
On the Merit and Penalty Functions
for the D.C. Optimization

Alexander S. Strekalovsky(B)

Institute for System Dynamics and Control Theory SB RAS,
Lermontov street, 134, Irkutsk 664033, Russia

strekal@icc.ru

Abstract. This paper addresses a rather general problem of nonlin-
ear optimization with the inequality constraints and the goal function
defined by the (d.c.) functions represented by the difference of two con-
vex functions. In order to reduce the constrained optimization problem
to an unconstrained one, we investigate three auxiliary problems with
the max-merit, Lagrange and penalty goal functions. Further, their rela-
tions to the original problem are estimated by means of the new Global
Optimality Conditions and classical Optimization Theory as well as by
examples.
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1 Introduction

It is well-known that the contemporary Optimality Conditions (OC) theory
[1–13], a considerable part of which is presented by modern generalizations of the
KKT-theorem [1–13], turns out to be ineffective when it comes to a characteri-
zation of a global solution to nonconvex problems. Meanwhile, real-life applied
problems might have a lot (often a huge number!) of local extrema [15–22].

On the other hand, new attractive and promising areas for investigations in
optimization in the 21st century arise from various applications. Among others,
let us mention the following problems: the search for equilibrium in competitions;
hierarchical optimization problems; dynamical control problems. However, as it
has been shown in [17], it turns out that all these new problems are related to
nonconvexity. Hence, it becomes obvious that we need new mathematical tools
(optimality conditions, numerical procedures etc.) that would allow us to escape
stationary or local solutions and construct numerical procedures able to jump
out of local pits simultaneously improving the goal functions. The first attempts
to propose such an apparatus have been undertaken in [17–22] for special d.c.
optimization problems such as d.c. minimization, convex maximization, reverse-
convex problems etc [15–22]. To deal with this class of problems, the Global
Search Theory [17,21] has been developed, which comprises local search meth-
ods [17–19,21] and global search procedures [17,21,22] that employ classical
methods.
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In this paper, we address more general problems with d.c. functions in
inequality constraints and goal functions and investigate the reduction of the
constrained problem to three unconstrained ones formed by the max-merit,
Lagrange and penalty goal functions. The study is performed, in particular,
by means of the new Global Optimality Conditions for three different auxiliary
unconstrained problems. After the statement of the problem in Sects. 2 and 3
considers the max-merit function and an auxiliary problem with Example 1 to
illustrate inadequacy of the max-merit function to the original Problem.

Further, we study the well-known Lagrange function and show by means of
the Global Optimality Conditions (GOC) and examples that L(x, λ) seeks a
saddle point (which does not always exist) but not a solution to the original
problem.

In Sect. 5, we consider a penalization approach and provide some necessary
information. We study the GOC for the penalized problem and use examples to
demonstrate that the new tools are effective.

Section 6 provides the conclusion to summarize the content of the paper.

2 Statement of Problem

Let us consider the following problem:

(P) :
f0(x) := g0(x) − h0(x) ↓ min

x
, x ∈ S,

fi(x) := gi(x) − hi(x) ≤ 0, i ∈ I = {1, . . . ,m};

}
(1)

where the functions gi(·), hi(·), i = 0, 1, . . . , m, are convex on IRn, so that
the functions fi(·), i = 0, 1, . . . ,m, are the (d.c.) functions of A.D. Alexandrov
represented as a difference of two convex functions [1,2,4,5].

In order to avoid some singularities [1,4,5], we assume that

S ⊂
[

m⋂
i=0

int(dom gi(·))
]

∩
[

m⋂
i=0

int(dom hi(·))
]

�= ∅,

where the set S ⊂ IRn is convex.
Further, let the following assumptions hold:

D := {x ∈ S | fi(x) ≤ 0, i ∈ I} �= ∅,

V(P) := inf(f0,D) � inf
x

{f0(x) | x ∈ S, fi(x) ≤ 0, i ∈ I} > −∞,

Sol(P) := {z ∈ D | f0(z) = V(P)} �= ∅.

3 The Max-Merit Function

Let us consider the following function [5–9]

F (x, η) := max{f0(x) − η; f1(x), . . . , fm(x)}, (2)

where η ∈ IR. Below, for a feasible (in (P)) point z ∈ D, we denote ζ := f0(z).



