in 
2007. 

 Schoolteachers have up-close views of inequities in our society ( Bremser 2014b ). 
Their stories of the disadvantages some children face strengthen my resolve to do 
what I can to support good mathematics instruction across my home state. In May 
2016,  VMI   held its fi rst  conference  , including  presentations   from some graduates of 
the program. There I learned that VMI has now graduated sixteen cohorts in 
Vermont, reaching schools in every county, along with two cohorts from an offshoot 
program in Cincinnati, Ohio. I also heard directly from some graduates that they 
had used what they’d learned from my  number theory               course at  VMI   in their 
classrooms. 

 The educational  equity   question that is most present for me at VMI concerns the 
teachers themselves. Because VMI was originally designed for K-8 teachers, most 
of the participants are women, and many of those women are uncomfortable with 
mathematics. Their own stories include being told “you’ll never be good at math” as 
children, and being directed into less challenging mathematics courses, or away 
from mathematics altogether. One teacher I met in Cincinnati had never taken any 
algebra in high school; when she was in her teens, African-Americans were expected 
to perform only menial work after graduation. 

 As the lead instructor of the number theory course, I introduced a daily written 
refl ection, asking participants to write 100–200 words on how their mathematical 
thinking had been affected by the day’s class work, discussions, and homework 
problems. This  idea   grew from what I’d discovered in preparing for the seminar 
about the role of  metacognition   from Bransford et al. ( 2000 ): when we monitor our 
own thinking and learning processes, we become better at learning. The teachers 
benefi t, I expect, from taking some time each evening to articulate their own intel-
lectual growth. The assignments also serve as a formative assessment that comple-
ments the class discussions and exit  questions      (questions or prompts that students 
respond to in writing at the end of class).  

23.4      Mathematics for  Pre-Service Teachers   

 Continuing my exploration of mathematics  as   social justice  , and informed by my 
 VMI   experience, I developed the fi rst mathematics content course specifi cally for 
future teachers at Middlebury  College  . The course is co-listed with our Department 
of Education Studies, and I have taught four versions. Each time I’ve had a largely 
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female group; again their mathematical autobiographies at the start of the term often 
feature frustration and discouragement. 

 Here, too, a periodic refl ection assignment has proven useful. I’m often touched 
by the thoughtfulness and honesty that my students show when given the chance. To 
read that some students admit that they never really understood place value until this 
course is shocking, at fi rst, but makes me appreciate their determination to get it 
right this time. Students who started learning mathematics in Spanish or Vietnamese 
have interesting stories to tell about the transition to English. 

 Unlike my other mathematics courses, Mathematics for Teachers enrolls mostly 
students from groups underrepresented in  mathematics  . Now that I’ve started 
another term as  department chair  , I am engaging my  colleagues   in the questions that 
have emerged as I worked with these students. What is our obligation to such stu-
dents at Middlebury? If the practices of  mathematical   thinking are benefi cial, what 
opportunities can we offer those who have had negative mathematics experiences 
before college?  

23.5      Reconsiderations of Standard Mathematics Courses 

 In the early 1990’s, when I fi rst started organizing my  abstract algebra   course in 
what we now call an  Inquiry-Based   Learning (IBL)  model  , I did so because it made 
intuitive sense. I thought about the difference between sitting passively in a lecture 
and working actively on a problem set. I remembered an evening as an undergradu-
ate when I borrowed a friend’s plastic cube, a Polaroid photo on each face, to work 
out the  symmetry   group. I couldn’t remember anything that professor had said in 
class. Teaching at a college with small classes, fewer than 20 in most upper-level 
mathematics courses, it seemed natural to replace lectures with guided group 
activities. 

 My search for readings for the  fi rst-year seminar   led me to the  Common Core 
State Standards   for Mathematics (National Governors Association  2010 ), an intro-
duction to cognitive science (Bransford et al.  2000 ), Liping Ma’s infl uential com-
parison between elementary teachers in the US and China (Ma  2010 ), and the work 
of mathematics educators like Deborah Ball and Heather Hill (Ball and Hill  2009 ). 
In absorbing those detailed analyses of the work elementary school teachers do, I 
realized that I’d never inspected my own teaching work as closely. 

 Once I added my work at  VMI   to the mix, my nagging discomfort with my own 
lecture model for calculus and  linear algebra      grew to a level that I could not ignore. 
Sitting next to elementary school teachers as they struggled with problems that I had 
thought were straightforward made me face the fact that I had too little information 
about how my calculus and linear algebra students were thinking. Reading about 
different kinds of knowledge confi rmed that even students who were adept at vari-
ous procedures might be missing the concepts underlying and connecting those pro-
cedures. Visiting fourth-grade classrooms reminded me that just because  students   
are quiet does not mean they are engaged. 
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 For years I had grumbled that most of my students didn’t actually read the text-
book. But why should they? Most of the tasks I was asking them to do—exercises 
at the back of each section—could be accomplished by watching me perform simi-
lar ones (after carefully explaining why they worked) and then fl ipping through the 
section for worked examples. I had regarded the class sessions as highly interactive, 
because students could ask questions at any  time  , and I threw out questions as well, 
but in retrospect it is clear that I was doing most of the heavy idea lifting. 

 I now realize that by limiting participation to students who raised their hands, I 
was not providing an equitable learning environment. Cold-calling on quiet students 
in front of the whole class was never an option for me, but listing “participation” on 
the syllabus as a component of the grade fell far short of facilitating quality engage-
ment with the material for all students. 

 Now I’m committed to providing an  IBL   environment in all of my classes. In 
 linear algebra  , for example, I abandoned the textbook and its formulaic exercises in 
favor of homework assignments with more discovery-oriented and open-ended 
questions. Students discuss their  work in groups   of three or four for the fi rst half of 
the class, and then we come together as a whole to share solutions and tie the new 
concepts to previous ones. As an antidote to some of my students’ notions about the 
 nature   of mathematics, I stress the idea that there can be several acceptable solutions 
to many problems, as I’ve learned to do at  VMI  . I also listen carefully to my stu-
dents’ conversations with one another, and I have a pretty good idea of where every-
one, even the quietest, is without having to wait for the next exam. 

 The case for  active learning   is growing. In fact, a meta-analysis published in 
2014 concluded with the statement that “(t)he analysis supports theory claiming that 
calls to increase the number of students receiving STEM degrees could be answered, 
at least in part, by abandoning traditional lecturing in favor of active learning” 
(Freeman et al.  2014 ). Also of interest is the evidence in Kogen and Laursen ( 2013 ) 
that women may be more likely to persist in mathematics after taking an IBL course. 
What started as an effort to improve my teaching in general turns out to have  social 
justice   implications.  

23.6     Refl ections on My Professional  Development   

 The strands of my professional life are interwoven rather than parallel. Their inter-
actions are mutually  benefi cial  , and remind me of something a senior  colleague   in 
history once told me about the role of her  scholarship  : “I can’t be a good teacher 
unless I’m learning at the same time.” 

 Just as my students’  learning   improves if they are actively engaged in appropri-
ately challenging cognitive tasks, my own learning about education improves if, 
among other things, I write and speak about it. Some of my writing over the past 10 
years has grown out of agitated responses to items in the news (Bremser  2013a ,  b ). 
My “Listening to Teachers” essay in the  AMS    Notices  ( Bremser 2014b ) grew out of 
impatience with blanket complaints about mathematics instruction that I’d heard 
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from some fellow  mathematicians  , and my sense that we as a professional  commu-
nity   could take more responsibility. 

 My writing generated invitations to speak about my  VMI   work and my Math for 
Teachers course at meetings of the  American Mathematical Society (AMS)  . At one 
of those sessions, I heard about large universities where there was little  communica-
tion   between mathematicians and mathematics educators, despite the need for 
future teachers to take classes in both areas. As a result, I made a special effort to 
coordinate with my own  colleague      who teaches mathematics and science teaching 
methods in our Education Studies program, and rearranged my teaching schedule so 
that students could take my course and then hers. 

 My talks, in turn, generated an invitation to be one of the editors of “On Teaching 
and Learning Mathematics,” an AMS Blog ( AMS n.d. ). Writing and editing posts 
for that blog has deepened my  understanding   of mathematics education at all levels, 
and supports my own  teaching  . For example, our series on  active learning   has 
encouraged me to evaluate my in-class and homework assignments more carefully 
in terms of their cognitive demand. Am I asking students to recite, apply, explain, 
evaluate, or create mathematics? What balance of tasks have I included? 

 Looking back at my fi rst shift toward an active learning model in  abstract alge-
bra  , I have to wonder whether I would have made such a fundamental change before 
 tenure  . Probably not, to be honest with myself. Though my department grants fac-
ulty members a great deal of autonomy, teaching evaluations play a large role in the 
college’s review process, and I didn’t know how  students   would respond to working 
in small groups each day. I needn’t have worried. The evaluations for my fi rst ver-
sion in the new format were almost uniformly positive, the one exception being a 
student who wrote, “You are the expert. You should show us.” 

 I’ve since learned to be more explicit, early and often, about why I structure my 
courses the way I do. My syllabi now contain this quote:

  Trying to come up with an answer rather than having it presented to you, or trying to solve 
a problem before being shown the solution, leads to better learning and longer retention of 
the correct answer or solution, even when your attempted response is wrong, so long as 
corrective feedback is provided (Brown et al.  2014 , p. 101). 

   My professional activities related to  social justice      and K-12 education developed 
later, when the personal satisfaction they offered outweighed whatever I imagined 
might result from  colleagues’   disapproval. In this case, it is probably better that I 
concentrated my energy on  number theory       research   early on. Beyond Middlebury, I 
have been engaged in many conversations about the concerns of untenured mathe-
matics faculty who are—or want to be—involved in education-related work. Advice 
from senior colleagues already on board ranges from “Don’t touch it until after 
 tenure  ” to “We need you to contribute now” (I’m paraphrasing; for a more nuanced 
conversation, see  Bremser (2014a) , including the comments). 

