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Abstract. Capacitated Vehicle Routing Problem (CVRP) is the well-
known combinatorial optimization problem remaining NP-hard even in
the Euclidean spaces of fixed dimension. Thirty years ago, in their cele-
brated paper, M. Haimovich and A. Rinnoy Kan proposed the first PTAS
for the Planar Single Depot CVRP based on their Iterated Tour Parti-
tion heuristic. For decades, this result was extended by many authors to
numerous useful modifications of the problem taking into account mul-
tiple depots, pick up and delivery options, time window restrictions, etc.
But, to the best of our knowledge, almost none of these results go beyond
the Euclidean plane. In this paper, we try to bridge this gap and propose
an EPTAS for the Euclidean CVRP for any fixed dimension.
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1 Introduction

We consider the Capacitated Vehicle Routing Problem, which is the well-known
special case of Vehicle Routing Problem [17] belonging to the class of combina-
torial optimization models widely adopted in operations research. It is gener-
ally believed that, for the first time, as an optimization problem, the VRP was
introduced by Dantzig and Ramser in their seminal paper [5]. They considered
a routing problem for a fleet of gasoline delivery trucks servicing a number of gas
stations supplied by a unique bulk terminal. Demands of serviced gas stations
and distances between any two locations were specified. The goal was to find the
least cost set of truck routes visiting all the stations.

In its simplest setting, the VRP can be defined as the combinatorial opti-
mization problem aiming at designing the cheapest collection of delivery routes
from some dedicated point (depot) to a set of customers (clients) given by their
spatial locations. This problem has many known modifications [9,14] taking into
account different additional features and constraints, e.g. depots multiplicity,
heterogeneity of customer demand, vehicle capacity, time windows, etc.

In this paper, we suppose that all clients have the same one unit demand
and all vehicles have the same capacity, equal to some predefined number q.
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This specific problem is called [10] Capacitated Vehicle Routing Problem or
CVRP. Complexity of this problem is determined by its closeness to some well-
known intractable combinatorial problems. For instance, Traveling Salesman
Problem (TSP) is just a special case of the CVRP such that a depot is col-
located with one of clients and q ≥ n. Therefore, the CVRP is strongly NP-hard
even in the Euclidean plane, since the same results are proven for the TSP [15].
Almost all known special cases of the CVRP (except the case when q ≤ 2) (see,
e.g. [14]) are also NP-hard even in the Euclidean spaces of finite dimension.

For these reasons, research on the CVRP is mostly focused on design of approx-
imation algorithms and heuristics. For a general metric, the CVRP is shown to be
APX-complete [2] for any fixed q ≥ 3, i.e. there exists ε > 0 such that the existence
of a polynomial time (1 + ε)-approximation algorithm implies P = NP .

Most positive approximation results for CVRP are obtained for the Euclidean
plane. One of the first studies of two-dimensional Euclidean CVRP has been due to
Haimovich and Rinnooy Kan [10], who presented several heuristics for this prob-
lem leading to the first PTAS for q = O(log log n). Asano et al. [2] substantially
improved this result by designing a PTAS for q = O(log n/ log log n). Also they
construct a PTAS for the case of Ω(n) based on the famous Arora’s PTAS [1] for
the two-dimensional Euclidean TSP. Recently, Das and Mathieu [6,7] proposed a
quasi-polynomial time approximation scheme (QPTAS) for the two-dimensional
Euclidean CVRP for every q with time complexity of n(log n)O(1/ε)

. Khachay and
Zaytseva [13] applied the approach proposed in [10] to the construction a PTAS for
the Single Depot CVRP in three-dimensional Euclidean space.

The extension of the latter result to the case of any fixed number m of depots
and any fixed dimension d > 1 is the main contribution of this paper. Actually,
on the basis of recent geometric results describing the structure of finite ε-nets
on the surface of the unit Euclidean sphere Sd−1, we propose a new Efficient
Polynomial Time Approximation Scheme1 (EPTAS) for the Euclidean CVRP,
for which capacity q, the number of depots m and dimension d > 1 are fixed.
The algorithm proposed remains PTAS for the problem with fixed m and d and
q = O(log log n)1/d.

