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Abstract. We consider the problem of partitioning a finite sequence of
points in Euclidean space into a given number of clusters (subsequences)
minimizing the sum of squared distances between cluster elements and
the corresponding cluster centers. It is assumed that the center of one of
the desired clusters is the origin, while the centers of the other clusters
are unknown and determined as the mean values over clusters elements.
Additionally, there are a few structural restrictions on the elements of
clusters with unknown centers: (1) clusters form non-overlapping subse-
quences of the input sequence, (2) the difference between two consecutive
indices is bounded from below and above by prescribed constants, and
(3) the total number of elements in these clusters is given as an input.
It is shown that the problem is strongly NP-hard. A 2-approximation
algorithm which runs in polynomial time for a fixed number of clusters
is proposed for this problem.

Keywords: Clustering · Structural constraints · Euclidean space ·
Minimum sum-of-squared distances · NP-hardness · Guaranteed
approximation factor

1 Introduction

The subject of this study is a problem of partitioning a finite sequence of points
in Euclidean space into subsequences. Our goal is to find out the computational
complexity of the problem and to provide a polynomial-time factor-2 approxi-
mation algorithm.

The research is motivated by insufficient study of the problem and its rele-
vance, in particularly, to problems of approximation, clustering, sequence (time
series) analysis as well as to many natural science and engineering applications
that require classification of results of chronologically sorted numerical experi-
ments and observations on the state of some objects (see, for example, [1–4] and
references therein). Some applications (sources) of the problem are presented in
the next section.
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This is the incremental work to the results previously obtained in [5–7]. Each
of the cited works is an essential building-block in the algorithm presented in
this work — the first algorithm with a guaranteed approximation factor.

2 Problem Formulation, Complexity, and Related
Problems

Everywhere below R denotes the set of real numbers, ‖ · ‖ denotes the Euclidean
norm, and 〈·, ·〉 denotes the scalar product.

Formally, we consider the following problem.

Problem 1. Given a sequence Y = (y1, . . . , yN ) of points from R
q and some posi-

tive integers Tmin, Tmax, L, and M . Find nonempty disjoint subsets M1, . . . ,ML

of N = {1, . . . , N}, i.e. subsets of indices of the elements from the sequence Y,
such that

F (M1, . . . ,ML) =
L∑

l=1

∑

j∈Ml

‖yj − y(Ml)‖2 +
∑

i∈N\M
‖yi‖2 −→ min , (1)

where M =
⋃L

l=1 Ml, and y(Ml) = 1
|Ml|

∑
j∈Ml

yj is the centroid of subset
{yj | j ∈ Ml}, under the following constraints: (i) the cardinality of M is equal
to M , (ii) concatenation of elements of subsets M1, . . . ,ML is an increasing
sequence, provided that the elements of each subset are in ascending order, (iii)
the following inequalities for the elements of M = {n1, . . . , nM} are satisfied:

Tmin ≤ nm − nm−1 ≤ Tmax ≤ N, m = 2, . . . ,M . (2)

From the above formulation, it is clear that Problem 1 belongs to the class of
clustering problems with a quadratic criterion. Clusters are the unknown index
subsets M1, . . . , ML, N \ M and the corresponding subsequences of the input
sequence.

One of the sources of Problem 1 is the next problem which is typical for many
natural science and technical applications, in particular, for noise-proof remote
monitoring, electronic intelligence, analysis and recognition of biomedical and
speech signals, data mining, machine learning, and others.

There is a series of N chronologically ordered measurements y1, . . . , yN of a
q-tuple y of numerical characteristics of some object. The object has L+1 states.
Among them L states are active and one state is passive. In the passive state
all the numerical characteristics in the tuple equal zero, while, in each active
state the value of at least one characteristic is nonzero. The data contains some
measurement errors. It is known that for some time the object is located in one
of the active states, and then switches to a different active state. At that all
the active states of the object are accompanied by a switching into the passive
state for some unknown time interval which is bounded from above and below.
In addition we are given the natural numbers Tmin and Tmax, which correspond
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to the minimum and maximum time interval between any two successive active
states of the object. The correspondence of the sequence element to some state
of the object is not known in advance. It is required to find the sequence of active
states of the object and to estimate the characteristics of the object in each of
the active states (which correspond to the respective cluster centers).