 My own advice would be this: start with a careful assessment of your own depart-
ment and institution, as well as your tolerance for risk. If you decide to jump in, be 
prepared to argue for the quality of your new work; your pure research colleagues 
may know nothing of the education landscape, or have misconceptions about it. If 

P. Bremser



345

you’re feeling cautious, look for small ways to lay the groundwork for a more secure 
time. For example, through a speakers’ bureau, I gave over a dozen talks in schools 
over the years. I made contacts with dynamic  teachers  , and saw fascinating varia-
tions among classrooms, both of which informed my later work. 

 Trained as a pure mathematician, and retaining my appreciation for the beauty of 
 abstract algebra   and  number theory     , I have found a new cohesion among the com-
ponents of my professional life by asking human questions. How do we measure 
fairness? What can I do to address inequities in my State, and in my own  classroom  ? 
I’ve found more intellectual satisfaction from exploring these questions than I could 
have imagined when I started.     
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Chapter 24
Popular Culture in Teaching, Scholarship, 
and Outreach: The Simpsons and Futurama

Sarah J. Greenwald

Abstract Subject to thoughtful analysis of the benefits and challenges, popular 
culture can be an ideal source of fun ways to connect students and the general public 
to mathematics. My colleague Andrew Nestler and I created, class-tested, and 
widely shared activities related to the Twentieth Century Fox television show The 
Simpsons. The scholarship of teaching and learning (SoTL) provides us with an 
analytic framework to develop, improve, and share our activities. We designed the 
activities to introduce or review important mathematical concepts and engage stu-
dents. Later I expanded my interest into Futurama, another Twentieth Century Fox 
television show. I will describe informal outreach activities connected to both pro-
grams, including our educational website Simpsonsmath.com and my interactive 
lecture that audiences have accessed worldwide from a Futurama DVD. I will sum-
marize the reception of my work by departmental colleagues, the institution, and the 
mathematical community. I will reflect on how this work has affected students and 
general audiences. I will also consider the direct and indirect impacts on my career 
and the unique challenges and rewards of working with popular culture in teaching, 
scholarship, and outreach.
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24.1  Introduction

Educators have a variety of methods available to them to deliver mathematical con-
tent and facilitate student engagement and learning. Mathematical cartoons can be 
a fun way to introduce or review concepts and reduce student anxiety (Schacht and 
Stewart 1990). The audio and video components of animated cartoons can also help 
make material more memorable.

The Simpsons (Groening and Brooks 1989–present) and Futurama (Cohen and 
Groening 1999–2009) are animated sitcoms that include hundreds of mathematical 
references. One reason is that a number of the writers have mathematical back-
grounds, including college and graduate degrees (Greenwald 2007). For example, 
Ken Keeler, who has a PhD in applied mathematics and originally worked at Bell 
Labs, wrote for both television shows.

For over 15 years, my co-author Andrew Nestler and I have been not only engag-
ing students but also sharing with teachers mathematical humor from the television 
show The Simpsons. The Scholarship of Teaching and Learning (SoTL) gives us a 
framework in which we create valuable activities, analyze their benefits and chal-
lenges, refine them, and share them (McKinney 2006). A SoTL project may take 
many forms, and in our case we mainly use reflection and analysis based on obser-
vational research and student evaluations. We have found that the best popular cul-
ture related activities for the classroom are those that tie into course content, have 
an interactive component, and work at least as well as other pedagogical techniques 
would for the same material (Greenwald and Nestler 2004a, b). In this chapter I will 
discuss how this work developed as I highlight the unique challenges and rewards 
of working with popular culture in teaching, scholarship, and outreach. Through our 
educational website Simpsonsmath.com (Greenwald and Nestler 2001) I became 
involved with Futurama, another television show, and filmed a 25-minute feature 
for the Futurama DVD movie Bender’s Big Score (Cohen et al. 2007). I will sum-
marize the reception by the department of mathematical sciences at Appalachian 
State University (ASU), the institution, and the broader mathematical community. I 
will also reflect on how our work has affected students, general audiences, and my 
career.

24.2  The Simpsons and Futurama in the Classroom 
and Beyond

For years, Nestler and I analyzed the mathematical moments in The Simpsons as we 
developed and refined activities for our classes. We wanted to share these publicly 
with teachers and students at other schools, so we began to participate in informal 
outreach activities, including presentations at conferences and schools, as well as 
wider outreach through our educational website Simpsonsmath.com that we 
founded in 2001. We created classroom activity sheets for the website filled with 
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questions designed to engage students with the mathematical moments in the show. 
These are aimed mainly at high school and college students and general audiences. 
Later my interest expanded into Futurama as well.

24.2.1  The Simpsons and Simpsonsmath.com

The Simpsons is an award-winning animated sitcom. It centers around the life of a 
nuclear family, Homer and Marge Simpson and their children Bart, Lisa and Maggie, 
as well as their neighbors and relatives. As of 2016 it is the longest running sitcom 
in television history and contains many references to scholars and academic sub-
jects, including mathematics and its own mathematician character, Professor Frink. 
The Simpsons first aired in December of 1989 when I was an undergraduate student 
at Union College. My mother died the year before and I was the guardian of my 
younger brother, so time was precious; however, there was always a spare hour for 
friends. Our group gathered for dinner, television and the premiere of The Simpsons. 
The laughter was good for the soul and provided some much needed relaxation. 
There was even a quip about odds and multiplication, but we dismissed it as a fluke. 
The next episode aired in January 1990. It was “Bart the Genius” (Vitti and 
Silverman 1990) and we were surprised that it showcased an entire mathematics 
word problem, and even a separate calculus joke about derivatives. That same year 
Ernest Boyer’s Scholarship Reconsidered: Priorities of the Professoriate (Boyer 
1990) was published, and this was a pivotal moment in SoTL. Little did I know that 
these two events would later converge, to my great benefit. Group gatherings for 
dinner and The Simpsons continued in graduate school at the University of 
Pennsylvania. It is there that I met Andrew Nestler, a fellow graduate student, and 
we bonded over mathematics as well as The Simpsons.

The mathematical references in the show are diverse and range from basic arith-
metic to advanced research topics in mathematics. For instance, The Simpsons 
showcases interesting numbers and equations, makes references to geometry and 
mathematical physics, and jokes about innumeracy and women in mathematics. 
Many of the mathematical moments appear briefly but prominently, e.g., in a close-
 up of a blackboard; however, in a few episodes mathematics has been key to the 
main plot. Second grader Lisa Simpson, the oldest daughter of the titular family, is 
featured in these episodes. For instance, in “Girls Just Want to Have Sums” (Selman 
and Kruse 2006) Lisa pretends to be a boy to do mathematics. Matt Selman wrote 
the episode in response to Lawrence Summers’ controversial comments about the 
innate abilities of women in mathematics (Summers 2005). In “MoneyBart” (Long 
and Kruse 2010) Lisa uses sabermetrics, the statistical analysis of baseball. In yet 
another episode, “Mathlete’s Feat” (Price and Polcino 2015), Lisa is a member of 
Springfield Elementary’s Mathlympics Team. For a television show, the breadth and 
depth of the mathematical moments are quite remarkable.

Boyer (1990) noted that “Pedagogical procedures must be carefully planned, 
continuously examined, and relate directly to the subject taught,” and we have taken 
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these as guiding principles in our work. In developing Simpsonsmath.com, Nestler 
cataloged the mathematical references as I interviewed the writers and investigated 
their mathematical backgrounds. There are hundreds of items detailed in Nestler’s 
online guide to mathematics and mathematicians on The Simpsons. We created sep-
arate webpages for the episodes where mathematics is fundamental to the main plot, 
and for each of the mathematician writers. We developed worksheets related to 
arithmetic, calculus, geometry, number theory, pre-calculus, probability and topol-
ogy. We tested the worksheets in classes and refined them before we included them 
online. We chose a website format so we could share our work freely and update it 
regularly, rather than a book that would be outdated as soon as more references 
appeared on the show. Although we are on opposite sides of the country, we con-
tinue to improve the website and watch television together, by hitting play at the 
same time on our respective digital video recorders as we chat by phone.

24.2.2  Sample Activity on the Digits of π

Many references to π appear on The Simpsons, prompting us to develop activities 
related to the irrationality of π as well as unsolved questions about whether π is 
normal. A worksheet is available on Simpsonsmath.com for the following activity.

In the episode “Marge in Chains” (Oakley et al. 1993), Apu Nahasapeemapetilon, 
who runs a popular convenience store near the Simpsons, takes the stand during a 
court case. When the validity of his memory is challenged, he claims he can recite 
π to 40,000 decimal places, and notes that the 40,000th digit is one. My students 
laugh when Homer Simpson, the donut-loving patriarch of the Simpson family, 
responds: “Mmm, pie.”

We ask students for the definition of π, how many digits they know by heart, the 
probability that a person would guess correctly if he had randomly guessed the 
40,000th digit, and whether it is humanly possible to memorize that many digits. We 
have shared this activity with middle grade, high school, and college students on Pi 
Day, and it leads to interesting discussions about the world record for memorizing 
digits of π and why anyone would want to memorize or compute so many digits. We 
introduce these questions if the students do not.

Students are often amazed to learn that Hideaki Tomoyori, the world record holder 
during the making of and original airdate of this episode, knew exactly 40,000 digits. 
We share quotations that highlight Tomoyori’s motivation and methodology, as well 
as a psychological study that investigated his cognitive abilities (Takahashi et al. 
2006). Researchers compared Tomoyori to a control group and concluded that he was 
not superior. They attributed his achievement to extensive practice. We also discuss 
the motivation to calculate trillions of digits of π, noting that series algorithms are 
used to stress test computers, and number theory questions about the distributions of 
the digits are much more interesting than any specific digit.

