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Abstract. In this paper, we consider a competitive location problem
in a form of Stackelberg game. Two parties open facilities with the
goal to capture customers and maximize own profits. One of the par-
ties, called Leader, opens facilities first. The set of customers is specified
after Leader’s turn with random realization of one of possible scenarios.
Leader’s goal is to maximize the profit guaranteed with given probability
or reliability level provided that the second party, called Follower, acts
rationally in each of the scenarios. We suggest an estimating problem to
obtain an upper bound for Leader’s objective function and compare the
performance of estimating problem reformulations experimentally.
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1 Introduction

We deal with a bilevel location model firstly suggested in [7] as a deterministic
reformulation of a stochastic competitive location problem. In this problem, two
competing parties open their facilities in a finite discrete space with the goal
to maximize their profits, i.e. the value of income from customers service minus
the fixed costs of facilities opening. A decision making process is organized as a
Stackelberg game [10]. One of the parties, called Leader, opens its facilities first.

It is assumed that the set of customers is unknown for Leader. Instead of
this Leader is provided with a finite set of possible scenarios. Each scenario has
known probability of realization and fully characterizes the set of customers.

After Leader opens facilities one of possible scenarios is realized and the set of
customers becomes specified. This information is available for the second party
called Follower, who opens own facilities with the goal to maximize profit as
well.

In the model under consideration, each customer chooses the party to be
served by according to his preferences. The facility assigned to serve the customer
must be more preferable for him than any competitor’s facility. This model of
customers serving in competitive environment is referred to in [3] as a free choice
of supplier rule. In the present paper we study a multi–scenario generalization
of the problem in [3].
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Leader’s goal in this situation is to maximize profit that can be guaranteed
with given probability or reliability level. In other words, Leader selects a set
of facilities to be opened such that there exists a subset of scenarios with total
probability not less than the reliability level. In these scenarios, Leader gets a
profit, which is not less than a certain value, and the goal is to make this value
as big as possible. The scenarios participating in the calculation of guaranteed
income are further referred to as active scenarios.

In [7] the value of income the customer brings to the facility is the same
for all facilities. This assumption allows the authors to suggest upper and lower
bounds for an optimum of the Leader’s problem. In the case when the income
depends on serving facility, the suggested upper bound is not valid. By using
the technique from [3] we formulate an estimating problem in the form of MIP
providing an upper bound in the case of facility–dependent income values. We
suggest two reformulations of the estimating problem and perform numerical
experiments to compare their efficiencies.

The rest of the paper is organized as follows. In Sect. 2 we present a mathe-
matical model of the competitive facility location problem with quantile criterion
(QCompFLP) in the form of a pessimistic bilevel mixed–integer programming
problem [5] and discuss a concept of its pessimistic feasible solution. Also, we
suggest a procedure to compute a pessimistic feasible solution for given values
of Leader’s location variables. Section 3 provides a formulation of the estimating
problem for upper bound calculation. Two reformulations of it are presented as
well. In Sect. 4 we compare the effectiveness of suggested formulations of the
estimating problem and examine their qualities as providers of an upper bound
for QCompFLP.

2 Mathematical Model

Let us introduce the necessary notations:

Sets:
I = {1, . . . , m} is a set of facilities or candidate sites for opening a facility;
S = {1, . . . , l} is a set of possible scenarios;
Js is a finite set of customers in case when scenario s ∈ S is realized. We
assume that Js1 ∩ Js2 = ∅ for each s1, s2 ∈ S, s1 �= s2. The set of all possible
customers is denoted with J =

⋃
s∈S Js. Without loss of generality we assume

that J = {1, . . . , n}.

