
Algorithmic Issues in Energy-Efficient
Computation

Evripidis Bampis(B)

Sorbonne Universités, UPMC Univ Paris 06, UMR 7606, LIP6, Paris, France
evripidis.bampis@lip6.fr

1 Introduction

Energy efficiency has become a crucial issue in Computer Science. New hard-
ware and system-based approaches are explored for saving energy in portable
battery-operated devices, personal computers, or large server farms. The main
mechanisms that have been developed for saving energy are the ability of transi-
tioning the device among multiple power states, and the use of dynamic voltage
scaling (speed scaling). These last years, there is also an increasing interest in
the development of algorithmic techniques for finding tradeoff-solutions between
energy consumption and performance. In this talk, we will focus on algorithmic
techniques with provably good performances for fundamental power manage-
ment problems. Among the different models that have been developed in the
literature, we will focus on the speed scaling model, the power-down model and
the combination of these two models that we will call the power-down with
speed scaling model. In the speed scaling model [54], the speed of the processor
(machine) may be dynamically changed over time. When a processor runs at
speed s, then the rate with which the energy is consumed (i.e., the power) is
f(s) with f a non-decreasing function of the speed. The energy is the integral
of the power over time. According to the well-known cube-root rule for CMOS
devices, the speed of a device is proportional to the cube-root of the power and
hence f(s) = s3, but in the literature, many works consider that the power is
f(s) = sα where α > 1 is a constant, or an arbitrary convex function. In the
power-down model [26], the processors run at a fixed speed but are equipped
with a sleep state. This means that the processor has two states On and Off
and may be suspended during its idle time. However, during its wake-up from
state Off to state On, there is a start-up energy consumption, denoted by L.
Hence, suspending the processor is only beneficial when the idle periods are
long enough to compensate the consumed start-up energy. The power-down with
speed scaling model [43] combines the previous two models by considering speed
scalable processors with a sleep state. Here, the power function is g(s) = f(s)+c
where f(s) is defined as in the speed-scaling model and c > 0 is a constant that
specifies the power consumed when the processor is in the On state.

We will be interested in some recent developments for scheduling a set of jobs
on a (set of) processor(s) focusing in the offline context. Most of the problems
considered are deadline-based problems: we are given a set of n jobs, where each

c© Springer International Publishing Switzerland 2016
Y. Kochetov et al. (Eds.): DOOR 2016, LNCS 9869, pp. 3–14, 2016.
DOI: 10.1007/978-3-319-44914-2 1

4 E. Bampis

job j is characterized by its release date rj , its deadline dj and its processing
volume (work) pj . Two important families of instances that have been studied in
the literature are the agreeable and the laminar instances. We call an instance
agreeable if earlier released jobs have earlier deadlines, i.e., for each j and j′ with
rj ≤ rj′ then dj ≤ dj′ . In a laminar instance, for any two jobs j and j′ with
rj ≤ rj′ it holds that either dj ≥ dj′ or dj ≤ rj′ . The processing volume of a job
is the number of CPU-cycles required by the job. If job j is executed with speed
s then its processing time is pj

s . In the case of processors with fixed speed the
processing volume equals the processing time of the job. A feasible schedule in
this context is a schedule in which each job is executed in the interval between
its release date and its deadline. The problems in this setting are bi-objective
by nature. For instance, we wish to minimize the energy consumption while at
the same time we aim to determine a feasible schedule. A lot of other objectives
have been studied when we consider a given budget of energy: the throughput,
i.e. the number of jobs that complete before their deadlines, the makespan, i.e.
the time at which the last job completes its execution, the sum of (weighted)
completion times, the sum of flow times, Finally, in some works, the objective
is the minimization of a linear combination of the energy and of some scheduling
criterion (e.g. sum of completion times).

2 Speed Scaling

2.1 Single Machine

Energy minimization. Yao et al. [54] considered the problem of scheduling a set
of n jobs on a single machine, where the preemption, i.e. the possibility to inter-
rupt the execution of a job and resume it later, was allowed. They proposed an
optimal O(n3)-time algorithm. Later, Li et al. [47] proposed a faster algorithm
with time complexity O(n2 log n). Other algorithms with better time complex-
ities than the one of [54] have been proposed in [37] for agreeable instances,
and in [36] for general instances. These algorithms exploit the relation of the
energy minimization problem with the computation of shortest paths. When the
instances are restricted to be laminar, Li et al. [46] showed that the problem can
be solved in O(n) time.

