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5.1 Introduction

The Internet of Things (IoT) has received significant attention lately due to the
numerous potential improvements it can bring to the everyday lives of peoples,
simplifying many of their daily life activities. This is mainly evident in the domains
of smart buildings, smart health, and smart cities. Especially in the smart city
domain, the benefits for the citizens, the society, and the economy at large scale,
have transformed the IoT into a major trend, and many municipalities are trying to
build their city development strategies around it. Of course, a very first point is to
build an IoT infrastructure that can be quite costly. Then, the cities have to develop
applications that will run on top of this infrastructure and will address the
requirements and the needs of the citizens. The latter part is very important in order
to motivate the citizens to “accept” and adopt the IoT technologies.

A major factor for the citizens to adopt and use the IoT technologies in this
direction, is the trustworthiness and the reliability of IoT as a whole. It is reasonable
to assume that citizens can be sceptical for this new technology, especially when
thousands or millions of new small and “invisible” devices can be around them all
the time, with the potential to monitor continuously their everyday activities. These
devices are not only becoming smaller, but also more intelligent, autonomous and
active and are seamlessly integrated in the smart city environments. There are
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various projections that many billions of devices will be connected to the IoT in the
next few years [1, 2]. This increasing number of autonomous connected devices that
are not only monitoring their environment, but can also act upon it can become a
worrying factor for the citizens, in terms of stealing their private information,
logging their activities, monitoring their presence, or even harming their life. In
order to motivate the users to adopt the IoT and use the smart city applications in
their everyday activities, they have to be provided with guarantees that the IoT
systems: (i) will be reliable in terms of the information they provide, (ii) will
exchange the information in a secure way and (iii) will safeguard their private
information.

To address the above requirements, the whole IoT system has to be secure in a
cross-layer manner, starting from the physical layer and covering all layers up to the
applications. Since IoT systems are based on Wireless Sensor Networks, various
sensor security mechanisms can be adopted also in the IoT [46]. Security and
privacy-preserving functionalities have to be embedded in the system’s operation
from the design phase, because post-mortem corrections and improvements can
only cover some holes, but will not provide full-scale security. Thus, there is lately
a move toward adopting the concepts of “security and privacy by design” when
someone wants to build a new IoT system. As described in [3], the concept of
“security by design” describes the need for considering all possible security issues
at the conception phase, and designing respective mechanisms to prevent and react
to these issues.

Although for adopting the concept of “security by design” a security toolbox
might be enough, for adopting the concept of “privacy by design” a more holistic
approach is required, since a set of privacy enhancing technologies cannot fully
protect the users’ privacy [4]. This requires embedding privacy concepts in the core
of many system functionalities, e.g., onboard the sensors in order to be able to not
collect identifiable information, at the gateways to be able to hide identifiable
information before forwarding encrypted data, at the middleware to disallow the
linking of information between different services, etc.

Apart from security and privacy, the issue of Trust in IoT is also attracting a lot
of research interest lately. Trustworthy internet is defined in [5] as the Internet
system that is secure, reliable, and resilient to attacks and failures. This means that
the notion of Trust in the IoT has to be evaluated using metrics of: (i) reliability of
both systems and data, (ii) security of the infrastructure and the provided services
and (iii) ability of the system to prevent and respond to attacks and failures. An
overall trust model for the IoT, since it incorporates security, and privacy, can be
potentially very useful for promoting the IoT systems to end users or citizens. It is
reasonable to assume that a system that is certified as “trustworthy” will be much
more attractive for a user than any other system. However, in order to make a
system trustworthy, its functional architecture has to incorporate all security, pri-
vacy, and trust functionalities.

In this chapter, we provide an overview of the requirements and challenges for
designing secure IoT architectures. We also present previous attempts of many
IoT-related projects to design and develop mechanisms and concepts for improving
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the security, the privacy, and the trustworthiness of IoT. The focus is on the latest
IoT projects and we try to provide a brief description of the main security and
privacy features that they have embedded on their architectures. The chapter will
conclude with a brief discussion on the common functionalities of the projects and
the open research items providing some suggestions toward the future research in
the area.

5.2 Securing IoT Architectures: Challenges
and Methodology

There are many challenges when designing IoT architectures, and the most
important of them stem from the fact that IoT systems are assumed to consist of
very large heterogeneous networks of both constrained and unconstrained devices,
continuously operating mostly without any power source. From this, one can
assume that the main factors that prohibit the inclusion of strong security and
privacy mechanisms in an IoT system are [6, 7]:

• the heterogeneity of the involved systems and devices in terms of communi-
cation technologies, software, hardware, and capabilities,

• the constrained nature of many IoT devices, which can have very limited
resources,

• the need for scalable solutions to function properly even at large-scale
deployments and

• the need for energy efficient optimization both in terms of hardware and soft-
ware so that the devices can operate without the need for battery replacement for
long periods.

These challenges can pose severe difficulties when designing the architecture to
be secure and privacy preserving, and especially when trying to embed security and
privacy functionalities on resource-constrained devices. A recent report by Hewlett
Packard Enterprise [8] analysed the vulnerabilities of existing IoT hardware devices
and the findings were very concerning. The highlights of this report was that more
than 90 % of the devices were collecting personal information, 70 % of them used
unencrypted traffic, while 60 % of them used weak credentials. It is obvious that no
matter how secure the backbone IoT system is, the lack of security on the devices
can really compromise the whole system, and this has to be seriously taken into
account in the design of secure IoT architectures.

The IoT system architectures are designed to be secure to minimize the risks of
attacks or failures. Actually, there can be either human or non-human risk sources
in an IoT system. The human risk sources stem from the fact that malicious users
may be hacking the devices and steal information or when users’ faults or accidents
affect the system performance. The non-human risk occurs when there are security
issues due to natural phenomena, i.e., a flood, a fire, heat or device hardware failure.