Formalization of this problem with respect to the criterion of the minimum
sum of squared deviations induces the following approximation problem. Given
a sequence Y = (y1, . . . , yN ) of points from R

q and some positive integers Tmin,
Tmax, L, and M . Find an approximating sequence z1, . . . , zN having the following
structure

zn =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

x1, n ∈ M1 ,

. . .

xL, n ∈ ML ,

0, n ∈ N\M ,

(3)

where x1, . . . , xL are unknown points from R
q, such that

∑

i∈N
‖yi − zi‖2 −→ min , (4)

under the same constraints on the numbers from subsets Ml, . . . ,ML, and M
as in Problem 1.

Schematically, the segment of sequence zn, n ∈ N , has the following structure

. . . 0xl−10 . . . 0xl−10 . . . . . . 0xl0 . . . 0xl0 . . . . (5)

Here xl−1, xl ∈ R
q are unknown nonzero points corresponding to the (l − 1)-th

and l-th active states of the object, 0 corresponds to the passive state of the
object. The number of zero points between the nonzero points is unknown and
lies within the admissible range from Tmin − 1 to Tmax − 1 in accordance with
the constraints (2).

Relying on (3), expanding the sum (4) and grouping the terms, it is easy to
verify by differentiation that the values xl = y(Ml), l = 1, . . . , L, are optimal
in the sense of (4), and thus the formulated approximation problem induces
Problem 1. Herein in the optimal approximating sequence, the segment (5) has
the following form

. . . 0y(Ml−1)0 . . . 0y(Ml−1)0 . . . . . . 0y(Ml)0 . . . 0y(Ml)0 . . .

For all l = 1, . . . , L in this sequence, the indices from the set Ml, the cluster
{yj | j ∈ Ml}, and its centroid y(Ml) are determined as the result of solving
Problem 1. Centroid y(Ml) is an estimate for the point xl.

From the above mentioned schematic record of sequences in the string form,
it is evident that each of them can be interpreted as a sequence containing the
segments with some quasiperiodic (because of the constraints (2)) repetitions. If
we define the boundaries of the series on the first or the last repetition, then one
can interpret all of the above problems as problems of partitioning a sequence
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into segments with quasiperiodic repetitions of a priori unknown points, esti-
mating these points, and finding their positions in the sequence.

The next statement establishes the complexity status of Problem 1.

Proposition 1. The Problem 1 is strongly NP-hard.

Proposition 1 follows from the fact that the special case of Problem 1 with
L = 1 is strongly NP-hard [5]. Thus, Problem 1 belongs to the class of compu-
tationally intractable problems.

3 Known and Obtained Results

Problem 1 is among the poorly studied discrete optimization problems. It is
closely related to the problem (see [7]) in which the input sequence Y is one-
dimensional, i.e. q = 1. The points from tuple (x1, . . . , xL) belong to R

d, where
d ≥ 1, and they are given at the problem input, at that Tmin ≥ d in the
restrictions (2). In the objective function of the problem instead of the centroids
y(M1), . . . , y(ML) of the desired subsets appear the elements from the given
tuple (x1, . . . , xL). The unknown variables are the sets M1, . . . ,ML. This prob-
lem can be interpreted as a problem searching a sequence for non-overlapping
segments with quasiperiodic repetitions of points from the tuple together with
the positions of these points in the sequence. It was shown in [7] that this prob-
lem is solvable in polynomial time using dynamic programming. Below we apply
a simplification of this dynamic program in our algorithm.

Except for the special case with L = 1 in Eq. (1), no algorithms with guar-
anteed approximation factor are known at the moment for Problem 1. For this
special case, the following results were obtained.

In [5], the variant of Problem 1 in which Tmin and Tmax are the parameters
was analyzed. In the cited work it was shown that in the case when L = 1, this
parameterized variant is strongly NP-hard for any Tmin < Tmax. In the trivial
case when Tmin = Tmax, the problem is solvable in polynomial time.