Antoniadis and Huang [16] were the first to consider the non-preemptive
energy minimization problem. They proved that it is strongly NP-hard even
for laminar instances. They also presented a 24α−3-approximation algorithm for
laminar instances and a 25α−4-approximation algorithm for general instances.
Furthermore, the authors noticed that the problem can be solved optimally in
polynomial time when the instances are agreeable by observing that the optimal
preemptive schedule produced by the algorithm in [54] executes the jobs non-
preemptively. A series of papers improved the approximation ratio of the non-
preemptive case. In [21], an approximation algorithm of ratio 2α−1(1+ε)αB̃α has
been proposed where B̃α =

∑∞
k=0

kαe−1

k! is the generalized Bell number which
is defined for any α ∈ R

+ and corresponds to the α-th (fractional) moment of

Algorithmic Issues in Energy-Efficient Computation 5

Poisson’s distribution. This algorithm improved the ratio given in [16] for any
α < 114. Then, an approximation algorithm of ratio (12(1 + ε))α−1 was given in
[34], improving the approximation ratio for any α > 25. In [23], an approximation
algorithm of ratio (1 + ε)α−1B̃α has been presented which became the best
algorithm, at that moment, for any α ≤ 77. Recently, a (1 + ε)-approximation
algorithm which runs in nO(polylog(n)) time has been proposed in [42].

Moreover, the relation between preemptive and non-preemptive schedules in
the energy-minimization setting has been studied in [20]. The authors showed
that starting from the optimal preemptive solution obtained using the algorithm
of [54], it is possible to obtain a non-preemptive solution which guarantees an
approximation ratio of (1 + pmax

pmin
)α, where pmax and pmin are the maximum and

the minimum processing volumes of the jobs. In the special case where all jobs
have equal processing volumes this leads to a constant factor approximation
of 2α. For this special case, Angel et al. [9] and Huang and Ott [41], inde-
pendently, proposed an optimal polynomial-time algorithm based on dynamic
programming.

Throughput. Angel et al. studied the throughput maximization problem in the
offline setting in [12]. They provided a polynomial time algorithm to solve opti-
mally the single-machine problem for agreeable instances. More recently in [11],
they proved that there is a pseudo-polynomial time algorithm for solving opti-
mally the preemptive single-machine problem with arbitrary release dates, dead-
lines and processing volumes. For the weighted version, the problem is NP-hard
even for instances in which all the jobs have common release dates and dead-
lines. Angel et al. [12] showed that the problem admits a pseudo-polynomial time
algorithm for agreeable instances. Furthermore, Antoniadis et al. [18] considered
a related problem. More precisely, they studied a generalization of the classical
knapsack problem where the objective is to maximize the total profit of the cho-
sen items minus the cost incurred by their total weight. The case where the cost
functions are convex can be translated in terms of a weighted throughput prob-
lem where the objective is to select the most profitable set of jobs taking into
account the energy costs. They presented a fully polynomial time approximation
scheme (FPTAS) and a fast 2-approximation algorithm for the non-preemptive
problem where the jobs have no release dates or deadlines.

Sum of Completion Times. Pruhs et al. [49] considered the problem of mini-
mizing the average completion time under a budget of energy. They proposed
an O(n2 log E

ε) polynomial time algorithm for jobs with equal processing vol-
umes, where E is the energy budget and ε the desired accuracy. Albers et al. [6]
proposed a simplified algorithm for the problem of minimizing the average com-
pletion time plus energy for jobs with equal processing volumes which is based on
dynamic programming. Megow et al. [48] considered the weighted version of the
average completion time objective. When all the jobs have equal release dates,
they established a polynomial time approximation scheme (PTAS). They also
showed that the non-preemptive version of the problem is equivalent to the fixed-
speed single-machine problem where the objective function is:

∑
wj(Cj)

α−1
α ,

6 E. Bampis

where wj is the weight of job j and Cj its completion time. This result has
also been obtained independently by Vásquez [53]. For the preemptive prob-
lem where the jobs have arbitrary release dates, Megow et al. [48] proposed a
(2 + ε)-approximation algorithm.

Makespan. Bunde [29] proposed an optimal polynomial-time algorithm for the
problem of scheduling a set of jobs with arbitrary release dates and deadlines,
under a given budget of energy, so that the makespan to be minimized.

Maximum Lateness. In [25], the non-preemptive problem of minimizing the max-
imum lateness, under a given budget of energy, has been studied. An optimal
combinatorial polynomial-time algorithm has been proposed for the case in which
the jobs have common release dates. For arbitrary release dates, the problem is
shown to be strongly NP−hard. The authors study also the problem where
the objective is the minimization of a linear combination of maximum lateness
and energy. The results for the budget variant can be adapted to this case. More
interestingly, a 2-approximation algorithm is presented when the jobs are subject
to release dates.

