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Preface

This volume contains the proceedings of the 9th International Conference on Discrete
Optimization and Operations Research (DOOR 2016), held in Vladivostok, Russia,
during September 19–23, 2016. It was organized by the Far Eastern Federal University,
Sobolev Institute of Mathematics, Krasovsky Institute of Mathematics and Mechanics,
Novosibirsk State University, and the Higher School of Economics in Nizhny
Novgorod.

Previous conferences took place at the Sobolev Institute of Mathematics, Novosi-
birsk, in 1996, 1998, 2000, 2002, and 2004. The 6th conference was held in the
Russian Far East in a picturesque setting on the shore of the Japanese Sea near
Vladivostok in 2007. The 7th one, in 2010, was held in the Altay Mountains. The 8th
event took place in Novosibirsk again. DOOR is part of a series of annual international
conferences on optimization and operations research that covers a wide range of topics
in mathematical programming and its applications, integer programming and polyhe-
dral combinatorics, bi-level programming and multi-criteria optimization, optimization
problems in machine learning and data mining, discrete optimization in scheduling,
routing, bin packing, locations, and optimization problems on graphs, computational
complexity, and polynomial time approximation. The main purpose of the conference
is to provide a forum where researchers can exchange ideas, identify promising
directions for research and application domains, and foster new collaborations.

In response to the call for papers, DOOR 2016 received 181 submissions. Papers
included in this volume were carefully selected by the Program Committee on the basis
of reports from two or more reviewers. Only 39 submissions were selected for inclu-
sion in this volume. Nine invited talks by eminent speakers are also included here.

We thank all the Program Committee members and external reviewers for their
cooperation. We also thank the Organizing Committee members for their efforts.
Finally, we thank our sponsors, the Russian Foundation for Basic Research, the Far
Eastern Federal University, Novosibirsk State University, the Laboratory of Algorithms
and Technologies for Networks Analysis (LATNA), the Higher School of Economics
in Nizhny Novgorod, and Alfred Hofmann from Springer for supporting our project.

September 2016 Yury Kochetov
Michael Khachay
Vladimir Beresnev
Evgeni Nurminski

Panos Pardalos
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Algorithmic Issues in Energy-Efficient
Computation

Evripidis Bampis

Sorbonne Universités, UPMC Univ Paris 06, UMR 7606, LIP6, Paris, France
evripidis.bampis@lip6.fr

Abstract. Energy efficiency has become a crucial issue in Computer Science.
New hardware and system-based approaches are explored for saving energy in
portable battery-operated devices, personal computers, or large server farms.
The main mechanisms that have been developed for saving energy are the ability
of transitioning the device among multiple power states, and the use of dynamic
voltage scaling (speed scaling). These last years, there is also an increasing
interest in the development of algorithmic techniques for finding tradeoff-
solutions between energy consumption and performance. In this talk, we will
focus on algorithmic techniques with provably good performances for funda-
mental power management problems. Among the different models that have
been developed in the literature, we will focus on the speed scaling model, the
power-down model and the combination of these two models that we will call
the power-down with speed scaling model.



Linear Superiorization for Infeasible
Linear Programming

Yair Censor and Yehuda Zur

Department of Mathematics, University of Haifa, Mt. Carmel, 3498838,
Haifa, Israel

yair@math.haifa.ac.il

Abstract. Linear superiorization (abbreviated: LinSup) considers linear pro-
gramming (LP) problems wherein the constraints as well as the objective
function are linear. It allows to steer the iterates of a feasibility-seeking iterative
process toward feasible points that have lower (not necessarily minimal) values
of the objective function than points that would have been reached by the same
feasiblity-seeking iterative process without superiorization. Using a feasibility-
seeking iterative process that converges even if the linear feasible set is empty,
LinSup generates an iterative sequence that converges to a point that minimizes
a proximity function which measures the linear constraints violation. In addition,
due to LinSup’s repeated objective function reduction steps such a point will
most probably have a reduced objective function value. We present an
exploratory experimental result that illustrates the behavior of LinSup on an
infeasible LP problem.



Modern Trends in Parameterized Algorithms

Fedor Fomin

University of Bergen, Bergen, Norway
fomin@ii.uib.no

We overview the recent progress in solving intractable optimization problems on planar
graphs as well as other classes of sparse graphs. In particular, we discuss how tools
from Graph Minors theory can be used to obtain

– subexponential parameterized algorithms
– approximation algorithms, and
– preprocessing and kernelization algorithms

on these classes of graphs.



Short Survey on Graph Correlation Clustering
with Minimization Criteria

Victor Il’ev1,2, Svetlana Il’eva2, and Alexander Kononov1

1 Sobolev Institute of Mathematics, Novosibirsk, Russia
2 Omsk State University, Omsk, Russia

iljev@mail.ru, alvenko@math.nsc.ru

Abstract. In clustering problems one has to partition a given set of objects into
some subsets (called clusters) taking into consideration only similarity of the
objects. One of the most visual formalizations of clustering is the graph clus-
tering, that is, grouping the vertices of a graph into clusters taking into con-
sideration the edge structure of the graph whose vertices are objects and edges
represent similarities between the objects.

In this short survey, we consider the graph correlation clustering problems
where the goal is to minimize the number of edges between clusters and the
number of missing edges inside clusters. We present a number of results on
graph correlation clustering including results on computational complexity and
approximability of different variants of the problems, and performance guar-
antees of approximation algorithms for graph correlation clustering. Some
results on approximability of weighted versions of graph correlation clustering
are also presented.



Wardrop Equilibrium for Networks
with the BPR Latency Function

Jaimie W. Lien1, Vladimir V. Mazalov2, Anna V. Melnik3,
and Jie Zheng4

1 Department of Decision Sciences and Managerial Economics,
The Chinese University of Hong Kong, Shatin, Hong Kong, China

jaimie.academic@gmail.com
2 Institute of Applied Mathematical Research,

Karelian Research Center, Russian Academy of Sciences,
11, Pushkinskaya Street, Petrozavodsk, 185910, Russia

vmazalov@krc.karelia.ru
3 Saint-Petersburg State University, Universitetskii Prospekt 35,

Saint-petrsburg, 198504, Russia
a.melnik@spbu.ru

4 Department of Economics, School of Economics and Management,
Tsinghua University, Beijing, 100084, China
zhengjie@sem.tsinghua.edu.cn

Abstract. This paper considers a network comprised of parallel routes with the
Bureau of Public Road (BPR) latency function and suggests an optimal distri-
bution method for incoming traffic flow. The authors analytically derive a
system of equations defining the optimal distribution of the incoming flow with
minimum social costs, as well as a corresponding system of equations for the
Wardrop equilibrium in this network. In particular, the Wardrop equilibrium is
applied to the competition model with rational consumers who use the carriers
with minimal cost, where cost is equal to the price for service plus the waiting
time for the service. Finally, the social costs under the equilibrium and under the
optimal distribution are compared. It is shown that the price of anarchy can be
infinitely large in the model with strategic pricing.



Location Modeling in the Presence of Firm
and Customer Competition

Athanasios Migdalas

ETS Institute, Lulea University of Technology, 971 87 Lulea, Sweden
athmig@ltu.se

Location problems form a wide class of mathematical programming models, of great
interest of both in practice and from the point of view of optimization theory. Facility
location problem aims at determining the optimal sites to locate facilities such as plants,
warehouses, and/or distribution centers. Competitive location models (CFL) addition-
ally incorporate the fact that location decisions have been or will be made by inde-
pendent decision-makers who will subsequently compete with each other for market
share, profit maximization etc. In addition decisions such as customers’ allocation and
pricing policies may also be incorporated to the basic model.

The first paper dealing with the effect of competition in the location decisions is due
Hotelling. Since then, a vast number of publications have been devoted to the subject.
Sequential CFL problems are usually modeled as hierarchical or multi-level pro-
gramming models. Such models are concerned with decision making problems that
involve multiple decision makers ordered within a hierarchical structure. The most
well-known case is the so-called Stackelberg game in which decision makers of two
different levels with different, often conflicting, objectives are involved.

The research work dealing with the bi-level formulation of location problems is
limited only to the competition among the locators. Customers are passively assigned
to the facilities according to some criteria. A first attempt to study the influence of
market competition on location decisions is due to Tobin and Friesz.

In this talk we formulate and study a class of location problems where the
autonomous decisions of the customers regarding the facilities from which they will be
served influence the locations decisions. The conditions under which customers make
their choice of facilities to be served are in general complicated. We assume here that
every customer will choose the facilities that minimize their own total transportation
and waiting for service cost. Thus, concerning mathematical modeling we investigate
facility location problems not only in the presence of firm competition but also in the
presence of customer competition with respect to the quality level of the provided
services. We derive bi-level programming models which are interpreted and analyzed
in game theoretic terms. The issues of optimality conditions, computational complexity
and solution algorithms are also discussed.



References
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A Review on Network Robustness
from an Information Theory Perspective

Tiago Schieber1,2, Martín Ravetti1, and Panos M. Pardalos3,4

1 Departamento de Engenharia de Produção, Universidade Federal de Minas
Gerais, Belo Horizonte, MG, Brazil

tischieber@gmail.com
2 Departamento de Engenharia de Produção,

Pontifícia Universidade Católica de Minas Gerais, Belo Horizonte, MG, Brazil
3 Center for Applied Optimization, Industrial and Systems Engineering,

University of Florida, Gainesville, FL, USA
4 Laboratory of Algorithms and Technologies for Network Analysis,

National Research University Higher School of Economics,
Nizhny Novgorod, Russia

Abstract. The understanding of how a networked system behaves and keeps its
topological features when facing element failures is essential in several appli-
cations ranging from biological to social networks. In this context, one of the
most discussed and important topics is the ability to distinguish similarities
between networks. A probabilistic approach already showed useful in graph
comparisons when representing the network structure as a set of probability
distributions, and, together with the Jensen-Shannon divergence, allows to
quantify dissimilarities between graphs. The goal of this article is to compare
these methodologies for the analysis of network comparisons and robustness.



An Iterative Approach for Searching
an Equilibrium in Piecewise Linear

Exchange Model

Vadim I. Shmyrev

Sobolev Institute of Mathematics, Novosibirsk, Russia
shmyrev.vadim@mail.ru

Abstract. The exchange model with piecewise linear separable concave utility
functions is considered. This consideration extends the author’s original approach
to the equilibrium problem in a linear exchange model and its variations. The
conceptual base of this approach is the scheme of polyhedral complementarity. It
has no analogs and made it possible to obtain the finite algorithms for some
variations of the exchange model. Especially simple algorithms arise for linear
exchange model with fixed budgets (Fisher’s model). This is due to monotonicity
property inherent in the models and potentiality of arising mappings. The algo-
rithms can be considered as a procedure similar to the simplex-method of linear
programming. It is natural to study applicability of the approach for more general
models. The considered piecewise linear version of the model reduces to a special
exchange model with upper bounds on variables and the modified conditions of the
goods’ balances. For such a model the monotonicity property is violated. But it
remains, if upper bounds are substituted by financial limits on purchases. This is the
idea of proposed iterative algorithm for initial problem. It is a generalization of an
analogue for linear exchange model.



Handling Scheduling Problems
with Controllable Parameters by Methods

of Submodular Optimization

Akiyoshi Shioura1, Natalia V. Shakhlevich2,
and Vitaly A. Strusevich3

1 Tokyo Institute of Technology, Tokyo, Japan
2 University of Leeds, Leeds, UK

3 Univeristy of Greenwich, London, UK
V.Strusevich@greenwich.ac.uk

Abstract. In this paper, we demonstrate how scheduling problems with
controllable processing times can be reformulated as maximization linear pro-
gramming problems over a submodular polyhedron intersected with a box.
We explain a decomposition algorithm for solving the latter problem and discuss
its implications for the relevant problems of preemptive scheduling on a single
machine and parallel machines.
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1 Introduction

Energy efficiency has become a crucial issue in Computer Science. New hard-
ware and system-based approaches are explored for saving energy in portable
battery-operated devices, personal computers, or large server farms. The main
mechanisms that have been developed for saving energy are the ability of transi-
tioning the device among multiple power states, and the use of dynamic voltage
scaling (speed scaling). These last years, there is also an increasing interest in
the development of algorithmic techniques for finding tradeoff-solutions between
energy consumption and performance. In this talk, we will focus on algorithmic
techniques with provably good performances for fundamental power manage-
ment problems. Among the different models that have been developed in the
literature, we will focus on the speed scaling model, the power-down model and
the combination of these two models that we will call the power-down with
speed scaling model. In the speed scaling model [54], the speed of the processor
(machine) may be dynamically changed over time. When a processor runs at
speed s, then the rate with which the energy is consumed (i.e., the power) is
f(s) with f a non-decreasing function of the speed. The energy is the integral
of the power over time. According to the well-known cube-root rule for CMOS
devices, the speed of a device is proportional to the cube-root of the power and
hence f(s) = s3, but in the literature, many works consider that the power is
f(s) = sα where α > 1 is a constant, or an arbitrary convex function. In the
power-down model [26], the processors run at a fixed speed but are equipped
with a sleep state. This means that the processor has two states On and Off
and may be suspended during its idle time. However, during its wake-up from
state Off to state On, there is a start-up energy consumption, denoted by L.
Hence, suspending the processor is only beneficial when the idle periods are
long enough to compensate the consumed start-up energy. The power-down with
speed scaling model [43] combines the previous two models by considering speed
scalable processors with a sleep state. Here, the power function is g(s) = f(s)+c
where f(s) is defined as in the speed-scaling model and c > 0 is a constant that
specifies the power consumed when the processor is in the On state.

We will be interested in some recent developments for scheduling a set of jobs
on a (set of) processor(s) focusing in the offline context. Most of the problems
considered are deadline-based problems: we are given a set of n jobs, where each
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job j is characterized by its release date rj , its deadline dj and its processing
volume (work) pj . Two important families of instances that have been studied in
the literature are the agreeable and the laminar instances. We call an instance
agreeable if earlier released jobs have earlier deadlines, i.e., for each j and j′ with
rj ≤ rj′ then dj ≤ dj′ . In a laminar instance, for any two jobs j and j′ with
rj ≤ rj′ it holds that either dj ≥ dj′ or dj ≤ rj′ . The processing volume of a job
is the number of CPU-cycles required by the job. If job j is executed with speed
s then its processing time is pj

s . In the case of processors with fixed speed the
processing volume equals the processing time of the job. A feasible schedule in
this context is a schedule in which each job is executed in the interval between
its release date and its deadline. The problems in this setting are bi-objective
by nature. For instance, we wish to minimize the energy consumption while at
the same time we aim to determine a feasible schedule. A lot of other objectives
have been studied when we consider a given budget of energy: the throughput,
i.e. the number of jobs that complete before their deadlines, the makespan, i.e.
the time at which the last job completes its execution, the sum of (weighted)
completion times, the sum of flow times, . . . . Finally, in some works, the objective
is the minimization of a linear combination of the energy and of some scheduling
criterion (e.g. sum of completion times).

2 Speed Scaling

2.1 Single Machine

Energy minimization. Yao et al. [54] considered the problem of scheduling a set
of n jobs on a single machine, where the preemption, i.e. the possibility to inter-
rupt the execution of a job and resume it later, was allowed. They proposed an
optimal O(n3)-time algorithm. Later, Li et al. [47] proposed a faster algorithm
with time complexity O(n2 log n). Other algorithms with better time complex-
ities than the one of [54] have been proposed in [37] for agreeable instances,
and in [36] for general instances. These algorithms exploit the relation of the
energy minimization problem with the computation of shortest paths. When the
instances are restricted to be laminar, Li et al. [46] showed that the problem can
be solved in O(n) time.

Antoniadis and Huang [16] were the first to consider the non-preemptive
energy minimization problem. They proved that it is strongly NP-hard even
for laminar instances. They also presented a 24α−3-approximation algorithm for
laminar instances and a 25α−4-approximation algorithm for general instances.
Furthermore, the authors noticed that the problem can be solved optimally in
polynomial time when the instances are agreeable by observing that the optimal
preemptive schedule produced by the algorithm in [54] executes the jobs non-
preemptively. A series of papers improved the approximation ratio of the non-
preemptive case. In [21], an approximation algorithm of ratio 2α−1(1+ε)αB̃α has
been proposed where B̃α =

∑∞
k=0

kαe−1

k! is the generalized Bell number which
is defined for any α ∈ R

+ and corresponds to the α-th (fractional) moment of
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Poisson’s distribution. This algorithm improved the ratio given in [16] for any
α < 114. Then, an approximation algorithm of ratio (12(1 + ε))α−1 was given in
[34], improving the approximation ratio for any α > 25. In [23], an approximation
algorithm of ratio (1 + ε)α−1B̃α has been presented which became the best
algorithm, at that moment, for any α ≤ 77. Recently, a (1 + ε)-approximation
algorithm which runs in nO(polylog(n)) time has been proposed in [42].

Moreover, the relation between preemptive and non-preemptive schedules in
the energy-minimization setting has been studied in [20]. The authors showed
that starting from the optimal preemptive solution obtained using the algorithm
of [54], it is possible to obtain a non-preemptive solution which guarantees an
approximation ratio of (1 + pmax

pmin
)α, where pmax and pmin are the maximum and

the minimum processing volumes of the jobs. In the special case where all jobs
have equal processing volumes this leads to a constant factor approximation
of 2α. For this special case, Angel et al. [9] and Huang and Ott [41], inde-
pendently, proposed an optimal polynomial-time algorithm based on dynamic
programming.

Throughput. Angel et al. studied the throughput maximization problem in the
offline setting in [12]. They provided a polynomial time algorithm to solve opti-
mally the single-machine problem for agreeable instances. More recently in [11],
they proved that there is a pseudo-polynomial time algorithm for solving opti-
mally the preemptive single-machine problem with arbitrary release dates, dead-
lines and processing volumes. For the weighted version, the problem is NP-hard
even for instances in which all the jobs have common release dates and dead-
lines. Angel et al. [12] showed that the problem admits a pseudo-polynomial time
algorithm for agreeable instances. Furthermore, Antoniadis et al. [18] considered
a related problem. More precisely, they studied a generalization of the classical
knapsack problem where the objective is to maximize the total profit of the cho-
sen items minus the cost incurred by their total weight. The case where the cost
functions are convex can be translated in terms of a weighted throughput prob-
lem where the objective is to select the most profitable set of jobs taking into
account the energy costs. They presented a fully polynomial time approximation
scheme (FPTAS) and a fast 2-approximation algorithm for the non-preemptive
problem where the jobs have no release dates or deadlines.

Sum of Completion Times. Pruhs et al. [49] considered the problem of mini-
mizing the average completion time under a budget of energy. They proposed
an O(n2 log E

ε ) polynomial time algorithm for jobs with equal processing vol-
umes, where E is the energy budget and ε the desired accuracy. Albers et al. [6]
proposed a simplified algorithm for the problem of minimizing the average com-
pletion time plus energy for jobs with equal processing volumes which is based on
dynamic programming. Megow et al. [48] considered the weighted version of the
average completion time objective. When all the jobs have equal release dates,
they established a polynomial time approximation scheme (PTAS). They also
showed that the non-preemptive version of the problem is equivalent to the fixed-
speed single-machine problem where the objective function is:

∑
wj(Cj)

α−1
α ,
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where wj is the weight of job j and Cj its completion time. This result has
also been obtained independently by Vásquez [53]. For the preemptive prob-
lem where the jobs have arbitrary release dates, Megow et al. [48] proposed a
(2 + ε)-approximation algorithm.

Makespan. Bunde [29] proposed an optimal polynomial-time algorithm for the
problem of scheduling a set of jobs with arbitrary release dates and deadlines,
under a given budget of energy, so that the makespan to be minimized.

Maximum Lateness. In [25], the non-preemptive problem of minimizing the max-
imum lateness, under a given budget of energy, has been studied. An optimal
combinatorial polynomial-time algorithm has been proposed for the case in which
the jobs have common release dates. For arbitrary release dates, the problem is
shown to be strongly NP−hard. The authors study also the problem where
the objective is the minimization of a linear combination of maximum lateness
and energy. The results for the budget variant can be adapted to this case. More
interestingly, a 2-approximation algorithm is presented when the jobs are subject
to release dates.

2.2 Multiple Machines

When more than one machines are available, we distinguish again between two
cases: the preemptive and the non-preemptive cases. In the preemptive case, the
execution of the jobs may allow the migration of the jobs, i.e. the possibility to
execute a job on more than one machines, without allowing its parallel execution.
This case is known as the migratory case. In the preemptive non-migratory case,
the execution of a job must be done on the same machine.

We have also to distinguish between homogeneous and heterogeneous envi-
ronments. In the homogeneous case, the characteristics of each job (release date,
deadline and processing volume) are independent of the machine on which it is
executed and the speed-to-power function is the same for all the machines. In
the heterogeneous case, we consider the following subcases: In the fully hetero-
geneous environment both, the jobs’ characteristics are machine-dependent and
every machine has its own power function. Formally, the problem is as follows:
we are given a set J of n jobs and a set P of m parallel machines. Every machine
i ∈ P obeys to a different speed-to-power function, i.e., it is associated with a
different αi ≥ 1 and hence if a job runs at speed s on machine i, then the power
is f(s) = sαi . Each job j ∈ J has a different release date ri,j , deadline di,j and
processing volume pi,j in each machine i ∈ P. In the power-heterogeneous envi-
ronment, the characteristics of each job are independent of the machine on which
the job is executed, while every machine has its own speed-to-power function.
Finally, in the unrelated-heterogeneous environment the processing volumes of
the jobs are machine-dependent while all the other characteristics are indepen-
dent of the machine on which each job is executed.
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Energy minimization. Chen et al. [30] were the first to study a multiproces-
sor energy-efficient scheduling problem involving speed scaling. More specif-
ically, they proposed an O(n log n)-time algorithm for solving optimally the
homogeneous-migratory problem when the release dates and deadlines are identi-
cal for all the jobs. Later, Bingham et al. [28] constructed an optimal algorithm
for the homogeneous-migratory problem when the jobs have arbitrary release
dates and deadlines. The algorithm in [28] makes repetitive calls of a black-box
algorithm for solving linear programs. Then, independently, Albers et al. [4] and
Angel et al. [15] presented combinatorial algorithms based on a series of maxi-
mum flow computations that allow the partition of the set of jobs into subsets
in which all the jobs are executed at the same speed. The optimality of these
algorithms is based on a series of technical lemmas showing that this partition
and the corresponding speeds lead to the minimization of the energy consump-
tion. In [24], it has been shown that both the algorithms and their analysis can
be greatly simplified. In order to do this, the problem has been formulated as
a convex cost flow problem in an appropriate flow network. Furthermore, it has
been shown that this approach is useful to solve other problems in the dynamic
speed-scaling setting. As an example, the authors consider the preemptive open-
shop speed-scaling problem and they propose a polynomial-time algorithm for
finding an optimal solution based on the computation of convex cost flows. In
[52], Shioura et al. consider the same formulation as convex cost flow for the
homogeneous-migratory problem and they propose a method for reducing the
running time of the algorithm. For the migratory problem in a fully hetero-
geneous environment, an algorithm using a configuration linear programming
(LP) formulation, has been proposed in [21]. This algorithm returns a solution
which is within an additive factor of ε far from the optimal solution and runs
in time polynomial to the size of the instance and to 1/ε. However, the algo-
rithm proposed in [21] is based on the solution of a configuration linear program
using the Ellipsoid method. Given that this method may not be very efficient
in practice, an alternative polynomial-time algorithm based on a compact linear
programming formulation which solves the problem within any desired accu-
racy was proposed in [5]. This algorithm does not need the use of the Ellipsoid
method and it applies for more general than convex power functions; it is valid
for a large family of continuous non-decreasing power functions. Furthermore,
in the same work, a max-flow based algorithm has been proposed for the migra-
tory problem in a power-heterogeneous environment, in which jobs’ densities are
lower bounded by a small constant, producing a solution arbitrarily close to the
optimal.

For the homogeneous non-migratory problem, Albers et al. [7] considered the
case of a set of jobs with unit processing volumes. They showed that the prob-
lem can be solved optimally in polynomial time if the instance is agreeable. More-
over, they established an NP-hardness proof for the unit-work case when the
release dates and the deadlines of the jobs are arbitrary. They proposed an αα24α-
approximation algorithm for this special case. They have also presented an algo-
rithm of the same approximation ratio for arbitrary-work instances when the jobs
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have either equal release dates or equal deadlines. Next, Greiner et al. [39] pre-
sented a B�α�-approximation algorithm for the problem with jobs having arbitrary
processing volumes, release dates anddeadlines,whereB�α� is the �α�-thBell num-
ber. Cohen-Addad et al. [34] proved that the non-migratory problem is APX-hard
for the unrelated-heterogeneous model even if all the jobs have the same release
dates and deadlines. For the non-migratory problem in a fully heterogeneous envi-
ronment, an approximation algorithm of ratio (1 + ε)B̃α based on a randomized
rounding of a configuration LP relaxation has been presented in [21].

For the non-preemptive problem in a homogeneous environment, Albers et al.
[7] observed that the problem is NP-hard even in the special case where the jobs
have the same release dates and deadlines. Moreover, they showed that, for this
special case, there exists a polynomial time approximation scheme (PTAS). For
arbitrary release dates, deadlines and processing volumes; an approximation algo-
rithm with ratio mα( m

√
n)α−1 has been presented in [20]. Cohen-Addad et al. [34]

presented an algorithm of ratio (52 )α−1B̃α((1+ε)(1+ pmax
pmin

))α. This algorithm leads
to an approximation ratio of 2(1 + ε)α5α−1B̃α when all jobs have equal process-
ing volumes. It has to be noticed that he authors in [34] observed that their algo-
rithm can be used for the non-preemptive problem in the unrelated-heterogeneous
model by loosing an additional factor of (pmax

pmin
)α. Finally, a (1 + ε)-approximation

algorithm which runs in nO(polylog(n)) time, for the non-preemptive problem in a
homogeneous environment, has been presented in [42].

Throughput. The throughput maximization problem has been studied in the case
of a fully heterogeneous environment in [14]. For the fully heterogeneous non-
migratory problem, Angel et al. presented a greedy algorithm which is based on
the primal-dual scheme that approximates the optimum solution within a factor
depending on the speed-to-power functions (the factor is constant for functions
of the form f(s) = sα). Then, they focused on the homogeneous non-preemptive
problem for which they considered a fixed number of machines and two important
families of instances: (1) instances with equal processing volume jobs; and (2)
agreeable instances. For both cases they presented optimal pseudo-polynomial-
time algorithms.

Sum of Completion Times. A polynomial-time algorithm for minimizing a linear
combination of the sum of the completion times of the jobs and the total energy
consumption, for the non-preemptive multiprocessor speed-scaling problem has
been proposed in [24]. Instead of using convex cost flows, the proposed algorithm
is based on the computation of a minimum weighted maximum matching in an
appropriate bipartite graph.

Makespan. Shabtay and Kaspi [51] proved that the problem is NP-hard even if
all the jobs have the same release dates. Pruhs et al. [50] observed that when all
the jobs have the same release dates then a PTAS can be obtained using the load
balancing algorithm of Alon et al. [8] for the minimization of the Lα norm of
loads. Pruhs et al. considered in [50] the problem of scheduling a set of jobs on a
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set of speed scalable machines subject to precedence constraints among the jobs.
The goal is to minimize the makespan of the schedule without exceeding a given
energy budget. The approach in [50] is based on constant power schedules, which
are schedules that keep the total power of all processors constant over time. Based
on this property and by performing a binary search to determine the value of
the power, they transformed the problem to the classical problem of minimizing
the makespan for scheduling a set of jobs with precedence constraints on related
parallel processors, in which each processor runs at a single predefined speed.
The proposed algorithm has an approximation ratio of O(log1+2/α m), where m
is the number of the machines. This ratio has been improved in [22] where a
simple (2 − 1

m )-approximation algorithm has been presented. The idea of this
algorithm is the following: first, a convex programming relaxation for the speed
scaling problem is given. The solution of this convex program defines a speed
and hence a processing time for each job. Given that the obtained processing
times respect the energy budget, it is then sufficient to use the classical list
scheduling algorithm. This approach may be used for a more general problem
where in addition to the precedence constraints the jobs are subject to release
dates and/or precedence delays. For these generalizations, the approximation
ratio of the algorithm remains asymptotically smaller than 2.

3 Power down

3.1 Single Machine

Chrétienne [33] proved that it is possible to decide in polynomial time whether
there is a schedule with no idle time. Baptiste [26] proposed an O(n7)-time
dynamic programming algorithm for unit-time jobs and general L. For that,
he proved a dominance property showing that there are only a few relevant
starting points for the jobs in some optimal schedule and he proposed a clever
decomposition of the problem. Then, Baptiste et al. [27] proposed an O(n5)-time
dynamic programming algorithm for the preemptive case with jobs of arbitrary
processing times. They also proposed an O(n4) algorithm for unit-time jobs. A
simpler dynamic programming with the same time-complexity for unit-time jobs
has been proposed in [32]. Given the high time complexity of the algorithms in
the general case, Gururaj et al. [40] improved the time-complexity by restricting
their attention to agreeable instances. They proposed an O(n log n) algorithm
for jobs with arbitrary lengths and with unit start-up energy consumption, i.e.
L = 1. For arbitrary L and unit-time jobs, they proposed an O(n3) algorithm. In
[10], this result has been improved by providing an O(n2) algorithm for arbitrary
L and arbitrary processing times. In [31], a simple greedy algorithm has been
presented that approximates the optimum solution within a factor of 2 and it
has been shown that its analysis is tight. The algorithm runs in time O(n2 log n)
and needs only O(n) memory. More recently in [32], different variants of the
minimum-gap scheduling problem have been studied. These variants include the
maximization of the throughput given a budget for gaps or the minimization of
the number of gaps given a throughput requirement. Other objective functions
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are also studied. For instance, maximizing the number of gaps. For the model
without deadlines, the authors focus on the tradeoff between the number of gaps
and flow time.

3.2 Multiple Machines

The algorithm of [26] has been generalized for the multiple machines case in [35].
The time complexity becomes O(n7m5), where n is the number of jobs and m
is the number of machines. For agreeable instances, Gururaj et al. [40] proposed
an O(n3m2) algorithm for unit-time jobs and unit start-up energy consumption,
L = 1. This result has been improved in [10], where an O(n2m) algorithm has
been proposed.

4 Power-Down with Speed Scaling

While in the speed scaling model, it is always beneficial for the energy consump-
tion to lower the speed of a job as far as the schedule remains feasible, this is
not the case for the power-down with speed scaling model. Indeed, by increasing
the speed of a job we may increase the length of some idle period and in that
way be able to gain in energy consumption by turning off the machine. A central
notion in this model is the notion of critical speed which, roughly speaking, is
the speed minimizing the energy consumption while jobs are processed.

Irani et al. [43] proposed a 2-approximation algorithm for general convex
power functions. The rough idea of the algorithm is the following: first, a schedule
is produced using the algorithm of Yao et al. [54] for the speed scaling model.
Given this schedule, the set of jobs is partitioned into two subsets: the first
subset contains all the jobs that are executed with a speed higher than the
critical speed, while the second subset contains the jobs that are executed with
a speed smaller than the critical one. The schedule returned by the algorithm of
Irani et al. [43] executes all the jobs of the first subset using the algorithm of Yao
et al. [54], while all the jobs of the second subset are executed with the critical
speed. Only recently, Albers and Antoniadis [3] and Kumar and Shannigrahi [45]
proved that the problem is NP-hard. For agreeable instances, an O(n3)-time
algorithm has been provided in [19]. This algorithm is based in a combination of
the algorithm of Yao et al. and the use of dynamic programming for the jobs that
are executed with a speed smaller than the critical speed. For general convex
power functions, Albers and Antoniadis [3] derived a 4

3 -approximation algorithm.
Their algorithm is also a combination of the algorithm of [54] and the use of
dynamic programming. Here the partition of the jobs is not based on the critical
speed, but on some appropriate value s0. All the jobs executed in the schedule
produced by the algorithm of [54] with a speed lower than s0 are scheduled with
speed s0. The schedule of these jobs is derived by the dynamic program for the
power-down model of Baptiste et al. [27]. All the other jobs are scheduled using
the algorithm of [54]. Albers and Antoniadis have also obtained an approximation
factor of 137

117 < 1.171 for power functions of the form g(s) = βsα + c, where s



Algorithmic Issues in Energy-Efficient Computation 11

is the speed and β, c > 0 as well as α are constants. More recently, in [17] a
fully polynomial-time approximation scheme (FPTAS) for the problem has been
proposed.

Finally, the single-machine non-preemptive throughput maximization prob-
lem has been studied in [13]. More precisely, optimal polynomial-time algorithms
have been presented for two types of instances: (1) agreeable instances and (2)
instances with arbitrary release dates and deadlines, but equal processing vol-
umes. Both algorithms are based on dynamic programming.

To the best of our knowledge, no results are known for multiple machines.

5 Concluding Remarks

We gave a quick overview of some recent developments in the context of energy-
efficient scheduling focusing on the offline setting. A huge literature exists for
the online setting. For more results in this area, the interested reader is invited
to consult the recent surveys in [1,2,38,44].

Acknowledgments. This work has been partially supported by the COFECUB
project Choosing (n. 828/15).
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Abstract. Linear superiorization (abbreviated: LinSup) considers lin-
ear programming (LP) problems wherein the constraints as well as the
objective function are linear. It allows to steer the iterates of a feasibility-
seeking iterative process toward feasible points that have lower (not
necessarily minimal) values of the objective function than points that
would have been reached by the same feasiblity-seeking iterative process
without superiorization. Using a feasibility-seeking iterative process that
converges even if the linear feasible set is empty, LinSup generates an
iterative sequence that converges to a point that minimizes a proximity
function which measures the linear constraints violation. In addition, due
to LinSup’s repeated objective function reduction steps such a point will
most probably have a reduced objective function value. We present an
exploratory experimental result that illustrates the behavior of LinSup
on an infeasible LP problem.

Keywords: Superiorization · Perturbation resilience · Infeasible linear
programming · Feasibility-seeking · Simultaneous projection algorithm ·
Cimmino method · Proximity function

1 Introduction: The General Concept of Superiorization

Given an algorithmic operator A : X → X on a Hilbert space X, consider the
iterative process

x0 ∈ X, xk+1 = A (
xk

)
, for all k � 0, (1)

and let SOL (P ) denote the solution set of some problem P of any kind. The
iterative process is said to solve P if, under some reasonable conditions, any
sequence

{
xk

}∞
k=0

generated by the process converges to some x∗ ∈ SOL (P ).
An iterative process (1) that solves P is called perturbation resilient if the process

y0 ∈ X, yk+1 = A (
yk + vk

)
, for all k � 0, (2)

also solves P , under some reasonable conditions on the sequence of perturbation
vectors

{
vk

}∞
k=0

⊆ X. The iterative processes of (1) and (2) are called “the basic
algorithm” and “the superiorized version of the basic algorithm”, respectively.
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Superiorization aims at identifying perturbation resilient iterative processes
that will allow to use the perturbations in order to steer the iterates of the supe-
riorized algorithm so that, while retaining the original property of converging
to a point in SOL (P ), they will also do something additional useful for the
original problem P , such as converging to a point with reduced values of some
given objective function. These concepts are rigorously defined in several recent
works in the field, we refer the reader to the recent reviews [5,13] and references
therein. More material about the current state of superiorization can be found
also in [6,14,19].

A special case of prime importance and significance of the above is when P is
a convex feasibility problem (CFP) of the form: Find a vector x∗ ∈ ∩I

i=1Ci where
Ci ⊆ RJ , the J-dimensional Euclidean space, are closed convex subsets, and the
perturbations in the superiorized version of the basic algorithm are designed to
reduce the value of a given objective function φ.

In this case the basic algorithm (1) can be any of the wide variety of
feasibility-seeking algorithms, see, e.g., [2,7,8], and the perturbations employ
nonascent directions of φ. Much work has been done on this as can be seen in
the Internet bibliography at [4].

The usefulness of this approach is twofold: First, feasibility-seeking is, on
a logical basis, a less-demanding task than seeking a constrained minimization
point in a feasible set. Therefore, letting efficient feasibility-seeking algorithms
“lead” the algorithmic effort and modifying them with inexpensive add-ons works
well in practice.

Second, in some real-world applications the choice of an objective function is
exogenous to the modeling and data acquisition which give rise to the constraints.
Thus, sometimes the limited confidence in the usefulness of a chosen objective
function leads to the recognition that, from the application-at-hand point of
view, there is no need, neither a justification, to search for an exact constrained
minimum. For obtaining “good results”, evaluated by how well they serve the
task of the application at hand, it is often enough to find a feasible point that
has reduced (not necessarily minimal) objective function value1.

2 Linear Superiorization

2.1 The Problem and the Algorithm

Let the feasible set M be

M := {x ∈ RJ | Ax ≤ b, x ≥ 0} (3)
1 Some support for this reasoning may be borrowed from the American scientist and

Noble-laureate Herbert Simon who was in favor of “satisficing” rather then “max-
imizing”. Satisficing is a decision-making strategy that aims for a satisfactory or
adequate result, rather than the optimal solution. This is because aiming for the opti-
mal solution may necessitate needless expenditure of time, energy and resources. The
term “satisfice” was coined by Herbert Simon in 1956 [20], see: https://en.wikipedia.
org/wiki/Satisficing.

https://en.wikipedia.org/wiki/Satisficing
https://en.wikipedia.org/wiki/Satisficing
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where the I × J real matrix A = (ai
j)

I,J
i=1,j=1 and the vector b = (bi)I

i=1 ∈ RI are
given.

For a basic algorithm we pick a feasibility-seeking projection method. Here
projection methods refer to iterative algorithms that use projections onto sets
while relying on the general principle that when a family of, usually closed and
convex, sets is present, then projections onto the individual sets are easier to
perform than projections onto other sets (intersections, image sets under some
transformation, etc.) that are derived from the individual sets.

Projection methods may have different algorithmic structures, such as block-
iterative projections (BIP) or string-averaging projections (SAP) (see, e.g., the
review paper [9] and references therein) of which some are particularly suitable
for parallel computing, and they demonstrate nice convergence properties and/or
good initial behavior patterns.

This class of algorithms has witnessed great progress in recent years and
its member algorithms have been applied with success to many scientific, tech-
nological and mathematical problems. See, e.g., the 1996 review [2], the recent
annotated bibliography of books and reviews [7] and its references, the excellent
book [3], or [8].

An important comment is in place here. A CFP can be translated into an
unconstrained minimization of some proximity function that measures the fea-
sibility violation of points. For example, using a weighted sum of squares of the
Euclidean distances to the sets of the CFP as a proximity function and applying
steepest descent to it results in a simultaneous projections method for the CFP
of the Cimmino type. However, there is no proximity function that would yield
the sequential projections method of the Kaczmarz type, for CFPs, see [1].

Therefore, the study of feasibility-seeking algorithms for the CFP has devel-
oped independently of minimization methods and it still vigorously does, see
the references mentioned above. Over the years researchers have tried to harness
projection methods for the convex feasibility problem to LP in more than one
way, see, e.g., Chinneck’s book [11].

The mini-review of relations between linear programming and feasibility-
seeking algorithms in [17, Sect. 1] sheds more light on this. Our work in [6]
and here leads us to study whether LinSup can be useful for either feasible or
infeasible LP problems.

The objective function for linear superiorization will be

φ(x) := 〈c, x〉 (4)

where 〈c, x〉 is the inner product of x and a given c ∈ RJ .
In the footsteps of the general principles of the superiorization methodology,

as presented for general objective functions φ in previous publications, we use
the following linear superiorization (LinSup) algorithm. The algorithm and its
implementation details follow closely those of [6] wherein only feasible constraints
were discussed.

The input to the algorithm consists of the problem data A, b, and c of (3) and
(4), respectively, a user-chosen initialization point ȳ and a user-chosen parameter
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(called here kernel) 0 < α < 1 with which the algorithm generates the step-
sizes βk,n by the powers of the kernel η� = α�, as well as an integer N that
determines the quantity of objective function reduction perturbation steps done
per each feasibility-seeking iterative sweep through all linear constraints. The
perturbation direction − c

‖c‖2 used in step 10 of Algorithm 1 is a nonascend

direction of the linear objective function, as required by the general principles
of the superiorization methodology, see, e.g., [14, Subsect. II.D].

Algorithm 1. The Linear Superiorization (LinSup) Algorithm
1. set k = 0
2. set yk = ȳ
3. set �−1 = 0
4. while stopping rule not met do
5. set n = 0
6. set � = rand(k, �k−1)
7. set yk,n = yk

8. while n<N do
9. set βk,n = η�

10. set z = yk,n − βk,n
c

‖c‖2
11. set n ← n + 1
12. set yk,n = z
13. set � ← � + 1
14. end while
15. set �k = �
16. set yk+1 = A (yk,N

)

17. set k ← k + 1
18. end while

All quantities in this algorithm are detailed and explained below, except for
the choice of the basic algorithm for the feasibility-seeking operator represented
by A in step 16 of Algorithm 1 which appear in the next subsection.

Step-sizes of the Perturbations. The step sizes βk,n in Algorithm 1 must be
such that 0 < βk,n ≤ 1 in a way that guarantees that they form a summable
sequence

∑∞
k=0

∑N−1
n=0 βk,n < ∞, see, e.g., [10]. To this end Algorithm 1 assumes

that we have available a summable sequence {η�}∞
�=0 of positive real numbers

generated by η� = α�, where 0 < α < 1. Simultaneously with generating the
iterative sequence {yk}∞

k=0, a subsequence of {η�}∞
�=0 is used to generate the

step sizes βk,n in step 9 of Algorithm 1. The number α is called the kernel of the
sequence {η�}∞

�=0.

Controlling the Decrease of the Step-sizes of Objective Function
Reduction. If during the application of Algorithm 1 the step sizes βk,n decrease
too fast then too little leverage is allocated to the objective function reduction
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activity that is interlaced into the feasibility-seeking activity of the basic algo-
rithm. This delicate balance can be controlled by the choice of the index � updates
and separately by the value of α whose powers α� determine the step sizes βk,n

in step 9. In our work we adopt a strategy for updating the index � that was pro-
posed and implemented for total variation (TV) image reconstruction from pro-
jections by Prommegger and by Langthaler in [18, p. 38 and Table 7.1 on p. 49]
and in [15], respectively. This strategy advocates to set � at the beginning of
every new iteration sweep (steps 5 and 6) to a random number between the
current iteration index k and the value of � from the last iteration sweep, i.e.,
�k = rand(k, �k−1).

The Proximity Function. To measure the feasibility-violation (or level of
disagreement) of a point with respect to the target set M we used the following
proximity function

Pr(x) :=
1
2I

I∑

i=1

((〈
ai, x

〉 − bi

)
+

)2

J∑

j=1

(
ai

j

)2
+

1
2J

J∑

j=1

(
(−xj)+

)2

(5)

where the plus notation means, for any real number d, that d+ := max(d, 0).

The Number N of Perturbation Steps. This number N of perturbation
steps that are performed prior to each application of the feasibility-seeking oper-
ator A (in step 16) affects the performance of the LinSup algorithm. It influences
the balance between the amounts of computations allocated to feasibility-seeking
and those allocated to objective function reduction steps. A too large N will make
Algorithm 1 spend too much resources on the perturbations that yield objective
function reduction.

Handling the Nonnegativity Constraints. The nonnegativity constraints
in (3) are handled by projections onto the nonnegative orthant, i.e., by taking
the iteration vector in hand after each iteration of Cimmino’s feasibility-seeking
algorithm applied to all I row-inequalities of (3) and setting its negative com-
ponents to zero while keeping the others unchanged.

2.2 Cimmino’s Feasibility-Seeking Algorithm as the Basic
Algorithm

We use the simultaneous projections method of Cimmino for linear inequalities,
see, e.g. [12], as the basic algorithm for the feasibility-seeking operator repre-
sented byA in step 16 of Algorithm 1. Denoting the half-spaces represented by
individual rows of (3) by Hi,

Hi := {x ∈ RJ | 〈
ai, x

〉 ≤ bi}, (6)
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where ai ∈ RJ is the i-th row of A and bi ∈ R is the i-th component of b in
(3), he orthogonal projection of an arbitrary point z ∈ RJ onto Hi, has the
closed-form

PHi
(z) =

⎧
⎨

⎩
z −

〈
ai, z

〉 − bi

‖ai‖2 ai, if
〈
ai, z

〉
> bi,

z, if
〈
ai, z

〉 ≤ bi.

(7)

Algorithm 2. The Simultaneous Feasibility-Seeking Projection Method of Cim-
mino
Initialization: x0 ∈ RJ is arbitrary.
Iterative step: Given the current iteration vector xk the next iterate is calculated by

xk+1 = xk + λk

(
I∑

i=1

wi

(
PHi(x

k) − xk
))

(8)

with weights wi ≥ 0 for all i ∈ I, and
∑I

i=1 wi = 1.
Relaxation parameters: The parameters λk are such that ε1 ≤ λk ≤ 2 − ε2, for all
k ≥ 0, with some, arbitrarily small, fixed, ε1, ε2 > 0.

This Cimmino simultaneous feasibility-seeking projection algorithm is known
to generate convergent iterative sequences even if the intersection ∩I

i=1Hi is
empty, as the following, slightly paraphrased, theorem tells.

Theorem 1. [12, Theorem 3] For any starting point x0 ∈ RJ , any sequence
{xk}∞

k=0, generated by the simultaneous feasibility-seeking projection method of
Cimmino (Algorithm 2) converges. If the underlying system of linear inequalities
is consistent, the limit point is a feasible point for it. Otherwise, the limit point
minimizes f(x) :=

∑I
i=1 wi ‖ P (x)−x ‖2, i.e., it is a weighted (with the weights

wi) least squares solution of the system.

3 An Empirical Result

Employing MATLAB 2014b [16], we created five test problems each with 2500
linear inequalities in RJ , J = 2000. The entries in 1250 rows of the matrix A
in (3) were uniformly distributed random numbers from the interval (−1, 1).
The remaining 1250 rows were defined as the negatives of the first 1250 rows,
i.e., a1250+t

j = −at
j for all t = 1, 2, . . . , 1250 and all j = 1, 2, . . . , 2000. This

guarantees that the two sets of rows represent parallel half-spaces with opposing
normals. For the right-hand side vectors, the components of b associated with
the first set of 1250 rows in (3) were uniformly distributed random numbers from
the interval (0, 100). The remaining 1250 components of each b were chosen as
follows: b1250+t = −bt −rand(100, 200) for all t = 1, 2, . . . , 1250. This guarantees
that the distance between opposing parallel half-spaces is large making them
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inconsistent, i.e., having no point in common, and that the whole system is
infeasible.

For the linear objective function, the components of c were uniformly distrib-
uted random numbers from the interval (−2, 1). All runs of Algorithms 1 and 2
were initialized at ȳ = 10 · 1 and x0 = 10 · 1, respectively, where 1 is the vector
of all 1’s.

We ran Algorithm 1 on each problem until it ceased to make progress, by
using the stopping rule ∥

∥yk − yk−1
∥
∥

‖yk‖ ≤ 10−4. (9)

The same stopping rule was used for runs of Algorithm 2. The relaxation para-
meters in Cimmino’s feasibility-seeking basic algorithm in step 16 of Algorithm 1
were fixed with λk = 1.99 for all k � 0. Based on our work in [6] we used N = 20
and α = 0.99 in steps 8 and 9 of Algorithm 1, respectively, where η� = α�.

The three figures, presented below, show results for the five different (but
similarly generated) families of inconsistent linear inequalities along with non-
negativity constraints. Figures 1 and 2, in particular, show that the perturbation
steps 5–15 of the LinSup Algorithm 1 initially work and reduce the objective
function value powerfully during the first ca. 500 iterative sweeps (an iterative
sweep consists of one pass through steps 5–17 in Algorithm 1 or one pass through
all linear inequalities and the nonnegativity constraints in Algorithm 2). As iter-
ative sweeps proceed the perturbations in Algorithm 1 loose steam because of
the decreasing values of the βk,ns and later the algorithm proceeds toward fea-
sibility at the expense of some increase of objective function values. However,
even at those later sweeps the objective function values of LinSup remain well

Fig. 1. Linear objective function values plotted against iteration sweeps. LinSup has
reduced objective function values although the effect of objective function reducing
perturbations diminishes as iterations proceed.
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Fig. 2. Proximity function values plotted against iteration sweeps. The unsuperior-
ized feasibility-seeking only algorithm does a better job than LinSup here which is
understandable. LinSup’s strive for feasibility comes at the expense of some increase
in objective function values, as seen in Fig. 1.

Fig. 3. The fact that objective function values increase to some extent by the unsu-
periorized feasibility-seeking only algorithm observed in Fig. 1 is due to the relative
situation of the linear objective function’s level sets with respect to where in space is
the set of proximity minimizers of the infeasible target set.

below those of the unsuperiorized application of the Cimmino feasibility-seeking
algorithm (Algorithm 2).

The slow increase of objective function values observed for the unsuperi-
orized application of the Cimmino feasibility-seeking algorithm seems intrigu-
ing because the feasibility-seeking algorithm is completely unaware of the given
objective function φ(x) := 〈c, x〉 . But this is understood from the fact that the
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unsuperiorized algorithm has an orbit of iterates in RJ which, by proceeding in
space toward proximity minimizers, crosses the linear objective function’s level
sets in a direction that either increases or decreases objective function values. It
would keep them constant only if the orbit was confined to a single level set of
φ which is not a probable thing to happen. To clarify this we recorded in Fig. 3
the values of 〈c, x〉 and 〈−c, x〉 at the iterates xk produced by the Cimmino
feasibility-seeking algorithm (Algorithm 2).

Concluding Comments

We proposed a new approach to handle infeasible linear programs (LPs) via the
linear superiorization (LinSup) method. To this end we applied the feasibility-
seeking projection method of Cimmino to the original linear infeasible constraints
(without using additional variables). This Cimmino method is guaranteed to
converge to one of the points that minimize a proximity function that mea-
sures the violation of all constraints. We used the given linear objective function
to superiorize Cimmino’s method to steer its iterates to proximity minimizers
with reduced objective function values. Further computational research is needed
to evaluate and compare the results of this new approach to existing solution
approaches to infeasible LPs.
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Abstract. In clustering problems one has to partition a given set of
objects into some subsets (called clusters) taking into consideration only
similarity of the objects. One of the most visual formalizations of clus-
tering is the graph clustering, that is, grouping the vertices of a graph
into clusters taking into consideration the edge structure of the graph
whose vertices are objects and edges represent similarities between the
objects.

In this short survey, we consider the graph correlation clustering prob-
lems where the goal is to minimize the number of edges between clusters
and the number of missing edges inside clusters. We present a number of
results on graph correlation clustering including results on computational
complexity and approximability of different variants of the problems, and
performance guarantees of approximation algorithms for graph correla-
tion clustering. Some results on approximability of weighted versions of
graph correlation clustering are also presented.

Keywords: Graph clustering · Computational complexity · Approxi-
mation algorithm · Performance guarantee

1 Introduction

The objective of clustering problems is to partition a given set of objects (data
elements) into a family of subsets (called clusters) such that objects within a
cluster are more like to one another than objects in different clusters. The sim-
ilarity measure may be defined in different ways for different settings of the
problem [19,32].

One of the most visual formalizations of clustering is graph clustering [27,32],
that is, grouping the vertices of a graph into clusters taking into consideration
the edge structure of the graph whose vertices are objects and edges represent
similarities between the objects. We consider a minimization version of graph
clustering. In this version the goal is to minimize disagreements (the number
of edges between clusters plus the number of missing edges inside clusters). In
other words, given an undirected graph G, the minimization version of GRAPH
c© Springer International Publishing Switzerland 2016
Y. Kochetov et al. (Eds.): DOOR 2016, LNCS 9869, pp. 25–36, 2016.
DOI: 10.1007/978-3-319-44914-2 3
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CORRELATION CLUSTERING problem asks to transform G into a vertex-
disjoint union of cliques by a minimum number of edge modifications.

Note that the maximization version of GRAPH CORRELATION CLUS-
TERING was also studied in the literature (see [4]), where the goal is to maxi-
mize agreements (the number of edges inside clusters plus the number of missing
edges between clusters). This version is equivalent to the problem of minimizing
disagreements with respect to optimal solution but differs from the point of view
of approximation.

In this survey, we focus on the minimization version of GRAPH CORRELA-
TION CLUSTERING only.

GRAPH CORRELATION CLUSTERING seems to have been first defined
by Harary [20] in 1955. Harary introduced the signed graph, i. e., an undirected
graph with +1 or −1 labels on the edges, and considered a psychological interpre-
tation of the problem: positive edges correspond to pairs of people who like one
another, and negative edges to pairs who dislike one another. Harary’s aim was
to find two nearest to complete groups. Apart from social psychology, the study
of signed graphs has many other applications, notably in statistical mechanics
and biological networks.

First theoretical results on GRAPH CORRELATION CLUSTERING were
obtained in sixties-seventies of the last century.

In 1964, Zahn [40] considered the problem of finding an equivalence rela-
tion E, which “best approximates” a given symmetric relation R in the sense
of minimizing the number of elements of (E − R) ∪ (R − E). Zahn called it the
approximating symmetric relations by equivalence relation. This problem might
be regarded as a simplified model of a situation in which an interconnected
structure or organization must be partitioned (perhaps for cataloging or for for-
mal administrative purposes) in a way which reflects the actual interconnections
as well as possible. Zahn solved this problem for a special class of relations R
representing two-level and three-level “hierarchical” structures.

In seventies, GRAPH CORRELATION CLUSTERING was studied under
the name of GRAPH APPROXIMATION PROBLEM. Lyapunov [28] came to
this problem in connection with the problem of hierarchical classification of con-
trol systems. In the same years, Fridman [15] showed that GRAPH APPROX-
IMATION PROBLEM for the triangle-free graphs can be reduced to the max-
imum matching problem. In [17], he considered GRAPH APPROXIMATION
PROBLEM as a version of the minimum cut problem on the complete signed
graph. In subsequent years, this problem was considered as a special case of the
hierarchical-tree clustering problem [26].

In the past two decades, GRAPH CORRELATION CLUSTERING have
been repeatedly rediscovered under the different names by many authors inde-
pendently (CORRELATION CLUSTERING [4], CLUSTER EDITING [6,9,33],
TRANSITIVE GRAPH PROJECTION [31], etc.) In these and other works the
variants of the problem in which the number of clusters is bounded were studied
and also more general settings of the problem were considered.
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Interest to these problems was revived due to its numerous applications in
different areas of life and science. In 1999, Ben-Dor, Shamir and Yakhimi [6]
considered the problem equivalent to GRAPH CORRELATION CLUSTERING
when studying some computational biology questions. In 2002–2004, Bansal,
Blum and Chawla [4] independently defined CORRELATION CLUSTERING
problem one version of which is equivalent to GRAPH CORRELATION CLUS-
TERING. They were motivated by some machine learning problems concern-
ing document clustering problem. Chen, Jiang and Lin [11] considered GRAPH
CORRELATION CLUSTERING as a special case of the closest phylogenetic
k-th root problem. Shamir, Sharan and Tsur [33] mentioned numerous applica-
tions of the equivalent CLUSTER EDITING problem in computational biology,
image processing, VLSI design and other fields.

As the graph clustering problem is a popular topic of research it is not sur-
prising that there are surveys dedicated to this topic. For example, Schaeffer [32]
discussed the different definitions of clusters and measures of cluster quality and
presented some general approaches to solving the clustering problems. Recently,
Böcker and Baumbach [9] reviewed exact methods for GRAPH CORRELATION
CLUSTERING. However, approximation algorithms were outside the focus of
their review. The main topics of [9] are exact algorithms based on Integer Linear
Programming, parametrized algorithms and data reduction. Because of space
limitation and to avoid repetitions we omit these topics in our servey. See [5,7]
for the recent results on parametrized algorithms.

In this short survey we present a number of results on minimizaton ver-
sion of GRAPH CORRELATION CLUSTERING including results on computa-
tional complexity and approximability of different variants of the problem, and
performance guarantees of approximation algorithms for GRAPH CORRELA-
TION CLUSTERING. Some results on approximability of weighted versions of
GRAPH CORRELATION CLUSTERING are also presented.

2 Different Settings of GRAPH CORRELATION
CLUSTERING

We consider only simple graphs, i. e., the graphs without loops and multiple
edges. A graph is called a matroidal graph (M -graph) [36] or a cluster graph [33]
if each of its connected components is a complete graph.

Let V be a finite set. Denote by M(V ) the set of all cluster graphs on the
vertex set V ; let Mk(V ) stand for the set of all cluster graphs on V consisting
of exactly k nonempty connected components, and let M1,k(V ) be the set of all
cluster graphs on V consisting of at most k connected components, 2 ≤ k ≤ |V |.

If G1 = (V,E1) and G2 = (V,E2) are graphs on the same vertex set V , then
the distance d(G1, G2) between them is defined as follows:

d(G1, G2) = |E1 \ E2| + |E2 \ E1|,

i.e., d(G1, G2) is the number of noncoinciding edges in G1 and G2.
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In our survey we focus on the following variants of GRAPH CORRELATION
CLUSTERING.

GCC. Given a graph G = (V,E), find a graph M∗ ∈M(V ) such that

d(G,M∗) = min
M∈M(V )

d(G,M).

GCCk. Given a graph G = (V,E) and an integer k, 2 ≤ k ≤ |V |, find a graph
M∗ ∈Mk(V ) such that

d(G,M∗) = min
M∈Mk(V )

d(G,M).

GCC1,k. Given a graph G = (V,E) and an integer k, 2 ≤ k ≤ |V |, find a graph
M∗ ∈M1,k(V ) such that

d(G,M∗) = min
M∈M1,k(V )

d(G,M).

In these settings a clustering can be understood as a cluster graph M whose
connected components correspond to clusters.

Bansal, Blum and Chawla [4] proposed the following problem equivalent to
GCC.

CORRELATION CLUSTERING (CC). Given a complete graph G = (V,E)
with edges labelled +1 (similar) or −1 (different), find an optimal clustering,
i. e., a partition of the vertex set of G into clusters minimizing disagreements
(the number of −1 edges inside clusters plus the number of +1 edges between
clusters).

The variants of CC in which the number of clusters is bounded were also
studied [4,33].

It is easy to see that CC is equivalent to GCC.

3 Bounds on Distances to Optimal Solutions

Let τ(G), τk(G), and τ1,k(G) be the distances from a graph G to optimal solu-
tions in GCC, GCCk, and GCC1,k, respectively, i. e.,

τ(G)= min
M∈M(V )

d(G,M), τk(G)= min
M∈Mk(V )

d(G,M), τ1,k(G)= min
M∈M1,k(V )

d(G,M).

It is obvious that for any n-vertex graph G and k ≥ 2

τ(G) ≤ τ1,k(G) ≤ τk(G) ≤ n(n − 1)
2

,

where the latter inequality is a trivial bound on the number of edges in a graph.
An n-vertex graph G is called τ -critical, if it has a maximum value of τ(G)

among all n-vertex graphs. The τk-critical and τ1,k-critical graphs are defined
similarly.



Short Survey on Graph Correlation Clustering with Minimization Criteria 29

The following upper bounds on quantities τ(G), τk(G), τ1,k(G), and the cor-
responding critical graphs are known. In 1974, Fridman [16,17] proved that for
any n-vertex graph G the following holds:

τ(G) ≤
⌊

(n − 1)2

4

⌋

,

and up to isomorphism the only τ -critical n-vertex graphs are the complete bipar-
tite graphs K1

n = (X1, Y1;U1) and K2
n = (X2, Y2;U2), where 0 ≤ |X1| − |Y1| ≤ 1

and |X2| − |Y2| = 2.
Tomescu [34,35] independently obtained similar result for problem GCC1,k:

for any n-vertex graph G

τ1,k(G) ≤
⌊

(n − 1)2

4

⌋

.

Besides that, for k = 2 the τ1,k-critical graphs are all the complete bipartite
graphs and only they. For k ≥ 3 the only τ1,k-critical graphs (up to isomorphism)
are the graphs K1

n and K2
n.

Later, Il’ev and Fridman [21] proved that for each k ≥ 2 and any n-vertex
graph G with n ≥ 5(k − 1)

τk(G) ≤
⌊

(n − 1)2

4

⌋

.

For n ≥ 7 the τ2-critical graphs are the complete bipartite graphs and only they.
For k ≥ 3 and n ≥ 5k − 1 the only τk-critical graphs are the graphs K1

n and K2
n.

4 Computational Complexity of GRAPH
CORRELATION CLUSTERING

To the best of our knowledge, NP -hardness of problem GCC was first proved
by Křivánek and Morávek [26] in 1986. They considered the binary hierarchical-
tree clustering problem. Given a set of elements Ω = {ω1, ω2, . . . , ωn} and a
symmetric integer n × n matrix Δ = (δij) such that

δij ∈ {1, 2} if i �= j, and δij = 0 if i = j.

A hierarchical tree T over Ω is defined as a finite sequence of pairs T = ((P1, l1),
(P2, l2), . . . , (Pq, lq)), where P1, P2, . . . , Pq are partitions of Ω; l1, l2, . . . , lq are
integers, 0 = l1 < l2 < · · · < lq; Pk is a proper refinement of Pk+1; P1 =
{{ω1}, {ω2}, . . . , {ωn}} and Pq = {Ω}. The integer q is called the height of T .
The function u〈T 〉 : Ω × Ω → N0 is defined as follows:

u〈T 〉(ωi, ωj) = min{lk | ∃M ∈ Pk such that {ωi, ωj} ⊆ M}.

The problem is to find a hierarchical tree T such that

F (T ) =
∑

i,j

|δij − u〈T 〉(ωi, ωj)|

is minimal.
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Křivánek and Morávek [26] proved that the binary hierarchical tree clustering
problem is NP -hard even for hierarchical trees of height 3. Moreover, if T is
a solution to the problem, then l2 = 1 and l3 = 2. Let us consider a graph
G = (V,E) and V = {v1, . . . , vn}. We associate V and Ω, and set δij = 1 if
(vi, vj) ∈ E and δij = 2 otherwise. Then the partition P2 uniquely determines
a cluster graph M on the vertex set V and F (T ) ≡ d(G,M). Thus, GCC is
strongly NP -hard.

Seventeen years later, Chen, Jiang and Lin [11] considered the closest phy-
logenetic root problems and also proved NP -hardness of GCC. Given a graph
G = (V,E), a k-th root phylogeny is a tree T with no internal degree 2 vertices
such that the leaves of T are in one to one correspondence with V, and two ver-
tices of G are adjacent if and only if the corresponding leaves in T are at distance
at most k in T. In the closest phylogenetic k-th root problem it is required to
edit a graph in a minimum way, so that it becomes a k-th root phylogeny. Chen,
Jiang and Lin [11] proved that the problem is NP -complete for any k ≥ 2. It is
not too difficult to see that a graph has a phylogenetic 2-th root if and only if it
is a cluster graph.

In the mid 2000s, several groups of authors were independently dealing with
different versions of GCC. Bansal, Blum and Chawla [4] using a reduction from
partition into triangles problem showed that GCC is NP -hard even if all clusters
are of size at most 3.

Shamir, Sharan and Tsur [33] independently showed NP -hardness of problem
GCC by a reduction from the 3-exact 3-cover problem. They also reduced the
known NP -complete problem of 2-coloring of a 3-uniform hypergraph to problem
GCC2 and as a result they showed that problem GCCk is NP -hard for any
fixed k ≥ 2. In both cases Shamir, Sharan, and Tsur used rather complicated
reduction. Later, Giotis and Guruswami [18] published a more simple proof of
the same result by a polynomial reduction from the graph bisection problem.

At the same time, Ageev, Il’ev, Kononov and Talevnin [1] independently
proved that problems GCC2 and GCC1,2 are NP -hard on cubic (i. e., 3-regular)
graphs and deduced from this that all the above-mentioned variants of GRAPH
CORRELATION CLUSTERING (including GCC1,k) are NP -hard on general
graphs.

In 2012, Komusiewicz and Uhlmann showed that GCC remains NP -hard
on graphs with maximum degree six [25]. It is an open question whether GCC
on graphs with maximum degree three, four or five is NP-hard or solvable in
polynomial time. Bastos et al. [5] showed that GCC is NP-hard even restricted
to graphs of diameter two.

GRAPH CORRELATION CLUSTERING can be solved in polynomial time
for particular graph types. In 1971,Fridman [15] proved that if a graphG is triangle-
free, i. e.,G contains no complete 3-vertex graph as a subgraph, thenproblemGCC
can be reduced to the maximum matching problem. Therefore, GCC on triangle-
free graphs is solvable in polynomial time. This directly implies a polynomial-
time solvability of GCC for bipartite graphs and graphs of maximum degree
two, namely paths and circles. Mannaa [29] presented a polynomial-time dynamic
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programming algorithm to solve GCC for proper interval graphs. Deciding
whether GCC is NP -hard in the case of interval graphs is still an open question.
Xin [39] provided a linear time algorithm for GCC with bounded treewidth.

5 Approximation Algorithms for GRAPH
CORRELATION CLUSTERING

In 2004, Bansal, Blum and Chawla [4] presented a simple polynomial time
3-approximation algorithm for GCC1,2. For each v ∈ V their algorithm consid-
ers the following pair of clusters. The first cluster contains v and all neighbors
of v in G = (V,E). The second cluster contains all other vertices. The algorithm
outputs the pair that minimizes the number of mismatched edges.

In 2006, Ageev, Il’ev, Kononov and Talevnin [1] proved the existence of a
randomized PTAS for problem GCC1,2 by reducing this problem to the graph
bisection problem on dense instances, and Giotis and Guruswami [18] presented
a randomized PTAS for problem GCCk (for any fixed k ≥ 2). Navrotskaya, Il’ev
and Talevnin [22,30] considered a local search algorithm for problem GCC1,2.
They showed that if for a given graph G = (V,E) we have |E| = o(|V |2), then
the worst-case ratio of the local search algorithm tends to 1 as |V | → ∞, i. e., if
the number of edges in a graph is subquadratic of the number of vertices, then
the local search algorithm is asymptotically exact.

In 2008, Coleman, Saunderson and Wirth [12] pointed out that complexity of
PTAS from [18] makes it practically useless. They presented a 2-approximation
algorithm for problem GCC1,2 applying local search to the feasible solution
obtained by the 3-approximation algorithm from [4].

For problem GCC2 Il’ev, Il’eva and Navrotskaya [23] presented a polyno-
mial time approximation algorithm with the worst-case approximation ratio of
3 − 6/|V |.

As to problem GCC, in 2005, Charicar, Guruswami and Wirth [10] proved
that the problem is APX-hard. They also constructed a 4-approximation algo-
rithm for problem GCC by rounding a natural LP relaxation using the region
growing technique. In 2008, Ailon, Charicar and Newman [2] improved the lat-
ter result. First, they presented an elegant iterative 3-approximation algorithm
using an idea similar to that presented in [4]. At each iteration the algorithm ran-
domly picks an arbitrary vertex v ∈ V and forms a cluster of v and its neighbors.
The above procedure is repeated for all vertices still ungrouped. Second, Ailon,
Charicar and Newman proposed a randomized 2.5-approximation algorithm. At
each iteration the algorithm randomly picks an arbitrary vertex and randomly
decides for all other vertices whether to include it to the cluster or not based on
the solution of the LP problem. Williamson and van Zuylen [41] derandomized
both algorithms from [2] with matching approximation guarantees.
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6 Weighted GRAPH CORRELATION CLUSTERING

Weighted versions of GRAPH CORRELATION CLUSTERING are the natural
generalizations of these problems. Bansal, Blum and Chawla [4] considered two
variants of weighted GRAPH CORRELATION CLUSTERING.

In the first variant the weight function w : V × V → R+ is defined and the
weighted distance wd(G1, G2) between graphs G1 = (V,E1) and G2 = (V,E2)
equals to the total weight of noncoinciding edges in graphs G1 and G2:

wd(G1, G2) =
∑

(u,v)∈E1\E2

w(u, v) +
∑

(u,v)∈E2\E1

w(u, v).

WEIGHTED GRAPH CORRELATION CLUSTERING (WGCC). Given
a graph G = (V,E), find a graph M∗ ∈ M(V ) such that

wd(G,M∗) = min
M∈M(V )

wd(G,M).

NP -hardness of this problem follows from NP -hardness of GCC. For the
case of unbounded weights Bansal, Blum and Chawla [4] proved APX-hardness
of WGCC by a simple reduction from the multiway cut problem.

Demaine, Emanuel, Fiat and Immorlica [13] and independently Charikar,
Guruswamy and Wirth [10] used a linear-programming formulation of WGCC
to design an O(log |V |)-approximation algorithm. In both papers it was shown
that this problem is equivalent to the minimum multicut problem, yield-
ing another implicit O(log |V |)-approximation as well as an APX-hardness
result even if all weights belong to {−1, 0, 1}. Demaine, Emanuel, Fiat and
Immorlica [13] presented a modification of this approach that yields an O(r3)-
approximation for Kr,r-minor-free graphs.

Voice, Polukarov and Jennings [37] proved that WGCC is NP -hard even
for planar graphs. Actually, they presented the NP -hardness proof for a more
general edge sum graph coalition structure generation problem. However, as
noted in [3,24] their proof does carry over to WGCC on planar graphs. Recently
for planar graphs, Klein, Mathieu and Zhou showed that WGCC reduces to
the two-edge-connected augmentation problem and presented a PTAS for both
problems [24].

Bansal, Blum and Chawla [4] also proposed another generalization of GCC.
This version of weighted GCC is a direct generalization of CORRELATION
CLUSTERING (CC). An instance of this problem can be represented by a
complete graph G = (V,E) each edge (i, j) ∈ E of which is assigned two frac-
tional weights w+

ij ≥ 0 and w−
ij ≥ 0. The cost c(G,M) of a clustering M will

now be the sum of w+
ij over all i, j in the different clusters plus the sum of w−

ij

over all i, j in the same cluster. In other words, c(G,M) equals to the sum of
w+

ij over the edges (i, j) ∈ E between connected components of cluster graph M

plus the sum of w−
ij over the edges (i, j) ∈ E inside components.
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WEIGHTED CORRELATION CLUSTERING (WCC). Given a complete
graph G = (V,E), find a graph M∗ ∈ M(V ) such that

c(G,M∗) = min
M∈M(V )

c(G,M).

Obviously, the unweighted case can be encoded as a 0/1 weighted case, there-
fore NP -hardness of CC implies NP -hardness of WCC.

Bansal, Blum and Chawla [4] and later, Ailon, Charikar and Newmann [2]
analyzed problem WCC with probability constraints:

w+
ij + w−

ij = 1 for all i, j ∈ V.

Bansal, Blum and Chawla [4] showed, that any algorithm finding a good
clustering in unweighted case also works well on the weighted problem. They
proved the following result. Let A be an algorithm that produces a clustering
for CC with approximation ratio ρ. Then we can construct an algorithm A′ for
WCC that achieves a (2ρ + 1)-approximation.

The best of known results for WCC was obtained by Ailon, Charikar and
Newmann [2]. They proposed a 5/2-approximation algorithm for WCC with
probability constraints and a 2-approximation algorithm for WCC with proba-
bility constraints and triangle inequality:

w−
ik ≤ w−

ij + w−
jk for all i, j, k ∈ V.

A special case of WCC with probability constraints is known as the CON-
SENSUS CLUSTERING problem. Recently, more attention has been given to
this problem because of its application in bioinformatics, in particular, microar-
ray data analysis [14]. In CONSENSUS CLUSTERING, we are given a list of k
clusterings M1, ...,Mk ∈ M(V ) on the same ground set V . The goal is to find
a clustering M ∈ M(V ) that minimizes the number of pairwise disagreements
with the given k clusterings, i. e., M minimizes

∑k
i=1 d(M,Mi).

Consider an instance of the CONSENSUS CLUSTERING. For each pair of
vertices i, j ∈ V define an edge (i, j) with weight w+

ij equal to the average number
of input partitions containing i and j in the same set and weight w−

ij equal to
the average number of input partitions containing i and j in different sets. Now
we obtain an instance of WCC with probability constraints.

CONSENSUS CLUSTERING was studied extensively in the literature, its
NP -hardness is well known [26,38]. In [14] it was observed that the problem
is polynomially solvable for instances of at most 2 clusters. Bonizzoni, Vedova,
Dondi and Jiang [8] showed that CONSENSUS CLUSTERING is APX-hard
even on instances with 3 input clusterings. CONSENSUS CLUSTERING admits
a 11/7-approximation algorithm for the general case [2].

7 Conclusion

By now, graph correlation clustering problems with minimization criteria are
known for more than 50 years. In a series of rediscoveries and extensive studies,



34 V. Il’ev et al.

many independent research groups from a variety of fields obtained a lot of
impressive and intriguing results.

This short survey lists some of the results related to graph correlation clus-
tering problems with minimization criteria. However, this research area is very
reach and there are, of course, many other closely related problems and papers.

Acknowledgements. The research of the first and the third authors (Sects. 1–4, 6, 7)
was supported by the RSF grant 15-11-10009.
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est maximal. Mathematiques et Sciences Humaines 42, 37–40 (1973)



36 V. Il’ev et al.

35. Tomescu, I.: La reduction minimale d’un graphe à une reunion de cliques. Discrete
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Abstract. This paper considers a network comprised of parallel routes
with the Bureau of Public Road (BPR) latency function and suggests an
optimal distribution method for incoming traffic flow. The authors ana-
lytically derive a system of equations defining the optimal distribution
of the incoming flow with minimum social costs, as well as a correspond-
ing system of equations for the Wardrop equilibrium in this network. In
particular, the Wardrop equilibrium is applied to the competition model
with rational consumers who use the carriers with minimal cost, where
cost is equal to the price for service plus the waiting time for the service.
Finally, the social costs under the equilibrium and under the optimal
distribution are compared. It is shown that the price of anarchy can be
infinitely large in the model with strategic pricing.

Keywords: Traffic flow · BPR latency function · Wardrop equilibrium ·
Price of anarchy

1 Introduction

The road traffic distribution problem possesses a rich history. Starting from
the 1950s, this field of research has employed models with different optimality
principles and corresponding numerical methods. For instance, in 1952, Wardrop
hypothesized that any transport system reaches an equilibrium state after some
period of time, as well as formulated two principles of equilibrium traffic flow
distribution [15]. According to the Wardrop principle, the trip time along all
existing routes is the same for all road users and is smaller than the trip time
of any road user in the case of route diversion. Moreover, the average trip time
c© Springer International Publishing Switzerland 2016
Y. Kochetov et al. (Eds.): DOOR 2016, LNCS 9869, pp. 37–49, 2016.
DOI: 10.1007/978-3-319-44914-2 4
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is minimized. Currently, the concept of Wardrop equilibrium represents a major
tool in the theory of traffic flows [2,3,14,16].

Wardrop’s ideas can be further developed by assuming that not only trip
time, but also that the total costs of road users on all routes are the same and
minimal. This coincides with recent trends in operations research: investigators
incorporate the behavioral features guiding agents into the mathematical models
[6]. The cost function may include service price, the average trip time, risks and
other relevant factors. A series of publications adhered to this approach within
the framework of queueing theory in the following way [5,7–9,11–13]. For a
transport flow of intensity λ, the latency was defined as the average service time
1/(μ − λ), i.e., the cited works expressed the expected sojourn time of a user
in a queueing system M/M/n. In paper [10] the Wardrop principle was applied
to networks of general topology and the BPR (Bureau of Public Road) latency
functions [1].

Fig. 1. Parallel routs

Analysis of the social costs in an equilibrium and in the case of centralized
control forms an extremely relevant issue for modern transport and communica-
tion systems. The ratio of these costs is called the price of anarchy, also known as
the coordination ratio. This ratio has been defined in the seminal work by Kout-
soupias and Papadimitriou [8]. The price of anarchy was evaluated for different
classes of latency functions. Rourghgarden and Tardos showed that the price
of anarchy is exactly 4/3 in case of linear latency functions [13]. In the paper
[7] the price of anarchy in the linear case was found for oblivious and selfish
users. The oblivious users route their flow through the shortest path connecting
their origin to their destination while selfish users minimize the personal costs.
A network model with linear player-specific latency functions was investigated
via the potential theory in [5]. For polynomial latency functions of maximum
degree d, Roughgarden [12] showed that the price of anarchy is (d+1)1+1/d

(d+1)1+1/d−d
.

Dumrauf and Gairing [4] proved upper and lower bounds on the price of anar-
chy for polynomial latency functions with an upper bound d and a lower bound
s on the degree of all monomials that appear in the polynomials. The price of
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anarchy was also studied for latency functions that involve a delay function of
M/M/1 queues [9,12].

Our study focuses on a network of parallel routes with a certain incoming
traffic flow. First, we utilize the Karush–Kuhn–Tucker theorem to demonstrate
how the optimal distribution of the traffic flow by network routes can be found;
here optimality is defined in the sense of social cost minimization. Based on this
theorem, we introduce an evaluation method for the number of optimal distrib-
ution routes and derive a system of equations for calculating these distribution
flows. Second, we obtain the Wardrop equilibrium traffic flow using the connec-
tion of this game to potential games and the Karush–Kuhn–Tucker theorem.
Third, we use the Wardrop principle to find the equilibrium for the model with
rational consumers who select the service carrier with minimal costs. Costs here
are calculated as the price for the ticket plus waiting time for the service.

In the concluding section of the paper, we illustrate how the proposed optimal
distribution approach of incoming traffic flows can be adopted to evaluate the
price of anarchy in a network with the BPR latency function. We also consider
the case where the routes of the network have different capacities. The evaluation
of the price of anarchy includes the parameters of the BPR latency functions and
can be useful in practice.

2 The Transportation Network Model

For the transportation network model, let us consider a network composed of n
parallel routes (Fig. 1). Transportation networks analysis often utilizes the fol-
lowing empirical relationship known as the BPR (Bureau of Public Road) latency
function:

f(x) = t

(

1 + α
(x

c

)β
)

,

where t indicates the trip time on an unoccupied route, c specifies the capacity of
a route, and the constants α, β capture route-specific features which may affect
the impact of flow to capacity ratio on travel time. α, β are evaluated based on
the statistical data of a route. Generally, β takes values from 1 to 4, (see [1]).

Suppose that the latency function in route i has the form

fi(x) = ti

(

1 + αi

(
x

ci

)βi
)

, i = 1, ..., n.

Without loss of generality, we may assume that all routes are renumbered so
that

t1 ≤ t2 ≤ ... ≤ tn.

Assume that the network of n parallel routes receives an incoming flow of
volume X. The incoming flow is decomposed into n subflows running through
each corresponding route. Denote by xi, i = 1, ..., n the values of the subflows;
actually, xi ≥ 0 and
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n∑

i=1

xi = X. (1)

If some route has no flow, then xi = 0. Denote the profile of subflows as x =
(x1, ..., xn).

In the analysis, we are concerned with two problems. The first problem lies
in optimal flow distribution within the network in order to minimize the social
costs

SC(x) =
n∑

i=1

xifi(x) =
n∑

i=1

xiti

(

1 + αi

(
xi

ci

)βi
)

under the condition (1). Social costs minimization calls for applying external
control actions, which often incurs appreciable additional costs. Therefore, it is
a useful starting point to find the social costs when each road user acts indepen-
dently by minimizing his or her individual costs. In this case, we naturally arrive
at the game-theoretic statement of the problem and it is necessary to evaluate
an appropriate equilibrium. Throughout the paper, the concept of a Wardrop
equilibrium is used. The above transportation game with the described latency
functions represents a potential game [11]. In such games, equilibrium evalua-
tion is reduced to potential minimization. In the current notation, the potential
acquires the following form:

P (x) =
n∑

i=1

∫ xi

0

ti

(

1 + αi

(
u

ci

)βi
)

du.

At the outset, we show a solution procedure for the first problem.

3 Cooperative Solution

Consider the optimization problem

SC(x) =
n∑

i=1

xiti

(

1 + αi

(
xi

ci

)βi
)

→ min, (2)

subject to the constraints
n∑

i=1

xi = X,

xi ≥ 0,∀i = 1, ..., n.

Its solution corresponds to the cooperative behavior of the carriers.

Lemma 1. The subflows profile x∗ is the solution of the problem (2) if there
exists a nonnegative number λ (the Lagrange multiplier) such that

ti

(

1 + αi(βi + 1)
(

xi

ci

)βi
) {

= λ, if xi > 0,

≥ λ, if xi = 0.

for ∀ i ∈ {1, n}.
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Proof. The idea is to involve the conditions of the Karush–Kuhn–Tucker the-
orem. Due to the convexity of the objective function (2) and the admissible
solution domain, the Karush–Kuhn–Tucker conditions play the role of necessary
and sufficient conditions simultaneously. We construct the Lagrange function for
the problem (2):

L(x, λ) =
n∑

i=1

ti

(

1 + αi

(
xi

ci

)βi
)

xi

+λ(X −
n∑

i=1

xi) +
n∑

i=1

λi(−xi).

By applying the first-order necessary optimality conditions with respect to
xi, we obtain the equations

ti

(

1 + αi

(
xi

ci

)βi
)

+ αiβiti

(
xi

ci

)βi

− λi = λ,

i = 1, ..., n.

The complementary slackness condition yields the equalities

λixi = 0, i = 1, ..., n.

The last equality takes place if at least, one of the multipliers is zero. There-
fore, if for some i we have xi > 0, then λi = 0 and subsequently,

ti

(

1 + αi

(
xi

ci

)βi
)

+ αiβiti

(
xi

ci

)βi

= λ.

In the case of xi = 0, the inequality λi ≥ 0 is immediate and

λ = ti − λi.

This concludes the proof of Lemma 1.
Recall that the routes are renumbered so that

t1 ≤ t2 ≤ ... ≤ tn. (3)

We introduce the notation

gi(x) = ti

(

1 + αi(βi + 1)
(

x

ci

)βi
)

, i = 1, ..., n.

The next result follows directly from Lemma 1. The optimal flow is distributed
among the first k routes if for some value λ such that

t1 ≤ t2 ≤ ... ≤ tk < λ ≤ tk+1 ≤ ... ≤ tn (4)
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we have
g1(x1) = g2(x2) = ... = gk(xk)

= λ ≤ gk+1(0) = tk+1.
(5)

In fact, the conditions (5) determine the optimal distribution flows xi, i =
1, ..., k (k = 1, ..., n − 1).

The parameter λ represents a function of the flow volume X. The quantity
λ(X) is a continuous nondecreasing function of X. The number of optimal dis-
tribution routes increases from k to k +1 as the function λ(X) crosses the point
tk+1.

Interestingly, the functions gi(x), i = 1, ..., n increase monotonically on the
interval [0;+∞). Hence, there exist the inverse functions g−1(y) with the growth
property on [0;+∞). Denote xij as the solution to the equation

gi(x) = tj , j = i + 1, ..., n.

By virtue of the monotonicity of the functions gi(x) and the condition (2), we
arrive at the inequality

xi,i+1 ≤ xi,i+2 ≤ ... ≤ xin,∀i. (6)

Set

Vk =
k∑

i=1

xi,k+1, k = 1, ..., n − 1, V0 = 0.

It appears from (6) that
V1 ≤ V2 ≤ ... ≤ Vn−1.

Note that V1 = x12 meets the equation

g1(x) = t2.

If the incoming flow is such that

X ≤ V1,

then g1(X) ≤ t2 and the whole flow runs through route 1. In the case of
g1(X) > t2, the flow gets decomposed into two subflows and some part of the
flow corresponds to route 2.

Let us demonstrate that, as the flow volume X crosses the value Vk, the
number of optimal distribution routes varies from k to k + 1.

Suppose that the optimal flow has been distributed among k routes. The opti-
mal flow satisfies the conditions (4)–(5). The expression (5) and the monotonicity
of the functions g−1

i (y) lead to

xi = g−1
i (λ) ≤ g−1

i (tk+1) = xi,k+1, i = 1, ..., k.

Consequently,

X =
k∑

i=1

xi =
k∑

i=1

g−1
i (λ) ≤

k∑

i=1

xi,k+1,
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which leads to the inequality X ≤ Vk. On the other hand, by assuming that
the optimal flow runs through route k + 1, we obtain the following result. The
conditions (4)–(5)

g1(x1) = g2(x2) = ... = gk(xk+1) = λ > tk+1

dictate that

X =
k+1∑

i=1

xi =
k+1∑

i=1

g−1
i (λ) >

k+1∑

i=1

xi,k+1 > Vk.

Therefore, an important result is stated in the following Theorem.

Theorem 1. For the optimal flow to be distributed among the first k routes, it
is necessary and sufficient to have

Vk−1 < X ≤ Vk =
k∑

i=1

xi,k+1, k = 1, 2, ..., n.

Moreover, the optimal distribution xopt represents the solution to the system of
equations

x1 + x2 + ... + xk = X,
g1(x1) = g2(x2) = ... = gk(xk). (7)

4 Wardrop Equilibrium

Now, we direct our attention to considering the competitive equilibrium. As men-
tioned earlier, the equilibrium evaluation problem is reduced to the optimization
problem of the function

P (x) =
n∑

i=1

∫ xi

0

ti

(

1 + αi

(
u

ci

)βi
)

du,

subject to the constraints

n∑

i=1

xi = X,

xi ≥ 0,∀i = 1, ..., n.

By analogy, we employ the Karush–Kuhn–Tucker theorem. Construct the
Lagrange function

L(x, λ) = P (x) + λ(X −
n∑

i=1

xi) +
n∑

i=1

λi(−xi)

and apply the first-order necessary optimality conditions with respect to xi to
obtain

ti

(

1 + αi

(
xi

ci

)βi
)

− λi = λ, i = 1, ..., n.
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By repeating the same line of reasoning as above, except that the functions
gi(x), i = 1, ..., n are replaced by the latency functions

fi(x) = ti

(

1 + αi

(
x

ci

)βi
)

, i = 1, ..., n,

we naturally establish the following result.

Theorem 2. For the optimal flow to be distributed among the first k routes, it
is necessary and sufficient to have

V ′
k−1 < X ≤ V ′

k, k = 1, 2, ..., n.

Here V ′
k =

k∑

i=1

x′
i,k+1, k = 1, 2, ..., n and x′

ij satisfies the system of equations

fi(x) = tj , j = i + 1, ..., n.

Moreover, the optimal distribution xeq represents the solution to the system of
equations

{
x1 + x2 + ... + xk = X,

f1(x1) = f2(x2) = ... = fk(xk). (8)

5 Competition Model with Rational Consumers

Let us consider the competition model with rational consumers who use the
carriers with minimal cost, where cost is equal to the price for service plus the
waiting time for the service.

Consider a network composed of two parallel routes and imagine two carriers
serving the two parallel routes with prices p1 and p2, respectively. Depending
on the incoming flow intensity X, the flow runs through (faster) route 1 or is
distributed between the both routes. If t1 < t2 (route 2 has a higher latency
than route 1), passengers do not choose carrier 2 even under zero price in the
case of low incoming flow; therefore, player 2 is eliminated from competition.

That is, under the condition

p1 + t1

(

1 + α1

(
X

c1

)β1
)

≤ t2,

the incoming flow runs through route 1 only. The optimal price of player 1 is
given by

p∗
1 = t2 − t1

(

1 + α1

(
X

c1

)β1
)

. (9)
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For a sufficiently large flow, X runs through both routes and player 2 also assigns
some price for its service. A two-player game thus arises on the described trans-
portation network [10]. Two players establish prices p1 and p2 for their services.
The incoming passenger flow of intensity X is decomposed into two subflows of
intensities x1 and x2 so that x1 + x2 = X and

p1 + t1

(

1 + α1

(
x1

c1

)β1
)

= p2 + t2

(

1 + α2

(
x2

c2

)β2
)

. (10)

The payoffs of the players have the form

H1 = p1x1, H2 = p2x2.

Solving the pricing game, we obtain the equilibrium prices

p∗
1 = x∗

1

(
α1t1β1

c1

(
x∗
1

c1

)β1−1

+
α2t2β2

c2

(
x∗
2

c2

)β2−1
)

, (11)

p∗
2 = x∗

2

(
α1t1β1

c1

(
x∗
1

c1

)β1−1

+
α2t2β2

c2

(
x∗
2

c2

)β2−1
)

, (12)

where x∗
1, x

∗
2 satisfy to (10).

Theorem 3. Under the condition

X ≤ c1

(
t2 − t1

α1t1(1 + β1)

) 1
β1

all traffic runs through route 1 and the optimal price of player 1 equals (9).
Otherwise, the incoming flow is distributed between the both routes and the
equilibrium prices have the form (11)–(12).

Remark. In the linear case, for sufficiently large flow, the pricing game has the
equilibrium

p∗
1 = x∗

1

(
α1t1
c1

+
α2t2
c2

)

, p∗
2 = x∗

2

(
α1t1
c1

+
α2t2
c2

)

. (13)

It yields

p∗
1 =

1
3

(

t1

(
α1

c1
X − 1

)

+ t2

(

1 + 2
α2

c2
X

))

, (14)

p∗
2 =

1
3

(

t2

(
α2

c2
X − 1

)

+ t1

(

1 + 2
α1

c1
X

))

. (15)
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Fig. 2. The price of anarchy

6 The Price of Anarchy

The price of anarchy (PoA) is the ratio of social costs under equilibrium to social
costs under cooperation. We have considered here two types of equilibria. Let
us compare the prices of anarchy for both considered cases: for the Wardrop
equilibrium without pricing xeq and for the Wardrop equilibrium with strategic
pricing x′

eq. Denote the cooperative distribution of routing as xopt.
The BPR latency function is a particular case of polynomial latency func-

tion. For polynomial latency functions of maximum degree β, Roughgarden [12]
showed that the price of anarchy is (β+1)1+1/β

(β+1)1+1/β−β
. In particular, for the linear

latency function the PoA is equal 4/3.

Remark. In fact, the price of anarchy depends on the parameters of the network.
For simplicity, consider here the case of two routes and a linear latency function.
The price of anarchy has the form shown in Fig. 2. The maximum of this function
is achieved at X = V ′

1 = (t2 − t1)c1/(α1t1). For this value the optimal solution
xopt prescribes to use both routes but under the equlibrium xeq the traffic flow
runs only through route 1. According to Theorem 2

SC(xeq) = V ′
1t2,

and by Theorem 1 xopt = (xopt
1 , xopt

2 ) satisfies to conditions

xopt
1 + xopt

2 = V ′
1 , t1(1 + 2

α1

c1
xopt
1 ) = t2(1 + 2

α2

c2
xopt
2 ).

This yields

xopt
1 =

t2 − t1 + 2k2V
′
1

2(k1 + k2)
,
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where k1 = α1t1/c1, k2 = α2t2/c2. The social costs are

SC(xopt) =xopt
1 t1

(

1 + α1
xopt
1

c1

)

+ xopt
2 t2

(

1 + α2
xopt
2

c2

)

=

(t2 − t1)
4k2t2 + k1t1 + 3k1t2

4k1(k1 + k2)
.

Finally, we obtain

PoA =
SC(xeq)
SC(xopt)

= 1 +
k1(t2 − t1)

4k2t2 + k1t1 + 3k1t2
.

For any parameters PoA is bounded by the value 4/3.
A key question is whether the price of anarchy in the model with strategic

pricing is bounded. We show below that in fact it can be infinitely large.
Assume that the incoming traffic flow is sufficiently large (according to The-

orem 1 it is larger than c1(t2 − t1)/(2α1t1)) and the flow is distributed between
both routes.

First, find SC(xeq′). According (14), (15) for large X

p∗
1 ≈ 1

3
(k1 + 2k2)X, p∗

2 ≈ 1
3
(k2 + 2k1)X.

Consequently,

xeq
1 ≈ 1

3
k1 + 2k2
k1 + k2

X, xeq
2 ≈ 1

3
k2 + 2k1
k1 + k2

X,

and social costs in the equilibrium x′
eq are

SC(x′
eq) = xeq

1 t1

(

1 + α1
xeq
1

c1

)

+ xeq
2 t2

(

1 + α2
xeq
2

c2

)

≈

(
k1(k1 + 2k2)2 + k2(k2 + 2k1)2

) X2

9(k1 + k2)2
.

Now we find SC(xopt). From Theorem 1, the optimal distribution (xopt
1 , xopt

2 )
satisfies the condition xopt

1 + xopt
2 = X and

t1 + 2k1x
opt
1 = t2 + 2k2x

opt
2 .

For large X

xopt
1 ≈ k2

k1 + k2
X, xopt

2 ≈ k1
k1 + k2

X,
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Consequently,

SC(xopt) ≈ xopt
1 t1

(

1 + α1
xopt
1

c1

)

+ xopt
2 t2

(

1 + α2
xopt
2

c2

)

≈

(
k1k

2
2 + k2k

2
1

) X2

(k1 + k2)2
.

Finally, for large X we obtain

PoA =
SC(xeq′)
SC(xopt)

≈ 1
9

k1(k1 + 2k2)2 + k2(k2 + 2k1)2

k1k2
2 + k2k2

1

.

It yields

PoA ≈ 7
9

+
1
9

(
k1
k2

+
k2
k1

)

.

For large k1/k2 or k2/k1 this ratio can be infinitely large.

7 Conclusion

The present paper has proposed an optimal distribution method for the incom-
ing traffic flow of a network composed of parallel routes with the BPR latency
function. We have analytically derived a system of equations defining the opti-
mal flows. This allows comparison of the subflows in the cases of social costs
minimization and independent decision-making of route suppliers based on their
individual costs. Costs of consumers are calculated as a price for service plus
waiting time for the service. It is shown that price of anarchy in this case can
be infinitely large. The high price of anarchy suggests a potential role for trans-
portation policy in this framework.
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Abstract. The understanding of how a networked system behaves and
keeps its topological features when facing element failures is essential in
several applications ranging from biological to social networks. In this
context, one of the most discussed and important topics is the ability
to distinguish similarities between networks. A probabilistic approach
already showed useful in graph comparisons when representing the net-
work structure as a set of probability distributions, and, together with the
Jensen-Shannon divergence, allows to quantify dissimilarities between
graphs. The goal of this article is to compare these methodologies for
the analysis of network comparisons and robustness.

1 Introduction

Quantification of dissimilarities between graphs has been a central subject in
graph theory for many decades. With the complex networks field, we witness a
burst of applications on real systems where the measure of graph or subgraph
similarities have played a major role. Several methods for this quantification have
become increasingly addressed, where most approaches are based on invariant
measurements under graph isomorphism [1–6]. Although there exists in the lit-
erature a quasi-polynomial time algorithm to solve graph isomorphism [7], still,
an efficient way to decide if two structures are isomorphic continues an open
problem, as the search for efficient pseudo-distances between networks.

Representing a network as a set of stochastic measures (probability distribu-
tions associated with a given set of measurements) showed useful to characterize
network evolution, robustness and efficiently treat the graph isomorphism prob-
lem [6,8–10].

These characteristics are useful to define a pseudo-metric between net-
works via the Jensen-Shannon divergence, an Information Theory quantifier that

c© Springer International Publishing Switzerland 2016
Y. Kochetov et al. (Eds.): DOOR 2016, LNCS 9869, pp. 50–60, 2016.
DOI: 10.1007/978-3-319-44914-2 5
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already showed very effective in measuring small network topology changes [6,9–
11]. When comparing n probability distributions, it is given by the Shannon
entropy of the average minus the average of the Shannon entropies and, it was
proven to be a bounded square of a metric between probability distributions [28],
here defined for the discrete case:

JS(P1,P2, . . . ,Pn) = H

(∑n
i=1 Pi

n

)

−
∑n

i=1 H(Pi)
n

(1)

being H(P) = −∑
i pi log pi the Shannon entropy of P.

The JS divergence (Eq. 1) possesses a lower bound equals zero and an upper
bound equals log n. The zero value means that all probabilities are equal to the
same distribution P1 = P2 = · · · = Pn = P. A log n value gives the biggest
uncertainty when comparing P1, P2, . . . ,Pn since log n is the biggest entropy
value achieved only by the uniform distribution.

The metric property of the square root of the JS divergence, together with
stochastic measures on networks, allows to define two pseudo-metrics between
networks: one given only by global properties (Dg) representing the network as
a single probability distribution and, the other, more precise but more computa-
tionally expensive (D), considering local network characteristics by representing
the network as a set of probability distributions.

The analysis of properties of complex networks, therefore, relies on using
stochastic measurements capable of expressing the most relevant topological
features. Depending on the network and application, a specific set of stochastic
measures could be chosen. This article presents a survey of such measurements.
It includes classical complex network measurements, applications on network
evolution, comparisons and robustness.

2 Methodology

A network G is a pair (V,E), where V is a set of nodes (or vertices), and E is
a set of ordered pairs of distinct nodes, which we call edges. A weighted net-
work associates a weight (ωe) to every edge e ∈ E, characterizing not only the
connections among vertices but also the strength of these connections.

Exists, in the literature, several measurements representing network connec-
tivity. In particular, most real networks present small average distance between
elements and high-density communities.

The in-degree (out-degree) of a node, kin (kout), is the number of incoming
(outgoing) edges. The in-weight (out-weight) of a node, ωin (ωout), is the sum
of all incoming (outgoing) edge weights. Following [29] it is possible to define a
degree centrality measure considering both degree and weight by relating them
to a tuning parameter α ∈ [0, 1] as:

κin
α (v) = (kin

v )1−α(ωin
v )α and κout

α (v) = (kout
v )1−α(ωout

v )α. (2)

If α = 0, the weights are forgotten to obtain the node degree. As α increases the
number of connections loses in importance and, when α reaches 1, the centrality
is given by the total vertex weight.
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For any two vertices i, j ∈ V (G), the distance d(i, j) is the length of the
shortest path between i and j, if there is no path between them, d(i, j) = ∞. In
a weighted network, there are several distances measures in literature because
the strength of these connections sometimes implies in small distances between
the nodes. In an e-mail network, a bigger edge weight value may represent a
frequent communication and, therefore, a small distance between them. Here,
we consider the same approach used in [12] transforming weights into costs by
inverting them and computing shortest paths between pairs of nodes. Readers
should refer to [13] for a deeper discussion on the topic.

The network diameter (average path length) is the maximum (average) dis-
tance between all pairs of connected nodes.

The clustering coefficient (C), also known as transitivity, characterizes trian-
gles in the network. It is the fraction of the number of triangles and the number
of connected triples. Thus, a complete graph possesses C = 1 and, a tree graph,
C = 0. Analogously, the vertex clustering coefficient, Cv, is given by:

Cv =
3nΔ(v)
ne(v)

,

being, nΔ(v) the number of triangles involving node i and n3(v) the number of
connected triples having v as a central vertex. A node clustering coefficient value
equals 1 means that there is a connection between all pairs of its first neighbors,
and a zero value represents the lack edges between them.

The closeness centrality measure of a node is the sum of the inverse of all
pairs of distances from it:

cv =
∑

j, j �=v

1
d(v, j)

.

A high closeness centrality value means that the node possesses a lower total
distance from all other nodes.

Betweenness centrality quantifies node importance in terms of interactions
via the shortest paths among all other nodes:

Bv =
∑

i�=j∈V (G)

n(i, j, v)
2n(i, j)

,

being, n(i, j) the number of shortest paths connecting i and j and n(i, j, x) the
number of shortest paths connecting i and j passing through x.

See Table 1 for space and time computational complexity of the above men-
tioned measures.

Given two networks G1 and G2 and two stochastic measurements PG1 and
PG2 , the global pseudo-metric

Dg
P(G1, G2) =

√
JS(PG1 ,PG2)

log 2
. (3)

measures how far away two networks are via probability distributions.
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Table 1. Space/time computational complexity in a network with N nodes and E
edges.

Space Time

Degree O(N) O(N2)

All pairs of distances (unweighted) O(N2) O(N2 + NE)

Local clustering coefficient O(N) O(N3)

Closeness O(N) O(NE)

Betweenness O(N) O(NE)

The degree distribution Pdeg(k) is the fraction of nodes with degree k. The
network distance distribution, Pδ(d), gives the fraction of pairs of nodes at dis-
tance d. Analogously, PBv

, Pc and PC are given, respectively, by distributions
of the betweennesss, closeness and local clustering coefficient.

Here, we consider five variations of the Dg function (Eq. (3)) associated with
the stochastic measures given by the degree (Dg

Pdeg
), distance (Dg

Pδ
), closeness

(Dg
Pc

), betweenness (Dg
Pbet

) and clustering coefficient (Dg
PC

) distributions.
We can also obtain local information from the stochastic measure. We focus

our attention on the node distance distribution (Pδ,v(d)) given by fraction of
nodes at distance d from each node v. The network node dispersion (NND), a
network quantifier related to the heterogeneity of nodes, introduced in [10] to a
network G of size n:

NND(G) = JS(Pδ,1,Pδ,2, . . . ,Pδ,n)

allows, together with the global pseudo-metric associated with the distance dis-
tribution (Dg

Pδ
), to have an efficient size independent pseudo-metric between

networks:

D(G1, G2) =
1
2
Dg

Pδ
(G1, G2) +

1
2

∣
∣
∣
∣
∣

√
NND(G1)

log n
−

√
NND(G2)

log m

∣
∣
∣
∣
∣
, (4)

being, n and m, the sizes of networks G1 and G2, respectively.
Each global dissimilarity measure captures different characteristics. Most real

networks present a degree distribution following a power-law Pdeg(k) ∼ k−γ [16]
but, there exist several networks with different topologies sharing the same
degree distribution. The clustering based dissimilarity measures how far away
two networks are comparing connected communities densities but, it fails to char-
acterize properly tree-like structures. Distance based measures capture impor-
tant features on networks: from the distance distribution, it is possible to obtain
the network diameter, average path length, and average degree. From the node
distance distribution perspective, as more information are available, we also get
the node degree, closeness centrality, among others.
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3 Applications

3.1 Distance Between Null Models

Here we compare how well-known networks null models are away from each
other using the Dg and D functions. We consider four of the most commonly
used models: K-regular [14], Erdös-Renyi (ER) [15], Barabási-Albert (BA) [16],
Exponential (EXP) [17] and Watts-Strogatz rewiring model (WS) [18].

The K-regular consists in generating random networks with a constant degree
K. ER is the random graph generation given by a connection probability p ∈
[0, 1]. Both BA and EXP are models of evolving networks: at each time step a new
node is added and connected to m other existing nodes but, in the Exponential
model, the new node is connected at random and the BA uses a preferential
attachment mechanism1. WS model generates random networks by rewiring,
with a given probability, links from a regular lattice.

The experiment consists in generate 10000 independent samples of each
model with a fixed size N = 1000 computing averaged stochastic measures for
each null model and then get comparisons via Dg and D. We set the parameters
aiming to preserve the average degree of all generated networks: 10-Regular, BA
and EXP with parameter m = 5, ER with p = 10/999 and WS with k = 5
and different rewiring probabilities p = 0.2, 0.4, 0.6, 0.8. Figure 1 shows the
multidimensional scaling map [19] performed over the outcomes.

All of the analyzed measures were able to capture the scale-free behavior of
the BA model (P (k) ∼ k−3) identifying significant structural differences even
when compared with a similar growing model like the EXP, highlighting how
different is the preferential attachment procedure in growing networks. It is also
possible to see that bigger rewiring probability values imply higher proximity
between WS and ER models [11]. As p increases, the randomness of the WS
networks also increases. Figures 1B and C show the dissimilarity function impor-
tance: B shows that the average of the distance distributions of the ER network
approaches the distance distribution of the regular graph meaning that, on aver-
age, a random graph behaves like a regular one but, the NND value is zero in
most regular networks (Fig. 1C).

3.2 Critical Element Detection Problem and Network Robustness

The knowledge about how the network behaves after failures is of paramount
importance and, therefore, the detection critical elements are important to plan
efficient strategies to protect or even to destroy networks.

Given a network and an integer k, the critical element detection problem is
to find a set of at most k elements (nodes or edges), whose deletion generates
the biggest topological difference when comparing the residual and the original
networks [20–22].

Here, we consider finding the critical 3 nodes in the Infectious Sociopatterns
network whose deletion generates the biggest Dg

Pdeg
, Dg

Pδ
, Dg

Pbet
, Dg

Pc
, Dg

PC
and

1 Higher degree nodes have a bigger probability of getting new connections.
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Fig. 1. Multidimensional scaling map performed over the outcomes of (A) Dg
Pdeg

, (B)

Dg
Pδ

, (C) D, (D) Dg
Pc

, (E) Dg
Pbet

and (F) Dg
PC

between all pairs of network null models:
BA, EXP, K-regular and WS for different rewiring probability values (WS 0.2, WS 0.4,
WS 0.6 and WS 0.8 consider the rewiring probability given by 0.2, 0.4, 0.6 and 0.8,
respectively).

D values. The Infectious Sociopatterns network consists the face-to-face behav-
ior of people during the exhibition INFECTIOUS: STAY AWAY in 2009 at the
Science Gallery in Dublin. Nodes represent exhibition visitors; edges represent
face-to-face contacts that were active for at least 20 seconds. The network has
the data from the day with the highest number of interactions and is consider
undirected and unweighted [23,24]. Figure 2A shows the outcomes. It is inter-
esting to see that the betweenness and distance distributions share the same 3
critical elements. The dissimilarity function, on the other way, shares only two
elements with the betweenness distribution sharing the third element with the
clustering coefficient distribution. Figure 2B shows the degraded network after
the removal of the critical elements found in A. When comparing the original
and the degraded network, the last possesses a larger diameter (11), average
path length (4.213771) and a small global clustering coefficient (0.436811).

The critical element detection problem is proven to be NP-hard in the gen-
eral case for nodes and/or edges and, thus, the real case problems usually need
heuristic approaches. The most common in the literature [25] is the strategy
given by attacking the most central nodes (targeted attack2). Table 2 compares
the values obtained by using 4 strategies of targeted attacks: higher degree,

2 The nodes fail in decreasing order of centrality.
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Fig. 2. (A) Critical 3 nodes in the Infectious Sociopatterns network for the degree
(Dg

Pdeg
), distance (Dg

Pδ
), betweenness (Dg

Pbet
), closeness (Dg

Pc
), clustering (Dg

PC
) and

dissimilarity (D). (B) the degraded network obtained by the disconnecting the critical
nodes.

closeness, betweenness, and clustering coefficient and the strategy of selecting
the best combination of elements, we call it Best and it is computed by a brute
force algorithm.

None of the above-mentioned targeted attack strategies achieved the net-
work degradation given by the Best strategy, indicating that only one centrality
measure is not enough as strategy to efficiently destroy the network.

Table 2. Comparing Dg and D values between targeted attacks (degree, closeness,
clustering and betweeness) and the best strategy given by the critical node detection
problem solution.

Dg
Pdeg

Dg
Pδ

D Dg
Pc

Dg
Pbet

Dg
PC

Degree 0.1468 0.1290 0.0745 0.2413 0.0860 0.0293

Closeness 0.1228 0.1790 0.0968 0.2471 0.0952 0.0333

Betweenness 0.1204 0.1666 0.0932 0.2462 0.1040 0.0333

Clustering 0.0638 0.0858 0.0509 0.2295 0.0115 0.0285

Best 0.1867 0.2288 0.12563 0.3811 0.1291 0.0456

Network failures may not occur all at once, but, at different time instances.
Two sequences of failures may result in the same degraded network, even though,
one may have caused a bigger topological destruction at the beginning of the
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attack. Therefore, the critical element detection problem fails in capturing this
time-dependence of the failures.

In order to capture this time dependence of the failure process, following [9],
a sequence of failures is defined as a sequence of time-indexed networks (Gt)
where G0 = 0 and G′

t is a subgraph of Gt for all t′ > t (as time increases, the
network became more degraded).

Fig. 3. Targeted attacks on the Train Bombing network. (A) RPdeg , (B) RPδ , (C)
RPD , (D) RPc , (E) RPbet and (F) RPC .
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It is possible then, to define the robustness of G, for any given sequence of n
failures (Gt)t∈{1, 2,...,n} as:

RP (G|(Gt)t∈{1, 2,...,n}) =
n∏

t=1

R(Gt−1|Gt), (5)

being R(Gt|(Gt−1)t∈{1, 2,...,n}) = 1 − D(Gt, Gt−1).
This formulation is based on the consideration that the network robustness

is a measure related to the distance that a given topology is apart from itself
cumulatively during a sequence of failures.

Here, we analyze the robustness of the Train bombing network under tar-
geted attacks. This undirected and weighted network contains contacts between
suspected terrorists involved in the train bombing in Madrid on March 11, 2004,
as reconstructed from newspapers. A node represents a terrorist and an edge
between two terrorists shows that there was a contact between the two terror-
ists. The edge’s weight denotes how “strong” a connection was. This includes
friendship and co-participation in training camps or previous attacks [23,26,27].

The experiment consists in attacking, at each time step, one node of the
Train bombing network by a decreasing centrality value until the disconnection
of 30 % of the nodes. Figure 3 shows the outcomes considering the robustness
measure computed using Dg

Pdeg
, Dg

Pδ
, Dg

Pbet
, Dg

Pc
, Dg

PC
and D values. The tar-

geted attacks are performed in decreasing order of: degree (κ0), weight (κ1),
degree and weight with importance (κ0.5), closeness, betweenness and clustering
coefficient. In most cases, targeting the nodes with the highest betweenness cen-
trality value generates the highest degradation in most of the analyzed measures.
The only exemption is for RPC

, where the best strategy is given by attacking
nodes considering κ0.5 values.

Table 3 also shows that the best strategy after the degradation of 30 % of the
network is not necessary the best when considering 20 % or 10 %. For example,
in the case of Pbet, the best strategy is considering the nodes’ weight when
10 % of the nodes are removed, the degree attack for 20 % and, the betweenness
centrality strategy for 30 %.

Table 3. Best targeted attack strategy for the Train Bombing network.

Fraction of nodes removed

10% 20% 30 %

RPdeg Betweenness Betweenness Betweenness

RPδ Degree Degree Betweenness

RD Degree Degree Betweenness

RPc Degree Betweenness Betweenness

RPbet Weight Degree Betweenness

RPC Betweenness Betweenness κ0.5

Best attack strategy
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4 Concluding Remarks

In this work, we review a methodology to quantify graph dissimilarities based on
Information Theory quantifiers that possess important properties. One of them
is the flexibility of choosing the network measurement depending on the purpose
of the analysis or application.
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Abstract. The exchange model with piecewise linear separable concave
utility functions is considered. This consideration extends the author’s
original approach to the equilibrium problem in a linear exchange model
and its variations. The conceptual base of this approach is the scheme of
polyhedral complementarity. It has no analogs and made it possible to
obtain the finite algorithms for some variations of the exchange model.
Especially simple algorithms arise for linear exchange model with fixed
budgets (Fisher’s model). This is due to monotonicity property inher-
ent in the models and potentiality of arising mappings. The algorithms
can be considered as a procedure similar to the simplex-method of lin-
ear programming. It is natural to study applicability of the approach
for more general models. The considered piecewise linear version of the
model reduces to a special exchange model with upper bounds on vari-
ables and the modified conditions of the goods’ balances. For such a
model the monotonicity property is violated. But it remains, if upper
bounds are substituted by financial limits on purchases. This is the idea
of proposed iterative algorithm for initial problem. It is a generalization
of an analogue for linear exchange model.

Keywords: Exchange model · Economic equilibrium · Fixed point ·
Linear programming · Polyhedral complementarity · Monotonicity ·
Iterative algorithm

1 Introduction

It is known that the problem of finding an equilibrium in the linear exchange
model can be reduced to the linear complementarity problem [5]. But the dimen-
sion of this complementarity problem is relatively large. The polyhedral comple-
mentarity approach [1,3] is based on a fundamentally different idea, that reflects
more the character of economic equilibrium as a concordance the consumers’
preferences with financial balances. In algorithmic aspect it may be treated as
a realization of the main idea of the simplex-method of linear programming. It
has no analogs and made it possible to obtain the finite algorithms not only for
the linear exchange model, but also for some it’s variations [13–15]. The most
c© Springer International Publishing Switzerland 2016
Y. Kochetov et al. (Eds.): DOOR 2016, LNCS 9869, pp. 61–73, 2016.
DOI: 10.1007/978-3-319-44914-2 6
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simple are the algorithms for models with fixed budgets [2,22], more known as
Fisher’s problem. For this case the convex programming formulation, given by
Eisenberg and Gale [6,7], is well known. This result was used by many authors
for study computational aspects of the problem. Some review of that can be
found in [11]. In this article a polynomial time algorithm is proposed, that uses
the idea of the primal-dual scheme and max-flow techniques. The polyhedral
complementarity approach gave an alternative convex program for the Fisher’s
problem [1,2]. (Russian version of the last article (1983) was later translated
into English (2006) [8].) The obtained by this way procedures [2,22] use only
well known elements of algorithms for transportation problem. A version with
primal-dual scheme for transportation problem (the Hungarian method) was
also considered [9,10]. These simple algorithms may be used for getting itera-
tive methods for more complicate models. The first one was proposed for the
general linear exchange model in [4]. In presenting consideration we extend this
approach on the model with separable piecewise linear concave utility functions.
The obtained algorithm uses that fact, that the algorithms for linear Fisher’s
model with additional restrictions on purchases are as simple as without them
[17]. At each step, we study a model with initial utility functions and with
the appropriate (changing) restrictions on purchases. This model is known as
spending constraint model and was introduced in [18]. The polyhedral comple-
mentarity approach is applicable in this case as well. It should be noted, that a
generalization of our reduction of Fisher’s model [1,2] for the spending constraint
model was given in [12,19]. A strongly polynomial algorithm for this problem, as
well as for the Fisher’s model, was proposed in [24]. The simplex-like algorithm
for spending constraint model was presented in [19]. The algorithm is based on
reduction of the initial problem to a linear complementarity one and use a special
algorithmic technique, which is similar to that of well known Lemke’s algorithm.
A detailed analysis of the polynomial solvability of the problem is given. The
approach of linear complementarity for equilibrium searching, begun in [5], was
extended on the general linear exchange model with piecewise linear separable
concave utility functions in [20].

2 Model

The classical linear exchange model has the following description.
Consider a model with n commodities and m consumers. Let J = {1, . . . , n}

and I = {1, . . . ,m} be the index sets of commodities and consumers respectively.
Each consumer i ∈ I possesses a vector of initial endowments wi ∈ Rn

+ and must
choose a consumption vector xi ∈ Rn

+ maximizing his linear utility function
(ci, xi). The exchange is realized with respect to some nonnegative prices pj ,
forming a price vector p ∈ Rn

+.
Thus we have the following problem of consumer i:

(ci, xi) → max,
(p, xi) ≤ (p,wi),

xi ≥ 0.
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Let x̃i be a vector xi that solves this program. A price vector p̃ �= 0 is an
equilibrium price vector if there exist solutions x̃i, i = 1, . . . ,m, for the individual
optimization problems such that

∑

i∈I

x̃i =
∑

i∈I

wi.

In the mentioned description the consumers’ utility functions are linear
(ci, xi) =

∑

j∈J

ci
jx

i
j . Here ci

j , x
i
j are the components of the vectors ci, xi. In the

piecewise linear version of the model these functions replace by separable piece-
wise linear concave functions

∑

j∈J

ci
j(x

i
j) (Fig. 1).

x

c(x)

d1 d2 d3

c1

c2

c3

Fig. 1. Piecewise linear utility function

In what follows we normalize the initial endowment of each commodity to 1,
i.e.,

∑
i wi = (1, . . . , 1) ∈ Rn. The sum of pj is also normalized to 1, restricting

the price vector p to lie in the unit simplex

σ =
{

p ∈ Rn
+

∣
∣
∣
∑

j∈J

pj = 1
}

.

In the case wi = λi(1, . . . , 1) we have (p,wi) = λi. Thus the budgets are
fixed. Such a model is named Fisher’s model.

For the linear model the author has proposed an original approach to obtain-
ing finite algorithms for searching equilibrium. This approach is based on reduc-
tion the initial problem to the fixed-point one for piecewise constant point-to-set
mapping, which leads to the polyhedral complementarity problem. The piecewise
linear version of the model can be reduced to the linear one but with additional
restrictions to the consumption volumes and modified goods’ balances in equi-
librium.

More in details. It is well known, that the maximization problem with linear
restrictions and piecewise linear separable concave goal function can be reduced
to the linear problem with upper bounds on the variables.

Let the problem be as follows:
∑

j

cj(xj) → max
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∑

j

ajxj = b, xj ≥ 0.

Let the linearity intervals of the function cj(xj) are [0, dj1], [dj1,
dj2], . . . , [djnj

,∞), and on [dj(s−1), djs] we have cj(xj) = const + cjsxj . For
the simplicity can be assumed nj be the same for all j. Introduce the lengths
of intervals Δjs = djs − dj(s−1) and new variables xjs. We obtain an equivalent
problem by the change of variables xj =

∑
s xjs, 0 ≤ xjs ≤ Δjs:

∑

j

∑

s

cjsxjs → max

∑

j

∑

s

ajxjs = b, 0 ≤ xjs ≤ Δjs.

In this way we obtain for piecewise linear exchange model the linear one but
with additional restrictions to the consumption volumes and modified conditions
of goods’ balances. In consumer’s problem the variable xi

j replaces by
∑

s xi
js.

For simplicity, we assume that all functions ci
j(x

i
j) have the same quantity of the

linearity intervals. The problem takes the form:
∑

j

∑

s

ci
jsx

i
js → max,

∑

j

pj

∑

s

xi
js ≤ (p,wi),

0 ≤ xi
js ≤ Δjs.

Respectively change the conditions of goods’ balances in equilibrium:
∑

i

∑

s

x̃i
js = 1, j ∈ J.

If all functions ci
j(x

i
j) have only one linearity interval we obtain the linear

exchange model with upper bounds for variables. The exchange model with
upper bounds for volumes of purchases turns out to be qualitatively more com-
plicated then the linear one without additional restrictions. The monotonicity
property of the arising point-to-set piecewise constant mapping fails. However
the polyhedral complementarity approach can be applied, but the obtained algo-
rithm needs a spacial start from the price simplex boundary [16].

The searching equilibrium procedure under consideration for piecewise linear
model is based on it’s approximation by a simple model with fixed budgets
and additional restrictions on many for buying each commodity. For such a
model the monotonicity property remains and the simple algorithms can be
proposed [17]. These algorithms are very closed to the simplex procedures of
linear programming.
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3 The Main Idea of the Approach for the Linear Model

Here we follow [23].
1◦. The parametric transportation problem of the model.

Let be ci > 0 for all i ∈ I. Given a price vector p consider the following trans-
portation problem of the model:

∑

i∈I

∑

j∈J

zij ln ci
j → max

under conditions

{zij} ∈ Z(p)

∑

j∈J

zij = (p,wi), i ∈ I,
∑

i∈I

zij = pj , j ∈ J,

zij ≥ 0, (i, j) ∈ I × J.

The equations of this problem represent the financial balances for the con-
sumers and commodities. The variables zij are introduced by zij = pjx

i
j .

This is the classical transportation problem. The price vector p is a parameter
of the problem. Under the mentioned assumption about {wi} this problem is
solvable for each p ∈ σ.

2◦. Reduction to a fixed point problem.
Consider the restrictions of the corresponding dual problem:

ui + vj ≥ ln ci
j , i ∈ I, j ∈ J.

Let V (p) be the set of optimal vectors v = (v1, ..., vn). For v ∈ V (p) introduce
a vector g(v) = (exp(v1), ..., exp(vn))/

∑n
j=1 exp(vj). We have g(v) ∈ σ◦ (the

relative interior of the price simplex σ). Introduce the set

G(p) = {g(v)|v ∈ V (p)}
Thus we obtain the point-to-set mapping G : σ → 2σ◦

. For this mapping
all conditions of Kakutani’s theorem are fulfilled and so the fixed points of the
mapping exist.

Theorem 1. The fixed points of the mapping G, and only they, give the equi-
librium price vectors of the model.

The polyhedral complementarity approach make it possible to proposer a
finite method for searching an equilibrium price vector in the general linear
exchange model [1,3]. Later it was named as method of meeting paths.
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4 The Model with Fixed Budgets

1◦. Reduction to an optimization problem.
In the set of linear exchange models the subset of the models with fixed

budgets is selected. In such a model it is assumed, that the participants have
not initial endowments but some money. The right sides (p,wi) in the budget
conditions are replaced by the constants λi. This model is known as Fisher’s
model. In this case the equilibrium problem was reduced to an optimization one
[6,7]. But any special algorithms were proposed for it.

For the model with fixed budgets the equilibrium problem is simplified
because in this case the mapping G is in some sense potential. The G(p) is
induced by the set V (p), and this set is the subdifferential of the concave func-
tion f , which indicate for each p ∈ σ the optimal value of the goal function in
the transportation problem of the model: V (p) = ∂f(p). Here the subdifferetial
for a concave function f is defined by such one of convex function (−f):

∂f(p) = −∂(−f)(p).

Introduce the convex function h(p) on σ as h(p) = (p, ln p) =
∑

j∈J

pj ln pj for

p > 0 and h(p) = 0 for p ≯ 0.

Theorem 2. The equilibrium problem for the linear exchange model with fixed
budgets is equivalent to this one of minimization on σ for the convex function
ϕ(p) = h(p) − f(p).

The function ϕ is very simple and for the minimization can be used the
suboptimization approach [21]. In this way we obtain the finite algorithm [22]
for searching the equilibrium in the model.

Another algorithm for searching an equilibrium price vector can be obtained if
we take into account that the mapping G and the inverse mapping G−1 have the
same fixed points. For the introduced concave function f consider the conjugate
function f∗:

f∗(y) = inf
z

{(y, z) − f(z)}
Theorem 3. The equilibrium price vector in the model with fixed budgets is the
minimum point of the function ψ(q) = −f∗(ln q) on σ◦.

The obtained in this way algorithm [8] is in some sense duel to the algorithm
[22], obtained by minimizing ϕ.

It is to note, that the mapping G for the model with fixed budgets has a
special monotonicity property: the inequality

(p1 − p2, ln q1 − ln q2) ≤ 0

is fulfilled for each p1, p2 ∈ σ and q1 ∈ G(p1), q2 ∈ G(p2). We can say, that G is
the logarithmic monotone decreasing mapping [2,23].

2◦. Polyhedral complementarity problem.
For algorithmic realization we have to consider the mapping G more in detail.

The consideration is based on the new notion of consumption structure.
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Definition 1. A set B ⊂ I × J is named a structure, if for each i ∈ I there
exists (i, j) ∈ B.

This notion is analogous to the basic index set in linear programming. Two
sets of the price vectors can be considered for each structure B of the model:
preference zone Ξ(B) and balance zone Ω(B).

Ξ(B) is the set of prices by which the participants prefer the connections of
the structure, ignoring the budget conditions and balances of goods.

Ω(B) is the set of prices by which the budget conditions and balances of
goods are possible when the connections of the structure are respected, but the
participants preferences are ignored.

Let B be the collection of all dual feasible basic index sets of the transporta-
tion problem and of all their subsets being structures.

For B ∈ B we obtain the description of Ω(B) and Ξ(B) in the following way:

B ∈ B =⇒

a) Ω(B) ⊂ σ is the balance zone of the structure:
Ω(B) = {p ∈ σ | ∃z ∈ Z(p), zij = 0, (i, j) /∈ B};

b) Ξ(B) ⊂ σ◦ is the preference zone of the structure:

Ξ(B) =

{

q ∈ σ◦
∣
∣
∣
∣
∣
max

k

ci
k

qk
=

ci
j

qj
, ∀(i, j) ∈ B

}

.

It is clear that

p∗ is an equilibrium price vector ⇐⇒ (∃B)p∗ ∈ Ω(B) ∩ Ξ(B).

It is easy to give the adduced descriptions of Ξ(B) and Ω(B) in more detail.
For q ∈ Ξ(B) we have:

qk

ci
k

=
qj

ci
j

(i, k) ∈ B, (i, j) ∈ B,

ql

ci
l

≥ qj

ci
j

(i, l) /∈ B, (i, j) ∈ B.

Thus Ξ(B) is the intersection of a polyhedron with σ◦.
To obtain the description of Ω(B) we should use the well known tools of

transportation problems theory. Given B ∈ B, introduce a graph Γ (B) with the
set of vertices G = {1, 2, . . . ,m + n} and the set of edges {(i,m + j)|(i, j) ∈ B}.
Let τ be the number of components of this graph, let Gν be the set of vertices of
ν-th component, Iν = I ∩ Gν and Jν = {j ∈ J |(m + j) ∈ Gν}. It is not difficult
to show that the following system of linear equations must hold for p ∈ Ω(B):

∑

j∈Jν

pj =
∑

i∈Iν

λi, ν = 1, . . . , τ.

