
An Approach to Fractional Programming
via D.C. Constraints Problem: Local Search

Tatiana Gruzdeva(B) and Alexander Strekalovsky(B)

Matrosov Institute for System Dynamics and Control Theory of SB RAS,
Lermontov Str., 134, 664033 Irkutsk, Russia

gruzdeva@icc.ru, strekal@icc.ru

http://nonconvex.isc.irk.ru

Abstract. We consider the problem of optimizing the sum of several
rational functions via reduction to a problem with d.c. constraints. We pro-
pose a method of finding a local solution to the fractional program which
can be subsequently used in the global search method based on the global
optimality conditions for a problem with nonconvex (d.c.) constraints [21–
23]. According to the theory, we construct explicit representations of the
constraints in the form of differences of two convex functions and perform
a local search method that takes into account the structure of the problem
in question. This algorithm was verified on a set of low-dimensional test
problems taken from literature as well as on randomly generated problems
with up to 200 variables and 200 terms in the sum.

Keywords: Nonconvex optimization · Rational optimization ·
d.c. representation · Local search · Linearized problems

1 Introduction

The fractional optimization is quite challenging and arises in various on a both
economic and non-economic applications, whenever one or several ratios are
required to be optimized. Let us mention a few examples mainly following the
surveys by Schaible [8,19,20], where numerous other applications can be found.
Numerators and denominators in ratios may represent cost, capital, profit, risk
or time, etc. Fractional programs is closely related to the associated multiple-
objective optimization problem, where a number of ratios are to be maximized
simultaneously. Thus, the objective function in a fractional program can be con-
sidered as a utility function expressing a compromise between the different objec-
tive functions of the multiple-objective problem. Other applications include a
multistage stochastic shipping problem [1,7], profit maximization under fixed
cost [4], various models in cluster analysis [17], multi-objective bond portfolio
[13], and queuing location problems [5].

As known, without assumptions, the sum-of-ratios program is NP-
complete [9]. Surveys on methods for solving this problem can be found in
[8,20,28,29]. According to the surveys, the majority of the methods make restric-
tive assumptions either on the concavity or linearity of the ratios. When the
c© Springer International Publishing Switzerland 2016
Y. Kochetov et al. (Eds.): DOOR 2016, LNCS 9869, pp. 404–417, 2016.
DOI: 10.1007/978-3-319-44914-2 32



Fractional Programming via D.C. Constraints Problem: Local Search 405

ratios are nonlinear, the most popular techniques are based on the Branch and
Bound approach, see e.g. [2,6].

We propose reducing a fractional problem to the optimization problem with
nonconvex constraints [10,23], as it was mentioned in [6], with a subsequent
application of the Global search theory for solving this class of nonconvex prob-
lems [21–23,25,26].

The outline of the paper is as follows. In Sect. 2 we substantiate the reduc-
tion of the sum-of-ratios fractional problem to the optimization problem with
nonconvex constraints. Then in Sect. 3 we recall the local search method from
[21], which implies linearization of the functions defining the basic non-convexity
of the problem with d.c. constraints in the current point. In Sect. 4 we show how
to explicitly represent the nonconvex functions, describing the constraints of the
problem in question, as differences of two convex functions (the d.c. representa-
tion). The final section offers computational testing of the local search method
on fractional program instances with a small number of variables and terms
in the sum. We use the examples found in the literature as well as randomly
generated problems of higher dimension.

2 Reduction to the Problem with Nonconvex Constraints

Now consider the following problem of the fractional optimization [3,20]

f(x) :=
m∑

i=1

ψi(x)
ϕi(x)

↓ min
x

, x ∈ S, (P0)

where ψi : IRn → IR, ϕi : IRn → IR, ϕi(x) > 0, ∀x ∈ S, i = 1, . . . , m, and
S ⊂ IRn is a convex set.

Proposition 1. (i) Let the pair (x∗, α∗) ∈ IRn × IRm be a solution to the fol-
lowing problem:

m∑

i=1

αi ↓ min
(x,α)

, x ∈ S,
ψi(x)
ϕi(x)

= αi, i = 1, . . . , m. (P1)

Then x∗ is the solution to Problem (P0) and f(x∗) =
m∑

i=1

α∗i.

(ii) Conversely, if x∗ is the solution to Problem (P0) (x∗ ∈ Sol(P0)), then

the vector α∗ = (α∗1, . . . , α∗m)T ∈ IRm defined as α∗i =
ψi(x∗)
ϕi(x∗)

, i = 1, . . . , m,

is part of the solution (x∗, α∗) to Problem (P1).

Proof. (i) Let (x∗, α∗) ∈ Sol(P1), i.e. α∗i =
ψi(x∗)
ϕi(x∗)

, i = 1, . . . , m, x∗ ∈ S, and
m∑

i=1

α∗i ≤
m∑

i=1

αi for all αi : ∃x ∈ S,
ψi(x)
ϕi(x)

= αi, i = 1, . . . , m,

f(x∗) =
m∑

i=1

ψi(x∗)
ϕi(x∗)

=
m∑

i=1

α∗i ≤
m∑

i=1

αi =
m∑

i=1

ψi(x)
ϕi(x)

= f(x) ∀x ∈ S.