2.2 Multiple Machines

When more than one machines are available, we distinguish again between two
cases: the preemptive and the non-preemptive cases. In the preemptive case, the
execution of the jobs may allow the migration of the jobs, i.e. the possibility to
execute a job on more than one machines, without allowing its parallel execution.
This case is known as the migratory case. In the preemptive non-migratory case,
the execution of a job must be done on the same machine.

We have also to distinguish between homogeneous and heterogeneous envi-
ronments. In the homogeneous case, the characteristics of each job (release date,
deadline and processing volume) are independent of the machine on which it is
executed and the speed-to-power function is the same for all the machines. In
the heterogeneous case, we consider the following subcases: In the fully hetero-
geneous environment both, the jobs’ characteristics are machine-dependent and
every machine has its own power function. Formally, the problem is as follows:
we are given a set J of n jobs and a set P of m parallel machines. Every machine
i ∈ P obeys to a different speed-to-power function, i.e., it is associated with a
different αi ≥ 1 and hence if a job runs at speed s on machine i, then the power
is f(s) = sαi . Each job j ∈ J has a different release date ri,j , deadline di,j and
processing volume pi,j in each machine i ∈ P. In the power-heterogeneous envi-
ronment, the characteristics of each job are independent of the machine on which
the job is executed, while every machine has its own speed-to-power function.
Finally, in the unrelated-heterogeneous environment the processing volumes of
the jobs are machine-dependent while all the other characteristics are indepen-
dent of the machine on which each job is executed.

Algorithmic Issues in Energy-Efficient Computation 7

Energy minimization. Chen et al. [30] were the first to study a multiproces-
sor energy-efficient scheduling problem involving speed scaling. More specif-
ically, they proposed an O(n log n)-time algorithm for solving optimally the
homogeneous-migratory problem when the release dates and deadlines are identi-
cal for all the jobs. Later, Bingham et al. [28] constructed an optimal algorithm
for the homogeneous-migratory problem when the jobs have arbitrary release
dates and deadlines. The algorithm in [28] makes repetitive calls of a black-box
algorithm for solving linear programs. Then, independently, Albers et al. [4] and
Angel et al. [15] presented combinatorial algorithms based on a series of maxi-
mum flow computations that allow the partition of the set of jobs into subsets
in which all the jobs are executed at the same speed. The optimality of these
algorithms is based on a series of technical lemmas showing that this partition
and the corresponding speeds lead to the minimization of the energy consump-
tion. In [24], it has been shown that both the algorithms and their analysis can
be greatly simplified. In order to do this, the problem has been formulated as
a convex cost flow problem in an appropriate flow network. Furthermore, it has
been shown that this approach is useful to solve other problems in the dynamic
speed-scaling setting. As an example, the authors consider the preemptive open-
shop speed-scaling problem and they propose a polynomial-time algorithm for
finding an optimal solution based on the computation of convex cost flows. In
[52], Shioura et al. consider the same formulation as convex cost flow for the
homogeneous-migratory problem and they propose a method for reducing the
running time of the algorithm. For the migratory problem in a fully hetero-
geneous environment, an algorithm using a configuration linear programming
(LP) formulation, has been proposed in [21]. This algorithm returns a solution
which is within an additive factor of ε far from the optimal solution and runs
in time polynomial to the size of the instance and to 1/ε. However, the algo-
rithm proposed in [21] is based on the solution of a configuration linear program
using the Ellipsoid method. Given that this method may not be very efficient
in practice, an alternative polynomial-time algorithm based on a compact linear
programming formulation which solves the problem within any desired accu-
racy was proposed in [5]. This algorithm does not need the use of the Ellipsoid
method and it applies for more general than convex power functions; it is valid
for a large family of continuous non-decreasing power functions. Furthermore,
in the same work, a max-flow based algorithm has been proposed for the migra-
tory problem in a power-heterogeneous environment, in which jobs’ densities are
lower bounded by a small constant, producing a solution arbitrarily close to the
optimal.