Under these conditions the values zij can be obtained from

z ∈ Z(p), zij = 0, (i, j) /∈ B
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presenting linear functions of p: zij = zij(p). Now for p ∈ Ω(B) we have in
addition the system of linear inequalities

zij(p) ≥ 0, (i, j) ∈ B.

Thus Ω(B) is described by a linear system of equalities and inequalities. So
it is also a polyhedron.

It is clear that ω = {Ω(B)} and ξ = {Ξ(B)} are polyhedral complexes and
the pairs (Ω(B), Ξ(B)), B ∈ B, form a one-to-one correspondence by which these
complexes are in duality. So we have the polyhedral complementarity problem
[23]. Figure 2 illustrate the polyhedral complexes in a model with 3 commodities
and 2 consumers. Each of both complexes has 17 elements. Figure 3 illustrate
the arising complementarity problem with it’s solution: c12 ∈ G(c12).

p1 p2

p3

p1 p2

p3

Complex ξ Complex ω

Ω1

Ω12

Ω2

c2

c12

c1

G

Fig. 2. Polyhedral complexes in exchange model

p1 p2

p3

Ω1

Ω12

Ω2

c1

c12

c2

Fig. 3. Complementarity problem: c12 is the solution.
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3◦. Algorithm.
We describe here one step of the algorithm, which is based on Theorem 3 [8].

The alternative version, based on Theorem2, can be seen in [22].
At the beginning of the recurrent step (k + 1) we have a structure Bk ∈ B

and a point qk ∈ Ξ(Bk).
Let L(B) ⊃ Ξ(B) and M(B) ⊃ Ω(B) be the affine hulls of these zones. We

obtain the “ideal” point r = r(B), solving the system:

rk

ci
k

=
rj

ci
j

(i, k), (i, j) ∈ B,
∑

j∈Jν

rj =
∑

i∈Iν

λi, ν = 1, . . . , τ.

It is easy to solve this system. It decomposes in the subsystems, corresponding
to the components of the graph Γ (Bk). For the ν-th component we have

rk

ci
k

=
rj

ci
j

(i, k), (i, j) ∈ B, i ∈ Iν , j ∈ Jν ,
∑

j∈Jν

rj =
∑

i∈Iν

λi,

The first equations give proportions between rj on the component and deter-
mined rj up to a multiplier. The multiplier can be obtained from the last
equation.

The point r is the point of the intersection L(B) ∩ M(B). It is the minimum
point of the function ψ(q) on L(B). If r ∈ Ξ(B) ∩ Ω(B), the point r defines the
equilibrium prise vector. Otherwise two possibilities may occur.

(a) qk = r. It means, that qk being the minimum point on L(B), lies in M(B)
In this case zij(r) = zk

ij can be obtained. If all they are nonnegative, r ∈ Ω(B)
and we have the equilibrium price vector p∗ = r. Otherwise we choose certain
zk

i◦,j◦ < 0 and go to the next step with

Bk+1 = Bk\{(i◦, j◦)}, qk+1 = r.

(b) qk �= r. We consider the moving point q(t) = qk + t(r − qk) and search

t∗ = {t ∈ [0, 1] | q(t) ∈ Ξ(Bk)}.

If t∗ = 1, we take Bk+1 = Bk, qk+1 = r and on the next step we will have case
(a). In the case t∗ < 1 certain of the inequalities from description Ξ(Bk) limits
t∗. Let (i′, j′) be the pair corresponding to that inequality. We take

Bk+1 = Bk ∪ {(i′, j′)}, qk+1 = q(t∗).

Theorem 4. Under the dual nondegeneracy condition for the transportation
problem of the model the algorithm gives the equilibrium price vector.
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5 The Model with the Finance Restrictions
on the Consumption

As it was mentioned, the equilibrium problem for the model with separable piece-
wise linear utility functions of participants reduces to the linear model, but with
additional restrictions on the consumption volumes for each commodity: xi

j ≤ di
j .

These additional restrictions cause significantly quality changes. The mapping
G looses the monotonicity property even in models with fixed budgets. The
polyhedral complementarity approach gives the algorithm [16], which requires
a special start (as in the triangulation algorithms for searching fixed points).
We have more simple problem in the model with additional restrictions on the
finance for buying each commodity: pjx

i
j ≤ βij . In the transportation problem

of the model appear the upper bounds for variables: zij ≤ βij . The problem turn
out to be solvable not for all p ∈ σ and thus the mapping G is defined not on the
hole simplex σ. But it has the monotonicity property as before, and Theorems 2
and 3 remain valid. This make it possible to propose the simple algorithms as
in model without the additional restrictions [17]. We only have to use the well
known modification of the simplex method for the problem with upper bounds.
For these problems basic set supplements by a set, that indicates the variables
fixed on upper bounds. In our consideration a structure B supplements by a set
W , and we have substructure U = {B,W}. For (i, j) ∈ W the inequalities of the
transportation dual problem turn to inverse. The preference zone and algorithm
descriptions change respectively.

6 The Iterative Approach for the Equilibrium Searching

The algorithmic realization of proposed methods for general case of the linear
exchange model needs to solve on each step a linear system of equations. The
procedure becomes significantly simple for the model with fixed budgets. In this
case we need to solve only triangular systems, as in the transportation problem
algorithms. For general case of the model (with variable budgets) the iterative
method of successive approximations was proposed [4]. Given a price vector pk

on the step k we consider an approximation to the initial model by a model
with fixed budgets λk

i = (pk, wi). The equilibrium price vector of this model is
taken as pk+1. It was proofed that the process converges to the equilibrium as a
geometric progression.

This approach occur not applicable for the model with upper bounds xi
j ≤ di

j .
The approximating model with fixed budgets is to complicate in this case for the
equilibrium searching. It is more simple if we take for approximation the model
with additional restrictions on the finance for the commodities buying. In this
version of the method we calculate on current step besides the budgets λk

i also
the financial upper bounds βk

ij = pk
j di

j . We take the equilibrium price vector of
the obtained model as next approximation pk+1.

The numerical tests show the convergence of this process to the equilibrium
of the initial model.
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7 Application to the Piecewise Linear Model

The above described idea of approximating model can be applied for search-
ing an equilibrium in the initial piecewise linear model. Given on the step k a
price vector pk, we calculate the budgets λk

i = (pk, wi) and the financial upper
bounds βki

js = pk
j Δi

js. In this way we obtain the approximating model with ini-
tial piecewise linear utility functions, fixed budgets and with additional financial
constraints on purchases which correspond to the linearity intervals of utility
functions. The parametric transportation problem of this approximating model
is as follows:

∑

i

∑

j

∑

s

zi
js ln ci

js → max

∑

j

∑

s

zi
js = λk

i , i ∈ I,

∑

i

∑

s

zi
js = pj , j ∈ J,

0 ≤ zi
js ≤ βki

js.

We can use the scheme of polyhedral complementarity approach. This yield
us the finite algorithms for equilibrium searching. The obtained equilibrium price
vector we take as pk+1.

Thus we obtain the iterative method for searching an equilibrium in the
exchange model with piecewise linear separable concave utility functions of
participants.

8 Conclusion

The exchange model with piecewise linear separable concave utility functions
of participants is considered. The consideration extends an original approach
to the equilibrium problem in a linear exchange model and its variations. The
conceptual base of this approach is the scheme of polyhedral complementarity.
It has no analogs and made it possible to obtain the finite algorithms for some
variations of the linear exchange model. One of them we use for getting an
approximation for the piecewise linear model. To be exact, this is the linear
exchange model with fixed budgets and additional restrictions on the finance
for buying each commodity. For this model a finite algorithm was developed. In
this way we obtain an iterative method for the model under consideration. On
each step of the process the approximating model is formed. The equilibrium
price vector of this model is used to get the next approximation. This approach
was justified for general case of linear exchange model [4]. The numerical tests
confirm it’s validity for the piecewise linear model.
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Abstract. In this paper, we demonstrate how scheduling problems with
controllable processing times can be reformulated as maximization linear
programming problems over a submodular polyhedron intersected with
a box. We explain a decomposition algorithm for solving the latter prob-
lem and discuss its implications for the relevant problems of preemptive
scheduling on a single machine and parallel machines.

1 Introduction

In Scheduling with Controllable Processing Times (SCPT ), the actual durations
of the jobs are not fixed in advance, but have to be chosen from a given interval.
For an SCPT model, two types of decisions are required: (i) each job has to
be assigned its actual processing time, and (ii) a schedule has to be found that
provides a required level of quality. A penalty is applied for assigning shorter
actual processing times. The quality of the resulting schedule is measured with
respect to the cost of assigning the actual processing times that guarantee a
certain scheduling performance. This area of scheduling has been active since
the 1980s, see surveys [20] and [26].

Nemhauser and Wolsey were among the first who noticed that the SCPT
models could be handled by methods of Submodular Optimization (SO); see, e.g.,
Example 6.1 (Sect. 6 of Chap. III.3) of their book [19]. A systematic development
of a general framework for solving the SCPT problems via submodular methods
has been initiated by Shakhlevich and Strusevich [27,28] and further advanced
in [29]. As a result, a powerful toolkit of the SO techniques [4,25] can be used
for design and justification of algorithms for solving a wide range of the SCPT
problems. In this paper, we present convincing examples of a positive mutual
influence of scheduling and submodular optimization, mainly based on our recent
work [31–34].

2 Scheduling with Controllable Processing Times

The jobs of set N = {1, 2, . . . , n} have to be processed either on a single machine
M1 or on parallel machines M1,M2, . . . ,Mm, where m ≥ 2. For each job j ∈ N ,
c© Springer International Publishing Switzerland 2016
Y. Kochetov et al. (Eds.): DOOR 2016, LNCS 9869, pp. 74–90, 2016.
DOI: 10.1007/978-3-319-44914-2 7
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its processing time p(j) is not given in advance but has to be chosen from a
given interval

[
p(j), p(j)

]
. That selection process is often seen as compressing the

longest processing time p(j) down to p(j). The value x(j) = p(j)− p(j) is called
the compression amount of job j. Compression may decrease the completion
time of each job j but incurs additional cost w(j)x(j), where w(j) is a given
non-negative unit compression cost. The total cost is represented by the linear
function W =

∑
j∈N w(j)x(j).

Each job j ∈ N is given a release date r(j), before which it is not available,
and a deadline d (j), by which its processing must be completed. In the processing
of any job, preemption is allowed, so that the processing can be interrupted on
any machine at any time and resumed later, possibly on another machine. It
is not allowed to process a job on more than one machine at a time, and a
machine processes at most one job at a time. Given a schedule, let C(j) denote
the completion time of job j. A schedule is called feasible if the processing of a
job j ∈ N takes place in the time interval [r(j), d (j)].

We distinguish between the identical parallel machines and the uniform
parallel machines. In the former case, the machines have the same speed. If
the machines are uniform, then it is assumed that machine Mh has speed sh,
1 ≤ h ≤ m. Throughout this paper we assume that the machines are numbered
in non-increasing order of their speeds, i.e.,

s1 ≥ s2 ≥ · · · ≥ sm. (1)

Adapting standard notation for scheduling problems [14], we denote a generic
problem of our primary concern by α|r(j), p(j) = p(j) − x(j), C(j) ≤ d (j) ,
pmtn|W. Here, in the first field α we write “1” for a single machine, “P” in the
case of m ≥ 2 identical machines and “Q” in the case of m ≥ 2 uniform machines.
In the middle field, the item “r(j)” implies that the jobs have individual release
dates; this parameter is omitted if the release dates are equal. We write “p(j) =
p(j) − x(j)” to indicate that the processing times are controllable and x(j) is
the compression amount to be found. The condition “C(j) ≤ d (j)” reflects
the fact that in a feasible schedule the deadlines should be respected; we write
“C(j) ≤ d”, if all jobs have a common deadline d. The abbreviation “pmtn”
is used to point out that preemption is allowed. Finally, in the third field we
write the objective function to be minimized, which is the total compression
cost W =

∑
w(j)x(j).

If the processing times p(j), j ∈ N , are fixed then the corresponding coun-
terpart of problem α|r(j), p(j) = p(j) − x(j), C(j) ≤ d (j) , pmtn|W is denoted
by α|r(j), C(j) ≤ d (j) , pmtn|◦. In the latter problem, it is required to verify
whether a feasible preemptive schedule exists. If the deadlines are equal, then
the counterpart of problem α|r(j), p(j) = p(j) − x(j), C(j) ≤ d, pmtn|W with
fixed processing times can be denoted by α|r(j), pmtn|Cmax, so that it is required
to find a preemptive schedule that for the corresponding settings minimizes the
makespan Cmax = max {C(j)|j ∈ N}: if the optimal makespan is larger than d
the required feasible schedule does not exist; otherwise, it exists.

Below we give examples of two most popular interpretations of the SCPT
models. Alternative interpretations can be found, e.g., in [11] and [17].
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In computing systems that support imprecise computation [15], some com-
putations can be run partially, producing less precise results. In our notation, to
produce a result of reasonable quality, the mandatory part of each task j must
be completed, and this takes p(j) time units. If instead of an ideal computa-
tion time p(j) a task is executed for p(j) = p(j) − x(j) time, then computation
is imprecise, and x(j) corresponds to the error of computation. The objective
function W =

∑
w(j)x(j) is interpreted as the total weighted error.

The SCPT problems serve as mathematical models in make-or-buy decision-
making [29], where it is required to determine which part of each order j is
manufactured internally and which is subcontracted. For this model, p(j) =
p(j) − x(j) is understood as the chosen actual time for internal manufacturing,
where x(j) shows how much of the order is subcontracted and w(j)x(j) is the
cost of this subcontracting. Thus, we need to minimize the total subcontracting
cost and to find a deadline-feasible schedule for internally manufactured orders.

These and other versions of the SCPT problems can be formulated as SO
models and handled by SO methods.

3 Submodular Polyhedra and Decomposition Algorithm

In this section, we present some basic facts related to submodular optimization.
Unless stated otherwise, we follow a comprehensive monograph on this topic by
Fujishige [4], see also [13,25]. We also describe a decomposition algorithm for
solving a linear programming problem subject to submodular constraints.

For a positive integer n, let N = {1, 2, . . . , n} be a ground set, and let 2N

denote the family of all subsets of N . For a subset X ⊆ N , let R
X denote the

set of all vectors p with real components p(j), where j ∈ X. For two vectors p =
(p(1), p(2), . . . , p(n)) ∈ R

N and q = (q(1), q(2), . . . , q(n)) ∈ R
N , we write p ≤ q

if p(j) ≤ q(j) for each j ∈ N . For a vector p ∈ R
N , define p(X) =

∑
j∈X p(j)

for every set X ∈ 2N .
A set-function ϕ : 2N → R is called submodular if the inequality ϕ(X) +

ϕ(Y ) ≥ ϕ(X ∪ Y ) + ϕ(X ∩ Y ) holds for all sets X,Y ∈ 2N . For a submodu-
lar function ϕ defined on 2N such that ϕ(∅) = 0, the pair (2N , ϕ) is called a
submodular system on N , while ϕ is referred to as its rank function.

For a submodular system (2N , ϕ), define two polyhedra P (ϕ) = {p ∈ R
N |

p(X) ≤ ϕ(X), X ∈ 2N} and B(ϕ) = {p ∈ R
N | p ∈ P (ϕ), p(N) = ϕ(N)},

called the submodular polyhedron and the base polyhedron, respectively, associ-
ated with the submodular system. The main problem of our interest is as follows:

(LP) : max
∑

j∈N

w(j)p(j)

s.t. p(X) ≤ ϕ(X), X ∈ 2N ,
p(j) ≤ p(j) ≤ p(j), j ∈ N,

(2)

where ϕ : 2N → R is a submodular function with ϕ(∅) = 0, w ∈ R
N
+ is a

nonnegative weight vector, and p,p ∈ R
N are upper and lower bound vectors,
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respectively. We refer to (2) as Problem (LP). This problem serves as a mathe-
matical model for many SCPT problems, as demonstrated in Sects. 4 and 5.

Problem (LP) can be classified as a problem of maximizing a linear function
over a submodular polyhedron intersected with a box. As shown in [29], Problem
(LP) can be reduced to optimization over a base polyhedron.

Theorem 1 (cf. [29]). If Problem (LP) has a feasible solution, then the set
of its maximal feasible solutions is a base polyhedron B(ϕ̃) associated with the
submodular system (2N , ϕ̃), where the rank function ϕ̃ : 2N → R is given by

ϕ̃(X) = min
Y ∈2N

{ϕ(Y ) + p(X\Y ) − p(Y \X)}. (3)

Notice that the computation of the value ϕ̃(X) for a given X ∈ 2N reduces to
minimization of a submodular function, which can be done in polynomial time
[10,24]. However, the running time of known general algorithms is fairly large.
In many special cases of Problem (LP), including its applications to the SCPT
problems, the value ϕ̃(X) can be computed more efficiently, as shown later.

Throughout this paper, we assume that Problem (LP) has a feasible solution,
which is equivalent to the conditions p ∈ P (ϕ) and p ≤ p. Theorem 1 implies
that Problem (LP) reduces to the following problem:

max
∑

j∈N

w(j)p(j) (4)

s.t. p ∈ B(ϕ̃),

where the rank function ϕ̃ : 2N → R is given by (3).
An advantage of the reduction of Problem (LP) to a problem of the form

(4) is that the solution vector can be obtained essentially in a closed form by a
greedy algorithm. To determine an optimal vector p∗, the algorithm starts with
p∗ = p, considers the components of the current p∗ in non-increasing order of
their weights and gives the current component the largest possible increment
that keeps the vector feasible.

Introduce the sequence σ = (σ (1) , σ (2) , . . . , σ (n)) such that w(σ(1)) ≥
w(σ(2)) ≥ · · · ≥ w(σ(n)) and define Nt(σ) = {σ(1), . . . , σ(t)}, 1 ≤ t ≤ n, where,
for completeness, N0(σ) = ∅.

Theorem 2 (cf. [4]). Vector p∗ ∈ R
N given by

p∗(σ(t)) = ϕ̃ (Nt(σ)) − ϕ̃ (Nt−1(σ)) , t = 1, 2, . . . , n,

is an optimal solution to problem (4) (and also to the problem (2)).

Now we describe a decomposition algorithm for solving Problem (LP), which
for certain classes of the problem may overperform the greedy algorithm.

We say that a subset N̂ ⊆ N is a heavy-element subset of N with respect to
the weight vector w if it satisfies the condition minj∈N̂ w(j) ≥ maxj∈N\N̂ w(j).
For completeness, we also regard the empty set as a heavy-element subset of N .
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For a given set X ⊆ N , in accordance with (3) define a set Y∗ ⊆ N such that
the equality

ϕ̃(X) = ϕ(Y∗) + p(X\Y∗) − p(Y∗\X) (5)

holds. In the remainder of this paper, we call Y∗ an instrumental set for set X.

Lemma 1 (cf. [32,34]). Let N̂ ⊆ N be a heavy-element subset of N with
respect to w, and Y∗ ⊆ N be an instrumental set for set N̂ . Then, there exists
an optimal solution p∗ of Problem (LP) such that

(a) p∗(Y∗) = ϕ(Y∗), (b) p∗(j) = p(j), j ∈ N̂\Y∗, (c) p∗(j) = p(j), j ∈ Y∗\N̂ .

In what follows, we use two fundamental operations on a submodular system(
2N , ϕ

)
, as defined in [4, Sect. 3.1]. For a set A ∈ 2N , define a set-function

ϕA : 2A → R by ϕA(X) = ϕ(X), X ∈ 2A. Then, (2A, ϕA) is a submodular
system on A and it is called a restriction of (2N , ϕ) to A. On the other hand,
for a set A ∈ 2N define a set-function ϕA : 2N\A → R by ϕA(X) = ϕ(X ∪ A) −
ϕ(A), X ∈ 2N\A. Then, (2N\A, ϕA) is a submodular system on N\A and it is
called a contraction of (2N , ϕ) by A.

Theorem 3 (cf. [32,34]). Let N̂ ⊆ N be a heavy-element subset of N with
respect to w, and Y∗ be an instrumental set for set N̂ . Let p1 ∈ R

Y ∗
and

p2 ∈ R
N\Y ∗

be optimal solutions of the linear programs (LPR) and (LPC),
respectively, given by

(LPR) : max
∑

j∈Y∗

w(j)p(j)

s.t. p(X) ≤ ϕ(X), X ∈ 2Y∗ ,

p(j) ≤ p(j) ≤ p(j), j ∈ Y∗ ∩ N̂ ,

p(j) = p(j), j ∈ Y∗\N̂ .

(LPC) : max
∑

j∈N\Y∗

w(j)p(j)

s.t. p(X) ≤ ϕ(X ∪ Y∗) − ϕ(Y∗), X ∈ 2N\Y∗ ,

p(j) ≤ p(j) ≤ p(j), j ∈ (N\Y∗) \
(
N̂\Y∗

)
,

p(j) = p(j), j ∈ N̂\Y∗.

Then, the vector p∗ ∈ R
N given by the direct sum p∗ = p1 ⊕ p2, where

(p1 ⊕ p2)(j) =
{

p1(j), if j ∈ Y∗,
p2(j), if j ∈ N\Y∗.

is an optimal solution of Problem (LP).

Notice that Problem (LPR) is obtained from Problem (LP) as a result of
restriction to Y∗ and the values of components p(j), j ∈ Y∗\N̂ , are fixed to their
lower bounds in accordance with Property (c) of Lemma 1. Similarly, Problem
(LPC) is obtained from Problem (LP) as a result of contraction by Y∗ and
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the values of components p(j), j ∈ N̂\Y∗, are fixed to their upper bounds in
accordance with Property (b) of Lemma 1.

Now we explain how the original Problem (LP) can be decomposed recur-
sively based on Theorem 3, until we obtain a collection of trivially solvable prob-
lems with no non-fixed variables. As described in [32,34], in each stage of the
recursive procedure, we need to solve a subproblem that can be written in the
following generic form:

LP(H,F,K, l,u) : max
∑

j∈H

w(j)p(j)

s.t. p(X) ≤ ϕH
K(X) = ϕ(X ∪ K) − ϕ(K), X ∈ 2H ,

l(j) ≤ p(j) ≤ u(j), j ∈ H\F,
p(j) = u(j) = l(j), j ∈ F,

(6)

where H ⊆ N is the index set of components of vector p ; l = (l(j) | j ∈ H) and
u = (u(j) | j ∈ H) are, respectively, the current vectors of the lower and upper
bounds on variables p(j), j ∈ H; F ⊆ H is the index set of fixed components,
i.e., l(j) = u(j) holds for each j ∈ F ; K ⊆ N\H is the set that defines the rank
function ϕH

K : 2H → R such that ϕH
K(X) = ϕ(X ∪ K) − ϕ(K), X ∈ 2H .

Suppose that Problem LP(H,F,K, l,u) of the form (6) contains at least one
non-fixed variable, i.e., |H\F | > 0 . We define a function ϕ̃H

K : 2H → R by

ϕ̃H
K(X) = min

Y ∈2H
{ϕH

K(Y ) + u(X\Y ) − l(Y \X)}. (7)

By Theorem 1, the set of maximal feasible solutions of Problem LP(H,F,K, l,u)
is given as a base polyhedron B(ϕ̃H

K) associated with the function ϕ̃H
K . Therefore,

if |H\F | = 1 and H\F = {j′}, then an optimal solution p∗ ∈ R
H is given by

p∗(j) =
{

ϕ̃H
K({j′}), j = j′,

u(j), j ∈ F.
(8)

Suppose that |H\F | ≥ 2. Then, we call a recursive Procedure Decomp(H,F,
K, l,u) explained below. Let Ĥ ⊆ H be a heavy-element subset of H with respect
to the vector (w(j) | j ∈ H), and Y∗ ⊆ H be an instrumental set for set Ĥ, i.e.,

ϕ̃H
K(Ĥ) = ϕH

K(Y∗) + u(Ĥ\Y∗) − l(Y∗\Ĥ). (9)

Without going into implementation details, we follow [32,34] and give a for-
mal description of the recursive procedure. For the current Problem LP(H,F,K,
l, u), we compute optimal solutions p1 ∈ R

Y∗ and p2 ∈ R
H\Y∗ of the two sub-

problems by calling Procedures Decomp(Y∗, F1,K, l1,u1) and Decomp(H\Y∗,
F2,K ∪ Y∗, l2,u2). By Theorem 3, the direct sum p∗ = p1 ⊕ p2 is an opti-
mal solution of Problem LP(H,F,K, l,u), which is the output of Proce-
dure Decomp(H,F,K, l,u).
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Procedure Decomp(H,F,K, l,u)

Step 1. If |H\F | = 0, then output the vector p∗ = u ∈ R
H and return. If

|H\F | = 1 and H\F = {j′}, then compute the value ϕ̃H
K({j′}), output the

vector p∗ given by (8) and return.
Step 2. Select a heavy-element subset Ĥ of H\F with respect to w, and deter-

mine an instrumental set Y∗ ⊆ H for set Ĥ satisfying (9).
Step 3. Define the vectors l1,u1 ∈ RY∗ and set F1 by

l1(j) = l(j), j ∈ Y∗, u1(j) =
{

l(j), j ∈ Y∗\Ĥ,

u(j), j ∈ Y∗ ∩ Ĥ,
; F1 = Y∗\Ĥ,

Call Procedure Decomp(Y∗, F1,K, l1,u1) to obtain an optimal solution p1 ∈
R

Y∗ of Problem LP(Y∗, F1,K, l1,u1).
Step 4. Define the vectors l2,u2 ∈ RH\Y∗ and set F2 by

l2(j) =
{

u(j), j ∈ Ĥ\Y∗,
l(j), j ∈ H\(Y∗ ∪ Ĥ),

u2(j) = u(j), j ∈ H\Y∗;

F2 = (Ĥ ∪ (H ∩ F ))\Y∗.

Call Procedure Decomp(H\Y∗, F2,K ∪Y∗, l2,u2) to obtain an optimal solu-
tion p2 ∈ R

H\Y∗ of Problem LP(H\Y∗, F2,K ∪ Y∗, l2,u2).
Step 5. Output the direct sum p∗ = p1 ⊕ p2 ∈ R

H and return.

The original Problem (LP) is solved by calling Procedure Decomp(N, ∅, ∅,
p,p). Its actual running time depends on the choice of a heavy-element subset
Ĥ in Step 2 and on the time complexity of finding an instrumental set Y∗. As
proved in [32], if at each level of recursion a heavy-element set is chosen to contain
roughly a half of the non-fixed variables, then the overall depth of recursion of
Procedure Decomp applied to Problem LP(N, ∅, ∅,p,p) is O(log n).

For a typical iteration of Procedure Decomp applied to Problem LP(H,F,K,
l,u) with |H| = h and |H\F | = g, let TY∗(h) denote the running time for com-
puting the value ϕ̃H

K(Ĥ) for a given set Ĥ ⊆ H and finding an instrumental set Y∗
in Step 2. In Steps 3 and 4, Procedure Decomp splits Problem LP(H,F,K, l,u)
into two subproblems: one with h1 variables among which g1 ≤ min{h1, �g/2}
variables are not fixed, and the other one with h2 = h − h1 variables, among
which g2 ≤ min{h2, �g/2�} variables are not fixed. Let TSplit (h) denote the
time complexity for setting up the instances of these two subproblems. It is
shown in [32,34] that Problem (LP) can be solved by Procedure Decomp in
O((TY∗(n) + TSplit(n)) log n) time.

4 SCPT Problems with a Common Deadline

In this section, we review the results on the SCPT problems α|r(j), p(j) =
p(j) − x(j), pmtn,C(j) ≤ d|W , where α ∈ {1, P,Q}, provided that the jobs
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have a common deadline d. We also report the results on the makespan min-
imization versions α|r(j), pmtn|Cmax and the bicriteria versions α|r(j), p(j) =
p(j) − x(j), pmtn| (Cmax,W ). For the latter type of problems, it is required to
minimize both objective functions Cmax and W simultaneously, in the Pareto
sense, so that the solution is delivered in the form of an efficiency frontier.

First, assume that the release dates are equal to zero, so that the prob-
lems with a single machine are trivial. Solving problem P |pmtn|Cmax with fixed
processing times can be done by a linear-time algorithm [18]. As shown in
[12], problem P |p(j) = p(j) − x(j), pmtn,C(j) ≤ d|W reduces to a continu-
ous knapsack problem and can be solved in O(n) time. The bicriteria problem
P |p(j) = p(j) − x(j), pmtn| (Cmax,W ) is solved in [27] by an O(n log n)-time
algorithm, which is the best possible.

In the case of uniform machines, the best known algorithm for solving
problem Q|pmtn|Cmax with fixed processing times is due to [6]. For problem
Q|p(j) = p(j)−x(j), pmtn,C(j) ≤ d|W , it is shown in [21] how to find the actual
processing times in O(nm + n log n) time. For the latter problem, Shakhlevich
and Strusevich [28] use the SO reasoning to design an algorithm of the same
running time and extend it to solving a bicriteria problem Q|p(j) = p(j) −
x(j), pmtn| (Cmax,W ). The fastest algorithms for solving problems Q|p(j) =
p(j) − x(j), pmtn| (Cmax,W ) and Q|p(j) = p(j) − x(j), pmtn,C(j) ≤ d|W are
discussed in Sect. 4.2 and in Sect. 4.3, respectively; their respective running times
are O(nm log m) and O(n log n).

For the models with different release dates, problem 1|r(j), p(j) = p(j)−x(j),
pmtn,C(j) ≤ d (j) |W is one of the most studied SCPT problems. The first
algorithm that requires O(n log n) time and provides all implementation details
is developed in [27].

Problem P |r(j), pmtn|Cmax with fixed processing times on m identical par-
allel machines can be solved in O(n log n) time, as proved in [22]. For problem
Q|r(j), pmtn|Cmax, an algorithm for that requires O(mn + n log n) time is due
to [23]. Prior to work of our team on the links between the SCPT problems and
SO [31], no purpose-built algorithms had been known for problems Q|p(j) =
p(j)−x(j), pmtn,C(j) ≤ d|W and α|r(j), p(j) = p(j)−x(j), pmtn,C(j) ≤ d|W
with α ∈ {P,Q}, as well as for their bicriteria counterparts. We consider these
problems in Sects. 4.3 and 4.2, respectively.

4.1 Production Capacity Rank Functions

In this subsection, we present reformulations of the SCPT problems with a com-
mon deadline in terms of Problem (LP) with appropriately defined rank func-
tions.

We assume that if the jobs have different release dates, they are numbered
to satisfy

r(1) ≤ r(2) ≤ . . . ≤ r(n). (10)

If the machines are uniform, they are numbered in accordance with (1). We
denote

S0 = 0, Sk = s1 + s2 + · · · + sk, 1 ≤ k ≤ m. (11)
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Sk represents the total speed of k fastest machines; if the machines are identical,
Sk = k holds.

For each problem Q|p(j) = p(j) − x(j), C(j) ≤ d, pmtn|W , P |r(j), p(j) =
p(j)−x(j), C(j) ≤ d, pmtn|W and Q|r(j), p(j) = p(j)−x(j), C(j) ≤ d, pmtn|W ,
we need to find the actual processing times p(j) = p(j) − x(j), j ∈ N , such that
all jobs can be completed by a common deadline d and the total compression cost
W =

∑
j∈N w(j)x(j) is minimized. Each of these problems can be formulated as

Problem (LP) with p(j), j ∈ N , being decision variables, and the objective func-
tion to be maximized being

∑
j∈N w(j)p(j) =

∑
j∈N w(j) (p(j) − x(j)). Since

each decision variable p(j) has a lower bound p(j) and an upper bound p(j),
the set of constraints of Problem (LP) includes the box constraints of the form
p(j) ≤ p(j) ≤ p(j), j ∈ N . Besides, the inequality

p (X) ≤ ϕ(X) (12)

should hold for each subset X ⊆ N of jobs, where a meaningful interpretation
of a rank function ϕ(X) is the largest capacity available for processing the jobs
of set X.

To determine ϕ(X) for each of these SCPT problems, an important generic
condition is available, which, according to [2] can be stated as follows: for a given
deadline d a feasible schedule exists if and only if: (i) for each k, 1 ≤ k ≤ m − 1,
k longest jobs can be processed on k fastest machines by time d, and (ii) all n
jobs can be completed on all m machines by time d.

For example, problem Q|p(j) = p(j) − x(j), C(j) ≤ d, pmtn|W , in which all
jobs are simultaneously available from time zero, reduces to Problem (LP) of the
form (2) with the rank function

ϕ(X) = dSmin{|X|,m} =
{

dS|X|, if |X| ≤ m − 1,
dSm, if |X| ≥ m.

(13)

It is clear that the conditions p(X) ≤ ϕ(X), X ∈ 2N , for the function
ϕ(X) defined by (13) correspond to the conditions (i) and (ii) above, provided
that |X| ≤ m − 1 and |X| ≥ m, respectively. As proved in [28], function ϕ is
submodular.

Given problem Q|r(j), p(j) = p(j) − x(j), C(j) ≤ d, pmtn|W , for a set of
jobs X ⊆ N , we define ri(X) to be the i-th smallest release date in set X ∈ 2N ,
1 ≤ i ≤ |X|. Then, for a non-empty set X of jobs, the largest processing capacity
available on the fastest machine M1 is s1 (d − r1(X)), the total largest processing
capacity on two fastest machines M1 and M2 is s1 (d − r1(X)) + s2 (d − r2(X)),
etc. We deduce that

ϕ(X) =
{

dS|X| − ∑|X|
i=1 siri(X), if |X| ≤ m − 1,

dSm − ∑m
i=1 siri(X), if |X| ≥ m,

(14)

which in the case of problem P |r(j), p(j) = p(j) − x(j), C(j) ≤ d, pmtn|W
simplifies to

ϕ(X) =
{

d|X| − ∑|X|
i=1 ri(X), if |X| ≤ m − 1,

dm − ∑m
i=1 ri(X), if |X| ≥ m.

(15)
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It can be verified that functions (14) and (15) are submodular.
Thus, each of the three SCPT problems above reduces to Problem (LP) and in

principle can be solved by the greedy algorithm discussed in Theorem2. Similar
reductions can be provided for other SCPT problems [29]. In what follows, we
show that using the decomposition algorithm from Sect. 3, these problems can
be solved faster.

Notice that the greedy reasoning has always been the main tool for solving
the SCPT problems. However, in early papers on this topic, each individual
problem was considered separately and a justification of the greedy approach
was often lengthy and developed from the first principles. In fact, as seen from
above, the greedy nature of the solution approaches is due to the fact that many
SCPT problems can be reformulated in terms of linear programming problems
with submodular constraints.

4.2 Solving Bicriteria Problems by Submodular Methods

Theorem 2 provides the foundation to an approach that finds the efficiency fron-
tier of the bicriteria scheduling problems Q|p(j) = p(j) − x(j), pmtn| (Cmax,W )
and αm|r(j), p(j) = p(j) − x(j), pmtn| (Cmax,W ) with α ∈ {P,Q} in a closed
form [31].

Given an instance of the problem, let S∗(d) denote a schedule with a
makespan Cmax = d that minimizes the total compression cost. The solution
to the bicriteria problem will be delivered as a collection of break points of the
efficiency frontier (d,W (d)), where d is a value of the makespan of schedule
S∗(d) and W (d) is a (piecewise-linear in d) function that represents the total
optimal compression cost. Let also p∗(j, d) denote the optimal value of the actual
processing time of job j in schedule S∗(d). It follows that

W (d) =
n∑

t=1

w (σ(t)) p∗ (σ(t), d) . (16)

For the problems under consideration, due to (13), (14) and (15), the rank
function ϕ(X) as well as the function ϕ̃(X) of the form (3) are functions of d;
therefore in this paper we may write ϕ(X, d) and ϕ̃(X, d) whenever we want to
stress that dependence.

Given a value of d such that all jobs can be completed by time d, define a
function

ψt(d) = ϕ̃(Nt(σ), d), 1 ≤ t ≤ n, (17)

computed for this value of d. By (5),

ψt(d) = p(Nt(σ)) + min
Y ∈2N

{
ϕ(Y ) − p(Nt(σ) ∩ Y ) − p(Y \Nt(σ))

}
.

For all scheduling problems under consideration, due to (13), (14) and (15),
there are m expressions for ϕ(X), depending on whether |X| ≤ m−1 or |X| ≥ m,
and ψt(d) can be represented as a piecewise-linear function of the form of an
envelope with m + 1 pieces.
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Setting for completeness w (σ(n + 1)) = 0, we deduce from Theorem 2 that

W (d) =
n∑

t=1

w (σ(t)) (ψt(d) − ψt−1(d)) =
n∑

t=1

(w (σ(t)) − w (σ(t + 1)))ψt(d).

(18)
Thus, in order to be able to compute the (piecewise-linear) function W (d), we
first have to compute the functions ψt(d), 1 ≤ t ≤ n, for all relevant values of
d. It is shown in [31], that after the functions ψt(d), 1 ≤ t ≤ n, for all relevant
values of d are found, their weighted sum (18) can be computed in O (nm log n)
time. Thi s (piecewise-linear) function W (d) fully defines the efficiency frontier
for the corresponding bicriteria scheduling problem.

Adapting this general framework to problem Q|p(j) = p(j) − x(j),
pmtn|(Cmax,W ), it can be proved that all required functions ψt(d), 1 ≤ t ≤ n,
can be found in O (n log n + nm) time, and the overall problem is solvable in
O (nm log m) time, while problems αm|r(j), p(j) = p(j)−x(j), pmtn| (Cmax,W )
can be solved in O

(
n2 log m

)
time and in O(n2m) time for α = P and α = Q,

respectively.

4.3 Solving Single Criterion Problems by Decomposition

We now show that problems Q|p(j) = p(j) − x(j), pmtn,C (j) ≤ d|W and
αm|r(j), p(j) = p(j) − x(j), pmtn,C (j) ≤ d|W with α ∈ {P,Q} can be solved
faster than is guaranteed by the algorithms for the respective bicriteria problems
considered in Sect. 4.2. This is achieved by adapting the decomposition algorithm
based on Procedure Decomp presented in Sect. 3. The crucial issue here is the
computation of the instrumental set Y∗ in each iteration.

For an initial Problem LP(N, ∅, ∅, l,u), associated with one of the three
scheduling problems above, assume that the following preprocessing is done
in O(n log n) time before calling Procedure Decomp(N, ∅, ∅, l,u): the jobs are
numbered in non-decreasing order of their release dates in accordance with (10);
the machines are numbered in non-increasing order of their speeds in accordance
with (1), and the partial sums Sv are computed for all v, 0 ≤ v ≤ m, by (11); the
lists (l(j) | j ∈ N) and (u(j) | j ∈ N) are formed and their elements are sorted
in non-decreasing order.

In a typical iteration of Procedure Decomp applied to Problem LP(H,F,K,
l,u) of the form (6) related to the rank function ϕH

K(Y ) = ϕ(Y ∪ K) − ϕ(K), it
is shown in [32] that for a given set X ⊆ H the function ϕ̃H

K : 2H → R can be
computed as

ϕ̃H
K(X) = u(X) − ϕ(K) + min

Y ∈2H
{ϕ(Y ∪ K) − b(Y )}, (19)

where ϕ is the initial rank function associated with the scheduling problem under
consideration, and

b(j) =
{

u(j), if j ∈ X,
l(j), if j ∈ H\X.

(20)
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Notice that if the minimum in the right-hand side of (19) is achieved for
Y = Y∗, then Y∗ is an instrumental set for set X.

For Problem LP(H,F,K, l,u) associated with problem Q|p(j) = p(j) −
x(j), pmtn,C (j) ≤ d|W due to (13) and (19) we deduce that

ϕ̃H
K(X) = u(X) − dSmin{m,k} + min{Φ′, Φ′′}. (21)

Here, Φ′ = +∞ if h > m − k − 1; otherwise

Φ′ = min
0≤v≤m−k−1

{dSv+k −
v∑

i=1

bi}, (22)

where bi is the i-th largest value in the list (b(j) | j ∈ H), while Φ′′ = +∞ if
h ≤ m − k − 1; otherwise Φ′′ = dSm − b(H). In any case, in terms of the notions
introduced in Sect. 3 we deduce that TY∗(h) = TSplit(h) = O (h), so that the over-
all running time needed to solve problem Q|p(j) = p(j) − x(j), pmtn,C (j) ≤
d|W by the decomposition algorithm based on recursive applications of Proce-
dure Decomp is O (n log n). An alternative implementation of the same app-
roach, also presented in [32], does not involve a full preprocessing and requires
O(n + m log m log n) time.

Problem P |r(j), p(j) = p(j) − x(j), C(j) ≤ d, pmtn|W and Problem Q|r(j),
p(j) = p(j) − x(j), C(j) ≤ d, pmtn|W can be solved by the decomposition algo-
rithm in O(n log m log n) time and in O(nm log n) time, respectively.

5 SCPT Problems with Distinct Deadlines

We start with a brief review of the feasibility problems α|r(j), pmtn,C(j) ≤
d(j)|◦, where α ∈ {1, P,Q} , in which for each job j ∈ N the processing time p (j)
is fixed and the task is to verify the existence of a deadline-feasible preemptive
schedule.

Divide the interval [minj∈N r(j),maxj∈N d(j)] into subintervals by using the
release dates r(j) and the deadlines d(j) for j ∈ N . Let T = (τ0, τ1, . . . , τγ),
where 1 ≤ γ ≤ 2n − 1, be the increasing sequence of distinct numbers in the list
(r(j), d(j) | j ∈ N). Introduce the intervals Ik = [τk−1, τk], 1 ≤ k ≤ γ. Denote
the length of interval Ik by Δk = τk − τk−1.

For a set of jobs X ⊆ N , let ϕ(X) be a set-function that represents the total
production capacity available for the feasible processing of the jobs of set X.

For a particular problem, the function ϕ(X) can be suitably defined. Interval
Ik is available for processing job j if r(j) ≤ τk−1 and d(j) ≥ τk. For a job
j, denote the set of the available intervals by Γ (j). For a set of jobs X ⊆ N ,
introduce the set-function

ϕ1(X) =
∑

Ik∈∪j∈XΓ (j)

Δk. (23)

Then for problem 1|r(j), pmtn,C(j) ≤ d(j)|◦ a feasible schedule exists if
and only if inequality (12) holds for all sets X ⊆ N for ϕ(X) = ϕ1 (X).



86 A. Shioura et al.

Such a statement (in different terms) was first formulated in [7] and [9]. For
the problems on parallel machines, the corresponding representation of the total
processing capacity in the form of a set-function is defined in [28]. For all ver-
sions of the problem, with a single or parallel machines, the set-function ϕ is
submodular.

The single machine feasibility problem 1|r(j), pmtn,C(j) ≤ d(j)|◦ in princi-
ple cannot be solved faster than finding the ordered sequence T = (τ0, τ1, . . . , τγ)
of the release dates and deadlines. The best possible running time O (n log n)
for solving problem 1|r(j), pmtn,C(j) ≤ d(j)|◦ is achieved by the EDF (Earliest
Deadline First) algorithm designed in [9].

For parallel machine problems, it is efficient to reformulate the problem of
checking the inequalities (12) in terms of finding the maximum flow in a spe-
cial bipartite network; see, e.g., [3]. Using an algorithm from [1], such a net-
work problem can be solved in O

(
n3

)
time and in O

(
mn3

)
time, for problem

P |r(j), pmtn,C(j) ≤ d(j)|◦ and problem Q|r(j), pmtn,C(j) ≤ d(j)|◦, respec-
tively.

Most studies on the SCPT problems α|r(j), p(j) = p(j)−x(j), pmtn,C(j) ≤
d(j)|W , where α ∈ {1, P,Q}, have been conducted within the body of research
on imprecise computation scheduling [15]; however, the best known algorithms
have been produced by alternative methods.

For the SCPT problems on parallel machines, the most efficient algorithms
are based on reductions to the parametric max-flow problems in bipartite net-
works. McCormick [17] develops an extension of the parametric flow algo-
rithm in [5] and this approach gives the running times of O

(
n3

)
for problem

P |r(j), p(j) = p(j) − x(j), pmtn,C(j) ≤ d(j)|W and of O
(
mn3

)
for problem

Q|r(j), p(j) = p(j)−x(j), pmtn,C(j) ≤ d(j)|W , matching the best known times
for the corresponding problems with fixed processing times.

Notice that in most papers on imprecise computation scheduling it is claimed
that P |r(j), p(j) = p(j) − x(j), pmtn,C(j) ≤ d(j)|W can be solved faster,
in O

(
n2 log2 n

)
time, by reducing it to the min-cost flow problem in a spe-

cial network; see [15]. However, as demonstrated in [33], such a representation,
although possible for a single machine problem, cannot be extended to the par-
allel machines models, so that the best known running time for solving problem
P |r(j), p(j) = p(j) − x(j), pmtn,C(j) ≤ d(j)|W , as well as its counterpart with
fixed processing times, is O

(
n3

)
.

Problem 1|r(j), p(j) = p(j) − x(j), pmtn,C(j) ≤ d(j)|W , for many years has
been an object of intensive study, mainly within the body of research on imprecise
computation. The history of studies on this problem is a race for developing an
O (n log n)-time algorithm, matching the best possible estimate achieved for a
simpler feasibility problem 1|r(j), pmtn,C(j) ≤ d(j)|◦.

Hochbaum and Shamir [8] present two algorithms, one solves problem 1|r(j),
p(j) = p(j) − x(j), pmtn,C(j) ≤ d(j)|W in O(n2) time and the other solves
its counterpart with the unweighted objective function in O (n log n) time. An
algorithm for problem 1|r(j), p(j) = p(j) − x(j), pmtn,C(j) ≤ d(j)|W devel-
oped in [16] requires O(n log n + κn) time, where κ is the number of distinct
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weights w(j), while an algorithm in [30] takes O
(
n log2 n

)
time, provided that

the numbers p(j), p(j), r(j), d(j) are integers.

5.1 Solving Single Machine Problem by Decomposition

The time complexity of problem 1|r(j), p(j) = p(j)−x(j), pmtn,C(j) ≤ d(j)|W
is finally settled in [34], where an O (n log n)-time algorithm is given. The algo-
rithm is based on a decomposition algorithm for Problem (LP) and uses an
algorithm from [8] as a subroutine.

The efficient implementation of the decomposition algorithm developed in
[34] is based on the following statement.

Theorem 4 (cf. [4, Corollary 3.4]). For a submodular system (2H , ϕ) and
a vector b ∈ R

H , the equality

min
Y ∈2H

{ϕ(Y ) + b(H\Y )} = max{p(H) | p ∈ P (ϕ), p ≤ b}

holds. In particular, if b ≥ 0 and ϕ (X) ≥ 0 for all X ⊆ N then the right-hand
side is equal to max{p(H) | p ∈ P (ϕ), 0 ≤ p ≤ b}.

Given Problem LP(H,F,K, l,u) of the form (6), for a set X ⊆ H define the
vector b ∈ R

H by (20), and for a set X ⊆ H represent ϕ̃H
K(X) in the form

ϕ̃H
K(X) = min

Y ∈2H
{ϕH

K(Y ) + u(X\Y ) − l(Y \X)}
= −l(H\X) + min

Y ∈2H
{ϕH

K(Y ) + b(H\Y )}.

Since −l(H\X) is a constant, in order to find an instrumental set Y∗ that
defines ϕ̃H

K(X) it suffices to find the set-minimizer for minY ∈2H{ϕH
K(Y ) +

b(H\Y )}. By Theorem 4, the latter minimization problem is equivalent to the
following auxiliary problem:

(AuxLP) : max
∑

j∈H

q(j)

s.t. q(Y ) ≤ ϕH
K(Y ), Y ∈ 2H ;

0 ≤ q(j) ≤ b(j), j ∈ H.

(24)

Let q∗ ∈ R
H be an optimal solution to Problem (AuxLP) with the values

b (j) defined with respect to a set X ⊆ H. It is proved in [34] that a set Y∗ is the
required instrumental set for Problem LP(H,F,K, l,u) of the form (6) if and
only if

q∗(Y∗) = ϕH
K(Y∗); q(j) = b(j), j ∈ H\Y∗.

Problem 1|r(j), p(j) = p(j) − x(j), pmtn,C(j) ≤ d(j)|∑ w(j)x(j) reduces
to Problem (LP) with the rank function ϕ = ϕ1 defined by (23). Consider a
typical iteration of Procedure Decomp applied to Problem LP(H,F,K, l,u)
of the form (6) related to the rank function ϕH

K(Y ) = ϕ(Y ∪ K) − ϕ(K).
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For a set X ⊆ H of jobs, a meaningful interpretation of ϕH
K(X) is the total

length of the time intervals originally available for processing the jobs of set
X ∪ K after the intervals for processing the jobs of set K have been completely
used up.

Select a heavy-element set Ĥ and define the values b(j) by (20) applied to
X = Ĥ. Our goal is to find an instrumental set Y∗ for set Ĥ. As described above,
for this purpose we may solve the auxiliary Problem (ULP)

(ULP) : max
∑

j∈H

q(j)

s.t. q(X) ≤ ψ(X), X ∈ 2H ,
0 ≤ q(j) ≤ b(j), j ∈ H.

(25)

Problem (ULP) can be seen as a version of a scheduling problem 1|r(j), q(j) =
b(j) − x(j), pmtn,C(j) ≤ d(j)|∑ x(j), in which it is required to determine the
actual processing times q(j) of jobs of set H to maximize the total (unweighted)
actual processing time, provided that 0 ≤ q(j) ≤ b(j) for each j ∈ H. It can be
solved by an algorithm developed by Hochbaum and Shamir [8], which uses the
UNION-FIND technique and guarantees that the actual processing times of all
jobs and the corresponding optimal schedule are found in O(h) time, provided
that the jobs are renumbered in non-increasing order of their release dates. The
algorithm is based on the latest-release-date-first rule. Informally, the jobs are
taken one by one in the order of their numbering and each job j ∈ H is placed
into the current partial schedule to fill the available time intervals consecutively,
from right to left, starting from the right-most available interval. The assignment
of a job j is complete either if its actual processing time q(j) reaches its upper
bound b(j) or if no available interval is left. Only a slight modification of the
Hochbaum-Shamir algorithm is required to find not only the optimal values q∗(j)
of the processing times, but also an associated instrumental set. The running
time of modified algorithm is still O (h).

In terms of the notions introduced in Sect. 3 we deduce that TY∗(h) =
TSplit(h) = O (h), so that the overall running time needed to solve problem
1|r(j), p(j) = p(j) − x(j), pmtn,C (j) ≤ d (j) |W by the decomposition algo-
rithm based on recursive applications of Procedure Decompis O (n log n).

6 Conclusions

In this paper, we demonstrate how the SCPT problems on parallel machines
can be solved efficiently by applying methods of submodular optimization. For
single criterion SCPT problems to minimize the total compression costs a devel-
oped decomposition recursive algorithm for maximizing a linear function over a
submodular polyhedron intersected with a box is especially useful, since it leads
to fast algorithms, some of which are the best possible. Another area of appli-
cations of submodular reformulations of the SCPT problems includes bicriteria
problems, for which either faster than previously known algorithms are obtained
or first polynomial algorithms are designed.
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We intend to extend this approach to other scheduling models with control-
lable processing parameters, in particular to speed scaling problems. It will be
interesting to identify problems, including those outside the area of scheduling,
for which an adaptation of our approach is beneficial.
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Abstract. A cycle cover of a graph is a set of cycles such that every
vertex lies in exactly one cycle. We consider the following two cycle cover
problems. Problem A: given a complete undirected graph G = (V,E),
edge costs c : E → R+ and positive integers s1, . . . , sm, find a cycle cover
C1, C2, . . . , Cm of minimum total cost subject to Ci has length si for each
i = 1, . . .m. Problem B: given a complete undirected graph G = (V,E),
edge costs c : E → R+, special vertices (depots) w1 . . . , wm ∈ V and
positive integers s1, . . . , sm, find a cycle cover C1, C2, . . . , Cm of minimum
total cost subject to Ci has length si and contains vertex wi for each
i = 1, . . .m. Problem B is a version of vehicle routing problem with m
vehicles and routings of given lengths. Both problems include the TSP
as a special case and so do not admit constant-factor approximations
unless P=NP. We consider the metric case. Goemans and Williamson
established that a case of Problem A when all cycles have length k is
approximable within a factor of 4. In this paper we present the following
results. Problem B can be solved by a 4-approximation algorithm in
O(n2 log n) time for m = 2 (n = |V |). Problem A can be solved by a
4-approximation algorithm in O(n3 logn) time for m = 2. Problem A
can be solved by a 8-approximation algorithm in O(nm+1 logn) time for
any m ≥ 3.

Keywords: Undirected graph · Cycle cover · Approximation algo-
rithm · Worst-case analysis · Running time

1 Introduction

A cycle cover of a graph is a set of cycles such that every vertex lies in exactly
one cycle. Cycle covers are important in designing approximation algorithms for
various versions of the traveling salesman problem [2,3,5–7,13], for the shortest
superstring problem [4,18], and for vehicle routing problems [11]. Hamiltonian
cycles are special cases of cycle covers. Another classical example are cycle cov-
ers of minimum total weight which can be computed in polynomial time. This
fact is exploited in the above mentioned algorithms, which commonly start by
computing a cycle cover and then tie cycles to obtain a Hamiltonian cycle. Short
cycles restrict the approximation ratios achieved by such algorithms: the longer
the cycles in the initial cycle cover, the better the approximation ratio. Thus, we
c© Springer International Publishing Switzerland 2016
Y. Kochetov et al. (Eds.): DOOR 2016, LNCS 9869, pp. 93–104, 2016.
DOI: 10.1007/978-3-319-44914-2 8
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arrive at the problem of computing cycle covers without short cycles. More-
over, some vehicle routing problems [11] require covering vertices with cycles
of bounded length. This motivates us to consider restricted cycle covers, where
cycles have prescribed lengths.

Beyond applications in designing approximation algorithms, cycle covers are
interesting on their own account. The classical matching problem is the problem
of finding 1-factors, i.e., spanning subgraphs in which every vertex is incident to
exactly one edge. Cycle covers of undirected graphs are also called 2-factors since
every vertex is incident to exactly two edges in a cycle cover. Both structural
properties of graph factors and the complexity of computing graph factors have
been the topic of a considerable amount of research (see [14,16]).

1.1 Problem Formulations

Throughout the paper n stands for the number of vertices of a graph G = (V,E).
For a subgraph H of G, denote by V (H) the set of its vertices.

We consider the following two problems.

Problem A

Instance: A complete undirected graph G = (V,E), edge costs c : E → R+

and positive integers s1, . . . , sm such that si ≥ 3, i = 1, . . . , m, and
∑m

i=1 si = n.
Goal: Find a cycle cover C = (C1, C2, . . . , Cm) of minimum total cost pro-

vided that the cycle Ci has length si for each i = 1, . . . m.

Problem B

Instance: A complete undirected graph G = (V,E), edge costs c : E → R+,
m special vertices (depots) w1, . . . , wm ∈ V and positive integers s1, . . . , sm such
that si ≥ 3, i = 1, . . . ,m and

∑m
i=1 si = n.

Goal: Find a cycle cover C = (C1, C2, . . . , Ck) of minimum total cost pro-
vided that the cycle Ci has length si and contains vertex wi for each i = 1, . . . m.

Note that Problem B is a version of vehicle routing problem with m vehicles
and routings of given lengths.

In the case when m is fixed Problem A polynomially reduces to problem B by
fixing any vertex as one depot and examining all possible different m−1 vertices
as the remaining depots. Thus Problem A can be solved in time O(nm−1Q) if
Problem B can be solved in time Q. This reduction clearly preserves approxima-
tion factor. Both problems include the Traveling Salesman Problem (TSP) as a
special case. Hence both problems are NP-hard and do not admit constant-factor
approximations when the edge costs are arbitrary. In this paper we assume that
the cost function c is a metric, i.e., the edge costs satisfy the triangle inequality.

1.2 Related Results

We give a short survey of the results concerning the metric case. The cycle cover
problem without any restrictions on sizes of cycles can be solved in polynomial
time by using Tutte’s reduction to the classical perfect matching problem [14].
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By using a modification of an algorithm due to Hartvigsen [10], a minimum-
weight cycle cover with cycle lengths at least 4 in graphs with edge weights one
and two (a special case of metric) can be computed in polynomial time. A cycle
cover in which each cycle has size k can be found approximately with a factor
of 7/6 in the case when edge weights have values one and two [1]. Goemans and
Williamson [8] show that the problems of finding minimum-weight cycle cover
where each cycle has size k or at least k can be approximated within a factor
of 4. Manthey [15] designs a constant-factor approximation algorithm for the
problem of finding minimum-weight cycle cover provided that each cycle has size
in a given subset L ⊆ {3, 4, 5, . . .}. Manthey also shows that the problem cannot
be approximated within a factor of 2−ε for general L. Khachay and Neznakhina
[12] give a simple 2-approximation algorithm for the problem where it is required
to cover a graph by a given number of disjoint subgraphs of minimum weight.
These subgraphs are allowed to be cycles, single edges and single vertices.

1.3 Our Results

In this paper we present the following results.

• Problem B can be solved by a 4-approximation algorithm in O(n2 log n) time
for m = 2.

• Problem A can be solved by a 4-approximation algorithm in O(n3 log n) time
for m = 2.

• Problem A can be solved by a 8-approximation algorithm in O(nm+1 log n)
time for any m.

2 Goemans-Williamson Method

Goemans and Williamson [8] developed a powerful technique of designing algo-
rithms with constant approximation factors applicable to quite a number of
graph optimization problems. The following problem plays a key part in their
approach.

Constrained Forest Problem
Given a graph G = (V,E) and a function f : 2V → {0, 1}

Min
∑

e∈E

cexe

subject to:
∑

e∈δ(S)

xe ≥ f(S), ∅ �= S ⊂ V, (1)

xe ∈ {0, 1}, e ∈ E. (2)

where ce is a cost of edge e and δ(X) denotes the set of edges having exactly one
endpoint in S (i.e., δ(X) is a cut). This integer program (IP) can be interpreted
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as a very special case of covering problem in which we need to find a minimum-
cost set of edges that cover all cuts δ(S) corresponding to S with f(S) = 1. The
minimal solutions to IP are incidence vectors of forests which justifies the name
of the corresponding graph problem. Note that the classical minimum weight
spanning tree is a special case of Constrained Forest Problem (it corresponds to
the case when f(S) ≡ 1).

A function f : 2V → {0, 1} is called proper if

(i) (symmetry) f(S) = f(V \ S) for all S ⊆ V ,
(ii) (disjointness) If A and B are disjoint, then f(A) = f(B) = 0 implies f(A ∪

B) = 0,
(iii) f(∅) = 0.

Quite a number of interesting families of forests can be modeled by (IP)
with proper functions. In particular, minimum-cost spanning tree, shortest path,
Steiner tree, and T -join problems can be stated as (IP) with a proper function f
or, equivalently, as a Proper Constrained Forest Problem. Though many proper
constrained forest problems are NP-hard the general problem admits an approx-
imation with a factor of 2.

Theorem 1 (Goemans-Williamson). Proper constrained forest problem is
approximable within a factor of 2 in time O(n2 log n).

The original theorem of Goemans and Williamson (Theorem 2.4 in [8]) is formu-
lated in a slightly stronger form.

In the technical part of the paper we shall exploit some properties of the
Goemans-Williamson algorithm. It is of a primal-dual type and together with a
feasible solution (xe) to (IP) finds a feasible solution (yS) to the dual of linear
programming relaxation of (IP) that is obtained from (IP) by replacing (2) with
xe ≥ 0:

Max
∑

S⊂V

f(S) · yS

subject to:
∑

S:e∈δ(S)

yS ≤ ce, e ∈ E,

yS ≥ 0, ∅ �= S ⊂ V.

Moreover, these solutions satisfy the inequality
∑

e∈E

cexe ≤ 2
∑

S

yS . (3)

Goemans and Williamson [8] give quite a number of applications of Theorem1. In
particular, they show that the problems of finding minimum-weight cycle cover,
where each cycle has size k (the case of Problem A where si ≡ k) or at least k
for i = 1, . . . m, can be approximated within a factor of 4 in time O(n2 log n).
However the trick they use is not straightforwardly applicable to Problem A in
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the general case. Fortunately, some advance is possible if instead of Problem A
to try to develop approximations for the more general problem B. This is the
key idea of our approach.

3 Problem B: The Case m = 2

This case of Problem B can be formulated in the following way:
Given a complete undirected graph G = (V,E), a cost function c : E → R+,

depots w1, w2 ∈ V and positive integers s1, s2 ≥ 3, s1 + s2 = n, find a cycle
cover (C1, C2) of minimum total weight provided that for i = 1, 2 cycle Ci has
size si and contains depot wi.

The problem is a version of the vehicle routing problem. Each vehicle starts
from its depot, visits a prescribed number of cities and gets back. Each city
is visited by exactly one vehicle. We need to find routings for each vehicle of
minimum total cost.

Let I be an instance of Problem B with m = 2. Consider the instance of
Constrained Forest Problem with the following function f :

f(S) = 0 ⇔ either S = V , or S = ∅, or S contains exactly one depot wi and
|S| = si, i = 1, 2.

Lemma 1

(i) The function f is proper.
(ii) Let F be a minimal feasible solution to the instance of Constrained Forest

Problem with the function f . Then F is a spanning forest consisting of at
most two components. If F consists of exactly two components (trees), then
each component contains exactly one depot.

Proof. (i) Symmetry and disjointness follow straightforwardly from the definition
of f . (ii) Let T be a component of F . Assume that T is not a spanning tree.
Then by the definition of f and in view of (1), T contains exactly one depot.
Moreover, S = V \ V (T ) is a vertex set of the other component of T and this
component contains the other depot. �
Lemma 2. The cost of the optimal solution of Constrained Forest Problem with
the function f defined above provides a lower bound for the optimum of the
instance I.

Proof. Let C1, C2 be an optimal solution to I. By deleting a single edge in each
cycle Ci, i = 1, 2 we obtain a forest that is a feasible solution to the instance of
Constrained Forest Problem with the function f defined above. �

Let G be a complete graph with edge costs satisfying the triangle inequality
and let H be a connected subgraph of G. One of the ingredients of our algorithms
will be the well-known procedure of generating a cycle of G by duplicating edges
of H.

First, we replace each edge e of H by two parallel edges each having the
cost of e. This gives an Eulerian multigraph H̃. Then we find an Eulerian tour
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(a)

(b)

Fig. 1. (a) a connected graph H; (b) a cycle C obtained by shortcutting duplicated
edges of H.

T in H̃ and finally, transform T into a cycle C in G in the following way
(this procedure is often called shortcutting). Starting at an arbitrary vertex
v0, follow the tour T , but mark vertices when you visit them as already visited.
Later, when encountering a vertex previously visited, skip over it and go directly
to the next vertex on the tour. If that vertex has also already been seen, go on to
the next, etc. Keep going until encountering the vertex v0 again. The resulting
tour is a cycle C. For an example, see Fig. 1.

By the triangle inequality the cost of the cycle C is at most twice the cost
of the subgraph H. In what follows we refer to this procedure as Shortcut.
Note that Shortcut is basic in the folklore 2-approximation algorithm and
an important part of the classical 3/2-approximation algorithm of Christofides-
Serdyukov [9,17] for the metric TSP.

Now we are ready to present a description of the algorithm.
Algorithm AlgB2
The input is an instance I of Problem B with m = 2.

Step 1. Generate the instance of Constrained Forest Problem corresponding to
I and solve it approximately by the Goemans–Williamson algorithm. We get
a forest F . Let r be the number of components of F .

Step 2. By applying Shortcut to the components of F get cycles Ci, i = 1, r
(r ≤ 2).

Step 3. If r = 2, output the cycles C1, C2. Otherwise (i.e., r = 1) go to the
next step.

Step 4. We have a single cycle C containing both depots. Split C into two paths
P1 and P2 in such a way that Pi has size si and contains exactly one depot
wi, i = 1, 2. (the details in the Correctness, see also Fig. 2)

Step 5. By applying Shortcut to P1 P2 get two cycles C1 and C2 and declare
them the output.
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Correctness. We need to justify the splitting in Step 4. If the cycle contains
two depots w1 and w2, we first construct the path P1 by adding to the depot
w1 s1 − 1 pairwise adjacent edges not incident to w2. Then we delete the edges
incident to the endpoints of P1. The remaining part of the cycle C is also a path
and contains s2 vertices including the depot w2 (see Fig. 2) as required.

w1 w2

w1 w2

(a)

(b)

Fig. 2. (a) The single cycle C of length 8 at start of Step 4, s1 = 4, s2 = 4; (b) the
paths P1 and P2 colored by grey and black, respectively.

Approximation ratio.

Let cost(·) denote the total cost of edges in a subgraph and let OPT denote
the optimum of the instance I of Problem B where m = 2.

Lemma 3. The cost of the solution returned by AlgB2 is within a factor of 4
of the cost of an optimal solution, i.e.,

cost(C1) + cost(C2) ≤ 4 · OPT.

Proof. If AlgB2 finishes at Step 3 (i.e., r = 2) then it applies Shortcut one
time only. By Theorem 1 and Lemma 2

cost(C1) + cost(C2) ≤ 2 · cost(F ) ≤ 4 · OPT,

as required.
Therefore it remains to examine the case when r = 1, i.e., when F is a tree.

In this case AlgB2 applies Shortcut twice and a similar argument results in
a factor of 8. However, a refined argument gives the required factor of 4.
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First, observe that the following linear program (LP) is a relaxation of Prob-
lem B:

Min
∑

e∈E

cexe

subject to:
∑

e∈δ(S)

xe ≥ 2f(S), ∅ �= S ⊂ V,

xe ≥ 0, e ∈ E.

This follows from the evident fact that the corresponding integer program where
xe ∈ {0, 1} for all e ∈ E is a relaxation of Problem B. Consider now the dual
(DP) to (LP):

Max
∑

S⊂V

2f(S) · yS

subject to:
∑

S:e∈δ(S)

yS ≤ ce, e ∈ E,

yS ≥ 0, ∅ �= S ⊂ V.

As mentioned above the Goemans-Williamson algorithm is of a primal-dual type.
It finds a feasible solution yS to this dual and by using yS constructs a forest F
satisfying (3), i.e., ∑

e∈F
ce ≤ 2

∑

S

yS .

In the case of r = 1 F is a tree and AlgB2 applies Shortcut to transform it
into a single cycle D satisfying

∑

e∈D

ce ≤ 4
∑

S

yS .

The cycle D then splits into paths P1 and P2 and at Step 5 AlgB2 applies
Shortcut to get the output cycles C1 and C2. Thus we have

∑

e∈C1∪C2

ce ≤ 8
∑

S

yS .

However, the objective function of the dual (DP) is equal to 2
∑

yS (since yS = 0
for all S such that f(S) = 0) and so 2

∑
yS is a lower bound for OPT . Thus

∑

e∈C1∪C2

ce ≤ 4 · OPT. �
It is clear that the most time-consuming part of AlgB2 is Step 1. Thus we
arrive at the following theorem.
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Theorem 2. Problem B when m = 2 is approximable within a factor of 4 in
time O(n2 log n). �

The theorem implies

Corollary 1. Problem A when m = 2 is approximable within a factor of 4 in
time O(n3 log n). �

4 Problem A: The General Case

To construct an approximation algorithm for Problem A we shall use Problem
B as an auxiliary problem.

Let IB be an instance of Problem B. Consider an instance ICFP of Con-
strained Forest Problem with the following function:

f(S) = 0 ⇔ either S = V , or S = ∅, or S contains depots wi1 , . . . , wiq and
|S| = si1 + . . . + siq , i1, . . . , iq ∈ {1, . . . m}, i1 < i2 < . . . iq, q ≥ 1.

Lemma 4. The cost of the optimal solution to the instance ICFP provides a
lower bound for the optimum of the instance IB.

Proof. Let (C1, . . . , Cm) be an optimal cycle cover for the instance IB. By delet-
ing an edge in each cycle Ci, i = 1, . . . m, we obtain a feasible solution to the
instance ICFP . �
Lemma 5

(i) The function f is proper.
(ii) Let F be a minimal forest that is a feasible solution to ICFP . Let T be a

component of F and wi1 , . . . wiq be the depots in V (T ). Then V (T ) contains
at least one depot and

|V (T )| = si1 + . . . + siq . (4)

Proof. (i) Symmetry and disjointness straightforwardly follow from the definition
of f . (ii) If T contains no depot or (4) is not valid, then by the definition of f
(1) yields ∑

e∈δ(V (T ))

xe ≥ 1,

which contradicts the assumption that T is a component of F . �
We first present an (auxiliary) algorithm for Problem B. Given an instance

IB of Problem B, it outputs a cycle cover which is a feasible solution to the
corresponding instance IA of Problem A (however, this solution is not necessarily
feasible for IB).

Algorithm AuxB
The input is an instance I of Problem B.



102 A. Ageev

Step 1. By using Goemans-Williamson algorithm solve the Constrained Forest
Problem with function f . The result is a forest F .

Step 2. Apply Shortcut to the components of F . The result is a cycle cover
D1, . . . Dr.

Step 3. Split the cycles D1, . . . Dr into paths P1, . . . Pm such that Pi has si ver-
tices, i = 1, . . . ,m (for justification see Correctness below). Apply Shortcut
to these paths. The result is a cycle cover C1, . . . , Cm. Output it.

Correctness. We need to justify Step 3. At start of Step 2 we have a forest
F consisting of components T1, . . . , Tr. By the statement (ii) of Lemma 5 each
component of F satisfies property (4). At Step 2 T1, . . . , Tr transform into the
cycles D1, . . . Dr in such a way that V (Ti) = V (Di) for all i = 1, . . . , r. Therefore
the cycles D1, . . . Dr also satisfy property (4), which makes possible Step 3. �

Approximation ratio.
As in the previous section let cost(·) denote the total cost of edges in a

subgraph.

Lemma 6. AuxB finds a feasible solution to the instance IA whose cost is
within a factor of 8 of the cost of an optimal solution to IB.

Proof. Let OPTB denote the optimum of the instance IB . By Theorem 1 and
Lemma 4

cost(F) ≤ 2 · OPTB . (5)

At Step 2 AuxB applies procedure Shortcut to the components of F . Therefore

r∑

i=1

cost(Dk) ≤ 2cost(F). (6)

Since
m∑

i=1

cost(Pi) ≤
r∑

i=1

cost(Dk),

the application of procedure Shortcut at Step 3 yields

m∑

i=1

cost(Ci) ≤ 2
r∑

i=1

cost(Dk).

Together with (5) and (6) this gives

m∑

i=1

cost(Ci) ≤ 8 · OPTB ,

as required.

Lemma 7. Given an instance IA, there exists an (ordered) collection of m
depots {w1, . . . .wm} ⊆ V such that the optimum of IB coincides with the opti-
mum of IA.
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Proof. Let (C∗
1 , . . . , C∗

m) be an optimal cycle cover of IA. Select a vertex wi in
each Ci, i = 1, . . . m. Then the optimum of IB with the set of depots {w1, . . . .wm}
coincides with the optimum of IA. �

Algorithm AlgA
The input is an instance I of Problem A.
Fix an arbitrary vertex w1 as the first depot. Browse through all possible

(ordered) collections of m−1 depots {w2, . . . , wm} ⊂ V and apply AuxB to the
instance of Problem B corresponding to each collection. Output the cycle cover
of minimum total cost.

Theorem 3. AlgA finds a solution to Problem A whose cost is within a factor
of 8 of the cost of the optimal solution in O(nm+1 log n) time.

Proof. The approximation bound follows from Lemmas 6 and 7. The time com-
plexity bound follows from Theorem1 and necessity to solve O(nm−1) instances
of Constrained Forest Problem. �
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3. Bläser, M., Manthey, B., Sgall, J.: An improved approximation algorithm for the
asymmetric TSP with strengthened triangle inequality. J. Discrete Algorithms
4(4), 623–632 (2006)

4. Blum, A.L., Jiang, T., Li, M., Tromp, J., Yannakakis, M.: Linear approximation
of shortest superstrings. J. ACM 41(4), 630–647 (1994)
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1 Introduction

We study the parameterized complexity of the following NP-hard problem and
various special cases [13,15] with respect to the width of the given partial order.

Problem 1.1. (Resource-constrained project scheduling (RCPSP))

Input: A set J of jobs, a partial order � on J , a set R of renewable resources, for
each resource ρ ∈ R the available amount Rρ, and for each j ∈ J a processing
time pj ∈ N and the amount rjρ ≤ Rρ of resource ρ ∈ R that it consumes.

Find: A schedule (sj)j∈J , that is, a starting time sj ∈ N of each job j, such that
1. for i ≺ j, job i finishes before job j starts, that is, si + pi ≤ sj ,
2. at any time t, at most Rρ units of each resource ρ are used, that is,∑

j∈s(t) rjρ ≤ Rρ, where s(t) := {j ∈ J | t ∈ [sj , sj + pj)}, and
3. the maximum completion time Cmax := maxj∈J(sj + pj) is minimum.

A schedule satisfying (1)–(2) is feasible; a schedule satisfying (1)–(3) is optimal.

Intuitively, a schedule (sj)j∈J processes each job j ∈ J non-preemptively in
the half-open real-valued interval [sj , sj +pj), which costs rjρ units of resource ρ
during that time. After finishing, jobs free their resources for later jobs. If there
is only one resource and each job j requires one unit of it, then RCPSP is
equivalent to P|prec|Cmax, the NP-hard problem of non-preemptively scheduling
precedence-constrained jobs on a given number m of parallel identical machines
to minimize the maximum completion time [15].

Mnich and Wiese [11] asked whether P|prec|Cmax is solvable in f(pmax, w) ·
poly(n) time, where pmax is the maximum processing time, w is the width of the
given partial order �, n is the input size, and f is a computable function inde-
pendent of the input size. In other words, the question is whether P|prec|Cmax is
fixed-parameter tractable parameterized by pmax and w. Motivated by this ques-
tion, which we answer negatively, we strengthen hardness results for P|prec|Cmax

and refine algorithms for RCPSP with small partial order width.
Due to space constraints, some details are deferred to a full version of this

paper.

Stronger hardness results. We obtain new hardness results for the following spe-
cial cases of P|prec|Cmax (for basic definitions of parameterized complexity ter-
minology, see the end of this section and recent textbooks [4,5]):

(1) P2|chains|Cmax, the case with two machines and precedence constraints
given by a disjoint union of total orders, remains weakly NP-hard for width 3.

(2) P2|prec, pj∈{1, 2}|Cmax, the case with two machines and processing times 1
and 2, is W[2]-hard parameterized by the partial order width w.

(3) P3|prec, pj=1, sizej∈{1, 2}|Cmax, the case with three machines, unit process-
ing times, but where each job may require one or two machines, is also
W[2]-hard parameterized by the partial order width w.
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Towards showing (2) and (3), we show that Shuffle Product, the problem
of deciding whether a given word can be obtained by interleaving the letters of
k other given words, is W[2]-hard parameterized by k. This answers a question
of Rizzi and Vialette [12]. We put these results into context in the following.

Result (1) complements the fact that P|prec|Cmax with constant width w is
solvable in pseudo-polynomial time using dynamic programming [14] and that
P2|chains|Cmax is strongly NP-hard for unbounded width [6].

Result (2) complements the NP-hardness result for P2|prec, pj∈{1, 2}|Cmax

due to Ullman [15] and the W[2]-hardness result for P|prec,pj=1|Cmax parame-
terized by the number m of machines due to Bodlaender and Fellows [3]. While
not made explicit, one can observe that Bodlaender and Fellows’ reduction cre-
ates hard instances with w = m + 1. This is remarkable since P|prec|Cmax is
trivially polynomial-time solvable if w ≤ m, and also since the result negatively
answered Mnich and Wiese’s question [11] twenty years before it was posed.
Our result (2), however, gives a stronger negative answer: unless W[2] = FPT,
not even P2|prec, pj∈{1, 2}|Cmax allows for the desired f(w) ·poly(n)-time algo-
rithm.

Refined algorithms. Servakh [14] gave a geometric pseudo-polynomial-time algo-
rithm for RCPSP with constant partial order width w. The degree of the polyno-
mial depends on w and, by (1) above, the algorithm cannot be turned into a true
polynomial-time algorithm unless P = NP even for constant w. We refine this
algorithm to solve RCPSP in (2λ+1)w ·2w ·poly(n) time, where λ is the maximum
allowed difference between earliest possible and factual starting time of a job.
The degree of the polynomial depends neither on w nor λ and is indeed a poly-
nomial of the input size n. This does not contradict (1) since the factor (2λ+1)w

might be superpolynomial in n. We note that fixed-parameter tractability for w
or λ alone is ruled out by (2) and by Lenstra and Rinnooy Kan [10], respectively.

Preliminaries. A reflexive, symmetric, and transitive relation � on a set X is a
partial order. We write x ≺ y if x � y and x �= y. A subset X ′ ⊆ X is a chain
if � is a total order on X ′; it is an antichain if the elements of X ′ are mutually
incomparable by �. The width of � is the size of largest antichain in X. A chain
decomposition of X is a partition X = X1�· · ·�Xk such that each Xi is a chain.

Recently, the parameterized complexity of scheduling problems attracted
increased interest [2]. The idea is to accept exponential running times for
solving NP-hard problems, but to restrict them to a small parameter [4,5].
Instances (x, k) of a parameterized problem Π ⊆ Σ∗ × N consist of an input x
and a parameter k. A parameterized problem Π is fixed-parameter tractable if
it is solvable in f(k) · poly(|x|) time for some computable function f . Note that
the degree of the polynomial must not depend on k. FPT is the class of fixed-
parameter tractable parameterized problems. There is a hierarchy of parame-
terized complexity classes FPT ⊆ W[1] ⊆W[2] ⊆ · · · ⊆W[P], where all inclusions
are conjectured to be strict. A parameterized problem Π2 is W[t]-hard if there
is a parameterized reduction from each problem Π1 ∈ W[t] to Π2, that is, an
algorithm that maps an instance (x, k) of Π1 to an instance (x′, k′) of Π2 in
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time f(k) · poly(|x|) such that k′ ≤ g(k) and (x, k) ∈ Π1 ⇔ (x′, k′) ∈ Π2,
where f and g are arbitrary computable functions. No W[t]-hard problem is
fixed-parameter tractable unless FPT = W[t].

2 Parallel Identical Machines and Shuffle Products

This section presents our hardness results for special cases of P|prec|Cmax.
In Sect. 2.1, we show weak NP-hardness of P2|chains|Cmax for three chains.
In Sect. 2.2, we show W[2]-hardness of Shuffle Product as a stepping
stone towards showing W[2]-hardness of P3|prec, pj=1, sizej∈{1, 2}|Cmax and
P2|prec, pj∈{1, 2}|Cmax parameterized by the partial order width in Sect. 2.3.

2.1 Weak NP-hardness for Two Machines and Three Chains

Du et al. [6] showed that P2|chains|Cmax is strongly NP-hard. We complement
this result by the following theorem.

Theorem 2.1. P2|chains|Cmax is weakly NP-hard even for precedence con-
straints of width three, that is, consisting of three chains.

Proof (sketch). We reduce from the weakly NP-hard Partition problem [8,
SP12]: Given a multiset of positive integers A = {a1, . . . , at}, decide
whether there is a subset A′ ⊆ A such that

∑
ai∈A′ ai =

∑
ai∈A\A′ ai.

Let A = {a1, . . . , at} be a Partition instance. If b :=
(∑

ai∈A ai

)
/2 is

not an integer, then we are facing a no-instance. Otherwise, we construct a
P2|chains|Cmax instance as follows. Create three chains J0 := {j01 ≺ · · · ≺ j0t },
J1 := {j11 ≺ · · · ≺ j1t+1}, and J2 := {j21 ≺ · · · ≺ j2t+1} of jobs. For
each i ∈ {1, . . . , t}, job j0i gets processing time ai. The jobs in J1 ∪ J2 get
processing time 2b each. This construction can be performed in polynomial
time and one can show that the input Partition instance is a yes-instance
if and only if the created P2|chains|Cmax instance allows for a schedule with
makespan T := (2t+3)b: in such a schedule, each machine must perform exactly
t + 1 jobs from J1 ∪ J2 and has b time for jobs from J0. ��

2.2 W[2]-hardness for Shuffle Product

In this section, we show a W[2]-hardness result for Shuffle Product that
we transfer to P2|prec, pj∈{1, 2}|Cmax and P3|prec, pj=1, sizej∈{1, 2}|Cmax in
Sect. 2.3. We first formally introduce the problem (cf. Fig. 1).

Definition 2.2 (shuffle product). By s[i], we denote the ith letter in a word s.
A word t is said to be in the shuffle product of words s1 and s2, denoted
by t ∈ s1 s2, if t can be obtained by interleaving the letters of s1 and s2. For-
mally, t ∈ s1 s2 if there are increasing functions f1 : {1, . . . , |s1|} → {1, . . . , |t|}
and f2 : {1, . . . , |s2|} → {1, . . . , |t|} mapping positions of s1 and s2 to posi-
tions of t such that, for all i ∈ {1, . . . , |s1|} and j ∈ {1, . . . , |s2|}, one has
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Fig. 1. Illustration of a shuffle product: for s1 = acbb, s2 = bbc, and s3 = cab, one has
t = acbcbbcabb ∈ s1 s2 s3. Dashed arcs show how the letters of each si map into t.

t[f1(i)] = s1[i], t[f2(j)] = s2[j], and f1(i) �= f2(j). This product is associa-
tive and commutative, which implies that the shuffle product of any set of words
is well-defined.

Problem 2.3 ((Binary) Shuffle Product)

Input: Words s1, . . . , sk, and t over a (binary) alphabet Σ.
Parameter: k.
Question: Is t ∈ s1 s2 · · · sk?

Binary Shuffle Product is NP-hard for unbounded k [16, Lemma 3.2],
whereas Shuffle Product is polynomial-time solvable for constant k using
dynamic programming. Rizzi and Vialette [12] asked about the parameterized
complexity of Shuffle Product. We answer the question by the following
theorem.

Theorem 2.4 Binary Shuffle Product is W[2]-hard.

Our proof uses a parameterized reduction from the W[2]-hard Dominating
Set problem [4,5] and is inspired by Bodlaender and Fellows’s proof that
P|prec,pj=1|Cmax is W[2]-hard parameterized by the number m of machines [3].

Problem 2.5 (Dominating Set)

Input: A graph G = (V,E) and a natural number k.
Parameter: k.
Question: Is there a size-k dominating set D, that is, V ⊆ N [D]?

Herein, N [D] is the set of vertices in D and their neighbors. In order to describe
the construction, we introduce some notation.

Definition 2.6. We denote the concatenation of words s1, . . . , sk as
∏k

i=1 si :=
s1s2 . . . sk and denote k repetitions of a word s by sk. The number of occurrences
of a letter a in a word s is |s|a.

Construction 2.7. Given a Dominating Set instance (G, k) with a
graph G = (V,E), we construct an instance of Binary Shuffle Product with
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k + 3 words over Σ = {a, b} in polynomial time as follows. The construction is
illustrated in Fig. 2. Without loss of generality, assume that V = {1, . . . , n}.

Foru, v ∈ V, let �u,v :=

{
1 ifu = v or {u, v} ∈ E,

2 otherwise.
(2.1)

Moreover, define two words

A :=
n∏

u=1

n∏

v=1

ab�u,v and B :=
(
(akb2k)n−1akb2k−1

)n
.

Finally, let N := 2k(n − 1) + 1 and output an instance of Shuffle Product
with the following k + 3 words:

si := AN for each i ∈ {1, . . . , k}, t := BN (akb2k)n−1,

sk+1 := a|t|a−∑k
i=1|si|a , and sk+2 := b|t|b−∑k

i=1|si|b .

Note that A is simply the word that one obtains by concatenating the rows of
the adjacency matrix of G and replacing ones by ab and zeroes by abb.

Before showing the correctness of Construction 2.7, we make some basic
observations about the words it creates, for which we introduce some
terminology.

Definition 2.8 (long and short blocks, positions). A block in a word s
is a maximal consecutive subword using only one letter. A c-block is a block
containing only the letter c. A block has position i in s if it is the ith successive

Fig. 2. Left: A Dominating Set instance with k = 2 and a solution {v2, v3} (the gray
nodes). Right: The “base pattern” of the corresponding Shuffle Product instance
(only one repetition of A in s1 and s2 and only one repetition of B in t is shown).
Blocks of s1 and s2 are mapped into the blocks of t displayed in the same column. The
horizontal (blue) rectangles reflect that each si is built as the concatenation of the rows
of the adjacency matrix, where zeroes are replaced by abb and ones by ab. The amount
of horizontal offset of each si corresponds to the selection of a vertex as dominator
(v2 for s1 and v3 for s2). The dark columns (red) correspond to the short b-blocks
of t: they ensure that, in each row of the adjacency matrix, at least one selected vertex
dominates the vertex corresponding to that row. The base pattern is repeated N times
to ensure that at least one occurrence of the pattern is mapped to t without unwanted
gaps. Additional words sk+1 and sk+2 are added to match the remaining letters from t.
(Color figure online)
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block in s. We call b-blocks of length 2k − 1 in t short and b-blocks of length 2k
long.

Observation 2.9. The words s1, . . . , sk and t created by Construction 2.7 from
a Dominating Set instance (G, k) have the following properties:

(i) Each si for i ∈ {1, . . . , k} contains 2Nn2 blocks.
(ii) The word t contains 2Nn2 + 2(n − 1) blocks.
(iii) For i ∈ {1, . . . , k}, all a-blocks in si have length 1. All a-blocks of t have

length k.
(iv) For h ∈ {1, . . . , Nn}, the b-blocks at position 2hn in t are short. All other

b-blocks in t are long.
(v) For each i ∈ {1, . . . , k}, p ∈ {0, . . . , N −1}, and u, v ∈ {1, . . . , n}, the b-block

at position 2pn2 + 2n(u − 1) + 2v in si has length �u,v: it corresponds to the
entry in the uth row and vth column of the adjacency matrix of G.

Since Construction 2.7 runs in polynomial time and the number of words in the
created Shuffle Product instance only depends on the size of the sought
dominating set, for Theorem 2.4, it remains to prove the following lemma.

Lemma 2.10. Let s1, . . . , sk+2 and t be the words created by Construction 2.7
from a Dominating Set instance (G, k). Then G has a dominating set of size k
if and only if t ∈ s1 s2 · · · sk+2.

Proof. (⇒) Assume first that G = (V,E) has a dominating set D = {d1, . . . , dk}.
We describe t as a shuffle product of the words si as follows. For each i ∈
{1, . . . , k}, map all letters from the block at position x of si into block x+2(n−di)
of t, that is, consecutive blocks of si are mapped into consecutive blocks of t with
a small offset depending on di. So far, at most k letters are mapped into each
a-block of t and at most 2k letters are mapped into each b-block of t. Hence,
all a-blocks and all long b-blocks of t are long enough to accommodate all their
designated letters. It remains to show that at most 2k − 1 letters are mapped
into each short b-block β of t. By Observation 2.9(iv), β is at position 2hn for
some h ∈ {1, . . . , Nn}. Thus, there are p ∈ {0, . . . , N − 1} and u ∈ {1, . . . , n}
such that 2hn = 2(pn + u)n = 2pn2 + 2un. For each si, the block αi of si

mapped into β has position (2pn2 + 2un) − 2(n − di) = 2pn2 + 2(u − 1)n + 2di.
Hence, αi has length �u,di

by Observation 2.9(v). Since D is a dominating set, it
contains a vertex di∗ such that di∗ = u or {di∗ , u} ∈ E. Thus, by (2.1), αi∗ has
length �u,di∗ = 1. Overall, at most k b-blocks of {s1, . . . , sk} are mapped into β.
We have shown that at least one of them, namely αi∗ , has length one. Since the
others have length at most two, at most 2k − 1 letters are mapped into block β.

We have seen a mapping of the words si with i ∈ {1, . . . , k} to t. Thus, we
have |t|a ≥ ∑k

i=1|si|a and |t|b ≥ ∑k
i=1|si|b and the words sk+1 and sk+2 are

well-defined. It remains to map sk+1 and sk+2 to t. Since sk+1 consists only of
a and sk+2 only of b, we only have to check that t contains as many letters a
and b as all words si together, which is true by the definition of sk+1 and sk+2.
We conclude that t ∈ s1 s2 · · · sk+2 if G has a dominating set of size k.
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(⇐) Assume that t ∈ s1 s2 · · · sk+2. We show that G has a dominating
set of size k. To this end, for i ∈ {1, . . . , k}, let yi(x) be the position of the block
in t into which the last letter of the block at position x of si is mapped and let
δi(x) = yi(x)−x. We will see that, intuitively, one can think of δi(x) as the shift
of the xth block of si in t. To show that G has a dominating set of size k, we
use the following two facts about δi, which we will prove afterwards.

(i) For i ∈ {1, . . . , k} and x ∈ {1, . . . , 2Nn2}, one has δi(x) ∈ {0, . . . , 2(n − 1)}.
(ii) There is a p ∈ {0, . . . , N − 1} such that, for all i ∈ {1, . . . , k}, δi is constant

over the interval Ip = {2pn2 + 1, . . . , 2(p + 1)n2 + 1}.

We now focus on a p ∈ {0, . . . , N − 1} as in (ii) and write δi for the value δi(x)
taken for all x ∈ Ip. We show that D := {di = n − δi/2 | k ∈ {1, . . . , k}} is a
dominating set of size k for G, that is, we show D ⊆ V and V ⊆ N [D].

To this end, consider a vertex u ∈ V and the block β of t at position 2pn2 +
2un = 2hn for h = pn + u ∈ {1, . . . , Nn}. By Observation 2.9(iv), β is a short
b-block. For any i ∈ {1, . . . , k}, let αi be the block at position 2pn2 + 2un − δi

in si. Because of (i), this position is in Ip. By definition of δi, the last letter
of αi is mapped into β. Thus, αi is a b-block. Note that this implies that δi is
even since a-blocks and b-blocks are alternating in t and si. Moreover, by (i),
di = n − δi/2 ∈ {1, . . . , n} = V . It follows that D ⊆ V . We show that u ∈ N [D].
To this end, note that the a-block in si at position 2pn2 + 2un − δi − 1 ∈ Ip

directly preceding αi is mapped into the a-block of t at position 2pn2 + 2un − 1
directly preceding β. Thus, all letters of αi are mapped into β and one has

k∑

i=1

|αi| ≤ |β|. (2.2)

By Observation 2.9(v), αi has length �u,(n−δi/2) = �u,di
. Since β is a short b-

block, it has length 2k − 1. From (2.2), we get
∑k

i=1 �u,di
≤ 2k − 1. Thus, there

is some i∗ ∈ {1, . . . , k} with �u,di∗ = 1. By (2.1), that means di∗ = u or {u, di∗}
is an edge in G. Hence, u ∈ N [D] and D is a dominating set of size k for of G.

It remains to prove (i) and (ii). For (i), note that yi(1) ≥ 1 and yi(x + 1) ≥
yi(x) + 1. Hence, δi is non-decreasing with all values being non-negative. Fur-
thermore, for x = 2Nn2, yi(x) ≤ 2Nn2 + 2(n − 1) since t has only so many
blocks by Observation 2.9(ii). Thus, the maximum possible value of δi is 2(n−1).
Towards (ii), we say that a value of p ∈ {0, . . . , N − 1} is bad for i if δi is not
constant over Ip. For such a p, one has δi(2pn2 + 1) < δi(2(p + 1)n2 + 1). Hence,
there can be at most 2(n − 1) values of p that are bad for i. Overall, there are
at most 2k(n − 1) < N values of p that are bad for some i ∈ {1, . . . , k}. Thus,
at least one value is not bad for any i. For this value of p, every δi is constant
over the interval Ip. ��

2.3 W[2]-hardness of Scheduling Problems Parameterized
by Width

In the previous section, we showed W[2]-hardness of Shuffle Product. We
now transfer this result to scheduling problems on parallel identical machines.
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Theorem 2.11. The following two problems are W[2]-hard parameterized by
the width of the partial order giving the precedence constraints.

(i) P2|prec, pj∈{1, 2}|Cmax,
(ii) P3|prec, pj=1, sizej∈{1, 2}|Cmax.

We prove (i) using the following parameterized reduction from Shuffle
Product with k + 1 words to P2|prec, pj∈{1, 2}|Cmax with k + 2 chains.

Construction 2.12. Let (s1, . . . , sk, t) be a Shuffle Product instance over
the alphabet Σ = {1, 2}. Assume that |t|1 =

∑k
i=1|si|1 and |t|2 =

∑k
i=1|si|2

(otherwise, it is a no-instance). We create an instance of P2|prec, pj∈{1, 2}|Cmax:

(1) For each i ∈ {1, . . . , k}, create a chain of worker jobs ji1 ≺ ji2 ≺ · · · ≺ ji|si|,
where ji,x has length si[x].

(2) For each x ∈ {1, . . . , |t|}, create three floor jobs zx,1, zx,2, zx,3 with
zx,1 ≺ zx,2 and zx,1 ≺ zx,3, where zx,1 has length t[x], and zx,2 and zx,3 have
length 1. If x < |t|, then also add the precedence constraints zx,2 ≺ zx+1,1

and zx,3 ≺ zx+1,1.

Observe that {zx,1, zx,2 | 1 ≤ x ≤ |t|} is a chain. Thus, the makespan of
any schedule is at least T :=

∑|t|
x=1(t[x] + 1). For x ∈ {1, . . . , n}, let τ(x) :=

∑x−1
i=1 (t[x] + 1).

Observation 2.13. A schedule with makespan T must schedule job zx,1 at
time τ(x), and jobs zx,2 and zx,3 at time τ(x) + t[x]. Thus, for x ∈ {1, . . . , |t|},
both machines are used by floor jobs from τ(x) + t[x] to τ(x) + t[x] + 1 and one
machine is free of floor jobs between τ(x) and τ(x) + t[x] for t[x] time units. We
call these available time slots.

Construction 2.12 runs in polynomial time. Moreover, from k + 1 input words,
it creates instances of width k + 2: there are k chains of worker jobs and the
floor decomposes into two chains {zx,1, zx,2 | 1 ≤ x ≤ |t|} and {zx,1, zx,3 | 1 ≤
x ≤ |t|}. To prove Theorem 2.11(i), one can thus show that t ∈ s1 · · · sk

if and only if the created P2|prec, pj∈{1, 2}|Cmax instance allows for a schedule
of makespan T . By Observation 2.13, any such schedule has available time slots
of lengths corresponding to the letters in t, each of which can accommodate a
worker job corresponding to a letter of s1, . . . , sk. The precedence constraints
ensure that these worker jobs get placed into the time slots corresponding to
letters of t in increasing order.

The proof of Theorem2.11(ii) works analogously: one simply replaces worker
jobs of length two by worker jobs of length one that require two machines and
modifies the floor jobs so that they do not create time slots of length one or two,
but so that each created time slot is available on only one or on two machines.
To achieve this, the construction uses three machines.
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3 Resource-Constrained Project Scheduling

In Sect. 2.3, we have seen that P3|prec, pj=1, sizej∈{1, 2}|Cmax is W[2]-hard
parameterized by the partial order width. It follows that also RCPSP (cf.
Problem 1.1) is W[2]-hard for this parameter, even if the number of resources
and the maximal resource usage are bounded by two and all jobs have unit
processing times. In this section, we additionally consider the lag parameter:

Definition 3.1 (earliest possible starting time, lag). Let J0 ⊆ J be the
jobs that are minimal elements in the partial order �. The earliest possible
starting time σj is 0 for a job j ∈ J0 and, inductively, maxi≺j(σi + pi) for a
job j ∈ J\J0. The lag of a feasible schedule (sj)j∈J is λ := maxj∈J(sj − σj).

Lenstra and Rinnooy Kan’s NP-hardness proof for P|prec,pj=1|Cmax [10]
shows that it is even NP-hard to decide whether there is a schedule of makespan
at most three and lag at most one. Thus, the lag λ alone cannot lead to a fixed-
parameter algorithm for RCPSP, just as the width w alone cannot. We show a
fixed-parameter algorithm for the parameter λ + w.

Theorem 3.2. An optimal schedule with lag at most λ for RCPSP is com-
putable in (2λ + 1)w · 2w · poly(n) time if it exists, where w is the partial order
width.

Our algorithm is a refinement of Servakh’s pseudo-polynomial-time algorithm
for RCPSP with constant width [14], which is based on graphical optimization
methods introduced by Akers [1] and Hardgrave and Nemhauser [9] for hand-
optimizing Job Shop schedules for two jobs. We provide a concise translation
of Servakh’s algorithm in Sect. 3.1 before we prove Theorem 3.2 in Sect. 3.2.

3.1 Geometric Interpretation of RCPSP

Given an RCPSP instance with precedence constraints � of width w, by Dil-
worth’s theorem, we can decompose our set J of jobs into w pairwise disjoint
chains. More specifically, these chains are efficiently computable [7]. For � ∈
{1, . . . , w}, denote the jobs in chain � by a sequence (j�k)n�

k=1 such that j�k ≺ j�k+1

and let

Li
� :=

∑i
k=1 pj�k

be the sum of processing times of the first i jobs on chain �,
L� :=Ln�

� be the sum of processing times of all jobs on chain �.

Let 0 := (0, . . . , 0) ∈ R
w and L := (L1, . . . , Lw). Each point in the w-

dimensional orthotope X := {x ∈ R
w | 0 ≤ x ≤ L} describes a state as follows.

Definition 3.3 (running, completed, feasibility). Let x = (x1, . . . , xw) ∈
X. For each chain � ∈ {1, . . . , w}, if x� ∈ [Li−1

� , Li
�), then the jobs (j�k)i−1

k=1 of
chain � are completed and job j�i has been processed for x� − Li−1

� time. We call
job j�i running if Li−1

� < x� < Li
�. We denote by
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J(x) ⊆ J the set of jobs running in state x and by
C(x) ⊆ J the set of jobs completed in state x.

A point x ∈ X is feasible if it holds that both

(F1) the jobs J(x) comply with resource constraints, that is,
∑

j∈J(x) rjρ ≤ Rρ

for each resource ρ ∈ R, and
(F2) if there are two jobs i ≺ j such that j ∈ J(x), then i ∈ C(x).

Note that points x ∈ X may indeed violate (F2): there are not only prece-
dence constraints between jobs on one chain, but also between jobs on different
chains.

Each feasible schedule now yields a path of feasible points in the orthotope X
from the point 0, where no job has started, to the point L, where all jobs are
completed. Each such path consists of (linear) segments of the form [x,x + tδ]
for some δ = (δ1, . . . , δw) ∈ {0, 1}w, which corresponds to running exactly the
jobs on the chains � with δ� = 1 for t units of time. Since all processing times
and starting times are integers (cf. Problem1.1), we can assume t ∈ N.

Definition 3.4 (feasibility of segments and their lengths). The length of
a segment [x,x + tδ] is t. The length of a path is the sum of the lengths of its
segments. A segment [x,x + tδ] is feasible if it contains only feasible points and
interrupts no jobs; that is, if there is a job j ∈ J(x) on chain �, then δ� = 1.

There is now a one-to-one correspondence between feasible schedules and paths
from 0 to L consisting only of feasible segments and between the shortest of
these paths and optimal schedules. This leads to the following algorithm.

Algorithm 3.5 (Servakh [14]). Compute a shortest feasible path from 0 to L
using dynamic programming: for each feasible point x ∈ X ∩N

w in lexicographi-
cally increasing order, compute the length P (x) of a shortest feasible path from 0
to x using the recurrence relation

P (0) = 0, P (x) = min
δ∈Δx

P (x − δ) + 1 for feasible x ∈ X ∩ N
w\{0}, (3.1)

where Δx is the set of vectors δ ∈ {0, 1}w such that segment [x−δ,x] is feasible.

To compute P (L), one thus iterates over at most
∏w

�=1(L� + 1) points x ∈
X ∩ N

w, for each of them over 2w vectors δ ∈ {0, 1}w, and, for each, decides
whether [x − δ,x] is feasible. Since the set of running jobs is the same for all
interior points of the segment, it is enough to check the feasibility of its end
points and one interior point, which can be done in polynomial time. Thus, the
algorithm runs in

∏w
�=1(L� + 1) · 2w · poly(n) time, which is pseudo-polynomial

for constant w.
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3.2 Fixed-Parameter Algorithm for Arbitrary Processing Times

The bottleneck of Algorithm 3.5 is that it searches for a shortest path from 0
to L in the whole orthotope X. For the case where we are only accepting sched-
ules of maximum lag λ, we will shrink the search space significantly: we show
that we only have to search for paths within a tight corridor around the path
corresponding to the schedule (σj)j∈J that starts jobs at the earliest possible
time.

Definition 3.6 (point at time t on a path). Let p be the path from 0
to L corresponding to a not necessarily feasible schedule (sj)j∈J that, however,
respects precedence constraints. Let t ≥ 0 and T be the length of p.

Then, p(t) is the endpoint of the subpath of length t of p starting in 0 for
t ≤ T , and p(t) := L for t > T .

Since the definition requires (sj)j∈J to respect precedence constraints, p(t) deter-
mines the state (cf. Definition 3.3) at time t according to schedule (sj)j∈J .

Definition 3.7 (λ-corridored). Let p be the path corresponding to the sched-
ule (σj)j∈J that starts jobs at the earliest possible time (cf. Definition 3.1).

Γλ(t) := {x ∈ X | p(t) − λ ≤ x ≤ p(t)}, where λ = (λ, . . . , λ) ∈ N
w.

We call a path q λ-corridored if q(t) ∈ Γλ(t) for all t ≥ 0.

Note that points on the path p in Definition 3.7 may violate Defini-
tion 3.3(F1), but not (F2). One can show the following relation between λ-
corridored paths and schedules of lag λ.

Lemma 3.8. A feasible schedule (sj)j∈J has lag at most λ if and only if its
corresponding path q is λ-corridored.

Lemma 3.8 allows us to compute a shortest feasible path from 0 to L using
only points in Γλ(t) for some t. Herein, we will exploit the following condition
for checking whether a path segment can be part of a λ-corridored path.

Lemma 3.9. Let [x,x+tδ] for δ ∈ {0, 1}w. If x ∈ Γλ(t0) and x+tδ ∈ Γλ(t0+t)
for some t0 ≥ 0, then x + τδ ∈ Γλ(t0 + τ) for all 0 ≤ τ ≤ t.

Proof. Let p be the path corresponding to schedule (σj)j∈J as in Definition 3.7
and let δ = (δ1, . . . , δw) ∈ {0, 1}w. For any τ ∈ [0, t], consider

xτ = (xτ
1 , . . . , x

τ
w) := x + τδ and yτ = (yτ

1 , . . . , yτ
� ) := p(t0 + τ).

By the prerequisites of the lemma, we have y0 − λ ≤ x0 ≤ y0 and yt − λ ≤
xt ≤ yt. We show yτ − λ ≤ xτ ≤ yτ for any τ ∈ [0, t].
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We start with xτ ≤ yτ . For the sake of contradiction, assume that there is
some chain � and a τ ∈ [0, t] such that xτ

� > yτ
� . Then, xτ

� > yτ
� ≥ y0

� ≥ x0
� . It

follows that δ� = 1, which contradicts xt ≤ yt because, then,

xt
� = x0

� + t = x0
� + τ + (t − τ) = xτ

� + (t − τ) > yτ
� + (t − τ) ≥ y

τ+(t−τ)
� = yt

�.

Now, we show yτ − λ ≤ xτ . Consider some chain �. If δ� = 1, then we have
yτ

� −λ ≤ y0
� +τ −λ ≤ x0

� +τ = xτ
� and we are fine. If δ� = 0 and there is a τ ∈ [0, t]

such that yτ
� −λ > xτ

� , then yt
�−λ ≥ yτ

� −λ > xτ
� = xt

�, contradicting yt−λ ≤ xt.��
We can now prove the following result by computing recurrence (3.1) for each

of the (λ + 1)w feasible points x ∈ Γλ(t) ∩ Z
w for all t ∈ {0, . . . , L}.

Proposition 3.10. An optimal schedule of lag at most λ for RCPSP if it exists
is computable in (λ+1)w ·2w ·poly(L) time, where L is the sum of all processing
times and w is the partial order width.

However, note that this is a fixed-parameter algorithm only for polynomial
processing times, which is why we skip the proof and go on towards proving
Theorem 3.2—a fixed-parameter algorithm that works for arbitrarily large
processing times. To this end, we prove that all maximal segments of a path
corresponding to a schedule with lag at most λ start and end in one of 2·|J | hyper-
cubes with edge length 2λ + 1.

Lemma 3.11. Let q be the path of a feasible schedule (sj)j∈S of lag at most λ
and let t2 ≤ t1 ≤ t2 + λ. Then, q(t1) ∈ Γ2λ(t2 + λ) (cf. Definition 3.7).

Proof. Consider the schedule (σj)j∈J that starts each job at the earliest possible
time and its path p. Our aim is to show

p(t2 + λ) − 2λ ≤ q(t1) ≤ p(t2 + λ),

where λ = (λ, . . . , λ) ∈ N
w. By Lemma 3.8, q is λ-corridored. Thus,

p(t1) − λ ≤ q(t1) ≤ p(t1) and p(t2 + λ) − λ ≤ q(t2 + λ) ≤ p(t2 + λ).

From this, one easily gets q(t1) ≤ p(t1) ≤ p(t2 + λ). Moreover, one has

p(t2 + λ) − 2λ ≤ q(t2 + λ) − λ ≤ q(t2) + λ − λ = q(t2) ≤ q(t1). ��

Lemma 3.12. Let q be the path of a feasible schedule (sj)j∈S of lag at most λ
and let [x,x + tδ] be a maximal segment of q such that the set J(x + τδ) of
running jobs (cf. Definition 3.3) is the same for all τ ∈ (0, t). Then,

{x,x + tδ} ⊆ Γ :=
⋃

j∈J

Γ2λ(σj + λ) ∪
⋃

j∈J

Γ2λ(σj + pj + λ),

where (σj)j∈J is the schedule that starts each job at the earliest possible time.
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Proof. Let t0 be chosen arbitrarily such that q(t0) ∈ {x,x+ tδ}. By maximality
of the segment, some job j ∈ J is starting or ending at time t0, that is, t0 = sj

or t0 = sj + pj . Then, {x,x + tδ} ⊆ Γ2λ(σj + λ) ∪ Γ2λ(σj + pj + λ) follows from
σj ≤ sj ≤ σj + λ and Lemma 3.11. ��

We are now ready to show a fixed-parameter algorithm for RCPSP parame-
terized by length and maximum lag. That is, we prove Theorem3.2.

Proof (of Theorem 3.2). We compute the shortest feasible λ-corridored path from
the state 0, were no job has started, to the state L, where all jobs have been
completed (cf. Lemma 3.8). We use dynamic programming similarly to Algo-
rithm3.5. By Lemma 3.12, it is enough to consider those paths whose segments
start and end in Γ . Thus, for each x ∈ Γ ∩ N

w in lexicographically increasing
order, we compute the length P (x) of a shortest λ-corridored path from 0 to x
with segments starting and ending in Γ . To this end, for an x ∈ Γ ∩N

w, let Δx

be the set of vectors δ ∈ {0, 1}w such that,

(i) there is a smallest integer tδ ≥ 1 such that x − tδ · δ ∈ Γ and such that
(ii) the segment [x − tδ · δ,x] is feasible.

Then, P (0) = 0 and, for feasible x ∈ Γ ∩ N
w\{0}, one has

P (x) = min{P (x − tδ · δ) + tδ | δ ∈ Δx and x ∈ Γλ(P (x − tδ · δ) + tδ)},

where min ∅ = ∞ and the last condition on x uses Lemma 3.9 to ensure that we
are indeed computing the length P (x) of a λ-corridored path (cf. Definition 3.7)
to x: by induction, we know that P (x − tδ · δ) is the length of a shortest λ-
corridored path to x − tδ · δ, and thus x − tδ · δ ∈ Γλ(P (x − tδ · δ)).

We have to discuss how to check (i) and (ii). One can check (ii) in polynomial
time since it is enough to check feasibility at the end points and one interior point
of the segment since the set of jobs running at the interior points of [x− tδ ·δ,x]
does not change: otherwise, since jobs are started or finished only at integer
times, there is a maximal subsegment [x,x − t · δ] with t ≤ tδ − 1 where the set
of running jobs does not change. Then x−t ·δ ∈ Γ by Lemma 3.12, contradicting
the minimality of tδ.

Towards (i), we search for the minimum tδ ≥ 1 such that x − tδ · δ ∈ Γ .
Consider the schedule (σj)j∈J that schedules each job at the earliest possible
time (cf. Definition 3.1). It is computable in polynomial time. By Lemma 3.12,
we search for the minimum tδ ≥ 1 such that x−tδ ·δ ∈ Γ2λ(σj +λ) or x−tδ ·δ ∈
Γ2λ(σj +pj +λ) for some job j ∈ J . That is, by Definition 3.7, for each job j, we
find the minimum tj ≥ 1 that solves a system of linear inequalities of the form
y−2λ ≤ x−tj ·δ ≤ y, where δ = (δ1, . . . , δw) ∈ {0, 1}w. Writing y = (y1, . . . , yw)
and x = (x1, . . . , xw), either tj = max({1} ∪ {x� − y� | δ� = 1}) is the minimum
such tj or there is no solution for job j. Note that tj is an integer since x and y
are integer vectors. Thus, tδ = minj∈J tj is computable in polynomial time.

We conclude that we process each x ∈ Γ ∩ N
w in 2w · poly(n) time. More-

over, Γ contains at most 2 · |J | · (2λ + 1)w integer points since each job j ∈ J
contributes at most (2λ+1)w points in Γ2λ(σj +λ) and at most (2λ+1)w points
in Γ2λ(σj + pj + λ). A total running time of (2λ + 1)w · 2w · poly(n) follows. ��
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4 Conclusion

Our algorithm for RCPSP shows, in particular, that P3|prec,pj=1|Cmax is
fixed-parameter tractable parameterized by the partial order width w and
allowed lag λ. Since the NP-hardness of this problem is a long-standing open
question [8, OPEN8], it would be surprising to show W[1]-hardness of this
problem for any parameter: this would exclude polynomial-time solvability
unless FPT = W[1]. Thus, it makes sense to search for a fixed-parameter algo-
rithm for P3|prec,pj=1|Cmax parameterized by w, whereas we showed that
already P2|prec, pj∈{1, 2}|Cmax and P3|prec, pj=1, sizej∈{1, 2}|Cmax are W[2]-
hard parameterized by w.

Acknowledgments. The authors are thankful to Sergey Sevastyanov for pointing
out the work of Akers [1] and Servakh [14]. This research was initiated at the annual
research retreat of the algorithms and complexity group of TU Berlin, April 3–9, 2016,
Krölpa, Germany.
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Abstract. We consider a routing problem with constraints. To solve
this problem, we employ a variant of the dynamic programming method,
where the significant part (that is, the part that matters in view of prece-
dence constraints) of the Bellman function is calculated by means of an
independent calculations scheme. We propose a parallel implementation
of the algorithm for a supercomputer, where the construction of posi-
tion space layers for the hypothetical processors is conducted with use
of discrete dynamic systems’ apparatus.

Keywords: Dynamic programming · Routing problem · Precedence
constraints · Sequential ordering problem · Parallel algorithms

1 Introduction

In this paper, we present a solution of a constrained routing problem, where the
cost functions depend on the set of pending tasks. We investigate the dynamic
programming method (DPM) and implement its variant that avoids the con-
struction of unnecessary values of the Bellman function. For simplicity, we con-
sider a problem of visiting a system of points; we call these points the cities
(in [1–3], a more general variant of this problem connected with visiting mega-
lopolises, or clusters, was investigated). Our variant of DPM follows the scheme
of independent calculation of layers of the Bellman function; based on it, we con-
struct a parallel algorithm for a supercomputer (a new contribution) and offer
the results of a computational experiment.

A natural prototype of our problem is the well-known intractable Travel-
ing Salesman Problem (TSP); in this connection, see [4–6]. Dynamic program-
ming solutions for TSP were first proposed in [7,8]; for Precedence Constrained
TSP (TSP-PC), similar techniques were proposed in [14,15]. The complexity of
dynamic programming for TCP-PC was studied in, for example, [16,17]. The
problem we consider in the present paper has several important qualitative sin-
gularities, which include precedence constraints and complicated cost functions.
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Namely, we consider cost functions depending on the set of pending tasks. Such
a complicated variant of problem corresponds to [1–3,9–11]. These cost functions
are relevant in view of the problem of minimizing the radiation exposure of a
team tasked with dismantling, say, a decommissioned fission power generating
unit, see [18, Chap. 2], [19]. Indeed, each worker is subjected to the radiation
produced by the radiation sources that are not dismantled at the time of travel.
The set of such sources depends on the workers’ route, hence the dependence of
cost functions on the set of pending tasks (sequence dependence). In this con-
nection, we recall [20], where a similar dependence for TSP was considired (in
[20], a heuristic algorithm was proposed).

In our paper, we propose a parallel DPM precedure.

2 General Notation

In the following, we employ traditional set-theoretical notation. The symbol
�
=

denotes equality by definition. We call a family every set all elements of which
are sets themselves. For arbitrary nonempty set T , we denote by R+[T ] the set of

all real-valued functions from T into the infinite interval [0,∞[
�
= {ξ ∈ R|0 ≤ ξ},

where R is the real line. Let N
�
= {1; 2; ...} and N0

�
= {0} ∪ N = {0; 1; 2; ...}.

If p ∈ N0 and q ∈ N0, set p, q
�
= {t ∈ N0|(p ≤ t) & (t ≤ q)}; for p ∈ N and

q ∈ N, we obtain p, q ⊂ N. If z is an ordered pair of arbitrary objects a and b
(that is, z = (a, b)), then, by pr1(z) and pr2(z), we denote the first and second
elements of that identically are defined by condition z = (pr1(z),pr2(z)). For
every object x, by {x} we denote the singleton containing x (so, x ∈ {x}).
Moreover, for arbitrary objects a, b, and c, we define their triplet as follows:
(a, b, c)

�
= ((a, b), c). In addition, A×B ×C

�
= (A×B)×C for all nonempty sets

A,B, and C.
If K is a nonempty finite set, then |K| ∈ N is the cardinality of K; we

assume that (bi)[K] is the set of all bijections from the “interval” 1, |K| onto K.

Of course, |∅| �
= 0. We recall that a permutation of a nonempty set is a bijection

of this set onto itself. For every set H, we denote by P(H) the family of all

subsets of H; let us also introduce the notation P ′
(H)

�
= P(H) \ {∅} (the family

of all nonempty subsets of H).

3 Special Notation and Problem Statement

We fix N ∈ N such that N ≥ 2. Moreover, fix

c ∈ R+[O,N × O,N × N], (3.1)

where N
�
= P ′

(1, N); we call elements of N (nonempty subsets of 1, N) task lists.
Function (3.1) specifies the intercity transportation costs. Finally, we introduce
the function

f ∈ R+[O,N ] (3.2)
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that defines the cost of the terminal state. We use c and f (see (3.1), (3.2)) to
define an additive criterion.

To define precedence constraints, we fix a set K ∈ P(1, N × 1, N). Thus, K
is a set such that K ⊂ 1, N × 1, N . If z ∈ K, then z is an ordered pair, for which
pr1(z) ∈ 1, N and pr2(z) ∈ 1, N ; in addition, we call pr1(z) its sender and pr2(z)
its recipient. For each such ordered pair, its sender pr1(z) must be visited before

its recipient pr2(z). Let P
�
= (bi)[1, N ]. Permutations from P are called routes.

Precedence constraints are taken into account by restricting the choice of a route
from P to its subset A. Namely,

A
�
= {α ∈ P| ∀z ∈ K ∀t1 ∈ 1, N ∀t2 ∈ 1, N (z = (α(t1), α(t2))) ⇒ (t1 < t2)}

= {α ∈ P| α−1(pr1(z)) < α−1(pr2(z)) ∀z ∈ K} (3.3)

is the set of all feasible (in the sense of precedence constraints) routes. Thus,
every route from A visits the sender pr1(z) before the corresponding recipient
pr2(z) for each ordered pair z ∈ K. We assume that ∀K0 ∈ P ′

(K) ∃z0 ∈ K0 :
pr1(z0) �= pr2(z) ∀z ∈ K0 (in [12, Chap. 2], several specific classes of problems
satisfying this condition are pointed out). Then, A �= ∅ (see [12, Chap. 2]). Thus,
A is a nonempty finite set. If α ∈ A, then the value

Cα
�
= c (0, α(1), 1, N) +

N−1∑

t=1

c (α(t), α(t + 1), {α(j) : j ∈ t + 1, N})

+ f(α(N)) ∈ [0,∞[ (3.4)

is well-defined. We consider the following problem:

Cα → min, α ∈ A. (3.5)

For this problem, its value (extremum)

V
�
= min

α∈A
Cα ∈ [0,∞[ (3.6)

and the set Aopt
�
= {α0 ∈ A| Cα0 = V } ∈ P ′

(A) are defined. Our goal consists
in determining V and finding a route α0 ∈ Aopt, i.e., it is required to find a
feasible route with the least value of additive criterion (3.4).

4 Dynamic Programming

We use the procedure on the base of DPM from [6,7,9,11]. This procedure is a
development of [12, Sect. 4.9]. But, for simplicity, we consider this procedure for
the “point” statement (we do not use the model with megalopolises in order to
concentrate on issues connected with parallelization of our procedure). Now, we
consider a natural scheme of constraints transformation: we replace the feasibility
in the sense of precedence constraints with crossing-out feasibility. To this end,
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we use the mapping I of [12, Chap. 2] operating in the family N of all (nonempty)
lists of tasks. Namely, this mapping I is defined by the following rule: for K ∈ N,
I(K)

�
= K \ {pr2(z) : z ∈ Ξ[K]}, where Ξ[K]

�
= {z ∈ K| (pr1(z) ∈ K)&(pr2(z) ∈

K)}. On this base, we introduce crossing-out feasible partial routes: for K ∈ N,

(I − bi)[K]
�
= {α ∈ (bi)[K]| α(s) ∈ I({α(t) : t ∈ s, |K|}) ∀s ∈ 1, |K|}; (4.1)

in addition, (4.1) is a nonempty set (see [12, Propositions 2.2.2 and 2.2.3]). Of
course, the case K = 1, N is possible. Moreover, in this case,

A = (I − bi)[1, N ] = {α ∈ P| (α(1) ∈ I(1, N)) (4.2)

& (α(k) ∈ I(1, N \ {α(t) : t ∈ 1, k − 1}) ∀k ∈ 2, N)}.

Using (4.1), we introduce partial routing problems: if s ∈ 0, N and K ∈ N,
then, for |K| ≥ 2, we consider the following problem

c(s, α(1),K) +
|K|−1∑

t=1

c(α(t),α(t + 1), {α(j) : j ∈ t + 1, |K|}) (4.3)

+ f(α(|K|)) → min, α ∈ (I − bi)[K];

for problem (4.3), we introduce its corresponding value,

v (s,K)
�
= min

α∈(I−bi)[K]
[c (s, α(1),K) +

|K|−1∑

t=1
c(α(t), α(t + 1),

{α(j) : j ∈ t + 1, |K|}) + f(α(|K|))] ∈ [0,∞[.
(4.4)

For s ∈ 0, N and r ∈ 1, N , we assume

v (s, {r})
�
= c (s, r, {r}) + f(r); (4.5)

obviously, v(s, {r}) ∈ [0,∞[. In connection with (4.5), note that I({l}) = {l}
for l ∈ 1, N ; see [3, Remark 3.2]. Evidently, (4.5) defines v(s,K) for s ∈ 0, N ,

K ∈ N, and |K| = 1. Finally, set v(s, ∅)
�
= f(s) ∀ s ∈ 0, N . Thus,

v(s,K) ∈ [0,∞[ ∀ s ∈ 0, N ∀K ∈ P(1, N). (4.6)

In other words, we obtain the function v ∈ R+[0, N × P(1, N)]. In addition, for
K = 1, N , we have the equality |K| = N and, by (3.4) and (4.2),

Cα = c(0, α(1),K) +
|K|−1∑

t=1

c(α(t), α(t + 1), {α(j) : j ∈ t + 1, |K|})

+ f(α(|K|)) ∀α ∈ A.

Therefore, from (3.6) and (4.4), we obtain

V = v(0, 1, N). (4.7)
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Consequently, (4.6) provides a natural representation of initial problem (3.5).
We view v as a Bellman function. By general statements of [1–3,13],

v(s,K) = min
j∈I(K)

[c(s, j,K) + v(j,K \ {j})] ∀ s ∈ 0, N ∀K ∈ N. (4.8)

Thus, (4.8) is the Bellman equation for a backward procedure. From (4.7)
and (4.8), we obtain

V = min
j∈I(1,N)

[c(0, j, 1, N) + v(j, 1, N \ {j})]. (4.9)

5 Constructing Layers of the Bellman Function

The procedure based on (4.8) can be used to solve problems of small dimension-
ality. To partially overcome the computational difficulties, we consider a mod-
ification of procedure from [12, Sect. 4.9] (in addition, see [1–3,11]) connected
with construction of layers of the Bellman function. We again note that not all
values of this function are constructed.

Thus, we decrease the computational complexity to a certain extent. To this
end, we consider below the construction of of feasible task lists. Namely, we set

G
�
= {K ∈ N| ∀z ∈ K (pr1(z) ∈ K) ⇒ (pr2(z) ∈ K)}. (5.1)

Of course, 1, N ∈ G; thus, G �= ∅. Moreover, we assume that Gs
�
= {K ∈

G|s = |K|} ∀s ∈ 1, N . Then, the family {G1; ...;GN} is a finite partition of G.
In addition, GN = {1, N} is the singleton containing the set 1, N . Moreover, for

K1
�
= {pr1(z) : z ∈ K}, we obtain

G1
�
= {{t} : t ∈ 1, N \ K1}. (5.2)

Finally, we realize the procedure

GN → GN−1 → ... → G1 (5.3)

using the following transformation [1,2]

Gs−1 = {K \ {j} : K ∈ Gs, j ∈ I(K)} ∀s ∈ 2, N. (5.4)

Thus, in (5.3), we begin with GN and then apply (5.4). Using (5.2) and (5.3),
we construct the layers D0,D1, ...,DN of the space of positions. Let

D0
�
= {(s, ∅) : s ∈ 1, N \ K1}, DN

�
= {(0, 1, N)}. (5.5)

In (5.5), we introduce the simplest layers of the position space. Now, we
introduce intermediate layers. To this end, for s ∈ 1, N − 1 and K ∈ Gs, we
sequentially introduce the following sets:

Js(K)
�
= {j ∈ 1, N \K|K ∪{j} ∈ Gs+1}, Ds[K]

�
= {(j,K) : j ∈ Js(K)}. (5.6)
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In (5.6), the latter sets are mutually disjoint. Then, we set

Ds
�
=

⋃

K∈Gs

Ds[K] ∈ P ′
(1, N × Gs) ∀s ∈ 1, N − 1. (5.7)

Obviously, by means of (5.6) and (5.7), for s ∈ 1, N − 1, we obtain a finite
partition of Ds into the system of cells Ds[K],K ∈ Gs:

Ds
�
=

⊔

K∈Gs

Ds[K].