Apu was correct in the episode—the 40,000th digit of π is indeed one, and stu-
dents ask how this story ended up in an episode of The Simpsons. The show’s writ-
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ers wanted to honor Tomoyori’s accomplishment. Mathematician Jon Borwein first 
shared the story with us of how the writers obtained the digit. The writers enlisted 
the help of mathematician and computer scientist David Bailey. We have a copy of 
the fax the writers sent to Bailey containing an image of Bart Simpson, the fourth 
grade son on the show. They asked Bailey for the 40,000th digit of π. At the time, 
Bailey was working at NASA, and he faxed all 40,000 digits. The writers told 
Nestler and me that they placed a huge pile of fax pages into another episode “22 
Short Films About Springfield” in honor of all those pages Bailey sent. The pile 
elucidates the magnitude of that many digits of π and students laugh when I show 
them a picture of it. Students are also interested to learn that research on π contin-
ues. Bailey et al. (1997) published a series representation of π that we share with 
students who have taken calculus:
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The Bailey-Borwein-Plouffe (BBP) formula can be used to compute binary digits of 
π in hexadecimal notation without the preceding digits, theoretically eliminating the 
need for many fax pages, at least in this setting.

24.2.3  Futurama, DVD Feature, and Greenwaldian Theorem 
Activity

In 2003, Art Benjamin, then co-editor of Math Horizons, a journal aimed at under-
graduates, asked if I would write an article about Futurama. Futurama is a satirical 
science fiction cartoon that is often associated with The Simpsons because many of 
the same people developed and wrote for it. However, the focus of the show is quite 
different. In the pilot, Philip J. Fry accidentally falls into a cryogenic chamber and 
awakens 1000 years later, in the year 3000. Fry connects with his great-great-…-
great nephew Professor Farnsworth, a scientist, inventor and owner of the Planet 
Express Delivery Company. Fry joins the delivery crew whose members include a 
one-eyed alien named Turanga Leela and a robot, Bender Bending Rodriguez, who 
is simply known as Bender in the show. Futurama revolves around their 
adventures.

Futurama makes many significant mathematical references, including the 
Goldbach conjecture, supersymmetric string theory, and taxicab numbers to name a 
few. Mathematical references abound in each show. I enlisted the help of chemical 
engineer Tom Georgoulias and computer scientist Marc Wichterich to write a Math 
Horizons article (Georgoulias et al. 2004). From this I developed my own educa-
tional website (Greenwald 2004). I subsequently met David X. Cohen, the head 
writer and an executive producer of Futurama, who holds a master’s degree in 
computer science. He invited me to film a 25-minute feature presentation for the 
Futurama DVD movie Bender’s Big Score. Live action is interspersed with animated 
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content in this interactive mathematics lecture that is aimed at a general audience. 
I explore the mathematical moments in Futurama with help from the writers, execu-
tive producers, and animated characters. Cohen advertised it prominently on the 
back cover of the Bender’s Big Score DVD as a special bonus feature.

As a surprise, Cohen included a “Greenwaldian theorem” on a blackboard in 
Bender’s Big Score itself. In classes that explore non-Euclidean geometry or as a 
hands-on outreach activity, I can show Fig. 24.1, and we discuss why it is true. In 
the Bender’s Big Score movie, Professor Farnsworth and Bubblegum Tate, a mem-
ber of the Globetrotter’s basketball and physics team, examine the blackboard. 
While I was certainly not the first to discover the spherical equation, I was thrilled 
to have my name up in the lights of the show. I created an activity sheet and posted 
it on my Futurama website. On a ball, as I demonstrate in the DVD feature and in 
the classroom, we mark three vertices of a spherical triangle from the north pole to 
the equator and over a bit. Next we use string to measure the lengths of a from the 
north pole to the equator and b along the equator. Now we create a Euclidean right 
triangle with a and b pulled tightly on the flat table. Students work in pairs because 
more than two hands are helpful to form the hypotenuse of that triangle, cflat. Back on 
the sphere, we compare cflat to the spherical csphere. As we place cflat from the equator 
to the north pole, it is too long. Since cflat satisfies the Pythagorean theorem,

 
a b c cflat sphere
2 2 2 2+ = > .

 

Fig. 24.1 Greenwaldian theorem (Image used with permission, courtesy of Twentieth Century 
Fox Home Entertainment, all rights reserved, FuturamaTM, © Twentieth Century Fox and its related 
companies)
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While this is just an illustrative example, we next examine small and large right 
triangles in a dynamic geometry software program. We notice that the smaller the 
triangle, the flatter, and hence the Pythagorean theorem is closer to holding true. 
The opposite holds for large triangles.

24.3  Reception, Impact, and the Challenges and Rewards 
of Working with Popular Culture

SoTL, by definition (McKinney 2006), requires public sharing and review. 
McKinney advocates for SoTL in traditional formats, like peer-reviewed presenta-
tions and publications, as well as innovative formats to reach the public (McKinney 
2012). One of the challenges of informal outreach is how to best judge its impact 
and success. My interactive mathematics lecture has been distributed on over one 
million Futurama DVDs worldwide, but I have no way of knowing how many peo-
ple have actually watched it or how they have used it. In addition to the DVD sales, 
the Greenwaldian theorem has also aired on television and on streaming video sites, 
but it is impossible to gather data on how many people paid attention. A better mea-
sure is the number of visitors to Simpsonsmath.com, which lists over 800,000 page 
views. This count could be considered low because it does not include the first year 
of the site, Nestler’s guide or my Futurama pages. On the other hand, since the 
count is by unique Internet Protocol (IP) address, the same viewer using different 
addresses will be counted multiple times.

Regardless of the difficulties in counting users, we do know the reach has been 
broad because we have received unsolicited feedback from all over the world, typi-
cally in the form of e-mail messages or from people who have approached us at 
conferences. We have other indications of success, such as those detailed below, 
even as we faced diverse challenges unique to the pedagogical use of popular 
culture.

24.3.1  Encouragement and Criticism from the Broader 
Mathematical Community

The broader mathematical community has consistently recognized and encouraged 
our outreach activities. They have also assisted us by sharing their critiques. In 2002 
Brian Winkel, editor of the journal Problems, Resources, and Issues in Mathematics 
Undergraduate Studies (PRIMUS), asked Nestler and me to organize a special pop-
ular culture issue based on an upcoming conference session. At the same time, 
Winkel sent us long emails detailing what he referred to at the time as his severe 
bias against popular culture. We had many very interesting discussions about the 
value of studying and connecting to what the younger generation is in touch with, 

24 Popular Culture in Teaching, Scholarship, and Outreach: The Simpsons…



356

and how popular culture reflects cultural beliefs about mathematics and its value to 
society (Appelbaum 1995; Morrell 2002). These discussions were essential as they 
helped me formulate how I would justify my pedagogical use of popular culture to 
departmental colleagues and other teachers. Winkel (personal communication, 
February 29, 2016) recently noted: “It is pretty clear now that you and your col-
leagues were in the vanguard of appreciating mathematics and science in the popu-
lar culture and we all owe you our gratitude.” Art Benjamin was also instrumental. 
I am not sure that I would have taken the time to work on the mathematics in 
Futurama had it not been for his encouragement to contribute an article on that 
topic to Math Horizons.

We have spoken to teachers at conferences for the Mathematical Association of 
America, the National Council of Teachers of Mathematics and the Ontario 
Association for Mathematics Education, to name a few, and the reception has been 
mostly positive. Huge audiences have attended our conference talks. The main area 
of critique has been that the activities are too high-level for elementary and middle 
grade students. Teachers have requested that we develop worksheets for their stu-
dents. We did develop some activities with Carli Entin for Scholastic Math (Entin 
2003) and I have used the Greenwaldian activity with middle grade students. 
However, even if elementary school children are watching The Simpsons or 
Futurama, I personally believe that the content is too mature for them. Both shows 
contain low-brow suggestive humor, especially Futurama, and The Simpsons movie 
was rated PG-13.

Teachers have suggested that we should distribute mathematical clips from the 
shows on our website or on DVD, but The Simpsons and Futurama are copyrighted 
by Twentieth Century Fox and this would violate educational fair use guidelines, as 
it is illegal to break DVD encoding to create clips. However, even without permis-
sion from the copyright holder or the purchase of performance rights, it is generally 
accepted that educators can still show a small portion played directly from a DVD 
owned by the library or an instructor in a face-to-face setting.

A few teachers told us that they were initially prepared to dislike the talk because 
it related to popular culture, but that they enjoyed the deep connections to mathe-
matics and our thoughtfulness about effective use in the classroom. They say that 
they had not realized that popular culture could be a legitimate area of inquiry and 
investigation. On occasion, teachers send us their worksheets as well as feedback on 
the effectiveness of our worksheets. This has helped us improve our activities and 
we greatly appreciate the interaction.

Mathematical writers from The Simpsons and Futurama have been extremely 
positive and supportive, especially David X. Cohen, Ken Keeler and Jeff Westbrook. 
Westbrook has a PhD in computer science. In addition to their degrees, they have 
participated in the Joint Mathematics Meetings and a math club for adults. Popular 
science author Simon Singh interviewed us about our work and included it in a 
chapter of his book on the mathematics of The Simpsons (Singh 2013). His book has 
been well-received; for example the Joint Policy Board for Mathematics awarded 
Singh its 2016 Communications Award in part for this publication. The Mathematical 
Association of America honored me with a 2005 Alder teaching award based to 
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some extent on the fact that Nestler’s and my work had influenced others beyond my 
own classrooms, a criterion for the award.

24.3.2  Departmental and Institutional Challenges and Support

Overall, ASU has been very supportive of my work. Department and university 
documents recognize Boyer’s model of scholarship (Boyer 1990), and they note that 
the scholarship of teaching is as significant and worthy a subject of inquiry as tradi-
tional research. The documents highlight public activities, forums, and presenta-
tions as valid forms of scholarship as long as there is indication of external validation. 
Hence, even though Nestler and I began sharing our work while I was an assistant 
professor, I felt encouraged to do so as a part of what would count as scholarship for 
my tenure portfolio.

