
A Fully Polynomial-Time Approximation
Scheme for a Special Case of a Balanced

2-Clustering Problem

Alexander Kel’manov1,2(B) and Anna Motkova2(B)

1 Sobolev Institute of Mathematics, 4 Koptyug Avenue, 630090 Novosibirsk, Russia
kelm@math.nsc.ru

2 Novosibirsk State University, 2 Pirogova Street, 630090 Novosibirsk, Russia
anitamo@mail.ru

Abstract. We consider the strongly NP-hard problem of partitioning a
set of Euclidean points into two clusters so as to minimize the sum (over
both clusters) of the weighted sum of the squared intracluster distances
from the elements of the clusters to their centers. The weights of sums are
the cardinalities of the clusters. The center of one of the clusters is given
as input, while the center of the other cluster is unknown and determined
as the geometric center (centroid), i.e. the average value over all points
in the cluster. We analyze the variant of the problem with cardinality
constraints. We present an approximation algorithm for the problem and
prove that it is a fully polynomial-time approximation scheme when the
space dimension is bounded by a constant.
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1 Introduction

The subject of this study is a strongly NP-hard quadratic Euclidean prob-
lem of partitioning a finite set of points into two clusters. We will show a
fully polynomial-time approximation scheme (FPTAS) for a special case of the
problem.

Our research is motivated by insufficient study of the problem from an algo-
rithmic direction and its importance in some applications including geometry,
cluster analysis, statistical problems of joint evaluation and hypotheses testing
with heterogeneous samples, data interpretation problem, etc.

The paper has the following structure. Section 2 contains the problem for-
mulation, some applications, and some closely related problems. Additionally,
known and our new results are discussed. In Sect. 3 we formulate and prove
some basic properties exploited by our algorithm. In Sect. 4, an approxima-
tion algorithm is presented. Finally, also in Sect. 4 we show that our algorithm
is a fully polynomial-time approximation scheme when the space dimension is
fixed.
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2 Problem Formulation, Its Origin, Related Problems,
known and New Results

Everywhere below we use the standard notations, namely: R is the set of the
real numbers, R+ is the set of positive real numbers, Z is the set of integers, ‖ · ‖
is the Euclidean norm, and 〈·, ·〉 is the scalar product.

The problem under consideration is formulated as follows (see also [1,2]).

Problem 1 (Balanced Variance-based 2-Clustering with given center). Given a
set Y = {y1, . . . , yN} of points from R

q and a positive integer M . Find a partition
of Y into two non-empty clusters C and Y \ C such that

F (C) = |C|
∑

y∈C
‖y − y(C)‖2 + |Y \ C|

∑

y∈Y\C
‖y‖2 −→ min , (1)

where y(C) = 1
|C|

∑
y∈C

y is the geometric center (centroid) of C and such that

|C| = M .

The problem has an obvious geometrical interpretation. It is a partition of a
finite set of points in Euclidean space into two geometrical structures minimizing
(1). In formula (1) the weights of the sums are the cardinalities of the desired
clusters. So, Problem 1 can be interpreted as the problem of optimal weighted
(by the cardinalities of the clusters) summing and also as a problem of balanced
partitioning (or clustering).

In addition, the problem has applications in Data mining problem (see, for
example, [3–5]). The essence of this multifaceted problem is the approximation
of data by some mathematical model that allows to plausibly explain the origin
of the data in terms of the model. In particular, the next statistical hypothesis
can be used as such mathematical model: it is true that the input data Y is the
inhomogeneous sample from two distributions, and that one of these distribu-
tions has zero mean while another mean is unknown and non-equal to zero. To
test this hypothesis, first we need to find an optimal solution to Problem 1, and
only then we will be able to use the classical results in the field of statistical
hypothesis testing.

It is widely known that applied researchers, who study and analyze data,
use algorithms as the basic mathematical tools for solving a variety of clustering
problems in which clusters consist of similar or related by certain criteria objects.
Creating such mathematical tools for solving data mining problems causes the
development of new algorithms with guaranteed performance estimates of accu-
racy and time complexity.

The strong NP-hardness of Problem 1 was proved in [1,2]. This fact
implies that, unless P=NP, there are neither exact polynomial-time nor exact
pseudopolynomial-time algorithms for it [6]. In addition, in [1,2], the nonexis-
tence of an FPTAS was shown (unless P=NP) for Problem 1. So, finding sub-
classes of this problem for which there exists an FPTAS is a question of topical
interest.
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Note that there is only one algorithmic result for Problem 1, i.e. an exact
algorithm [7] for the case of integer components of the input points. The time
complexity of this algorithm is O(qN(2MB + 1)q), where B is the maximum
absolute value of the components of the input points. If the dimension q of the
space is bounded by a constant, then the time complexity of the algorithm is
O(N(MB)q). So, in this case the algorithm is pseudopolynomial.