454 A.S. Strekalovsky

Proposition 1 ([5–9]). Suppose that a point z is a solution to Problem (P):
z ∈ Sol(P). Then, the point z is a solution to the following auxiliary problem

(Pζ) : F (x, ζ) ↓ min
x

, x ∈ S. (3)

Proposition 2 ([5]). Suppose the parameter η is equal to the optimal value of
Problem (P)–(1), η = V(P). Then, the point z ∈ D is a solution to Problem (P)
if and only if z is a solution to the auxiliary problem (Pζ) with ζ := f0(z) = V(P).
Under latter conditions, the equality Sol(P) = Sol(Pζ) holds.

Lemma 1. Suppose that the point z ∈ D is not a solution to problem (Pη) with
η = ζ := f0(z), so that there exists a point u ∈ S, such that

F (u, ζ) < 0 = F (z, ζ).

Then, the point z ∈ D cannot be a solution to Problem (P): z �∈ Sol(P).

Proof. From the inequality F (u, ζ) < 0 it follows that u ∈ S, fi(u) < 0, and
f0(u) < f0(z) = ζ, so that u is feasible for Problem (P). Hence, z �∈ Sol(P). 
�

Note that it is not difficult to show that the objective function F (x, η) of
Problem (Pη)–(3), given in (2), is a d.c. function.

Remark 1. Let us now pay attention to the fact that Proposition 2 provides the
sufficient conditions for z ∈ S to be a solution to Problem (Pζ), ζ = f0(z), but
not to the original Problem (P). Only if we added the equality ζ = V(P) (see
Proposition 2), which is, in particular, rather difficult to verify in the majority of
the applied problems, then we would be able to make a conclusion about the global
solution property in Problem (P) of the feasible point z ∈ D under investigation.
On the other hand, the equality f0(z) = ζ = V(P) for a feasible point z ∈ D
immediately provides that z ∈ Sol(P) without any supplementary conditions. So,
this condition appears to be incorrect. In order to see the adequateness of F (x, η)
with respect to Problem (P) let us consider an example. 
�
Example 1. Consider the problem

f0(x) = 1
2 (x1 − 4)2 + (x2 + 2)2 ↓ min

x
,

f1(x) = (x1 − 1)2 − (x2 + 1)2 ≤ 0,
f2(x) = (x2 − 2)2 − (x1 + 2)2 ≤ 0.

⎫⎬
⎭ (4)

It is easy to see that the point z∗ = (4,−2)� is the global minimum of the
strongly convex function f0(·) on IR2, and f0(z∗) = 0 provides a lower bound for
V(4) = inf(f0,D) ≥ 0. Note that z∗ is unfeasible in (4), since f1(z∗) = 8 > 0. Let
us consider another point z = (43 ,− 2

3 )� which is feasible for (4), since f1(z) = 0
and f2(z) = −4 < 0. In addition, it can be readily seen that z satisfies the
KKT-conditions with λ0 = 1, λ1 = 4 > 0, λ2 = 0, ζ := f0(z) = 51

3 .
Further, since

f1(x) = (x1 − x2 − 2)(x1 + x2) ≤ 0, f2(x) = (x2 − x1 − 4)(x2 + x1) ≤ 0,



On the Merit and Penalty Functions for the D.C. Optimization 455

it can be readily shown that the feasible set D := {x ∈ IR2 | fi(x) ≤ 0, i = 1, 2}
is represented by the union of the two convex parts: D = D1 ∪ D2, D1 = {x |
x1 + x2 = 0}, D2 = {x | x1 + x2 ≥ 0, x2 − x1 − 4 ≤ 0, x1 − x2 − 2 ≤ 0}.

Hence, from the geometric view-point, it is easy to see that the point
z0 = (83 ,− 8

3 )� is the global solution to (4) with the optimal value
V(4) = f0(z0) =: ζ0 = 4

3 . So, the point z = (43 ,− 2
3 )� is not to be a global

solution to (4), since f0(z) = 51
3 = ζ. However, the goal function F (x, ζ) of

Problem (Pζ) does not distinguish between these two points. Actually,

F (z0, ζ) = max{f0(z0) − ζ; f1(z0); f2(z0)} = 0 =
max{f0(z) − ζ; f1(z); f2(z)} = F (z, ζ),

because z ∈ D, z0 ∈ D = {x ∈ IR2 | fi(x) ≤ 0, i = 1, 2}.
Moreover, for all feasible (in Problem (4)) points, which are better (in the

sense of the problem (4)) than the point z, i.e. u ∈ {x ∈ IR2 | x1 + x2 = 0,
f0(x) < ζ = 51

3}, we have the same results: F (u, ζ) = 0, because f1(u) = 0 =
f2(u). For instance, for any point x(α) of the form

x(α) = (v(α),−v(α))�, v(α) = 1.1α + 4.2(1 − α), α ∈ [0, 1],

we have F (x(α), ζ) = 0. Meanwhile, f0(x(α)) < f0(z) = 51
3 ∀α ∈ [0, 1].

