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14.1 Introduction

It can be tempting to think about smart homes like one thinks about smart cities. On
the surface, smart homes and smart cities comprise coherent systems enabled by
similar sensing and interactive technologies. It can also be argued that both are
broadly underpinned by shared goals of sustainable development, inclusive user
engagement and improved service delivery. However, the home possesses unique
characteristics that must be considered in order to develop effective smart home
systems that are adopted in the real world [37].

The home is the quintessential personal space and, therefore, there is a greater
expectation of privacy at home than in public spaces. People are likely to behave
differently when they are at home, in the knowledge that information about their
behaviour belongs only to themselves and perhaps others who share this environ-
ment with them. But these lived experiences in real-life settings are of great interest
to many research fields, in particular those aiming to improve well-being and
healthcare provision. Studies conducted in living labs and prototype smart homes
can produce information concerning system functionality and usability, but they
represent a compromise in terms of the complexity of everyday life. The shift of
smart home technologies into real-life contexts has begun to expose a number of
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barriers to a wider adoption of these systems, including high cost of ownership,
inflexibility, poor manageability and difficulty achieving security [9].

In reality, homes are very dynamic environments. They vary in typology as well
as layout, and can change sporadically as residents refurbish interior spaces. This
can create a variety of challenges ranging from the initial system installation to
signal propagation and data analytics. Homes contain material possessions, but they
also have personal meaning for the people who live in them. They can be home to a
single person or to multiple people, with different individual characteristics. If we
think about several generations living under a single roof, it is likely that each
individual has different abilities and motivations in terms of interacting with a smart
home system. Previous research about how people create a smart home identified
three roles of household members in relation to their smart homes: home tech-
nology drivers, who were primarily involved in planning and maintaining the
technology; home technology responsibles, who did not deal with the technology
directly but wanted it installed and would outsource necessary repairs and adjust-
ments; and passive users who were removed from any phase of the home
automation, but had learned the basics about the system by using it [36]. Overall,
people have a greater expectation of control over technology at home than in public
spaces. The home can also be a place of conflict and negotiation between the people
who live there, which can affect how domestic technologies are adopted and used.

The need to restructure healthcare services is widely acknowledged and has led
to the home being viewed as a key setting for health and care. Perspectives on the
role of the patient in preventing and managing chronic illness have shifted from the
self-management approach of conventional medicine towards an approach that sees
patients, healthcare professionals and the wider community working together to
develop holistic and personalised care plans. Within this context, smart home
technologies have emerged as one way to empower patients to actively engage in
the management of their well-being. Achieving a system that is technically feasible
and clinically effective requires a multidisciplinary approach that combines the
expertise of various stakeholders, including end users who will steer the design
towards an acceptable outcome. The domestic end users of such a smart home
system may comprise healthy individuals, individuals who are living with one or
more chronic health conditions, and individuals who experience an acute disease or
injury. Furthermore, people’s health and care needs change suddenly or progres-
sively throughout their lives.

The challenges of developing smart home technologies for health and care
become evident as we begin to break down the various facets of the home and the
diversity of its residents. This type of rich understanding of potential users has been
used to develop inclusive design resources to inform the development of appro-
priate smart home technologies for health and care [10]. The remainder of this
chapter details the development of a smart home system, which was designed to be
retrofitted into real homes. We begin with a description of the SPHERE project,
under which this research was conducted.
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14.1.1 Overview of SPHERE

SPHERE (Sensor Platform for Healthcare in a Residential Environment) is an
EPSRC-funded interdisciplinary research project, led by the University of Bristol in
collaboration with the University of Reading and the University of Southampton.
The overall aim is to develop a smart home platform of non-medical networked
sensors, capable of gathering and integrating multiple types of data about the home
environment and the behaviours of its residents to better understand a range of
healthcare needs. Rather than targeting subsets of the population based on demo-
graphics or health conditions, the project takes an inclusive approach with a view to
generating rich data sets. We anticipate that analysis of these data sets will generate
evidence-based insights into factors that affect health and well-being, thus
informing more appropriate and effective interventions.