Parameters:
fi is a fixed cost of opening Leader’s facility i ∈ I;
gi is a fixed cost of opening Follower’s facility i ∈ I;
cij is an income of Leader’s facility i ∈ I from customer j ∈ J ;
dij is an income of Follower’s facility i ∈ I from customer j ∈ J ;
ps is a probability of realization of scenario s ∈ S;
p0 is a reliability level.
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Variables:

xi =
{

1, if Leader opens facility i
0, otherwise,

xij =
{

1, if Leader’s facility i is assigned to serve customer j
0, otherwise,

zs
i =

{
1, if Follower opens facility i in the case of scenario s realization
0, otherwise,

zij =
{

1, if Follower’s facility i is assigned to serve customer j
0, otherwise,

δs =
{

1, if scenario s is active
0, otherwise,

C stands for the value of guaranteed income.
In the QCompFLP model we use a binary customer patronizing rule [9]. It

means that each customer j ∈ J brings income to a single facility opened by
either Leader or Follower. We assume that this facility is chosen according to the
preferences of the customer. The preferences are represented with linear order
�j on the set I. Given i1, i2 ∈ I, the relation i1 �j i2 means that i1 is not less
preferable for j than i2. If i1 �= i2 then i1 is strictly more preferable than i2, and
we denote it with i1 �j i2. For a nonempty set I0 ⊆ I we denote with ij(I0) such
an element of I0, for which ij(I0) �j k for all k ∈ I0. For a nonzero (0,1)–vector
v = (vi), i ∈ I we use notation ij(v) for an element ij({k ∈ I|vk = 1}).

If we are given with boolean vectors x and z of Leader’s and Follower’s
location variables values respectively, then Leader’s facility i ∈ I can serve a
customer j ∈ J iff i �j ij(z). Similarly, Follower’s facility i ∈ I can serve a
customer j ∈ J iff i �j ij(x).

Using introduced notations the mathematical model of the QCompFLP is
written as the following pessimistic bilevel program:

max
(xi),(xij),(δs),C

min
(z̃s

i ),(z̃ij)

(

−
∑

i∈I

fixi + C

)

, (1)

xi ≥ xij , i ∈ I, j ∈ J ; (2)
∑

i∈I

xij ≤ δs, s ∈ S, j ∈ Js; (3)

C ≤
∑

i∈I

∑

j∈Js

cijxij + M(1 − δs), s ∈ S; (4)

z̃s
i +

∑

k∈I|i�jk

xkj ≤ 1, s ∈ S, j ∈ Js; (5)

∑

s∈S

psδs ≥ p0; (6)

xi, δs ∈ {0, 1}; 0 ≤ xij ≤ 1, i ∈ I, j ∈ J, s ∈ S; (7)

where (z̃s
i ), (z̃ij) solves (8)
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max
(zs

i ),(zij)

∑

s∈S

⎛

⎝−
∑

i∈I

giz
s
i +

∑

i∈I

∑

j∈Js

dijzij

⎞

⎠ , (9)

zs
i ≥ zij , i ∈ I, s ∈ S, j ∈ Js; (10)

xi +
∑

k∈I|i�jk

zkj ≤ 1, j ∈ J ; (11)

xi + zs
i ≤ 1, i ∈ I, s ∈ S; (12)

zs
i ,∈ {0, 1}; 0 ≤ zij ≤ 1, i ∈ I, j ∈ J, s ∈ S. (13)

The objective function (1) of the upper–level problem represents the value
of income, which is guaranteed with a probability p0 reduced by the cost of
opened facilities. Inequalities (2) forbid to serve customers with close facilities,
(3) guarantee that customers from active scenarios cannot be served with more
than one facility, (5) ensure that the customer is served with a facility which
is more preferable than any of competitor’s ones. Constraints (4) provide that
the value of guaranteed income is not greater than the income realized in any of
active scenarios. The term with a sufficiently large constant M excludes inactive
scenarios from the consideration. Constraints (6) impose that the income value
is guaranteed with probability p0.

The lower–level objective function (9) is a sum of profits Follower obtains
in all possible scenarios. Its maximization is equivalent to maximization of the
profit for each scenario separately. The constraints (10) and (11) have the same
meaning as the upper–level constraints (2) and (5), respectively. Finally, the
inequalities (12) provide that Follower does not open facility in the place occu-
pied by Leader.

For brevity let us denote the vector of values of xi, i ∈ I and zs
i , i ∈ I, s ∈ S

with x and z correspondingly. Given x we denote the problem F with F(x).
Analogously, the problem L with the value of z in the constraints (5) is denoted
with L(z). A whole model (1)–(13) is referred to as (L,F).

