
Exemplar Selection via Leave-One-Out
Kernel Averaged Gradient Descent

and Subtractive Clustering

Yiannis Kokkinos and Konstantinos G. Margaritis(&)

Parallel and Distributed Processing Laboratory,
Department of Applied Informatics, University of Macedonia,
156 Egnatia str., P.O. Box 1591, 54006 Thessaloniki, Greece

kmarg@uom.gr

Abstract. Scalable data mining and machine learning require data abstractions.
This work presents a scheme for automatic selection of representative real data
points as exemplars. Currently few algorithms can select representative exem-
plars from the data. K-medoids and Affinity Propagation are such algorithms.
K-medoids requires the number of exemplars to be given in advance, as well as
a dissimilarity matrix in memory. Affinity propagation automatically finds
exemplars as well as their k number but it requires a similarity matrix in
memory. A fast algorithm, which works without the need of any matrix in
memory, is Subtractive Clustering, but it requires user-defined bandwidth
parameters. The essence of the proposed solution relies on a leave-one-out
kernel averaged gradient descent that automatically estimates a suitable band-
width parameter from the data in conjunction with Subtractive Clustering
algorithm that further uses this bandwidth for extracting the most representative
exemplars, without initial knowledge of their number. Experimental simulations
and comparisons of the proposed solution with Affinity propagation exemplar
selection on various benchmark datasets seem promising.

Keywords: Subtractive clustering � Kernel averaged � Leave-one-out �
Gradient descent � Automatic exemplar selection

1 Introduction

A common problem in applications that collect and store their data is that the number
of training examples may be large. Hence, many machine learning and data mining
algorithms become slow [1, 2]. One of the solutions is to select most representative
exemplars from the data. These exemplars are real data points that form an abstract
view of the whole dataset, can represent the structure of the data and can also be used
for recognizing patterns [2]. Finding exemplars is a hard problem [3] but is more
interesting and informative than dividing data into clusters. Detecting exemplars goes
beyond simple clustering, as the exemplars store compressed information [3]. Hence,
exemplar selection techniques try to find additional regional information in order to
extract representative k-exemplars or k-medoids or k-centers which are close to any
given training point so as to minimize the maximum distance from a point to its nearest

© IFIP International Federation for Information Processing 2016
Published by Springer International Publishing Switzerland 2016. All Rights Reserved
L. Iliadis and I. Maglogiannis (Eds.): AIAI 2016, IFIP AICT 475, pp. 292–304, 2016.
DOI: 10.1007/978-3-319-44944-9_25

exemplar. The first exemplar-based algorithm was k-medoids [4] which requires the
number k of exemplars to be given in advance, as well as a dissimilarity matrix in
memory. Yet, finding exemplars without knowing the k number is a challenge since
this k-centers problem or k median objective is NP hard [5–7].

Currently, Affinity Propagation (AP) introduced by Frey and Dueck [8] is the
state-of-the-art algorithm for detecting exemplars and subsequently clustering the data
around them. AP has been applied in various fields and many applications. In AP all
data points are simultaneously considered as exemplars, but exchange deterministic
messages until a good set of exemplars gradually emerges. AP finds an approximate
solution by using this message passing optimization strategy that is based on max-sum
algorithm in a factor graph [8]. Hence, AP does not require the number of exemplars,
since this number gradually emerges automatically during the process. However AP
does require a similarity matrix in main memory as well as a user defined parameter,
the preferences, which are the diagonal values of the similarity matrix.

A fast algorithm, which works without the need of any similarity matrix in main
memory, is Subtractive Clustering (SC) [9, 10]. This algorithm was also employed in
RBF neural network training [11, 12]. Subtractive Clustering can determine both the
exemplars and their number [10] but it requires carefully selected user-defined
parameters for the bandwidth and the stopping criteria.

In this work we propose a leave-one-out kernel average gradient descent procedure
that estimates a bandwidth parameter from the data, and then we use this bandwidth in
a modified subtractive clustering algorithm. We demonstrate that the proposed scheme
can provide an automatic estimate of most representative exemplars from the data and
in the same time can recognize shapes of patterns.