The system comprises various sensors that can be broadly grouped into three
categories: environmental sensors, whichmonitor temperature, humidity, luminosity,
noise level, air quality, room occupancy, electricity metering and cold and hot water
consumption; vision sensors, which are able to track people and provide information
about quality of movement; and wearable sensors, primarily a low-power wrist-worn
device that uses accelerometers to measure patterns of movement. A prototype of this
system is installed in a two-bedroom Victorian residential property in Bristol, which
serves as a test house for short- to long-term user studies. We felt it was important to
test the system in a realistic setting, in a familiar and otherwise unremarkable
domestic environment. Among other things, this has allowed researchers to experi-
ence some of the technical challenges of retrofitting this system into real homes. Once
this system has been thoroughly tested and iterated, we plan to deploy it in up to 100
homes in Bristol for long-term and ‘in the wild’ studies.

14.2 Enabling Technologies

This section briefly describes the different sensing modalities used by the SPHERE
system, namely, the wearable sensor, the environmental sensors and the video
monitoring system.

14.2.1 The Wearable and Environmental Sensors

The SPHERE architecture monitors the residential environment using a custom
environmental sensor board, named SPES-2. SPES-2 (shown in Fig. 14.1) is a
battery-powered sensor board that is based on the Texas Instruments CC2650
System-on-Chip (SoC) for processing and wireless communication. The CC2650 is
a multi-standard 2.4 GHz wireless system; it supports Bluetooth Low Energy
(BLE) and IEEE 802.15.4. A meandered 2.4 GHz monopole antenna is printed on
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the board. For processing, the CC2650 incorporates an ARM Cortex-M3 micro-
controller unit (MCU).

The SPES-2 incorporates a series of sensors for monitoring the residential
environment. These include: a temperature and humidity sensor (HDC1000); a light
sensor (OPT3001); a barometer (BMP280); a passive infrared motion sensor
(EKMB1101); and a microphone (SPH0641LU4H-1) used for noise level sensing.
Moreover, SPES-2 exposes an interface for connecting external sensors. Any
low-power analogue or digital 3.3 V sensor is compatible. The board is powered by
a 3 V CR2477 coin cell battery (typical capacity of 1000 mAh). The physical
dimensions of the board are 75 × 75 × 1.6 mm, enclosed in an off-the-shelf
casing (dimensions 85 × 85 × 25 mm). In addition to the in-house developed
environmental sensors, the SPHERE system also incorporates a commercial elec-
tricity monitoring system by CurrentCost.

The SPHERE infrastructure also incorporates a custom activity tracker. The
SPW-2 (Fig. 14.2) is a wearable sensor board, mounted on the user’s wrist. Similar

Fig. 14.1 The SPHERE environmental sensor

Fig. 14.2 The SPHERE wearable. Left While charging. Right Physical dimensions
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to the environmental sensor board (SPES-2), SPW-2 is based on the CC2650
multi-standard 2.4 GHz SoC. Similarly to its predecessor [15], it employs two
ADXL362 accelerometers. The accelerometers are separated by 30 mm, and are
aligned with the user’s limp in such a way, so that differential measurements
provide rotational information on the limp’s movements [57]. Additionally, the
board incorporates a low-profile 2.4 GHz inverted-F antenna, and a flash memory
of 512 MB for temporary data storage, whilst the user is out of the house.

The board is powered by a 100 mAh Lithium–Polymer (Li–Po) rechargeable
battery (3.7 V). A Qi compatible inductive contact charging circuit [27] is incor-
porated to wirelessly charge the battery. Commercial off-the-shelf charging pads are
compatible. The physical dimensions of the board are 39 × 20 × 1.6 mm,
enclosed in a custom wristband (dimensions 41 × 22 × 8 mm).

The final component of the SPHERE infrastructure for environmental and body
sensing is a mains-powered gateway, named SPG-2. SPG-2 employs two CC2650
sub-systems, which can be used either for simultaneous BLE and IEEE802.15.4
support or for implementing antenna diversity on the same standard to improve
wireless coverage, as proposed in [17].

The gateway board incorporates a subset of the sensors of the environmental
sensor. These include: a temperature and humidity sensor (HDC1000); a light
sensor (OPT3001); a barometer (BMP280); and a microphone (SPH0641LU4H-1)
used for noise-level sensing. The board is mains powered via USB and the same
interface can also be used for programming and software debugging. Its physical
dimensions are similar to those of the SPES-2.

14.2.2 Video Monitoring

The video monitoring component of the SPHERE system is a real-time
multi-camera system, which is tasked not only with tracking individuals navigat-
ing their home environment, but also with providing continuous quality of move-
ment information. Tracking information is provided in the form of 3D bounding
boxes in world coordinates and quality of movement information is currently in the
form of the log-likelihoods of a particular movement being ‘normal’ [43].