We recall that (t,K \ {t}) ∈ Ds−1 ∀s ∈ 1, N ∀(l,K) ∈ Ds ∀t ∈ I(K); see
[12, Proposition 4.9.4]. We note that, by (4.6) and (5.1), for every l ∈ 0, N and
(j,K) ∈ Dl, the value v(j,K) ∈ [0,∞[ is defined. Therefore, for l ∈ 0, N , we
assume that vl ∈ R+[Dl] is defined by the following rule:

vl(j,K)
�
= v(j,K) ∀(j,K) ∈ Dl. (5.8)

From (5.7), we see that, for s ∈ 1, N , (l,K) ∈ Ds, and t ∈ I(K), the value
vs−1(t,K \ {t}) ∈ [0,∞[ is defined. Moreover, by (4.8) and (5.8),

vs(l,K) = min
t∈I(K)

[c(l, t,K) + vs−1(t,K \ {t})] ∀s ∈ 1, N ∀(l,K) ∈ Ds. (5.9)

Thus, (5.9) defines the rule of transformation vs−1 → vs for s ∈ 1, N . This
results into the following recurrence procedure:

v0 → v1 → ... → vN , (5.10)

where v0 is defined by the rule v0(j, ∅) = f(j) ∀j ∈ 1, N \K1. For s ∈ 1, N , the
transformation vs−1 → vs is defined by (5.9). We note that it is very simple to
obtain v1, namely,

v1(j, {s}) = c(j, s, {s}) + f(s) ∀s ∈ 1, N \ K1 ∀j ∈ J1({s}); (5.11)

in (5.11), we use the equality D1 = {(j, {t}) : t ∈ 1, N \ K1, j ∈ J1({t})}.
From (4.7) and (5.8), we have the following equality:

V = vN (0, 1, N) = min
t∈I(1,N)

[c(0, t, 1, N) + vN−1(t, 1, N \ {t})]. (5.12)

We note that, to determine V , we only need the function vN−1. A similar
arrangement works for all the remaining functions vs, s ∈ 1, N − 1. Therefore,
we can propose the following algorithm:

Algorithm of Value Construction. Actually, this algorithm is a modification
of (5.10); see [11]. We know the function v0. The values of v0 are used in con-
struction of v1. Actually, we use (5.11) for construction of v1. Let s ∈ 1, N and
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let us have only the function vs. If s = N , then, by (5.12), the desired value V
is defined. If s < N , then we construct vs+1 by the rule

vs+1(l,K) = min
t∈I(K)

[c(l, t,K) + vs(t,K \ {t})] ∀(l,K) ∈ Ds+1. (5.13)

If s + 1 = N , then we obtain V ; see (5.12). If s + 1 < N , then we replace
the array of values of vs with the array of values of vs+1 (the array of values of
vs is erased) and consider the construction of vs+2 by the rule similar to (5.9).
In this scheme, we keep only one function of {v1; ...vN−1} in the memory of the
computer. A more detailed account is given in [11]. A similar idea was proposed
in [14].

Construction of Optimal Routes. To construct an optimal route, all func-
tions {v1; ...; vN} are required. Therefore, we assume procedure (5.10) was carried
out to its fullest extent: all functions v1, ..., vN are known.

Using (5.12), we choose an index j1 ∈ I(1, N) with the property

V = c(0, j1, 1, N) + vN−1(j1, 1, N \ {j1}. (5.14)

We use the equality V = vN (0, 1, N) (see (5.12)). In addition, by (5.5),
(j1, 1, N \ {j1}) ∈ DN−1. As a corollary, from (5.9), we obtain vN−1(j1, 1, N \
{j1}) = min

t∈I(1,N\{j1})
[c(j1, t, 1, N \{j1})+vN−2(t, 1, N \{j1; t})]. Then, we choose

j2 ∈ I(1, N \ {j1}) such that

vN−1(j1, 1, N \ {j1}) = c(j1, j2, 1, N \ {j1}) + vN−2(j2, 1, N \ {j1; j2}). (5.15)

In addition, (j2, 1, N \ {j1; j2}) ∈ DN−2 and the value vN−2(j2, 1, N \ {j1; j2}) ∈
[0,∞[ is defined. If N = 2, then, from (5.14), we obtain the optimal route (see
the definition of v0). If N > 2, we must continue the procedure of solution of
local extremal problems similar to (5.14) and (5.15) until we exhaust the whole
list 1, N . Thus we will come to a “full” route J = (jt)t∈1,N ∈ A such that
CJ = V . Obviously, this route J is optimal in problem (3.5), J ∈ Aopt.

6 Scheme of Independent Computations:
General Constructions

In this section, we consider a simplified variant of the corresponding procedure
of [1–3] (in addition, see [13]). We recall that

GN−1 = {1, N \ {j} : j ∈ I(1, N)} �= ∅. (6.1)

Thus, task sets from GN−1 (6.1) are sets 1, N\{j}, j ∈ I(1, N), and nothing else.
Evidently, |K| = N −1 ∀K ∈ GN−1. The values vN−1(t, 1, N \{t}), t ∈ I(1, N),
are sufficient for determination of V ; see (5.12). In the following, with every set
K ∈ GN−1, we connect one hypothetical processor. This approach (see [1–3,13])
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is the basis of the parallel structure. In addition, this structure must reproduce all
functions v0, v1, ..., vN−1. Therefore, for every processor, we construct its specific
layer of position space and the corresponding layer of the Bellman function. To
construct these layers, we use auxiliary discrete dynamic models.

Discrete Dynamic Systems. In the following, we assume N ≥ 3. In this item,
for simplicity, fix an arbitrary task set K ∈ GN−1. Denote by T[K] the set of
all tuples

(Kt)t∈0,N−2 : 0, N − 2 → G (6.2)

such that

(K0 = K)&(∀τ ∈ 1, N − 2 ∃s ∈ I(Kτ−1) : Kτ = Kτ−1 \ {s}). (6.3)

Items (6.2) and (6.3) define the bundle of trajectories with the initial state K.
It is possible to view trajectories (6.2) and (6.3) as motions of some dynamic
system. This system is defined by the mapping I of Sect. 4. In addition, we
consider motions in G. Assume that, for every P ∈ G,

I[P ]
�
= {P \ {s} : s ∈ I(P )}; (6.4)

then, P → I[P ] defines elementary permutations of our dynamic system con-
nected with the mapping I[·]. Thus, (6.3) transforms into

(K0 = K)&(Kτ ∈ I[Kτ−1] ∀ τ ∈ 1, N − 2). (6.5)

In addition, T[K] is the bundle of all tuples (6.2) with property (6.5); clearly,
this bundle corresponds to our initial state K. Using (6.5), we can introduce
attainability domains for our discrete system: for t ∈ 0, N − 2, assume

T̃[K; t]
�
= {Kt : (Ki)i∈0,N−2 ∈ T[K]} ∈ P ′

(GN−(t+1)); (6.6)

see [1, Proposition 14]. In addition, we have the following statement:

Proposition 6.1. For t ∈ 0, N − 3, the following equality holds: T̃[K; t + 1] =⋃

P∈T̃[K;t]

I[P ].

The proof follows from (6.4) and [1, Proposition 16]. In view of Proposition 6.1,
we obtain the following recurrence procedure: starting with T̃[K; 0] = {K}, we
can transform T̃[K; t] into T̃[K; t + 1] , where t ∈ 0, N − 3 is that of Proposi-
tion 6.1. Thus, T̃[K; 1] = I[K], T̃[K; 2] =

⋃

P∈T̃[K;t]

I[P ] (for N > 3) and so on.

As a result, we obtain the procedure

(T̃[K; 0] = {K}) → T̃[K; 1] → ... → T̃[K;N − 2]. (6.7)

Thus, we can construct all attainability domains without using bundles (6.6).
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7 Representations of Feasible Task Sets and Layers
of Positions

In the previous section, we considered the construction of attainability domains
for a fixed initial state. Now, we consider the totality of procedures (6.7). We
note that

GN−(t+1) =
⋃

K∈GN−1

T̃[K; t] =
⋃

j∈I(1,N)

T̃[1, N \ {j}; t] ∀ t ∈ 0, N − 2. (7.1)

This property was established in [1, Proposition 12]. From (6.7) and (7.1), we
see that (in particular)

G1 =
⋃

K∈GN−1

T̃[K;N − 2].

Moreover, from (7.1), we obtain

Gs =
⋃

K∈GN−1

T̃[K;N − (s + 1)] ∀ s ∈ 1, N − 1. (7.2)

Clearly, (7.2) is a case of “distributed” representation of families used in (5.3).
Now, we introduce certain new layers in the position space. In this construction,
we use the cells defined in (5.6). Set

Ds[K]
�
=

⋃

H∈T̃[K;N−(s+1)]

Ds[H] ∈ P ′
(Ds) ∀ s ∈ 1, N − 1 ∀K ∈ GN−1. (7.3)

From [1, Proposition 17], the next representation of layers (5.7) follows:

Ds =
⋃

K∈GN−1

Ds[K] =
⋃

j∈I(1,N)

Ds[1, N \ {j}] ∀ s ∈ 1, N − 1. (7.4)

To consider the simplest case of s = 1, we introduce the sets

M0[K]
�
= {h ∈ 1, N \ K1|{h} ∈ T̃[K;N − 2]} ∀K ∈ GN−1.

Then, in view of (7.2), for K ∈ GN−1, we obtain

D1[K] =
⋃

h∈M0[K]

D1[{h}] (7.5)

since T̃[K;N − 2] = {{h} : h ∈ M0[K]}. Using (5.5) and (7.5), we have that

D1[K] = {(j, {h}) : h ∈ M0[K], j ∈ J1({h})} ∀K ∈ GN−1. (7.6)
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From (7.4) and (7.6), we obtain the following representation for D1:

D1 =
⋃

K∈GN−1

D1[K] =
⋃

j∈I(1,N)

D1[1, N \ {j}]

= {(l, {h}) : h ∈
⋃

j∈I(1,N)

M0[1, N \ {j}], l ∈ J1({h})}.

For our goals, relation (7.6) is of greater importance. Clearly, in view of (6.1)
and (7.6),

D1[1, N \ {j}] = {(l, {h}) : h ∈ M0[1, N \ {j}], l ∈ J1({h})} ∀ j ∈ I(1, N).

Returning to (7.2), we note the following statement:

Proposition 7.1. If K ∈ GN−1, t ∈ 1, N − 2, (x,Q) ∈ Dt+1[K], and s ∈ I(Q),
then (s,Q \ {s}) ∈ Dt[K].

This proposition is a particular case of [3, Proposition 9.1]. Moreover, see
[13, p. 236]. The property noted in Proposition 7.1 is similar to the analogous
property of layers D0,D1, ...,DN in Sect. 5.

8 The Restriction of the Bellman Function Layers
and Their Construction by a Recurrence Procedure

Now, we consider a decomposition procedure for layers of the Bellman function.
In this decomposition, we follow [1–3]. We recall that, by (7.2), Ds[K] is a
nonempty subset of Ds for s ∈ 1, N − 1 and K ∈ GN−1. We obtain

Ws[K]
�
= (vs(j, P ))(j,P )∈Ds[K] ∈ R+[Ds[K]] ∀ s ∈ 1, N − 1 ∀ K ∈ GN−1. (8.1)

Thus, we introduce the restrictions of the functions used in (5.10). By (5.8) and
(7.2),

Ws[K](j, P ) = v(j, P ) ∀s ∈ 1, N − 1 ∀K ∈ GN−1 ∀ (j, P ) ∈ Ds[K]. (8.2)

It (8.1) and (8.2), we have a new arrangement of the initial Bellman function.
It is easily proved that

W1[K](j, {h}) = c(j, h, {h}) + f(h) ∀K ∈ GN−1 ∀h ∈ M0[K] ∀ j ∈ J1({h})
(8.3)

(we use (7.6)). By (7.6) and (8.3), all the functions W1[K],K ∈ GN−1, are
defined. Consider a specific transformation Wt[K] → Wt+1[K] for K ∈ GN−1

and t ∈ 1, N − 2. Namely, by Proposition 7.1, the value Wt[K](s,Q\{s}) ∈ [0,∞[
is defined for K ∈ GN−1, t ∈ 1, N − 2, (ν,Q) ∈ Dt+1[K]], and s ∈ I(Q).

Proposition 8.1. If K ∈ GN−1, t ∈ 1, N − 2, and (ν,Q) ∈ Dt+1[K], then

Wt+1[K](ν,Q) = min
s∈I(Q)

[c(ν, s,Q) + Wt[K](s,Q \ {s})] ∀ (ν,Q) ∈ Dt+1[K].
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This proposition is a variant of [3, (10.17)]; see also [13, Proposition 6.3].
Thus, with the aid of (8.3) and Proposition 8.1, we obtain the recurrence proce-
dure

W1[K] → W2[K] → ... → WN−1[K] (8.4)

for K ∈ GN−1; procedure (8.4) is carried out by a single processor. Let us now
return to the construction of functions used in (5.9). In this connection, we use
(7.3). Of course, we assume that all functions

Ws[K], K ∈ GN−1, s ∈ 1, N − 1, (8.5)

were constructed (all functions (8.4) are known). Consider the construction of
vs, where s ∈ 1, N − 1.

Let (j,Q) ∈ Ds. Then, with use of (7.4), we choose an arbitrary K ∈ GN−1

such that
(j,Q) ∈ Ds[K]. (8.6)

Such a set K exists by (7.4). Then, by (8.1), we obtain

vs(j,Q) = Ws[K](j,Q). (8.7)

Thus, using the functions Ws[K], K ∈ GN−1, we construct vs, where s ∈
1, N − 1; see (8.6). As a result, using relations similar to (8.6), we determine
v1, ..., vN−1 (recall that v0 is known; see Sect. 5).

Parallel Algorithm of Value Construction. We recall the procedure of
Sect. 5, which is a particular case of the analogous procedure of [11]. For this
procedure of Sect. 5, we consider a variant of parallel realization. To this end,
let us recall (along with [11]) relations (5.9) and (5.12).

(1)Fix K ∈ GN−1 and consider a sequential computation of the functions

W1[K],W2[K], . . . ,WN−1[K].

This procedure is intended to be carried out by a processer dedicated to K.
For representation of W1[K], we use (8.3). Namely, this function is completely

defined by the following rule:

W1[K](j, {h}) = c(j, h, {h}) + f(h) ∀h ∈ M0[K] ∀ j ∈ J1({h}) (8.8)

(see (7.5)). Thus, we know all the values W1[K](j, {h}), where h ∈ M0[K] and
j ∈ J1({h}). In other words, we know all the values W1[K], (j,K) ∈ D1[K].

For Θ ∈ 1, N − 2, assume we know the function WΘ[K]. That is, we know all
the values WΘ[K](j,K), (j,K) ∈ DΘ[K]. Moreover, by (8.3) and Proposition 7.1,
we obtain (s,Q \ {s}) ∈ DΘ[K] ∀ (j,Q) ∈ DΘ+1[K] ∀ s ∈ I(Q). Now, we use
Proposition 8.1: we compute the function WΘ+1[K] ∈ R+[DΘ+1[K]] by the rule

WΘ+1[K](ν, Q) = min
s∈I(Q)

[c(ν, s, Q) + WΘ[K](s, Q \ {s})] ∀ (ν, Q) ∈ DΘ+1[K]. (8.9)

Of course, values (8.9) completely determine the function WΘ+1.
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If Θ = N −2, then WΘ+1[K] = WN−1[K]; in this case, we stop our procedure.
If Θ < N − 2, we replace the array of values of WΘ[K] with the new array of
values of the function WΘ+1. In addition, the array of WΘ[K] is destroyed. The
new array is used (for Θ < N −2) for construction of WΘ+2[K] instead of WΘ[K].
Thus, we obtain the sequential procedure

W1[K] → ... → WN−1[K] (8.10)

for which, in the memory of the processor, only one function from {W1[K]; ...;
WN−1[K]} is stored each time.

(2) For every processor, assume a procedure similar to (8.10) to be carried
out. As a result, we have the functions WN−1[K],K ∈ GN−1. Now, we construct
vN−1 by sewing them together on the basis of (7.4):

DN−1 =
⋃

K∈GN−1

DN−1[K]. (8.11)

From (8.2) and (8.11), for (j,Q) ∈ DN−1, we choose an arbitrary P ∈ GN−1

such that (j,Q) ∈ DN−1[P ]. Then, in view of (8.1) we assume that

vN−1(j,Q) = WN−1[P ](j,Q). (8.12)

Using (8.10) and (8.11), we completely construct the function vN−1: the array
of the values of vN−1 is defined by (8.12) under the corresponding choice of the
set P . For final computation of V , we use relation (5.12).

9 Implementation of the Construction Procedure
for the Bellman Function with Independent
Computations

In this section, we consider a natural scheme of realization of the procedure
with use of independent computations. In addition, we modify certain aspects
of our theoretical construction. Namely, in the following, we assume that each
layer connected with K ∈ GN−1 is examined by several processors with shared
memory (RAM).

We call the arising totality of processors a node. A system of nodes is a
computational cluster. Such system (that is, a node) is used in lieu of each
single processor of the previous section.

The Data Storage. Let us consider a variant of the data storage for a single
cluster node. In addition, we fix K ∈ GN−1 (of course, we could as well say
we fix j ∈ I(1, N) for which K = 1, N \ {j}). In our data storage, the system
(W1[K], ...,WN−1[K]) is to be stored.

We use a hash table as a container for the above-mentioned system (compared
with array, this container uses less memory since there is no need to allocate
memory for the storage of infeasible task sets). In our hash table, the keys are
bit masks of subsets; essentially, a 1 bit at the position i means that the point
numbered i is present in this subset.



Independent Calculations in TSP-PC 133

The Algorithm

1. The main processor forms the family GN−1 (6.1), every element of which is
a set of the cardinality N − 1. The sets of GN−1 are distributed among the
nodes by the MPI protocol. Every node contains k processors with shared
memory. In the node connected with the set K ∈ GN−1, the layers Ws[K],
s ∈ 1, N − 1, are equally distributed between the processors. For resulting
fragments of the above-mentioned layers, the values of the Bellman function
are calculated. Since each node’s memory is shared among its processors,
no data exchange is necessary. In addition, operations with fragments of the
positions’ layers and Bellman function’s layers are conducted with the aid of
the OpenMP API (see also [21]).

2. The layers of the Bellman function values obtained on the first stage 1 and
connected with the corresponding set K ∈ GN−1 are collected by the main
node. Later on, the layer vN−1 is computed by means of (8.11) and (8.12).
Finally, the value V is determined from (5.12).

3. The main processor constructs the optimal route by solving the local extremal
problems similar to (5.14) and (5.15).

Computational Experiment. In the experiment, we considered a problem
with N = 46 cities and 35 address pairs K that define precedence constraints
(|K| = 35). The experiment was conducted on the Uran supercomputer; 22
cluster nodes were used, each of which had 8 computational cores, thus, our
implementation used 176 cores. The cost function was defined as Euclidean dis-
tance (for simplicity). The following results were obtained: V = 773.091003 (the
extremum of the problem), the computation time was 6312 s, and the maximum
memory usage per node was 142.17 GB. The sequential procedure was 22 times
slower than the parallel (exactly the number of nodes in the cluster).

10 Conclusion

In this paper, we explore a rather general parallel solution procedure [1,2] for
a constrained routing problem with complicated cost functions. This procedure
was implemented in the form of a parallel algorithm on the Uran supercomputer.
Its possible applications are connected with the engineering problems of fission
power generation and (in the future) the problem of routing the cutting tools in
CNC sheet cutting machines (in this connection, see [22–26]).
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Abstract. We study the m-Peripatetic Salesman Problem on random
inputs. In earlier papers we proposed a polynomial asymptotically opti-
mal algorithm for the m-PSP with different weight functions on random
inputs. The probabilistic analysis carried out for that algorithm is not
suitable in the case of the m-PSP with identical weight functions.

In this paper we present an approach which under certain conditions
gives polynomial asymptotically optimal algorithms for the m-PSP on
random inputs with identical weight functions and for the m-PSP with
different weight functions, as well. We describe in detail the cases of
uniform and shifted exponential distributions of random inputs.

Keywords: m-PSP · Asymptotically optimal algorithm · Performance
guarantees · Random inputs · Uniform distribution · Shifted exponential
distribution

1 Introduction

The m-Peripatetic Salesman Problem (m-PSP) is a natural generalization of
the classical Traveling Salesman Problem (TSP). It is formulated as follows:
given a complete undirected n-vertex graph G = (V,E) and weight functions
wi : E → R+, i = 1, . . . ,m, the problem is to find m edge-disjoint Hamiltonian
cycles H1, . . . , Hm ⊂ E such that their total weight is minimum or maximum:

m∑

i=1

wi(Hi) =
m∑

i=1

∑

e∈Hi

wi(e).

In the literature, the m-PSP is usually referred to as the case of the problem,
where all the weight functions wi are identical: w1 = . . . = wm = w. In this paper
we will sometimes specify this case as the m-PSP with identical weight functions,
while the general case of the problem where wi �= wj for 1 ≤ i �= j ≤ m will be
referred to as the m-PSP with different weight functions.
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DOI: 10.1007/978-3-319-44914-2 11
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The m-PSP was introduced in [24] by Krarup. De Kort [9] showed that the
problem of finding two edge-disjoint Hamiltonian cycles is NP-complete. This
implies that the 2-PSP with identical weight functions is NP-hard both in the
maximization and minimization variants. These results can be extended to the
general m-PSP. The problem is also NP-hard, in the case of different weight
functions [5].

The most studied variant of the problem is the 2-PSP. De Brey [8] presented
several polynomially solvable cases of the 2-PSP. Papers [9–11] provide upper
and lower bounds for the minimum 2-PSP and use them in the branch-and-bound
algorithm. For the metric minimum 2-PSP algorithms with approximation ratios
9/4 [5] and 2 [2] are known. For the symmetric maximum 2-PSP algorithms with
approximation ratios 3/4 and 7/9 were designed in [1,20]. For the asymmetric
maximum 2-PSP an algorithm with approximation ratio 2/3 is given in [16]. The
results for the 2-PSP, where edge weights belong to a given interval or a finite
set of numbers, can be found in [14,18,21].

Baburin and Gimadi in [4] developed an asymptotically optimal algorithm
with running-time O(n3) for the maximum Euclidean m-PSP.

Let’s now introduce the main definitions we need to explore a problem on
random inputs. By FA(I) and OPT (I) we denote the approximate (obtained
by some approximation algorithm A) and the optimum value of the objective
function of the problem on the input I, respectively. An algorithm A is said to
have performance guarantees

(
εA(n), δA(n)

)
on the set of random inputs of the

problem of size n, if

Pr
{

FA(I) >
(
1 + εA(n)

)
OPT (I)

}
≤ δA(n), (1)

where εA(n) is an assessment of the relative error of the solution obtained by
algorithm A, δA(n) is an estimation of the failure probability of the algorithm,
which is equal to the proportion of cases when the algorithm fails, i.e. it does
not hold the relative error εA(n) or does not produce any answer at all.

It is often important to understand the behavior of δA(n) and εA(n) as the
size n = 2, 3, . . . of the problem increases. An algorithm A is called asymptotically
optimal on the class of instances of the problem, if there exist performance
guarantees such that εA(n) → 0 and δA(n) → 0 as n → ∞.

In papers [15,17] we studied the m-PSP with different weight functions on
random inputs. We assumed the weights of the edges to be independent and
identically distributed random reals with uniform distribution on [an, bn], 0 <
an ≤ bn, or shifted exponential distribution on [an,∞), 0 < an. We presented
an O(mn2) running-time algorithm solving the problem, and showed that it is
asymptotically optimal, if m = o(n) and a few other conditions on the parameters
of the distribution function are satisfied.

The algorithm from [15,17] constructs m Hamiltonian cycles in series. Build-
ing the i-th Hamiltonian cycle it applies the principle “go to the nearest not
visited vertex” n − 4i times, then converts the resulting path into the Hamil-
tonian cycle via the extension-rotation procedure.
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In solving the m-PSP with different weight functions, the weights of the edges
chosen by the algorithm are independent random variables ξis, 1 ≤ i ≤ m, 1 ≤
s ≤ n. To prove that the algorithm is asymptotically optimal we estimated the
probability

Pr
{ m∑

i=1

n∑

s=1

ξis > (1 + εn)OPT
}

≤ δn,

using the theorem from [25, Chap. 2.2], which holds for the sum of independent
random variables. If we apply this algorithm to the m-PSP with identical weight
functions, the weights ξis of the chosen edges will be dependent. The depen-
dent random variables are less studied in general, and we could not find any
results similar to those from [25] for such cases. Thus we could not carry out the
analogous analysis.

In this paper we present an approach which under certain conditions gives
asymptotically optimal algorithms for the m-PSP with identical weight functions
on random inputs. This approach will be also correct for the m-PSP with different
weight functions.

The paper is organized as follows. In Sect. 2 we describe our approach, which
involves an algorithm for finding a Hamiltonian cycle in a random graph. A
short review on the algorithms that find a Hamiltonian cycle in a random sparse
graph can be found in Sect. 2.1. Sections 2.2 and 2.3 briefly describe algorithms
from [19] and [3]. In Sect. 3 we give the probabilistic analysis of the approach
assuming that the weights of edges in the input graph are i.i.d. real numbers with
distribution function defined on [an, bn] or [an,∞), 0 < an. Section 3.1 provides
the preliminary analysis of the approach. Finally, in Sect. 3.2 we present the
performance guarantees of our approach for the uniform and shifted exponential
distributions of inputs.

2 The Asymptotically Optimal Approach

Given a complete undirected weighted n-vertex graph G = (V,E), the problem
is to find m ≤ n/2 edge-disjoint Hamiltonian cycles H1, . . . , Hm ⊂ E such
that their total weight is minimum. We assume that the weights of the edges are
independent and identically distributed random reals, with distribution function
f(x) defined on [an, bn] or [an,∞), 0 < an ≤ bn.

The approach consists of the following three steps.
Step 1. We uniformly split the initial complete n-vertex graph G into sub-

graphs G1, . . . Gm, so that each Gi has n vertices and about n(n−1)
2m edges.

procedure SPLIT(G):
begin

for 1 ≤ i ≤ m set V (Gi) = V (G), E(Gi) = ∅;
for each e ∈ E(G):

select at random with equal probabilities one of the sets
E(G1), . . . , E(Gm), let it be E(Gi), add the edge e to E(Gi).

end.



On Asymptotically Optimal Approach to the m-PSP on Random Inputs 139

Step 2. Construct subgraphs G̃1, . . . , G̃m deleting all edges in Gi, 1 ≤ i ≤ m,
which are heavier than w∗. Later we will select w∗ so as to retain only light
edges in subgraphs, though still providing enough edges in each G̃i for Step 3.

Step 3. In each subgraph G̃i build a Hamiltonian cycle, using polynomial
randomized algorithms, that with high probability or w.h.p. (with probability
→ 1 as n → ∞) find a Hamiltonian cycle in a sparse random graph. In this
paper we will try algorithms by Gimadi and Perepelitsa (1973) [19] and Angluin
and Valiant (1979) [3].

Steps 1 and 2 take O(n2) time, at Step 3 the chosen algorithm with time
complexity T (n) runs m times. So the total time complexity of the approach is
O(n2 + mT (n)).

2.1 Algorithms Finding a Hamiltonian Cycle in a Random Graph

The Hamiltonian cycle problem is a well-known NP-complete problem. A series
of papers study the problem of finding a Hamiltonian cycle in random graphs.

Researchers in this field use two concepts of a random graph. The first is
an n-vertex graph Gp, where each edge exists with probability p, independently
of other edges. This concept is convenient for proving statements. The second
concept is a graph GN with n vertices and exactly N edges, chosen uniformly
from the set of all such graphs. This concept is commonly used for making
statements. In [3] it was shown that these two concepts are interchangeable for
appropriate values N and p.

Erdos and Renyi [12] in 1959 obtained the threshold condition of existence
of a Hamiltonian cycle: for any ε > 0 if the number of edges N < (1/2 −
ε)n log n, then w.h.p. the graph contains isolated vertices. Posa in 1976 gave a
non-algorithmic proof of the fact that almost all undirected graphs with cn log n
edges contain a Hamiltonian cycle. Komlos and Szemeredi [22] and independently
Korshunov [23] stated that the required density may be reduced to 1/2(n log n+
n log log n + Q(n)) edges, where Q(n) is any function such that Q(n) → ∞ as
n → ∞ (i.e. Q(n) grows slowly as the log log n).

In 1973 Gimadi and Perepelitsa [19] presented an algorithm with a running-
time of O(n2/ ln n) which w.h.p. finds a Hamiltonian cycle in directed and undi-
rected graphs with N ≥ n

√
n ln n edges. Angluin and Valiant in 1979 proposed a

randomized algorithm, which in O(n ln2 n) time finds with probability 1−O(n−α)
a Hamiltonian cycle in a directed or undirected random graph with number of
edges N ≥ c(α)n ln n, where c(α) is sufficiently large constant.

Bollobas, Fenner and Frieze in 1987 [6] gave a deterministic polynomial time
algorithm that works w.h.p. at the exact threshold for Hamiltonicity, and runs
in O(n3+o(1)) time.

In 2015 Frieze and Haber [13] presented an algorithm, which in almost linear
time O(n1+o(n)) w.h.p finds a Hamiltonian cycle in random graph with mini-
mum degree ≥ 3 and number of edges N = cn, where c is sufficiently large.
Unfortunately, we cannot apply this algorithm to our approach, as long as we
can not guarantee (even w.h.p.) minimum degree ≥ 3 in subgraphs G̃i, if each
G̃i has exactly cn edges.
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Now we are going to briefly describe algorithm AGP by Gimadi and Pere-
pelitsa [19] and algorithm AAV by Angluin and Valiant [3].

2.2 Gimadi-Perepelitsa Algorithm 1973

Paper [19] presents one of the first algorithms, that solves the problem of finding
a Hamiltonian cycle in undirected sparse random graphs. The algorithm suc-
ceeds w.h.p. for random n-vertex graphs with at least N = n

√
n ln n edges.

Algorithm AGP with parameters k, τ , ρ. Algorithm attempts to find a Hamil-
tonian cycle in a graph G = (V,E). It consists of 5 Stages (Fig. 1). If it cannot
execute a step, it stops and returns “failure”.

Let v = �n−ρ
k �, v′ = �n−ρ

k τ�. The values of the parameters k, τ , ρ will be
defined later.

Fig. 1. Algorithm AGP : (a) Stages 0–3, (b) Stage 4.

Stage 0. Fix an arbitrary vertex i1. Create subset V0 ⊂ V of (n−kv) vertices
such that (u, i1) ∈ E for all u ∈ V0. Split the remaining kv vertices of the graph
into k disjoint sets Vλ, |Vλ| = v, 1 ≤ λ ≤ k, where i1 ∈ V1.

Stage 1. Start building partial path P = {i1}. Set λ = 1. While λ ≤ k do:
Repeat (v−v′) times: Take the last vertex is of P and find an edge (is, is+1) ∈

E \ P such that is+1 ∈ Vλ. Add the edge (is, is+1) to P .
If λ < k, find an edge from the last vertex of P to some vertex in Vλ+1, add

it to the path and set λ = λ + 1.
At this stage we have created a partial path P with k(v − v′) vertices.
Stage 2. Repeat (k − 1)v′ times:
Take the last vertex is of P , find an edge (is, is+1) ∈ E such that is+1 ∈

V \ (P ∪ V0). Add this edge to P .
Now we have a partial path P with kv − v′ vertices.
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Stage 3. Convert the path P = {i1, . . . , is} into a cycle: find a pair of vertices
iα ∈ V \(P ∪V0) and iα+1 ∈ V0, such that there exist edges (is, iα) and (iα, iα+1).
Add these edges and the edge (iα+1, i1) to P .

Now we have a cycle P with kv − v′ + 2 vertices.
Stage 4. For each λ = 0, 1, . . . , k we will try to add the remaining vertices of

Vλ to P . First we cover the set Vλ\P with paths. For each path {u0, . . . , us}, 0 ≤
s, find an edge (u1, u2) in P , such that u1, u2 ∈ P \ Vλ and there exist edges
(u0, u1) and (us, u2). Delete the edge (u1, u2) from P and add the edges (u0, u1)
and (us, u2).

Theorem 1. Let p ≥ 2
√

lnn
n . Set the parameters of the algorithm as follows:

k =
ln n

2
, ρ = 0.3np and τ =

kp

1 + pk
.

Then algorithm AGP w.h.p. builds a Hamiltonian cycle in a random n-vertex
graph with at least N = n

√
n ln n edges. The failure probability of the algorithm is

δGP = O

( √
ln n

n1.5−o(1)

)

= O

(√
ln n

n0.8

)

.

Algorithm runs in O(n2/ ln n) time.

To prove this theorem the authors of [19] computed the conditional proba-
bilities P0, . . . , P4 that each stage of the algorithm has successfully completed,
assuming that all previous stages were successful. From these computations the
failure probability δGP can be derived.

2.3 Angluin-Valiant Algorithm 1979

In 1952 Dirac proved that a simple graph with n vertices (n ≥ 3) is Hamiltonian,
if every vertex has degree n/2 or greater. From Dirac’s Theorem it easily follows
an O(n2) time algorithm for finding a Hamiltonian cycle in an n-vertex graphs
with minimum degree ≥ n/2. Angluin and Valiant [3] showed that almost the
same algorithm with probability 1 − O(n−α) finds a Hamiltonian cycle in a
random graph with number of edges N ≥ c(α)n ln n (minimum degree w.h.p. is
≥ c1 ln n), where c(α) and c1 are some constants.

This is a simple fast classic algorithm. Nevertheless, it should be noted that
its weakness is a fairly large constant c(α) in the definition of N . If n is not large
enough, the restriction on N implies an almost complete graph.

procedure SELECT(u):
begin

if ∀v ∈ V (G) (u, v) /∈ E(G), return “*”;
else select at random with equal probabilities one of the edges
(u, v) ∈ E(G), delete (u, v) from E(G), and return the value v;

end.
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AlgorithmAAV (G,v,t):
Algorithm attempts to find a Hamiltonian path P in a graph G from vertex

s to t, returning “success” if it succeeds and “failure” otherwise. If s = t it will
search for a Hamiltonian cycle.

Stage 1. Set P := ∅, ndp := s, where ndp is the last vertex of P
Stage 2.(a) If P includes every node of G (except t, if s �= t), and if we

previously deleted the edge (ndp, t) from G, then we add (ndp, t) to P and
return “success”.

(b) Set v=SELECT(ndp).
(b.1) If v =“*”, return “failure”.
(b.2) If v /∈ P and v �= t, add (ndp, v) to P , ndp := v, and go to Stage 2.
(b.3) If v ∈ P and v �= s, then apply what is called the rotation procedure

(Fig. 2). Set u = the neighbor of v in P which is closer to ndp, delete (u, v) from
P , add (ndp, v) to P, set ndp = u, go to Stage 2.

(b.4) Otherwise (i.e. if v = t), go to Stage 2.

Fig. 2. The rotation procedure.

Theorem 2. For all α > 0 there exist M,K such that if the number of edges
in a random graph is N > c(α)n ln n, where c(α) is a sufficiently large constant,
then the probability that algorithm AAV returns “success” before SELECT has
been called Mn ln n times is 1 − O(n−α).

The proof [3] of this theorem consists in analyzing all the cases in which the
algorithm returns “failure” or calls SELECT more than Mn ln n times, and
showing that the probability of such events is negligible O(n−α).

3 Probabilistic Analysis of the Approach

3.1 Preliminary Analysis

Further we will need the following inequality:

Proposition 1. For all n, p, β, with n integer, 0 ≤ p ≤ 1, 0 ≤ β ≤ 1

�(1−β)np�∑

k=0

(
n

k

)

pk(1 − p)n−k ≤ exp{−β2np/2}.
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Theorem 3. Let the weights of the input graph be i.i.d. random reals with a
distribution function f(x) defined on [an, bn] or [an,∞), 0 < an ≤ bn. Let the
algorithm chosen at Step 3 require N edges to succeed w.h.p., and let it fail with
negligible probability δ.

Then our approach gives the following performance guarantees. The relative
error is

εA <
w∗ − an

an
,

where w∗ is the upper bound of the weights of edges left in subgraphs at Step 2,

w∗ = f−1

(
4m(N + n)
n(n − 1)

)

.

The failure probability is

δA ≤ mδ + me−n.

Proof. At Step 1 we create random graphs G1, . . . , Gm, where each edge is
present with probability 1/m, independently of other edges. At Step 2 we delete
heavy edges from G1, . . . , Gm. The probability that an edge is light is

Pr{weight of the edge < w∗} = f(w∗).

Thus, G̃1, . . . , G̃m are random graphs, where each edge exists with probability

p = f(w∗)/m , (2)

independently of other edges.
We estimate the optimum value of the objective function as OPT ≥ mnan. If

the algorithm used at Step 3 does not fail for each subgraph G̃i, 1 ≤ i ≤ m, then
the value of the objective function obtained by our approach is FA < w∗mn. So
for the relative error we have:

εA =
FA − OPT

OPT
<

w∗mn

mnan
− 1 =

w∗ − an

an
. (3)

At Step 3 we apply one of two algorithms to random graphs G̃1, . . . , G̃m.
Both algorithms have requirements of the form “the graph should have at least
N edges for the algorithm to succeed w.h.p.”. Using Proposition 1, let’s estimate
the probability that there will not be enough edges in G̃i, 1 ≤ i ≤ m, in the
beginning of Step 3:

δ′ = Pr{there are < Nedges inG̃i} =
N−1∑

i=0

(n(n−1)
2

i

)

pi(1 − p)
n(n−1)

2 −i

≤ exp
(

−n(n − 1)
4

p + N

)

≤ e−n,
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if

p ≥ 4(N + n)
n(n − 1)

. (4)

In other words, if the probability p of existence of an edge satisfies (4), δ′ is
negligible. Combining (2) and (4) we get the following upper bound w∗ on the
weight of edges left in subgraphs:

w∗ = f−1

(
4m(N + n)
n(n − 1)

)

. (5)

Finally, the failure probability δA of the approach consists of the probabilities
δ′ that there were not enough edges in G̃i, and probabilities δ that even though
there were enough edges in G̃i the algorithm at Step 3 has failed.

δA ≤ mδ + mδ′ ≤ mδ + me−n. (6)

3.2 The Cases of Uniform and Exponential Distributions of Inputs

Theorem 4. Let the weights of the input graph be i.i.d. random reals with uni-
form distribution function UNI(x) defined on [an, βn], 0 < an ≤ βn, or with
shifted exponential distribution function Exp(x) defined on [an,∞), 0 < an, with
parameters an, βn:

Exp(x) = 1 − exp
(

−x − an

βn

)

, 0 < an ≤ x.

Our approach will give asymptotically optimal solutions for the m-PSP, if:

– m = O(n0.5−θ) , 0 < θ < 0.5, and βn/an = o
(

nθ√
lnn

)
, if we use algorithm

AGP at Step 3.
– m = O(n1−θ) , 0 < θ < 1, and βn/an = o

(
nθ

lnn

)
, if we use algorithm AAV at

Step 3.

Proof. For the inputs with UNI(x) distribution function according to (5) the
weight of the most heavy edge left in subgraphs is less than

w∗ = (βn − an)
4m(N + n)
n(n − 1)

+ an.

Thereby, according to Theorem3 the relative error of the approach is

εn <
βn

an

4m(N + n)
n(n − 1)

. (7)

For the inputs with shifted exponential distribution function Exp(x) accord-
ing to (5) the weight of the most heavy edge left in subgraphs is less than

w∗ = an − βn ln
(

1 − 4m(N + n)
n(n − 1)

)

.
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Thereby, using Theorem 3, for the relative error of the approach we have:

εn < −βn

an
ln

(

1 − 4m(N + n)
n(n − 1)

)

≤ βn

an

4m(N + n)
n(n − 1)

,

which is equivalent to (7).
Further analysis depends on the algorithm chosen at Step 3.
(1) If we apply algorithm AGP , the required number of edges N = n

√
n ln n,

so for the relative error we have:

εA <
βn

an

4m

n(n − 1)

(
n
√

n ln n + n
)

=
βn

an

4m(
√

n ln n + 1)

(n − 1)
= O

(
βn

an

√
ln n

nθ

)

= o(1),

if m = O(n0.5−θ) , 0 < θ < 0.5 and
βn

an
= o

(
nθ

√
ln n

)

.

According to Theorem 3, Theorem 1 and the value of m chosen above, for the
failure probability we have:

δA ≤ me−n + mO

(√
ln n

n0.8

)

= O

( √
ln n

n0.3+θ

)

= o(1).

(2) If we use algorithm AAV , then the required number of edges
N = c(α)n ln n.

εA <
βn

an

4m

(n − 1)
(c ln n + 1) = O

(
βn

an

ln n

nθ

)

= o(1),

if m = O(n1−θ) , 0 < θ < 1 , and
βn

an
= o

(
nθ

ln n

)

.

According to Theorems 2 and 3 and the value of m chosen above:

δA ≤ me−n + mO(n−α) = O(n1−θ−α) = o(1) , if α > 1.

Remark 1. Considering (3) and (6), it is easy to prove that the results obtained
in this paper can be extended to the case of any distribution function that domi-
nates the considered distributions (distribution of majorizing type): f̂(x) ≥ f(x)
for all x, and f̂(x) has the same domain as f(x).

For example, the truncated normal distribution Nan,σ2
n
(x) with parameters

an, σn = βn/2:

Nan,σ2
n
(x) =

2
√

2πσ2
n

∫ x

an

exp
(

− (t − an)2

2σ2
n

)

dt, 0 < an ≤ x,

dominates the shifted exponential distribution function with parameters an, βn.
Thus, the same performance guarantees of the approach hold for the inputs with
truncated normal distribution on [an,∞].
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Remark 2. The described algorithms AAV and AGP have counterparts for the
case of directed graphs [3,19] with failure probability of the same exponent. Thus
the results obtained in this section are also true for the directed m-PSP.

Remark 3. The approach will also work well for any distribution function
defined on [an, bn] or [an,∞), 0 < an, which has large enough probability den-
sity near an. Then with increasing n the number of edges of almost an weight
increases, and for large n we would be able to build Hamiltonian cycles using
only the lightest edges.

Acknowledgments. The authors are supported by the RSCF grant 16-11-10041.

References

1. Ageev, A.A., Baburin, A.E., Gimadi, E.K.: A 3/4 approximation algorithms for
finding two disjoint Hamiltonian cycles of maximum weight. J. Appl. Ind. Math.
1(2), 142–147 (2007)

2. Ageev, A.A., Pyatkin, A.V.: A 2-approximation algorithm for the metric
2-peripatetic salesman problem. Diskretn. Anal. Issled. Oper. 16(4), 3–20 (2009)

3. Angluin, D., Valiant, L.G.: Fast probabilistic algorithms for Hamiltonian circuits
and matchings. J. Comput. Syst. Sci. 18(2), 155–193 (1979)

4. Baburin, A.E., Gimadi, E.K.: On the asymptotic optimality of an algorithm for
solving the maximum m-PSP in a multidimensional Euclidean space. Proc. Steklov
Inst. Math. 272(1), 1–13 (2011)

5. Baburin, A.E., Gimadi, E.K., Korkishko, N.M.: Approximation algorithms for find-
ing two edge-disjoint Hamiltonian cycles of minimal total weight (in Russian). J.
Discr. Anal. Oper. Res. 2(11), 11–25 (2004)

6. Bollobas, B., Fenner, T.I., Frieze, A.M.: An algorithm for finding Hamilton paths
and cycles in random graphs. Combinatorica 7, 327–341 (1987)

7. Chebolu, P., Frieze, A.M., Melsted, P.: Finding a maximum matching in a sparse
random graph in O(n) expected time. JACM 57, 24 (2010)

8. De Brey, M.J.D., Volgenant, A.: Well-solved cases of the 2-peripatetic salesman
problem. Optimization 39(3), 275–293 (1997)

9. De Kort, J.B.J.M.: Upper bounds and lower bounds for the symmetric K-
Peripatetic Salesman Problem. Optimization 23(4), 357–367 (1992)

10. DeKort, J.B.J.M.: Lower bounds for symmetric K-peripatetic salesman problems.
Optimization 22(1), 113–122 (1991)

11. De Kort, J.B.J.M.: A branch and bound algorithm for symmetric 2-peripatetic
salesman problems. Eur. J. Oper. Res. 70, 229–243 (1993)

12. Erdos, P., Renyi, A.: On random graphs I. Publ. Math. Debrecen 6, 290–297 (1959)
13. Frieze, A., Haber, S.: An almost linear time algorithm for finding Hamilton cycles

in sparse random graphs with minimum degree at least three. J. Random Struct.
Algorithms 47(1), 73–98 (2015)

14. Gimadi, E.K., Glazkov, Y.V., Glebov, A.N.: Approximation algorithms for sollving
the 2-peripatetic salesman problem on a complete graph with edge weights 1 and
2. J. Appl. Ind. Math. 3(1), 46–60 (2009)

15. Gimadi, E.K., Glazkov, Y.V., Tsidulko, O.Y.: The probabilistic analysis of an
algorithm for solving the m-planar 3-dimensional assignment problem on one-cycle
permutations. J. Appl. Ind. Math. 8(2), 208–217 (2014)



On Asymptotically Optimal Approach to the m-PSP on Random Inputs 147

16. Gimadi, E.K., Glebov, A.N., Skretneva, A.A., Tsidulko, O.Y., Zambalaeva, D.Z.:
Combinatorial algorithms with performance guarantees for finding several Hamil-
tonian circuits in a complete directed weighted graph. Discrete Appl. Math.
196(11), 54–61 (2015)

17. Gimadi, E.K., Istomin, A.M., Rykov, I.A., Tsidulko, O.Y.: Probabilistic analysis
of an approximation algorithm for the m-peripatetic salesman problem on random
instances unbounded from above. Proc. Steklov Inst. Math. 289(1), 77–87 (2015)

18. Gimadi, E.K., Ivonina, E.V.: Approximation algorithms for the maximum 2-
peripatetic salesman problem. J. Appl. Ind. Math. 6(3), 295–305 (2012)

19. Gimadi, E.K., Perepelitsa, V.A.: A statistically effective algorithm for the selection
of a Hamiltonian contour or cycle (in Russian). J. Diskret. Anal. 22, 15–28 (1973)

20. Glebov, A.N., Zambalaeva, D.Z.: A polynomial algorithm with approximation ratio
7/9 for the maximum two peripatetic salesmen problem. J. Appl. Ind. Math. 6(1),
69–89 (2012)

21. Glebov, A.N., Zambalaeva, D.Z.: An approximation algorithm for the minimum
two peripatetic salesmen problem with different weight functions. J. Appl. Ind.
Math. 6(2), 167–183 (2012)

22. Komlos, J., Szemeredi, E.: Limit distributions for the existence of Hamilton circuits
in a random graph. Discrete Math. 43, 5563 (1983)

23. Korshunov, A.D.: On the power of some classes of graphs. Sov. Math. Dokl. 11,
1100–1104 (1970)

24. Krarup, J.: The peripatetic salesman and some related unsolved problems. In: Roy,
B. (ed.) Combinatorial Programming, Methods and Applications. NATO Advanced
Study Institutes Series, vol. 19, pp. 173–178. Reidel, Dordrecht (1975)

25. Petrov, V.V.: Limit Theorems of Probability Theory. Sequences of Independent
Random Variables. Clarendon Press, Oxford (1995)



Efficient Randomized Algorithm
for a Vector Subset Problem

Edward Gimadi1,2 and Ivan Rykov1,2(B)

1 Sobolev Institute of Mathematics, Koptuga Avenue 4, 630090 Novosibirsk, Russia
rykovweb@gmail.com

2 Novosibirsk State University, 2 Pirogova Street, 630090 Novosibirsk, Russia
gimadi@math.nsc.ru

Abstract. We introduce a randomized approximation algorithm for
NP-hard problem of finding a subset of m vectors chosen from n given
vectors in multidimensional Euclidean space Rk such that the norm of the
corresponding sum-vector is maximum. We derive the relation between
algorithm’s time complexity, relative error and failure probability para-
meters. We show that the algorithm implements Polynomial-time Ran-
domized Approximation Scheme (PRAS) for the general case of the prob-
lem. Choosing particular parameters of the algorithm one can obtain
asymptotically exact algorithm with significantly lower time complexity
compared to known exact algorithm. Another set of parameters provides
polynomial-time 1/2-approximation algorithm for the problem. We also
show that the algorithm is applicable for the related (minimization) clus-
tering problem allowing to obtain better performance guarantees than
existing algorithms.

Keywords: Vector subset · Randomized algorithm · Asymptotically
exact algorithm · Performance guarantees

1 Introduction

We consider the following Maximization Vector Subset problem (VSP).

Problem 1. Given a set of n vectors (v1, . . . vn) in Euclidean space R
k and a

number m < n choose a subset of m vectors (vi1 , . . . vim) such that the norm

of the sum-vector
m∑

j=1

vij is maximum (we consider the Euclidean norm in k-

dimensional space R
k; i. e. ‖x‖ =

√
x2
1 + . . . + x2

k).

This problem was considered in [5] in context of solving an applied problem
of determining a quasiperiodic segment in a noisy numerical sequence provided
that the number of repetitions of the segment is known. This problem typi-
cally arises in various applications such as electronic prospecting, radiolocation,
telecommunication, geophysics, voice signals processing, medical and technical
diagnostics, etc.
c© Springer International Publishing Switzerland 2016
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The Vector Subset problem was thoroughly studied in [2]. It was shown
that its general case of the problem is NP-hard. An approximation scheme
was also proposed which allows to find a solution with relative error ε > 0
in O(nk(k+3)/2(1/ε)(k−1)/2) time. Thus, a FPTAS for any fixed dimension k was
obtained.

In [2,4] two exact pseudopolynomial (for any fixed k) algorithms were pro-
posed for the integer case of the vector subset problem.

Observe that the one-dimensional case of the problem (when k = 1 and vi

are real numbers) is trivial: the optimal solution either consists of m maximal
or m minimal numbers. The complexity status of the particular case when the
dimension is a fixed number k > 1 remained opened until Gimadi et al. [6]
proposed an algorithm which finds an optimal solution in running-time O(k2n2k).

Thus, the Problem 1 is polynomially solvable for any fixed dimension k. How-
ever, the complexity of the proposed algorithm quickly grows with the increase
of dimension k. In current paper we describe the randomized algorithm having
significantly lower time complexity while remaining asymptotically exact “whp”
(with high probability). Hereinafter this abbreviation means “with probability
tending to 1 when n → ∞”.

It’s worth noting that all three mentioned algorithms (approximation, exact
and asymptotically exact) use the same idea of solving a set of one-dimensional
problems (of finding m best projections on a given ray) and choosing the best
set of vectors among provided by the solutions of these problems.

In the second section we briefly describe an application of this idea to con-
structing the first two algorithms. In the third section we describe a new ran-
domized algorithm in more details.

2 Previous Results

Theorem 1 [2]. VSP is NP-hard.

This theorem is proved by the reduction of the Clique problem to VSP.

Theorem 2 [2]. There exists an algorithm A1 that solves any instance of VSP
with relative error less than (k − 1)/(8L2) in O(nk2(2L + 1)k−1) time.

It’s worth to describe briefly the idea of the algorithm A1, since the ran-
domized algorithm introduced in this paper shares the common approach with
it.

It is based on the idea that if we know the direction of the optimal sum
vector, then the corresponding m vectors can be found as those providing m
largest projections on this direction. This is complemented by the note that if
two directions are close (angle between them is small), then the projections of
any vector on them have close values. Thus, the algorithm A1 tries to cover
the space with a set of directions such that any direction (including unknown
optimal direction) would be close to some direction from the chosen set. For each
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chosen direction one solves the 1-dimensional problem of finding m vectors with
largest projections on this direction.

In the case of algorithm A1 the directions are taken as vectors starting at
the origin and going to all the integer points on the faces of hypercube {x ∈
R

k| − L ≤ xi ≤ L, i = 1 . . . k}. It is proved that this set provides the stated
complexity and error estimates. Taking ε = (k − 1)/(8L2) we easily see that
algorithm A1 provides FPTAS (for each fixed k) for VSP.

Theorem 3 [6]. There exists an algorithm A2 that optimally solves VSP in
O(k2n2k) time.

The algorithm A2 is based on more precise analysis of how the projections
of vectors to the directions depend on the direction. It was shown that the set
of vectors with largest projections remains the same within each of O(kn2k−2)
regions separated by hyperplane perpendiculars to vector differences. Thus, it is
enough to solve the 1-dimensional problem for one direction from each of these
regions to guarantee the optimal set of vectors will be presented in the set of
obtained solutions. By applying the lemma from [3] it is shown in [6] that this
can be done in O(k2n2k) time.

3 Randomized Algorithm

The algorithm A′ proposed in this section uses the same idea as the approxi-
mation algorithm A1. The difference between them is that the algorithm A′ is
randomized; i.e. it carries out random decisions during its execution. Thus, we
apply a probabilistic analysis to this algorithm; i.e. we estimate both the relative
error and the failure probability.

We say that a randomized algorithm A has (εA
n , δA

n ) estimates (called relative
error and failure probability respectively) over the set In of all the instances with
n elements in the input data if

P

{
f∗(I) − fA(I)

f∗(I)
< εA

n

∣
∣
∣ I ∈ In

}

≥ 1 − δA
n

The probability distribution is often set over the instances of the same size;
i.e. values εA

n and δA
n depend on n. Algorithm is called asymptotically exact if

both εA
n and δA

n tend to zero when n tends to infinity.
When constructing randomized algorithm, we can control the relation

between approximation error, failure probability and time complexity. For the
algorithm A′ we choose the values of parameters such that the algorithm has
much lower complexity, than the exact algorithm, while remaining asymptoti-
cally exact.

Let’s describe A′ stepwise.
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Algorithm A′.

1. Randomly and uniformly choose L points on the unit sphere in R
k;

2. for each of the directions, defined by these points, find the set of m vectors
with maximal projections on the direction;

3. among the sets of vectors found at step 2 choose the set with the maximum
norm of sum-vector.

Thus, the algorithm A′ differs from the algorithm A1 by the rule of direc-
tions generation. Instead of enumerating all the integer points on faces of the
hypercube we randomly and uniformly choose the fixed number of points on the
unit sphere.

We define the following criterion of algorithm’s successful execution: if the
smallest angle between optimal sum vector and one of the generated directions
is less than ϕ, the algorithm is executed successfully; otherwise, algorithm fails.

Note that L and ϕ are the parameters of the algorithm that we can choose
arbitrary and that affect relative error, failure probability and time complexity
values.

The main theorem of the paper establishes the relationship between parame-
ters L and ϕ and the algorithm performance guarantees.

Theorem 4. Algorithm A′ with parameters L and ϕ has the following perfor-
mance guarantees: approximation error

εA′ ≤ 2 sin2 ϕ

2
,

failure probability

δA′
= exp

(

− sink−1 ϕ

3
√

k − 1
L

)

and time complexity
TA′

= O(nkL).

3.1 Proof of Theorem4

Let us show that all three estimates stated by the theorem hold.

Time Complexity Estimate. The time complexity estimate follows from the
complexity of solving one-dimensional problem of choosing m vectors with max-
imum projections for each of L generated points. The complexity of each one-
dimensional problem is O(nk). Indeed, we need O(nk) operations to calculate
all projection values (n scalar products in k-dimensional space). Then, choosing
m largest numbers among n numbers is done in O(n) time (see [1]).
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Relative Error Estimate. We prove the stated estimate for ε in assumption
of algorithm’s success; i.e. assuming that the angle between the optimal direction
and the closest chosen point is less than ϕ.

Denote by s(X) the sum vector of any arbitrary set X of vectors, denote by
XA the set of m vectors found by the algorithm A′, denote by X∗ the optimal
solution of the initial problem, denote by X̃ the solution of one-dimensional
problem for the direction which is closest to the direction of the optimal sum
vector s(X∗). Denote by vA and ṽ the points on the sphere (unit vectors) chosen
from L generated points that produce solutions XA and X̃ respectively. The
following inequalities hold:

1. ‖s(XA)‖ ≥ ‖s(X̃)‖ since algorithm has chosen the solution with the best
value of the initial objective function;

2. ‖s(X̃)‖ ≥ ∑m
i=1 X̃i ∗ ṽ since the length of the vector is greater or equal

to its projection on any direction and the projection of sum is the sum of
projections;

3.
∑m

i=1 X̃i∗ṽ ≥ ∑m
i=1 X∗

i ∗ṽ since m vectors from X̃ give the largest projections
on the direction ṽ;

4.
∑m

i=1 X∗
i ∗ ṽ = ‖s(X∗)‖ ∗ cos ϕ̃ ≥ ‖s(X∗)‖ ∗ cos ϕ since the angle ϕ̃ between

s(X∗) and ṽ is less then ϕ (in case, when algorithm did not fail).

Thus,

ε =
‖s(X∗)‖ − ‖s(XA)‖

‖s(X∗)‖ = 1 − ‖s(XA)‖
‖s(X∗)‖ ≤ 1 − cos ϕ = 2 sin2 ϕ

2
.

Failure Probability Estimate. Denote by p0 the probability for the random
uniformly chosen unit vector to form an angle less than ϕ with some fixed direc-
tion (direction of the optimal sum vector in our case).

It is quite obvious that algorithm’s failure probability is estimated by

δ ≤ (1 − p0)L

which is a probability of the event “none of directions of L points chosen on the
sphere forms angle less than ϕ with optimal direction”.

Hence,
δ ≤ e−p0L

So, to prove the stated estimate for δ it suffices to show that

p0 ≥ sink−1 ϕ

3
√

k − 1
. (1)

Assume that ϕ is a half angle of the spherical cone with its apex in the center
of the unit ball in k-dimensional space. The intersection of this cone with the
boundary of the ball (i.e. with a unit sphere) forms a “cap” which we denote as
Scap

k (ϕ). It’s easy to see that p0 equals to the ratio of the area of the cap Scap
k (ϕ)
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to the area of the unit sphere Sk. Thus, we can use the results obtained for the
area of the cap in k-dimensional space to estimate the success probability.

E.g., the paper [8] provides the following formula for the area of the unit
sphere and the area of a cap on the unit sphere:

Sk =
2πk/2

Γ (k
2 )

,

Scap
k (ϕ) =

2π(k−1)/2

Γ (k−1
2 )

∫ ϕ

0

sink−2 θdθ

where Γ is the Gamma function.
Thus, p0 is estimated as

p0 =
Scap

k (ϕ)
Sk

=
Γ (k

2 )√
π Γ (k−1

2 )

∫ ϕ

0

sink−2 θdθ. (2)

In order to obtain the required estimate (1) we need two following arithmetic
lemmas.

Lemma 1. ∫ ϕ

θ=0

sink−2 θdθ ≥ sink−1 ϕ

k − 1
. (3)

Proof. Using substitution t = sin θ we get
∫ ϕ

θ=0

sink−2 θdθ =
∫ sinϕ

θ=0

tk−2

(1 − t2)1/2
dt ≥

∫ sinϕ

θ=0

tk−2dt =
sink−1 ϕ

k − 1
.

Lemma 2. For any fixed k > 1 the following inequality holds:

Γ (k
2 )

2
√

π Γ (k+1
2 )

≥ 1
3
√

k − 1
. (4)

Proof. Case 1. k is even; i.e. k = 2j, j > 0:

Γ (k
2 )

Γ (k+1
2 )

=
Γ (j)

Γ (j + 1
2 )

=
(j − 1)! 2j

√
π(2j − 1)!!

=
1 · 2 · · · (j − 1) · 2j

√
π · 1 · 3 · · · (2j − 1)

=
2√
π

· 2 · 4 · · · (2j − 2)
3 · 5 · · · (2j − 1)

=
2√
π

√
2 · 2
3

· 4 · 4
3 · 5

· 6 · 6
5 · 7

· · · (2j − 2)(2j − 2)
(2j − 3)(2j − 1)

· 1
(2j − 1)

.

Noting that s2 > (s − 1)(s + 1) for any natural s > 1 we obtain for the even k:

Γ (k
2 )

2
√

πΓ (k+1
2 )

>
1

2
√

π
· 4
√

3π(2j − 1)
>

1
3
√

k − 1
.
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Case 2. k is odd; i.e. k = 2j + 1, j ≥ 0:

Γ (k
2 )

Γ (k+1
2 )

=
Γ (j + 1

2 )
Γ (j + 1)

=
√

π(2j − 1)!!
j! 2j

=
√

π · 1 · 3 · · · (2j − 1)
1 · 2 · · · j · 2j

=
√

π · 3 · 5 · · · (2j − 1)
2 · 4 · · · 2j

=
(

π · 1
2

· 3 · 3
2 · 4

· 5 · 5
4 · 6

· · · (2j − 1)(2j − 1)
(2j − 2)2j

· 1
2j

)1/2

.

Similarly to the previous case we have

Γ (k
2 )

2
√

πΓ (k+1
2 )

≥ 1
2
√

π
· 3

√
π

4
√

2j
≥ 3

8
√

k − 1
>

1
3
√

k − 1
,

hence the inequality (4) holds for odd k as well.
The proof of Lemma is complete.
Now, combining the relations (2), (3), (4) and the relation

k − 1
2

Γ (
k − 1

2
) = Γ (

k + 1
2

),

we immediately get the desired estimate (1).
This completes the proof of the Theorem 4.

3.2 Polynomial-Time Approximation Scheme

Assigning values to the parameters L and ϕ we can control relations between
time complexity T , relative error ε and failure probability δ. Taking into account
that the value of ϕ is unknown while the algorithm is executed, it makes sense to
provide a statement where this parameter is excluded from all the expressions.
The following theorem estimates δ and T in terms of expressions depending on
ε and L where required relative error ε can be considered as a given parameter
while L is a parameter which is directly chosen in the algorithm input.

Theorem 5. Algorithm A′ with a given parameter L finds a (1−ε)-approximate
solution with failure probability

δA′ ≤ exp

(

−βk(ε)
L

3
√

k − 1

)

,

in TA′ = O(nkL) time, where βk(ε) = (ε(2 − ε))
k−1
2 .

Proof. Since

ε = 1 − cos ϕ =
√

1 − sin2 ϕ,

we have
sin2 ϕ = 1 − (1 − ε)2 = ε(2 − ε),

hence
sink−1 ϕ = (ε(2 − ε))(k−1)/2 = βk(ε).

Thus, the stated inequality is implied by Theorem4.
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Let’s assume that we are given a target relative error ε. A natural goal would
be to find the least possible time complexity such that the algorithm would be
successfully executed whp.

Corollary 1. Algorithm A′ with

L =
3
√

k − 1
βk(ε)

ln lnn

whp finds (1 − ε)-approximate solution for the problem in

O

(
3k

√
k − 1

βk(ε)
n ln lnn

)

time.

Proof. Indeed,

δ ≤ exp

(

− βk(ε)L
3
√

k − 1

)

= e− ln lnn =
1

ln n
→ 0,

which means that the algorithm is executed successfully whp.
Since ε < 1, we can obtain more explicit dependence of time complexity on

ε.

Corollary 2. Algorithm A′ with

L =
3
√

k − 1
βk(ε)

ln lnn

whp finds (1 − ε)-approximate solution in

TA′ = O

(

k
3
2 ε− k−1

2 n ln lnn

)

time; i.e. it implements Polynomial-time Randomized Approximation Scheme
(PRAS) for the general case of the problem.

It can be also noted that the algorithm implements FPRAS for the case of
any fixed k.

3.3 Polynomial Algorithm with Performance Guarantee

Analysing relations between L, T , ε, and δ it is also possible to obtain a sig-
nificantly less complexity for the general case of the problem compared to the
exact and to known approximation algorithms reaching constant estimate for
the relative error ε.

Corollary 3. Algorithm A′ with

L =
3
√

k − 1
βk( 12 )

ln lnn

whp finds 1
2 -approximate solution for the problem in TA′ = O(k

3
2 (4/3)

k−1
2

n ln lnn) time.
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4 Application to Minimization Problem

In [7] the related minimization problem of splitting a set of vectors into two
clusters was considered.

Problem 2. Given a set of n vectors V = (v1, . . . vn) in Euclidean space R
k and

a number m < n choose the subset of m vectors C ⊆ V such that the objective
function ∑

v∈C

‖v − v(C)‖2 +
∑

v∈V \C

‖v‖2

is minimized where v(C) = 1
m

∑

v∈C

‖v‖ is a geometrical center (centroid) of a

chosen set.

In [7] a 2-approximation algorithm was constructed for this minimization
problem with time complexity O(kn2) polynomial in both n and k. It was also
noted that the values of objective functions of Problems 1 and 2 are related by
the formula

S = K − F 2

m
(5)

where S is the value of the objective function of Problem2, F is the value of the
objective functionofProblem 1,K =

∑

v∈V

‖v‖2 isaconstantvalue.Correspondingly,

S∗ = K − (F ∗)2

m
(6)

for the optimal values.
Since the solutions for both problems are the sets of m vectors, one can evalu-

ate the algorithm for one problem to be applied to another problem. In [7] it was
pointed, though, that the approximation results for the minimization problem
can’t be transferred to obtain polynomial algorithms with performance guar-
antees for the maximization problem. We show that the randomized algorithm
for the maximization problem can be used to obtain better estimations for rela-
tive error of minimization problem than the one obtained in [7]. Of course, the
algorithm A′ is not polynomial in k, however, the complexity in k is moderate,
especially for the case of constant approximation ratio (see Corollary 3).

From Eqs. (5) and (6) we derive:

S

S∗ =
K − F 2

m

K − (F ∗)2
m

≤ K − (1 − εA′)2 (F ∗)2

m

K − (F ∗)2
m

≤ 1 + εS

where

εS =
(2 − εA′)εA′

mK
(F ∗)2 − 1

.

Thus, the larger is the ratio mK
(F ∗)2 for the problem (which depends only on

the input), the better is the relative error εS for Problem2 compared to the
relative error εA′ of the algorithm for the Problem1.
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Let us estimate this relation as the ratio between largest vectors in the set
compared to all vectors. Without loss of generality assume ||v1||2 ≥ ||v2||2 ≥
. . . ≥ ||vn||2. Set

Kr =
r∑

j=1

||vj ||2,

r = 1, . . . , n; K = Kn.

Lemma 3.
mK

(F ∗)2
≥ K

Km
(7)

Hence

εS ≤ (2 − εA′)εA′

K
Km

− 1
(8)

Proof. First we prove that for each m-element subset C ⊆ V .

(
∑

v∈C

v)2 ≤ m
∑

v∈C

v2. (9)

Indeed,
(
∑

v∈C

v)2 =
∑

v∈C

v2 + 2
∑

v �=w∈C

v · w

= m
∑

v∈C

v2 −
∑

v �=w

(v2 + w2 − 2v · w) = m
∑

v∈C

v2 −
∑

v �=w

(v − w)2 ≤ m
∑

v∈C

v2.

Next, we show that for any m-element subset C ⊆ V .
∑

v∈C

v2 ≤ Km. (10)

Indeed,
∑

v∈C

v2 ≤ max
C′⊆V

∑

v∈C′
v2 =

m∑

j=1

v2
j = Km.

Considering Eqs. (9) and (10) we get

(F ∗)2 = (
∑

v∈C∗
v)2 ≤ m

∑

v∈C∗
v2 ≤ mKm,

which completes the proof of the Lemma.
Now we can use ratio K

K m
to analyze the relation between the values εS and

εA′ , using (8).

Theorem 6. The solution of the Problem1 obtained by algorithm A′ (in O(nkL)
time) is at least (1 + εA′)-approximate if Km ≤ K/3. In case when Km = o(K)
the algorithm A′ is asymptotically exact for any fixed εA′ .
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5 Conclusion

In this paper we considered the problem of finding a m-subset of a given set with
n vectors in multidimensional Euclidean space R

k such that the norm of the
corresponding sum-vector is maximized. We introduced a randomized approx-
imation algorithm for solving the problem. It was shown that the algorithm
implements Polynomial-time Randomized Approximation Scheme (PRAS) for
the general case of the problem. Choosing particular parameters of the algo-
rithm, we obtain asymptotically exact algorithm with significantly lower time
complexity compared to known exact algorithm. Another set of parameters pro-
vides polynomial-time 1/2-approximation algorithm for the problem. It is shown
that the algorithm is applicable for the related (minimization) clustering prob-
lem, allowing to obtain better performance guarantees than existing algorithms.
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An Algorithm with Approximation Ratio 5/6
for the Metric Maximum m-PSP
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Abstract. We present a polynomial algorithm with guaranteed approx-
imation ratio 5/6 for the metric maximization version of the m-PSP with
identical weight functions. This result extends the well-known algorithm
by Kostochka and Serdyukov for the metric TSP (1985) to the case of
several Hamiltonian cycles and improves the approximation ratio of the
algorithm by Gordeeva (2010) for the metric 2-PSP.

Keywords: Metric TSP · Metric m-PSP · Maximization version of the
TSP · Maximization version of the m-PSP · Approximation algorithm

1 Introduction

The m-Peripatetic Salesman Problem (m-PSP) was introduced by Krarup [23] as
a natural generalization of the well-known Traveling Salesman Problem (TSP).
The input of the m-PSP is a complete (directed or undirected) n-vertex graph
G = (V,E) and weight functions wi : E → R+, i = 1, . . . , m. The problem is to
find m edge disjoint Hamiltonian cycles H1, . . . , Hm ⊂ E such that their total
weight

m∑

i=1

wi(Hi) =
m∑

i=1

∑

e∈Hi

wi(e)

is maximum or minimum. Most of the research deals with the case when all the
weight functions wi are the same (identical): w1 = . . . = wm = w.

De Brey and Volgenant [7] investigated some easy cases of the 2-PSP. De
Kort developed lower and upper bounds for the 2-PSP, through branch-and-
bound algorithms, and showed that the problem of finding two edge disjoint
Hamiltonian circuits is NP-complete [8–10]. This result implies that the 2-PSP
with identical weight functions is NP-hard both in the maximization and min-
imization variants. These results can be extended for the general m-PSP. The
problem remains NP-hard in the case of different weight functions [4].

A.N. Glebov—The work is supported by RFBR (projects 15-01-00976 and 15-01-
05867).
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So, the efforts of most researchers are concentrated on finding cases when the
problem can be solved in polynomial time and developing polynomial approxi-
mation algorithms for the TSP and the m-PSP. A review of the most significant
results in this area can be found in [13,25].

At the moment, the problem is studied both for deterministic and ran-
dom instances, for arbitrary [1,18], metric [2,4,6,20–22,24] and Euclidean [3,14]
weight functions which may be identical or different for all cycles, and for special
cases of the problem where edge weights belong to a given interval or a finite set
of numbers [15–17,19].

In particular, for the symmetric version of the problem the following results
were established. In [1,18] two polynomial algorithms for the maximization ver-
sion of the 2-PSP with approximation ratios 3/4 and 7/9 were designed. The
authors of [16] present a series of polynomial approximation algorithms for the
minimization version of the 2-PSP with edge weights 1 and 2, where the weight
function is common for both Hamiltonian cycles, while in [17,19] the same prob-
lem was studied for two different weight functions. In this case two polyno-
mial algorithms with approximation ratios 7/5 and 4/3 were developed. For the
Euclidean maximum-weight m-PSP an asymptotically exact algorithm with time
complexity O(n3) was designed [3].

Applications include the design of patrol tours [5] where it is often important
to assign a set of edge disjoint tours to the watchman in order to avoid constant
repetition of the same tour and thus enhance security. De Kort [10] cites a
network design application where, in order to protect the network from link
failure, several edges-disjoint cycles must be determined. He also mentions a
scheduling application of the 2-PSP where each job must be processed twice by
the same machine but technological constraints prevent the repetition of identical
job sequences.

Here we concentrate on the metric variant of the m-PSP (with identical
weight functions) where the edge weights satisfy the triangle inequality. For
the metric minimization version of the TSP, the best known result is the
algorithm with approximation ratio 3/2 which was independently designed by
Christofides [6] and Serdyukov [24]. For the minimization version of the 2-PSP,
Ageev and Pyatkin [2] developed an algorithm with approximation ratio 2.
What concerns the metric maximization version of the TSP, Kostochka and
Serdyukov [21] in 1985 proposed a 5/6-approximation algorithm, while the best
known approximation ratio for this problem is 7/8 by Kowalik and Mucha [22].
For the maximization version of the 2-PSP, Gordeeva [20] presented two polyno-
mial algorithms with asymptotical approximation ratios 5/6 and 11/16 for the
cases of identical and different weight functions respectively.

In this paper we extend the result of [21] and improve the first result in [20] by
constructing a polynomial algorithm for the metric maximization version of the
m-PSP with identical weight functions w1 = . . . = wm = w. The algorithm has
an exact (non-asymptotical) approximation ratio 5/6 and deals with arbitrary
many Hamiltonian cycles, m ≥ 2, provided that the number of vertices of G is
sufficiently large (n ≥ 36m − 28).
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2 Preliminary Definitions and Notation

We consider a complete n-vertex graph G = G(V,E) with the vertex set V =
V (G) and the edge set E = E(G). Let w : E → R+ be an arbitrary non-
negative weight function of the edges of G. By w(OPT ) we denote the weight of
the optimal solution of the maximization version of the m-PSP for G.

Suppose K = K(VK , EK) is an arbitrary graph (which can be a subgraph of
G); v ∈ VK is a vertex in K. We use the following notation:

• dK(v) = d(v) is the degree of v in K (the number of edges of K incident
with v).

• Δ(K) is the maximum degree of K;
• δ(K) is the minimum degree of K;
• A 2-factor (cycle cover) of K is a collection of vertex-disjoint cycles covering

all vertices of K.
• A partial tour in K is a collection of vertex-disjoint paths covering all

vertices of K.
For a partial tour T we introduce the following notation:
• P (T ) is the set of all paths of T ;
• p(T ) = |P (T )| is the number of paths in T ;
• |T | is the number of edges in T ;
• L(T ) is the set of all edges in K joining end-points of paths in T .
Clearly, |T | + p(T ) = |VK | for any partial tour T in K. A path of T is trivial

if it consists of just one vertex and non-trivial otherwise.
Suppose F is a 2-factor in K. Let R be a subset of edges in F which contains

at least one edge from each cycle of F . Then T = F − R is a partial tour
in K such that p(T ) = |R| and w(T ) = w(F ) − w(R). Moreover, if R is a
matching in F , then T consists of non-trivial paths. On the other hand, if T is
a partial tour in K, then by adding an appropriate set of edges A ⊂ L(T ) with
|A| = p(T ) we produce a Hamiltonian cycle H = T ∪ A in K whose total weight
is w(H) = w(T ) + w(A).

In what follows we assume that some edges of the graph G can be bad. By
B we denote the set of all bad edges in G and by dB(v) denote the ‘bad degree’
of a vertex v, i.e. the number of bad edges incident with v. We assume that all
edges in E(G) \ B are good.

3 Some Algorithms for Constructing Hamiltonian Cycles

We start with describing three auxiliary procedures for finding Hamiltonian
cycles in graphs with high minimum degree. All the procedures are based on
the following well-known

Theorem 1 (Dirac’s Theorem [11]). Every graph K with k ≥ 3 vertices and
with minimum degree at least k/2 contains a Hamiltonian cycle.
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Let K̄ be the complement of K. We say that edges of K are good while edges
of K̄ are supposed to be bad. The condition of Dirac’s Theorem implies that
every vertex v of K satisfies dB(v) ≤ k/2 − 1. For every graph K meeting this
requirement, the Hamiltonian cycle can be found by the following procedure
which can be derived from the proof of Dirac’s Theorem.

Procedure Dirac’s HC:
Step 0. Start with an arbitrary path P = v0v1 . . . vt in K.
Step 1. If P is a Hamiltonian path, go to Step 3, otherwise — to Step 2.
Step 2. If v0 or vt is joined by a good edge to a vertex x �∈ P , add this edge

to P and go to Step 1. Otherwise, proceed to Step 3.
Step 3. Transform P to a cycle C applying the following method. If v0vt is

a good edge, then set C := P ∪ {v0vt}. Otherwise, find an index i ∈ [2, t − 1]
such that both edges v0vi and vi−1vt are good and set C := P ∪ {v0vi, vi−1vt} \
{vi−1vi}. If C is a Hamiltonian cycle in K, then present C as a solution. Other-
wise, proceed to Step 4.

Step 4. Suppose C = (v0v1 . . . vtv0). Find a vertex vj ∈ C which is joined by
a good edge to a vertex x �∈ C. Construct a path P = xvjvj+1 . . . vj−1 and go to
Step 1.

The existence of the index i at Step 3 and of the good edge vjx at Step
4 follows from Dirac’s degree condition δ(K) ≥ k/2 (which is equivalent to
dB(v) ≤ k/2 − 1 for every vertex v). Clearly, the running-time of the procedure
‘Dirac’s HC’ is O(k2).

Our next goal is to develop a modification of this procedure for the case when
we want to produce a Hamiltonian cycle by joining paths of a given partial tour.
Suppose T is a partial tour in a complete graph G and T consists of k non-
trivial paths. Assume that L(T ) contains a subset B of bad edges and all edges
in D = L(T ) \ B are good.

The following procedure ‘THC’ transforms T to a Hamiltonian cycle H by
adding good edges, i.e. it finds a subset A ⊂ D such that H = T ∪ A is a
Hamiltonian cycle in G. At every stage the procedure constructs a path or
a cycle of the type Q = a1P1b1a2P2b2a3 . . . bt−1atPtbt, where P1 = a1 . . . b1,
P2 = a2 . . . b2, . . . , Pt = at . . . bt are pairwise distinct paths of T and b1a2,
b2a3, . . . , bt−1at are good edges (if Q is a cycle, then the edge bta1 is also
good). The procedure runs correctly if every end-vertex v of a path in T satisfies
dB(v) ≤ k/2.

Procedure THC:
Step 0. Start with an arbitrary path Q = a1P1b1a2P2b2a3 . . . bt−1atPtbt,

where P1, P2, . . . , Pt ∈ P (T ); b1a2, b2a3, . . . , bt−1at ∈ D. (For example, set
Q = P1 = a1 . . . b1 ∈ P (T ), t = 1.)

Step 1. If Q is a Hamiltonian path, go to Step 3, otherwise — to Step 2.
Step 2. If bt or a1 is joined by a good edge to an end-vertex a of a path

P = a . . . b ∈ P (T ) which is not contained in Q, then add the edge bta (or a1a)
and the path P to Q and go to Step 1. Otherwise, proceed to Step 3.

Step 3. Transform Q to a cycle C in the following way. If a1bt is a good edge,
then set C := Q ∪ {a1bt}. Otherwise, find an index i ∈ [2, t] such that both
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edges a1ai and bi−1bt are good and set C := Q ∪ {a1ai, bi−1bt} \ {bi−1ai}. If C
is a Hamiltonian cycle in G, then present C as a solution. Otherwise, proceed to
Step 4.

Step 4. Suppose C = (a1P1b1a2P2b2a3 . . . bt−1atPtbta1). Find a vertex x ∈
{a1, b1, a2, b2, . . . , at, bt} which is joined by a good edge to an end-vertex b of a
path P = a . . . b ∈ P (T ), where P is not contained in C. W.l.o.g. assume that x =
ai for some i ∈ {1, . . . , t}. Construct a path Q = aPbaiPibiai+1 . . . ai−1Pi−1bi−1

and go to Step 1.
Similarly to the procedure Dirac’s HC, the existence of the index i at Step

3 and of the good edge ab at Step 4 follows from the ‘bad degree condition’
dB(v) ≤ k/2 for end-vertices of T . The running-time of the procedure ‘THC’ is
O(k2).

We conclude this section by showing that if bad degrees of end-vertices in T
satisfy stronger restrictions than in procedure ‘THC’, then we can construct a
cyclic ordering P1, P2, . . . , Pk of the paths in T such that for any two consecutive
paths Pi, Pi+1 (and for Pk, P1) the end-vertices of these two paths are joined
only by good edges. The following procedure runs correctly provided that k ≥ 2
and dB(v) ≤ (k − 2)/4 for any end-vertex v of a path in T .

Procedure Path Order T :
Step 1. Define a graph K with the vertex set P (T ), where vertices P and Q

are adjacent iff the end-points of the paths P and Q are joined only by good
edges in G.

Step 2. By applying the procedure Dirac’s HC to K produce a Hamiltonian
cycle H = (P1, P2, . . . , Pk, P1) in K. The vertex ordering P1, P2, . . . , Pk of H is
the desired path ordering of T .

In order to establish the correctness of applying Dirac’s HC at Step 2 notice
that each vertex P = a . . . b of K satisfies

dB(P ) ≤ dB(a) + dB(b) ≤ 2 × (k − 2)/4 = k/2 − 1.

The procedure ‘Path Order T ’ will be a helpful tool for us in constructing our
algorithm since it allows to implement the main procedure from the algorithm
by Kostochka and Serdyukov.

4 The Key Procedure by Kostochka and Serdyukov

In this section we represent the main procedure of the algorithm by Kostochka
and Serdyukov for the metric maximization version of the TSP [21].

Suppose G(V,E) is a complete n-vertex graph; w : E → R+ is a weight
function of its edges satisfying the triangle inequality. Let T be a partial tour in G
consisting of non-trivial paths P1 = a1 . . . b1, P2 = a2 . . . b2, . . . , Pk = ak . . . bk.
The following procedure ‘KS’ transforms T to a Hamiltonian cycle H = T ∪ A

by adding a set of edges A ⊂ L(T ) with the property w(A) ≥ 1
2

k∑

i=1

w(aibi).
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Procedure KS:
Step 1. If k = 1, set H := T ∪ {a1b1}. If k = 2, then set A1 = {a1b2, b1a2},

A2 = {a1a2, b1b2}. Define A to be a set with the maximum weight among A1, A2

and construct H := T ∪ A. If k ≥ 3 and k is even, go to Step 2; and if k is odd
— to Step 3.

Step 2. Set
A1 = A2 = {b1a2, b2a3, . . . , bka1},

A3 = {a1a2, a3a4, . . . , ak−1ak, b2b3, b4b5, . . . , bkb1},

A4 = {a2a3, a4a5, . . . , aka1, b1b2, b3b4, . . . , bk−1bk},

and go to Step 4.
Step 3. Set

A1 = {b1a2, b2a3, . . . , bka1},

A2 = A1 \ {b1a2, bka1} ∪ {a1a2, bkb1},

A3 = {b1a2, a3a4, a5a6, . . . , aka1, b2b3, b4b5, . . . , bk−1bk},

A4 = {a2a3, a4a5, . . . , ak−1ak, b1b2, b3b4, . . . , bk−2bk−1, bka1}
and go to Step 4.

Step 4. Define A to be a set with the maximum weight among A1, A2, A3, A4.
Set H := T ∪ A.

It was proved in [21] that the Hamiltonian cycle H constructed by the pro-

cedure ‘KS’ satisfies w(H) ≥ w(T ) + 1
2

k∑

i=1

w(aibi).

Another important observation concerning the procedure ‘KS’ is that for any
k ≥ 2 the set A constructed by it consists only of edges joining the end-vertices
of consecutive paths Pi, Pi+1 (or Pk, P1) in T . This implies that if the ordering
P1, P2, . . . , Pk is produced by the procedure ‘Path Order T ’ from the previous
section, then A consists of good edges only.

5 Processing Long and Short Cycles

Before we present our main algorithm, we introduce two auxiliary procedures.
The first procedure removes some light edges from a given 2-factor FL consisting
of ‘long’ cycles and produces a set TL consisting of non-trivial paths. The second
procedure converts a 2-factor FS consisting of ‘short’ cycles to path collections
T ′ and T ′′ with special properties by removing edges with the minimum weight
from cycles of FS .

Suppose F is a 2-factor with cycles C1, C2, . . . , Ct in a complete weighted
n-vertex graph G. By lj = l(Cj) denote the length of a cycle Cj , i.e. the number
of edges in Cj . We say that Cj is short if lj ≤ 5, and long otherwise. Denote
by FS and FL the sets of all short and long cycles in F , respectively. W.l.o.g.
assume that FL = {C1, . . . , Cq}, FS = {Cq+1, . . . , Ct} (where q = 0 if F consists

only of short cycles). Set lL =
q∑

j=1

lj and lS =
t∑

j=q+1

lj . Observe that lL + lS = n.
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The following procedure ‘Remove M ’ removes a matching M with at least
	lL/6
 edges having total weight w(M) ≤ 1

6w(FL) from FL. The important
property of M is that it contains at least one edge from each cycle of FL.
Therefore, TL = FL \M is a collection of |M | non-trivial paths in G whose total
weight is at least 5

6w(FL).
The procedure ‘Remove M ’ starts by colouring edges of FL with colours

from the set {1, 2, . . . , 6}. The colouring is periodic in the sense that the order
of colours used is 1, 2, . . . , 6, 1, 2 . . . , 6, 1, 2 . . . without changing it after finishing
to colour the edges of a cycle Cj and proceeding to Cj+1.

Procedure Remove M :
Step 1. Colour periodically the edges of C1 in a cyclic order. If the colours

of e1 and el1 coincide, switch the colours of e1 and e2. After that proceed by
colouring the edges of C2, . . . , Cq in the similar way.

Step 2. Let M i, i = 1, . . . 6, be the set of all edges of colour i in FL. Define
M to be a set with the minimum weight among M1,M2, . . . ,M6.

Step 3. Remove M from FL. Denote the resulting collection of paths by
TL = FL \ M .

By the definition of a periodic colouring, it follows that the sets M1,M2, . . .,
M6 are edge disjoint matchings forming the partition of E(FL). Thus, w(M) ≤
1
6w(FL). Furthermore, it follows that every M i contains at least one edge from
each cycle Cj of FL since at Step 1 we use the periodic 6-colouring and lj ≥ 6
for j = 1, . . . , q. One can easily observe that |M i| ∈ {	lL/6
, 	lL/6
 + 1} for
i = 1, . . . , 6. So, we have |M | ≥ 	lL/6
 as desired.

Next we present a procedure which transforms a partial 2-factor FS consist-
ing of short cycles Cq+1, . . . , Ct to collections of paths T ′ and T ′′. Let s = t − q
be the number of cycles in FS and let ej be the edge of the minimum weight in
Cj . Denote by Pj the non-trivial path Cj \ ej , j = q + 1, . . . , t.

Procedure Split FS :
Step 1. Order the cycles of FS so that w(eq+1) ≤ w(eq+2) ≤ . . . ≤ w(et).
Step 2. Set s′ = 	lS/3
−s; T ′ = {Pq+1, . . . , Pq+s′}; T ′′ = {Pq+s′+1, . . . , Pt}.
The main property of the procedure ‘Split FS ’ is stated by the following

Lemma 1.
q+s′
∑

j=q+1

w(ej) + 1
2

t∑

j=q+s′+1

w(ej) ≤ 1
6w(FS).

Proof. The idea of the proof is to define pairwise disjoint subsets of edges
Sq+1, . . . , St in E(FS) such that |Sj | = 6 if j ≤ q + s′, |Sj | = 3 if j > q + s′

and the weight of every edge in Sj is at least w(ej) for all j = q + 1, . . . , t. This
would immediately imply

w(FS) ≥
q+s′
∑

j=q+1

w(Sj) +
t∑

j=q+s′+1

w(Sj) ≥ 6
q+s′
∑

j=q+1

w(ej) + 3
t∑

j=q+s′+1

w(ej)

which gives the desired inequality.
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For j = q + s′ + 1, . . . , t, define Sj as an arbitrary subset of cardinality
3 in E(Cj). For j = q + 1, . . . , q + s′, set Sj = E(Cj) ∪ S′

j , where S′
j is an

arbitrary subset of cardinality 6 − lj in
t⋃

k=q+s′+1

E(Ck) \ Sk. By this definition

and the condition w(eq+1) ≤ w(eq+2) ≤ . . . ≤ w(et) it follows that for every
j = q + 1, . . . , t each edge e ∈ Sj is contained in some E(Ck) with k ≥ j, and
hence we have w(e) ≥ w(ek) ≥ w(ej).

It remains to check that we can choose edge disjoint subsets S′
q+1, . . . , S

′
q+s′

in
t⋃

k=q+s′+1

E(Ck) \Sk, i.e. that
q+s′
∑

j=q+1

(6− lj) ≤
t∑

j=q+s′+1

(lj − 3). This follows by

the choice of s′:

t∑

j=q+s′+1

(lj −3)−
q+s′
∑

j=q+1

(6− lj) = lS −3(s−s′)−6s′ = lS −3(s+s′) = lS −3�lS/3� ≥ 0.

6 Algorithm A5/6 for the Metric Maximum m-PSP

Now we are ready to formulate and analyze the Algorithm A5/6 for the metric
maximization version of the m-PSP.

First, we give a brief outline of the algorithm. At the preliminary stage, by
successively applying Gabow’s algorithm [12] and a 2-factorization algorithm, we
construct a collection of edge disjoint 2-factors F1, F2, . . . , Fm in G whose total
weight is at least w(OPT ). After that, for each i = 1, . . . , m, we transform Fi to
a Hamiltonian cycle Hi with the total weight w(Hi) ≥ 5

6w(Fi) such that Hi has
no edge in common with already constructed H1, . . . , Hi−1 nor with remaining
2-factors Fi+1, . . . , Fm. So we treat the edges of the cycles H1, . . . , Hi−1 and
2-factors Fi+1, . . . , Fm as bad (in the sense that they cannot be added to Hi).
Hence at every moment each vertex v ∈ V is incident with 2(m − 1) bad edges,
i.e. it has dB(v) = 2(m − 1).

We subdivide each Fi to subsets FS
i and FL

i of short and long cycles respec-
tively. We start processing Fi by applying ‘Remove M ’ to FL

i which gives a
collection of paths TL

i and by applying ‘Split FS ’ to FS
i which produces path

collections T ′
i and T ′′

i . For Fi, FL
i , FS

i , TL
i , T ′

i and T ′′
i we introduce the para-

meters t, q, lL, lS , s and s′ as described in Sect. 5 (omitting the subscript i for
simplicity).

If the path collection T̃i = TL
i ∪ T ′

i contains at least 4(m − 1) paths, then we
proceed by applying the procedure by Gordeeva [20] which appends all paths in
T ′′
i to paths of T̃i (Step 5). After that we construct Hi by applying the procedure

‘THC’ to the modified T̃i (Step 6). If T̃i initially contains less than 4(m − 1)
paths, we construct Hi by successively applying the procedures ‘Order T ’ and
‘KS’ to the partial tour Ti = TL

i ∪ T ′
i ∪ T ′′

i (Step 7).
Now we give a detailed description of the algorithm.
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Algorithm A5/6:
Step 1. Applying Gabow’s algorithm [12] find a 2m-regular subgraph G2m in

G having maximum weight. Note that w(G2m) ≥ w(OPT ). The running-time
of Step 1 is O(mn3).

Step 2. Split the edge set of G2m to edge disjoint 2-factors F1, F2, . . . , Fm

using the well-known 2-factorization algorithm with running-time O(m2n2).
Successively, for each i = 1, . . . ,m, transform Fi to a Hamiltonian cycle Hi

applying the method described below. Start from Step 3.
Step 3. Define the set of bad edges Bi := E(H1∪ . . .∪Hi−1∪Fi+1∪ . . .∪Fm).

Subdivide Fi to sets FL
i = {C1, . . . , Cq} and FS

i = {Cq+1, . . . , Ct} consisting of
long and short cycles respectively. For each j = q + 1, . . . , t, denote by ej = ajbj
the edge in Cj with the minimum weight.

Step 4. By applying ‘Remove M ’ to FL
i produce a path collection TL

i consist-
ing of at least 	lL/6
 non-trivial paths. By applying ‘Split FS ’ to FS

i produce
path collections T ′

i and T ′′
i . Set T̃i = TL

i ∪ T ′
i , ν = p(T̃i). If ν ≥ 4(m − 1), go to

Step 5, otherwise — to Step 7.
Step 5. Successively, for each j = q + s′ + 1, . . . , t, append the path Pj

to T̃i using the following method. Find a path P = a . . . b in T̃i and its end-
vertex a such that both aaj and abj are good edges. Let e′

j be an edge with
the maximum weight among aaj , abj . Append the path Pj to P by inserting the
edge e′

j . Observe that w(e′
j) ≥ 1

2w(ej) due to the choice of e′
j and the triangle

inequality.
Step 6. Construct the Hamiltonian cycle Hi by applying the procedure ‘THC’

to the path collection T̃i obtained at the end of Step 5.
Step 7. Define the partial tour Ti = TL

i ∪ T ′
i ∪ T ′′

i . Apply ‘Path Order T ’ to
Ti. Finally, construct Hi by applying the procedure ‘KS’ to Ti.

Our main result is the following

Theorem 2. Let G(V,E) be a complete n-vertex graph and w : E → R+ be a
weight function satisfying the triangle inequality. Suppose n ≥ 36m − 28. Then
algorithm A5/6 constructs m edge disjoint Hamiltonian cycles H1,H2, . . . , Hm

in G such that w(H1) + w(H2) + . . . + w(Hm) ≥ 5
6w(OPT ). The running-time

of the algorithm is O(mn3).

Proof. First we examine that all the procedures involved in the algorithm are
implemented correctly.

The existence of the path P = a . . . b and its end-vertex a with desired
properties at Step 5 follows from the inequality ν ≥ 4(m − 1) since T̃i contains
ν paths and 2ν ≥ 8(m − 1) end-vertices while aj and bj are incident only with
dB(aj)+dB(bj) = 2×2(m−1) = 4(m−1) < 8(m−1) bad edges. The procedure
‘THC’ at Step 6 runs correctly because the bad degree of each vertex v satisfies
dB(v) = 2(m − 1) = 1

2 × 4(m − 1) ≤ ν/2.
Finally, we have to establish the correctness of applying ‘Path Order T ’ at

Step 7. According to the condition formulated in Sect. 3 and taking into account
the equality dB(v) = 2(m−1), we need to prove that 2(m−1) ≤ (k−2)/4, i.e. that
k ≥ 8m−6, where k = p(Ti). Assume that 8m−7 ≥ k = p(TL

i )+s ≥ 	lL/6
+s.
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By the conditions of Step 7, we have 4m − 5 ≥ ν = p(TL
i ) + s′ ≥ 	lL/6
 + s′.

Combining the last two inequalities we get:

12m − 12 ≥ 2	lL/6
 + s + s′ = 2	lL/6
 + 	lS/3
 ≥ 2 · lL − 5
6

+
lS − 2

3
,

which implies 36m − 29 ≥ lS + lL = n yielding a contradiction.

Next we prove the inequality w(H1) + w(H2) + . . . + w(Hm) ≥ 5
6w(OPT ).

Notice that w(F1) + w(F2) + . . . + w(Fm) ≥ w(OPT ) by the result of Steps 1
and 2. So, it suffices to check that w(Hi) ≥ 5

6w(Fi) for every i = 1, . . . , m.
Clearly, w(Fi) = w(FS

i ) + w(FL
i ). Observe that w(T ′

i ) + w(T ′′
i ) = w(FS

i ) −
t∑

j=q+1

w(ej) and w(TL
i ) ≥ 5

6w(FL
i ) by the main property of ‘Remove M ’.

If the Hamiltonian cycle Hi is constructed at Steps 5 and 6, then since
w(e′

j) ≥ 1
2w(ej) for j = q + s′ + 1, . . . , t and by Lemma 1, after Step 5 we

have

w(T̃i) = w(TL
i ) + w(T ′

i ) + w(T ′′
i ) +

t∑

j=q+s′+1

w(e′
j) ≥ 5

6
w(FL

i ) + w(T ′
i ) + w(T ′′

i )

+
1

2

t∑

j=q+s′+1

w(ej) =
5

6
w(FL

i ) + w(FS
i ) −

q+s′
∑

j=q+1

w(ej) − 1

2

t∑

j=q+s′+1

w(ej)

≥ 5

6
w(FL

i ) +
5

6
w(FS

i ) =
5

6
w(Fi).

Hence, after Step 6 we have w(Hi) ≥ w(T̃i) ≥ 5
6w(Fi).

Suppose Hi is constructed at Step 7. In this case we have w(Ti) = w(TL
i ) +

w(T ′
i ) + w(T ′′

i ). Taking into account the main property of the procedure ‘KS’,
similarly to the previous case, we obtain

w(Hi) ≥ w(TL
i ) + w(T ′

i ) + w(T ′′
i ) +

1
2

t∑

j=q+1

w(ej) ≥ 5
6
w(FL

i ) + w(T ′
i )

+ w(T ′′
i ) +

1
2

t∑

j=q+s′+1

w(ej) ≥ 5
6
w(Fi).

It remains to notice that the time complexity of the algorithm A5/6 is deter-
mined by the implementation of Gabow’s algorithm which finds a 2m-regular
subgraph G2m at Step 1. So the running-time of A5/6 is O(mn3). This completes
the proof of Theorem 2.

The authors want to thank Prof. E. Kh. Gimadi for fruitful discussions and
interesting ideas concerning the m-PSP.
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Abstract. We consider the problem of partitioning a finite sequence of
points in Euclidean space into a given number of clusters (subsequences)
minimizing the sum of squared distances between cluster elements and
the corresponding cluster centers. It is assumed that the center of one of
the desired clusters is the origin, while the centers of the other clusters
are unknown and determined as the mean values over clusters elements.
Additionally, there are a few structural restrictions on the elements of
clusters with unknown centers: (1) clusters form non-overlapping subse-
quences of the input sequence, (2) the difference between two consecutive
indices is bounded from below and above by prescribed constants, and
(3) the total number of elements in these clusters is given as an input.
It is shown that the problem is strongly NP-hard. A 2-approximation
algorithm which runs in polynomial time for a fixed number of clusters
is proposed for this problem.

Keywords: Clustering · Structural constraints · Euclidean space ·
Minimum sum-of-squared distances · NP-hardness · Guaranteed
approximation factor

1 Introduction

The subject of this study is a problem of partitioning a finite sequence of points
in Euclidean space into subsequences. Our goal is to find out the computational
complexity of the problem and to provide a polynomial-time factor-2 approxi-
mation algorithm.

The research is motivated by insufficient study of the problem and its rele-
vance, in particularly, to problems of approximation, clustering, sequence (time
series) analysis as well as to many natural science and engineering applications
that require classification of results of chronologically sorted numerical experi-
ments and observations on the state of some objects (see, for example, [1–4] and
references therein). Some applications (sources) of the problem are presented in
the next section.
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This is the incremental work to the results previously obtained in [5–7]. Each
of the cited works is an essential building-block in the algorithm presented in
this work — the first algorithm with a guaranteed approximation factor.

2 Problem Formulation, Complexity, and Related
Problems

Everywhere below R denotes the set of real numbers, ‖ · ‖ denotes the Euclidean
norm, and 〈·, ·〉 denotes the scalar product.

Formally, we consider the following problem.

Problem 1. Given a sequence Y = (y1, . . . , yN ) of points from R
q and some posi-

tive integers Tmin, Tmax, L, and M . Find nonempty disjoint subsets M1, . . . ,ML

of N = {1, . . . , N}, i.e. subsets of indices of the elements from the sequence Y,
such that

F (M1, . . . ,ML) =
L∑

l=1

∑

j∈Ml

‖yj − y(Ml)‖2 +
∑

i∈N\M
‖yi‖2 −→ min , (1)

where M =
⋃L

l=1 Ml, and y(Ml) = 1
|Ml|

∑
j∈Ml

yj is the centroid of subset
{yj | j ∈ Ml}, under the following constraints: (i) the cardinality of M is equal
to M , (ii) concatenation of elements of subsets M1, . . . ,ML is an increasing
sequence, provided that the elements of each subset are in ascending order, (iii)
the following inequalities for the elements of M = {n1, . . . , nM} are satisfied:

Tmin ≤ nm − nm−1 ≤ Tmax ≤ N, m = 2, . . . ,M . (2)

From the above formulation, it is clear that Problem 1 belongs to the class of
clustering problems with a quadratic criterion. Clusters are the unknown index
subsets M1, . . . , ML, N \ M and the corresponding subsequences of the input
sequence.

One of the sources of Problem 1 is the next problem which is typical for many
natural science and technical applications, in particular, for noise-proof remote
monitoring, electronic intelligence, analysis and recognition of biomedical and
speech signals, data mining, machine learning, and others.

There is a series of N chronologically ordered measurements y1, . . . , yN of a
q-tuple y of numerical characteristics of some object. The object has L+1 states.
Among them L states are active and one state is passive. In the passive state
all the numerical characteristics in the tuple equal zero, while, in each active
state the value of at least one characteristic is nonzero. The data contains some
measurement errors. It is known that for some time the object is located in one
of the active states, and then switches to a different active state. At that all
the active states of the object are accompanied by a switching into the passive
state for some unknown time interval which is bounded from above and below.
In addition we are given the natural numbers Tmin and Tmax, which correspond
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to the minimum and maximum time interval between any two successive active
states of the object. The correspondence of the sequence element to some state
of the object is not known in advance. It is required to find the sequence of active
states of the object and to estimate the characteristics of the object in each of
the active states (which correspond to the respective cluster centers).

Formalization of this problem with respect to the criterion of the minimum
sum of squared deviations induces the following approximation problem. Given
a sequence Y = (y1, . . . , yN ) of points from R

q and some positive integers Tmin,
Tmax, L, and M . Find an approximating sequence z1, . . . , zN having the following
structure

zn =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

x1, n ∈ M1 ,

. . .

xL, n ∈ ML ,

0, n ∈ N\M ,

(3)

where x1, . . . , xL are unknown points from R
q, such that

∑

i∈N
‖yi − zi‖2 −→ min , (4)

under the same constraints on the numbers from subsets Ml, . . . ,ML, and M
as in Problem 1.

Schematically, the segment of sequence zn, n ∈ N , has the following structure

. . . 0xl−10 . . . 0xl−10 . . . . . . 0xl0 . . . 0xl0 . . . . (5)

Here xl−1, xl ∈ R
q are unknown nonzero points corresponding to the (l − 1)-th

and l-th active states of the object, 0 corresponds to the passive state of the
object. The number of zero points between the nonzero points is unknown and
lies within the admissible range from Tmin − 1 to Tmax − 1 in accordance with
the constraints (2).

Relying on (3), expanding the sum (4) and grouping the terms, it is easy to
verify by differentiation that the values xl = y(Ml), l = 1, . . . , L, are optimal
in the sense of (4), and thus the formulated approximation problem induces
Problem 1. Herein in the optimal approximating sequence, the segment (5) has
the following form

. . . 0y(Ml−1)0 . . . 0y(Ml−1)0 . . . . . . 0y(Ml)0 . . . 0y(Ml)0 . . .

For all l = 1, . . . , L in this sequence, the indices from the set Ml, the cluster
{yj | j ∈ Ml}, and its centroid y(Ml) are determined as the result of solving
Problem 1. Centroid y(Ml) is an estimate for the point xl.

From the above mentioned schematic record of sequences in the string form,
it is evident that each of them can be interpreted as a sequence containing the
segments with some quasiperiodic (because of the constraints (2)) repetitions. If
we define the boundaries of the series on the first or the last repetition, then one
can interpret all of the above problems as problems of partitioning a sequence
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into segments with quasiperiodic repetitions of a priori unknown points, esti-
mating these points, and finding their positions in the sequence.

The next statement establishes the complexity status of Problem 1.

Proposition 1. The Problem 1 is strongly NP-hard.

Proposition 1 follows from the fact that the special case of Problem 1 with
L = 1 is strongly NP-hard [5]. Thus, Problem 1 belongs to the class of compu-
tationally intractable problems.

3 Known and Obtained Results

Problem 1 is among the poorly studied discrete optimization problems. It is
closely related to the problem (see [7]) in which the input sequence Y is one-
dimensional, i.e. q = 1. The points from tuple (x1, . . . , xL) belong to R

d, where
d ≥ 1, and they are given at the problem input, at that Tmin ≥ d in the
restrictions (2). In the objective function of the problem instead of the centroids
y(M1), . . . , y(ML) of the desired subsets appear the elements from the given
tuple (x1, . . . , xL). The unknown variables are the sets M1, . . . ,ML. This prob-
lem can be interpreted as a problem searching a sequence for non-overlapping
segments with quasiperiodic repetitions of points from the tuple together with
the positions of these points in the sequence. It was shown in [7] that this prob-
lem is solvable in polynomial time using dynamic programming. Below we apply
a simplification of this dynamic program in our algorithm.

Except for the special case with L = 1 in Eq. (1), no algorithms with guar-
anteed approximation factor are known at the moment for Problem 1. For this
special case, the following results were obtained.

In [5], the variant of Problem 1 in which Tmin and Tmax are the parameters
was analyzed. In the cited work it was shown that in the case when L = 1, this
parameterized variant is strongly NP-hard for any Tmin < Tmax. In the trivial
case when Tmin = Tmax, the problem is solvable in polynomial time.

In [6], for the same case of Problem 1, when L = 1, a 2-approximation
polynomial-time algorithm running in O(N2(MN + q)) time was presented.

In addition, in [8,9], two special cases of the case L = 1 were studied. In both
subcases the dimension q of the space is fixed. For the subcase with integer inputs
in [8] an exact pseudopolynomial algorithm was constructed. The time complex-
ity of this algorithm is O(MN2(MD)q), where D is the maximum absolute in
any coordinate of the input points. For the subcase with real inputs in [9] a fully
polynomial-time approximation scheme was proposed which, given a relative
error ε, finds a (1 + ε)-approximate solution of Problem 1 in O(MN3(1/ε)q/2)
time.

The main result of this paper is an algorithm that allows to find a
2-approximate solution of Problem 1 in O(LNL+1(MN + q)) time, which is
polynomial if the number L of clusters is fixed.
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4 Fundamentals of Algorithm

To construct the algorithm we need a few basic assertions, an auxiliary problem
and an exact polynomial algorithm for its solution.

The geometrical foundations of the algorithm are given by the following
lemmas.

Lemma 1. For any point u ∈ R
q and any finite nonempty set Z ⊂ R

q the
following equality holds

∑

z∈Z
‖z − u‖2 =

∑

z∈Z
‖z − z‖2 + |Z| · ‖u − z‖2 , (6)

where z = 1
|Z|

∑
z∈Z z is the centroid of Z.

Lemma 1 has quite simple proof and is well-known. Its proof has been given
in several publications (for example, in [10]).

Lemma 2. Assume that the conditions of Lemma 1 hold. Then, if some point
u ∈ R

q is closer (with respect to the Euclidean distance) to the centroid z of Z
than all points in Z, then

∑

z∈Z
‖z − u‖2 ≤ 2

∑

z∈Z
‖z − z‖2 .

Lemma 2 follows from (6), because by the assumption for every point z ∈ Z
we have the inequality ‖u − z‖ ≤ ‖z − z‖.

From now on we use fx(y) to denote a function f(x, y) for which x is fixed.

Lemma 3. Let

S(M1, . . . ,ML, x1, . . . , xL) =
L∑

l=1

∑

j∈Ml

‖yj − xl‖2 +
∑

i∈N\M
‖yi‖2 , (7)

G(M1, . . . ,ML, x1, . . . , xL) =
L∑

l=1

∑

j∈Ml

(2〈yj , xl〉 − ‖xl‖2) ,

where x1, . . . , xL are points from R
q, and elements of the sets Ml, . . . ,ML, and

M satisfy restrictions of Problem 1. Then the following statements are true:

(1) for any nonempty fixed subsets M1, . . . ,ML the minimum of function
(7) over x1, . . . , xL is reached at the points xl = y(Ml), l = 1, . . . , L, and is
equal to F (M1, . . . ,ML);

(2) for any tuple x = (x1, . . . , xL) of fixed points from R
q the mini-

mum of function Sx(M1, . . . ,ML) over M1, . . . ,ML is reached at the subsets
Mx

1 , . . . ,Mx
L that maximize function Gx(M1, . . . ,ML).
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Proof. The first statement of this lemma is easily verified by differentiation and
also follows from Lemma 1. To prove the second statement it is sufficient to note
that the following equality holds

Sx(M1, . . . ,ML) =
∑

j∈N
‖yj‖2 − Gx(M1, . . . ,ML) , (8)

where the sum on the right-hand side is independent of M1, . . . ,ML. 
�
The main ingredient to our algorithm is an exact polynomial-time algorithm

for solving the following auxiliary problem.

Problem 2. Given a sequence Y = (y1, . . . , yN ) and a tuple x = (x1, . . . , xL) of
points from R

q, and some positive integers Tmin, Tmax, and M . Find nonempty
disjoint subsets M1, . . . ,ML of N = {1, . . . , N} that maximize the objective
function Gx(M1, . . . ,ML), under the same constraints on the optimized vari-
ables as in Problem 1.

To explain the algorithm for solving this auxiliary problem, we define the
function

gx
l (n) = 2〈yn, xl〉 − ‖xl‖2, n ∈ N , l = 1, . . . , L , (9)

where xl is a point from tuple x, and yn is an element of sequence Y.
In accordance with the definition (9), for the objective function

Gx(M1, . . . ,ML) we have

Gx(M1, . . . ,ML) =
L∑

l=1

∑

n∈Ml

gx
l (n) .

In addition, we note that Lemma 3 yields the following equalities

(Mx
1 , . . . ,Mx

L) = arg min
M1,...,ML

Sx(M1, . . . ,ML)

= arg max
M1,...,ML

Gx(M1, . . . ,ML) . (10)

In the next lemma and its corollary we give a dynamic programming scheme.
This scheme guarantees finding the optimal solution Mx

1 , . . . ,Mx
L of Problem 2

and (according to the Eq. (10)) the optimal solution of the problem of minimizing
the function Sx(M1, . . . ,ML). The presented scheme follows from the results
obtained in [7] and is given here for completeness.

Lemma 4. Let the conditions of Problem 2 hold. Then for any positive integers
L and M such that (M − 1)Tmin < N and L ≤ M , the optimal value Gx

max of
the objective function of Problem 2 is given by the formula

Gx
max = max

n∈{1+(M−1)Tmin,...,N}
Gx

L,M (n) ; (11)
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here, the values of Gx
L,M (n) are calculated using the recurrence formula

Gx
l,m(n) = gx

l (n)

+

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

0, if l = 1,m = 1,
max

j∈γm−1(n)
Gx

1,m−1(j),

if l = 1,m = 2, . . . ,M − (L − 1),
max

j∈γm−1(n)
Gx

l−1,m−1(j),

if l = 2, . . . , L, m = l,
max{ max

j∈γm−1(n)
Gx

l,m−1(j), max
j∈γm−1(n)

Gx
l−1,m−1(j)},

if l = 2, . . . , L, m = l + 1, . . . ,M − (L − l),

(12)

where

γm−1(n) = {j | max{1 + (m − 2)Tmin, n − Tmax} ≤ j ≤ n − Tmin} ,
m = 2, . . . , M ,

(13)

for every n = 1 + (m − 1)Tmin, . . . , N − (M − m)Tmin.

Corollary 1. Let the conditions of Lemma 4 hold. In addition, let

rx
l,m(n) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

1, if l = 1, m = 2, . . . ,M − (L − 1),
l − 1, if l = 2, . . . , L, m = l,
l − 1, if max

j∈γm−1(n)
Gx

l,m−1(j) < max
j∈γm−1(n)

Gx
l−1,m−1(j),

l = 2, . . . , L, m = l + 1, . . . ,M − (L − l),
l, if max

j∈γm−1(n)
Gx

l,m−1(j) ≥ max
j∈γm−1(n)

Gx
l−1,m−1(j),

l = 2, . . . , L, m = l + 1, . . . ,M − (L − l),

Ix
l,m(n) = arg max

j∈γm−1(n)
Gx

l,m−1(j), l = 1, . . . , L, m = l + 1, . . . ,M − (L − l),

for every n = 1 + (m − 1)Tmin, . . . , N − (M − m)Tmin;

nx(m) =

{
arg max

n∈{1+(M−1)Tmin,...,N}
Gx

L,M (n), if m = M,

Ix
kx(m),m+1(n

x(m + 1)), if m = M − 1, . . . , 1,

kx(m) =

{
L, if m = M,

rx
kx(m+1),m+1(n

x(m + 1)), if m = M − 1, . . . , 1;

Jx(l) =

{
0, if l = 0,∣
∣
∣
{
m ∈ {1, . . . , M} | kx(m) ≤ l

}∣
∣
∣, if l = 1, . . . , L.

Then the sets Mx
1 , . . . ,Mx

L are given by the formula

Mx
l =

{
n |n = nx(m), m = Jx(l − 1) + 1, . . . , Jx(l)

}
(14)

for every l = 1, . . . , L.
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A step-by-step description of the algorithm implementing the above scheme
is given in the following.

Algorithm A1.
Input : sequence Y, tuple (x1, . . . , xL) of points, numbers Tmin, Tmax, and M .
Step 1. Compute the values gx

l (n) for l = 1, . . . , L, and n = 1 + (l − 1)Tmin,
. . . , N − (L − l)Tmin using Formula (9).

Step 2. Using Formulae (12) and (13), compute the values Gx
l,m(n) for each

l = 1, . . . , L, m = l, . . . ,M − (L− l), n = 1+(m−1)Tmin, . . . , N − (M −m)Tmin.
Step 3. Find the maximum Gx

max of the objective function Gx by For-
mula (11), and the optimal subsets Mx

l by Formula (14).
Output : the family {Mx

1 , . . . ,Mx
L} of subsets.

Remark 1. Before the start of the algorithm it is required to verify the two
conditions of Lemma 4. These necessary conditions provide the consistency of
the constraints in Problems 1 and 2, as well as the correctness of the input data
of the algorithm.

Remark 2. In [7], it was found that Algorithm A1 finds the optimal solution of
Problem 2 in O(LN(M(Tmax −Tmin +1)+q)) time. In this expression, the value
of Tmax − Tmin + 1 is at most N . Therefore, the algorithm running time can be
estimated as O(LN(MN + q)).

5 Approximation Algorithm

Our approach to Problem 1 is as follows. For each ordered set (tuple) containing L
elements of the sequence Y, we find an exact solution of the auxiliary Problem 2,
i.e. a family containing disjoint subsets of indices of the input sequence, which is a
feasible solution of the original Problem 1.

The found family of subsets we declare a solution candidate for Problem 1
and include this family in the set of solution candidates.

From the obtained set as the final solution we choose a family of subsets
which yields the largest value for the objective function of Problem 2.

Let us formulate an algorithm that implements the described approach.
Below, in the step-by-step description, it is assumed that the input positive
integers satisfy the conditions of Lemma 4 (see Remark 1).

Algorithm A.
Input : sequence Y, numbers Tmin, Tmax, M , and L.
Step 1. For every tuple x = (x1, . . . , xL) ∈ YL of elements of the sequence

Y, using Algorithm A1, find the optimal solution {Mx
1 , . . . ,Mx

L} of Problem 2.
Step 2. Find a tuple x(A) = arg maxx∈YL Gx(Mx

1 , . . . ,Mx
L) and a family

{MA
1 , . . . ,MA

L} = {Mx(A)
1 , . . . ,Mx(A)

L }. If the optimum is taken by several
tuples, we choose any of them.

Output : the family {MA
1 , . . . ,MA

L} of subsets.

Lemma 5. Let {M∗
1, . . . ,M∗

L} be the optimal solution of Problem 1, and
{MA

1 , . . . ,MA
L} be the solution found by Algorithm A. Then

F (MA
1 , . . . ,MA

L) ≤ 2F (M∗
1, . . . ,M∗

L) .
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Proof. The optimal solution {M∗
1, . . . ,M∗

L} of Problem 1 corresponds to the
tuple (y(M∗

1), . . . , y(M∗
L)) of centroids, where y(M∗

l ) = 1
|y(M∗

l )|
∑

y∈M∗
l
y, l =

1, . . . , L. Let us consider the point tl = arg min
y∈M∗

l

‖y−y(M∗
l )‖, l = 1, . . . , L, from

the subset M∗
l , closest to the centroid of this subset. This point in the set M∗

l
and the set M∗

l itself satisfy the conditions of Lemma 2. Therefore, by applying
the inequality of Lemma 2 to every subset M∗

l , l = 1, . . . , L, we can estimate
the sum

S(M∗
1 , . . . , M∗

L, t1, . . . , tL) =

L∑

l=1

∑

y∈M∗
l

‖y − tl‖2
+

∑

i∈N\M∗
‖yi‖2

≤ 2

L∑

l=1

∑

y∈M∗
l

‖y − y(M∗
l )‖2

+
∑

i∈N\M∗
‖yi‖2

≤ 2

L∑

l=1

∑

y∈M∗
l

‖y − y(M∗
l )‖2

+ 2
∑

i∈N\M∗
‖yi‖2

= 2F (M∗
1 , . . . , M∗

L) ,

(15)

where M∗ = ∪L
l=1M∗

l .
On the other hand, we notice that the tuple t = (t1, . . . , tL) is among

the tuples from YL that have been examined at Step 1 of Algorithm A. Let
{Mt

1, . . . ,Mt
L} be the optimal solution found at Step 2 of Algorithm A for Prob-

lem 2 at x = t. Then according to statement 2 of Lemma 3, i.e. according to (10),
the family {Mt

1, . . . ,Mt
L} supplies the minima to the function Sx(M1, . . . ,ML)

at x = t. Consequently the bound

S(Mt
1, . . . ,Mt

L, t1, . . . , tL) ≤ S(M∗
1, . . . ,M∗

L, t1, . . . , tL) (16)

is valid for the left-hand side of (15).
Furthermore, by the definition of Step 2 and according to (8) we have the

bound

S(MA
1 , . . . ,MA

L , xA
1 , . . . , xA

L) ≤ S(Mt
1, . . . ,Mt

L, t1, . . . , tL) , (17)

where (xA
1 , . . . , xA

L) = x(A). Additionally, from the first statement of Lemma 3
we have the inequality

F (MA
1 , . . . ,MA

L) ≤ S(MA
1 , . . . ,MA

L , xA
1 , . . . , xA

L) . (18)

Finally, by combining (15)–(18) we get the chain of estimation inequalities

F (MA
1 , . . . ,MA

L) ≤ S(MA
1 , . . . ,MA

L , xA
1 , . . . , xA

L)

≤ S(Mt
1, . . . ,Mt

L, t1, . . . , tL) ≤ S(M∗
1, . . . ,M∗

L, t1, . . . , tL)
≤ 2F (M∗

1, . . . ,M∗
L) ,

which proves Lemma 5. 
�
We finally prove the running time of the algorithm and that the bound of 2

on its approximation factor is tight.
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Theorem 1. Algorithm A finds a 2-approximate solution of Problem 1 in
O(LNL+1(M(Tmax − Tmin + 1) + q)) time. The performance guarantee 2 of the
algorithm is tight.

Proof. The 2-accuracy bound of the algorithm follows from Lemma 5. We bound
the time complexity of the algorithm using its step-by-step description.

The computation time is determined by the time complexity of Step 1, at
which Problem 2 is solved O(NL) times by applying Algorithm A1, whose time
complexity is O(LN(M(Tmax − Tmin + 1) + q)) (see Remark 2). In addition, it
needs O(NL) comparisons for searching a largest value of the objective function
of Problem 2 at Step 2. By summing all these times we obtain the final bound
for the algorithm time complexity.

The tightness of the performance guarantee of Algorithm A follows from the
tightness of the performance guarantee of the 2-approximation algorithm for the
case of Problem 1 when L = 1 (see [6]). 
�
Remark 3. According to Remark 2, the running time of Algorithm A is
O(LNL+1(MN + q)), which is polynomial if the number L of clusters is fixed.

6 Conclusion

In this paper we have shown the strong NP-hardness of one problem of partition-
ing a finite sequence of points of Euclidean space into clusters with restrictions
on their cardinalities. We also have shown an approximation algorithm for this
problem. The proposed algorithm allows to find a 2-approximate solution of the
problem in a polynomial time if the number of clusters is fixed.

In our opinion, the presented algorithm would be useful as one of the tools
for solving problems in applications related to data mining, and analysis and
recognition of time series (signals).

Of considerable interest is the development of faster polynomial-time approx-
imation algorithms for the case when the number of clusters is not fixed. An
important direction of study is searching subclasses of this problem for which
faster polynomial-time approximation algorithms can be constructed.

Acknowledgments. This work was supported by Russian Science Foundation,
project no. 16-11-10041.
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Abstract. We consider the strongly NP-hard problem of partitioning a
set of Euclidean points into two clusters so as to minimize the sum (over
both clusters) of the weighted sum of the squared intracluster distances
from the elements of the clusters to their centers. The weights of sums are
the cardinalities of the clusters. The center of one of the clusters is given
as input, while the center of the other cluster is unknown and determined
as the geometric center (centroid), i.e. the average value over all points
in the cluster. We analyze the variant of the problem with cardinality
constraints. We present an approximation algorithm for the problem and
prove that it is a fully polynomial-time approximation scheme when the
space dimension is bounded by a constant.

Keywords: NP-hardness · Euclidian space · Fixed dimension · FPTAS

1 Introduction

The subject of this study is a strongly NP-hard quadratic Euclidean prob-
lem of partitioning a finite set of points into two clusters. We will show a
fully polynomial-time approximation scheme (FPTAS) for a special case of the
problem.

Our research is motivated by insufficient study of the problem from an algo-
rithmic direction and its importance in some applications including geometry,
cluster analysis, statistical problems of joint evaluation and hypotheses testing
with heterogeneous samples, data interpretation problem, etc.

The paper has the following structure. Section 2 contains the problem for-
mulation, some applications, and some closely related problems. Additionally,
known and our new results are discussed. In Sect. 3 we formulate and prove
some basic properties exploited by our algorithm. In Sect. 4, an approxima-
tion algorithm is presented. Finally, also in Sect. 4 we show that our algorithm
is a fully polynomial-time approximation scheme when the space dimension is
fixed.
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2 Problem Formulation, Its Origin, Related Problems,
known and New Results

Everywhere below we use the standard notations, namely: R is the set of the
real numbers, R+ is the set of positive real numbers, Z is the set of integers, ‖ · ‖
is the Euclidean norm, and 〈·, ·〉 is the scalar product.

The problem under consideration is formulated as follows (see also [1,2]).

Problem 1 (Balanced Variance-based 2-Clustering with given center). Given a
set Y = {y1, . . . , yN} of points from R

q and a positive integer M . Find a partition
of Y into two non-empty clusters C and Y \ C such that

F (C) = |C|
∑

y∈C
‖y − y(C)‖2 + |Y \ C|

∑

y∈Y\C
‖y‖2 −→ min , (1)

where y(C) = 1
|C|

∑

y∈C
y is the geometric center (centroid) of C and such that

|C| = M .

The problem has an obvious geometrical interpretation. It is a partition of a
finite set of points in Euclidean space into two geometrical structures minimizing
(1). In formula (1) the weights of the sums are the cardinalities of the desired
clusters. So, Problem 1 can be interpreted as the problem of optimal weighted
(by the cardinalities of the clusters) summing and also as a problem of balanced
partitioning (or clustering).

In addition, the problem has applications in Data mining problem (see, for
example, [3–5]). The essence of this multifaceted problem is the approximation
of data by some mathematical model that allows to plausibly explain the origin
of the data in terms of the model. In particular, the next statistical hypothesis
can be used as such mathematical model: it is true that the input data Y is the
inhomogeneous sample from two distributions, and that one of these distribu-
tions has zero mean while another mean is unknown and non-equal to zero. To
test this hypothesis, first we need to find an optimal solution to Problem 1, and
only then we will be able to use the classical results in the field of statistical
hypothesis testing.

It is widely known that applied researchers, who study and analyze data,
use algorithms as the basic mathematical tools for solving a variety of clustering
problems in which clusters consist of similar or related by certain criteria objects.
Creating such mathematical tools for solving data mining problems causes the
development of new algorithms with guaranteed performance estimates of accu-
racy and time complexity.

The strong NP-hardness of Problem 1 was proved in [1,2]. This fact
implies that, unless P=NP, there are neither exact polynomial-time nor exact
pseudopolynomial-time algorithms for it [6]. In addition, in [1,2], the nonexis-
tence of an FPTAS was shown (unless P=NP) for Problem 1. So, finding sub-
classes of this problem for which there exists an FPTAS is a question of topical
interest.
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Note that there is only one algorithmic result for Problem 1, i.e. an exact
algorithm [7] for the case of integer components of the input points. The time
complexity of this algorithm is O(qN(2MB + 1)q), where B is the maximum
absolute value of the components of the input points. If the dimension q of the
space is bounded by a constant, then the time complexity of the algorithm is
O(N(MB)q). So, in this case the algorithm is pseudopolynomial.

At the same time, there are a lot of results for problems closely related to
Problem 1. Properties of algorithms for these problems can be found in the
papers cited below.

The NP-hard Balanced variance-based 2-clustering problem is one of the most
closely related to Problem 1. The objective function in this problem is different
from (1) in that the center of cluster Y \ C is not fixed:

|C|
∑

y∈C
‖y − y(C)‖2 + |Y \ C|

∑

y∈Y\C
‖y − y(Y \ C)‖2 −→ min . (2)

In problem (2) the centroids y(C) and y(Y \ C) of both clusters C and Y \ C are
the functions of C. It is well-known that this problem is equivalent to Min-sum
all-pairs 2-clustering problem in which it is required to find a partition such that

∑

x∈C

∑

z∈C
‖x − z‖2 +

∑

x∈Y\C

∑

z∈Y\C
‖x − z‖2 −→ min . (3)

Algorithmic questions for problems (2) and (3) were studied, for example,
in [1,2,8–13].