The rest of the paper is organized as follows. In Sect. 2, we recall the general
statement of the CVRP along with its metric and Euclidean settings. In Sect. 3,
we describe our EPTAS based on the famous Iterated Tour Partition [10] for
the case of single depot. Further, in Sect. 4 we extend this result to the case of
an arbitrary fixed number m of depots. Section 5 contains summarizing remarks
and a short overview of future work.

2 Problem Statement

Recall the necessary definitions and notation.
1. X = {x1, . . . , xn} is a set of clients, Y = {y1, . . . , ym} is a set of depots.
Denote by G0(X ∪Y,E,w) a complete weighted digraph, whose weight function

1 A PTAS with time complexity f(1/ε)p(n) for some polynomial p.
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w : E → R+ defines transportation costs for any pair of locations. Hereinafter,
the function w is supposed to be symmetric. For any route R consisting of arcs
e1, . . . , ep, its cost w(R) is defined by the equation w(R) =

∑p
i=1 w(ei). Along

with the digraph G0, we consider its subgraph G = G0〈X〉 induced by the vertex
subset X.
2. To any client xi, assign a number ri = min{w(yj , xi) : j = 1, . . . , m} defining
the least direct transportation cost among the depots. Breaking ties arbitrarily,
define a partition X1 ∪ . . . ∪ Xm = X into subsets

Xj = {xi ∈ X : ri = w(xi, yj)}, (1)

such that any client xi is assigned to the nearest depot yj .
3. Any feasible route has a form yjs

, xi1 , . . . , xit
, yjf

, where yjs
and yjf

are
depots2, xi1 , . . . , xit

are distinct clients visited by this route, and t ≤ q.
If m = 1 the problem in question is called the Single Depot Capacitated Vehi-

cle Routing Problem (SDCVRP). In this case, all feasible routes are simple cir-
cuits. Otherwise, the problem is called the Multiple Depot CVRP (MDCVRP).
We distinguish two special settings of this problem. In the first one, we denote
it MDCVRP1, any feasible route can start and terminate at separate depots. In
the second one, MDCVRP2, for any feasible route, its start and finish depots
should be identical (yjs

= yjf
).

For any aforementioned setting, the goal is, for a given digraph G0(X ∪
Y,E,w) and a capacity q, to find a cheapest set of routes visiting each client
exactly once.

Along with the general setting of the SDCVRP and MDCVRP we consider
two important their special cases defined in terms of the weight function w.

Metric CVRP. In this case, the graph G0 is supposed to be undirected and w
meets the triangle inequality w(z1, z2) ≤ w(z1, z3)+w(z3, z2) for each z1, z2, z3 ∈
X ∪ Y .

Euclidean CVRP. Here, X ∪ Y ⊂ R
d and w(z1, z2) = ‖z1 − z2‖2.

3 Approximability of SDCVRP

The main idea of our approach stems from the famous Iterated Tour Partition
(ITP) heuristic introduced by Haimovich and Rinnooy Kan [10] and presented
below as Algorithm 1. Using ITP in combination with approximation algorithms
for the metric TSP, we construct polynomial time algorithms with asymptoti-
cally fixed performance guarantees for the metric SDCVRP and polynomial time
approximation scheme for the d-dimensional Euclidean SDCVRP for any fixed
d > 1. Further, in Sect. 4, we extend this approach to the case of multiple depots.

For our constructions, we need the following technical claims proved for the
first time in [10]. Although, all the proofs in that paper were carried out for the

2 Not necessarily distinct.
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Algorithm 1. ITP heuristic
Input: a complete weighted digraph G0(X ∪ {y}, E, w) of order n, a natural number
q and an arbitrary Hamiltonian circuit H in G.
Output: an approximate solution SITP of SDCVRP.