406 T. Gruzdeva and A. Strekalovsky

Therefore, x∗ is the solution to Problem (P0).
(ii) Now let x∗ ∈ Sol(P0). Then

f(x∗) =
m∑

i=1

ψi(x∗)
ϕi(x∗)

≤
m∑

i=1

ψi(x)
ϕi(x)

= f(x) ∀x ∈ S. (1)

Define α∗i :=
ψi(x∗)
ϕi(x∗)

, i = 1, . . . , m, and consider the set

Dα =
{

α ∈ IRm : ∃x ∈ S, αi =
ψi(x)
ϕi(x)

}
.

Then (1) implies
m∑

i=1

α∗i = f(x∗) ≤ f(x) =
m∑

i=1

αi ∀α ∈ Dα, ∀x ∈ S. Therefore

x∗ ∈ Sol(P0). 	

Proposition 2. Let the pair (x∗, α∗) ∈ IRn × IRm be a solution to the following
problem:

m∑

i=1

αi ↓ min
(x,α)

, x ∈ S,
ψi(x)
ϕi(x)

≤ αi, i = 1, . . . , m. (P2)

Then
ψi(x∗)
ϕi(x∗)

= α∗i, i = 1, . . . , m. (2)

Proof. Let (x∗, α∗) ∈ Sol(P2). Suppose that

∃j ∈ {1, 2, . . . ,m} :
ψj(x∗)
ϕj(x∗)

< α∗j , (3)

and construct α̂ : α̂i = α∗i ∀i �= j, α̂j =
ψj(x∗)
ϕj(x∗)

. It can be readily seen that

(x∗, α̂) is a feasible pair to Problem (P2). The assumption (3) implies
m∑

i=1

α∗i =
∑

i�=j

α∗i + α∗j >

m∑

i=1

α̂i.

It means that in Problem (P2) the pair (x∗, α̂) is better than the pair (x∗, α∗),
so, (x∗, α∗) /∈ Sol(P2). This contradiction proves the equality (2). 	

Corollary 1. Any solution (x∗, α∗) ∈ IRn × IRm to Problem (P2) will be a
solution to Problem (P1), and, therefore, will be a solution to Problem (P0).

Remark 1. The inequality constraints in Problem (P2) can be replaced by equiv-
alent constraints ψi(x) − αiϕi(x) ≤ 0, i = 1, . . . , m, since ϕi(x) > 0 ∀x ∈ S. It
leads us to the following problem with m nonconvex constraints:

m∑

i=1

αi ↓ min
(x,α)

, x ∈ S, ψi(x) − αiϕi(x) ≤ 0, i = 1, . . . , m. (P)



Fractional Programming via D.C. Constraints Problem: Local Search 407

It is easy to see that Problem (P) is a global optimization problem with the
nonconvex feasible set (see, e.g., [10,23]), and we can apply the Global Search
Theory for solving this class of nonconvex problems [21–23,25,26]. The The-
ory allows one to construct an algorithm for solving problems with nonconvex
constraints. The algorithm contains two principal stages: (a) local search, which
provides an approximately critical point; (b) procedures of escaping from critical
points.

In the next section, we shall consider a local search method.

3 Local Search for Problem with D.C. Constraints

The local search methods (LSMs) play an important role in searching for the
global solution to nonconvex problems, since it provides the so-called critical
(stationary) points that might be considerably be better than a simple feasible
point. Moreover, if a starting point occurs rather close to the global solution,
then the LSMs can provide the global solution.

In order to find a local solution to Problem (P), we apply a special LSM [21].
Let us consider the following problem with d.c. constraints:

f0(x) ↓ min
x

, x ∈ S,

fi(x) := gi(x) − hi(x) ≤ 0, i ∈ I � {1, . . . , m},

}
(4)

where the functions f0 and gi, hi, i ∈ I, as well as the set S ⊂ IRn, are convex.
Further, suppose that the feasible set D := {x ∈ S | fi(x) ≤ 0, i ∈ I } of the
problem (4) is not empty and the optimal value V (4) := inf

x
{f0(x) | x ∈ D} of

the problem (4) is finite: V (4) > −∞.
Furthermore, assume that a feasible starting point x0 ∈ D is given and,

in addition, after several iterations it has derived the current iterate xs ∈ D,
s ∈ Z+ = {0, 1, 2, . . .}.

In order to propose a local search method for the problem (4), apply a clas-
sical idea of linearization with respect to the basic nonconvexity of the problem
(i.e. with respect to hi(·), i ∈ I) at the point xs [21]. Thus, we obtain the
following linearized problem:

f0(x) ↓ min
x

, x ∈ S,

ϕis(x) := gi(x) − 〈∇hi(xs), x − xs〉 − hi(xs) ≤ 0, i ∈ I.