In the SPHERE platform, integration with other sensing modalities, user accep-
tance and deployment budget are primary considerations. To make deployment into
the local community financially viable, it has been necessary to limit hardware
selection to the low cost consumer RGB-D camera, Asus Xtion.1 This camera needs
to be coupled with a machine with suitable processing capacity, minimal intrusion to
the user and minimal cost. The Intel Next Unit of Computing (NUC) with an i5
processor and 8 GB of RAM fulfils these requirements (Fig. 14.3).

1https://www.asus.com/3D-Sensor/Xtion/.
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The small size and relatively low cost of the NUC, when compared to most
workstations, allows it to be strategically placed in close proximity to other sensors.
Another key feature of the NUC is its four USB 3.0 ports, which provide enough
bandwidth to capture from four depth cameras simultaneously. This gives the
system far more flexibility in deployment. Specifically, a range of configurations is
possible: one NUC operating all of the cameras, one NUC per camera, or some
configuration in between, depending on user preference as well as the specific
circumstances of each individual deployment.

Another critical consideration for all of the SPHERE sensors and particularly the
video subsystem is installation overhead and long-term reliability. Consider that
SPHERE currently plans to deploy the system into up to 100 homes in the local
community. With up to three NUCs and ASUS Xtions per home, the setting up and
management of such a large enterprise rapidly becomes intractable without
streamlined installation protocols and extremely reliable subsystems.

In light of these requirements, each of the NUCs runs GNU/Linux with the video
system configured as a service, which is automatically launched when the machine
boots. This makes the video system resistant to temporary power loss. A stan-
dardised system image is used to configure the system so that a single NUC can be
unboxed and setup ready for deployment in around 10 min.

As mentioned previously, software reliability is critical to facilitate extended
operational periods without being physically accessed. To aid this, we have used
object-oriented design principles and common software design patterns where
appropriate.

To support the collection of video data we have designed a pair of classes which
capture all of the functionality needed in the video system: the Camera class and the
CameraObserver class. The first of these encapsulates camera functionality pro-
viding depth, colour, bounding box and skeleton information. Instances of the
CameraObserver class register themselves with a Camera to be notified when a new
frame is available, with its associated data. The observer is then free to choose what
to do with the data. This provides the system with a unified method to implement
specific video experiments without understanding the underlying hardware
configuration.

To integrate the video system into the SPHERE platform, we implemented a
subclass of the CameraObserver which takes the video data, excluding the frames
themselves, and serialises them into a JSON string. These strings are then

Fig. 14.3 NUC and Asus Xtion sensor in the SPHERE house
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transmitted over MQTT (Message Queue Telemetry Transport) protocol on the
appropriate topic. This allows the video system to act as an IoT device to the rest of
the SPHERE sensing platform.

Even considered in isolation, the output of the video system is a rich source of
information. The velocity, aspect ratio and location of the bounding boxes provide
important clues for measuring activities and behaviours. For example, when combined
with environmental contextual information, such as the location of kitchen appliances,
activities such as cooking, washing up and watching television can potentially be
identified. Moreover, it may also be possible to determine general activity levels
including the amount of time spent sedentary. Individuals are tracked using
state-of-the-art algorithms such as [38]. The bounding boxes obtained may be further
exploited to yield coarse estimates of human pose. For example, an approximately
square bounding box is indicative of sitting, whilst a vertical elongated rectangle
implies standing.

Quality of movement assessment is based on the skeletons provided by the
PrimeSense2 middleware. These are normalised for the global positioning and
orientation of the camera and height variation. The relatively high dimensionality of
the normalised skeletons is reduced using a modified version of Diffusion Maps
[11], where Gerber’s [22] method for addressing outliers in Laplacian Eigenmaps is
exploited. The resulting high level feature vector, obtained from the normalised
skeleton at one frame, represents individual poses and is used to build a statistical
model of normal movement. Abnormal movement patterns are detected by their
deviation from this model.

14.3 Overall System Architecture

The SPHERE system will be deployed in up to 100 homes in and around Bristol for
long-term and ‘in the wild’ studies. Each deployment will consist a number of
environmental, wearable and video sensors (Sect. 14.2), accompanied by a number
of devices required for (i) data storage, (ii) network connectivity among sensors,
and (iii) system management and monitoring.

The SPHERE system also consists a back end (called the “SPHERE Data Hub”),
which is made up of a number of virtual machines, servers and storage devices
physically situated at the University of Bristol. The Data Hub is used for data
analytics and it also provides a system administration dashboard. It will lastly be
used for long-term storage of all data collected from the 100 properties.