2.1 Pessimistic Feasible Solutions of the Problem (L,F)

Consider some (0,1)–vector x = (xi), i ∈ I and a quadruple χ(x) = (X,Δ,C,Z),
where X = ((xi), (xij)), Δ = (δs), Z = ((zs

i ), (zij)), i ∈ I, j ∈ J , s ∈ S. We
call quadruple χ(x) a feasible solution of the problem (L,F) if Z is an optimal
solution of the problem F(x) and (X,Δ,C) is a feasible solution of the problem
L(z), where z = (zs

i ), i ∈ I, s ∈ S.
Let Opt(x) be a set of optimal solutions of the problem F(x). Given Z ∈

Opt(x), let χ(x,Z) denote a quadruple (X(Z),Δ(Z), C(Z), Z), where (X(Z),
Δ(Z), C(Z)) is an optimal solution of the problem L(z). We denote the value
of objective function (1) on this solution with L(χ(x,Z)). The solution χ(x, Ž)
is called a pessimistic feasible solution of the problem (L,F) if L(χ(x, Ž)) ≤
L(χ(x,Z)) for all Z ∈ Opt(x). The problem (L,F) is equivalent to the problem
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of maximization of some implicitly given function f̌ : {0, 1}m → IR such that
f̌(x) = L(χ(x, Ž)) for each (0,1)–vector x.

The value f̌(x) for a given x can be computed in two steps. At the first step
the problem F(x) is solved, and let F ∗ be its optimum. At the second step an
auxiliary MIP provides a pessimistic feasible solution and a value of f̌(x). To
formulate it we introduce new nonnegative variables uj , j ∈ J . Variable uj takes
the value equals to Leader’s income from the customer j.

min
(zs

i ),(zij),(uj)

∑

j∈J

uj (14)

xi +
∑

k|i�jk

zkj ≤ 1, i ∈ I, j ∈ J ; (15)

zs
i ≥ zij , i ∈ I, s ∈ S, j ∈ Js; (16)

uj ≥ cij

(
xi −

∑

k|k�ji

zs
k

)
, i ∈ I, s ∈ S, j ∈ Js; (17)

∑

s∈S

⎛

⎝−
∑

i∈I

giz
s
i +

∑

i∈I

∑

j∈Js

dijzij

⎞

⎠ ≥ F ∗; (18)

xi + zs
i ≤ 1, i ∈ I, s ∈ S; (19)

zs
i ∈ {0, 1}; 0 ≤ zij ≤ 1, i ∈ I, s ∈ S, j ∈ J ; (20)

ui ≥ 0, j ∈ J. (21)

Let (Z,U), Z = ((zs
i ), (zij)), U = (uj) be an optimal solution of the problem

(14)–(21), and let zs = (zs
i ). Notice that for solution (Z,U) the following equality

holds for each s ∈ S, j ∈ Js:

uj = max
i|i�jij(zs)

{
cijxi

}
.

The value of income the Leader gets in the scenario s ∈ S is calculated as
follows: Cs =

∑
j∈Js

uj . To choose the set of active scenarios one should sort
values {Cs} in descending order. Without loss of generality we can assume that
C1 ≥ C2 ≥ · · · ≥ Cl. Let r be a such an index that

∑
s<r ps < p0 ≤ ∑

s≤r ps.
Then it is easy to see that f̌(x) = −∑

i∈I fixi + Cr.
Now we are able to construct a pessimistic feasible solution χ(x,Z). For every

s ≤ r and all j ∈ Js such that uj > 0 let us denote with ij the index i ∈ I for
which the constraint (17) is active. Then we set xijj = 1 and δs = 1. For all
other indexes i ∈ I, j ∈ J , s ∈ S we set xij = 0 and δs = 0. The quadruple
(((xi), (xij)), (δs), Cr, (zs

i ), (zij)) is a desired pessimistic feasible solution of the
problem (L,F).