Therefore, one can see that there exist a great number of points better than
z in the sense of Problem (4). 
�
So, Example 1 demonstrates that Problem (Pη) is not sufficiently adequate to
Problem (P). More precisely, taking into account Propositions 1 and 2, it is easy
to see that the set Sol(Pζ) might contain a lot of points not belonging to Sol(P),
so that the inclusion Sol(P) ⊂ Sol(Pζ) may be really proper. Moreover, the
inequality ζ > ζ∗ = V(P) holds together with the inclusion Sol(P) ⊂ Sol(Pζ),
which is inadmissible. Therefore, we move on to another type of the merit (or
penalty, in a rough sense) function.

4 The Lagrange Function

Consider the standard (normal) Lagrange function for Problem (P)

L(x, λ) = f0(x) +
m∑

i=1

λifi(x). (5)

It is common to call a pair (z, λ) a saddle point of the Lagrange function L(x, λ):
(z, λ) ∈ Sdl(L), if the following two inequalities are satisfied [1–9]:

∀μ ∈ IRm
+ : L(z, μ) ≤ L(z, λ) ≤ L(x, λ) ∀x ∈ S. (6)
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Lemma 2 ([1,2,4–9]). For a pair (z, λ) ∈ S × IRm
+ the following two assertions

are equivalent:

(i) max
μ

{L(z, μ) | μ ∈ IRm
+ } = L(z, λ); (7)

(ii) z ∈ D, λ ∈ IRm
+ , λifi(z) = 0, i = 1, . . . ,m. (8)

Recall that a vector λ ∈ IRm
+ satisfying the KKT-conditions, including (8),

is usually called a Lagrange multiplier [1,2,4–9] at a point z ∈ D. The set of all
Lagrange multipliers at z will be denoted below by M(z).

Remember, in addition, that for a convex optimization problem (P)–(1),
when hi(x) ≡ 0 ∀i ∈ {0} ∪ I, we have M(z1) = M(z2) = M, if zi ∈ Sol(P),
i = 1, 2 [5, Chapter VII].

Proposition 3 ([1,2,4,5,7–9]). If the pair (z, λ) ∈ S × IRm
+ is a saddle point of

the Lagrange function L(x, μ) on the set S × IRm
+ , then the point z is a global

solution to Problem (P).

In what follows, we will employ this assertion in a different form.

Proposition 4. Suppose z ∈ D, z is a KKT-point but not a global solution to
Problem (P). Then, there exists no Lagrange multiplier λ ∈ M(z) such that
(z, λ) ∈ Sdl(L).

Further, since fi(x) = gi(x)−hi(x), i = 0, 1, . . . ,m, L(x, λ) has a very simple,
clear and suitable d.c. representation

(a) L(x, λ) = Gλ(x) − Hλ(x),

(b) Gλ(x) = g0(x) +
m∑

i=1

λigi(x), Hλ(x) = h0(x) +
m∑

i=1

λihi(x).

⎫⎬
⎭ (9)

Taking into account (9), let us look at the normal Lagrange function (5) from
the view-point of the Global Optimality Conditions (GOC) [17,18,20,21].

Theorem 1. Suppose (z, λ) ∈ Sdl(L), λ0 = 1, ζ := f0(z). Then,
∀(y, β) ∈ IRn × IR such that

Hλ(y) :=
m∑

i=0

λihi(y) = β − ζ, (10)

the following inequality holds

Gλ(x) − β ≥
m∑

i=0

λi〈h′
i(y), x − y〉 ∀x ∈ S, (11)

for any subgradients h′
i(y) ∈ ∂hi(y) of the functions hi(·) at the point y,

i ∈ I ∪ {0}.
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Proof. According to the assumption, we have the chain

ζ := f0(z) =
m∑

i=0

λifi(z) = L(z, λ) ≤
m∑

i=0

λifi(x) = L(x, λ) ∀x ∈ S,

from which, due to (9) and (10), it follows

β − Hλ(y) = ζ ≤ L(x, λ) = Gλ(x) − Hλ(x) ∀x ∈ S.