Each deployment property will be connected with the Data Hub through a secure
Virtual Private Network (VPN) over a 3G, 4G, or fixed broadband link. On the
deployment property, this VPN tunnel will terminate on a device called ‘SPHERE
Home Gateway’, an Intel NUC PC identical to the one used by the video monitoring
subsystem (Sect. 14.2.2). The overall system architecture is illustrated in Fig. 14.4.

2http://www.i3du.gr/pdf/primesense.pdf.

14 SPHERE: A Sensor Platform for Healthcare in a Residential Environment 321

http://www.i3du.gr/pdf/primesense.pdf


In addition to terminating the VPN tunnel between the University and the
property, the Home Gateway serves a number of purposes:

• It provides a reliable, redundant and secure data storage medium for sensor data
collected by the wearable, environmental and video sensors,

• It provides a time synchronisation source for all other SPHERE systems in the
property,

• It hosts a dashboard that can be used by participants to visualise data, monitor
and manage (e.g. start or stop) the system. The dashboard is presented to par-
ticipants over a web-based interface through a pre-configured tablet computer.

The SPHERE system generates data that falls within one of two categories:

• Sensor Data: Sensor measurements collected by the wearable, environmental
and video sensors. This category, for example includes wearable acceleration
data, ambient light levels, environmental temperature, water or electricity usage,
presence detection data and video bounding boxes.

• Control and Monitoring Data: Data used to monitor the system’s overall state
and to manage its individual components. This category includes, for example,
network statistics, version of the software running on each device, device
uptime, battery levels for battery-powered devices and more. In terms of
managing the system, data within this category can be used to, for example, stop
and restart the system or to install software updates.

Noteably, Sensor Data are stored on a Mongo database hosted at the Home
Gateway, but—due to the sheer volume and also for security and data privacy
purposes—they are not transmitted to the Data Hub over the network. Conversely,

SPHERE Data Hub

SPHERE Deployment
in Property

VPN

BLE

IEEE
802.15.4

SPHERE 5GHz WiFi Network

Video

WiFi Access 
Point

User Interface 
(Tablet)

IEEE
802.15.4

SPW-2

SPES-2 SPG-1

Home 
Gateway

Fig. 14.4 Overall architecture of the SPHERE system
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Control and Monitoring Data are transmitted to the Data Hub over the VPN link, in
order to allow remote system management, administration, monitoring and gener-
ation of alerts to notify about system malfunctions.

In terms of network connectivity, a SPHERE deployment is conceptually broken
down into two logical segments within each property. The wearable and environ-
mental sensors communicate among themselves and with the Home Gateway using
a combination of BLE and IEEE 802.15.4 wireless links. Both of those technolo-
gies operate in the 2.4 GHz radio frequency band. A 5 GHz WiFi network is used
to ensure communications among the Home Gateway, Video NUCs and the tablet
that provides users with the SPHERE User Interface. The choice of using the
5 GHz band was made for two reasons: (i) increased network performance, which is
required to accommodate the large volume of video data; and (ii) prevention of
interference with the 2.4 GHz low-power networking used by the wearable and
environmental sensors. The entire SPHERE system is thus fully isolated from the
user’s own home network.

At the application layer, the SPHERE system makes extensive use of the MQTT
protocol for data collection as well as for system monitoring, with an MQTT broker
installed on the Home Gateway at every property. An MQTT client at the Data Hub
is used to collect monitoring data and to issue control commands to all systems.
Lastly, an MQTT client is used on every Video NUC in order to: (i) publish sensor
data to the Home Gateway, (ii) publish monitoring data to the Home Gateway and
the Data Hub, and (iii) receive management commands from the Home Gateway or
the Data Hub.

For data collection from and management of the environmental sensor (SPES-2),
we use the Constrained Application Protocol (CoAP) instead. Translation between
MQTT and CoAP is achieved with a SPHERE-developed application layer proxy
running on the Home Gateway. Lastly, the SPHERE wearable uses BLE to com-
municate with the rest of the infrastructure via an SPG-2 device. This SPG-2
encapsulates wearable sensor and monitoring data into CoAP packets before sub-
mitting them to the Home Gateway for processing and storage. The inverse process
is followed in order to send control requests to the wearable.