In [6], for the same case of Problem 1, when L = 1, a 2-approximation
polynomial-time algorithm running in O(N2(MN + q)) time was presented.

In addition, in [8,9], two special cases of the case L = 1 were studied. In both
subcases the dimension q of the space is fixed. For the subcase with integer inputs
in [8] an exact pseudopolynomial algorithm was constructed. The time complex-
ity of this algorithm is O(MN2(MD)q), where D is the maximum absolute in
any coordinate of the input points. For the subcase with real inputs in [9] a fully
polynomial-time approximation scheme was proposed which, given a relative
error ε, finds a (1 + ε)-approximate solution of Problem 1 in O(MN3(1/ε)q/2)
time.

The main result of this paper is an algorithm that allows to find a
2-approximate solution of Problem 1 in O(LNL+1(MN + q)) time, which is
polynomial if the number L of clusters is fixed.



An Approximation Algorithm for a Problem of Partitioning a Sequence 175

4 Fundamentals of Algorithm

To construct the algorithm we need a few basic assertions, an auxiliary problem
and an exact polynomial algorithm for its solution.

The geometrical foundations of the algorithm are given by the following
lemmas.

Lemma 1. For any point u ∈ R
q and any finite nonempty set Z ⊂ R

q the
following equality holds

∑

z∈Z
‖z − u‖2 =

∑

z∈Z
‖z − z‖2 + |Z| · ‖u − z‖2 , (6)

where z = 1
|Z|

∑
z∈Z z is the centroid of Z.

Lemma 1 has quite simple proof and is well-known. Its proof has been given
in several publications (for example, in [10]).

Lemma 2. Assume that the conditions of Lemma 1 hold. Then, if some point
u ∈ R

q is closer (with respect to the Euclidean distance) to the centroid z of Z
than all points in Z, then

∑

z∈Z
‖z − u‖2 ≤ 2

∑

z∈Z
‖z − z‖2 .

Lemma 2 follows from (6), because by the assumption for every point z ∈ Z
we have the inequality ‖u − z‖ ≤ ‖z − z‖.

From now on we use fx(y) to denote a function f(x, y) for which x is fixed.

Lemma 3. Let

S(M1, . . . ,ML, x1, . . . , xL) =
L∑

l=1

∑

j∈Ml

‖yj − xl‖2 +
∑

i∈N\M
‖yi‖2 , (7)

G(M1, . . . ,ML, x1, . . . , xL) =
L∑

l=1

∑

j∈Ml

(2〈yj , xl〉 − ‖xl‖2) ,

where x1, . . . , xL are points from R
q, and elements of the sets Ml, . . . ,ML, and

M satisfy restrictions of Problem 1. Then the following statements are true:

(1) for any nonempty fixed subsets M1, . . . ,ML the minimum of function
(7) over x1, . . . , xL is reached at the points xl = y(Ml), l = 1, . . . , L, and is
equal to F (M1, . . . ,ML);

(2) for any tuple x = (x1, . . . , xL) of fixed points from R
q the mini-

mum of function Sx(M1, . . . ,ML) over M1, . . . ,ML is reached at the subsets
Mx

1 , . . . ,Mx
L that maximize function Gx(M1, . . . ,ML).
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Proof. The first statement of this lemma is easily verified by differentiation and
also follows from Lemma 1. To prove the second statement it is sufficient to note
that the following equality holds

Sx(M1, . . . ,ML) =
∑

j∈N
‖yj‖2 − Gx(M1, . . . ,ML) , (8)

where the sum on the right-hand side is independent of M1, . . . ,ML. 
�
The main ingredient to our algorithm is an exact polynomial-time algorithm

for solving the following auxiliary problem.

Problem 2. Given a sequence Y = (y1, . . . , yN ) and a tuple x = (x1, . . . , xL) of
points from R

q, and some positive integers Tmin, Tmax, and M . Find nonempty
disjoint subsets M1, . . . ,ML of N = {1, . . . , N} that maximize the objective
function Gx(M1, . . . ,ML), under the same constraints on the optimized vari-
ables as in Problem 1.