Further, by the convexity of Hλ(·) =
m∑

i=0

λihi(·), λi ≥ 0, i ∈ I, we obtain

Gλ(x) − β ≥ Hλ(x) − Hλ(y) ≥
m∑

i=0

λi〈h′
i(y), x − y〉 ∀x ∈ S,

which coincides with (11). 
�
Remark 2. Due to Proposition 3, it can be readily seen that for a global solu-
tion z ∈ Sol(P), for which one can find a multiplier λ ∈ M(z) such that
(z, λ) ∈ Sdl(L), the conditions (10)–(11) turn out to be necessary global opti-
mality conditions.

Remark 3. It is clear that Theorem 1 reduces the nonconvex problem

(L) : L(x, λ) ↓ min
x

, x ∈ S,

to the verification of the principal inequality (PI) (11) for the family of parame-
ters (y, β): Hλ(y) = β − ζ, or, more precisely, to solving the family of the convex
linearized problems

(LL(y)) : Φλ(x) = Gλ(x) − 〈H ′
λ(y), x〉 ↓ min

x
, x ∈ S, (12)

with the subsequent verification of PI (11) with x = u = u(y, β) ∈ Sol(LL(y)).

Remark 4. Furthermore, suppose that there exists a tuple (y, β, u), such that
(y, β) satisfies the equality (10) and violates the PI (11), i.e. Gλ(u) − β <

〈H ′
λ(y), u − y〉. Whence, due to convexity of Hλ(·) =

m∑
i=0

λihi(·), it follows

Gλ(u) − β < Hλ(u) − Hλ(y).

Next, on account of (9) and (10), we have

L(u, λ) = Gλ(u) − Hλ(u) < β − Hλ(y) = ζ = f0(z) = L(z, λ),

where λ ∈ M(z). Hence, the right-hand-side inequality in (6) is violated with
u ∈ S. It means that the pair (z, λ) is not a saddle point: (z, λ) �∈ Sdl(L). 
�

Therefore, from the point-of-view of optimization theory [1,2,4–12,17,18,20,
21] the conditions (10)–(11) of Theorem 1 possess the constructive property. Nev-
ertheless, it is not clear whether there exists a tuple (y, β, u) that violates (11). The
answer is given by the following result.
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Theorem 2. Let there be given a KKT-point z ∈ D with the corresponding
multipliers λ ∈ M(z), λ0 = 1. In addition, let the following assumption take
place

(H) : ∃v ∈ IRn : L(v, λ) > L(z, λ) = f0(z) =: ζ. (13)

Besides, suppose that the pair (z, λ) is not a saddle point of L(z, λ) on S × IRm
+ .

Then, one can find a tuple (y, β, u), where (y, β) ∈ IRn+1, u ∈ S, and
a fixed ensemble of subgradients {h′

00(y), h′
10(y), . . . , h′

m0(y)}, h′
io(y) ∈ ∂hi(y),

i ∈ {0} ∪ I, such that

Hλ(y) �
m∑

i=0

λihi(y) = β − ζ, (14)

Gλ(y) ≤ β, (15)

Gλ(u) − β <

m∑
i=0

λi〈h′
i0(y), u − y〉. (16)


�
Let us verify the effectiveness of the constructive property of the GOC of

Theorems 1 and 2 by the example.
Example 1 (Revisited). As it has been shown above, the point z = (43 ,− 2

3 )�

is the KKT-point with λ0 = 1, λ1 = 4, λ2 = 0. Recall that ζ := f0(z) = 51
3 .

Meanwhile, there exist points feasible in the problem (4) and better than z in
the sense of the problem (4).

Now, let us apply the GOC of Theorems 1 and 2 in order to improve
the point z. For this purpose, employ the Lagrange function L(x, λ) with
λ = (1, 4, 0) ∈ M(z):

L(x, λ) = f0(x) + λf1(x) =
1
2
(x1 − 4)2 + (x2 + 2)2 + 4[(x1 − 1)2 − (x2 + 1)2].

Then we have L(x, λ) = Gλ(x) − Hλ(x), where

Gλ(x) =
1
2
(x1 − 4)2 + (x2 + 2)2 + 4(x1 − 1)2, Hλ(x) = 4(x2 + 1)2. (17)

Let us choose y = (0,− 1
2 )�, u = (43 , 0)�, f1(u) = − 8

9 < 0, f2(u) = −7 1
9 < 0.

∇Hλ(x) =
[

0
8(x2 + 1)

]
, ∇Hλ(y) =

[
0

8(y2 + 1)

]
=

(
0
4

)
.

Further, we obtain that β = Hλ(y) + ζ = 4(− 1
2 + 1)2 + 51

3 = 61
3 ,

〈∇Hλ(y), u − y〉 = 〈
(

0
4

)
,

(
4
3

0.5

)
〉 = 2, ψ(y, β) � β + 〈∇Hλ(y), u − y〉 = 8

1
3
.