5 Designing Secure IoT Architectures for Smart City Applications 65



Usually, system designers consider only human risk sources and mainly inten-
tional malicious attacks, considering all other risk sources as out of the scope.
However, using IT technologies, the impact of many other risks can be mitigated
too. For example, when the reliability of the data is calculated in order to discard
erroneous measurements, the data gathered by a device that is affected by a failure
or a fire can be identified as erroneous and not considered in the system decisions.
Furthermore, when devices are affected by flood and are not sending measurements,
proper monitoring mechanisms can create alerts so that the system operator can
resolve the issue and revive the devices.

As described in [9, 10] toward designing a secure IoT architecture, as a first step,
one has to identify the elements (or assets) he wants to protect in an IoT system. In
general, the main elements to be protected can be split into IT-based and non-IT:

• IT-based elements: this category includes assets like the user/device credentials,
the various types of data that are exchanged within the system (user data, sensed
or actuation data, application data, control data) and the software [9].

• Non-IT elements: this category is more generic and includes elements, such as:
human users, devices (leaf or intermediary), users’ privacy, services, commu-
nication channel, and in general the infrastructure [10].

For the identification of risks in IoT systems and the assessment of their impact,
standard methodologies such as Microsoft’s STRIDE/DREAD [11] or analysis of the
Confidentiality, Integrity Availability on the assets and the threats against Authenti-
cation, Authorization and Accounting, as well as the Privacy threats. For a detailed
analysis of the risks and their assessment in IoT systems, the reader can refer to [9, 10].

After the identification of the risks, the next step is to identify what are the
system requirements in order to be able to mitigate these risks, and especially which
are the design choices that the operator or system designer has to make in order to
secure and protect his system and his data. In some cases, the system designer has
to take tough but important decisions, since security/privacy and functionality/
flexibility/interoperability/openness can be conflicting requirements. For example,
one of the key enemies of privacy is linkability of the data, which is basically
required for improved interoperability of an IoT system. Moreover, strong security
comes at the expense of system performance due to the high complexity for run-
ning, i.e., powerful encryption mechanisms on the devices. However, the level of
security, privacy and performance can be dynamic, selected at the operational phase
so that it can correspond to the device/system capabilities and the requirements of
the applications that are provided by the system. The latter is a very important
requirement that has to be taken into account, since the applications can have very
different security and performance requirements, and a proper IoT system has to be
able to adapt to these diverse requirements. For example, an environmental mon-
itoring application may have very low security and performance requirements,
while a smart health application will have strong security, privacy, and performance
requirements. Thus, the IoT systems due to the requirement for interoperability and
for breaking the silos must be smart enough to be able to support both these
applications without any issues.
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5.3 Overview of Secure IoT Architectures

This section provides a brief analysis of the most important EU projects in the area
of IoT that have embedded in their architectures security, privacy, and trust func-
tionalities. The literature review starts with the IoT-A project, which is the light-
house project of the EU with regards to setting the foundations for the design of IoT
architectures and continues with other key projects.

5.3.1 IoT-A

The goal of the Internet of Things—Architecture (IoT-A)1 project was to set the
foundations for the design of an Architectural Reference Model (ARM) for the IoT.
The project aimed to create a coherent architecture that allows the integration of
heterogeneous technologies and supports the interoperability of IoT systems. IoT-A
outlined principles and guidelines for the technical design of IoT communication
and service provisioning protocols, interfaces, and algorithms. Furthermore, IoT-A
proposed an innovative service resolution infrastructure for scalable discovery of
resources and entities of the real world.

IoT-A’s activities were based on the concept that the key aspect of any IoT
system are the “things” and the “communication” among them. On the contrary to
many past approaches that used the term “things” to denote the sensor devices,
IoT-A defined the “things” to be the Physical Entities (PEs) that are all around us
and are being accessed through the devices. The things that are connected to the
internet are, thus, i.e., the room, a pen, a fridge, a car, a city, a laptop, anything that
is a physical object and is of interest for the user. These PEs are transformed into
Virtual Entities (VEs) so that they can be searchable, locatable, and controllable via
software. The concept of virtualization helps to conceal the heterogeneity of the
devices and to hide the devices from the applications’ point of view, so that the
users only request data for a PE and should not have to know which devices are
monitoring or controlling this PE. This service-oriented-architecture approach uti-
lized Resources on the IoT devices that are exposed via Services that can be
reusable by many applications or can be composed to provide more complex ser-
vices [10].

With regards to security and privacy, IoT-A has defined many system require-
ments both functional and nonfunctional that assisted in the design of the ARM.
The requirements were split into three main categories, as described in [12], and
summarized below:

1www.iot-a.eu.
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• System Dependability: this category includes requirements for improving the
overall security of the IoT system and its infrastructure. It includes requirements
for

– Service and infrastructure availability, so that the user can invoke a service
under all conditions and the infrastructure should be able to provide this
service at all times.

– Accountability, so that any failures or misbehaviours can be traced back to
the responsible person/system.

– Infrastructure Integrity and Trust, so that the provided infrastructure services
are trustworthy and can operate according to their design requirements.

– Non repudiation so that all services can be accessed by their rightful owners.

• Communication Stack: this category includes requirements for (i) the network
layer and (ii) the service layer:

– Network layer: here the requirements are related with (i) anonymization at
the network level, so that users can protect their privacy through anonymity
and (ii) confidentiality, so that the messages are encrypted to be protected
against eavesdroppers.

– Service layer: here the requirements are related with (i) service authentica-
tion and access control, so that only authenticated users can have access to
the system services and even more to only specific services that they are
allowed to, and (ii) service trust and reputation, so that only authenticated
users access the system and only trusted nodes can provide measurements.

• User and service privacy: this category includes requirements either for pro-
tecting users when they are using the Services and the Infrastructure or the users
cannot extract information about the data subject that is providing a specific
service.