14.4 Data Analytics and Interpretation

Ambient Intelligence (AmI) spaces process large quantities of sensor data and
require robust and accurate Activity Recognition (AR) strategies. This is needed to
infer activities of interest to monitor health, well-being or other personal benefits
such as fitness level. A typical approach to the problem is to define a hypothesis to
test which informs experimental design. Quantification of the hypothesis can be
done either by simulation or by processing real sensor data. Experimental design
also involves the selection of appropriate data collection methods, ground truth
acquisition methods and annotation strategies.
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14.4.1 Ground Truth

The validation of AR strategies involves comparing their output against ground
truth/benchmark data. But before this can take place, this data has to be acquired.
Ground truth data acquisition involves three stages: collecting data upon which to
base the ground truth, deciding what labels are appropriate to describe the data and
applying these labels annotating the data to obtain the ground truth. These stages
are often developed as a result of an iterative process to determine the best data
collection methods, most appropriate labels to use, and a suitable way to annotate
the data to produce consistent and informative ground truth.

Obtaining annotations from self-reported diaries is imperfect as they rely purely
on participant’s compliance and their subjective perception and memory, which in
general, becomes inaccurate with time. This is particularly the case with annotation
which requires accurate temporal precision in order to be maximally effective, so it
is unrealistic to expect detailed activity diaries with the exact timings of the
activities. Researchers approach this problem in many different ways. Allen et al.
[1] collected unsupervised activity data in the home using a computer set up to take
participants through a routine. Input from the user was in the form of a button press
from which the data was annotated. Van Kasteren et al. [52] asked participants to
wear a Bluetooth headset that used speech recognition to label ground truth data.
This method is inexpensive, but is of limited utility because it does not capture
enough detail and contextual information.

Another strategy is for the researcher to record the activity and context during
data collection [35, 42]. Pärkkä et al. [42] adopted a semi-overseen approach to
collecting data for AR classification based on realistic activities. A single researcher
followed the participant during the experiment and used an annotation app to record
the activities. Even with this approach it was noted that there were annotation
inaccuracies that were most likely correlated to predictive inaccuracy.

Methods using video recordings provide an objective reflection of participant’s
activities enabling a far more accurate and detailed activity ground truth data,
however, these require additional attention in the form of ontology. For exam-
ple, Atallah et al. [2] used video to annotate activities during laboratory experi-
ments to train AR classifiers. Data can also be collected in an unobserved
environment, encouraging natural behaviour; however, it can also be perceived as
intrusive and will only capture actions with no room for participant interpretation.

Video annotation can be costly and time-consuming. Active learning is a tech-
nique that can reduce the amount of annotated data needed for training a classifier.
In this approach, classifiers are to be trained with a minimal set of annotated data.
Active learning algorithms attempt to quantify the utility of obtaining labels for new
instances tensioned against the financial cost of querying an oracle for the true label.
Only the instances that are deemed to yield maximal utility are selected. In par-
ticular, when coupled with transfer learning techniques (i.e. transferring knowledge
from different contexts to a new context), active learning can dramatically reduce
the quantity of labelled data required [12]. Hoque and Stankovic [26] employed a
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clustering technique to group smart home environmental data into activities and the
user labelled the clusters. Another application for active learning, is to update
classifiers or personalise them [33]. While attractive, these methods rely on a
collaborative effort on the part of the user.

There are a number of available software tools which are suitable for video
annotation, such as the ANVIL video annotation tool [29] or ELAN [8] developed
by the Max Planck Institute for Psycholinguistics, The Language Archive, Nij-
megen, The Netherlands.

The labels used to annotate data is another annotation consideration. Labels are
often application specific, e.g. [42] used a hierarchical list of labels, aimed at cap-
turing the context of the activities, whereas [49] focused purely on a specific disease
and the associated symptoms. Logan et al. [32] presented a detailed activity ontology
for the home using a custom tool that enabled annotators to label foreground and
background activities for when the participant’s attention is focused on another
activity, addressing the fact that humans naturally multitask. Roggen et al. [44] used
a four ‘track’ annotation scheme for annotating human activities based on video data
including tracks for locomotion, left- and right-hand activities (with an additional
attribute that indicates the object they are using), and the high-level activity.

In the SPHERE project, machine learning algorithms are initially trained and
validated against recordings from a head-mounted video camera worn by partici-
pants. The data originates from the three different sensing modalities (depth cam-
eras, wearable accelerometer and environmental sensors) deployed in a real house,
which constitutes the testbed [56, 58]. The same SPHERE ontology of ADLs,
underpins system-generated activity data and the controlled vocabulary used in
video annotation.