For the homogeneous non-migratory problem, Albers et al. [7] considered the
case of a set of jobs with unit processing volumes. They showed that the prob-
lem can be solved optimally in polynomial time if the instance is agreeable. More-
over, they established an NP-hardness proof for the unit-work case when the
release dates and the deadlines of the jobs are arbitrary. They proposed an αα24α-
approximation algorithm for this special case. They have also presented an algo-
rithm of the same approximation ratio for arbitrary-work instances when the jobs

8 E. Bampis

have either equal release dates or equal deadlines. Next, Greiner et al. [39] pre-
sented a B�α�-approximation algorithm for the problem with jobs having arbitrary
processing volumes, release dates anddeadlines,whereB�α� is the �α�-thBell num-
ber. Cohen-Addad et al. [34] proved that the non-migratory problem is APX-hard
for the unrelated-heterogeneous model even if all the jobs have the same release
dates and deadlines. For the non-migratory problem in a fully heterogeneous envi-
ronment, an approximation algorithm of ratio (1 + ε)B̃α based on a randomized
rounding of a configuration LP relaxation has been presented in [21].

For the non-preemptive problem in a homogeneous environment, Albers et al.
[7] observed that the problem is NP-hard even in the special case where the jobs
have the same release dates and deadlines. Moreover, they showed that, for this
special case, there exists a polynomial time approximation scheme (PTAS). For
arbitrary release dates, deadlines and processing volumes; an approximation algo-
rithm with ratio mα(m

√
n)α−1 has been presented in [20]. Cohen-Addad et al. [34]

presented an algorithm of ratio (52)α−1B̃α((1+ε)(1+ pmax
pmin

))α. This algorithm leads
to an approximation ratio of 2(1 + ε)α5α−1B̃α when all jobs have equal process-
ing volumes. It has to be noticed that he authors in [34] observed that their algo-
rithm can be used for the non-preemptive problem in the unrelated-heterogeneous
model by loosing an additional factor of (pmax

pmin
)α. Finally, a (1 + ε)-approximation

algorithm which runs in nO(polylog(n)) time, for the non-preemptive problem in a
homogeneous environment, has been presented in [42].

Throughput. The throughput maximization problem has been studied in the case
of a fully heterogeneous environment in [14]. For the fully heterogeneous non-
migratory problem, Angel et al. presented a greedy algorithm which is based on
the primal-dual scheme that approximates the optimum solution within a factor
depending on the speed-to-power functions (the factor is constant for functions
of the form f(s) = sα). Then, they focused on the homogeneous non-preemptive
problem for which they considered a fixed number of machines and two important
families of instances: (1) instances with equal processing volume jobs; and (2)
agreeable instances. For both cases they presented optimal pseudo-polynomial-
time algorithms.

Sum of Completion Times. A polynomial-time algorithm for minimizing a linear
combination of the sum of the completion times of the jobs and the total energy
consumption, for the non-preemptive multiprocessor speed-scaling problem has
been proposed in [24]. Instead of using convex cost flows, the proposed algorithm
is based on the computation of a minimum weighted maximum matching in an
appropriate bipartite graph.

Makespan. Shabtay and Kaspi [51] proved that the problem is NP-hard even if
all the jobs have the same release dates. Pruhs et al. [50] observed that when all
the jobs have the same release dates then a PTAS can be obtained using the load
balancing algorithm of Alon et al. [8] for the minimization of the Lα norm of
loads. Pruhs et al. considered in [50] the problem of scheduling a set of jobs on a

Algorithmic Issues in Energy-Efficient Computation 9

set of speed scalable machines subject to precedence constraints among the jobs.
The goal is to minimize the makespan of the schedule without exceeding a given
energy budget. The approach in [50] is based on constant power schedules, which
are schedules that keep the total power of all processors constant over time. Based
on this property and by performing a binary search to determine the value of
the power, they transformed the problem to the classical problem of minimizing
the makespan for scheduling a set of jobs with precedence constraints on related
parallel processors, in which each processor runs at a single predefined speed.
The proposed algorithm has an approximation ratio of O(log1+2/α m), where m
is the number of the machines. This ratio has been improved in [22] where a
simple (2 − 1

m)-approximation algorithm has been presented. The idea of this
algorithm is the following: first, a convex programming relaxation for the speed
scaling problem is given. The solution of this convex program defines a speed
and hence a processing time for each job. Given that the obtained processing
times respect the energy budget, it is then sufficient to use the classical list
scheduling algorithm. This approach may be used for a more general problem
where in addition to the precedence constraints the jobs are subject to release
dates and/or precedence delays. For these generalizations, the approximation
ratio of the algorithm remains asymptotically smaller than 2.