}
(PLs)

Suppose the point xs+1 is provided by solving Problem (PLs), so that

xs+1 ∈ Ds = {x ∈ S | gi(x) − 〈∇hi(xs), x − xs〉 − hi(xs) ≤ 0, i ∈ I}

and inequality f0(xs+1) ≤ V(PLs) + δs holds. Here V(PLs) is the optimal value
to Problem (PLs):

Vs := V(PLs) � inf
x

{f0(x) | x ∈ S, ϕis(x) ≤ 0, i ∈ I},



408 T. Gruzdeva and A. Strekalovsky

and the sequence {δs} satisfies the following condition functions
∞∑

s=0
δs < +∞.

It can be easily seen that Ds ⊂ D, so xs+1 turns out to be feasible in the
problem (4). Actually, since the functions hi(·), i ∈ I are convex, the following
inequalities hold

0 ≥ gi(xs+1) − 〈h′
i(x

s), xs+1 − xs〉 − hi(xs) = ϕis(xs+1) ≥
≥ gi(xs+1) − hi(xs+1) = fi(xs+1), i ∈ I.

Therefore, the LSM generates the sequence {xs}, xs ∈ Ds, s = 0, 1, 2, . . ., of
solutions to Problems (PLs). As it was proven in [21], the cluster point x∗ ∈ D∗
of the sequence {xs} is a solution to the linearized Problem (PL∗) (which is
Problem (PLs) with xs instead of x∗), and x∗ can be called the critical point
with respect to the LSM. Thus, the algorithm constructed in this way provides
critical points by employing suitable convex optimization methods [15] for any
given accuracy τ . The following inequality:

f0(xs) − f0(xs+1) ≤ τ

2
, δs ≤ τ

2
,

can be chosen as a stopping criterion for the LSM [21].
In order to implement the LSM, we need an explicit d.c. representation of

fi(·), i.e. fi(·) = gi(·) − hi(·), i ∈ I.

4 D.C. Representation of the Constraints

The first stage of any algorithm developed according the Global search theory
is the decomposition of a nonconvex function as a difference of two convex func-
tions. Such decomposition is constructing in several different ways depending on
the functions ψi(·) and ϕi(·).

4.1 Affine Functions

Let the functions ψi(·) and ϕi(·) be constructed by means of the vectors
ai, ci ∈ IRn, and numbers bi, di ∈ IR,

ψi(x) = 〈ai, x〉 + bi, ϕi(x) = 〈ci, x〉 + di > 0, i ∈ I.

In this case, the basic nonconvexity of Problem (P) is the bilinear term
αiϕi(x) = 〈αic

i, x〉 + αidi in each constraint (i ∈ I). Then, the bilinear func-
tion can be represented as a difference of two convex functions in the following
way [27]:

〈αic
i, x〉 =

1
4

‖ αic
i + x ‖2 −1

4
‖ αic

i − x ‖2, i ∈ I. (5)

Hence, the functions fi(·) have the form fi(x, αi) = gi(x, αi) − hi(x, αi), where

gi(x, αi) =
1
4

‖ αic
i − x ‖2 −αidi + 〈ai, x〉 + bi,

hi(x, αi) =
1
4

‖ αic
i + x ‖2 .

(6)



Fractional Programming via D.C. Constraints Problem: Local Search 409

Taking into account the d.c. representation (6), the linearized Problem (PLs)
has the following form

m∑
i=1

αi ↓ min
(x,α)

, x ∈ S,

1
4

‖ αic
i − x ‖2 +〈ai, x〉 − αidi〈∇hi(xs, αs

i ), (x, αi)〉 + Cis ≤ 0, i ∈ I,

⎫
⎪⎬

⎪⎭
(7)

where Cis = bi + 〈∇hi(xs, αs
i ), (x

s, αs
i )〉 − 1

4
‖ αs

i c
i + xs ‖2,

∇hi(xs, αs
i ) = (∇hix,∇hiα)T ,

∇hix =
1
2
(αs

i c
i + xs), ∇hiα =

1
2
(αs

i ‖ ci ‖2 +〈ci, xs〉). (8)

The problem (7) is a convex optimization problem and it can be solved by
an appropriate convex optimization method [15] at a given accuracy: δs > 0,
s = 0, 1, . . ..

Further, we will consider Problem (P) where ψi(·) are convex quadratic func-
tions and ϕi(·) are affine functions, i ∈ I.

4.2 Quadratic/Affine Functions

Suppose we are given symmetric positive definite matrices Ai (n × n), vectors
pi, ci ∈ IRn, and scalars qi, di ∈ IR,

ψi(x) = 〈x,Aix〉 + 〈pi, x〉 + qi, ϕi(x) = 〈ci, x〉 + di > 0, i ∈ I.