Gλ(u) =
1
2
(
4
3

− 4)2 + 22 + 4(
4
3

− 1)2 =
32
9

+ 4 +
4
9

= 8.
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Hence, we see that

Gλ(u) = 8 < 8
1
3

= β + 〈∇Hλ(y), u − y〉,

and the PI (11) is violated. Due to Theorems 1 and 2, it means that (z, λ) is not
a saddle point of the Lagrange function, which can be proved as follows:

L(u, λ) � f0(u) + 4f1(u) = 7
5
9

+ 4 · (−8
9
)

= 4 < 5
1
3

= f0(z) = L(z, λ).

On the other hand, it is easy to compute that

f0(u) =
1
2
(4
3

− 4
)2 + 22 =

32
9

+ 4 = 7
5
9

> f0(z) = 5
1
3
,

so that there is no improvement at all in the original problem (4). Consequently,
we see that the GOC of Theorems 1 and 2 allow us to improve the point z in the
sense of the Lagrange function, since they are striving to minimize the Lagrange
function with respect to the variable x. However, they do not aim at minimizing
the function f0(x) over the feasible set D, i.e. at solving Problem (P). 
�

The next result will be useful below.

Lemma 3 ([9,10,12]). A point z is a solution to the problem

(Q) :
S(x) := ϕ(x) + f(x) ↓ min

x
, x ∈ S,

ϕ(x) := max
j

{
ϕj(x) | j ∈ J = {1, . . . , N}}.

}
(18)

if and only if the pair (z, t∗) is a solution to the problem

(QA) : Φ(x, t) := t + f(x) ↓ min
(x,t)

, x ∈ S, t ∈ IR, ϕj(x) � t, j ∈ J, (19)

where
t∗ = ϕ(z) = max

j
{ϕj(z) | j ∈ J}. (20)

Lemma 4 Let the quadratic function q(x) := 1
2 〈x,Ax〉 − 〈b, x〉 with the positive

definite matrix A = AT > 0, b ∈ IRn, be given. Consider the optimization
problem (with a parameter u ∈ IRn)

Q(y, β) := β + 〈∇q(y), u − y〉 ↑ max
(y,β)

, (y, β) ∈ IRn+1 : q(y) = β − γ. (21)

Then, the solution (y∗, β∗) to (21) is provided by the equalities

y∗ = u, β∗ = q(y∗) + γ. (22)

Example 2 (of G.R.Walsh, [23], p. 67). Consider the problem

f0(x) = x1x2 − 2x2
1 − 3x2

2 ↓ min
x

,

f1(x) = 3x1 + 4x2 − 12 ≤ 0, f2(x) = x2
2 − x2

1 + 1 ≤ 0,
f3(x) = −x1 ≤ 0, f4(x) = x1 − 4 ≤ 0,
f5(x) = −x2 ≤ 0, f6(x) = x2 − 3 ≤ 0.

⎫⎪⎪⎬
⎪⎪⎭ (23)
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Let us study the unique solution z = (4, 0)� to (23), f0(z) = ζ = −32. Clearly,
the Lagrange function at z takes the form L(x, λ) = x1x2 −2x2

1 −3x2
2 +λ1(3x1 +

4x2 − 12) + λ4(x1 − 4) − λ5x2, S = IR2, because λ2 = λ3 = λ6 = 0, due to the
complementarity conditions: λifi(x) = 0, i = 1, 6. In addition, with the help of
the KKT-conditions at z = (4, 0)�, we derive that λ1 = 2, λ4 = 10, λ5 = 12, so
that

L(x, λ) = x1x2 − 2x2
1 − 3x2

2 + 16x1 − 4x2 − 64. (24)

Besides, L(z, λ) = −32 = ζ = f0(z), as it should be. Further, it can be readily
seen that the function x �→ L(x, λ) is a d.c. one. We will use the d.c. represen-
tation as follows: L(x, λ) = Gλ(x) − Hλ(x), where

Gλ(x) = 2(x2
1 + x2

2) + 16x1 − 4x2 − 64, Hλ(x) = 4x2
1 + 5x2

2 − x1x2. (25)

Therefore, one can see that β = Hλ(y) + ζ = Hλ(y) − 32, ∇Hλ(x) = (8x1 −
x2, 10x2−x1)�, 〈∇H(y), u−y〉 = 8y1u1−y2u1+2y1y2−8y2

1−10y2
2+10y2u2−y1u2,

from which it follows that

θ(y, β) := β + 〈∇H(y), u − y〉 =
ψ(y) := (8u1 − u2)y1 + (10u2 − u1)y2 + y1y2 − 4y2

1 − 5y2
2 − 32.