From the above we conclude that pessimistic QCompFLP is equivalent to the
problem of maximization of implicitly given pseudo–boolean function. The func-
tion depends on m boolean variables. Its value on boolean vector x = (xi), i ∈ I
can be calculated by solving two mixed–integer linear programming problems.
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3 Upper Bound

Consider the problem of finding the global maximum of pseudo–boolean func-
tion f̌ : {0, 1}m → IR associating an arbitrary (0,1)–vector x with the value of
objective function (1) on the corresponding pessimistic feasible solution χ(x, Ž).
The method to calculate an upper bound for values of the function f̌ consists in
constructing and solving of an auxiliary optimization problem, referred to as an
estimating problem.

3.1 Estimating Problem

The basis of the estimating problem is a relaxation of the problem (L,F)
obtained by removing the lower–level problem F and its variables. The result-
ing single–level mixed–integer problem models the situation there Leader is a
monopolist. Obviously, an optimal value of the model is a valid upper bound for
the function f̌ , but its accuracy is insufficient for practical application.

Similarly to the earlier considered models of competitive location [2–4], the
relaxation of (L,F) can be strengthened by using the system of estimating sub-
sets {Ij}, j ∈ J . The construction of estimating subsets for the case of single
scenario is presented in [3] and can be easily extended to the case of several
scenarios. An algorithm of subsets construction allows to claim that if the most
preferable for the customer j Leader’s facility ij(x) is not in Ij , then Follower
will open a facility which is more preferable for j than ij(x).

Following the method from [3] we transform an income matrix (cij) into a
new matrix (c′

ij), which majorizes (cij) and is correlated with the preferences
of customers. It means that c′

ij ≥ cij for all i ∈ I, j ∈ J and for given j ∈ J
values (c′

ij) are monotone according to the order �j : given i1, i2 ∈ I the relation
i1 �j i2 implies that c′

i1j ≥ c′
i2j . Such a matrix can be constructed by assuming

that c′
ij = maxk|i�jk ckj for all i ∈ I and j ∈ J .

The algorithm of subsets {Ij} construction for a single scenario case is pre-
sented in [3]. By considering an arbitrary scenario s ∈ S separately we obtain
the system of subsets {Ij}, where j ∈ Js. By switching s one by one we obtain
a subset Ij for every j ∈ J . An algorithm of construction ensures that the fol-
lowing inequality holds for every j ∈ J and every pessimistic feasible solution
χ(x, Ž) of the problem (L,F):

∑

i∈I

cijxij ≤
∑

i∈Ij

c′
ijxij . (22)

By assuming that for every i ∈ I and j ∈ J

c′′
ij =

{
c′
ij , if i ∈ Ij

0, otherwise ,

we get the following estimating problem:

max
(xi),(xij),(δs),C

(

−
∑

i∈I

fixi + C

)

, (23)
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xi ≥ xij , i ∈ I, j ∈ J ; (24)
∑

i∈I

xij ≤ δs, s ∈ S, j ∈ Js; (25)

C ≤
∑

i∈I

∑

j∈Js

c′′
ijxij + M(1 − δs), s ∈ S; (26)

∑

s∈S

psδs ≥ p0; (27)

xi, δs ∈ {0, 1}; 0 ≤ xij ≤ 1, i ∈ I, j ∈ J, s ∈ S. (28)

The model (23)–(28) is further referred to as B. It is a relaxation of the bilevel
problem (L,F), obtained by removing the lower–level problem F and its vari-
ables. Inequalities (26) are the corollary of estimating subsets properties (22).

Thus, the optimum of the constructed estimating problem is an upper bound
for maxx∈{0,1}m f̌(x). Its calculation is a time consuming procedure since the
model B has a big integrality gap provided by inequalities (26), where the right–
hand side can significantly change the value after relaxation of variables (δs).
To find a compromise between accuracy of the upper bound and its calculation
time we suggest two reformulations of the model B.

3.2 Relaxation of a Large MIP

As it was mentioned, solving the problem B can be a time–consuming procedure.
Let us introduce its reformulation involving exponential number of variables.

Let R be a set of all subsets of S. For each R ∈ R we introduce a new boolean
variable uR, which takes the value 1 if the set of active scenarios equals to R
and 0 otherwise. Additionally we need a (0, 1)–matrix (asR), s ∈ S, R ∈ R such
that

asR =
{

1, if s ∈ R
0 otherwise .