As has been done in Subsect. 4.1, we represent the bilinear term αiϕi(x) as
the difference of two convex functions, which yields us the d.c. representations
fi(x, αi) = gi(x, αi) − hi(x, αi), i ∈ I, where

gi(x, αi) = 〈x,Aix〉 + 〈pi, x〉 + qi +
1
4

‖ αic
i − x ‖2 −αidi,

hi(x, αi) =
1
4

‖ αic
i + x ‖2 .

(9)

Taking into account the d.c. representation (9), the linearized Problem (PLs)
takes the following form

m∑
i=1

αi ↓ min
(x,α)

, x ∈ S,

〈x,Aix〉 + 〈pi, x〉 +
1
4

‖ αic
i − x ‖2−αidi

−〈∇hi(xs, αs
i ), (x, αi)〉 + Cis ≤ 0, i ∈ I,

⎫
⎪⎪⎪⎬

⎪⎪⎪⎭
(10)

where the gradient ∇hi(xs, αs
i ) is calculated by the formula (8), and

Cis = qi + 〈∇hi(xs, αs
i ), (x

s, αs
i )〉 − 1

4
‖ αs

i c
i + xs ‖2.

The problem (10), as well as (7), can be solved by a suitable convex opti-
mization method [15].



410 T. Gruzdeva and A. Strekalovsky

Remark 2. If the symmetric matrices Ai in the quadratic functions ψi(·) are
indefinite, then one can represent Ai as the difference of two symmetric positive
definite matrices Ai = Ai

1−Ai
2, Ai

1, A
i
2 > 0, using, for example, a simple method

from [24]. Afterwards, it is possible to construct functions gi(·) and hi(·) as
follows: for all i ∈ I add the convex part with the matrix Ai

1 to the function gi(·)
and the nonconvex part with the matrix Ai

2 to hi(·).
In what follows, we will examine the case where ψi(·) and ϕi(·) are convex

quadratic functions, i ∈ I.

4.3 Quadratic Functions

Now let us consider the following functions:

ψi(x) = 〈x,Aix〉 + 〈pi, x〉 + qi, ϕi(x) = 〈x,Bix〉 + 〈ci, x〉 + di > 0,

Ai and Bi are positive definite (n × n) matrices, pi, ci ∈ IRn, qi, di ∈ IR, i ∈ I.
Therefore, Problem (P) has the following term

αiϕi(x) = αi〈x,Bix〉 + αi〈ci, x〉 + αidi, (11)

which generate nonconvexity in every constraint (i ∈ I).
The term αi〈ci, x〉 in (11) can be presented in the d.c. form by the formula (5).
Further, let us denote ri := 〈x,Bix〉. Then, the product αiui can be expressed

by formula (5) as follows

αiri =
1
4
(αi + ri)2 − 1

4
(αi − ri)2

=
1
4

(
αi + 〈x,Bix〉)2 − 1

4
(
αi − 〈x,Bix〉)2 , i ∈ I.

If Bi, i ∈ I, are positive definite matrices and the following conditions hold

αi + 〈x,Bix〉 ≥ 0, αi − 〈x,Bix〉 ≥ 0 ∀x ∈ S, i ∈ I, (12)

then

gi(x, αi) =
1
4

(
αi − 〈x,Bix〉)2 +

1
4

‖ αic
i − x ‖2 −αidi + ψi(x),

hi(x, αi) =
1
4

(
αi + 〈x,Bix〉)2 +

1
4

‖ αic
i + x ‖2

are convex functions. Hence, we obtain the following d.c. representation:

fi(x, αi) = gi(x, αi) − hi(x, αi), i ∈ I, (13)

and the following linearized Problem (PLs)

m∑
i=1

αi ↓ min
(x,α)

, x ∈ S,

〈x,Aix〉 + 〈pi, x〉 +
1
4

(
αi − 〈x,Bix〉)2 +

1
4

‖ αic
i − x ‖2 −αidi

−〈∇hi(xs, αs
i ), (x, αi)〉 + Cis ≤ 0, i ∈ I,

⎫
⎪⎪⎪⎬

⎪⎪⎪⎭
(14)



Fractional Programming via D.C. Constraints Problem: Local Search 411

where Cis = qi +〈∇hi(xs, αs
i ), (x

s, αs
i )〉−

1
4

(
αs

i + 〈xs, Bixs〉)2− 1
4

‖ αs
i c

i +xs ‖2,
∇hi(xs, αs

i ) = (∇hix,∇hiα)T is the gradient of the function h(·):

∇hix =
(
αs

i + 〈xs, Bixs〉) Bixs +
1
2
(αs

i c
i + xs),

∇hiα =
1
2

(
αs

i + 〈xs, Bixs〉) +
1
2

(
αs

i ‖ ci ‖2 +〈ci, xs〉) .