(26)

Furthermore, Lemma 4 leads us to the equality: y∗ = u. Now, let us choose
the vector u as u = (− 1

5 ,− 4
5 )�, since S = IR2. Then one can compute that

Gλ(u) = −62 16
25 < −42 = ψ(y∗) = θ(y∗, β∗), so that the inequality (11) is

violated. Therefore, due to Theorems 1 and 2, we see that the pair (z, λ) is not
a saddle point of L(u, λ). The latter assertion can be easily verified by the direct
calculations L(u, λ) = −6521

25 < −32 = L(z, λ).
To sum up, we see that there does not exist a Lagrange multiplier λ such

that (z, λ) ∈ Sdl(L) even for the unique global solution z ∈ Sol(P). 
�
So, the max-merit function F (x, η) defined in (2), as well as the Lagrange

function, possesses some shortcomings, and both functions do not reflect com-
pletely the properties of Problem (P). Hence, we have to undertake further
investigations, perhaps, with different penalty or merit functions [10–13].

5 Penalty Functions

Now, let us introduce now the l∞-penalty function [10–13] for Problem (P)–(1)

W (x) := max{0, f1(x), . . . , fm(x)} =: max{0, fi(x), i ∈ I}. (27)

Further, consider the penalized problem as follows

(Pσ) : θσ(x) = f0(x) + σW (x) ↓ min, x ∈ S. (28)

As well-known [5,6,11–13], if z ∈ Sol(Pσ), and z ∈ D := {x ∈ S |
fi(x) ≤ 0, i ∈ I}, then z ∈ Sol(P). On the other hand, if z ∈ Sol(P),
then, under supplementary conditions [5,6,10–13], for some σ∗ ≥ ‖λz‖1 (where
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λz ∈ IRm is the KKT-multipliers corresponding to z), the inclusion z ∈ Sol(Pσ)
holds ∀σ > σ∗.

Furthermore [5, Lemma 1.2.1, Chapter VII], Sol(P) = Sol(Pσ), so that Prob-
lems (P) and (Pσ) happen to be equivalent ∀σ ≥ σ∗.

Before we move on any further, a few words should be said about “supplemen-
tary conditions”. First of all, let us mention the notion of calmness introduced
by R.T. Rockafellar [1] (see F. Clarke [6] and J.V. Burke [13]). To begin with,
instead of (P), consider the perturbed d.c. optimization problem (v ∈ IRm)

(P(v)) : f0(x) ↓ min
x

, x ∈ S, fi(x) ≤ vi, i ∈ I. (29)

Let x∗ ∈ S, v∗ ∈ IRm be such that fi(x∗) ≤ v∗i, i ∈ I. Then, Problem (P(v∗))
is said to be calm at x∗, if there exist constants κ ≥ 0 and ρ > 0 such that
∀(x, v) ∈ S × IRm with ‖x − x∗‖ ≤ ρ and fi(x) ≤ vi, i ∈ I. We have

f0(x∗) ≤ f0(x) + κ‖v − v∗‖. (30)

The constants κ and ρ are called the modulus and the radius of calmness for
(P(v∗)) at x∗, respectively. Observe that, if (P(v∗)) is calm at x∗, then x∗ is a
ρ-local solution to (P(v∗)), i.e. (v = v∗)

f0(x∗) ≤ f0(x) ∀x ∈ S : ‖x − x∗‖ ≤ ρ, and fi(x) ≤ v∗i, i ∈ I,

i.e. x ∈ D(v∗) ∩ Bx(x∗, ρ). For instance, when v∗ = 0 and (P(0)) is calm (with
κ ≥ 0 and ρ > 0), x∗ is the ρ-local solution to (P(0)) := (P).

The most fundamental finding consists in the equivalence of the calmness of
(P(v∗)) at x∗ (with κ ≥ 0 and ρ > 0) and the fact that x∗ is a ρ-local minimum
of the following penalized function with σ ≥ κ

θσ(x; v∗) := f0(x) + σ dist(F (x) | IRm
− + v∗), (31)

where F (x) = (f1(x), . . . , fm(x))�, IRm
− = {y ∈ IRm | yi ≤ 0, i ∈ I},

dist(y0 | C) = inf{‖y − y0‖ : y ∈ C}. If one takes, for instance, ‖y‖∞ �
max

i
{|yi| : i ∈ I}, then it is obvious that

W (x) := max{0, f1(x), . . . , fm(x)} = dist∞(F (x) | IRm
− ).