The rest of the paper is organized as follows. Section 2 provides the basics for
Subtractive Clustering. Section 3 introduces the proposed gradient descent of the
leave-one-out kernel averaged regression function. Section 4 describes all the initial-
izations and the parameter settings for the proposed scheme. Section 5 presents several
experimental simulations and comparisons, while Sect. 6 concludes the paper.

2 Subtractive Clustering Basics

Subtractive clustering algorithm [9–12] selects a set of exemplars from the most rep-
resentative real data points by using their density. Subtractive clustering can work
without any priori information about the number of exemplars. In the first step it
computes a density-based potential for every point and then gradually subtracts
exemplars by updating all the remaining potentials. The potential P(i) for each point xi
is defined as a sum of Gaussian kernels over all the N data points as:

pðiÞ ¼
XN

j¼1
expð�a xj � xi

�� ��2Þ ð1Þ

where a = (2/ra)
2 and the bandwidth ra represents a neighbourhood radius. A data

point will have high potential P(i) and high density if it has many neighbour points.

Exemplar Selection via Leave-One-Out Kernel Averaged 293

After finding all P(i) the algorithm iteratively executes an updating cycle as:

(1) Find data point x* (cluster center) with the highest potential value P*

(2) Revise the potential of all other points using P(i) = P(i) − P*exp(−b||x* − xi||
2)

The updating cycle for the potentials P(i) terminates if the current max potential P*

drops below a certain value and the algorithm stops if (P*< e P1
*) [10–12] where P1

* is
the first max potential and e a small percentage. In each iteration the highest potential
P* of the selected point x* will substantially affect all the revised potentials of the
points near by. Thus, the data points near the selected point x* will have significantly
reduced density. The updates of the potentials use b = (2/rb)

2 where bandwidth rb is
another positive constant which also defines a neighbourhood radius. Usually rb is
taken to be as 1.5ra, in order to avoid the selection of closely located exemplars.

The main problem is choosing an appropriate value for the bandwidth parameter ra.
This choice is of crucial importance and is usually done via extensive experimentation
and trial-and-error. The potentials P(i) represent density. So, one can subjectively try to
choose a bandwidth ra by looking at potentials produced by a wide range of band-
widths, starting with large values of ra and gradually decreasing them until a rea-
sonable density is reached. However, such an approach is impractical and too many
validations are needed, since there is no way to define a-priori a suitable density value.
This is what we are looking for in the first place. A more important issue is that the
potentials affect the number of exemplars and their locations. If the bandwidth is very
small this will result in neglecting the effect of neighbouring points and then all points
will be selected as exemplars. If the bandwidth is small then many exemplars will be
selected. If the bandwidth is large then the density function will be affected by
accounting all the points and few exemplars will be selected. If the bandwidth is too
large then even fewer exemplars will be selected. It is very easy for anyone to see these
limits by using trial-and-error. Furthermore, the bandwidth is dataset dependent and the
previous limits depend on the formation of a given dataset. An automatic or
semi-automatic process is essential as part of a more global analysis in order to avoid
many user-defined parameters. In our scheme the proposed leave-one-out gradient
descent provides proper bandwidth values for Subtractive Clustering automatically.

3 Proposed Gradient Descent of Leave-One-Out Kernel
Averaged

We propose gradient descent learning of the kernel averaged (or weighted average)
regression function to automatically estimate a bandwidth parameter. Given a training
set fxiyigNi¼1 where xi are the points and yj are the desired labels (which we will define
later in Eq. 4), the conventional kernel averaged regression function f(xi) is:

f ðxiÞ ¼
XN

k
gkðxiÞyk ð2aÞ

gkðxiÞ ¼ ukðxiÞ
. XN

j
ujðxiÞ

� �
ð2bÞ

294 Y. Kokkinos and K.G. Margaritis

where uk(x) = exp(−dk(x)/r
2) are Gaussian kernels and dk(x) = ||xk − x||2 is the squared

Euclidean distance. The kernel averaged f(xi) has a nominator Ruj(xi)yj, and a
denominator Ruj(xi) defined as a sum of uk(xi) Gaussian kernels over all N data points.
Since in subtractive clustering the potential P(i) = Ruj(xi) we can see that actually this
potential is the normalization factor of f(xi).