If the conditions (12) are not satisfied, one can construct the d.c. represen-

tation (13) by decomposition of the trilinear term αi〈x,Bix〉 =
n∑

l=1

n∑
j=1

bi
ljxlxjαi

using the following equality holding for the product of three variables (for exam-
ple, u, v, w):

uvw =
1
8
ĝ(u, v, w) − 1

8
ĥ(u, v, w),

ĝ(u, v, w) = ((u + v)2 + (1 + w)2)2 + (1 + w)4 + (u2 + w2)2

+(v2 + w2)2 + 2(u2 + v2),

ĥ(u, v, w) = w4 + ((u + v)2 + w2)2 + (u2 + (1 + w)2)2

+(v2 + (1 + w)2)2 + 2(u + v)2.

Therefore, we get (13), where

gi(x, αi) = ψi(x) +
1
4

‖ αic
i − x ‖2 −αidi +

1
8

n∑

l=1

n∑

j=1

bi
lj ĝ(xl, xj , αi),

hi(x, αi) =
1
4

‖ αic
i + x ‖2 +

1
8

n∑

l=1

n∑

j=1

bi
lj ĥ(xl, xj , αi).

Obviously, in this case the linearized Problem (PLs) is the problem of mini-
mization of the linear function over the convex feasible set given by more com-
plicated nonlinear functions ϕik(x, αi) in comparison with the problems (7), (10)
or even (14). At the same time, the linearized problems are convex, and therefore
can be solved by a suitable convex optimization method [15].

Remark 3. If the symmetric matrices Ai and Bi in the functions ψi(·) and ϕi(·),
respectively, are indefinite, then this case is already described above in Remark 2.

5 Computational Simulations

The algorithm of the local search method (LSM) from Sect. 3 was coded in
C++ language and was tested with various starting points. All computational
experiments were performed on the Intel Core i7-4790K CPU 4.0 GHz.



412 T. Gruzdeva and A. Strekalovsky

At each iteration of the LSM, the convex Problem (PLs) was solved by
the software package IBM ILOG CPLEX 12.6.2 [11]. The accuracy of the LSM
was τ = 10−6. The accuracy of the solution to the linearized problems (PLs)
increased during the LSM. Thus, we solved (PLs) at a low accuracy at the first
steps; further, the accuracy δs was gradually improved (δs ↓ 0), i.e., δ0 = 0.1,
δs+1 = 0.5δs, until the condition δs ≤ τ

2 was fulfilled with a given accuracy
τ > 0.

At the first stage, we numerically solved several instances of fractional pro-
gramming problems from [2,3,7,14,16,18] with a small number of variables.

5.1 Low-Dimensional Fractional Program with Affine Functions

Tables 1 and 2 represent the results of the computational testing of the LSM and
employ the following designations:

name is the name of the test example;
n is the number of variables (problem’s dimension);
m is the number of terms in the sum;

Table 1. Low-dimensional fractional program. Minimization.

name n m f0(x0) f0(z) it Time x0 z

Prob3 [18] 2 1 0.400 0.333 6 0.01 (1.000; 0.000) (0.000; 0.000)

0.750 0.333 7 0.01 (1.000; 1.000) (0.000; 0.000)

1.000 0.333 6 0.01 (0.000; 1.000) (0.000; 0.000)

0.333 0.333 1 0.00 (0.000; 0.000) (0.000; 0.000)

4.500 4.500 1 0.00 (2.000; 1.000) (2.000; 1.000)

Prob5 [18] 2 2 4.156 4.500 5 0.01 (2.250; 1.250) (2.000; 1.000)

6.500 4.500 7 0.01 (1.000; 4.000) (2.000; 1.000)

5.000 4.500 5 0.01 (1.000; 1.000) (2.000; 1.000)

1.733 1.623 12 0.02 (0.000; 0.000) (0.000; 0.284)

Prob3 [7] 2 2 2.758 1.623 11 0.02 (0.750; 0.750) (0.000; 0.284)

2.400 1.623 14 0.02 (0.500; 1.000) (0.000; 0.284)

4.250 1.623 18 0.02 (0.000; 1.000) (0.000; 0.284)

2.830 2.830 1 0.00 (1.500; 1.500) (1.500; 1.500)

Prob3 [14] 2 2 3.524 2.830 6 0.01 (3.000; 4.000) (1.500; 1.500)

3.129 2.830 5 0.01 (2.000; 2.333) (1.500; 1.500)

3.070 3.000 4 0.01 (0.314; 0.842; 0.427) (0.437; 0.000; 0.000)

Prob6 [14] 3 3 3.035 3.000 3 0.01 (0.900; 0.000; 0.633) (0.952; 0.000; 0.000)

3.000 3.000 1 0.00 (1.100; 0.000; 0.000) (1.098; 0.000; 0.000)

2.895 2.889 4 0.01 (0.000; 0.000; 2.000) (0.513; 0.000; 1.795)

Prob7 [14] 3 3 2.890 2.889 3 0.01 (0.431; 0.000; 1.828) (0.513; 0.000; 1.795)

3.000 2.889 4 0.01 (0.000; 1.111; 0.000) (0.513; 0.000; 1.795)



Fractional Programming via D.C. Constraints Problem: Local Search 413

Table 2. Low-dimensional fractional program. Maximization.