To address the previous requirements, IoT-A identified a number of security
components that are required to be included in the architecture. The architecture of
IoT-A, called ARM and the respective Functionality Groups (FGs) can be seen in
Fig. 8.2 in [10]. Since the focus of this chapter is only for the security and privacy
components of the IoT architectures, here we will be limited to the description of
the respective Security and Management FGs, while the description of the rest of
the FGs is omitted.

The Management FG includes among others functionalities that can improve the
resiliency and the availability of the overall system. For example, the component
for “Fault” can identify and correct system faults, detecting them by generating
alarms and applying corrective mechanisms. The alarms can also be sent to other
components that have to act in order to correct a specific fault. Another component
called “Member” handles the membership and the associated information of all
relevant entities of the system. It includes a database that stores information
regarding ownership, rules, rights, etc., and is important for the Security FG in order
to define the security and privacy policies [10, 13].
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The Security FG is the main group of functionalities for ensuring the security
and privacy of the system, including the following components [10, 13]:

• Authorisation: which handles the security policies and takes decisions for
access control based on these policies. It determines if a user action is allowed or
not and controls the policies for the services by adding, updating, or deleting
policies according to Service Level Agreements or user preferences.

• Authentication: which involves authentication both for users and services. It
checks the credentials and if they are valid then it allows the access to the IoT
services.

• Identity management: which tackles privacy issues, by distributing and
managing pseudonyms and accessory information to trusted subjects to operate
anonymously.

• Key exchange and management: which provides mechanisms for secure
communications between two or more system nodes. It is also responsible for
distributing keys for the secure communications in a secure way, as well as for
registering security capabilities.

• Trust and Reputation architecture: this component collects and evaluates user
reputation scores to use them for calculating service trust levels. This is done by
requesting reputation information from users with respect to a service and
providing the reputation of the service to interested applications or users.

Overall, IoT-A set the foundations for the architecture of IoT systems and in the
proposed ARM, some basic functionalities for security and privacy where included.
These functionalities can be characterized as the bare minimum that an IoT system
can include so that it can be acknowledged as secure.

5.3.2 iCore

The project “Empowering IoT through Cognitive Technologies” (iCore)2 has as a
vision to provide the IoT world with the necessary technological foundations to
empower the IoT with cognitive technologies, so that IoT services and applications
can be easily and simply widespread. iCore structured this vision toward tackling
two main issues: (i) how to abstract technological heterogeneity that is inherent to
the real world objects, considering the large numbers of diverse objects that impose
challenges for reliability, energy efficiency and context-awareness and (ii) how to
consider the requirements of different users and stakeholders aiming to support
business integrity and application provision according to service level
agreements [14].

Toward these objectives, iCore structured a cognitive architectural framework
that includes three levels of functionality, which can be reusable to diverse

2www.iot-icore.eu.
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applications: (i) the Virtual Objects (VOs), (ii) the Composite Virtual Objects
(CVOs), and (iii) Service Level. The VOs are used to tackle the technological
heterogeneity, by enabling a cognitive virtual representation of both real world (e.g.,
a chair, a table, a house) and digital objects (e.g., a sensor, an actuator, a device).
CVOs are cognitive mashups of semantically interoperable VOs and use the services
of the latter in accordance with the user or stakeholder requirements [14].

With regards to security and privacy, iCore defined the respective requirements
considering existing regulatory frameworks (i.e., EU directives) and the three main
use cases of the project. As a result of the analysis of these sources, five main
security requirements were defined as described in [15] and summarized below:

• Availability, ensuring the reliability of the data sent to authorized users.
• Confidentiality, ensuring the privacy of the users and the protection of their

data, disallowing the disclosure of information to unauthorized individuals,
devices, or services. This requirement included also the requirements for
anonymization and pseudonymisation.

• Integrity, guaranteeing the correctness of the operation of the system according
to some predefined rules and the consistency of the data.

• Authentication or authorization, ensuring the validity of the provision of
data/services verifying the authorization of an individual to receive this
information.

• Nonrepudiation, reassuring both the sender and the receiver of information that
it was sent by the correct sender and that it was received by the proper receiver.

Considering these requirements, iCore defined also some higher level require-
ments for the design of the architecture [15]. These requirements were related with
security functions for (i) security management, (ii) scalability and (iii) multi-level
security. The goal was to ensure that security mechanisms and policies are not
static and can be updated on a regular basis, to avoid using obsolete credentials or
hacked software. Furthermore, the system security mechanisms have to be scalable
to ensure that they can perform well in heterogeneous large-scale environments.
Moreover, iCore users are considered to have multiple different levels of access,
credentials, and data protection, and the framework should be able to properly
handle these diverse functionalities.

The iCore Architecture presented in Fig. 2 in [14] aims to differentiate the
project by allowing the system to derive knowledge from the usage of context, so
that applications can reach their goals and intelligently behave and organize the
system’s own resources. A main concept of iCore is cognition through “virtual-
ization,” which allows operations such as (i) functional enrichment, targeting a
virtualization with highest fidelity of managed real-world objects that coexist with
virtual functional spaces, (ii) abstraction, allowing the generalization of the
functionalities do that they are applied to a larger set of situations and requirements,
and (iii) aggregation, allowing the combination of Virtual Objects with dynamic
context-awareness capabilities so that they provide higher level functionalities,
close to real world demands.
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To provide enhanced system security, in the proposed iCore architecture, there is
a functionality group for Security Management, which includes a policy repository,
an identity provider and a Policy Decision Point (PDP) [16]. At all layers (VO, CV,
service) there are Policy Enforcement Point (PEP) components to intercept any
request for new service, or for executing VOs or CVOs. These requests are then
sent to the PDP that evaluates the requests against predefined security policies,
returning the results to the PEPs. That way proper authentication and access control
is enforced in an iCore system. These functionalities are provided in iCore through
a Model-based Security Toolkit (SecKit) that provides the basis for security engi-
neering, data protection and privacy. It has meta-models that support the modeling
of data, identities, context, trust, risks, and policy rules.

The iCore security architecture can provide functionalities for [16]:

• Trust management, using security policies that consider trust relationships
established by users with devices and operators.