3.1 Gradient of the Leave-One-Out Kernel Averaged

The proposed leave-one-out kernel averaged regression function floo(xi,c) is given by
leaving out from the sum in Eq. 2a percentage c of the self-contribution of xi as:

flooðxi; cÞ ¼
XN

k
gkðxiÞyk � cgiðxiÞyi ð3Þ

where c is the small leave-one-out parameter which takes values in the range [0, 1].
The proposed method uses desired labels yi for the points xi. We define them as:

yi ¼ ð1=NÞ
XN

j¼1
xj�xi
�� ��2 ð4Þ

Thus, each desired label yi is considered as the variance of the corresponding xi, if
this xi was the center of the training set. So

The gradient ∂E(r,x)/∂r, with respect to bandwidth r, is computed from the
squared error E(r,x) which is a convex function defined as E(r,x) = (floo(x,c)−y)

2

where floo(x,c) is the leave-one-out kernel averaged regression function.
Without the leave-one-out such a gradient will not work. Taking a gradient of the

kernel averaged with respect to the bandwidth will not result in a suitable solution,
since eventually all points will converge to tiny bandwidth values (they will be correct
for predicting themselves).

The classical squared error Ei(r,xi) for each xi is:

Eiðr; xiÞ ¼ ð1=2Þðf100ðxi; cÞ � yiÞ2 ð5Þ

The gradient descent update for the r parameter can be defined from the gradient of
the squared error as:

Dr ¼ �n@Eiðr; xiÞ=@r ð6Þ

The chain rule of the gradient gives:

@Ei r; xið Þ=@r ¼ @Ei r; xið Þ=@floo xi; cð Þ� �
@floo xi; cð Þ=@rð Þ

¼ ðflooðxi; cÞ � yiÞ @floo xi; cð Þ =@rð Þ ð7Þ

Exemplar Selection via Leave-One-Out Kernel Averaged 295

where the derivate (∂floo(xi,c)/∂r) is:

@

@r
flooðxi; cÞ ¼

XN

k
ð @
@r

gkðxiÞykÞ � c
@

@r
giðxiÞyi ð8Þ

where we only need to find the derivate ∂gk(xi)/∂r given by:

@

@r
gkðxiÞ ¼ @

@r
ukðxiÞ �

XN
j

ujðxiÞ
 !�1

2
4

3
5

¼ @

@r
ukðxiÞ

� �
�
XN
j

ujðxiÞ
 !�1

�ukðxiÞ �
XN
j

ujðxiÞ
 !�2 XN

j

@

@r
ujðxiÞ

 ! ð9Þ

This equation by using @
@r uk(xi) = uk(xi) dk(xi)/r

3 becomes:

@

@r
gkðxiÞ ¼ ðukðxiÞdkðxiÞ

	
r3Þ �

XN
j

ujðxiÞ
 !�1

�ukðxiÞ �
XN
j

ujðxiÞ
 !�2 XN

j

ðukðxiÞdjðxiÞ
	
r3Þ

 !

¼ ð1	r3ÞukðxiÞ
XN
j

ujðxiÞ
 !�1

dkðxiÞ �
XN
j

ujðxiÞ
 !�1 XN

j

ðujðxiÞdjðxiÞÞ
 !2

4
3
5

ð10Þ

and by replacing the expression for gk(xi) from Eq. 2b into Eq. 10 it gives:

@

@r
gkðxiÞ ¼ ð1	r3ÞgkðxiÞ dkðxiÞ �

XN
j

gjðxiÞdjðxiÞ
� � !" #

ð11Þ

Equation 11 is the general derivate for any function gk(xi).
The derivate ∂gi(xi)/∂r (of the contribution of xi to itself) has a shorter expression

produced by Eq. 11 which after simplifications (by setting di(xi) = 0 and ui(xi) = 1) is:

@

@r
giðxiÞ ¼ �ð1	r3ÞðXN

j

ðujðxiÞdjðxiÞÞÞð
XN
j

ujðxiÞÞ�2 ð12Þ

Finally by substituting Eq. 11 and Eq. 12 into Eq. 8 we can compute (∂floo(xi,c)/
∂r. In a more shorthanded notation it gives:

@

@r
flooðxiÞ ¼ ð1	r3ÞXN

k

dk �
RðujdjÞ
Ruj

 !
� uk

Ruj
yk

 !
þ c

RðujdjÞ
r3ðRujÞ2

yi ð13Þ

The small leave-one-out parameter c 2 [0, 1] prevents the gradient from converging
into tiny values of the bandwidth r. There exists a trade-off between c = 1 which gives
large bandwidths and c = 0 which gives tiny bandwidths.

Stochastic mode (or online) of gradient descent learning computes the gradient by
using a single example at a time. The algorithm randomly selects an example xi and its
label yi and updates the current parameter r by using:

296 Y. Kokkinos and K.G. Margaritis

r tþ 1ð Þ ¼ r tð Þ � n@Eðr tð Þ; xtÞ=@r t ¼ 1; . . .N ð14Þ

Hence, an epoch ends after all examples are introduced in a random order. Then the
gradient updates of r are averaged over all N examples as repoch = avg(r(t)) with t = 1,
…,N. The learning rate n can be constant or can vary at each epoch. For one epoch step
the leave-one-out kernel averaged gradient descent is:

for t = 1 to N
pick randomly a point xt without replacement
update the parameter r by using r(t+1) = r(t) − n ∂E(r(t), xt)/∂r
end for

4 Initializations and Parameter Settings

As usual the first thing to do is to scale the data features into the range [0, 1]. Without
scaling the gradient might not converge, since the learning rate n depends on the scale
of the feature space. By scaling the data features first, we can then use a fixed value for
n for all datasets and hence avoid searching for suitable learning rates each time we use
a different dataset. Such scaling also avoids over-fitting which occurs when some
features are in large numeric ranges.

In Subtractive Clustering (SC) the potential updating cycle terminates if the current
max potential P* become less that a threshold (P*< e P1

*). If e is selected to be very
small, a large number of exemplars will be selected. On the contrary, a large value of
e will lead to a small exemplar set. In order to avoid any other user-defined parameter
we set e = 1/P1

*. That is, Subtractive Clustering terminates at j-th iteration when Pj
* < 1.

Thus, every point starts with potential P(i) >= 1 and finally ends up with potential P
(i) < 1. There is a theoretical justification for this limit since P(i) = 1 is the
self-contribution of every i-th point to itself.

For 2-dimensional datasets in Subtractive Clustering we set rb = 1.5ra as recom-
mended. High dimensional density estimates may suffer from the curse of dimen-
sionality. For higher dimensions there is a problem since the 1.5 % influences more
strongly the nearby points and we use a variable rb = ra + 0.5 (1.0 – ksofar/N) ra, which
starts from rb = 1.5ra and decays. As ksofar (the number of selected exemplars so far)
increases from 1 to k during the P(i) updating cycle of SC, the parameter rb gradually
decreases and in the theoretical limit k = N the value rb becomes equal to ra.

For the online gradient descent we set a fixed learning rate n = 0.2 and maximum
epochs = 10. Usually it converges after the first epoch if the dataset size is larger than
10000. So, for larger datasets we can set maximum epochs = 2.

For the leave-one-out kernel averaged regression function we set the leave-one-out
parameter c = 0.1. The value c = 1 removes the self-contribution completely and will
give a large bandwidth and very few exemplars, while c = 0 will give a tiny bandwidth
and almost all points as exemplars. Since the goal is just to avoid this, we found after
some experimentation that a value c = 0.1 is always sufficient enough to prevent
bandwidth from converging into tiny values, so as to provide a stable solution without
producing large bandwidths.