The well-known NP-hard [14] Minimum sum-of-squares 2-clustering problem
is close to Problem 1. In this problem (related to classical work by Fisher [15]
and also called 2-Means [16]), we need to find two clusters C and Y \C such that

∑

y∈C
‖y − y(C)‖2 +

∑

y∈Y\C
‖y − y(Y \ C)‖2 −→ min . (4)

In problem (4) as well as in problem (2) the centroids of both clusters are the
functions of C, but in problem (4) the sums are not weighted by the cluster
cardinalities. Thousands of publications are dedicated to problem (4) and its
applications.

The strongly NP-hard problem Minimum sum-of-squares 2-clustering with
given center has been actively studied in the last decade. In this problem we
need to find a 2-partition such that

∑

y∈C
‖y − y(C)‖2 +

∑

y∈Y\C
‖y‖2 −→ min . (5)

Problem (5) differs from Problem 1 in that the sums are not weighted by the
cardinalities of the desired clusters. The algorithmic results for this problem can
be found in [17–24].

In the considered Problem 1, the centroid y(C) of the cluster C is unknown
and the center of the cluster Y \ C is given at the origin as in the problem (5).
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Since Problem 1 is neither equivalent nor a special case of the problems (2)–(5),
the previous algorithmic results for these closely related problems do not apply
to Problem 1. We need new explorations for this problem.

In this work we present an approximation algorithm for Problem 1. Given
a relative error ε, the algorithm finds a (1 + ε)-approximate solution in

O
(

qN2(
√

2q
ε + 1)q

)

time. In the case of a fixed space dimension q the run-

ning time of the algorithm is equal to O
(
N2

(
1
ε

)q/2
)

and so, it implements a
fully polynomial-time approximation scheme.

3 Foundations of the Algorithm

In this section, we provide some basic statements exploited by our algorithm.
The following two lemmas are well known. Their proofs are presented in

many publications (see, for example, [25,26]).

Lemma 1. For an arbitrary point x ∈ R
q and a finite set Z ⊂ R

q, it is true
that ∑

z∈Z
‖z − x‖2 =

∑

z∈Z
‖z − z‖2 + |Z| · ‖x − z‖2 ,

where z is the centroid of Z.

Lemma 2. Let the conditions of Lemma 1 hold. If a point u ∈ R
q is closer (in

terms of distance) to the centroid z of Z than any point in Z, then
∑

z∈Z
‖z − u‖2 ≤ 2

∑

z∈Z
‖z − z‖2 .

Lemma 3. Let

S(C, x) = |C|
∑

y∈C
‖y − x‖2 + |Y \ C|

∑

y∈Y\C
‖y‖2, C ⊆ Y, x ∈ R

q , (6)

where Y is the input set of Problem 1. Then it is true that

S(C, x) = F (C) + |C|2‖x − y(C)‖2 .

Proof. Applying Lemma 1 to the set C and its centroid, we have
∑

y∈C
‖y − x‖2 =

∑

y∈C
‖y − y(C)‖2 + |C| · ‖x − y(C)‖2 . (7)

After the substitution of (7) in the definition (6), we obtain

S(C, x) = |C|
∑

y∈C
‖y − x‖2 + |Y \ C|

∑

y∈Y\C
‖y‖2

= |C|
∑

y∈C
‖y − y(C)‖2 + |C|2‖x − y(C)‖2 + |Y \ C|

∑

y∈Y\C
‖y‖2

= F (C) + |C|2‖x − y(C)‖2 .


�
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For any function f(x, y), we denote by fx(y) the function when the argument
x is fixed and by fy(x) the function when the argument y is fixed.

Lemma 4. For the conditional minimums of the function (6) the next state-
ments are true:

(1) for any nonempty fixed set C ⊆ Y the minimum of the function SC(x)
over x ∈ R

q is reached at the point x = y(C) = 1
|C|

∑

y∈C
y and is equal to F (C);

(2) if |C| = M = const, then, for any fixed point x ∈ R
q, the minimum of

function Sx(C) over C ⊆ Y satisfies

arg min
C⊆Y

Sx(C) = arg min
C⊆Y

Gx(C) ,

where
Gx(C) =

∑

y∈C
gx(y) , (8)

gx(y) = (2M − N)‖y‖2 − 2M 〈y, x〉 , y ∈ Y , (9)

and
min
C⊆Y

Gx(C) =
∑

y∈Bx

gx(y) , (10)

where the set Bx consists of M points of the set Y, at which the function gx(y)
has the smallest values.

Proof. The first statement follows from Lemma 3.
Since |Y| = N and |C| = M , the second statement follows from the next

chain of equalities:

Sx(C) = M
∑

y∈C
‖y − x‖2 + (N − M)

∑

y∈Y\C
‖y‖2

= M
∑

y∈C
‖y‖2 + M2‖x‖2 − 2M

∑

y∈C
〈y, x〉 + (N − M)

∑

y∈Y\C
‖y‖2

= (N − M)
∑

y∈Y
‖y‖2 + M2‖x‖2 + (2M − N)

∑

y∈C
‖y‖2 − 2M

∑

y∈C
〈y, x〉

= (N−M)
∑

y∈Y
‖y‖2+M2‖x‖2+

∑

y∈C
gx(y) = (N−M)

∑

y∈Y
‖y‖2+M2‖x‖2+Gx(C) .

It remains to note that in the last two equalities the first two addends do not
depend on C. The formula (10) is obvious. 
�
Lemma 5. Let the conditions of Lemma 4 hold and C∗ be the optimal solution
of Problem 1. Then, for a fixed point x ∈ R

q, the following inequality is true

F (Bx) ≤ F (C∗) + M2‖x − y(C∗)‖2 .
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Proof. The definitions (1) and (6), and Lemma 4 imply

F (Bx) = Sy(Bx)(Bx) ≤ Sx(Bx) ≤ Sx(C∗) . (11)

Applying Lemma 3 to the right-hand side of (11), we obtain

Sx(C∗) = F (C∗) + M2||x − y(C∗)||2 . (12)

Combining (11) and (12) yields the statement of the lemma. 
�
Lemma 6. Let the conditions of Lemma 5 hold and t = arg min

y∈C∗
‖y−y(C∗)‖2 be

the point from the subset C∗ closest to its centroid. Then the following inequality
is true

‖t − y(C∗)‖2 ≤ 1
M2

F (Bt) , (13)

where Bt is the set defined in Lemma 4 (for x = t).

Proof. By the definition of point t we have

‖t − y(C∗)‖2 ≤ ‖y − y(C∗)‖2

for each y ∈ C∗. Summing up both sides of this inequality over all y ∈ C∗, we
obtain

M‖t − y(C∗)‖2 ≤
∑

y∈C∗
‖y − y(C∗)‖2 . (14)

Since C∗ is the optimal solution,

F (C∗) ≤ F (Bt) . (15)

Then (14), (1) and (15) imply

M‖t − y(C∗)‖2 ≤
∑

y∈C∗
‖y − y(C∗)‖2 ≤ 1

M
F (C∗) ≤ 1

M
F (Bt) .


�
Lemma 7. Let the conditions of Lemma 6 hold. Let

‖x − y(C∗)‖2 ≤ ε

2M2
F (Bt) (16)

for some ε > 0 and x ∈ R
q. Then the subset Bx (defined in Lemma 4) is a

(1 + ε)-approximate solution of Problem 1.

Proof. From (1), Lemma 4 and the definition of the point t we have

F (Bt) = Sy(Bt)(Bt) ≤ St(Bt) ≤ St(C∗) . (17)

Applying Lemma 2 to the set C∗ and the point t, we have
∑

y∈C∗
‖y − t‖2 ≤ 2

∑

y∈C∗
‖y − y(C∗)‖2 .
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Therefore, definition (6) yields

St(C∗) = M
∑

y∈C∗
‖y − t‖2 + (N − M)

∑

y∈Y\C∗
‖y‖2

≤ 2M
∑

y∈C∗
‖y − y(C∗)‖2 + (N − M)

∑

y∈Y\C∗
‖y‖2 ≤ 2F (C∗) . (18)

Combining (16), (17), and (18) we obtain

‖x − y(C∗)‖2 ≤ ε

2M2
F (Bt) ≤ ε

2M2
St(C∗) ≤ ε

M2
F (C∗) . (19)

Finally, from Lemma 5 and (19) for the subset Bx we obtain the following esti-
mate of the value of the objective function

F (Bx) ≤ F (C∗) + M2‖x − y(C∗)‖2 ≤ (1 + ε)F (C∗) .

This estimate means that the subset Bx is a (1 + ε)-approximate solution for
Problem 1. 
�

4 Approximation Algorithm

In this section, we present our approximation algorithm for Problem 1. Its main
idea is as follows. For each point of the input set a domain (cube) is constructed so
that the center of the desired subset necessarily belongs to one of these domains.
Given (as input) the prescribed relative error ε of the solution, a lattice (a grid)
is generated that discretizes the cube with a uniform step in all coordinates.
For each lattice node, a subset of M points from the input set that have the
smallest values of the function (9) is formed (the minimum of (8) is reached at
that subset). The resulting set is declared as a solution candidate. The candidate
that minimizes the objective function is chosen to be the final solution.

For an arbitrary point x ∈ R
q and positive numbers h and H, we define the

set of points

D(x, h,H) = {d ∈ R
q| d = x + h · (i1, . . . , iq), ik ∈ Z, |hik| ≤ H, k ∈ {1, . . . , q}}

(20)
which is a cubic lattice of size 2H centered at the point x with node spacing h.

For any point x ∈ R
q the number of nodes in this lattice is

|D(x, h,H)| ≤
(

2
⌊H

h

⌋
+ 1

)q

≤
(

2
H

h
+ 1

)q

. (21)

Remark 1. If some point z from R
q and some node x from the lattice D(x, h,H)

satisfy the inequality ‖z − x‖ ≤ H then the distance from z to the nearest node
of the lattice obviously does not exceed h

√
q

2 .
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For constructing an algotithmic solution we need to determine adaptively
the size H of the lattice and its node spacing h for each point y of the input set
Y so that the domain of the lattice contains the centroid of the desired subset.
The node spacing is defined by the relative error ε. To this end we define the
functions:

H(y) =
1
M

√
F (By), y ∈ Y , (22)

h(y, ε) =
1
M

√
2ε

q
F (By), y ∈ Y, ε ∈ R+ , (23)

where By is a set determined in Lemma 4, if x = y.
Note that all calculations in the algorithm described below are based on

constructing candidate (approximate) solutions of Problem 1 as a subset Bx

(defined in Lemma 4) for any point x from the support set of points. In this way
we use two support sets. The first of them is the input set Y and the second
one is the set of nodes of the lattice D(y, h,H) centered at y. The lattice is
adaptively calculated by formulae (22) and (23) for each input point y ∈ Y. The
approximation factor is finally bounded using the basic statements in Sect. 3.

Remark 2. For any point y ∈ Y the cardinality |D(y, h,H)| of the lattice does
not exceed the value

L =

(√
2q

ε
+ 1

)q

due to (21), (22), and (23).

Below is the step-by-step description of the algorithm.

Algorithm A.
Input : a set Y and numbers M and ε.
For each point y ∈ Y Steps 1–6 are executed.
Step 1. Compute the values gy(z), z ∈ Y, using formula (9); find a subset

By ⊆ Y with M smallest values gy(z), compute F (By) using formula (1).
Step 2. If F (By) = 0, then put CA = By; exit.
Step 3. Compute H and h using formulae (22) and (23).
Step 4. Construct the lattice D(y, h,H) using formula (20).
Step 5. For each node x of the lattice D(y, h,H) compute the values gx(y),

y ∈ Y, using formula (9) and find a subset Bx ⊆ Y with M smallest values gx(y).
Compute F (Bx) using formula (1), remember this value and the set Bx.

Step 6. If F (Bx) = 0, then put CA = Bx; exit.
Step 7. In the family {Bx|x ∈ D(y, h,H), y ∈ Y} of candidate sets that

have been constructed in Steps 1–6, choose as a solution CA the set Bx for which
F (Bx) is minimal.

Output : the set CA.

Theorem 1. For any fixed ε > 0 Algorithm A finds a (1 + ε)-approximate

solution of Problem 1 in O
(

qN2

(√
2q
ε + 1

)q)

time.
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Proof. Let us bound the approximation factor of the algorithm. If the equality
F (By) = 0 holds at Step 2 for some point y ∈ Y, then the subset By ⊆ Y is an
optimal solution of Problem 1, since, for any set C ⊆ Y, it is true that F (C) ≥ 0.
We get an optimal solution at Step 6 in the same way.

Consider the case when the condition F (By) = 0 at Step 2 does not hold.
Obviously, there exists a point t ∈ Y such that t = arg min

y∈C∗
||y − y(C∗)|| and

the algorithm meets it at least once in the set Y while running. By Lemma 6,
inequality (13) holds for this point. This inequality and (22) mean that ‖t −
y(C∗)‖ ≤ H(t), so the centroid of the optimal subset lies within the lattice
D(t, h,H) of the size H = H(t) and the node spacing h = h(t, ε).

Let x∗ = arg min
x∈D(t,h,H)

‖x − y(C∗)‖ be a node of the grid D(t, h,H), the

nearest to the centroid of the optimal subset. Since the squared distance from
the optimal centroid y(C∗) to the nearest node x∗ of the lattice does not exceed
h2q
4 (by remark 1), we have the estimate

‖x∗ − y(C∗)‖2 ≤ h2q

4
=

ε

2M2
F (Bt) .

Therefore, the point x∗ satisfies the conditions of Lemma 7 and, hence, the set
Bx∗

is a (1 + ε)-approximate solution of Problem 1.
It is clear, that any subset Bx in the family of candidate solutions on Step

7 constructed for node x such that ‖x − y(C∗)‖2 ≤ ‖x∗ − y(C∗)‖2 guarantees a
(1 + ε)-approximation also.

Let us evaluate the time complexity of the algorithm.
At Step 1 calculation of gy(z) requires at most O(qN)-time. Finding the M

smallest elements in the set of N elements is performed in O(N) operations (for
example, using the algorithm of finding the n-th smallest value in an unordered
array [27]). Computation of the value F (By) takes O(qN) time.

Steps 2, 3 and 6 are executed in O(1) operations. It requires O(qL) operations
for generating the lattice at Step 4 (by remark 2).

At Step 5, computation of the elements of the set Bx for each node of the
grid requires O(qN) time, and the same is true for the computation of F (Bx)
(as computations at Step 1). Thus, at this step the computational time for all
nodes of the grid is O(qNL).

Since Steps 1–6 are performed N times, the time complexity of these steps
is O(qN2L). The time complexity of Step 7 is bounded by O(NL), and the
total time complexity of all Steps is O(qN2L). Therefore, the time complexity

of Algorithm A is O
(

qN2

(√
2q
ε + 1

)q)

. 
�

Remark 3. In the case when the dimension q of space is bounded by a constant
value and ε < 2q, we have

qN2

(

1 +

√
2q

ε

)q

≤ qN22q

(
2q

ε

)q/2

= O
(

N2

(
1
ε

)q/2
)

,

and it means that Algorithm A is an FPTAS.
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Remark 4. It is clear that the constructed algorithm can be applied for solving
a problem in which the cardinalities of the clusters are the optimized variables.
For this purpose, it is sufficient to solve Problem 1 N times with the help of
Algorithm A for each M = 1, . . . , N , and then choose the best of these solu-
tions in the sense of minimizing the objective function. The time complexity
of this algorithm obviously equals O

(
N3

(
1
ε

)q/2
)
. But it is interesting to con-

struct algorithms with less time complexity without searching for such candidate
solutions.

5 Conclusion

In this paper we presented an approximation algorithm for one strongly NP-
hard quadratic Euclidian problem of balanced partitioning a finite set of points
into two clusters. It was proved that our algorithm is a fully polynomial-time
approximation scheme if the space dimension is bounded by a constant.

In the algorithmical sense, the considered problem is poorly studied. There-
fore, it seems important to continue studying the questions on algorithmical
approximability of the problem.
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Abstract. Capacitated Vehicle Routing Problem (CVRP) is the well-
known combinatorial optimization problem remaining NP-hard even in
the Euclidean spaces of fixed dimension. Thirty years ago, in their cele-
brated paper, M. Haimovich and A. Rinnoy Kan proposed the first PTAS
for the Planar Single Depot CVRP based on their Iterated Tour Parti-
tion heuristic. For decades, this result was extended by many authors to
numerous useful modifications of the problem taking into account mul-
tiple depots, pick up and delivery options, time window restrictions, etc.
But, to the best of our knowledge, almost none of these results go beyond
the Euclidean plane. In this paper, we try to bridge this gap and propose
an EPTAS for the Euclidean CVRP for any fixed dimension.

Keywords: Vehicle routing · Euclidean space · EPTAS

1 Introduction

We consider the Capacitated Vehicle Routing Problem, which is the well-known
special case of Vehicle Routing Problem [17] belonging to the class of combina-
torial optimization models widely adopted in operations research. It is gener-
ally believed that, for the first time, as an optimization problem, the VRP was
introduced by Dantzig and Ramser in their seminal paper [5]. They considered
a routing problem for a fleet of gasoline delivery trucks servicing a number of gas
stations supplied by a unique bulk terminal. Demands of serviced gas stations
and distances between any two locations were specified. The goal was to find the
least cost set of truck routes visiting all the stations.

In its simplest setting, the VRP can be defined as the combinatorial opti-
mization problem aiming at designing the cheapest collection of delivery routes
from some dedicated point (depot) to a set of customers (clients) given by their
spatial locations. This problem has many known modifications [9,14] taking into
account different additional features and constraints, e.g. depots multiplicity,
heterogeneity of customer demand, vehicle capacity, time windows, etc.

In this paper, we suppose that all clients have the same one unit demand
and all vehicles have the same capacity, equal to some predefined number q.
c© Springer International Publishing Switzerland 2016
Y. Kochetov et al. (Eds.): DOOR 2016, LNCS 9869, pp. 193–205, 2016.
DOI: 10.1007/978-3-319-44914-2 16
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This specific problem is called [10] Capacitated Vehicle Routing Problem or
CVRP. Complexity of this problem is determined by its closeness to some well-
known intractable combinatorial problems. For instance, Traveling Salesman
Problem (TSP) is just a special case of the CVRP such that a depot is col-
located with one of clients and q ≥ n. Therefore, the CVRP is strongly NP-hard
even in the Euclidean plane, since the same results are proven for the TSP [15].
Almost all known special cases of the CVRP (except the case when q ≤ 2) (see,
e.g. [14]) are also NP-hard even in the Euclidean spaces of finite dimension.

For these reasons, research on the CVRP is mostly focused on design of approx-
imation algorithms and heuristics. For a general metric, the CVRP is shown to be
APX-complete [2] for any fixed q ≥ 3, i.e. there exists ε > 0 such that the existence
of a polynomial time (1 + ε)-approximation algorithm implies P = NP .

Most positive approximation results for CVRP are obtained for the Euclidean
plane. One of the first studies of two-dimensional Euclidean CVRP has been due to
Haimovich and Rinnooy Kan [10], who presented several heuristics for this prob-
lem leading to the first PTAS for q = O(log log n). Asano et al. [2] substantially
improved this result by designing a PTAS for q = O(log n/ log log n). Also they
construct a PTAS for the case of Ω(n) based on the famous Arora’s PTAS [1] for
the two-dimensional Euclidean TSP. Recently, Das and Mathieu [6,7] proposed a
quasi-polynomial time approximation scheme (QPTAS) for the two-dimensional
Euclidean CVRP for every q with time complexity of n(log n)O(1/ε)

. Khachay and
Zaytseva [13] applied the approach proposed in [10] to the construction a PTAS for
the Single Depot CVRP in three-dimensional Euclidean space.

The extension of the latter result to the case of any fixed number m of depots
and any fixed dimension d > 1 is the main contribution of this paper. Actually,
on the basis of recent geometric results describing the structure of finite ε-nets
on the surface of the unit Euclidean sphere Sd−1, we propose a new Efficient
Polynomial Time Approximation Scheme1 (EPTAS) for the Euclidean CVRP,
for which capacity q, the number of depots m and dimension d > 1 are fixed.
The algorithm proposed remains PTAS for the problem with fixed m and d and
q = O(log log n)1/d.

The rest of the paper is organized as follows. In Sect. 2, we recall the general
statement of the CVRP along with its metric and Euclidean settings. In Sect. 3,
we describe our EPTAS based on the famous Iterated Tour Partition [10] for
the case of single depot. Further, in Sect. 4 we extend this result to the case of
an arbitrary fixed number m of depots. Section 5 contains summarizing remarks
and a short overview of future work.

2 Problem Statement

Recall the necessary definitions and notation.
1. X = {x1, . . . , xn} is a set of clients, Y = {y1, . . . , ym} is a set of depots.
Denote by G0(X ∪Y,E,w) a complete weighted digraph, whose weight function

1 A PTAS with time complexity f(1/ε)p(n) for some polynomial p.
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w : E → R+ defines transportation costs for any pair of locations. Hereinafter,
the function w is supposed to be symmetric. For any route R consisting of arcs
e1, . . . , ep, its cost w(R) is defined by the equation w(R) =

∑p
i=1 w(ei). Along

with the digraph G0, we consider its subgraph G = G0〈X〉 induced by the vertex
subset X.
2. To any client xi, assign a number ri = min{w(yj , xi) : j = 1, . . . , m} defining
the least direct transportation cost among the depots. Breaking ties arbitrarily,
define a partition X1 ∪ . . . ∪ Xm = X into subsets

Xj = {xi ∈ X : ri = w(xi, yj)}, (1)

such that any client xi is assigned to the nearest depot yj .
3. Any feasible route has a form yjs

, xi1 , . . . , xit
, yjf

, where yjs
and yjf

are
depots2, xi1 , . . . , xit

are distinct clients visited by this route, and t ≤ q.
If m = 1 the problem in question is called the Single Depot Capacitated Vehi-

cle Routing Problem (SDCVRP). In this case, all feasible routes are simple cir-
cuits. Otherwise, the problem is called the Multiple Depot CVRP (MDCVRP).
We distinguish two special settings of this problem. In the first one, we denote
it MDCVRP1, any feasible route can start and terminate at separate depots. In
the second one, MDCVRP2, for any feasible route, its start and finish depots
should be identical (yjs

= yjf
).

For any aforementioned setting, the goal is, for a given digraph G0(X ∪
Y,E,w) and a capacity q, to find a cheapest set of routes visiting each client
exactly once.

Along with the general setting of the SDCVRP and MDCVRP we consider
two important their special cases defined in terms of the weight function w.

Metric CVRP. In this case, the graph G0 is supposed to be undirected and w
meets the triangle inequality w(z1, z2) ≤ w(z1, z3)+w(z3, z2) for each z1, z2, z3 ∈
X ∪ Y .

Euclidean CVRP. Here, X ∪ Y ⊂ R
d and w(z1, z2) = ‖z1 − z2‖2.

3 Approximability of SDCVRP

The main idea of our approach stems from the famous Iterated Tour Partition
(ITP) heuristic introduced by Haimovich and Rinnooy Kan [10] and presented
below as Algorithm 1. Using ITP in combination with approximation algorithms
for the metric TSP, we construct polynomial time algorithms with asymptoti-
cally fixed performance guarantees for the metric SDCVRP and polynomial time
approximation scheme for the d-dimensional Euclidean SDCVRP for any fixed
d > 1. Further, in Sect. 4, we extend this approach to the case of multiple depots.

For our constructions, we need the following technical claims proved for the
first time in [10]. Although, all the proofs in that paper were carried out for the

2 Not necessarily distinct.
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Algorithm 1. ITP heuristic
Input: a complete weighted digraph G0(X ∪ {y}, E, w) of order n, a natural number
q and an arbitrary Hamiltonian circuit H in G.
Output: an approximate solution SITP of SDCVRP.

1: for all x ∈ H do
2: starting from the vertex x, partition the circuit H into l = �n/q� chains, each of

them, except maybe one, spans q vertexes;
3: connecting endpoints of each chain with the depot y directly, construct a set

S(x) of l routes;
4: end for
5: output the set SITP = arg min{w(S(x)) : x ∈ H}.

Euclidean plane only, it is easy to verify that they remain true in the much more
general setting of the CVRP as well. For the sake of brevity, we skip the proofs
(see [13] for details).

Lemma 1. For r̄ = 1/n
∑n

i=1 ri, the following equation

w(SITP) ≤ 2 �n/q� r̄ +
(

1 − �n/q�
n

)

w(H) ≤ 2 �n/q� r̄ + (1 − 1/q) w(H) (2)

is valid.

It should be noted that the upper bound claimed in Lemma1 is valid for the
most general setting of the SDCVRP. In the metric case, for any feasible solution
S of the SDCVRP, we can obtain also a lower bound on w(S) by means of the
cost of the Hamiltonian circle HS induced by S in the graph G.

Indeed, let S consists of routes C1, . . . , Ct. Excluding the depot y from each
route Ci and connecting arbitrarily the chains obtained to produce a single
(Hamiltonian) circle HS , we obtain the following bound.

Lemma 2.
w(S) ≥ max {2nr̄/q, w(HS)} . (3)

Combining the bounds given by Lemmas 1 and 2, we obtain the following
equation relating the optimum value VRP∗(X, {y}) of the metric SDCVRP and
the weight TSP∗(X) of an optimal Hamiltonian circle in the corresponding TSP
instance.

Theorem 1.

min {2r̄n/q, TSP∗(X)} ≤ VRP∗(X, {y}) ≤ 2�n/q�r̄ + (1 − 1/q) TSP∗(X).

The results above give us an ability to represent a performance guarantee of
any ITP-based approximation algorithm formetric SDCVRP in terms of heuristics
used for obtaining approximate solutions of the inner TSP. Indeed, suppose, we
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obtain a Hamiltonian cycle H in the graph G, whose cost TSP∗ ≤ w(H) ≤
ρTSP∗ for some ρ ≥ 1. Using (2) and (3), we obtain

w(S)
VRP∗(X, {y})

≤ 2 �n/q� r̄ + (1 − 1/q) ρTSP∗(X)
max {2r̄n/q, TSP∗(X)} ≤ q

n
+ 1 + ρ. (4)

Since the RHS of Eq. (4) tends to 1 + ρ any time when q = o(n), an arbitrary
ρ-approximation algorithm for the metric TSP produces asymptotically (1 + ρ)-
approximation algorithm for the metric SDCVRP.

Further, since the running time of the ITP is at most O(n2), the overall
time complexity of any based-on-ITP approximation algorithm is defined by
the running time of the initial approximation algorithm for the metric TSP.
For instance, the famous Christofides’ 3/2-approximation algorithm [4] with the
running time of O(n3) produces asymptotically 5/2-approximation algorithm
with the same time complexity bound, and the well-known Arora’s PTAS [1] for
the d-dimensional Euclidean TSP, for any fixed d > 1 and any ε ∈ (0, 1), pro-
duces asymptotically (2 + ε)-approximation algorithm with the time complexity
of (n(log n)(O(

√
d/ε))d−1

.
To proceed with PTAS for the Euclidean SDCVRP, we recall Algorithm2

proposed in [10].

Algorithm 2. Combined ITP scheme (CITP)
Input: a complete weighted graph G0(X ∪ {y}, E, w) of order n, natural number q,
and an upper relative error bound ε > 0.
Output: an approximate solution SCITP of the SDCVRP.

1: relabel the clients so that r1 ≥ r2 ≥ . . . ≥ rn;
2: for some value k = k(ε) (which will be specified later), partition X into subsets

X(k) = {x1, . . . , xk−1} of inner and X \ X(k) outer clients;
3: find an exact solution S∗(X(k)) of the instance of SDCVRP specified by the sub-

graph G0 〈X(k) ∪ {y}〉;
4: apply Algorithm 1 for construction of an approximate solution SITP(X \ X(k)) of

the SDCVRP defined by the subgraph G0 〈X \ X(k) ∪ {y}〉;
5: output SCITP = S∗(X(k)) ∪ SITP(X \ X(k)).

Algorithm 2 makes a decomposition of the initial instance into two smaller
instances of the SDCVRP. The first subproblem, for the outer clients, is supposed
to be solved to optimality, while for the second one describing the inner clients,
an approximate solution is found by Algorithm1. Lemma 3 helps us to relate
optimum values of these two subproblems.

Lemma 3. For an arbitrary k ∈ {1, . . . , n} the equation

VRP∗(X, {y}) ≤ VRP∗(X(k), {y}) + VRP∗(X \ X(k), {y})
≤ VRP∗(X, {y}) + 4(k − 1)rk.

is valid.
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As previous results, Lemma 3 remains true for an arbitrary metric.
Further, we restrict ourselves to finite dimensional Euclidean spaces. All

remaining assertions of this section are based on the following existence lemma
for a finite ε-net on the surface of the unit Euclidean sphere Sd−1 in terms of
the angular distance

dist(x1, x2) = arccos(x1, x2), (x1, x2 ∈ Sd−1)

(see, e.g. [11], Lemma 3.1). According to the classic definition (see, e.g. [16]), we
call some finite subset N ⊂ Sd−1 a finite ε-net (on the sphere Sd−1) if, for any
x ∈ Sd−1, there exists ξ ∈ N such that dist(ξ, x) ≤ ε.

Lemma 4. For an arbitrary h ∈ (0, h0), h0 = π/(6
√

d − 1), on the sphere Sd−1

there exists an h
√

d − 1-net N = N(d, h) such that |N | = Ch−(d−1) for some
constant C = C(d).

Using the claim of Lemma 4, we obtain an upper bound for the optimum
value TSP∗(X) of an instance of the Euclidean TSP in terms of the radius of an
enclosing sphere. Suppose, a TCP instance is specified by a set X = {x1, . . . , rn}
contained within the Euclidean ball B(y,R) ⊂ R

d of radius R centered at y. As
above, we assume that all the clients are numbered in non-increasing order of
their distances ri = ‖xi − y‖2 from the depot y.

Lemma 5. For an arbitrary d > 1 and a finite X ⊂ B(y,R) the following
bounds

TSP∗(X) ≤
{

C1R
1/d(

∑n
i=1 ri)(d−1)/d, if

∑n
i=1 ri > RC(π/6)−d(d − 1)(d+1)/2,

C2R, otherwise,

are valid, where

C1 = 2dC1/d(d − 1)(d−1)/2d and C2 = 2dC(π/6)−(d−1)(d − 1)(d−1)/2.

Proof. By Lemma 4, for any h ∈ (0, h0), h0 = π/(6
√

d − 1) on the surface of the
ball B(y,R) there exists a finite h

√
d − 1-net N of Ch−(d−1) elements. Connect

any ξj ∈ N with the center y by radial segment, after that connect each client xi

with the nearest radius [y, ξj ] (by the appropriate orthogonal line segment). Fur-
ther, we construct a salesman tour by the well-known edge-doubling technique
for the tree obtained.

Let Φ(h) be the length of the tour constructed. Again, by Lemma4, for any
h ∈ (0, h0),

TSP∗(X) ≤ Φ(h) = 2h
√

d − 1
n∑

i=1

ri + 2RCh−(d−1). (5)

Minimizing the RHS of Eq. (5) subject to 0 < h < π/(6
√

d − 1), we obtain the
claimed bounds.
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Indeed, inf Φ(h) on this range coincides either with Φ(hmin), where

hmin =
(

RC
∑n

i=1 ri

√
d − 1

)1/d

,

if

hmin < h0, i.e.
n∑

i=1

ri > RC(d − 1)(d+1)/2(π/6)−d,

or with Φ(h0), otherwise. In the first case, we obtain

Φ(hmin) = 2

(
RC∑n
i=1 ri

√
d − 1

)1/d √
d − 1

n∑

i=1

ri + 2RC

(
RC∑n
i=1 ri

√
d − 1

)−(d−1)/d

= 2dC1/d(d − 1)−(d−1)/(2d)

︸ ︷︷ ︸
C1

·R1/d(

n∑

i=1

ri)
(d−1)/d

If, on the other hand,

n∑

i=1

ri ≤ RC(d − 1)(d+1)/2(π/6)−d, (6)

then

Φ(h0) = 2
√

d − 1
π

6
√

d − 1

n∑

i=1

ri + 2RC
(π

6

)d−1

(
√

d − 1)(d−1)

≤ π

3
RC(d − 1)(d+1)/2

(π

6

)−d

+ 2RC
(π

6

)−(d−1)

(d − 1)(d−1)/2

= RC
(π

6

)−d (π

3
(d − 1) + 2 · π

6

)
(d − 1)(d−1)/2

= 2Cd
(π

6

)−(d−1)

(d − 1)(d−1)/2

︸ ︷︷ ︸
C2

·R.

Lemma 5 is proved.

Further, for some d > 1, consider an instance of the SDCVRP in the
d-dimension Euclidean space. By

e(k) =
w(SCITP(X)) − VRP∗(X)

VRP∗(X)

=
VRP∗(X(k)) + w(SITP(X \ X(k))) − VRP∗(X)

VRP∗(X)
,

denote a relative error of the approximate solution produced by Algorithm2,
using for some ρ a ρ-approximation algorithm for finding an approximate solution
of the inner TSP.
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Lemma 6. For an arbitrary ρ ≥ 1 and ε > 0 there exists k = k(ε) ∈ N such
that e(k) ≤ ε.

Proof. Applying the claims of Lemmas 1–3 and introducing the notation

r̄k =
∑n

i=k ri

n − k + 1
,

we obtain

e(k) ≤ 4(k − 1)rk + 2�(n − k + 1)/q�r̄k + ρTSP∗(X \ X(k)) − 2r̄k(n − k + 1)/q

2nr̄/q

≤ q(2k − 1)
rk∑n
i=1 ri

+
qρ

2
∑n

i=1 ri
TSP∗(X \ X(k)).

By Lemma 5,

e(k) ≤ q(2k − 1)
rk∑n
i=1 ri

+
qρ

2
max

{

C1

(
rk∑n
i=1 ri

)1/d

, C2
rk∑n
i=1 ri

}

≤ q(2k − 1)
rk∑n
i=1 ri

+
qρ

2
max{C1, C2}

(
rk∑n
i=1 ri

)1/d

,

since rk ≤ ∑n
i=1 ri.

Further, denote (rk/
∑n

i=1 ri)1/d by sk. Suppose that, for any t ∈ {1, . . . , k},

q(2t − 1)sd
t +

qρ

2
C∗st > ε (7)

is valid, where C∗ = max{C1, C2} depends on d ultimately.
There exist two options. In the first option, st ≥ ε/(qρC∗) for each t. Then,

1 ≥
k∑

t=1

sd
t ≥ k

(
ε

qρC∗

)d

,

therefore,

k ≤
(

qρC∗

ε

)d

. (8)

Consider the other option. Let t0 be the smallest number, for which

st0 < ε/(qρC∗).
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By construction, the same inequality is valid also for each t0 ≤ t ≤ k, and,
by (7), sd

t > ε/(2q(2t − 1)). Combining the bounds obtained, we get

1 ≥
k∑

t=1

sd
t ≥ (t0 − 1)

(
ε

qρC∗

)d

+
ε

2q

k∑

t=t0

1
2t − 1

≥ (t0 − 1)
(

ε

qρC∗

)d

+
ε

2q

k+1∫

t0

dt

2t − 1

= (t0 − 1)
(

ε

qρC∗

)d

+
ε

4q
(ln(2k + 1) − ln(2t0 − 1)). (9)

Without loss of generality suppose that ε ≤ 4qρ. This equation together with
the obvious (for d > 1) condition C∗ ≥ 4 implies

(
ε

qρC∗

)d

≤ ε

4q
,

and (
ε

qρC∗

)−d

≥ t0 − 1 + ln(2k + 1) − ln(2t0 − 1). (10)

Minimizing the RHS of (10) subject to t0 ∈ {1, . . . , k}, we obtain

k ≤ 1
2
e

(
qρ C∗

ε

)d

. (11)

Comparing bounds (8) and (11), come to the decision that the segment
[

1,
1
2
e

(
qρ C∗

ε

)d

+ 1
]

(12)

definitely contains the required number k = k(ε). Lemma is proved.

Theorem 2. Suppose that ρ-approximation algorithm with the running time of
O(nc) is used for the inner TSP, then, for any fixed q, ρ ≥ 1, and d ≥ 2,
Algorithm2 is an Efficient Polynomial Time Approximation Scheme (EPTAS)
for the SDCVRP.

Proof. Indeed, for a given ε > 0, we can find k(ε) such that e(k) ≤ ε by Lemma 6.
An exact solution S∗(X(k(ε)) can be found by dynamic programming (see,
e.g. [3]) in time O(Kq2K), where K is the upper end of the segment (12). The
rest of Algorithm 2 requires O(nc)+O(n2) time. Therefore, the overall time com-
plexity of Algorithm2 can be bounded from above by a polynomial function of
n, whose order and all the coefficients except the constant term does not depend
on ε. That is, Algorithm 2 is an EPTAS for the SDCVRP for any fixed q, ρ ≥ 1,
and d ≥ 2. Theorem is proved.

It should be noted that Algorithm2 remains a PTAS for the SDCVRP even
under slightly relaxed restrictions on its parameters, e.g. for any fixed d, ρ, and
q = O((log log(n))1/d).
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4 PTAS for the MDCVRP

Further, we extend the results of Sect. 3 to the case of multiple depots. The
main idea of such an extension for the Euclidean plane is proposed in [3]. The
authors proposed to partition the client set X according to equation (1), after
that the initial MDCVRP can be decomposed into a collection of the appropriate
SDCVRP instances for subsets Xj \X(k)∪{yj}. Below, we give a short overview
of this technique.

Algorithm 3. Combined ITP (the case of multiple depots)
Input: complete weighted graph G0(X ∪ Y, E, w) of order n, a natural number q, and
and an upper relative error bound ε > 0.
Output: an approximate solution SCITP of the MDCVRP.

1: relabel the clients according to their distances r1 ≥ r2 ≥ . . . ≥ rn from the set Y ;
2: find a value k = k(ε), specifying the partition of the client set X onto subsets

X(k) = {x1, . . . , xk−1} and X \ X(k);
3: find an exact solution S∗(X(k)) for MDCVRP, defined by the subgraph

G0 〈X(k) ∪ Y 〉;
4: using Algoritm 1, construct an approximate solution SITP(Xj \ X(k)) for any sub-

graph G0 〈Xj \ X(k) ∪ Y 〉;
5: output SCITP = S∗(X(k)) ∪ SITP(X1 \ X(k)) ∪ . . . ∪ SITP(Xm \ X(k)).

Similarly to Sect. 3, denote the relative error of Algorithm3 by

e(k) =
w(SCITP(X)) − VRP∗(X)

VRP∗(X)
(13)

=
VRP∗(X(k)) +

∑m
j=1 w(SITP(Xj \ X(k))) − VRP∗(X)

VRP∗(X)
.

Lemma 7. In the MDCVRP1, for an arbitrary m > 1, ρ ≥ 1, and ε > 0, there
exists a number k = k(ε) ∈ N such that e(k) ≤ ε.

Proof. Let X ′
j = Xj \ X(k), nj = |X ′

j | and r̄jk =
∑

xi∈X′
j
ri/nj . Following the

proof idea of Lemma 6,

e(k) ≤ 4(k − 1)rk +
∑m

j=1(2�nj/q�r̄jk + ρTSP∗(X ′
j) − 2r̄jknj/q)

2nr̄/q

≤ q(2k − 2 + m)
rk∑n
i=1 ri

+
qρ

2
∑n

i=1 ri

m∑

j=1

TSP∗(X ′
j)

≤ q(2k − 2 + m)
rk∑n
i=1 ri

+
mqρ

2
C∗

(
rk∑n
i=1 ri

)1/d

.
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Suppose that, for an arbitrary t ∈ {1, . . . , k}

q(2t − 2 + m)
rt∑n
i=1 ri

+
mqρ

2
C∗

(
rt∑n
i=1 ri

)1/d

> ε (14)

and simultaneously

sd
t =

rt∑n
i=1 ri

≥
(

ε

mqρC∗

)d

, (15)

we get the bound

k ≤
(

mqρC∗

ε

)d

,

similar to Eq. (8). On the other hand, if the system (14) does not imply (15) and
t0 the smallest number, for which the opposite inequality holds. Then, similarly
to (9), we obtain

1 ≥
k∑

t=1

sd
t ≥ (t0 − 1)

(
ε

mqρC∗

)d

+
ε

2q

k∑

t=t0

1
2t − 2 + m

≥ (t0 − 1)
(

ε

mqρC∗

)d

+
ε

2q

k+1∫

t0

dt

2t − 2 + m

≥
(

ε

mqρC∗

)d

((t0 − 1) + (ln(2k + m) − ln(2t0 − 2 + m)))

≥
(

ε

mqρC∗

)d

ln((2k + m)/m),

and

k ≤ m

2
e

(
mqρ C∗

ε

)d

.

Therefore, the range [

1,
m

2
e

(
mqρ C∗

ε

)d

+ 1
]

(16)

definitely contains the required number k(ε). Lemma is proved.

Lemma 7 implies that Algorithm3 is an EPTAS for MDCVRP1. To prove that
Algorithm 3 is an EPTAS for MDCVRP2 as well, we need a version of Lemma3
proven in [3].

Lemma 8. For the MDCVRP2 and for an arbitrary k ∈ {1, . . . , n}, the equation

VRP∗(X,Y ) ≤ VRP∗(X(k), Y ) + VRP∗(X \ X(k), Y )
≤ VRP∗(X,Y ) + 2(q − 1)(k − 1)rk

is valid.
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Lemma 9. For the MDCVRP2 and for an arbitrary m > 1, ρ ≥ 1, and ε > 0
there exists a number k = k(ε) ∈ N such that e(k) ≤ ε.

Proof. Almost the same way that the proof of Lemma 7 was obtained from the
claims of Lemmas 1–3 and Lemma 5 one can show that Lemmas 9 follows from
Lemmas 1–2, 5, and 8. Finally, we obtain that the range

[

1, (m + 1)e
(

mqρ C∗
ε

)d
]

(17)

definitely contains the required k = k(ε), for which e(k) ≤ ε. Lemma is proved.

Our final results follows from Lemmas 7 and 9 and can be proved in the same
way as Theorem 2.

Theorem 3. Under the conditions of Theorem2, for any ε > 0, for any fixed
m, d > 1, ρ ≥ 1, and q, Algorithm3 is an EPTAS for the MDCVRP1 and
MDCVRP2, whose time complexity is O(nc + n2 + mKq2K), where K = K(ε)
coincides with right-hand ends of ranges (16) and (17), respectively.

5 Conclusion

In the paper, we show that Algorithms 2 and 3 together with an arbitrary
polynomial time fixed-guarantee approximation algorithm for the TSP induce
an EPTAS for the SDCVRP and MDCVRP in any fixed-dimension Euclidean
spaces, respectively. Furthermore, the time complexity bounds found remain
polynomial with respect to n even for less accurate3 but maybe much more fast
algorithms for the inner TSP, which can be useful for tackling Big Data.

Future work can be focused on combining the results obtained with recent
results on cycle covers of graphs (see, e.g. [8,12]).
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Abstract. The problem of integer recognition is to determine whether
the maximum of a linear objective function achieved at an integral ver-
tex of a polytope. We consider integer recognition over polytope SATP
and its LP relaxation SATPLP . These polytopes are natural extensions
of the well-known Boolean quadric polytope BQP and its rooted semi-
metric relaxation BQPLP .

Integer recognition over SATPLP is NP-complete, since various spe-
cial instances of 3-SAT problem like NAE-3SAT and X3SAT are trans-
formed to it. We describe polynomially solvable subproblems of integer
recognition over SATPLP with constrained objective functions. Based on
that, we solve some cases of edge constrained bipartite graph coloring.

1 Introduction

We consider the well-known Boolean quadric polytope BQP (n) [10], constructed
from the NP-hard problem of unconstrained Boolean quadratic programming:

Q(x) = xT Qx → max,

where vector x ∈ {0, 1}n, and Q is an upper triangular matrix, by introducing
new variables xi,j = xixj .

In the standard form BQP (n) can be defined as the convex hull of all integral
solutions of the system

x1,1
i,j + x1,2

i,j + x2,1
i,j + x2,2

i,j = 1, (1)

x1,1
i,j + x1,2

i,j = x1,1
k,j + x1,2

k,j , (2)

x1,1
i,j + x2,1

i,j = x1,1
i,l + x2,1

i,l , (3)

x1,2
i,i = x2,1

i,i = 0, (4)

x1,1
i,j ≥ 0, x1,2

i,j ≥ 0, x2,1
i,j ≥ 0, x2,2

i,j ≥ 0, (5)

where 1 ≤ k ≤ i ≤ j ≤ l ≤ n [4] (see also [9]).
System (1)–(5) itself describe the Boolean quadric polytope LP relax-

ation BQPLP (n). Since BQPLP (n) and BQP (n) have the same integral ver-
tices, Boolean quadratic programming is reduced to integer programming over
BQPLP (n).
c© Springer International Publishing Switzerland 2016
Y. Kochetov et al. (Eds.): DOOR 2016, LNCS 9869, pp. 206–219, 2016.
DOI: 10.1007/978-3-319-44914-2 17
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Theorem 1. Integer programming over BQPLP (n) is NP-hard.

Boolean quadric polytope arises in many fields of mathematics and physics.
Sometime it is called the correlation polytope, since its members can be inter-
preted as joint correlations of events in some probability space. Besides, BQP (n)
is in one-to-one correspondence via the covariance linear mapping with the cut
polytope CUT (n + 1) of the complete graph on n + 1 vertices [5] (see also [2]).
Cut polytope LP relaxation, corresponding to BQPLP (n), is known as the rooted
semimetric polytope [6].

In recent years, the Boolean quadric polytope has been under the close atten-
tion in connection with the problem of estimating the extension complexity. An
extension of the polytope P is another polytope Q such that P is the image of
Q under a linear map. The number of facets of Q is called the size of an exten-
sion. Extension complexity of P is defined as the minimum size of all possible
extensions. Fiorini et al. proved that the extension complexity of the Boolean
quadric polytope is exponential [7] (see also [8]).

Theorem 2. The extension complexity of BQP (n) and CUT (n) is 2Ω(n).

Since polytopes of many combinatorial problems, including stable set, knap-
sack, 3-dimensional matching, and traveling salesman, contain a face that is an
extension of BQP (n), those polytopes also have an exponential extension com-
plexity. Thus, such problems cannot be solved effectively by linear programming,
as any LP formulation will have an exponential number of inequalities.

We consider a problem of integer recognition: for a given linear objective
function f(x) and a polytope P determine whether max{f(x)|x ∈ P} achieved
at an integral vertex of P . It is similar to the integer feasibility problem and NP-
complete in general case. In [4] integer recognition over BQPLP (n) was solved by
linear programming over BQPLP (n) and the metric polytope MET (n), obtained
by augmenting the system (1)–(5) by the triangle inequalities that define the
BQP (3) facets [10].

Lemma 3 (see [4]). If for some linear objective function f(x) we have

max
x∈BQPLP (n)

f(x) = max
x∈MET (n)

f(x),

then the maximum is achieved at an integral vertex of BQPLP (n). Otherwise,

max
x∈BQPLP (n)

f(x) > max
x∈MET (n)

f(x),

and f(x) reaches its maximum at the face containing only fractional vertices.

Hence, we have

Theorem 4. Integer recognition over BQPLP (n) is polynomially solvable.
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Metric polytope MET (n) itself is also important, since it is the most simple
and natural relaxation of the CUT (n) polytope, and has many practical appli-
cations, such as being a compact LP formulation for the max-cut problem on
graphs not contractible to K5 [1]. Integer recognition over metric polytope is
examined in [3].

Note that integer programming and integer recognition problems over poly-
tope BQPLP (n) differ greatly in their complexity.

2 3-SAT Relaxation Polytope

We consider a more general polytope SATP (m,n) ⊂ R
6mn (see [4]), obtained

as the convex hull of all integral solutions of the system
∑

k,l

xk,l
i,j = 1, (6)

x1,1
i,j + x2,1

i,j + x3,1
i,j = x1,1

i,t + x2,1
i,t + x3,1

i,t , (7)

xk,1
i,j + xk,2

i,j = xk,1
s,j + xk,2

s,j , (8)

xk,l
i,j ≥ 0, (9)

where k = 1, 2, 3; l = 1, 2; i, s = 1, . . . m; j, t = 1, . . . n.
Inequalities (6)–(9) without the integrality constraint define LP relaxation

SATPLP (m,n). Points that satisfy the system can be conveniently represented
as a block matrix (Table 1).

Table 1. Fragment of the SATPLP (m,n) block matrix.

x1,1
i,j x1,2

i,j x1,1
i,t x1,2

i,t

x2,1
i,j x2,2

i,j x2,1
i,t x2,2

i,t

x3,1
i,j x3,2

i,j x3,1
i,t x3,2

i,t

x1,1
s,j x1,2

s,j x1,1
s,t x1,2

s,t

x2,1
s,j x2,2

s,j x2,1
s,t x2,2

s,t

x3,1
s,j x3,2

s,j x3,1
s,t x3,2

s,t

If we consider a face of the SATP (n, n) polytope, constructed as follows:

∀i, j : x3,1
i,j = x3,2

i,j = 0,

∀i : x1,2
i,i = x2,1

i,i = 0,

and discard all the coordinates for i < j (orthogonal projection), we get the
BQP (n) polytope. As a result, we have
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Theorem 5. The extension complexity of the SATP (m,n) polytope is
2Ω(min{m,n}).

In [4] by reduction from 3-SAT it was shown that

Theorem 6. Integer recognition over SATPLP (m,n) is NP-complete.

We prove that the polytope SATPLP (m,n) can be seen as a LP relaxation
of various special instances of 3-SAT problem as well.

Lemma 7. Let z be the vertex of the SATP (m,n) polytope, then its coordinates
are determined by the vectors row(z) ∈ {0, 1}m and col(z) ∈ {0, 1, 2}n by the
following formulas:

x1,1
i,j =

1
2
(1 − rowi(z))(2 − colj(z))(1 − colj(z)), (10)

x1,2
i,j =

1
2
rowi(z)(2 − colj(z))(1 − colj(z)), (11)

x2,1
i,j = (1 − rowi(z))colj(z)(2 − colj(z)), (12)

x2,2
i,j = rowi(z)colj(z)(2 − colj(z)), (13)

x3,1
i,j =

1
2
(1 − rowi(z))colj(z)(1 − colj(z)), (14)

x3,2
i,j =

1
2
rowi(z)colj(z)(1 − colj(z)). (15)

Proof. From constraints (6)–(9) it follows that vertices of SATP (m,n) poly-
tope are zero-one points with exactly one unit per block. For any vertex z of
SATP (m,n) we define row(z) ∈ {0, 1}m and col(z) ∈ {0, 1, 2}n vectors by the
following rules:

row i(z) =
[

0, if x1,1
i,1 + x2,1

i,1 + x3,1
i,1 = 1,

1, otherwise.

col j(z) =

⎡

⎣
0, if x1,1

1,j + x1,2
1,j = 1,

1, if x2,1
1,j + x2,2

1,j = 1,

2, otherwise.

All the vertex coordinates are uniquely determined by the first row and first
column of blocks from the system (6)–(8). Equations (10)–(15) correspond to
them for zero-one points. Thus, polytope SATP (m,n) has exactly 2m3n vertices.

We consider one-in-three 3-satisfiability or exactly-1 3-satisfiability (X3SAT):
given a set U = {u1, . . . , um} of variables and collection C = {c1, . . . , cn} of 3-
literal clauses over U , the problem is to determine whether there exists a truth
assignment to the variables so that each clause has exactly one true literal [11].

With each instance of the problem we associate an objective vector w ∈ R
6mn:

– if clause cj has literal ui at the place k, then

∀s ∈ {1, 2, 3}\k : wk,1
i,j = ws,2

i,j = 1,
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– if clause cj has literal ui at the place k, then

∀s ∈ {1, 2, 3}\k : wk,2
i,j = ws,1

i,j = 1,

– all the remaining coordinates of vector w equal to 0.

An example of vector w construction for a formula

(x ∨ y ∨ z) ∧ (x ∨ z ∨ t) ∧ (y ∨ z ∨ t) (16)

is shown in Table 2(a).

Table 2. Examples of objective vectors for X3SAT and NAE-3SAT problems

1 0 0 1 0 0
0 1 1 0 0 0
0 1 1 0 0 0

0 1 0 0 0 1
1 0 0 0 1 0
0 1 0 0 1 0

1 0 0 1 0 1
1 0 1 0 1 0
0 1 0 1 0 1

0 0 0 1 1 0
0 0 0 1 1 0
0 0 1 0 0 1

(a) X3SAT

1 0 0 1 0 0
0 1 1 0 0 0
1 1 1 1 0 0

1 1 0 0 0 1
1 0 0 0 1 0
0 1 0 0 1 1

1 0 1 1 1 1
1 1 1 0 1 0
0 1 0 1 0 1

0 0 0 1 1 0
0 0 1 1 1 1
0 0 1 0 0 1

(b) NAE-3SAT

With each integral vertex z we associate a truth assignment u by the following
rule: ui = 1 − row i(z).

Now we consider linear objective function fw(x) = 〈w, x〉.
Theorem 8. There exists a truth assignment for X3SAT problem with exactly
one true literal per clause if and only if

max
x∈SATPLP (m,n)

fw(x) = max
z∈SATP (m,n)

fw(z) = 3n.

Proof. It suffices to verify that for any integral vertex z ∈ SATP (m,n) on the
corresponding truth assignment we have

fw(zj) = 〈wj , zj〉 =

⎡

⎣
3, if the clause cj has exactly one true literal,
1, if all three literals in cj are true,
2, otherwise.
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Thus, X3SAT problem is transformed to the integer recognition over polytope
SATPLP (m,n). Another popular variant of 3-SAT problem is Not-All-Equal 3-
SAT (NAE-3SAT): given a set U = {u1, . . . , um} of variables and collection
C = {c1, . . . , cn} of 3-literal clauses over U , the problem is to determine whether
there exists a truth assignment so that each clause has at least one true literal
and at least one false literal [11].

With each instance of the problem we associate an objective vector y ∈ R
6mn:

– if clause cj has literal ui at the place k, then

yk,1
i,j = y

(k+1)mod3,2
i,j = y

(k+2)mod3,1
i,j = y

(k+2)mod3,2
i,j = 1,

– if clause cj has literal ui at the place k, then

yk,2
i,j = y

(k+1)mod3,1
i,j = y

(k+2)mod3,1
i,j = y

(k+2)mod3,2
i,j = 1,

– all the remaining coordinates of vector y equal to 0.

An example of vector y for the formula (16) is shown in Table 2(b).
We consider linear objective function fy(x) = 〈y, x〉.

Theorem 9. There exists a truth assignment for NAE-3SAT problem with at
least one true literal and at least one false literal per clause if and only if

max
x∈SATPLP (m,n)

fy(x) = max
z∈SATP (m,n)

fy(z) = 3n.

Proof. Again it suffices to verify that for any integral vertex z ∈ SATP (m,n)
on the corresponding truth assignment we have

fw(zj) = 〈wj , zj〉 =
[
2, if the clause cj has three true literals or three false literals,
3, otherwise.

3 Polynomially Solvable Subproblems

Integer recognition is NP-complete over entire SATPLP (m,n) polytope, but
polynomially solvable over its face BQPLP (n). However, for some objective func-
tions, other than those specified above, integer recognition over SATPLP (m,n)
can be efficiently solved. In this main section we examine one of such polynomi-
ally solvable cases.

We consider a vector c ∈ R
6mn, such that

∀j ∈ Nn, ∃a, b ∈ {1, 2, 3} (a = b),∀i ∈ Nm :

ca,1
i,j + cb,2

i,j = ca,2
i,j + cb,1

i,j , (17)

and a corresponding linear objective function fc(x) = 〈c, x〉.
Theorem 10. For objective functions of the form fc(x) the problem of integer
recognition over SATPLP (m,n) polytope is polynomially solvable.
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Proof. Without loss of generality, we assume that the vector c has the form:

∀i, j : c2,1
i,j + c3,2

i,j = c2,2
i,j + c3,1

i,j . (18)

For any other choices of restrictions on vector c following proof can be modified
by just renaming the coordinates.

To make room for superscripts we introduce a new notation for the coordi-
nates of the polytope:

x1,1
i,j = xi,j , x1,2

i,j = yi,j , x2,1
i,j = zi,j ,

x2,2
i,j = ti,j , x3,1

i,j = ui,j , x3,2
i,j = vi,j .

We construct a new polytope SATP 2
LP (m,n), satisfying the system (6)–(9)

and the additional constraints:

yi,j + zi,j + ui,j + xi,l + ti,l + vi,l + xk,j + tk,j + vk,j + xk,l + tk,l + vk,l ≤ 3,
(19)

yi,j + zi,j + ui,j + yi,l + zi,l + ui,l + xk,j + yk,j + zk,j + yk,l + zk,l + uk,l ≤ 3,
(20)

for all i, k ∈ Nm (i = k) and j, l ∈ Nn (j = l).
All integral vertices of SATP (m,n) satisfy the inequalities (19)–(20), there-

fore SATP 2
LP (m,n) is another LP relaxation of SATP (m,n) polytope. Note

that the total number of additional constraints is polynomially bounded above
by O(m2n2).

Table 3. Rearrange of the columns in the i-th row of the block matrix at Step 1.

0 yw
i,j 0 yw

i,l

0 twi,j 0 twi,l

0 vw
i,j 0 vw

i,l

⇒
xw∗
i,j = yw

i,j 0 xw∗
i,l = yw

i,l 0

zw∗
i,j = twi,j 0 zw∗

i,l = twi,l 0

uw∗
i,j = vw

i,j 0 uw∗
i,l = vw

i,l 0

Let w be the point that maximize the function fc(x) over SATP 2
LP (m,n).

We claim that there exists a point w∗ ∈ SATP 2
LP (m,n) with fc(w) = fc(w∗)

and ∀i, j : xw∗
i,j > 0, up to renaming the coordinates. We construct point w∗ from

w in a few steps.

1. If there exists some i that

xw
i,j + zw

i,j + uw
i,j = 0,

then we change the columns in all blocks of the i-th row (Table 3). Due to
the symmetry of the system (6)–(9), (19), (20) and the constraints (18), new
point belongs to SATP 2

LP (m,n) polytope and has the same value of the
objective function. In fact, we simply rename some coordinates. Thus, we can
now consider w∗ simply as w and continue the procedure.
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Table 4. Rearrange of the rows in the j-th column of the block matrix at Step 2.

- -

0 0

uw
i,j vw

i,j

- -

0 0

uw
k,j vw

k,j

⇒

- -

zw∗
i,j = uw

i,j tw
∗

i,j = vw
i,j

0 0

- -

zw∗
k,j = uw

k,j tw
∗

k,j = vw
k,j

0 0

Table 5. Construction of the block i, j of the point w∗.

- -

0 twi,j

uw
i,j vw

i,j

⇒
0 0

zw∗
= ε tw

∗
i,j = twi,j − ε

uw∗
i,j = uw

i,j − ε vw∗
i,j = vw

i,j + ε

Table 6. Rearrange of the rows in the j-th column of the block matrix.

0 0

zw
i,j twi,j

uw
i,j vw

i,j

⇒
xw∗

= zw
i,j yw∗

= twi,j

zw∗
= uw

i,j tw
∗
= vw

i,j

0 0

Table 7. Fragment of the point w block matrix.

xi,s 0 xi,l 0 0 yi,j

zi,s 0 - ti,l zi,j -

- vi,s - - - -

xk,s - xk,l - xk,j -

- - - - 0 tk,j

- - - - 0 -
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2. If there exists some j that

zw
i,j + twi,j = 0 and uw

i,j + vw
i,j > 0,

then we change the second and third rows in all blocks of the j-th column as
at Step 1 (Table 4). Again, point w∗ belongs to SATP 2

LP (m,n) and has the
same value of the objective function.

3. There exists some j that xi,j + yi,j = 0. As a result of Steps 1 and 2 we have

∀i : zw
i,j + twi,j > 0, zw

i,j + uw
i,j > 0.

Hence, if for some i: zw
i,j = 0, then twi,j > 0 and uw

i,j > 0. We construct
the point w∗ as it’s shown in Table 5. Since the coordinates twi,j and uw

i,j are
nonnegative and vw

i,j < 1, we can choose a sufficiently small value of ε so
that w∗ satisfy the system (6)–(9), (19), (20). We estimate the value of the
objective function

fc(w∗) = fc(w) + εc2,1
i,j + εc3,2

i,j − εc2,2
i,j − εc3,1

i,j ,

fc(w∗) = fc(w) + ε(c2,1
i,j + c3,2

i,j − c2,2
i,j − c3,1

i,j ) = fc(w),

by Eq. (18). Thus, we can assume that zw
i,j > 0.

We change the rows in all blocks of the j-th column as it’s shown in Table 6.
Now in the j-th column we have xw∗

i,j > 0 for all i. Without loss of generality,
we assume that the Step 3 was applied to the first d columns. Here comes
the tricky part: we can’t just rearrange rows in such way, as w∗ may not
belong to SATP 2

LP (m,n) polytope or has a different value of the objective
function. Therefore, we simply rename the coordinates of the point w. Thus,
for the first d columns constraints (18) and inequalities (19), (20) are modified
accordingly.

4. We find the leftmost and uppermost block i, j with xw
i,j = 0. As a result of the

previous steps, yw
i,j is nonnegative, and if zw

i,j = 0, then both twi,j and uw
i,j are

nonnegative. Therefore, we can repeat the ε-procedure from Step 3 (Table 3)
and achieve zw∗

i,j > 0.

The idea behind the following procedure is to construct point w∗ with the
same value of objective function while preventing x coordinates in all the
blocks to the up and to the left of i, j from becoming zero.

5. The next step depends on the form of the i-th row.
(a) If for all l < j : yw

i,l > 0, then we can rearrange the columns in the i-th
row as at Step 1 (Table 3) to get xi,l > 0 for all l ≤ j.

(b) There exists some l (d < l < j) that yw
i,l = 0. Hence, xw

i,l is nonnegative,
and if twi,l = 0, then both zw

i,j and vw
i,j are nonnegative, hence, we can

construct a point w∗ with tw
∗

i,l > 0 by the similar ε-procedure. Thus, we
assume that twi,l is nonnegative (Table 7).
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(c) There exists some s (s ≤ d < j) that yw
i,s = 0. Since s ≤ d, the coordinates

in the s-th column were renamed at Step 3. Thus, if twi,s > 0, then we
can construct the point w∗ of SATP 2

LP (m,n) by the ε-procedure with
yw∗

i,s > 0. Therefore, we assume that twi,s = 0, and, due to that, zw
i,s and

vw
i,s are nonnegative (Table 7).

6. Now we examine the j-th column.
(a) If for all k: zw

k,j > 0, then we can rearrange the rows in j-th column as
at Step 3 (Table 6) and achieve xw∗

i,j > 0 for all i. Next, we rename the
coordinates for the j-th column to become the (d+1)-th and increase the
value of d by one.

(b) There exists some k that zw
k,j = 0. Then twk,j is nonnegative, since zw

i,j > 0.
We assume uw

k,j = 0 (Table 7), otherwise by ε-procedure we can achieve
zw∗

k,j being nonnegative. In this case we can’t make xw∗
i,j nonnegative. Let’s

verify if such point w belongs SATP 2
LP (m,n) and check the inequality

(19):

(∗) = yi,j + zi,j + ui,j + xi,l + ti,l + vi,l

+ xk,j + tk,j + vk,j + xk,l + tk,l + vk,l ≤ 3,

(yi,j = xk,j + yk,j , xk,j + yk,j + tk,j + vk,j = 1),
(∗) = 1 + zi,j + ui,j + xi,l + ti,l + vi,l + xk,j + xk,l + tk,l + vk,l ≤ 3,

(zi,j + ui,j = xi,l + zi,l + ui,j , xi,l + zi,l + ti,l + ui,l + vi,l = 1),
(∗) = 2 + xi,l + xk,j + xk,l + tk,l + vk,l ≤ 3,

(xi,l = xk,l + yk,l, xk,j = xk,l + zk,l + uk,l,

xk,l + yk,l + zk,l + tk,l + uk,l + vk,l = 1),
(∗) = 3 + 2xk,l ≤ 3.

By construction, for all l < j we have xw
k,l > 0, hence, point w with such

blocks i, j, k, l does not belong to the polytope SATP 2
LP (m,n).

Now we check the inequality (20) for blocks i, j, k, s. Note that s ≤ d, and
the s-th column was modified at Step 3. Therefore, the inequality has the
form

(∗∗) = yi,j + zi,j + ui,j + xi,s + zi,s + vi,s

+ xk,j + tk,j + vk,j + xk,s + zk,s + vk,s ≤ 3,

(yi,j = xk,j + yk,j , xk,j + yk,j + tk,j + vk,j = 1),
(∗∗) = 1 + zi,j + ui,j + xi,s + zi,s + vi,s + xk,j + xk,s + zk,s + vk,s ≤ 3,

(vi,s = yi,j + ti,j + vi,j , yi,j + zi,j + ti,j + ui,j + vi,j = 1),
(∗∗) = 2 + xi,s + zi,s + xk,j + xk,s + zk,s + vk,s ≤ 3,

(xi,s = xk,s + yk,s, zi,s = zk,s + tk,s, xk,j = xk,s + zk,s + uk,s,

xk,s + yk,s + zk,s + tk,s + uk,s + vk,s = 1),
(∗∗) = 3 + 2(xk,s + zk,s) ≤ 3.
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Since xw
k,s > 0, point w with such blocks i, j, k, s does not belong to the

polytope SATP 2
LP (m,n).

Thereby, the combination of 5 (b or c) and 6 (b) is impossible, and we can
repeat the Steps 4–6, until for all i, j we have xw∗

i,j > 0.

Thus, for any point w that maximize the objective function fc(x) over poly-
tope SATP 2

LP (m,n) we can construct such point w∗ ∈ SATP 2
LP (m,n) that

xw∗
i,j > 0 for all i, j, up to renaming the coordinates, and fc(w) = fc(w∗).

The point w∗ can be decomposed into a convex combination

w∗ = εq + (1 − ε)h,

where 0 < ε ≤ 1, q is an integral vertex of SATPLP (m,n) with xq
i,j = 1 for all

i, j, and h has the following coordinates:

xi,j(h) =
xi,j(w∗) − ε

1 − ε
, yi,j(h) =

yi,j(w∗)
1 − ε

, zi,j(h) =
zi,j(w∗)
1 − ε

,

ti,j(h) =
ti,j(w∗)
1 − ε

, ui,j(h) =
ui,j(w∗)

1 − ε
, vi,j(h) =

vi,j(w∗)
1 − ε

.

The point h satisfies the system (6)–(9), hence, both q and h belongs to
SATPLP (m,n).

Our algorithm for integer recognition over SATPLP (m,n) polytope is similar
to the one in Lemma 3: if

max
x∈SATPLP (m,n)

fc(x) > max
x∈SATP 2

LP (m,n)
fc(x),

then, clearly, the maximum is not achieved at an integral vertex, since polytopes
SATPLP (m,n) and SATP 2

LP (m,n) have the same set of integral vertices, and
if

max
x∈SATPLP (m,n)

fc(x) = max
x∈SATP 2

LP (m,n)
fc(x),

then for a point w that maximize the objective function we can construct such
point w∗ ∈ SATP 2

LP (m,n) that

fc(w) = fc(w∗) = fc(q),

where q is an integral vertex, hence,

max
x∈SATPLP (m,n)

fc(x) = max
z∈SATP (m,n)

fc(z)

and the integer recognition problem has a positive answer.
Polytope SATP 2

LP (m,n) has a polynomial number of additional constraints,
therefore, LP over it is polynomially solvable, and the entire algorithm is poly-
nomial. Note, that the construction of w∗ and integral vertex q also requires
polynomial time (O(mn(m + n))), as in the worst case for each block i, j we
have to check all the blocks in the row i and column j.
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4 Edge Constrained Bipartite Graph Coloring

In this section we construct a special problem to show how the constraints and
the algorithm from Theorem 10 may be used.

We consider a problem of 2-3 edge constrained bipartite graph coloring (2-3-
ECBGC): for a given bipartite graph G = (U, V,E) and a function of permitted
color combinations for every edge

pc : E × {1, 2} × {1, 2, 3} → {+,−},
it is required to determine if it’s possible to assign the vertex colors in such way

color : U → {1, 2} and color : V → {1, 2, 3},

that they satisfy the constraints of all the edges in the graph.

Theorem 11. 2-3-ECBGC problem is NP-complete.

Proof. The problem obviously belongs to the class NP, as solution can be verified
in O(|E|) time.

We transform exactly-1 3-satisfiability problem to 2-3-ECBGC. Let m be the
number of variables and n the number of clauses. First, we construct an instance
of integer recognition over SATPLP (m,n) with an objective vector w ∈ R

6mn

as shown in Theorem 8. Then we create a bipartite graph Gw with m vertices
in U and n vertices in V . Graph Gw has an edge (i, j) if and only if clause cj

has literal ui or ūi. Permitted color combinations are defined as follows:

pc(i, j, k, s) =
{

+, if wk,s
i,j = 1,

−, otherwise.

There is a bijection between possible color assignments and integral vertices
of SATP (m,n):

∀i ∈ U : color(i) = row i(z) + 1,
∀j ∈ V : color(j) = col j(z) + 1.

By Theorem 8, truth assignment for X3SAT exists if and only if there
exists such integral vertex z of SATP (m,n) that fw(z) = 3n. Since some color
assignment satisfy the permitted color constraints of the edge i, j if and only if
fw(zi,j) = 1, and there are exactly 3n edges in the graph G, we have

X3SAT ≤p 2-3-ECBGC.

Using Theorem 10, we construct a special polynomially solvable subproblem
of 2-3-edge constrained bipartite graph coloring.

Theorem 12. 2-3-ECBGC problem is polynomially solvable if the permitted col-
ors function satisfy the following constraints

∀j ∈ V, ∃aj , bj ∈ {1, 2, 3} (a = b),∀i ∈ U :
pc(i, j, aj , 1) = pc(i, j, bj , 2) = “ + ” ⇔ pc(i, j, aj , 2) = pc(i, j, bj , 1) = “ + ”.

(21)
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Proof. Let |U | = m and |V | = n. We reduce 2-3-ECBGC problem to integer
recognition over SATPLP (m,n) by constructing the objective vector c ∈ R

6mn

from the permitted colors function as follows:

ck,s
i,j =

⎧
⎨

⎩

1, if pc(i, j, k, s) = “ + ”,
−1, in the case of zero balancing,
0, otherwise.

We have a zero balancing case if an edge i, j out of four color combinations
(aj , 1), (aj , 2), (bj , 1), and (bj , 2) has only one permitted. Assume, without loss
of generality, that it is (aj , 1), then we assign c

bj ,2
i,j = −1 to achieve zero balance:

c
aj ,1
i,j + c

bj ,2
i,j = c

aj ,2
i,j + c

bj ,1
i,j = 0.

An example of objective vector c construction for a1 = a2 = 1 and b1 = b2 = 2
is shown in Table 8.

Table 8. Example of objective vector c construction.

+ − + −
+ − − −
− + + +

− − + +

− + − −
+ − − +

⇒

1 0 1 0

1 0 0 −1

0 1 1 1

−1 0 1 1

0 1 0 0

1 0 0 1

For every edge i, j we have 4 pairs of colors aj and bj , and 16 possible
combinations of constraints. Six of them are forbidden by (21). Others transform
into a block of vector c of the form (17). We again use the bijection between
integral vertices and possible color assignments as in Theorem 11.

Thus, permitted color assignment for 2-3-ECBGC exists if and only if

max
x∈SATPLP (m,n)

fc(x) = max
z∈SATP (m,n)

fc(z) = |E|.

Integer recognition over SATPLP (m,n) with the objective function fc(x) is poly-
nomially solvable (Theorem 10), therefore, such instance of 2-3-ECBGC problem
is polynomially solvable as well.

Not that the constrained objective function (17) is far more flexible than we
used for 2-3-ECBGC problem, since it is not limited to the {−1, 0, 1} values. For
example, we can add the weight for permitted color combinations that will satisfy
the constraints (17) and solve the problem by integer recognition algorithm.
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5 Conclusions

We studied the problem of integer recognition over SATP (m,n) polytope that
is a simple extension of the well-known and important Boolean quadric polytope
BQP (n), constructed by adding two additional coordinates per block. In general
case integer recognition over SATP (m,n) is NP-complete, since several special
instances of 3-SAT like X3SAT and NAE-3SAT are reduced to it.

We considered possible constraints on the objective function for which inte-
ger recognition over SATPLP (m,n) is polynomially solvable. We introduced a
problem of 2-3 edge constrained bipartite graph coloring that is NP-complete
in general case, and design a polynomial time algorithm for its special subprob-
lem, based on SATP (m,n) properties. This example shows how the polytope
SATP (m,n) may be used, and why it is of interest for further studying.
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Abstract. We investigate the well-known NP-hard problem of finding
an optimal communication subgraph in a given edge-weighted graph.
This problem appears in different distributed wireless communication
networks, e.g., in wireless sensor networks, when it is necessary to mini-
mize transmission energy consumption. We propose new heuristic algo-
rithms based on variable neighborhood search metaheuristic. Our results
have been compared with the best known results, and the numerical
experiment showed that, on a large number of instances, our algorithms
outperform the previous ones, especially in a case of large dimensions.

Keywords: Wireless sensor networks · Energy efficiency · NP-hard
problem · Variable neighborhood search

1 Introduction

In recent years different issues related to the wireless communication networks
have been actively researched (see, e.g., [1,16]). Mainly, the problem is to mini-
mize energy consumption of network elements per time unit in order to prolong
the lifetime of the network. Since often the exact positions of the network ele-
ments and the topology of the network cannot be predefined, modern sensors
have ability to adjust their transmission ranges in order to minimize energy con-
sumption without breaking the connectivity of the network. Herewith, usually
the energy consumption of a network’s element is assumed to be proportional to
ds, where s ≥ 2 and d is the transmission range [15]. But in the general case this
condition may not be satisfied because of the inhomogeneity of the environment,
radio interference and peculiar properties of network elements (e.g., the signal
may not be spread equally in all directions). Thus, the communication energy
consumption for each connection could be arbitrary.

We assume that the communication network is represented as a connected
graph G = (V,E). In this paper we consider the symmetric case: an edge between
two vertices means that the both of them can send a message to each other
and the energy consumption for this communication is the same for both of
c© Springer International Publishing Switzerland 2016
Y. Kochetov et al. (Eds.): DOOR 2016, LNCS 9869, pp. 220–232, 2016.
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them. If cij ≥ 0 is a transmission-related energy consumption needed for sending
data from i ∈ V to j ∈ V (as well as from j to i), then in the connected
subgraph T = (V,E′), E′ ⊆ E the energy consumption of node i ∈ V equals to
Ei(T ) = max

j:(i,j)∈E′
cij . The goal of this paper is the development of algorithms for

the construction of a spanning subgraph T that minimizes
∑

i∈V

Ei(T ). Without

loss of generality, we assume that subgraph T is a spanning tree.
In this paper we propose new heuristic algorithms which use the variable

neighborhood search (VNS) metaheuristic, different local searches and two vari-
ants of shaking algorithm. We compare solutions obtained by these algorithms
with optimal solutions in small dimension cases and with solutions obtained by
other algorithms when dimension is large.

The rest of the paper is organized as follows. Section 2 contains the for-
mulation of the problem. In Sect. 3 the related papers are described. The new
heuristics are proposed in Sect. 4. In Sect. 5 the results of numerical experiments
are presented. Section 6 concludes the paper.

2 Problem Statement

Mathematically, the considered problem can be formulated as follows. Given a
simple connected weighted graph G = (V,E) with a vertex set V , |V | = n, and
an edge set E, find such spanning tree T ∗ of G, which is the solution to the
following problem:

W (T ) =
∑

i∈V

max
j∈Vi(T )

cij → min
T

, (1)

where Vi(T ) is the set of vertices adjacent to the vertex i in the tree T and
cij ≥ 0 is the weight of the edge (i, j) ∈ E.

In literature, this problem is called the Minimum Power Symmetric Connec-
tivity Problem (MPSCP) [2]. Any feasible solution of (1), i.e., a spanning tree
of G, will be called a communication tree (subgraph). It is known that (1) is
strongly NP-hard [1,7,8,12], and if P �= NP, then the problem is inapproximable
within 1 + 1

260 [8]. Therefore, the construction and analysis of efficient approxi-
mation algorithms are some of the most important issues regarding the research
on this problem.

3 Related Works

The more general Range Assignment Problem, where the goal is to find a strong
connected subgraph in a given oriented graph, has been considered in [5,12]. Its
subproblem, MPSCP, was first studied in [2]. The authors proved that Minimum
Spanning Tree (MST) is 2-approximation for this problem. Also they proposed a
polynomial-time approximation scheme with performance ratio of 1 + ln 2 + ε ≈
1.69 and 15/8-approximate polynomial algorithm. In [3] a greedy heuristic, later
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called Incremental Power: Prim (IPP), was proposed. IPP is similar to the Prim’s
algorithm of finding of MST. A Kruscal-like heuristic, later called Incremental
Power: Kruscal, was studied in [4]. Both of these so called incremental power
heuristics have been proposed for the Minimum Power Asymmetric Broadcast
Problem, but they are suitable for MPSCP too. It is proved in [14] that they
both have an approximation ratio 2, and it was shown in the same paper that
in practice they yield significantly more accurate solution than MST.

Authors of [1] proposed two local search heuristics. The first one is edge-
switching (ES) which iteratively performs the best possible replacement of a tree
edge and a non-tree edge until a local optimum is reached. The other local search
algorithm is edge and fork switching (EFS), where at each step an attempt to
replace one or two edges of a tree by an edge or a fork (two adjacent edges) in the
best way. In [14] two ES-like heuristics were proposed. In the first one, ES1a, each
non-tree edge is added at first and then an edge which belongs to the appeared
cycle and causes the maximum power costs is removed. In the second heuristic,
ES1b, each edge from a tree is considered to be replaced by the non-tree edge
in such way that decrease of objective is maximum. It should be noticed that
instead of finding a local optimum ES1a and ES1b perform a single loop on a
fixed list of edges (i.e., once added or removed edges are never considered again).
Also, they propose a faster sweep method (SW) and the most time-consuming
double edge switching (ES2), which is said to be the generalization of EFS: it
performs replacements of two edges from a tree and two non-tree edges while
it leads to reduction of the objective. Their numerical experiments demonstrate
the weakest results of SW (4–5 % improvement over MST for 50–100 nodes),
better results of ES1a and ES1b (about 5.5 %), and incredibly high results of
ES2 (12–14 %). However, we, as well as authors of [17], could not achieve even
7 % improvement over MST for these dimensions on random instances using our
algorithms. It seems like the optimal solution, on average, does not outperform
MST by more than 7 % on our random instances. Anyway, ES2 is not applicable
for large dimensions because of the high time complexity (O(|V |3|E|2)). Also,
the another two local searches should be mentioned: ST from [17] and LI from
[7]. They are very similar because they use the same idea: at each step an edge
is removed from a tree and the root of obtained subtree is reconnected with
some vertex from another subtree in such way that the decrease of the objective
is maximum. The difference between ST and LI is the following: in ST the
best replacement is performed at each step, but in LI all edges are sequently
considered to be removed and replaced by another edge in the best way, and
this loop is repeated while the solution is improved at least at one its iteration.

In [13] a way to filter the edges without impairment of the optimal solution
was proposed. This method allows to significantly simplify the initial communi-
cation graph and to reduce the computation time. Authors of [17] presented a
new iterated local search (ILS) which uses ES and EFS at local search phase,
filtration technique from [13] and two different mutation operators. Their numer-
ical experiment results demonstrate that, on average, the best solution within
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acceptable time can be obtained by ILS with ES, filtration and so-called random
increase mutation.

In [6] a hybrid genetic algorithm (GA), which uses variable neighborhood
descent (VND) as mutation, was proposed. This algorithm is well parallelized
and very fast.

Since we don’t know any better heuristics proposed by other authors, we
have implemented the best variant of ILS, hybrid GA with VND and compared
our algorithms with them in Sect. 5.

4 Heuristics

As mentioned earlier, we use the VNS metaheuristic idea to get an approximate
solution of (1). We use two well-known schemas: basic VNS and general VNS.
Detailed descriptions of both these methods can be found in [9,10]. For the
reader’s convenience the pseudo codes of these algorithms are presented in Figs. 1
and 2. These metaheuristics consist of the local search and shaking phases. As
a stopping criteria of VNS-based algorithms we used the following rule: if there
were no any improvements in last 3 iterations then algorithm stops.

1: Select the set of neighborhood structures Nk, for k = 1, ..., kmax that will be used
for the shaking phase, and let N0 = {x}; find an initial solution x; set k = 0;

2: while the stopping criteria is not met do
3: while k ≤ kmax do
4: Perform Shaking : generate a point x′ at random from Nk(x);
5: Perform a Local search. Let x′′ be an obtained local optimum;
6: if x′′ is better than x then
7: x = x′′; k = 1
8: else
9: k = k + 1

10: end if
11: end while
12: end while

Fig. 1. Basic VNS

In order to reduce the computational complexity we use the filtration of
edges presented in [13]. The idea of this method is the following. If the lower
bound of the objectives of (1) on all communication trees, which contain the
edge e, exceeds the objective on another known feasible solution then the edge
e is removed from the communication graph. This filtration is applied to the
communication graph as soon as new record solution has been obtained. For
the first approximation of our heuristic we generate two trees: one by MST and
another by IPP, and then we take the better of them.
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1: Select the set of neighborhood structures Nk, for k = 1, ..., kmax that will be used
for the shaking phase, and let N0 = {x}; select the set of neighborhood structures
Nl, for l = 1, ..., lmax that will be used for local search; find an initial solution x;
set k = 0;

2: while the stopping criteria is not met do
3: while k ≤ kmax do
4: Perform Shaking : generate a point x′ at random from Nk(x);
5: while l ≤ lmax do
6: Find the best solution x′′ ∈ Nl(x

′).
7: if x′′ is better than x′ then
8: x′ = x′′; l = 1
9: else

10: l = l + 1
11: end if
12: end while
13: if x′ is better than x then
14: x = x′; k = 1
15: else
16: k = k + 1
17: end if
18: end while
19: end while

Fig. 2. General VNS

Local Searches. Each neighborhood structure of the local search phase of VNS-
based heuristics is used only for local search. Therefore, the descriptions of the
local search procedures are sufficient for the definition of the corresponding
neighborhood structures, and there is no necessity for explicit formulation of
the neighborhood structures.

We propose two local search heuristics which perform edge switchings, but,
as opposed to the known ES-like heuristics, they do not perform each edge
switching in the best way, but instead of this they iteratively consider a list of
edges and perform the best switching for each considered edge. The procedure
stops if at some iteration there was no any improvements in all steps of the loop
over the edges. There are two possible variants of this approach, we called them
Adding and Best Removing (ABR) and Removing and Best Adding (RBA). The
pseudo-codes of these local searches can be found, respectively, in Fig. 3 and in
Fig. 4. Note that these local searches are similar to ES1a and ES1b from [14],
but, as opposed to ES1a and ES1b, ABR and RBA guarantee that the obtained
solution is a local optimum.

Shaking. For the shaking procedure, which is used in basic VNS and general
VNS, we propose two algorithms. The first one is random shaking which is
described in Fig. 5. It consists of sequence of random edge addings and random
edge removings. The second algorithm is intensified shaking (Fig. 6), which adds
a random edge at first and then removes an edge from the cycle whose deletion
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1: Input: G = (V,E) - communication graph, T = (V, F ) — spanning tree;
2: improved = true;
3: while improved do
4: improved = false;
5: G = FilterEdges(G,W (T ));
6: D = E \ F ;
7: for each edge e ∈ D do
8: Find the such edge f in a cycle of F ∪ {e}, whose removing leads to the

maximum decrease of the objective;
9: T ′ = (V, F ∪ {e} \ {f});

10: if W (T ′) < W (T ) then
11: T = T ′;
12: improved = true;
13: end if
14: end for
15: end while

Fig. 3. ABR local search

1: Input: G = (V,E) - communication graph, T = (V, F ) — spanning tree;
2: G = FilterEdges(G,W (T ));
3: improved = true;
4: while improved do
5: improved = false;
6: for each edge e ∈ F do
7: Let A and B be the edges of connected components obtained after removing

of e from T ;
8: Find such edge f ∈ E which connects A and B and whose adding to A ∪ B

leads to the minimum increase of the objective;
9: T ′ = (V,A ∪ B ∪ {f});

10: if W (T ′) < W (T ) then
11: T = T ′;
12: G = FilterEdges(G,W (T ));
13: improved = true;
14: end if
15: end for
16: end while

Fig. 4. RBA local search

reduces the objective at most. In both algorithms replacing of edges is repeated
k times. Let kmax be the maximum number of edge replacements by the shaking
procedure. Note that kmax is a free parameter in the considered VNS heuristics,
and its best value of this parameter is estimated experimentally.
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1: Input: G = (V,E) - communication graph, T = (V, F ) – spanning tree, k – neigh-
borhood index;

2: i = 1;
3: while i ≤ k do
4: Select an edge e1 ∈ E \ F at random;
5: F ′ = F ∪ {e1};
6: Let C ⊆ F ′ be a cycle containing e1; select at random an edge e2 ∈ C;
7: F ′ = F ′ \ {e2};
8: T = (V, F ′);
9: end while

Fig. 5. Random shaking

1: Input: G = (V,E) - communication graph, T = (V, F ) — spanning tree, k —
neighborhood index;

2: i = 1;
3: while i ≤ k do
4: Select an edge e1 ∈ E \ F at random;
5: F ′ = F ∪ {e1};
6: Let C ⊆ F ′ be a cycle containing e1; select an edge e2 ∈ C whose deletion

reduces the objective at most;
7: F ′ = F ′ \ {e2};
8: T = (V, F ′);
9: end while

Fig. 6. Intensified shaking

5 Simulation

All the proposed algorithms have been implemented in C++ using the Visual
Studio 2010 Integrated Development Environment. A simulation was executed
for n = 10, 30, 50, 250, and in some cases for n = 500. For the same dimension,
100 different instances were randomly generated. For each instance, a required
number of points was uniformly scattered on a square area with a side of 10
units. After this, a complete edge-weighted graph whose vertices correspond to
the points and whose edge weights were equal to the squared distances between
the points was defined. Then the calculation of MST and IPP were run on the
complete graph, and the best of the obtained two trees was chosen as the first
approximation solution for the heuristics. The experiment was performed on an
Intel Core i5-4460 (3.2 GHz) 8 Gb machine, and only one thread was used at the
same time for all algorithms except CPLEX and GA.

In order to compare the algorithms for the large dimensions, when an optimal
solution cannot be found in acceptable time, we calculated the average improve-
ment compared to MST. This estimate was often used for these purposes in
the related papers [1,14,17]. For the small dimensions (n ≤ 30), we defined the
parameters of the problem formulation as an integer linear programming prob-
lem (ILP), as proposed in [7], and then we obtained the optimal solution using
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the IBM ILOG CPLEX package. In Table 1 the improvement of optimal solution
over MST and the average CPLEX CPU time are presented. Currently neither
of known packages and ILP formulations allow to obtain an optimal solution for
n ≥ 40 in acceptable time [1,7,13]. Note that we have parallelized CPLEX on 4
threads to speed-up calculations.

Table 1. CPLEX (optimal solution). Improvement over MST and CPU time

n Impr. to MST CPU time

10 3.98 % 0.33 s

30 5.78 % 93.53 s

For the VNS-based heuristics, it is necessary to define the parameter kmax.
For this goal, each algorithm was run on the same instances with different values
of kmax. It appeared that, beginning from kmax = 30, on average, the objective of
the obtained solution did not decrease significantly, whereas the runtime grown
fast. Moreover, on average, the runtime of all the algorithms remained acceptable
for kmax = 30. Therefore, in all the VNS-based algorithms, we set kmax = 30.

In the Table 2 the effect of filtration from [13] is presented. The first column
represents the percentage of edges removed after applying the filtration proce-
dure to the complete graph when the results of MST and IPP are known. In
the other columns the speed-ups of some of the heuristics are reflected. One
can see that filtration significantly simplifies the initial graph and speeds up the
algorithms. In all further results all heuristics use filtration procedure.

Table 2. Filtration effect

n Filtered edges Speed-up of ES Speed-up of ABR Speed-up of RBA

30 53.02 % 53.08 % 58.96 % 46.15 %

50 55.81 % 59.62 % 63.36 % 53.74 %

100 59.71 % 66.38 % 64.3 % 59.57 %

250 60.84 % 70.59 % 66.53 % 62.73 %

In Table 3 the local search algorithms are compared. The best values are
marked bold. The best solutions were always obtained by EFS, but its running
time increases very fast with growing n, and it works more than 1000 s already
on 200 nodes.

Table 4 represents CPU time and improvement over MST of the basic VNS
with different local search procedures and random shaking. In Table 5 the results
obtained by the same algorithms but with intensified shaking are presented.
Since, on average, intensified shaking works slightly better than the random
shaking, in the further tables intensified shaking is used in VNS-based heuristics.
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Table 3. Local search heuristics. Improvement over MST and CPU time.

n ABR RBA EFS ES LI

Impr. to CPU Impr. CPU Impr. CPU Impr. CPU Impr. CPU

MST time to MST time to MST time to MST time to MST time

10 3.76% 0.00 s 3.72 0.00 s 3.96% 0.00 s 3.75% 0.00 s 3.04% 0.00 s

30 5.03% 0.00 s 5.05% 0.00 s 5.58% 0.09 s 5.07 % 0.00 s 3.56% 0.00 s

50 5.35% 0.00 s 5.33% 0.00 s 6.08% 0.92 s 5.45% 0.00 s 3.98% 0.00 s

100 5.52% 0.02 s 5.5% 0.02 s 6.17% 29.39 s 5.59% 0.05 s 3.77% 0.00 s

250 5.61% 0.26 s 5.6% 0.23 s – – 5.71% 1.09 s 3.94% 0.01 s

Table 4. Basic VNS with random shaking. Improvement over MST and CPU time.

n B ABR B RBA B ES B LI

Impr. to CPU Impr. to CPU Impr. to CPU Impr. to CPU

MST time MST time MST time MST time

10 3.98% 0.00 s 3.96 % 0.00 3.98% 0.01 s 3.93 % 0.00 s

30 5.74 % 0.06 s 5.78% 0.06 5.76 % 0.08 s 4.40 % 0.00 s

50 6.21 % 0.24 s 6.29 % 0.26 6.30% 0.32 s 3.96 % 0.00 s

100 6.08 % 1.39 s 6.23% 1.71 6.11 % 1.81 s 3.50 % 0.01 s

250 6.12 % 17.97 s 6.27% 22.52 6.00 % 19.27 s 3.62 % 0.02 s

Table 5. Basic VNS with intensified shaking. Improvement over MST and CPU time.

n B ABR B RBA B ES B LI

Impr. to CPU Impr. to CPU Impr. to CPU Impr. to CPU

MST time MST time MST time MST time

10 3.94 % 0.00 s 3.98% 0.00 s 3.98% 0.00 s 3.77 % 0.00 s

30 5.71 % 0.05 s 5.77% 0.05 s 5.76 % 0.06 s 4.14 % 0.00 s

50 6.16 % 0.23 s 6.26 % 0.21 s 6.27% 0.21 s 3.82 % 0.00 s

100 6.02 % 1.44 s 6.24% 1.44 s 6.12 % 1.21 s 3.42 % 0.01 s

250 6.01 % 15.41 s 6.27% 21.46 s 5.96 % 12.09 s 3.45 % 0.02 s

The general VNS-based heuristics results presented in Table 6. We have run
two variants of general VNS. Both of them used ABR and RBA as local searches
and intensified shaking. G AR is general VNS where in each iteration of the local
search phase ABR was run at first and RBA was run next. G RA is general VNS
in each iteration of the local search phase RBA was run at first and ABR was
run next.

In Table 7 the results obtained by ILS with different local searches are pre-
sented. The random increase mutation was used in ILS and, as well as it was
done in [17], 200 iterations were run before stop.
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Table 6. General VNS with intensified shaking. Improvement over MST and CPU
time.

n G AR G RA

Impr. to MST CPU time Impr. to MST CPU time

10 3.98 % 0.00 s 3.96 % 0.00 s

30 5.74 % 0.07 s 5.78% 0.08 s

50 6.15 % 0.28 s 6.29% 0.29 s

100 6.03 % 1.74 s 6.20% 1.86 s

250 6.05 % 21.27 s 6.30% 31.14 s

Table 7. ILS-based heuristics. Improvement over MST and CPU time.

n ILS ABR ILS RBA ILS ES ILS LI

Impr. to CPU Impr. to CPU Impr. to CPU Impr. to CPU

MST time MST time MST time MST time

10 3.98 % 0.02 s 3.9 % 0.02 s 3.98% 0.02 s 3.17 % 0.01 s

30 5.72 % 0.32 s 5.75 % 0.33 s 5.78% 0.43 s 2.929 % 0.02 s

50 6.23 % 1.111 s 6.28 % 1.23 s 6.33% 1.73 s 3.187 % 0.04 s

100 6.12 % 6.353 s 6.23 % 7.96 s 6.31% 13.33 s 3.048 % 0.09 s

250 6.06 % 65 s 6.16 % 107.5 s 6.4% 250 s 3.21 % 0.29 s

Although, on average, ILS outperforms the VNS-based heuristics, it requires
significantly more time, and the average excesses of the best of ILS-based heuris-
tic ILS ES over the best of VNS-based metaheuristics B RBA and G RA are not
so significant — they never exceed 0.1 %. Therefore, we compared the solution
obtained by one of the best VNS-based metaheuristics, basic VNS with RBA
and intensified shaking (B RBA), with the solution obtained by ILS ES in the
same running time as B RBA. These results are presented in Table 8. In the same
manner, we have compared the G RA (which appeared to be the best of general
VNS-based heuristics) with ILS ES, see Table 9. Except the improvement over
MST, for each of two heuristics B RBA and G RA, we calculated the percent-
age of cases when its solution is better than ILS and the percentage of cases
when it is worse than ILS ES. One can see that, on average, B RBA and G RA
both outperform ILS ES, especially on large dimensions. The advantages of the
both VNS-based heuristics are most strongly shown when n = 500. In this case
B RBA yielded more accurate solution than ILS ES in 99 % of cases, the aver-
age improvement of B RBA over MST exceeds the same estimation of LI ES by
0.44 % which is about 7.5 % of the improvement, and the maximum improvement
over to MST exceeds the same estimation of LI ES by 0.82 % which is 10.16 %
of the improvement. The results obtained by G RA in the case of n = 500 are
very impressive as well: G RA yields better solution than ILS ES in 94 % of
cases, its average excess of improvement over MST is 0.38 %, which is 6.37 %
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Table 8. Comparison of the results for the best of the basic VNS-based heuristics
B RBA and for the best of the iterated local search-based algorithms ILS ES.

n B RBA is better ILS ES is better B RBA: Impr. to MST ILS ES: Impr. to MST CPU time

Min Avg Max Min Avg Max

10 2% 0% 0% 3.98% 19.82% 0% 3.95% 19.82% 0.00 s

30 11% 2% 0.82% 5.78% 15% 0.82% 5.7% 14.58% 0.05 s

50 30% 10% 1.20% 6.28% 13.56% 1.20% 6.2% 13.41% 0.20 s

100 54% 26% 2.48% 6.23% 10.42% 2.38% 6.15% 10.86% 1.43 s

250 85% 15% 3.64% 6.29% 9.50% 3.46% 6.04% 9.36% 22.63 s

500 99% 1% 4.10% 6.34% 8.89% 3.72% 5.90% 8.07% 208.2 s

Table 9. Comparison of the results for the best of the general VNS-based heuristics
G RA and for the best of the iterated local search-based algorithms ILS ES.

n G RA is better ILS ES is better G RA: Impr. to MST ILS ES: Impr. to MST CPU time

Min Avg Max Min Avg Max

10 0% 0% 0% 3.98% 19.82% 0% 3.98% 19.82% 0.01 s

30 6% 6% 0.82% 5.77% 15% 0.82% 5.74% 14.58% 0.08 s

50 17% 14% 1.2% 6.29% 13.66% 1.2% 6.29% 13.56% 0.30 s

100 47% 36% 1.87% 6.21% 10.34% 2.42% 6.23% 10.86% 2.11 s

250 72% 28% 3.69% 6.29% 9.49% 3.65% 6.16% 9.60% 31.42 s

500 94% 6% 4.30% 6.35% 8.6% 3.75% 5.97% 8.29% 279.7 s

of the improvement. It should be noted, that LI ES had appeared to be too
time-consuming in a case of n = 500. Its average running time on 10 instances
exceeded 1200 s.

In [6] two hybrid genetic algorithms for the MPSCP were proposed. The
best results had been obtained by the genetic algorithm which used VND-based
heuristic as mutation. In Table 10 the results of this hybrid genetic algorithm
GA VND are compared with the best VNS-based heuristics: B RBA and G RA.
One can see that GA VND solved the problem significantly faster, but it should
be taken into account that it was well parallelized and used four parallel threads.
However, VNS-based heuristics yield more accurate solutions, especially on large

Table 10. Comparison of the results for the best of VNS-based heuristics and hybrid
genetic algorithm GA VND.

n B RBA G RA GA VND

Impr. to MST CPU time Impr. to MST CPU time Impr. to MST CPU time

10 3.98 % 0.00 s 3.98% 0.01 s 3.98% 0.06 s

30 5.78 % 0.05 s 5.77% 0.08 s 5.75% 0.14 s

50 6.28% 0.20 s 6.29% 0.3 s 6.20% 0.31 s

100 6.23% 1.427 s 6.21% 2.11 s 5.96% 1.12 s

250 6.29% 22.63 s 6.29% 31.42 s 5.87% 6.35 s

500 6.34% 208.2 s 6.35% 279.7 s 5.71% 31.8 s
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instances: in a case of n = 500 their average improvement over MST exceeds the
same estimation for the GA VND by more than 0.6 %, which is 10.5 % of the
improvement. Since GA VND was stopped after stabilization (when the quality
of solutions was not changed during the last 20 iterations), we did not expect that
its solutions would become significantly better after the longer work. Therefore,
GA VND was not compared with the proposed VNS-based heuristics by time
limit, as it was done for ILS ES.

6 Conclusion

In this paper we have presented new variable neighborhood search-based heuris-
tics for the Minimum Power Symmetric Connectivity Problem. We used two
known variants of the VNS metaheuristic: basic VNS and general VNS. As local
search we used already known heuristics ES, EFS and LI as well as two new
heuristics: ABR and RBA. We also used filtration of edges of the communi-
cation graph inside our algorithms in order to reduce the computation time.
The numerical experiment has shown that the best of the proposed VNS-based
heuristics (namely, B RBA and G RA) are more suitable to use in practice than
the best of known algorithms (iterated local search-based algorithm proposed
in [17] and hybrid genetic algorithm proposed in [6]): on average, our heuristics
obtain significantly more accurate solutions in short time and allow to success-
fully get solutions very close to optimal in large dimension cases. In future we
plan to implement the variable neighborhood decomposition search [11] for this
problem in order to solve it in larger dimensions in acceptable time.
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Abstract. One of the central questions of polyhedral combinatorics is
the question of the algorithmic relationship between vertex and facet
descriptions of convex polytopes. In the sense of combinatorial optimiza-
tion the reason for the relevance of this issue is the possibility of applica-
tion of convex analysis methods to the decision combinatorial problems
[6,10,15]. In this paper we consider combinatorial polytopes sufficiently
general form. A number of necessary conditions and sufficient conditions
for support inequality of polytope to be facet inequality are obtained,
an illustration of the use of the developed technology to the connected
k-factors polytope are given. Also we discuss the use of facet inequalities
in cutting plane algorithms.

Keywords: Polytope · Facet inequality · Separation problem

1 Preliminaries

Let E is a finite set. With E we associate the |E|-dimensional Euclidean space
RE by one-to-one correspondence between the elements of set E, and the coor-
dinate axes of space RE . In other words, RE is a set of column vectors whose
components are indexed by elements of set E. The polytope in space RE is a
convex hull of a finite number of points in RE . The affine hull of polytope P is
set affP of all affine combinations of points of P . The affine hull affP is an
affine subspace of RE . Consequently, there is a system of linear equations that

affP = {x ∈ RE | AT x = α},

where A – (|E| × n)-matrix and without loss of generality rankA = n. The
dimension of polytope P (denote dimP ) is the cardinality of max to include
affine independent family of points of P minus 1.

Let a ∈ RE and a0 ∈ R. Linear inequality aT x ≤ a0 is called valid to polytope
P , if it holds for all points of P . A valid inequality is called a support inequality if
there are x′, x′′ ∈ P , such that aT x′ < a0 and aT x′′ = a0. Any support inequality
generates a face {x ∈ P | aT x = a0} of P . A vertex of P is a face with the dimension
equal to 0. A facet of P is a face with the dimension equal to dimP − 1 and corre-
sponding inequality is called facet inequality. Facet inequalities play a special role
c© Springer International Publishing Switzerland 2016
Y. Kochetov et al. (Eds.): DOOR 2016, LNCS 9869, pp. 233–243, 2016.
DOI: 10.1007/978-3-319-44914-2 19
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in polyhedral combinatorics. According to the theorem of Weyl-Minkowski [15], to
describe a polytope as a set of solutions of linear systems it is necessary and suffi-
cient to knowall its facet inequalities (up to equivalence). In addition, facet inequal-
ities arewidelyusedas cuttingplanes for thedecision of combinatorial optimization
problems of large dimension [1,2,4,9].

Let us turn to the description of the object, which is the subject of this
article. For each R ⊆ E we define its incidence vector xR ∈ RE as a vector with
coordinates xR

e = 1 if e ∈ R and xR
e = 0 if e /∈ R. Thus, a set of all subsets of E

is placed in one-to-one correspondence with a set of all vertices of unit cube in
RE . Based on this correspondence the (0, 1)-vector x ∈ RE will be understood
as a subset of E too.

Let H ⊆ 2E be a family of subsets of E. A combinatorial polytope associated
with H is the set

PH = conv{xH ∈ RE | H ∈ H},

where “conv” means “convex hull”. Here are some of obvious, but important
properties of PH.

(1) Each vertex of PH is a (0, 1)-vector.
(2) Vertices and only they correspond to sets of the family H.
(3) Polytope PH has no integer points other than the vertices.
In this article we justify an approach to the proof of the facetness of an

inequality support to PH. Traditionally, to prove the facetness two approaches
are used. The first one is based on finding a sufficient number of affinely inde-
pendent vertices of an edge generated by the inequality. The second approach is
based on the use of the following fact which is wide-known in convex analysis

Theorem 1 [10]. Let P ⊂ RE be a polytope, affP = {x ∈ RE | AT x = α}, and
the matrix A have full rank. The support inequality aT x ≤ a0 is a facet inequality
if and only if for any support inequality cT x ≤ c0 satisfying the condition

{x ∈ P | aT x = a0} ⊆ {x ∈ P | cT x = c0},

there is a combination c = μa + Aλ, c0 = μa0 + αT λ, where μ is a non-negative
number and λ ∈ RrankA.

This approach, as a rule, is connected with a large amount of algebraic cal-
culations. Our results follow from Theorem 1 and consist in the presentation of
linear combinations of constraints of affine hull of the face being studied using
symmetrical differences of sets of family H. It enables providing a combinatorial
nature to the proof procedure. We introduce the concept of bH-basis which links
support inequality bT x ≤ b0, family H and affine hull of PH polytope. bH-basis
is a subset of set E and corresponds to the elements of set E which make up the
basis of the matrix defining the affine hull of PH polytope face being studied.

In this paper a number of necessary conditions (Sect. 2) and sufficient condi-
tions (Sect. 3) for support inequality of the polytope PH to be a facet inequality
are obtained. The technique described in Sects. 2 and 3 is a generalization of the
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method from [11], that was used for a connected k-factors polytope. In Sect. 4,
we present three facet inequality classes from [11] and discuss the separation
problem for one of them.

We consider the so-called combinatorially full families H ⊆ 2E , i.e. such
families, that satisfy the axiom:

for any e1, e2 ∈ E there is such H ∈ H that e1 ∈ H and e2 /∈ H.
For example, on the complete graph with more than four nodes the match-

ings, Hamiltonian cycles, M -graphs [12] are combinatorially full families.

2 Necessary Conditions

In this section some of the properties of facet inequalities for PH on combinato-
rially full families H will be discussed.

Theorem 2. Let aT x ≤ a0 be a support inequality for PH and {x1, x2, . . . , xt}
be a set of all vertices of the corresponding face. If any of following conditions

(1) | ∩t
i=1 xi| ≥ 2 or |E \ ∪t

i=1x
i| ≥ 2,

(2) ∩t
i=1x

i = {e0} (or E \ ∪t
i=1x

i = {e0}) and exist suth x ∈ H that e0 ∈ x
(or e0 /∈ x respectively) and aT x < a0,

holds, then the inequality aT x ≤ a0 is not facet inequality for PH.

Proof. Let Fa be a face of PH, that is generated by inequality aT x ≤ a0.
(1) Let e1, e2 ∈ ∩t

i=1x
i, e1 	= e2 and Fj = {x ∈ PH | xej

= 1}, j = 1, 2
be faces that are generated by support inequalities xej

≤ 1, j = 1, 2. Then all
points x1, x2, . . . , xt lie on faces Fj , j = 1, 2. Consequently, face Fa belongs to
the intersection of faces F1 and F2.

Since the family H is combinatorially full then F1 and F2 are proper faces
of PH. Furthermore, F1 	= F2. In fact if a set H ∈ H belongs to one of the
elements e1 and e2 then H belongs to the second element. This is contradicts to
combinatorial fullness of H. Thus

dimFa ≤ dim(F1 ∩ F2) < min{dimF1, dimF2} ≤ dimPH − 1.

Hence Fa is not a facet.
For e1, e2 ∈ E \∪t

i=1x
i the arguments are completely analogous if we assume

that Fj = {x ∈ PH | xej
= 0}, j = 1, 2.

(2) Let F0 = {x ∈ PH | xe0 = 1}. Since the family H is combinatorially full
then F0 is a proper face of PH. Moreover, from the conditions of the theorem
it is obvious that Fa ⊆ F0. If Fa = F0 then for any x′ ∈ H that contains e0
inclusion x′ ∈ Fa holds. This contradicts to the condition. Hence Fa 	= F0. Now
we can write

dimFa < dimF0 ≤ dimPH − 1.

Hence Fa is not a facet again.
For E \ ∪t

i=1x
i = {e0} the arguments are analogous, if we assume F0 = {x ∈

PH | xe0 = 0}.
The theorem is proved. 
�
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The next necessary condition holds for support inequalities with coefficients
0 and 1 in the left side. The class of such inequalities is induced by the set of all
subsets of E as follows. Let W ⊆ E. The number

rH(W ) = max{|W ∩ H| | H ∈ H}
is called rank of W (with respect to H). Accordingly, inequality

∑

e∈W

xe ≤ rH(W )

is called a rank inequality induced by W . Due to the definition of rH value, any
rank inequality is a support inequality for PH.

Theorem 3. Let W ⊆ E and |W | ≥ 2. If there exists H ∈ H such that W ⊂ H
then rank inequality

∑
e∈W xe ≤ rH(W ) is not facet inequality for PH.

In fact in this case rH(W ) = |W |. Hence if for some x ∈ H the equality∑
e∈W xe = rH(W ) holds, then W ⊆ x. Now the required follows from Theorem 2.

3 Sufficient Conditions

As before, let H ⊆ 2E be combinatorially full family of subsets of E,

affPH = {x ∈ RE | AT x = α}
and the matrix A have full rank. Each row of matrix A corresponds to exactly
one element e ∈ E and vice versa. Therefore the set of rows of matrix A is
denoted by E. The set of columns is denoted by the letter V and let |V | = n.
Clearly rankA = |V | ≤ |E|. For matrix coefficient of A, that is in line e ∈ E
and column u ∈ V we will write aeu. If c ∈ RE then by (c|A) (or (A|c)) we
denote matrix that obtained by ascribing to the matrix A column c on the left
(respectively, right). Through A(c, Ẽ) we denote the submatrix of (c|A), formed
lines Ẽ ⊆ E. If the matrix A is empty, then by (c|A) (or (A|c)) we mean a
column c.

Let bT x ≤ b0 be support inequality for PH. We need the following definitions.

Definition 1. Non-empty set S ⊂ E will be called bH-switching if there are
H1,H2 ∈ H such that

(1) S = H1 � H2,
(2) bT xH1 = bT xH2 = b0.
Here H1 � H2 = (H1 \ H2) ∪ (H2 \ H1) is the symmetric difference of sets

H1 and H2.

Definition 2. Subset Ẽ ⊂ E called a bH-basis if the following conditions hold
(i) |Ẽ| = n + 1;
(ii) matrix A(b, Ẽ) has a full rank;
(iii) for any e ∈ E \ Ẽ there is an ordered sequence of e1, e2, . . . , et = e from E
that for each i ∈ {1, 2, . . . , t} the element ei belongs to some bH-switching, lying
in the Ẽ ∪ {e1, e2, . . . , ei}.
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First, we prove an auxiliary lemma.

Lemma 1. Let affPH = {x ∈ RE | AT x = α}, H1,H2 ∈ H – pair of different
sets and S = H1 � H2. Then for each u ∈ V holds that

∑

e∈S\H1

aeu =
∑

e∈S\H2

aeu.

Proof. Let aT x = αu is an equation from AT x = α that corresponds to node
u ∈ V . It is clear that vectors xH1 and xH2 satisfy this equation. Because S\H2 =
H1 \ H2 and S \ H1 = H2 \ H1 then

0 = aT xH1 − aT xH2 = aT (xH1 − xH2) = aT (xH1\H2 − xH2\H1)

= aT (xS\H2 − xS\H1) =
∑

e∈S\H2

aeu −
∑

e∈S\H1

aeu.

The lemma is proved. 
�
Theorem 4. Support inequality bT x ≤ b0 is a facet inequality for PH if bH-basis
Ẽ ⊂ E exist.

Proof. The proof is based on Theorem 1. Let cT x ≤ c0 be a support inequality
for PH satisfying the condition

{x ∈ P | bT x = b0} ⊆ {x ∈ P | cT x = c0}. (1)

We show that the system of linear equations

μb + Aλ = c (2)

is relatively compatible to μ ∈ R, λ ∈ Rn and μ ≥ 0.
Any equation of the system (2) corresponds to a single e ∈ E. Let us denote

the equations of system (2) across γ(e), e ∈ E. Wherein we will have in mind
right and left parts

γ(e) : beμ +
∑

u∈V

aeuλu = ce.

Let S = H1 � H2 is the bH-switching from the corresponding definition. Then
bT xH1 = bT xH1 = b0. Accordingly

0 = bT xH1 − bT xH2 = bT (xH1 − xH2) = bT (xH1\H2 − xH2\H1)

= bT (xS\H2 − xS\H1) =
∑

e∈S\H2
be −

∑

e∈S\H1
be.

(3)

As by condition (1) we have cT xH1 = cT xH1 = c0 then we get from similar
considerations

0 =
∑

e∈S\H2

ce −
∑

e∈S\H1

ce. (4)
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Note that in Lemma 1 the same combination of elements of other columns
of the system (2) as in (3) and (4) are used. Consequently, in matrix (b|A|c) the
sum of lines with the names from S \H2 minus the sum of lines with names from
S \ H1 gives the zero line. In other words, equations γ(e), e ∈ S are connected
by the following linear equation:

0 =
∑

e∈S\H2

γ(e) −
∑

e∈S\H1

γ(e). (5)

This means their linear dependence. Thus, if a set S ⊂ E is bH-switching
then any one equation of a family {γ(e), e ∈ S} can be discarded from the system
(2) without prejudice to its compatibility.

We show that this property allows us to drop all of the equations γ(e) with
names e ∈ E \ Ẽ out of the system (2). Let e ∈ E \ Ẽ and e1, e2, . . . , et = e
is corresponding ordered sequence from the condition (3). Note that the con-
dition (3) is performed for each element of the sequence. Suppose that St ⊆
Ẽ ∪ {e1, e2, . . . , et} is a bH-switch and et ∈ St. Then by (5) γ(et) is a linear
combination of equations from the set {γ(e), e ∈ Ẽ ∪ {e1, e2, . . . , et−1}}. Sim-
ilarly, we can easily see that γ(et−1) is a linear combination of the equations
from {γ(e), e ∈ Ẽ ∪ {e1, e2, . . . , et−2}}. Therefore, γ(et) is a linear combination
of equations {γ(e), e ∈ Ẽ ∪ {e1, e2, . . . , et−2}}. Continuing these arguments in
order of decrease of the numbers ei, we conclude that the equation γ(et) = γ(e)
is a linear combination of equations {γ(e), e ∈ Ẽ}. Hence the equation γ(e) can
be dropped out of the system (2) without prejudice to its compatibility.

Thus the system (2) is equivalent to system

A(b, Ẽ)λ = c̃, (6)

where c̃ = (ce, e ∈ Ẽ, λ = (μ, λT )T ∈ Rn+1. By (1) and (2) we have
rankA(b, Ẽ) = n + 1. Hence, system (6) and consequently the system (2) are
compatible. The solution of system (2) is nontrivial because otherwise c = 0.

It remains to show that μ ≥ 0. Since bT x ≤ b0 is a support inequality for
PH then there are x1, x2 ∈ H such that bT x1 = b0 and bT x2 < b0. Then by (1)
cT x1 = c0 and cT x2 ≤ c0. So we have

0 ≤ cT (x1 − x2) = (μbT + λT AT )(x1 − x2) = μ(bT x1 − bT x2) + λT α − λT α.

Since bT x1 − bT x2 > 0 then μ ≥ 0.
The theorem is proved. 
�

4 Connected k-factors Polytope: Facets and Separation
Problem

The technique that described in Sects. 2 and 3 is quite cumbersome. Nevertheless,
if we take a specific H, affine hull of the PH and a support inequality, construc-
tive results are possible. Thus in [11] by this technique three facet inequality
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classes for the connected k-factors polytope are described. In other words the
results of Sects. 2 and 3 are a generalization of the approach from [11] to an arbi-
trary polytope of the form PH. Later in [12] this technique was used for graph
approximation problem polytope.

In this section the three facet inequality classes from [11] are described. For
one of this classes the polynomial solvability of the separation problem with even
k will be proved.

Let Kn = (V,E) is complete undirected graph without loops and multiple
edges with the vertex set V and edge set E. Let kn is even. The subgraph
H ⊆ Kn is called k-factor if the degree of each vertex from V relative H equal
to k. In [11] a connected k-factors polytope was considered. Note that when
k = 2 a connected k-factors set is a Hamiltonian cycles set. The connected k-
factors polytope is constructed in the way described in Sect. 1. Here we believe
that the base set is E and the connected k-factors set is H. The connected k-
factors polytope will be denoted by Pk,n. In [11] three facet inequalities classes
for the connected k-factors polytope were described:

- trivial facets: for every e ∈ E inequalities xe ≥ 0 for k < n − 2 and xe ≤ 1
for k ≤ n − 2 are facet inequalities;

- subtour eliminations inequalities: for clique K = (V K,EK) ⊂ Kn inequality

∑

e∈EK

xe ≤ k | V K |
2

− 1� (7)

is facet inequality if and only if k <| V K |< n − k;
- 2-matching inequalities: let K = (V K,EK) is clique and R = (V R,ER)

is set of pairwise non-adjacent edges such that for each edge exactly one node
belongs V K. Then inequality

∑

e∈EK

xe +
∑

e∈ER

xe ≤ �k | V K | + | ER |
2

�

is facet inequality if and only if k < |V K| < n−k and k|V K| 	= |ER|(mod2). At
that if k+1 = |V K| (or k+1 = |V \V K|) then |V K|−|ER| ≤ 1 (or respectively
|V \ V K| − |ER| ≤ 1).

These results are generalized to the case k = 2.
Currently facet inequalities are quite actively used to solve combinatorial

optimization problems. Their application in the algorithms enabled finding exact
solutions to a large number of large-dimension problems [1,2,7,9,13,14]. Facet
inequalities are most efficient as cutting planes. The interest to the facet inequal-
ities is, in our opinion, due to the following considerations. First, the finiteness
of a polytope facet number ensures the finiteness of the cutting plane algorithm
based on the facet inequalities. Second, hyperplanes generating facets are in a
certain sense the strongest cuttings. Figuratively speaking, a hyperplane gener-
ating the face with the dimension smaller than dimPH − 1 may be “corrected”,
placed on a larger dimension face. Third, in any linear system describing a poly-
tope all of its facet inequalities are contained with the equivalent accuracy.
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At the stage of using different inequality classes in the cutting plane algo-
rithms the following algorithmic problem referred to as separation problem goes
to the foreground. Let us speak that inequality bT x ≤ b0 valid relative to PH
cuts off point x̄ ∈ RE if bT x̄ > b0. The separation problem consists in the follow-
ing. Let us take point x̄ ∈ RE and family L of linear inequalities valid relative
to PH. It is required to find an inequality cutting point x̄ ∈ RE among the
family L or prove that L has no such inequality. Let us point out that there are
no “reasonable” methods for the separation problem solution for polytope PH
in general. Moreover for different optimization problems and different inequal-
ity classes the separation problem has different complexity status. Thus, for
example for a connected 2-factor polytope the separation problem for subtour
eliminations inequalities and 2-matching inequalities are polynomially solvable
and the separation problems for comb inequalities and clique tree inequalities
are NP-hard [8] (see also [5,13]).

To prove the polynomial solvability of separation problem for subtour elimi-
nations inequality relative to connected 2-factors [8] suggested reduction of this
problem to the problem of minimum cut in the edge-weighted graph. This app-
roach proved to be applicable for the case of arbitrary even k. Let us consider
this situation in more details.

Two support inequalities to polytope are called equivalent if they generate
the same polytope face. Let us denote a set of all edges incident to u ∈ V through
δ(u). In [11] the following results necessary for further discussion were obtained.

Lemma 2 [11]. Affine hull of Pk,n is the set of solutions of the system of linear
equations ∑

e∈δ(u)

xe = k, u ∈ V. (8)

From Lemma 2, particularly, follows that dimPH = n2−n
2 − n.

Lemma 3 [11]. Let cliques K and K̄ satisfy the condition V K̄ = V \ V K. Then
inequalities of (3) type generated by cliques K and K̄ are equivalent relative to Pk,n.

For two non-overlapping sets U,W ⊂ V we will denote a set of edges with
one end in U and the other in W as γ[U,W ]. The cut in Kn is defined by
the set U ⊂ V . Hereby the sets U and V \ U are called shores of cut whereas
γ[U, V \ U ]–edges set of cut.

Theorem 5. Let x̄ ∈ affPk,n. In the class of subtour eliminations inequalities
generating the facets of Pk,n there will be an inequality cutting point x̄ if and
only if in Kn there exists such cut γ[U, V \ U ] that

∑

e∈γ[U,V \U ]

x̄e < 2 + �k | U |
2

� − k | U |
2

�.

Hereby the cutting inequality is generated by the clique on the set U .
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Proof. Let
∑

e∈EK

x̄e > k | V K |
2

− 1� (9)

be a facet inequality of the type (7) cutting point x̄. Let K̄ be clique on the
set V \ V K. By virtue of Lemmas 2 and 3 for clique K̄ a similar inequality is
performed

∑

e∈EK̄

x̄e > k | V \ V K |
2

− 1�. (10)

It is obvious that

E = EK ∪ EK̄ ∪ γ[V K, V K̄].

Then, by virtue of Lemma 2 and the fact that these three sets are pairwise
disjoint, we have

kn

2
=

∑

e∈E

x̄e =
∑

e∈EK

x̄e +
∑

e∈EK̄

x̄e +
∑

e∈γ[V K,V K̄]

x̄e.

Consequently,

∑

e∈γ[V K,V K̄]

x̄e =
kn

2
−

∑

e∈EK

x̄e −
∑

e∈EK̄

x̄e <

<
kn

2
− k | V K |

2
− 1� − k | V \ V K |

2
− 1�

=
kn

2
− k | V K |

2
− 1� − (

kn

2
− �k | V K |

2
+ 1�)

= �k | V K |
2

+ 1� − k | V K |
2

− 1�

= 2 + �k | V K |
2

� − k | V K |
2

�.

The reverse statement follows from the same chain of equalities and the fact
that inequalities (8) and (9) are satisfied simultaneously.

The theorem is proved. 
�
Let x̄ ∈ affPk,n. Let us associate weight x̄e with each edge e ∈ E. Let us call

the value
∑

e∈γ[U,V \U ] x̄e the weight of cut γ[U, V \ U ]. Therefore, at an even k
the separation problem for subtour eliminations inequalities on the polytope of
connected k-factors is reduced to the problem of the minimum weight cut in the
edge-weighted graph and, consequently, it is polynomially solvable. At an odd k
the consequences of Theorem 5 are:

Corollary 1. At an odd k in the class of facet subtour eliminations inequalities
there will be an inequality cutting the point x̄ ∈ affPk,n, if and only if in Kn

with the edge weights x̄e, e ∈ E, among the cuts with even shores the minimum
cut has the weight smaller than 2.
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Corollary 2. At an odd k in the class of facet subtour eliminations inequalities
there will be an inequality cutting the point x̄ ∈ affPk,n, if in Kn with the edge
weights x̄e, e ∈ E, the minimum cut has the weight smaller than 1.

5 Conclusion

This article describes the procedure of proving the facet nature of the support
inequalities applicable to a wide class of combinatorial polytopes. The technique
suggested is rather cumbersome but the specification of the set of combina-
torial admissible objects, affine hull of the relevant polytope and the support
inequality itself enables obtaining constructive results [11,12]. Besides, the arti-
cle considers separation problem for the subtour eliminations inequality class
[11] relative to the polytope of connected k-factors. Its polynomial solvability
for even k is demonstrated. Let us add that for the problem of the minimum
connected k-factor we implemented the cutting plane algorithm using the said
subtour eliminations inequalities. The algorithm iteration consists in the follow-
ing. For the current continuous optimum, separation problem for the subtour
eliminations inequalities is solved. If separation problem had positive result, the
subtour eliminations inequality found were used as the cutting plane. Other-
wise Gomory’s cutting plane was used. 85 problems with the n parameter from
20 to 90 and k parameter from 4 to �n

2 � were solved. On average, only 10 %
of the algorithm iterations resulted in the subtour eliminations cutting planes.
This is an evidence of the fact that the facets generated by subtour eliminations
inequalities have rather a small “area” among all the polytope facets.
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Abstract. We consider a fractional 0-1 programming problem arising in
manufacturing. The problem consists in clustering of machines together
with parts processed on these machines into manufacturing cells so that
intra-cell processing of parts is maximized and inter-cell movement is
minimized. This problem is called Cell Formation Problem (CFP) and
it is an NP-hard optimization problem with Boolean variables and con-
straints and with a fractional objective function. Because of its high
computational complexity there are a lot of heuristics developed for it.
In this paper we suggest a branch and bound algorithm which provides
exact solutions for the CFP with a variable number of cells and group-
ing efficacy objective function. This algorithm finds optimal solutions
for 21 of the 35 popular benchmark instances from literature and for the
remaining 14 instances it finds good solutions close to the best known.

Keywords: Cell formation · Biclustering · Branch and bound · Upper
bound · Exact solution

1 Introduction

The first work on the Group Technology in manufacturing was written by
Flanders (1925). In Russia the Group Technology was introduced by Mitro-
fanov (1933). The main problem in the Group Technology (GT) is to find an
optimal partitioning of machines and parts into manufacturing cells, in order to
maximize intra-cell processing and minimize inter-cell movement of parts. Max-
imization of the so-called grouping efficacy is accepted in literature as a good
objective combining these two goals (Kumar and Chandrasekharan 1990). This
problem is called the Cell Formation Problem (CFP) (Goldengorin et al. 2013).
CFP with grouping efficacy objective function is a fractional 0-1 programming
problem.