• Dynamic context adaptation, so that any context changes will be considered in
the security actions.

• Data privacy, through

– data anonymization, to allow the privacy rules to ensure proper data
anonymization when they are collected by the devices,

– control of the data flow from devices, to allow users to define which and
what type of data will be gathered by the devices.

• Control of the actions of the actuators, to improve the system safety.

5.3.3 BUTLER

The BUTLER project3 aims to support the development of pervasive applications
using heterogeneous devices, protocols, and standards. The applications are built in
order to improve the daily activities of users in various domains, considering among
others contextual information, that may be the user needs and preferences, their
location or the status of the physical entities with which the users interact. The
architecture of BUTLER was built on existing standards and industry initiatives
such as IoT-A and FI-WARE [17]. However, the BUTLER architecture includes
additional functionalities that relate with the association of Context to virtual
entities.

With regards to security and privacy, BUTLER, similarly like iCore, focused on
context-aware security, adapting its mechanisms using input from its environment
with regard to any changes that might occur, with the target to use this inforna-
tion to prevent inappropriate behaviors [18]. Access control mechanisms based on

3www.iot-butler.eu.

5 Designing Secure IoT Architectures for Smart City Applications 71

http://www.iot-butler.eu


context were developed, for deciding if a request for access to a resource or to some
data will be granted of refused. BUTLER considered security policies based on
context, so that the security responses of the IoT system are adapted to their context
of use. These policies have to describe the authorized practices for a user/entity of
the system at each moment in time and in each situation. Furthermore, these
policies are not used only for access control, but also for communication encryption
and other security functionalities. Apart from context-based security, BUTLER
focused also on enhancing the users’ privacy [19]. BUTLER considers that the
applications may impose privacy issues in term of using the data gathered by the
devices.

The BUTLER architecture is depicted in Fig. 4 in [17] where the four main
layers can be seen:

• The communications layer, including all functionalities for enabling the com-
munication between heterogeneous devices and between the various entities of
the system and the users. In addition, it includes various Security Services for
device and user authentication and authorization to ensure that only identified
and authorized devices can join the BUTLER network.

• The data/context management layer, which handles all data and context related
functionalities, (e.g., capturing and collecting data, persistent storage, data
processing, context extraction, etc.) but does not include any security services.

• The System/Device management layer deals with the management and the
maintenance of large numbers of heterogeneous networked devices. This layer
has direct interfaces with the security services, i.e., for ensuring the secure
configuration of the devices, their authorized management, etc.

• The Services Layer is responsible for describing, discovering, binding, and
providing context-aware BUTLER services. It is also responsible for making the
services available to the applications, providing enablers for supporting dis-
covery and purchasing of data functionalities.

As it can be seen, the main security and privacy functionalities of BUTLER
reside at the communication layer, which provides access to the users to all the
other functionalities. The BUTLER security services are built around a strong
authorization server. The main security services are [17]:

• Secure transport of messages between devices and the authorization server,
based on Transport Layer Security (TLS).

• User and application authentication, using credentials.
• Resource registration and authentication, including information on which

actions are allowed to be performed on this Resource by its consumers.
• Key management, both for encryption and authorization keys.
• End to end security between application user and Resource provider.
• Device authentication via a bootstrapping mechanism between the devices and

the gateways at the sensor network level, using asymmetric cryptography and
elliptic curves.
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As it is obvious, the main focus of BUTLER is ensuring security and privacy at
the communication layer, with many functionalities built around a powerful
authentication and authorization framework. This is very important in order to
ensure that access to services and private information can be allowed only to
authorized persons, avoiding the disclosure of information to third parties.

5.3.4 OPENIoT

OpenIoT4 focused to develop an open source IoT middleware for getting infor-
mation from heterogeneous sensor networks, concealing the types of devices that
provide this information. OpenIoT adopts the IoT-A concepts of “entities” and
resources, such as sensors, actuators, and smart devices, leveraging them to build
the concept of “Sensing-as-a-Service”, via an adaptive middleware framework for
deploying and providing services in cloud environments [20].

The OpenIoT architecture is built based on various nonfunctional requirements
for improved performance, scalability, reliability, privacy, and security. The project
acknowledges that the provided platform has to be secure and privacy preserving.
In this respect, mechanisms for role-based authentication and authorization are
developed, upon which utility-driven privacy mechanisms are provided [20].

The OpenIoT architectural components mapped to IoT-A ARM are depicted in
Fig. 10 in [20]. This architecture includes, among others, a group of security
components, providing mainly authorization, identity management, and authenti-
cation functionalities. As described in [21], the OpenIoT platform consists of
several standalone applications, such as X-GSN, LSM, etc., which require their
own security mechanisms. Due to the distributed nature of the platform, OpenIoT
acknowledged the importance of designing and developing a centralized autho-
rization server that would provide authentication and authorization services to all
components of the system. OpenIoT acknowledged that a main feature of the
platform is that the user credentials are only checked and maintained by this central
server and then, this server performs the authorization of the applications that are
running on behalf of the user. In this respect, user credentials are not being cir-
culated among the various components, which improves the system privacy.

With respect to communication security, mechanisms like TSL or HTTPS are used
for the backbone communications (between the gateways and the cloud servers). At
the sensor layer, standard security mechanisms of IEEE 802.15.4 are used. For the
authorization framework, OAuth is used, because it is an open standard that can be
easily integrated in the open platform. Apart from these, OpenIoT developed also a
framework to evaluate the trustworthiness of the sensor readings via spatial corre-
lation of the sensed measurements. In this respect, readings from neighbor sensors are
correlated to assess their trustworthiness and discarding untrusted readings [21].

4www.openiot.eu.
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5.3.5 SMARTIE

SMARTIE5 (Secure and Smarter Cities Data Management) aims to create a
framework for IoT applications that are sharing large volumes of heterogeneous
data. The focus is on providing end-to-end security and information trust, consid-
ering also requirements for maintaining user’s privacy. Mechanisms and tech-
nologies for security and trust at the perception, service, and network layers, as well
as for secure storage and access control are central to the system.