Exemplar Selection via Leave-One-Out Kernel Averaged 297

Initializing the bandwidth r in the beginning of gradient descent (epoch = 0) is an
issue, since for different datasets we may need to search for different initial values of r
each time. However there is a simple automatic way that works around this. We set the
initial bandwidth equal to the trace of covariance matrix R. Hence, given N points xn
each one in d dimension, with their mean l ¼ ð1=NÞPN

n xn the covariance matrix is

R ¼ ð1=NÞPN
n ðl� xnÞðl� xnÞT and the initial value of r is ð1=d)Pd

i
ffiffiffiffi
rii

p
, where rii

are the diagonal elements of R. Thus, the gradient descent starts with a relative large
bandwidth r which decreases immediately after the first epoch, until it converges.

It is important to note that we use the same settings for all the datasets and no
user-defined parameter is needed.

5 Experimental Simulations

The first set of experimental simulations present results for visual comparisons of AP
with the proposed algorithm using four 2-d datasets. The second set present perfor-
mance comparisons and quality analysis on several real world benchmark datasets.

The code for Affinity Propagation (AP) was downloaded from the official site
(http://www.psi.toronto.edu/affinitypropagation). AP uses as input a similarity matrix S
in which the pair-wise similarities between data points are defined from their distances
as s(i,k) = −||xi − xk||

2 for every i 6¼k, as suggested in [8]. There are two more
parameters: the damping factor k and the prior preferences s(k,k) which are the diagonal
values of the similarity matrix. The dumping factor is usually k = 0.5 as suggested. For
the preferences, a good choice [8] is to set all the diagonal elements s(k,k) equal to the
median value of all the similarities between data points. We use as preference the one
half of the mean value of all similarities 1

	
2N2ð Þ� �PN

i

PN
k sði; kÞ that results in a

moderate number of exemplars which emerge automatically. This choice selects much
more exemplars than the median choice while it still avoids selecting outliers.

5.1 Evaluation Criteria and Quality Indexes

The sum of squared errors (SSE) which quantifies the clustering error is the most
widely used quality criterion [8] and is given by the sum of the squared distance
between each point xi and its corresponding exemplar c(xi) as:

SSE ¼
XN

i¼1
xi � cðxiÞk k2 ð15Þ

The maximum distance (maxD) between any point xi and its exemplar c(xi) that can
quantify if all points are compactly represented (no cluster is larger than maxD) is:

maxD ¼ max
N

i
xi � cðxiÞk k2 ð16Þ

The normalized Hubert gamma statistic [13] is a well known cluster evaluation
criterion which is invariant to the number of clusters, given by:

298 Y. Kokkinos and K.G. Margaritis

http://www.psi.toronto.edu/affinitypropagation

C
_ ¼

1
M

PN�1
i¼1

PN
j¼iþ 1 ðPði; jÞ � lPÞ � ðQði; jÞ � lQÞ

rP � rQ
ð17Þ

where M = N(N−1)/2, and it uses two proximity matrices P and Q both of size N�N.
An element P(i, j) is the distance between points xi and xj. An element Q(i, j) is the
distance between the cluster representative centroids to which xi and xj belong. lP is
the mean of all elements of matrix P, lQ is the mean of all elements of matrix Q, while
rP and rQ are their standard deviations from their means. A high value of this statistic
(close to 1) indicates the existence of well-separated compact clusters.

The net similarity cost is defined as a cost function specifically for AP [8, 14] and it
is the sum of similarities s(i,k) between data points and their exemplars, minus the
exemplar costs s(k,k), (the preferences of the exemplars). AP identifies a set of
exemplars K so as to maximize this cost given by [14]:

X
i62K

max
k2K

sði; kÞþ
X
k2K

sðk; kÞ ð18Þ

5.2 Visual Comparisons of AP with the Proposed KG-SC

For the visual comparisons we use four datasets with 2 dimensions each. We compare
the results of Affinity Propagation (AP) algorithm with the proposed leave-one-out
kernel gradient subtractive clustering (KG-SC in short).