name n m f0(x0) f0(z) it Time x0 z

Prob1 [18] 2 1 1.500 3.714 31 0.04 (0.000; 2.500) (30.000; 0.000)

2.000 3.714 31 0.04 (0.000; 0.000) (30.000; 0.000)

2.143 3.714 25 0.03 (9.000; 7.000) (30.000; 0.000)

Prob6 [2] 2 2 4.500 5.000 6 0.01 (2.000; 1.000) (1.000; 1.000)

4.156 5.000 7 0.01 (2.250; 1.250) (1.000; 1.000)

6.500 6.500 1 0.00 (1.000; 4.000) (1.000; 4.000)

5.000 5.000 1 0.00 (1.000; 1.000) (1.000; 1.000)

Prob1 [7] 2 2 4.913 5.000 30 0.04 (1.500; 1.500) (3.000; 4.000)

5.000 5.000 1 0.00 (3.000; 4.000) (3.000; 4.000)

4.946 5.000 11 0.02 (2.000; 2.333) (3.000; 4.000)

Prob2 [7] 3 2 1.348 2.471 6 0.01 (1.003; 0.731; 1.184) (1.000; 0.000; 0.000)

1.879 2.471 6 0.01 (1.500; 0.000; 0.500) (1.000; 0.000; 0.000)

2.471 2.471 1 0.00 (1.000; 0.000; 0.000) (1.000; 0.000; 0.000)

2.107 2.471 5 0.01 (0.750; 0.000; 0.250) (1.000; 0.000; 0.000)

Prob1 [16] 3 3 2.988 3.003 30 0.05 (0.414; 1.954; 0.000) (0.000; 3.333; 0.000)

3.003 3.003 1 0.00 (0.000; 3.333; 0.000) (0.000; 3.333; 0.000)

2.947 3.000 4 0.01 (0.512; 0.000; 0.610) (0.000; 0.082; 0.000)

2.963 3.000 4 0.01 (1.000; 0.000; 0.000) (0.000; 0.114; 0.000)

Prob2 [16] 3 4 3.967 4.091 5 0.01 (0.000; 0.000; 2.000) (1.111; 0.000; 0.000)

4.000 4.091 4 0.01 (0.000; 0.000; 0.000) (1.111; 0.000; 0.000)

4.091 4.091 1 0.00 (1.111; 0.000; 0.000) (1.111; 0.000; 0.000)

3.868 4.091 5 0.01 (0.000; 0.625; 1.875) (1.111; 0.000; 0.000)

f0(x0) is the value of the goal function to Problem (P) at the starting point;
f0(z) is the value of the function at the critical point provided by the LSM;
it is the number of linearized problems solved (iterations of the LSM);
Time stands for the CPU time of computing (seconds);
x0 stands for the starting point chosen in the test problem;
z is the critical point provided by the LSM.

Note that in the problems “Prob6 [2]” and “Prob1 [16]” in Table 2, local
solutions derived by the LSM are not global (shown in bold).

Known global solutions to all problem instances were found just by the local
search that confirms the computational effectiveness of the LSM. All test prob-
lems were successfully solved.

Further, we study if the LSM performance is affected by the increase in
dimension of the variable x and the number of terms in the sum.



414 T. Gruzdeva and A. Strekalovsky

5.2 Randomly Generated Problems with Affine and Quadratic
Functions

In this subsection, we will report computational results of testing the LSM on
randomly generated problems of the form

f0(x) :=
m∑

i=1

〈ai, x〉 + bi

〈ci, x〉 + di
↑ max

x
, 〈Ā, x〉 ≤ b̄, x ≥ 0. (15)

Data ai
j , ci

j , Ālj ∈ [0, 10] were uniformly random numbers, bi = di = 10,

b̄l = 10, i = 1, . . . , m, j = 1, . . . , n, l = 1, . . . , L.
Results of the computational testing of the LSM on fractional problems (15)

up to 100 variables and 100 terms in the sum are listed in Table 3. The denota-
tions in Table 3 are the same as in Tables 1 and 2.

Table 3. Randomly generated problems (15) with affine functions

n m f0(x0) f0(z) it Time

5 5 5.000000 5.659817 14 0.02

5 10 10.000000 11.399243 15 0.03

5 50 50.000000 56.107594 16 0.08

5 100 100.000000 106.644654 19 0.16

10 5 5.000000 5.560987 27 0.06

10 10 10.000000 12.368279 18 0.05

10 50 50.000000 57.873668 27 0.20

10 100 100.000000 106.665004 89 1.27

50 5 5.000000 7.286323 85 1.83

50 10 10.000000 12.572450 282 13.63

50 50 50.000000 58.460209 158 22.65

50 100 100.000000 109.059418 224 24.12

100 5 5.000000 6.809288 265 17.05

100 10 10.000000 13.774653 251 42.11

100 50 50.000000 56.692829 340 64.94

100 100 100.000000 109.858345 589 209.59

Moreover, we have carried out testing of the LSM on fractional problems with
quadratic functions in the numerators of ratios. We generated the problems from
[12] up to 200 variables and 200 terms in the sum:

f0(x) :=
m∑

i=1

1
2 〈x,Aix〉 + 〈pi, x〉

〈ci, x〉 ↓ min
x

, 〈Ā, x〉 ≤ b̄, x ∈ [1, 5]n, (16)