The design of the SMARTIE system architecture was based on a long list of
requirements as presented in [22]. With regards to security and privacy, SMARTIE
supports the processing information on trusted nodes and user anonymity for pri-
vacy protection, data confidentiality, strong access control and authentication,
secure storage, user’s consent, context-aware policies, location privacy, commu-
nication integrity, no tampering of devices, and system resilience.

The SMARTIE architecture is based on the IoT-A ARM, following the IoT-A
methodology and the ARM functional groups to organize all the functional com-
ponents of the SMARTE architecture. The architecture is depicted in Fig. 4 in [23].
As it can be seen in this figure, there are many security related functionalities, not
only in the security FG, but also embedded in other FGs. For example, the “IDS
Data Distribution” component scans network traffic for intruders and reports
unwanted or unknown traffic to the network operator, distributing detected events to
other devices. Furthermore, the “Resource Directory with Secure Storage” com-
ponent provides secure access to available resources in the system, allowing also
their secure storage. The “Privacy-preserving Geofencing” component offers secure
location-based services using secure geofencing, aiming to avoid the disclosure of
location information of the users to unauthorized persons.

In the Security FG, SMARTIE provides the following components and func-
tionalities [23]:

• Authorization, based on DCapBAC, for ensuring that access control decisions
are taken before a service is accessed. Attribute-based access control6 using the
XACML/JSON7 framework is used, utilizing policies to express rich and
fine-grained access control decisions.

• System integrity based on nodes attestation (IMASC). IMASC provides a
trusted environment for most embedded devices using SmartCards, allowing the
detection of malicious code or wrong measurements.

• Authentication using distributed Kerberos and symmetric cryptography.
• Encryption, based on the CP-ABE [24] schema that ciphers information based

on policies.

5http://www.smartie-project.eu.
6http://nvlpubs.nist.gov/nistpubs/specialpublications/NIST.sp.800-162.pdf.
7http://docs.oasis-open.org/xacml/xacml-json-http/v1.0/xacml-json-http-v1.0.html
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• Libraries for shortECC and LmRNG, in order to provide elliptic curves with key
lengths between 32 and 64 bits and to generate cryptographic secure pseudo-
random numbers respectively.

SMARTIE follows also the concept of IoT-A, splitting the IoT devices in
constrained and unconstrained ones. In terms of functionalities, SMARTIE pro-
poses in [23] a recommended set of functionalities and technologies that can be
used for either constrained or unconstrained devices, justifying the proposals to
make sure that only lightweight implementations of technologies are embedded on
constrained devices.

5.3.6 COSMOS

The COSMOS8 project aims to enhance the sustainability of IoT-based smart city
applications, enabling things to evolve and become more autonomous, reliable, and
smart. The basic concept is that things will have the opportunity to learn based on
the experiences of other things via a situational knowledge acquisition and analysis.
Furthermore, COSMOS aims to provide end-to-end security and privacy, with
hardware-coded security and privacy on storage, introducing the concept of Priv-
etlets for IoT services.

The COSMOS architectural framework is built to address a large number of
security, privacy, and trust requirements [25]. COSMOS assumes that data must be
secured against eavesdroppers, data modification attacks, identity thefts or replay
attacks. It also assumes that there is secure storage on the devices to protect secret
information, that the devices are booted or updated in a secure way. COSMOS
splits the execution environment of the services in two parts: (i) the secure part that
executes the critical services and (ii) the unsecure part for the noncritical services.
COSMOS uses a secure backbone server for key management, storage, and dis-
tribution, as well as for device enrollment. Authentication and access control are
also embedded in the system.

The notion of Trust is also very important for COSMOS. A Trust Model for
providing data integrity and confidentiality is defined, allowing also endpoint
authentication and nonrepudiation between any system entities. Furthermore,
COSMOS considers the notion of Privacy as very important for protecting the
private information of users. Privacy is assumed to be supported by enabling
entities to maintain control over their private information and decide whether they
will be gathered, used, or disclosed to other entities [25].

COSMOS defined security mechanisms across different layers. The project
aimed to ensure end-to-end security and privacy with security embedded at the
device level, access control, encryption and cross-application mechanisms on the
data level, injecting privacy-preserving mechanisms whenever appropriate. For the

8www.iot-cosmos.eu.
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definition of the COSMOS architecture, the IoT-A ARM was used as a basis. The
functional view of the architecture is depicted in Fig. 7 in [26].

As depicted in this figure, the main security components of the architecture
reside in the Security FG

• Authentication and authorization is used for authenticating entities and
managing the allocation of their access rights.

• Key exchange and Management covers the generation, storage, and distri-
bution of cryptographic keys, based on the Diffie and Hellman [27] key
exchange protocol.

• Hardware Board Communication Accountability handles the issue of
accountability, tracking access to crypto primitives for nonrepudiation purpose,
computing the reputation index of the entity.

• Cryptographic nonrepudiation is enforced based on the hardware board
communication accountability component.

• Checksum ensures the integrity of the data packets, detecting, and correcting bit
errors.

In the rest of the FGs there are also other components that are related to security,
privacy, and trust

• Privetlets are acting as filters to ensure that every virtual entity and every user
shares only the minimum intended information, omitting all other unnecessary
information in order to maintain the privacy.

• Communication channel between VEs or between VEs and the COSMOS
system has to be secured, thus encryption of the data transferred within these
channels is applied.

In general, COSMOS gives much importance on ensuring privacy via data
minimization at the middleware layer, as well as on strong authentication and
authorization. Encryption at the communication channel is also important for
ensuring confidentiality of the data.