To explain the algorithm for solving this auxiliary problem, we define the
function

gx
l (n) = 2〈yn, xl〉 − ‖xl‖2, n ∈ N , l = 1, . . . , L , (9)

where xl is a point from tuple x, and yn is an element of sequence Y.
In accordance with the definition (9), for the objective function

Gx(M1, . . . ,ML) we have

Gx(M1, . . . ,ML) =
L∑

l=1

∑

n∈Ml

gx
l (n) .

In addition, we note that Lemma 3 yields the following equalities

(Mx
1 , . . . ,Mx

L) = arg min
M1,...,ML

Sx(M1, . . . ,ML)

= arg max
M1,...,ML

Gx(M1, . . . ,ML) . (10)

In the next lemma and its corollary we give a dynamic programming scheme.
This scheme guarantees finding the optimal solution Mx

1 , . . . ,Mx
L of Problem 2

and (according to the Eq. (10)) the optimal solution of the problem of minimizing
the function Sx(M1, . . . ,ML). The presented scheme follows from the results
obtained in [7] and is given here for completeness.

Lemma 4. Let the conditions of Problem 2 hold. Then for any positive integers
L and M such that (M − 1)Tmin < N and L ≤ M , the optimal value Gx

max of
the objective function of Problem 2 is given by the formula

Gx
max = max

n∈{1+(M−1)Tmin,...,N}
Gx

L,M (n) ; (11)
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here, the values of Gx
L,M (n) are calculated using the recurrence formula

Gx
l,m(n) = gx

l (n)

+

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

0, if l = 1,m = 1,
max

j∈γm−1(n)
Gx

1,m−1(j),

if l = 1,m = 2, . . . ,M − (L − 1),
max

j∈γm−1(n)
Gx

l−1,m−1(j),

if l = 2, . . . , L, m = l,
max{ max

j∈γm−1(n)
Gx

l,m−1(j), max
j∈γm−1(n)

Gx
l−1,m−1(j)},

if l = 2, . . . , L, m = l + 1, . . . ,M − (L − l),

(12)

where

γm−1(n) = {j | max{1 + (m − 2)Tmin, n − Tmax} ≤ j ≤ n − Tmin} ,
m = 2, . . . , M ,

(13)

for every n = 1 + (m − 1)Tmin, . . . , N − (M − m)Tmin.

Corollary 1. Let the conditions of Lemma 4 hold. In addition, let

rx
l,m(n) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

1, if l = 1, m = 2, . . . ,M − (L − 1),
l − 1, if l = 2, . . . , L, m = l,
l − 1, if max

j∈γm−1(n)
Gx

l,m−1(j) < max
j∈γm−1(n)

Gx
l−1,m−1(j),

l = 2, . . . , L, m = l + 1, . . . ,M − (L − l),
l, if max

j∈γm−1(n)
Gx

l,m−1(j) ≥ max
j∈γm−1(n)

Gx
l−1,m−1(j),

l = 2, . . . , L, m = l + 1, . . . ,M − (L − l),

Ix
l,m(n) = arg max

j∈γm−1(n)
Gx

l,m−1(j), l = 1, . . . , L, m = l + 1, . . . ,M − (L − l),

for every n = 1 + (m − 1)Tmin, . . . , N − (M − m)Tmin;

nx(m) =

{
arg max

n∈{1+(M−1)Tmin,...,N}
Gx

L,M (n), if m = M,

Ix
kx(m),m+1(n

x(m + 1)), if m = M − 1, . . . , 1,

kx(m) =

{
L, if m = M,

rx
kx(m+1),m+1(n

x(m + 1)), if m = M − 1, . . . , 1;

Jx(l) =

{
0, if l = 0,∣∣∣
{
m ∈ {1, . . . , M} | kx(m) ≤ l

}∣∣∣, if l = 1, . . . , L.

Then the sets Mx
1 , . . . ,Mx

L are given by the formula

Mx
l =

{
n |n = nx(m), m = Jx(l − 1) + 1, . . . , Jx(l)

}
(14)

for every l = 1, . . . , L.
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A step-by-step description of the algorithm implementing the above scheme
is given in the following.