Fractional Programming via D.C. Constraints Problem: Local Search 415

Table 4. Randomly generated problems (16) with quadratic functions

n m f0(x0) f0(z) it Time

10 5 17.747630 15.607047 14 0.04

10 10 37.690672 35.242307 16 0.08

10 50 165.797927 155.938010 44 0.62

10 100 312.867828 296.561267 130 3.35

10 200 616.334973 601.908457 202 10.80

50 5 17.940091 15.460443 15 0.46

50 10 35.338013 30.663274 15 0.91

50 50 158.226948 151.224157 35 5.28

50 100 306.427872 297.535557 50 15.13

50 200 607.096322 589.882128 141 92.93

100 5 18.943321 15.771841 16 1.57

100 10 33.902949 29.500002 17 4.46

100 50 156.222645 148.923647 25 15.40

100 100 305.948925 296.692149 49 61.85

100 200 608.664712 591.959402 104 263.58

200 5 19.018280 15.512586 17 8.04

200 10 34.139152 29.172948 16 22.70

200 50 155.645907 146.144178 19 44.37

200 100 306.462441 295.558108 39 188.26

200 200 603.988798 587.865367 69 701.85

where Ai = UiD
iUT

i , Ui = Q1Q2Q3, i = 1, . . . , m, Qj = I−2 wjwT
j

‖wj‖2 , j = 1, 2, 3
and w1 = −i + rand(n, 1), w2 = −2i + rand(n, 1), w3 = −3i + rand(n, 1),
Di = rand(n, n), ci = i − i · rand(n, 1), pi = i + i · rand(n, 1), i = 1, . . . , m,
Ā = −1 + 2 · rand(5, n), b̄ = 2 + 3 · rand(5, 1) [12]. (We denote by rand(k1, k2)
the random matrix with k1 rows, k2 columns and elements generated randomly
on [0, 1].)

As it is shown in Table 4, the number of iteration (it) of the LSM is almost
independent of the number of variables (n) but approximately proportional to
the number of terms in the sum (m). The run-time increased proportionally to
n and m.

Computational simulations confirm the efficiency of the LSM developed, the
performance of which naturally depends on the choice of the method or the
software package (IBM ILOG CPLEX) employed to solve auxiliary problems.

Thus, LSM can be applied in future implementations of the global search
algorithm for solving the sum of ratios fractional problems via problems with
d.c. constraints.



416 T. Gruzdeva and A. Strekalovsky

6 Conclusions

In this paper, we considered the fractional programming problem as an opti-
mization problem with d.c. constraints. To this end, we carried out the explicit
representation of nonconvex functions as differences of two convex functions and
applied the local search algorithm based on linearization of the functions defining
the basic non-convexity of the problem under study.

We investigated the effectiveness of the local search method for solving prob-
lems with d.c. constraints that generate the nonconvexity of the feasible set.

The numerical experiments demonstrated that the local search algorithm can
globally solve low-dimensional sum-of-ratios test problems. Moreover, the local
search algorithm developed in this paper turned out to be rather efficient at
finding critical points in randomly generated fractional programming problems
of high dimension.

Therefore, the method developed can be applied within the global search
procedures for fractional programming problems.

Acknowledgments. This work has been supported by the Russian Science Founda-
tion, Project N 15-11-20015.

References

1. Almogy, Y., Levin, O.: Parametric analysis of a multistage stochastic shipping
problem. In: Lawrence, J. (ed.) Operational Research, vol. 69, pp. 359–370.
Tavistock Publications, London (1970)

2. Benson, H.P.: Global optimization algorithm for the nonlinear sum of ratios prob-
lem. J. Optim. Theory Appl. 112(1), 1–29 (2002)

3. Bugarin, F., Henrion, D., Lasserre, J.-B.: Minimizing the sum of many rational
functions. Math. Prog. Comp. 8, 83–111 (2016)

4. Colantoni, C.S., Manes, R.P., Whinston, A.: Programming, profit rates and pricing
decisions. Account. Rev. 13, 467–481 (1969)

5. Drezner, Z., Schaible, S., Simchi-Levi, D.: Queuing-location problems on the plane.
Naval Res. Log. 37, 929–935 (1990)

6. Dur, M., Horst, R., Thoai, N.V.: Solving sum-of-ratios fractional programs using
efficient points. Optimization 49, 447–466 (2001)

7. Falk, J.E., Palocsay, S.W.: Optimizing the sum of linear fractional functions. In:
Floudas, C.A., Pardalos, P.M. (eds.) Recent Advances in Global Optimization,
Princeton Series in Computer Science, pp. 221–257. Princeton University Press,
Stanford (1992)