At the same time, there are a lot of results for problems closely related to
Problem 1. Properties of algorithms for these problems can be found in the
papers cited below.

The NP-hard Balanced variance-based 2-clustering problem is one of the most
closely related to Problem 1. The objective function in this problem is different
from (1) in that the center of cluster Y \ C is not fixed:

|C|
∑

y∈C
‖y − y(C)‖2 + |Y \ C|

∑

y∈Y\C
‖y − y(Y \ C)‖2 −→ min . (2)

In problem (2) the centroids y(C) and y(Y \ C) of both clusters C and Y \ C are
the functions of C. It is well-known that this problem is equivalent to Min-sum
all-pairs 2-clustering problem in which it is required to find a partition such that

∑

x∈C

∑

z∈C
‖x − z‖2 +

∑

x∈Y\C

∑

z∈Y\C
‖x − z‖2 −→ min . (3)

Algorithmic questions for problems (2) and (3) were studied, for example,
in [1,2,8–13].

The well-known NP-hard [14] Minimum sum-of-squares 2-clustering problem
is close to Problem 1. In this problem (related to classical work by Fisher [15]
and also called 2-Means [16]), we need to find two clusters C and Y \C such that

∑

y∈C
‖y − y(C)‖2 +

∑

y∈Y\C
‖y − y(Y \ C)‖2 −→ min . (4)

In problem (4) as well as in problem (2) the centroids of both clusters are the
functions of C, but in problem (4) the sums are not weighted by the cluster
cardinalities. Thousands of publications are dedicated to problem (4) and its
applications.

The strongly NP-hard problem Minimum sum-of-squares 2-clustering with
given center has been actively studied in the last decade. In this problem we
need to find a 2-partition such that

∑

y∈C
‖y − y(C)‖2 +

∑

y∈Y\C
‖y‖2 −→ min . (5)

Problem (5) differs from Problem 1 in that the sums are not weighted by the
cardinalities of the desired clusters. The algorithmic results for this problem can
be found in [17–24].

In the considered Problem 1, the centroid y(C) of the cluster C is unknown
and the center of the cluster Y \ C is given at the origin as in the problem (5).
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Since Problem 1 is neither equivalent nor a special case of the problems (2)–(5),
the previous algorithmic results for these closely related problems do not apply
to Problem 1. We need new explorations for this problem.

In this work we present an approximation algorithm for Problem 1. Given
a relative error ε, the algorithm finds a (1 + ε)-approximate solution in

O
(

qN2(
√

2q
ε + 1)q

)
time. In the case of a fixed space dimension q the run-

ning time of the algorithm is equal to O
(
N2

(
1
ε

)q/2
)

and so, it implements a
fully polynomial-time approximation scheme.

3 Foundations of the Algorithm

In this section, we provide some basic statements exploited by our algorithm.
The following two lemmas are well known. Their proofs are presented in

many publications (see, for example, [25,26]).

Lemma 1. For an arbitrary point x ∈ R
q and a finite set Z ⊂ R

q, it is true
that ∑

z∈Z
‖z − x‖2 =

∑

z∈Z
‖z − z‖2 + |Z| · ‖x − z‖2 ,

where z is the centroid of Z.

Lemma 2. Let the conditions of Lemma 1 hold. If a point u ∈ R
q is closer (in

terms of distance) to the centroid z of Z than any point in Z, then
∑

z∈Z
‖z − u‖2 ≤ 2

∑

z∈Z
‖z − z‖2 .

Lemma 3. Let

S(C, x) = |C|
∑

y∈C
‖y − x‖2 + |Y \ C|

∑

y∈Y\C
‖y‖2, C ⊆ Y, x ∈ R

q , (6)

where Y is the input set of Problem 1. Then it is true that

S(C, x) = F (C) + |C|2‖x − y(C)‖2 .