3 Power down

3.1 Single Machine

Chrétienne [33] proved that it is possible to decide in polynomial time whether
there is a schedule with no idle time. Baptiste [26] proposed an O(n7)-time
dynamic programming algorithm for unit-time jobs and general L. For that,
he proved a dominance property showing that there are only a few relevant
starting points for the jobs in some optimal schedule and he proposed a clever
decomposition of the problem. Then, Baptiste et al. [27] proposed an O(n5)-time
dynamic programming algorithm for the preemptive case with jobs of arbitrary
processing times. They also proposed an O(n4) algorithm for unit-time jobs. A
simpler dynamic programming with the same time-complexity for unit-time jobs
has been proposed in [32]. Given the high time complexity of the algorithms in
the general case, Gururaj et al. [40] improved the time-complexity by restricting
their attention to agreeable instances. They proposed an O(n log n) algorithm
for jobs with arbitrary lengths and with unit start-up energy consumption, i.e.
L = 1. For arbitrary L and unit-time jobs, they proposed an O(n3) algorithm. In
[10], this result has been improved by providing an O(n2) algorithm for arbitrary
L and arbitrary processing times. In [31], a simple greedy algorithm has been
presented that approximates the optimum solution within a factor of 2 and it
has been shown that its analysis is tight. The algorithm runs in time O(n2 log n)
and needs only O(n) memory. More recently in [32], different variants of the
minimum-gap scheduling problem have been studied. These variants include the
maximization of the throughput given a budget for gaps or the minimization of
the number of gaps given a throughput requirement. Other objective functions

10 E. Bampis

are also studied. For instance, maximizing the number of gaps. For the model
without deadlines, the authors focus on the tradeoff between the number of gaps
and flow time.

3.2 Multiple Machines

The algorithm of [26] has been generalized for the multiple machines case in [35].
The time complexity becomes O(n7m5), where n is the number of jobs and m
is the number of machines. For agreeable instances, Gururaj et al. [40] proposed
an O(n3m2) algorithm for unit-time jobs and unit start-up energy consumption,
L = 1. This result has been improved in [10], where an O(n2m) algorithm has
been proposed.

4 Power-Down with Speed Scaling

While in the speed scaling model, it is always beneficial for the energy consump-
tion to lower the speed of a job as far as the schedule remains feasible, this is
not the case for the power-down with speed scaling model. Indeed, by increasing
the speed of a job we may increase the length of some idle period and in that
way be able to gain in energy consumption by turning off the machine. A central
notion in this model is the notion of critical speed which, roughly speaking, is
the speed minimizing the energy consumption while jobs are processed.

Irani et al. [43] proposed a 2-approximation algorithm for general convex
power functions. The rough idea of the algorithm is the following: first, a schedule
is produced using the algorithm of Yao et al. [54] for the speed scaling model.
Given this schedule, the set of jobs is partitioned into two subsets: the first
subset contains all the jobs that are executed with a speed higher than the
critical speed, while the second subset contains the jobs that are executed with
a speed smaller than the critical one. The schedule returned by the algorithm of
Irani et al. [43] executes all the jobs of the first subset using the algorithm of Yao
et al. [54], while all the jobs of the second subset are executed with the critical
speed. Only recently, Albers and Antoniadis [3] and Kumar and Shannigrahi [45]
proved that the problem is NP-hard. For agreeable instances, an O(n3)-time
algorithm has been provided in [19]. This algorithm is based in a combination of
the algorithm of Yao et al. and the use of dynamic programming for the jobs that
are executed with a speed smaller than the critical speed. For general convex
power functions, Albers and Antoniadis [3] derived a 4

3 -approximation algorithm.
Their algorithm is also a combination of the algorithm of [54] and the use of
dynamic programming. Here the partition of the jobs is not based on the critical
speed, but on some appropriate value s0. All the jobs executed in the schedule
produced by the algorithm of [54] with a speed lower than s0 are scheduled with
speed s0. The schedule of these jobs is derived by the dynamic program for the
power-down model of Baptiste et al. [27]. All the other jobs are scheduled using
the algorithm of [54]. Albers and Antoniadis have also obtained an approximation
factor of 137

117 < 1.171 for power functions of the form g(s) = βsα + c, where s

Algorithmic Issues in Energy-Efficient Computation 11

is the speed and β, c > 0 as well as α are constants. More recently, in [17] a
fully polynomial-time approximation scheme (FPTAS) for the problem has been
proposed.

Finally, the single-machine non-preemptive throughput maximization prob-
lem has been studied in [13]. More precisely, optimal polynomial-time algorithms
have been presented for two types of instances: (1) agreeable instances and (2)
instances with arbitrary release dates and deadlines, but equal processing vol-
umes. Both algorithms are based on dynamic programming.

