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Abstract. The understanding of how a networked system behaves and
keeps its topological features when facing element failures is essential in
several applications ranging from biological to social networks. In this
context, one of the most discussed and important topics is the ability
to distinguish similarities between networks. A probabilistic approach
already showed useful in graph comparisons when representing the net-
work structure as a set of probability distributions, and, together with the
Jensen-Shannon divergence, allows to quantify dissimilarities between
graphs. The goal of this article is to compare these methodologies for
the analysis of network comparisons and robustness.

1 Introduction

Quantification of dissimilarities between graphs has been a central subject in
graph theory for many decades. With the complex networks field, we witness a
burst of applications on real systems where the measure of graph or subgraph
similarities have played a major role. Several methods for this quantification have
become increasingly addressed, where most approaches are based on invariant
measurements under graph isomorphism [1–6]. Although there exists in the lit-
erature a quasi-polynomial time algorithm to solve graph isomorphism [7], still,
an efficient way to decide if two structures are isomorphic continues an open
problem, as the search for efficient pseudo-distances between networks.

Representing a network as a set of stochastic measures (probability distribu-
tions associated with a given set of measurements) showed useful to characterize
network evolution, robustness and efficiently treat the graph isomorphism prob-
lem [6,8–10].

These characteristics are useful to define a pseudo-metric between net-
works via the Jensen-Shannon divergence, an Information Theory quantifier that

c© Springer International Publishing Switzerland 2016
Y. Kochetov et al. (Eds.): DOOR 2016, LNCS 9869, pp. 50–60, 2016.
DOI: 10.1007/978-3-319-44914-2 5



A Review on Network Robustness from an Information Theory Perspective 51

already showed very effective in measuring small network topology changes [6,9–
11]. When comparing n probability distributions, it is given by the Shannon
entropy of the average minus the average of the Shannon entropies and, it was
proven to be a bounded square of a metric between probability distributions [28],
here defined for the discrete case:

JS(P1,P2, . . . ,Pn) = H

(∑n
i=1 Pi

n

)
−

∑n
i=1 H(Pi)

n
(1)

being H(P) = −∑
i pi log pi the Shannon entropy of P.

The JS divergence (Eq. 1) possesses a lower bound equals zero and an upper
bound equals log n. The zero value means that all probabilities are equal to the
same distribution P1 = P2 = · · · = Pn = P. A log n value gives the biggest
uncertainty when comparing P1, P2, . . . ,Pn since log n is the biggest entropy
value achieved only by the uniform distribution.

The metric property of the square root of the JS divergence, together with
stochastic measures on networks, allows to define two pseudo-metrics between
networks: one given only by global properties (Dg) representing the network as
a single probability distribution and, the other, more precise but more computa-
tionally expensive (D), considering local network characteristics by representing
the network as a set of probability distributions.

The analysis of properties of complex networks, therefore, relies on using
stochastic measurements capable of expressing the most relevant topological
features. Depending on the network and application, a specific set of stochastic
measures could be chosen. This article presents a survey of such measurements.
It includes classical complex network measurements, applications on network
evolution, comparisons and robustness.

2 Methodology

A network G is a pair (V,E), where V is a set of nodes (or vertices), and E is
a set of ordered pairs of distinct nodes, which we call edges. A weighted net-
work associates a weight (ωe) to every edge e ∈ E, characterizing not only the
connections among vertices but also the strength of these connections.

Exists, in the literature, several measurements representing network connec-
tivity. In particular, most real networks present small average distance between
elements and high-density communities.