1: for all x ∈ H do
2: starting from the vertex x, partition the circuit H into l = �n/q� chains, each of

them, except maybe one, spans q vertexes;
3: connecting endpoints of each chain with the depot y directly, construct a set

S(x) of l routes;
4: end for
5: output the set SITP = arg min{w(S(x)) : x ∈ H}.

Euclidean plane only, it is easy to verify that they remain true in the much more
general setting of the CVRP as well. For the sake of brevity, we skip the proofs
(see [13] for details).

Lemma 1. For r̄ = 1/n
∑n

i=1 ri, the following equation

w(SITP) ≤ 2 �n/q� r̄ +
(

1 − �n/q�
n

)

w(H) ≤ 2 �n/q� r̄ + (1 − 1/q) w(H) (2)

is valid.

It should be noted that the upper bound claimed in Lemma1 is valid for the
most general setting of the SDCVRP. In the metric case, for any feasible solution
S of the SDCVRP, we can obtain also a lower bound on w(S) by means of the
cost of the Hamiltonian circle HS induced by S in the graph G.

Indeed, let S consists of routes C1, . . . , Ct. Excluding the depot y from each
route Ci and connecting arbitrarily the chains obtained to produce a single
(Hamiltonian) circle HS , we obtain the following bound.

Lemma 2.
w(S) ≥ max {2nr̄/q, w(HS)} . (3)

Combining the bounds given by Lemmas 1 and 2, we obtain the following
equation relating the optimum value VRP∗(X, {y}) of the metric SDCVRP and
the weight TSP∗(X) of an optimal Hamiltonian circle in the corresponding TSP
instance.

Theorem 1.

min {2r̄n/q, TSP∗(X)} ≤ VRP∗(X, {y}) ≤ 2�n/q�r̄ + (1 − 1/q) TSP∗(X).

The results above give us an ability to represent a performance guarantee of
any ITP-based approximation algorithm formetric SDCVRP in terms of heuristics
used for obtaining approximate solutions of the inner TSP. Indeed, suppose, we
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obtain a Hamiltonian cycle H in the graph G, whose cost TSP∗ ≤ w(H) ≤
ρTSP∗ for some ρ ≥ 1. Using (2) and (3), we obtain

w(S)
VRP∗(X, {y})

≤ 2 �n/q� r̄ + (1 − 1/q) ρTSP∗(X)
max {2r̄n/q, TSP∗(X)} ≤ q

n
+ 1 + ρ. (4)

Since the RHS of Eq. (4) tends to 1 + ρ any time when q = o(n), an arbitrary
ρ-approximation algorithm for the metric TSP produces asymptotically (1 + ρ)-
approximation algorithm for the metric SDCVRP.

Further, since the running time of the ITP is at most O(n2), the overall
time complexity of any based-on-ITP approximation algorithm is defined by
the running time of the initial approximation algorithm for the metric TSP.
For instance, the famous Christofides’ 3/2-approximation algorithm [4] with the
running time of O(n3) produces asymptotically 5/2-approximation algorithm
with the same time complexity bound, and the well-known Arora’s PTAS [1] for
the d-dimensional Euclidean TSP, for any fixed d > 1 and any ε ∈ (0, 1), pro-
duces asymptotically (2 + ε)-approximation algorithm with the time complexity
of (n(log n)(O(

√
d/ε))d−1

.
To proceed with PTAS for the Euclidean SDCVRP, we recall Algorithm2

proposed in [10].

Algorithm 2. Combined ITP scheme (CITP)
Input: a complete weighted graph G0(X ∪ {y}, E, w) of order n, natural number q,
and an upper relative error bound ε > 0.
Output: an approximate solution SCITP of the SDCVRP.

1: relabel the clients so that r1 ≥ r2 ≥ . . . ≥ rn;
2: for some value k = k(ε) (which will be specified later), partition X into subsets

X(k) = {x1, . . . , xk−1} of inner and X \ X(k) outer clients;
3: find an exact solution S∗(X(k)) of the instance of SDCVRP specified by the sub-

graph G0 〈X(k) ∪ {y}〉;
4: apply Algorithm 1 for construction of an approximate solution SITP(X \ X(k)) of

the SDCVRP defined by the subgraph G0 〈X \ X(k) ∪ {y}〉;
5: output SCITP = S∗(X(k)) ∪ SITP(X \ X(k)).