One example of support from my colleagues in mathematical sciences occurred 
when my Futurama webpages indirectly overloaded our department server for an 
entire day in 2004. Slashdot, a website which advertises itself as “News for nerds, 
stuff that matters,” linked to my Futurama pages as part of a discussion of the math-
ematics on the show. The sheer volume of users attempting to use the links resulted 
in too many page views per second, causing our server to come to a standstill, a 
phenomenon known as being “slashdotted.” I stayed in communication with the 
department chair who helped diagnose the issue and explained the concept of the 
slashdot effect. The system administrator wrote to me: “No problem. At least I 
know what caused it. I’m going to look into what I can do to help… the next time it 
occurs,” which seemed to me a very generous response. If there were any unhappy 
faculty, I never heard a word about it.

Another example of support from my department chair occurred when a member 
of the intellectual property department at Twentieth Century Fox called to ask 
Nestler and me to respond to their questions about our use of The Simpsons within 
and beyond our classrooms. Twentieth Century Fox was known for sending copy-
right infringement letters designed to shut down fan websites. My chair wrote a 
letter of support highlighting that this work was an integral part of my job at ASU 
and thus fell under educational fair use. Twentieth Century Fox never sent us a cease 
and desist letter.

I have been quite careful to explain to my colleagues that I only use Futurama or 
The Simpsons in the classroom when it relates to course goals and content I would 
have treated anyway, rather than using the shows themselves as the focus of investi-
gation. For this reason when colleagues in other departments have suggested that I 
should teach a first-year seminar on The Simpsons, I have declined. I think that 
course would be hard to justify to mathematical sciences faculty. Instead, I created 
and regularly teach a first-year seminar on breakthroughs and controversies in sci-
ence and mathematics, where I can still share my work as a small portion of the 
class. I am a faculty affiliate of the Gender, Women’s and Sexuality Studies program 
and the director of the program requested that I design a new class on gender and 
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popular culture. I am scheduled to teach this class in Fall 2016. Mathematical sci-
ences chairs and colleagues have allowed me to teach outside of the department, 
partly because the university returns the credit hours to mathematical sciences and 
supports replacement costs.

That is not to say that there has always been universal support from the mathe-
matical sciences department. In one of my departmental reviews, I was advised not 
to focus my scholarship on only one area. The faculty members were concerned that 
if The Simpsons ended, then my work would become obsolete long before the end 
of my career. None of us could have guessed at the time of the review that The 
Simpsons would still be on television today, and with the advent of streaming video 
sites, even cancelled shows like Futurama continue to be relevant to college 
students.

Outreach to the local community and beyond is a part of the university mission 
statement, so the university values my work on The Simpsons and Futurama. My 
department chair recently recommended that I be profiled as an example of a suc-
cessful faculty member to prospective students. The university also referenced my 
outreach activities in a number of my teaching awards, giving some indication of its 
significance in this context.

24.3.3  Reception from Students and General Audiences

Ongoing reflection and analysis of student responses is fundamental for my SoTL 
work because it is the primary mode I use to assess and improve the activities. The 
best part of the work is that it helps me motivate students and better connect with 
them. I have seen shy students energized and students afraid of mathematics become 
willing to explore an activity just because the question is related to a cartoon. The 
sample 40,000th digit of π activity above is a good example of this. Discussion of 
the digits of π usually begins before I even ask any questions. It is also quite com-
mon for students who have been silent up to that point to approach me after I first 
use popular culture, to speak with me about their enjoyment of it, and this usually 
leads to increased participation overall. Of course, there is excitement from fans of 
The Simpsons or Futurama, but even among those who have never seen a show, 
many students are interested in anything connected to the entertainment world.

I have given expository talks all over the US and in Canada, and have been 
invited to speak at programs for specific groups of mathematics students, including 
career days at various high schools or colleges. Once in a while students at other 
venues I speak at are forced to attend as a part of their course grade. This is a more 
challenging setting, especially because some large lecture halls do not have desks, 
making certain activities impossible. The expository talks work best when audience 
members are willing and able to participate. Happily, that has been the case the vast 
majority of the time. A number of talks and interviews are designed for a general 
audience rather than groups of students, such as the National Museum of 
Mathematics (MoMath) and National Public Radio’s (NPR) Science Friday pro-
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gram. Audiences have almost always responded extremely well in these settings, 
laughing, answering my questions and engaging in the mathematics.

Unsolicited comments or emails from students are not a great way to evaluate the 
success of activities, because I usually hear just positive comments in that context. 
Typical comments are that they never knew mathematics could be so fun and inter-
esting, and that they are inspired to study further. Some faculty have done their own 
student evaluations in outreach programs at which I have spoken, and have provided 
me with summative feedback. I can judge the reception in my classes through com-
ments in course evaluations. I have had a few negative comments from students who 
do not like the discussion of my work on Futurama in the context of a first-year 
seminar class. The same students indicated that they prefer classes whose teachers 
regularly let them out early. However, other students have noted that this was one of 
their favorite parts of class, and one of the course goals is for faculty members to 
introduce their research. It would be easy to dismiss the negative comments as those 
coming from non-serious students, but as part of SoTL I think it is imperative to ask 
what I can do better. The next time I teach the class I plan to have even more explicit 
discussions about the goals of the course and the point of sharing my work in that 
context. Humor is subjective and the more Nestler and I have to explain why a joke 
is funny, the less funny it is. For example, a non-native English speaker may not 
understand the reference to ‘hardy har har’ in the calculus joke from “Bart the 
Genius.” The vast majority of the comments have been extremely positive, but only 
time will tell whether this continues to be true. Future students may connect less 
with these popular culture references than today’s students do.

I evaluate my classes each semester to make improvements and modifications. 
Sometimes the improvement is to eliminate an activity from class or switch to a new 
technique. For example, early on some of the faculty teaching an introduction to 
mathematics for liberal arts asked students to fill out tax returns, so I tested Homer 
Simpson’s taxes. Many of the students enjoyed it, but some did not. Upon SoTL 
assessment and reflection, it felt like I was drifting too close to making Homer the 
focus of investigation rather than the mathematics, so I removed the activity com-
pletely. I have learned that a cartoon does not actually have to be very funny for the 
majority of students to appreciate the reference. The key is that it relates to course 
content and will work at least as well as another pedagogical technique for that 
context. For instance, the Futurama episode “I, Roommate” (Horsted and Haaland 
1999), brings M.C. Escher’s 1953 Relativity lithograph to life in a humorous way as 
the robot Bender falls “down” staircases. The students label gluing instructions for 
the quotient space to identify the places on the edges of the room that are equivalent, 
by following Bender’s path. The combination of dynamic movement and humor 
helps students visualize a finite universe in three dimensions better than other tech-
niques. I could imagine a time in the future when I will need to reduce the activities 
in Introduction to Mathematics, which is the class where I utilize these references 
the most. I will continue to assess their use, but for now they work very well to 
engage the majority of my students. I actually deem the semester successful when I 
have some complaints from the student fans that we should have investigated more 
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mathematical references from the shows, because I think it is good to underutilize, 
leaving them wanting more.

Overall, high school students and college students are usually much more excited 
about my work with Futurama than with The Simpsons, because Futurama has 
retained its cult status among that age group. Students I have never met before have 
come to my office or approached me around campus, even in the grocery store. One 
student was so excited that he interrupted a class he was not attending to ask for my 
autograph. It can be challenging to set boundaries with the students who are so 
excited about my work.

24.3.4  Impact on My Career

My contributions in this area are ongoing because The Simpsons is still airing new 
episodes, and these episodes sometimes contain new mathematical references for us 
to consider. As part of SoTL, I spend a lot of time thinking about how to best help 
students learn and understand course material, and in implementing diverse ways in 
order to help the class succeed, and so I regularly evaluate the effectiveness of peda-
gogical techniques to refine them. There is always something new and interesting to 
explore in this context.

When I try to reflect on direct and indirect impacts on my career, it is hard to 
measure the recognition and opportunities arising from our work. For instance, 
while it is easy to count the invited talks on this subject—currently there are 78—
how do I interpret the teaching awards I have earned at least in part due to the out-
reach? Another example of how my career has been affected was being asked to 
co-edit the PRIMUS special issue on popular culture with Nestler. I co-edited a 
second issue with Chris Goff. We also wrote and published refereed articles focus-
ing on SoTL (Goff and Greenwald 2007; Greenwald 2007; Greenwald and Nestler 
2004a, b), which in turn led to an invitation to serve on the editorial board of 
PRIMUS. I have extended humor to linear algebra, where I have begun to develop 
and test comics I create myself. The content is not directly related to The Simpsons 
or Futurama, but it arose out of that work. My Erdős-Bacon number is a direct con-
sequence of the activities. Mathematicians measure collaboration distance through 
an Erdős number, named for Paul Erdős. It is defined inductively using paper col-
laborations, with an Erdős number of one assigned to those who wrote a paper with 
Erdős and an Erdős number of k + 1 assigned to those who wrote a paper with col-
laborators having an Erdős number k. Similarly, people measure connectivity in the 
Hollywood film industry using film roles and the actor Kevin Bacon. My work has 
possibly given me a Bacon number. A standard measure for Bacon numbers is 
inclusion on the Internet Movie Database (IMDb). By this measure, if you count 
documentaries, I have a Bacon number of three through David X. Cohen to Edward 
Asner to Bacon. My Erdős number is four. The Erdős-Bacon number is the sum of 
both, and is seven in my case, for those who count documentaries, and infinity 
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 otherwise. In turn, this has led to consulting work on a planned Erdős-Bacon num-
ber documentary.

Our mathematical outreach activities have allowed us to connect with many peo-
ple, and in this way have enriched my own professional experiences. For instance, I 
participated in Raytheon’s MathMovesU program for middle grade students at 
Upper Senate Park on Capitol Hill in Washington, DC, where I was delighted to 
speak alongside Senator Edward Kennedy, Representative Jo Ann Davis, mathema-
tician Jonathan Farley and Olympic gold medalist Apolo Ohno. I am obviously a 
great fan of The Simpsons and Futurama and this work provides me with an outlet 
to enjoy the shows at a deeper level. My mother used to worry that all those hours I 
spent watching television were a waste of my time, so I find it especially rewarding 
to combine my interests in mathematics teaching and cartoons in this creative 
endeavor. It is a great intellectual challenge to use cartoons in outreach activities in 
a meaningful and effective manner. The rewards are well worth the substantial time 
and effort.
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    Chapter 25   
 Transforming Post-Secondary Education 
in Mathematics                     

     Tara     Holm    

    Abstract     In this chapter I introduce and describe the work of mathematicians and 
mathematics educators in the group Transforming Post-Secondary Education in 
Mathematics (TPSE Math or TPSE, for short). TPSE aims to coordinate and drive 
constructive change in education in the mathematical sciences at 2- and 4-year col-
leges and universities across the nation. It seeks to build on the successes of the 
entire mathematical sciences community. 

