
A Robust Leaky-LMS Algorithm for Sparse
System Identification

Cemil Turan1(&) and Yedilkhan Amirgaliev1,2

1 Department of Computer Engineering,
Suleyman Demirel University, Almaty, Kazakhstan

{cemil.turan,amirgaliev.yedilkhan}@sdu.edu.kz
2 Institute of Information and Computational Technologies, Almaty, Kazakhstan

Abstract. In this paper, a new Leaky-LMS (LLMS) algorithm that modifies
and improves the Zero-Attracting Leaky-LMS (ZA-LLMS) algorithm for sparse
system identification has been proposed. The proposed algorithm uses the
sparsity of the system with the advantages of the variable step-size and l0-norm
penalty. We compared the performance of our proposed algorithm with the
conventional LLMS and ZA-LLMS in terms of the convergence rate and
mean-square-deviation (MSD). Additionally, the computational complexity of
the proposed algorithm has been derived. Simulations performed in MATLAB
showed that the proposed algorithm has superiority over the other algorithms for
both types of input signals of additive white Gaussian noise (AWGN) and
additive correlated Gaussian noise (ACGN).
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1 Introduction

In adaptive filtering technology, the least-mean-square (LMS) algorithm is a commonly
used algorithm for system identification (see Fig. 1), noise cancellation or channel
equalization models [1]. Although it is a very simple and robust algorithm, its per-
formance deteriorates for some applications which have high correlation, long filter
length, sparse signals etc. In the literature, many different LMS-type algorithms were
proposed to improve the performance of the standard LMS algorithm.

Leaky-LMS algorithm was proposed [2, 3] to overcome the issues when the input
signal is highly correlated, by using shrinkage in its update equation. Another LMS
based algorithm VSSLMS uses a variable step-size in update equation of the standard
LMS to increase the convergence speed at the beginning stages of the iterations and
decrease MSD at later iterations [4, 5]. In order to improve the performance of the LMS
algorithm when the system is sparse (most of the system coefficients are zeroes),
ZA-LMS algorithm was proposed in [6].

In [7], the author proposed the ZA-LLMS algorithm which combines the LLMS
algorithm and the ZA-LMS algorithm for sparse system identification. A better per-
formance was obtained for AWGN and ACGN input signals. In [8], a high perfor-
mance algorithm called zero-attracting function-controlled variable step-size LMS
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(ZAFC-VSSLMS) was proposed by using the advantages of variable step-size and l0-
norm penalty. We were motivated by the inspiration of the combination of these two
algorithms. So in this paper we proposed a new algorithm that combines the ZA-LLMS
and ZAFC-VSSLMS algorithms. In the next section, a brief review of the LLMS and
ZA-LLMS algorithms is provided. We describe the proposed algorithm in Sect. 3 with
computational complexity and convergence analysis. In Sect. 4, the simulations are
presented and the performance of the algorithm is compared. Conclusions are drawn in
the last section.

2 Review of the Related Algorithms

2.1 Leaky-LMS (LLMS) Algorithm

In a system identification process, the desired signal is defined as,

dðnÞ ¼ wT
0xðnÞþ mðnÞ ð1Þ

where w0 ¼ ½w00; . . .;w0N�1�T are the unknown system coefficients with length N,
xðnÞ ¼ ½x0; . . .; xN�1�T is the input-tap vector and vðnÞ is the additive noise. In addition
to being independent of the noise sample vðnÞ with zero mean and variance of r2t , the
input data sequence xðnÞ and the additive noise sample vðnÞ are also assumed to be
independent.

The cost function of the LLMS algorithm is given by,

J1ðnÞ ¼ 1
2
e2ðnÞþ cwTðnÞwðnÞ ð2Þ

where w(n) is the filter-tap vector at time n, c is a positive constant called ‘leakage
factor’ and eðnÞ is the instantaneous error and given by,

Fig. 1. Block diagram of the system identification process.
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eðnÞ ¼ dðnÞ � wTðnÞxðnÞ ð3Þ

The update equation of the LLMS algorithm can be derived by using the gradient
method as,

wðnþ 1Þ ¼wðnÞþ l
@JðnÞ
@wðnÞ

¼ ð1� lcÞwðnÞþ leðnÞxðnÞ
ð4Þ

where µ is the step-size parameter of the algorithm.