Algorithm 2 makes a decomposition of the initial instance into two smaller
instances of the SDCVRP. The first subproblem, for the outer clients, is supposed
to be solved to optimality, while for the second one describing the inner clients,
an approximate solution is found by Algorithm1. Lemma 3 helps us to relate
optimum values of these two subproblems.

Lemma 3. For an arbitrary k ∈ {1, . . . , n} the equation

VRP∗(X, {y}) ≤ VRP∗(X(k), {y}) + VRP∗(X \ X(k), {y})
≤ VRP∗(X, {y}) + 4(k − 1)rk.

is valid.
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As previous results, Lemma 3 remains true for an arbitrary metric.
Further, we restrict ourselves to finite dimensional Euclidean spaces. All

remaining assertions of this section are based on the following existence lemma
for a finite ε-net on the surface of the unit Euclidean sphere Sd−1 in terms of
the angular distance

dist(x1, x2) = arccos(x1, x2), (x1, x2 ∈ Sd−1)

(see, e.g. [11], Lemma 3.1). According to the classic definition (see, e.g. [16]), we
call some finite subset N ⊂ Sd−1 a finite ε-net (on the sphere Sd−1) if, for any
x ∈ Sd−1, there exists ξ ∈ N such that dist(ξ, x) ≤ ε.

Lemma 4. For an arbitrary h ∈ (0, h0), h0 = π/(6
√

d − 1), on the sphere Sd−1

there exists an h
√

d − 1-net N = N(d, h) such that |N | = Ch−(d−1) for some
constant C = C(d).

Using the claim of Lemma 4, we obtain an upper bound for the optimum
value TSP∗(X) of an instance of the Euclidean TSP in terms of the radius of an
enclosing sphere. Suppose, a TCP instance is specified by a set X = {x1, . . . , rn}
contained within the Euclidean ball B(y,R) ⊂ R

d of radius R centered at y. As
above, we assume that all the clients are numbered in non-increasing order of
their distances ri = ‖xi − y‖2 from the depot y.

Lemma 5. For an arbitrary d > 1 and a finite X ⊂ B(y,R) the following
bounds

TSP∗(X) ≤
{

C1R
1/d(

∑n
i=1 ri)(d−1)/d, if

∑n
i=1 ri > RC(π/6)−d(d − 1)(d+1)/2,

C2R, otherwise,

are valid, where

C1 = 2dC1/d(d − 1)(d−1)/2d and C2 = 2dC(π/6)−(d−1)(d − 1)(d−1)/2.

Proof. By Lemma 4, for any h ∈ (0, h0), h0 = π/(6
√

d − 1) on the surface of the
ball B(y,R) there exists a finite h

√
d − 1-net N of Ch−(d−1) elements. Connect

any ξj ∈ N with the center y by radial segment, after that connect each client xi

with the nearest radius [y, ξj ] (by the appropriate orthogonal line segment). Fur-
ther, we construct a salesman tour by the well-known edge-doubling technique
for the tree obtained.

Let Φ(h) be the length of the tour constructed. Again, by Lemma4, for any
h ∈ (0, h0),

TSP∗(X) ≤ Φ(h) = 2h
√

d − 1
n∑

i=1

ri + 2RCh−(d−1). (5)