To the best of our knowledge, no results are known for multiple machines.

5 Concluding Remarks

We gave a quick overview of some recent developments in the context of energy-
efficient scheduling focusing on the offline setting. A huge literature exists for
the online setting. For more results in this area, the interested reader is invited
to consult the recent surveys in [1,2,38,44].

Acknowledgments. This work has been partially supported by the COFECUB
project Choosing (n. 828/15).

References

1. Albers, S.: Energy efficient algorithms. Commun. ACM 53(5), 86–96 (2010)
2. Albers, S.: Algorithms for dynamic speed scaling. In: International Symposium of

Theoretical Aspects of Computer Science (STACS 2011), LIPIcs, vol. 9, pp. 1–11.
Schloss Dagstuhl (2011)

3. Albers, S., Antoniadis, A.: Race to idle: new algorithms for speed scaling with a
sleep state. In: Symposium on Discrete Algorithms (SODA), pp. 1266–1285. ACM-
SIAM (2012)

4. Albers, S., Antoniadis, A., Greiner, G.: On multi-processor speed scaling with
migration. In: Symposium on Parallelism in Algorithms and Architectures (SPAA),
pp. 279–288. ACM (2011)

5. Albers, S., Bampis, E., Letsios, D., Lucarelli, G., Stotz, R.: Scheduling on power-
heterogeneous processors. In: Kranakis, E., Navarro, G., Chávez, E. (eds.) LATIN
2016. LNCS, vol. 9644, pp. 41–54. Springer, Heidelberg (2016)

6. Albers, S., Fujiwara, H.: Energy efficient algorithms for flow time minimization.
ACM Trans. Algorithms 3(4), 49 (2007)

7. Albers, S., Muller, F., Schmelzer, S.: Speed scaling on parallel processors. In: Sym-
posium on Parallelism in Algorithms and Architectures (SPAA), pp. 289–298. ACM
(2007)

8. Alon, N., Azar, Y., Woeginger, G.J., Yadid, T.: Approximation schemes for schedul-
ing. In: Proceedings of 8th Annual ACM-SIAM Symposium on Discrete Algo-
rithms, New Orleans, Louisiana, 5–7 January 1997, pp. 493–500 (1997)

9. Angel, E., Bampis, E., Chau, V.: Throughput maximization in the speed-scaling
setting. CoRR, abs/1309.1732 (2013)

10. Angel, E., Bampis, E., Chau, V.: Low complexity scheduling algorithms minimizing
the energy for tasks with agreeable deadlines. Discret. Appl. Math. 175, 1–10
(2014)

12 E. Bampis

11. Angel, E., Bampis, E., Chau, V.: Throughput maximization in the speed-scaling
setting. In: 31st International Symposium on Theoretical Aspects of Computer
Science (STACS 2014), Lyon, France, 5–8 March 2014, pp. 53–62 (2014)

12. Angel, E., Bampis, E., Chau, V., Letsios, D.: Throughput maximization for speed-
scaling with agreeable deadlines. In: Chan, T.H.H., Lau, L.C., Trevisan, L. (eds.)
TAMC 2013. LNCS, vol. 7876, pp. 10–19. Springer, Heidelberg (2013)

13. Angel, E., Bampis, E., Chau, V., Thang, N.K.: Nonpreemptive throughput maxi-
mization for speed-scaling with power-down. In: Proceedings of Euro-Par: Parallel
Processing 21st International Conference on Parallel and Dis-tributed Computing,
Vienna, Austria, 24–28 August 2015, pp. 171–182 (2015)

14. Angel, E., Bampis, E., Chau, V., Thang, N.K.: Throughput maximization in mul-
tiprocessor speed-scaling. Theor. Comput. Sci. 630, 1–12 (2016)

15. Angel, E., Bampis, E., Kacem, F., Letsios, D.: Speed scaling on parallel processors
with migration. In: Kaklamanis, C., Papatheodorou, T., Spirakis, P.G. (eds.) Euro-
Par 2012. LNCS, vol. 7484, pp. 128–140. Springer, Heidelberg (2012)

16. Antoniadis, A., Huang, C.C.: Non-preemptive speed scaling. J. Sched. 16(4), 385–
394 (2013)

17. Antoniadis, A., Huang, C.C., Ott, S.: A fully polynomialtime approximation
scheme for speed scaling with sleep state. In: Proceedings of 26th Annual ACM-
SIAM Symposium on Discrete Algorithms, SODA, San Diego, CA, USA, 4–6
January 2015, pp. 1102–1113 (2015)