Table 1 illustrates the quality indexes that correspond to the exemplar selections
and clustering solutions of the datasets in Figs. 1, 2, 3 and 4 for the AP and KG-SC.

From Table 1 it seems that both algorithms can provide high quality results for the
2-dimensional datasets, while a slight precedence could be given to KG-SC.

Fig. 1. Dataset 1 (two spirals) has 200 points. Exemplars are marked as black squares, while the
other points are marked as white circles.

Exemplar Selection via Leave-One-Out Kernel Averaged 299

Fig. 2. Dataset 2 has 322 points. Exemplars are black squares, other points are white circles.

Fig. 3. Dataset 3 has 523 points. Exemplars are black squares, other points are white circles.

Fig. 4. Dataset 4 has 2551 points. Exemplars are black squares, other points are white circles.

300 Y. Kokkinos and K.G. Margaritis

In addition, it is apparent in Table 1 that AP delivers exactly what it promises, that
is to identify a set of exemplars K so as to maximize the net similarity cost [14]. The net
similarity cost is better for AP than KG-SC. So AP remains the best algorithm for the k-
centers problem.

However the clustering error that quantifies the distortion and the normalized
Hubert index that quantifies the cluster compactness are better for KG-SC. Note that
ideal clustering solutions usually have the normalized Hubert index close to 1 as they
are in the last column of Table 1. So KG-SC delivers more well defined exemplars.

It is the k-centers problem itself which might not be able to guarantee the best
exemplar selection. That is why KG-SC takes a different path; the density based, and
tries to find the most important representatives from the densest ones. The better quality
of the KG-SC solutions is evident from the maximum Distance, clustering error and
normalized Hubert statistic in Table 1.

The computational complexity cost of the proposed KG-SC is quadratic O(N2) of
the same order with the cost of SC. Actually, for large datasets and max epochs = 2 it is
two times that of SC. This cost is much lower than the AP cost. The memory
requirements for KG-SC is O(Nd), since only the dataset is needed in main memory.
On the other hand, AP does require three matrices (similarities, availabilities,
responsibilities) of size N�N in main memory and this could limit the algorithm.
However, one can argue that for the special case of ultra high-dimensional datasets
where the data dimension is of the same order with the number of examples
(d � N) the memory requirements become the same.

What will happen in a case where someone needs a fixed number of exemplars less
than the KG-SC algorithm finally selects is a question that could be answered. Note that
an advantage of Subtractive Clustering is that it returns exemplars in decreasing order
from the most important to the least important. So, picking the first K in this list is one
simple solution.

5.3 Quality Comparisons on Real World Benchmark Datasets

Quality comparisons are also performed on a number of publicly available real-world
benchmark problems which are downloaded from the UCI machine learning data

Table 1. Quality indexes for the exemplar selection and clustering solutions of the datasets in
Figs. 1, 2, 3 and 4. For each algorithm (AP and KG-SC) we illustrate the net similarity cost,
maximum Distance, clustering error, normalized Hubert statistic. Best indexes are marked in
bold.

Affinity propagation
algorithm

Proposed leave-one-out
kernel gradient subtractive
clustering

N netSim maxD error Hubert netSim maxD error Hubert

Dataset 1 200 −3.55 0.028 1.49 0.915 −4.63 0.016 0.62 0.979
Dataset 2 322 −4.01 0.061 1.61 0.959 −5.49 0.058 1.03 0.974
Dataset 3 523 −5.84 0.058 2.41 0.954 −9.23 0.042 0.89 0.980
Dataset 4 2551 −14.4 0.015 6.61 0.976 −31.2 0.003 1.44 0.995

Exemplar Selection via Leave-One-Out Kernel Averaged 301

repository (http://archive.ics.uci.edu/ml). The specific details of these datasets (dataset
name, N examples before duplicate removal, d dimensions) are illustrated in Table 2
together with the results.