Burbidge developed Product Flow Analysis (PFA) approach to this problem
and described the GT and the CFP in his book (Burbidge 1961). Ballakur and
Steudel (1987) have shown that the CFP is an NP-hard problem for different objec-
tive functions. That is why there have been developed a lot of heuristic approaches
c© Springer International Publishing Switzerland 2016
Y. Kochetov et al. (Eds.): DOOR 2016, LNCS 9869, pp. 244–255, 2016.
DOI: 10.1007/978-3-319-44914-2 20
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(Goncalves and Resende 2004; James et al. 2007; Bychkov et al. 2013, Paydar and
Saidi-Mehrabad 2013) and almost no exact ones for the CFP with a variable num-
ber of cells and grouping efficacy objective function.

Kusiak et al. (1993) consider one of the most simple variants of the CFP
called the machine partitioning problem in which it is necessary to partition only
machines into the specified number of cells minimizing the total Hamming distance
between machines inside the cells. The authors present an exact A* algorithm for
this variant of the CFP. They also develop a branch and bound algorithm for the
CFP with a variable number of cells, a limit on the number of machines inside each
cell, and maximization of the size of so-called mutually separable cells as an objec-
tive function. Spiliopoulos and Sofianopoulou (1998) and Arket et al. (2012) also
present branch and bound algorithms for the machine partitioning problem.

One of the recent exact approaches for the CFP with the grouping efficacy
objective function is suggested by Elbenani and Ferland (2012). These authors
suggest to reduce the fractional programming CFP problem to a number of ILP
problems by means of Dinkelbach approach and to solve each ILP problem with
CPLEX solver. Unfortunately they consider the CFP with a fixed number of cells
which is much easier. They solve 27 of the 35 popular benchmark instances, but
only for a fixed number of cells. The same simplified formulation of the CFP is
considered by Brusco (2015). The author develops a branch and bound algorithm
and solves 31 of the 35 instances, but again only for some fixed numbers of cells.
For example problem 26 is solved only for 7 cells and it requires more than 15
days of computational time.

To the best of our knowledge the only existing exact approach to the CFP
with a variable number of cells and grouping efficacy objective function is by
Bychkov et al. (2014) who suggested a new approach to reduce the CFP problem
to a small number of ILP problems and for the first time solved to optimality 14
of the 35 popular benchmark instances from literature using CPLEX software.
Zilinskas et al. (2015) considered the CFP with a variable number of cells as a
bi-objective optimization problem and developed an exact algorithm which finds
Pareto frontier.

In this paper we suggest an efficient branch and bound algorithm for the
CFP with a variable number of cells and grouping efficacy objective function.
We are able to find optimal solutions for 21 of the 35 benchmark instances. Note
also that the CFP is a biclustering problem in which we simultaneously cluster
machines and parts into cells. So the suggested approach can be also applied to
biclustering problems arising in data mining (Busygin et al. 2008).

2 Formulation

The objective of the CFP is to find an optimal partitioning of machines and
parts into groups (production cells, or shops) in order to minimize the inter-cell
movement of parts from one cell to another and to maximize intra-cell processing
operations. The input data for this problem is matrix A which contains zeroes
and ones. The size of this matrix is m×p which means that it has m machines and
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p parts. The element aij of the input matrix is equal to one if part j should be
processed on machine i. The objective is to minimize the number of zeroes inside
cells and the number of ones outside cells. There have been suggested several
objective functions which combine these two goals. The objective function which
provides a good combination of these goals and is widely accepted in literature
is the grouping efficacy suggested by Kumar and Chandrasekharan (1990):

f =
nin
1

n1 + nin
0

→ max, (1)

where n1 is the number of ones in the input matrix, nin
1 is the number of ones

inside cells, nin
0 is the number of zeroes inside cells.

The mathematical programming model for the CFP is the following (see also
Bychkov et al. (2014)).
Decision variables:

xik =

{
1 if machine i is assigned to cell k

0 otherwise
(2)

yjk =

{
1 if part j is assigned to cell k

0 otherwise
(3)

Objective function:

max
nin
1

n1 + nin
0

(4)

Constraints:

nin
1 =

c∑

k=1

m∑

i=1

p∑

j=1

aijxikyjk (5)

nin
0 =

c∑

k=1

m∑

i=1

p∑

j=1

(1 − aij)xikyjk (6)

c∑

k=1

xik = 1 ∀i = 1, . . . ,m (7)

c∑

k=1

yjk = 1 ∀j = 1, . . . , p (8)

m∑

i=1

p∑

j=1

xikyjk ≥
m∑

i=1

xik ∀k = 1, . . . , c (9)

m∑

i=1

p∑

j=1

xikyjk ≥
p∑

j=1

yjk ∀k = 1, . . . , c (10)

Here c = min(m, p) is the maximum possible number of cells. Constrains (7) and
(8) require that every machine and every part is assigned to exactly one cell.
Constrains (9) and (10) require that there are no cells having only machines
without parts or only parts without machines.
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3 Branch and Bound Algorithm

3.1 Branching

Because of the biclustering structure of the CFP our branching goes by two para-
meters. The suggested algorithm has branching on machines and parts sequen-
tially changing each other: machines-parts-machines-... We use vectors M(1×m)
and P (1 × p) for this purpose. Element Mi contains the cell to which machine
i is assigned and element Pj contains the cell to which part j is assigned. For
example M = [1231] and P = [11321] mean that cell 1 contains machines 1, 4 and
parts 1, 2, 5, cell 2 contains machine 2 and part 4, and cell 3 contains machine
3 and part 3.

Branching on machines makes changes in vector M . It starts from assigning
the first machine to cell 1. Let k be the number of cells in the current partial
solution. When the algorithm branches on machines, it takes the first machine
which is not assigned to any cell and tries to assign it to the existing cells with
numbers from 1 to k or creates a new cell (k + 1) for this machine.

Branching on parts makes changes in vector P . It starts with all zeroes inside
P which means that no parts are assigned to any cell. When the algorithm
branches on parts it takes the first part which is not assigned to any cell and
tries to assign it to the existing cells from 1 to k or to a new cell (k + 1)∗ (star
means that the number of the cell can be k + 1 or greater) if there are some
unassigned machines which can be also added later to this new cell. We assume
that the number of parts is greater than the number of machines.

The algorithm branches on parts and machines successively. It starts with
M = [100 . . . 0] and P = [00 . . . 0]. Next it changes vector P , then - vector M
and so on. This way the algorithm builds the search tree. The leaves of the
search tree contain complete solutions and other nodes contain partial solutions.
The complete search tree depends only on the number of machines and parts. It
contains all feasible solutions as its leaves.

To provide an efficient branching, before choosing a branch we calculate an
upper bound for each branch and choose the branch with the greatest value
of the upper bound. This branching strategy allows us to find good solutions
earlier.

3.2 Upper Bound

To obtain an upper bound for a given partial solution we relax the original CFP
problem and suggest a polynomial algorithm to calculate an optimal solution or
an upper bound for the relaxed problem. The relaxed problem is formulated as
follows. We are given a partial solution in which some of the machines and parts
are already assigned to some cells. For example in Table 1 machines 1, 2 with
parts 1, 2, 3, 4 are assigned to cell 1, and machine 3 with part 5 is assigned to
cell 2. The objective is to assign the remaining machines independently on each
other to the existing cells or to a new cell, and assign the remaining parts to
the existing cells taking into account only the rows already assigned in the given
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partial solution. In the relaxed problem we allow an independent assignment
of machines and parts to cells. In this case the best assignment for machine 4
will be to put it to cell 1 with parts 1, 2, 3, 4, 7. This will bring 4 ones and 1
zero inside cells. The best assignment for machine 5 will be to put it to a new
cell 3 with parts 7, 8. This will bring 2 ones and 0 zeroes inside cells. The best
assignment for parts 6 and 7 which takes into account only rows 1, 2, 3 will be
to put it to cell 2 (with machine 3). The best assignment for part 8 which takes
into account only rows 1, 2, 3 will be to put it to cell 1 (with machines 1, 2).
This optimal solution for the relaxed problem is shown in Table 2. This solution
is infeasible for the original CFP problem because independent assignment of
machines and parts is allowed and as a result we obtain non-rectangular cells
which can also intersect by columns. Since it is an optimal solution to the relaxed
problem it provides an upper bound to the original problem. In our example for
the partial solution we have f = 8

21+1 ≈ 0.36 and the solution of the relaxed
problem gives us an upper bound to the complete solution of the CFP equal to
UB = 8+10

21+1 ≈ 0.82.
In our example from Table 1 it is not obvious whether the chosen alternative

(a1, b1) = (4, 1) (putting 4 ones and 1 zero inside cells) is better than alternative
(a2, b2) = (1, 0) for machine 3. To choose between two alternatives we use the
following theorem.

Theorem 1. If the unknown maximum value of the objective function a
b for the

relaxed CFP problem without assignment of machine i (considering all its ones
and zeroes to be outside cells) can be estimated as a

b ∈ [l, u], b ∈ [bl, bu], then
alternative (a1, b1) for machine i is better than alternative (a2, b2) if:

bl

(

l − Δa

Δb

)

≥ b1
Δa

Δb
− a1 (11)

Table 1. A partial solution for the CFP

1 2 3 4 5 6 7 8

1 1 1 1 1 1 0 0 1
2 1 1 0 1 0 0 0 1

3 0 0 1 0 1 1 1 0

4 1 0 1 1 1 0 1 0
5 0 0 0 0 0 0 1 1

Table 2. Optimal solution for the relaxed CFP

1 2 3 4 5 6 7 8

1 1 1 1 1 1 0 0 1
2 1 1 0 1 0 0 0 1

3 0 0 1 0 1 1 1 0
4 1 0 1 1 1 0 1 0
5 0 0 0 0 0 0 1 1
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and is worse than (a2, b2) if:

bu

(

u − Δa

Δb

)

≤ b1
Δa

Δb
− a1 (12)

Here Δa = a2 − a1,Δb = b2 − b1 > 0 (if Δb < 0 we can always swap the
alternatives).

Proof. Alternative (a1, b1) is better than alternative (a2, b2) if:

a + a1

b + b1
≥ a + a2

b + b2
(13)

Multiplying this inequality by the positive denominators and making simple
transformations (here we need Δb > 0) we get the equivalent inequality:

b

(
a

b
− Δa

Δb

)

≥ b1
Δa

Δb
− a1 (14)

Using the given estimations for the unknown maximum value of the objective
function a

b we have the following bounds for the left-hand side of this inequality:

bl

(

l − Δa

Δb

)

≤ b

(
a

b
− Δa

Δb

)

≤ bu

(

u − Δa

Δb

)

So if inequality (11) is true then we immediately have that inequalities (14) and
(13) are true, which means that alternative (a1, b1) is better than alternative
(a2, b2). Otherwise if inequality (12) is true then we immediately have that the
opposite inequalities are true:

b

(
a

b
− Δa

Δb

)

≤ b1
Δa

Δb
− a1,

a + a1

b + b1
≤ a + a2

b + b2

This means that alternative (a2, b2) is better in this case. 	

Note that in case Δb = 0 it is obvious which of the two alternatives is better.
It is also not difficult to estimate the unknown maximum value of the objective
function a

b for the relaxed CFP problem without assignment of machine i (con-
sidering all its ones and zeroes to be outside cells). Let ac, bc be the current values
of the objective function numerator ac = nin

1 and denominator bc = n1 +nin
0 for

the current partial solution. Then in the worst case we can get a
b = ac

bc
because

every unassigned machine can be put to a new cell putting some ones and no
zeroes inside it, and every part can be left unassigned. So the lower bound is
l = ac

bc
. In the best case we can put inside cells no zeroes and all the ones except

n̄out
1 ones which lie in the already assigned area and cannot get inside cells (see

gray area (the darkest area on black-and-white printing) in Table 1) and except
ni
1 ones which lie in row i. So the upper bound is u = (n1 − n̄out

1 − ni
1)/bc. The

value of the denominator b can be estimated as: bc ≤ b ≤ n1 + n0 − n̄out
0 − ni

0.
Here n1 and n0 are the number of ones and zeroes in the input matrix, n̄out

0 is
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the number of zeroes which lie in the already assigned area (gray area in Table 1)
and ni

0 is the number of zeroes in row i.
Below we present a polynomial algorithm of calculating the suggested upper

bound as an optimal solution of the relaxed CFP problem, if we can always
choose the best alternative for every machine and part, or as an upper bound
to this solution otherwise. We illustrate the algorithm on the instance shown in
Table 3.

Algorithm 1. Algorithm to choose between two alternatives
function CompareAlternatives(a1, b1, a2, b2, n1, n0, n

in
1 , nin

0 , n̄out
1 , n̄out

0 , ni
1, n

i
0)

Δa ← a2 − a1, Δb ← b2 − b1 � Δb should be non-negative
if (Δb = 0) then

if (Δa < 0) then
return 1

else if (Δa > 0) then
return 2

else
return 0

ac ← nin
1 , bc ← n1 + nin

0 , bl ← bc, bu ← n1 + n0 − n̄out
0 − ni

0, l ← ac
bc

, u ←
n1−n̄out

1 −ni
1

bc

if bl

(
l − Δa

Δb

) ≥ b1
Δa
Δb

− a1 then
return 1

if bu

(
u − Δa

Δb

) ≤ b1
Δa
Δb

− a1 then
return 2

return -1

Table 3. Example for upper bound calculation

1 2 3 4 5 6 7 8 9

1 1 1 1 1 1 0 0 0 0
2 1 1 1 1 0 0 0 0 1

3 0 0 0 0 0 1 1 0 0

4 0 1 1 0 0 0 0 1 1
5 0 0 0 0 1 1 0 0 1

1. Calculate the number of ones nin
1 and zeroes nin

0 inside the cells of the given
partial solution and the number of ones n̄out

1 and zeroes n̄out
0 which cannot

get inside cells in any solution (see gray area (the gray area with black zeroes
on black-and-white printing) in Table 3). The total number of ones n1 and
zeroes n0 are constant. From these values we get the numerator ac = nin

1

and the denominator bc = n1 + nin
0 for the efficacy f = ac/bc of the current

partial solution. For the example in Table 3 we have: nin
1 = 11, nin

0 = 1, n̄out
1 =

0, n̄out
0 = 9, n1 = 19, n0 = 26, ac = 11, bc = 20.



A Branch and Bound Algorithm for a Fractional 0-1 Programming Problem 251

Table 4. Solution providing the upper bound

1 2 3 4 5 6 7 8 9

1 1 1 1 1 1 0 0 0 0
2 1 1 1 1 0 0 0 0 1

3 0 0 0 0 0 1 1 0 0

4 0 1 1 0 0 0 0 1 1
5 0 0 0 0 1 1 0 0 1

2. For every unassigned machine (row) using Algorithm 1 we compare all pos-
sible alternatives of adding it to one of the existing cells or to a new cell.
For our example we have 3 alternatives for machine i = 4: 1) (4, 3) - add it to
cell 1 with parts 1, 2, 3, 4, 5, 8, 9 putting 4 ones and 3 zeroes inside this cell; 2)
(2, 2) - add it to cell 2 with parts 6, 7, 8, 9 putting 2 ones and 2 zeroes inside;
3) (2, 0) - add it to a new cell 3 with parts 8, 9 putting 2 ones and 0 zeroes
inside. Obviously alternative 3 is better than alternative 2. So we need to
compare only two alternatives (a1, b1) = (2, 0) and (a2, b2) = (4, 3). We have:
ni
1 = 4, ni

0 = 5,Δa = 2,Δb = 3, l = ac/bc = 11/20, u = (n1 − n̄out
1 − ni

1)/bc =
15/20, bl = 20, bu = n1 + n0 − n̄out

0 − ni
0 = 31. And the values we need to

apply Algorithm 1 are:

b1
Δa

Δb
− a1 = −2, bl

(

l − Δa

Δb

)

= −7
3
, bu

(

u − Δa

Δb

)

=
31
12

So neither of the conditions in Algorithm 1 is satisfied and we cannot deter-
mine which alternative is better (Algorithm 1 returns −1). In this case
we build an alternative (max(a1, a2),min(b1, b2)), which is better than both
incomparable alternatives, and use it to obtain an upper bound on the solu-
tion of the relaxed CFP problem. In our example it is alternative (4, 0).
Now for machine i = 5 we have: ni

1 = 3, ni
0 = 6, l = 11/20, u = 16/20, bl =

20, bu = 30. There are 3 alternatives (2, 4), (2, 1), and (1, 0). It is clear that
alternative (2, 4) is worse than (2, 1). For (a1, b1) = (1, 0) and (a2, b2) = (2, 1)
we have:

b1
Δa

Δb
− a1 = −1, bl

(

l − Δa

Δb

)

= −9, bu

(

u − Δa

Δb

)

= −6

So bu

(
u − Δa

Δb

) ≤ b1
Δa
Δb − a1 and Algorithm 1 returns alternative (a2, b2) =

(2, 1). Thus (2, 1) is the best alternative for machine 5.
3. For every unassigned part (column) in the same way using Algorithm 1 we

compare all possible alternatives of adding it to one of the existing cells or
leaving it unassigned. However in this case we take into account only ones
and zeroes which lie in the rows already assigned in the given partial solution
(blue area (the darkest area with white digits on black-and-white printing)
in Table 3).
In our example part 8 has only zeroes in this area and so it is better not to
add it to any cell. For part 9 (j = 9) we have 3 alternatives: (1) (1, 1) - add
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it to cell 1 putting 1 one and 1 zero inside; (2) (0, 1) - add it to cell 2 putting
0 ones and 1 zero inside; (3) (0, 0) - do not add it to any cell. It is clear
that (0, 1) is a bad alternative and we need to compare only (a1, b1) = (0, 0)
and (a2, b2) = (1, 1). We have nj

1 = 1, nj
0 = 2, l = ac/bc = 11/20, u =

(n1 − n̄out
1 − nj

1)/bc = 18/20, bl = 20, bu = n1 + n0 − n̄out
0 − nj

0 = 34. The
values needed to apply Algorithm 1 are:

b1
Δa

Δb
− a1 = 0, bl

(

l − Δa

Δb

)

= −9, bu

(

u − Δa

Δb

)

= −3.4

So bu

(
u − Δa

Δb

) ≤ b1
Δa
Δb − a1 and Algorithm 1 returns alternative (a2, b2) =

(1, 1) as the best alternative for part 9.
4. We calculate the upper bound by putting inside all the ones and zeroes cor-

responding to the best alternatives chosen for all unassigned machines and
parts. For our example the corresponding solution which gives an upper bound
to the relaxed CFP problem (and thus to the original CFP problem also) is
shown in Table 4. For this example we have UB = 11+4+2+1

19+0+1+1 = 18
21 ≈ 0.86.

4 Results

The suggested branch and bound algorithm has been able to solve 21 of 35 pop-
ular benchmark instances from the literature exactly and to find good solutions
for the remaining 14 instances. The results are presented in Table 5. All compu-
tations were run on Intel Core i7 with 16 Gb RAM. Note that the algorithm was
run without any initial solution while in the results reported by Bychkov et al.
(2014) the best-known solutions were used as initial.

The results show that the developed algorithm is more efficient than the
approach suggested by Bychkov et al. (2014). Bychkov et al. (2014) approach is
able to solve to optimality only instances 1–13, where it is much slower (up to
1000 times) than our new algorithm, and also instance 22 which is very simple
and is solved withing 0.01 s by both approaches. The suggested algorithm is
able to solve to optimality 7 instances more (instances 14, 15, 16, 17, 20, 23,
24) which are very hard and have never been solved before to the best of our
knowledge. All instances marked with footnote ‘b’ in Table 5 (21 instance) have
not been solved to optimality by Bychkov et al. (2014). As it is noted in this
footnote in this approach the problem is divided into a number of IP subproblems
and a time limit of 300 s is set for every subproblem. That is why all these
instances have different times after which the computation has been stopped
without reaching an optimal solution. All instances marked with footnote ‘a’ in
Table 5 (14 instances) have not been solved to optimality by the new approach.
The time limit was set to 100000 s for all these instances.
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Table 5. Results

# Name Size Best-known f Time, s Bychkov et al.

solution (2014), Time, s

1 King and Nakornchai (1982) 5 × 7 0.8235 0.8235 0.00 0.63

2 Waghodekar and Sahu (1984) 5 × 7 0.6957 0.6957 0.00 2.29

3 Seifoddini (1989) 5 × 18 0.7959 0.7959 0.00 5.69

4 Kusiak (1987) 6 × 8 0.7692 0.7692 0.00 1.86

5 Kusiak and Chow (1987) 7 × 11 0.6087 0.6087 0.00 9.14

6 Boctor (1991) 7 × 11 0.7083 0.7083 0.00 5.15

7 Seifoddini and Wolfe (1986) 8 × 12 0.6944 0.6944 0.00 13.37

8 Chandrasekharan and

Rajagopalan (1986a)

8 × 20 0.8525 0.8525 0.00 18.33

9 Chandrasekharan and

Rajagopalan (1986b)

10 × 10 0.5872 0.5872 0.19 208.36

10 Mosier and Taube (1985a) 10 × 15 0.7500 0.7500 0.00 6.25

11 Chan and Milner (1982) 10 × 15 0.9200 0.9200 0.00 2.93

12 Askin and Subramanian (1987) 14 × 24 0.7206 0.7206 2.89 259.19

13 Stanfel (1985) 14 × 24 0.7183 0.7183 5.51 259.19

14 McCormick et al. (1972) 16 × 24 0.5326 0.5326 97117.43 b20829.38

15 Srinivasan et al. (1990) 16 × 30 c0.6899 0.6899 837.93 b13719.99

16 King (1980) 16 × 43 0.5753 0.5753 7045.64 b24930.93

17 Carrie (1973) 18 × 24 0.5773 0.5773 5668.25 b13250.01

18 Mosier and Taube (1985b) 20 × 20 0.4345 a0.4211 100000.00 b43531.77

19 Kumar et al. (1986) 20 × 23 0.5081 a0.4697 100000.00 b33020.13

20 Carrie (1973) 20 × 35 0.7791 0.7791 88.62 b11626.98

21 Boe and Cheng (1991) 20 × 35 0.5798 a0.5615 100000.00 b33322.08

22 Chandrasekharan and

Rajagopalan (1989)

24 × 40 1.0000 1.0000 0.00 0.00

23 Chandrasekharan and

Rajagopalan (1989)

24 × 40 0.8511 0.8511 33.70 b6916.24

24 Chandrasekharan and

Rajagopalan (1989)

24 × 40 0.7351 0.7351 86007.93 b14408.88

25 Chandrasekharan and

Rajagopalan (1989)

24 × 40 0.5329 a0.5185 100000.00 b34524.47

26 Chandrasekharan and

Rajagopalan (1989)

24 × 40 0.4895 a0.4648 100000.00 b41140.94

27 Chandrasekharan and

Rajagopalan (1989)

24 × 40 0.4726 a0.4468 100000.00 b44126.76

28 McCormick et al. (1972) 27 × 27 0.5482 a0.5017 100000.00 b22627.28

29 Carrie (1973) 28 × 46 0.4706 a0.4569 100000.00 b71671.08

30 Kumar and Vannelli (1987) 30 × 41 0.6331 a0.5942 100000.00 b22594.20

31 Stanfel (1985) 30 × 50 0.6012 a0.5789 100000.00 b31080.82

32 Stanfel (1985) 30 × 50 0.5083 a0.4860 100000.00 b48977.01

33 King and Nakornchai (1982) 30 × 90 0.4775 a0.4684 100000.00 b99435.64

34 McCormick et al. (1972) 37 × 53 0.6064 a0.5680 100000.00 b47744.04

35 Chandrasekharan and

Rajagopalan (1987)

40 × 100 0.8403 a0.8403 100000.00 b24167.76

a The problem is not solved to optimality by our algorithm within the time limit of 100000 s.
b The problem is not solved to optimality by Bychkov et al. (2014). In this approach the problem is

divided into a number of IP subproblems and a time limit of 300 s is set for every subproblem.
c A greater value is reported in some papers on heuristics probably due to an incorrect input matrix.

Acknowledgment. This research is supported by Laboratory of Algorithms and
Technologies for Network Analysis, NRU HSE.



254 I. Utkina et al.

References

Arkat, J., Abdollahzadeh, H., Ghahve, H.: A new branch and bound algorithm for cell
formation problem. Appl. Math. Model. 36, 5091–5100 (2012)

Askin, R.G., Subramanian, S.P.: A cost-based heuristic for group technology configu-
ration. Int. J. Prod. Res. 25(1), 101–113 (1987)

Ballakur, A., Steudel, H.J.: A within cell utilization based heuristic for designing cel-
lular manufacturing systems. Int. J. Prod. Res. 25, 639–655 (1987)

Boctor, F.F.: A linear formulation of the machine-part cell formation problem. Int. J.
Prod. Res. 29(2), 343–356 (1991)

Boe, W., Cheng, C.H.: A close neighbor algorithm for designing cellular manufacturing
systems. Int. J. Prod. Res. 29(10), 2097–2116 (1991)

Brusco, J.M.: An exact algorithm for maximizing grouping efficacy in part machine
clustering. IIE Transactions 47(6), 653–671 (2015)

Burbidge, J.L.: The new approach to production. Prod. Eng. 40(12), 3–19 (1961)
Busygin, S., Prokopyev, O., Pardalos, P.M.: Biclustering in data mining. Comput.

Oper. Res. 35(9), 2964–2987 (2008)
Bychkov, I., Batsyn, M., Sukhov, P., Pardalos, P.M.: Heuristic algorithm for the cell for-

mation problem. In: Goldengorin, B.I., Kalyagin, V.A., Pardalos, P.M. (eds.) Models,
Algorithms, and Technologies for Network Analysis. Springer Proceedings in Math-
ematics & Statistics, vol. 59, pp. 43–69. Springer, New York (2013)

Bychkov, I., Batsyn, M., Pardalos, P.: Exact model for the cell formation problem.
Optimization Letters 8(8), 2203–2210 (2014)

Carrie, S.: Numerical taxonomy applied to group technology and plant layout. Int. J.
Prod. Res. 11, 399–416 (1973)

Chan, H.M., Milner, D.A.: Direct clustering algorithm for group formation in cellular
manufacture. J. Manuf. Syst. 1(1), 64–76 (1982)

Chandrasekharan, M.P., Rajagopalan, R.: MODROC: an extension of rank order clus-
tering for group technology. Int. J. Prod. Res. 24(5), 1221–1233 (1986a)

Chandrasekharan, M.P., Rajagopalan, R.: An ideal seed non-hierarchical clustering
algorithm for cellular manufacturing. Int. J. Prod. Res. 24(2), 451–464 (1986b)

Chandrasekharan, M.P., Rajagopalan, R.: ZODIAC: an algorithm for concurrent for-
mation of part families and machine cells. Int. J. Prod. Res. 25(6), 835–850 (1987)

Chandrasekharan, M.P., Rajagopalan, R.: Groupability: analysis of the properties of
binary data matrices for group technology. Int. J. Prod. Res. 27(6), 1035–1052 (1989)

Elbenani, B., Ferland, J. A. Cell Formation Problem Solved Exactly with the Dinkel-
bach Algorithm. Montreal, Quebec. CIRRELT-2012-07, 1–14(2012)

Flanders, R.E.: Design manufacture and production control of a standard machine.
Trans. ASME 46, 691–738 (1925)

Goldengorin, B., Krushinsky, D., Pardalos, P.M.: Cell Formation in Industrial Engi-
neering. Theory, Algorithms and Experiments. Springer Optimization and Its Appli-
cations, vol. 79, p. 206. Springer, New York (2013)

Goncalves, J.F., Resende, M.G.C.: An evolutionary algorithm for manufacturing cell
formation. Comput. Ind. Eng. 47, 247–273 (2004)

James, T.L., Brown, E.C., Keeling, K.B.: A hybrid grouping genetic algorithm for the
cell formation problem. Comput. Oper. Res. 34(7), 2059–2079 (2007)

King, J.R.: Machine-component grouping in production flow analysis: an approach
using a rank order clustering algorithm. Int. J. Prod. Res. 18(2), 213–232 (1980)

King, J.R., Nakornchai, V.: Machine-component group formation in group technology:
review and extension. Int. J. Prod. Res. 20(2), 117–133 (1982)



A Branch and Bound Algorithm for a Fractional 0-1 Programming Problem 255

Kumar, K.R., Kusiak, A., Vannelli, A.: Grouping of parts and components in flexible
manufacturing systems. Eur. J. Oper. Res. 24, 387–397 (1986)

Kumar, K.R., Chandrasekharan, M.P.: Grouping efficacy: a quantitative criterion for
goodness of block diagonal forms of binary matrices in group technology. Int. J.
Prod. Res. 28(2), 233–243 (1990)

Kumar, K.R., Vannelli, A.: Strategic subcontracting for efficient disaggregated manu-
facturing. Int. J. Prod. Res. 25(12), 1715–1728 (1987)

Kusiak, A.: The generalized group technology concept. Int. J. Prod. Res. 25(4), 561–
569 (1987)

Kusiak, A., Chow, W.S.: Efficient solving of the group technology problem. J. Manuf.
Syst. 6(2), 117–124 (1987)

Kusiak, A., Boe, J.W., Cheng, C.: Designing cellular manufacturing systems: branch-
and-bound and A* approaches. IIE Transactions 25(4), 46–56 (1993)

McCormick, W.T., Schweitzer, P.J., White, T.W.: Problem decomposition and data
reorganization by a clustering technique. Oper. Res. 20(5), 993–1009 (1972)

Mitrofanov, S.P.: Nauchnye osnovy gruppovoy tekhnologii. Lenizdat, Leningrad,
Russia, 435 pages (1933). (in Russian)

Mosier, C.T., Taube, L.: The facets of group technology and their impact on imple-
mentation. OMEGA 13(6), 381–391 (1985a)

Mosier, C.T., Taube, L.: Weighted similarity measure heuristics for the group technol-
ogy machine clustering problem. OMEGA 13(6), 577–583 (1985b)

Paydar, M.M., Saidi-Mehrabad, M.: A hybrid genetic-variable neighborhood search
algorithm for the cell formation problem based on grouping efficacy. Comput. Oper.
Res. 40(4), 980–990 (2013)

Seifoddini, H.: A note on the similarity coefficient method and the problem of improper
machine assignment in group technology applications. Int. J. Prod. Res. 27(7), 1161–
1165 (1989)

Seifoddini, H., Wolfe, P.M.: Application of the similarity coefficient method in group
technology. IIE Transactions 18(3), 271–277 (1986)

Spiliopoulos, K., Sofianopoulou, S.: An optimal tree search method for the manufac-
turing systems cell formation problem. Eur. J. Oper. Res. 105, 537–551 (1998)

Srinivasan, G., Narendran, T.T., Mahadevan, B.: An assignment model for the part-
families problem in group technology. Int. J. Prod. Res. 28(1), 145–152 (1990)

Stanfel, L.: Machine clustering for economic production. Eng. Costs Prod. Econ. 9,
73–81 (1985)

Waghodekar, P.H., Sahu, S.: Machine-component cell formation in group technology
MACE. Int. J. Prod. Res. 22, 937–948 (1984)

Zilinskas, J., Goldengorin, B., Pardalos, P.M.: Pareto-optimal front of cell formation
problem in group technology. J. Global Optim. 61(1), 91–108 (2015)



Scheduling Problems



Approximating Coupled-Task Scheduling
Problems with Equal Exact Delays

Alexander Ageev(B) and Mikhail Ivanov
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Abstract. We consider a coupled-task single machine scheduling prob-
lem with equal exact delays and makespan as the objective function. We
design a 3-approximation algorithm for the general case of this problem.
We also prove that the existence of a (1.25−ε)-approximation algorithm
implies P=NP. The inapproximability result remains valid for the case
when the processing times of the two operations of each job are equal.
We prove that this case is approximable within a factor of 1.5.

Keywords: Couple-task scheduling · Inapproximability lower bound ·
Approximation algorithm · Worst-case analysis

1 Introduction

We consider the single-machine coupled-task scheduling problem with exact
delays. In the problem a set J = {1, . . . , n} of independent jobs is given. Each
job j ∈ J consists of two operations with processing times aj and bj separated
by a given exact delay lj , which means that the second operation of job j must
start processing exactly lj time units after the first operation of job j has been
completed. It is assumed that at any time the machine can process at most
one operation and no preemptions are allowed. The objective is to minimize
the makespan (the schedule length). In the standard three-field notation scheme
introduced by Graham et al. [11] (see also [2]) the single machine problem is
denoted by 1 | exact lj | Cmax.

In this paper, we consider the case of the single machine problem when all
delays are equal, i.e., lj = L for all j ∈ J . We refer to this case as 1 | exact lj =
L | Cmax.

The scheduling problems with exact delays arise in command-and-control
applications where a commander distributes a set of orders (associated with the
first operations) and must wait to receive responses (corresponding to the sec-
ond operations) that do not conflict with any other (for more detailed discussion
on the subject, see [9,14]). Research papers on problem 1 | exact lj | Cmax are
mostly motivated by applications in pulsed radar systems, where the machine is
a multifunctional radar whose purpose is to simultaneously track various targets
by emitting a pulse and receiving its reflection some time later [7,9,10,13,14].

c© Springer International Publishing Switzerland 2016
Y. Kochetov et al. (Eds.): DOOR 2016, LNCS 9869, pp. 259–271, 2016.
DOI: 10.1007/978-3-319-44914-2 21
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Coupled-task scheduling problems with exact delays also arise in chemistry man-
ufacturing where there often may be an exact technological delay between the
completion time of some operation and the starting time of the next operation.

1.1 Related Work

Coupled-task scheduling problems have been investigated for decades. Quite a
few various results related to these problem are surveyed by Blazewicz et al. in [5]
(for later results see [6,12]). We cite here only previously known approximation
results as well as those related to the case of equal delays.

Orman and Potts [13] establish that the problem is strongly NP-hard even in
some special cases. In particular, they prove it for 1 | exact lj = L, bj = b | Cmax,
i.e., in the case when lj = L, bj = b for all j ∈ J . Baptiste [3] presents an algorithm
with running time O(log n) for the very special case when aj = a, bj = b, lj = L
for all jobs j provided that a, b, and L are fixed. The complexity status of the case,
when a, b, and L are not fixed, remains open [4,13].

Ageev and Baburin [1] present non-trivial constant-factor approximation
algorithms for both the single and two machine problems under the assump-
tion of unit processing times. More specifically, in [1] it is shown that problem
1 | exact lj , aj = bj = 1 | Cmax is approximable within a factor of 7/4.

Ageev and Kononov [2] present a 3.5-approximation algorithm for the general
case of 1 | exact lj | Cmax and a 3-approximation algorithms for the cases when
aj ≤ bj , or aj ≥ bj for all j ∈ J . They also show that the latter algorithms
provide a 2.5-approximation for the case when aj = bj for all j ∈ J . Moreover,
they prove that problem 1 | exact lj | Cmax is not (2 − ε)-approximable unless
P=NP even in the case of aj = bj for all j ∈ J .

Table 1. A summary of the approximability results.

Problem Appr. factor Inappr. bound Ref.

1 | exact lj , | Cmax 3.5 2 − ε [2]

1 | exact lj , aj ≤ bj | Cmax 3 2 − ε [2]

1 | exact lj , aj = bj | Cmax 2.5 2 − ε [2]

1 | exact lj , aj = bj = 1 | Cmax 1.75 [1]

1 | exact lj = L | Cmax 3 1.25 − ε this paper

1 | exact lj = L, aj ≤ bj | Cmax 2 1.25 − ε this paper

1 | exact lj = L, aj = bj | Cmax 1.5 1.25 − ε this paper

1.2 Our Results

We show that the existence of a (1.25 − ε)-approximation for 1 | exact lj =
L | Cmax even in the case aj = bj for all jobs j = 1, . . . n implies P=NP.
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On the positive side, we design a 3-approximation for 1 | exact lj = L | Cmax.
For the cases of 1 | exact lj = L, | Cmax when aj ≤ bj or aj = bj for
all jobs j = 1, . . . n we present 2- and 1.5-approximations, respectively. The
1.5-approximation algorithm has a remarkable property: its approximation fac-
tor tends to the inapproximability lower bound of 1.25 when the number of
blocks it constructs tends to infinity.

Our results compared with the previously known approximation results are
shown in Table 1.

1.3 Basic Notation

For both problems an instance will be represented as a collection of triples
{(aj , lj , bj) : j ∈ J} where J = {1, . . . , n} is the set of jobs, aj and bj are
the lengths of the first and the second operations of job j, respectively and lj
is the given delay between these operations. As usual, we assume that all input
numbers are nonnegative integers. For a schedule σ and any j ∈ J , denote by
σ(j) the starting time of the first operation of job j. As the starting times of the
first operations uniquely determine the starting times of the second operations,
any feasible schedule is uniquely specified by the collection of starting times of
the first operations {σ(1), . . . , σ(n)}. For a schedule σ and any j ∈ J , denote by
Cj(σ) the completion time of job j in σ; note that Cj(σ) = σ(j) + lj + aj + bj
for all j ∈ J . The length of a schedule σ is denoted by Cmax(σ) and thus
Cmax(σ) = maxj∈J Cj(σ). The length of a shortest schedule is denoted by C∗

max.

2 Inapproximability Lower Bound

In this section we establish an inapproximability lower bound for the problem
1 | exact lj = L, aj = bj | Cmax. This bound holds for all cases of 1 | exact lj =
L | Cmax we consider in this paper.

The only related complexity result we aware of is that of Orman and Potts
[13]: they prove that the case when lj = L, bj = b for all j is strongly NP-hard.

To obtain our bound we construct a specific polynomial-time reduction from
the following well-known NP-complete problem [8]:

Partition

Instance: Nonnegative integers w1, . . . , wm such that
∑m

k=1 wk = 2S.

Question: Does there exist a subset X ⊆ {1, . . . , m} such that
∑

k∈X wk = S?
Consider an instance I of Partition. Construct an instance of 1 | exact lj =

L, aj = bj | Cmax.
Let J = {1, . . . , m + 2} and

aj = bj = wj , lj = R + S for j = 1, . . . m,

aj = bj = R, lj = R + S for j = m + 1,m + 2

where R > 6S.
We call the jobs m + 1 and m + 2 big and the remaining jobs, small.



262 A. Ageev and M. Ivanov

Fig. 1. The jobs in {1, . . . , m} are executed within the shaded intervals.

Lemma 1. (i) If
∑

k∈X wk = S for some subset X ⊆ {1, . . . m}, then there
exists a feasible schedule σ such that Cmax(σ) ≤ 4R + 6S.

(ii) If there exists a feasible schedule σ with Cmax(σ) ≤ 4R + 6S, then
∑

k∈X

wk = S

for some set X ⊆ {1, . . . m}.
(iii) If there does not exists a feasible schedule σ with Cmax(σ) ≤ 4R+6S, then

C∗
max > 5R.

Proof. (i) We construct a schedule σ such that Cmax(σ) ≤ 4R + 6S. For the
big jobs m + 1 and m + 2 set σ(m + 2) = σ(m + 1) + R + S. Then the first
operation of job m + 1 and the first operation of job m + 2 are separated by
the interval A = [σ(m + 1) + R, σ(m + 1) + R + S] of size S. The same is
true for the second operations of these jobs: they are separated by the interval
B = [σ(m + 2) + 2R, σ(m + 2) + 2R + S] of size S (see Fig. 1).

The small jobs in X are scheduled in the following way. The second operations
of these jobs are executed within the interval A one by one without idles in
the nondecreasing order of wj (see Fig. 1). The first operations of the jobs j ∈
{1, . . . , m}\X are executed within the interval B one by one without idles in the
nonincreasing order of wj . Since lj = R + S and wj ≤ S for all j ∈ {1, . . . , m},
the constructed schedule σ has length at most 4R + 6S.

(ii) W.l.o.g. we may assume that σ(m+1) < σ(m+2). Then the first operation
of job m + 2 must be executed before the second operation of job m + 1 since
otherwise Cmax(σ) > 6R. Moreover, by the definitions of jobs no operation of jobs
in j ∈ {1, . . . , m} can be executed between the first operation of job m + 2 and
the second operation of job m+1. On the other hand, if some job j ∈ {1, . . . , m}
is scheduled outside the big jobs, i.e., both operations of j are not in the interval
[σ(m + 1), σ(m + 1) + 4R + 3S], then Cmax(σ) > 5R > 4R + 6S. It follows
that exactly one operation of each small job j ∈ {1, . . . ,m} is executed either
between the first operations of the big jobs m + 1 and m + 2, or between the
second operations of these jobs. Since

∑m
k=1 wk = 2S, the interval between the

first operation of job m+2 and the second operation of job m+1 is empty, i.e.,
σ(m + 2) = σ(m + 1) + R + S. Moreover,

∑m
k=1 wk = 2S also implies that the

machine has no idles within time intervals [σ(m+1)+R, σ(m+1)+R+S] and
[σ(m+1)+3R+S, σ(m+1)+3R+2S]. Thus the schedule σ has the form shown
in Fig. 1 and for the set of small jobs X ⊆ {1, . . . , m} whose second operations
are executed within the time interval [σ(m+1)+R, σ(m+1)+R+ S] we have∑

k∈X wk = S as required.
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(iii) In (ii) we actually proved that if for a schedule σ Cmax(σ) ≤ 4R + 6S, then
exactly one operation of each small job j ∈ {1, . . . , m} is executed either between
the first operations of the “big” jobs m + 1 and m + 2, or between the second
operations of these jobs. Otherwise at least one job j ∈ {1, . . . , m} is scheduled
outside the big jobs, i.e., both operations of j are executed either earlier, or later
than both operations of the big jobs. However, then Cmax(σ) > 5R. ��

Set R = qS where q ≥ 6. Lemma 1 implies that the existence of an α-
approximation algorithm with α < 5R/(4R + 6S) = 5q/(4q + 6) implies that
P = NP . Thus we have the following result.

Theorem 1. The existence of a (5/4− ε)-approximation algorithm for problem
1 | exact lj = L, aj = bj | Cmax implies P=NP. ��

3 Approximation Algorithms

We give approximations for three special cases of 1 | exact lj = L | Cmax.

3.1 Algorithm for 1 | exact lj = L, aj ≤ bj | Cmax

The algorithm of this section is essentially Algorithm 1M≤ in [2] described for
the special case when lj = L, j = 1, . . . n. We give a refined analysis of the
algorithm for this case.

Informally, the algorithm does the following. First it arranges the jobs in order
of the non-increasing lengths of the first operations. Then it looks over the jobs
in this order and successively constructs blocks Bs (s = 1, . . . r) which are some
bundles of jobs js, . . . , js+1 −1 (j1 = 1). In each block Bs, the second operations
of job js = 1, . . . , js −1 are processed one after the other (see Fig. 2(a)). A block
becomes complete when it cannot be augmented in this way by the current job.
Then the algorithm starts constructing the next block. Finally, the algorithm
outputs a schedule which consists in the successive execution of blocks B1, . . . Br

(see Fig. 2(b) with r = 4).
Now we give a formal description of the algorithm. Recall that we consider

the case when aj ≤ bj j = 1, . . . , n.

L

11 22 33

B B1 B B432

(a)

(b)

Fig. 2. (a) a block consisting of three jobs; (b) a schedule consisting of four blocks.
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Algorithm A≤.

Phase I (jobs ordering). Number the jobs in the following way:

a1 ≥ a2 ≥ . . . ≥ an .

Phase II (constructing blocks 1, . . . , r). By examining the set of jobs in the
order j = 1, . . . , n compute the indices j1 < j2 < . . . < jr ≤ n in the following
way.

Step 1. Set j1 = 1. If
∑t−1

s=1 bs ≤ L for all t = 2, . . . , n, then set r = 1,
otherwise go to Step 2.

Step k(k ≥ 2). Set jk to be equal to the minimum index among indices t >

jk−1 such that
∑t−1

s=jk−1
bs > L. If jk = n or

∑t−1
s=jk

bs ≤ L for all t = jk+1, . . . , n,
then set r = k, otherwise go to Step k + 1.

Phase III (constructing the schedule). Set σ(j1) = σ(1) = 0. If r > 1, then
for s = 2, . . . , r set

σ(js) = σ(js−1) + ajs−1 + L +
js−1∑

k=js−1

bk .

For every j ∈ J \ {j1, . . . , jr}, set

σ(j) = σ(js) + ajs − aj +
j−1∑

k=js

bk

where s is the maximum index such that js < j.
The correctness of the algorithm is established by Lemma 1 in [2]. The run-

ning time is O(n log n).

Approximation Ratio

Note that C∗
max ≥ max{W1,W2} where

W1 =
n∑

j=1

(aj + bj) (1)

and

W2 = L +
n∑

i=1

bj .

The lower bound W1 is trivial. The bound W2 follows from the fact that in any
feasible schedule all second operations are executed outside the delay (= L) of
the first executed job.
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For every s = 1, . . . , r define

Hs = ajs + L +
js+1−1∑

k=js

bk, (2)

i.e., Hs is the length of the block Bs.
Since the blocks are executed one after the other without idles,

Cmax(σ) =
r∑

s=1

Hs =
r∑

s=1

(ajs + L) +
n∑

j=1

bj .

By the description of the algorithm (see Step k) for any s = 1, . . . r − 1

js+1−1∑

k=js

bk > L. (3)

It follows that

Cmax(σ) ≤
r∑

s=1

ajs + L +
r−1∑

s=1

js+1−1∑

k=js

bk +
n∑

j=1

bj

≤ (
r∑

s=1

ajs +
n∑

j=1

bj) +
n∑

j=1

bj + L (4)

≤ W1 + W2

≤ C∗
max.

Theorem 2. Algorithm A≤ finds a schedule of length within factor of 2 of the
length of a shortest schedule. ��

3.2 Algorithm Agen for 1 | exact lj = L | Cmax

To construct an 3-approximation for the case of arbitrary aj and bj we use a
trick in [2]. Then we give a refined worst-case approximation bound analysis.

Let I = {(aj , lj , bj) : j ∈ J} be an instance of 1 | exact lj = L | Cmax.

Algorithm Agen.

1. If
∑n

j=1 aj >
∑n

j=1 bj , replace I = {(aj , L, bj) : j ∈ J} by the symmetrical
instance {(bj , L, aj) : j ∈ J} (which is equivalent to the inverse of the time axis).

2. Form a new instance I∗ = {(aj , lj = L, bj) : j ∈ J} where bj = max{aj , bj}
(note that I∗ is an instance of 1 | exact lj = L, aj ≤ bj | Cmax.)

3. By applying Algorithm A≤ to I∗ find a schedule σ.
4. If

∑n
j=1 aj ≤ ∑n

j=1 bj output σ; otherwise output the inverse of σ.

It is clear that the running time of Algorithm Agen is O(n log n).
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Approximation Ratio

We may evidently assume that

n∑

j=1

aj ≤
n∑

j=1

bj . (5)

Now by (5) and the definition of bj we have

Cmax(σ) ≤ ( r∑

s=1

ajs +
n∑

j=1

bj
)
+

n∑

j=1

bj + L

≤
n∑

j=1

aj +
n∑

j=1

max{aj , bj} +
n∑

j=1

max{aj , bj} + L

≤
n∑

j=1

aj +
n∑

j=1

(aj + bj) +
n∑

j=1

(aj + bj) + L

=
( n∑

j=1

aj +
n∑

j=1

bj
)
+

( n∑

j=1

bj + L
)
+ 2

n∑

j=1

aj

≤ W1 + W2 + 2
n∑

j=1

aj

≤ 2W1 + W2(by (5))
≤ 3C∗

max.

Theorem 3. Algorithm Agen finds a schedule of length within factor of 3 of the
length of a shortest schedule. ��

3.3 Improved Analysis of Algorithm A≤ for
1 | exact lj = L, aj = bj | Cmax

In this subsection we give an improved worst-case analysis of Algorithm A≤ for
the case when aj = bj for all j ∈ J .

If for some j ∈ J , aj > L then no operation of any other job can be executed
within the delay of job j. Hence such jobs are executed independently of the
other jobs in any feasible schedule and so the problem reduces to the case when
aj ≤ L for all j ∈ J . In this subsection we assume that

aj ≤ L for all j ∈ J. (6)
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In the analysis, we use the following lower bounds for C∗
max:

W1 = 2
n∑

j=1

aj

and

W3 = 2a1 + L +
n∑

j=2

aj .

The first bound is a special case of (1). The bound W3 follows from the fact that
in any feasible schedule at least one operation of any job j ≥ 2 will be executed
outside the delay of job 1.

Recall that by (2) Hs denotes the length of block Bs, s = 1, . . . , r. We call a
block complete if it satisfies (3). By the description of Algorithm A≤ all blocks
except, possibly Br are complete.

Note first that in the case r = 1 (of one block) Algorithm A≤ outputs an
optimal schedule since Cmax(σ) = W3.

Case r = 2.

In this case the first block is complete and so satisfies (3), i.e.,
∑j2−1

j=1 aj > L.
Thus

Cmax(σ) = H1 + H2

=
(
a1 + L +

j2−1∑

j=1

aj

)
+

(
aj2 + L +

n∑

j=j2

aj

)

= 2a1 + L +
n∑

j=2

aj + L + aj2

= W3 + L + aj2 .

Since B1 is complete,

L + aj2 ≤
j2−1∑

j=1

aj + aj2 ≤
n∑

j=1

aj = 1/2W1.

Thus
Cmax(σ) ≤ W3 + 1/2W1 ≤ 3/2C∗

max.

Case r = s + 1, s ≥ 2.

For k = 1, . . . r, let xk denote the idle time within the delay of the first job
in the block Bk, i.e., the idle time within Bk.

Lemma 2. For k = 1, . . . s, xk < ajk .
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Proof. Let k ∈ {1, . . . s}. First, we have

Hk = ajk + L +
jk+1−1∑

j=jk

aj .

On the hand, by the definition of xk

Hk = 2
jk+1−1∑

j=jk

aj + xk.

It follows that

ajk − xk =
jk+1−1∑

j=jk

aj − L. (7)

Since Bk is complete,
jk+1−1∑

j=jk

aj > L.

Together with (7) this gives the required inequality xk < ajk . ��
Lemma 3. For any blocks Bk and Bl such that 1 ≤ k < l ≤ s

xk + xl < L. (8)

Proof. Set

St =
jt+1−1∑

j=jt+1

at

for t = 1, . . . , s. Note that xt = L − St. Moreover, since Bt for t = 1, . . . , s is
complete the assumption (6) implies St > 0. Recall that

a1 ≥ a2 ≥ . . . ≥ an.

Since l > k this implies ajl ≤ Sk. By Lemma 2 it follows that

xk + xl = (L − Sk) + xl < (L − Sk) + ajl ≤ L.

��
Since Hs+1 ≤ as+1 + L +

∑n
j=s+1 aj we have

Cmax(σ) =
s∑

k=1

Hk + Hs+1

=
(
2
j2−1∑

j=1

aj + x1

)
+ . . . +

(
2
js+1−1∑

j=js

aj + xs

)
+ Hs+1

≤ 2
n∑

j=1

aj +
s∑

k=1

xk + L.
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By the inequality (8) it follows that

Cmax(σ) ≤ 2
n∑

j=1

aj + G + L,

where G is the optimum of the following linear program

max{
s∑

k=1

λk : λp + λq ≤ L, 1 ≤ p < q ≤ s}.

It is easy to see that λ∗ = 1/2 is an optimal solution of this problem and so
G = sL

2 . Thus

Cmax(σ) ≤ 2
n∑

j=1

aj +
sL

2
+ L. (9)

Moreover, since the blocks Bk, k = 1, . . . s, are complete,

jk+1−1∑

j=jk

aj > L.

It follows that

W1 = 2
n∑

j=1

aj ≥ 2sL. (10)

Now by (9) and (10)

Cmax(σ) ≤ W1 +
1
4
W1 + L.

Since by (10) L≤ 1
2sW1, it follows that

Cmax(σ) ≤ W1 +
1
4
W1 +

W1

2s
≤ (1 +

1
4
+

1
2s

)C
∗
max . (11)

Finally, since we assume that r = s + 1 > 2, i.e., s ≥ 2

Cmax(σ) ≤ 3
2
C∗

max.

Moreover, the inequality (11) shows that the approximation ratio tends to 5/4
when the number of blocks tends to infinity. It is a remarkable fact since by
Theorem 1 5/4 is the inapproximability lower bound for this problem.

Finally, we collect the results of the subsection in the following

Theorem 4. Let aj = bj for all j ∈ J . Then in the worst case Algorithm A≤

finds a schedule of length within factor of 3/2 of the length of a shortest schedule.
Moreover, the approximation factor is equal to 5

4 + 1
2(r−1) when r ≥ 3. ��
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4 Concluding Remarks

We conclude the paper by pointing out possible directions for further work. First,
we suppose that there exists a bit more sophisticated algorithm for 1 | exact lj =
L | Cmax with a better approximation factor. Second, as was mention above even
the complexity status of 1 | exact lj = L, aj = a, bj = b | Cmax remains open [4,
13] though Algorithm 1M≤ provides a 2-approximation for this case. Therefore
it seems reasonable to ask if there exists a better approximation for it. Third,
since Partition is weakly NP-hard, Theorem 1 leaves open the question of the
existence of a full (1.25+ε)-approximation scheme for the problem 1 | exact lj =
L, aj = bj | Cmax.

Acknowledgments. The authors thank the anonymous referees for their helpful com-
ments and suggestions.
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Abstract. The routing open shop problem is a generalization of schedul-
ing open shop problem and metric TSP. The jobs are located at nodes
of some transportation network while the machines travel on the net-
work to execute the jobs in the open shop environment. The machines
are initially located at the same node (the depot) and have to return
to the depot after completing all the jobs. The goal is to construct a
feasible schedule minimizing the makespan. The problem is known to be
NP-hard even for the trivial case with two machines on a link.

We discuss the generalization of that problem in which each machine
has individual travel times between the nodes of the network. For this
model with two machines on a tree we suggest a linear time algorithm
for a case when the depot is not predefined and has to be chosen.

Keywords: Scheduling · Routing open shop · Unrelated travel times

1 Introduction

We consider the routing open shop problem which was introduced in [1,2]. This
problem is a generalization of two classic discrete optimization problems: Open
Shop scheduling problem and metric Travelling Salesman Problem. Note that
both problems are strongly NP-hard.

The Open Shop problem [7] can be described as follows. Given a set of
machines M = {M1, . . . ,Mm} and a set of jobs J = {J1, . . . , Jn} one has
to process each job by each machine, this operation takes pji time. Preemption
is not allowed. Each machine can process at most one job and each job can
be processed by at most one machine at any time moment. The objective is to
construct feasible schedule minimizing the makespan (or the length of the sched-
ule). Note that for the Open Shop problem the makespan coincided with the
maximum operation’s completion time Cmax. The input of this problem can be
described by the matrix of processing times P = (pji)m×n.

The Open Shop is known to be solvable in linear time for the case of two
machines and is NP-hard for the three-machine case [7]. It is strongly NP-hard
when the number of machines is the part of input. For this case for any ρ < 5

4
no ρ-approximation algorithm exist (unless P = NP) [11].
c© Springer International Publishing Switzerland 2016
Y. Kochetov et al. (Eds.): DOOR 2016, LNCS 9869, pp. 272–283, 2016.
DOI: 10.1007/978-3-319-44914-2 22
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In the Metric Travelling Salesman problem we have an undirected edge-
weighted graph G = 〈V,E〉. The weight of edge epq = [vp, vq] is a nonnegative
integer representing a distance between nodes vp and vq. Distances satisfy the tri-
angle unequality. The goal is to find a hamiltonian tour in G with minimal total
weight of its edges. The problem is strongly NP-hard [6]. The input of this problem
can be described by the matrix of distances D = (τpq)k×k, there k = |V |.

The Routing Open Shop problem is the combination of the two problems
mentioned. The jobs are located at the nodes of transportation network repre-
sented by an edge-weighted connected graph G. The machines have to travel
between the nodes to execute all the jobs. Thus each machine spends time not
only to process its operation but also to travel.

It is assumed that each machine travels with unit speed and travel paths
are not bottle-neck: any number of machines can travel the same edge in the
same time. All the machines are initially located at the same node (referred to
as the depot) and have to return back after completing all their operations. The
makespan of a feasible schedule is the length of the time interval between the
instant when the machines start working or moving and the instant when the last
machine returns to the depot after completing all its operations. The goal is to
minimize the makespan Rmax (note that it differs from Cmax). Following standard
three-field notation [9] we’ll denote this problem as RO||Rmax (or ROm||Rmax

in case number of machines m is fixed).
The graph G is not necessary the complete one but the routing problem on

G is equivalent to the metric TSP on its transitive closure. Thus we’ll denote the
shortest distances between nodes vp and vq of G by τpq. The input of the Routing
Open Shop problem consists of the matrix of processing times P, matrix of dis-
tances D, the location function V (V (j) stands for the index of node containing
the job Jj) and the index of the depot (without lost of generality let it be 0).

The Routing Open Shop problem is strongly NP-hard as it contains the
metric TSP as a subcase. Moreover is remains NP-hard even on a 2-node network
with only two machines [2]. For the latter case a FPTAS exists [8].

Several approximation algorithms are known for the Routing Open Shop
problem. Most of them can be found in [3] and references within. Two most
relevant to the present paper algorithms are described in [3]: a 13

8 -approximation
algorithm for RO2||Rmax and a 4

3 -approximation for RO2|easy−TSP |Rmax (for
the case when the optimal solution of the TSP on the graph G is known or can
be found in polynomial time due to the graph structure or special properties of
the distance matrix).

In the Routing Open Shop problem all the machines travel with the same unit
speed hence distances τpq coincide with travel times. In this paper we introduce
the generalization of the Routing Open Shop problem in which travel times
are specific for different machines. Let τ

(i)
pq stand for the travel time between

nodes vp and vq for machine Mi. We can consider the following hierarchy of the
travel time models (inspired by classic scheduling models with parallel machines,
see [9] for example):
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– RO||Rmax: τ
(i)
pq = τpq (identical travel times);

– RO|Qtt|Rmax: τ
(i)
pq =

τpq
si

(uniform travel times, si represents the travel speed

of machine Mi);
– RO|Rtt|Rmax: τ

(i)
pq are individual for each machine (unRelated travel times).

Obviously the last model is the hardest because unlike the previous ones in
RO|Rtt|Rmax each machine has its own individual optimal route over G. This
model has some similarity to the Routing Open Shop with Missed Operations, in
which each machine has it’s own subset of jobs to process and therefore doesn’t
have to visit each node of the transportation network.

In this paper we consider a special case of RO2|Rtt|Rmax in which G is a
tree and the depot node is not predefined but has to be chosen by the scheduler.
We will denote the problem by RO2|Rtt, tree, variable − depot|Rmax. For this
problem we present a linear time algorithm.

The remainder of the paper is organized as follows. Section 2 provides nec-
essary definitions, notation and preliminary results. Section 3 contains a simple
approximation algorithm for RO2|Rtt|Rmax. Section 4 thoroughly describes the
main tools for achieving our result — jobs’ aggregation procedure and its prop-
erties. Section 5 contains the description of the main algorithm and the proof
of its optimality. In Sect. 6 we discuss some open questions and future research
plans.

2 Main Definitions and Notation

Let I be an instance of the Routing Open Shop Problem, P(I) = (pji)m×n is
its matrix of processing times, D(I) = (τpq)k×k is the matrix of distances on
the graph G = 〈V,E〉, V = {v0, . . . , vk−1}, v0 is the depot and job Jj is located
at the node vV (j). Let J t = {Jj ∈ J |V (j) = t} be the set of all jobs from
node vt. We assume that each non-depot node contains at least one job (i.e.
∀t ∈ {1, . . . , k − 1} J t �= ∅).

We will also use pji to denote the operation of machine Mi and job Jj (in
addition to the notation of its processing time). In the case of two machines we
will use aj and bj instead of pj1 and pj2.

Let sji(σ) and cji(σ) .= sji(σ) + pji denote the starting and the completion
times of operation of job Jj and machine Mi in schedule σ. The feasibility
requirements for schedule σ are the following. If job Ja is processed by machine
Mi before job Jb, then

sbi(σ) � cai(σ) + τV (a)V (b).

Also for any job Jj ∈ J
sji(σ) � τ0V (j).

The release moment of machine Mi in schedule σ is the time moment when
machine Mi returns to the depot after completing all its operations and is equal
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to Ri(σ) .= max
j

(cji(σ) + τV (j)0). The makespan of schedule σ is the maximal

release moment Rmax(σ) .= max
i

Ri(σ). The goal is to find a feasible schedule

minimizing the makespan Rmax. R∗
max stands for the optimal makespan.

Let �i
.=

n∑

j=1

pji denote the total processing time of the operations of machine

Mi, referred to as the load of Mi. The total processing time of operations of the

job Jj is called the length of the job and is denoted by dj
.=

m∑

i=1

pji. �max
.= max �i

and dmax
.= max dj are the maximal machine load and maximal job length

respectively.
Note that for the Open Shop problem with the input P the value

C̄
.= max{�max, dmax} (1)

is the lower bound for the optimum. In the two-machine case optimum always
coincides with C̄ [7].

Let T ∗ denotes the length of the optimal tour over graph G with matrix of
distances D. Due to the fact that each machine has to visit each node at least
once, we have the following simple lower bound for the optimum of the RO||Rmax

problem:

R̂
.= max{�max + T ∗, dmax} � R∗

max. (2)

Although it is easy to observe that some job Jj cannot be completed in time less
than dj + 2τ0V (j), therefore

R̄
.= max

{
�max + T ∗,max{dj + 2τ0V (j)}

}
� R∗

max (3)

is also a more precise lower bound to the optimum.
Now let us formulate the Routing Open Shop problem with Unrelated Travel

Times (RO|Rtt|Rmax). The input of the problem with unrelated travel times is
similar to the input of the original Routing Open Shop problem only instead of
one matrix of distances D we have m such matrices D(i) =

(
τ
(i)
pq

)

k×k
representing

travel times for each machine independently. Let T ∗
i denote the length of the

optimal tour for machine Mi.
Adapting the lower bound R̂ to this case we obtain

R̂Rtt .= max
{

max
i

(�i + T ∗
i ), dmax

}
. (4)

The adaptation of the lower bound R̄ is not that easy since scheduling of a
single job even in Qtt case generally is an NP-hard problem even on a two-node
network (link).

Lemma 1. The problem RO|link, n = 1, Qtt|Rmax is NP-hard.
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Proof. We will reduce the PARTITION problem to the decision-making version
of our problem. Let S = {a1, . . . , am} be the input of the PARTITION problem,∑

ai = 2K. Consider the following instance IS of the RO|link, n = 1, Qtt|Rmax.
This instance has m+1 machines, two nodes, v0 being a depot, and a single job
J with processing times (a1, . . . , am, 0) located at v1. Distance between nodes
is equal to K + 1, sm+1 = 1, si = K + 1 for i = 1, . . . ,m, therefore the travel
times for machines M1 to Mm equal to 1 while τ (m+1) = K + 1. Let us proof
that the schedule with makespan not exceeding 2K + 2 for instance IS exists iff
the partition of set S exists.

The sufficiency is obvious. Let us have a partition
l∑

i=1

ai =
m∑

i=l+1

ai = K.

Then the schedule with makespan 2K+2 looks as follows: operations of machines
M1, . . . ,Mm are performed without idles in that sequence in interval [1, 2K +1],
while the zero operation of machine Mm+1 starts and completes at time moment
K + 1 (see Fig. 1). Concave arcs represent travel intervals of the machines.

Now consider we have a schedule with makespan 2K + 2. Then the zero
operation of machine Mm+1 has to be scheduled at moment K+1 and operations
of other machines are performed without idles in interval [1,K + 1]. As soon as
preemption is not allowed, some operation’s completion time should coincide
with the moment K + 1, hence we have a partition. �	

K + 11 2K + 2

Mm+1

M1, . . . ,Mm

Fig. 1. Illustration of an optimal schedule for instance IS in case the answer to the
PARTITION is positive.

3 Simple Heuristic for RO2|Rtt|Rmax

Consider the following algorithm for RO2|Rtt|Rmax.
Algorithm S.

1. For each machine Mi use a polytime approximation algorithm with the best
approximation guarantee available to find the near-optimal tour ρi over G.
Create permutations of jobs πi consistent with route ρi, i = 1, 2.

2. Let each machine Mi process its operations in order πi, idling if some job is
busy being processed by the other machine. If two machines arrive at some
job at the same time, machine M1 goes first.
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Theorem 1. Let σ be the schedule built by Algorithm S, Ti stands for the length
of tour ρi, T2 = κT1, without lost of generality κ � 1. Then

1. if Ti = T ∗
i (easy − TSP case) then Rmax(σ) � 2R̂Rtt;

2. else Rmax(σ) � min
{

5
2
, 1 + max

{
1,

κ

2

}}

R̂Rtt.

Proof. Note that idle time of any machine Mi in schedule σ doesn’t exceed the
load �3−i of the other machine. For case 1 it means

Ri � �i + T ∗
i + �3−i = �1 + �2 + T ∗

i � 2R̂Rtt, i = 1, 2.

Consider case 2. Let us use the Christofides-Serdyukov algorithm for finding

near-optimal tours over G [5,10]. Then Ti � 3
2
T ∗
i .

Note that

Ri � �i +
3
2
T ∗
i + �3−i = �1 + �2 +

3
2
T ∗
i � 5

2
R̂Rtt, i = 1, 2.

From the other hand

R1 � �1 +
3
2
T ∗
1 + �2 � (�1 + T ∗

1 ) + (�2 +
1
2
T ∗
2 ) � 2R̂Rtt,

R2 � �2 +
3
2
T ∗
2 + �1 = (�2 + T ∗

2 ) + (�1 +
κ

2
T ∗
1 ) � R̂Rtt + max

{
1,

κ

2

}
R̂Rtt,

therefore Rmax(σ) � min
{

5
2
, 1 + max

{
1,

κ

2

}}

R̂Rtt. �	

4 Jobs’ Aggregation

Consider the following jobs’ aggregation operation.

Definition 1. Let I be an instance of the Routing Open Shop problem with set
of jobs J = {J1, . . . , Jn} and K ⊆ J t is a subset of jobs from node vt. By
aggregation of set K we understand the following transformation of I into new
instance I ′ in which

J ′t = J t \ K ∪ {JK}, pKi =
∑

Jj∈K
pji.

This way a set of jobs K is replaced by a new aggregated job for which operations’
processing times are the total processing times of corresponding operations of
jobs replaced. Note that any feasible schedule of instance I ′ can be treated as
a feasible schedule of the initial instance I with the same makespan. Our goal
is to reduce the number of jobs using the aggregation operations providing that
the lower bound R̂Rtt wouldn’t change.

From now on we consider a two-machine case of the Routing Open Shop
problem.
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Definition 2. Let Δt .=
∑

Jj∈J t

dj be the load of the node vt. We will refer to the

node vt as overloaded if Δt > R̂Rtt.

Lemma 2. For any instance of the RO2|Rtt|Rmax there is at most one over-
loaded node.

Proof. Note that from (4) we have

n∑

j=1

dj =
k−1∑

t=0

Δt = �1 + �2 � 2R̂Rtt − T ∗
1 − T ∗

2 . (5)

It follows that for any two different nodes vp and vq

Δp + Δq � 2R̂Rtt,

therefore at least one of vp and vq is not overloaded. �	
Lemma 3. For any instance I of the problem RO2|Rtt|Rmax there exists
another instance I ′ obtained from I by series of jobs’ aggregation operations
such that

1. R̂Rtt(I ′) = R̂Rtt(I),
2. all the nodes of I ′ excluding at most one contain exactly one job. The one

“exclusive” node contains at most three jobs.

Proof. In order to preserve the lower bound R̂Rtt we may only apply jobs’ aggre-
gation operation to sets K ∈ J t such that

∑

Jj∈K
dj � R̂Rtt.

Thus for any not overloaded node vt we may safely apply the aggregation opera-
tion to the whole set J t. According to Lemma 2 there is at most one overloaded
node vp in instance I. Let J p = {J1, . . . , Jl}. Let us perform the following
aggregation operations.

Let f be the maximal index such that
f∑

j=1

dj � R̂Rtt. First apply the aggrega-

tion operation to the set K = {J1, . . . , Jf}. Now we have jobs {JK, Jf+1, . . . , Jl}
in the node vp and due to the choice of f

dK + df+1 > R̂Rtt.

Consider the case when f + 1 < l (otherwise we already have only two jobs JK
and Jf+1 in node vl and the proof is complete). Then from (5) we have

l∑

j=f+2

dj = Δp − dK − df+1 < 2R̂Rtt − T ∗
1 − T ∗

2 − R̂Rtt � R̂Rtt,

hencewemay apply the aggregation operation to the remaining jobs {Jf+2, . . . , Jl}
in vp, which completes the proof. �	
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We will refer to the transformation described in the proof above as jobs’
aggregation procedure. Note that the jobs’ aggregation procedure can be per-
formed in O(n) time.

The idea of the algorithm described in the following section is based on the
reduction of the number of jobs using the jobs’ aggregation procedure, construct-
ing a schedule of the reduced instance and considering that schedule as one for
the initial problem instance.

5 The Main Result

In this section we consider the RO2|Rtt, tree, variable−depot|Rmax problem. In
this model graph G is a tree and depot node is not predefined. One has to choose
the location of the depot and find an optimal schedule relatively the choice made.

We will prove that this problem is solvable in linear time to the optimum.
Note that RO2|Rtt, tree|Rmax is NP-hard as it contains a known NP-hard prob-
lem RO2|link|Rmax as a special case [1].

Also note that R̂Rtt is still a lower bound for a variable − depot problem.

5.1 The Idea of the Algorithm A

The basic idea behind the Algorithm A is the job’s aggregation procedure. We
will use it to transform the initial instance of the problem into the one with small
number of jobs preserving the lower bound R̂Rtt (which is possible due to the
Lemma 3). Note that any feasible schedule for the aggregated instance can be
easily interpreted as a feasible schedule for the initial instance: we only need to
treat each aggregated operation as a continuous block of operations aggregated
performed in any order without idles.

We will also use a subroutine Remove thoroughly described in the next
subsection. The idea of that subroutine is the following. Consider some terminal
node u ∈ G containing a single job Jj with operations’ processing times aj and
bj . Let node w be adjacent to u and travel times of machines M1 and M2 over the
edge [u,w] are τ (1) and τ (2) respectively. The subroutine translates job Jj from
node u to node w, increasing its operations’ processing times by 2τ (1) and 2τ (2)

respectively while removing node u from G. This way the processing of operations
of transformed job Jj can be interpreted as a combination of travelling from w
to u, performing the initial operation and travelling back to w.

5.2 Description of the Algorithm A

Subroutine Remove(u)

1. Let u be a terminal node containing a single job Jj with processing times
aj and bj , and weights of its incident edge e = [u,w] are τ (1) and τ (2) for
machines M1 and M2 respectively.

2. Remove node u from G. Relocate job Jj to the node w. Set processing times
for Jj to aj + 2τ (1) and bj + 2τ (2).
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Algorithm A.

1. Perform the job’s aggregation procedure. IF some node v is overloaded THEN
GOTO Step 2 ELSE GOTO Step 4.

2. Choose v as the depot.
FOR EACH terminal node u �= v ∈ G DO
(a) Remove(u).
(b) Perform a job’s aggregation procedure for a modified graph G.

(Note that G is being modified inside the loop and so is the set of its terminal
nodes.)

3. Build an optimal schedule for jobs from node v using Gonzalez-Sàhni algo-
rithm [7]. GOTO Step 8.

4. FOR EACH terminal node u ∈ G DO
(a) Let u contain a single job Jj with processing times aj and bj , and weights

of its incident edge e = [u, v] are τ (1) and τ (2) for machines M1 and M2

respectively.
(b) IF dj + 2τ (1) + 2τ (2) � R̂Rtt THEN

i Remove(u).
ii Perform a job’s aggregation procedure for a modified graph G.

iii. IF node v is overloaded THEN GOTO Step 2.
5. IF G contains single node v THEN set choose it as the depot and GOTO

Step 3.
6. Modified graph G contains only two nodes, v0 and v1, each containing single

job J0 and J1 respectively. Without lost of generality suppose Δ0 � Δ1.
Choose node v0 as the depot.

7. Denote operations of job Jj by aj and bj . Build a schedule according to the
following order of operations:

S

a0 a1

b0b1

F

τ (2)

τ (1)

τ (2)

τ (1)

Vertices S and F denote start and completion moments of the schedule.
8. Interpret the resulting schedule as a solution for initial instance of the prob-

lem, treating the aggregated operations as continuous blocks of initial oper-
ations and treating processing of operations modified by the subroutine
Remove(u) as a sequence of travelling from w to u, performing the oper-
ation and travelling back to w. END.
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5.3 Optimality of the Algorithm A

Theorem 2. For any instance of the problem RO2|Rtt, tree, variable −
depot|Rmax Algorithm A obtains a feasible schedule of length R̂Rtt. The run-
ning time of Algorithm A is O(n).

Proof. At first lets prove that instance transformations used in Algorithm A
don’t affect the lower bound R̂Rtt. Indeed the jobs’ aggregation procedure doesn’t
change the lower bound due to the Lemma 3. The subroutine Remove(u) doesn’t
increase R̂Rtt if the following condition holds:

dj + 2τ (1) + 2τ (2) � R̂Rtt. (6)

Here Jj is a single job from u, τ (1) and τ (2) are travel times of machines over
edge incident to u. Note that at Step 4(b) condition (6) is explicitly verified
before calling of the subroutine.

Let’s prove that condition also holds at Step 2(a). In that case node v is
overloaded and u �= v. Denote the load of the node v by Δ > R̂Rtt. Inequality
(5) implies

Δ + dj + 2τ (1) + 2τ (2) � �1 + �2 + T ∗
1 + T ∗

2 � 2R̂Rtt

therefore (6) holds.
Now we have to prove that at Step 6 graph G contains only two nodes.

Observe the IF clause at Step 4(b). Lets prove that its condition is false at most
once (and that means that there is at most one not removed terminal edge).

Consider some terminal node v1 with job J1 and travel times over its incident
edge are τ

(1)
1 and τ

(2)
1 . Let the condition at Step 4(b) for node v1 be false implying

d1 + 2τ
(1)
1 + 2τ

(2)
1 > R̂Rtt. (7)

Consider another terminal node v2 (not adjacent to v1, otherwise we have only
two nodes already) with job J2 and travel times τ

(1)
2 and τ

(2)
2 . Note that d1 +

2τ
(1)
1 + 2τ

(2)
1 + d2 + 2τ

(1)
2 + 2τ

(2)
2 � �1 + �2 + T ∗

1 + T ∗
2 . Now it follows from (5)

and (7) that d2 + 2τ
(1)
2 + 2τ

(2)
2 < R̂Rtt.

To conclude the proof we need to show that Algorithm A builds a schedule
of length R̂Rtt for the transformed instance of the problem. For the case when
the transformed graph G contains a single node (Step 3) that fact follows from
the properties of the Gonzalez-Sàhni algorithm [7]. Consider Step 7.

The makespan of the schedule for jobs J0 and J1 built at Step 7 coincides
with the length of some critical path from S to F in scheme from Step 7. The
length of a path is a total weight of its nodes (operations processing times) and
arcs (travel times). Those possible lengths are

1. a0 + a1 + 2τ (1) = �1 + T ∗
1 � R̂Rtt,

2. a0 + b0 = d0 � R̂Rtt,
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3. b1 + b0 + 2τ (2) = �2 + T ∗
2 � R̂Rtt,

4. b1 + a1 + τ (1) + τ (2) = Δ1 + τ (1) + τ (2).

The only questionable variant is the fourth as from (4) each of the others doesn’t
exceed R̂Rtt. Let’s prove that Δ1 + τ (1) + τ (2) � R̂Rtt. Suppose that’s not true
and Δ1 + τ (1) + τ (2) > R̂Rtt. Note that Δ0 � Δ1 (see Step 6 of the Algorithm
A) and Δ0 + Δ1 � 2R̂Rtt − T ∗

1 − T ∗
2 from (5). But from the other hand we have

Δ0 + Δ1 + T ∗
1 + T ∗

2 = Δ0 + Δ1 + 2τ (1) + 2τ (2) � 2Δ1 + 2τ (1) + 2τ (2) > 2R̂Rtt.
The contradiction obtained proves our assumption to be wrong.

Note that the running time of the Algorithm A is majorized by the running
time of the jobs’ aggregation procedure (O(n)). The enumeration of terminal
nodes also can be done in O(k) and k � n + 1. �	

6 Open Questions and Future Research

Consider the problem RO2|Rtt|Rmax. Although generally it is difficult to adapt
lower bound R̄ for the problem with unrelated (or uniform) travel times (as
discussed in Sect. 2) this adaptation works fine for two machines. The following
value

R̄Rtt
2

.=
{

max
i

(�i + T ∗
i ) ,max

k

(
dkmax + τ

(1)
k0 + τ

(2)
k0

)}

is a lower bound for the optimum of RO2|Rtt|Rmax problem. Here dkmax
.=

max
Jj∈Jk

dj stands for the maximal job length at node vk. The question is, how good

can we approximate the optimum of RO2|Rtt|Rmax in comparison with the lower
bound R̄Rtt

2 ? More precisely, we are talking about the following optima localiza-
tion problem: what is the smallest possible value ρ such that optimum of any
instance of RO2|Rtt|Rmax is guaranteed to belong to the interval [R̄Rtt

2 , ρR̄Rtt
2 ]?

Note that for RO2||Rmax this problem is solved only partially. It is known

that optima of RO2|link|Rmax belong to the interval
[

R̄,
6
5
R̄

]

and the bounds

of the interval are tight [1]. This result was resently generalized to the case of
triangular transportation network RO2|triangle|Rmax [4]. From the other hand,
there is an approximation algorithm which builds a schedule with makespan not

exceeding
4
3
R̄ for RO2|easy−TSP |Rmax [3] an therefore optimum of RO2||Rmax

doesn’t exceed
4
3
R̄. One of the priorities of the future research of this problem is

to close the gap between
6
5

and
4
3

of the upper bound of the optima localization
interval.

As for RO2|Rtt|Rmax, the analogues question is even more open.
Algorithm S from Sect. 3 provides a schedule with makespan not greater than
2R̄Rtt for RO2|Rtt, easy − TSP |Rmax. One of the points of future research is to
find a better approximation algorithm for that problem.

Now consider optima localization problem for RO2|Rtt, tree|Rmax. For this
case we can simplify the structure of the tree using the Remove(u) subroutine
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from Subsect. 5.2. This subroutine would not increase the value of R̄Rtt unless u
is either the depot or the overloaded node. Since there is at most one overloaded
node according to Lemma 2 we may transform any tree into the chain whose
ends are the depot and the overloaded node. The optima localization interval for
the case of such a chain is still has not been studied yet and also is of interest.
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Abstract. The two machine routing open shop being a generalization
of the metric TSP and two machine open shop scheduling problem is
considered. It is known to be NP-hard even for the simplest case when
the transportation network consists of two nodes only. For that simplest
case it is known that the optimal makespan for any instance belongs
to interval [R̄, 6

5
R̄], there R̄ is the standard lower bound. We generalize

that classic result to the case of three-nodes transportation network and
present a linear time 6

5
-approximation algorithm for that case.

Keywords: Scheduling · Routing open shop · Optima localization

1 Introduction

In classic open shop model there are given sets of jobs J and machines M and
machines have to perform operations of each job in arbitrary order to minimize
finish time [6]. The input consists of given processing times for each operation
and can be described as m × n matrix, m and n being the numbers of machines
and jobs respectively. It is supposed that after performing an operation of some
job machine is immediately available for any successive job to process. However
in real life environment the latter is not the case. Jobs usually represent some
material objects and therefore some time lags between processing of different
operations are often unavoidable.

Various ways to model such time lags are known. Detailed review can be
found in [3] and references therein.

We consider the following routing open shop model. The jobs are supposed
to represent some large immovable objects located at the nodes of some trans-
portation network while machines are mobile and have to travel between the
locations of jobs to perform their operations.

The routing open shop model was introduced in [1,2]. It generalizes two clas-
sic NP-hard discrete optimization problems: metric traveling salesman problem
(TSP) and open shop scheduling problem. The routing open shop problem can
be described as following. There is a transportation network represented by an
undirected edge-weighted graph. Nodes represent some locations and weight of
c© Springer International Publishing Switzerland 2016
Y. Kochetov et al. (Eds.): DOOR 2016, LNCS 9869, pp. 284–297, 2016.
DOI: 10.1007/978-3-319-44914-2 23
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edge represents a distance between corresponding nodes. One of the nodes is
given to be a depot. There is a number of machines initially located at the depot
and a number of jobs distributed among all the nodes, each node contains at
least one job. Machines have to travel between nodes with unit speed using
shortest routes, processing operations of each job in an open shop environment.
After performing all the operations machines have to return to the depot. The
makespan of a schedule is the time moment of returning of the last machine
to the depot after processing all the operations. The goal is to minimize the
makespan. Following the traditional three-field notation (see [8] for example) we
will denote the routing open shop problem as RO||Rmax.

The routing open shop with a single machine is equivalent to a metric TSP
and therefore is well-known to be NP-hard in strong sense. A single-node routing
open shop is just a plain open shop problem and is NP-hard for three and
more machines while being polynomially solvable in the two-machine case [6].
The simplest non-trivial case of routing open shop is the two-machine problem
on a link (RO2|link|Rmax). This case is shown to be NP-hard in [1]. A fully
polynomial time approximation scheme and a few polynomially solvable subcases
for RO2|link|Rmax are described in [7].

Problem RO2|link|Rmax is thoroughly investigated in [2]. It is shown that the
optimal makespan for any instance doesn’t exceed 6

5 R̄, R̄ stands for the standard
lower bound (see Sect. 2), while reaching 6

5 R̄ for some instances. The approxi-
mation algorithm described in [2] produces a schedule with makespan belonging
to an interval [R̄, 6

5 R̄], therefore that algorithm provides an 6
5 -approximation.

There are several approximation algorithms known for the general two-
machine routing open shop (RO2||Rmax). An 7

4 -approximation algorithm is
described in [1]. More precise 13

8 -approximation algorithm is given in [3]. Note
that the RO2||Rmax problem includes a metric TSP as a special case. Since the
best known algorithm for the metric TSP is the 3

2 -approximation algorithm due
to Christofides [5] and Serdyukov [10] we cannot hope to achieve better than
3
2 -approximation for the RO2||Rmax problem until a better approximation for
the metric TSP will be found. From the other hand the easy-TSP version of the
RO2||Rmax (the case when an optimal solution for the underlying TSP is known
or the time complexity of its search is not taken into account) problem admits
a 4

3 -approximation algorithm described in [3].
Note that all the approximation algorithms mentioned in the previous para-

graph use the standard lower bound R̄ to justify their performance guarantees:
ρ-approximation algorithm actually obtains a schedule with makespan belonging
to an interval [R̄, ρR̄]. Therefore for any instance of the RO2||Rmax problem its
optimal makespan belongs to the interval [R̄, 4

3 R̄], though for the case on a link
this optima localization interval can be shrinked down to [R̄, 6

5 R̄]. That obser-
vations leads us to the question: what is the tightest interval of form [R̄, ρR̄]
which contains optima for all the instances of the RO2||Rmax problem? From
the previous research we know that 6

5 � ρ � 4
3 .

This paper addresses that question for a case of triangular transportation
network. For that RO2|triangle|Rmax problem we show that optimum of any
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instance belongs to the interval [R̄, 6
5 R̄] hence generalizing the known result for

a link [2].
Previously the routing open shop on a triangular transportation network was

addressed in [4] for the preemptive version of the problem. It was shown that for
any instance of the RO2|triangle, pmtn|Rmax problem its optimum belongs to
inteval [R̄, 11

10 R̄] while the algorithmic complexity of the problem is still unknown.
As for the RO2|link, pmtn|Rmax problem it is shown in [9] that the problem is
polynomially solvable and optimum always coincides with the standard lower
bound R̄.

The structure of the paper is the following. Section 2 contains the formal
description of the problem under consideration, necessary notation and pre-
liminary results. In Sect. 3 we will provide the proof of the main result for
three important special cases. The final proof and the description of the 6

5 -
approximation algorithm for the general RO2|triangle|Rmax problem as well as
concluding remarks will be given in Sect. 4.

2 Preliminary Notes

2.1 Formal Description and Necessary Notation

Let us give a formal description of the RO2||Rmax problem.
There are given sets J = {J1, . . . , Jn} of jobs and M = {A,B} of

machines. Each job Jj consists of two operations aj and bj to be processed by
machines A and B respectively in an arbitrary order. An undirected transporta-
tion network is represented by a connected edge-weighted graph G = 〈V,E〉,
V = {v0, . . . , vc−1}. The weight ωpq of edge epq = [vp, vq] ∈ E represents dis-
tance between nodes vp and vq. Distances are symmetric and satisfy the triangle
inequality. Graph G is not necessary complete but we will use the notation ωpq for
distance between any two even nonadjacent nodes. Jobs from J are distributed
between the nodes of transportation network and each node contains at least
one job. Both machines are initially located at v0 (the depot) and have to travel
with unit speed between nodes to perform operations of the jobs. Machines have
to return to the depot after completing all the jobs in some arbitrary sequence
without preemption.

The goal is to construct a feasible schedule of processing all the operations
and returning to the depot in minimal time.

Notation aj (bj) will also be used for the processing time of corresponding
operation. The set of jobs located at node vk will be denoted as J k.

As preemption is not allowed any schedule S can be described by specify-
ing the starting times sjA(S) (sjB(S)) for operations aj (bj) of each job Jj .
Completion time cjA(S) can be defined as sjA(S) + aj , cjB(S) = sjB(S) + bj .

For any feasible schedule S if machine M ∈ M processes job Jj ∈ J k before
job Ji ∈ J l then the following condition should be carried out:

siM (S) � cjM (S) + ωkl.
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If job Jj ∈ J k is the first job processed by machine M in schedule S then the
following condition should hold:

sjM (S) � ω0k.

Let job Jj ∈ J k be the last job processed by machine M ∈ M in schedule
S. Then machine M releases from duty at time moment

RM (S) .= cjM (S) + ωk0.

The makespan of a schedule S is defined as Rmax(S) .= max{RA(S), RB(S)}.
We will omit the notation of schedule S in cases it is uniquely defined by the

context.
For any problem instance I with weight function ω we will use the following

additional notation:

– �A(I) =
n∑

j=1

aj , �B(I) =
n∑

j=1

bj are the loads of machines A and B

correspondingly;
– dj(I) = aj + bj is the length of job Jj ∈ J ;
– �max(I) = max{�A(I), �B(I)} is the maximum machine load;
– dk

max(I) = max
Jj∈J k

dj(I) is the maximum job length at node vk;

– T ∗ is the length of the minimal travel route;
– R∗

max(I) stands for the optimal makespan.

Now we can describe the standard lower bound for the optimal makespan
introduced in [1]:

R∗
max(I) � R̄(I) .= max

{

�max(I) + T ∗,max
k

(
dk
max(I) + 2ω0k

)
}

. (1)

We will focus on a special case RO2|triangle|Rmax in which graph G is
triangular and V = {v0, v1, v2}. Lets introduce notation specific to the triangular
case:

– τ
.= ω01, ν

.= ω12, μ
.= ω02;

– T ∗ = τ + μ + ν.

In this case the standard lower bound has the following simplified form:

R̄ = max
{
�max + T ∗, d0max, d

1
max + 2τ, d2max + 2μ

}
. (2)

2.2 Jobs’ Aggregation

We will use the following definition introduced in [4].
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Definition 1. The load of node vk is the total processing time of all operations
from that node:

Δk .=
∑

Jj∈J k

dj .

Node vk is referred to as overloaded if

Δk + 2ω0k > R̄,

otherwise the node is underloaded.

The following statement holds for any instance of RO2||Rmax.

Statement 1. Let I be an instance of RO2||Rmax with graph G = 〈V,E〉. Then
V contains at most one overloaded node.

Proof. Note that due to (1) the following unequality holds for the total load :

Δ
.=

c−1∑

k=0

Δk = �A + �B � 2(R̄ − T ∗). (3)

Suppose we have an overloaded node vk, Δk > R̄ − 2ω0k � R̄ − T ∗. Then for
any other node vl unequality (3) implies

Δl � Δ − Δk < 2(R̄ − T ∗) − R̄ + T ∗ = R̄ − T ∗,

therefore
Δl + 2ω0l � Δl + T ∗ < R̄.

��
The algorithm we’ll present is based on the following operation of jobs’

aggregation.

Definition 2. Let I be some instance of RO2||Rmax, K ⊆ J k for some vk.
Then we say that instance I ′ is obtained from I by aggregation of jobs from K
if

J k(I ′) = J k(I) \ K ∪ {JK}, aK =
∑

Jj∈K
aj , bK =

∑

Jj∈K
bj ,

∀l 
= k J l(I ′) = J l(I).

The instance Ĩ obtains from I by a series of job’s aggregation will be referred to
as a modification of I.

It is obvious that any feasible schedule for some modification Ĩ of I can
be treated as a feasible schedule for I with the same makespan, therefore the
optimum of any modification of I is greater or equal to R∗

max(I). Note that
machine loads and node loads are preserved by any job’s aggregation operation.
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Statement 2. For any instance I of RO2||Rmax there exists its modification Ĩ
such that

1. R̄(Ĩ) = R̄(I),
2. every underloaded node in Ĩ contains exactly one job, the only overloaded

node (if any) contains at most three jobs.

Proof. In order to preserve the standard lower bound (1) under the job’s aggre-
gation operation we may only choose such sets K ⊆ J k that

∑

Jj∈K
dj � R̄ − 2ω0k.

Therefore for any underloaded node vk aggregation of jobs from set J k doesn’t
increase the standard lower bound. From Statement 1 there is at most one over-
loaded node vl in I. Let’s prove that we can aggregate jobs from J l into at most
three jobs preserving R̄.

Let J l = {J1, . . . , Jp}. Let j be the maximal index such that

j∑

t=1

dt � R̄ − 2ω0l.

Note that j < p because vl is overloaded. Perform the aggregation operation for
the set K = {J1, . . . , Jj}. Due to the choice of index j we have dK + dj+1 >
R̄ − 2ω0l. Suppose j + 1 < p (otherwise we have two jobs at vl and statement is
correct). Let K′ = {Jj+2, . . . , Jp}. From (3) we have

∑

Jt∈K′
dj � Δ − dK − dj+1 < 2(R̄ − T ∗) − (R̄ − 2ω0l) � R̄ − T ∗ � R̄ − 2ω0l,

therefore aggregation of set K′ doesn’t increase R̄. Thus the modification claimed
to exist is achieved by aggregation operations of all jobs at each underloaded
node, of set K and of set K′. ��

Note that for any instance I the modification Ĩ described can be found in
O(n) time.

Let Ĩ be a modification of I, R̄(Ĩ) = R̄(I) = R̄. If there exists a schedule
S for Ĩ such that Rmax(S) � ρR̄ then R∗

max(I) � ρR̄. Hence it is sufficient to
establish the optima localization interval for an instance with small number of
jobs which exists due to Statement 2. Such results are described in Sect. 3.

3 Three Important Subcases

We will use the branch-and-bounds method to prove the main result for special
subcases with small number of jobs. Analogous approach was described in [11],
and also used for obtaining similar optima localization results in [2,4,9]. The
underlying idea is to describe a subset of instances by the choice of critical
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path in a digraph which represents a partial order of operations used to build
an early schedule. Such digraphs determine an order of operations for each job
and each machine and will be referred to as schemes of a schedule, weights of
vertices are correspondent operations’ processing times and weights of arcs are
travel distances. By SH we will denote the early schedule built according to the
scheme H for some current instance.

Depending on actual instance the makespan of schedule SH can be described
by different complete paths in H. Knowing which path is critical (i.e. has the
maximal length) we can describe the makespan of a SH by that path’s length,
i.e. by a sum of weights of nodes and arcs of that path. The enumeration of
such complete (and potentially critical) paths lies underneath the branching
procedure of the proof.

3.1 All Nodes are Underloaded

Lemma 1. Let I be an instance of the RO2|triangle|Rmax problem with sin-
gle job at each node. Then there exists a feasible schedule S for I such that
Rmax(S) � 6

5 R̄.

Proof. Let us have set of jobs J 0 = {J0}, J 1 = {Jα} and J 2 = {Jβ}. Without
lost of generality assume that

aα � bβ . (4)

If that is not the case we can renumerate nodes and/or machines to achieve the
condition above.

Now we will consider a series of schedules and prove that at least one of them
satisfies the lemma’s claim.

Consider the schedule S1 = SH1 (see Fig. 1). S and F mark the start and
finish time moments respectively.

S F

a0 aα aβ

b0bα bβ

H1

τ ν

μ

τ

ν μ

S F

a0 aαaβ

b0bαbβ

H2

μ ν

τ

μ

ν τ

Fig. 1. Schemes H1 and H2.

Following a well-known fact from project scheduling the makespan of S1

coincides with the weighted length of a critical path of H1. Therefore

Rmax(S1) = max{ a0 + τ + aα + ν + aβ + μ, τ + bα + ν + bβ + μ + b0, a0 + b0,

τ + bα + aα + ν + aβ + μ, τ + bα + ν + bβ + aβ + μ}.
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From (2) the first three sums from the max clause above clearly don’t exceed the
lower bound R̄. If one of the correspondent paths turns out to be critical then
Rmax(S1) = R̄ and the claim of the lemma follows immediately. Further such to
be called trivial paths will be excluded from consideration.

Using assumption (4) we can conclude that

Rmax(S1) = τ + bα + aα + ν + aβ + μ = T ∗ + bα + aα + aβ . (5)

Now let S2 = SH2 (Fig. 1). Using similar reasoning and excluding trivial
paths we conclude that

Rmax(S2) = max{T ∗+bβ+aβ+aα, T ∗+bβ+bα+aα} = T ∗+bβ+aα+max{aβ , bα}.

Note that due to the metric property of the distances the makespan of S2 can
be evaluated as

Rmax(S2) � T ∗ + aα + R̄ − 2μ (6)

or as
Rmax(S2) � T ∗ + bβ + R̄ − 2τ. (7)

S F

a0aα aβ

b0 bαbβ

H3

τ

ν μ

μ ν

τ

S F

a0 aα aβ

b0 bαbβ

H4

τ ν

μ

μ

μ τ

τ

Fig. 2. Schemes H3 and H4.

Consider schedules S3 = SH3 and S4 = SH4 (see Fig. 2). There is the only
non-trivial path in H3 therefore

Rmax(S3) = b0 + bβ + aβ + a0 + 2μ. (8)

The scheme H4 contains three non-trivial paths:

1. S → a0
τ−→ aα → bα

τ−→ F ;
2. S → a0 → b0

τ−→ bα
τ−→ F ;

3. S
μ−→ bβ

μ−→ b0
τ−→ bα

τ−→ F.

We will consider those cases one by one.

Case 1:
Rmax(S4) = a0 + aα + bα + 2τ. (9)
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Let S be the best schedule among S1, . . . , S4. Using (2), (5), (6), (8) and (9) we
obtain

5Rmax(S) � Rmax(S1) + Rmax(S2) + 2Rmax(S3) + Rmax(S4) �
� (T ∗ + bα + aα + aβ) + (T ∗ + aα + R̄ − 2μ) + 2(b0 + bβ + aβ + a0 + 2μ)+

+(a0 + aα + bα + 2τ) = R̄ + 2T ∗ + 2μ + 2τ + 3�A + 2�B � 6R̄,

therefore Rmax(S) � 6
5 R̄.

Case 2:
Rmax(S4) = a0 + b0 + bα + 2τ. (10)

Again, let S be the best schedule among S1, . . . , S4. Using (2), (5)–(8) and (10)
we obtain

5Rmax(S) � Rmax(S1) + 2Rmax(S2) + Rmax(S3) + Rmax(S4) �
� (T ∗ + bα + aα + aβ) + (T ∗ + bβ + R̄ − 2τ) + (T ∗ + aα + R̄ − 2μ)+

+(b0 + bβ + aβ + a0 + 2μ) + (a0 + b0 + bα + 2τ) = 2R̄ + 3T ∗ + 2�A + 2�B � 6R̄,

therefore Rmax(S) � 6
5 R̄.

Case 3:
Rmax(S4) = 2μ + 2τ + �B . (11)

In this case we consider one more schedule S5 = SH5 (see Fig. 3).

S F

a0 aα aβ

b0bαbβ

τ ν

μ

μ

ν τ

Fig. 3. Scheme H5.

There is the only non-trivial path in H5 therefore we may assume

Rmax(S5) = a0 + b0 + 2τ + aα + bα. (12)

Let S be the best schedule among S1, . . . , S5. Using (2), (5), (7), (8), (11)
and (12) we obtain

5Rmax(S) � Rmax(S1) + Rmax(S2) + Rmax(S3) + Rmax(S4) + Rmax(S5) �
� (T ∗ + bα + aα + aβ) + (T ∗ + bβ + R̄ − 2τ) + (b0 + bβ + aβ + a0 + 2μ)+

+(2μ + 2τ + �B) + (a0 + b0 + 2τ + aα + bα) � R̄ + 5T ∗ + 2�A + 3�B � 6R̄,

therefore Rmax(S) � 6
5 R̄.

This concludes the proof of Lemma 1. ��
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3.2 The Depot is Overloaded

Lemma 2. Let I be an instance of the RO2|triangle|Rmax problem with single
job at each node except the depot which is overloaded and contains at most three
jobs. Then there exists a feasible schedule S for I such that Rmax(S) � 6

5 R̄.

Proof. Let us use the following notation for sets of jobs: J 0 = {J1, J2, J3},
J 1 = {Jα} and J 2 = {Jβ}. If the depot contains only two jobs we will add
dummy job J3 with zero processing times.

Without lost of generality we can assume that

a2 � b1, a3 � b2. (13)

Indeed, we can always achieve that condition by proper re-numeration of
mahcines or/and jobs from J 0 due to the following reasoning. Consider three
pairs of operations: a2 and b1, a3 and b2, a1 and b3, and compare them pairwise.
Without lost of generality due to possible re-numeration of machines at least for
two of those pairs operation of machine A is greater or equal to the respective
operation of machine B. Using proper numeration of jobs we can assure that
(13) holds.

Note that as the depot v0 is overloaded we have d1 + d2 + d3 > R̄. Since∑

j

dj = �A + �B � 2R̄ − 2T ∗ we have

dα + dβ + 2T ∗ < 2(R̄ − T ∗) − R̄ + 2T ∗ � R̄. (14)

S F

a1 a2 a3 aα aβ

b1bβ bα b2 b3

τ ν
μ

μ

ν τ

Fig. 4. Scheme H1.

Now consider a schedule S1 = SH1 (see Fig. 4). Note that complete paths
containing dotted arcs cannot be critical due to the assumption (13). We will
not consider such paths and omit reference to that assumption further. Also the
length of the path containing dashed arc is at most R̄ due to (14). Therefore we
have to consider just one non-trivial path S → a1 → a2 → a3 → b3 → F :

Rmax(S1) = a1 + a2 + a3 + b3. (15)

Consider a schedule S2 = SH2 (see Fig. 5). We need to consider just one path
S

μ−→ bβ
ν−→ bα

τ−→ b3 → a3
τ−→ aα

ν−→ aβ
μ−→ F :
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S

F

a1

a2

a3

aα

aβ

b3

bβ

bα

b1

b2

τ

ν

μ

μ

ν

τ

H2

S

F

a1

a2

aα

aβ

a3

b3

b1

b2

bα

bβ

τ

ν

μ

τ

ν

μ

H3

S

F

a1

a2

aα

aβ

a3

b3

b1

b2

bα

bβ

τ

ν

μ

μ

ν

τ

H4

S

F

a1

a2

aα

aβ

a3

b3

b1

b2

bα

bβ

τ

ν

μ

τ

ν

μ

H5

Fig. 5. Schemes H2, H3, H4 and H5.

Rmax(S2) = 2T ∗ + bβ + bα + b3 + a3 + aα + aβ . (16)

Now consider schedules S3 = SH3 and S4 = SH4 (Fig. 5). We need to consider
three non-trivial paths in H3 and due to (14) only three paths in H4.

Case 1:
Rmax(S3) = T ∗ + a1 + a2 + aα + bβ + max{aβ , bα}. (17)

Case 1.1:
Rmax(S4) = b1 + a2 + a3 + max{a1, b2}. (18)

Here and further let S be the best schedule among all schedules built in each
case. Then from (15)–(18) we have

5Rmax(S) � Rmax(S1) + Rmax(S2) + Rmax(S3) + 2Rmax(S4) � 4�A + 2�B + 3T ∗ � 6R̄,

therefore Rmax(S) � 6
5 R̄.

Case 1.2:
Rmax(S4) = b1 + b2 + b3 + a3. (19)

From (17) and (19) we have

2Rmax(S) � Rmax(S3) + Rmax(S4) � �A + �B + T ∗ � 2R̄,

therefore Rmax(S) = R̄.

Case 2:
Rmax(S3) = T ∗ + a1 + a2 + b2 + bα + bβ . (20)



The 2-Machine Routing Open Shop on a Triangular Transportation Network 295

Case 2.1:
Rmax(S4) = b1 + a1 + a2 + a3. (21)

In this case from (15), (16), (20) and (21) we have

5Rmax(S) � Rmax(S1) + Rmax(S2) + Rmax(S3) + 2Rmax(S4) � 4�A + 2�B + 3T ∗ � 6R̄,

therefore Rmax(S) � 6
5 R̄.

Case 2.2:
Rmax(S4) = b1 + b2 + b3 + a3. (22)

In this case from (15), (16), (20) and (22) we have

5Rmax(S) � Rmax(S1) + Rmax(S2) + 2Rmax(S3) + Rmax(S4) � 3�A + 3�B + 3T ∗ � 6R̄,

therefore Rmax(S) � 6
5 R̄.

Case 2.3:
Rmax(S4) = b1 + b2 + a2 + a3. (23)

In this case we build one last schedule S5 = SH5 (Fig. 5). Consider three non-
trivial paths in H5.

Case 2.3.1:
Rmax(S5) = a3 + b3 + b1. (24)

In this case from (20) and (24) we have

2Rmax(S) � Rmax(S3) + Rmax(S5) � �A + �B + 2T ∗ � 2R̄,

therefore Rmax(S) = R̄.

Case 2.3.2:

Rmax(S5) = b2 + bα + aβ + max{aα, bβ} + T ∗. (25)

In this case from (15) and (25) we have

2Rmax(S) � Rmax(S1) + Rmax(S5) � �A + �B + 2T ∗ � 2R̄,

therefore Rmax(S) = R̄.
This concludes the proof of Lemma 2. ��

3.3 Some Distant Node is Overloaded

Lemma 3. Let I be an instance of the RO2|triangle|Rmax problem with single job
at each node except one of distant nodes which is overloaded and contains at most
three jobs. Then there exists a feasible schedule S for I such that Rmax(S) � 6

5 R̄.

The proof of Lemma 3 is similar to that of Lemma 2. We omit this proof due
to space limitations of the issue.
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4 Conclusion

Statement 2, Lemmas 1–3 imply the following

Theorem 1. For any instance I of RO2|triangle|Rmax there exists a feasible
schedule S with makespan from interval [R̄, 6

5 R̄]. Such schedule can be found in
linear time.

Indeed, we just need to perform the jobs’ aggregation procedure described in
proof of Statement 2 to obtain modification Ĩ, then use the proof of correspon-
dent Lemma according to the existence and location of overloaded node to build
a feasible schedule for Ĩ with makespan from [R̄, 6

5 R̄], and finally transform that
schedule into the feasible schedule for initial instance, treating each aggregated
operation as a block of initial operations performed without idles in arbitrary
order.

Note that the interval [R̄, 6
5 R̄] is a tight optima localization interval for

RO2|triangle|Rmax problem as it is for its special case RO2|link|Rmax [2].
The most important question still to be investigated is the following

Open Question 1. What is the smallest value ρ such that interval [R̄, ρR̄] is
an optima localization interval for RO2||Rmax problem?

The second interesting question concerns the possibility of generalizing
results for RO2|link|Rmax from [7] to our case RO2|triangle|Rmax. Those results
(polynomially solvable subcases and an FPTAS) are based on the properties of
the Gonzalez-Sáhni algorithm for two-machine open shop problem [6].

The Gonzalez-Sáhni algorithm consists of three main steps.
Step 1. Separate all jobs from J into two subsets:

J�
.= {Jj ∈ J |aj � bj} and J>

.= {Jj ∈ J |aj > bj}.

Step 2. Choose the diagonal job Jr such that the maximum

max{max{aj |Jj ∈ J�},max{bj |Jj ∈ J>}
is reached at Jr. Without lost of generality Jr ∈ J�.

Step 3. Sequence operations of machine A in an arbitrary order such that
operations of jobs from J� \ {Jr} precede operations of jobs from J> and ar is
the last operation processed by A. Operations of machine B are sequenced in
the same order except for br which is processed first.

Also note that if dr � �max then sequence for machine A at Step 3 can be
arbitrary providing that ar is the last operation of A.

Two theorems from [7] state the following:
For any instance I of RO2|link|Rmax

1. if Jr ∈ J 0 then optimum of I equals to R̄ and can be found in linear time;
2. if Jr ∈ J 1 and dr � �max then optimum of I equals to R̄ and can be found in

linear time;
3. otherwise a schedule for I of makespan �max + 2T ∗ can be built in linear time.
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Similar technique can be used to prove the following

Lemma 4. For any instance I of RO2|triangle|Rmax

1. if Jr ∈ J 0 then a schedule for I of makespan �max + 2(τ + ν) can be built in
linear time;

2. if Jr ∈ J 1 and dr � �max then optimum of I equals to R̄ and can be found in
linear time;

3. otherwise a schedule for I of makespan �max +2T ∗ can be built in linear time.

As we see the first case (Jr ∈ J 0) resolves differently for those two prob-
lems. Therefore the technique from [7] will not help us to get an FPTAS for
RO2|triangle|Rmax that easily. This observation leads us to the following

Open Question 2. Does an FPTAS for RO2|triangle|Rmax exist?
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Abstract. Multiprocessor jobs require more than one processor at the
same moment of time. We consider two basic variants of scheduling mul-
tiprocessor jobs with various regular criteria. In the first variant, for each
job the number of required processors is given and fixed, and the job can
be processed on any subset of parallel processors of this size. In the sec-
ond variant, the subset of dedicated processors required by a job is given
and fixed. A sequence dependent setup time is needed between different
jobs. We formulate mixed integer linear programming models based on
a continuous time representation for the NP-hard scheduling problems
under consideration. Using these models, we identify new polynomially
solvable cases with the number of jobs bounded above by a constant.

Keywords: Multiprocessor job · Setup time · Integer linear
programming · Polynomial solvability

1 Introduction

We consider the multiprocessor scheduling problem, where a set of k jobs
J = {1, . . . , k} has to be executed by m processors such that each processor
can work on at most one job at a time, and each job must be processed simul-
taneously by several processors. Let M = {1, . . . , m} and let pj denote the
processing time of job j for each j ∈ J . Dedicated and parallel variants of the
problem are studied here. In the first variant, there is a size sizej associated
with each job j ∈ J indicating that the job can be processed on any subset
of parallel processors of the given size. In the second variant, each job j ∈ J
requires a simultaneous use of a pre-specified subset (mode) fixj of dedicated
processors. Following the traditional definitions in scheduling theory [1] we con-
sider rigid jobs in the first variant and single mode multiprocessor jobs in the
second variant.

A sequence dependent setup time is required to switch a processor from one
job to another. For the parallel model of the problem let sjj′ be the non-negative
setup time from job j to job j′, where j, j′ ∈ J . For the dedicated variant of
the problem let sljj′ denote the setup time from job j to job j′ on processor l,
c© Springer International Publishing Switzerland 2016
Y. Kochetov et al. (Eds.): DOOR 2016, LNCS 9869, pp. 298–308, 2016.
DOI: 10.1007/978-3-319-44914-2 24
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l ∈ M, j, j′ ∈ Fl, where Fl = {j ∈ J : l ∈ fixj} is the set of jobs that use
processor l ∈ M.

Following the traditional thee-field notation for scheduling problems [1], we
denote preemptive version of the problem with single mode multiprocessor jobs
(rigid jobs) as P |fixj , pmtn, sljj′ |γ (P |sizej , pmtn, sjj′ |γ) and non-preemptive
version of the problem is denoted by P |fixj , s

l
jj′ |γ (P |sizej , sjj′ |γ). Here γ spec-

ifies an objective function. It is assumed that the subset of processors used by a
rigid job can be changed at runtime in preemptive scheduling.

We consider four widely used objective functions to be minimized: the
makespan, Cmax = maxj∈J Cj , the maximum lateness, Lmax = maxj∈J (Cj−dj),
the sum of completion times, C∑ =

∑
j∈J Cj , the sum of latenesses, L∑ =∑

j∈J (Cj − dj), where Cj denote the completion time of job j ∈ J , and dj is
the due date of job j ∈ J , i.e. the time by which job j should be completed.

In practice one often may assume that the setup times satisfy the triangle
inequality:

slj′′,j′ ≤ slj′′,j + slj,j′ , j, j′, j′′ ∈ Fl, l ∈ M (for dedicated processors), (1)

sj′′,j′ ≤ sj′′,j + sj,j′ , j, j′, j′′ ∈ J (for parallel processors). (2)

We denote this special case by placing Δ in front of sljj′ (or sjj′) in the
second field of the three-field notation. In the special case where the number
of machines m = 1 is not a part of the input, there is no difference between
rigid jobs and single mode multiprocessor jobs and the problem notation sim-
plifies to 1|pmtn,Δsjj′ |γ and 1|Δsjj′ |γ for preemptive and non-preemptive jobs
respectively.

All mentioned above problems P |fixj , pmtn,Δsljj′ |γ, P |fixj ,Δsljj′ |γ,
P |sizej , pmtn,Δsjj′ |γ and P |sizej ,Δsjj′ |γ with γ ∈ {Cmax, Lmax, C∑, L∑} are
NP-hard even in the single-machine case as implied by the following proposition.

Proposition 1. Problems 1|pmtn,Δsjj′ |γ and 1|Δsjj′ |γ with γ ∈ {Cmax, Lmax,
C∑, L∑} are strongly NP-hard.

Proposition 1 may be attributed to the “folklore”. However for the sake of
completeness we provide its proof in the appendix.

In [2], the problem of scheduling multiprocessor jobs with sequence-
dependent setup times was combined with a lot-sizing problem where it is
required to produce a set of the products in demanded volumes. In this set-
ting, the multiprocessor jobs were called multi-machine technologies, each tech-
nology engaging a number of machines simultaneously to produce a batch of
some product. In [2], this problem with Cmax criterion was shown to be hard
to approximate and new NP-hard and polynomially solvable special cases were
identified.

A MIP model was proposed by Shaik et al. in [10] for a problem of scheduling
multi-machine technologies with sequence-dependent setup times for continuous
production plants. Besides that, a decomposition method was developed in [10] to
solve real-life problems from chemical industry where straightforward application
of the MIP model was impractical.
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A survey of results on multiprocessor jobs scheduling in the case of zero
setup times is provided by Drozdowski in [1]. It is known that in this case prob-
lem P |sizej , pmtn|Cmax with the number of processors bounded above by a
constant (denoted Pm|sizej , pmtn|Cmax) and problem P |fixj , pmtn|Cmax with
only two-processor jobs are both polynomially solvable. This result is based
on the fact that the considered special cases may be treated as linear program-
ming (LP) problems using the so-called configurations introduced by Jansen and
Porkolab [7,8] and resembling patterns proposed by Kantorovich and Zalgaller
for the one-dimensional cutting-stock problem in the middle of 20-th century
(see e.g. [9]). In [7,8] a configuration is defined as a set of jobs which may be
processed simultaneously. The total number of configurations is O(km) and the
resulting LP problems contain O(km) variables, each one representing the time of
using the corresponding configuration in a schedule, and O(k) constraints. These
problems may be solved in polynomial time by considering the dual LP problems
and applying the ellipsoid method of Grötschel, Lovász and Schrijver [4].

Unfortunately the configurations-based approach can not be extended to the
case of sequence-dependent setup times because in the general case evaluation of
objective function requires not only the durations but also the sequence of jobs
on each machine. In the present paper, we develop the MIP models for multi-
processor jobs scheduling with sequence-dependent setup times using the notion
of event points, which was originally proposed in the context of single-processor
jobs by Ierapetritou and Floudas in [6]. In the case of multiprocessor jobs, an
event point, as well as a configuration, corresponds to some set of compatible
jobs, but in contrast to the set of jobs of a configuration (which is defined a pri-
ori) the set of jobs of an event point is defined by the values of Boolean variables
of this event point. The presence of Boolean variables allows to account for the
sequence dependent setup times. Besides that, unlike the jobs of a configuration,
the jobs of an event point may have different starting and completion times.

The MIP models proposed on the basis of event points are described in
Sect. 2. Using these models, the new polynomially solvable cases with sequence-
dependent setup times are identified in Sect. 3. The concluding remarks are pro-
vided in Sect. 4.

2 Mixed Integer Linear Programming Models

2.1 Single Mode Multiprocessor Jobs

Let us define the notion of event points analogously to [2,6]. By event point
we will mean a subset of variables in mixed integer linear programming (MIP)
model, which characterize a selection of a certain set of jobs and their starting
and completion times. In one event point each processor may be utilized in at
most one job. The set of all event points will be denoted by N = {1, . . . , nmax},
where the parameter nmax is chosen sufficiently large on the basis of a prior
estimates or preliminary experiments.

The structure of the schedule is defined by the Boolean variables wjn such
that wjn = 1 if job j is executed in event point n, and wjn = 0 otherwise.
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In case job j is executed in event point n, the staring time and the completion
time of job j in this event point are given by the real-valued variables T st

jn and
T f
jn accordingly.

Let H be an upper bound on the schedule length,

H :=
∑

j∈J
pj + (k − 1) · max

l∈M, j �=j′∈Fl

{sljj′}.

Then the set of feasible solutions for problem P |fixj , pmtn, sljj′ |γ is defined as
follows ∑

j∈Fl

wjn � 1, l ∈ M, n ∈ N, (3)

T f
jn � T st

jn, j ∈ J , n ∈ N, (4)

T st
jn � T f

j′n′ + slj′j − H(2 − wjn − wj′n′ +
∑

j̃∈Fl

∑

n′<ñ<n

wj̃ñ), (5)

l ∈ M, j, j′ ∈ Fl, n, n′ ∈ N, n �= 1, n′ < n,

T f
jn − T st

jn � wjn · pj , j ∈ J , n ∈ N, (6)

∑

n∈N

T f
jn − T st

jn

pj
� 1, j ∈ J , (7)

wjn ∈ {0, 1}, T st
jn � 0, j ∈ J , n ∈ N. (8)

Constraint (3) implies that in any event point on processor l at most one
job may be executed. Constraint (5) indicates that the starting time of job j on
processor l should not be less than the completion time of a preceding job on
the same processor, plus the setup time. Constraint (4) guarantees that all jobs
may be performed only for non-negative time. If a job j is not executed in the
event point n (i.e. wjn = 0) then its duration should be zero – this is ensured by
inequality (6). Constraint (7) implies that each job j ∈ J is entirely executed.
Constraints (8) give the area where the variables are defined.

The set of feasible solutions for problem P |fixj , s
l
jj′ |γ may be obtained

from (3)–(8) by adding the inequality
∑

n∈N

wjn � 1, j ∈ J , (9)

which ensures each job is executed without preemptions.
The optimization criteria for presented models are formulated in the following

form.
1. Makespan

Cmax → min,

Cmax � T f
jn, j ∈ J , n ∈ N.
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2. Sum of completion times ∑

j∈J
T f
j → min,

T f
j � T f

jn, j ∈ J , n ∈ N.

3. Maximum lateness
Lmax → min,

Lmax � T f
jn − dj , j ∈ J , n ∈ N.

4. Sum of latenesses ∑

j∈J
Lj → min,

Lj � T f
jn − dj , j ∈ J , n ∈ N.

2.2 Rigid Jobs

MIP models for problems with rigid jobs are constructed based on the same prin-
ciples as the previous models. However, in this case, if only the jobs are allocated
in the event points, then a problem of assignment of the jobs to processors arises.
Mainly, this assignment is needed to calculate the setup times between jobs on
processors. The following proposition shows that such assignment problems with
criteria Cmax and Lmax are NP-hard.

Proposition 2. Suppose a family of subsets of jobs {J1, . . . ,Jnmax} is given
as a part of the problem input. Then problems P2|sizej , pmtn, sjj′ |γ and
P2|sizej , sjj′ |γ with γ ∈ {Cmax, Lmax}, under additional constraint that n-th
job processed on each machine belongs to Jn, n = 1, . . . , nmax, are NP-hard.

Proof. The hardness of considered problems can be shown by a polynomial reduc-
tion of Ordered Partition problem, which is known to be NP-complete [3].
Ordered Partition problem is formulated as follows: Let an ordered set
A = {a1, a2, . . . , a2k0} be given. A positive integer ei is associated with each
element ai ∈ A, i = 1, . . . , k, such that

∑

ai∈A

ei = 2E. Ordered Partition

problem asks if there exists a partition of A into two subsets A1 and A2 such
that

∑

ai∈A1

ei =
∑

ai∈A2

ei = E, |A1| = |A2| = k0 and set A1 includes exactly one

element from each pair a2i−1, a2i, i = 1, . . . , k0.
For brevity we will denote P |sizej , pmtn, sjj′ |Cmax and P |sizej , sjj′ |Cmax

problems under additional constraint that n-th job processed on each machine
belongs to Jn, n = 1, . . . , nmax, by P1 and P2 respectively.

We reduce an Ordered Partition instance to instances of problems P1
and P2 as follows. Put the number of jobs k := 2k0; the number of processors
m := 2; sizej := 1, pj := ej and sjj′ := 0 for all j �= j′ ∈ J . Besides that we
define a family of subsets of jobs assuming nmax := k0 and Jn := {2n − 1, 2n}
for n = 1, . . . , k0.
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Consider the decision versions of problems P1 and P2 which ask if there is a
schedule with makespan Cmax ≤ K for a given K.

Note that in the instances of P1 and P2 defined above, each job j belongs
only to one subset Jn and

∑
j∈J pj = 2E. Hence, in a schedule with Cmax ≤ K,

assuming K := E, all jobs are executed without preemptions on one of the two
processors, because overall available time on two processors does not exceed 2E.
Therefore, a positive answer to an instance of decision problem P1 or P2 implies
a positive answer to the Ordered Partition problem and vice versa.

In the case of criterion Lmax, the statement of the proposition holds because
criteria Lmax and Cmax are equivalent when dj = 0 for all j ∈ J . ��

In view of Proposition 2, in the case of rigid jobs we formulate our MIP models
in such a way that both jobs and processors, on which they are executed, are
assigned in the event points.

The structure of the schedule is also defined by the Boolean variables wjn

and the real-valued variables T st
jn and T f

jn, which have the same meaning as in
the case of single mode multiprocessor jobs. Moreover, we include additional
Boolean variables zjln such that zjln = 1 if job j is executed in event point n
and uses processor l, and zjln = 0 otherwise.

Let H be an upper bound on schedule length. It suffices to put

H =
∑

j∈J
pj + (k − 1) · max

j �=j′
{sjj′}.

Based on the above remarks and variables, the set of feasible solutions for
problem P |sizej , pmtn, sjj′ |γ is defined by the following constraints:

∑

j∈J
zjln � 1, l ∈ M, n ∈ N, (10)

∑

l∈M
zjln = sizej · wjn, j ∈ J , n ∈ N, (11)

T f
jn � T st

jn, j ∈ J , n ∈ N, (12)

T st
jn � T f

j′n′ + sj′j − H(2 − zjln − zj′ln′ +
∑

j̃∈J

∑

n′<ñ<n

zj̃lñ), (13)

l ∈ M, j �= j̃ ∈ J , n, n′ ∈ N, n �= 1, n′ < n, (14)

T f
jn − T st

jn � wjn · pj , j ∈ J , n ∈ N,

∑

n∈N

T f
jn − T st

jn

pj
� 1, j ∈ J , (15)

zjln ∈ {0, 1}, wjn ∈ {0, 1}, T st
jn � 0, j ∈ J , l ∈ M, n ∈ N. (16)



304 A.V. Eremeev and Y.V. Kovalenko

Constraints (10), (12)–(15) have the same interpretation as in the model for
problem P |fixj , pmtn, sljj′ |γ. Constraint (11) guarantees that job j uses exactly
sizej processors if it is executed in the event point n (i.e. wjn = 1).

The set of feasible solutions for problem P |sizej , sjj′ |γ may be obtained
from (10)–(16) by adding inequality (9). The optimization criteria are modeled
as in the case of dedicated processors.

3 Polynomially Solvable Cases

New polynomially solvable special cases with non-zero setup times are found
using proposed MIP models, under assumption that the number of jobs is
bounded by a constant. An instance of a multiprocessor job scheduling problem
is reduced to a number of instances of a linear programming problem, obtained
from the MIP model assigning some fixed values to Boolean variables.

3.1 Single Mode Multiprocessor Jobs

In order to find an optimal solution to P |fixj , s
l
jj′ |γ using model (3)–(9), it is suf-

ficient to assume nmax = k because the preemptions are not allowed. Denote Pfix

the linear programming problem obtained by fixing all Boolean variables (wjn)
in model (3)–(9) supplemented by a linear programming formulation of optimiza-
tion criterion γ. Here and below by fixing of the variables we assume assignment
of some fixed values to them (which turns these variables into parameters). Prob-
lem Pfix with nmax = k involves a polynomially bounded number of variables and
constraints, which means it is polynomially solvable (see e.g. [4]).

Let τfix be an upper bound on the time complexity of solving problem Pfix.
The problem P |fixj , s

l
jj′ |γ, where the number of jobs is bounded from above by a

constant, we denote by P |fixj , s
l
jj′ , k = const|γ. This problem reduces to (nmax)k

problems of Pfix type with nmax = k. Therefore the following theorem holds.

Theorem 1. Problem P |fixj , s
l
jj′ , k = const|γ, γ ∈ {Cmax, C∑, Lmax, L∑}, is

polynomially solvable within O(τfix · kk) time.

To find an optimal solution to P |fixj , pmtn,Δsljj′ |γ problem, it suffices to
set nmax = km in model (3)–(8). Indeed, the number of different sets of jobs that
may be executed simultaneously does not exceed km. Besides that, there exists
an optimal solution to problem P |fixj , pmtn,Δsljj′ |γ where each of the above
mentioned sets of jobs is executed simultaneously at most once. This fact follows
by the lot shifting technique which is applicable here since the setup times obey
the triangle inequality (see e.g. [11]).

Let P ′
fix denote the linear programming problem obtained by fixing all

Boolean variables (wjn) in MIP model (3)–(8) supplemented by a linear program-
ming formulation of optimization criterion γ. A problem P ′

fix with nmax = km

and the number of processors bounded above by a constant is polynomially solv-
able. Let τ ′

fix denote an upper bound of the time complexity of solving P ′
fix. The
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problem P |fixj , pmtn,Δsljj′ |γ, where the numbers of processors and jobs are
bounded by a constant is denoted by Pm|fixj , pmtn,Δsljj′ , k = const|γ in what
follows. This problem reduces to 2knmax problems of P ′

fix type, where nmax = km.
So the following result holds.

Theorem 2. Problem Pm|fixj , pmtn,Δsljj′ , k = const|γ, γ ∈ {Cmax, C∑,

Lmax, L∑}, is polynomially solvable within O
(
τ ′
fix · 2k

m+1
)
time.

In some works it is assumed that a job has a number of alternative modes,
where each processing mode is specified by a subset of processors and the exe-
cution time of the job on that particular processor set. Such jobs are called
multimode multiprocessor jobs [1]. Our MIP models and polynomially solvable
cases for single mode multiprocessor jobs may be extended to the scheduling
problem with multimode multiprocessor jobs and various regular criteria, which
can be formulated in terms of linear programming.

3.2 Rigid Jobs

In order to find an optimal solution to P |sizej , sjj′ |γ using model (9)–(16), it
is sufficient to set nmax = k because the preemptions are not allowed. Denote
by Psize the linear programming problem obtained by fixing all Boolean variables
(wjn) and (zjln) in model (9)–(16) with a linear formulation of optimization
criterion γ. Problem Psize with nmax = k involves O(k2) variables and O(k4m)
constraints, then it is pseudopolynomially solvable, since m is the numerical
parameter of the problem. Let τsize be an upper bound on the time complexity
of solving problem Psize.