 This chapter reviews the events that led to the founding of TPSE Math and articu-
lates its vision and mission. In its fi rst phase with national events, TPSE found broad 
consensus within the mathematical sciences community on the challenges facing 
the community. Learning from educational transformations in other scientifi c fi elds, 
and with the support of the Mathematical Advisory Group of 34 mathematical sci-
ences department chairs and leaders, TPSE moves into a second phase, focused on 
action. This chapter is a snapshot in time; TPSE’s continuing activities will be docu-
mented and disseminated. The chapter concludes with a refl ection on the impact 
that my involvement in this work has had on my career.  

  Keywords     Education policy   •   Higher education   •   Mathematics education   •   TPSE  

25.1        Introduction 

 The education landscape has changed dramatically in the last half century.  Higher 
education   has become essential to economic mobility. At the same time, colleges, 
universities, and students are under severe fi nancial  pressure  . And new pedagogies 
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and technologies make it possible to reach students in many more ways. These and 
other forces will change higher education (Bok  2013 ). 

 Mathematics departments play a central role in undergraduate education: few 
departments teach a larger percentage of the undergraduate student body. 
Mathematicians must respond to the challenges facing higher education. If we opt 
out, we risk losing the substantial role that mathematics departments currently play, 
and we endanger the health of the US mathematical sciences research enterprise. 

 A group of mathematicians and mathematics educators called Transforming 
Post-Secondary Education in Mathematics ( TPSE Math   or  TPSE  , pronounced 
“tipsy”, for short) is working to support the mathematics  community   in this 
endeavor. Eric Friedlander, president of the  American Mathematical Society (AMS)   
2011–2012, asked me to join the TPSE leadership team when I was Chair of the 
 AMS Committee on Education   (CoE). I was invited by the editors to write this 
chapter relating my personal perspective on TPSE. Based on my involvement with 
TPSE, I chronicle the formation of TPSE and the foundation of work that it builds 
on, and  report   on TPSE’s current  partnerships   and plans. I conclude with my per-
sonal history and experiences with TPSE.  

25.2     Landscape Preceding  TPSE   

 In the past 20 years, there have been many calls to improve mathematics instruction. 
With particular attention to research universities, the  AMS   Task Force on Excellence 
exhorted, “To ensure their institution’s commitment to excellence in mathematics 
research, doctoral departments must pursue excellence in their instructional pro-
grams” (Ewing  1999 , p. 3). Departments must maintain a relevant and broad cur-
riculum. In addition to what they must teach, departments must also address 
questions of how to teach it (Ewing  1999 ). In 2003, Halpern and Hakel ( 2003 , p. 38) 
noted, “it would be diffi cult to design an educational model that is more at odds with 
the fi ndings of current research about human cognition than the one being used 
today at most colleges and universities.” 

 The  AMS    Task Force on First-Year Mathematics   (Lewis and Tucker  2009 , 
p. 755) made three key suggestions towards the pursuit of excellent instruction:

•    “Harness the power of technology to improve teaching and learning;  
•   “Leadership matters—success in this area depends upon the value assigned to it 

by a department’s leadership;  
•   “Invest in teaching graduate students to be good teachers.”    

 Preparing graduate students to teach, a particular role for research universities, is 
intertwined with any discussion of undergraduate education: graduate students rep-
resent the future of the  professoriate  . In their landmark Proceedings of the National 
Academy of Sciences study, Freeman et al. ( 2014 ) leave no doubt that  active learn-
ing   techniques improve student performance. Doctoral departments must adjust 
graduate teaching preparation accordingly, and offer support to all mathematics fac-
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ulty members. Guidance for graduate students and current faculty must be broad, as 
no one technique will work in every  classroom  . 

 There are several aspects of the current post-secondary education landscape that 
particularly inform  TPSE Math   choices. Every 5 years, the Conference Board of 
Mathematical Sciences (CBMS) undertakes a statistical study of undergraduate 
 programs in mathematics. One trend that their  data   make clear is that more and 
more students are enrolling in courses at 2-year colleges. In 2010, over 45 % of 
enrollments in mathematics,  statistics   and computer science courses taught in math-
ematics departments were taught in 2-year colleges (Blair et al.  2013 , Table S.1). So 
TPSE made the commitment early on to include 2-year colleges and questions of 
credit transfer as an integral part of its work. Students in the twenty-fi rst century are 
different from their mid-twentieth century counterparts. Babcock and Marks ( 2011 ) 
have analyzed a number of datasets to  report   that from 1961 to 2004, the amount of 
time a typical undergraduate spends on academic  work   has dropped by nearly a 
third, from around 40 h per week to 27. This is no doubt infl uenced by the dramatic 
increase in the cost of post-secondary education. The fi nancial pressures that both 
students and universities face affect the types of programs that are feasible. 
Simultaneously, the increasing costs ratchet up the need to articulate the value 
mathematics adds to post-secondary education. Finally, there are now very good 
techniques available to assess the effectiveness of educational initiatives.  TPSE   
 Math   is committed to evaluating the  success   of the projects it pursues and the inno-
vations it endorses. It aims to cultivate  collaborations   between mathematicians, 
researchers in mathematics education and evaluators to strengthen assessment 
procedures. 

 There is renewed federal interest in  higher education   in general, and undergradu-
ate science, technology, engineering and mathematics (STEM)    education in particu-
lar. President Obama identifi ed post-secondary education as key to a stronger 
economy and twenty-fi rst century success of the nation. He asked the President’s 
Council of Advisors on Science and Technology ( PCAST)      to prepare a report on 
producing one million more STEM graduates over the next decade. In that report, 
PCAST points to a US Department of Commerce report that projects a 17 % increase 
in the need for STEM-trained graduates over this time period (PCAST  2012 ). The 
mathematics  community   was taken aback when PCAST suggested that “faculty 
from mathematics-intensive disciplines other than mathematics” should develop 
and teach courses in college-level mathematics, and that there should be a “new 
pathway for producing K–12 mathematics teachers from … programs in 
mathematics- intensive fi elds other than mathematics” (PCAST  2012 , p. 30). When 
writing its  report  ,  PCAST   did not broadly consult the mathematics community. 
They were surprised not to fi nd a journal focused on undergraduate mathematics 
education among  AMS   journals. They were not aware of the many successful inno-
vations in post-secondary mathematics instruction (P. LePage, personal communi-
cation, October 22, 2015). This is an important lesson for the mathematics 
community: we must renew efforts to promulgate our successes beyond just our 
community. 
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 In a more positive light, the National Research  Council   ( 2013 ) has described 
how mathematics has become essential to modern science, and recommends that 
undergraduate education in the mathematical sciences refl ect this new stature. The 
good news is that all of these recommendations have spurred action within the 
mathematics  community     . 

 Calls for innovation and transformation of mathematics instruction are not new. 
Still the current spotlight on mathematics comes at a time when there is broad 
awareness of the challenges we face and an increased focus on educational out-
comes. The mathematical sciences  community   has been and is increasingly involved 
in developing solutions. This is a rare opportunity to capitalize on the power of col-
lective action and support the transformation of post-secondary education in the 
mathematical sciences.  

25.3     Formation of  TPSE Math   

 In February 2013, Carnegie Corporation of New York assembled a group of  higher 
education   leaders in the mathematical sciences to take stock and envision how to 
enhance the role of their fi eld in post-secondary education. As a result of this meet-
ing, Phillip Griffi ths founded the group  TPSE   Math. TPSE has listened to and will 
continue to work with the mathematical sciences community to determine how best 
to achieve systemic change. It is now positioned to forge alliances among state and 
federal agencies, the policy community, university administrators,  higher education   
associations, and professional organizations to secure the fi nancial and structural 
support necessary to achieve these goals. 

 In May 2016, TPSE  Math   incorporated as an Educational Program affi liated with 
the University System of Maryland Foundation. The Board of Governors includes 
the following:

    1.    Phillip Griffi ths (Board Chair) is Professor Emeritus of Mathematics and former 
Director of the Institute for Advanced Study. He was Provost of Duke University.   

   2.    Eric Friedlander is the Dean’s Professor of Mathematics at the University of 
Southern California and is a Past President of the  AMS  .   

   3.    S. James Gates, Jr. is the John S. Toll Professor of Physics at the University of 
Maryland and a member of the President’s Council of Advisors on Science and 
Technology ( PCAST  )   .   

   4.    Mark Green is Professor Emeritus of Mathematics at the University of California, 
Los Angeles, and former Director of the Institute for Pure and Applied 
Mathematics (IPAM).   

   5.    Tara Holm is Professor of Mathematics at Cornell University and former Chair 
of the  AMS Committee on Education  .   

   6.    Karen Saxe is the DeWitt Wallace Professor of Mathematics at Macalester 
College, a past Vice President of the Mathematics Association of America 
(MAA), and a leader of MAA’s  Common Vision Project  .   
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   7.    Uri Treisman is Professor of  Mathematics   and of  Public   Affairs at the University 
of Texas, Austin. He founded and directs the Charles A. Dana Center.    

  In 2015, William (Brit) Kirwan, Chancellor Emeritus of the University of Maryland, 
joined  TPSE   as a Senior Advisor. He chairs the Conference Board of the Mathematical 
Sciences (CBMS) and was appointed Executive Director of TPSE Math in May 2016. 