Algorithm A1.
Input : sequence Y, tuple (x1, . . . , xL) of points, numbers Tmin, Tmax, and M .
Step 1. Compute the values gx

l (n) for l = 1, . . . , L, and n = 1 + (l − 1)Tmin,
. . . , N − (L − l)Tmin using Formula (9).

Step 2. Using Formulae (12) and (13), compute the values Gx
l,m(n) for each

l = 1, . . . , L, m = l, . . . ,M − (L− l), n = 1+(m−1)Tmin, . . . , N − (M −m)Tmin.
Step 3. Find the maximum Gx

max of the objective function Gx by For-
mula (11), and the optimal subsets Mx

l by Formula (14).
Output : the family {Mx

1 , . . . ,Mx
L} of subsets.

Remark 1. Before the start of the algorithm it is required to verify the two
conditions of Lemma 4. These necessary conditions provide the consistency of
the constraints in Problems 1 and 2, as well as the correctness of the input data
of the algorithm.

Remark 2. In [7], it was found that Algorithm A1 finds the optimal solution of
Problem 2 in O(LN(M(Tmax −Tmin +1)+q)) time. In this expression, the value
of Tmax − Tmin + 1 is at most N . Therefore, the algorithm running time can be
estimated as O(LN(MN + q)).

5 Approximation Algorithm

Our approach to Problem 1 is as follows. For each ordered set (tuple) containing L
elements of the sequence Y, we find an exact solution of the auxiliary Problem 2,
i.e. a family containing disjoint subsets of indices of the input sequence, which is a
feasible solution of the original Problem 1.

The found family of subsets we declare a solution candidate for Problem 1
and include this family in the set of solution candidates.

From the obtained set as the final solution we choose a family of subsets
which yields the largest value for the objective function of Problem 2.

Let us formulate an algorithm that implements the described approach.
Below, in the step-by-step description, it is assumed that the input positive
integers satisfy the conditions of Lemma 4 (see Remark 1).

Algorithm A.
Input : sequence Y, numbers Tmin, Tmax, M , and L.
Step 1. For every tuple x = (x1, . . . , xL) ∈ YL of elements of the sequence

Y, using Algorithm A1, find the optimal solution {Mx
1 , . . . ,Mx

L} of Problem 2.
Step 2. Find a tuple x(A) = arg maxx∈YL Gx(Mx

1 , . . . ,Mx
L) and a family

{MA
1 , . . . ,MA

L} = {Mx(A)
1 , . . . ,Mx(A)

L }. If the optimum is taken by several
tuples, we choose any of them.

Output : the family {MA
1 , . . . ,MA

L} of subsets.

Lemma 5. Let {M∗
1, . . . ,M∗

L} be the optimal solution of Problem 1, and
{MA

1 , . . . ,MA
L} be the solution found by Algorithm A. Then

F (MA
1 , . . . ,MA

L) ≤ 2F (M∗
1, . . . ,M∗

L) .
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Proof. The optimal solution {M∗
1, . . . ,M∗

L} of Problem 1 corresponds to the
tuple (y(M∗

1), . . . , y(M∗
L)) of centroids, where y(M∗

l ) = 1
|y(M∗

l )|
∑

y∈M∗
l
y, l =

1, . . . , L. Let us consider the point tl = arg min
y∈M∗

l

‖y−y(M∗
l )‖, l = 1, . . . , L, from

the subset M∗
l , closest to the centroid of this subset. This point in the set M∗

l
and the set M∗

l itself satisfy the conditions of Lemma 2. Therefore, by applying
the inequality of Lemma 2 to every subset M∗