We found that while KG-SC as a density-based algorithm does not suffer from the
existence of duplicates, AP does. Thus for a fair comparison we first remove all
duplicates from the benchmark datasets. Also, since the net similarity is not a quality
index but a specific cost suitable only for AP (it was always better for AP) we do not
illustrate it in Table 2. Note, for future considerations that we detect several duplicates
in the datasets Banknote Authentication, Blood Transfusion, Phoneme, Wisconsin
Breast Cancer, Haberman, Yacht Hydrodynamics, Red Wine Quality, White Wine
Quality, Concrete Compressive Strength.

Table 2. Quality indexes for the exemplar selection of various benchmark datasets with
N examples and d dimensions. For each algorithm (AP and KG-SC) we illustrate the k number of
selected exemplars which emerge automatically, the maximum Distance, the clustering error and
the normalized Hubert gamma statistic. Best quality indexes are marked in bold.

Affinity propagation
algorithm

Proposed leave-one-out
kernel gradient subtractive
clustering

Name N d k maxD error Hubert k maxD error Hubert

CPU 209 7 21 0.93 4.69 0.953 20 0.60 4.33 0.960
Yacht 308 6 33 0.14 7.73 0.958 54 0.05 3.37 0.980
Housing 506 13 35 0.66 39.9 0.965 45 0.61 37.8 0.967
Concrete 996 8 80 0.38 30.4 0.943 114 0.18 25.0 0.960
Airfoil 1503 6 79 0.19 20.7 0.980 138 0.05 11.2 0.989
Abalone 4177 7 127 0.12 16.2 0.991 45 0.11 21.9 0.991
RedWine 1599 11 116 0.65 50.0 0.876 104 0.53 56.2 0.857
Bodyfat 252 15 29 0.28 18.7 0.923 21 1.59 24.8 0.759
WhiteWine 4898 11 292 0.11 77.6 0.917 265 0.47 92.4 0.886
Iris 150 4 10 0.14 2.95 0.962 22 0.09 1.61 0.978
Haberman 306 3 23 0.20 4.02 0.907 47 0.17 2.37 0.938
Ecoli 336 7 27 0.21 9.29 0.931 44 0.20 7.45 0.949
Blood Trans 742 4 28 0.35 4.13 0.948 34 0.11 3.28 0.963
Banknote 1372 4 55 0.06 7.38 0.977 115 0.05 3.58 0.989
Phoneme 5404 5 165 0.12 32.3 0.950 374 0.07 20.5 0.969
Yeast 1484 8 107 0.11 22.3 0.960 119 0.17 23.2 0.960
Diabetes 768 8 83 0.18 30.6 0.895 65 0.62 39.1 0.834
Wine 178 13 27 0.54 26.6 0.885 18 0.98 37.6 0.828
Heart 297 13 43 1.38 92.1 0.904 25 2.13 138 0.855
Wisconsin 683 9 37 0.97 83.9 0.931 27 1.93 109 0.909
Dermatology 358 34 41 2.50 320 0.909 36* 4.34 371 0.877
Shuttle 58000 9 * * * * 956 0.002 1.01 0.999

302 Y. Kokkinos and K.G. Margaritis

http://archive.ics.uci.edu/ml

Both algorithms find well defined representative exemplars and deliver high quality
solutions, since the normalized Hubert gamma index is very high in both of them for all
benchmark datasets. In low dimensional datasets KG-SC seems better, while in high
dimensional datasets AP seems better.

There are some limitations. AP has limits in the number of examples, while the
proposed KG-SC is density-based and might limited by the number of dimensions
(features). The Dermatology dataset has many dimensions (d = 34) and the
leave-one-out gradient could not converge for c = 0.1, so we use a minimum value c =
0.01. The Shuttle dataset has quite many examples (N = 58000) and the Affinity
Propagation runs out of memory (it needs 39 GB). For the Shuttle dataset the proposed
leave-one-out Kernel Gradient Subtractive Clustering produces 956 exemplars and a
normalized Hubert gamma statistic 0.999 which indicates very well formed compact
clusters.