14.4.2 Activity Recognition

In order to make instantaneous or longitudinal inferences about the health status of
individual residents, a necessary first step is to be able to recognise normal
Activities of Daily Living (ADL). To this end, we need a framework that allows us
to take the inputs from multiple heterogeneous sensor sources, such as those
described in Sect. 14.3, and make informed decisions that are tailored both to the
individual and the context. Naturally, the SPHERE setting presents many sources of
uncertainty. First, we are dealing with multiple sensor modalities (environmental,
body-worn, video), each of which will have different noise profiles and failure
modes. Second, as described in Sect. 14.4.1, we are dealing with a situation where
annotated or labelled data is expensive and intrusive to acquire, and the resulting
labels are potentially noisy and inaccurate (indeed in some cases there may be no
ground truth in the classical sense, and we need to resort to modelling annotator
disagreement explicitly). Lastly, patterns of human behaviour are subject to many
factors (internal and external) that may or may not be attributed to the particular
health context of a given individual.
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Faced with such a situation, the most sensible approach would be to use white box
modelling methods where possible. Model-based machine learning [6, 54] attempts
to follow this ideal by encoding assumptions about the problem domain explicitly in
the form of a model. Indeed, the model can be viewed simply as this set of
assumptions, expressed in a precise mathematical form. These assumptions include
the number and types of variables in the problem domain, which variables affect
each other, and what the effect of changing one variable is on another variable. The
result is that any decisions made by the system can be inspected, so that if the model
is performing poorly, the solution is to re-examine the assumptions being made.

In the Bayesian paradigm, degrees of belief in states of nature are specified
through the use of probabilities, which through the construction of probabilistic
graphical models [30] allow us to apply a principled mathematical framework of the
quantification of uncertainty to perform model-based machine learning. On the
basis of the models we build, Bayesian decision theory tries to quantify the trade-off
between various decisions, making use of probabilities and costs [3, 4].

A typical problem that we face is that the differences between individuals are too
large to be captured by a single model. Hierarchical Bayesian models [21] allow us
to simultaneously generalise over communities of residents whilst also learning
personalised models. In addition, they allow us to be more flexible with our priors,
by specifying hyper-priors, and then performing inference over the priors instead.

Adapting to multiple operating contexts

However, transparently dealing with degrees of belief does not solve all modelling
challenges posed by the SPHERE project. Our models and inferences have to be
applied in multiple contexts, and indeed any given context is liable to both gradual
and abrupt shifts. Let us consider the example of modelling daily patterns of beha-
viour. A common approach for coping with the temporal aspect of daily patters is to
introduce an hour of day feature to the classification model [28, 51]. However, when
summarising the temporal nature of an activity into a coarse feature such as this, not
only is information lost after discretisation, but also the strength of the periodicity of
the action is ignored. Bayesian approaches have been ascribed to such periodic data
[13] and these models can not only capture the complex multi-modal aspects of
periodic patterns, but the resulting posteriors are interpretable and may be studied to
increase practitioners understanding of the nature of their data.

In such situations, it will be crucial that we are able to trust the probabilities
coming from the system. A machine learning system is well calibrated if the
predicted probabilities it gives correspond to observed frequencies. This is natural
in forecasting where we would expect it to rain in 60 % of days where a weather
forecaster predicts a 60 % chance of rain [39] but carries over to machine learning
as well. If a system is poorly calibrated then it suggests a problem either in the
model (such as an overly restrictive assumption) or in the inference.

Different operating contexts call for different performance metrics, which per-
haps incorporate a different notion of expected loss [25]. If the goal is to minimise
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loss, for example for the case of classification, a systematic approach would be that
given a model, threshold choice methods that correspond with the available
information about the operating condition should be applied, followed by com-
parison of their expected losses.

The operating contexts of smart environments can be affected by many factors.
For example, it is well known that when multiple occupants reside in a smart home,
models that do not adapt to these contexts will generally yield poor predictions.
This happens because ‘confusing’ sensor data can arise when co-occurring activities
are performed in different locations of the home. However, if the topology of the
residence can be learnt, not only will predictive performance be boosted, but pre-
dictive confidence and calibration will likewise be improved [16, 50].

Different classification performance metrics such as F-score also imply a dif-
ferent notion of calibration [18]. More generally, the choice of the performance
metrics in use should be seen as another modelling assumption rather than being
independent from the model. Given that we expect the end users of our systems to
include medical professionals as well as the residents themselves, we can easily see
how the types of decision we would want to surface should be adaptable.