Using the above definitions the reformulation of B is written as follows:

max
(xi),(xij),(uR),C

(

−
∑

i∈I

fixi + C

)

, (29)

C ≤
∑

i∈I

∑

j∈Js

c′′
ijxij + M(1 −

∑

R∈R
asRuR), s ∈ S; (30)

∑

i∈I

xij ≤
∑

R∈R
asRuR, s ∈ S, j ∈ Js; (31)

xi ≥ xij , i ∈ I, j ∈ J ; (32)
∑

R∈R

∑

s∈R

asRpsuR ≥ p0; (33)
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∑

R∈R
uR = 1; (34)

xi, uR ∈ {0, 1}; 0 ≤ xij ≤ 1, i ∈ I, j ∈ J,R ∈ R. (35)

To deal with the linear relaxation of this large problem consider its dual:

min
(αs),(βj),(γij),η,λ

(−p0η + λ + M) (36)

∑

j∈J

γij ≤ fi, i ∈ I; (37)

βj + γij ≥ c′′
ijαs, i ∈ I, j ∈ J ; (38)

∑

s∈S

αs = 1, (39)

λ ≥
∑

s∈S

asR

⎛

⎝psη +
∑

j∈Js

βj − Mαs

⎞

⎠ , R ∈ R; (40)

αs, βj , γij , η ≥ 0. (41)

Let D(R′) = ((αs), (βj), (γij), η, λ) be an optimal solution of the problem
(36)–(41), where exponentially large index set R in (40) is replaced with its
relatively small subset R′ ⊆ R. In the case when D(R′) satisfies (40) for all
R ∈ R, it is an optimal solution of the dual problem and provides a required
upper bound. Otherwise there exists a (0, 1)–vector (δs) such that

∑

s∈S

δs(psη +
∑

j∈Js

βj − Mαs) > λ. (42)

The existence of such a vector can be checked by solving the following problem:

max
(δs)

∑

s∈S

wsδs (43)

∑

s∈S

δsps ≥ p0 (44)

δs ∈ {0, 1}, s ∈ S, (45)

where ws = psη +
∑

j∈Js
βj − Mαs.

Given an optimal solution (δ∗
s ) of the problem (43)–(45), if the inequality∑

s∈S wsδ
∗
s ≤ λ holds, then the solution D(R′) satisfies (40) for any R ∈ R.

Otherwise, one of constraints that the D(R′) violates corresponds to the set of
scenarios {s ∈ S|δ∗

s = 1}. We include it into R′ and get back to solving the dual
problem with a new constraint of type (40).

Thus the cutting–plane (CP) scheme to calculate an upper bound for the
value maxx∈{0,1} f̌(x) is an iterative process [6]. On each iteration, a restricted
dual problem is being solved. We check its optimal solution for feasibility in
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the initial dual problem. In the case of positive answer, a valid upper bound is
obtained and the procedure terminates. Otherwise, a cut is generated by solving
a knapsack–type problem, and a new iteration begins.

At the first iteration, we must guarantee a feasibility of restricted dual prob-
lem by appreciate choice of R′. In our experiments we initialize R′ with a random
subset S′ ⊆ S such that

∑
s∈S′ ps ≥ p0.

3.3 Reformulation of Bilevel Estimating Problem

Let us get back to the problem B. Notice that if the location variables values are
chosen, one can easily obtain an optimal facility assignment for each customer
and calculate the income value for each possible scenario. Assume that ps = 1

l for
all s ∈ S. Then an optimal set of active scenarios contains exactly �lp0 elements
with the greatest total income. It leads us to the following bilevel formulation
of the problem B, which uses additional variables (Cs), s ∈ S for the value of
income in the corresponding scenario.

max
(xi),(xij),(Cs),C

(

−
∑

i∈I

fixi + C

)

, (46)

xi ≥ xij , i ∈ I, j ∈ J ; (47)
∑

i∈I

xij ≤ 1, s ∈ S, j ∈ Js; (48)

Cs ≤
∑

i∈I

∑

j∈Js

c′′
ijxij , s ∈ S; (49)

C ≤ Cs + M(1 − δ∗
s ), s ∈ S; (50)

xi ∈ {0, 1};xij , C, Cs ≥ 0, i ∈ I, j ∈ J, s ∈ S; (51)

where (δ∗
s ) solves (52)

max
(δs)

∑

s∈S

Csδs, (53)

∑

s∈S

δs = �lp0; (54)

0 ≤ δs ≤ 1, s ∈ S. (55)

In the lower–level problem (53)–(55) �lp0 scenarios with the greatest income
are chosen. Notice that here we can let δs, s ∈ S take fractional values without
loss of integrality of optimal solution.