 TPSE Math envisions a future where postsecondary mathematics education will 
enable any student, regardless of his or her chosen program of study, to develop the 
mathematical knowledge and skills necessary for productive engagement in society 
and in the workplace. TPSE’s  mission      statement articulates its vision (TPSE Math 
 2015 ):

   TPSE Math   will facilitate an inclusive movement to strengthen postsecondary education in 
mathematics by working closely with—and mobilizing when necessary—faculty leaders, 
university administrations, membership associations, and relevant disciplinary societies in 
the pursuit of mathematically rich and relevant education for all students, whatever their 
chosen fi eld of study. TPSE Math will identify innovative practices where they exist, advo-
cate for innovation where they do not, and work with and through partners to implement 
and scale effective practices. 

    TPSE   takes a national-level approach to transformation, seeking to leverage 
resources from non-profi t foundations and federal agencies to increase the capacity 
of the profession to achieve change. The mathematical  sciences    community   must 
proceed with  coherence   but not uniformity, ever heeding local needs of individual 
institutions to ensure appropriate changes will take root. 

 From 2013 to 2015,  TPSE   surveyed what is happening in the mathematics com-
munity through one national and four regional meetings. It engaged consultants 
from Parthenon-EY, a strategy consultancy, to help evaluate the state of post- 
secondary education in the mathematical sciences. Through meetings and research, 
TPSE has found a high level of consensus among faculty and administrators about 
the need for renewal of the post-secondary curriculum. Professional  development   
opportunities can support interested faculty to develop and enhance their pedagogi-
cal practice.  TPSE   evaluated the capacity of the professional societies to support 
community-wide change. The following have been identifi ed as areas where the 
TPSE leadership can have the biggest impact by working in concert with existing 
 programs   and societies to leverage existing capacity towards a common goal:

    1.     Curriculum pathways   (lower and upper division, allowing students to reach the 
mathematics relevant to their fi eld of study);   

   2.     Graduate co-curricular training  ; and   
   3.     Leadership development  .    

  The TPSE Math leadership team has been successful at engaging large swaths of 
the mathematics  community  . In national and regional meetings, it has learned from 
and fostered conversations among departmental leaders from a broad range of insti-
tutions, college and university administrators, and representatives of federal and 
non-profi t funding agencies.  TPSE   has brought together leaders of those profes-
sional societies that include post-secondary mathematics education as part of their 
primary  mission  :
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    1.    American Mathematical Association of Two-Year Colleges (AMATYC)      .   
   2.    American Mathematical  Society   (AMS).   
   3.     American Statistical Association (ASA)  .   
   4.    Association for  Women in Mathematics   (AWM).   
   5.    Conference Board of the Mathematical Sciences (CBMS).   
   6.    Mathematical Association of America ( MAA ).   
   7.    Society for Industrial and Applied  Mathematics   ( SIAM  ).    

  Starting in 2016,  TPSE   turned to the action phase of its work.  

25.4     Foundation on Which  TPSE   Builds 

25.4.1     History of Change in US Education in Mathematics 

 The last period of dramatic change in high  school   and college  mathematics curricula   
began in the 1950s (Tucker  2015 ). The Cold War prompted unprecedented  public   
support for science education and calculus became the ultimate goal of high school 
mathematics. Supported in part by the Ford Foundation, Advanced Placement ( AP  ) 
 calculus   came into being. Since then, the AP calculus exam has shifted to being a 
test of calculus knowledge rather than more general problem solving (Bressoud 
et al.  2012 ). The variety of mathematics relevant to the world has expanded remark-
ably in the 60 years since then. We must open new pathways to offer students the 
mathematics they need. This is a particular challenge in mathematics, where theo-
ries do not become false or go out of fashion.  

25.4.2     Work by the Professional Societies 

 One role that the  AMS   CoE plays is to cooperate with the other professional math-
ematics societies on matters concerning education. At the 2015 AMS CoE meeting, 
three other societies gave  presentations   about their current projects. In October 
2015, David Bressoud (Macalester College) provided an analysis of the MAA’s 
studies of fi rst-semester calculus instruction across in the US (Bressoud  2015 ). 
Donna Lalonde ( ASA  )  reported   on the varied  outreach   efforts that ASA undertakes 
to engage students at all levels in the statistical sciences (LaLonde and Nichols 
 2015 ). Rachel Levy (Harvey Mudd College) is working with  SIAM      to create infra-
structure to support internships in business, industry and government for mathemat-
ics students (Levy  2015 ). SIAM has also  reported   on the value of  mathematical 
modeling   in the K-12 and undergraduate curriculum (Turner et al.  2014 ), refl ecting 
the increasing use and applications of mathematics across disciplines. 

 The  MAA   has been a leader of the mathematical  community   on the topic of 
undergraduate mathematics and a tireless supporter of educational initiatives. 
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Roughly every 10 years since 1953, the Committee on the Undergraduate Program 
in Mathematics (CUPM) has produced the benchmark curriculum guide for 
 mathematics departments (MAA  2015 ). While the other professional societies are 
consulted during the preparation of each guide, the MAA provides the lion’s share 
of support for the process. There is a new effort underway to create a companion 
instructional practices guide that will provide support for adopting new classroom 
practices.  CUPM   also has a subcommittee focused on Curriculum Renewal Across 
the First Two Years ( CRAFTY  ) whose 2011  report   (Ganter and Haver  2011 ) is par-
ticularly relevant to  TPSE’s   work. One of the broadest impacts the MAA has had 
may be through the New Experiences in Teaching Project ( Project NExT  ). Since 
1994, this professional  development   program has helped over 1600 new faculty 
members become more effective teachers. After the yearlong program ends, NExT 
Fellows have access to the NExT listserv, providing continuous support and discus-
sion about all matters related to teaching. 

 More recently, the MAA coordinated the   Common Vision  project  , bringing 
together representatives from the fi ve professional societies concerned with post- 
secondary mathematics  education  — AMATYC  ,  AMS  ,  ASA  , MAA, and  SIAM  . 
Three members of the Common Vision leadership team are also affi liated with 
 TPSE Math   (the principal investigator Karen Saxe, Uri Treisman and myself). This 
project included a workshop and culminated in a  report   (Saxe and Braddy  2015 ) 
detailing the commonalities among the fi ve societies’ curricular recommendations 
and recording their shared opinions of the pressing need to transform  post-second-
ary   education in the mathematical sciences (Holm and Saxe  2016 ).  

25.4.3     Innovations in Doctoral Departments 

 Each October, the AMS CoE meets in Washington DC and hosts a forum for discus-
sion of issues in mathematics education. During my  tenure   as Chair of the CoE, the 
focus of the Committee’s work shifted from K–12 education to post-secondary 
mathematics education, as this is the aspect of mathematics education most closely 
related to the daily work of  AMS   members. While we have come to expect a high 
level of commitment to undergraduate education in mathematics departments at 
primarily undergraduate teaching institutions, the CoE has been made aware of an 
impressive array of programs at research universities. A few examples from 2014 to 
2015 meetings are described below, and more details are available at the AMS CoE 
website (AMS  2016 ). 

 Both the University of  Michigan   and its Mathematics Department are deeply 
committed to their educational  mission  . The 1999 AMS Task Force on Excellence 
found “a  culture   in the mathematics  department   that encourages and rewards inno-
vation, one that is well-rounded, that strikes a balance between teaching and 
research, and that supports the work of students and  colleagues   at all levels” (Ewing 
 1999 , p. 84). In his 2014  presentation  , Stephen DeBacker of the Mathematics 
Department  reported   that innovations in  active learning   in fi rst-year calculus have 
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taken root and have now expanded to labs for second-year courses. Preparing grad-
uate students and postdoctoral fellows to teach in the Michigan program ensures 
consistency and success. He cited as essential the full  support   of the university 
administration in this endeavor, and concluded, “A successful undergraduate pro-
gram requires the efforts of nearly everyone in the department” (DeBacker  2014 ). 

 The Mathematics Department at the University of Illinois has developed several 
successful programs that reach a wide range of students studying mathematics 
(Ando  2014 ). Mathematicians have collaborated with engineering faculty to develop 
workshops where students must apply their calculus knowledge to solve problems 
inspired by real-world applications in engineering. The University uses Treisman’s 
collaborative learning model, which it calls the Merit Program, to support students 
from traditionally underrepresented populations. Merit scholars are more successful 
than their peers in Illinois calculus. Finally, the Illinois Geometry Lab (  http://www.
math.illinois.edu/igl/    ) provides research experiences for 40 undergraduates each 
semester. 

 Through his San Francisco State University-Colombia  Combinatorics   initiative, 
Federico Ardila ( 2015 ) has forged connections between US students and their 
Colombian peers, each serving as role models for the other. Starting with the two 
principles that mathematical ability is uniformly distributed and that every student 
can have a meaningful mathematical experience, Ardila took an intentional approach 
to building a bridge between the two  communities  , using technology to offer courses 
and facilitate groups working together between the two countries. Of the 200 stu-
dents who have participated in the program, 45 are currently working on their doc-
torates, including 26 women and 20 students from  underrepresented groups  . 

 The CoE also heard about the important role that the EDGE program and the 
National Alliance for Doctoral Studies in Mathematics have played in  mentoring   
the next generation of mathematical scholars from groups traditionally under- 
represented in the mathematical  sciences  , ensuring a diverse talent pool (Math 
Alliance  2013 ; Wilson  2015 ).   

25.5     Building Systemic Change 

 In spite of the successes detailed here and the many more described on the  AMS   
CoE web site, we still face signifi cant challenges. Very few efforts are scaled or 
transferred; many rely on a charismatic individual for their continuation. Large 
research universities play a signifi cant role in setting the standards for post- 
secondary education, but the mathematics research  community   has not been engaged 
in a coordinated way with undergraduate mathematics education. There is little 
more than informal cooperation among the mathematics professional societies, not 
through lack of will, but simply because each society is focused on its own  mission  . 
CBMS, the umbrella organization of all mathematical sciences societies, is under-
staffed and has too broad a mission to spearhead an initiative on undergraduate 
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education. Despite the good will of its members, it is not in a position to generate 
change at the national scale. 