6 Conclusions

We present a scheme that can potentially permit automatic selection of representative
exemplar points from the data without the need of any used-defined parameter. By
computing a gradient descent for a simple leave-one-out kernel averaged regression
function that can automatically estimate a suitable bandwidth parameter for the
density-based Subtractive Clustering algorithm we can extract most representative
exemplars, without initial knowledge of their number. Evaluating with classical quality
indexes the data clustering solutions around these exemplars reveal that the proposed
KG-SC algorithm produce well separated compact and dense clusters. Experimental
comparisons with the state-of-the-art Affinity Propagation exemplar selection algorithm
show that both algorithms select well defined representative exemplars and can deliver
high quality solutions. KG-SC is simply parallelizable, a point worthwhile studying in
the future. We also plan to explore the possibility of using either mini-batch gradients,
or a dual tree for speeding up KG-SC. Interesting future works could extend KG-SC in
order to explore a possible automation in other density based algorithms. Currently we
study the proposed KG-SC for training Neural Networks.

References

1. Dunham, M.H.: Data mining introductory and advanced topics. Prentice Hall, Upper Saddle
River (2004)

2. Duda, R., Hart, P.E., Stork, D.G.: Pattern Classification. Wiley, New York (2001)
3. Mézard, M.: Where are the exemplars? Science 315, 949–951 (2007)
4. Kaufman, L., Rousseeuw, P.: Clustering by means of medoids. In: Statistical Data Analysis

Based on the L1 Norm and Related Methods, pp. 405–416 (1987)
5. Kariv, O.: Hakimi, S.L: An algorithmic approach to network location problems. The

p-medians. Siam J. Appl. Math. 37, 539–560 (1979)
6. Hochbaum, D., Shmoys, D.: A best possible heuristic for the k-center problem. Math. Oper.

Res. 10(2), 180–184 (1985)

Exemplar Selection via Leave-One-Out Kernel Averaged 303

7. Bern, M., Eppstein, D.: Approximation algorithms for NP-hard problems. PWS Publishing,
Boston (1997). Chapter Approximation algorithms for geometric problems

8. Frey, B.J., Dueck, D.: Clustering by passing messages between data points. Science 315,
972–976 (2007)

9. Chiu, S.L.: Fuzzy model identification based on cluster estimation. J. Intell. Fuzzy Syst. 2,
267–278 (1994)

10. Kothari, R., Pittas, D.: On finding the number of clusters. In: Pattern Recognition Letters
(1999)

11. Sarimveis, H., Alexandridis, A., Bafas, G.: A fast training algorithm for RBF networks
based on subtractive clustering. Neurocomputing 51, 501–505 (2003)

12. Yang, P., Zhu, Q., Zhong, X.: Subtractive clustering based RBF neural network model for
outlier detection. J. Comput. 4(8), 755–762 (2009)

13. Halkidi, M., Batistakis, Y., Vazirgiannis, M.: On clustering validation techniques. J. Intell.
Inf. Syst. 17(2/3), 107–145 (2001)

14. Dueck, D., Frey, B.J., Jojic, N., Jojic, V., Giaever, G., Emili, A., Musso, G., Hegele, R.:
Constructing treatment portfolios using affinity propagation. In: Vingron, M., Wong, L.
(eds.) RECOMB 2008. LNCS (LNBI), vol. 4955, pp. 360–371. Springer, Heidelberg (2008)

304 Y. Kokkinos and K.G. Margaritis

	Exemplar Selection via Leave-One-Out Kernel Averaged Gradient Descent and Subtractive Clustering
	Abstract
	1 Introduction
	2 Subtractive Clustering Basics
	3 Proposed Gradient Descent of Leave-One-Out Kernel Averaged
	3.1 Gradient of the Leave-One-Out Kernel Averaged

	4 Initializations and Parameter Settings
	5 Experimental Simulations
	5.1 Evaluation Criteria and Quality Indexes
	5.2 Visual Comparisons of AP with the Proposed KG-SC
	5.3 Quality Comparisons on Real World Benchmark Datasets

	6 Conclusions
	References