Proof. Applying Lemma 1 to the set C and its centroid, we have
∑

y∈C
‖y − x‖2 =

∑

y∈C
‖y − y(C)‖2 + |C| · ‖x − y(C)‖2 . (7)

After the substitution of (7) in the definition (6), we obtain

S(C, x) = |C|
∑

y∈C
‖y − x‖2 + |Y \ C|

∑

y∈Y\C
‖y‖2

= |C|
∑

y∈C
‖y − y(C)‖2 + |C|2‖x − y(C)‖2 + |Y \ C|

∑

y∈Y\C
‖y‖2

= F (C) + |C|2‖x − y(C)‖2 .


�
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For any function f(x, y), we denote by fx(y) the function when the argument
x is fixed and by fy(x) the function when the argument y is fixed.

Lemma 4. For the conditional minimums of the function (6) the next state-
ments are true:

(1) for any nonempty fixed set C ⊆ Y the minimum of the function SC(x)
over x ∈ R

q is reached at the point x = y(C) = 1
|C|

∑
y∈C

y and is equal to F (C);

(2) if |C| = M = const, then, for any fixed point x ∈ R
q, the minimum of

function Sx(C) over C ⊆ Y satisfies

arg min
C⊆Y

Sx(C) = arg min
C⊆Y

Gx(C) ,

where
Gx(C) =

∑

y∈C
gx(y) , (8)

gx(y) = (2M − N)‖y‖2 − 2M 〈y, x〉 , y ∈ Y , (9)

and
min
C⊆Y

Gx(C) =
∑

y∈Bx

gx(y) , (10)

where the set Bx consists of M points of the set Y, at which the function gx(y)
has the smallest values.

Proof. The first statement follows from Lemma 3.
Since |Y| = N and |C| = M , the second statement follows from the next

chain of equalities:

Sx(C) = M
∑

y∈C
‖y − x‖2 + (N − M)

∑

y∈Y\C
‖y‖2

= M
∑

y∈C
‖y‖2 + M2‖x‖2 − 2M

∑

y∈C
〈y, x〉 + (N − M)

∑

y∈Y\C
‖y‖2

= (N − M)
∑

y∈Y
‖y‖2 + M2‖x‖2 + (2M − N)

∑

y∈C
‖y‖2 − 2M

∑

y∈C
〈y, x〉

= (N−M)
∑

y∈Y
‖y‖2+M2‖x‖2+

∑

y∈C
gx(y) = (N−M)

∑

y∈Y
‖y‖2+M2‖x‖2+Gx(C) .

It remains to note that in the last two equalities the first two addends do not
depend on C. The formula (10) is obvious. 
�
Lemma 5. Let the conditions of Lemma 4 hold and C∗ be the optimal solution
of Problem 1. Then, for a fixed point x ∈ R

q, the following inequality is true

F (Bx) ≤ F (C∗) + M2‖x − y(C∗)‖2 .
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Proof. The definitions (1) and (6), and Lemma 4 imply

F (Bx) = Sy(Bx)(Bx) ≤ Sx(Bx) ≤ Sx(C∗) . (11)

Applying Lemma 3 to the right-hand side of (11), we obtain

Sx(C∗) = F (C∗) + M2||x − y(C∗)||2 . (12)

Combining (11) and (12) yields the statement of the lemma. 
�
Lemma 6. Let the conditions of Lemma 5 hold and t = arg min

y∈C∗
‖y−y(C∗)‖2 be

the point from the subset C∗ closest to its centroid. Then the following inequality
is true

‖t − y(C∗)‖2 ≤ 1
M2

F (Bt) , (13)

where Bt is the set defined in Lemma 4 (for x = t).

Proof. By the definition of point t we have

‖t − y(C∗)‖2 ≤ ‖y − y(C∗)‖2

for each y ∈ C∗. Summing up both sides of this inequality over all y ∈ C∗, we
obtain

M‖t − y(C∗)‖2 ≤
∑

y∈C∗
‖y − y(C∗)‖2 . (14)

Since C∗ is the optimal solution,

F (C∗) ≤ F (Bt) . (15)

Then (14), (1) and (15) imply

M‖t − y(C∗)‖2 ≤
∑

y∈C∗
‖y − y(C∗)‖2 ≤ 1

M
F (C∗) ≤ 1

M
F (Bt) .


�
Lemma 7. Let the conditions of Lemma 6 hold. Let

‖x − y(C∗)‖2 ≤ ε

2M2
F (Bt) (16)

for some ε > 0 and x ∈ R
q. Then the subset Bx (defined in Lemma 4) is a

(1 + ε)-approximate solution of Problem 1.