2.2 Zero-Attracting Leaky-LMS (ZA-LLMS) Algorithm

The cost function of the LLMS algorithm was modified by adding the log-sum penalty
of the filter-tap vector as given below:

J2ðnÞÞ ¼ 1
2
e2ðnÞþ cwTðnÞwðnÞþ c0

XN
i¼1

ð1þ wij j
n0

Þ ð5Þ

where c0 and n0 are positive parameters. Taking the gradient of the cost function and
subtracting from the previous filter-tap vector iteratively, then the update equation was
derived as follows [7]:

wðnþ 1Þ ¼ ð1� lcÞwðnÞþ leðnÞxðnÞ � q
sgn½wðnÞ�
1þ n wðnÞj j ð6Þ

where q ¼ lc0

n0 is the zero-attracting parameter, n ¼ 1
n0 and sgn(.) operation is defined as,

sgnðxÞ ¼
x
xj j if x 6¼ 0
0 if x ¼ 0

�
ð7Þ

3 The Proposed Algorithm

3.1 Derivation of the Proposed Algorithm

An improved sparse LMS-type algorithm was proposed in [8] by exploiting the
advantages of variable step-size and recently proposed [9] l0-norm which gives an
approximate value of �k k0. We modify the cost function of that algorithm by adding the
weight vector norm penalty as,
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J3ðnÞÞ ¼ 1
2
e2ðnÞþ cwTðnÞwðnÞþ e wðnÞk k0 ð8Þ

where ε is a small positive constant and wðnÞk k0 denotes the l0-norm of the weight
vector given as,

wðnÞk k0’
XN�1

k¼0

ð1� e�k wðnÞj jÞ ð9Þ

where λ is a positive parameter. Deriving (8) with respect to w(n) and substituting in
the update equation we get,

wðnþ 1Þ ¼ ð1� lðnÞcÞwðnÞþ lðnÞeðnÞxðnÞ � qðnÞsgn½wðnÞ�e�k wðnÞj j ð10Þ

where qðnÞ ¼ lðnÞek is the sparsity aware parameter and depends on the positive
constant λ and lðnÞ which is the variable step-size and given in [6] as

lðnþ 1Þ ¼ alðnÞþ csf ðnÞ
eðnÞ2
ê2msðnÞ

ð11Þ

where 0\a\1; cs [ 0 are some positive constants and eðnÞ is a mean value of the
error vector. ê2msðnÞ is the estimated mean-square-error (MSE) and is defined as

ê2msðnÞ ¼ bê2msðn� 1Þþ ð1� bÞeðnÞ2 ð12Þ

where b is a weighting factor given as 0\b\1 and f ðnÞ is a control function given
below

f ðnÞ ¼ 1=n n\L
1=L n� L

�
ð13Þ

A summary of the algorithm is given in Table 1.
It is seen that the update equation of the ZA-LLMS algorithm has been modified by

changing the constant step-size µ with µ(n) given in [8] and the zero-attractor

q sgn½wðnÞ�
1þ n wðnÞj j with qðnÞsgn½wðnÞ�e�k wðnÞj j.

3.2 Computational Complexity

The update equation of the conventional LMS algorithm has O(N) complexity and has
been calculated as 2N + 1 multiplications and 2N additions at each iteration [10]. For
ð1� lcÞwðnÞ in LLMS N + 1 extra multiplications and one addition are required. In
the update equation of the estimated MSE used in the algorithm proposed in [8], 3
multiplications and 2 additions are required additionally to compute the ê2msðnÞ. For
update equation of lðnÞ, we need 5 multiplications and one addition. The
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computational complexity of the zero attractor, qðnÞsgn½wðnÞ�e�k wðnÞj j, requires
N multiplications for k wðnÞj j, N additions for e�k wðnÞj j (taking the first two terms of
Taylor series), N multiplications for qðnÞsgn½wðnÞ�, N multiplications for one by one
element product of k wðnÞj j by qðnÞsgn½wðnÞ� and N comparisons for sgn½wðnÞ�. So,
overall complexity of the zero attractor is 3N multiplications, N additions and N com-
parisons. The overall computational complexity of the proposed algorithm requires
6N + 10 multiplications, 3N + 4 additions and N comparisons, that is, (O
(N) complexity.