Various conditions can be found in the literature (see [13] and the references
therein) that ensure that the calmness hypothesis is satisfied. All of these con-
ditions are related to the regularity of the constraint system of Problem (P):

x ∈ S, fi(x) ≤ 0, i ∈ I. (32)

Recall that the system (32) is said to be regular at the solution x0 (i.e.
x0 ∈ S, F (x0) ≤ 0m) if there exist some constants M > 0 and ε > 0 such that
distx(x | D(v)) ≤ M disty(F (x) | IRm

− + v) ∀x ∈ S ∩ Bx(x0, ε) and ∀v ∈ By(0, ε)
where

D(v) := {x ∈ S | F (x) ∈ IRm
− + v}, Bx(x0, ε) := {x ∈ IRn | ‖x − x0‖x ≤ ε}.
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The conditions yielding the regularity of system (32) and more general sys-
tems have been studied in [14]. In the optimization literature such conditions
are often called the constraint qualifications conditions, e.g. the Slater and
Mangasarian-Fromovitz conditions (etc. see [10–14]).

To sum up, one can say that, under well-known regularity conditions at the
global solution z ∈ Sol(P), Problem (P) (v∗ = 0m) is calm at z ∈ Sol(P) (with
the corresponding κ ≥ 0 and ρ > 0), and, therefore, the goal function of the
penalized problem (∀σ ≥ κ ≥ 0)

(Pσ) : θσ(x) = f0(x) + σ dist∞(F (x) | IRm
− ) = f0(x) + σW (x) ↓ min

x
, x ∈ S

attains at z its global minimum over S.
Furthermore, it can be readily seen that the penalized function θσ(·) is a d.c.

function, because the functions fi(·), i ∈ I ∪ {0}, are the same. Actually, since
σ > 0,

θσ(x) = Gσ(x) − Hσ(x), (33)

Hσ(x) := h0(x) + σ
∑
i∈I

hi(x), (34)

Gσ(x) := θσ(x) + Hσ(x)

= g0(x) + σ max

{
m∑

i=1

hi(x);max
i∈I

[gi(x) +
j �=i∑
j∈I

hj(x)]

}
,

(35)

it is clear that Gσ(·) and Hσ(·) are convex functions.
For z ∈ S, denote ζ := θσ(z).
Now we can formulate the major result of the paper.

Theorem 3 If z ∈ Sol(Pσ), then

∀(y, β) : Hσ(y) = β − ζ (36)

the following inequality holds

Gσ(x) − β ≥ 〈∇h0(y) + σ
∑
i∈I

∇hi(y), x − y〉 ∀x ∈ S. (37)


�
It is easy to see that Theorem 3 reduces the nonconvex (d.c.) Problem (Pσ)

to solving the family of convex linearized problems of the form

(PσL(y)) : Gσ(x) − 〈∇Hσ(y), x〉 ↓ min
x

, x ∈ S, (38)

depending on the parameters (y, β) fulfilling (36).
If for such a pair (y, β) and some u ∈ S (u may be a solution to (PσL(y)))

the inequality (37) is violated, i.e.

Gσ(u) < β + 〈∇Hσ(y), u − y〉, (39)
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then, due to convexity of Hσ(·) and with the help of (36), we obtain that

Gσ(u) < β + Hσ(u) − Hσ(y) = Hσ(u) + ζ.

The latter implies that θσ(u) = Gσ(u) − Hσ(u) < ζ := θσ(z), so that u ∈ S is
better than z, i.e. z /∈ Sol(Pσ).

It means that the Global Optimality Conditions (36), (37) of Theorem 3 pos-
sess the constructive (algorithmic) property allowing to design local and global
search methods for Problem (Pσ) [17,18,20–22].

In particular, they enable us to escape a local pit of (Pσ) to reach a global
solution. The question arises whether such a tuple (y, β, u) exists. The answer is
given by the following result.

Theorem 4 Let for a point z ∈ S there exists w ∈ IRn such that

(H) : θσ(w) > θσ(z).