Proof. From (1), Lemma 4 and the definition of the point t we have

F (Bt) = Sy(Bt)(Bt) ≤ St(Bt) ≤ St(C∗) . (17)

Applying Lemma 2 to the set C∗ and the point t, we have
∑

y∈C∗
‖y − t‖2 ≤ 2

∑

y∈C∗
‖y − y(C∗)‖2 .
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Therefore, definition (6) yields

St(C∗) = M
∑

y∈C∗
‖y − t‖2 + (N − M)

∑

y∈Y\C∗
‖y‖2

≤ 2M
∑

y∈C∗
‖y − y(C∗)‖2 + (N − M)

∑

y∈Y\C∗
‖y‖2 ≤ 2F (C∗) . (18)

Combining (16), (17), and (18) we obtain

‖x − y(C∗)‖2 ≤ ε

2M2
F (Bt) ≤ ε

2M2
St(C∗) ≤ ε

M2
F (C∗) . (19)

Finally, from Lemma 5 and (19) for the subset Bx we obtain the following esti-
mate of the value of the objective function

F (Bx) ≤ F (C∗) + M2‖x − y(C∗)‖2 ≤ (1 + ε)F (C∗) .

This estimate means that the subset Bx is a (1 + ε)-approximate solution for
Problem 1. 
�

4 Approximation Algorithm

In this section, we present our approximation algorithm for Problem 1. Its main
idea is as follows. For each point of the input set a domain (cube) is constructed so
that the center of the desired subset necessarily belongs to one of these domains.
Given (as input) the prescribed relative error ε of the solution, a lattice (a grid)
is generated that discretizes the cube with a uniform step in all coordinates.
For each lattice node, a subset of M points from the input set that have the
smallest values of the function (9) is formed (the minimum of (8) is reached at
that subset). The resulting set is declared as a solution candidate. The candidate
that minimizes the objective function is chosen to be the final solution.

For an arbitrary point x ∈ R
q and positive numbers h and H, we define the

set of points

D(x, h,H) = {d ∈ R
q| d = x + h · (i1, . . . , iq), ik ∈ Z, |hik| ≤ H, k ∈ {1, . . . , q}}

(20)
which is a cubic lattice of size 2H centered at the point x with node spacing h.

For any point x ∈ R
q the number of nodes in this lattice is

|D(x, h,H)| ≤
(

2
⌊H

h

⌋
+ 1

)q

≤
(

2
H

h
+ 1

)q

. (21)

Remark 1. If some point z from R
q and some node x from the lattice D(x, h,H)

satisfy the inequality ‖z − x‖ ≤ H then the distance from z to the nearest node
of the lattice obviously does not exceed h

√
q

2 .
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For constructing an algotithmic solution we need to determine adaptively
the size H of the lattice and its node spacing h for each point y of the input set
Y so that the domain of the lattice contains the centroid of the desired subset.
The node spacing is defined by the relative error ε. To this end we define the
functions:

H(y) =
1
M

√
F (By), y ∈ Y , (22)

h(y, ε) =
1
M

√
2ε

q
F (By), y ∈ Y, ε ∈ R+ , (23)

where By is a set determined in Lemma 4, if x = y.
Note that all calculations in the algorithm described below are based on

constructing candidate (approximate) solutions of Problem 1 as a subset Bx

(defined in Lemma 4) for any point x from the support set of points. In this way
we use two support sets. The first of them is the input set Y and the second
one is the set of nodes of the lattice D(y, h,H) centered at y. The lattice is
adaptively calculated by formulae (22) and (23) for each input point y ∈ Y. The
approximation factor is finally bounded using the basic statements in Sect. 3.

Remark 2. For any point y ∈ Y the cardinality |D(y, h,H)| of the lattice does
not exceed the value

L =

(√
2q

ε
+ 1

)q

due to (21), (22), and (23).

Below is the step-by-step description of the algorithm.

Algorithm A.
Input : a set Y and numbers M and ε.
For each point y ∈ Y Steps 1–6 are executed.
Step 1. Compute the values gy(z), z ∈ Y, using formula (9); find a subset

By ⊆ Y with M smallest values gy(z), compute F (By) using formula (1).
Step 2. If F (By) = 0, then put CA = By; exit.
Step 3. Compute H and h using formulae (22) and (23).
Step 4. Construct the lattice D(y, h,H) using formula (20).
Step 5. For each node x of the lattice D(y, h,H) compute the values gx(y),

y ∈ Y, using formula (9) and find a subset Bx ⊆ Y with M smallest values gx(y).
Compute F (Bx) using formula (1), remember this value and the set Bx.