4 Simulation Results

In this section, we compare the performance of the proposed algorithm with LLMS and
ZA-LLMS algorithms in high-sparse and low-sparse system identification settings.
Two different experiments are performed for each of AWGN and ACGN input signals.
To increase the reliability of the expected ensemble average, experiments were repeated
by 200 independent Monte-Carlo runs. The constant parameters are found by extensive
tests of simulations to obtain the optimal performance as follows: For LLMS:
µ = 0.002 and γ = 0.001. For ZA-LLMS: µ = 0.002, γ = 0.001, ρ = 0.0005 and
ξ = 30. For the proposed algorithm: ρ = 0.0005 and λ = 8.

In the first experiment, all algorithms are compared for 90 % high-sparsity and
50 % low-sparsity of the system with 20 coefficients having in the first part two ‘1’ and
18 ‘0’; in the second part ten ‘1’ and ten ‘0’ for 5000 iterations. Signal-to-noise ratio
(SNR) is kept at 10 dB by regulating the variances of the input signal and the additive
noise. The performance of the algorithm is compared in terms of convergence speed

and MSD ¼ E w0 � wðnÞk k2
n o

. Figures 2 and 3 give the MSD vs. iteration number of

the three algorithms for 90 % sparsity and 50 % sparsity levels respectively. In Fig. 2,

Table 1. Summary of the SBFC-VSSLMS algorithm.
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Fig. 2. Steady state behavior of the LLMS, ZA-LLMS and the proposed algorithm for 90 %
sparsity with AWGN.
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Fig. 3. Steady state behavior of the LLMS, ZA-LLMS and the proposed algorithm for 50 %
sparsity with AWGN.
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Fig. 4. Steady state behavior of the LLMS, ZA-LLMS and the proposed algorithm for 90 %
sparsity with ACGN.
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Fig. 5. Steady state behavior of the LLMS, ZA-LLMS and the proposed algorithm for 50 %
sparsity with ACGN.

544 C. Turan and Y. Amirgaliev



the proposed algorithm has a convergence speed of around 1000 iterations and MSD
about −37 dB, while the others are close to each other at a convergence speed of 2500
iterations and MSD of −26*28 dB. Figure 3 shows that the proposed algorithm has a
convergence speed of 1100 iterations and MSD of −29.9 dB while the other algorithms
have convergence speed and MSD about 3000 iterations and −26 dB, respectively. The
figures show that, the proposed algorithm has a fairly fast convergence with lower
MSD than that of the other algorithms.

In the second experiment, all conditions are kept as same as in the previous
experiment except the input signal type. A correlated signal is created by the AR(1)
process as xðnÞ ¼ 0:4xðn� 1Þþ v0ðnÞ and the normalized. Figures 4 and 5 shows that
the proposed algorithm has a faster convergence and lower MSD than the other
algorithms for 90 % sparsity and 50 % sparsity levels respectively.

5 Conclusions

In this work, we proposed a modified leaky-LMS algorithm for sparse system identi-
fication. It was derived by combining the ZA-LLMS and ZAFC-LMS algorithms. The
performance of the proposed algorithm was compared with LLMS and ZA-LLMS
algorithms for 90 % and 50 % sparsity levels of the system with AWGN and ACGN
input signals in two different experiments performed in MATLAB. Additionally, the
computational complexity of the proposed algorithm has been derived. It was shown
that the computational complexity of the proposed algorithm is O(N) as same as in
other LMS-type algorithms. Besides, the simulations showed that the proposed algo-
rithm has a very high performance with a quite faster convergence and lower MSD than
that of the other algorithms. As a future work, it is recommended that the proposed
algorithm can be modified for transform domain or be tested for non-stationary
systems.
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