If z is not a solution to Problem (Pσ), then one can find a pair (y, β) ∈ IRn+1,
satisfying (36), and a point u ∈ S such that the inequality (39) holds. 
�

Now let us set y = z in (38). Then from (36) it follows that β = θσ(z) +
Hσ(z) = Gσ(z). Furthermore, from (37) we derive

Gσ(x) − Gσ(z) ≥ 〈∇Hσ(z), x − z〉 x ∈ S,

that yields that z is a solution to the convex linearized problem

(PσL(z)) : Gσ(x) − 〈∇Hσ(z), x〉 ↓ min
x

, x ∈ S,

With the help of Lemma 3 and due to (33)–(35), we see that the latter problem
amounts to the next one

g0(x) − 〈∇Hσ(z), x〉 + σt ↓ min
(x,t)

, x ∈ S, t ∈ IR,∑
i∈I

hi(x) ≤ t, gi(x) +
∑
j �=i

hi(x) ≤ t, i ∈ I.

⎫⎬
⎭ (40)

Moreover, the KKT-conditions to Problem (40) provide for the KKT-conditions
at z for the original Problem (P).

So, the Global Optimality Conditions (36), (37) of Theorems 3 and 4 are
connected with classical optimization theory [1–13,15].
Example 1 (Revisited). Let us return to problem (4), where the point
z = ( 43 ,− 2

3 )�, with f1(z) = 0 and f2(z) = −4 < 0, ζ := f0(z) = 51
3 , satis-

fies the KKT-conditions with λ0 = 1, λ1 = 4 > 0, λ2 = 0.
On the other hand, the point z0 = (83 ,− 8

3 )� is the global solution to (4) with
the optimal value V(4) = f0(z0) =: ζ0 = 4

3 .
In this example, h0(x) ≡ 0, g0(x) = f0(x) = 1

2 (x1 − 4)2 + (x2 + 2)2, g1(x) =
(x1 − 1)2, h1(x) = (x2 + 1)2, g2(x) = (x2 − 2)2, h2(x) = (x1 + 2)2. Therefore,
taking into account (34) and (35), one can see that
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Hσ(x) := h0(x) + σ
∑
i∈I

hi(x) = σ
[
(x1 + 2)2 + (x2 + 1)2

]
,

Gσ(x) := g0(x) + σ max
{ 2∑

i=1

hi(x); g1(x) + h2(x); g2(x) + h1(x)
}

=
1
2 (x1 − 4)2 + (x2 + 2)2+

σ max
{
(x1 + 2)2 + (x2 + 1)2; (x1 − 1)2 + (x1 + 2)2; (x2 − 2)2 + (x2 + 1)2

}
.

Set σ := 5 = ‖λ‖1, y = (1.5,−2)� �∈ D. Then, we have β = Hσ(y) + ζ =
5
[
(1.5 + 2)2 + (−2 + 1)2

]
+ 51

3 = 71 7
12 . Now set u = (2,−2)� ∈ D.

Then, according to Theorem 3, it is not difficult to compute that

β + 〈∇Hσ(y), u − y〉 = 89
1
12

.

On the other hand, we see that

Gσ(u) = 87 < 89
1
12

= β + 〈∇Hσ(y), u − y〉.

It means that the principal inequality (37) of the GOC is violated, so that
z �∈ Sol(Pσ). Consequently, z �∈ Sol(P), since 2 = f0(u) = θσ(u) < θσ(z) =
f0(z) = 51

3 , because u and z are feasible.
So, the Global Optimality Conditions (GOC) of Theorems 3 and 4 allow us

not only to show that the KKT-point z = (43 ,− 2
3 )T is not a global solution to the

problem (7), but, in addition, to construst a feasible point u = (2, 2)T ∈ D which
is better than z and closer to the global solution z0 = (83 ,− 8

3 )T . Remember, the
max-merit function F (x, ζ) does not differ between these two points:

F (z, ζ) = 0 = F (z0, ζ).

Besides, in order to find a saddle point, the Lagrange function aims at improving
exactly itself but not at solving Problem (P). 
�

Hence, the exact penalization approach demonstrated some advantages in
comparison with the max-merit and Lagrange functions.

In addition, employing the constructive property of the GOC of Theorems 3
and 4, we can design the Special Local Search and Global Search Methods.
The latter one can escape local pits and attain global solutions in general d.c.
optimization problems.

6 Conclusion

We considered the reduction of the constrained optimization problem with
the d.c. goal function and d.c. inequality constraints to three auxiliary uncon-
strained problems with different objective functions: the max-merit function, the
Lagrange function and an exact penalty function.

The comparison was based on the level of adequacy to the original prob-
lem and has been carried out by means of the classical tools, the new Global
Optimality Conditions (GOC) and a few examples.
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The results showed certain advantages of the exact penalization approach
that facilitates development of the new local and global search methods for
solving the original problem [17–22].
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