8. Frenk, J.B.G., Schaible, S.: Fractional programming. In: Hadjisavvas, S.S.N.,
Komlosi, S. (eds.) Handbook of Generalized Convexity and Generalized Monotonic-
ity, Series Nonconvex Optimization and Its Applications, vol. 76, pp. 335–386.
Springer, Heidelberg (2002)

9. Freund, R.W., Jarre, F.: Solving the sum-of-ratios problem by an interior-point
method. J. Global Optim. 19(1), 83–102 (2001)

10. Horst, R., Tuy, H.: Global Optimization. Deterministic approaches. Springer-
Verlag, Berlin (1993)



Fractional Programming via D.C. Constraints Problem: Local Search 417

11. Ibm, I.: High-performance mathematical programming solver for linear program-
ming, mixed integer programming, and quadratic programming. http://www-03.
ibm.com/software/products/en/ibmilogcpleoptistud

12. Jong, Y.-Ch.: An efficient global optimization algorithm for nonlinear sum-of-ratios
problems. Optim. Online. http://www.optimization-online.org/DB HTML/2012/
08/3586.html

13. Konno, H.: Watanabe: Bond portfolio optimization problems and their applications
to index tracking. J. Oper. Res. Soc. Japan 39, 295–306 (1996)

14. Ma, B., Geng, L., Yin, J., Fan, L.: An effective algorithm for globally solving a
class of linear fractional programming problem. J. Softw. 8(1), 118–125 (2013)

15. Nocedal, J., Wright, S.J.: Numerical Optimization, 2nd edn. Springer, New York
(2006)

16. Kuno, T.: A branch-and-bound algorithm for maximizing the sum of several linear
ratios. J. Global Optim. 22, 155–174 (2002)

17. Rao, M.R.: Cluster analysis and mathematical programming. J. Amer. Statist.
Assoc. 66, 622–626 (1971)

18. Raouf, O.A., Hezam, I.M.: Solving fractional programming problems based on
swarm intelligence. J. Ind. Eng. Int. 10, 56–66 (2014)

19. Schaible, S.: Fractional programming. In: Horst, R., Pardalos, P.M. (eds.) Hand-
book of Global Optimization, pp. 495–608. Kluwer Academic Publishers, Dordrecht
(1995)

20. Schaible, S., Shi, J.: Fractional programming: the sum-of-ratios case. Optim. Meth-
ods Softw. 18, 219–229 (2003)

21. Strekalovsky, A.S.: On local search in d.c. optimization problems. Appl. Math.
Comput. 255, 73–83 (2015)

22. Strekalovsky, A.S.: On solving optimization problems with hidden nonconvex struc-
tures. In: Rassias, T.M., Floudas, C.A., Butenko, S. (eds.) Optimization in Science
and Engineering, pp. 465—502. Springer, New York (2014)

23. Strekalovsky, A.S.: Minimizing sequences in problems with D.C. constraints. Com-
put. Math. Math. Phys. 45(3), 418–429 (2005)

24. Strekalovsky, A.S.: Elements of nonconvex optimization [in Russian]. Nauka,
Novosibirsk (2003)

25. Strekalovsky, A.S., Gruzdeva, T.V.: Local search in problems with nonconvex con-
straints. Comput. Math. Math. Phys. 47(3), 381–396 (2007)

26. Strekalovsky, A.S., Gruzdeva, T.V., Ulianova, N.Y.: Optimization Problems with
Nonconvex Constraints [in Russian]. Irk. State University, Irkutsk (2013)

27. Strekalovsky, A.S., Orlov, A.V.: Bimatrix games and bilinear programming [in
Russian]. FizMatLit, Moscow (2007)

28. Strekalovsky, A.S., Yakovleva, T.V.: On a local and global search involved in non-
convex optimization problems. Autom. Remote Control 65, 375–387 (2004)

29. Wu, W.-Y., Sheu, R.-L., Birbil, I.S.: Solving the sum-of-ratios problem by a sto-
chastic search algorithm. J. Global Optim. 42(1), 91–109 (2008)

http://www-03.ibm.com/software/products/en/ibmilogcpleoptistud
http://www-03.ibm.com/software/products/en/ibmilogcpleoptistud
http://www.optimization-online.org/DB_HTML/2012/08/3586.html
http://www.optimization-online.org/DB_HTML/2012/08/3586.html

	An Approach to Fractional Programming via D.C. Constraints Problem: Local Search
	1 Introduction
	2 Reduction to the Problem with Nonconvex Constraints
	3 Local Search for Problem with D.C. Constraints
	4 D.C. Representation of the Constraints
	4.1 Affine Functions
	4.2 Quadratic/Affine Functions
	4.3 Quadratic Functions

	5 Computational Simulations
	5.1 Low-Dimensional Fractional Program with Affine Functions
	5.2 Randomly Generated Problems with Affine and Quadratic Functions

	6 Conclusions
	References