Due to simplicity of the lower–level problem, we substitute it with comple-
mentary slackness conditions [1] to obtain a single–level reformulation of the
problem B. After linearization the resulting problem B′ is written as follows:

max
(xi),(xij),(δs),(Cs),C

(

−
∑

i∈I

fixi + C

)

, (56)
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xi ≥ xij , i ∈ I, j ∈ J ; (57)
∑

i∈I

xij ≤ 1, s ∈ S, j ∈ Js; (58)

Cs ≤
∑

i∈I

∑

j∈Js

c′′
ijxij , s ∈ S; (59)

C ≤ Cs + M(1 − δs), s ∈ S; (60)
∑

s∈S

δs = �lp0; (61)

us ≤ Mδs, s ∈ S; (62)

us + w ≥ Cs, s ∈ S; (63)

us + w ≤ Cs + M(1 − δs), s ∈ S; (64)

xi, δs ∈ {0, 1};xij , Cs, C ≥ 0, i ∈ I, j ∈ J, s ∈ S. (65)

Here w and (us), s ∈ S are dual variables for constraints (54) and (55), respec-
tively. Variables (δs), s ∈ S are boolean in this model since they play role of
indicator variables in complementary slackness conditions linearization. Model
(56)–(65) by itself is further addressed as B′.

4 Numerical Experiments

In this section, we present results of comparison of proposed estimating prob-
lem formulations. The section consists of two parts. In the first subsection, we
compare models and their relaxations on randomly generated inputs.

In the second subsection, we consider a number of randomly generated
instances of QCompFLP. We construct a system of estimating subsets and com-
pare values of the upper bound provided by problems B, B′, their relaxations
and cutting–plane procedure with the value of function f̌ on locally optimal
solution.

Calculations are performed in a single thread by workstation with processors
Intel Xeon X5675 3.07 GHz and 96 GB RAM. To solve mixed–integer programs
we use Microsoft Solver Foundation 3.1 library with built–in Gurobi MIP solver.

4.1 Instances Not Induced by QCompFLP

To examine the efficiency of upper bound calculation procedures we generate
a set of inputs for the estimating problem. For different values of m, n, and l
a series of three tests was performed. In each test income matrix (cij), i ∈ I,
j ∈ J is filled with random integers uniformly distributed on the integer range
{5, 6, . . . , 15}. Fixed cost value fi equals to 50 for all i ∈ I. The probability of
scenario is generated in two stages. On the first stage an integer ρs, s ∈ S is
chosen from the range {1, 2, 3, 4} with equal probabilities. The probability of
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realization of scenario s is set to be equal to ρs/
∑

l∈S ρl. In all instances of this
bundle of tests p0 = 0.6.

In the Table 1 we provide the following values:
Gap(B), relative integrality gap of the model B, i.e. a difference between

optimum of linear relaxation of B and its integer optimum divided by integer
optimum, in percents;

Gap(CP), relative integrality gap of the model (29)–(35), i.e. a difference
between the value provided by cutting–plane procedure and integer optimum
divided by integer optimum, in percents;

OPT, value of integer optimum;
T(BLR), calculation time for the linear relaxation of the model B;
T(CP), calculation time for the cutting–plane procedure;
T(B), calculation time for model B. It is limited by 10 min. The mark “TL”

appears in the cases of reaching the time limit. Also in this cases the optimal
value of objective function instead of relative integrality gap is presented in the
columns Gap(B) and Gap(CP).