l , l = 1, . . . , L, we can estimate
the sum

S(M∗
1 , . . . , M∗

L, t1, . . . , tL) =

L∑

l=1

∑

y∈M∗
l

‖y − tl‖2
+

∑

i∈N\M∗
‖yi‖2

≤ 2

L∑

l=1

∑

y∈M∗
l

‖y − y(M∗
l )‖2

+
∑

i∈N\M∗
‖yi‖2

≤ 2

L∑

l=1

∑

y∈M∗
l

‖y − y(M∗
l )‖2

+ 2
∑

i∈N\M∗
‖yi‖2

= 2F (M∗
1 , . . . , M∗

L) ,

(15)

where M∗ = ∪L
l=1M∗

l .
On the other hand, we notice that the tuple t = (t1, . . . , tL) is among

the tuples from YL that have been examined at Step 1 of Algorithm A. Let
{Mt

1, . . . ,Mt
L} be the optimal solution found at Step 2 of Algorithm A for Prob-

lem 2 at x = t. Then according to statement 2 of Lemma 3, i.e. according to (10),
the family {Mt

1, . . . ,Mt
L} supplies the minima to the function Sx(M1, . . . ,ML)

at x = t. Consequently the bound

S(Mt
1, . . . ,Mt

L, t1, . . . , tL) ≤ S(M∗
1, . . . ,M∗

L, t1, . . . , tL) (16)

is valid for the left-hand side of (15).
Furthermore, by the definition of Step 2 and according to (8) we have the

bound

S(MA
1 , . . . ,MA

L , xA
1 , . . . , xA

L) ≤ S(Mt
1, . . . ,Mt

L, t1, . . . , tL) , (17)

where (xA
1 , . . . , xA

L) = x(A). Additionally, from the first statement of Lemma 3
we have the inequality

F (MA
1 , . . . ,MA

L) ≤ S(MA
1 , . . . ,MA

L , xA
1 , . . . , xA

L) . (18)

Finally, by combining (15)–(18) we get the chain of estimation inequalities

F (MA
1 , . . . ,MA

L) ≤ S(MA
1 , . . . ,MA

L , xA
1 , . . . , xA

L)

≤ S(Mt
1, . . . ,Mt

L, t1, . . . , tL) ≤ S(M∗
1, . . . ,M∗

L, t1, . . . , tL)
≤ 2F (M∗

1, . . . ,M∗
L) ,

which proves Lemma 5. 
�
We finally prove the running time of the algorithm and that the bound of 2

on its approximation factor is tight.
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Theorem 1. Algorithm A finds a 2-approximate solution of Problem 1 in
O(LNL+1(M(Tmax − Tmin + 1) + q)) time. The performance guarantee 2 of the
algorithm is tight.

Proof. The 2-accuracy bound of the algorithm follows from Lemma 5. We bound
the time complexity of the algorithm using its step-by-step description.

The computation time is determined by the time complexity of Step 1, at
which Problem 2 is solved O(NL) times by applying Algorithm A1, whose time
complexity is O(LN(M(Tmax − Tmin + 1) + q)) (see Remark 2). In addition, it
needs O(NL) comparisons for searching a largest value of the objective function
of Problem 2 at Step 2. By summing all these times we obtain the final bound
for the algorithm time complexity.

The tightness of the performance guarantee of Algorithm A follows from the
tightness of the performance guarantee of the 2-approximation algorithm for the
case of Problem 1 when L = 1 (see [6]). 
�
Remark 3. According to Remark 2, the running time of Algorithm A is
O(LNL+1(MN + q)), which is polynomial if the number L of clusters is fixed.

6 Conclusion

In this paper we have shown the strong NP-hardness of one problem of partition-
ing a finite sequence of points of Euclidean space into clusters with restrictions
on their cardinalities. We also have shown an approximation algorithm for this
problem. The proposed algorithm allows to find a 2-approximate solution of the
problem in a polynomial time if the number of clusters is fixed.

In our opinion, the presented algorithm would be useful as one of the tools
for solving problems in applications related to data mining, and analysis and
recognition of time series (signals).

Of considerable interest is the development of faster polynomial-time approx-
imation algorithms for the case when the number of clusters is not fixed. An
important direction of study is searching subclasses of this problem for which
faster polynomial-time approximation algorithms can be constructed.

Acknowledgments. This work was supported by Russian Science Foundation,
project no. 16-11-10041.
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