 By contrast,  TPSE Math   has a very precise focus, and strong connections to 
many college and university administrations,  higher education   associations, founda-
tions, federal agencies, state government offi ces, and mathematics departments and 
societies. It aims to reinforce and augment the relationships that the professional 
societies have already built in the policy sphere. For these reasons,  TPSE   is espe-
cially well positioned to forge and sustain effective  partnerships   that will propel 
transformation in post-secondary education in mathematics. 

 Generating systemic change is a notoriously complex challenge. Fortunately, 
there are  models   in other disciplines that have been successful, aspects of which can 
be adapted for the mathematical sciences community 

25.5.1     Life Sciences 

 The biological sciences changed dramatically in the second half of the twentieth 
century. The ultimate goal of  understanding   life remains constant, but the types of 
questions life scientists can ask and the tools available to answer them have devel-
oped rapidly. Beginning in 2008, the American Association for the Advancement 
of Science (AAAS) started a series of conversations with faculty, administrators, 
students, biological sciences professional societies, and funding agencies on the 
future of undergraduate biology education. First-year courses were completely 
overhauled, with careful attention to the desired outcomes for biology students 
and for general education students. Using the  Vision & Change in Undergraduate 
Biology Education  recommendations as a guide (Vision and Change  2010 ), the 
 Partnership   for Undergraduate Life Sciences Education (PULSE) has developed 
tools that promote department-wide implementation of new curricula and evi-
dence-based pedagogies (PULSE  2014 ). A key feature of PULSE is its use of 
social connections, both in workshops and through a faculty ambassador network, 
to propagate change. This has been shown to lead to greater adoption of innova-
tions than evidence presented via literature (Henderson and Dancy  2011 ). The 
landscape in the biological sciences is far more diverse than in the mathematical 
sciences. For example, there are dozens of professional societies of scientists in 
the life sciences. Nevertheless the essential aspects of PULSE could transfer to 
the mathematical sciences  community  .  

25.5.2     Physical Sciences 

  Physicists   and physics educators have received much attention for the develop-
ment of a number of pedagogical techniques and assessment tools. The Force 
Concept Inventory (FCI) was the fi rst test of its kind (Hestenes et al.  1992 ). It 
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measures the change in students’ conceptual  understanding      from the beginning to 
the end of a fi rst physics course. Jerome Epstein has developed a Calculus Concept 
Inventory, which has not been adopted to nearly the same extent as the FCI 
(Epstein  2007 ). Eric Mazur and his  colleagues   have demonstrated the power of 
peer instruction to increase students’ conceptual learning (Crouch and Mazur 
 2001 ). Carl Wieman was awarded the  National Science Foundation (NSF)   
Director’s Award for Distinguished Teaching Scholars in 2001, the same year that 
he won the Nobel prize. Wieman strongly advocates for activities that keep stu-
dents actively engaged in exploring physics during class time. There are signifi -
cant differences between fi rst-year physics classrooms and fi rst-year mathematics 
ones. In physics, students may be more homogeneous and there is not nearly as 
much variation in what a student’s fi rst post- secondary physics course could be. 
Still, we should analyze how and why it is that new instructional strategies are so 
much more quickly implemented by physical scientists, while being mindful that 
the reality of innovation may not be as widespread as self-reports lead us to 
believe (Dancy and Henderson  2010 ). It is also important to remember that active 
engagement in  doing mathematics   is a long-held value of many mathematicians. 
R. L. Moore and his followers have used a version of  inquiry-based   learning since 
the fi rst half of the twentieth century (Wilder  1976 ). This technique is used in 
many advanced mathematics courses, and more recently is being adapted for 
appropriate use in fi rst-year courses.  

25.5.3     First Steps in the Mathematical Sciences 

 The  mathematics    community   has achieved some transformation at the state level: 
mathematics departments at all post-secondary  public   institutions in certain states 
are beginning to work together. In 2013, the Ohio Mathematics Steering Committee 
was charged with “develop[ing] expectations and processes that result in each cam-
pus offering pathways in mathematics that yield

    1.    Increased success for students in the study of mathematics,   
   2.    A higher percentage of students completing degree programs, and   
   3.    Effective transferability of credits for students moving from one institution to 

another” (Ohio Mathematics Initiative  2014 , p. 2).    

  This is indicative of how degree completion now dictates state policy in  higher 
education  . Ohio’s college and university mathematics  department chairs   identifi ed 
key challenges in achieving these goals and are now making progress towards 
addressing them. More and more states are following suit with their own mathemat-
ics task forces, many with the help of Treisman and the Dana Center. Going for-
ward, transfer of credits from one higher education institution to another will 
become an increasing challenge, especially given fi nancial pressures that are caus-
ing more students to divide their education among multiple institutions   
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25.6     Work by  TPSE Math   

 From the beginning,  TPSE   has been intent on engaging the entire mathematics  com-
munity  . It has organized events at the Joint Mathematics Meetings (JMM), as well 
as a national and a series of regional TPSE meetings. The goal has been and is to 
work with the mathematics community to identify the most urgent issues, see how 
they are being addressed, and determine which early experiments and models can 
be scaled up and used by others.  TPSE   has also sought opinions from the “demand” 
side of the equation, including employers and disciplinary partners. 

25.6.1     Preparation 

  TPSE’s   fi rst  public   event was a standing-room-only panel discussion at the Baltimore 
JMM in 2014 (TPSE Math  2014a ). Moderated by Philip Griffi ths, panel members 
included Michelle Cahill (Carnegie Corporation of New York), Jo Handelsman 
(Yale University and now Associate Director for Science at the White House Offi ce 
for Science and Technology Policy), Brit Kirwan and Joan Leitzel (Ohio Mathematics 
Initiative). Jerry McNerney, the only US Congressman with a PhD in Mathematics, 
also joined the conversation, providing valuable insights from his perspective on 
Capitol Hill. The discussions clarifi ed how current governmental policy affects 
 higher education   in general and mathematics in particular. All agreed that we have 
a moment of opportunity for innovation and transformation of post-secondary 
mathematics education.  

25.6.2     Information Gathering 

 In June 2014,  TPSE   organized a national meeting at the University of Texas, Austin, 
to bring together leaders from academia, business and government to discuss chal-
lenges and explore scalable solutions (TPSE Math  2014b ). It was at this meeting 
that the following questions were articulated:

    1.    How can the  undergraduate   curriculum be reshaped to raise the level of  numer-
acy   among citizens and better align current teaching with the expanded role of 
mathematics?   

   2.    How can pathways be opened to enable non-majors and developmental students 
to reach the level of numeracy needed for careers that demand analytical think-
ing and twenty-fi rst century quantitative skills?   

   3.    How will new technologies and teaching trends affect pedagogy and the eco-
nomic model of mathematics departments?   

   4.    How can a broader, more relevant undergraduate experience better prepare stu-
dents for the workplace of the future, including interdisciplinary opportunities?   
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   5.    How can graduate students be equipped to teach more broadly about the uses of 
mathematics while maintaining depth in their own research?    

  Next came four regional meetings. Each meeting attracted participants from a 
variety of colleges, universities, and funding agencies. The meetings were open to 
all but  TPSE   began by using local contacts and the professional societies to invite a 
diverse group of stakeholders. The regional meetings were structured around panel 
discussions on a wide variety of topics. These are summarized as follows:

    1.    In November 2014, at the University of Maryland Baltimore County (UMBC), 
three panels considered these topics: (a) a description of  TPSE Math   and other 
initiatives with similar goals, (b) disparities in participation by various popula-
tions, and (c) issues facing non-R1 institutions. There were 50 participants.   

   2.    In February 2015, at the University of  California  , Los Angeles (UCLA), three 
panels addressed these topics: (a) the role of mathematics in career preparation, 
(b) the role of (the fi eld of) mathematics education in post-secondary education 
in the mathematical sciences, and (c) system-wide efforts to improve post- 
secondary education in the mathematical sciences. There were 49 participants.   

   3.    In September 2015, at the University of Chicago, a 2-day meeting with six pan-
els discussed: (a) the role of college and university administrations, (b) the role 
of mathematics departments, (c) preparation of graduate students as future fac-
ulty, (d)  secondary   school teacher training, (e) enhanced opportunities for highly 
motivated undergraduates, and (f) the role, relevance and reform of calculus. 
There were 63 participants.   

   4.    In December 2015, at Duke University, a 2-day meeting offered fi ve panels that 
considered: (a) multiple math pathways, (b) math and other disciplines, (c) math 
courses for non-STEM undergraduates, (c) adaptive learning, and (d)  statistics   
and big  data  . Here,  TPSE   announced some of its next steps in the action phase 
(Sect.  25.6.4  below). There were 66 participants.    

  Further details and videos of some panels are available on the Meetings page of 
the  TPSE Math   website (TPSE Math  2015 ). 

 While each regional meeting had a slightly different focus, there emerged from 
all meetings a broad consensus among the mathematics  community   that all depart-
ments are facing pressure on these issues, some of the important work to address 
them has begun, and that we as a community must fi nd a coherent way forward that 
allows for local variation. Moreover, transformation cannot rely on continuous addi-
tional resources. The declining state support of  public   universities is unlikely to 
 reverse  . Departments may be able to get one-time allocations to support a phase 
transition to more innovative curricula and pedagogies. To succeed in the long term, 
sustainability needs to be built in from the beginning.  

25.6.3     Building Relationships 

 In addition to organizing meetings, the  TPSE   leadership has been building relationships 
with the professional societies, department leaders and mathematicians more broadly. It 

T. Holm



375

is committed to building a  community   of mathematics leaders who collectively drive the 
transformation process. At the San Antonio 2015 JMM, TPSE organized a discussion 
with the leadership of the professional societies and associations. It was an unusual 
gathering, possibly the fi rst  time   that the leadership of  AMATYC  ,  AMS  , the Association 
of Public and Land-grant Universities (APLU), CBMS, MAA, the National Council of 
Teachers of Mathematics ( NCTM  ), and  SIAM  , as well as directors from  NSF  , all met at 
the same time and place. In March 2015, I met with mathematics  department chairs   
from research universities at the Mathematical Sciences Research Institute’s Sponsors’ 
Day event. Green, Treisman and I gave an update on  TPSE Math’s   activities to CBMS 
at their May 2015 meeting (Green et al.  2015 ). At all of these meetings, there was a 
strong consensus that now is the time to promote transformation.  