5.3.7 COMPOSE

The COMPOSE9 project developed an IoT platform that eases the task of devel-
opers writing applications which are based on the Internet of Things (IoT). Fol-
lowing section is based on the information from the project’s deliverables [28, 47]
and [29]. COMPOSE abstracts from the IoT devices by assigning to them a virtual
identity. Devices which are not directly connected to the Internet (e.g., a bottle of
wine with a RFID or NFC tag) will need a proxy to represent them in the COM-
POSE platform. IoT objects with network capabilities, but without support of the

9http://www.compose-project.eu.
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network protocols needed for COMPOSE, such as simple sensors, will also use
proxies to be able to communicate with the COMPOSE platform. Finally, there is a
group of advanced devices (so-called Smart Objects, such as a Smart Phone, tablet,
or an Arduino device) that are capable to communicate with the COMPOSE plat-
form directly. All the above-mentioned physical objects are called Web Objects in
COMPOSE and are represented as Service Objects. COMPOSE specifies an API by
which it expects to communicate with the Web Objects, in order to obtain data from
them, or set data within them (for more detailed information see [45]). A Service
Object exhibits a standard API also internally towards the rest of the components
within the COMPOSE platform. That API is needed in order to streamline and
standardize internal access to Service Objects, which can in turn represent a variety
of very different Web Objects providing very different capabilities.

The COMPOSE platform, in an effort to embrace as many IoT transports as
possible, allows Web Objects to interact with their representatives in the Platform
(the Service Objects) using a set of well-known protocols: HTTP, STOMP over
TCP, STOMP over WebSockets, and MQTT over TCP. Out of Service Objects,
COMPOSE offers to design applications. Developers locate interesting existing
Service Objects or applications, and tailor-specific logic around them. In addition,
Service recommendation will be made available to choose the best suitable entity
based on developer needs as well as proposed composition, and recommendation
based on platform knowledge, such as security related aspects.

The security architecture of COMPOSE is based on the approach of data-centric
security requirements [29]. It differs from classical device-centric approaches in that
the COMPOSE security framework shrinks the security perimeter to the granularity
of data. It is fine granular and can be combined with static and dynamic enforce-
ment to regain governance on devices and data without sacrificing the intrinsic
openness of IoT platforms.

The framework is depicted in Fig. 5.1 and it encompasses the following
concepts:

• Security metadata is stored together with the entities they refer to. Metadata
captures security policies of users specifying the privacy level the system must
maintain for them. Service-centric metadata also allows developers and provi-
ders to specify the use of the services or service objects. Finally, the metadata
will be consulted to efficiently build secure applications and workflows, and to
store provenance information for data generated and processed in COMPOSE,
and to store reputation information about users, service objects, and COMPOSE
applications.

• Provenance information is solely generated by the COMPOSE system. It
archives the information about when, who, and how an entity has been used. It
accumulates information about the applications generating specific data, the
applications consuming it, and possible operations performed on this data, e.g.,
its combination with other data or its broadcasting to remote locations outside of
the COMPOSE system. To gather precise provenance information runtime
monitoring is performed during sensor update dispatching and execution of
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applications. The data provenance manager tracks origins of data, the operations
performed on it, and the time when operations took place. This empowers users
to define policies based on data provenance, e.g., allow a Service Object to
receive data only if it has been processed by a particular application. Further,
visualizing the provenance of data can help users to detect when certain errors
occur; for example, if several data sources are combined, but one of them is
malfunctioning, the developer could examine the sources of correct values, and
compare them with wrong values to isolate the malfunctioning device. Also,
provenance information has an interesting potential to help to protect the user’s
privacy. For instance, it could eventually help to detect when particular appli-
cations harvest and correlate information from specific entities, hinting to the
possibility of user profiling.

• Reputation information stores in the corresponding service object and service
registries the collected feedback about service objects, and COMPOSE appli-
cations. Reputation information can be collected regarding service objects but
also about the COMPOSE application popularity. The component called Pop-
ularIoTy10 reflects how often a certain Service Object or application is used, i.e.,
invoked by other entities. Whenever data is generated, notifications are stored in
the data storage. Moreover, monitors are placed in the runtime to store
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10Parra, J.D.: PopularIoTy: http://github.com/nopbyte/popularioty-api/ (2014) and PopularIoTy
Analytics: http://github.com/nopbyte/popularioty-analytics/ (2014).
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notifications when an application is called. All this information is processed to
calculate a popularity score. It also interacts with the contracts for applications,
such that a contract compliant application will get rewarded with a positive
score.

• Contracts for applications define conditions for applications stating when they
can be executed securely, as well as flow specifications which is information
about their internal, abstract data flows. While conditions specify system states
which must hold before execution of an applications or which hold after its
execution respectively, flow specifications provide more insights about where,
e.g., to which resource, input data is flowing, and how and from where output
data is generated. This information can be generated by hand describing critical
security services provided by COMPOSE, e.g., the encryption or authentication
of a data stream. Once an API will be published, a semiautomated process will
generate contracts for these APIs. This information is used in a deployed
COMPOSE environment to enable and simplify the analysis process. In general,
i.e., for user-defined applications, contracts are generated by the static analysis
component of the security core to save computational resources during the
analysis of COMPOSE workflows.

• Data flow enforcement is enforced dynamically and statically. A data-centric
flow policy is attached to input and output data for all components inside
COMPOSE. Apart from specifying the entities allowed to access, execute, or
alter a component, flow policies also describe the security requirements of data
entering a component and the security properties of data leaving it. A unified
policy framework can be used to avoid additional evaluation overhead, i.e., in
COMPOSE the language is inspired by ParaLocks [30].

• Identity management is provided through a generic attribute-based IDM
framework. It associates COMPOSE entities with identifiers and stores and
distributes appropriate security information to also provide an authentication
service. In COMPOSE an attribute-based approach allows every user to tag
himself or his entities with attribute values. Once entities are tagged with
attributes, e.g., the brand of the device, the tag can be used to specify security
policies, e.g., accept data only from devices from that brand. COMPOSE allows
users to approve attribute information depending on the group where they
belong [31].