18. Antoniadis, A., Huang, C.-C., Ott, S., Verschae, J.: How to pack your items when
you have to buy your knapsack. In: Chatterjee, K., Sgall, J. (eds.) MFCS 2013.
LNCS, vol. 8087, pp. 62–73. Springer, Heidelberg (2013)

19. Bampis, E., Dürr, C., Kacem, F., Milis, I.: Speed scaling with power down schedul-
ing for agreeable deadlines. Sustain. Comput.: Inform. Syst. 2(4), 184–189 (2012)

20. Bampis, E., Kononov, A.V., Letsios, D., Lucarelli, G., Nemparis, I.: From preemp-
tive to non-preemptive speed-scaling scheduling. Discret. Appl. Math. 181, 11–20
(2015)

21. Bampis, E., Kononov, A.V., Letsios, D., Lucarelli, G., Sviridenko, M.: Energy
efficient scheduling and routing via randomized rounding. In: IARCS Annual Con-
ference on Foundations of Software Technology and Theoretical Computer Science,
FSTTCS, Guwahati, India, 12–14 December 2013, pp. 449–460 (2013)

22. Bampis, E., Letsios, D., Lucarelli, G.: A note on multiprocessor speed scaling with
precedence constraints. In: 26th ACM Symposium on Parallelism in Algorithms
and Architectures, SPAA 2014, Prague, Czech Republic, 23–25 June 2014, pp.
138–142 (2014)

23. Bampis, E., Letsios, D., Lucarelli, G.: Speed-scaling with no preemptions. In: Ahn,
H.-K., Shin, C.-S. (eds.) ISAAC 2014. LNCS, vol. 8889, pp. 259–269. Springer,
Heidelberg (2014)

24. Bampis, E., Letsios, D., Lucarelli, G.: Green scheduling, flows and matchings.
Theoret. Comput. Sci. 579, 126–136 (2015)

25. Bampis, E., Letsios, D., Milis, I., Zois, G.: Speed scaling for maximum lateness.
Theor. Comput. Syst. 58(2), 304–321 (2016)

26. Baptiste, P.: Scheduling unit tasks to minimize the number of idle periods: a poly-
nomial time algorithm for offline dynamic power management. In: Symposium on
Discrete Algorithms (SODA), pp. 364–367. ACM-SIAM (2006)

27. Baptiste, P., Chrobak, M., Dürr, C.: Polynomial-time algorithms for minimum
energy scheduling. ACM Trans. Algorithms 8(3), 26 (2012)

Algorithmic Issues in Energy-Efficient Computation 13

28. Bingham, B.D., Greenstreet, M.R.: Energy optimal scheduling on multiprocessors
with migration. In: International Symposium on Parallel and Distributed Process-
ing with Applications (ISPA), pp. 153–161. IEEE (2008)

29. Bunde, D.P.: Power-aware scheduling for makespan and flow. J. Sched. 12(5), 489–
500 (2009)

30. Chen, J.J., Hsu, H.R., Chuang, K.H., Yang, C.L., Pang, A.C., Kuo, T.W.: Mul-
tiprocessor energy efficient scheduling with task migration considerations. In:
Euromicro Conference on Real-Time Systems (ECRTS), pp. 101–108. IEEE (2004)

31. Chrobak, M., Feige, U., Taghi Hajiaghayi, M., Khanna, S., Li, F., Naor, S.: A
Greedy approximation algorithm for minimum-gap scheduling. In: Spirakis, P.G.,
Serna, M. (eds.) CIAC 2013. LNCS, vol. 7878, pp. 97–109. Springer, Heidelberg
(2013)

32. Chrobak, M., Golin, M., Lam, T.-W., Nogneng, D.: Scheduling with gaps: new
models and algorithms. In: Paschos, V.T., Widmayer, P. (eds.) CIAC 2015. LNCS,
vol. 9079, pp. 114–126. Springer, Heidelberg (2015)

33. Chrétienne, P.: On single-machine scheduling without intermediate delays. Dis-
cret. Appl. Math. 156(13), 2543–2550 (2008). In: 5th Conference, Honour of Peter
Hammer’s and Jakob Krarup’s 70th Birthday, Graphs and Optimization, Fifth
International Conference on Graphs and Optimization (GOV 2006)

34. Cohen-Addad, V., Li, Z., Mathieu, C., Milis, I.: Energy-efficient algorithms for
non-preemptive speed-scaling. In: Bampis, E., Svensson, O. (eds.) WAOA 2014.
LNCS, vol. 8952, pp. 107–118. Springer, Heidelberg (2015)