The in-degree (out-degree) of a node, kin (kout), is the number of incoming
(outgoing) edges. The in-weight (out-weight) of a node, ωin (ωout), is the sum
of all incoming (outgoing) edge weights. Following [29] it is possible to define a
degree centrality measure considering both degree and weight by relating them
to a tuning parameter α ∈ [0, 1] as:

κin
α (v) = (kin

v )1−α(ωin
v )α and κout

α (v) = (kout
v )1−α(ωout

v )α. (2)

If α = 0, the weights are forgotten to obtain the node degree. As α increases the
number of connections loses in importance and, when α reaches 1, the centrality
is given by the total vertex weight.
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For any two vertices i, j ∈ V (G), the distance d(i, j) is the length of the
shortest path between i and j, if there is no path between them, d(i, j) = ∞. In
a weighted network, there are several distances measures in literature because
the strength of these connections sometimes implies in small distances between
the nodes. In an e-mail network, a bigger edge weight value may represent a
frequent communication and, therefore, a small distance between them. Here,
we consider the same approach used in [12] transforming weights into costs by
inverting them and computing shortest paths between pairs of nodes. Readers
should refer to [13] for a deeper discussion on the topic.

The network diameter (average path length) is the maximum (average) dis-
tance between all pairs of connected nodes.

The clustering coefficient (C), also known as transitivity, characterizes trian-
gles in the network. It is the fraction of the number of triangles and the number
of connected triples. Thus, a complete graph possesses C = 1 and, a tree graph,
C = 0. Analogously, the vertex clustering coefficient, Cv, is given by:

Cv =
3nΔ(v)
ne(v)

,

being, nΔ(v) the number of triangles involving node i and n3(v) the number of
connected triples having v as a central vertex. A node clustering coefficient value
equals 1 means that there is a connection between all pairs of its first neighbors,
and a zero value represents the lack edges between them.

The closeness centrality measure of a node is the sum of the inverse of all
pairs of distances from it:

cv =
∑

j, j �=v

1
d(v, j)

.

A high closeness centrality value means that the node possesses a lower total
distance from all other nodes.

Betweenness centrality quantifies node importance in terms of interactions
via the shortest paths among all other nodes:

Bv =
∑

i�=j∈V (G)

n(i, j, v)
2n(i, j)

,

being, n(i, j) the number of shortest paths connecting i and j and n(i, j, x) the
number of shortest paths connecting i and j passing through x.

See Table 1 for space and time computational complexity of the above men-
tioned measures.

Given two networks G1 and G2 and two stochastic measurements PG1 and
PG2 , the global pseudo-metric

Dg
P(G1, G2) =

√
JS(PG1 ,PG2)

log 2
. (3)

measures how far away two networks are via probability distributions.
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Table 1. Space/time computational complexity in a network with N nodes and E
edges.

Space Time

Degree O(N) O(N2)

All pairs of distances (unweighted) O(N2) O(N2 + NE)

Local clustering coefficient O(N) O(N3)

Closeness O(N) O(NE)

Betweenness O(N) O(NE)

The degree distribution Pdeg(k) is the fraction of nodes with degree k. The
network distance distribution, Pδ(d), gives the fraction of pairs of nodes at dis-
tance d. Analogously, PBv

, Pc and PC are given, respectively, by distributions
of the betweennesss, closeness and local clustering coefficient.

Here, we consider five variations of the Dg function (Eq. (3)) associated with
the stochastic measures given by the degree (Dg

Pdeg
), distance (Dg

Pδ
), closeness

(Dg
Pc

), betweenness (Dg
Pbet

) and clustering coefficient (Dg
PC

) distributions.
We can also obtain local information from the stochastic measure. We focus

our attention on the node distance distribution (Pδ,v(d)) given by fraction of
nodes at distance d from each node v. The network node dispersion (NND), a
network quantifier related to the heterogeneity of nodes, introduced in [10] to a
network G of size n:

NND(G) = JS(Pδ,1,Pδ,2, . . . ,Pδ,n)

allows, together with the global pseudo-metric associated with the distance dis-
tribution (Dg

Pδ
), to have an efficient size independent pseudo-metric between

networks:

D(G1, G2) =
1
2
Dg

Pδ
(G1, G2) +

1
2

∣∣∣∣∣
√

NND(G1)
log n

−
√

NND(G2)
log m

∣∣∣∣∣ , (4)

being, n and m, the sizes of networks G1 and G2, respectively.
Each global dissimilarity measure captures different characteristics. Most real

networks present a degree distribution following a power-law Pdeg(k) ∼ k−γ [16]
but, there exist several networks with different topologies sharing the same
degree distribution. The clustering based dissimilarity measures how far away
two networks are comparing connected communities densities but, it fails to char-
acterize properly tree-like structures. Distance based measures capture impor-
tant features on networks: from the distance distribution, it is possible to obtain
the network diameter, average path length, and average degree. From the node
distance distribution perspective, as more information are available, we also get
the node degree, closeness centrality, among others.
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3 Applications