Minimizing the RHS of Eq. (5) subject to 0 < h < π/(6
√

d − 1), we obtain the
claimed bounds.
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Indeed, inf Φ(h) on this range coincides either with Φ(hmin), where

hmin =
(

RC
∑n

i=1 ri

√
d − 1

)1/d

,

if

hmin < h0, i.e.
n∑

i=1

ri > RC(d − 1)(d+1)/2(π/6)−d,

or with Φ(h0), otherwise. In the first case, we obtain

Φ(hmin) = 2

(
RC∑n
i=1 ri

√
d − 1

)1/d √
d − 1

n∑
i=1

ri + 2RC

(
RC∑n
i=1 ri

√
d − 1

)−(d−1)/d

= 2dC1/d(d − 1)−(d−1)/(2d)︸ ︷︷ ︸
C1

·R1/d(

n∑
i=1

ri)
(d−1)/d

If, on the other hand,

n∑

i=1

ri ≤ RC(d − 1)(d+1)/2(π/6)−d, (6)

then

Φ(h0) = 2
√

d − 1
π

6
√

d − 1

n∑

i=1

ri + 2RC
(π

6

)d−1

(
√

d − 1)(d−1)

≤ π

3
RC(d − 1)(d+1)/2

(π

6

)−d

+ 2RC
(π

6

)−(d−1)

(d − 1)(d−1)/2

= RC
(π

6

)−d (π

3
(d − 1) + 2 · π

6

)
(d − 1)(d−1)/2

= 2Cd
(π

6

)−(d−1)

(d − 1)(d−1)/2

︸ ︷︷ ︸
C2

·R.

Lemma 5 is proved.

Further, for some d > 1, consider an instance of the SDCVRP in the
d-dimension Euclidean space. By

e(k) =
w(SCITP(X)) − VRP∗(X)

VRP∗(X)

=
VRP∗(X(k)) + w(SITP(X \ X(k))) − VRP∗(X)

VRP∗(X)
,

denote a relative error of the approximate solution produced by Algorithm2,
using for some ρ a ρ-approximation algorithm for finding an approximate solution
of the inner TSP.
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Lemma 6. For an arbitrary ρ ≥ 1 and ε > 0 there exists k = k(ε) ∈ N such
that e(k) ≤ ε.

Proof. Applying the claims of Lemmas 1–3 and introducing the notation

r̄k =
∑n

i=k ri

n − k + 1
,

we obtain

e(k) ≤ 4(k − 1)rk + 2�(n − k + 1)/q�r̄k + ρTSP∗(X \ X(k)) − 2r̄k(n − k + 1)/q

2nr̄/q

≤ q(2k − 1)
rk∑n
i=1 ri

+
qρ

2
∑n

i=1 ri
TSP∗(X \ X(k)).

By Lemma 5,

e(k) ≤ q(2k − 1)
rk∑n
i=1 ri

+
qρ

2
max

{

C1

(
rk∑n
i=1 ri

)1/d

, C2
rk∑n
i=1 ri

}

≤ q(2k − 1)
rk∑n
i=1 ri

+
qρ

2
max{C1, C2}

(
rk∑n
i=1 ri

)1/d

,

since rk ≤ ∑n
i=1 ri.

Further, denote (rk/
∑n

i=1 ri)1/d by sk. Suppose that, for any t ∈ {1, . . . , k},

q(2t − 1)sd
t +

qρ

2
C∗st > ε (7)

is valid, where C∗ = max{C1, C2} depends on d ultimately.
There exist two options. In the first option, st ≥ ε/(qρC∗) for each t. Then,

1 ≥
k∑

t=1

sd
t ≥ k

(
ε

qρC∗

)d

,

therefore,

k ≤
(

qρC∗

ε

)d

. (8)

Consider the other option. Let t0 be the smallest number, for which

st0 < ε/(qρC∗).
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By construction, the same inequality is valid also for each t0 ≤ t ≤ k, and,
by (7), sd

t > ε/(2q(2t − 1)). Combining the bounds obtained, we get

1 ≥
k∑

t=1

sd
t ≥ (t0 − 1)

(
ε

qρC∗

)d

+
ε

2q

k∑

t=t0

1
2t − 1

≥ (t0 − 1)
(

ε

qρC∗

)d

+
ε

2q

k+1∫

t0

dt

2t − 1

= (t0 − 1)
(

ε

qρC∗

)d

+
ε

4q
(ln(2k + 1) − ln(2t0 − 1)). (9)