As Table 1 shows, the integrality gaps of both the model B and the model
(29)–(35) are dramatically large. However on instances with m = 10 and m =
15 the relaxation of the second model outperforms the relaxation of B: it can
be solved by cutting–plane method in a comparable time and provide more
accurate estimation of the optimum of B. The calculation time for optimum of
B is relatively big and grows rapidly while the dimensionality increases, thus

Table 1. Instances with different scenario probabilities

Gap(B) Gap(CP) OPT T(BLR) T(CP) T(B)

m = 10, n = 150, l = 4

32 % 21 % 391 < 1” < 1” 26”

22 % 21 % 426 < 1” < 1” 33”

33 % 33 % 415 < 1” < 1” 7”

m = 15, n = 200, l = 6

41 % 41 % 323 1” 10” 41”

51 % 47 % 313 1” 9” 1’15”

73 % 66 % 288 < 1” 2” 1’55”

m = 20, n = 250, l = 8

48 % 48 % 305 2” 31” 7’4”

86 % 82 % 276 2” 37” 6’3”

57 % 53 % 290 2” 23” 7’1”

m = 25, n = 300, l = 10

441,00 435,00 – 8” 1’51” TL

422,00 422,00 – 7” 1’42” TL

438,00 438,00 – 6” 2’35” TL
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Table 2. Instances with equiprobable scenarios

Gap(B) Gap(B′) Gap(CP) OPT T(BLR) T(B′
LR) T(CP) T(B) T(B′)

m = 10, n = 150, l = 4

41 % 28 % 28 % 356 < 1” < 1” < 1” 11” 7”

69 % 53 % 53 % 300 < 1” < 1” < 1” 7” 22”

61 % 43 % 43 % 330 < 1” < 1” < 1” 13” 5”

m = 15, n = 200, l = 6

31 % 26 % 26 % 321 < 1” 1” 4” 2’24” 1’36”

45 % 39 % 39 % 303 < 1” 2” 9” 1’40” 54”

53 % 44 % 44 % 310 1” 2” 3” 1’49” 43”

m = 20, n = 250, l = 8

40 % 38 % 38 % 293 2” 6” 16” 7’55” 5’19”

472 459 459 – 2” 8” 20” TL TL

55 % 52 % 52 % 273 2” 7” 40” TL 8’43”

m = 25, n = 300, l = 10

388 388 388 – 5” 21” 1’34” TL TL

46 % 46 % 46 % 277 6” 15” 1’27” TL 7’43”

404 404 404 – 6” 17” 4’49” TL TL

the model B can be utilized in a posteriori accuracy estimation of non-exact
algorithms and in implicit enumeration schemes to solve small instances. The
relaxations are more perspective for exact methods dealing with bigger instances.

Table 2 presents results of dealing with instances where scenarios are
equiprobable. Additionally to columns from the Table 1 it includes:

Gap(B′), relative integrality gap of the model B′;
T(B′

LR), calculation time for the linear relaxation of the model B′;
T(B′), calculation time for the model B′ (is bounded by 10 min as like as

for B).
According to the results from Table 2, the model B′ outperforms B in relative

integrality gap and calculation time. Its linear relaxation and linear relaxation of
the model (29)–(35) provide the same results, but the first one consumes smaller
amount of time. An important observation is that in the cases when p0l is an
integer number linear relaxations of the three proposed models provide the same
results as it is in the case of the fourth series of tests, where l = 10 and p0l = 6.

4.2 Instances Induced by QCompFLP

In this subsection, we study the proposed models as an upper bound providers
for the problem QCompFLP. Numerical data preparation consists of generating
the QCompFLP instance, constructing an estimating subset system, and form-
ing an input data for the estimating problem. For each generated instance of
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QCompFLP we start a local search procedure using scheme from [8] to obtain a
lower bound for the optimum. It allows us to estimate the quality of the upper
bound.

QCompFLP instances are generated as follows. All operations of random
choice are performed with uniform distribution on the corresponding domain.
Fixed costs values fi and gi, i ∈ I are calculated with formula 50+5ξ, where value
of ξ is randomly chosen from the integer range {−3,−2, . . . , 3} for each fi and
each gi, i ∈ I. For each i ∈ I, j ∈ J the income value pij is randomly chosen from
the set {6, 7, . . . , 14}. The value of qij is calculated with formula pij + ζ, where ζ
is randomly chosen from range {−3,−2, . . . , 3} each time. Scenario probabilities
are equal. For each customer j ∈ J we select at random the number of scenario
the customer appears in and the order �j .