The problem P |sizej , sjj′ |γ, where the number of jobs is bounded by a
constant from above, is denoted by P |sizej , sjj′ , k = const|γ. This problem

reduces to O

(

nk
max

k∏

j=1

C
sizej
m

)

problems of Psize type with nmax = k. Prob-

lem P |sizej , sjj′ , k = const|γ is polynomially solvable in O

(

τsize · kk
k∏

j=1

C
sizej
m

)

time, if m �
k∑

j=1

sizej and sizes sizej are bounded by a constant for all j ∈ J ,

and the problem is trivial, if m >
k∑

j=1

sizej . In the latter case, all jobs start at

time moment t = 0 in the early schedule. Therefore the following theorem holds.

Theorem 3. Problem P |sizej , sjj′ , k = const|γ, γ ∈ {Cmax, C∑, Lmax, L∑}, is
polynomially solvable, when parameters sizej are bounded by a constant for all
j ∈ J

To find an optimal solution to P |sizej , pmtn,Δsjj′ |γ problem, it suffices to
set nmax = km in model (10)–(16) as in the case of dedicated processors (see
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Sect. 3.1). Let P ′
size be the linear programming problem obtained by fixing all

Boolean variables (wjn) and (zjln) in MIP model (10)–(16) supplemented by a
linear formulation of optimization criterion γ. Denote by τ ′

size an upper bound of
the time complexity of solving P ′

size. The problem P |sizej , pmtn,Δsjj′ |γ, where
the numbers of processors and jobs are bounded by a constant, we denote by
Pm|sizej , pmtn,Δsjj′ , k = const|γ. This problem reduces to 2kmnmax problems
of P ′

size type, where nmax = km. Thus, we have

Theorem 4. Problem Pm|sizej , pmtn,Δsjj′ , k = const|γ, γ ∈ {Cmax, C∑,

Lmax, L∑}, is polynomially solvable within O
(
τ ′
size · 2mkm+1

)
time.

Let us assume that there is a set of usable processor numbers for each job
j ∈ J . Then the jobs are called moldable jobs [1], if the number of required
processors is chosen before starting a job and is not changed until the job termi-
nation. Jobs are called malleable [1], if the number of processors can be changed
at runtime. The MIP models and polynomially solvable cases presented above
for the case of rigid jobs may be generalized to the scheduling problems with
moldable and malleable jobs.

4 Conclusions

The problem of multiprocessor job scheduling is studied in parallel and dedicated
versions. MIP models are formulated for both versions of the problem using the
event-points approach and continuous time representation. New polynomially
solvable special cases of the problem are found using the MIP models, under
assumption that the number of jobs is bounded by a constant.

Presented models and polynomially solvable cases are extended to the other
(more general) scheduling problems with moldable jobs, malleable jobs, multi-
mode multiprocessor jobs and various regular criteria, which can be formulated
in linear form.

Acknowledgements. This research is supported by the Russian Science Foundation
grant 15-11-10009. The authors are grateful to M.Y. Kovalyov for helpful remarks.

Appendix: The Proof of Proposition 1

Proposition 1. Problems 1|pmtn,Δsjj′ |γ and 1|Δsjj′ |γ with γ ∈ {Cmax, Lmax,
C∑, L∑} are strongly NP-hard.

Proof. We will consider only C∑ criterion since the problems with other three
criteria are treated analogously.

In [5] it is proven that recognition of grid graphs with a Hamiltonian path (the
Hamilton Path Problem) is NP-complete. Recall that a graph G′ = (V ′, E′)
with vertex set V ′ and edge set E′ is called a grid graph, if its vertices are the
integer vectors v = (xv, yv) ∈ Z2 on plane, i.e., V ′ ⊂ Z2, and a pair of vertices is
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connected by an edge iff the Euclidean distance between them is equal to 1. Here
and below, Z denotes the set of integer numbers. We can assume that graph G′

is connected since otherwise Hamiltonian path does not exist and this can be
recognized in polynomial time.

Let us first reduce Hamilton Path problem to 1|Δsjj′ |C∑, assuming that
jobs correspond to vertices and the setup times are equal to Euclidean distances
between the integer points where the corresponding vertices are located. All
processing times pj = 1.

Then minimal setup times are equal to one. The earliest completion times of
the jobs are 1, 3, 5, 7, . . . , 2k − 1, where k is the number of jobs.

In the recognition version of 1|Δsjj′ |C∑ it is required to answer the question:
Is there a schedule with C∑ value not greater than a given value K?

Let us put K := (1 + 3 + 5 + 7 + .. + 2k − 1) = k2.
On one hand, if a schedule with the value of C∑ at most K exists, then all

setups of this schedule are equal to 1 and graph G′ contains a Hamilton path.
On the other hand, if graph G′ contains a Hamilton path then ordering the jobs
in the sequence of vertices of this path we obtain a schedule with the value of
C∑ = k2.

This reduction is computable in polynomial time and all input parameters
of 1|Δsjj′ |C∑ instance are upper bonded by k, so we conclude that 1|Δsjj′ |C∑
problem is strongly NP-hard.

In the case of 1|pmtn,Δsjj′ |C∑ problem we construct the same reduction.
Note that in a schedule with C∑ ≤ k2 the preemptions are impossible. Indeed,
suppose that job j′ is the first job that has a preemption and all n preced-
ing jobs have no preemptions. Let job j′ be executed for a units of time and
then preemption took place and let j′′ be the first job, which finishes after this
preemption.

In case j′′ �= j′, job j′′ ends at time t ≥ 2(n+1)−1+a. In this case even if all
jobs after j′′ finish in the earliest possible times 2(n+2)−1, 2(n+3)−1, . . . , 2k−1,
then still C∑ > k2.

In case j′′ = j′, job j′ ends at time t ≥ 2(n + 1) − 1 + b, where b is the total
preemption time of job j′. Thus by the same reasoning as in the previous case,
we conclude that C∑ > k2. ��
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Abstract. Parallel jobs require more than one processor at the same
time. We study speed scaling scheduling of parallel jobs with preemption.
We propose “almost-exact” algorithms for problems with rigid jobs and
single mode two-processor jobs. Based on configuration linear programs,
our algorithms obtain an OPT + ε solution for any fixed ε > 0.

Keywords: Speed scaling · Scheduling · Parallel jobs · NP-hardness ·
Approximation algorithm

1 Introduction

We are given a set of parallel jobs J = {1, . . . , n}, each job j ∈ J is specified
by its release date rj , its deadline dj , its processing volume (work) Wj , and a
set of m speed-scalable processors. In our paper we consider two basic variants
of scheduling multiprocessor jobs. In the first variant, processing of job j simul-
taneously requires precisely sizej processors. In the second variant, execution of
job j simultaneously requires a prespecified subset fixj of dedicated processors.
Note that the parallel execution of parts of the same job is not allowed. More-
over execution of each job can be interrupted and resumed without incurring
any costs or delays. According to the definitions in the literature on scheduling
theory we consider rigid tasks (jobs) and single mode multiprocessor tasks [8].

We consider the standart model in speed-scaling in which if a processor runs
at a speed s then the energy consumption is sα units of energy per time unit,
where α > 1 is a constant (practical studies show that α ≤ 3). We assume that
if processors execute the same job simultaneously then all these processors run
at the same speed. For each job j ∈ J , we say that j is alive during the interval
[rj , dj ]. Since processors may change their speed, a job j may be completed faster
(or slower) than the time Wj it needs to be executed at speed 1. It is supposed
that a continuous spectrum of processor speeds is available. The goal is to find
a feasible schedule respecting the release dates and deadlines of jobs so that the
total energy consumption is minimized.

Minimization of energy consumption under deadline constraints is an impor-
tant real-time problem for computational systems [9]. The motivation to con-
sider speed scaling scheduling of parallel jobs consists in the fact that some
c© Springer International Publishing Switzerland 2016
Y. Kochetov et al. (Eds.): DOOR 2016, LNCS 9869, pp. 309–321, 2016.
DOI: 10.1007/978-3-319-44914-2 25
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jobs can not be performed asynchronously on modern computers. Such situation
takes place in multi-processor graphics cards, where the memory capacity of one
processor is not sufficient, or when CPU and a dedicated processor must run
together.

1.1 Related Work

For the preemptive single-processor case, Yao et al. [14] proposed an optimal
algorithm for finding a feasible schedule with minimum energy consumption.
The case, where there are m parallel processors available and all jobs are of the
single-processor type, has been solved optimally in polynomial time when both
the preemption and the migration of jobs are allowed [1,3,5]. A schedule is called
migratory if a job may be interrupted and resumed on the same or on another
processor. We note that the migration of jobs is equivalent to the possibility to
execute a parallel job in different modes.

Albers et al. [2] considered the problem on parallel processors where the
preemption of jobs is allowed but not their migration. They proved that instances
with agreeable deadlines and unit-work jobs are solvable in polynomial time. For
general instances with unit-work jobs, they proved that the problem becomes
strongly NP-hard and they proposed an (αα24α)-approximation algorithm. For
the case where the jobs have arbitrary processing volumes, the problem was
proved to be NP-hard even for instances with common release dates and common
deadlines. Albers et al. [1] proposed a 2(2 − 1

m )α-approximation algorithm for
instances with common release dates, or common deadlines, and an (αα24α)-
approximation algorithm for instances with agreeable deadlines. Greiner et al.
[10] gave a generic reduction transforming an optimal schedule for the problem
on parallel processors with migration to a B�α�-approximate solution for the
problem on parallel processors with preemptions but without migration, where
B�α� is the �α�-th Bell number. This result holds only when α ≤ m. Cohen-
Addad et al. [6] showed that the problem without migration is APX-hard even
for jobs with common life intervals and work volumes in 1, 3, 4.

Bampis et al. [4] studied the heterogeneous preemptive problem on paral-
lel processors where every processor i has a different speed-to power function,
sα(i), and both a life interval and a processing volume of each job are processor
dependent. For the migratory variant they proposed a polynomial in problem
size and in 1

ε algorithm returning a solution within an additive error ε. They also
proposed an (1 + ε)αB̃α-approximation algorithm for the nonmigratory variant
of the problem, where B̃α is the generalized Bell number [4].

To the best of our knowledge no one considered the speed scaling scheduling of
parallel jobs. For more information on scheduling problems with parallel jobs, we
refer the reader to the survey book by Drozdowski [8]. Following the traditional
three-field notation for scheduling problems [4,8] the speed scaling problem with
rigid jobs is denoted by P |sizej , pmtn, rj , dj |E and the speed scaling problem
with single mode multiprocessor jobs is denoted by P |fixj , pmtn, rj , dj |E.
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1.2 Our Results

In this paper, we present two algorithms for problems with rigid jobs and single
mode two-processor jobs. We formulate the problems as a configuration linear
program (LP) with an exponential number of variables and a polynomial number
of constraints. Surprisingly we use the same configuration LP for both problems.
First, we prove that for any ε > 0 there is a feasible solution of the LP with
energy consumption at most OPT + ε, where OPT is an optimal solution of
the original problem. Then, we consider the dual LP and we show how to apply
the Ellipsoid algorithm to it and obtain an optimal solution for the primal LP.
For this purpose, we provide two separation oracles, one for the problem with
rigid jobs and one for the problem with single mode two-processor jobs, i.e. we
present two algorithms which given a solution for the dual LP decide if this
solution is feasible or otherwise identify a violated constraint. More precisely,
we get the following results. Given an instance of P |sizej , pmtn, rj , dj |E with m
processors, we can solve the Separation Problem for P |sizej , pmtn, rj , dj |E in
time polynomial in m, 1/ε and the size of the input. Thus we have a polynomial
time algorithm if m is fixed and a pseudo-polynomial time algorithm if m is a
part of the input. Given an instance of P |fixj , pmtn, rj , dj |E with |fixj | = 2
for all jobs, we can solve the Separation Problem in time polynomial in 1/ε and
the size of the input. As we can compute an optimal solution for the dual LP,
we can also find an optimal solution for the primal LP by solving it with the
variables corresponding to the constraints that were found to be violated during
the run of the ellipsoid algorithm and setting all other primal variables to zero.
Thus we get two our main results.

Theorem 1. A schedule of energy consumption OPT + ε can be found for the
speed scaling problem with rigid jobs in time polynomial in m, 1/ε and the input
size.

Theorem 2. A schedule of energy consumption OPT + ε can be found for the
speed scaling problem with single mode two-processor jobs in time polynomial in
1/ε and the input size.

In the paper we assume that a continuous spectrum of processor speeds is
available. If only a finite set of discrete speed levels is available, then our algo-
rithm finds an optimal solution in time polynomial in size of the instance only.

We present our main results and their generalizations in Sect. 2. In Sect. 3, we
discuss a connection between the computational complexity of the speed scaling
problems and the computational complexity of the scheduling problems with
Cmax and Lmax criteria.

2 “Almost-Exact” Algorithms

In this section, we present an algorithm for the speed scaling scheduling of rigid
jobs or single mode two-processor jobs with preemption. Using the approach
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from [4], we formulate the problem as a configuration linear program, with an
exponential number of variables and a polynomial number of constraints, and
we show how to obtain an OPT +ε solution with the Ellipsoid algorithm in time
polynomial in the input size and 1/ε, where OPT is an optimal solution of the
problem and ε > 0.

A configuration c is a one-to-one feasible assignment of nc, 1 ≤ nc ≤ m,
jobs to the m processors joined with an assignment of a speed value for every
processor. We denote by C the set of all possible configurations. A schedule
for our problem has to specify exactly one configuration at each time t. The
cardinality of C is unbounded, since the speeds of processors may accept any
real values. At first, we discretize the possible speed values and consider only a
finite number of speeds at which the processors can run.

To discretize the speeds, we define a lower and an upper bound on the speed
of any processor in an optimal schedule. For the lower bound, consider a job
j ∈ J . Note that the processing time of j in any feasible schedule is at most
(dj − rj). The convexity of the speed-to-power function implies that a lower
bound on the speed of every processor is greater than or equal to the minimum
density among all the jobs, i.e., SLB = min

j∈J
Wj

dj−rj
.

To compute an upper bound we assign all the jobs in the smallest alive
interval. We obtain SUB =

∑
j∈J Wj

minj∈J (dj−rj)
. Without loss of generality we assume

that all release dates and deadlines are integer and, hence, SUB ≤ nW , where
W = max

j∈J
Wj .

Given these lower and upper bounds and a small constant δ > 0. We consider
only the speeds from the set Sδ = {SLB , (1 + δ)SLB , (1 + 2δ)SLB , . . . , (1 +
kδ)SLB}, where k is the smallest integer such that (1 + kδ)SLB � SUB . Hence,
the number of speed values is bounded by k ≤ SUB

δSLB
, which is polynomial in 1

δ
and exponential in the size of the input.

Consider now an optimal schedule for some instance of our problem. We
obtain the schedule σ from the optimal one by rounding up the speeds of proces-
sors to the closest discrete value. The ratio of the energy consumption of any
processor i at any time t in σ to the energy consumption of the same processor
i at time t in the optimal schedule is at most (1 + δ)α. By summing up for all
processors and all time intervals, we conclude that the energy consumption of σ

is at most (1+δ)αOPT . Finally, if we set a δ such that δ =
(
1 + ε

OPT

) 1
α −1, then

the energy consumption of σ is at most ε + OPT . We note that this selection
made the number of discrete speeds to be exponential in the size of the instance
and polynomial in 1/ε. Indeed, we have k ≤ SUB(

(1+ε/OPT )
1
α −1

)
SLB

≤ αSUBOPT
εSLB

.

Finally we get the following result.

Lemma 1. For problems P |sizej , pmtn, rj , dj |E and P |fixj , pmtn, rj , dj |E
there exists a feasible schedule of energy consumption at most OPT + ε that
uses a finite (exponential in the size of the instance and polynomial in 1/ε)
number of discrete processors’ speeds, for any ε > 0.

In what follows in this paper, we deal with schedules that satisfy Lemma1.
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2.1 Configuration LP

Let t0 < t1 < · · · < tl be the events corresponded to release dates and deadlines
of jobs sorted according to the increasing time. We denote the set of all possible
intervals of the form (ti−1, ti], i = 1, . . . , l, by I. Let |I| be the length of interval
I ∈ I. We introduce a variable xI,c, for each I ∈ I and c ∈ C, which corresponds
to the total processing time during the interval I ∈ I where the processors run
according to the configuration c ∈ C. We denote by EI,c the instantaneous energy
consumption of the processors if they run with respect to the configuration c
during the interval I. Let Sj,c be the speed of job j according to the configuration
c, and let (I, c) be the set of jobs which are alive during the interval I and which
are executed on some processors by the configuration c. We propose the following
configuration LP: ∑

I∈I,c∈C
EI,c · xI,c → min, (1)

∑

c∈C
xI,c � |I|, I ∈ I, (2)

∑

I,c:j∈(I,c)

Sj,c · xI,c

Wj
� 1, j ∈ J , (3)

xI,c � 0, I ∈ I, c ∈ C. (4)

The configurations, assigned to interval I, can be executed in an arbitrary
order. Inequality (2) ensures that for each interval I ∈ I there is exactly one
configuration for each time t ∈ I. Constraint (3) implies that each job j ∈ J is
entirely executed.

The above LP has an exponential number of variables, but its number of
constraints is linear in n. It is shown in [11] that if one can solve the separation
problem for the dual LP in polynomial time then one can also solve the opti-
mization problem of the primal LP in polynomial time. We consider the dual
LP of (1)–(4): ∑

j∈J
λj −

∑

I∈I
μI |I| → max, (5)

∑

j∈(I,c)

Sj,c

Wj
λj − μI � EI,c, I ∈ I, c ∈ C, (6)

λj � 0, μI � 0, j ∈ J , I ∈ I. (7)

The dual LP has a number of variables which is linear in n and an exponen-
tial number of constraints. In the next subsection we provide polynomial time
separation oracles, i.e., we give polynomial-time algorithms which given a solu-
tion for the dual LP decide if this solution is feasible or otherwise identify a
violated constraint. It follows that the strong optimization problem for the dual
linear program can be solved by the Ellipsoid method in oracle polynomial time
(see Theorem (6.4.9) in [11]). As we can compute an optimal solution for the dual
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LP, we can also find an optimal solution for the primal LP by solving it with the
variables corresponding to the constraints that were found to be violated during
the run of the Ellipsoid method and setting all other primal variables to zero.
The number of these violated constraints is bounded by the number of calls to
the separation oracle. In turn, the number of calls to the separation oracle and
the number of elementary arithmetic operations are bounded by a polynomial in
the facet complexity φ of the corresponding polyhedron P (see Theorem (6.6.5)
in [11]). A polyhedron P has a facet complexity at most φ if there exists a system
of inequalities with rational coefficients that has the solution set P and such that
the encoding length of each inequality of the system is at most φ. In our case
the facet complexity φ can be bounded by polynomial in size of the instance and
log(1/ε).

2.2 Separation Problems

The separation oracle for the dual LP works as follows. For each I ∈ I, we
try to find if there is a violated constraint. Recall that there are O(n) inter-
vals in the set I. For a given I, it suffices to check the minimum among the
values EI,c − ∑

Jj∈(I,c)
Sj,c

Wj
λj over all possible configurations c. If this mini-

mum value is less than (−μI), then we have a violated constraint. Otherwise,
if we cannot find any violated constraint for all I ∈ I, then the dual solu-
tion is feasible. Note that EI,c =

∑
j∈(I,c)(Sj,c)αmj , where mj = sizej in the

case of problem P |sizej , pmtn, rj , dj |E, and mj = |fixj | in the case of prob-
lem P |fixj , pmtn, rj , dj |E, for all j ∈ (I, c). Hence, we want to find the minimum
value of

∑
j∈(I,c) (Sα

j,cmj − Sj,c

Wj
λj).

For each job j ∈ J that is alive during I, the term (Sα
j,cmj − Sj,c

Wj
λj) is

minimized at a discrete value vj ∈ Sδ which is one of the two closest to the value
(

λj

Wj ·mj ·α
)1/(α−1)

discrete speeds. To see this we just need to notice that we
minimize a convex function of one variable over a set of possible discrete values.

The value
(

λj

Wj ·mj ·α
)1/(α−1)

is obtained by minimizing (Sα
j,cmj − Sj,c

Wj
λj) if there

is no discretization of the speeds and it is obtained by setting the derivative of
the last expression to zero. For job j, the discrete value vj ∈ Sδ is calculated by
Binary search in time polynomial in 1/ε and size of the instance. Hence, given
an interval I, we want to find a configuration c that minimizes

∑

j∈(I,c)

(

vα
j mj − vj

Wj
λj

)

. (8)

Rigid Jobs. For the speed scaling scheduling with rigid jobs, the problem of
minimizing expression (8) reduces to a maximum KNAPSACK problem and
can be solved as follows.

We denote the subset of jobs, which are alive during interval I, by J ′ =
{j′

1, . . . , j
′
n′} and let V (j) = ( vj

Wj
λj−vα

j sizej) be the weight of job j ∈ J ′. Let Fik
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denote the set of all subsets of jobs from {j′
1, . . . , j

′
k} that can be scheduled simul-

taneously on processors from {1, . . . , i} and let F (i, k) = max{∑j∈fik
V (j) :

fik ∈ Fik}. Then the problem of testing the feasibility is reduced to computing
max{F (i, n′) : i = 1, . . . ,m} for each interval I ∈ I, which can be done by using
a dynamic programming procedure based on the following recursions.

F (0, k) = F (i, 0) = 0, i = 1, . . . ,m, k = 0, 1, . . . , n′;

F (i, k) = F (i, k − 1), i = 1, . . . , sizej′
k

− 1, k = 1, . . . , n′;

F (i, k) = max{F (i, k − 1), F (i − sizej′
k
, k − 1) + V (j′

k)},

i = sizej′
k
, . . . ,m, k = 1, . . . , n′.

This method is based on the approach proposed in paper [12].
Hence, there is a separation oracle for the dual problem which runs in time

polynomial in m, 1/ε and the size of the instance. Thus we have a polynomial
time algorithm if m is fixed and a pseudo-polynomial time algorithm if m is a
part of the input.

Theorem 1. A schedule of energy consumption at most OPT + ε can be found
for problem P |sizej , pmtn, rj , dj |E in time polynomial in m, 1/ε and the input
size.

Our algorithm can be generalized for problem P |sizej , pmtn, rj , dj , αi|E,
where each processor has its own power function. The only change in
the primal LP for this problem is the value EI,c, namely EI,c =
∑

j∈(I,c)

(∑
{i(j,c)} S

αi(j,c)
j,c

)
. Here {i(j, c)} is the set of processors on which job j

is assigned into configuration c, |{i(j, c)}| = sizej .
The separation oracle for the dual LP reduces to minimization of

∑

j∈(I,c)

⎛

⎝
∑

{i(j,c)}
S

αi(j,c)
j,c − Sj,c

Wj
λj

⎞

⎠. (9)

For every job j, the “optimal” discrete speed vj ∈ Sδ can also be calculated by
Binary search, because each component of sum (9) is a one variable function
with a single minimum over a set of positive values. Hence the following result
holds.

Corollary 1. A schedule of energy consumption at most OPT + ε can be found
for problem P |sizej , pmtn, rj , dj , αi|E in time polynomial in 1/ε and the input
size.

Let us assume that the number of processors used by a job is chosen by
the scheduler, and can be changed at runtime. Then these jobs are called mal-
leable jobs [8], and the speed scaling problem with malleable jobs is denoted by
P |var, rj , dj |E. Our algorithm can be adopted for problem P |var, rj , dj |E.
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Let varj = {size1j , . . . , size
lj
j } denote the set of usable processor sizes for job

j ∈ J , where sizeh
j < sizeh+1

j , and let Wjh be the workload of job j ∈ J if it is
executed on sizeh

j processors. For malleable jobs the set of discrete processors’
speeds and the configuration LP are constructed the same way as for rigid jobs,
but a configuration c specifies a feasible subset of jobs and an assignment of
processor numbers to jobs as well as an assignment of a speed value for each
processor.

The separation problem for the dual LP reduces to finding a configuration c
that minimizes

∑

j∈(I,c)

(

vα
j,h(j,c)size

h(j,c)
j − vj,h(j,c)

Wj,h(j,c)
λj

)

(10)

for each interval I ∈ I.
Here h(j, c) is the number of processor size for job j in configuration c and

vj,h(j,c) is the “optimal” discrete speed of job j, if it is executed on size
h(j,c)
j

processors.
We denote the subset of jobs, which are alive during interval I, by J ′ =

{j′
1, . . . , j

′
n′} and let V (j, h) = ( vj,h

Wj,h
λj − vα

j,hsizeh
j ) be the weight of job j ∈ J ′,

if it is executed on sizeh
j processors. Then the problem of minimizing expres-

sion (10) is equivalent to maximization of
∑

j∈(I,c) V (j, h(j, c)). The latter prob-
lem is solved by a dynamic programming.

Let Fik denote the set of all subsets of jobs from {j′
1, . . . , j

′
k} that can be

scheduled simultaneously on processors from {1, . . . , i} (the number of processors
is indicated for each job) and let F (i, k) = max{∑j∈fik

V (j, h(j, fik)) : fik ∈
Fik}. In our algorithm, the values F (i, k) are recursively computed, and the
recursion is given by

F (0, k) = F (i, 0) = 0, i = 1, . . . , m, k = 0, 1, . . . , n′;

F (i, k) = F (i, k − 1), i = 1, . . . , size1j′
k

− 1, k = 1, . . . , n′;

F (i, k) = max{ max
sizeh

j′
k

�i
{F (i − sizeh

j′
k
, k − 1) + V (j′

k, h)}; F (i, k − 1)},

i = size1j′
k
, . . . ,m, k = 1, . . . , n′.

Therefore, there is a separation oracle for the dual problem which runs in
time polynomial in m, 1/ε and size of the instance. Thus, we have

Corollary 2. A schedule of energy consumption at most OPT + ε can be found
for problem P |var, rj , dj |E in time polynomial in m, 1/ε and the input size.

Single Mode Two-Processor Jobs. For the speed scaling scheduling with single
mode two-processor jobs (i.e. |fixj | = 2 for j ∈ J ), the problem of minimizing
expression (8) reduces to a MAXIMUM WEIGHTED MATCHING problem on
a multi-graph, where vertices correspond to processors and edges represent the
jobs. There is an edge {i, i′} with weight equal to

(
vj

Wj
λj − 2vα

j

)
for each alive
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job j ∈ J in interval I, whose required processor set consists of i and i′ (i.e.
fixj = {i, i′}). The maximum weighted matching in such a multi-graph can be
found in time polynomial in n and defines a configuration c that minimizes (8).

Hence, there is a separation oracle for the dual problem which runs in time
polynomial in 1/ε and the size of the instance.

Theorem 2. A schedule of energy consumption at most OPT + ε can be found
for problem P |fixj , pmtn, rj , dj |E with |fixj | = 2 in time polynomial in 1/ε and
the input size.

As in the case of rigid jobs, the presented approach can be generalized for
problem P |fixj , pmtn, rj , dj , αi|E with |fixj | = 2. Thus, we have

Corollary 3. A schedule of energy consumption at most OPT + ε can be found
for problem P |fixj , pmtn, rj , dj , αi|E with |fixj | = 2 in time polynomial in 1/ε
and the input size.

The complexity of the Separation Problem changes when there are three
prespecified processors for each job. In this case, the problem of minimizing
expression (8) is NP-hard, because the NP-complete THREE-DIMENSIONAL
MATCHING problem can be reduced to it.

Theorem 3. The problem of finding a configuration that minimizes expres-
sion (8), given an interval I ∈ I, is NP-hard for problem P |fixj , pmtn, rj , dj |E
with |fixj | = 3.

Proof. THREE-DIMENSIONAL MATCHING problem is formulated as follows:
Let the set M ⊆ X ×Y ×Z be given, where X, Y, and Z are disjoint sets having
the same number of elements q. The question is, does M contains a matching,
i.e., a subset M ′ ⊆ M such that |M ′| = q and no two elements of M ′ agree in
any coordinate.

Given an instance of THREE-DIMENSIONAL MATCHING, we construct
the following instance of problem P |fixj , pmtn, rj , dj |E. Set n = |M |, m = 3q,
Wj = 1, rj = 0, dj = 1, and |fixj | = 3 for all j ∈ J . Suppose that each
element l = (x, y, z) from M corresponds to a job j and coordinates of l represent
the required processors for job j, i.e. fixj = {x, y, z}.

The separation oracle for the constructed instance is reduced to finding the
maximum value of

∑
j∈(I,c) (Sj,cλj − 3Sα

j,c) over all possible configurations c for
a single interval I = (0, 1]. Let λj be the same for each job j ∈ J and be
equal to λ > 0, then the “optimal” discrete speeds vj ∈ Sδ are identical for all
jobs. Denote these speeds by v. Hence, we have to find a configuration c that
maximizes ∑

j∈(I,c)

(vλ − 3vα). (11)

Note that at each time moment at most q jobs can be executed. Therefore,
a configuration c with

∑
j∈(I,c) (vλ − 3vα) � q(vλ − 3vα) exists and contains

exactly q jobs if and only if the THREE-DIMENSIONAL MATCHING problem
has a positive answer. Our reduction is polynomial and thus the theorem is
proved. �	
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3 NP-Hardness Results

Suppose that the parameter α is the same for all processors and the number of
required processors is given and fixed for each job. Under this assumption it is
easy to see that in any optimal schedule, any job runs at a constant speed due
to the convexity of the speed-to-power function. Let us assume that we know
the optimal execution speed of each job. We still need to find a feasible schedule
with respect to release dates and deadlines. Intuition suggests that speed-scaling
problems should be harder than their counterparts with fixed processing times.
Indeed, let us prove the NP-hardness of P |sizej , pmtn, rj , dj |E.

Theorem 4. P |sizej , pmtn, rj , dj |E is ordinary NP-hard even if all jobs have
a common release date, a common deadline, and unit processing volumes.

Proof. We show that the NP-complete PARTITION problem polynomially trans-
forms to P |sizej , pmtn, rj , dj |E.

PARTITION: Given a set A = {a1, a2, . . . , an} of natural numbers. Is there
a subset A′ ⊂ A such that

∑

ai∈A′
ai =

∑

ai∈A\A′
ai?

So let a1, a2, . . . , an be an instance of PARTITION and let
∑

ai∈A

ai = 2B. We

construct an instance of P |sizej , pmtn, rj , dj |E with n jobs and B processors
as follows. For every aj we generate a job j. We set sizej = aj , Wj = 1,
rj = 0, dj = 2 for j ∈ J . It is required to determine if there is a schedule of
energy consumption at most E = 2B. Due to convexity of the speed-to-power
function and the fact that 2m =

∑
j∈J (Wj · sizej), a feasible schedule of energy

consumption at most 2B has no idle time and the speed of each processor is equal
to 1 during the whole interval [0, 2]. Therefore, at each time moment t the sizes
of jobs running in parallel must be equal to B =

∑
j∈Jt

sizej , where Jt is the set
of jobs executed at time t. Therefore, a positive answer to P |sizej , pmtn, rj , dj |E
with E ≤ 2B implies a positive answer to PARTITION and vice versa. �	

In the proof of Theorem 4 we use the common technique for proving NP-
hardness results in scheduling. Moreover, our proof is almost a step by step
reproduction of the NP-hardness proof for P |sizej , pmtn, rj , dj |Cmax [7]. We
claim that most of the NP-hardness proofs for scheduling problems with the
minimization maximum lateness criterion Lmax may be easily transformed to
their speed scaling counterparts. We note that Cmax is the special case of Lmax

when all jobs have due dates at time 0.
Consider the decision version Π of some scheduling problem with the criterion

Lmax : Given n jobs and m processors. Each processor has a constant speed. With
each job j we associate a release date rj , a processor dependent processing time
pij , and a deadline dj . A feasible schedule is an assignment of jobs to processors
such that each job j starts no earlier than its release date rj and completes no
later than its deadline dj . It is required to find a feasible schedule. We do not
specify the scheduling environment here. We may consider a single processor,
parallel identical or unrelated processors, open shop, job shop, e.t.c. We may
consider models that allow preemption and those that do not, models in which
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jobs have precedence constraints, models with rigid jobs or multi-processor jobs,
or other variations.

Let rmin = minj rj and dmax = maxj dj . We say that a schedule is called non-
idle if no processor is idle during the interval [rmin, dmax]. We say an instance I
has the non-idle property if there is no feasible schedule that is not non-idle. Let
Π ′ be a subproblem of Π that contains only instances with the non-idle property.

First, we show that the problem Π ′ can be polynomially reduced to the
corresponding speed scaling problem Π̄. Indeed, let I be an instance of Π ′. We
consider an instance Ī of the speed scaling problem with the same set of jobs and
processors. Each job j has the same release date rj and the same deadline dj as
in I. The processing volume Wij of job j on processor i is equal to the processing
time pij of job j on processor i in the instance I. The instance Ī has the same
processor and job environment as the instance I except one. The processors may
change their speed. If a processor runs at speed s then the energy consumption
is sα units of energy per time unit, where α > 1 is a constant. Thus, if processor
i performs job j at a speed s then it spends Wij

s time units to complete the job.
It is required to determine if there is a schedule of energy consumption at most
m(dmax − rmin). Due to convexity of the speed-to-power function and the fact
that all feasible schedules in the instance I (if any) should be non-idle, a schedule
with the required energy consumption exists if and only if there exists a feasible
non-idle, schedule in the instance I. It follows that the NP-completeness of Π ′

implies the NP-completeness of Π̄.
Second, we observe that most of the NP-hardness proofs for scheduling prob-

lems with the minimization maximum lateness criterion are based on the poly-
nomial reduction of a well-known NP-complete problem to the decision version
of scheduling problem. In most cases either the obtained instance of decision
problem has the non-idle property or we can easily modify the instance so that
a new instance has the non-idle property and there exists a feasible schedule in
it if and only if there exists a feasible schedule in the original instance.

To illustrate our observation let us consider the problem P |fixj , pmtn|Cmax.
Jansen and Porkolab [13] proved that P |fixj , pmtn|Cmax is strongly NP-hard
even if all jobs have unit execution time and |fixj | ≤ 3 for each job j ∈ J . They
reduced the fractional coloring problem on a graph G = (V,A) with fractional
chromatic number χf (G) � 3 to the decision version of P |fixj , pmtn|Cmax in
such a way that there are at most three prespecified processors for each job and
two or three jobs on each processor. They proved that a schedule of length 3
for the corresponding instance I of P |fixj , pmtn|Cmax exists if and only if the
instance of the fractional coloring problem has a fractional chromatic number
χf (G) � 3. We add a “dummy” single-processor job for each processor with two
jobs. It is obvious that a schedule of length 3 in a new instance exists if and
only if there exists a schedule of length 3 in the instance I. Finally, we get the
following result as a corollary of Theorem 3.1 in [13].

Theorem 5. P |fixj , pmtn, rj , dj |E with |fixj | ≤ 3 is strongly NP-hard even if
all jobs have a common release date, a common deadline, and unit processing
volumes.
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4 Conclusion

The NP-hard speed scaling scheduling problems of parallel jobs with preemption
are studied. “Almost-exact” algorithms are proposed for solving the problems
with rigid jobs and single mode two-processor jobs. Based on configuration linear
programs, our algorithms return a solution within an additive factor of ε > 0
from the optimal solution.

Further research appears to be appropriate in extending the obtained results
to the speed scaling scheduling of moldable jobs (P |any, pmtn, rj , dj |E) and
multi mode multiprocessor jobs (P |setj , pmtn, rj , dj |E).

Acknowledgements. This research is supported by the Russian Science Foundation
grant 15-11-10009.
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Abstract. We consider a mathematical model belonging to the family
of competitive location problems. In the model, there are two compet-
ing parties called Leader and Follower, which open their facilities with
the goal to capture customers and maximize profit. In our model we
assume that Follower is able to open own facilities as well as to close
the Leader’s ones. The model can be written as a pessimistic bilevel
integer programming problem. We show that the problem of Leader’s
profit maximization can be represented as a problem of pseudo–Boolean
function maximization. The number of variables the function depends on
equals to the number of sites available for opening a facility. We suggest
a method of calculation of an upper bound for the optimal value of the
function based on strengthening of a bilevel model with valid inequal-
ities and further relaxation of the model by removing the lower–level
optimization problem.

Keywords: Stackelberg game · Upper bound · Competitive location

1 Introduction

In contrast to the classical location problem [9] models of competitive loca-
tion consider several competing parties [4–6,10]. The parties simultaneously or
sequentially open their facilities with the aim to optimize personal objective func-
tions. The goals of the competitors are associated with the customers capture
and satisfying their demands. There is a number of customer behavior mod-
els resulting from the characteristics of the demand and other factors [13]. We
assume that the customer capture is based on his preferences. They are assumed
to be known for both parties.

In our model, we consider the competition of two sides that open their facili-
ties sequentially. The decision making process can be considered as a Stackelberg
game [15]. The formalization of this kind of games can be done in a natural way
in terms of bilevel programming [8]. According to the game terminology the
party that opens its facilities first will be referred to as Leader. The second
party that opens its facilities knowing Leader’s decision will be referred to as
Follower.

In the present work, we deal with the model of competitive location where
in contrast to models from [4–6] Follower is able to close Leader’s facilities by
using discrediting, black PR and other methods of unfair competition.
c© Springer International Publishing Switzerland 2016
Y. Kochetov et al. (Eds.): DOOR 2016, LNCS 9869, pp. 325–335, 2016.
DOI: 10.1007/978-3-319-44914-2 26



326 V. Beresnev and A. Melnikov

The Leader’s aim in this competition is to open such a set of facilities that
brings maximum profit provided that Follower can close some of Leader’s facil-
ities and capture some customers. Follower’s goal is to maximize profit as well.
Follower decides which Leader’s facilities are to be closed and where to open own
facilities.

First publications considering bilevel location models with opportunity of
closing or destructing of the facilities appeared in 2008. In [14] authors formulate
the model of interdiction median problem with fortification (RIMF), where one
party called a defender commits resources to protect facilities serving customers
from the rational attack of another party. The authors investigate properties of
the model and suggest an enumeration scheme to obtain an optimal defender’s
solution. Further developments of the model can be found in [1,11,16] where sto-
chastic generalizations of the model are considered. Other models of protection
against the rational attack are investigated in [2,3].

An important feature of our model is necessity of a revision of the feasibil-
ity definition. The most common concepts of feasibility for bilevel programming
problems are optimistic and pessimistic solutions. In the present work we focus
on the problem of finding a pessimistic optimal solution. The suggested app-
roach is based on the ideas developed and approved in [4,6]. The first point is
representation of the Leader’s problem in the form of pseudo–Boolean function
maximization. The number of variables the function depends on is equal to the
number of places available for facility opening. The representation allows imple-
menting inexact methods of search in a Boolean cube such as local search and
its modifications. The second important point is calculation of an upper bound
for the values the function takes on subsets specified by partial (0,1)–vectors. It
allows developing an implicit enumeration scheme proved to be effective when
applied to previously studied models.

In this paper, we show that given values of the Leader’s location variables
the problem of finding a pessimistic feasible solution is reduced to mixed–integer
programming problem. This implies that the required pseudo–Boolean function
can be constructed. By using the approach from [4,6] we define a modified system
of evaluating subsets, which allow to formulate sufficient conditions of capturing
the customer by Follower. This conditions written in a form of linear inequalities,
are used as valid inequalities for strengthening the bilevel model. The relaxation
of the strengthened model by removing the lower–level problem provides an
upper bound for the optimal value of the pseudo–Boolean function.

The paper is organized as follows. In Sect. 1 we propose the model of the facil-
ity location in unfair competition in the form of a bilevel integer programming
problem. Section 2 is devoted to the problem of finding a pessimistic feasible
solution of the model. A reduction to a pseudo–Boolean function maximization
problem is discussed as well. In Sect. 3 we construct an estimating problem pro-
viding an upper bound for the optimal value of the pseudo–Boolean function.
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2 Mathematical Model

Let us introduce the necessary notations.

Index sets:
I = {1, . . . ,m} is a set of locations (candidate sites for opening facilities);
J = {1, . . . , n} is a set of customers.

Parameters:
fi is a fixed cost of opening a Leader’s facility i ∈ I;
gi is a fixed cost of opening a Follower’s facility i ∈ I;
Gi is a cost of closing a Leader’s facility i ∈ I;
pij is a profit of Leader’s facility i ∈ I obtained from a customer j ∈ J ;
qij is a profit of Follower’s facility i ∈ I obtained from a customer j ∈ J ;

Variables:

xi =
{

1, if Leader opens facility i
0, otherwise,

zi =
{

1, if Follower opens facility i
0, otherwise,

si =
{

1, if Follower closes Leader’s facility i
0, otherwise,

xij =
{

1, if Leader’s facility i serves the customer j
0, otherwise,

zij =
{

1, if Follower’s facility i serves the customer j
0, otherwise.

We assume that the preferences of a customer j ∈ J are represented with
a linear order �j on the set I. The relation i1 �j i2 shows that either facility
i1 is more preferable for j than i2, or i1 = i2. If i1 �= i2 and i1 �j i2, we use
denotation i1 �j i2.

Given j ∈ J , we denote the greatest element of a nonempty set K ⊆ I
according to the order �j with ij(K). In other words, ij(K) is a i ∈ K such that
i �j k for all k ∈ K. For a nonzero Boolean vector x = (xi), i ∈ I we assume
that ij(x) = ij({i ∈ I|xi = 1}).

It is assumed that a customer is captured by the party that opens the most
preferable facility for him. Moreover, the party is able to serve the captured cus-
tomer only with a facility that is more preferable for him than any competitor’s
facility. If Boolean vectors x and z correspond to Leader’s and Follower’s facili-
ties locations respectively, then Leader’s facility i ∈ I can serve customer j ∈ J
iff i �j ij(z). Similarly, Follower’s facility i ∈ I can serve a customer j ∈ J iff
i �j ij(x).

Now we can formulate the model of facility location in unfair competition in
terms of bilevel integer programming:

max
(xi),(xij)

min
(z̃i),(z̃ij),(s̃i)

⎛

⎝−
∑

i∈I

fixi +
∑

j∈J

∑

i∈I

pijxij

⎞

⎠ , (1)
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z̃i +
∑

k|i�jk

xkj ≤ 1, i ∈ I, j ∈ J ; (2)

xi − s̃i ≥ xij , i ∈ I, j ∈ J ; (3)

xi, xij ∈ {0, 1}, i ∈ I, j ∈ J ; (4)

where (z̃i), (z̃ij), (s̃i) solves (5)

max
(zi),(zij),(si)

{
−

∑

i∈I

Gisi −
∑

i∈I

gizi +
∑

j∈J

∑

i∈I

qijzij

}
, (6)

xi − si + zi ≤ 1, i ∈ I; (7)

xi ≥ si, i ∈ I; (8)

xi − si +
∑

k|i�jk

zkj ≤ 1, i ∈ I, j ∈ J ; (9)

zi ≥ zij , i ∈ I, j ∈ J ; (10)

zi, zij , si ∈ {0, 1}, i ∈ I, j ∈ J. (11)

We denote the upper–level problem (1)–(5) with L and the lower–level prob-
lem (6)–(11) with F . The problem (1)–(11) is denoted by (L,F).

Leader’s objective function (1) expresses the value of his profit and consists of
two components. The first one is the cost of facilities to be opened, and the second
summand represents the income collected by them. We assume that in the cases
when the problem F has several optimal solutions Follower plays against Leader
and chooses the solution that minimizes (1). Constraints (2) ensure that Leader
serves the customer with a facility which is more preferable for the customer than
any Follower’s facility. In addition, these constraints ensure that the customer is
served with no more than one Leader’s facility. Constraints (3) guarantee that
customers are served with open facilities. Follower’s problem F has a similar
form. Additional term in Follower’s objective function (6) equals to the cost of
closing Leader’s facilities. Constraints (7) ensures that Follower’s facility can be
opened only in a location without Leader’s one, and constraints (8) allow to
close only the Leader’s facility which is open.

3 Pessimistic Feasible Solutions

A pair (X, Z̃) is called a feasible solution of the problem (L,F) if X = ((xi), (xij))
is a feasible solution of the problem L with given z̃ = (z̃i), s̃ = (s̃i), and Z̃ =
((z̃i), (z̃ij), (s̃i)) is an optimal solution of the problem F with given x = (xi).

Denote the value of objective function (6) on a feasible solution Z of the
problem F with F (Z) and the value of objective function (1) on a feasible
solution (X, Z̃) of the problem (L,F) with L(X, Z̃).

Given values of variables x = (xi), i ∈ I, let us select “good” Leader’s
solutions among all feasible solutions (X, Z̃) of the problem (L,F). We call
a feasible solution (X̃, Z̃), X̃ = ((xi), (x̃ij)) strong if L(X̃, Z̃) ≥ L(X, Z̃) for
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every feasible solution (X, Z̃), where X = ((xi), (xij)). It is clear that a feasible
solution (X̃, Z̃), X̃ = ((xi), (x̃ij)) is strong if for all j ∈ J holds

∑

i∈I

pij x̃ij = max
k|k�jij(z̃)

pkj(xk − s̃k),

where maximum over an empty set is assumed to be equal to zero.
We say that a strong feasible solution (X̄, Z̄) of the problem (L,F), where

X̄ = ((xi), (x̄ij)), is pessimistic, if L(X̄, Z̄) ≤ L(X̃, Z̃) for each strong feasible
solution (X̃, Z̃), X̃ = ((xi), (x̃ij)). A pessimistic feasible solution (X∗, Z∗) of the
problem (L,F) is called a pessimistic optimal solution if L(X∗, Z∗) ≥ L(X̄, Z̄)
for each pessimistic feasible solution (X̄, Z̄).

Given a Boolean vector x = (xi), i ∈ I, consider the problem of finding a
pessimistic feasible solution (X̄, Z̄), X̄ = ((xi), (x̄ij)) of the problem (L,F). This
solution can be computed in two steps.

At the first step given a vector x solve the problem F and get an optimal
value F ∗ of its objective function. At the second step solve the following auxiliary
problem. To formulate it we introduce new variables uj , j ∈ J . The variable uj

takes the value of the maximum profit Leader gets from serving the customer j.
The aforementioned problem is formulated as follows:

min
(zi),(zij),(si),(uj)

∑

j∈J

uj (12)

xi − si + zi ≤ 1, i ∈ I; (13)

xi ≥ si, i ∈ I; (14)

xi − si +
∑

k|i�jk

zkj ≤ 1, i ∈ I, j ∈ J ; (15)

zi ≥ zij , i ∈ I, j ∈ J ; (16)

uj ≥ pij(xi − si −
∑

k|k�ji

zk), i ∈ I, j ∈ J ; (17)

−
∑

i∈I

Gisi −
∑

i∈I

gizi +
∑

j∈J

∑

i∈I

qijzij ≥ F ∗; (18)

zi, zij , si ∈ {0, 1}, i ∈ I, j ∈ J ; (19)

ui ≥ 0, j ∈ J. (20)

Let (Z̄, Ū), Z̄ = ((z̄i), (z̄ij), (s̄i)), Ū = (ūj) be an optimal solution of the
problem (12)–(20), and let z̄ = (z̄i). Notice that for solution (Z̄, Ū) the following
equality holds for each j ∈ J :

ūj = max
i|i�jij(z̄)

{
pij(xi − s̄i)

}
.
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Now we are able to construct a strong feasible solution (X̄, Z̄), X̄ =
((xi), (x̄ij)) of the problem (L,F) corresponding to (Z̄, Ū). For j ∈ J such that
ūj > 0 let us denote by ij the index i ∈ I for which the constraint (17) is active.
Then for i ∈ I, j ∈ J we set

x̄ij =
{

1, if ūj > 0 and i = ij
0 otherwise .

Notice that (X̄, Z̄) is a strong feasible solution of the problem (L,F). In
addition, observe that ūj =

∑

i∈I

pij x̄ij , j ∈ J .

Theorem 1. Given (0,1)–vector x = (xi), i ∈ I, if (Z̄, Ū), Z̄ =
((z̄i), (z̄ij), (s̄i)), Ū = (ūj) is an optimal solution of the problem (12)–(20), then
the solution (X̄, Z̄), X̄ = ((xi), (x̄ij)) of the problem (L,F), corresponding to
(Z̄, Ū) is a pessimistic feasible solution of the problem (L,F).

Proof. Let (X̃, Z̃), X̃ = ((xi), (x̃ij)), Z̃ = ((z̃i), (z̃ij), (s̃i)) be a strong feasible
solution of the problem (L,F). Set z̃ = (z̃i) and

ũj =
∑

i∈I

pij x̃ij , j ∈ J.

Since (X̃, Z̃) is a strong feasible solution, then

ũj = max
i|i�jij(z̃)

pij(xi − s̃i), j ∈ J.

Consequently, (Z̃, Ũ), Ũ = (ũi) is a feasible solution of the problem (12)–(20).
We get ∑

j∈J

∑

i∈I

pij x̃ij =
∑

j∈J

ũj ≥
∑

j∈J

ūj =
∑

j∈J

∑

i∈I

pij x̄ij .

It follows that L(X̄, Z̄) ≤ L(X̃, Z̃), and the Theorem 1 is proved.

Since any (0,1)–vector x defines the value of objective function (1) on the corre-
sponding pessimistic feasible solution, then the problem (L,F) can be considered
as a pseudo–Boolean function maximization problem. This function f depends
on m Boolean variables and for every vector of Leader’s locations gives the value
of Leader’s profit.

4 Upper Bound

Consider the problem of computing an upper bound for values of the afore-
mentioned pseudo–Boolean function f(x), x ∈ {0, 1}m. Our goal is to modify
the approach from [4,6] and apply it to the problem under investigation. The
method consists in strengthening of the initial bilevel problem with some addi-
tional constraints satisfied by all pessimistic feasible solutions. The relaxation
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of the strengthened model by removing the lower–level problem provides a valid
upper bound.

Valid inequalities for the problem (L,F) utilize a specially constructed sys-
tem of subsets {Ij}, j ∈ J . Our goal is to form a nontrivial subset Ij for each
j ∈ J such that in the case, when the most preferable for j0 ∈ J Leader’s facil-
ity is not in Ij0 , then j0 does not bring profit to Leader. Given j0 ∈ J , let us
formulate the rule to determine if an arbitrary i ∈ I is in the subset Ij0 or not.

Consider the set N(i) = {k ∈ I | k �j0 i} of facilities more preferable for j0
than i and its superset N̄(i) = N(i) ∪ {i}. The set

J(i) = {j ∈ J | i = ij(I\N(i))}

contains customers for which all the facilities that are more preferable than i are
contained in N(i). Since j0 ∈ J(i), then J(i) �= ∅.

For each k ∈ N(i) denote the subset of J(i) that can be captured by k by

J1(i, k) = {j ∈ J(i) | k = ij((I\N(i)) ∪ {k})},

and for each k ∈ N̄(i) the subset of J(i) that can be captured by k after closing
the facility i by

J2(i, k) = {j ∈ J(i) | k = ij((I\N̄(i)) ∪ {k})}.

Suppose that i /∈ Ij0 if there exists k ∈ N(i) such that
∑

j∈J1(i,k)

qkj ≥ gk,

or if there exists k ∈ N̄(i) such that
∑

j∈J2(i,k)

qkj ≥ gk +Gi. Otherwise we assume

that i ∈ Ij0 .

Lemma 1. Let (X̄, Z̄), X̄ = ((x̄i), (x̄ij)), Z̄ = ((z̄i), (z̄ij), (s̄i)) be a pessimistic
feasible solution of the problem (L,F) and {Ij} be a system of estimating subsets.
For each j0 ∈ J the following holds: if ij0({i ∈ I|x̄i − s̄i = 1}) /∈ Ij0 , then∑

i∈I

pij0 x̄ij0 = 0.

Proof. Consider (0,1)–vectors x̄ − s̄ = (x̄i − s̄i), i ∈ I and z̄ = (z̄i), i ∈ I. If
x̄ − s̄ = 0, then from (3) we obtain the required. Otherwise, set ix = ij0(x̄ − s̄).
Assume that ix /∈ Ij0 and consider the set N(ix) = {i ∈ I|i �j0 ix}. If N(ix) �= ∅
and

∑
i∈N(ix)

z̄i > 0, then from (2) and (3) we get
∑

i∈I

x̄ij0 = 0.

Otherwise, consider the set J(ix) = {j ∈ J |ix = ij(I\N(ix))}. Since (x̄i −
s̄i) = z̄i = 0 for all i ∈ N(ix), then ij(x̄ − s̄) �j ij(z̄) for each j ∈ J(ix). From
ix /∈ Ij0 we get two possibilities:

(1) there exists k ∈ N(ix) such that for J1(ix, k) we have
∑

j∈J1(ix,k)

qkj ≥ gk;
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(2) there exists k ∈ N̄(ix) such that for J2(ix, k) we have
∑

j∈J2(ix,k)

qkj ≥ gk+Gix .

In the first case we can construct a new feasible solution Z = ((zi), (zij), (si))
of the problem F which differs from the optimal solution Z̄ only in that zk = 1
and zkj = 1 for j ∈ J1(ix, k).

For solutions Z and Z̄ the following inequality holds:

F (Z) − F (Z̄) = −gk +
∑

j∈J1(ix,k)

qkj ≥ 0.

If this inequality is strict we have a contradiction with optimality of Z̄. If∑

i∈I

pij0 x̄ij0 > 0 the replacement of the optimal solution Z̄ of the problem F
with a feasible solution Z does not reduce the objective function of the lower–
level problem but reduces the upper–level one. It contradicts with the fact that
(X̄, Z̄) is a pessimistic feasible solution.

In the second case we construct a feasible solution Z = ((zi), (zij), (si)) of the
problem F , which differs from Z̄ only in that zk = 1, zkj = 1 for j ∈ J2(ix, k),
and six = 1. For the lower–level objective function, we have:

F (Z) − F (Z̄) = −gk − Gix +
∑

j∈J2(k,ix)

qkj ≥ 0.

By repeating the argument for the first case we get the Lemma 1 proved.

Corollary 1. Let (X̄, Z̄) be a pessimistic feasible solution of the problem (L,F)
and {Ij} is a system of estimating subsets. There exists a pessimistic feasible
solution (X,Z), X = ((xi), (xij)), Z = ((zi), (zij), (si)) of the problem (L,F)
such that L(X,Z) = L(X̄, Z̄) and for each j ∈ J the following inequality holds:

∑

i∈I

xij ≤
∑

i∈Ij

xi. (21)

Proof. Set (X,Z) to be equal to (X̄, Z̄). If the right hand side of (21) is positive,
then (21) results from the constraints (2).

If for some j ∈ J we have xi = 0 for all i ∈ Ij then Lemma 1 can be applied.
Indeed, in this case ij({i ∈ I|xi − si = 1}) �∈ Ij and thus

∑

i∈I

pijxij = 0. By

setting xij = 0 for all i ∈ I we get the required.

Consider the following problem, which we refer to as estimating problem for
(L,F). It is obtained from the problem (L,F) by adding the constraints (21)
and removing the lower–level objective function. From Corollary 1 we conclude
that the first modification does not change the optimal value of the objective
function. The second modification increases the feasible region by relaxing the
constraints on the lower–level variables to get values from the set of optimal
solutions. Obviously, after this relaxation all lower–level variables can be set to
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be equal to zero. This allows us to remove them as well. Finally, the estimating
problem is written as follows:

max
(xi),(xij)

{
−

∑

i∈I

fixi +
∑

j∈J

∑

i∈I

pijxij

}
,

∑

i∈I

xij ≤ 1, j ∈ J ;

xij ≤ xi, i ∈ I, j ∈ J ;
∑

i∈I

xij ≤
∑

i∈Ij

xi, j ∈ J ;

xi, xij ∈ {0, 1}, i ∈ I, j ∈ J.

Denote the value of its objective function on the feasible solution X =
((xi), (xij)) with B(X). Let X0 = ((x0

i ), (x
0
ij)) be an optimal solution of the

estimating problem.

Theorem 2. Let X0 be an optimal solution of the estimating problem. For each
pessimistic feasible solution of the problem (L,F) the following inequality holds:
L(X̄, Z̄) ≤ B(X0).

Proof. Let (X̄∗, Z̄∗) be a pessimistic optimal solution of the problem (L,F).
From the Corollary 1 we conclude that there exists a pessimistic feasible solution
(X∗, Z∗) satisfying (21) and such that L(X∗, Z∗) = L(X̄∗, Z̄∗). Since the value
B(X0) is an optimal value of the estimating problem, which is a relaxation of the
problem (L,F) with additional constraint (21), we have B(X0) ≥ L(X∗, Z∗).
The Theorem 2 is proved.

Thus computing the upper bound for the pseudo–Boolean function f(x) consists
in solving a single–level mixed–integer programming problem.

5 Conclusions and Future Research

In this paper, we have introduced a new model of competitive facility location,
which belongs to the class of Stackelberg games. Players called Leader and Fol-
lower maximizes their profit obtained from customers serving with deduction of
the fixed costs of facilities opening. The model of customers’ behavior assumes
that customer is captured by the side which opens the most preferable facility
for him or her. The novelty of the model consists in ability of Follower to close
Leader’s facility by paying some known price. It models the situation of unfair
competition where discrediting and other forms of dishonest activities can be
applied to Leader’s facilities in order to force them to close.

We propose the method to construct a pessimistic feasible solution corre-
sponding to Boolean vector, representing Leader’s facilities location. Conse-
quently, the Leader’s problem can be represented in a form of pseudo–Boolean
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function maximization. It allows to construct local search based methods and
apply a large pool of metaheuristic schemes [7,12] to obtain approximate solu-
tions of the problem in reasonable time.

The proposed upper bound can be utilized in estimation of the inexact meth-
ods effectiveness. Valid inequalities presented by the Corollary 1 strengthen the
formulation of the problem and can increase the convergence rate of bilevel
solvers to come. Due to proximity of the estimating problem and the Leader’s
problem, the optimal solution of the first one can be taken as a starting point
of the search.

The next step of our research is incorporation of the fixed values of Leader’s
location variables into the procedure of upper bound calculation. This modifica-
tion is necessary for the implicit enumeration scheme development but coupled
with difficulties caused by an uncertainty of the status of Leader’s facilities,
which are fixed to be open in branching procedure, but are able to be closed
by Follower. Another direction of research can be associated with protection
planning, where Leader is able to protect some of his facilities from closing.
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Abstract. In this paper we propose a Variable neighborhood descent
based heuristic for the capacitated clustering problem and related han-
dover minimization problem. The performance of the proposed approach
is assessed on benchmark instances from the literature. The obtained
results confirm that of our approach is highly competitive with the state-
of-the-art methods, significantly outperforming all of them on the set of
randomly-generated instances tested.

Keywords: Optimization · Variable neighborhood descent · Heuristic ·
Clustering

1 Introduction

Given a set P containing N elements, each of which has a weight wi (i ∈
{1, 2, ..., N}), the goal of the Capacitated Clustering Problem (CCP) is to par-
tition the set P into a required number G of disjoint groups (clusters) so that
the sum of diversities over each cluster is maximized and the sum of the weights
of the elements in each cluster is within some capacity limits. The diversity of
each cluster is expressed as the sum of the distances between the elements in the
cluster. The distance dij between any pair of elements i and j actually reflects
diversity between them.

Formally, using binary variables xig, i = 1, 2, . . . , N , g = 1, 2, . . . , G such that
xig receives value 1 if the element i is assigned to the group g, and 0 otherwise,
CCP may be expressed as the following quadratic binary integer program:

max
G∑

g=1

N∑

i=1

N∑

j=1

dijxigxjg (1)

s.t.
G∑

g=1

xig = 1, i = 1, 2, . . . , N (2)
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Y. Kochetov et al. (Eds.): DOOR 2016, LNCS 9869, pp. 336–349, 2016.
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N∑

i=1

wixig ≥ ag, g = 1, 2, . . . , G (3)

N∑

i=1

wixig ≤ bg, g = 1, 2, . . . , G (4)

xig ∈ {0, 1}, i = 1, 2, . . . , N, g = 1, 2, . . . , G (5)
The constraints (2) ensure that each element is assigned to exactly one group.

Constraints (3) and (4) guarantee that the minimum capacity, ag, and the max-
imum capacity, bg, requirements of each group are fulfilled.

The applications of CCP arise in the context of facility planners at mail
processing and distribution centers within the US Postal Service [2] as well as
in the context of mobility networks [9].

CCP is an NP hard problem [4]. To tackle it several methods have been
proposed. In [2], the authors developed greedy randomized adaptive search pro-
cedures (GRASP) coupled with variable neighborhood descent (VND) variants.
In addition, they proposed a Path Relinking post-processing procedure which did
not result in a significant improvement. In [9], the authors proposed several ran-
domized heuristics for solving the handover minimization problem, an equivalent
of CCP where the objective is to minimize the sum of diversities over clusters
instead of maximize. In particular they designed GRASP with path-relinking
for the generalized quadratic assignment problem, a GRASP with evolutionary
path-relinking, and a biased random-key genetic algorithm. Recently, Mart́ınez-
Gavara et al. [6] proposed tabu search and several GRASP variants for solving
CCP, which may be considered as state-of-the-art methods. Note that in the case
wi = 1 CCP becomes the Maximally Diverse Grouping Problem (MDGP). To
solve MDGP several specialized heuristics have been proposed in the literature
such as ones described in [1,3,5,10,11].

In this paper we develop a Variable neighborhood descent (VND) heuristic for
solving the CCP problem. VND is the deterministic variant of Variable Neighbor-
hood Search (VNS) [8] that uses kmax > 1 predefined neighborhood structures
in the search for a better solution. Once several neighborhood types are defined
(N1, . . . , Nkmax

), the deterministic search using all of them may be organized in
many different ways. Most common is the so-called Basic VND, where the order
of neighborhoods is chosen, and then a search following that order is organized.
If a better solution is not found in the complete neighborhood Nk, the search
continues in the next one, i.e., Nk+1. If a better solution is found, then the move
is performed and the search continues again from the first neighborhood (for a
recent survey on VND, see [7]). Following this sequential framework, we propose
a VND based heuristic for CCP, and assess its performance by extensive testing
on the benchmark instances from the literature. The obtained computational
results demonstrate the superiority of the proposed heuristic over the existing
state-of-the-art.

The rest of the paper is organized as follows. In the next section we describe
the main steps of VND for solving CCP. Section 3 presents numerical experi-
ments devoted to assessing the quality of several improvement procedures and
the proposed Multi-start VND. Finally, Sect. 4 concludes the paper.
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2 VND for CCP

The VND we develop for CCP follows the steps presented in Algorithm 1. In
what follows we provide a detailed description of its main ingredients i.e., solution
representation, initial solution, neighborhood structures and local searches.

2.1 Solution Representation

The solution space of CCP consists of all feasible partitions of the set P into
G disjoint groups such that sum of weights of elements in each group is within
desired bounds. Each solution can be represented by an array x of length N
where each value xi represents the label of the group containing element i in the
current solution. Along with array x, in order to make the local searches more
efficient (as will be explained later), we maintain two auxiliary data structures:

– the array sw with G elements, where each element swg equals to the total
weight of elements belonging to the group g in the corresponding solution,
i.e.:

swg =
∑

i:xi=g

wi (6)

– matrix sd whose dimensions are N × G so that each entry sdig equals to the
sum of distances between the element i and all elements belonging to the group
g in the corresponding solution:

sdig =
∑

j:xj=g

dij (7)

2.2 Initial Solution

The procedure for generating an initial solution includes three phases. In the first
phase, G elements are chosen at random and put into different groups. After that,
in the second phase, new elements are iteratively inserted into groups until the
total weight of elements in each group reaches the lower limit. At each iteration
of the second phase we choose a random element i currently not inserted and
after that choose the group g for insertion in the following way:

g = argmax{sdig
swg

|g = 1, 2, ..., G; swg < ag}. (8)

In the third phase we distribute the remaining elements by iteratively select-
ing the next element i and choosing the group g for insertion in a similar way
as in the second phase:

g = argmax{sdig
swg

|g = 1, 2, ..., G; swg + wi ≤ bg}. (9)
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2.3 Neighborhood Structures for the CCP

Each neighborhood is defined by a move that relocates a certain number of
elements from their current groups to another. In particular, the following three
neighborhoods are distinguished.
Insertion neighborhood (Nins). The insertion neighborhood of a current solu-
tion x consists of all solutions obtained by choosing one element i and moving it
from the group g = xi to a group g′ �= g. Note that the change of the objective
function value obtained by removing element i from group g = xi and inserting it
into group g′ �= g may be calculated, using previously defined data structures as:

Δf = sdig′ − sdig. (10)

However, the insertion neighborhood may contain also solutions that violate the
capacity constraints. In order to quickly recognize feasible solutions the data
structure sw is used. Namely, to check feasibility of a neighboring solution it
suffices to check whether the capacity constraints of the two groups involved in
the move (defining this neighboring solution) remain fulfilled or not. Using the
data structure sw this may be accomplished in the way stated in the following
two inequalities:

swg − wi ≥ ag and swg′ + wi ≤ bg′ (11)

Swap neighborhood (Nswap). The swap neighborhood of the current solution x
consists of all solutions obtained by selecting two elements i and j belonging to
different groups in the current solution (g′ = xi �= xj = g′′) and moving each of
them to the group containing the other element i.e.,: the element i will be moved
to the group g′′, while the element j will be relocated to the group g′. In this case,
the difference between the objective function value of the solution obtained by
performing such a move and the current solution value may be calculated using
the data structure sd:

Δf = (sdig′′ + sdjg′) − (sdig′ + sdjg′′) − 2dij . (12)

Similarly, as in the case of the insertion move, some swap moves lead to infea-
sible solutions. So, in order to check the feasibility of a resulting solution, it is
necessary to check whether capacity requirements of groups g′ and g′′ remain
satisfied. This may be accomplished by verifying the next two inequalities that
make use of the data structure sw:

ag′ ≤ swg′ − wi + wj ≤ bg′ and ag′′ ≤ swg′′ − wj + wi ≤ bg′′ (13)

Two Out − One In neighborhood (N2out1in)). This neighborhood consists of
all solutions obtained by selecting three elements i1, i2 and j such that ele-
ments i1 and i2 belong to the same group g′ (i.e., g′ = xi1 = xi2) while the
element j belongs to another group g′′ (i.e., g′′ = xj �= g′), and moving elements
i1 and i2 to the group g′′ and the element j to group g′. The change of the
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objective function value caused by executing such a move can be calculated in
the following way using the data structure sd:

Δf = (sdi1g′′+sdi2g′′+sdjg′)−(sdi1g′+sdi2g′+sdjg′′)+2di1i2−2(di1j+di2j) (14)

Following the same principle as in the case of the swap neighborhood, the
feasibility of each solution in this neighborhood may be checked by verifying the
capacity constraints of the two groups involved in the move as stated in the next
two inequalities:

ag′ ≤ swg′ − wi1 − wi2 + wj ≤ bg′ ag′′ ≤ swg′′ − wj + wi1 + wi2 ≤ bg′′ (15)

2.4 Variable neighborhood descent

The three neighborhood structures above are explored within a sequential
Variable Neighborhood Descent (VND) procedure whose steps are given in
Algorithm 1. In the algorithm, the local search procedure is called three times.
Statement LocalSearch(x,Ni) means that the local search relative to the cur-
rent neighborhood structure is performed using x as the initial solution. For local
search within the Insertion and Swap neighborhoods, the local search continues
until there is an improvement in the given neighborhood of the current solu-
tion. We use the so–called first–improvement strategy which means that each
time an improved solution in the given neighborhood is found, we make the cor-
responding move and continue exploring the same neighborhood now centered
at this new solution. On the other hand, the local search within the 2Out–1In
neighborhood terminates after finding the first solution which is better than the
current one. More precisely, all three local searches use the first improvement
strategy, but they differ in the way they proceed after executing an improvement
move: the first two continue the search w.r.t. the same neighborhood structure
while the last one finishes its work. The reason for this strategy is the fact that
the 2Out–1In neighborhood is significantly larger than the Insertion and Swap
neighborhoods, and therefore the exploration of the entire neighborhood is a
time consuming process.

The order of neighborhoods presented in Algorithm 1, i.e., Insertion, Swap
and 2Out–1In, is selected after exhaustive experimentation as will be shown in
Sect. 3.

3 Computational Results

The computational experiments are devoted to an evaluation of the quality of
different improvement procedures and the benefits of using sequential Basic VND
instead of using the single neighborhoods. The second part assesses the quality
of the proposed multi-start VND in comparison with the current state-of-the-art
approaches. The proposed method as well as the improvement procedures are
implemented in C++ and executed on an Intel Core 2 Duo CPU E6750 with 8Gb
RAM. For testing purposes benchmark instances from the literature are used.
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Algorithm 1. Variable Neighborhood Descent
Function VND(x);
k ← 1;
while k ≤ 3 do

if k == 1 then x′ ← LocalSearch(x,Nins);
if k == 2 then x′ ← LocalSearch(x,Nswap);
if k == 3 then x′ ← LocalSearch(x,N2out1in);
k ← k + 1;
if f(x′) > f(x) then

x ← x′; if k > 2 then k ← 1;
end

end
return x

These instances constitute CCPLIB publicly available at http://www.optsicom.
es/ccp/. Based on their characteristics, four data sets may be distinguished:

– RanReal 240 - 20 instances with N = 240, G = 12, ag = 75, and bg = 125;
– RanReal 480 - 20 instances with N = 480, G = 20, ag = 100, and bg = 150;
– Sparse 82 - 10 instances with N = 82, G = 8, ag = 25, and bg = 75;
– Handover - 83 synthetic instances introduced in [9] for the handover minimiza-

tion problem.

3.1 Comparison of Improvement Procedures

The first set of experiments aims to compare different improvement procedures
based on the exploration of one or more neighborhoods. Namely, we compare
three local search procedures that use Insertion, Swap and 2Out – 1In neighbor-
hood structures, VND obtained by exploring Insertion and Swap neighborhoods
(VND2) in this order, and VND obtained by using all three introduced neigh-
borhoods (VND3) whose steps are given in Algorithm 1. These methods are
compared on only one large instance with 480 elements (RanReal480 01). Each
Local Search / VND variant is executed 1000 times, starting each time from a
different random solution. The summarized results are reported in Table 1 and
Fig. 1.

In Table 1 columns 2, 3, and 4 give the minimum, the average, and the max-
imum % deviation from the best known solution, respectively, over 1000 runs.
Columns 5, 6, and 7 report the minimum, average and maximum normalized
distance between the generated local optima over 1000 runs and the best known
solution. The (normalized) distance between solutions x and y is defined in the
following way:

d(x, y) =
|{(i, j)|1 ≤ i < j ≤ N, ((xi = xj) ∧ (yi �= yj)) ∨ ((xi �= xj) ∧ (yi = yj))}|

|{(i, j)|1 ≤ i < j ≤ N, (xi = xj) ∨ (yi = yj)}|
(16)

http://www.optsicom.es/ccp/
http://www.optsicom.es/ccp/
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Table 1. Comparison of different local searches on instance RanReal480 10

Imp. procedure % deviation Norm. distance Time

Min. Avg. Max. Min. Avg. Max.

Insertion LS 32.537 34.880 37.214 0.947 0.956 0.963 0.001

Swap LS 32.537 34.880 37.214 0.943 0.957 0.964 0.038

2 Out – 1 In LS 3.021 4.762 7.253 0.598 0.674 0.761 9.901

VND2 21.133 24.359 26.963 0.925 0.939 0.949 0.050

VND3 0.787 1.924 5.712 0.530 0.623 0.783 1.417
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Fig. 1. Distribution of 1000 local maxima on distance–to–target diagram for different
local search algorithms
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which estimates the fraction of pairs belonging to the same group in one solution,
but not to the same group in the other solution. The last column reports the
average computing time spent to reach a local maximum (in seconds).

From the table we can make the following observations:

– There is a correlation between the percentage deviation and the normalized
distance: for example

• The percentage deviations for the local optima obtained by Local search
with respect to the 2Out–1In neighborhood belong to the interval
[3.021, 7.253] while the distances belong to the interval [0.598, 0.761]

• The percentage deviations for the local optima obtained by VND2 belong
to the interval [21.133, 26.963] while the distances belong to the interval
[0.925, 0.949]

This observation is also confirmed by the so-called F-test. Namely, the F values
of 324.852, 417.955, 4612.75, 923.036 and 2914.707 obtained for Insertion LS,
Swap LS, 2Out–1In LS, VND2, and VND3, respectively, are greater than the
corresponding critical F value 254.19. Hence, for each local search we accept
the alternative hypothesis that there is a positive correlation between the
percentage deviation and the normalized distance.

– The percentage deviations of local optima obtained by Local search with
respect to the 2Out–1In neighborhood are significantly lower than with the
other two neighborhoods, but execution time is significantly greater.

– Very efficient VND, which outperforms all other considered improvement pro-
cedures, is obtained by combining 2Out–1In, Insertion and Swap neighbor-
hoods into VND3.

Distributions of local optima for all five variants are shown on distance-to-
target diagrams in Fig. 1, where each local optimum is presented by the point
(x, y) whose coordinates are:

– x - the normalized distance between the local optimum and the best known
solution;

– y - the percentage deviation of value of the local optimum from the best known
value

Based on these results we decided to use multi-start VND3 to compare with
other methods found in the literature.

3.2 Main Computational Results

In this section we present the comparison of our multi-start VND with the
state-of-the-art approaches from the literature: GRASP from [2] (referred to as
Prev GRASP); an adaptation of tabu search from [5] (AdTS SO); GRASP, tabu
search (TS) and GRASP+TS proposed in [6]; and GRASP with Path Relinking
developed for handover minimization in [9] (PR-HMP).

In Tables 2 and 3 summarized results on each data set are presented. On each
test instance multi-start VND has been executed with a time limit of 60 seconds
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on an Intel Core 2 Duo CPU E6750. Note that AdTS SO, GRASP, TS and
GRASP+TS, the best methods among the previous ones, were executed with
the same time limit of 60 seconds on an Intel Core 2 Quad CPU Q8300 (the faster
machine). In the first column of Table 2 the name of the data set is given. The
next five columns contain results for already published methods (all these results
are provided to us by Anna Martinez-Gavara). The last three columns contain
summarized results for VND, i.e., the average of the best, average, and the worst
solution values found on a certain data set in ten runs. Handover instances are
grouped according to the number of elements and summarized results are given
in Table 3. Again, the table provides summarized results of existing methods
and our VND. Note that the objective on Handover instances is to minimize
handover (the objective function in (1)). Detailed results on the entire set of
instances are given in the Appendix.

Table 2. Summarized results for Random Real instances and Sparse instances

Data set Prev GRASP AdTS SO TS GRASP GRASP+TS VND

Best Avg. Worst

RanReal 240 182171.08 195945.10 201125.69 171073.71 200253.11 203616.70 203226.62 202899.21

RanReal 480 300192.92 476879.89 505615.95 413325.91 505202.05 517305.80 516168.78 514976.26

Sparse 82 1326.89 1330.98 1271.00 1330.17 1329.42 1331.20 1331.20 1331.20

From the presented results it follows that multi-start VND outperforms all
existing state-of-the-art methods from the literature on Random Real instances.
On the Handover set of instances, our VND is better than all other heuristics,
except AdTS SO. According to Table 3, AdTS SO was better on average on the
2 largest instances, worse on the third largest, and tied on the remaining.

In Tables 4 and 5 we present the results of a non-parametric Wilcoxon-Mann-
Whitney test for statistical significance applied on the results obtained by the
methods in comparison. The level of significance is chosen to be α = 0.05. From
Table 4 we may conclude the following: on the RanReal240 data set, VND sig-
nificantly outperforms all methods; on the RanReal480 data set, there is no
significant difference between VND and GRASP+TS, while all the other meth-
ods are significantly outperformed by our VND; on the Sparse 82 data set, VND

Table 3. Summarized results for Handover instances

Instance

size

PR-HMP 60 s PR-HMP 900 s AdTS SO GRASP+TS CPLEX VND

Best Avg. Worst

20 1056.67 1056.67 1056.67 1056.67 1056.67 1056.67 1056.67 1056.67

30 2295.71 2295.71 2295.71 2295.71 2295.71 2295.71 2295.71 2295.71

40 3090.27 3090.27 3090.27 3090.27 3090.27 3090.27 3090.27 3090.27

100 39167.33 38844.80 38725.87 38523.73 38430.13 38463.87 38581.27 38707.47

200 152867.07 150533.07 145984.93 146885.87 145980.27 146477.47 146973.13 147426.80

400 605507.87 594255.47 568690.40 574382.00 568690.40 570082.53 572243.44 574158.13
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Table 4. Critical values are 52 if number of instances is 20 and 8 if number of instances
is 10

Instance # inst. VND vs

Prev GRASP

VND vs

AdTS SO

VND vs TS VND vs

GRASP

VND vs GRASP+TS

RanReal 240 20 210 : 0 210 : 0 210 : 0 210 : 0 210 : 0

RanReal 480 20 210 : 0 210 : 0 210 : 0 210 : 0 147 : 63

Sparse 82 10 54.5 : 0.5 32.5 : 22.5 55 : 0 50 : 5 47.5 : 7.5

Table 5. Critical values are 5 if number of instances is 9, 21 if number of instances is
14, and 25 if number of instances is 15

Instance # inst. VND vs PR-

HMP600

VND vs PR-

HMP900

VND vs

AdTS SO

VND vs

GRASP+TS

VND vs

CPLEX

Handover - 20 9 22.5 : 22.5 22.5 : 22.5 22.5 : 22.5 22.5 : 22.5 22.5 : 22.5

Handover - 30 14 52.5 : 52.5 52.5 : 52.5 52.5 : 52.5 52.5 : 52.5 52.5 : 52.5

Handover - 40 15 60 : 60 60 : 60 60 : 60 60 : 60 60 : 60

Handover - 100 15 119.5 : 0.5 106.5 : 13.5 83 : 37 37 : 83 32 : 88

Handover - 200 15 120 : 0 117.5 : 2.5 9.5 : 110.5 100.5 : 19.5 9.5 : 110.5

Handover - 400 15 120 : 0 120 : 0 13 : 107 119 : 1 13 : 107

significantly outperforms all methods except AdTS SO. On the other hand, from
Table 5 we may conclude that on Handover instances with 200 and 400 elements,
VND significantly outperforms PR-HMP and GRASP+TS while it is signifi-
cantly outperformed by AdTS SO and CPLEX. In addition it follows that on
small size Handover instances there is no significant difference between VND
and other methods.

4 Conclusions

In this paper we study the Capacitated Clustering Problem (CCP) which aims
to partition a given set in a predefined number of groups so that the diversity
among them is maximized and the weight of each group is within required limits.
To solve this NP hard problem we propose three neighborhood structures and
use them within a sequential VND heuristic. In order to assess the merit of this
new approach, we have performed extensive testing on the benchmark instances
from the literature. The obtained results confirm that of our approach is highly
competitive with the state-of-the-art methods significantly outperforming all of
them on randomly-generated instances.

Appendix

Here we present detailed results obtained by all considered methods. For RanRail
instances, a larger value indicates a better solution, while for Handover instances
the smaller values are better (Tables 6, 7, 8, 9 and 10).
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Table 6. Detailed results for Random real instances with 240 elements

Instance Prev GRASP AdTS SO TS GRASP GRASP+TS VND

Best Average Worst

RanReal240 01 191036.02 214551.76 220226.18 176036.63 219783.86 223220.90 222931.65 222771.36

RanReal240 02 185798.62 195530.69 200838.30 172012.53 198460.55 202095.20 201691.73 201331.47

RanReal240 03 177679.46 188525.31 193859.64 166702.33 192114.51 196391.99 196199.95 196001.32

RanReal240 04 197891.69 212960.48 219449.77 178811.29 218197.83 222711.88 222455.67 222055.42

RanReal240 05 170257.12 186650.26 189761.81 165567.11 190303.48 193570.70 192892.46 192612.46

RanReal240 06 191333.75 205944.67 210283.10 174582.81 211133.78 214707.61 214256.87 213801.64

RanReal240 07 188621.39 199490.34 204135.95 177680.33 203220.69 207115.03 206830.64 206477.47

RanReal240 08 181243.99 194202.85 201800.33 171333.36 200695.50 202820.87 202576.92 202249.77

RanReal240 09 186776.58 200032.73 205216.80 173904.23 204184.97 207004.32 206739.99 206272.79

RanReal240 10 170689.20 185400.22 188445.01 165790.13 187605.60 190248.29 189846.25 189514.36

RanReal240 11 183728.50 197887.83 199946.79 170377.82 198975.29 202692.08 202179.11 201772.79

RanReal240 12 177213.43 191849.93 196681.44 168895.22 195151.19 199006.57 198691.78 198398.79

RanReal240 13 182626.67 189022.28 199299.16 170930.93 197380.00 199766.31 199484.53 199219.61

RanReal240 14 191464.86 217608.00 225673.50 175415.88 223312.09 226724.31 226584.34 226338.20

RanReal240 15 168569.52 181484.27 185752.72 163757.16 185090.80 189022.16 188426.05 188109.30

RanReal240 16 180009.20 191972.77 200223.47 170355.34 198040.51 202272.69 201554.40 201180.86

RanReal240 17 178388.69 188751.19 190064.90 168755.03 190517.19 192878.67 192373.26 191882.45

RanReal240 18 175509.44 186078.02 190713.89 165896.21 189637.71 192747.90 192334.36 192089.73

RanReal240 19 175657.91 189107.14 195055.37 168383.72 193445.34 197005.23 196657.15 196435.39

RanReal240 20 188925.60 201851.31 205085.62 176286.14 207811.23 210331.30 209825.28 209468.92

Average 182171.08 195945.10 201125.69 171073.71 200253.11 203616.70 203226.62 202899.21

Table 7. Detailed results for Random real instances with 480 elements

Instance Prev GRASP AdTS SO TS GRASP GRASP+TS VND

Best Average Worst

RanReal480 01 299619.14 497472.55 536382.59 420832.68 500223.84 549014.41 547892.82 546286.17

RanReal480 02 304227.71 470373.18 488909.30 411623.39 533603.96 503366.82 502322.88 501119.26

RanReal480 03 298926.33 454315.61 477286.03 404696.02 492730.51 487656.24 486391.16 485221.87

RanReal480 04 293139.02 485070.78 497608.91 416435.47 475803.24 514164.35 513016.49 512519.53

RanReal480 05 299281.24 449988.89 464195.50 390749.48 501165.11 475361.16 474143.57 472698.82

RanReal480 06 298472.76 477858.44 515459.84 425578.62 463642.73 524772.59 523003.55 520939.69

RanReal480 07 299188.50 492304.63 523172.66 414492.43 513597.68 537904.95 536212.13 534476.05

RanReal480 08 300385.03 490816.35 514573.17 419901.78 525983.27 524539.40 523419.36 522634.67

RanReal480 09 303649.83 497163.10 533724.82 424433.32 510734.97 549638.40 548621.16 547690.30

RanReal480 10 306294.40 464872.52 499690.31 408016.64 537376.71 512324.63 511338.69 510695.01

RanReal480 11 299633.46 488063.47 503977.89 414517.44 501140.16 517628.43 516058.83 514660.96

RanReal480 12 301473.40 452603.22 485198.38 404855.36 500631.77 493481.90 491899.13 490561.03

RanReal480 13 295120.81 486569.63 511113.37 423469.53 482841.68 524838.96 524255.44 523146.83

RanReal480 14 301714.49 460747.35 496735.29 396540.06 515433.77 506472.86 505311.16 504011.07

RanReal480 15 298579.03 465794.52 498214.01 410008.93 492767.37 509668.23 508386.57 507261.68

RanReal480 16 302554.13 491840.64 529684.49 420109.36 495708.62 542107.14 541827.80 541137.01

RanReal480 17 297147.32 485308.51 523209.02 421288.17 532540.46 530474.35 529671.66 528983.76

RanReal480 18 297464.34 472499.44 507540.96 417418.02 519121.34 517785.85 516230.55 514441.58

RanReal480 19 300848.84 482816.75 505461.40 412504.97 503347.70 515234.80 514385.62 513680.57

RanReal480 20 306138.70 471118.18 500181.05 409046.51 505646.05 509680.56 508986.95 507359.35

Average 300192.92 476879.89 505615.95 413325.91 505202.05 517305.80 516168.78 514976.26
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Table 8. Detailed results for Sparse instances

Instance Prev GRASP AdTS SO TS GRASP GRASP+TS VND

Best Average Worst

Sparse82 01 1337.66 1342.17 1268.05 1338.03 1337.31 1342.17 1342.17 1342.17

Sparse82 02 1295.38 1304.48 1225.95 1306.64 1306.64 1306.64 1306.64 1306.64

Sparse82 03 1350.89 1353.94 1295.32 1352.00 1353.36 1353.94 1353.94 1353.94

Sparse82 04 1286.65 1291.22 1233.28 1288.45 1283.97 1291.22 1291.22 1291.22

Sparse82 05 1351.38 1352.35 1309.09 1352.35 1352.35 1352.35 1352.35 1352.35

Sparse82 06 1343.59 1354.61 1301.14 1354.61 1350.01 1354.61 1354.61 1354.61

Sparse82 07 1265.34 1266.94 1206.38 1266.70 1266.94 1266.94 1266.94 1266.94

Sparse82 08 1393.02 1393.02 1329.98 1393.02 1393.02 1393.02 1393.02 1393.02

Sparse82 09 1288.49 1294.12 1258.39 1293.39 1294.12 1294.12 1294.12 1294.12

Sparse82 10 1356.48 1356.98 1282.43 1356.48 1356.48 1356.98 1356.98 1356.98

Average 1326.89 1330.98 1271.00 1330.17 1329.42 1331.20 1331.20 1331.20

Table 9. Detailed results for Handover instances - Part I

Instance size PR-HMP 60 s PR-HMP 900 s AdTS SO GRASP+TS CPLEX VND

Best Avg. Worst

20 5 270001 540 540 540 540 540 540 540 540

20 5 270002 54 54 54 54 54 54 54 54

20 5 270003 816 816 816 816 816 816 816 816

20 5 270004 126 126 126 126 126 126 126 126

20 5 270005 372 372 372 372 372 372 372 372

20 10 270001 2148 2148 2148 2148 2148 2148 2148 2148

20 10 270002 1426 1426 1426 1426 1426 1426 1426 1426

20 10 270003 2458 2458 2458 2458 2458 2458 2458 2458

20 10 270004 1570 1570 1570 1570 1570 1570 1570 1570

Average 20 1056.67 1056.67 1056.67 1056.67 1056.67 1056.67 1056.67 1056.67

30 5 270001 772 772 772 772 772 772 772 772

30 5 270002 136 136 136 136 136 136 136 136

30 5 270003 920 920 920 920 920 920 920 920

30 5 270004 52 52 52 52 52 52 52 52

30 5 270005 410 410 410 410 410 410 410 410

30 10 270001 3276 3276 3276 3276 3276 3276 3276 3276

30 10 270002 1404 1404 1404 1404 1404 1404 1404 1404

30 10 270003 2214 2214 2214 2214 2214 2214 2214 2214

30 10 270004 2150 2150 2150 2150 2150 2150 2150 2150

30 10 270005 2540 2540 2540 2540 2540 2540 2540 2540

30 15 270001 6178 6178 6178 6178 6178 6178 6178 6178

30 15 270002 4042 4042 4042 4042 4042 4042 4042 4042

30 15 270003 4126 4126 4126 4126 4126 4126 4126 4126

30 15 270004 3920 3920 3920 3920 3920 3920 3920 3920

Average 30 2295.71 2295.71 2295.71 2295.71 2295.71 2295.71 2295.71 2295.71

40 5 270001 610 610 610 610 610 610 610 610

40 5 270002 136 136 136 136 136 136 136 136

40 5 270003 234 234 234 234 234 234 234 234

40 5 270004 232 232 232 232 232 232 232 232

40 5 270005 774 774 774 774 774 774 774 774

40 10 270001 4544 4544 4544 4544 4544 4544 4544 4544

40 10 270002 2068 2068 2068 2068 2068 2068 2068 2068

40 10 270003 2090 2090 2090 2090 2090 2090 2090 2090

40 10 270004 1650 1650 1650 1650 1650 1650 1650 1650

40 10 270005 4316 4316 4316 4316 4316 4316 4316 4316

40 15 270001 8646 8646 8646 8646 8646 8646 8646 8646

40 15 270002 4586 4586 4586 4586 4586 4586 4586 4586

40 15 270003 5396 5396 5396 5396 5396 5396 5396 5396

40 15 270004 4800 4800 4800 4800 4800 4800 4800 4800

40 15 270005 6272 6272 6272 6272 6272 6272 6272 6272

Average 40 3090.27 3090.27 3090.27 3090.27 3090.27 3090.27 3090.27 3090.27
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Table 10. Detailed results for Handover instances - Part II

Instance size PR-HMP 60 s PR-HMP 900 s AdTS SO GRASP+TS CPLEX VND

Best Avg. Worst

100 15 270001 19174 19174 19000 19000 19000 19000 19190.80 19298

100 15 270002 22686 22686 22686 22686 22686 22686 22768.40 22806

100 15 270003 14696 14638 14558 14558 14558 14558 14558.00 14558

100 15 270004 20172 19802 19700 19700 19700 19700 19700.00 19700

100 15 270005 23114 22892 22746 22746 22746 22782 22959.80 23020

100 25 270001 37412 36960 36412 36412 36412 36412 36455.20 36534

100 25 270002 40278 39886 38608 38608 38608 38608 38701.20 38768

100 25 270003 34110 33978 32692 32696 32692 32692 32716.00 32830

100 25 270004 37350 36958 35322 35322 35322 35322 35347.60 35470

100 25 270005 37956 37208 36690 36690 36690 36882 36994.80 37148

100 50 270001 61610 61474 61956 61410 61410 61476 61712.20 61858

100 50 270002 62596 62400 63128 62208 62208 62296 62515.40 62692

100 50 270003 55472 54868 55854 54846 54846 54928 55174.00 55688

100 50 270004 58326 58068 59072 57894 57894 58192 58336.00 58490

100 50 270005 62558 61680 62464 63080 61680 61424 61589.60 61752

Average 39167.33 38844.80 38725.87 38523.73 38430.13 38463.87 38581.27 38707.47

200 15 270001 86528 84210 81558 81558 81558 81558 81611.20 81824

200 15 270002 95840 92808 89564 90794 89564 90976 91577.00 92414

200 15 270003 79320 79232 79232 79232 79232 79232 79531.40 79956

200 15 270004 79464 78358 78428 79108 78358 79012 79607.40 80008

200 15 270005 99732 98070 96040 96088 96040 96248 96758.20 97324

200 25 270001 139492 134886 133578 134432 133578 134536 134793.40 135010

200 25 270002 143860 140994 134072 136392 134072 135556 136118.00 136670

200 25 270003 142976 142976 136892 138166 136892 137506 138179.60 138736

200 25 270004 137870 131316 128590 129628 128590 128966 129404.40 129830

200 25 270005 158736 154364 148312 149772 148312 148304 149445.40 150014

200 50 270001 226108 225080 216640 216766 216640 216410 216961.80 217400

200 50 270002 222116 220224 213208 213766 213208 213712 213992.40 214368

200 50 270003 225658 224916 215700 217168 215700 216530 216854.80 217118

200 50 270004 215834 215410 207162 208658 207162 207412 207810.60 208190

200 50 270005 239472 235152 230798 231760 230798 231204 231951.40 232540

Average 152867.07 150533.07 145984.93 146885.87 145980.27 146477.47 146973.13 147426.80

400 15 270001 415284 400450 373458 375106 373458 372802 373658.00 374872

400 15 270002 401710 380550 368686 374666 368686 372356 375841.80 377898

400 15 270003 375532 375130 356722 358994 356722 358846 360574.20 362852

400 15 270004 378590 353808 335374 338858 335374 333948 337383.60 339364

400 15 270005 401546 372506 361000 366556 361000 366650 368426.20 370752

400 25 270001 582280 571484 552576 556878 552576 552286 554673.80 557246

400 25 270002 571750 562430 534458 536658 534458 533928 536058.00 537828

400 25 270003 573036 563564 531228 537864 531228 532260 535742.80 537914

400 25 270004 515828 512258 487002 489922 487002 488546 489652.00 490870

400 25 270005 604928 596358 554798 561428 554798 556794 559350.80 562890

400 50 270001 871340 864784 831626 843754 831626 833104 834656.00 836418

400 50 270002 861396 859170 830384 838612 830384 831156 833272.40 834442

400 50 270003 844196 837952 810044 813798 810044 811828 813111.20 814900

400 50 270004 808748 797706 768104 776166 768104 769506 771372.00 772646

400 50 270005 876454 865682 834896 846470 834896 837228 839878.80 841480

Average 605507.87 594255.47 568690.40 574382.00 568690.40 570082.53 572243.44 574158.13
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9. Morán-Mirabal, L., González-Velarde, J., Resende, M.G., Silva, R.M.: Randomized
heuristics for handover minimization in mobility networks. J. Heuristics 19(6),
845–880 (2013)
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Dimitrije D. Čvokić1(B), Yury A. Kochetov2,3, and Aleksandr V. Plyasunov2,3

1 University of Banja Luka, Mladena Stojanovića 2, 78000 Banja Luka,
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Abstract. Two competitors, a Leader and a Follower, are sequentially
creating their hub and spoke networks to attract customers in a market
where prices have fixed markups. Each competitor wants to maximize
his profit, rather than a market share. Demand is split according to the
logit model. The goal is to find the optimal hub and spoke topology for
the Leader. We represent this Stackelberg game as a nonlinear mixed-
integer bi-level optimisation problem and show how to reformulate the
Follower’s problem as a mixed-integer linear program. Exploiting this
reformulation, we solve instances based on a synthetic data using the
alternating heuristic as a solution approach. Computational results are
thoroughly discussed, consequently providing some managerial insights.

Keywords: Hub location · Pricing · Fixed markup · Stackelberg
competition · Linear reformulation · Matheuristic

1 Introduction

Competition between firms that use hub and spoke networks has been studied
mainly from the sequential location approach. An existing firm, the Leader,
serves the demand in some region, and a new one, the Follower, wants to enter.
This topic of research is quite fresh, and the first paper on competitive hub
location is attributed to Marianov, Serra and ReVelle [1]. Their approach was
extended and followed by Eiselt and Marianov in [2], Gelareh, Nickel and Pisinger
in [3], and by many others. Sasaki and Fukushima presented a (continuous)
Stackelberg Hub Location Problem in [4], in which the incumbent competes
with several entrants for profit maximisation. For every route, only one hub
was allowed. Adler and Smilowitz introduced in [5] a framework to decide the
convenience of merging airlines or creating alliances, using a game-theory-based
approach. Later, Sasaki et al. in [6] proposed a problem in which two agents are
locating hub-arcs to maximise their respective revenues under the Stackelberg
framework, allowing more than one hub on a route.
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Here, we consider a sequential hub location and pricing problem in which two
competitors, a Leader and a Follower, compete to attract the customers and aim
to maximize their profits rather than a market share. The pricing is identified as
an important service attribute that affects the client’s choice [7–10], as expected.
Therefore, we are interested in studying its impact to the optimal hub and spoke
topology. In contrast to [11], we assume that the prices are regulated, moreover
that markups are fixed.

Regulation is a legal norm intended to shape a conduct that is a by-product
of imperfection. It may be used to prescribe or proscribe a conduct, to calibrate
incentives, or to change preferences. Common examples of regulation includes
control of market entries, prices, wages, development, approvals, pollution effects,
employment for some people in certain industries, standards of production for
some goods, the military forces and devices. For more information we refer the
reader to [12–14]. The normative economic theories conclude that the regula-
tions should encourage competition where feasible, minimize the cost of infor-
mation asymmetries, provide for price structures that improve economic effi-
ciency, establish regulatory processes that provide for regulation under the law
and independence, transparency, predictability, legitimacy and credibility of the
regulatory system (see [13,15], for example). Price regulation refers to the policy
of setting prices by a government agency, legal statute, or regulatory authority.
Under such policy, fixed, minimum and maximum prices may be set. Referring
to [15,16], a decision may be based on costs, return on investments, or even
markups.

As it was previously said, we are interested in a direct price setting as a form
of regulation, particularly, a scenario where the markups are fixed. Fixing prices
is not just a theoretical scenario. When it comes to the transportation industry,
a famous example is the IATA (International Air Transport Association) price
regulation. That is, several years ago, the price for a non-stop flight from an
origin to a destination in a given passenger class was fixed for IATA airlines.
The fact that one had or had not to change planes did not affect the price.
A passenger could, in principle, use his Lufthansa ticket on a British Airways
flight, because tickets were transferable within a fare class, as it was reported
by Grammig et al. in [17]. Moreover, Lüer-Villagra and Marianov showed in [11]
that if demand is non-elastic and logit model is used for calculating the discrete
choice probability, the optimal prices for all routes connecting a particular origin-
destination (OD) pair have the same markup.

We note that fixing markups does not mean that prices will be the same,
that is they could vary if the routes are composed of several different lines that
have different travel costs. As a matter of fact, this approach could be seen as a
transition case to a Stackelberg competition in hub location where prices are not
regulated. Nevertheless, a hub location or a route opening decision, or even an
entrance into a market, can be very dependent on the revenues that a company
can obtain using its network. Revenues, in turn, depend on the pricing structure
and competitive context, as it was observed in [11].
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Following the work of Lüer-Villagra and Marianov in [11], and because this
research is still fresh, we will assume that the demand is non-elastic and cus-
tomers patronize the route by price. Customers’ decision process is modelled
using a logit model, which is well validated in the transportation literature
(see for example [11,18,20]).

Regarding the economies of scale, we use a model in which a constant (flow-
independent) discount between hubs and no discount on spokes are considered.
In the literature, modeling of the economies of scale in this fashion is addressed
as the fundamental approach, which incidentally results in an entirely connected
inter-hub network if the objective is the cost minimisation [19]. Most of the
researchers use this method of discounting the flow between hubs [19], indepen-
dent of its magnitude, mainly because of its computational attractiveness and
the fact that the search for an entirely successful model is still open [11]. There-
fore, we take the same approach in this paper, although we do not expect that
hubs have to be completely inter-connected, as we are dealing with the profit
maximization problems.

The proposed model is applied to the air passenger industry. However, with
slight changes in the discrete choice model, they can be applied to any other
industry that benefits from a hub and spoke network structure. We will call
this problem a Leader-Follower Hub Location Problem under Fixed Markups
(LFHLPuFM).

The contributions of this paper are as follows. Section 2 describes this Stack-
elberg game. In Sect. 3 we present the mixed-integer linear reformulation of the
Follower’s problem. After that, in Sect. 4, we describe our solution approach
based on the alternating heuristic. In the end, we give some comments and man-
agerial insights.

2 A Leader-Follower Hub Location Problem Under Fixed
Markups

The problem is defined over a directed multi-graph G = G(N,A), where N is the
non-empty set of nodes and A is the set of arcs that are connecting every pair of
nodes in the graph. We assume that for every arc (i, j) ∈ A, there is an opposite
arc (j, i) ∈ A. Situations where this does not hold are quite rare and they do not
make the problem computationally more attractive. Possible location for hubs
are the nodes i ∈ N , and for each of them, there is a fixed cost fi. The hubs can
be shared. We note that the number of hubs to be located is not fixed. Its value
is to be determined by the solution of a model. For every arc (i, j) ∈ A there is
a fixed (positive) cost gij for allocating it as a spoke and a (positive) travel cost
per unit of flow cij . We assume that the travel cost is a non-decreasing function
of distance. To model the inter-hub discounts, let ℵ, α, ψ be the discount factors
due to flow consolidation in collection (origin to hub), transfer (between hubs),
and distribution (hub to destination), respectively. At most two hubs are allowed
to be on a single route. The travel cost cij/kl over a route i → k → l → j is
defined as cij/kl = ℵcik + αckl + ψclj . It is assumed that pricing is regulated,
and a form of regulation is a direct price setting, so that all markups are fixed.
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In other words, for every route i → k → l → j there is a fixed markup μij/kl.
The set of all routes is trimmed to avoid the ones which are impractical, i.e.
those routes that have the second arrival point. We define it in a similar fashion
as it was done by O’Kelly et al. in [21]

I = {(i, j, k, l) ∈ N4 | (i = l∧ l �= k∧k �= j) ∨ (j = k∧k �= l∧ l �= i) ∨ (i �= l∧k �= j)}.
On the basis of this set we define the set of valid indices for our routes as
M = {(i, j, k, l) ∈ N4 | (i, j, k, l) ∈ N4\I}. The sets of valid indices for the
possible hubs between the OD pairs (i, j) ∈ N2 are defined in a similar manner
Mij = {(k, l) ∈ N2 | (i, j, k, l) ∈ N4\I}. The demand wij for every OD pair
(i, j) ∈ N2 is assumed to be non-elastic and non-negative. The logit model has a
sensitivity parameter Θ that corresponds to the pricing. It has an already known
positive value assigned. Higher values of sensitivity parameters mean that the
customers are very sensitive to the differences in prices. In other words, they will
mostly choose the less expensive routes. Both competitors have a large amount of
resources to cover the entire market with their networks. The goal is to maximize
the profit, rather than a market share.

This Stackelberg game can be represented as a non-linear mix-integer bi-level
mathematical program, where we have that:

– uij/kl is the fraction of the flow going from i ∈ N to j ∈ N through the
Leader’s hubs located at k, l ∈ N

– vij/kl is the fraction of the flow going from i ∈ N to j ∈ N through the
Follower’s hubs located at k, l ∈ N

– xk = 1 if the Leader locates a hub at node k ∈ N and 0 otherwise
– yk = 1 if the Follower locates a hub at node k ∈ N , and 0 otherwise
– λij = 1 if the Leader establishes a direct connection between the nodes i, j ∈

N , where (i, j) ∈ A, and 0 otherwise
– ζij = 1 if the Follower establishes a direct connection between the nodes

i, j ∈ N , where (i, j) ∈ A, and 0 otherwise

Denote x = (xi)i∈N , y = (yi)i∈N , λ = (λij)i,j∈N , ζ = (ζij)i,j∈N , for short.
We propose the following model for the Leader;

max
∑

(i,j,k,l)∈M

μij/klwijuij/kl −
∑

i∈N

fixi −
∑

(i,j)∈A

gijλij (1)

uij/kl =
xkxlλikλklλlje

−Θ(cij/kl+μij/kl)

∑

(s,t)∈Mij

xsxtλisλstλtje
−Θ(cij/st+μij/st) + γ∗

ij

, ∀(i, j, k, l) ∈ M

(2)

γ∗
ij =

∑

(k,l)∈Mij

y∗
ky∗

l ζ∗
ikζ∗

klζ
∗
lje

−Θ(cij/kl+μij/kl), ∀i, j ∈ N (3)

(y∗, ζ∗) ∈ F ∗(x, λ) (4)
xi ∈ {0, 1}, ∀i ∈ N (5)
λij ∈ {0, 1}, ∀(i, j) ∈ A. (6)
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Here, y∗
i , ζ∗

ij (i, j ∈ N) are composing the optimal solution for the Follower’s
problem, for which we propose the subsequent model;

max
∑

(i,j,k,l)∈M

μij/klwijvij/kl −
∑

i∈N

fiyi −
∑

(i,j)∈A

gijζij (7)

vij/kl =
ykylζikζklζlje

−Θ(cij/kl+μij/kl)

∑

(s,t)∈Mij

ysytζisζstζtje
−Θ(cij/st+μij/st) + ηij

, ∀(i, j, k, l) ∈ M (8)

ηij =
∑

(k,l)∈Mij

xkxlλikλklλlje
−Θ(cij/kl+μij/kl), ∀i, j ∈ N (9)

yi ∈ {0, 1}, ∀i ∈ N (10)
ζij ∈ {0, 1}, ∀(i, j) ∈ A. (11)

The objective functions (1) and (7) are representing the profits, which are
calculated as a difference between the net income and the network installation
costs. Feasible solutions are the tuples (x, λ, y∗, ζ∗) satisfying the constraints
(2)–(6). Constraints (2) and (8) are representing the probabilities of choosing
the respective routes, according to the logit model. The Eq. (3) represent the
impact of the Follower on the Leader’s market share. The Leader’s impact on
the Follower’s market share is represented by the Eq. (9). Next, (4) indicates
that the Follower chooses the optimal solution for any of the Leader’s choice of
hubs, where F ∗(x, λ) represents the set of the Follower’s optimal solutions. The
rest of the constraint sets are defining the variables’ domains.

We note that the Follower’s problem may have several optimal solutions, all
feasible for a given (x, λ). As a result, the Leader’s problem could be ill-posed.
Thus, we distinguish two extreme cases:

– cooperative Follower’s behaviour (altruistic Follower). In case of multiple opti-
mal solutions, the Follower always selects the one providing the best objective
function value for the Leader. We call it the cooperative optimal solution to
the Follower’s problem.

– non-cooperative Follower’s behaviour (selfish Follower). In this case, the Fol-
lower always selects the solution that provides the worst objective function
value for the Leader. We call it the non-cooperative optimal solution to the
Follower’s problem.

One can easily observe that the sum of objective functions in our bi-level
program is not a constant. Therefore, the Follower’s behaviour should be defined
properly, i.e. an auxiliary optimization problem should be defined, as described
in [22–24]. The corresponding optimal cooperative solution can be found using
a two-stage algorithm.

At Stage 1, for a fixed solution (x, λ), we solve the Follower’s problem and
calculate the optimal value of its objective function F (x, λ).
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At Stage 2, for a fixed solution (x, λ), we solve the following auxiliary problem

max
∑

(i,j,k,l)∈M

μij/klwijuij/kl (12)

uij/kl =
xkxlλikλklλlje

−Θ(cij/kl+μij/kl)

∑

(s,t)∈Mij

ysytζisζstζtje
−Θ(cij/st+μij/st) + ηij

, ∀(i, j, k, l) ∈ M

(13)
∑

(i,j,k,l)∈M

μij/klwijvij/kl −
∑

i∈N

fiyi −
∑

(i,j)∈A

gijζij ≥ F (x, λ) (14)

vij/kl =
ykylζikζklζlje

−Θ(cij/kl+μij/kl)

∑

(s,t)∈Mij

ysytζisζstζtje
−Θ(cij/st+μij/st) + ηij

, ∀(i, j, k, l) ∈ M (15)

ηij =
∑

(k,l)∈Mij

xsxtλikλklλlje
−Θ(cij/kl+μij/kl), ∀i, j ∈ N (16)

yi ∈ {0, 1}, ∀i ∈ N (17)
ζij ∈ {0, 1}, ∀(i, j) ∈ A (18)

The corresponding optimal non-cooperative solution can be found using the same
two-stage process, except we should solve the minimization problem, instead of the
maximization. For a thorough understanding of this topic and the used terminol-
ogy, we suggest the reader to examine the classic textbook of Dempe [25].

3 Mixed-Integer Linear Reformulation of the Follower’s
Problem

Suppose that theLeader hasmadehis decision.To estimate his profit (and amarket
share)we need theFollower’s optimal solution. Fortunately, theFollower’s problem
can be linearised to find the respective optimal solution by a solver.

Introducing a new variable Rijkl (for (i, j, k, l) ∈ M), we can substitute the
product ykylζikζklζlj in the constraint set (8). This substitution requires the
additional sets of constraints

Rij/kl − 1
5
(yk + yl + ζik + ζkl + ζlj) ≤ 0, ∀(i, j, k, l) ∈ M (19)

Rij/kl − yk − yl − ζik − ζkl − ζlj + 4 ≥ 0, ∀(i, j, k, l) ∈ M (20)
Rij/kl ∈ {0, 1}, ∀(i, j, k, l) ∈ M (21)

where yi, ζij have the same meaning as in (7)–(11).
Now, only the constraints from (8) have non-linear terms. The literature

knows several techniques for reformulating the logit-term, which are presented
in [26–29]. Recently, Haase and Müller compared those approaches in [20] and
their computational study, based on synthetic data, showed that the approach
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from [27] seems to be promising for solving larger problems. From (8), we directly
obtain that the following holds:

vij/kl − e−Θ(cij/kl+μij/kl)

ηij + e−Θ(cij/kl+μij/kl)
Rij/kl ≤ 0, ∀(i, j, k, l) ∈ M, (22)

vij/kl ≥ 0, ∀(i, j, k, l) ∈ M. (23)

The inequalities (22) are just tighter bounds on vijkl, than the obvious vijkl ≤
Rijkl. Basically, they state that a customer can only choose an established route.
The domain of variables vijkl is specified in (23).

The ratio of the choice probabilities of the two alternatives is independent
from other alternatives, i.e. we have that for some vij/kl and vij/st, for which we
know that Rij/st = 1, the following identity holds

vij/kl

vij/st
=

e−Θ(cij/kl+μij/kl)

e−Θ(cij/st+μij/st)
. (24)

This property is called an Independence of Irrelevant Alternatives (IIA). From
the previous equations, we conclude that the following constraints are valid

vij/kl ≤ e−Θ(cij/kl+μij/kl)

e−Θ(cij/st+μij/st)
vij/st +1−Rij/st, ∀(k, l), (s, t) ∈ Mij , ∀i, j ∈ N. (25)

These inequalities are valid even if the impractical routes are included because
their corresponding values for the choice probabilities vijkl and establishing the
route Rijkl could be both set to zero. It is easy to see that (24) is valid even if we
use uij/kl instead of vij/kl. Thus, we obtain an additional two sets of inequalities
that are connecting the choice probabilities of the Follower’s routes with the
choice probabilities of the Leader’s routes and describe the relation between the
Leader’s routes alone (as in (25) for the Follower). In other words, we have the
following constraint sets to be valid for all OD pairs

uij/kl ≤ e−Θ(cij/kl+μij/kl)

e−Θ(cij/st+μij/st)
vij/st + 1 − Rij/st, ∀(k, l), (s, t) ∈ Mij , ∀i, j ∈ N (26)

Tij/stuij/kl ≤ Tij/kl
e−Θ(cij/kl+μij/kl)

e−Θ(cij/st+μij/st)
uij/st, ∀(k, l), (s, t) ∈ Mij , ∀i, j ∈ N (27)

uij/kl ≥ 0, ∀i, j, k, l ∈ N (28)

where Tij/st = xsxtλisλstλtj , for all i, j, s, t ∈ N . Note that the value of uij/kl

is not known until the Follower makes his move, which is not the case with the
product Tij/st. Now, for all OD pairs we have that sum of choice probabilities
for both competitors is equal to one, that is

∑

(k,l)∈Mij

uij/kl +
∑

(k,l)∈Mij

vij/kl = 1, ∀i, j ∈ N. (29)

We can introduce a new variable qij (i, j ∈ N) to denote the cumulative choice
probabilities of the Leader. Furthermore, we can derive new sets of constraints
with fewer variables
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∑

(k,l)∈Mij

vij/kl + qij ≤ 1, ∀i, j ∈ N (30)

qij ≥ 0, ∀i, j ∈ N (31)

where (31) defines the new variables’ domains. As a matter of fact, (8) can be
expressed solely in terms of vijkl and qij as a linear constraint

vij/kl − e−Θ(cij/kl+μij/kl)

ηij
qij ≤ 0, ∀(i, j, k, l) ∈ M. (32)

One could notice that Rijkl is omitted in the second term from the left-hand
side. We do not need that binary variable because we already have that (22)
must hold.

Now, taking all this into the account, we proved the following proposition.

Proposition 1. The Follower’s Problem (7)–(11) can be reformulated as a mix-
integer linear program with the objective function

max
∑

(i,j,k,l)∈M

wijμij/klvij/kl −
∑

i∈N

fiyi −
∑

(i,j)∈A

gijζij (33)

subject to (9)–(11), (19)–(23), and (30)–(32).

Although this technique could be used to reformulate the problem of the
Leader, there is a question of its usefulness, because the Leader is anticipating
the move of the Follower. Nevertheless, it can be easily seen that the same
approach will give us the reformulation of the auxiliary problem.

Proposition 2. The auxiliary problem (12)–(18) can be reformulated as a mix-
integer linear program with the objective function

max
∑

(i,j,k,l)∈M

μij/klwijuij/kl (34)

subject to (14), (16)–(18), (19)–(23), (25)–(29).

The drawback of these reformulations is that they produce a large number
of new constraints. The fact that we do not have a constraint on the number of
hubs suggest that our models could still be difficult to solve by a solver even for
smaller instances.

4 Computational Experiments

The central idea of the matheuristic we used is given in [30,31]. This is an
alternating method, where for the solution of the Leader, we compute the best-
possible solution for the Follower. Once this has been done, the Leader assumes
the role of the Follower and re-optimizes his decision by solving the corresponding
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problem for the given solution. This process is then repeated until one of the Nash
equilibria is discovered or the previously visited solution has been detected. The
best what we have found for the Leader is returned as the result of the method.
In the beginning, the Leader ignores the Follower.

We conducted the computational experiments to test the method using an
artificially generated data. The Cartesian coordinates for the nodes i ∈ N
are randomly generated by a uniform distribution in the interval [0, 100]. The
demand is also randomly generated using a (truncated) log-normal distribution
on an interval [1, 100], where numbers represent the flow in thousands. The log-
normal distribution better corresponds to the real-world data then the uniform
distribution when it comes to the passenger flows [32], air traffic demands [33],
or airline business [34]. Next, following the work presented in [11,35,36], we took
the hub location cost to be the same for all nodes. We could say that the cost
of the hub location is proportional to the number of the passengers that will
go through the hub. On the other hand, the hub location cost is inversely pro-
portional to the number of hubs (because of competition and load shedding).
Therefore, we have a range of cases, where only one hub exists in the market to
the case with |N | hubs (a point-to-point network as a trivial hub and spoke topol-
ogy). Taking that into account, we took the following expression for hub location
costs in our experiments fi = f = β

H|N|
|N |

∑
i,j,k,l∈N wij . The sum represents the

total amount of the passengers. In the average, that amount is distributed to
the H|N |/|N | hubs, where Hn is the n-th harmonic number. As for β > 0, it is a
coefficient that represents an operating cost per passenger. Considering the run-
ning time, we observed in our preliminary investigation that β = 0.06 happened
to be a good choice. Also, we note that this is just a temporary solution for the
hub location cost model. The cost of spoke allocation between the pair of nodes
i and j was calculated using the expression ζij = f

cij/wij

max
(k,l)∈A

ckl/wkl
, as in [11,35].

The travel cost is taken to be cij = dij/maxi,j∈N dij , where dij is the Euclidean
distance between pair of nodes i and j. This way, normalizing the travel cost, the
interval from which we “harvested” the node coordinates becomes irrelevant. In
our testing the discount cost values on consolidation and distribution links were
ℵ = ψ = 1. The experiments were conducted on randomly generated graphs of
5, 6, 7, 8, 9 and 10 nodes. Three values α ∈ {0.1, 0.5, 1.0} are considered for the
inter-hub discount factor, and three values, too, for the sensitivity parameter
Θ ∈ {0.25, 1.0, 4.0}. For a particular OD pair (i, j) ∈ N2 all markups were taken
to be equal, i.e. μij/kl = μij/st for all k, l, s, t ∈ N . This approach is justified by
the results presented in [11]. The markup for a particular OD pair is calculated
as percentage of the travel cost of the corresponding non-stop flight. The per-
centages took values from the set {10, 25, 50}. For graphs of size 9 and 10 nodes,
we used only the smallest and the biggest values of the parameters. In total,
we tested 124 different instances. The alternating heuristic was implemented in
Python 2.7 using Gurobi 6.5 as the solver, on a 64-bit Windows 8.1 Pro with
two 2.00 GHz Six-Core AMD Opteron(tm) processors and 32 GiB of RAM.
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It is worth noting that preliminary computational experiments on a model
that included the impractical routes showed that they can be a cause for numer-
ical instability, which could lead to wrong solutions and unreasonably long run-
ning times.

The Leader’s Network Structure. In almost half of the instances tested,
the best-reported solution for the Leader was the so-called Entry Deterrence.
Slightly less than one-third of the cases had the Nash equilibrium as a solution.
We observed from our testing sample that for stronger Leader’s positions (lower
markups or better developed networks), the harder it was for the Follower to
obtain any profit at all. Something quite similar we observed for the running
time of the algorithm. For stronger Leader’s positions, Gurobi needed more time
to find the exact solution and in some cases it even lasted the entire day.

The Role of Inter-hub Economies of Scale. Our computational investi-
gation suggests that the inter-hub economies of scale have a minor impact on
the Leader’s profit. Unfortunately, we could not observe any solid pattern. It
seems that greater values of the price sensitivity parameter combined with big-
ger markups can boost a little bit the role of the inter-hub economies of scale. For
smaller values of markups and sensitivity parameter, the profit becomes more
and more locked to one specific value. Also, the results of the computational
tests suggest that economies of scale could have an effect to some extent on
the Leader’s networks solution. In our testing, we did not observe a significant
difference in location of hubs for different values of the discount factor, but the
resulting hub and spoke topologies were usually less developed for smaller values
of the discount factor. We note that sometimes there was no difference at all,
or it was the opposite. We could not observe that different values of α had any
influence on the cycle length of the alternating heuristics.

The Effect of the Sensitivity Factor. It turns out that the sensitivity to the
price differences could have a more significant role when it comes to the profit of
the competitors. In most of the cases when the Nash equilibrium occurred as a
solution the bigger sensitivity led to the greater profit for the Leader, although
not always. The same could be said for the Entry Deterrence type of solution.
When it comes to the resulting hub and spoke topologies, in most of the cases hub
and spoke networks were the same for different values of Θ, especially for smaller
markups. When they were not, the small values of the sensitivity factor usually
corresponded to more developed (less translucent) networks. Also, it seems that
the chance for the entry deterrence to occur as a solution is greater when Θ takes
the smaller values. In contrast to that, the bigger values of Θ corresponded more
often to the Nash equilibrium solutions. As in the previous analysis, we can not
say that the cycle length is under the influence of the sensitivity factor.
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The Role of the Fixed Markups. It is more likely that the Nash equilibrium
as a solution will occur when the markups are bigger. For smaller markups, the
Entry Deterrence appeared more often as a solution. It was not always the case
that the bigger markup led to the greater profit, especially if the solution types
were different, but for the same types the bigger markup corresponded to the
higher obtained profit. We observed that for the smallest markups considered the
alternating heuristic had the minimal number of steps, but for the considerably
larger markups we could not observe a regular pattern.

5 Conclusion and Future Research

We present a novel approach to analyse a situation in which two companies
compete in a transportation market in a sequential fashion. Here, the goal for
the both companies is to maximize their profit by creating the optimal hub and
spoke networks. It is assumed that the market is regulated. Because this research
is quite fresh, the form of regulation is chosen to be the direct price setting. To
be more precise, we assumed that all routes have fixed markups. We have to say
that up to our knowledge no one has investigated the effects of regulations to
the optimal hub location in a competitive environment. Next, we took that the
customers’ choice of provider and route depends solely on price and therefore it
is possible to predict it by a simple logit model (although including other factors
would be very easy). Upon that, we formulated a non-linear mixed integer bi-
level program to model this Stackelberg competition. The choice of the solution
approach was the alternating heuristic based on the Follower’s best response.

The computational investigation showed that discount factor by itself has a
relative impact to the solution and a not so sharp-cut role, as it was difficult to
observe any regularity. It looks like the sensitivity factor plays a more significant
role, but again it is hard to draw any specific conclusions. The markup has a
significant effect, as expected. For smaller markups, there is a tendency towards
the entry deterrence. Likewise, the bigger markups provided “more space” for the
Nash equilibrium to occur. Loosely speaking, if the passengers in the market are
less sensitive to the price differences and markups are quite small, than it could
be expected that the first-to-enter company will be the only one providing the
services. On the other hand, the price sensitive markets with bigger markups
set are more “prone” to allow multiple competitors to operate. Colloquially
speaking, both of these outcomes could be used as arguments in cooperative
games.

From the purely computational point of view, we observed that it might
be beneficial to derive a new model that would serve only to find the entry
deterrence solution. Long running times confirmed our worries that this problem
will not be easily solved for bigger instances by a commercial solver. Therefore,
for a more thorough investigation, we have to find a better way to compute the
exact solution for the Follower’s problem. We intend to put our efforts in finding
tighter reformulations of the Follower’s model and designing a branch and bound
based method that would utilize the structure of the program itself.
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Recently, some new interesting results have been obtained by relating the
bi-level programs with polynomial and approximation hierarchies [37–42]. The
investigation of these relationships is an important area of research. Therefore,
we plan to determine the position of our problem in each of them, too. Another
direction of the research is oriented towards the other forms of regulation.
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Abstract. This paper addresses the competitive base stations location
problem with sharing. Two mobile operators, the leader and the follower,
compete to attract customers from a given market of high-speed internet
connection. The leader acts first by placing a number of base stations,
anticipating that the follower will react to the decision by creating his
own network. The Leader can share BS cites with the follower operator,
receiving a rent payment from him. We propose new model of realistic
clients behavior, when the choice of the operator is made upon the aver-
age quality of service. We provide a formulation of this problem as a
nonlinear integer programming problem. We propose a fast tabu search
heuristic for this problem and provide some computational results.

Keywords: Tabu search · Bilevel programming · Competitive location

1 Introduction

Mobile internet access is a highly required service nowadays. A lot of people use
LTE/3G access to browse the world web an a lot more to join. Rapid development
of new technologies force the mobile operators to update their equipment in order
to provide better service to the clients. In this paper we consider new model
of competitive base stations location. We assume, there are two competitive
providers already operating a 4G network. One of them, the leader is the first to
get an access to a new 5G technology, and construct a new high-speed network
anticipating the reaction of the follower. The latter one is able not to use his own
cites to set up an equipment but also is able to rent a cite at leader. For this cases
leader sets the rent price, which has to be paid regularly. We suggest a new model
of realistic clients behavior. Clients are mobile, so they experience and evaluate
the quality of connection over the whole network. So the choice of the operator
is made upon the average quality of service. Similar model for one-level problem
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was discussed in [3]. In the second section we provide the detailed description of
the model. Third section provides a formulation of this problem as a nonlinear
integer programming problem. We propose a fast tabu search heuristic for this
problem in section four. Section five provides some computational results.

2 System Model

2.1 Network Model

We consider two competitive operators (called resp. O1 and O2), which we refer
to as a leader and a follower due to their sequential entering a market. They com-
pete to serve clients by installing and configuring 5G networks. The leader makes
a decision first, taking into account the arrival of the follower. This problem may
be considered as a competitive facility location problem [1].

Let S be the set of all sites, where base stations can be installed. This set is
made of three subsets: S = Sf ∪So

1 ∪So
2 , where So

i is the set of sites having a 4G
base station installed by Oi, i ∈ {1, 2}, and Sf is a set of free sites for potential
new installations.

In a first phase, O1 chooses a subset of Sn
1 for the installation of its new 5G

base stations subject to a budget constraint. This set is chosen among the free
sites and the sites having old BSs of O1: Sn

1 ⊂ Sf ∪ So
1 . Its goal is to capture

a maximum number of users and to anticipate the arrival of O2. At the end of
the first phase, O1 sets a rent price for every site having a base station installed,
i.e. in the set Sn

1 ∪ So
1 . In a second phase, O2 is deploying its 5G network by

choosing a set Sn
2 for its 5G BSs. He has the choice of all the sites in S, i.e.

Sn
2 ⊂ S. If a 5G BSs of O2 is placed on a site in Sn

1 , he will have to pay for the
installation and the rent price fixed by O1. Otherwise, he will have to pay only
the installation costs. At the end of the second phase, some users are leaving O1

and take a subscription with O2.

2.2 Propagation Model

In order to describe the propagation model let us consider a user located at x.
Let us define the channel gain between x and BS b as gb(x) and let us assume
that the transmit power of the antenna, located at BS b is Pb. The Signal to
Interference plus Noise Ratio (SINR) of the considered user in x with respect to
b is then given by:

γb(x) =
Pbgb(x)

∑
i�=b Pigi(x) + N

, (1)

where N is the thermal noise power in the band. This value define the real
quality of the signal, obtained by the user due to interference between different
base stations. Too many BS concentrated in a relatively small area make it hard
to distinguish between signals thus lowering the quality of the connection.

User in x is said to be covered by b if γb(x) ≥ γmin for some threshold γmin.
User in x is said to served by b if it is covered and Pbgb(x) ≥ Pigi(x) for all i �= b.