3.1 Distance Between Null Models

Here we compare how well-known networks null models are away from each
other using the Dg and D functions. We consider four of the most commonly
used models: K-regular [14], Erdös-Renyi (ER) [15], Barabási-Albert (BA) [16],
Exponential (EXP) [17] and Watts-Strogatz rewiring model (WS) [18].

The K-regular consists in generating random networks with a constant degree
K. ER is the random graph generation given by a connection probability p ∈
[0, 1]. Both BA and EXP are models of evolving networks: at each time step a new
node is added and connected to m other existing nodes but, in the Exponential
model, the new node is connected at random and the BA uses a preferential
attachment mechanism1. WS model generates random networks by rewiring,
with a given probability, links from a regular lattice.

The experiment consists in generate 10000 independent samples of each
model with a fixed size N = 1000 computing averaged stochastic measures for
each null model and then get comparisons via Dg and D. We set the parameters
aiming to preserve the average degree of all generated networks: 10-Regular, BA
and EXP with parameter m = 5, ER with p = 10/999 and WS with k = 5
and different rewiring probabilities p = 0.2, 0.4, 0.6, 0.8. Figure 1 shows the
multidimensional scaling map [19] performed over the outcomes.

All of the analyzed measures were able to capture the scale-free behavior of
the BA model (P (k) ∼ k−3) identifying significant structural differences even
when compared with a similar growing model like the EXP, highlighting how
different is the preferential attachment procedure in growing networks. It is also
possible to see that bigger rewiring probability values imply higher proximity
between WS and ER models [11]. As p increases, the randomness of the WS
networks also increases. Figures 1B and C show the dissimilarity function impor-
tance: B shows that the average of the distance distributions of the ER network
approaches the distance distribution of the regular graph meaning that, on aver-
age, a random graph behaves like a regular one but, the NND value is zero in
most regular networks (Fig. 1C).

3.2 Critical Element Detection Problem and Network Robustness

The knowledge about how the network behaves after failures is of paramount
importance and, therefore, the detection critical elements are important to plan
efficient strategies to protect or even to destroy networks.

Given a network and an integer k, the critical element detection problem is
to find a set of at most k elements (nodes or edges), whose deletion generates
the biggest topological difference when comparing the residual and the original
networks [20–22].

Here, we consider finding the critical 3 nodes in the Infectious Sociopatterns
network whose deletion generates the biggest Dg

Pdeg
, Dg

Pδ
, Dg

Pbet
, Dg

Pc
, Dg

PC
and

1 Higher degree nodes have a bigger probability of getting new connections.
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Fig. 1. Multidimensional scaling map performed over the outcomes of (A) Dg
Pdeg

, (B)

Dg
Pδ

, (C) D, (D) Dg
Pc

, (E) Dg
Pbet

and (F) Dg
PC

between all pairs of network null models:
BA, EXP, K-regular and WS for different rewiring probability values (WS 0.2, WS 0.4,
WS 0.6 and WS 0.8 consider the rewiring probability given by 0.2, 0.4, 0.6 and 0.8,
respectively).

D values. The Infectious Sociopatterns network consists the face-to-face behav-
ior of people during the exhibition INFECTIOUS: STAY AWAY in 2009 at the
Science Gallery in Dublin. Nodes represent exhibition visitors; edges represent
face-to-face contacts that were active for at least 20 seconds. The network has
the data from the day with the highest number of interactions and is consider
undirected and unweighted [23,24]. Figure 2A shows the outcomes. It is inter-
esting to see that the betweenness and distance distributions share the same 3
critical elements. The dissimilarity function, on the other way, shares only two
elements with the betweenness distribution sharing the third element with the
clustering coefficient distribution. Figure 2B shows the degraded network after
the removal of the critical elements found in A. When comparing the original
and the degraded network, the last possesses a larger diameter (11), average
path length (4.213771) and a small global clustering coefficient (0.436811).