• Finally, enforcement points at the runtime level enforce access to data, ser-
vices, or other resources based on decisions of the policy decision point (PDP).
COMPOSE at its core embraces information flow security, runtime monitors
(part of the PDP) detect and prevent illegal flows—as specified by the user or
service object provider—during the execution of user-provided services.
Finally, the PDP guides the security analysis and instrumentation components in
COMPOSE whose task is the identification of potentially malicious flows in
applications or workflows and their prevention or mitigation by software
reconfiguration or instrumentation.
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5.3.8 PRISMACLOUD

The PRISMACLOUD11 project is a EU-funded research project developing the
cryptographic tools to build more secure and privacy-preserving cloud services. To
enable end-to-end security for cloud users and provide tools to protect their
privacy the project brings novel cryptographic concepts and methods to practical
application. The following information is based on the already available pro-
ject deliverables [32, 33]. PRISMACLOUD wants to increase the pervasion of
already existing and maybe nearly usable strong cryptographic primitives to the
practice. It was perceived as being low at the beginning of the project and thus
identified as an obstacle that withholds the use of less-trusted intermediaries (like
cloud provided services, IoT gateways, or IoT middleware) in many security and
privacy conscious usage scenarios, e.g., Smart Cities. PRISMACLOUD aims at
bridging the divide between the needed deep cryptographic knowledge and the
application requirements of cloud users in order to bring the cryptographic primi-
tives to good practical use.

PRISMACLOUD’s architecture encapsulates the cryptographic knowledge of
the primitives layer inside the tools and their usage inside services. As depicted in
Fig. 5.2, it is organized into four tiers. Each layer helps abstracting from the needed
core cryptographic primitives and protocols, which are located at the Primitives
layer, which is the lowest layer of the PRISMACLOUD architecture. Building the
tools, the layer above, from the primitives requires in depth cryptographic and
software development knowledge. However, once built they can be used by cloud
service designers to build cryptographically secure and privacy-preserving cloud
services. Thus, PRISMACLOUD’s architecture levels also define connection points
between the different disciplines involved: cryptographers, software engineers/
developers, and cloud service architects. On the uppermost (i) Application layer are
the end-user applications. Applications use the cloud services of the (ii) Services
layer to achieve the desired security functionalities. The cloud services specified
there are a representative selection of possible services, which can be built from the
tools organized in the (iii) Tools layer. In particular, they represent a way to deliver
the tools to service developers and cloud architects in an accessible and scalable
way. Together the tools constitute the PRISMACLOUD toolbox.

The PRISMACLOUD architecture can be seen as one recipe to bring crypto-
graphic primitives and protocols into cloud services such that they empower cloud
users to build more secure and more privacy-preserving cloud services. In partic-
ular, it considers providing tools for secure object storage, flexible authentication
with selective disclosure, verifiable data processing, topology certification, and data
privacy. The services designed in PRISMACLOUD are data sharing; secure
archiving; selective authentic exchange; privacy enhancing ID management; veri-
fiable statistics; infrastructure auditing; encryption proxy; anonymization service.
The tools are using the following cryptographic primitives: RDC: Remote Data

11http://www.prismacloud.eu.
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Checking; SSS: Secret Sharing Schemes; ABC: Attribute-Based Credentials; PIR:
Private Information Retrieval; MSS: Malleable Signature Schemes; FSS: Functional
Signature Schemes; GSS: Group Signature Schemes; GRS: Graph Signature
Schemes; SPE: Format- and Order-Preserving Encryption; ZKP: Zero-Knowledge
Proofs; kAN: k-Anonymity (abbreviations from Fig. 5.2).

To take it to a Smart Cities example, imagine a number of IoT devices that
constantly record data, but have no storage and computing capabilities to do higher
level aggregation. Assuming further that this aggregation will be done on a
cloud-based infrastructure then this infrastructure must be trusted to perform the
computation correctly. Here the trust in this infrastructure can be removed using a
cryptographic primitive called functional signatures. They allow the delegation of
signature generation to other parties for a class of messages meeting certain con-
ditions. Such schemes can be used to certify the computation done by third parties,
such as untrusted intermediaries like the gateway or the middleware of an IoT stack.
From this class of signature schemes PRISMACLOUD builds the Verifiable Data
Processing Tool. The tool allows performing verifiable computations on data such
as computing statistics on IoT data. See [32] for more information on cryptographic
signature primitives that PRISMACLOUD uses.
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Fig. 5.2 Overview of PRISMACLOUD’s 4-tier architecture [33]
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5.3.9 RERUM

RERUM12 aims to develop an IoT architectural framework adopting the concepts of
“security and privacy by design”. RERUM acknowledges that an IoT system cannot
be fully secure post-development but has to be designed from its foundations to be
secure and privacy preserving. This is the main difference of RERUM when com-
pared with other architectural approaches, such as the ones presented above.
RERUM’s architecture design process followed the acknowledged methodology of
IoT-A, but additionally, RERUM put a significant focus on the IoT devices. This
was done because RERUM acknowledges the fact that up to now, the weakest point
in an IoT system was the constrained devices, which did not have the capabilities to
run advanced security and privacy mechanisms. Indeed, this lack of security focus
on devices resulted in many open security and privacy holes which were not limited
only on the devices and but expanded to the overall system [34, 35].

Apart from the nonfunctional requirements for “security and privacy by design”
RERUM considered also the requirements for increased system reliability,
robustness, resilience, and availability to ensure that the system can respond to
attacks and that the data will be available to be provided to the applications
whenever they are requested. Since RERUM’s key focus is on the devices, the key
differentiating factor of its functional requirements is that the developed security
and privacy mechanisms were required to be lightweight and energy efficient so that
they can be easily implemented and embedded even on constrained IoT devices.
RERUM’s requirements include among others, lightweight encryption, confiden-
tiality, and integrity protection, authorized modification of integrity protected data,
simple and strong authentication both for users and devices, attribute-based access
control, user consent, data collection limitation, data minimization, accountability,
secure device bootstrapping, and secure configuration of devices [36].