366 I. Davydov et al.

Note that at every location, users can be served by at most one BS from every
operator.

For a user located in x and served by station b, the physical data rate achiev-
able by this user is denoted cb(x), which is an increasing nonlinear function of
γb(x) with cb(x) = 0 if γb(x) < γmin.

2.3 Traffic Model

We assume there is a constant traffic demand in the network that operators will
potentially serve. In every location x, there is a demand λ(x)/μ(x), where λ(x)
is the arrival rate and 1/μ(x) is the average file size. Note that this demand in
x is statistical and can be shared by O1 and O2 or not served at all. Let assume
that x is covered by O1 and a proportion p1(x) of the demand is served by BS
b from O1. A proportion 1 − p1(x) of the demand is served by O2. We focus in
this paper on a specific case for p1: If location x is not covered by O1, p1(x) = 0.
Otherwise, p1 does not depend on the location and depends only on the overall
relative quality of service in the network O1 compared to O2. The idea behind
this assumption is that users are mobile and they choose their operator not only
with respect to the quality of service at a particular location but rather to the
average experienced quality.

Then, the load created by x on b is p1(x)�1b(x), where �1b(x) = λ(x)
μ(x)c1b(x)

,
where c1b(x) is the physical data rate in x and is an increasing function of γ1b(x).
The index 1 is here to recall that the SINR, so the physical data rate, and the
load are computed in the network of O1. This is important to specify, because
in the rest of the paper station b is likely to be shared with O2. We can now
define the load of station b as: p1ρ1b, where ρ1b =

∑
A1b

�1b(x), where A1b is the
serving area of b, i.e., the set of locations served by b in network O1. BS b is
stable if p1ρ1b < 1 and we will consider only scenarios where this condition is
fulfilled.

2.4 Market Sharing

We assume that users are the players of an evolutionary game. In this framework,
the choice of a single user does not influence the average throughput of an
operator. An equilibrium is reached when average throughputs in both networks
are the same. Let Aib be the area served by b ∈ Oi and Ai = ∪b∈Sn

i
Aib be

the overall area served by Oi. Let A be the whole network area. Let Λi =∑
b∈Sn

i

∑
Aib

piλ(x) be the global arrival rate in Oi, where pi is the probability
for a user to be with operator Oi. Let Λ =

∑
A λ(x) be the global demand over

the entire network. A user of Oi has a null throughput with probability Λ−Λi

Λ

and with probability Λi

Λ an average throughput of:

1
Λi

∑

b∈Sn
i

∑

Aib

piλ(x)(1 − piρib)cib(x). (2)
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As a consequence, the average throughput of a user with Oi is:

ti =
1
Λ

∑

b∈Sn
i

∑

Aib

piλ(x)(1 − piρib)cib(x) (3)

Let us denote for i = 1, 2:

Ii1 =
∑

b∈Sn
i

∑

Aib

λ(x)ρibcib(x) (4)

Ii2 =
∑

b∈Sn
i

∑

Aib

λ(x)cib(x) (5)

We have Ii1 < Ii2 because ρib < 1. Now: Λti = −p2i Ii1 + piIi2, with p2 = 1 − p1.
We have t1 ≥ t2 iff f(p1) ≥ 0 with:

f(p1) = p21(I21 − I11) + p1(I12 − 2I21 + I22) + I21 − I22. (6)

Let p∗
1 be the operator O1 market share at equilibrium. Several cases arise:

• If f(p1) > 0 for all p1 ∈ [0; 1], then operator 1 is always preferred to operator
2, and p∗

1 = 1.
• If f(p1) < 0 for all p1 ∈ [0; 1], then p∗

1 = 0.
• if f(p1) = 0 for some p1 ∈ [0; 1], then there are one or several equilibrium

points. In this case, we set p∗
1 = max{p1 ∈ [0; 1] : f(p1) = 0}. The assumption

behind this choice is that operator 1 has come first on the market. The dynam-
ics of p1 thus starts from 1 and decreases to the first encountered equilibrium
point.

2.5 Pricing Model

We distinguish between two types of costs: there is a fixed installation cost
for BSs that have to be paid upfront at the beginning of the deployment and
there are operational costs that has to be paid regularly. These operational costs
include traditional costs like electricity, maintenance, site renting, and possibly
a sharing price. The sharing price is paid by O2 to O1 for every site where BSs
are shared. We assume that in the first phase O1 does not have the possibility
to choose sites owned by O2 and thus has no sharing price to pay.

Let λ be the traditional operational cost per unit of time for a single operator
BS. Let (1 + α)λ with 0 < α < 1 be the traditional operation cost for a shared
BS. Let sb be the sharing price set by O1 for its BS b. Let κ be the installation
cost of a new BS. Let βκ with 0 < β < 1 be the installation cost when the
site is already occupied by a BS. We assume that O1 has a total budget of K.
Operational and installation costs are the same for O2.

We assume that the revenues of both operators are proportional to their
market share, i.e. P1 = p1 ∗ C, and P2 = p2 ∗ C = (1 − p1) ∗ C where C is the
total capacity of the market. The objective function is the revenue minus the
operational costs.
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3 Problem Formulation

As mentioned in the introduction, we are interested in the problem of strategic
base station placement where two providers enter the market at different times
(a leader and a follower), deploy their stations on possible candidate sites so as
to maximize their profits. In this section, we model this problem as a bi-level
optimization problem. Let us introduce two groups of the decision variables. The
first group is the leader’s variables:

xj =
{

1 if the leader installs antenna on a site j ∈ Sf ∪ So
1

0, otherwise,

xij =
{

1 if the location i is served from leader’s station j
0, otherwise.

After the deployment of antennas leader have to fix the rent price: sj ≥ 0, j ∈
Sn
1 ∪ So

1 . The second group is the follower’s variables:

yj =
{

1 if the follower installs antenna on a site j ∈ S
0, otherwise,

yij =
{

1 if the location i is served from follower’s station j
0, otherwise.

Now the competitive location problem can be written as a following bi-level
mixed integer linear programming model:

max
x,y∗,s

(p1C +
∑

j∈Sf

sjxjy
∗
j +

∑

j∈So
1

sjy
∗
j −

∑

j∈Sf∪So
1

[λxj(1− y∗
j )+ (1+α)λxjy

∗
j ]) (7)

subject to ∑

j∈Sf

κxj +
∑

j∈So
1

βκxj ≤ K (8)

Pbgibxb ≥ γmin

∑

j∈Sf∪So
1 ,j �=b

Pjgijxj+γminN−Γ (1−xib) ∀b ∈ Sf ∪So
1 , i ∈ I (9)

Pbgibxb ≥ Pjgijxj − Γ (1 − xib) ∀b, j ∈ Sf ∪ So
1 , j �= b, i ∈ I (10)

xij ≤ xj ∀i ∈ I, j ∈ Sf ∪ So
1 (11)

where y∗ is the optimal solution of the follower problem

max
y

((1 − p1)C −
∑

j∈So
1

sjyj −
∑

j∈Sf

sjxjyj −
∑

j∈Sf∪So
2

λyj(1 − xj)) (12)

subject to

Pbgibyb ≥ γmin

∑

j∈S,j �=b

Pjgijyj + γminN − Γ (1 − yib) ∀b ∈ S, i ∈ I (13)
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Pbgibyb ≥ Pjgijyj − Γ (1 − yib) ∀b, j ∈ S, i ∈ I (14)

yij ≤ yj ∀i ∈ I, j ∈ S (15)

Upper level (7)–(11) of the problem corresponds to the leader’s problem and
controls variables {xj}, {xij}, and {sj}. Lower level (12)–(15) formalizes the
follower’s problem and controls variables {yj}, {yij}. The follower, at the lower
level, maximizes its profit after the leader’s decision, at the upper level. The
leader maximizes its profit independently affected by the follower’s reaction. We
call the entire problem (7)–(15) as the leader’s problem (LP) as well because
our goal is to find the location of stations which provides the maximal leader’s
profit. Thereby a feasible solution to the LP is defined by the optimal solution
to the follower’s problem. The objective functions (7) and (12) can be under-
stood as the total profit obtained respectively by the leader and the follower,
computed as the difference between the expected revenue from clients served
and the operational costs for the stations installed. The sharing payment gives
additional profit to the leader, and reduces the gain of the follower. Constraint
(8) limits the maximum number of stations that the leader can afford to install
due to it’s budget. Constraints (9) are the SINR conditions for a location to be
covered. When xib = 1, the expression boils down to the SINR condition with
respect to the SINR threshold γmin. Whenever xib = 0 then the condition is
always fulfilled because of the large value of constant Γ . Constraints (10) com-
bined with (9) state that the location satisfying the minimal SINR constraint is
served by a BS providing the most powerful signal. Constraints (13) and (14)
have the same meaning in the follower problem. Constraints (11) and (15) state
that a service is possible only if a station is installed. The value of p1 is derived
from the quadratic equation (6), as mentioned above.

4 Tabu Search Approach

Although, the constraints of the problem are linear, due to realistic model of
clients behavior it is not the case for the goal function. Latter fact makes it hard
to apply a broad variety of approaches, which works well with linear integer
programming problems. In this study in order to tackle the problem we propose
a double level metaheuristic based on the tabu search framework, which performs
well on similar problems [4,6]. The tabu search method has been proposed by
Fred Glover. It is a so called trajectory metaheuristic and has been widely used
to solve hard combinatorial optimization problems [5]. The method is based on
the original local search scheme that lets one “travel” from one local optimum
to another looking for a global one, avoiding local optimum traps. The main
mechanism that allows it to get out of local optima is a tabu list, which contains a
list of solutions from previous iterations which are prohibited to be visited on the
subsequent steps. We use well-known Flip and Swap neighborhoods to explore
the search space. Together with the tabu list, we exploit the idea of randomized
neighborhoods. This feature allows to avoid looping, significantly reduces the
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time per iteration, and improves search efficiency [2,8]. We denote by Swapq

the part q of the Swap neighborhood chosen at random. Flipq neighborhood is
defined in the same way, but with the different value of parameter q. We apply
tabu framework both to the lower and the upper level of the problem yet with
different settings. Follower problem is the one to be solved a lot of times during
the search, as it is needed to provide an estimation on the quality of leader’s
location. On the one hand better solutions provide better estimation of the goal
function, but requires a lot of time to obtain. On the other hand, during the
run-through of the neighborhood it is usually enough to make an approximate
evaluation which would be refined at the record update step. The schematic view
of the algorithm may be presented as follows:

Algorithm 1. Mathheuristic
1: Initialize; Read input data; Generate initial solution of the leader x0, p0 and the

follower y0, empty tabu lists.
2: repeat
3: Generate the flip&swap neighborhood N(x)
4: for each x′ ∈ N(x)Tabu do
5: Apply TabuSearch heuristic to solve the follower problem for x′; Denote

best found solution y′

6: Calculate the goal function value for the leader and the follower
7: if ω(x′, y′) > ω(x∗, y∗) then
8: Refine the solution to find the exact/approx solution of the follower

problem
9: end if
10: if ω(x′, y′

e) > ω(x∗, y∗) then
11: Rewrite the record (x∗, y∗) := (x′

e, y
′
e); x := x′

12: else
13: x := x′

14: end if
15: end for
16: until Given time limit is exceeded

The initial solution is chosen at random. The randomization parameters q
for the neighborhoods are set to be sufficiently small. As the tabu list, we use
an ordered list of units or pairs of the follower’s facilities that have been closed
and opened over the last few iterations. The length of the tabu list changes
in a given interval during local search. If the best found solution value repeats
too frequently, we increase the tabu list length by one; otherwise, we reduce it
by one. The method stops after a given number of iterations or after a certain
amount of computation time. Due to enormous amount or running time needed
to obtain an optimal solution of the follower problem with commercial solvers,
in this study at Line 8 we apply tabu search once again yet with another set of
parameters in order try to refine the followers solution. This approach does not
guarantee us a feasible solution for the leader’s problem as the followers solution
and thus the goal function value was obtained with an approximation.
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5 Experimental Studies

The proposed approach has been implemented in C++ environment and tested
on the randomly generated and real data instances. We generated 10 sets of
instances with different number of client locations (20, 40, ..,200). All locations
are chosen with the uniform distribution over the square area. The number of
sites was 1/4 of number of clients locations. The demand data was generated
at random, then normalized in order to satisfy the constraints on overload. In
the beginning Leader occupies exactly half of the sites at random. In all the
tests we assumed that the sharing prices are unique for all the leaders locations.
All the test were performed with the following tabu search parameters. The
randomization parameter was set to q = 0.05 for Swap neighborhood and q = 0.2
for Flip Neighborhood. The length of the tabu list was initially set to l = m/4
where m = |S|. After each m iterations without new record the length l is
increased by one until it reaches m/2. When a new record solution is found,
tabu list length is set to it’s initial value. While exploring the neighborhood on
the upper level of the problem we use the followers solution obtained on the
previous iteration as a starting point.

The aim of the first experiment was to study the behavior and convergence
of the approach on the lower level problem. We run the algorithm on all the 100
instances, 10 runs per instance. Time limit was set to 5 sec. for each run. The
algorithm has demonstrated strong convergence. Each time a random starting
points was generated. Among all the instances there were only 3 examples, with
different results on different runs. All of the examples were rather big (with 180,
200 and 200) locations. And the relative difference between outputs was less
then 1 %. These results allow us to hope that the estimation of the leaders’s goal
function provided by this heuristic approach is not so far from real value.

The second experimental study concerns the real data. We use the client
locations and base station cites of the part of 13-th district of Paris [7]. The
geometric centers of the blocks are assumed to be client locations. We also use the
coordinates of existing base stations in this area. The number of client locations,
n = 95, the number of cites for possible BS placement, m = 19. Total budget
of the market 3500. Table 1 contains the results of the dependance of followers
behavior from the sharing price, proposed by the leader. It can be seen from
the table that high sharing price is not always the optimal one for the leader.
As the sharing price increase, the follower is forced to change the location of his
antennas in order to avoid sharing.

In Table 2 we provide the resulting income of the leader depending on his
initial budget. We consider the real data once again. There are 19 cites for BS
installation. Seven of them are already occupied with leaders 4G equipment.
The price of antenna installation in these locations is set to 50, while the price
of installing new BS is 100.

We can see from the table that interference effect together with non-zero
maintenance price force the leader not to use the whole budget as it will lower
the overall income.
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Table 1. Profit and market share influenced by rent price

Sharing price Leader share (p1) Follower profit Leader profit N shared sites N opened sites

200 0.327 1755 1305 2 7

220 0.327 1715 1345 2 7

250 0.333 1633 1427 2 7

280 0.408 1589 1471 1 6

310 0.481 1574 1446 0 6

Table 2. Leader profit from size

Budget Leader share (p1) Leader profit Follower profit N old sites N opened sites

300 0.445 1457.5 1822.5 4 5

400 0.451 1458.5 1801.5 4 6

500 0.473 1495.5 1724.5 6 8

600 0.492 1562 1678 5 8

700 0.492 1562 1678 5 8

6 Conclusions

We have considered new competitive base stations location problem with shar-
ing. We have proposed a mathematical model for this problem and a tabu search
based heuristic for obtaining approximate solutions. Computational results show
the believability of the model. In the future research we are planning to imple-
ment the exact method for the follower problem in order to obtain feasible solu-
tions of the leader’s one.
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dation (project 15-11-10009).
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Abstract. In this paper, we consider a competitive location problem
in a form of Stackelberg game. Two parties open facilities with the
goal to capture customers and maximize own profits. One of the par-
ties, called Leader, opens facilities first. The set of customers is specified
after Leader’s turn with random realization of one of possible scenarios.
Leader’s goal is to maximize the profit guaranteed with given probability
or reliability level provided that the second party, called Follower, acts
rationally in each of the scenarios. We suggest an estimating problem to
obtain an upper bound for Leader’s objective function and compare the
performance of estimating problem reformulations experimentally.

Keywords: Stackelberg game · Reformulation · Competitive location ·
Upper bound

1 Introduction

We deal with a bilevel location model firstly suggested in [7] as a deterministic
reformulation of a stochastic competitive location problem. In this problem, two
competing parties open their facilities in a finite discrete space with the goal
to maximize their profits, i.e. the value of income from customers service minus
the fixed costs of facilities opening. A decision making process is organized as a
Stackelberg game [10]. One of the parties, called Leader, opens its facilities first.

It is assumed that the set of customers is unknown for Leader. Instead of
this Leader is provided with a finite set of possible scenarios. Each scenario has
known probability of realization and fully characterizes the set of customers.

After Leader opens facilities one of possible scenarios is realized and the set of
customers becomes specified. This information is available for the second party
called Follower, who opens own facilities with the goal to maximize profit as
well.

In the model under consideration, each customer chooses the party to be
served by according to his preferences. The facility assigned to serve the customer
must be more preferable for him than any competitor’s facility. This model of
customers serving in competitive environment is referred to in [3] as a free choice
of supplier rule. In the present paper we study a multi–scenario generalization
of the problem in [3].
c© Springer International Publishing Switzerland 2016
Y. Kochetov et al. (Eds.): DOOR 2016, LNCS 9869, pp. 373–387, 2016.
DOI: 10.1007/978-3-319-44914-2 30
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Leader’s goal in this situation is to maximize profit that can be guaranteed
with given probability or reliability level. In other words, Leader selects a set
of facilities to be opened such that there exists a subset of scenarios with total
probability not less than the reliability level. In these scenarios, Leader gets a
profit, which is not less than a certain value, and the goal is to make this value
as big as possible. The scenarios participating in the calculation of guaranteed
income are further referred to as active scenarios.

In [7] the value of income the customer brings to the facility is the same
for all facilities. This assumption allows the authors to suggest upper and lower
bounds for an optimum of the Leader’s problem. In the case when the income
depends on serving facility, the suggested upper bound is not valid. By using
the technique from [3] we formulate an estimating problem in the form of MIP
providing an upper bound in the case of facility–dependent income values. We
suggest two reformulations of the estimating problem and perform numerical
experiments to compare their efficiencies.

The rest of the paper is organized as follows. In Sect. 2 we present a mathe-
matical model of the competitive facility location problem with quantile criterion
(QCompFLP) in the form of a pessimistic bilevel mixed–integer programming
problem [5] and discuss a concept of its pessimistic feasible solution. Also, we
suggest a procedure to compute a pessimistic feasible solution for given values
of Leader’s location variables. Section 3 provides a formulation of the estimating
problem for upper bound calculation. Two reformulations of it are presented as
well. In Sect. 4 we compare the effectiveness of suggested formulations of the
estimating problem and examine their qualities as providers of an upper bound
for QCompFLP.

2 Mathematical Model

Let us introduce the necessary notations:

Sets:
I = {1, . . . , m} is a set of facilities or candidate sites for opening a facility;
S = {1, . . . , l} is a set of possible scenarios;
Js is a finite set of customers in case when scenario s ∈ S is realized. We
assume that Js1 ∩ Js2 = ∅ for each s1, s2 ∈ S, s1 �= s2. The set of all possible
customers is denoted with J =

⋃
s∈S Js. Without loss of generality we assume

that J = {1, . . . , n}.

Parameters:
fi is a fixed cost of opening Leader’s facility i ∈ I;
gi is a fixed cost of opening Follower’s facility i ∈ I;
cij is an income of Leader’s facility i ∈ I from customer j ∈ J ;
dij is an income of Follower’s facility i ∈ I from customer j ∈ J ;
ps is a probability of realization of scenario s ∈ S;
p0 is a reliability level.



Upper Bound for the Competitive Facility Location Problem 375

Variables:

xi =
{

1, if Leader opens facility i
0, otherwise,

xij =
{

1, if Leader’s facility i is assigned to serve customer j
0, otherwise,

zs
i =

{
1, if Follower opens facility i in the case of scenario s realization
0, otherwise,

zij =
{

1, if Follower’s facility i is assigned to serve customer j
0, otherwise,

δs =
{

1, if scenario s is active
0, otherwise,

C stands for the value of guaranteed income.
In the QCompFLP model we use a binary customer patronizing rule [9]. It

means that each customer j ∈ J brings income to a single facility opened by
either Leader or Follower. We assume that this facility is chosen according to the
preferences of the customer. The preferences are represented with linear order
�j on the set I. Given i1, i2 ∈ I, the relation i1 �j i2 means that i1 is not less
preferable for j than i2. If i1 �= i2 then i1 is strictly more preferable than i2, and
we denote it with i1 �j i2. For a nonempty set I0 ⊆ I we denote with ij(I0) such
an element of I0, for which ij(I0) �j k for all k ∈ I0. For a nonzero (0,1)–vector
v = (vi), i ∈ I we use notation ij(v) for an element ij({k ∈ I|vk = 1}).

If we are given with boolean vectors x and z of Leader’s and Follower’s
location variables values respectively, then Leader’s facility i ∈ I can serve a
customer j ∈ J iff i �j ij(z). Similarly, Follower’s facility i ∈ I can serve a
customer j ∈ J iff i �j ij(x).

Using introduced notations the mathematical model of the QCompFLP is
written as the following pessimistic bilevel program:

max
(xi),(xij),(δs),C

min
(z̃s

i ),(z̃ij)

(

−
∑

i∈I

fixi + C

)

, (1)

xi ≥ xij , i ∈ I, j ∈ J ; (2)
∑

i∈I

xij ≤ δs, s ∈ S, j ∈ Js; (3)

C ≤
∑

i∈I

∑

j∈Js

cijxij + M(1 − δs), s ∈ S; (4)

z̃s
i +

∑

k∈I|i�jk

xkj ≤ 1, s ∈ S, j ∈ Js; (5)

∑

s∈S

psδs ≥ p0; (6)

xi, δs ∈ {0, 1}; 0 ≤ xij ≤ 1, i ∈ I, j ∈ J, s ∈ S; (7)

where (z̃s
i ), (z̃ij) solves (8)
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max
(zs

i ),(zij)

∑

s∈S

⎛

⎝−
∑

i∈I

giz
s
i +

∑

i∈I

∑

j∈Js

dijzij

⎞

⎠ , (9)

zs
i ≥ zij , i ∈ I, s ∈ S, j ∈ Js; (10)

xi +
∑

k∈I|i�jk

zkj ≤ 1, j ∈ J ; (11)

xi + zs
i ≤ 1, i ∈ I, s ∈ S; (12)

zs
i ,∈ {0, 1}; 0 ≤ zij ≤ 1, i ∈ I, j ∈ J, s ∈ S. (13)

The objective function (1) of the upper–level problem represents the value
of income, which is guaranteed with a probability p0 reduced by the cost of
opened facilities. Inequalities (2) forbid to serve customers with close facilities,
(3) guarantee that customers from active scenarios cannot be served with more
than one facility, (5) ensure that the customer is served with a facility which
is more preferable than any of competitor’s ones. Constraints (4) provide that
the value of guaranteed income is not greater than the income realized in any of
active scenarios. The term with a sufficiently large constant M excludes inactive
scenarios from the consideration. Constraints (6) impose that the income value
is guaranteed with probability p0.

The lower–level objective function (9) is a sum of profits Follower obtains
in all possible scenarios. Its maximization is equivalent to maximization of the
profit for each scenario separately. The constraints (10) and (11) have the same
meaning as the upper–level constraints (2) and (5), respectively. Finally, the
inequalities (12) provide that Follower does not open facility in the place occu-
pied by Leader.

For brevity let us denote the vector of values of xi, i ∈ I and zs
i , i ∈ I, s ∈ S

with x and z correspondingly. Given x we denote the problem F with F(x).
Analogously, the problem L with the value of z in the constraints (5) is denoted
with L(z). A whole model (1)–(13) is referred to as (L,F).

2.1 Pessimistic Feasible Solutions of the Problem (L,F)

Consider some (0,1)–vector x = (xi), i ∈ I and a quadruple χ(x) = (X,Δ,C,Z),
where X = ((xi), (xij)), Δ = (δs), Z = ((zs

i ), (zij)), i ∈ I, j ∈ J , s ∈ S. We
call quadruple χ(x) a feasible solution of the problem (L,F) if Z is an optimal
solution of the problem F(x) and (X,Δ,C) is a feasible solution of the problem
L(z), where z = (zs

i ), i ∈ I, s ∈ S.
Let Opt(x) be a set of optimal solutions of the problem F(x). Given Z ∈

Opt(x), let χ(x,Z) denote a quadruple (X(Z),Δ(Z), C(Z), Z), where (X(Z),
Δ(Z), C(Z)) is an optimal solution of the problem L(z). We denote the value
of objective function (1) on this solution with L(χ(x,Z)). The solution χ(x, Ž)
is called a pessimistic feasible solution of the problem (L,F) if L(χ(x, Ž)) ≤
L(χ(x,Z)) for all Z ∈ Opt(x). The problem (L,F) is equivalent to the problem
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of maximization of some implicitly given function f̌ : {0, 1}m → IR such that
f̌(x) = L(χ(x, Ž)) for each (0,1)–vector x.

The value f̌(x) for a given x can be computed in two steps. At the first step
the problem F(x) is solved, and let F ∗ be its optimum. At the second step an
auxiliary MIP provides a pessimistic feasible solution and a value of f̌(x). To
formulate it we introduce new nonnegative variables uj , j ∈ J . Variable uj takes
the value equals to Leader’s income from the customer j.

min
(zs

i ),(zij),(uj)

∑

j∈J

uj (14)

xi +
∑

k|i�jk

zkj ≤ 1, i ∈ I, j ∈ J ; (15)

zs
i ≥ zij , i ∈ I, s ∈ S, j ∈ Js; (16)

uj ≥ cij

(
xi −

∑

k|k�ji

zs
k

)
, i ∈ I, s ∈ S, j ∈ Js; (17)

∑

s∈S

⎛

⎝−
∑

i∈I

giz
s
i +

∑

i∈I

∑

j∈Js

dijzij

⎞

⎠ ≥ F ∗; (18)

xi + zs
i ≤ 1, i ∈ I, s ∈ S; (19)

zs
i ∈ {0, 1}; 0 ≤ zij ≤ 1, i ∈ I, s ∈ S, j ∈ J ; (20)

ui ≥ 0, j ∈ J. (21)

Let (Z,U), Z = ((zs
i ), (zij)), U = (uj) be an optimal solution of the problem

(14)–(21), and let zs = (zs
i ). Notice that for solution (Z,U) the following equality

holds for each s ∈ S, j ∈ Js:

uj = max
i|i�jij(zs)

{
cijxi

}
.

The value of income the Leader gets in the scenario s ∈ S is calculated as
follows: Cs =

∑
j∈Js

uj . To choose the set of active scenarios one should sort
values {Cs} in descending order. Without loss of generality we can assume that
C1 ≥ C2 ≥ · · · ≥ Cl. Let r be a such an index that

∑
s<r ps < p0 ≤ ∑

s≤r ps.
Then it is easy to see that f̌(x) = −∑

i∈I fixi + Cr.
Now we are able to construct a pessimistic feasible solution χ(x,Z). For every

s ≤ r and all j ∈ Js such that uj > 0 let us denote with ij the index i ∈ I for
which the constraint (17) is active. Then we set xijj = 1 and δs = 1. For all
other indexes i ∈ I, j ∈ J , s ∈ S we set xij = 0 and δs = 0. The quadruple
(((xi), (xij)), (δs), Cr, (zs

i ), (zij)) is a desired pessimistic feasible solution of the
problem (L,F).

From the above we conclude that pessimistic QCompFLP is equivalent to the
problem of maximization of implicitly given pseudo–boolean function. The func-
tion depends on m boolean variables. Its value on boolean vector x = (xi), i ∈ I
can be calculated by solving two mixed–integer linear programming problems.
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3 Upper Bound

Consider the problem of finding the global maximum of pseudo–boolean func-
tion f̌ : {0, 1}m → IR associating an arbitrary (0,1)–vector x with the value of
objective function (1) on the corresponding pessimistic feasible solution χ(x, Ž).
The method to calculate an upper bound for values of the function f̌ consists in
constructing and solving of an auxiliary optimization problem, referred to as an
estimating problem.

3.1 Estimating Problem

The basis of the estimating problem is a relaxation of the problem (L,F)
obtained by removing the lower–level problem F and its variables. The result-
ing single–level mixed–integer problem models the situation there Leader is a
monopolist. Obviously, an optimal value of the model is a valid upper bound for
the function f̌ , but its accuracy is insufficient for practical application.

Similarly to the earlier considered models of competitive location [2–4], the
relaxation of (L,F) can be strengthened by using the system of estimating sub-
sets {Ij}, j ∈ J . The construction of estimating subsets for the case of single
scenario is presented in [3] and can be easily extended to the case of several
scenarios. An algorithm of subsets construction allows to claim that if the most
preferable for the customer j Leader’s facility ij(x) is not in Ij , then Follower
will open a facility which is more preferable for j than ij(x).

Following the method from [3] we transform an income matrix (cij) into a
new matrix (c′

ij), which majorizes (cij) and is correlated with the preferences
of customers. It means that c′

ij ≥ cij for all i ∈ I, j ∈ J and for given j ∈ J
values (c′

ij) are monotone according to the order �j : given i1, i2 ∈ I the relation
i1 �j i2 implies that c′

i1j ≥ c′
i2j . Such a matrix can be constructed by assuming

that c′
ij = maxk|i�jk ckj for all i ∈ I and j ∈ J .

The algorithm of subsets {Ij} construction for a single scenario case is pre-
sented in [3]. By considering an arbitrary scenario s ∈ S separately we obtain
the system of subsets {Ij}, where j ∈ Js. By switching s one by one we obtain
a subset Ij for every j ∈ J . An algorithm of construction ensures that the fol-
lowing inequality holds for every j ∈ J and every pessimistic feasible solution
χ(x, Ž) of the problem (L,F):

∑

i∈I

cijxij ≤
∑

i∈Ij

c′
ijxij . (22)

By assuming that for every i ∈ I and j ∈ J

c′′
ij =

{
c′
ij , if i ∈ Ij

0, otherwise ,

we get the following estimating problem:

max
(xi),(xij),(δs),C

(

−
∑

i∈I

fixi + C

)

, (23)
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xi ≥ xij , i ∈ I, j ∈ J ; (24)
∑

i∈I

xij ≤ δs, s ∈ S, j ∈ Js; (25)

C ≤
∑

i∈I

∑

j∈Js

c′′
ijxij + M(1 − δs), s ∈ S; (26)

∑

s∈S

psδs ≥ p0; (27)

xi, δs ∈ {0, 1}; 0 ≤ xij ≤ 1, i ∈ I, j ∈ J, s ∈ S. (28)

The model (23)–(28) is further referred to as B. It is a relaxation of the bilevel
problem (L,F), obtained by removing the lower–level problem F and its vari-
ables. Inequalities (26) are the corollary of estimating subsets properties (22).

Thus, the optimum of the constructed estimating problem is an upper bound
for maxx∈{0,1}m f̌(x). Its calculation is a time consuming procedure since the
model B has a big integrality gap provided by inequalities (26), where the right–
hand side can significantly change the value after relaxation of variables (δs).
To find a compromise between accuracy of the upper bound and its calculation
time we suggest two reformulations of the model B.

3.2 Relaxation of a Large MIP

As it was mentioned, solving the problem B can be a time–consuming procedure.
Let us introduce its reformulation involving exponential number of variables.

Let R be a set of all subsets of S. For each R ∈ R we introduce a new boolean
variable uR, which takes the value 1 if the set of active scenarios equals to R
and 0 otherwise. Additionally we need a (0, 1)–matrix (asR), s ∈ S, R ∈ R such
that

asR =
{

1, if s ∈ R
0 otherwise .

Using the above definitions the reformulation of B is written as follows:

max
(xi),(xij),(uR),C

(

−
∑

i∈I

fixi + C

)

, (29)

C ≤
∑

i∈I

∑

j∈Js

c′′
ijxij + M(1 −

∑

R∈R
asRuR), s ∈ S; (30)

∑

i∈I

xij ≤
∑

R∈R
asRuR, s ∈ S, j ∈ Js; (31)

xi ≥ xij , i ∈ I, j ∈ J ; (32)
∑

R∈R

∑

s∈R

asRpsuR ≥ p0; (33)
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∑

R∈R
uR = 1; (34)

xi, uR ∈ {0, 1}; 0 ≤ xij ≤ 1, i ∈ I, j ∈ J,R ∈ R. (35)

To deal with the linear relaxation of this large problem consider its dual:

min
(αs),(βj),(γij),η,λ

(−p0η + λ + M) (36)

∑

j∈J

γij ≤ fi, i ∈ I; (37)

βj + γij ≥ c′′
ijαs, i ∈ I, j ∈ J ; (38)

∑

s∈S

αs = 1, (39)

λ ≥
∑

s∈S

asR

⎛

⎝psη +
∑

j∈Js

βj − Mαs

⎞

⎠ , R ∈ R; (40)

αs, βj , γij , η ≥ 0. (41)

Let D(R′) = ((αs), (βj), (γij), η, λ) be an optimal solution of the problem
(36)–(41), where exponentially large index set R in (40) is replaced with its
relatively small subset R′ ⊆ R. In the case when D(R′) satisfies (40) for all
R ∈ R, it is an optimal solution of the dual problem and provides a required
upper bound. Otherwise there exists a (0, 1)–vector (δs) such that

∑

s∈S

δs(psη +
∑

j∈Js

βj − Mαs) > λ. (42)

The existence of such a vector can be checked by solving the following problem:

max
(δs)

∑

s∈S

wsδs (43)

∑

s∈S

δsps ≥ p0 (44)

δs ∈ {0, 1}, s ∈ S, (45)

where ws = psη +
∑

j∈Js
βj − Mαs.

Given an optimal solution (δ∗
s ) of the problem (43)–(45), if the inequality∑

s∈S wsδ
∗
s ≤ λ holds, then the solution D(R′) satisfies (40) for any R ∈ R.

Otherwise, one of constraints that the D(R′) violates corresponds to the set of
scenarios {s ∈ S|δ∗

s = 1}. We include it into R′ and get back to solving the dual
problem with a new constraint of type (40).

Thus the cutting–plane (CP) scheme to calculate an upper bound for the
value maxx∈{0,1} f̌(x) is an iterative process [6]. On each iteration, a restricted
dual problem is being solved. We check its optimal solution for feasibility in
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the initial dual problem. In the case of positive answer, a valid upper bound is
obtained and the procedure terminates. Otherwise, a cut is generated by solving
a knapsack–type problem, and a new iteration begins.

At the first iteration, we must guarantee a feasibility of restricted dual prob-
lem by appreciate choice of R′. In our experiments we initialize R′ with a random
subset S′ ⊆ S such that

∑
s∈S′ ps ≥ p0.

3.3 Reformulation of Bilevel Estimating Problem

Let us get back to the problem B. Notice that if the location variables values are
chosen, one can easily obtain an optimal facility assignment for each customer
and calculate the income value for each possible scenario. Assume that ps = 1

l for
all s ∈ S. Then an optimal set of active scenarios contains exactly �lp0 elements
with the greatest total income. It leads us to the following bilevel formulation
of the problem B, which uses additional variables (Cs), s ∈ S for the value of
income in the corresponding scenario.

max
(xi),(xij),(Cs),C

(

−
∑

i∈I

fixi + C

)

, (46)

xi ≥ xij , i ∈ I, j ∈ J ; (47)
∑

i∈I

xij ≤ 1, s ∈ S, j ∈ Js; (48)

Cs ≤
∑

i∈I

∑

j∈Js

c′′
ijxij , s ∈ S; (49)

C ≤ Cs + M(1 − δ∗
s ), s ∈ S; (50)

xi ∈ {0, 1};xij , C, Cs ≥ 0, i ∈ I, j ∈ J, s ∈ S; (51)

where (δ∗
s ) solves (52)

max
(δs)

∑

s∈S

Csδs, (53)

∑

s∈S

δs = �lp0; (54)

0 ≤ δs ≤ 1, s ∈ S. (55)

In the lower–level problem (53)–(55) �lp0 scenarios with the greatest income
are chosen. Notice that here we can let δs, s ∈ S take fractional values without
loss of integrality of optimal solution.

Due to simplicity of the lower–level problem, we substitute it with comple-
mentary slackness conditions [1] to obtain a single–level reformulation of the
problem B. After linearization the resulting problem B′ is written as follows:

max
(xi),(xij),(δs),(Cs),C

(

−
∑

i∈I

fixi + C

)

, (56)
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xi ≥ xij , i ∈ I, j ∈ J ; (57)
∑

i∈I

xij ≤ 1, s ∈ S, j ∈ Js; (58)

Cs ≤
∑

i∈I

∑

j∈Js

c′′
ijxij , s ∈ S; (59)

C ≤ Cs + M(1 − δs), s ∈ S; (60)
∑

s∈S

δs = �lp0; (61)

us ≤ Mδs, s ∈ S; (62)

us + w ≥ Cs, s ∈ S; (63)

us + w ≤ Cs + M(1 − δs), s ∈ S; (64)

xi, δs ∈ {0, 1};xij , Cs, C ≥ 0, i ∈ I, j ∈ J, s ∈ S. (65)

Here w and (us), s ∈ S are dual variables for constraints (54) and (55), respec-
tively. Variables (δs), s ∈ S are boolean in this model since they play role of
indicator variables in complementary slackness conditions linearization. Model
(56)–(65) by itself is further addressed as B′.

4 Numerical Experiments

In this section, we present results of comparison of proposed estimating prob-
lem formulations. The section consists of two parts. In the first subsection, we
compare models and their relaxations on randomly generated inputs.

In the second subsection, we consider a number of randomly generated
instances of QCompFLP. We construct a system of estimating subsets and com-
pare values of the upper bound provided by problems B, B′, their relaxations
and cutting–plane procedure with the value of function f̌ on locally optimal
solution.

Calculations are performed in a single thread by workstation with processors
Intel Xeon X5675 3.07 GHz and 96 GB RAM. To solve mixed–integer programs
we use Microsoft Solver Foundation 3.1 library with built–in Gurobi MIP solver.

4.1 Instances Not Induced by QCompFLP

To examine the efficiency of upper bound calculation procedures we generate
a set of inputs for the estimating problem. For different values of m, n, and l
a series of three tests was performed. In each test income matrix (cij), i ∈ I,
j ∈ J is filled with random integers uniformly distributed on the integer range
{5, 6, . . . , 15}. Fixed cost value fi equals to 50 for all i ∈ I. The probability of
scenario is generated in two stages. On the first stage an integer ρs, s ∈ S is
chosen from the range {1, 2, 3, 4} with equal probabilities. The probability of
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realization of scenario s is set to be equal to ρs/
∑

l∈S ρl. In all instances of this
bundle of tests p0 = 0.6.

In the Table 1 we provide the following values:
Gap(B), relative integrality gap of the model B, i.e. a difference between

optimum of linear relaxation of B and its integer optimum divided by integer
optimum, in percents;

Gap(CP), relative integrality gap of the model (29)–(35), i.e. a difference
between the value provided by cutting–plane procedure and integer optimum
divided by integer optimum, in percents;

OPT, value of integer optimum;
T(BLR), calculation time for the linear relaxation of the model B;
T(CP), calculation time for the cutting–plane procedure;
T(B), calculation time for model B. It is limited by 10 min. The mark “TL”

appears in the cases of reaching the time limit. Also in this cases the optimal
value of objective function instead of relative integrality gap is presented in the
columns Gap(B) and Gap(CP).

As Table 1 shows, the integrality gaps of both the model B and the model
(29)–(35) are dramatically large. However on instances with m = 10 and m =
15 the relaxation of the second model outperforms the relaxation of B: it can
be solved by cutting–plane method in a comparable time and provide more
accurate estimation of the optimum of B. The calculation time for optimum of
B is relatively big and grows rapidly while the dimensionality increases, thus

Table 1. Instances with different scenario probabilities

Gap(B) Gap(CP) OPT T(BLR) T(CP) T(B)

m = 10, n = 150, l = 4

32 % 21 % 391 < 1” < 1” 26”

22 % 21 % 426 < 1” < 1” 33”

33 % 33 % 415 < 1” < 1” 7”

m = 15, n = 200, l = 6

41 % 41 % 323 1” 10” 41”

51 % 47 % 313 1” 9” 1’15”

73 % 66 % 288 < 1” 2” 1’55”

m = 20, n = 250, l = 8

48 % 48 % 305 2” 31” 7’4”

86 % 82 % 276 2” 37” 6’3”

57 % 53 % 290 2” 23” 7’1”

m = 25, n = 300, l = 10

441,00 435,00 – 8” 1’51” TL

422,00 422,00 – 7” 1’42” TL

438,00 438,00 – 6” 2’35” TL
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Table 2. Instances with equiprobable scenarios

Gap(B) Gap(B′) Gap(CP) OPT T(BLR) T(B′
LR) T(CP) T(B) T(B′)

m = 10, n = 150, l = 4

41% 28% 28 % 356 < 1” < 1” < 1” 11” 7”

69% 53% 53 % 300 < 1” < 1” < 1” 7” 22”

61% 43% 43 % 330 < 1” < 1” < 1” 13” 5”

m = 15, n = 200, l = 6

31% 26% 26 % 321 < 1” 1” 4” 2’24” 1’36”

45% 39% 39 % 303 < 1” 2” 9” 1’40” 54”

53% 44% 44 % 310 1” 2” 3” 1’49” 43”

m = 20, n = 250, l = 8

40% 38% 38 % 293 2” 6” 16” 7’55” 5’19”

472 459 459 – 2” 8” 20” TL TL

55% 52% 52 % 273 2” 7” 40” TL 8’43”

m = 25, n = 300, l = 10

388 388 388 – 5” 21” 1’34” TL TL

46% 46% 46 % 277 6” 15” 1’27” TL 7’43”

404 404 404 – 6” 17” 4’49” TL TL

the model B can be utilized in a posteriori accuracy estimation of non-exact
algorithms and in implicit enumeration schemes to solve small instances. The
relaxations are more perspective for exact methods dealing with bigger instances.

Table 2 presents results of dealing with instances where scenarios are
equiprobable. Additionally to columns from the Table 1 it includes:

Gap(B′), relative integrality gap of the model B′;
T(B′

LR), calculation time for the linear relaxation of the model B′;
T(B′), calculation time for the model B′ (is bounded by 10 min as like as

for B).
According to the results from Table 2, the model B′ outperforms B in relative

integrality gap and calculation time. Its linear relaxation and linear relaxation of
the model (29)–(35) provide the same results, but the first one consumes smaller
amount of time. An important observation is that in the cases when p0l is an
integer number linear relaxations of the three proposed models provide the same
results as it is in the case of the fourth series of tests, where l = 10 and p0l = 6.

4.2 Instances Induced by QCompFLP

In this subsection, we study the proposed models as an upper bound providers
for the problem QCompFLP. Numerical data preparation consists of generating
the QCompFLP instance, constructing an estimating subset system, and form-
ing an input data for the estimating problem. For each generated instance of
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QCompFLP we start a local search procedure using scheme from [8] to obtain a
lower bound for the optimum. It allows us to estimate the quality of the upper
bound.

QCompFLP instances are generated as follows. All operations of random
choice are performed with uniform distribution on the corresponding domain.
Fixed costs values fi and gi, i ∈ I are calculated with formula 50+5ξ, where value
of ξ is randomly chosen from the integer range {−3,−2, . . . , 3} for each fi and
each gi, i ∈ I. For each i ∈ I, j ∈ J the income value pij is randomly chosen from
the set {6, 7, . . . , 14}. The value of qij is calculated with formula pij + ζ, where ζ
is randomly chosen from range {−3,−2, . . . , 3} each time. Scenario probabilities
are equal. For each customer j ∈ J we select at random the number of scenario
the customer appears in and the order �j .

Table 3. Instances induced by QCompFLP

LB B B′ BLR B′
LR CP T(B) T(B′) T(BLR) T(B′

LR) T(CP)

m = 10, n = 160, l = 4

191 361 361 596 532 532 8” 2” < 1” < 1” < 1”

178 358 358 592 524 524 33” 5” 2” < 1” < 1”

235 434 434 567 519 519 15” 9” < 1” 2” 12”

m = 10, n = 320, l = 8

130 379 379 579 568 568 1’17” 2’7” 1” 5” 25”

120 409 409 571 561 561 55” 40” 18” 7” 1’10”

150 387 387 571 561 561 3’50” 1’57” < 1” 2” 10”

m = 10, n = 640, l = 16

90 378 378 578 568 568 8’53” 6’23” 4” 10” 1’55”

121 391 391 590 579 579 9’0” 7’20” 4” 7” 1’32”

148 392 392 614 603 603 9’14” 6’19” 3” 6” 2’40”

m = 15, n = 160, l = 4

166 379 379 619 555 555 55” 22” < 1” 1” < 1”

136 389 389 615 552 552 28” 24” < 1” 1” < 1”

97 430 430 565 521 521 38” 42” < 1” 1” 1”

m = 15, n = 320, l = 8

73 406 406 593 583 583 5’38” 2’25” 1” 4” 21”

129 432 432 605 597 597 2’47” 1’32” 2” 4” 18”

112 443 443 601 592 592 3’34” 2’34” 2” 4” 10”

m = 15, n = 640, l = 16

89 – 434 621 611 611 TL 7’48” 6” 21” 3’8”

65 – – 594 585 585 TL TL 9” 19” 3’22”

58 404 404 625 615 615 9’16” 3’23” 6” 20” 3’43”
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Table 4. Influence of reliability level p0

p0 LB B B′ BLR B′
LR CP T(B) T(B′) T(BLR) T(B′

LR) T(CP)

0.5 116 412 412 618 618 618 6’12” 6’32” 2” 5” 1’15”

0.6 90 378 378 578 568 568 6’50” 5’16” 2” 8” 1’26”

0.7 66 364 364 539 519 519 7’34” 5’57” 3” 6” 46”

0.8 57 335 335 497 492 492 6’21” 3’9” 3” 7” 1’1”

0.9 34 301 301 440 407 407 8’49” 4’13” 3” 7” 13”

1.0 24 270 CR 293 293 293 8’11” < 1” 3” 7” 1”

From Table 3 we see that revealed relations between performances of formu-
lations of the estimating problem are retained for induced instances.

Column LB contains values of lower bound. In our case it is the best value
of function f̌ the local search has found in 1 min for instances with m = 10 and
in 10 min for instances with m = 15. The accuracy of the upper bound provided
by estimating problem is comparable with results obtained for procedures using
similar technique for previously studied bilevel location problems relative to
QCompFLP [2,4].

Table 4 illustrates the influence of reliability level on the lower and upper
bounds. We consider a single instance of QCompFLP, which is the first one in a
bundle of tests with m = 10, n = 640, l = 16 from the Table 3. As we can see the
values of upper and lower bounds decrease with the grow of reliability level. The
formulation B′ performs better in common. However, the last test with p0 = 1
leads the solver to crush without apparent reasons from our side.

5 Conclusion and Discussion

In this paper, we investigate ways of calculation of an upper bound for the
QCompFLP using reformulations of the estimating problem. Numerical experi-
ments show that the suggested reformulations have smaller integrality gap. We
highlighted a special case of QCompFLP where scenarios are equiprobable. This
leads to a model, which outperforms the initial one in integrality gap and calcu-
lation time.

The quantile criteria is an interesting view on the robustness of solution. To
operate with uncertainty in income from the customers we are to duplicate each
customer for each possible value of the income. It leads us to the necessity of
investigating techniques to deal with instances with large number of customers.
Exact and approximate methods for the QCompFLP are subjects of the future
research as well.
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Abstract. In this paper, we consider a class of optimization problems
with a strongly convex objective function and the feasible set given by
an intersection of a simple convex set with a set given by a number
of linear equality and inequality constraints. Quite a number of opti-
mization problems in applications can be stated in this form, examples
being entropy-linear programming, ridge regression, elastic net, regular-
ized optimal transport, etc. We extend the Fast Gradient Method applied
to the dual problem in order to make it primal-dual, so that it allows not
only to solve the dual problem, but also to construct nearly optimal and
nearly feasible solution of the primal problem. We also prove a theorem
about the convergence rate for the proposed algorithm in terms of the
objective function residual and the linear constraints infeasibility.

Keywords: Convex optimization · Algorithm complexity · Entropy-
linear programming · Dual problem · Primal-dual method

1 Introduction

In this paper, we consider a constrained convex optimization problem of the
following form

(P1) min
x∈Q⊆E

{f(x) : A1x = b1, A2x ≤ b2} ,

where E is a finite-dimensional real vector space, Q is a simple closed and convex
set, A1, A2 are given linear operators from E to some finite-dimensional real
vector spaces H1 and H2 respectively, b1 ∈ H1, b2 ∈ H2 are given, f(x) is a
c© Springer International Publishing Switzerland 2016
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ν-strongly convex function on Q with respect to some chosen norm ‖ · ‖E on E.
The last means that, for any x, y ∈ Q, f(y) ≥ f(x)+〈∇f(x), y−x〉+ ν

2‖x−y‖2E ,
where ∇f(x) is any subgradient of f(x) at x and, hence, is an element of the
dual space E∗. Also we denote the value of a linear function g ∈ E∗ at x ∈ E
by 〈g, x〉.

Problem (P1) captures a broad set of optimization problems arising in appli-
cations. The first example is the classical entropy-linear programming (ELP)
problem [1] which arises in different fields, such as econometrics [2], modeling
in science and engineering [3], especially in modeling of traffic flows [4] and IP
traffic matrix estimation [5,6]. Other examples are the ridge regression problem
[7] and the elastic net approach [8], which are used in machine learning. Finally,
the problem class (P1) covers problems of regularized optimal transport (ROT)
[9] and regularized optimal partial transport (ROPT) [10], which recently have
become popular in application to image analysis.

Classical balancing algorithms such as [9,11,12] are very efficient for solv-
ing ROT problems or special types of ELP problem, but they can deal only
with linear equality constraints of a special type and their rate of convergence
estimates are rather impractical [13]. In [10], the authors provide a generaliza-
tion, but only for ROPT problems which are a particular case of Problem (P1)
with linear inequalities constraints of a special type, and no convergence rate
estimates are provided. Unfortunately, the existing balancing-type algorithms
for ROT and ROPT problems become very unstable when the regularization
parameter is chosen very small, which is the case when one needs to calculate a
good approximation to the solution of an optimal transport (OT) or an optimal
partial transport (OPT) problem.

In practice, typical dimensions of the spaces E,H1,H2 range from thousands
to millions, which makes it natural to use a first-order method to solve Problem
(P1). A common approach to solve such large-scale Problem (P1) is to make
the transition to the Lagrange dual problem and solve it by some first-order
method. Unfortunately, the existing methods, which elaborate this idea, have
at least two drawbacks. Firstly, the convergence analysis of the Fast Gradient
Method (FGM) [14] can not be directly applied since it is based on the assump-
tion of boundedness of the feasible set in both the primal and the dual problem,
which does not hold for the Lagrange dual problem. A possible way to overcome
this obstacle is to assume that the solution of the dual problem is bounded and
add some additional constraints to the Lagrange dual problem in order to make
the dual feasible set bounded. But, in practice, the bound for the solution of the
dual problem is usually unknown. In [15], the authors use this approach with
additional constraints and propose a restart technique to define the unknown
bound for the optimal dual variable value. The authors consider classical ELP
problems only with equality constraints and do not discuss any possibility of
application of their technique to Problem (P1) with inequality constraints. Sec-
ondly, it is important to estimate the rate of convergence not only in terms of
the error in the solution of the Lagrange dual problem, as it is done in [16,17],
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but also in terms of the objective residual in the primal problem1 |f(xk) −
Opt[P1]| and the linear constraints infeasibility ‖A1xk−b1‖H1 , ‖(A2xk−b2)+‖H2 ,
where vector v+ denotes the vector with components [v+]i = (vi)+ = max{vi, 0},
xk is the output of the algorithm on the k-th iteration, Opt[P1] denotes the opti-
mal function value for Problem (P1). Alternative approaches [18,19], based on
the idea of the method of multipliers, and the quasi-Newton methods such as
L-BFGS also do not allow to obtain the convergence rate for the primal problem
residual and the linear constraints infeasibility.

Our contributions in this work are the following. We extend the Fast Gradient
Method [14,20], applied to the dual problem, in order to make it primal-dual,
so that it allows not only to solve the dual problem, but also to construct nearly
optimal and nearly feasible solution to the primal problem (P1). We also equip
our method with a stopping criterion, which allows an online control of the
quality of the approximate primal-dual solution. Unlike [9,10,15–19], we provide
the estimates for the rate of convergence in terms of the primal objective residual
|f(xk)−Opt[P1]| and the linear constraints infeasibility ‖A1xk−b1‖H1 , ‖(A2xk−
b2)+‖H2 . In the contrast to the estimates in [14], our estimates do not rely on
the assumption that the feasible set of the dual problem is bounded. At the same
time, our approach is applicable for the wider class of problems defined by (P1)
than the approaches in [9,15]. In the computational experiments, we show that
our approach allows to solve ROT problems more efficiently than the algorithms
of [9,10,15] when the regularization parameter is small.

2 Preliminaries

2.1 Notation

For any finite-dimensional real vector space E, we denote by E∗ its dual. We
denote the value of a linear function g ∈ E∗ at x ∈ E by 〈g, x〉. Let ‖ · ‖E denote
some norm on E and ‖ · ‖E,∗ denote the norm on E∗, which is dual to ‖ · ‖E

‖g‖E,∗ = max
‖x‖E≤1

〈g, x〉.

In the special case of a Euclidean space E, we denote the standard Euclidean
norm by ‖·‖2. Note that, in this case, the dual norm is also Euclidean. By ∂f(x)
we denote the subdifferential of a function f(x) at a point x. Let E1, E2 be two
finite-dimensional real vector spaces. For a linear operator A : E1 → E2, we
define its norm as follows

‖A‖E1→E2 = max
x∈E1,u∈E∗

2

{〈u,Ax〉 : ‖x‖E1 = 1, ‖u‖E2,∗ = 1}.

For a linear operator A : E1 → E2, we define the adjoint operator AT : E∗
2 → E∗

1

in the following way

〈u,Ax〉 = 〈AT u, x〉, ∀u ∈ E∗
2 , x ∈ E1.

1 The absolute value here is crucial since xk may not satisfy linear constraints and,
hence, f(xk) − Opt[P1] could be negative.
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We say that a function f : E → R has a L-Lipschitz-continuous gradient if it is
differentiable and its gradient satisfies Lipschitz condition

‖∇f(x) − ∇f(y)‖E,∗ ≤ L‖x − y‖E .

We characterize the quality of an approximate solution to Problem (P1) by
three quantities εf , εeq, εin > 0 and say that a point x̂ is an (εf , εeq, εin)-solution
to Problem (P1) if the following inequalities hold

|f(x̂) − Opt[P1]| ≤ εf , ‖A1x̂ − b1‖2 ≤ εeq, ‖(A2x̂ − b2)+‖2 ≤ εin, (1)

where Opt[P1] denotes the optimal function value for Problem (P1) and, for any
vector v, the vector v+ denotes the vector with components [v+]i = (vi)+ =
max{vi, 0}. Also, for any t ∈ R, we denote by �t� the smallest integer greater
than or equal to t.

2.2 Dual Problem

Let us denote Λ = {λ = (λ(1), λ(2))T ∈ H∗
1 × H∗

2 : λ(2) ≥ 0}. The Lagrange dual
problem to Problem (P1) is

(D1) max
λ∈Λ

{

−〈λ(1), b1〉 − 〈λ(2), b2〉 + min
x∈Q

(
f(x) + 〈AT

1 λ(1) + AT
2 λ(2), x〉

)}

.

We rewrite Problem (D1) in the equivalent form of a minimization problem.

(P2) min
λ∈Λ

{

〈λ(1), b1〉 + 〈λ(2), b2〉 + max
x∈Q

(
−f(x) − 〈AT

1 λ(1) + AT
2 λ(2), x〉

)}

.

We denote

ϕ(λ) = ϕ(λ(1), λ(2)) = 〈λ(1), b1〉 + 〈λ(2), b2〉 +max
x∈Q

(
−f(x) − 〈AT

1 λ(1) + AT
2 λ(2), x〉

)
. (2)

Note that the gradient of the function ϕ(λ) is equal to (see e.g. [14])

∇ϕ(λ) =

(
b1 − A1x(λ)
b2 − A2x(λ)

)

, (3)

where x(λ) is the unique solution of the problem

max
x∈Q

(
−f(x) − 〈AT

1 λ(1) + AT
2 λ(2), x〉

)
. (4)

It is important that ∇ϕ(λ) is Lipschitz-continuous (see e.g. [14]) with the
constant

L =
1
ν

(‖A1‖2E→H1
+ ‖A2‖2E→H2

)
. (5)

Obviously, we have
Opt[D1] = −Opt[P2], (6)

where by Opt[D1], Opt[P2] we denote the optimal function value in Problem (D1)
and Problem (P2) respectively. Finally, the following inequality follows from the
weak duality

Opt[P1] ≥ Opt[D1]. (7)
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2.3 Main Assumptions

We make the following two main assumptions

1. The problem (4) is simple in the sense that for any x ∈ Q it has a closed form
solution or can be solved very fast up to a machine precision.

2. The dual problem (D1) has a solution λ∗ = (λ∗(1), λ∗(2))T and there exist
some R1, R2 > 0 such that

‖λ∗(1)‖2 ≤ R1 < +∞, ‖λ∗(2)‖2 ≤ R2 < +∞. (8)

2.4 Examples of Problem (P1)

In this subsection, we describe several particular problems, which can be written
in the form of Problem (P1).

Entropy-linear programming problem [1].

min
x∈Sn(1)

{
n∑

i=1

xi ln (xi/ξi) : Ax = b

}

for some given ξ ∈ R
n
++ = {x ∈ R

n : xi > 0, i = 1, ..., n}. Here Sn(1) = {x ∈
R

n :
∑n

i=1 xi = 1, xi ≥ 0, i = 1, ..., n}.

Regularized optimal transport problem [9].

min
X∈R

p×p
+

⎧
⎨

⎩
γ

p∑

i,j=1

xij ln xij +
p∑

i,j=1

cijxij : Xe = a1,X
T e = a2

⎫
⎬

⎭
, (9)

where e ∈ R
p is the vector of all ones, a1, a2 ∈ Sp(1), cij ≥ 0, i, j = 1, ..., p are

given, γ > 0 is the regularization parameter, XT is the transpose matrix of X,
xij is the element of the matrix X in the i-th row and the j-th column.

Regularized optimal partial transport problem [10].

min
X∈R

p×p
+

⎧
⎨

⎩
γ

p∑

i,j=1

xij ln xij +
p∑

i,j=1

cijxij : Xe ≤ a1,X
T e ≤ a2, e

T Xe = m

⎫
⎬

⎭
,

where a1, a2 ∈ R
p
+, cij ≥ 0, i, j = 1, ..., p, m > 0 are given, γ > 0 is the regulariza-

tion parameter and the inequalities should be understood component-wise.

3 Algorithm and Theoretical Analysis

We extend the Fast Gradient Method [14,20] in order to make it primal-dual,
so that it allows not only to solve the dual problem (P2), but also to construct a
nearly optimal and nearly feasible solution to the primal problem (P1). We also
equip it with a stopping criterion, which allows an online control of the quality of
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the approximate primal-dual solution. Let {αi}i≥0 be a sequence of coefficients
satisfying

α0 ∈ (0, 1], α2
k ≤

k∑

i=0

αi, ∀k ≥ 1.

We define also Ck =
∑k

i=0 αi and τi = αi+1
Ci+1

. Usual choice is αi = i+1
2 , i ≥ 0. In

this case Ck = (k+1)(k+2)
4 . Next, let us define Euclidean norm on H∗

1 × H∗
2 in a

natural way
‖λ‖22 = ‖λ(1)‖22 + ‖λ(2)‖22,

for any λ = (λ(1), λ(2))T ∈ H∗
1 × H∗

2 . Unfortunately, we can not directly use the
convergence results of [14,20] for the reason that the feasible set Λ in the dual
problem (D1) is unbounded and the constructed sequence x̂k may possibly not
satisfy the equality and inequality constraints.

ALGORITHM 1. Fast Primal-Dual Gradient Method

Input: The sequence {αi}i≥0, Lipschitz constant L (5), accuracy ε̃f , ε̃eq, ε̃in > 0.
Output: The point x̂k.
Choose λ0 = (λ

(1)
0 , λ

(2)
0 )T = 0.

Set k = 0.
repeat

Find

ηk = (η
(1)
k , η

(2)
k )T = arg min

λ∈Λ

{
ϕ(λk) + 〈∇ϕ(λk), λ − λk〉 +

L

2
‖λ − λk‖2

2

}
.

ζk = (ζ
(1)
k , ζ

(2)
k )T = arg min

λ∈Λ

{
k∑

i=0

αi (ϕ(λi) + 〈∇ϕ(λi), λ − λi〉) +
L

2
‖λ‖2

2

}

.

Set
λk+1 = (λ

(1)
k+1, λ

(2)
k+1)

T = τkζk + (1 − τk)ηk,

where τk =
αk+1
∑k+1

i=0 αi
.

Set

x̂k =
1

∑k
i=0 αi

k∑

i=0

αix(λi) = (1 − τk−1)x̂k−1 + τk−1x(λk).

Set k = k + 1.
until |f(x̂k) + ϕ(ηk)| ≤ ε̃f , ‖A1x̂k − b1‖2 ≤ ε̃eq, ‖(A2x̂k − b2)+‖2 ≤ ε̃in;

Theorem 1. Let the assumptions listed in the Subsect. 2.3 hold and αi = i+1
2 ,

i ≥ 0 in Algorithm1. Then Algorithm1 stops after not more than

Nstop = max

⎧
⎨

⎩

⌈√
8L(R2

1 + R2
2)

ε̃f

⌉

,

⌈√
8L(R2

1 + R2
2)

R1ε̃eq

⌉

,

⎡

⎢
⎢
⎢

√
8L(R2

1 + R2
2)

R2ε̃in

⎤

⎥
⎥
⎥

⎫
⎬

⎭
−1
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iterations. Moreover, after not more than

N = max

⎧
⎨

⎩

⌈√
16L(R2

1 + R2
2)

εf

⌉

,

⌈√
8L(R2

1 + R2
2)

R1εeq

⌉

,

⎡

⎢
⎢
⎢

√
8L(R2

1 + R2
2)

R2εin

⎤

⎥
⎥
⎥

⎫
⎬

⎭
− 1

iterations of Algorithm 1, the point x̂N will be an approximate solution to Prob-
lem (P1) in the sense of (1).

Proof. From the complexity analysis of the FGM [14,20], one has

Ckϕ(ηk) ≤ min
λ∈Λ

{
k∑

i=0

αi (ϕ(λi) + 〈∇ϕ(λi), λ − λi〉) +
L

2
‖λ‖22

}

. (10)

Let us introduce a set

ΛR = {λ = (λ(1), λ(2))T : λ(2) ≥ 0, ‖λ(1)‖2 ≤ 2R1, ‖λ(2)‖2 ≤ 2R2},

where R1, R2 are given in (8). Then, from (10), we obtain

Ckϕ(ηk) ≤ min
λ∈Λ

{
k∑

i=0

αi (ϕ(λi) + 〈∇ϕ(λi), λ − λi〉) +
L

2
‖λ‖22

}

≤ min
λ∈ΛR

{
k∑

i=0

αi (ϕ(λi) + 〈∇ϕ(λi), λ − λi〉) +
L

2
‖λ‖22

}

≤ min
λ∈ΛR

{
k∑

i=0

αi (ϕ(λi) + 〈∇ϕ(λi), λ − λi〉)
}

+ 2L(R2
1 + R2

2). (11)

On the other hand, from the definition (2) of ϕ(λ), we have

ϕ(λi) = ϕ(λ(1)
i , λ

(2)
i ) = 〈λ(1)

i , b1〉 + 〈λ(2)
i , b2〉

+ max
x∈Q

(
−f(x) − 〈AT

1 λ
(1)
i + AT

2 λ
(2)
i , x〉

)

= 〈λ(1)
i , b1〉 + 〈λ(2)

i , b2〉 − f(x(λi)) − 〈AT
1 λ

(1)
i + AT

2 λ
(2)
i , x(λi)〉.

Combining this equality with (3), we obtain

ϕ(λi) − 〈∇ϕ(λi), λi〉 = ϕ(λ(1)
i , λ

(2)
i ) − 〈∇ϕ(λ(1)

i , λ
(2)
i ), (λ(1)

i , λ
(2)
i )T 〉

= 〈λ(1)
i , b1〉 + 〈λ(2)

i , b2〉 − f(x(λi)) − 〈AT
1 λ

(1)
i + AT

2 λ
(2)
i , x(λi)〉

− 〈b1 − A1x(λi), λ
(1)
i 〉 − 〈b2 − A2x(λi), λ

(2)
i 〉 = −f(x(λi)).
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Summing these inequalities from i = 0 to i = k with the weights {αi}i=1,...k, we
get, using the convexity of f(·),

k∑

i=0

αi (ϕ(λi) + 〈∇ϕ(λi), λ − λi〉)

= −
k∑

i=0

αif(x(λi)) +
k∑

i=0

αi〈(b1 − A1x(λi), b2 − A2x(λi))T , (λ(1), λ(2))T 〉

≤ −Ckf(x̂k) + Ck〈(b1 − A1x̂k, b2 − A2x̂k)T , (λ(1), λ(2))T 〉.

Substituting this inequality to (11), we obtain

Ckϕ(ηk) ≤ −Ckf(x̂k)

+ Ck min
λ∈ΛR

{
〈(b1 − A1x̂k, b2 − A2x̂k)T , (λ(1), λ(2))T 〉

}
+ 2L(R2

1 + R2
2).

Finally, since

max
λ∈ΛR

{
〈(−b1 + A1x̂k,−b2 + A2x̂k)T , (λ(1), λ(2))T 〉

}

= 2R1‖A1x̂k − b1‖2 + 2R2‖(A2x̂k − b2)+‖2,

we obtain

ϕ(ηk) + f(x̂k) + 2R1‖A1x̂k − b1‖2 + 2R2‖(A2x̂k − b2)+‖2 ≤ 2L(R2
1 + R2

2)
Ck

. (12)

Since λ∗ = (λ∗(1), λ∗(2))T is an optimal solution of Problem (D1), we have, for
any x ∈ Q,

Opt[P1] ≤ f(x) + 〈λ∗(1), A1x − b1〉 + 〈λ∗(2), A2x − b2〉.

Using the assumption (8) and that λ∗(2) ≥ 0, we get

f(x̂k) ≥ Opt[P1] − R1‖A1x̂k − b1‖2 − R2‖(A2x̂k − b2)+‖2. (13)

Hence,

ϕ(ηk) + f(x̂k) = ϕ(ηk) − Opt[P2] + Opt[P2] + Opt[P1] − Opt[P1] + f(x̂k)
(6)
=

= ϕ(ηk) − Opt[P2] − Opt[D1] + Opt[P1] − Opt[P1] + f(x̂k)
(7)

≥

≥ −Opt[P1] + f(x̂k)
(13)

≥ −R1‖A1x̂k − b1‖2 − R2‖(A2x̂k − b2)+‖2. (14)

This and (12) give

R1‖A1x̂k − b1‖2 + R2‖(A2x̂k − b2)+‖2 ≤ 2L(R2
1 + R2

2)
Ck

. (15)



Fast Primal-Dual Gradient Method for Strongly Convex Minimization 399

Hence, we obtain

ϕ(ηk) + f(x̂k)
(14),(15)

≥ −2L(R2
1 + R2

2)
Ck

. (16)

On the other hand, we have

ϕ(ηk) + f(x̂k)
(12)

≤ 2L(R2
1 + R2

2)
Ck

. (17)

Combining (15), (16), (17), we conclude

‖A1x̂k − b1‖2 ≤ 2L(R2
1 + R2

2)
CkR1

,

‖(A2x̂k − b2)+‖2 ≤ 2L(R2
1 + R2

2)
CkR2

,

|ϕ(ηk) + f(x̂k)| ≤ 2L(R2
1 + R2

2)
Ck

. (18)

As we know, for the chosen sequence αi = i+1
2 , i ≥ 0, it holds that Ck =

(k+1)(k+2)
4 ≥ (k+1)2

4 . Then, in accordance to (18), after given in the theorem
statement number Nstop of the iterations of Algorithm 1, the stopping criterion
is fulfilled and Algorithm 1 stops.

Now let us prove the second statement of the theorem. We have

ϕ(ηk) + Opt[P1] = ϕ(ηk) − Opt[P2] + Opt[P2] + Opt[P1]
(6)
=

= ϕ(ηk) − Opt[P2] − Opt[D1] + Opt[P1]
(7)

≥ 0.

Hence,
f(x̂k) − Opt[P1] ≤ f(x̂k) + ϕ(ηk). (19)

On the other hand,

f(x̂k) − Opt[P1]
(13)

≥ −R1‖A1x̂k − b1‖2 − R2‖(A2x̂k − b2)+‖2. (20)

Note that, since the point x̂k may not satisfy the equality and inequality con-
straints, one can not guarantee that f(x̂k) − Opt[P1] ≥ 0. From Equation (19),
(20), we can see that if we set ε̃f = εf , ε̃eq = min{ εf

2R1
, εeq}, ε̃in = min{ εf

2R2
, εin},

and run Algorithm 1 for N iterations, where N is given in the theorem state-
ment, we obtain that (1) fulfills and x̂N is an approximate solution to Problem
(P1) in the sense of (1). ��
We point that other authors [9,10,15–19] do not provide the complexity analysis
for their algorithms when the accuracy of the solution is defined by (1).
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4 Preliminary Numerical Experiments

To compare our algorithm with the existing algorithms, we choose the problem (9)
of regularized optimal transport [9], which is a special case of Problem (P1). The
first reason for this choice is that, despite insufficient theoretical analysis, the exist-
ing balancing-type methods for solving this class of problems are known to be very
efficient in practice [9] and provide a kind of benchmark for any new method. The
second reason is that ROT problem have recently become very popular in applica-
tion to image analysis based on Wasserstein spaces geometry [9,10].

Our numerical experiments were carried out on a PC with CPU Intel Core i5
(2.5 Hgz), 2 Gb of RAM using Matlab 2012 (8.0). We compare proposed in this
article Algorithm 1 (below we refer to it as FGM) with the following algorithms

– Applied to the dual problem (D1), Conjugate Gradient Method in the
Fletcher–Reeves form [21] with the stepsize chosen by one-dimensional mini-
mization. We refer to this algorithm as CGM.

– The algorithm proposed in [15] and based on the idea of Tikhonov’s regulariza-
tion of the dual problem (D1). In this approach the regularized dual problem
is solved by the Fast Gradient Method [14]. We will refer to this algorithm as
REG;

Fig. 1. Complexity of FGM, BAL and CGM as γ varies



Fast Primal-Dual Gradient Method for Strongly Convex Minimization 401

– Balancing method [9,12] which is a special type of a fixed-point-iteration
method for the system of the optimality conditions for ROT problem. It is
referred below as BAL.

The key parameters of the ROT problem in the experiments are as follows

– n := dim(E) = p2 – problem dimension, varies from 24 to 94;
– m1 := dim(H1) = 2

√
n and m2 = dim(H2) = 0 – dimensions of the vectors

b1 and b2 respectively;
– cij , i, j = 1, ..., p are chosen as squared Euclidean pairwise distance between

the points in a
√

p × √
p grid originated by a 2D image [9,10];

– a1 and a2 are random vectors in Sm1(1) and b1 = (a1, a2)T ;
– the regularization parameter γ varies from 0.001 to 1;
– the desired accuracy of the approximate solution in (1) is defined by its relative

counterpart εrel
f and εrel

g as follows

εf = εrel
f · f(x(λ0)) εeq = εrel

g · ‖A1x(λ0) − b1‖2,
where λ0 is the starting point of the algorithm. Note that εin = 0 since no
inequality constraints are present in ROT problems.

Figure 1 shows the number of iterations for the FGM, BAL and CGM meth-
ods depending on the inverse of the regularization parameter γ. The results for

Fig. 2. Complexity of FGM, BAL and CGM as the desired relative accuracy varies
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the REG are not plotted since this algorithm required one order of magnitude
more iterations than the other methods. In these experiment we chose n = 2401
and εrel

f = εrel
g = 0.01. One can see that the complexity of the FGM (i.e. pro-

posed Algorithm 1) depends nearly linearly on the value of 1/γ, and that this
complexity is smaller than that of the other methods when γ is small.

Figure 2 shows the number of iterations for the FGM, BAL and CGM meth-
ods depending on the relative error εrel. The results for the REG are not
plotted since this algorithm required one order of magnitude more iterations
than the other methods. In these experiment we chose n = 2401, γ = 0.1 and
εrel

f = εrel
g = εrel. One can see that in half of the cases the FGM (i.e. proposed

Algorithm 1) performs better or equally to the other methods.

5 Conclusion

This paper proposes a new primal-dual approach to solve a general class of
problems stated as Problem (P1). Unlike the existing methods, we managed to
provide the convergence rate for the proposed algorithm in terms of the pri-
mal objective residual |f(x̂k − Opt[P1]| and the linear constraints infeasibility
‖A1x̂k − b1‖2, ‖(A2x̂k − b2)+‖2. Our numerical experiments show that our algo-
rithm performs better than existing methods for problems of regularized optimal
transport, which are a special instance of Problem (P1) for which there exist effi-
cient algorithms.
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Abstract. We consider the problem of optimizing the sum of several
rational functions via reduction to a problem with d.c. constraints. We pro-
pose a method of finding a local solution to the fractional program which
can be subsequently used in the global search method based on the global
optimality conditions for a problem with nonconvex (d.c.) constraints [21–
23]. According to the theory, we construct explicit representations of the
constraints in the form of differences of two convex functions and perform
a local search method that takes into account the structure of the problem
in question. This algorithm was verified on a set of low-dimensional test
problems taken from literature as well as on randomly generated problems
with up to 200 variables and 200 terms in the sum.

Keywords: Nonconvex optimization · Rational optimization ·
d.c. representation · Local search · Linearized problems

1 Introduction

The fractional optimization is quite challenging and arises in various on a both
economic and non-economic applications, whenever one or several ratios are
required to be optimized. Let us mention a few examples mainly following the
surveys by Schaible [8,19,20], where numerous other applications can be found.
Numerators and denominators in ratios may represent cost, capital, profit, risk
or time, etc. Fractional programs is closely related to the associated multiple-
objective optimization problem, where a number of ratios are to be maximized
simultaneously. Thus, the objective function in a fractional program can be con-
sidered as a utility function expressing a compromise between the different objec-
tive functions of the multiple-objective problem. Other applications include a
multistage stochastic shipping problem [1,7], profit maximization under fixed
cost [4], various models in cluster analysis [17], multi-objective bond portfolio
[13], and queuing location problems [5].

As known, without assumptions, the sum-of-ratios program is NP-
complete [9]. Surveys on methods for solving this problem can be found in
[8,20,28,29]. According to the surveys, the majority of the methods make restric-
tive assumptions either on the concavity or linearity of the ratios. When the
c© Springer International Publishing Switzerland 2016
Y. Kochetov et al. (Eds.): DOOR 2016, LNCS 9869, pp. 404–417, 2016.
DOI: 10.1007/978-3-319-44914-2 32
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ratios are nonlinear, the most popular techniques are based on the Branch and
Bound approach, see e.g. [2,6].

We propose reducing a fractional problem to the optimization problem with
nonconvex constraints [10,23], as it was mentioned in [6], with a subsequent
application of the Global search theory for solving this class of nonconvex prob-
lems [21–23,25,26].

The outline of the paper is as follows. In Sect. 2 we substantiate the reduc-
tion of the sum-of-ratios fractional problem to the optimization problem with
nonconvex constraints. Then in Sect. 3 we recall the local search method from
[21], which implies linearization of the functions defining the basic non-convexity
of the problem with d.c. constraints in the current point. In Sect. 4 we show how
to explicitly represent the nonconvex functions, describing the constraints of the
problem in question, as differences of two convex functions (the d.c. representa-
tion). The final section offers computational testing of the local search method
on fractional program instances with a small number of variables and terms
in the sum. We use the examples found in the literature as well as randomly
generated problems of higher dimension.

2 Reduction to the Problem with Nonconvex Constraints

Now consider the following problem of the fractional optimization [3,20]

f(x) :=
m∑

i=1

ψi(x)
ϕi(x)

↓ min
x

, x ∈ S, (P0)

where ψi : IRn → IR, ϕi : IRn → IR, ϕi(x) > 0, ∀x ∈ S, i = 1, . . . ,m, and
S ⊂ IRn is a convex set.

Proposition 1. (i) Let the pair (x∗, α∗) ∈ IRn × IRm be a solution to the fol-
lowing problem:

m∑

i=1

αi ↓ min
(x,α)

, x ∈ S,
ψi(x)
ϕi(x)

= αi, i = 1, . . . ,m. (P1)

Then x∗ is the solution to Problem (P0) and f(x∗) =
m∑

i=1

α∗i.

(ii) Conversely, if x∗ is the solution to Problem (P0) (x∗ ∈ Sol(P0)), then

the vector α∗ = (α∗1, . . . , α∗m)T ∈ IRm defined as α∗i =
ψi(x∗)
ϕi(x∗)

, i = 1, . . . , m,

is part of the solution (x∗, α∗) to Problem (P1).

Proof. (i) Let (x∗, α∗) ∈ Sol(P1), i.e. α∗i =
ψi(x∗)
ϕi(x∗)

, i = 1, . . . ,m, x∗ ∈ S, and
m∑

i=1

α∗i ≤
m∑

i=1

αi for all αi : ∃x ∈ S,
ψi(x)
ϕi(x)

= αi, i = 1, . . . , m,

f(x∗) =
m∑

i=1

ψi(x∗)
ϕi(x∗)

=
m∑

i=1

α∗i ≤
m∑

i=1

αi =
m∑

i=1

ψi(x)
ϕi(x)

= f(x) ∀x ∈ S.
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Therefore, x∗ is the solution to Problem (P0).
(ii) Now let x∗ ∈ Sol(P0). Then

f(x∗) =
m∑

i=1

ψi(x∗)
ϕi(x∗)

≤
m∑

i=1

ψi(x)
ϕi(x)

= f(x) ∀x ∈ S. (1)

Define α∗i :=
ψi(x∗)
ϕi(x∗)

, i = 1, . . . ,m, and consider the set

Dα =
{

α ∈ IRm : ∃x ∈ S, αi =
ψi(x)
ϕi(x)

}

.

Then (1) implies
m∑

i=1

α∗i = f(x∗) ≤ f(x) =
m∑

i=1

αi ∀α ∈ Dα, ∀x ∈ S. Therefore

x∗ ∈ Sol(P0). 	

Proposition 2. Let the pair (x∗, α∗) ∈ IRn × IRm be a solution to the following
problem:

m∑

i=1

αi ↓ min
(x,α)

, x ∈ S,
ψi(x)
ϕi(x)

≤ αi, i = 1, . . . , m. (P2)

Then
ψi(x∗)
ϕi(x∗)

= α∗i, i = 1, . . . ,m. (2)

Proof. Let (x∗, α∗) ∈ Sol(P2). Suppose that

∃j ∈ {1, 2, . . . ,m} :
ψj(x∗)
ϕj(x∗)

< α∗j , (3)

and construct α̂ : α̂i = α∗i ∀i �= j, α̂j =
ψj(x∗)
ϕj(x∗)

. It can be readily seen that

(x∗, α̂) is a feasible pair to Problem (P2). The assumption (3) implies
m∑

i=1

α∗i =
∑

i�=j

α∗i + α∗j >

m∑

i=1

α̂i.

It means that in Problem (P2) the pair (x∗, α̂) is better than the pair (x∗, α∗),
so, (x∗, α∗) /∈ Sol(P2). This contradiction proves the equality (2). 	

Corollary 1. Any solution (x∗, α∗) ∈ IRn × IRm to Problem (P2) will be a
solution to Problem (P1), and, therefore, will be a solution to Problem (P0).

Remark 1. The inequality constraints in Problem (P2) can be replaced by equiv-
alent constraints ψi(x) − αiϕi(x) ≤ 0, i = 1, . . . , m, since ϕi(x) > 0 ∀x ∈ S. It
leads us to the following problem with m nonconvex constraints:

m∑

i=1

αi ↓ min
(x,α)

, x ∈ S, ψi(x) − αiϕi(x) ≤ 0, i = 1, . . . , m. (P)
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It is easy to see that Problem (P) is a global optimization problem with the
nonconvex feasible set (see, e.g., [10,23]), and we can apply the Global Search
Theory for solving this class of nonconvex problems [21–23,25,26]. The The-
ory allows one to construct an algorithm for solving problems with nonconvex
constraints. The algorithm contains two principal stages: (a) local search, which
provides an approximately critical point; (b) procedures of escaping from critical
points.

In the next section, we shall consider a local search method.

3 Local Search for Problem with D.C. Constraints

The local search methods (LSMs) play an important role in searching for the
global solution to nonconvex problems, since it provides the so-called critical
(stationary) points that might be considerably be better than a simple feasible
point. Moreover, if a starting point occurs rather close to the global solution,
then the LSMs can provide the global solution.

In order to find a local solution to Problem (P), we apply a special LSM [21].
Let us consider the following problem with d.c. constraints:

f0(x) ↓ min
x

, x ∈ S,

fi(x) := gi(x) − hi(x) ≤ 0, i ∈ I � {1, . . . , m},

}

(4)

where the functions f0 and gi, hi, i ∈ I, as well as the set S ⊂ IRn, are convex.
Further, suppose that the feasible set D := {x ∈ S | fi(x) ≤ 0, i ∈ I } of the
problem (4) is not empty and the optimal value V (4) := inf

x
{f0(x) | x ∈ D} of

the problem (4) is finite: V (4) > −∞.
Furthermore, assume that a feasible starting point x0 ∈ D is given and,

in addition, after several iterations it has derived the current iterate xs ∈ D,
s ∈ Z+ = {0, 1, 2, . . .}.

In order to propose a local search method for the problem (4), apply a clas-
sical idea of linearization with respect to the basic nonconvexity of the problem
(i.e. with respect to hi(·), i ∈ I) at the point xs [21]. Thus, we obtain the
following linearized problem:

f0(x) ↓ min
x

, x ∈ S,

ϕis(x) := gi(x) − 〈∇hi(xs), x − xs〉 − hi(xs) ≤ 0, i ∈ I.

}

(PLs)

Suppose the point xs+1 is provided by solving Problem (PLs), so that

xs+1 ∈ Ds = {x ∈ S | gi(x) − 〈∇hi(xs), x − xs〉 − hi(xs) ≤ 0, i ∈ I}

and inequality f0(xs+1) ≤ V(PLs) + δs holds. Here V(PLs) is the optimal value
to Problem (PLs):

Vs := V(PLs) � inf
x

{f0(x) | x ∈ S, ϕis(x) ≤ 0, i ∈ I},
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and the sequence {δs} satisfies the following condition functions
∞∑

s=0
δs < +∞.

It can be easily seen that Ds ⊂ D, so xs+1 turns out to be feasible in the
problem (4). Actually, since the functions hi(·), i ∈ I are convex, the following
inequalities hold

0 ≥ gi(xs+1) − 〈h′
i(x

s), xs+1 − xs〉 − hi(xs) = ϕis(xs+1) ≥
≥ gi(xs+1) − hi(xs+1) = fi(xs+1), i ∈ I.

Therefore, the LSM generates the sequence {xs}, xs ∈ Ds, s = 0, 1, 2, . . ., of
solutions to Problems (PLs). As it was proven in [21], the cluster point x∗ ∈ D∗
of the sequence {xs} is a solution to the linearized Problem (PL∗) (which is
Problem (PLs) with xs instead of x∗), and x∗ can be called the critical point
with respect to the LSM. Thus, the algorithm constructed in this way provides
critical points by employing suitable convex optimization methods [15] for any
given accuracy τ . The following inequality:

f0(xs) − f0(xs+1) ≤ τ

2
, δs ≤ τ

2
,

can be chosen as a stopping criterion for the LSM [21].
In order to implement the LSM, we need an explicit d.c. representation of

fi(·), i.e. fi(·) = gi(·) − hi(·), i ∈ I.

4 D.C. Representation of the Constraints

The first stage of any algorithm developed according the Global search theory
is the decomposition of a nonconvex function as a difference of two convex func-
tions. Such decomposition is constructing in several different ways depending on
the functions ψi(·) and ϕi(·).

4.1 Affine Functions

Let the functions ψi(·) and ϕi(·) be constructed by means of the vectors
ai, ci ∈ IRn, and numbers bi, di ∈ IR,

ψi(x) = 〈ai, x〉 + bi, ϕi(x) = 〈ci, x〉 + di > 0, i ∈ I.

In this case, the basic nonconvexity of Problem (P) is the bilinear term
αiϕi(x) = 〈αic

i, x〉 + αidi in each constraint (i ∈ I). Then, the bilinear func-
tion can be represented as a difference of two convex functions in the following
way [27]:

〈αic
i, x〉 =

1
4

‖ αic
i + x ‖2 −1

4
‖ αic

i − x ‖2, i ∈ I. (5)

Hence, the functions fi(·) have the form fi(x, αi) = gi(x, αi) − hi(x, αi), where

gi(x, αi) =
1
4

‖ αic
i − x ‖2 −αidi + 〈ai, x〉 + bi,

hi(x, αi) =
1
4

‖ αic
i + x ‖2 .

(6)
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Taking into account the d.c. representation (6), the linearized Problem (PLs)
has the following form

m∑

i=1

αi ↓ min
(x,α)

, x ∈ S,

1
4

‖ αic
i − x ‖2 +〈ai, x〉 − αidi〈∇hi(xs, αs

i ), (x, αi)〉 + Cis ≤ 0, i ∈ I,

⎫
⎪⎬

⎪⎭
(7)

where Cis = bi + 〈∇hi(xs, αs
i ), (x

s, αs
i )〉 − 1

4
‖ αs

i c
i + xs ‖2,

∇hi(xs, αs
i ) = (∇hix,∇hiα)T ,

∇hix =
1
2
(αs

i c
i + xs), ∇hiα =

1
2
(αs

i ‖ ci ‖2 +〈ci, xs〉). (8)

The problem (7) is a convex optimization problem and it can be solved by
an appropriate convex optimization method [15] at a given accuracy: δs > 0,
s = 0, 1, . . ..

Further, we will consider Problem (P) where ψi(·) are convex quadratic func-
tions and ϕi(·) are affine functions, i ∈ I.

4.2 Quadratic/Affine Functions

Suppose we are given symmetric positive definite matrices Ai (n × n), vectors
pi, ci ∈ IRn, and scalars qi, di ∈ IR,

ψi(x) = 〈x,Aix〉 + 〈pi, x〉 + qi, ϕi(x) = 〈ci, x〉 + di > 0, i ∈ I.

As has been done in Subsect. 4.1, we represent the bilinear term αiϕi(x) as
the difference of two convex functions, which yields us the d.c. representations
fi(x, αi) = gi(x, αi) − hi(x, αi), i ∈ I, where

gi(x, αi) = 〈x,Aix〉 + 〈pi, x〉 + qi +
1
4

‖ αic
i − x ‖2 −αidi,

hi(x, αi) =
1
4

‖ αic
i + x ‖2 .

(9)

Taking into account the d.c. representation (9), the linearized Problem (PLs)
takes the following form

m∑

i=1

αi ↓ min
(x,α)

, x ∈ S,

〈x,Aix〉 + 〈pi, x〉 +
1
4

‖ αic
i − x ‖2−αidi

−〈∇hi(xs, αs
i ), (x, αi)〉 + Cis ≤ 0, i ∈ I,

⎫
⎪⎪⎪⎬

⎪⎪⎪⎭

(10)

where the gradient ∇hi(xs, αs
i ) is calculated by the formula (8), and

Cis = qi + 〈∇hi(xs, αs
i ), (x

s, αs
i )〉 − 1

4
‖ αs

i c
i + xs ‖2.

The problem (10), as well as (7), can be solved by a suitable convex opti-
mization method [15].
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Remark 2. If the symmetric matrices Ai in the quadratic functions ψi(·) are
indefinite, then one can represent Ai as the difference of two symmetric positive
definite matrices Ai = Ai

1−Ai
2, Ai

1, A
i
2 > 0, using, for example, a simple method

from [24]. Afterwards, it is possible to construct functions gi(·) and hi(·) as
follows: for all i ∈ I add the convex part with the matrix Ai

1 to the function gi(·)
and the nonconvex part with the matrix Ai

2 to hi(·).
In what follows, we will examine the case where ψi(·) and ϕi(·) are convex

quadratic functions, i ∈ I.

4.3 Quadratic Functions

Now let us consider the following functions:

ψi(x) = 〈x,Aix〉 + 〈pi, x〉 + qi, ϕi(x) = 〈x,Bix〉 + 〈ci, x〉 + di > 0,

Ai and Bi are positive definite (n × n) matrices, pi, ci ∈ IRn, qi, di ∈ IR, i ∈ I.
Therefore, Problem (P) has the following term

αiϕi(x) = αi〈x,Bix〉 + αi〈ci, x〉 + αidi, (11)

which generate nonconvexity in every constraint (i ∈ I).
The term αi〈ci, x〉 in (11) can be presented in the d.c. form by the formula (5).
Further, let us denote ri := 〈x,Bix〉. Then, the product αiui can be expressed

by formula (5) as follows

αiri =
1
4
(αi + ri)2 − 1

4
(αi − ri)2

=
1
4

(
αi + 〈x,Bix〉)2 − 1

4
(
αi − 〈x,Bix〉)2 , i ∈ I.

If Bi, i ∈ I, are positive definite matrices and the following conditions hold

αi + 〈x,Bix〉 ≥ 0, αi − 〈x,Bix〉 ≥ 0 ∀x ∈ S, i ∈ I, (12)

then

gi(x, αi) =
1
4

(
αi − 〈x,Bix〉)2 +

1
4

‖ αic
i − x ‖2 −αidi + ψi(x),

hi(x, αi) =
1
4

(
αi + 〈x,Bix〉)2 +

1
4

‖ αic
i + x ‖2

are convex functions. Hence, we obtain the following d.c. representation:

fi(x, αi) = gi(x, αi) − hi(x, αi), i ∈ I, (13)

and the following linearized Problem (PLs)

m∑

i=1

αi ↓ min
(x,α)

, x ∈ S,

〈x,Aix〉 + 〈pi, x〉 +
1
4

(
αi − 〈x,Bix〉)2 +

1
4

‖ αic
i − x ‖2 −αidi

−〈∇hi(xs, αs
i ), (x, αi)〉 + Cis ≤ 0, i ∈ I,

⎫
⎪⎪⎪⎬

⎪⎪⎪⎭

(14)
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where Cis = qi +〈∇hi(xs, αs
i ), (x

s, αs
i )〉−

1
4

(
αs

i + 〈xs, Bixs〉)2− 1
4

‖ αs
i c

i +xs ‖2,
∇hi(xs, αs

i ) = (∇hix,∇hiα)T is the gradient of the function h(·):

∇hix =
(
αs

i + 〈xs, Bixs〉) Bixs +
1
2
(αs

i c
i + xs),

∇hiα =
1
2

(
αs

i + 〈xs, Bixs〉) +
1
2

(
αs

i ‖ ci ‖2 +〈ci, xs〉) .

If the conditions (12) are not satisfied, one can construct the d.c. represen-

tation (13) by decomposition of the trilinear term αi〈x,Bix〉 =
n∑

l=1

n∑

j=1

bi
ljxlxjαi

using the following equality holding for the product of three variables (for exam-
ple, u, v, w):

uvw =
1
8
ĝ(u, v, w) − 1

8
ĥ(u, v, w),

ĝ(u, v, w) = ((u + v)2 + (1 + w)2)2 + (1 + w)4 + (u2 + w2)2

+(v2 + w2)2 + 2(u2 + v2),

ĥ(u, v, w) = w4 + ((u + v)2 + w2)2 + (u2 + (1 + w)2)2

+(v2 + (1 + w)2)2 + 2(u + v)2.

Therefore, we get (13), where

gi(x, αi) = ψi(x) +
1
4

‖ αic
i − x ‖2 −αidi +

1
8

n∑

l=1

n∑

j=1

bi
lj ĝ(xl, xj , αi),

hi(x, αi) =
1
4

‖ αic
i + x ‖2 +

1
8

n∑

l=1

n∑

j=1

bi
lj ĥ(xl, xj , αi).

Obviously, in this case the linearized Problem (PLs) is the problem of mini-
mization of the linear function over the convex feasible set given by more com-
plicated nonlinear functions ϕik(x, αi) in comparison with the problems (7), (10)
or even (14). At the same time, the linearized problems are convex, and therefore
can be solved by a suitable convex optimization method [15].

Remark 3. If the symmetric matrices Ai and Bi in the functions ψi(·) and ϕi(·),
respectively, are indefinite, then this case is already described above in Remark 2.

5 Computational Simulations

The algorithm of the local search method (LSM) from Sect. 3 was coded in
C++ language and was tested with various starting points. All computational
experiments were performed on the Intel Core i7-4790K CPU 4.0 GHz.
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At each iteration of the LSM, the convex Problem (PLs) was solved by
the software package IBM ILOG CPLEX 12.6.2 [11]. The accuracy of the LSM
was τ = 10−6. The accuracy of the solution to the linearized problems (PLs)
increased during the LSM. Thus, we solved (PLs) at a low accuracy at the first
steps; further, the accuracy δs was gradually improved (δs ↓ 0), i.e., δ0 = 0.1,
δs+1 = 0.5δs, until the condition δs ≤ τ

2 was fulfilled with a given accuracy
τ > 0.

At the first stage, we numerically solved several instances of fractional pro-
gramming problems from [2,3,7,14,16,18] with a small number of variables.

5.1 Low-Dimensional Fractional Program with Affine Functions

Tables 1 and 2 represent the results of the computational testing of the LSM and
employ the following designations:

name is the name of the test example;
n is the number of variables (problem’s dimension);
m is the number of terms in the sum;

Table 1. Low-dimensional fractional program. Minimization.

name n m f0(x0) f0(z) it Time x0 z

Prob3 [18] 2 1 0.400 0.333 6 0.01 (1.000; 0.000) (0.000; 0.000)

0.750 0.333 7 0.01 (1.000; 1.000) (0.000; 0.000)

1.000 0.333 6 0.01 (0.000; 1.000) (0.000; 0.000)

0.333 0.333 1 0.00 (0.000; 0.000) (0.000; 0.000)

4.500 4.500 1 0.00 (2.000; 1.000) (2.000; 1.000)

Prob5 [18] 2 2 4.156 4.500 5 0.01 (2.250; 1.250) (2.000; 1.000)

6.500 4.500 7 0.01 (1.000; 4.000) (2.000; 1.000)

5.000 4.500 5 0.01 (1.000; 1.000) (2.000; 1.000)

1.733 1.623 12 0.02 (0.000; 0.000) (0.000; 0.284)

Prob3 [7] 2 2 2.758 1.623 11 0.02 (0.750; 0.750) (0.000; 0.284)

2.400 1.623 14 0.02 (0.500; 1.000) (0.000; 0.284)

4.250 1.623 18 0.02 (0.000; 1.000) (0.000; 0.284)

2.830 2.830 1 0.00 (1.500; 1.500) (1.500; 1.500)

Prob3 [14] 2 2 3.524 2.830 6 0.01 (3.000; 4.000) (1.500; 1.500)

3.129 2.830 5 0.01 (2.000; 2.333) (1.500; 1.500)

3.070 3.000 4 0.01 (0.314; 0.842; 0.427) (0.437; 0.000; 0.000)

Prob6 [14] 3 3 3.035 3.000 3 0.01 (0.900; 0.000; 0.633) (0.952; 0.000; 0.000)

3.000 3.000 1 0.00 (1.100; 0.000; 0.000) (1.098; 0.000; 0.000)

2.895 2.889 4 0.01 (0.000; 0.000; 2.000) (0.513; 0.000; 1.795)

Prob7 [14] 3 3 2.890 2.889 3 0.01 (0.431; 0.000; 1.828) (0.513; 0.000; 1.795)

3.000 2.889 4 0.01 (0.000; 1.111; 0.000) (0.513; 0.000; 1.795)
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Table 2. Low-dimensional fractional program. Maximization.

name n m f0(x0) f0(z) it Time x0 z

Prob1 [18] 2 1 1.500 3.714 31 0.04 (0.000; 2.500) (30.000; 0.000)

2.000 3.714 31 0.04 (0.000; 0.000) (30.000; 0.000)

2.143 3.714 25 0.03 (9.000; 7.000) (30.000; 0.000)

Prob6 [2] 2 2 4.500 5.000 6 0.01 (2.000; 1.000) (1.000; 1.000)

4.156 5.000 7 0.01 (2.250; 1.250) (1.000; 1.000)

6.500 6.500 1 0.00 (1.000; 4.000) (1.000; 4.000)

5.000 5.000 1 0.00 (1.000; 1.000) (1.000; 1.000)

Prob1 [7] 2 2 4.913 5.000 30 0.04 (1.500; 1.500) (3.000; 4.000)

5.000 5.000 1 0.00 (3.000; 4.000) (3.000; 4.000)

4.946 5.000 11 0.02 (2.000; 2.333) (3.000; 4.000)

Prob2 [7] 3 2 1.348 2.471 6 0.01 (1.003; 0.731; 1.184) (1.000; 0.000; 0.000)

1.879 2.471 6 0.01 (1.500; 0.000; 0.500) (1.000; 0.000; 0.000)

2.471 2.471 1 0.00 (1.000; 0.000; 0.000) (1.000; 0.000; 0.000)

2.107 2.471 5 0.01 (0.750; 0.000; 0.250) (1.000; 0.000; 0.000)

Prob1 [16] 3 3 2.988 3.003 30 0.05 (0.414; 1.954; 0.000) (0.000; 3.333; 0.000)

3.003 3.003 1 0.00 (0.000; 3.333; 0.000) (0.000; 3.333; 0.000)

2.947 3.000 4 0.01 (0.512; 0.000; 0.610) (0.000; 0.082; 0.000)

2.963 3.000 4 0.01 (1.000; 0.000; 0.000) (0.000; 0.114; 0.000)

Prob2 [16] 3 4 3.967 4.091 5 0.01 (0.000; 0.000; 2.000) (1.111; 0.000; 0.000)

4.000 4.091 4 0.01 (0.000; 0.000; 0.000) (1.111; 0.000; 0.000)

4.091 4.091 1 0.00 (1.111; 0.000; 0.000) (1.111; 0.000; 0.000)

3.868 4.091 5 0.01 (0.000; 0.625; 1.875) (1.111; 0.000; 0.000)

f0(x0) is the value of the goal function to Problem (P) at the starting point;
f0(z) is the value of the function at the critical point provided by the LSM;
it is the number of linearized problems solved (iterations of the LSM);
Time stands for the CPU time of computing (seconds);
x0 stands for the starting point chosen in the test problem;
z is the critical point provided by the LSM.

Note that in the problems “Prob6 [2]” and “Prob1 [16]” in Table 2, local
solutions derived by the LSM are not global (shown in bold).

Known global solutions to all problem instances were found just by the local
search that confirms the computational effectiveness of the LSM. All test prob-
lems were successfully solved.

Further, we study if the LSM performance is affected by the increase in
dimension of the variable x and the number of terms in the sum.



414 T. Gruzdeva and A. Strekalovsky

5.2 Randomly Generated Problems with Affine and Quadratic
Functions

In this subsection, we will report computational results of testing the LSM on
randomly generated problems of the form

f0(x) :=
m∑

i=1

〈ai, x〉 + bi

〈ci, x〉 + di
↑ max

x
, 〈Ā, x〉 ≤ b̄, x ≥ 0. (15)

Data ai
j , ci

j , Ālj ∈ [0, 10] were uniformly random numbers, bi = di = 10,

b̄l = 10, i = 1, . . . , m, j = 1, . . . , n, l = 1, . . . , L.
Results of the computational testing of the LSM on fractional problems (15)

up to 100 variables and 100 terms in the sum are listed in Table 3. The denota-
tions in Table 3 are the same as in Tables 1 and 2.

Table 3. Randomly generated problems (15) with affine functions

n m f0(x0) f0(z) it Time

5 5 5.000000 5.659817 14 0.02

5 10 10.000000 11.399243 15 0.03

5 50 50.000000 56.107594 16 0.08

5 100 100.000000 106.644654 19 0.16

10 5 5.000000 5.560987 27 0.06

10 10 10.000000 12.368279 18 0.05

10 50 50.000000 57.873668 27 0.20

10 100 100.000000 106.665004 89 1.27

50 5 5.000000 7.286323 85 1.83

50 10 10.000000 12.572450 282 13.63

50 50 50.000000 58.460209 158 22.65

50 100 100.000000 109.059418 224 24.12

100 5 5.000000 6.809288 265 17.05

100 10 10.000000 13.774653 251 42.11

100 50 50.000000 56.692829 340 64.94

100 100 100.000000 109.858345 589 209.59

Moreover, we have carried out testing of the LSM on fractional problems with
quadratic functions in the numerators of ratios. We generated the problems from
[12] up to 200 variables and 200 terms in the sum:

f0(x) :=
m∑

i=1

1
2 〈x,Aix〉 + 〈pi, x〉

〈ci, x〉 ↓ min
x

, 〈Ā, x〉 ≤ b̄, x ∈ [1, 5]n, (16)
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Table 4. Randomly generated problems (16) with quadratic functions

n m f0(x0) f0(z) it Time

10 5 17.747630 15.607047 14 0.04

10 10 37.690672 35.242307 16 0.08

10 50 165.797927 155.938010 44 0.62

10 100 312.867828 296.561267 130 3.35

10 200 616.334973 601.908457 202 10.80

50 5 17.940091 15.460443 15 0.46

50 10 35.338013 30.663274 15 0.91

50 50 158.226948 151.224157 35 5.28

50 100 306.427872 297.535557 50 15.13

50 200 607.096322 589.882128 141 92.93

100 5 18.943321 15.771841 16 1.57

100 10 33.902949 29.500002 17 4.46

100 50 156.222645 148.923647 25 15.40

100 100 305.948925 296.692149 49 61.85

100 200 608.664712 591.959402 104 263.58

200 5 19.018280 15.512586 17 8.04

200 10 34.139152 29.172948 16 22.70

200 50 155.645907 146.144178 19 44.37

200 100 306.462441 295.558108 39 188.26

200 200 603.988798 587.865367 69 701.85

where Ai = UiD
iUT

i , Ui = Q1Q2Q3, i = 1, . . . ,m, Qj = I−2 wjwT
j

‖wj‖2 , j = 1, 2, 3
and w1 = −i + rand(n, 1), w2 = −2i + rand(n, 1), w3 = −3i + rand(n, 1),
Di = rand(n, n), ci = i − i · rand(n, 1), pi = i + i · rand(n, 1), i = 1, . . . , m,
Ā = −1 + 2 · rand(5, n), b̄ = 2 + 3 · rand(5, 1) [12]. (We denote by rand(k1, k2)
the random matrix with k1 rows, k2 columns and elements generated randomly
on [0, 1].)

As it is shown in Table 4, the number of iteration (it) of the LSM is almost
independent of the number of variables (n) but approximately proportional to
the number of terms in the sum (m). The run-time increased proportionally to
n and m.

Computational simulations confirm the efficiency of the LSM developed, the
performance of which naturally depends on the choice of the method or the
software package (IBM ILOG CPLEX) employed to solve auxiliary problems.

Thus, LSM can be applied in future implementations of the global search
algorithm for solving the sum of ratios fractional problems via problems with
d.c. constraints.



416 T. Gruzdeva and A. Strekalovsky

6 Conclusions

In this paper, we considered the fractional programming problem as an opti-
mization problem with d.c. constraints. To this end, we carried out the explicit
representation of nonconvex functions as differences of two convex functions and
applied the local search algorithm based on linearization of the functions defining
the basic non-convexity of the problem under study.

We investigated the effectiveness of the local search method for solving prob-
lems with d.c. constraints that generate the nonconvexity of the feasible set.

The numerical experiments demonstrated that the local search algorithm can
globally solve low-dimensional sum-of-ratios test problems. Moreover, the local
search algorithm developed in this paper turned out to be rather efficient at
finding critical points in randomly generated fractional programming problems
of high dimension.

Therefore, the method developed can be applied within the global search
procedures for fractional programming problems.

Acknowledgments. This work has been supported by the Russian Science Founda-
tion, Project N 15-11-20015.
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Abstract. We suggest a partial linearization method for network equi-
librium problems with elastic demands, which can be set-valued in gen-
eral. The main element of this method is a partially linearized auxiliary
problem. We propose a simple solution method for the auxiliary problem,
which is based on optimality conditions. This method can be viewed as
alternative to the conditional gradient method for the single-valued case.
Some results of preliminary calculations which confirm efficiency of the
new method are also presented.

Keywords: Network equilibrium problem · Elastic demand · Set-valued
demand · Partial linearization

1 Introduction

The partial linearization approach for optimization problems was proposed in
[1,2] and developed in [3] for variational inequalities. This approach has advan-
tages when the feasible set of the considered problem has a relatively simple
structure and the objective function can be decomposed into two parts, one of
them is suitable for linearization, and the other is sufficiently simple. Then the
use of specific properties of a problem makes it possible to suggest more efficient
solution methods (see [1]–[3]).

In the present paper, we apply the partial linearization approach to the net-
work equilibrium problem with set-valued elastic demand. We formulate a par-
tially linearized auxiliary problem and propose a simple solution method based
on the optimality conditions of the initial problem. This method can be consid-
ered as alternative to the conditional gradient method for the single-valued case.
Results of preliminary calculations confirm usefulness of the partial linearization
method.

Let us first remind partial linearization and conditional gradient methods in
the general case.
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2 Preliminaries

We consider the following optimization problem

min
x∈D

−→ μ(x), (1)

where the objective function μ : Rn → R is the sum of two functions μ(x) =
f(x) + h(x), f : Rn → R, h : Rn → R, the first of them f is smooth and the
second one h is convex, and the feasible domain D is a convex closed set in Rn.

Let us describe the partial linearization method for problem (1). Let at the
kth iteration, k = 0, 1, . . . , we have a point xk ∈ D. Define zk ∈ D as a solution
to the auxiliary problem

min
x∈D

−→ {〈f ′(xk), z〉 + h(z)
}

,

set dk = zk − xk and define the next iterate xk+1 = xk + λkdk, where the
step λk ∈ [0, 1] can be found as a solution of the one-dimensional minimization
problem

min
λ∈[0,1]

−→ μ(xk + λdk) .

If h is smooth, we can also use the inexact linesearch approach instead of the
exact search. Find the smallest nonnegative number n that it holds

μ(xk + δndk) − μ(xk) ≤ βδn〈μ′(xk), dk〉,

where δ ∈ (0, 1), β ∈ (0, 1) are given parameters. Define the next iterate xk+1 =
xk + λdk, where λ = δn.

The above-stated methods converge to a stationary point of the problem
provided that the feasible set D is bounded [2].

Another variant of partial linearization is possible under the assumption of
strong convexity of the function h. Then the point zk is uniquely defined, the
lower level sets of the function μ are compact, problem (1) has a unique solution,
and the descent method converges to a stationary point.

We also recall the general scheme of the conditional gradient method, which
was originally proposed by M.Frank and Ph.Wolfe in [4] for the quadratic pro-
gramming problems and developed in [5]. Let f : Rn → R be a smooth function,
D be a convex closed bounded set in Rn. We consider the following constrained
optimization problem

min
x∈D

−→ f(x) (2)

and the corresponding linearized problem

min
y∈D

−→ 〈f ′(x), y〉. (3)

Under the given assumptions, both problems (2), (3) have solutions, they are
nonunique in general. We denote by Z(x) the set of solutions to problem (3).
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At the kth iteration of method, k = 0, 1, . . . , we have a point xk ∈ D. If
xk ∈ Z(xk), problem (2) is solved and xk is its exact solution. Otherwise we find
a point zk ∈ Z(xk) as a solution of problem (3) with x = xk. Then we construct
the descent direction dk = zk − xk and solve the one-dimensional optimization
problem

min
λ∈[0,1]

−→ f(xk + λdk). (4)

using a suitable linesearch. We set xk+1 = xk + λkdk, where λk is a solution to
problem (4). The inexact linesearch approach can also be used.

We will apply the above-stated methods to the network equilibrium problem
with elastic (variable) demand. In the next section, we give a description of this
problem.

3 Network Equilibrium Problem with Elastic Demand

Let us formulate the network equilibrium problem with elastic demand (see, for
example, [6–8]).

Let V be a set of network nodes. Some (or all) nodes are connected by directed
arcs. We denote the set of arcs by A. Let a set of origin-destination (O/D) pairs
M ⊆ V ×V be given. We denote by ym a nonnegative variable demand (bid) for
each pair m ∈ M. We assume this demand is bounded from above, ym ≤ γm,
γm > 0 for all m ∈ M. For each O/D pair m ∈ M we have a set Pm of simple
directed paths joining m, the correspondence of paths and arcs are given by the
incidence matrix A with elements

αpa =

{
1 if arc a belongs to path p,

0 otherwise.

Let xp denotes a variable flow value on the path p, for all p ∈ Pm,m ∈ M.
The feasible set of problem has the form:

W =

⎧
⎨

⎩
(x, y)

∣
∣
∣
∣
∣
∣

∑

p∈Pm

xp = ym, xp ≥ 0, 0 ≤ ym ≤ γm, p ∈ Pm,m ∈ M
⎫
⎬

⎭
. (5)

Then the values of arc flows, a ∈ A, are defined as follows:

fa =
∑

m∈M

∑

p∈Pm

αpaxp. (6)

Let for each arc a a continuous cost function Ca be known, depending on the
flow fa. Then the summary cost for the path p has the form:

Gp(x) =
∑

a∈A
αpaCa(fa) .

We note that in this case the mapping G is potential. In the general case, when
the functions Ca may depend on all arcs flows, this assertion is not true.
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For each O/D pair m ∈ M we have a so-called disutility function τm, depend-
ing on the demand value ym, which is supposed to be continuous.

For finding an equilibrium state of this network, one can solve the following
variational inequality (VI for short): Find a vector (x∗, y∗) ∈ W such that

〈G(x∗), x − x∗〉 − 〈τ(y∗), y − y∗〉 ≥ 0 ∀(x, y) ∈ W, (7)

where the feasible set W is defined in (5), the vectors G and τ are composed of
components Gp, τm, respectively, p ∈ Pm,m ∈ M.

Under the above assumptions, problem (7) has a solution.
In paper [9], it was shown that the above network equilibrium problem can

be treated as a two-side multicommodity auction equilibrium problem. The opti-
mality conditions for the network equilibrium problem with elastic demand have
the form stated below.

A point (x∗, y∗) ∈ W constitutes network equilibrium, if for each m ∈ M
there exists a number λm such that

Gp(x∗)

{
≥ λm if x∗

p = 0,

= λm if x∗
p > 0,

∀p ∈ Pm, (8)

τm(y∗)

⎧
⎪⎨

⎪⎩

≤ λm if y∗
m = 0,

= λm if y∗
m ∈ (0, γm),

≥ λm if y∗
m = γm.

(9)

For each point (x∗, y∗) ∈ W conditions (8)–(9) are equivalent to (7). We
note that due to the separability and continuity of functions Ca and τm they are
integrable, i.e., there exist functions

μa(fa) =

fa∫

0

Ca(t)dt ∀a ∈ A ,

σm(ym) =

ym∫

0

τm(t)dt ∀m ∈ M .

Therefore we can say that VI (7) also gives an optimality condition of the
following optimization problem:

min
(x,y)∈W

−→
{

∑

a∈A
μa(fa) −

∑

m∈M
σm(ym)

}

, (10)

where fa,∀a ∈ A are defined in (6).
Hence, each solution to optimization problem (10) is a solution to VI (7), the

reverse assertion is true if for instance the vectors G and −τ in (7) are monotone.
Now we assume that all the functions −σm in (10) are convex, but can be non-

smooth. Hence for each m ∈ M there exists the subdifferential Tm = −∂(−σm)
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and instead of functions τm we have mappings Tm : R → Π(R), ∀m ∈ M. There-
fore VI (7) takes the form: Find a vector (x∗, y∗) ∈ W such that ∃τ∗

m ∈ Tm(y∗
m),

∀m ∈ M,
〈G(x∗), x − x∗〉 − 〈τ∗, y − y∗〉 ≥ 0 ∀(x, y) ∈ W, (11)

where the feasible set W is defined in (5), G and τ∗ are composed of components
Gp, τ

∗
m, respectively, p ∈ Pm,m ∈ M.

At the same time, equilibrium conditions (9) are reduced to the form

∃τ∗
m ∈ Tm(y∗

m), τ∗
m

⎧
⎪⎨

⎪⎩

≤ λm if y∗
m = 0,

= λm if y∗
m ∈ (0, γm),

≥ λm if y∗
m = γm.

(12)

In the following section, we remind the solution method for the inner auxiliary
problem in the conditional gradient method, proposed by T. Magnanti in [6].

4 Conditional Gradient Method for the Network
Equilibrium Problem

In this section, we consider the smooth case of problem (10).
The auxiliary problem in the conditional gradient method for the network

equilibrium problem has the following form. At the kth iteration (k = 0, 1, . . . )
of the main process, we have the vector of path flows xk and demands yk. We
calculate the values of cost functions Gp(xk), τm(yk) for all p ∈ Pm,m ∈ M.
It is required to find a vector (x̄k, ȳk) ∈ W, which is a solution to the auxiliary
linearized VI:

∑

m∈M

⎡

⎣
∑

p∈Pm

Gp(xk)(xp − x̄k
p) − τm(yk)(ym − ȳk

m)

⎤

⎦ ≥ 0 ∀(x, y) ∈ W, (13)

or the equivalent optimization problem

min
(x,y)∈W

−→
∑

m∈M

⎡

⎣
∑

p∈Pm

Gp(xk)xp − τm(yk)ym

⎤

⎦ . (14)

For problems (13) or (14) we can use equilibrium conditions (8) and (9). Then
we obtain an independent problem for each O/D pair and consider the following
simple algorithm for its solution; see [6].

Algorithm A
For each O/D pair m ∈ M we calculate a set of shortest paths P̄k

m with cost
values Gp(xk). Let λ̃m = Gp(xk), ∀p ∈ P̄k

m. Then for all m ∈ M the following
three cases are possible.
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(1) If τm(yk) < λ̃m, then we set ȳk
m = 0, x̄k

p = 0, ∀p ∈ P̄k
m, λm ∈ [τm(yk), λ̃m].

(2) If τm(yk) > λ̃m, then we set ȳk
m = γm, distribute the demand value ȳkm

among paths p ∈ P̄k
m (it is possible to associate the whole demand with one

path), and set λm = λ̃m.
(3) Otherwise we have τm(yk) = λ̃m, then we choose a feasible demand

ȳkm ∈ (0, γm], distribute this value ȳk
m among paths p ∈ P̄k

m, as above, and set
λm = λ̃m.

This method is very simple, for example, in comparison with the simplex
method, the inner problem of the conditional gradient method is reduced to the
problem of the shortest path finding.

But equilibrium conditions (8)–(9) can be also useful, if we partially linearize
the objective function in the network equilibrium problem.

5 Partial Linearization Method for the Network
Equilibrium Problem

In this section, we first also consider the smooth case of problem (10). We suppose
that τm(y) = τm(ym), τm are monotonically decreasing functions, ∀m ∈ M.

We apply the partial linearization method and obtain the following auxiliary
problem. At the kth iteration (k = 0, 1, . . . ) of the main process we have the
vector of path flows xk. We calculate the values of cost functions Gp(xk), for all
p ∈ Pm,m ∈ M. It is required to find a vector (x̄k, ȳk) ∈ W which is a solution
to the auxiliary linearized VI:

∑

m∈M

⎡

⎣
∑

p∈Pm

Gp(xk)(xp − x̄k
p) − τm(ȳk)(ym − ȳk

m)

⎤

⎦ ≥ 0 ∀(x, y) ∈ W, (15)

or the equivalent optimization problem

min
(x,y)∈W

−→
∑

m∈M

⎡

⎣
∑

p∈Pm

Gp(xk)xp − σm(ym)

⎤

⎦ , (16)

where τm(ym) = σ′
m(ym). These problems are also decomposed into a family of

independent problems for each O/D pair. Hence the algorithm has the following
simple form.

Algorithm B1
We calculate for each O/D pair m ∈ M the set of shortest paths P̄k

m with costs
values Gp(xk). Let λ̃m = Gp(xk), ∀p ∈ P̄k

m. Hence for all m ∈ M the following
three cases are possible.

(1) If τm(0) ≤ λ̃m, then we set ȳk
m = 0, x̄k

p = 0, ∀p ∈ P̄k
m, λm ∈ [τm(0), λ̃m].

(2) If τm(γm) ≥ λ̃m, then we set ȳk
m = γm, distribute the demand value γm

among paths p ∈ P̄k
m (it is possible to associate the whole demand with one

path), and set λm = λ̃m.
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(3) Otherwise we have τm(γm) < λ̃m < τm(0), then we find the value of
demand ȳk

m ∈ [0, γm] such that τm(ȳk
m) = λ̃m, distribute the demand ȳk

m among
paths p ∈ P̄k

m, as above, and set λm = λ̃m.
Now we consider the other case of problem (10) where functions σm are

nonsmooth. Then auxiliary linearized VI (15) takes the form: Find a vector
(x̄k, ȳk) ∈ W such that ∃τk

m ∈ Tm(ȳk
m),∀m ∈ M,

∑

m∈M

⎡

⎣
∑

p∈Pm

Gp(xk)(xp − x̄k
p) − τk

m(ym − ȳk
m)

⎤

⎦ ≥ 0 ∀(x, y) ∈ W. (17)

The following algorithm presents a modified variant of Algorithm B1 for the
nonsmooth case.

Algorithm B2
We calculate for each O/D pair m ∈ M the set of shortest paths P̄k

m with costs
values Gp(xk). Let λ̃m = Gp(xk), ∀p ∈ P̄k

m. Hence for all m ∈ M the following
three cases are possible.

(1) If ∃τ ′ ∈ Tm(0) such that τ ′ ≤ λ̃m, then we set ȳk
m = 0, x̄k

p = 0, ∀p ∈ P̄k
m,

λm ∈ [τ ′, λ̃m].
(2) If ∃τ ′′ ∈ Tm(γm) such that τ ′′ ≥ λ̃m, then we set ȳk

m = γm, distribute
the demand value γm among paths p ∈ P̄k

m (it is possible to associate the whole
demand with one path), and set λm = λ̃m.

(3) Otherwise we have τ ′′ < λ̃m < τ ′, ∀τ ′ ∈ Tm(0), ∀τ ′′ ∈ Tm(γm), then
we find the value of demand ȳk

m ∈ [0, γm] such that ∃τ ∈ Tm(ȳk
m), τ = λ̃m,

distribute the demand ȳk
m among paths p ∈ P̄k

m, as above, and set λm = λ̃m.

6 Implementation of the Methods

In this section, we describe some implementations of the above stated methods
for the network equilibrium problem with elastic demand. We first consider the
smooth case. We denote

ϕ(x, y) =
∑

a∈A
μa(fa) −

∑

m∈M
σm(ym) ,

where fa,∀a ∈ A are defined in (6). In the main algorithm, we use a variant of
Armijo inexact linesearch.

Partial linearization algorithm 1 (PLA1)
Step 0. Choose a stop criterion ε > 0, numbers δ ∈ (0, 1), β ∈ (0, 1). Choose

nonempty P0
m ⊂ Pm for all m ∈ M. Set x0

p = 0, y0
m = 0 for all p ∈ P0

m, m ∈ M.
Set k = 0.

Step 1. Using Algorithm B1, find the sets of shortest paths P̄k
m, for all m ∈ M

and the vector (x̄k, ȳk) ∈ W, which is a solution to problem (15).
Step 2. Set Pk+1

m = Pk
m ∪ P̄k

m, for all m ∈ M. Reduce the points xk and
x̄k to the equivalent dimensions, if necessary, initializing missing components by
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zeros. If (xk, yk) ≡ (x̄k, ȳk), then we have found the exact solution to the initial
problem, the iterative process stops.

Step 3. Set the descent direction (uk, vk) = (x̄k, ȳk) − (xk, yk). Find the
smallest nonnegative number n that it holds

ϕ((xk, yk) + δn(uk, vk)) − ϕ(xk, yk) ≤ βδn〈ϕ′(xk, yk), (uk, vk)〉 .

Set λ = δn, (xk+1, yk+1) = (xk, yk) + λ(uk, vk).
Step 4. If |〈ϕ′(xk, yk), (uk, vk)〉| < ε, then the iterative process stops, we have

achieved the desired accuracy ε.
Step 5. Set k = k + 1 and go to Step 1.
We note also that the dimension of the network equilibrium problem (the

number of feasible paths for all O/D pairs) is usually great, but the solution often
contains many zero values. Therefore in practice we use the following approach.
On the initial stage, we choose some nonempty subset P0

m ⊂ Pm for all m ∈ M
and on each iteration they can increase including new shortest paths. At some
moment, the subsets PK

m stop to increase. Moreover, if some path has zero flow
during long time, we exclude it from the current set of paths.

We also consider the implementation of the conditional gradient method,
using Algorithm A. It differs from the PLA1 in Steps 1 and 5 only:

Conditional gradient algorithm (CGA)
Step 1’. Using Algorithm A, find the sets of shortest paths P̄k

m, for all m ∈ M
and the vector (x̄k, ȳk) ∈ W, which is a solution to problem (13).

Step 5’. Set k = k + 1 and go to Step 1’.
At last, we formulate the implementation of the partial linearization method

for nonsmooth problems. In the main iteration process of algorithm, we use the
exact linesearch.

Partial linearization algorithm 2 (PLA2)
Step 0. Choose a stop criterion ε > 0. Choose nonempty P0

m ⊂ Pm for all
m ∈ M. Set x0

p = 0, y0
m = 0 for all p ∈ P0

m, m ∈ M. Set k = 0.
Step 1. Using Algorithm B2, find the sets of shortest paths P̄k

m, for all m ∈ M
and the vector (x̄k, ȳk) ∈ W, which is a solution to problem (17).

Step 2. Set Pk+1
m = Pk

m ∪ P̄k
m, for all m ∈ M. Reduce the points xk and

x̄k to the equivalent dimensions, if necessary, initializing missing components by
zeros. If (xk, yk) ≡ (x̄k, ȳk), then we have found the exact solution to the initial
problem, the iterative process stops.

Step 3. Set the descent direction (uk, vk) = (x̄k, ȳk) − (xk, yk). Find λk as a
solution to the one-dimensional problem

min
λ∈[0,1]

−→ ϕ((xk, yk) + λ(uk, vk))

Set (xk+1, yk+1) = (xk, yk) + λk(uk, vk).
Step 4. If |ϕ(xk+1, yk+1) − ϕ(xk, yk)| < ε, then the iterative process stops,

we have achieved the desired accuracy ε.
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Step 5. Set k = k + 1 and go to Step 1.

In the following section, we present some results of preliminary computational
experiments on test examples.

7 Computational Experiments

The program has been written in Visual C++, tested on an AMD Athlon at
2.33 GHz, 1.93 Gb, running under Windows XP.

The first three examples are smooth. For smooth cases we use the stop
criterion |〈ϕ′(xk, yk), (uk, vk)〉| < ε, k = 0, 1, . . . Let us consider the net-
work composed of 18 nodes (Fig. 1). All arcs are bi-directional. The set of
OD-pairs contains 5 elements, M = {(1, 17), (2, 13), (3, 8), (16, 13), (12, 18)}.
The cost functions are Ca(fa) = 1 + fa for all a. The disutility functions are
τm(ym) = 15 − 0.5ym for all m ∈ M. γm = 10, for all m ∈ M. Beside the

Fig. 1. Network example 1, 18 nodes, 5 O/D pairs

Table 1. Numbers of iterations and time for Example 1

Accuracy CGA PLA1

0.1 6973 it, 1750 ms 3065 it, 750 ms

0.01 23730 it, 6343 ms 15615 it, 4203 ms

0.001 31137 it, 8406 ms 26706 it, 7313 ms
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Fig. 2. Network example 2, 40 nodes, 3 O/D pairs

Table 2. Numbers of iterations and time for Example 2

Accuracy CGA PLA1

0.1 2815 it, 1172 ms 516 it, 187 ms

0.01 15233 it, 6875 ms 4924 it, 2032 ms

0.001 21659 it, 9953 ms 13836 it, 6031 ms

network structure, on the figure we show O/D pairs as dash directed links and
the obtained elastic demand values.