The critical element detection problem is proven to be NP-hard in the gen-
eral case for nodes and/or edges and, thus, the real case problems usually need
heuristic approaches. The most common in the literature [25] is the strategy
given by attacking the most central nodes (targeted attack2). Table 2 compares
the values obtained by using 4 strategies of targeted attacks: higher degree,

2 The nodes fail in decreasing order of centrality.
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Fig. 2. (A) Critical 3 nodes in the Infectious Sociopatterns network for the degree
(Dg

Pdeg
), distance (Dg

Pδ
), betweenness (Dg

Pbet
), closeness (Dg

Pc
), clustering (Dg

PC
) and

dissimilarity (D). (B) the degraded network obtained by the disconnecting the critical
nodes.

closeness, betweenness, and clustering coefficient and the strategy of selecting
the best combination of elements, we call it Best and it is computed by a brute
force algorithm.

None of the above-mentioned targeted attack strategies achieved the net-
work degradation given by the Best strategy, indicating that only one centrality
measure is not enough as strategy to efficiently destroy the network.

Table 2. Comparing Dg and D values between targeted attacks (degree, closeness,
clustering and betweeness) and the best strategy given by the critical node detection
problem solution.

Dg
Pdeg

Dg
Pδ

D Dg
Pc

Dg
Pbet

Dg
PC

Degree 0.1468 0.1290 0.0745 0.2413 0.0860 0.0293

Closeness 0.1228 0.1790 0.0968 0.2471 0.0952 0.0333

Betweenness 0.1204 0.1666 0.0932 0.2462 0.1040 0.0333

Clustering 0.0638 0.0858 0.0509 0.2295 0.0115 0.0285

Best 0.1867 0.2288 0.12563 0.3811 0.1291 0.0456

Network failures may not occur all at once, but, at different time instances.
Two sequences of failures may result in the same degraded network, even though,
one may have caused a bigger topological destruction at the beginning of the
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attack. Therefore, the critical element detection problem fails in capturing this
time-dependence of the failures.

In order to capture this time dependence of the failure process, following [9],
a sequence of failures is defined as a sequence of time-indexed networks (Gt)
where G0 = 0 and G′

t is a subgraph of Gt for all t′ > t (as time increases, the
network became more degraded).

Fig. 3. Targeted attacks on the Train Bombing network. (A) RPdeg , (B) RPδ , (C)
RPD , (D) RPc , (E) RPbet and (F) RPC .
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It is possible then, to define the robustness of G, for any given sequence of n
failures (Gt)t∈{1, 2,...,n} as:

RP (G|(Gt)t∈{1, 2,...,n}) =
n∏

t=1

R(Gt−1|Gt), (5)

being R(Gt|(Gt−1)t∈{1, 2,...,n}) = 1 − D(Gt, Gt−1).
This formulation is based on the consideration that the network robustness

is a measure related to the distance that a given topology is apart from itself
cumulatively during a sequence of failures.

Here, we analyze the robustness of the Train bombing network under tar-
geted attacks. This undirected and weighted network contains contacts between
suspected terrorists involved in the train bombing in Madrid on March 11, 2004,
as reconstructed from newspapers. A node represents a terrorist and an edge
between two terrorists shows that there was a contact between the two terror-
ists. The edge’s weight denotes how “strong” a connection was. This includes
friendship and co-participation in training camps or previous attacks [23,26,27].

The experiment consists in attacking, at each time step, one node of the
Train bombing network by a decreasing centrality value until the disconnection
of 30 % of the nodes. Figure 3 shows the outcomes considering the robustness
measure computed using Dg

Pdeg
, Dg

Pδ
, Dg

Pbet
, Dg

Pc
, Dg

PC
and D values. The tar-

geted attacks are performed in decreasing order of: degree (κ0), weight (κ1),
degree and weight with importance (κ0.5), closeness, betweenness and clustering
coefficient. In most cases, targeting the nodes with the highest betweenness cen-
trality value generates the highest degradation in most of the analyzed measures.
The only exemption is for RPC

, where the best strategy is given by attacking
nodes considering κ0.5 values.