Explicitly modelling context change also favours domain adaptation and model
reuse. We are building on the results of the REFRAME project,3 which developed a
general methodology for model reuse in machine learning called reframing (Her-
nández-Orallo, Prudêncio et al. (in press) [24]). The setting is exemplified by the
recent ECML-PKDD’15 Discovery Challenge MoReBikeS: Model Reuse with Bike
rental Station data,4 which encouraged participants to build predictive models for
new bicycle rental stations making use of previously trained models on other sta-
tions (for which the training data was however no longer available).

14.4.3 Localisation

Research [31] has shown that human activities in residential areas are highly cor-
related with their corresponding locations. Activities pertaining to SPHERE’s
research interests mostly occur indoors, thus rendering the traditional global nav-
igation satellite systems like GPS or Galileo is redundant. Instead, a localisation
solution which can indicate the relative indoor position is essential for future
research opportunities.

Academia and industry have both tried various approaches to tackle indoor
localisation problem. GE5 and Philips6 offer the LED-based indoor localisation

3http://reframe-d2k.org/.
4http://reframe-d2k.org/Challenge.
5http://www.gelighting.com.
6http://www.lighting.philips.co.uk/systems/themes/led-based-indoor-positioning.html.
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system for use in retail outlets or hospitals. Video systems, such as MS Kinect or
Intel RealSense, can also provide tracking information when the target is recognised
within the effective region, but only if proper light condition is preserved. In
scenarios where accurate location information is not necessary, the outputs from
passive infrared [40] or sound sensors [5] are used as an indication of the subject’s
presence in certain areas. In addition, accelerometer and gyroscope [23, 55] data are
also used for keeping track of the subjects, if the initial location is known—this
method is known as one embodiment dead reckoning. It cannot, however, be
considered an ideal solution to provide indoor location information yet, much like
GPS system is now, for outdoor applications. The above approaches are used for
different purposes in different contexts, and as such have drawbacks and limitations.
These include arduous installation and deployment, low accuracy, high cost, limited
coverage, and depending on the mentioned differing contexts, intruding upon
subject’s privacy. Thus, in relation to SPHERE, other indoor localisation methods
are considered.

Nowadays, with an ever-increasing use of wireless systems, radio frequency
(RF) signals are present everywhere penetrating all living spaces, including resi-
dential homes. Modern RF receivers allow for the parameters such as time delay,
power strength, profile distortion, and even experienced reflections, to be accurately
measured. These parameters can be used to estimate the distance between the
transmitter and receiver. The distance estimations from spatially differentiated
locations then are used for localising the target by triangulation or multilateration.
In Bose and Foh [7] and Wang et al. [53] received signal strength (RSS) based
ranging methods are described in detail. Generally an RSS-based method requires a
relatively simple propagation environment, in order to avoid signal superimposition
caused by multipath propagation. Thus, a high-density residential area creates a
very challenging scenario for the application of this approach. Time is another
parameter that can be used to indicate the distance. In both, academia and industry,
researchers have tried to extract timing by specially designed wide band signals,
such as those shown in Sahinoglu et al. [1, 19, 45]. Günther and Hoene [20] and
Ciurana et al. [34] introduced a round trip measuring method based on the ACK
mechanism of the 802.11 protocol with standard commercial off-the-shelf (COTS)
devices. This method avoids multipath propagation problems, but is still limited by
low clock resolution and stability of COTS devices. Exel [14] presents an
improvement to the clock resolution problem by extracting the wireless commu-
nications signals from a dedicated receiver—this, however, is much more expensive
than using COTS devices. By now it is apparent, that the above mentioned methods
are either too expensive or inaccurate for widespread deployment.