Without loss of generality suppose that ε ≤ 4qρ. This equation together with
the obvious (for d > 1) condition C∗ ≥ 4 implies

(
ε

qρC∗

)d

≤ ε

4q
,

and (
ε

qρC∗

)−d

≥ t0 − 1 + ln(2k + 1) − ln(2t0 − 1). (10)

Minimizing the RHS of (10) subject to t0 ∈ {1, . . . , k}, we obtain

k ≤ 1
2
e

(
qρ C∗

ε

)d

. (11)

Comparing bounds (8) and (11), come to the decision that the segment
[

1,
1
2
e

(
qρ C∗

ε

)d

+ 1
]

(12)

definitely contains the required number k = k(ε). Lemma is proved.

Theorem 2. Suppose that ρ-approximation algorithm with the running time of
O(nc) is used for the inner TSP, then, for any fixed q, ρ ≥ 1, and d ≥ 2,
Algorithm2 is an Efficient Polynomial Time Approximation Scheme (EPTAS)
for the SDCVRP.

Proof. Indeed, for a given ε > 0, we can find k(ε) such that e(k) ≤ ε by Lemma 6.
An exact solution S∗(X(k(ε)) can be found by dynamic programming (see,
e.g. [3]) in time O(Kq2K), where K is the upper end of the segment (12). The
rest of Algorithm 2 requires O(nc)+O(n2) time. Therefore, the overall time com-
plexity of Algorithm2 can be bounded from above by a polynomial function of
n, whose order and all the coefficients except the constant term does not depend
on ε. That is, Algorithm 2 is an EPTAS for the SDCVRP for any fixed q, ρ ≥ 1,
and d ≥ 2. Theorem is proved.

It should be noted that Algorithm2 remains a PTAS for the SDCVRP even
under slightly relaxed restrictions on its parameters, e.g. for any fixed d, ρ, and
q = O((log log(n))1/d).
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4 PTAS for the MDCVRP

Further, we extend the results of Sect. 3 to the case of multiple depots. The
main idea of such an extension for the Euclidean plane is proposed in [3]. The
authors proposed to partition the client set X according to equation (1), after
that the initial MDCVRP can be decomposed into a collection of the appropriate
SDCVRP instances for subsets Xj \X(k)∪{yj}. Below, we give a short overview
of this technique.

Algorithm 3. Combined ITP (the case of multiple depots)
Input: complete weighted graph G0(X ∪ Y, E, w) of order n, a natural number q, and
and an upper relative error bound ε > 0.
Output: an approximate solution SCITP of the MDCVRP.

1: relabel the clients according to their distances r1 ≥ r2 ≥ . . . ≥ rn from the set Y ;
2: find a value k = k(ε), specifying the partition of the client set X onto subsets

X(k) = {x1, . . . , xk−1} and X \ X(k);
3: find an exact solution S∗(X(k)) for MDCVRP, defined by the subgraph

G0 〈X(k) ∪ Y 〉;
4: using Algoritm 1, construct an approximate solution SITP(Xj \ X(k)) for any sub-

graph G0 〈Xj \ X(k) ∪ Y 〉;
5: output SCITP = S∗(X(k)) ∪ SITP(X1 \ X(k)) ∪ . . . ∪ SITP(Xm \ X(k)).

Similarly to Sect. 3, denote the relative error of Algorithm3 by

e(k) =
w(SCITP(X)) − VRP∗(X)

VRP∗(X)
(13)

=
VRP∗(X(k)) +

∑m
j=1 w(SITP(Xj \ X(k))) − VRP∗(X)

VRP∗(X)
.

Lemma 7. In the MDCVRP1, for an arbitrary m > 1, ρ ≥ 1, and ε > 0, there
exists a number k = k(ε) ∈ N such that e(k) ≤ ε.