Table 3. Instances induced by QCompFLP

LB B B′ BLR B′
LR CP T(B) T(B′) T(BLR) T(B′

LR) T(CP)

m = 10, n = 160, l = 4

191 361 361 596 532 532 8” 2” < 1” < 1” < 1”

178 358 358 592 524 524 33” 5” 2” < 1” < 1”

235 434 434 567 519 519 15” 9” < 1” 2” 12”

m = 10, n = 320, l = 8

130 379 379 579 568 568 1’17” 2’7” 1” 5” 25”

120 409 409 571 561 561 55” 40” 18” 7” 1’10”

150 387 387 571 561 561 3’50” 1’57” < 1” 2” 10”

m = 10, n = 640, l = 16

90 378 378 578 568 568 8’53” 6’23” 4” 10” 1’55”

121 391 391 590 579 579 9’0” 7’20” 4” 7” 1’32”

148 392 392 614 603 603 9’14” 6’19” 3” 6” 2’40”

m = 15, n = 160, l = 4

166 379 379 619 555 555 55” 22” < 1” 1” < 1”

136 389 389 615 552 552 28” 24” < 1” 1” < 1”

97 430 430 565 521 521 38” 42” < 1” 1” 1”

m = 15, n = 320, l = 8

73 406 406 593 583 583 5’38” 2’25” 1” 4” 21”

129 432 432 605 597 597 2’47” 1’32” 2” 4” 18”

112 443 443 601 592 592 3’34” 2’34” 2” 4” 10”

m = 15, n = 640, l = 16

89 – 434 621 611 611 TL 7’48” 6” 21” 3’8”

65 – – 594 585 585 TL TL 9” 19” 3’22”

58 404 404 625 615 615 9’16” 3’23” 6” 20” 3’43”
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Table 4. Influence of reliability level p0

p0 LB B B′ BLR B′
LR CP T(B) T(B′) T(BLR) T(B′

LR) T(CP)

0.5 116 412 412 618 618 618 6’12” 6’32” 2” 5” 1’15”

0.6 90 378 378 578 568 568 6’50” 5’16” 2” 8” 1’26”

0.7 66 364 364 539 519 519 7’34” 5’57” 3” 6” 46”

0.8 57 335 335 497 492 492 6’21” 3’9” 3” 7” 1’1”

0.9 34 301 301 440 407 407 8’49” 4’13” 3” 7” 13”

1.0 24 270 CR 293 293 293 8’11” < 1” 3” 7” 1”

From Table 3 we see that revealed relations between performances of formu-
lations of the estimating problem are retained for induced instances.

Column LB contains values of lower bound. In our case it is the best value
of function f̌ the local search has found in 1 min for instances with m = 10 and
in 10 min for instances with m = 15. The accuracy of the upper bound provided
by estimating problem is comparable with results obtained for procedures using
similar technique for previously studied bilevel location problems relative to
QCompFLP [2,4].

Table 4 illustrates the influence of reliability level on the lower and upper
bounds. We consider a single instance of QCompFLP, which is the first one in a
bundle of tests with m = 10, n = 640, l = 16 from the Table 3. As we can see the
values of upper and lower bounds decrease with the grow of reliability level. The
formulation B′ performs better in common. However, the last test with p0 = 1
leads the solver to crush without apparent reasons from our side.

5 Conclusion and Discussion

In this paper, we investigate ways of calculation of an upper bound for the
QCompFLP using reformulations of the estimating problem. Numerical experi-
ments show that the suggested reformulations have smaller integrality gap. We
highlighted a special case of QCompFLP where scenarios are equiprobable. This
leads to a model, which outperforms the initial one in integrality gap and calcu-
lation time.

The quantile criteria is an interesting view on the robustness of solution. To
operate with uncertainty in income from the customers we are to duplicate each
customer for each possible value of the income. It leads us to the necessity of
investigating techniques to deal with instances with large number of customers.
Exact and approximate methods for the QCompFLP are subjects of the future
research as well.
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