The RERUM architecture went through a detailed process of requirements
definition and analysis in order to extract the required functional components to
support the long list of requirements. RERUM defined its own functionality groups
called “managers”. Among others, RERUM defined the “Security, Privacy and
Trust Manager” (SPT) that included a long list of functional components. These
components are depicted in Fig. 5.3 mapped to the IoT-A ARM’s FGs [37].

What is interesting from this mapping is that contrary to previous IoT security
architectures, RERUM developed a large number of components that are assumed
to be embedded on the IoT devices. For example, components for secure credential
bootstrapping, secure storage, geolocation privacy enhancing techniques, integrity
generator/verifier, data encryption/decryption, trusted routing, cognitive radio
security, and device to device authentication are assumed to be important to be
running on the devices to ensure the highest level of security of an IoT system, by
strongly securing the leaf nodes.

12www.ict-rerum.eu.
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Apart from that, security components for authentication and access controlled are
also important in RERUM, together with secure reconfiguration of devices, creating
and processing security alerts, handling user and device identities and storing
securely credentials and certificates. A number of components are also defined for
ensuring user privacy via anonymization and pseudonymisation, activation and
deactivation of data collection based on user preferences, a consent manager to
request the consent of the user for gathering or disclosing private information, a
privacy dashboard to allow users themselves to handle their privacy policies, as well
as Policy Decision and Enforcement Points to manage and execute the policies.

Trust is also very important in RERUM. The project has defined a trust engine to
calculate and evaluate the trust ratings for devices, services and users, based on
observers scattered around different system entities and which are monitoring the
user actions, the data reliability as these are gathered by the devices, and the
behavior of the devices in order to identify malicious or misbehaving devices so
that these will not affect system’s decisions. That way, the reliability of the overall
system is improved.

5.4 Conclusions

The Internet of Things is becoming an important element of the everyday lives of
the people, providing opportunities for simplified activities, and improved quality
of life. Acknowledging the numerous benefits of the IoT for the people, the

Fig. 5.3 RERUM architectural security components mapped on the IoT-A ARM [37]
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environment and the economy, it has attracted a lot of interest from the research
community. However, until recently, the focus was given towards enabling the
provision of advanced services to the users, with only limited attention towards
security and privacy. Nevertheless, lately a number of key contributions from
EU-funded projects have changed the IoT research landscape, with important
advancements in the domains of security, privacy, and trust.

Having the reference framework of IoT-A as the foundation, many EU projects
have designed their architectures with strong features of security and privacy, each
one aimed to address their specific objectives. As it was analysed above, all projects
have added functionalities for authentication and authorization/access control in
order to ensure that the services of the system will be provided only to those users
that are allowed to access them and to none else. This is achieved through the
security and privacy policies that define the roles of each user and the actions he can
perform. However, the proposed concept of context-awareness in the access control
allows the policies to adapt to situational changes, i.e., a doctor will be allowed to
enter an apartment if the inhabitant had a heart attack.

Cryptography in IoT has also been considered by most projects in various forms,
i.e., for key and identity management so that proper keys and identities are provided
to the various entities of the system. Encryption has also been supported by many
projects, mainly though on the backbone communications, since the IoT devices
can be very constrained to support encrypted communications. In this respect, the
DTLS technology using ECC can play a significant role [38] or the novel idea of
Compressive Sensing-based encryption, which performs simultaneous compression
and encryption in the measurements, contributing to the minimization of the energy
consumption of the devices [39–41].

Data integrity is also a very important issue in IoT, since malicious or tampered
data can severely affect the decisions of the system and could potentially even harm
people when actuators are involved. To ensuring data integrity, techniques such as
digital signatures creation and verification must run on the devices [42]. This way
the receiver can validate that no unauthorized intermediate node has tampered with
the data it received. If subsequent modifications are needed, advanced techniques
like malleable signatures can be applied to allow changes to parts of the data limited
to authorized nodes for concealing identifiable information without breaking the
validity of the signature [32, 43].

Data integrity can also be a metric of the reliability of the data, which is used for
measuring the trustworthiness of the IoT system. Not many projects have worked
towards trust and reputation schemes for the devices, but the focus was mainly to
assess the reputation of users in order to change their access policies.

With regards to privacy, the main functionalities developed by most projects
were related with the inclusion of privacy policies on the access control mecha-
nisms. Only a few projects lately have worked towards cross-layer privacy
enhancing techniques for data minimization, for ensuring unlinkability of the data,
for allowing users to take control of their data and for anonymization and
pseudonymisation of the data so that no identifiable information is disclosed to
unauthorized third parties. Location privacy is also a key research item in some
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projects and this has mainly been tackled via geofencing/data minimization and
anonymisation/pseudonymisation.

Overall, there have been significant advances in the areas of security and privacy
in IoT in the last few years. However, as also analysed in [44], there are many
solutions that are not addressed adequately so far in the IoT community. For
example, embedding autonomic computing functionalities in the security mecha-
nisms for implementing self-management based security is not addressed so far,
although it can contribute to a more resilient IoT system. Research towards
unobservable communications for improved privacy is also a very interesting topic,
with the goal to try to avoid extracting the measurements from performing traffic
analysis [4]. Traffic anonymization in IoT networks, using, i.e., Tor or I2P is yet an
open research area. Anonymous credentials and identity mixers can highly con-
tribute to improved privacy protection. Finally, trust building between devices
using trust negotiation protocols requires the iterative exchange of credentials and
strong cryptographic calculations, which is not applicable to constrained IoT
devices. These are only some examples of open research items that can improve
even more the security and privacy of IoT systems. However, the main challenge is
the design of the respective functionalities in a lightweight and energy efficient way,
so that they can be embedded on resource constrained devices. Only then, the IoT
systems can be fully secure and the citizens will have the necessary incentives to
adopt this exciting new set of technologies.
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