Proof. Let X ′
j = Xj \ X(k), nj = |X ′

j | and r̄jk =
∑

xi∈X′
j
ri/nj . Following the

proof idea of Lemma 6,

e(k) ≤ 4(k − 1)rk +
∑m

j=1(2�nj/q�r̄jk + ρTSP∗(X ′
j) − 2r̄jknj/q)

2nr̄/q

≤ q(2k − 2 + m)
rk∑n
i=1 ri

+
qρ

2
∑n

i=1 ri

m∑

j=1

TSP∗(X ′
j)

≤ q(2k − 2 + m)
rk∑n
i=1 ri

+
mqρ

2
C∗

(
rk∑n
i=1 ri

)1/d

.
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Suppose that, for an arbitrary t ∈ {1, . . . , k}

q(2t − 2 + m)
rt∑n
i=1 ri

+
mqρ

2
C∗

(
rt∑n
i=1 ri

)1/d

> ε (14)

and simultaneously

sd
t =

rt∑n
i=1 ri

≥
(

ε

mqρC∗

)d

, (15)

we get the bound

k ≤
(

mqρC∗

ε

)d

,

similar to Eq. (8). On the other hand, if the system (14) does not imply (15) and
t0 the smallest number, for which the opposite inequality holds. Then, similarly
to (9), we obtain

1 ≥
k∑

t=1

sd
t ≥ (t0 − 1)

(
ε

mqρC∗

)d

+
ε

2q

k∑

t=t0

1
2t − 2 + m

≥ (t0 − 1)
(

ε

mqρC∗

)d

+
ε

2q

k+1∫

t0

dt

2t − 2 + m

≥
(

ε

mqρC∗

)d

((t0 − 1) + (ln(2k + m) − ln(2t0 − 2 + m)))

≥
(

ε

mqρC∗

)d

ln((2k + m)/m),

and

k ≤ m

2
e

(
mqρ C∗

ε

)d

.

Therefore, the range [

1,
m

2
e

(
mqρ C∗

ε

)d

+ 1
]

(16)

definitely contains the required number k(ε). Lemma is proved.

Lemma 7 implies that Algorithm3 is an EPTAS for MDCVRP1. To prove that
Algorithm 3 is an EPTAS for MDCVRP2 as well, we need a version of Lemma3
proven in [3].

Lemma 8. For the MDCVRP2 and for an arbitrary k ∈ {1, . . . , n}, the equation

VRP∗(X,Y ) ≤ VRP∗(X(k), Y ) + VRP∗(X \ X(k), Y )
≤ VRP∗(X,Y ) + 2(q − 1)(k − 1)rk

is valid.
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Lemma 9. For the MDCVRP2 and for an arbitrary m > 1, ρ ≥ 1, and ε > 0
there exists a number k = k(ε) ∈ N such that e(k) ≤ ε.

Proof. Almost the same way that the proof of Lemma 7 was obtained from the
claims of Lemmas 1–3 and Lemma 5 one can show that Lemmas 9 follows from
Lemmas 1–2, 5, and 8. Finally, we obtain that the range

[

1, (m + 1)e
(

mqρ C∗
ε

)d
]

(17)

definitely contains the required k = k(ε), for which e(k) ≤ ε. Lemma is proved.

Our final results follows from Lemmas 7 and 9 and can be proved in the same
way as Theorem 2.

Theorem 3. Under the conditions of Theorem2, for any ε > 0, for any fixed
m, d > 1, ρ ≥ 1, and q, Algorithm3 is an EPTAS for the MDCVRP1 and
MDCVRP2, whose time complexity is O(nc + n2 + mKq2K), where K = K(ε)
coincides with right-hand ends of ranges (16) and (17), respectively.

5 Conclusion

In the paper, we show that Algorithms 2 and 3 together with an arbitrary
polynomial time fixed-guarantee approximation algorithm for the TSP induce
an EPTAS for the SDCVRP and MDCVRP in any fixed-dimension Euclidean
spaces, respectively. Furthermore, the time complexity bounds found remain
polynomial with respect to n even for less accurate3 but maybe much more fast
algorithms for the inner TSP, which can be useful for tackling Big Data.

Future work can be focused on combining the results obtained with recent
results on cycle covers of graphs (see, e.g. [8,12]).
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