35. Demaine, E.D., Ghodsi, M., Hajiaghayi, M.T., Sayedi-Roshkhar, A.S.,
Zadimoghaddam, M.: Scheduling to minimize gaps and power consumption. In:
Symposium on Parallelism in Algorithms and Architectures (SPAA), pp. 46–54.
ACM (2007)

36. Gaujal, B., Navet, N.: Dynamic voltage scaling under EDF revisited. Real-Time
Syst. 37(1), 77–97 (2007)

37. Gaujal, B., Navet, N., Walsh, C.: Shortest-path algorithms for real-time scheduling
of FIFO tasks with minimal energy use. ACM Trans. Embed. Comput. Syst. 4(4),
907–933 (2005)

38. Gerards, M.E.T., Hurink, J.L., Hölzenspies, P.K.F.: A survey of offline algorithms
for energy minimization under deadline constraints. J. Sched. 19(1), 3–19 (2016)

39. Greiner, G., Nonner, T., Souza, A.: The bell is ringing in speed scaled multiproces-
sor scheduling. In: Symposium on Parallelism in Algorithms and Architectures
(SPAA), pp. 11–18. ACM (2009)

40. Gururaj, Jalan, and Stein. Unpublished work, see survey of m. chrobak
41. Huang, C.-C., Ott, S.: New results for non-preemptive speed scaling. In: Csuhaj-

Varjú, E., Dietzfelbinger, M., Ésik, Z. (eds.) MFCS 2014, Part II. LNCS, vol. 8635,
pp. 360–371. Springer, Heidelberg (2014)

42. Im, S., Shadloo, M.: Brief announcement: a QPTAS for non-preemptive speed-
scaling. In: Proceedings of ACM SPAA (2016)

43. Irani, S., Gupta, R.K., Shukla, S.K.: Competitive analysis of dynamic power man-
agement strategies for systems with multiple power savings states. In: Conference
on Design, Automation and Test in Europe (DATE), pp. 117–123. IEEE (2002)

44. Irani, S., Pruhs, K.: Algorithmic problems in power management. ACM SIGACT
News 36(2), 63–76 (2005)

45. Kumar, G., Shannigrahi, S.: On the NP-hardness of speed scaling with sleep state.
Theor. Comput. Sci. 600, 1–10 (2015)

46. Li, M., Liu, B.J., Yao, F.F.: Min-energy voltage allocation for tree-structured tasks.
J. Comb. Optim. 11(3), 305–319 (2006)

14 E. Bampis

47. Li, M., Yao, A.C., Yao, F.F.: Discrete and continuous min-energy schedules for vari-
able voltage processors. Proc. Nat. Acad. Sci. U.S.A. 103(11), 3983–3987 (2006)

48. Megow, N., Verschae, J.: Dual techniques for scheduling on a machine with varying
speed. In: Fomin, F.V., Freivalds, R., Kwiatkowska, M., Peleg, D. (eds.) ICALP
2013, Part I. LNCS, vol. 7965, pp. 745–756. Springer, Heidelberg (2013)

49. Pruhs, K., Uthaisombut, P., Woeginger, G.J.: Getting the best response for your
erg. ACM Trans. Algorithms 4(3), 38 (2008)

50. Pruhs, K., van Stee, R., Uthaisombut, P.: Speed scaling of tasks with precedence
constraints. Theor. Comput. Syst. 43(1), 67–80 (2008)

51. Shabtay, D., Kaspi, M.: Parallel machine scheduling with a convex resource con-
sumption function. Eur. J. Oper. Res. 173(1), 92–107 (2006)

52. Shioura, A., Shakhlevich, N., Strusevich, V.: Energy optimization in speed scaling
models via submodular optimization. In: 12th Workshop on Models and Algorithms
for Planning and Scheduling Problems (MAPSP) (2015)

53. Vásquez, O.C.: Energy in computing systems with speed scaling: optimization and
mechanisms design (2012). arXiv:1212.6375

54. Yao, F.F., Demers, A.J., Shenker, S.: A scheduling model for reduced cpu energy.
In: Symposium on Foundations of Computer Science (FOCS), pp. 374–382. IEEE
(1995)

http://arxiv.org/abs/1212.6375

	Algorithmic Issues in Energy-Efficient Computation
	1 Introduction
	2 Speed Scaling
	2.1 Single Machine
	2.2 Multiple Machines

	3 Power down
	3.1 Single Machine
	3.2 Multiple Machines

	4 Power-Down with Speed Scaling
	5 Concluding Remarks
	References