Regarding the applications and requirements of SPHERE, the technology which
can leverage existing wireless signals and cheap COTS equipment are very much
preferred. Also, differing from the industrial applications such as the storehouse or
assembly line robotics, which have hard requirements on localisation accuracy and
resolution, there are no exact firm requirements, when referring to human activity
research. Therefore, the development of the indoor localisation system for SPHERE
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includes two stages: the premier stage and the advanced stage. The Premier stage
takes advantage of resources already deployed in the house—for example Bluetooth
(BLE) access points (APs) and PIR sensors in each room. This provides us with
room-level location information given, for example the optimum amount of BLE
AP’s spread around the house. According to the SPHERE’s signal propagation
research, three access points in the house at any one time are sufficient for this
purpose [48]. Room-level information can provide only limited data to differentiate
between activities. For instance, the detection of presence in the living room is
associated with activities such as watching TV, reading, or chatting, and excludes
actions not normally associated with this location, such as making tea, washing or
taking shower. However, room-level information is still not fine-grained enough to
aid recognition of some ADLs. In the context of multiple sensor platforms used in
the SPHERE system, the localisation can be further strengthened by fusion of the
other sensors’ data—for example the on-body accelerometer, video or even elec-
trical and water metres. Another approach is to deploy extra RF sensors (BLE in
the SPHERE’s context) in the house in order to better calculate the location
information (advanced stage). The aim for this stage is to provide between
1 × 1 m2 and 1.5 × 1.5 m2 resolution location information based on the high
density of RF receivers.

The implementation of the premier and advanced stages of the indoor locali-
sation in the SPHERE prototype testbed are as follows:

Premier Stage: The SPHERE localisation system in this stage includes one
custom wearable [15] and three distributed receivers [17]. The wearable broad-
casts BLE advertisements in channel 37, 38 and 39 with 4 dBm emission power.
Each receiver is equipped with one horizontal polarised folded dipole antenna and
one vertical polarised folded dipole antenna for error correction purpose. On each
receiver, wearable BLE advertisements are sniffed, timestamped, and subsequently
saved into the database. In the database, the RSSs of the same BLE advertisements
captured by different receivers are extrapolated together using the timestamps. Not
all BLE advertisements can be received successfully by all receivers due to the
signal attenuation caused by extended distance and obstacles in the propagation
path. Thus, the received RSS samples are resampled using Pandas library. The data
used for localisation experiments was acquired through scripted data collection.
This script consists of a representative sample of ADLs occuring in every location
in the testbed house. Classification methods, such as k-nearest neighbours
(KNN) and support vector machine (SVM), were applied to this dataset. These
classifiers provide around 80 ∼ 85 % correct room-level localisation recognition
with only three BLE receivers in the house [16]. Subsequently, the same data set
was analysed using a Hidden Markov Model (HMM) approach which builds the
time sequential relation between locations. HMM provides similar levels of cor-
rection rates. By comparing the characteristics of the errors in classification
methods and the HMM, we surmise that the erroneous classifications occurs in a
random spike manner while the errors in HMM method manifested themselves
mostly as bursts. If we define the change of the location as one event, HMM shows
much less spurious events than classification methods. Hence, mutual calibration
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between the classification and time sequential method is necessary to improve the
localisation performance.

Advance Stage: In this stage, addtional BLE APs are deployed. Approximately
two additional APs are installed in each room. Each AP is constituted by one
Raspberry Pi and one COTS Bluetooth dongle. The APs are installed around the
ceiling to mitigate the body shadow effect [41] and loitering personnel interference.
The house is divided and labelled into 82 grids which are roughly 1 × 1 m2. As
the grid size is very small, it is very difficult for classification methods to cope with
slight RSS difference between neighbouring grids. Thus, the localisation in this
situation is more reliant on the time sequential relation.

Passive Sensing

There are multiple ways of approaching the localisation challenge in a sensor-rich,
multi-modal setup. Methods based on simple binary sensors (e.g. PIR) are limited
to single occupancy scenarios and can only provide room-level accuracy. On the
other hand, RF-based approaches relying on change in RSSI, not only depend on
participant wearing an RF transmitter (e.g. SPHERE wearable) but also require
high-density infrastructure of RF receivers. Thus, passive sensing [47] is consid-
ered as one of the most likely candidates to provide fine-grained location infor-
mation in a residential context. It originates from radar technology, and can then be
extended to civilian applications by taking advantage of the RF signal already
present in residential areas. As demonstrated in [46], passive sensing technology
can quantify the precise distortion of human reflected RF signal which is related to
the object moving along its trajectory. By synthesising the quantified signal dis-
tortion into the predefined classifiers or machine learning modules, pose and
location information can be extracted. The successful implementation of passive
sensing will lead to a device free solution for collecting location and even activity
information in spaces where the wireless signals are presented. Passive sensing is
thus an important, albeit budding, ambition of academia and industry, and requires
large amounts of testing and research to be fully utilised. Incomplete as it may be
though, it is nonetheless a rising research topic due its potential performance and
applications in healthcare, security and entertainment.
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