Table 3 also shows that the best strategy after the degradation of 30 % of the
network is not necessary the best when considering 20 % or 10 %. For example,
in the case of Pbet, the best strategy is considering the nodes’ weight when
10 % of the nodes are removed, the degree attack for 20 % and, the betweenness
centrality strategy for 30 %.

Table 3. Best targeted attack strategy for the Train Bombing network.

Fraction of nodes removed

10 % 20 % 30 %

RPdeg Betweenness Betweenness Betweenness

RPδ Degree Degree Betweenness

RD Degree Degree Betweenness

RPc Degree Betweenness Betweenness

RPbet Weight Degree Betweenness

RPC Betweenness Betweenness κ0.5

Best attack strategy
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4 Concluding Remarks

In this work, we review a methodology to quantify graph dissimilarities based on
Information Theory quantifiers that possess important properties. One of them
is the flexibility of choosing the network measurement depending on the purpose
of the analysis or application.

Acknowledgments. Research is partially by supported by the Laboratory of Algo-
rithms and Technologies for Network Analysis, National Research University Higher
School of Economics, CNPq and FAPEMIG, Brazil.

References

1. Bunke, H.: Recent developments in graph matching. In: Proceedings of the 15th
International Conference on Pattern Recognition, vol. 2 (2000). http://dx.doi.org/
10.1109/ICPR.2000.906030

2. Dehmer, M., Emmert-Streib, F., Kilian, J.: A similarity measure for graphs with
low computational complexity. Appl. Math. Comput. 182(1), 447–459 (2006)

3. Rodrigues, L., Travieso, G., Boas, P.R.V.: Characterization of complex networks:
a survey of measurements. Adv. Phys. 56(1), 167–242 (2006)

4. Schaeffer, S.E.: Survey: graph clustering. Comput. Sci. Rev. 1(1), 27–64 (2007)
5. Bai, L., Hancock, E.R.: Graph kernels from the Jensen-Shannon divergence. J.

Math. Imaging Vis. 47(1–2), 60–69 (2013)
6. Schieber, T.A., Ravetti, M.G.: Simulating the dynamics of scale-free networks via

optimization. PLoS ONE 8(12), e80783 (2013)
7. Babai, L.: Graph isomorphism in quasipolynomial time. Arxiv, January 2016.

http://arxiv.org/abs/1512.03547
8. Carpi, L.C., Saco, P.M., Rosso, O.A., Ravetti, M.G.: Structural evolution of

the tropical pacific climate network. Eur. Phys. J. B 85(11), 1–7 (2012).
http://dx.doi.org/10.1140/epjb/e2012-30413-7

9. Schieber, T.A., Carpi, L., Frery, A.C., Rosso, O.A., Pardalos, P.M., Ravetti, M.:
Information theory perspective on network robustness. Phys. Lett. A 380(3), 359–
364 (2016)

10. Schieber, T.A., Carpi, L., Ravetti, M., Pardalos, P.M., Massoler, C., Diaz Guilera,
A.: A size independent network difference measure based on information theory
quantifiers (2016, Unpublished)

11. Carpi, L.C., Rosso, O.A., Saco, P.M., Ravetti, M.: Analyzing complex networks
evolution through information theory quantifiers. Phys. Lett. A 375(4), 801–804
(2011). http://www.sciencedirect.com/science/article/pii/S037596011001577X

12. Newman, M.E.J., Strogatz, S.H., Watts, D.J.: Random graphs with arbitrary
degree distributions and their applications. Phys. Rev. E 64, 026118 (2001)

13. Deza, M.M., Deza, E.: Encyclopedia of Distances, p. 590. Springer, Heidelberg
(2009)

14. Lewis, T.G.: Network Science: Theory and Applications. Wiley Publishing, Hobo-
ken (2009)
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