Step 6. If F (Bx) = 0, then put CA = Bx; exit.
Step 7. In the family {Bx|x ∈ D(y, h,H), y ∈ Y} of candidate sets that

have been constructed in Steps 1–6, choose as a solution CA the set Bx for which
F (Bx) is minimal.

Output : the set CA.

Theorem 1. For any fixed ε > 0 Algorithm A finds a (1 + ε)-approximate

solution of Problem 1 in O
(

qN2

(√
2q
ε + 1

)q)
time.
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Proof. Let us bound the approximation factor of the algorithm. If the equality
F (By) = 0 holds at Step 2 for some point y ∈ Y, then the subset By ⊆ Y is an
optimal solution of Problem 1, since, for any set C ⊆ Y, it is true that F (C) ≥ 0.
We get an optimal solution at Step 6 in the same way.

Consider the case when the condition F (By) = 0 at Step 2 does not hold.
Obviously, there exists a point t ∈ Y such that t = arg min

y∈C∗
||y − y(C∗)|| and

the algorithm meets it at least once in the set Y while running. By Lemma 6,
inequality (13) holds for this point. This inequality and (22) mean that ‖t −
y(C∗)‖ ≤ H(t), so the centroid of the optimal subset lies within the lattice
D(t, h,H) of the size H = H(t) and the node spacing h = h(t, ε).

Let x∗ = arg min
x∈D(t,h,H)

‖x − y(C∗)‖ be a node of the grid D(t, h,H), the

nearest to the centroid of the optimal subset. Since the squared distance from
the optimal centroid y(C∗) to the nearest node x∗ of the lattice does not exceed
h2q
4 (by remark 1), we have the estimate

‖x∗ − y(C∗)‖2 ≤ h2q

4
=

ε

2M2
F (Bt) .

Therefore, the point x∗ satisfies the conditions of Lemma 7 and, hence, the set
Bx∗

is a (1 + ε)-approximate solution of Problem 1.
It is clear, that any subset Bx in the family of candidate solutions on Step

7 constructed for node x such that ‖x − y(C∗)‖2 ≤ ‖x∗ − y(C∗)‖2 guarantees a
(1 + ε)-approximation also.

Let us evaluate the time complexity of the algorithm.
At Step 1 calculation of gy(z) requires at most O(qN)-time. Finding the M

smallest elements in the set of N elements is performed in O(N) operations (for
example, using the algorithm of finding the n-th smallest value in an unordered
array [27]). Computation of the value F (By) takes O(qN) time.

Steps 2, 3 and 6 are executed in O(1) operations. It requires O(qL) operations
for generating the lattice at Step 4 (by remark 2).

At Step 5, computation of the elements of the set Bx for each node of the
grid requires O(qN) time, and the same is true for the computation of F (Bx)
(as computations at Step 1). Thus, at this step the computational time for all
nodes of the grid is O(qNL).

Since Steps 1–6 are performed N times, the time complexity of these steps
is O(qN2L). The time complexity of Step 7 is bounded by O(NL), and the
total time complexity of all Steps is O(qN2L). Therefore, the time complexity

of Algorithm A is O
(

qN2

(√
2q
ε + 1

)q)
. 
�

Remark 3. In the case when the dimension q of space is bounded by a constant
value and ε < 2q, we have

qN2

(
1 +

√
2q

ε

)q

≤ qN22q

(
2q

ε

)q/2

= O
(

N2

(
1
ε

)q/2
)

,

and it means that Algorithm A is an FPTAS.
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Remark 4. It is clear that the constructed algorithm can be applied for solving
a problem in which the cardinalities of the clusters are the optimized variables.
For this purpose, it is sufficient to solve Problem 1 N times with the help of
Algorithm A for each M = 1, . . . , N , and then choose the best of these solu-
tions in the sense of minimizing the objective function. The time complexity
of this algorithm obviously equals O

(
N3

(
1
ε

)q/2
)
. But it is interesting to con-

struct algorithms with less time complexity without searching for such candidate
solutions.

5 Conclusion

In this paper we presented an approximation algorithm for one strongly NP-
hard quadratic Euclidian problem of balanced partitioning a finite set of points
into two clusters. It was proved that our algorithm is a fully polynomial-time
approximation scheme if the space dimension is bounded by a constant.

In the algorithmical sense, the considered problem is poorly studied. There-
fore, it seems important to continue studying the questions on algorithmical
approximability of the problem.
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