25.6.4      Action Phase 

 Grounded in the consensus it found,  TPSE   Math now aims to advance several proj-
ects that are most likely to have a signifi cant impact. These include partnering with 
associations and societies to achieve shared goals and seeking to provide a scaffold-
ing to support the mathematics community efforts. 

 At a meeting in Washington DC in March 2015,  TPSE   initiated the Mathematics 
Advisory Group (MAG) (TPSE Math  2016 ). Funded by the Sloan Foundation, 34 
department chairs and leaders have been identifi ed who will gather to begin to 
develop an action plan to carry out, scale up and evaluate the effectiveness of major 
reforms.  TPSE   sought leaders who represent the gamut of  higher education   institu-
tions, and who bring a  diversity   of views and experiences. This core group will be a 
key action and  communication   partner, advising TPSE on “grass roots” issues at the 
departmental level and helping identify successful and valuable models. The MAG 
will help TPSE convene a larger meeting of 100 to 200  department chairs   and leaders 
to share information and establish  partnerships   of committed departments. Members 
of the MAG may become TPSE Math Ambassadors, willing to advise departments 
about transformation. Through the MAG and Ambassador network, TPSE also plans 
to strengthen the preparation of graduate students as educators and mentors. 

  TPSE Math      has also embarked on several  partnerships   to enhance  curriculum 
pathways  . It will serve as an advisory partner to ITHAKA S + R (Ithaka  2004 ), a 
research group that studies the use of technology to improve teaching and learning, 
as well as the economic impact of such technologies. TPSE will also serve as an 
advisory partner to APLU, the American Association of State Colleges and 
Universities (AASCU), and the Dana Center in developing multiple pathways in 
lower division mathematics courses to improve completion rates and quality of 
instruction.  TPSE   also plans to promote renewal and creation of upper  division   cur-
ricula in response to the growing demands from other disciplines. 

 With the recent appointment of Kirwan as Executive Director, TPSE Math is 
preparing for the next stage of action, seeking substantial fi nancial support from a 
number of non-profi t donors and federal agencies to build expertise in  data analytics   
to better assess needs and evaluate outcomes.   
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25.7     A Personal Journey to  TPSE Math   

 As a faculty member in a research-intensive mathematics department, my principal 
job is mathematics research. I am also a  practitioner   in mathematics education, and 
I strive to use research fi ndings in mathematics education to inform my classroom 
practice. Through my service in the  AMS   and now with  TPSE Math  , I work on 
transforming undergraduate mathematics education at the national level. 

25.7.1     Path to Involvement 

 My personal interest in undergraduate mathematics education dates back to my 
days as a high school student taking my fi rst college mathematics course. I am for-
tunate to have had outstanding teachers, and I am indebted to my mentors at each 
stage of my education. 

 As a  graduate   student at MIT, given only a couple days of  teaching assistant      
training, my initial teaching assignments were recitations where I was forbidden to 
lecture, instead I was supposed to engage students in problem solving. I was one of 
three math graduate students to take an education course at MIT, discussing practi-
cal and theoretical aspects of general undergraduate education. That course cer-
tainly highlighted for me some of the ways in which mathematics is similar to and 
yet very different from other disciplines. I had the good fortune to spend a couple 
months teaching mathematics to computer  science   students in a  non-traditional   pro-
gram at the short-lived ArsDigita University (ArsDigita  2002 ). This was an oppor-
tunity to teach incredibly motivated students using problem sets guiding them 
through parts of calculus,  statistics   and discrete mathematics. Together with Shai 
Simonson (Stonehill College), we engaged the students in a new-to-them research 
project that involved mathematics and computer experimentation to understand a 
card trick (Holm and Simonson  2003 ). 

 After graduate school, I spent 3 years at UC Berkeley, funded in part by an  NSF   
postdoctoral fellowship. I taught three courses during my time there, and experi-
enced fi rst-hand the challenge of teaching upper division courses in large lecture 
format. After a year at the University of Connecticut, I started a tenure-track  position 
at Cornell University. I was happy to fi nd a position in a strong research department 
that also has a deep commitment to excellent undergraduate education. I was the 
fi rst Cornell faculty member to participate in MAA’s  Project NExT  . The sessions 
and materials from NExT workshops and the ongoing support through the elec-
tronic network have proved a tremendous resource in my teaching. One particular 
session, Joe Gallian’s (University of Minnesota, Duluth) advice to “just say Yes” to 
opportunities to give back to the profession, has infl uenced my approach to service 
at my university and through the professional societies. 

 Soon after earning  tenure  , I was  asked   to run for election to the governing boards 
of the AMS and the  AWM  ; I was elected to each in 2011 and 2012 respectively. 
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 AMS   Council members also serve on one of the fi ve policy committees: Education, 
Meetings and Conferences, the Profession, Publications, or Science Policy. I was 
assigned to the Committee on Education (CoE), and chaired it from 2012 to 2016. 
During that time period, Eric Friedlander was President of AMS. One of his primary 
objectives as President was for the Society to increase its participation in the 
improvement of post-secondary education (E. M. Friedlander, personal communi-
cation, October 29, 2011). We worked together to shift the AMS CoE focus from 
K–12 to post-secondary education in the mathematical sciences. My fortuitous 
appointment to the CoE has opened opportunities to have an impact on undergradu-
ate education in the mathematical sciences in ways that I could never have pre-
dicted. In particular, I was invited to join the leadership teams for the  Common 
Vision project   and  TPSE Math   as a direct result of my work with the AMS CoE. 

 The most pleasant surprise in my role as Chair of the  AMS   CoE was the oppor-
tunity to laud the work that mathematicians and mathematics educators are doing. 
In my AMS and more general mathematical travels, every mathematics department 
I have visited or heard about has some interesting project afoot. Faculty members 
want their students to engage deeply in thinking about mathematics. The profes-
sional societies seek to support their members’ teaching  mission  . The mathematical 
sciences  community   must acknowledge and publicize these existing successes. 
Identifying the most promising innovations and determining the best way to adapt 
them and scale them for use at different institutions is no small task; this is at the 
heart of TPSE’s  mission     . 

 A skeptic might point out that AMS CoE and  TPSE    Math   meetings are assem-
blies of the willing, and ask whether the broader mathematics community is on 
board. Anecdotally, I have found general interest and support from mathematicians 
in the research community. For example, at the Spring 2016 Texas Geometry and 
 Topology   Conference, I was asked to give both a research talk and a second talk 
about my work with the AMS CoE and TPSE Math. Both talks were well attended, 
and the latter generated thoughtful discussions among all participants, from gradu-
ate students to the most senior topologists in the room (Holm  2016 ). Moving for-
ward, when  TPSE   identifi es departments to serve as lodestars, it will be important 
to select those that have high levels of faculty commitment to transformation. Their 
early successes will serve as models to promote change at all institutions.  

25.7.2     Refl ections 

 I conclude with a personal perspective. As indicated earlier, I am not a  mathematics   
education researcher, but I believe strongly that the mathematical sciences  commu-
nity   must maintain the bridges between researchers in mathematics education and 
 practitioners   of mathematics education, particularly at the post-secondary level. 
Moving forward we need to improve our  communication   and  collaboration  . Working 
with the  AMS   CoE and with  TPSE Math  , I have had the tremendous opportunity to 
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engage with the senior leadership in mathematics and policy leaders in academia 
and government. 

 I count myself lucky to be a member of a supportive  research   department where 
faculty members are encouraged to contribute to all aspects of the profession. I have 
no illusions: my work with the AMS and TPSE Math did not get me tenure or  pro-
motion      to full professor. It was considered a favorable part of my dossier, but my 
research is the  sine qua non . These service opportunities did arise at a good time in 
my career. I had young children at home. Particularly while my second child was an 
infant and I was on parental leave, I appreciated the opportunity to be engaged with 
the mathematics community in this way.  TPSE   was in an early phase when most of 
the work consisted of phone meetings and email correspondence. This all fi t into to 
the spare time I might fi nd at odd times of the day. TPSE now involves more travel, 
but it is work that I continue to be able to fi t in with the rest of my research and 
teaching. I welcome it as a chance to think at the community-wide and national 
level about the future of our profession. 

 Cornell University does provide strong support for its faculty. The Offi ce of 
Faculty Development and Diversity offers a number of professional  development   
opportunities and  mentoring   programs. For example, they have encouraged faculty 
to raise their voices beyond the walls of academe by offering a  Public   Voices fellow-
ships through the Op-Ed project. The Center for Teaching Excellence offers work-
shops, lunches and logistical support for faculty who want to innovate in their 
classrooms (Cornell University  2012 ). They supported the Mathematics Department 
in bringing the Discovering the Art of Mathematics leaders (Fleron et al.  2008 ) to 
Cornell to  sponsor   a workshop for Cornell and Ithaca College faculty members 
introducing their teaching materials for introductory  general education courses   and 
their inquiry-based approach. Implementing innovative  teaching practices   has also 
been an attractive cause for university fund raising. By the end of 2015, donations 
had funded nearly $1 million in grants to faculty  members   to support curricular 
renewal and innovation (Cornell University  2016 ). 

 Through my work with  TPSE Math  , I have come to understand better the politi-
cal and fi nancial forces that are reshaping the way the  public   and the mathematics 
 community   perceive the role of mathematics in today’s society and for the future. 
All mathematics departments are under pressure: the federal and state governments 
are curtailing their contributions to universities; university administrations are 
slashing resources; and everyone is demanding more from  higher education   institu-
tions. The alignment of these forces creates an opportunity to work for systemic 
change. It is my hope that all levels of the mathematics community—from depart-
ment  colleagues   and administrators to the leadership of professional societies—will 
come together and work to ensure that our students are prepared for a future we 
cannot yet imagine.      
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