We have applied the described implementation of both methods to this prob-
lem for different accuracy values and obtained the results presented in Table 1.

Let us consider another example, which has a more structured form (Fig. 2).
The set of OD-pairs contains 3 element, M = {(1, 40), (3, 38), (5, 36)}. The cost
functions are Ca(fa) = 1 + fa for all a. The disutility functions are τm(ym) =
15−0.5ym for all m ∈ M. γm = 10, for all m ∈ M. The arc directions are shown
on the figure by arrows.

The obtained results are presented in Table 2.

Fig. 3. Network example 3, 22 nodes, 12 O/D pairs
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We consider also the network example from [8] (Fig. 3). The cost functions
are Ca(fa) = 1 + 0.5fa for all a. The disutility functions for all m ∈ M are
τm(ym) = 15 − 0.5ym. γm = 10, for all m ∈ M. The obtained results are
presented in Table 3.

Table 3. Numbers of iterations and time for Example 3

Accuracy CGA PLA1

0.1 5018 it, 1625 ms 17 it, <16 ms

0.01 48320 it, 16750 ms 18 it, <16 ms

0.001 >200000 it, >100000 ms 18 it, 16 ms

The partial linearization method with Algorithm B1 often shows better
results than the conditional gradient method with Algorithm A: we usually
obtain lower numbers of iterations, lower time, and lower values of the objective
function ϕ.

Now we consider the nonsmooth form of problem (10). For nonsmooth cases
we apply the stop criterion |ϕ(xk+1, yk+1) − ϕ(xk, yk)| < ε, k = 0, 1, . . . In
Example 4 we use the network structure from Example 1. The cost functions
are Ca(fa) = 1 + 0.5fa for all a. γm = 20, for all m ∈ M. We set σm(ym) =
min{10ym, 5ym + 25}, for all m ∈ M . Figure 4 shows the form of mappings
Tm(ym).

Fig. 4. The mappings T(y) in Examples 4, 5

Table 4. Numbers of iterations and time for Example 4

Accuracy PLA2

0.001 144 it, 78 ms

0.0001 504 it, 282 ms

0.00001 1418 it, 781 ms

0.000001 3811 it, 2219 ms
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Table 5. Numbers of iterations and time for Example 5

Accuracy PLA2

0.001 69 it, 32 ms

0.0001 318 it, 188 ms

0.00001 893 it, 547 ms

0.000001 1000 it, 641 ms

We apply partial linearization algorithm 2 to solve this problem. The results
for different accuracy values are presented in Table 4. We obtain the demand
vector (4.09, 5, 5, 5, 5) and the cost functions values (10, 9.83, 5.72, 7, 7.78).

In Example 5 we use the network structure from Example 3. The
set of OD-pairs is M = {(1, 6), (1, 7), (1, 8), (2, 5), (2, 7), (2, 8), (3, 5), (3, 6),
(3, 8), (4, 5), (4, 6), (4, 7)}. The cost functions are Ca(fa) = 1 + 0.5fa for all a.
γm = 20, σm(ym) = min{10ym, 5ym + 25}, for all m ∈ M .

The results for different accuracy values are presented in Table 5. We obtain
the demand vector (5, 1, 4, 5, 4, 1, 1, 4, 5, 4, 1, 5) and the cost functions values
(7, 10, 10, 7, 10, 10, 10, 10, 7, 10, 10, 7).

The conducted calculations on test examples have shown the applicability
of the proposed approaches to the network equilibrium problems with elastic
demands.
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Abstract. This paper presents an extended version of the separation
plane algorithm for subgradient-based finite-dimensional nondifferen-
tiable convex optimization. The extension introduces additional cuts for
epigraph of the conjugate of objective function which improve the con-
vergence of the algorithm. The case of affine cuts is considered in more
details and it is shown that it requires solution of an auxiliary convex
subproblem the dimensionality of which depends on the number of addi-
tional cuts and can be kept arbitrary low. Therefore algorithm can make
use of the efficient algorithms of low-dimensional nondifferentiable convex
optimization which overcome known computational complexity bounds
for the general case.

Keywords: Convex optimization · Conjugate function · Cutting plane ·
Separating plane · Center of gravity algorithm

1 Introduction and Notations

We consider a finite-dimensional nondifferentiable convex optimization (NCO)
problem

min
x∈E

f(x) = f� = f(x�), x� ∈ X�, (1)

where E denotes a finite-dimensional space of primal variables and f : E → R

is a finite convex function, not necessarily differentiable. As we are interested in
computational issues related to solving (1) mainly we assume that this problem
is solvable and has nonempty set of solutions X�.

This problem enjoys a considerable popularity due to its important theoreti-
cal properties and numerous applications in large-scale structured optimization,
Lagrange relaxation in discrete optimization, exact penalization in constrained
optimization, and others. This led to the development of different algorithmic
ideas, starting with the subgradient algorithm due to Shor [1] and Polyak [2] and
followed by cutting plane [3], conjugate subgradient [4], bundle methods [13],
ellipsoid and space dilatation [5–7], ε-subgradient methods [8,9], V U -methods
[10] and many others. This paper describes an extended version of the sepa-
ration plane algorithm (SPA) [14] which differs from the original idea in that
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it introduces several additional cuts for epigraph of the conjugate of objective
function. The simplest form of SPA with just one additional cut was considered
in all details including computational experiments in [15–17]. The positive expe-
rience with this algorithm raised some hopes that introduction of more cuts will
improve the computational efficiency further on.

Throughout the paper we use the following notations: dim(E) is the dimen-
sionality of E, |I| is the cardinality of a finite set I, xy is the inner product of
x, y from E, ‖x‖ =

√
xx. The set of nonnegative vectors of E is denoted as E+

or En
+ if the dimensionality n of E has to be specified.

We use also the distance function dist(X,Y ) = infx∈X,y∈Y ‖x − y‖ =
dist(Y,X) between X ⊂ E, Y ⊂ E. If X is a singleton {x} we will write just
dist(x, Y ).

A vector of ones of a suitable dimensionality is denoted by e = (1, 1, . . . , 1). A
standard simplex {x : x ≥ 0, xe = 1} with x ∈ E,dim(E) = n is denoted by Δn.

2 Separating Plane Algorithms

One of the ways to represent the popular bundle [13] and the other methods of
NCO is to view them as a projection algorithms for computing

f�(0) = −min
x

f(x) = −f� = − inf
(0,μ)∈epi f�

μ ,

where f�(g) = supx{xg − f(x)} is a Fenchel-Moreau conjugate of f , epi f� =
{(g, μ‘) : μ ≥ f�(g)} ⊂ E� ×R is the epigraph of f�(g), and g ∈ E�, the space of
conjugate variables (gradients). This idea, presented originally in [14], unifies a
number of known NCO techniques and suggests some new computational ideas.

The general idea of SPA is to bound the epigraph epi f� of the conjugate
function f� from below and above (in terms of set-theoretical inclusion) by the
approximations Lf and Uf :

Lf ⊂ epi f� ⊂ Uf .

These approximations provide lower and upper estimates for f�(0):

inf
(0,μ)∈Uf

μ = vU ≤ −f�(0) ≤ inf
(0,μ)∈Lf

μ = vL (2)

and are gradually refined in the vicinity of the vertical axis {0} × R ⊂ E� × R

to make at least one of vU or vL converge to f�(0).
The iterations of SPA consist in recursive application of the update procedure

to Lf and Uf which is given in more details further on. This procedure is based on
computed values of conjugate function f� at certain points of the conjugate space,
determined by the procedure itself. As a result at k-th iteration of SPA we have
the bundle of accumulated information on epi f� which consists of pairs of conju-
gate variables and values of conjugate function at these points. This bundle will
be denoted as B�

I = {(gi, f�(gi)), i ∈ I} where I = {1, 2, . . . , k} and gi, f�(gi) are
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conjugate variables and the value of conjugate function, computed at i-th iteration.
In other words B�

I contains all information available up to the current iteration k,
however some selection can be performed to save memory.

For technical reasons we assume also that B�
I contains a special pair (0, α)

with α > f�(0). In terms of the original problem (1) it means that we assume a
certain lower bound −α for f� to be known. It may be a very crude estimate and
introduced mainly for formal reasons, but it is necessary to avoid in a simplest
way certain ill-defined subproblems in the algorithm. Notice that by construction
(0, α) ∈ epi f�.

The points in the bundle B�
I have their natural counterparts {(xi, f(xi)), i ∈

I} in the extended space of primal variables E × R with gi ∈ ∂f(xi), f�(gi) =
xigi − f(xi). In fact the algorithms based on the bundle B�

I can be considered
as based on the primal bundle BI = {(xi, f(xi)), i ∈ I} and operating on the
primal variables and the original objective function. Notice that the bundle BI

provides information on the support function of epi f�, that is the hyperplane

Pi = {(g, μ) : gx̂i − μ = f(x̂i) = sup
(g,μ)∈epi f�

{gx̂i − μ}} (3)

is a supporting plane of epi f� at the point (gi, f�(gi)).
Due to convexity the natural way to construct Lf and Uf is to use the inner

and outer approximations:

Lf = co{(gi, f�(gi)), i ∈ I} + {0} × R+ ⊂ epi f� (4)

and
Uf = ∩Hi, i ∈ I ⊃ epi f� (5)

where
Hi = {(g, μ) : μ ≥ f�(gi) + xi(g − gi), xi ∈ ∂(gi)} ⊃ epi f�

are the half-spaces, generated by supporting planes Pi (3) to epi f� at the points
(gi, f�(gi)).

The general scheme to update Lf and Uf at k-th iteration with I =
{1, 2, . . . , k} is described in the Algorithm 1.

For better understanding the sequence of major steps in the update process
is illustrated on Figs. 1, 2, 3 and 4.

From computational point of view the separating plane Hx̂ in the Step 2
(Separate) can be obtained for the finite value of vU by solving the projection
problem

min
(z,μ)∈Lf�

‖z‖2 + (vU − μ)2 = ‖ẑ‖2 + (vU − μ̂)2 (7)

and appropriate normalization: x̂ = −ẑ/(vU − μ̂).
The Support step of the algorithm is just the computation of the objective

function and its subgradient at the point x̂ as demonstrated by (3).
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Data: The bundle B�
I , the upper and low approximations Uf , Lf of epi f�.

Result: The updated: set I, approximations Lf , Uf and the bundle B�
f .

Step 1. Estimate: estimate the lower bound for f�(0). Compute

vU = inf
(0,μ)∈Uf

μ ≤= inf
(0,μ)∈epi f�

μ = f�(0) .

It can be set to −∞ if Uf is taken to be the trivial upper approximation E × R

at the start of SPA.
Step 2. Separate: strictly separate (0, vU ) from Lf with a separating plane
Hx̂ = {(g, μ) : gx̂ − μ = −v̂U}, parameterized by the support vector (x̂, −1) and
v̂U to be found. If vU = −∞ just take an arbitrary x̂. If strict separability is
impossible, that is v̂U = f�(0) = −f�, then we are done, otherwise continue.
Step 3. Support: for a given x̂, found at the previous step, find the supporting
hyperplane P �

x̂ for epi f�:

P �
x̂ = {(g, μ) : gx̂ − μ = sup(g,ε)∈epi f�{x̂g − ε} =

supg{x̂g − f�(g)} = x̂ĝ − f�(ĝ) = f(x̂)} (6)

with ĝ ∈ ∂f(x̂). Notice, that this is just the calculation of f(x̂) and ĝ ∈ ∂f(x̂).
The hyperplane P �

x̂ defines the ”upper” half-space H�
x̂ which contains epi f�:

H�
x̂ = {(g, μ) : μ ≥ gx̂ − f(x̂)} ⊃ {(g, μ) : μ ≥ supx{gx − f(x)}} =

{(g, μ) : μ ≥ f�(g)} = epi f�

and hence H�
x̂ can be safely added to the cuts of the upper approximation Uf .

Step 4. Update: perform the update of the basic data structures of SPA:
the bundle: B�

I → B�
I ∩ {(ĝ, f�(ĝ)},

the approximations: redefine Lf and Uf according to (4) and (5)

Lf → co(Lf , (ĝ, ε̂)), Uf → Uf ∩ S�
x̂

the index set: I → I ∪ {k + 1}.

Algorithm 1. The generic structure of update step for the upper and low
approximations of epi f�

Notice that after the update of Uf in any way we obtain a new upper estimate
for f� which is not worse that the previous:

v′
U = inf

(0,μ)∈Uf ∩S�
x̂

μ ≥ max{ inf
(0,μ)∈Uf

μ, inf
(0,μ)∈S�

x̂

μ} = max{vU ,−f(x̂)} ≥ vU

and may be better if f(x̂) sets a new record. Unfortunately we can not guarantee
that this will be just the case and so the algorithm is not monotone in terms
of the objective function. This may be one of the factors which slows down the
practical convergence of SPA, and it seems to be possible to improve it by adding
an additional cut or cuts on epi f�.

That was the original idea, tested with positive results in [15,16] when just
the single extra cut generated by the auxiliary subproblem of cutting plane
method was added. Here we consider some aspects of adding several extra cuts.
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Lf

UfvU

epif ∗

µ

f∗(0)

Fig. 1. Basic algorithm objects:
Lf , Uf are lower and upper approxi-
mations, vU approximates f�(0) from
below.

Lf

vU

µ

f ∗(0)

Fig. 2. Projection: determines the
(normalized) vector (x̂, −1) such that
gx̂ − μ ≤ −vU for any (g, μ) ∈ epi f�.

Lf

vU

epif ∗

µ

f ∗(0)

Fig. 3. Support: compute
sup(g,μ)∈epi f�{x̂g − μ} = f(x̂)
and the corresponding subgradi-
ent ĝ ∈ ∂f(x̂).

Lf

Uf

vU

epif ∗

µ

f ∗(0)

Fig. 4. Update: the lower Lf and the
upper Uf approximations are updated
with the help of a new (g, f�(g)) and
cutting support plane at (g, f�(g)).

3 Multiple Additional Cuts

From the formal point of view the additional cuts for epi f� can be considered
as a a certain subset Q of E ×R which is superimposed on epi f�. It means that
now instead of epi f� in the Support step of the Algorithm 1. we are going to
use epi f� ∩ Q

In this case a new supporting hyperplane P �
x̂ = {(g, μ) : gx̂ − μ = μ̄} will

have μ̄ ≥ μ̂:

−μ̄ = sup
(g,μ)∈epi f�∩Q

{gx̂ − μ} ≤ sup
(g,μ)∈epi f�

{gx̂ − μ} = −μ̂ = f(x̂)

and therefore we have a better chance to improve v′
U :

v̄′
U = max{vU , μ̄} ≥ max{vU , μ̂} = v′

U
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There is a great flexibility in the choice of Q, the only essential requirement is
to ensure that the solution (0,−f�) still belongs to epi f� ∩ Q.

The updated iteration of the separating plane algorithms with cuts is repre-
sented in Algorithm 2.

Data: The bundle B�
I , the upper and low approximations Uf , Lf of epi f�, and

the cut Q ⊂ E × R.
Result: The updated index set I, approximations Lf , Uf and the bundle B�

f .
Step 1. Estimate: Unchanged.
Step 2. Separate: Unchanged.
Step 3. Support: Modified to include the cut Q. For a given x̂, found at the
previous step, find the supporting hyperplane H�

x̂ for epi f� ∩ Q:

P �
x̂ = {(g, μ) : gx̂ − μ = sup

(g, ε) ∈ epi f�

(g, ε) ∈ Q

{x̂g − ε}} . (8)

The details of these calculations depend upon the definition of the cut set Q
and are discussed further on.
The hyperplane H�

x̂ defines the ”upper” half-space H�
x̂ which contains epi f�:

S�
x̂ = {(g, μ) : μ ≥ gx̂ − f(x̂)} ⊃ {(g, μ) : μ ≥ supx{gx − f(x)}} =

{(g, μ) : μ ≥ f�(g)} = epi f�

and hence S�
x̂ can be safely added to the cuts of the upper approximation Uf .

Step 4. Update: Unchanged.

Algorithm 2. The generic structure of update step for the upper and low
approximations of epi f� in SPA with multiple cuts.

From practical point of view it is convenient to have Q described by a system
of convex inequalities Q = {(g, μ) : hi(g, μ) ≤ 0, i = 1, 2, . . . ,m}, each of which
can be considered as a separate cut, applied to epi f�. Therefore we call this type
of algorithms as separating plane algorithm with multiple cuts (SPA-MC).

In the simplest case all hi(g, μ) are affine functions:

hi(g, μ) = x̂ig + μ − μ̄i , (9)

where x̂i represent some trial points in the space of the original primal variables.
The support problem of the Step 3 in SPA-MC for the case of affine cuts

can be written as
wU = sup{xg − μ]

μ ≥ f�(g)
x̂ig + μ ≤ μ̄i, i = 1, 2, ,̇m

(10)

which can be transformed into the dual form

wU = sup
μ ≥ f�(g)

inf
λ ≥ 0

{xg − μ −
m∑

i=1

λi(x̂ig + μ − μ̄i)} , (11)
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where λ = (λ1, λ2, . . . , λm) is a nonnegative vector of Lagrange multipliers.
By convexity

wU = inf
λ ≥ 0

sup
μ ≥ f�(g)

{xg − μ − ∑m
i=1 λi(x̂ig + μ − μ̄i)} =

inf
λ ≥ 0

{∑m
i=1 λiμ̄i + sup

μ ≥ f�(g)
{(x − ∑m

i=1 λix̂
i)g − (1 +

∑m
i=1 λi)μ)} =

inf
λ ≥ 0

{∑m
i=1 λiμ̄i + (1 +

∑m
i=1 λi) sup

μ ≥ f�(g)
{x − ∑m

i=1 λix̂
i

1 +
∑m

i=1 λi
g − μ)}} =

inf
λ ≥ 0

{∑m
i=1 λiμ̄i + (1 +

∑m
i=1 λi) sup

g
{x − ∑m

i=1 λix̂
i

1 +
∑m

i=1 λi
g − f�(g)} =

inf
λ ≥ 0

{∑m
i=1 λiμ̄i + (1 +

∑m
i=1 λi)f(

x − ∑m
i=1 λix̂

i

1 +
∑m

i=1 λi
)} = inf

λ ≥ 0
Ξ(λ) ,

where

Ξ(λ) =
m∑

i=1

λiμ̄i + (1 +
m∑

i=1

λi)f(
x − ∑m

i=1 λix̂
i

1 +
∑m

i=1 λi
)

has a controllable dimensionality m which is determined by the number of addi-
tional cuts and can be set to any value.

Therefore Ξ(λ) can be minimized by specific algorithms, tailored to this par-
ticular dimensionality. An appropriate example of such algorithms is the center
of gravity method (CGM) by Levin [11] and Newmann [12] which is easily imple-
mented at least in 2-dimensional case and provides a geometric rate of conver-
gence independent of properties of objective function and feasibility set. Hope-
fully the efficient and practical methods may appear or already exist, unknown
to the author, in higher dimensions.

The essential part of Ξ(λ) which may create different problems with the
following minimization is the nonlinear term (1+

∑m
i=1 λi)f((x−∑m

i=1 λix̂
i)/(1+∑m

i=1 λi)). Fortunately it inherits a convexity of the original problem which
follows from its definition as a supremum of linear forms in λ. Nevertheless it is
useful for the further maximization to consider the nonlinear part of Ξ(λ) as a
generic function

φ(θ) =

(
m∑

i=1

θi

)

f

(∑m
i=1 θix̂

i

∑m
i=1 θi

)

(12)

for θ = (θ1, θ2, . . . , θm) ∈ Em
+ and θ �= 0. It makes sense to complement the

definition of φ(·) at 0 as φ(0) = 0 without loosing the continuity. Then φ becomes
defined on the whole Em

+ and its convexity properties are covered by the following
lemma which might be of a separate interest.

Lemma 1. Let f : E → R is a convex finite function, x̂i, i = 1, 2, ...m — a col-
lection of m points in E, and θ = (θ1, θ2, . . . , θm) ∈ Em

+ — a vector of nonnegative
variables. Then φ(θ) defined by (12) is a convex function of θ on Em

+ .
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Proof. Denote
∑m

i=1 θi = σ(θ). Then

φ(θ) = σ(θ)f

(

(
m∑

i=1

θix̂
i)/σ(θ)

)

for σ(θ) > 0 and φ(0) = 0 by definition. Let α ∈ [0, 1] and θ′, θ′′ ∈ Em
+ . Next

we show that φ(·) satisfies the Jensen inequality φ(αθ′ + (1 − α)θ′′) ≤ αφ(θ′) +
(1 − α)φ(θ′′).

Notice first, that φ is positive homogeneous of degree 1: φ(νθ) = νφ(θ) for
ν ≥ 0 hence the case when either θ′ = 0 or θ′′ = 0 is trivial.

Assume further on that σ(θ′)σ(θ′′) > 0. Let us fix α and denote κ = ασ(θ′)+
(1 − α)σ(θ′′) > 0. Then

φ(αθ′ + (1 − α)θ′′) = κf
(
(α

∑m
i=1 θ′

ix
i + (1 − α)

∑m
i=1 θ′′

i xi)/κ
)

=
κf

(
α(

∑m
i=1 θ′

ix
i)/κ + (1 − α)(

∑m
i=1 θ′′

i xi)/κ
)

=

κf

(

α

∑m
i=1 θ′

ix
i

σ(θ′)
σ(θ′)

κ
+ (1 − α)

∑m
i=1 θ′′

i xi

σ(θ′′)
σ(θ′′)

κ

)

= κf(γ′x̄′ + γ′′x̄′′) ,

where
γ′ = ασ(θ′)/κ , γ′′ = ασ(θ′′)/κ ,

and

x̄′ =
m∑

i=1

θ′
ix

i/σ(θ′) , x̄′′ =
m∑

i=1

θ′′
i xi/σ(θ′′) ,

As γ′ + γ′′ = ασ(θ′)/κ + (1 − α)σ(θ′′)/κ = 1 and γ′, γ′′ ≥ 0. then

φ(αθ′ + (1 − α)θ′′) ≤ κf(γ′x̄′ + γ′′x̄′′)) ≤ κ(γ′f(x̄′) + γ′′f(x̄′′)) =
ασ(θ′)κf(x̄′)/κ + (1 − α)σ(θ′′)κf(x̄′′)/σ(θ′′)/κ = αφ(θ′) + (1 − α)φ(θ′′) .

which completes the proof.
By setting z1 = x, zi+1 = −x̂i, i = 1, 2, . . . ,m and applying Lemma 1 to

φ(θ) = σ(θ)f
(
(
∑m+1

i=1 θiz
i)/σ(θ)

)
with θ1 = 1 we obtain convexity of Ξ(θ).

4 Convergence

The following theorem establishes the convergence of SPA-MC.

Theorem 1. Let {vk
U} be the sequence of lower estimates

vk
U = inf

(0,μ)∈Uk
f

μ ≤ f�(0) ,

of the optimal value in the problem (1) which are generated by SPA-MC as
prescribed by Algorithms 1–2. Then

lim
k→∞

vk
U = f�(0) = −min

x
f(x) .
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Proof. Let k = 1, 2, . . . number the sequence of the update iterations of SPA-MC
which are prescribed by Algorithms 1–2, and let Uk

f , Lk
f are the corresponding

upper and lower approximations of epi f� at the beginning of k-th iteration.
Naturally, updated Uk

f , Lk
f become Uk+1

f , Lk+1
f .

By construction Uk
f ⊃ epi f� ⊃ Lk

f and

epi f� ⊂ Uk+1
f ⊂ Uk

f , Lk
f ⊂ Lk+1

f ⊂ epi f�

so both these sequences have Kuratovski limits, which we denote as U•
f , L•

f

respectively.
Observe that vk

U ≤ vk+1
U ≤ f�(0) hence the sequence {vk

U} has a limit which
we denote as v•

U .
Convergence of SPA-MC means that vk

U → f�(0) or, equivalently,
dist(v̄k

U , epi f�) = dist((0, vk
U ), epi f�) → 0 when k → ∞. As dist(v̄k

U , epi f�) ≤
dist(v̄k

U , Lk
f ) it is sufficient to show that dist(v̄k

U , Lk
f ) → 0.

Denote V̄ k
U = vk

U − {0} × R+ and notice that

dist(v̄k
U , Lk

f ) = dist(v̄k
U − 0 × R+, Lk

f ) = dist(V̄ k
U , Lk

f ) .

As V̄ k+1
U ⊃ V̄ k

U and Lk+1
f ⊃ Lk

f the distance dist(V̄ k
U , Lk

f ) is non-increasing:

dist(V̄ k+1
U , Lk+1

f ) ≤ dist(V̄ k
U , Lk

f ) ≤ dist(V̄ 0
U , (0, κ) + 0 × R+) = ‖v0

U − κ‖

hence the norms of all vectors zk = ΠLk
f
(V̄ k

U ) − V̄ k
U ) are uniformally bounded

and have the same limit ρz = limk→∞ ‖zk‖. The key question is however what
is the value of ρz. If ρz = 0 then dist(V̄ k

U , epi f�) → 0 and

lim
k→∞

vk
U = v•

U = f�(0)

which establishes convergence of SPA-MC.
To show that this is just the case assume contrary: ρz > 0. Then the sequence

{zk} due to its boundness has at least one limit point, which we denote as z•

with a certain subsequence {zkt , t = 1, 2, . . . } → z•.
The Support and Update steps of the Algorithms 1–2 redefines vk

U in a
following way:

1. Solve
inf

ḡ=(g,μ)∈epi f�∩Qk

zkḡ = zkḡk = γk ,

where ḡk = (gk, μk).
2. If γk > vk

U redefine vk+1
U = γk . Otherwise vk+1

U = vk
U .

In any case ḡkzk ≤ v̄k+1
U zk and passing in this inequality to the limit along the

subsequence where all limits exist obtain

ḡ•z• ≤ v•
Uz• . (13)
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On the other hand as zk is obtained by projection of (0, vk
U ) on Lk

f and taking
into account that ḡk ∈ Lk+1

f we have (ḡk − v̄k+1)zk+1 ≥ ‖zk+1‖2. Passing to the
limit gives (ḡ• − v̄•)z• ≥ ‖z•‖2 ≥ γ > 0 or

ḡ•z• ≥ v̄•
Uz• + γ > v̄•

Uz• . (14)

Obviously (13) and (14) contradict each other and it proves the theorem.

5 Conclusion

We present in this work the general scheme for modification of separating plane
algorithms which provides additional possibilities for improving relaxational
properties of algorithms of nonsmooth optimization. It is based on imposing
additional cuts in the dual space of conjugate variables which restrict the test
area and may additionally localize the extremum. The scheme allows also more
sophisticated low-dimensional local search procedures to be applied on each iter-
ation to speed up convergency.
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Abstract. The residual method which is one of the standard regular-
ization procedures for ill-posed optimization problems is applied to an
improper convex programming problem. A typical problem for the resid-
ual method is reduced to the minimization problem for the quadratic
penalty function. For this approach, we establish convergence conditions
and estimates for the approximation accuracy. Further, here we present
an algorithm for the practical realization of the proposed method.

Keywords: Convex programming · Improper problems · Optimal cor-
rection · Residual method · Penalty function

1 Introduction

In this paper, we proceed the research from [1], which is connected with an
application of the residual method [2] which is one of the standard regularization
procedures for ill-posed optimization problems for the correction of improper
problems [3] of convex programming.

Models with inconsistent constraints form a very important class of improper
problems of linear and convex programming, they often arise in mathematical
modelling of complex real-life operation research problems.

Reasons for the appearance of inconsistencies could be the approximate char-
acter of input data, the lack of necessary resources or excessive requirements
imposed on quality of the solution.

Due to the frequency of occurrence of improper problems it becomes impor-
tant to develop a theory and methods for their numerical approximation (cor-
rection), i.e. objective procedures for the “resolution” of conflicting constraints,
transformation of an improper model into a set of solvable problems and choice
of an optimal correction among them. The correction procedure should be objec-
tive in the sense of requiring no preliminary information on the consistency of
the constraints system in the original problem and producing the solution of the
original problem in the case of its feasibility.

c© Springer International Publishing Switzerland 2016
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DOI: 10.1007/978-3-319-44914-2 35
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Research on the theory of improper problems and the construction of effective
procedures for their correction retain their importance in modern mathemati-
cal programming. Along with [3], it could be important to notice the following
papers [4–9]. Further, we note that there exist the close connection between the
improper problem of mathematical programming and the problem for the treat-
ment of experimental data with the aid of so-called Total Least Squares (TLS)
[10,11]. The method TLS is studied active in last time. It can be considered as
a way of matrix correction with respect to the Euclidean norm for the infeasible
systems of linear equations and inequalities [12,13]. We note also the widespread
regularization algorithms based on TLS [14,15].

Since problems with inconsistent constraints can arise due to the approximate
character of input data, which is connected with issues of stability of the solution,
such problems are of interest for the theory and methods of ill-posed optimization
problems [16–18]. This is the reason why it makes sense to consider the standard
means of regularization of ill-posed models such as the residual method for the
analysis of improper problems.

In this paper, we study the possibility of applying the residual method to cor-
rect improper convex programming problems. In the case of constraints incon-
sistence, for the typical scheme of residual method, we register the restrictions
of this problem by the quadratic penalty function. The estimates characterising
the convergence of the penalty function minimizer to appropriate approximate
solutions of the improper problem are given. Besides, we propose an iterative
algorithm for realization of this approach.

2 Problem Statement and the Residual Method

Consider the convex programming problem

min{f0(x) | x ∈ X}, (1)

where X = {x | f(x) ≤ 0}, f(x) = [f1(x), . . . , fm(x)], the functions fi(x) are
convex in IRn for i = 0, 1, . . . ,m.

The residual method applied to the regularization of a feasible convex pro-
gramming problem of form (1) consists [2] in solving a sequence of problems that
depend on some numerical parameter δ:

min{‖x‖2 | x ∈ X ∩ Mδ}, (2)

here Mδ = {x | f0(x) ≤ δ}, δ ≥ f̄ , where f̄ is the optimal value of problem (1).
In this case, problem (2) has a unique solution x̄δ for any δ. Since Mδ1 ⊃ Mδ2 ⊃
. . . ⊃ Mf̄ for δ1 ≥ δ2, we have ‖x̄δ1‖ ≤ ‖x̄δ2‖ ≤ . . . ≤ ‖x̄0‖, where x̄0 is the
solution of (1) with minimal norm (so-called the normal solution), ‖ · ‖ denotes
the Euclidean norm of a vector.

Thus, all the points x̄δ lie in the compact set {x | ‖x‖ ≤ ‖x̄0‖}. There exists
a limit point x̃ of the sequence {x̄δ} as δ → f̄ , x̃ ∈ X, f0(x̃) = f̄ and ‖x̃‖ ≤ ‖x̄0‖.
It follows from the uniqueness of x̄0 that x̃ = x̄0 and lim

δ→f̄
x̄δ = x̄0.
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Define Λ = {λ ∈ IRm
+ | inf

x
L(x, λ) > −∞}, where L(x, λ) = f0(x) + (λ, f(x))

is the Lagrange function corresponding to problem (1), x ∈ IRn, λ ∈ IRm
+ .

In a problem with inconsistent constraints, X = ∅. If, in addition, Λ �= ∅,
then (1) is called [3] an improper convex programming problem of the first kind.

Problems of this type are the most frequently encountered in practice. They
are characterized by the property that if the set X is replaced by a set Xξ =
{x | f(x) ≤ ξ}, ξ ∈ IRm

+ , such that Xξ �= ∅, then inf{f0(x) | x ∈ Xξ} > −∞.
Let E = {ξ ∈ IRm

+ : Xξ �= ∅} and ξ̄ = arg min{‖ξ‖ | ξ ∈ E}. Along with (1)
we consider the problem

min{f0(x) | x ∈ Xξ̄}. (3)

If X �= ∅ in problem (1), then we have ξ̄ = 0 and problems (1) and (3) coincide.
Otherwise, (3) is an example of possible correction for improper problem (1),
and we may accept the solution of (3) as a generalized (approximative) solution
of improper problem (1).

Assume that the set Xξ is nonempty and bounded for some ξ = ξ0. Then, E is
convex and closed, and that guarantees the existence and uniqueness of the vector
ξ̄. In this case, it is easy to see that ξ̄ = f+(x̄), where x̄ ∈ X̄ = Arg min g(x),
g(x) = ‖f+(x)‖2, and X̄ = Xξ̄. Note that Xξ̄ is bounded and problem (3) is
feasible.

3 Treatment of the Constraints by Means of a Quadratic
Penalty Function

In the study of regularization methods as applied to ill-posed problems of con-
strained optimization, the constraints of a model are typically taken into account
by means of a certain penalty function. One of the widespread modifications of
the penalty function method is the quadratic penalty method (see, e.g. [19–21]).
On the one hand, this method provides only an asymptotic equivalence between
the original problem and the problem with penalty as the penalty parameter
tends to infinity. On the other hand, the quadratic penalty function is smooth
enough to make it attractive from the point of view of numerical minimization.

To problem (2), we assign the problem of finding

min
x

Fδ(x, r), (4)

where Fδ(x, r) = ‖x‖2+ρ‖f+(x)‖2+ρ0(f0(x)−δ)+
2
, r = [ρ, ρ0] > 0, δ ∈ IR1.

The function Fδ(x, r) is strongly convex with respect to x ∈ IRn. Hence
problem (4) has a unique solution x̄r,δ for every r ∈ IR2, r > 0 and δ ∈ IR1,
including the case X = ∅, in contrast with problem (2). Therefore, the function
Fδ(x, r) can be used for the analysis of improper convex programming problems.

Suppose that continuous functions fε
i (x), defined on IRn, such that

|fi(x) − fε
i (x)| < ε (∀x ∈ IRn, i = 0, 1, . . . ,m), ε > 0,
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are known in problems (1) and (2) instead of the functions fi(x). Then, we have
the following problem instead of (4)

min
x

F ε
δ (x, r), (5)

where F ε
δ (x, r) is obtained from (4) by change of the functions fi(x) for fε

i (x),
i.e. F ε

δ (x, r) = ‖x‖2 + ρ‖fε+
(x)‖2 + ρ0(fε

0 (x) − δ)+
2
, r = [ρ, ρ0] > 0, ε, δ ∈ IR1,

ε > 0.
Problem (5) is solvable for any r, ε, δ (see Lemma 1 in [9]). Let x̄ε

r,δ be a
solution of problem (5).

Let us investigate the connection between problems (3) and (5).

Theorem 1. Suppose that (1) is an improper convex programming problem of
the first kind, x̄ is an optimal point of problem (3), f̄ = f0(x̄) and Δ = f̄ − δ.
Then, for any r = [ρ, ρ0] > 0, δ ∈ IR1, 0 < ε ≤ 1 the following estimates are
valid:

‖(fε(x̄ε
r,δ) − ξ̄)+‖ ≤ 1√

ρ
B(r, δ, ε), (6)

fε
0 (x̄ε

r,δ) ≤ f̄ + 1√
ρ0

B(r, δ, ε) − Δ, (7)

‖x̄ε
r,δ‖ ≤ B(r, δ, ε), (8)

where B(r, δ, ε) =
[‖x̄‖2 + ερ(4 ‖ξ̄‖1 + mε) + ρ0(Δ+ + ε)2

]1/2.

Proof. By the definition of the point x̄ε
r,δ, we have

‖x̄ε
r,δ‖2+ρ‖fε+

(x̄ε
r,δ)‖2+ρ0(fε

0 (x̄ε
r,δ)−δ)+

2 ≤ ‖x̄‖2+ρ‖fε+
(x̄)‖2+ρ0(fε

0 (x̄)−δ)+
2
.

Since
|fε+

i (x̄) − f+
i (x̄)| ≤ |fε

i (x̄) − fi(x̄)| < ε, i = 1, . . . ,m,

|(fε
0 (x̄) − δ)+ − (f0(x̄) − δ)+| ≤ |fε

0 (x̄) − f0(x̄)| < ε,

we have

‖x̄ε
r,δ‖2 + ρ‖fε+

(x̄ε
r,δ)‖2 + ρ0(fε

0 (x̄ε
r,δ) − δ)+

2

≤ ‖x̄‖2 + ρ‖ξ̄‖2 + ρε(2 ‖ξ̄‖1 + mε) + ρ0(Δ+ + ε)2. (9)

Let us estimate the difference ‖ξ̄‖2 − ‖fε+
(x̄ε

r,δ)‖2. Since x̄ ∈ X̄, we have
0 ∈ ∂g(x̄), where ∂g(x̄) denotes the sub-differential of g(x) at the point x̄.
Choose ēi(x̄) ∈ ∂f+

i (x̄) for i = 1, . . . ,m such that

0 = 2
m∑

i=1

f+
i (x̄)ēi(x̄) = 2

m∑

i=1

ξ̄iēi(x̄),
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here ξ̄i is the i-th component of the vector ξ̄, i = 1, . . . ,m. From the convexity
of the functions fi(x), i = 1, . . . ,m, we obtain

m∑

i=1

ξ̄ifi(x̄) ≤
m∑

i=1

ξ̄ifi(x) +
m∑

i=1

ξ̄i(ēi(x̄), x̄ − x),

‖ξ̄‖2 = (ξ̄, f(x̄)) ≤ (ξ̄, f(x)) (∀x ∈ IRn). (10)

Further, we apply the immediately verified inequality (a − b)+
2 ≤ (a+ − b)2,

which holds for all real numbers a and b. Applying it and inequality (10), we
find for any x′ ∈ IRn that

‖(fε(x′) − ξ̄)+‖2 ≤ ‖(fε+
(x′) − ξ̄‖2 = ‖(fε+

(x′)‖2 − 2(ξ̄, fε+
(x′)) + ‖ξ̄‖2

< ‖fε+
(x′)‖2 − 2(ξ̄, f+(x′)) + 2ε‖ξ̄‖1 + ‖ξ̄‖2

≤ ‖fε+
(x′)‖2 − ‖ξ̄‖2 + 2ε‖ξ̄‖1. (11)

Hence, for x′ = x̄ we have

‖(fε(x̄) − ξ̄)+‖2 − 2ε‖ξ̄‖1 ≤ ‖fε+
(x̄)‖2 − ‖ξ̄‖2, (12)

‖ξ̄‖2 − ‖fε+
(x̄)‖2 ≤ 2ε‖ξ̄‖1. (13)

Combining estimates (12), (13), with (9) we obtain (6) and (8). Inequality (9)
implies that ρ0(fε

0 (x̄ε
r,δ)−δ)+

2 ≤ B(r, δ, ε). Since fε
0 (x̄ε

r,δ)− f̄ ≤ (fε
0 (x̄ε

r,δ)−δ)+−
Δ, we get (7).

The theorem is proved.

Corollary 1. Suppose that, in problem (5) ρ → ∞, ρ0 → ∞, ε → 0, Δ → 0,
ερ → 0, ρ0(Δ+ + ε)2 → 0. Then x̄ε

r,δ → x̄0, where x̄0 is the normal solution of
problem (3).

Indeed, suppose that x̄ = x̄0. In view of inequality (8) and under conditions
on the parameters r, δ, ε formulated above, we have limB(r, δ, ε) = ‖x̄0‖. This
implies the boundedness of the sequence {x̄ε

r,δ}. Denote by x̃ the limit point of
{x̄ε

r,δ}. By (6)–(8), we obtain x̃ ∈ Xξ̄ ∩ Mf̄ , ‖x̃‖ = ‖x̄0‖. Since problem (3) has
the unique normal solution x̄0, we have x̃ = x̄0 and lim x̄ε

r,δ = x̄0.

Corollary 2. Suppose that there exists a saddle point [x̄0, λ̄] of the function
Lξ̄(x, λ) = f0(x) + (λ, f(x) − ξ̄) in the domain IRn × IRm

+ . Then, together with
(7), the following inequality holds

f̄ − fε
0 (x̄ε

r,δ) ≤ ‖λ̄‖√
ρ

B(r, δ, ε) + ε(1 + ‖λ̄‖1). (14)

From the definition of the saddle point [x̄0, λ̄], we have for any x ∈ IRn the
relation

f̄ = f0(x̄0) ≤ f0(x)+(λ̄, f(x)− ξ̄) < fε
0 (x)+(λ̄, (fε(x)− ξ̄)+)+ε(1+‖λ̄‖1). (15)

Hence, in view of (6), we obtain (14).
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4 An Iterative Algorithm for the Correction
of the Improper Convex Programming Problem

The main difficulty by the practical application of the residual method is con-
nected with the necessity to implement the condition δ → f̄ . Estimates (6)–(8)
show that this problem arise usually for the case when Δ > 0, i.e. when δ < f̄ .
Note that problem (2) is improper, although problem (1) may be solvable. In
this case there is the connection between method (5) and the parameter-free
penalty function methods [20] (methods of objective function parametrization
[2,22]). In this methods, we assign to (1) the problem of finding

inf
x∈IRn

ϕ(x, δ), (16)

where ϕ(x, δ) = ρ0[(f0(x) − δ)+]p0 + ρ
m∑

i=1

[f+
i ]pi(x), δ ∈ IR1, δ < f̄ . Above, pi, ρ0

and ρ are parameters of the method, pi ≥ 1, i = 0, 1, . . . ,m; ρ0 > 0, ρ > 0.
The advantage of method (16) is that the parameters ρ0 and ρ must not

be tended to +∞. It suffices to generate the bounded sequence of values δ,
which converges to the optimal value of problem (1). In addition, the points
xδ = arg min

x
ϕ(x, δ) converge to a solution of (1).

Below, we propose an algorithm for the control of the parameters in problem
(5) (first at all of the parameter δ), that warrants the necessary convergence. On
the one hand, this algorithm presents an iterative scheme of the residual method
for the improper convex programming problem. On the other hand, this method is
a regularized variant of the parameter-free penalty function method (see also [23]).

Consider the sequence of positive numbers τk that τk ↘ 0 (k → ∞). Select
the initial value δ0 of the parameter δ such that δ0 < f̄ − τ0. Assume that
δk < f̄ − τk. Define

δk+1 = δk + (fεk
0 (x̄k) − δk − τk)+, k = 0, 1, . . . , (17)

where x̄k = arg minFk(x), Fk(x) = F̃ εk

δk
(x, rk, τk) = ‖x‖2 + ρk‖fε+

k (x)‖2 +
ρ0k(fεk

0 (x) − δk − τk)+, rk = [ρk, ρ0k] > 0, εk ≥ 0.

Theorem 2. Suppose that the conditions of Theorem 1 are satisfied and there
exists a saddle point [x̄0, λ̄] of the function Lξ̄(x, λ) in the domain IRn × IRm

+ .
Assume that parameters τk, ρk, ρ0k, εk are chosen such that

τk ↘ 0, ρk ↗ +∞, ρ0k ↗ +∞,
ρ0k
ρk

↘ 0, εk ↘ 0,

ρkεk ↘ 0, ρ0k(τk − τk+1 − εk) ↗ +∞ (k → ∞).
(18)

Then lim
k→∞

δk = f̄ in method (17) and any limit point of the sequence {x̄k} solves

problem (3).

Moreover, if additional condition lim
k→∞

ρ0
2

k

ρk
= 0 holds, then lim

k→∞
x̄k = x̄0,

where x̄0 is the normal solution of problem (3).
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Proof. By definition of the point x̄k, it holds that

‖x̄k‖2 + ρk‖fε+
k (x̄k)‖2 + ρ0k(fεk

0 (x̄k) − δk − τk)+

≤ ‖x̄0‖2 + ρk(‖ξ̄‖2 + 2εk‖ξ̄‖1 + mε2k) + ρ0k(f̄ − δk − τk) + ρ0kεk. (19)

From (11) for x′ = x̄k, we obtain

‖ξ̄‖2 − ‖fε+
k (x̄k)‖2 ≤ 2εk‖ξ̄‖1.

Hence, it follows from (19) that

(fεk
0 (x̄k) − δk − τk)+ ≤ ‖x̄0‖2

ρ0k
+ (f̄ − δk − τk) + εk

[
1 + (mεk + 4‖ξ̄‖1)ρk

ρ0k

]
.

Since ρkεk → 0 as k → ∞, we find such a number k0, that (mεk+4‖ξ̄‖1)ρkεk ≤ 1
for k ≥ k0. Thus,

δk ≤ δk+1 = δk + (fεk
0 (x̄k) − δk − τk)+ ≤ ‖x̄0‖2 + 1

ρ0k
+ f̄ − τk + εk. (20)

It follows from conditions (18) that the number k1 ≥ k0 exists such that ρ0k(τk −
τk+1 − εk) ≥ ‖x̄0‖2 + 1 for all k ≥ k1.

Hence, δk ≤ δk+1 < f̄ − τk+1 for all sufficiently large k. This relation implies
the existence of limit lim

k→∞
δk = δ̄, where δ̄ ≤ f̄ . Simultaneously, the limit relation

lim
k→∞

(fεk
0 (x̄k) − δk − τk)+ = 0 (21)

is fulfilled. From (19), we deduce the inequality

ρk(‖fε+
k (x̄k)‖2 − ‖ξ̄‖2)

≤ ρ0k(f̄ − fεk
0 (x̄k)) + ‖x̄0‖2 + ρkεk(2‖ξ̄‖1 + mεk) + ρ0kεk. (22)

Since [x̄0, λ̄] is a saddle point of the function Lξ̄(x, λ), we have in view of analogy
to (15)

f̄ − fεk
0 (x̄k) ≤ ‖λ̄‖‖(fεk(x̄k) − ξ̄)+‖ + εk(1 + ‖λ̄‖1). (23)

Applying this inequality and estimate (11) for x′ = x̄k, we obtain from (22) that

ρk‖(fεk(x̄k) − ξ̄)+‖2 − ρ0k‖λ̄‖‖(fεk(x̄k) − ξ̄)+‖
≤ ‖x̄0‖2 + ρkεk(4‖ξ̄‖1 + mεk) + ρ0kεk(2 + ‖λ̄‖1).

Reforming the left part of this relation, we find that

‖(fεk(x̄k) − ξ̄)+‖ ≤ ρ0k
2ρk

‖λ̄‖ +
√

B1(rk, εk), (24)
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where B1(rk, εk) =
ρ0k

2

4ρ2k
‖λ̄‖2 +

‖x̄0‖2
ρk

+ εk(4‖ξ̄‖1 + mεk) +
ρ0k
ρk

εk(2 + ‖λ̄‖1). It

follows from (24) that

fi(x̄k) ≤ ξ̄i +
ρ0k
2ρk

‖λ̄‖ +
√

B1(rk, εk) + εk, i = 1, . . . , m. (25)

If conditions (18) are fulfilled, then lim
k→∞

B1(rk, εk) = 0 is valid. Therefore, there

is the number k2 ≥ k1 such that all points x̄k lie in a set Xξ′ , where ξ′ > ξ̄,
k ≥ k2. From the assumption for Xξ0 the set Xξ′ is bounded. This implies the
boundedness of the sequence {x̄k}. Let us denote by x∗ any limit point of {x̄k}.
Then, because of (25) we obtain x∗ ∈ Xξ̄ and f0(x∗) ≥ f̄ . On the other hand, it
follows from (21) that f0(x∗) ≤ δ̄ ≤ f̄ . Thus, lim

k→∞
δk = δ̄ = f̄ = f0(x∗).

Let us supplement conditions (18) such that
ρ0k

2

ρk
→ 0 as k → ∞. Then the

sequence {x̄k} will be converge to the normal solution of problem (3). Indeed, it
follows from (19) that

‖x̄k‖2 ≤ ‖x̄0‖2 + ρk(‖ξ̄‖2 − ‖fε+
k (x̄k)‖2) + ρ0k(f̄ − fεk

0 (x̄k))
+2ρkεk‖ξ̄‖1 + ρkε2km + ρ0kεk.

Applying here estimates (11) (for x′ = x̄k) and (23), we obtain that

‖x̄k‖2 ≤ ‖x̄0‖2 − ρk‖(fεk(x̄k) − ξ̄)+‖2 + ρ0k‖λ̄‖‖(fεk(x̄k) − ξ̄)+‖ + B2(rk, εk),

where B2(rk, εk) = ρkεk(4‖ξ̄‖1 + mεk) + ρ0kεk(‖λ̄‖1 + 2). Thus, ‖x̄k‖2 ≤
‖x̄0‖2 +

ρ0k
2

4ρk
‖λ̄‖2 + B2(rk, εk). Since from (18) lim

k→∞
ρ0k
ρk

= lim
k→∞

ρkεk = 0, we

have lim
k→∞

ρ0kεk = 0. Therefore, lim
k→∞

B2(rk, εk) = 0. The last inequality implies

that ‖x∗‖ = ‖x̄0‖. Consequently, by the uniqueness of the normal solution of
problem (3) we obtain lim

k→∞
x̄k = x̄0.

The theorem is proved.

Let us estimate the values |δk − f̄ | and |fεk
0 (x̄k) − f̄ | for algorithm (17).

Theorem 3. Suppose that the conditions of Theorem 2 are satisfied. There
exists the number K such that for k ≥ K the sequences δk and x̄k from algorithm
(17) satisfy the inequalities

|δk+1 − f̄ | ≤ B3(rk, εk) + τk, (26)

|fεk
0 (x̄k) − f̄ | ≤ max{B3(rk, εk), τk − τk+1}, (27)

where B3(rk, εk) = ‖λ̄‖
( ρ0k

2ρk
‖λ̄‖ +

√
B1(rk, εk)

)
+ εk(1 + ‖λ̄‖1), B1(rk, εk) is

from (24), B3(rk, εk) → 0 (k → ∞).
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Proof. From (17) we have

δk+1 − f̄ = δk + (fεk
0 (x̄k) − δk − τk)+ − f̄ ≥ fεk

0 (x̄k) − f̄ − τk.

Hence, in view of (23) and (24) we find f̄ −δk+1 ≤ f̄ −fεk
0 (x̄k)+τk ≤ B3(rk, εk)+

τk. Since, from (17) δk+1 < f̄ , we can write estimate (26).
Further, let us estimate the difference fεk

0 (x̄k) − f̄ . We apply inequality (20)
for k ≥ k1 = K. Then (‖x̄0‖2 + 1)(ρ0k)−1 ≤ τk − τk+1 − εk and thus the relation

fεk
0 (x̄k) − τk ≤ δk + (fεk

0 (x̄k) − δk − τk)+ ≤ ‖x̄0‖2 + 1
ρ0k

+ f̄ − τk + εk ≤ f̄ − τk+1

holds. From here and (23), (24) we find estimate (27).
The theorem is proved.

In conclusion, we give an example of the sequences τk, ρk, ρ0k, εk, such that
satisfy conditions (18).

Let us choose the positive numbers α, β, γ such that
α

3
< γ < β < α ≤ 1

2
.

Define

τk = αk+1, ρk =
1

γk+1
, ρ0k =

1
βk+1

, εk =
(α

3

)k+1

, k = 0, 1, 2, . . . .

Obviously, lim
k→∞

τk = lim
k→∞

εk = 0, lim
k→∞

ρk = lim
k→∞

ρ0k = +∞,
ρ0k
ρk

=
(γ

β

)k+1

→

0, ρkεk =
( α

3γ

)k+1

→ 0, ρ0k(τk − τk+1 − εk) =
(α

β

)k+1(
1 − α − 1

3k+1

)
>

1
6

(α

β

)k+1

→ +∞ (k → ∞). The numbers α, β and γ may be chosen as α = 1/2,

β = 1/3, γ = 1/4.

The convergence {x̃k} to x̄0 requires the condition lim
k→∞

ρ0k
2

ρk
= 0. For this,

we may assume that ρk =
1

γ2(k+1)
. Then

ρ0k
2

ρk
=

(γ

β

)2(k+1)

→ 0 (k → ∞). For

the satisfaction of conditions (18), we need also take εk =
(α

3

)2(k+1)

.

5 Conclusion

In the present paper, we offer an approach to the optimal correction of improper
programming problem based on the classical residual method for the regular-
ization of ill-posed optimization problems. The inconsistent constraints for the
typical scheme of the residual method are eliminated by the regularized quadratic
penalty function. The estimates characterising the connection between solutions
of the problem with penalty and appropriate problem for approximation of ini-
tial improper model are obtained. Finally, we propose an iterative algorithm for
the realization of this approach.
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Abstract. This paper addresses a rather general problem of nonlin-
ear optimization with the inequality constraints and the goal function
defined by the (d.c.) functions represented by the difference of two con-
vex functions. In order to reduce the constrained optimization problem
to an unconstrained one, we investigate three auxiliary problems with
the max-merit, Lagrange and penalty goal functions. Further, their rela-
tions to the original problem are estimated by means of the new Global
Optimality Conditions and classical Optimization Theory as well as by
examples.

Keywords: Nonlinear programming · d.c. functions · Global optimality
conditions · The lagrange function · Penalty functions

1 Introduction

It is well-known that the contemporary Optimality Conditions (OC) theory
[1–13], a considerable part of which is presented by modern generalizations of the
KKT-theorem [1–13], turns out to be ineffective when it comes to a characteri-
zation of a global solution to nonconvex problems. Meanwhile, real-life applied
problems might have a lot (often a huge number!) of local extrema [15–22].

On the other hand, new attractive and promising areas for investigations in
optimization in the 21st century arise from various applications. Among others,
let us mention the following problems: the search for equilibrium in competitions;
hierarchical optimization problems; dynamical control problems. However, as it
has been shown in [17], it turns out that all these new problems are related to
nonconvexity. Hence, it becomes obvious that we need new mathematical tools
(optimality conditions, numerical procedures etc.) that would allow us to escape
stationary or local solutions and construct numerical procedures able to jump
out of local pits simultaneously improving the goal functions. The first attempts
to propose such an apparatus have been undertaken in [17–22] for special d.c.
optimization problems such as d.c. minimization, convex maximization, reverse-
convex problems etc [15–22]. To deal with this class of problems, the Global
Search Theory [17,21] has been developed, which comprises local search meth-
ods [17–19,21] and global search procedures [17,21,22] that employ classical
methods.
c© Springer International Publishing Switzerland 2016
Y. Kochetov et al. (Eds.): DOOR 2016, LNCS 9869, pp. 452–466, 2016.
DOI: 10.1007/978-3-319-44914-2 36



On the Merit and Penalty Functions for the D.C. Optimization 453

In this paper, we address more general problems with d.c. functions in
inequality constraints and goal functions and investigate the reduction of the
constrained problem to three unconstrained ones formed by the max-merit,
Lagrange and penalty goal functions. The study is performed, in particular,
by means of the new Global Optimality Conditions for three different auxiliary
unconstrained problems. After the statement of the problem in Sects. 2 and 3
considers the max-merit function and an auxiliary problem with Example 1 to
illustrate inadequacy of the max-merit function to the original Problem.

Further, we study the well-known Lagrange function and show by means of
the Global Optimality Conditions (GOC) and examples that L(x, λ) seeks a
saddle point (which does not always exist) but not a solution to the original
problem.

In Sect. 5, we consider a penalization approach and provide some necessary
information. We study the GOC for the penalized problem and use examples to
demonstrate that the new tools are effective.

Section 6 provides the conclusion to summarize the content of the paper.

2 Statement of Problem

Let us consider the following problem:

(P) :
f0(x) := g0(x) − h0(x) ↓ min

x
, x ∈ S,

fi(x) := gi(x) − hi(x) ≤ 0, i ∈ I = {1, . . . ,m};

}

(1)

where the functions gi(·), hi(·), i = 0, 1, . . . , m, are convex on IRn, so that
the functions fi(·), i = 0, 1, . . . ,m, are the (d.c.) functions of A.D. Alexandrov
represented as a difference of two convex functions [1,2,4,5].

In order to avoid some singularities [1,4,5], we assume that

S ⊂
[

m⋂

i=0

int(dom gi(·))
]

∩
[

m⋂

i=0

int(dom hi(·))
]

�= ∅,

where the set S ⊂ IRn is convex.
Further, let the following assumptions hold:

D := {x ∈ S | fi(x) ≤ 0, i ∈ I} �= ∅,

V(P) := inf(f0,D) � inf
x

{f0(x) | x ∈ S, fi(x) ≤ 0, i ∈ I} > −∞,

Sol(P) := {z ∈ D | f0(z) = V(P)} �= ∅.

3 The Max-Merit Function

Let us consider the following function [5–9]

F (x, η) := max{f0(x) − η; f1(x), . . . , fm(x)}, (2)

where η ∈ IR. Below, for a feasible (in (P)) point z ∈ D, we denote ζ := f0(z).
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Proposition 1 ([5–9]). Suppose that a point z is a solution to Problem (P):
z ∈ Sol(P). Then, the point z is a solution to the following auxiliary problem

(Pζ) : F (x, ζ) ↓ min
x

, x ∈ S. (3)

Proposition 2 ([5]). Suppose the parameter η is equal to the optimal value of
Problem (P)–(1), η = V(P). Then, the point z ∈ D is a solution to Problem (P)
if and only if z is a solution to the auxiliary problem (Pζ) with ζ := f0(z) = V(P).
Under latter conditions, the equality Sol(P) = Sol(Pζ) holds.

Lemma 1. Suppose that the point z ∈ D is not a solution to problem (Pη) with
η = ζ := f0(z), so that there exists a point u ∈ S, such that

F (u, ζ) < 0 = F (z, ζ).

Then, the point z ∈ D cannot be a solution to Problem (P): z �∈ Sol(P).

Proof. From the inequality F (u, ζ) < 0 it follows that u ∈ S, fi(u) < 0, and
f0(u) < f0(z) = ζ, so that u is feasible for Problem (P). Hence, z �∈ Sol(P). 
�

Note that it is not difficult to show that the objective function F (x, η) of
Problem (Pη)–(3), given in (2), is a d.c. function.

Remark 1. Let us now pay attention to the fact that Proposition 2 provides the
sufficient conditions for z ∈ S to be a solution to Problem (Pζ), ζ = f0(z), but
not to the original Problem (P). Only if we added the equality ζ = V(P) (see
Proposition 2), which is, in particular, rather difficult to verify in the majority of
the applied problems, then we would be able to make a conclusion about the global
solution property in Problem (P) of the feasible point z ∈ D under investigation.
On the other hand, the equality f0(z) = ζ = V(P) for a feasible point z ∈ D
immediately provides that z ∈ Sol(P) without any supplementary conditions. So,
this condition appears to be incorrect. In order to see the adequateness of F (x, η)
with respect to Problem (P) let us consider an example. 
�
Example 1. Consider the problem

f0(x) = 1
2 (x1 − 4)2 + (x2 + 2)2 ↓ min

x
,

f1(x) = (x1 − 1)2 − (x2 + 1)2 ≤ 0,
f2(x) = (x2 − 2)2 − (x1 + 2)2 ≤ 0.

⎫
⎬

⎭
(4)

It is easy to see that the point z∗ = (4,−2)� is the global minimum of the
strongly convex function f0(·) on IR2, and f0(z∗) = 0 provides a lower bound for
V(4) = inf(f0,D) ≥ 0. Note that z∗ is unfeasible in (4), since f1(z∗) = 8 > 0. Let
us consider another point z = (43 ,− 2

3 )� which is feasible for (4), since f1(z) = 0
and f2(z) = −4 < 0. In addition, it can be readily seen that z satisfies the
KKT-conditions with λ0 = 1, λ1 = 4 > 0, λ2 = 0, ζ := f0(z) = 51

3 .
Further, since

f1(x) = (x1 − x2 − 2)(x1 + x2) ≤ 0, f2(x) = (x2 − x1 − 4)(x2 + x1) ≤ 0,
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it can be readily shown that the feasible set D := {x ∈ IR2 | fi(x) ≤ 0, i = 1, 2}
is represented by the union of the two convex parts: D = D1 ∪ D2, D1 = {x |
x1 + x2 = 0}, D2 = {x | x1 + x2 ≥ 0, x2 − x1 − 4 ≤ 0, x1 − x2 − 2 ≤ 0}.

Hence, from the geometric view-point, it is easy to see that the point
z0 = (83 ,− 8

3 )� is the global solution to (4) with the optimal value
V(4) = f0(z0) =: ζ0 = 4

3 . So, the point z = (43 ,− 2
3 )� is not to be a global

solution to (4), since f0(z) = 51
3 = ζ. However, the goal function F (x, ζ) of

Problem (Pζ) does not distinguish between these two points. Actually,

F (z0, ζ) = max{f0(z0) − ζ; f1(z0); f2(z0)} = 0 =
max{f0(z) − ζ; f1(z); f2(z)} = F (z, ζ),

because z ∈ D, z0 ∈ D = {x ∈ IR2 | fi(x) ≤ 0, i = 1, 2}.
Moreover, for all feasible (in Problem (4)) points, which are better (in the

sense of the problem (4)) than the point z, i.e. u ∈ {x ∈ IR2 | x1 + x2 = 0,
f0(x) < ζ = 51

3}, we have the same results: F (u, ζ) = 0, because f1(u) = 0 =
f2(u). For instance, for any point x(α) of the form

x(α) = (v(α),−v(α))�, v(α) = 1.1α + 4.2(1 − α), α ∈ [0, 1],

we have F (x(α), ζ) = 0. Meanwhile, f0(x(α)) < f0(z) = 51
3 ∀α ∈ [0, 1].

Therefore, one can see that there exist a great number of points better than
z in the sense of Problem (4). 
�
So, Example 1 demonstrates that Problem (Pη) is not sufficiently adequate to
Problem (P). More precisely, taking into account Propositions 1 and 2, it is easy
to see that the set Sol(Pζ) might contain a lot of points not belonging to Sol(P),
so that the inclusion Sol(P) ⊂ Sol(Pζ) may be really proper. Moreover, the
inequality ζ > ζ∗ = V(P) holds together with the inclusion Sol(P) ⊂ Sol(Pζ),
which is inadmissible. Therefore, we move on to another type of the merit (or
penalty, in a rough sense) function.

4 The Lagrange Function

Consider the standard (normal) Lagrange function for Problem (P)

L(x, λ) = f0(x) +
m∑

i=1

λifi(x). (5)

It is common to call a pair (z, λ) a saddle point of the Lagrange function L(x, λ):
(z, λ) ∈ Sdl(L), if the following two inequalities are satisfied [1–9]:

∀μ ∈ IRm
+ : L(z, μ) ≤ L(z, λ) ≤ L(x, λ) ∀x ∈ S. (6)
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Lemma 2 ([1,2,4–9]). For a pair (z, λ) ∈ S × IRm
+ the following two assertions

are equivalent:

(i) max
μ

{L(z, μ) | μ ∈ IRm
+ } = L(z, λ); (7)

(ii) z ∈ D, λ ∈ IRm
+ , λifi(z) = 0, i = 1, . . . ,m. (8)

Recall that a vector λ ∈ IRm
+ satisfying the KKT-conditions, including (8),

is usually called a Lagrange multiplier [1,2,4–9] at a point z ∈ D. The set of all
Lagrange multipliers at z will be denoted below by M(z).

Remember, in addition, that for a convex optimization problem (P)–(1),
when hi(x) ≡ 0 ∀i ∈ {0} ∪ I, we have M(z1) = M(z2) = M, if zi ∈ Sol(P),
i = 1, 2 [5, Chapter VII].

Proposition 3 ([1,2,4,5,7–9]). If the pair (z, λ) ∈ S × IRm
+ is a saddle point of

the Lagrange function L(x, μ) on the set S × IRm
+ , then the point z is a global

solution to Problem (P).

In what follows, we will employ this assertion in a different form.

Proposition 4. Suppose z ∈ D, z is a KKT-point but not a global solution to
Problem (P). Then, there exists no Lagrange multiplier λ ∈ M(z) such that
(z, λ) ∈ Sdl(L).

Further, since fi(x) = gi(x)−hi(x), i = 0, 1, . . . ,m, L(x, λ) has a very simple,
clear and suitable d.c. representation

(a) L(x, λ) = Gλ(x) − Hλ(x),

(b) Gλ(x) = g0(x) +
m∑

i=1

λigi(x), Hλ(x) = h0(x) +
m∑

i=1

λihi(x).

⎫
⎬

⎭
(9)

Taking into account (9), let us look at the normal Lagrange function (5) from
the view-point of the Global Optimality Conditions (GOC) [17,18,20,21].

Theorem 1. Suppose (z, λ) ∈ Sdl(L), λ0 = 1, ζ := f0(z). Then,
∀(y, β) ∈ IRn × IR such that

Hλ(y) :=
m∑

i=0

λihi(y) = β − ζ, (10)

the following inequality holds

Gλ(x) − β ≥
m∑

i=0

λi〈h′
i(y), x − y〉 ∀x ∈ S, (11)

for any subgradients h′
i(y) ∈ ∂hi(y) of the functions hi(·) at the point y,

i ∈ I ∪ {0}.
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Proof. According to the assumption, we have the chain

ζ := f0(z) =
m∑

i=0

λifi(z) = L(z, λ) ≤
m∑

i=0

λifi(x) = L(x, λ) ∀x ∈ S,

from which, due to (9) and (10), it follows

β − Hλ(y) = ζ ≤ L(x, λ) = Gλ(x) − Hλ(x) ∀x ∈ S.

Further, by the convexity of Hλ(·) =
m∑

i=0

λihi(·), λi ≥ 0, i ∈ I, we obtain

Gλ(x) − β ≥ Hλ(x) − Hλ(y) ≥
m∑

i=0

λi〈h′
i(y), x − y〉 ∀x ∈ S,

which coincides with (11). 
�
Remark 2. Due to Proposition 3, it can be readily seen that for a global solu-
tion z ∈ Sol(P), for which one can find a multiplier λ ∈ M(z) such that
(z, λ) ∈ Sdl(L), the conditions (10)–(11) turn out to be necessary global opti-
mality conditions.

Remark 3. It is clear that Theorem 1 reduces the nonconvex problem

(L) : L(x, λ) ↓ min
x

, x ∈ S,

to the verification of the principal inequality (PI) (11) for the family of parame-
ters (y, β): Hλ(y) = β − ζ, or, more precisely, to solving the family of the convex
linearized problems

(LL(y)) : Φλ(x) = Gλ(x) − 〈H ′
λ(y), x〉 ↓ min

x
, x ∈ S, (12)

with the subsequent verification of PI (11) with x = u = u(y, β) ∈ Sol(LL(y)).

Remark 4. Furthermore, suppose that there exists a tuple (y, β, u), such that
(y, β) satisfies the equality (10) and violates the PI (11), i.e. Gλ(u) − β <

〈H ′
λ(y), u − y〉. Whence, due to convexity of Hλ(·) =

m∑

i=0

λihi(·), it follows

Gλ(u) − β < Hλ(u) − Hλ(y).

Next, on account of (9) and (10), we have

L(u, λ) = Gλ(u) − Hλ(u) < β − Hλ(y) = ζ = f0(z) = L(z, λ),

where λ ∈ M(z). Hence, the right-hand-side inequality in (6) is violated with
u ∈ S. It means that the pair (z, λ) is not a saddle point: (z, λ) �∈ Sdl(L). 
�

Therefore, from the point-of-view of optimization theory [1,2,4–12,17,18,20,
21] the conditions (10)–(11) of Theorem 1 possess the constructive property. Nev-
ertheless, it is not clear whether there exists a tuple (y, β, u) that violates (11). The
answer is given by the following result.
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Theorem 2. Let there be given a KKT-point z ∈ D with the corresponding
multipliers λ ∈ M(z), λ0 = 1. In addition, let the following assumption take
place

(H) : ∃v ∈ IRn : L(v, λ) > L(z, λ) = f0(z) =: ζ. (13)

Besides, suppose that the pair (z, λ) is not a saddle point of L(z, λ) on S × IRm
+ .

Then, one can find a tuple (y, β, u), where (y, β) ∈ IRn+1, u ∈ S, and
a fixed ensemble of subgradients {h′

00(y), h′
10(y), . . . , h′

m0(y)}, h′
io(y) ∈ ∂hi(y),

i ∈ {0} ∪ I, such that

Hλ(y) �
m∑

i=0

λihi(y) = β − ζ, (14)

Gλ(y) ≤ β, (15)

Gλ(u) − β <

m∑

i=0

λi〈h′
i0(y), u − y〉. (16)


�
Let us verify the effectiveness of the constructive property of the GOC of

Theorems 1 and 2 by the example.
Example 1 (Revisited). As it has been shown above, the point z = (43 ,− 2

3 )�

is the KKT-point with λ0 = 1, λ1 = 4, λ2 = 0. Recall that ζ := f0(z) = 51
3 .

Meanwhile, there exist points feasible in the problem (4) and better than z in
the sense of the problem (4).

Now, let us apply the GOC of Theorems 1 and 2 in order to improve
the point z. For this purpose, employ the Lagrange function L(x, λ) with
λ = (1, 4, 0) ∈ M(z):

L(x, λ) = f0(x) + λf1(x) =
1
2
(x1 − 4)2 + (x2 + 2)2 + 4[(x1 − 1)2 − (x2 + 1)2].

Then we have L(x, λ) = Gλ(x) − Hλ(x), where

Gλ(x) =
1
2
(x1 − 4)2 + (x2 + 2)2 + 4(x1 − 1)2, Hλ(x) = 4(x2 + 1)2. (17)

Let us choose y = (0,− 1
2 )�, u = (43 , 0)�, f1(u) = − 8

9 < 0, f2(u) = −7 1
9 < 0.

∇Hλ(x) =
[

0
8(x2 + 1)

]

, ∇Hλ(y) =
[

0
8(y2 + 1)

]

=
(

0
4

)

.

Further, we obtain that β = Hλ(y) + ζ = 4(− 1
2 + 1)2 + 51

3 = 61
3 ,

〈∇Hλ(y), u − y〉 = 〈
(

0
4

)

,

(
4
3

0.5

)

〉 = 2, ψ(y, β) � β + 〈∇Hλ(y), u − y〉 = 8
1
3
.

Gλ(u) =
1
2
(
4
3

− 4)2 + 22 + 4(
4
3

− 1)2 =
32
9

+ 4 +
4
9

= 8.
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Hence, we see that

Gλ(u) = 8 < 8
1
3

= β + 〈∇Hλ(y), u − y〉,

and the PI (11) is violated. Due to Theorems 1 and 2, it means that (z, λ) is not
a saddle point of the Lagrange function, which can be proved as follows:

L(u, λ) � f0(u) + 4f1(u) = 7
5
9

+ 4 · (−8
9
)

= 4 < 5
1
3

= f0(z) = L(z, λ).

On the other hand, it is easy to compute that

f0(u) =
1
2
(4
3

− 4
)2 + 22 =

32
9

+ 4 = 7
5
9

> f0(z) = 5
1
3
,

so that there is no improvement at all in the original problem (4). Consequently,
we see that the GOC of Theorems 1 and 2 allow us to improve the point z in the
sense of the Lagrange function, since they are striving to minimize the Lagrange
function with respect to the variable x. However, they do not aim at minimizing
the function f0(x) over the feasible set D, i.e. at solving Problem (P). 
�

The next result will be useful below.

Lemma 3 ([9,10,12]). A point z is a solution to the problem

(Q) :
S(x) := ϕ(x) + f(x) ↓ min

x
, x ∈ S,

ϕ(x) := max
j

{
ϕj(x) | j ∈ J = {1, . . . , N}}.

}

(18)

if and only if the pair (z, t∗) is a solution to the problem

(QA) : Φ(x, t) := t + f(x) ↓ min
(x,t)

, x ∈ S, t ∈ IR, ϕj(x) � t, j ∈ J, (19)

where
t∗ = ϕ(z) = max

j
{ϕj(z) | j ∈ J}. (20)

Lemma 4 Let the quadratic function q(x) := 1
2 〈x,Ax〉 − 〈b, x〉 with the positive

definite matrix A = AT > 0, b ∈ IRn, be given. Consider the optimization
problem (with a parameter u ∈ IRn)

Q(y, β) := β + 〈∇q(y), u − y〉 ↑ max
(y,β)

, (y, β) ∈ IRn+1 : q(y) = β − γ. (21)

Then, the solution (y∗, β∗) to (21) is provided by the equalities

y∗ = u, β∗ = q(y∗) + γ. (22)

Example 2 (of G.R.Walsh, [23], p. 67). Consider the problem

f0(x) = x1x2 − 2x2
1 − 3x2

2 ↓ min
x

,

f1(x) = 3x1 + 4x2 − 12 ≤ 0, f2(x) = x2
2 − x2

1 + 1 ≤ 0,
f3(x) = −x1 ≤ 0, f4(x) = x1 − 4 ≤ 0,
f5(x) = −x2 ≤ 0, f6(x) = x2 − 3 ≤ 0.

⎫
⎪⎪⎬

⎪⎪⎭

(23)
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Let us study the unique solution z = (4, 0)� to (23), f0(z) = ζ = −32. Clearly,
the Lagrange function at z takes the form L(x, λ) = x1x2 −2x2

1 −3x2
2 +λ1(3x1 +

4x2 − 12) + λ4(x1 − 4) − λ5x2, S = IR2, because λ2 = λ3 = λ6 = 0, due to the
complementarity conditions: λifi(x) = 0, i = 1, 6. In addition, with the help of
the KKT-conditions at z = (4, 0)�, we derive that λ1 = 2, λ4 = 10, λ5 = 12, so
that

L(x, λ) = x1x2 − 2x2
1 − 3x2

2 + 16x1 − 4x2 − 64. (24)

Besides, L(z, λ) = −32 = ζ = f0(z), as it should be. Further, it can be readily
seen that the function x �→ L(x, λ) is a d.c. one. We will use the d.c. represen-
tation as follows: L(x, λ) = Gλ(x) − Hλ(x), where

Gλ(x) = 2(x2
1 + x2

2) + 16x1 − 4x2 − 64, Hλ(x) = 4x2
1 + 5x2

2 − x1x2. (25)

Therefore, one can see that β = Hλ(y) + ζ = Hλ(y) − 32, ∇Hλ(x) = (8x1 −
x2, 10x2−x1)�, 〈∇H(y), u−y〉 = 8y1u1−y2u1+2y1y2−8y2

1−10y2
2+10y2u2−y1u2,

from which it follows that

θ(y, β) := β + 〈∇H(y), u − y〉 =
ψ(y) := (8u1 − u2)y1 + (10u2 − u1)y2 + y1y2 − 4y2

1 − 5y2
2 − 32.

(26)

Furthermore, Lemma 4 leads us to the equality: y∗ = u. Now, let us choose
the vector u as u = (− 1

5 ,− 4
5 )�, since S = IR2. Then one can compute that

Gλ(u) = −62 16
25 < −42 = ψ(y∗) = θ(y∗, β∗), so that the inequality (11) is

violated. Therefore, due to Theorems 1 and 2, we see that the pair (z, λ) is not
a saddle point of L(u, λ). The latter assertion can be easily verified by the direct
calculations L(u, λ) = −6521

25 < −32 = L(z, λ).
To sum up, we see that there does not exist a Lagrange multiplier λ such

that (z, λ) ∈ Sdl(L) even for the unique global solution z ∈ Sol(P). 
�
So, the max-merit function F (x, η) defined in (2), as well as the Lagrange

function, possesses some shortcomings, and both functions do not reflect com-
pletely the properties of Problem (P). Hence, we have to undertake further
investigations, perhaps, with different penalty or merit functions [10–13].

5 Penalty Functions

Now, let us introduce now the l∞-penalty function [10–13] for Problem (P)–(1)

W (x) := max{0, f1(x), . . . , fm(x)} =: max{0, fi(x), i ∈ I}. (27)

Further, consider the penalized problem as follows

(Pσ) : θσ(x) = f0(x) + σW (x) ↓ min, x ∈ S. (28)

As well-known [5,6,11–13], if z ∈ Sol(Pσ), and z ∈ D := {x ∈ S |
fi(x) ≤ 0, i ∈ I}, then z ∈ Sol(P). On the other hand, if z ∈ Sol(P),
then, under supplementary conditions [5,6,10–13], for some σ∗ ≥ ‖λz‖1 (where
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λz ∈ IRm is the KKT-multipliers corresponding to z), the inclusion z ∈ Sol(Pσ)
holds ∀σ > σ∗.

Furthermore [5, Lemma 1.2.1, Chapter VII], Sol(P) = Sol(Pσ), so that Prob-
lems (P) and (Pσ) happen to be equivalent ∀σ ≥ σ∗.

Before we move on any further, a few words should be said about “supplemen-
tary conditions”. First of all, let us mention the notion of calmness introduced
by R.T. Rockafellar [1] (see F. Clarke [6] and J.V. Burke [13]). To begin with,
instead of (P), consider the perturbed d.c. optimization problem (v ∈ IRm)

(P(v)) : f0(x) ↓ min
x

, x ∈ S, fi(x) ≤ vi, i ∈ I. (29)

Let x∗ ∈ S, v∗ ∈ IRm be such that fi(x∗) ≤ v∗i, i ∈ I. Then, Problem (P(v∗))
is said to be calm at x∗, if there exist constants κ ≥ 0 and ρ > 0 such that
∀(x, v) ∈ S × IRm with ‖x − x∗‖ ≤ ρ and fi(x) ≤ vi, i ∈ I. We have

f0(x∗) ≤ f0(x) + κ‖v − v∗‖. (30)

The constants κ and ρ are called the modulus and the radius of calmness for
(P(v∗)) at x∗, respectively. Observe that, if (P(v∗)) is calm at x∗, then x∗ is a
ρ-local solution to (P(v∗)), i.e. (v = v∗)

f0(x∗) ≤ f0(x) ∀x ∈ S : ‖x − x∗‖ ≤ ρ, and fi(x) ≤ v∗i, i ∈ I,

i.e. x ∈ D(v∗) ∩ Bx(x∗, ρ). For instance, when v∗ = 0 and (P(0)) is calm (with
κ ≥ 0 and ρ > 0), x∗ is the ρ-local solution to (P(0)) := (P).

The most fundamental finding consists in the equivalence of the calmness of
(P(v∗)) at x∗ (with κ ≥ 0 and ρ > 0) and the fact that x∗ is a ρ-local minimum
of the following penalized function with σ ≥ κ

θσ(x; v∗) := f0(x) + σ dist(F (x) | IRm
− + v∗), (31)

where F (x) = (f1(x), . . . , fm(x))�, IRm
− = {y ∈ IRm | yi ≤ 0, i ∈ I},

dist(y0 | C) = inf{‖y − y0‖ : y ∈ C}. If one takes, for instance, ‖y‖∞ �
max

i
{|yi| : i ∈ I}, then it is obvious that

W (x) := max{0, f1(x), . . . , fm(x)} = dist∞(F (x) | IRm
− ).

Various conditions can be found in the literature (see [13] and the references
therein) that ensure that the calmness hypothesis is satisfied. All of these con-
ditions are related to the regularity of the constraint system of Problem (P):

x ∈ S, fi(x) ≤ 0, i ∈ I. (32)

Recall that the system (32) is said to be regular at the solution x0 (i.e.
x0 ∈ S, F (x0) ≤ 0m) if there exist some constants M > 0 and ε > 0 such that
distx(x | D(v)) ≤ M disty(F (x) | IRm

− + v) ∀x ∈ S ∩ Bx(x0, ε) and ∀v ∈ By(0, ε)
where

D(v) := {x ∈ S | F (x) ∈ IRm
− + v}, Bx(x0, ε) := {x ∈ IRn | ‖x − x0‖x ≤ ε}.
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The conditions yielding the regularity of system (32) and more general sys-
tems have been studied in [14]. In the optimization literature such conditions
are often called the constraint qualifications conditions, e.g. the Slater and
Mangasarian-Fromovitz conditions (etc. see [10–14]).

To sum up, one can say that, under well-known regularity conditions at the
global solution z ∈ Sol(P), Problem (P) (v∗ = 0m) is calm at z ∈ Sol(P) (with
the corresponding κ ≥ 0 and ρ > 0), and, therefore, the goal function of the
penalized problem (∀σ ≥ κ ≥ 0)

(Pσ) : θσ(x) = f0(x) + σ dist∞(F (x) | IRm
− ) = f0(x) + σW (x) ↓ min

x
, x ∈ S

attains at z its global minimum over S.
Furthermore, it can be readily seen that the penalized function θσ(·) is a d.c.

function, because the functions fi(·), i ∈ I ∪ {0}, are the same. Actually, since
σ > 0,

θσ(x) = Gσ(x) − Hσ(x), (33)

Hσ(x) := h0(x) + σ
∑

i∈I

hi(x), (34)

Gσ(x) := θσ(x) + Hσ(x)

= g0(x) + σ max

{
m∑

i=1

hi(x);max
i∈I

[gi(x) +
j �=i∑

j∈I

hj(x)]

}

,
(35)

it is clear that Gσ(·) and Hσ(·) are convex functions.
For z ∈ S, denote ζ := θσ(z).
Now we can formulate the major result of the paper.

Theorem 3 If z ∈ Sol(Pσ), then

∀(y, β) : Hσ(y) = β − ζ (36)

the following inequality holds

Gσ(x) − β ≥ 〈∇h0(y) + σ
∑

i∈I

∇hi(y), x − y〉 ∀x ∈ S. (37)


�
It is easy to see that Theorem 3 reduces the nonconvex (d.c.) Problem (Pσ)

to solving the family of convex linearized problems of the form

(PσL(y)) : Gσ(x) − 〈∇Hσ(y), x〉 ↓ min
x

, x ∈ S, (38)

depending on the parameters (y, β) fulfilling (36).
If for such a pair (y, β) and some u ∈ S (u may be a solution to (PσL(y)))

the inequality (37) is violated, i.e.

Gσ(u) < β + 〈∇Hσ(y), u − y〉, (39)
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then, due to convexity of Hσ(·) and with the help of (36), we obtain that

Gσ(u) < β + Hσ(u) − Hσ(y) = Hσ(u) + ζ.

The latter implies that θσ(u) = Gσ(u) − Hσ(u) < ζ := θσ(z), so that u ∈ S is
better than z, i.e. z /∈ Sol(Pσ).

It means that the Global Optimality Conditions (36), (37) of Theorem 3 pos-
sess the constructive (algorithmic) property allowing to design local and global
search methods for Problem (Pσ) [17,18,20–22].

In particular, they enable us to escape a local pit of (Pσ) to reach a global
solution. The question arises whether such a tuple (y, β, u) exists. The answer is
given by the following result.

Theorem 4 Let for a point z ∈ S there exists w ∈ IRn such that

(H) : θσ(w) > θσ(z).

If z is not a solution to Problem (Pσ), then one can find a pair (y, β) ∈ IRn+1,
satisfying (36), and a point u ∈ S such that the inequality (39) holds. 
�

Now let us set y = z in (38). Then from (36) it follows that β = θσ(z) +
Hσ(z) = Gσ(z). Furthermore, from (37) we derive

Gσ(x) − Gσ(z) ≥ 〈∇Hσ(z), x − z〉 x ∈ S,

that yields that z is a solution to the convex linearized problem

(PσL(z)) : Gσ(x) − 〈∇Hσ(z), x〉 ↓ min
x

, x ∈ S,

With the help of Lemma 3 and due to (33)–(35), we see that the latter problem
amounts to the next one

g0(x) − 〈∇Hσ(z), x〉 + σt ↓ min
(x,t)

, x ∈ S, t ∈ IR,
∑

i∈I

hi(x) ≤ t, gi(x) +
∑

j �=i

hi(x) ≤ t, i ∈ I.

⎫
⎬

⎭
(40)

Moreover, the KKT-conditions to Problem (40) provide for the KKT-conditions
at z for the original Problem (P).

So, the Global Optimality Conditions (36), (37) of Theorems 3 and 4 are
connected with classical optimization theory [1–13,15].
Example 1 (Revisited). Let us return to problem (4), where the point
z = ( 43 ,− 2

3 )�, with f1(z) = 0 and f2(z) = −4 < 0, ζ := f0(z) = 51
3 , satis-

fies the KKT-conditions with λ0 = 1, λ1 = 4 > 0, λ2 = 0.
On the other hand, the point z0 = (83 ,− 8

3 )� is the global solution to (4) with
the optimal value V(4) = f0(z0) =: ζ0 = 4

3 .
In this example, h0(x) ≡ 0, g0(x) = f0(x) = 1

2 (x1 − 4)2 + (x2 + 2)2, g1(x) =
(x1 − 1)2, h1(x) = (x2 + 1)2, g2(x) = (x2 − 2)2, h2(x) = (x1 + 2)2. Therefore,
taking into account (34) and (35), one can see that
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Hσ(x) := h0(x) + σ
∑

i∈I

hi(x) = σ
[
(x1 + 2)2 + (x2 + 1)2

]
,

Gσ(x) := g0(x) + σ max
{ 2∑

i=1

hi(x); g1(x) + h2(x); g2(x) + h1(x)
}

=
1
2 (x1 − 4)2 + (x2 + 2)2+

σ max
{
(x1 + 2)2 + (x2 + 1)2; (x1 − 1)2 + (x1 + 2)2; (x2 − 2)2 + (x2 + 1)2

}
.

Set σ := 5 = ‖λ‖1, y = (1.5,−2)� �∈ D. Then, we have β = Hσ(y) + ζ =
5
[
(1.5 + 2)2 + (−2 + 1)2

]
+ 51

3 = 71 7
12 . Now set u = (2,−2)� ∈ D.

Then, according to Theorem 3, it is not difficult to compute that

β + 〈∇Hσ(y), u − y〉 = 89
1
12

.

On the other hand, we see that

Gσ(u) = 87 < 89
1
12

= β + 〈∇Hσ(y), u − y〉.

It means that the principal inequality (37) of the GOC is violated, so that
z �∈ Sol(Pσ). Consequently, z �∈ Sol(P), since 2 = f0(u) = θσ(u) < θσ(z) =
f0(z) = 51

3 , because u and z are feasible.
So, the Global Optimality Conditions (GOC) of Theorems 3 and 4 allow us

not only to show that the KKT-point z = (43 ,− 2
3 )T is not a global solution to the

problem (7), but, in addition, to construst a feasible point u = (2, 2)T ∈ D which
is better than z and closer to the global solution z0 = (83 ,− 8

3 )T . Remember, the
max-merit function F (x, ζ) does not differ between these two points:

F (z, ζ) = 0 = F (z0, ζ).

Besides, in order to find a saddle point, the Lagrange function aims at improving
exactly itself but not at solving Problem (P). 
�

Hence, the exact penalization approach demonstrated some advantages in
comparison with the max-merit and Lagrange functions.

In addition, employing the constructive property of the GOC of Theorems 3
and 4, we can design the Special Local Search and Global Search Methods.
The latter one can escape local pits and attain global solutions in general d.c.
optimization problems.

6 Conclusion

We considered the reduction of the constrained optimization problem with
the d.c. goal function and d.c. inequality constraints to three auxiliary uncon-
strained problems with different objective functions: the max-merit function, the
Lagrange function and an exact penalty function.

The comparison was based on the level of adequacy to the original prob-
lem and has been carried out by means of the classical tools, the new Global
Optimality Conditions (GOC) and a few examples.
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The results showed certain advantages of the exact penalization approach
that facilitates development of the new local and global search methods for
solving the original problem [17–22].

Acknowledgments. This work has been supported by the Russian Science Founda-
tion, project No. 15-11-20015.
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Abstract. The paper studies the trade in the spot electricity market
based on submitting bids of energy consumers and producers to the mar-
ket operator. We investigate supply function equilibrium (SFE) model,
in which generation capacities are integrated into large generation com-
panies that have a common purpose of maximizing their profits. For this
case we prove the existence and uniqueness of equilibrium for a linear
function of aggregate demand and quadratic costs. The mechanism is
tested on the basis of the Siberian electric power system, Russia.

Keywords: Electricity market · Models of imperfect markets ·
Oligopoly · Model of supply function equilibrium · Liberalization

1 Introduction

The restructuring of Russia’s electric power industry was carried out without
a preliminary testing of the mechanisms to be implemented [1]. Taking into
account the successful experience of other countries we chose a double auction
market for the wholesale trading [2]. The market was supposed to ensure the
right incentives for the behavior of participants. For testing, we need models to
analyze the specific features of the market architecture and rules of organizing
the interaction among the market participants. This mathematical model allows
to describe, on the one hand, the actions of the generating companies, and on
the other hand - the actions of consumers, under the conditions of a liberalized
market.

Interaction in the electricity market can be described by a model of mixed
oligopoly [3,4] or a conjectured supply function model [5–10]. In this approach,
each agent models its own strategy on the basis of the assumption about the
actions of its competitors. It is important that the information is not perfect,
which makes the model more real. One of the special cases of the expected
supply function model is the supply function equilibrium (SFE, or rather its
linear variant). For inelastic demand we can apply the Cournot competition
(which is characteristic of the spot electricity market). All these approaches can
take into account the capacity constraints.
c© Springer International Publishing Switzerland 2016
Y. Kochetov et al. (Eds.): DOOR 2016, LNCS 9869, pp. 469–479, 2016.
DOI: 10.1007/978-3-319-44914-2 37
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We develop a model of supply function equilibrium by introducing into con-
sideration the generation companies. Generating capacities are integrated into
large generation companies to jointly maximize their profit. At the same time,
each capacity submits bids to the commercial operator of the market. Modeling
of these conditions requires additional tools, taking into account the common
goals of several capacities. It is not enough to simply combine them into a com-
mon profit function. In this case, we deal with the underdetermined system of
nonlinear equations. It is necessary to impose additional conditions to make it
possible to identify missing variables. In the present paper, we propose a solution
to this problem.

The goal of the suggested model is to solve the problem of modeling the
electricity market functioning, analyze the situation, determine the most power-
ful players in the market, and find out the stability of strategies chosen by the
producers.

2 The Model

The pricing in the electricity spot market is organized as a double auction.
Namely, there is a strategic interaction between the firms that generate power
(power plants), and the price is derived from the equality of demand and sup-
ply. Power plants are different in their technological capabilities and type of
costs. Therefore, it is reasonable to describe the market behavior by applying
the models that divide firms into strategic producers (that can affect the market
price) and competitive firms (that do not take part in the auction, but take the
price as fixed). This makes sense because the RF Law regulating the electric
power industry allows the participants of these two types to take part in the
auction [11].

We study the model that considers influence of the amount of power gen-
eration by competing firms to establish the market price, taking into account
the fact that this price will affect the output of each generator. Supply func-
tions are called conjectured, since the firms can only guess the reaction of their
competitors. These functions have the so-called coefficients of influence of each
participant on the situation in general.

All consumers are aggregated by the total nonincreasing demand function
D (p). The supply functions of individual firms are qi (p), i = 1, n; n ≥ 2 is the
number of firms in the market. We assume that supply function qi(p) of firm i is
non-negative and non-decreasing. The price is determined by a market-clearing
condition. The total output supplied at the market-clearing price must be equal
to the demand

n∑

i=1

qi (p) = D (p) .

The inverse demand function is p = D−1

(
n∑

i=1

qi

)

. We will define the outputs

of competitors of firm i as q−i (p) =
∑

j �=i

qj (p), this is the total output excluding
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qi (p). Thus, the residual demand of the generation company i is qi (p) = D (p)−
q−i (p) . Here p ∈ R1

+ is the price formed through the interaction of agents in
the market. Cost functions Ci (qi) are convex and increasing, qi ≥ 0, i = 1, n.
Generation companies seek to maximize the profit on the residual demand such
that, in equilibrium, the demand will equal to the total output of the companies:

π (P, qi) = p · (D (p) − q−i (p)) − Ci (D (p) − q−i (p)) . (1)

Each firm i determines the supply functions of all other firms and uses this
information when maximizing its profit on residual demand. It is important that
the scale of these reactions is assumed by firm i itself. Hence, the answers can
differ from the real reactions of competitors. Here, many researchers see inter-
connection between this model and the problem the Stackelberg Competition.
A simplified form of this model is the SFE model [5,6] where all interested all
stakeholders have information about the competitors. This assumption signifi-
cantly simplifies the model. Changing market firms influence leads to different
equilibrium models: the maximum market power will correspond to the Cournot
model, and minimum influence – to the model of perfect competition.

Consider the example of our models by making the following assumptions:
demand function is linear, generation companies are heterogeneous in convex
quadratic operating cost functions and constraints on power generation.

Let

D(p) = N − γ · p (2)

be the linear function of total demand, where γ > 0. Let

Ci (qi) =
1
2
ciq

2
i + aiqi, (3)

ci > 0, ai �= 0, i = 1, n, be the production costs of firm i, quadratic and strictly
convex. Let a1 ≤ a2 ≤ ... ≤ an.

The models presented below have a common idea. In these models, each
producer i defines the strategy of behavior by the described supply function
qi(p), which includes possible reactions of all competitors on the change in the
production of the firm i. In order to rationally choose an optimal volume of
production each firm solves the profit maximization problem (1) on residual
demand D (p) − q−i(p) for firm i under conditions (2), (3):

πi (p) = (p − ai) · (D (p) − q−i(p)) − 1
2
ci(D (p) − q−i(p))2 → max

p
, i = 1, n.

Each firms profit function πi (p), i = 1, n, is concave with respect to p under
(2)-(3), and hence, has a unique maximum.

First-order optimality condition:

∂πi

∂p
= 0, =⇒ qi (p) = (p − C ′

i (qi (p)))
(

−dD

dp
+

dq−i

dp

)

, i = 1, n.
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2.1 Models of Linear Supply Function Equilibrium

Here we consider the generation companies strategies that can be applied to
the electricity market. These strategies correspond to the model of linear sup-
ply function equilibrium [9,10]. The firms are interacting with the competitive
environment on the auction. It should be noted that the model described below
is a special case of the SFE model (namely, we consider the special supply func-
tions). The SFE model deals with the problem of multiple equilibria and the
complexity of their location. The only way to solve it is to use linear supply
functions of competitive firms. To use this model is reasonable for the electric
power industry, since the type of submitted bids is usually determined by the
rules of auctions. These bids can be either in the form of step functions or in the
form of linear functions [7].

It is assumed that the market rules determine the supply function for each
firm in the linear form

qi(p) = βi(p − αi), (4)

βi ≥ 0, i = 1, n, where parameters αi and βi are chosen by firm i. At the given
price level the supply functions cannot be negative.

The profit function for firm i is concave on the residual demand:

πi (p) = (p−ai)

⎛

⎝N − γp −
∑

j �=i

βj (p − αj)

⎞

⎠− ci

2

⎛

⎝N − γp −
∑

j �=i

βj (p − αj)

⎞

⎠

2

.

(5)
The function is concave because the coefficient of p2 is negative:

−
⎛

⎝γ +
∑

j �=i

βj

⎞

⎠ − ci

2

⎛

⎝γ +
∑

j �=i

βj

⎞

⎠

2

< 0.

From the first-order optimality condition we have

βi (p − αi) =

⎛

⎝γ +
∑

j �=i

βj

⎞

⎠ (p − ai − ciβi (p − αi)) . (6)

The solution has a different form depending on the interval where the equi-
librium is located [9] or on demand. We consider the simple case when (i) the
market does not have much excess of capacity, (ii) all generators is involved in
the selection, (iii) they take into account each other when forming its supply
function. The solving of the problems arising in the situation of small demand is
difficult and is described in detail in [7]. Our version of the model corresponds to
proposition 1 from paper [7]. In [7,10] the solution of problem (5) is suggested
for the case of linear supply functions when max1≤i≤n ai < p < pmax, where
pmax is determined from the maximum possible demand. In [6] this solution was
refined to the marginal cost of type (3):
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βi =

⎛

⎝γ +
∑

j �=i

βj

⎞

⎠ (1 − ciβi) , αi = ai, βi > 0, i = 1, n. (7)

The proof of the uniqueness is similar to the proposed by Rudkevich [12]. We
can transform (7) into quadratic equation with respect to βi:

β2
i −

(

(B + γ) +
2
ci

)

βi +
(B + γ)

ci
= 0.

where B =
n∑

i=1

βi. We select the equation root that satisfies the condition of

positivity B > 0. Thus, the solution is unique and positive:

βi =
B + γ

2
+

1
ci

−
√

(B + γ)2

4
+

(
1
ci

)2

,

where B is the unique solution of equation

B =
n∑

i=1

1
ci

+ n · B + γ

2
−

n∑

i=1

√
(B + γ)2

4
+

(
1
ci

)2

. (8)

In right-hand side the function is concave w.r.t. B, in the left-hand side the
function is linear. The solution will be unique for positive value because the value
of the right-hand side of Eq. (8) is higher than the left-hand side one at B = 0.

Taking into account the constraints on power generation, the supply function
for producers and equilibrium prices take the following form for i = 1, n :

qi(p) =

{
0, p ≤ ai,

βi(p − ai), ai < p ≤ pmax.

The market price is p∗ = (N + γ
∑

i βiai) / (γ
∑

i βi + 1) . The condition of
equilibrium αi = ai for each firm i means that the auction participants have an
incentive to make the values of their coefficients ai, (in the functions of marginal
costs) generally known.

Therefore, this strategy will mean that the producer is guided by the price
p∗, demand elasticity at this price, and some reaction of the competitors to the
change in its price and supply.

It should be mentioned that the considered model of linear supply function
equilibrium is true only when the prices are higher than all coefficients ai (non-
negativity of production volumes is provided). Otherwise, it is necessary to use
piecewise-linear approximations.
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2.2 Models of Linear Supply Function Equilibrium with Generation
Company

Here we study the models in terms of the integration of several capacities into
generation companies. Accordingly, the profit function of such integration is the
sum of profits of individual capacities. The generation company acts as a multi-
capacity monopoly, i.e., on the basis of the principle of equality of the marginal
costs of individual productions. Generating capacities are integrated into large
generation companies that have a common purpose to maximize their profit.
At the same time, each capacity submits bids to the commercial operator of the
market, despite the fact that major players interact in the market. Let capacities
k = 1,m belong to one generation company G. This problem has the form:

πG (qk, q−k, p) = p ·
∑

k∈G

qk −
∑

k∈G

Ck (qk) → max,

qk ≥ 0, βk > 0, αk ≥ 0 ∀k ∈ G,

where qk has the form (4). The described problem, as well as the model of
supply function equilibrium, has a unique solution under positive βk, k ∈ G.
Additionally, it is necessary to take into consideration the profit maximization
condition, i.e., the equality of marginal production costs within the company:

ak + ckβk (p − ak) = al + clβl (p − al) ∀ l ∈ G.

In this case the following statement holds.

Proposition. In the model of supply function equilibrium with n capacities in
the case of participation of the generation company G the equilibrium exists and
is unique under the constructed supply functions qi = βi (P − αi) , i = 1, n, and
demand function D (p) = N − γ · p is linear. The equilibrium is defined by the
coefficients for ai < p

αi = ai, βi =

⎛

⎝1 + ci

⎛

⎝γ +
∑

j �=i

βj

⎞

⎠

⎞

⎠

−1

, i /∈ G, (9)

αl =
∑

k∈G

ak − 1 +

∑

k∈G,k �=l

(al−ak)
ck

cl · βl ·
∑

k∈G

1
ck

, l ∈ G, (10)

βl =

⎛

⎝

⎛

⎝1 +
∑

k∈G

cl

ck
+ cl

⎛

⎝γ +
∑

j /∈G

βj

⎞

⎠

⎞

⎠

⎞

⎠

−1

, l ∈ G. (11)

The proof is presented in the Appendix.
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Theoretical analysis of the models has showed that

(a) competitive environment increases production and decreases the equilibrium
price in comparison with the one-level interaction of strategic firms;

(b) from consumers’ viewpoint the competition among the linear supply func-
tions of electricity producers is more preferable than Cournot competition.
In this case the market achieves equilibrium at lower prices and with larger
production volumes. Despite the fact that each firm makes less profit than
in the case of Cournot competition, the social welfare generally increases
due to the consumer surplus, and the equilibrium price tends to Walrasian
price.

Theoretical conclusions have confirmed by test examples, this allows us to
compare the market mechanisms according to the criterion of social welfare
maximization.

3 Modeling of Interaction in the Siberian Electricity
Market

Here we consider only modeling of the spot market and analyze the strategies of
economic agents and their market power. We discus the modeling of the inter-
action without network constraints, based on the models described in Sect. 2.

We use a scheme with 15 nodes and model formation of the price taking into
account the strategic interaction of producers in the market. We use the main
characteristics of generation and consumption at the nodes of system, average
hourly consumption, and average annual costs of producers for 2011 in the system
Sibir [13].

The demand function in our model is linear. As usual, we assume that the
demand of electricity has low elasticity close to zero. The demand elasticity in
[14] is −0.165 for urban population and −0.28 for rural population. These data
have calculated for Siberia (Novosibirskenergo). In this case the parameter of the
slope of the demand function corresponding to the elasticity of −0.3 is γ = 40.

Producers (power generators) are divided into strategic producers (that sig-
nificantly influence on the price, the price makers) and the price takers. The
second group consists of hydropower plants (HPPs) that are assumed to have
zero marginal costs; they are present in the market by providing information only
on the volumes of generated power (Krasnoyarsk, Sayano–Shushensk, Bratsk and
Ust-Ilimsk HPPs). All plants have constraints on generation. Transmission losses
are considered across the whole system. Prices were calculated on the basis of
Cournot model and LSFE model with competitive environment.

The resulting strategy are presented in the Table 1, where columns show an
excess supply function coefficients β of generation companies over marginal costs.

In the experiment, Gusinoozersk and Kharanorsk CPPs were merged into one
company, taking into account generation companies. The columns represent the
excess (in percentage) of the values of supply function over the marginal costs
for the LSFE (7), LSFE(GenCo) (9)–(11) and Cournot models that characterize
market power of individual companies.
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Table 1. The coefficients of supply function of generation companies corresponding to
different market models.

( 1
βici

− 1)(%) LSFE model GenCo model Cournot model

Irkutsk HPP 17 16 28

Gusinoozer CPP 6 4 11

Kharanorsk CPP 7 8 4

Krasnoyarsk HPP 26 26 38

Novosibirsk HPP 21 20.5 24

Kuzbass HPP 3 3 22

4 Conclusion

We propose a modification of the model of supply functions equilibrium with
the introduction the generation companies. The generation companies are major
players interacting in the electricity spot market. Each capacity has the supply
function in the market and submits it to the commercial operator. We found
a unique equilibrium for the case of the linear supply functions, the quadratic
costs and the linear aggregate demand.

As a result of modeling the strategic interaction in the wholesale market of
the electric power system “Sibir” using the linear supply functions models with
generation companies, we found out that:

(1) the lowest equilibrium price is achieved in the models that use equilibrium
supply functions with the competitive environment (linear supply functions
in our case);

(2) the firms that work under the conditions of inelastic demand can significantly
overprice regarding the marginal costs (Walrasian prices);

(3) the presence of generation companies changes market power, the integration
of small capacitites into a generation company reduces the market power of
other companies;

(4) the merge of individual capacities into big companies leads to an increase
the market power and prices.

Acknowledgments. This work was partially supported by the Russian Foundation
for Basic Research, grant 16-06-00071.

Appendix: Proof of the Proposition

Let a generation company have two capacities; G = {l, k}. Then the profit
function is:

πl+k

(
qk, ql, q−(k+l), p

)
= p · qk + p · ql − Ck (qk) − Cl (ql) .
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Since the company redistributes the output (a residual demand) inside
according to the condition of cost optimization it is necessary to equate the
marginal revenue (which in this case is the same for any sold unit of commod-
ity) to the marginal costs. For two capacities this is:

{
∂πk+l

∂qk
= ∂p

∂qk
(qk + ql) − MCk (qk) = 0,

∂πk+l

∂ql
= ∂p

∂ql
(qk + ql) − MCl (ql) = 0.

Hence, the main condition is: MCk (qk) = MCl (ql) . The impact of each unit
of output of companies on the market price is equivalent to ∂p

∂ql
= ∂p

∂qk
. For the

linear supply functions this condition is:

ak + ckβk (p − αk) = al + cl · βl (p − αl) .

Then

βk =
βl · cl

ck
, αk = αl +

ak − al

βl · cl
. (12)

Using (12), the supply function can be written through the costs of the
capacities

qk + ql = βl

(

1 +
cl

ck

)

· p − βl

(

1 +
cl

ck

)

αl − ak − al

ck
.

Hence the linear supply function, submitted by the generation company to oper-
ator, is:

qk+l = βg (p − αg) ,

where

αg = αl +
ak − al

βl · (ck + cl)
, βg = βl ·

(

1 +
cl

ck

)

.

The total costs of the generation company is the sum of costs of separate capac-
ities:

TC (ql + qk) = akqk + 0.5 · ckq2k + alql + 0.5 · clq
2
l .

Substitute qi = βi (p − αi) , i ∈ {l, k}, and (12):

TC (ql + qk) =

(

1 +
cl

ck

)

· βl (p − αl) − 0.5 · cl

(

1 +
cl

ck

)

(βl (p − αl))
2
αl − (ak − al) (ak + al)

2ck
.

Using the general form of the cost function

TC (qg) = agβg (p − αg) + 0.5 · cg (βg (p − αg))
2
,
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we obtain a system of equations from which it is possible to determine the
required parameters for the aggregate cost function of the generation company:

⎧
⎨

⎩

ag − cg
ak−al

ck
= 1,

cg = ck·cl
ck+cl

,

2ag − cg
ak−al

ck−cl
= ak + al.

Thus, we can reduce our problem to the problem with separate capacities. In
this case, the competitors consider generating company with the supply function
of the form qk+l = βg (p − αg). The company problem is:
⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

π (qg, q−g, p) = p · βg (p − αg) − agβg (p − αG) − 0.5 · cg (βg (p − αg))2 → max
P

;

ag = ak + al − 1, cg = ck·cl
ck+cl

,

αg = αl + ak−al
βl·(ck+cl)

= αk + al−ak
βk·(ck+cl)

,

βg = βl ·
(
1 + cl

ck

)
= βk ·

(
1 + ck

cl

)
.

The profit function is concave, therefore the maximum is attained. As in [7], we
prove the uniqueness of the positive solution for the coefficients β1, ...,βg, ..., βn.
From the uniqueness of the solution and (7) it follows the uniqueness of a solution
for the case with generation companies. The coefficients of the supply function is:

qi = βi (P − αi) , αi = ai, βi = 1

1+ci

(

γ+
∑

j �=i

βj

) , i /∈ G

αg = ak + al − 1, βg =

⎛

⎝

⎛

⎝1 +
cl · ck

cl + ck

⎛

⎝γ +
∑

j /∈G

βj

⎞

⎠

⎞

⎠

⎞

⎠

−1

.

Hence qk = βk (p − αk) , ql = βl (p − αl) , where

βl =

⎛

⎝

⎛

⎝1 +
cl

ck
+ cl

⎛

⎝γ +
∑

j /∈G

βj

⎞

⎠

⎞

⎠

⎞

⎠

−1

, l, k ∈ G,

βk =

⎛

⎝

⎛

⎝1 +
ck

cl
+ ck

⎛

⎝γ +
∑

j /∈G

βj

⎞

⎠

⎞

⎠

⎞

⎠

−1

, l, k ∈ G,

αl = ak + al − 1 − ak − al

βl (cl + ck)
, αk = ak + al − 1 − al − ak

βk (cl + ck)
.

The special case considered above can be extended to the general one if the
generation company has set G of individual capacities. Then the coefficients for
the general supply function of the generation company are:

αg =
∑

k∈g

ak − 1, βg =

⎛

⎜
⎜
⎜
⎝

⎛

⎜
⎜
⎜
⎝

1 +
1

∑

k∈G

1
ck

⎛

⎝γ +
∑

j /∈G

βj

⎞

⎠

⎞

⎟
⎟
⎟
⎠

⎞

⎟
⎟
⎟
⎠

−1

.
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From this we can obtain all coefficients for the supply functions of individual
productions.
The Proposition is proved.
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Abstract. Contemporary domination of chain-stores in retailing is
modeled, perceiving a monopolistic retailer as a market leader. A myr-
iad of her suppliers compete in a monopolistic competitive sector,
displaying quadratic consumers’ preferences for a differentiated good.
The leader announces her markup before the suppliers choose their
prices/quantities. She may restrict the range of suppliers or allow for free
entry. Then, a market distortion, stemming from double marginalization
and excessive variety would be softened whenever the government allows
the retailer to apply an entrance fee to the suppliers, or/and per-quantity
sales subsidies (doing the opposite to usual Russian regulation).

Keywords: Industrial organization theory · Vertical relations · Chain
stores · Dominant retailer · Entrance fee · Welfare

1 Introduction

Emerging domination of chain-stores like Wal-Mart in retailing has raised some
controversial questions for consumers and regulating authorities. A political
struggle against chain-stores resulted in some restrictions on their construction
or/and operations in US and Europe. Similarly, the Russian Retailing law (2010)
restricts each store’s share in a city district. It also forbids entrance fees, pre-
viously required by retailers from manufacturers. Can such measures be really
welfare-enhancing, as claimed by politicians?
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To sharpen this question, we model the dominant market position of a big
retailer by a limiting case where only one monopolistic retailer faces numerous
manufacturers (in contrast with some papers which consider a single manufac-
turer facing many retailers). In the present paper, alike our previous works [1,2]
(see also [3]) and [4], the retailer plays as a leader against her followers – a
continuum of suppliers. They compete in a monopolistically competitive sector
with free entry, that involves endogenous diversity of goods, as in [5], but the
representative consumer has quasi-linear quadratic preferences for a differenti-
ated good, as in [6]. The retailer announces her markup before the suppliers
choose their prices. They observe the markup and the current level of competi-
tion (price-index), correctly anticipating the demand, but ignoring the (negligi-
ble) influence on each other. The retailer correctly anticipates the equilibrium
and can also restrict the mass of manufacturers entering the industry (if she finds
such restriction profitable). It is a sort of two-tier monopoly, because each sup-
plier practices monopolistic pricing on her variety of the good and the retailer’s
markup is added to the supplier’s markup. Related market distortion can be a
reason for some governmental regulation.

The first research question concerns sales tax : does it soften or enforce the
market imperfections arising in such two-tier monopoly? We start with find-
ing a closed-form characterization of equilibria and welfare in our market and
comparing these to the socially-optimal firm size (output) and diversity (mass
of firms). Rather naturally, in the absence of regulation, the direction of mar-
ket distortion turns out to be two-fold: the firms tend to be too small and the
diversity is also insufficient (see the explanation after Lemma 1 and Proposi-
tion 1). Thus, monopolism suppresses the market in both dimensions, and there
is room for market regulation. Implementing this idea, we first find a welfare-
maximizing tax level under any (possibly zero) entrance fee. As one could expect,
the socially-optimal sales tax rate is negative, that means (politically problem-
atic) sales subsidization (Proposition 2). The explanation suggested after Propo-
sition 1 exploits the typical arguments of a regulated monopoly but also involves
new considerations of optimal diversity.

The second research question concerns the entrance fee imposed by a retailer
onto her suppliers (by tax or subsidy). Such practice was very common in Rus-
sia until the 2010 law on retailing had forbidden an explicit fee. However, the
retailers responded by imposing an indirect entrance fee in the form of oblig-
atory advertising by a manufacturer. This practice still continues, showing its
importance for the market. Is an entrance fee welfare-enhancing, as the leg-
islators supposed? Lemma 2 and Proposition 3 support the entrance fee as a
socially desirable practice. The subsequent explanation emphasizes arguments
in favour of two-part tariffs, usual for any monopoly. This tool “integrates the
industry” to eliminate the loss due to non-cooperative vertical relations. This
logic remains true in our case, in spite of complications with product diversity
and monopolistic competition, unusual for Industrial Organization (IO), see [5].

Comparing our findings to those obtained in the literature on manufacturer-
retailer interactions (see detailed comparison in the Online Appendix), we should
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cite Spengler [7] on the general idea of eliminating “double marginalization”.
More recent studies involve product differentiation; Perry and Groff [8] use a
model where a monopolistic manufacturer signs a contract with each retailer;
the number of goods is less than the socially optimal one. According to reviews
on the theory of vertical integration, as in [9,10], the manufacturer is typically the
leader of the supply chain and moves first, whereas the retailer is the follower;
our timing and distribution of power is exactly the opposite. Although in a
different context than here, Choi [11] assumed retailer’s leadership. The effects
on retail prices and social welfare strongly depend on the characteristics of the
demand function: social welfare is enhanced by leadership in case of nonlinear
demand. More closely to the point of view of the present paper, Bykadorov et al.
[3] and [4] compare the equilibrium obtained with a leading retailer with those
obtained either when the retailer is the follower or when a “myopic” behavior like
Nash equilibrium prevails; retailer’s leadership has a positive effect on welfare.
The present paper supplements this literature by studying both the optimal
fiscal policy and the entrance fee, which have been not addressed so far in this
context.

In the sequel, Sect. 2 formulates the model, Sect. 3 characterizes the equi-
librium as a function of tax and entrance fee, and compares consumption and
diversity with the socially-optimal ones. Sections 4 and 5 find the socially-optimal
taxation and the impact of the entrance fee on welfare, respectively. A conclusion
section summarizes and briefly comments the results. Most part of the proofs
are contained in an Online Appendix [12].

2 Model

As we have pointed out, real-life vertical relations in the contemporary retailing
industry typically include several huge chain-stores like Wal-Mart, who display
essential bargaining power against hundreds of manufacturers-suppliers. Indeed,
when rejected by a dominant chain-store, a small producer could be forced to
sharply squeeze her output and sell to small shops only. Our stylized model
exaggerates such retailer’s bargaining power by assuming that there is only one
retailer in a “leader’s” position. She faces a mass of manufacturers, the “fol-
lowers”, competing in a market of differentiated goods, sold for money (the
numeraire). Such monopolistic-competition framework includes several tradi-
tional assumptions: (i) a differentiated good in the sector studied, i.e., incomplete
substitution among “varieties” of a good, each produced by a single firm; (ii) big
number (continuum) of producers with free entry and exit in the industry; (iii)
sequential moves in the game, where the bigger players move first, being able to
foresee the consequences of their moves, whereas each small player ignores her
(negligible) impact on the market.

In other words, the timing is the following:

(1) the retailer chooses her markup and the number of firms to deal with
(i.e. the diversity in the industry);
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(2) each manufacturer sets her price, considering the competition level as a
parameter; whenever the current competition among firms yields negative
profits, some manufacturers exit until zero-profit situation establishes;

(3) a representative consumer chooses her consumption vector treating prices,
markups and variety of goods as given, paying with a numeraire.

We construct the related subgame-perfect Nash equilibrium by backward induc-
tion, starting from the last stage of the game (consumption) and describing the
behavior of agents.

2.1 The Consumer-Manufacturer-Retailer Triad

Consumers. As rather usual in the modern theory of differentiated goods (see
[6] and also [13]), we model a homogeneous consumers’ population by a quadratic
utility function

U(q,N,m) = α

∫ N

0

q(i)di − β − γ

2

∫ N

0

[q(i)]2 di − γ

2

[∫ N

0

q(i)di

]2

+ m,

where N > 0 is the length of the product line, i.e., the mass of varieties in the
market, so that the firms belong to the continuum [0, N ], which approximates a
“very high” number of firms. α, β, γ are some positive parameters with the fol-
lowing meaning: α > 0 is a choke-price (maximal price that consumers tolerate),
β−γ > 0 reflects satiability of demand and, remarkable, γ > 0 reflects the degree
of substitution among the N varieties. Moreover, q(i) ≥ 0 is the consumption of
i-th variety; m ≥ 0 denotes the money remaining in the pocket after shopping.

To formulate the budget constraint, we denote the wholesale price by p(i),
while r(i) is the retailer’s markup, levied on i-th variety, and τ is the uniform
sales tax (positive, zero or negative). As a result, p̆(i)=p(i)+r(i) + τ is the final
sale price of the i-th variety. Normalizing the wage (w ≡ 1) and the numeraire
price (PA ≡ 1), we formulate the budget constraint of the representative con-
sumer as ∫ N

0

p̆(i)q(i)di + m ≤ Y, p̆(i) = p(i) + r(i) + τ,

where the income Y = L +
∫ N

0
πM(i)di + πR is made up of wage L, the total

profit of the manufacturers and the profit πR of the retailer. Income composition
plays no role in our analysis, whereas it is important to underline that income is
assumed to be “sufficient” and is treated parametrically by the consumer. The
right-hand side of the budget constraint can be considered as the Gross Domestic
Product (GDP) of the economy measured by income, while the left-hand side
represents expenditures.

Maximizing the concave utility subject to the budget constraint, we obtain
the FOC (first-order condition) ∂U/∂q(i) = α−(β − γ) q(i)−γ

∫ N

0
q(j)dj = p̆(i).

Using it and defining the composite parameters

a ≡ α

β + γ · (N − 1)
, b ≡ γ

(β − γ) · [β + γ · (N − 1)]
, (1)
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we express the demand function q(i) ≡ q(i, p̆, P,N) for each variety i ∈ [0, N ] as

q̂(i, p, r, P,N) = a − 1
β − γ

· [p(i) + r(i) + τ ] + bP. (2)

where P is the market aggregate, i.e., the utility-specific price index P ≡
∫ N

0
[p(j) + r(j) + τ ]dj. The higher is P , the lower is the total demand for all

varieties, which positively influences each individual demand for a variety, due
to substitution among them (γ > 0).

Manufacturers. To formulate the problem faced by the i-th manufacturer, c
will denote the marginal cost, i.e., the labor required to produce one unit of
the differential good. The fixed cost fM of manufacturing (measured in labor)
is assumed to be the same for each producer. Similarly, fE ≥ 0 is the entrance
fee for any manufacturer, possibly imposed by the retailer or by the government
which can impose a licensing cost in the industry (we shall study both these mar-
ket structures). Each manufacturer knows the pre-determined retailer’s markup
r(i) and the demand function (treating the market aggregate P parametrically).
So, her profit maximization can be formulated as

πM(i, p, r(i), P ) = (p(i) − c) q̂(i, p(i), r(i), P,N) − fM − fE → max
p(i)

.

Since function πM is quadratic and strictly concave in p(i), we can easily maxi-
mize it by differentiation. From FOC, we find the function of producer’s response
to any retailer’s markup choice r(i) and market index P

p∗(i, r(i), P,N) = arg max
p

πM(i, p, r(i), P,N) =

= 0.5 · [(β − γ) · (a + bP ) − r(i) − τ + c] , (3)

where a and b depend on N as in (1). Since this price does not depend explicitly
on i, from now on, taking into account profit concavity and symmetric (homoge-
neous) producers, it is reasonable to consider only symmetric markups (r(i) = r,
outputs (q(i) = q) and prices (p(i) = p) across all firms. So, we drop index i in
the sequel. Then, plugging solution p∗ into output q∗ yields

q∗(p, r, P,N) =
0.5

β − γ
· [(β − γ) · (a + bP ) − r − τ − c] , (4)

which implies, as one can derive, the equilibrium price index P as a function of
τ , r and N : P = N

2−(β−γ)bN · [(β − γ) · a + r + τ + c] .
Further, plugging a, b, P into the firm’s output q yields the equilibrium pro-

duction which represents the response of the market to the chosen markup and
to variety (r,N):

q#(r,N) =
α − (r + τ + c)
2β + γ · (N − 2)

. (5)
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Similarly, the equilibrium price can be expressed, using (3), as a function of r
and N :

p#(r,N) = (β − γ) · α − (r + τ + c)
2β + γ · (N − 2)

+ c . (6)

Retailer. To formulate the retailer’s optimization problem, we recall that the
retailer plays first, correctly anticipating the subsequent behavior of the produc-
ers and equilibrium values of p#(r,N), q#(r,N), P , i.e., she knows the response
function (5). In the following cR will denote the retailer’s marginal cost necessary
to sell one unit of the differential good of each type (it corresponds to the labor
of the salesmen), and fR will be the fixed cost, necessary to sell each type (the
labor necessary to maintain the i-th shelf in the shop). The retailer simultane-
ously chooses the markup r and the range N of varieties, correctly anticipating
the subsequent manufacturers’ response and the consumers’ demand. Namely,
her profit can be maximized with respect to N and to the individualized markups
r = {ri}i∈[0,N ]:

πR =
∫ N

0

[r(i) − cR]q∗(i, r, P (N), N)di −
∫ N

0

fRdi → max
r,N

, (7)

subject to πM(r(i), N) ≥ 0 ∀i. (8)

However, due to the concavity property of the profit function and reasonably
assuming symmetric retailer’s policy with r1 = r2 = ... = rN = r, we can
simplify the maximization problem as:

πR = N · [
(r − cR) · q#(r,N) − fR

]
= (9)

= N ·
[

(r − cR) · α − (r + τ + c)
2β + γ · (N − 2)

− fR

]

→ max
r,N

, (10)

subject to πM(r,N) ≥ 0 . (11)

According to the constraint (11), the producers cannot make losses; this way, in
view of possible free exits, the retailer will not rise her markup too much.

2.2 Equilibrium and Welfare

(Symmetric) Equilibrium. (r̄, N̄ , p̄, q̄) is a bundle comprising the solution
(r̄, N̄) to the retailer’s problem (7)–(8), price p̄ = p#(r,N) defined by (6) and
each variety consumption q̄ = q#(r,N), described in (5).

One can show (see Lemma 1 below) that non negativity constraint on the
manufacturer’s profit becomes active or inactive at the equilibrium, depending
on the value of the “investment ratio” parameter F ≡ fR−fE

2(fM+fE) . We will in
fact distinguish two cases: (1) “Positive-Profit equilibria” which occurs when
F ≡ fR−fE

2(fM+fE) > 1, which means very high retailer’s fixed cost fR, that is
more than one half of the total industry fixed cost (since fE ≥ 0). In this
case the manufacturers’ no-loss condition (11) can be ignored during retailer’s
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maximization (πM > 0: PP case); (2) “Zero-Profit equilibria” which occurs when
F ≤ 1 (small retailer’s fixed cost); here the no-loss condition becomes active at
the maximimum (πM = 0: ZP case).

In other words, we can say that, it is the size of the retailer’s fixed cost fR, in
comparison to other costs, that determines the type of market equilibrium. The
retailer’s fixed cost can be interpreted as the shelf-maintenance cost. Typically,
in the real life the markup does not exceed the double of the manufacturers cost,
therefore, case ZP looks closer to reality.

Welfare and Social Optimum. In order to investigate the social benefits of
taxation/subsidization or entrance fee, we consider the social welfare function
W , that measures society prosperity in a symmetric equilibrium, encompassing
the consumer surplus and profits. The social welfare function for an industry (as
function of consumption and variety) is built subtracting all costs from the total
utility of the representative consumer:

W (q,N) = (α − c − cR)Nq − β − γ

2N
N2q2 − γ

2
N2q2 − (fM + fR)N.

We may note that welfare is quadratic in N , thus ensuring a unique maximum
in q under any given N . By substituting in W the equilibrium values of q̄(τ) and
N̄(τ), which depend on the tax rate, we maximize the welfare.

To compare various market outcomes with the first-best social optimum of
this industry, we find now the optimum. We maximize the quadratic function
W (q,N) w.r.t. both, the size of each firm q and the diversity of products N ,
obtaining the first-order conditions

(α − c − cR)N − β − γ

N
N2q − γN2q = (fM + fR)N, (12)

(α − c − cR)q − β − γ

2
q2 − Nq2 = (fM + fR), (13)

which will be used further on.

3 Equilibria Compared with Social Optimum

For both investment ratio regions, i.e., F ≡ fR−fE

2(fM+fE) > 1 and 0 ≤ F ≤ 1, it
is possible to obtain the equilibria in closed form.1 From (10) we deduve that
the retailer’s objective function πR(r,N) is quadratic in r, and the maximum
with respect to r can be found independently from N . In the positive-profit
case (F > 1), we can find the unconstrained maximum of πR. It turns out that
maximization with respect to r, which does not depend from N , is equivalent to

1 We find the equilibrium in three steps. First we derive the consumer’s demand (2) to
find q(p(·), r, N), then we solve the manufacturer’s problem to find the pricing rule
p(r, N) as in (3) and finally, plugging q(p(r, N), r, N) and p(r, N) into the retailer’s
problem (7)–(8), we solve it determining the best choice (r, N).
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finding a maximum of a concave parabolic function that yields a unique solution
r̄ = (α − c − τ + cR)/2. Substituting into the profit function, we obtain the
following function

πR(N) = (r̄ − cR) · N · (α − r̄ − τ − c)
2 (β − γ) + γN

− N · fR,

that is concave in N (here all the coefficients are positive). From the first-order
conditions:

r +
τ − α + c − cR

2
+ B

√
(β − γ) (fM + fE) ·

(

1 − fR − fE

2 (fM + fE)

)

= 0.

we find the unique maximum

N̄ = Npp =
β − γ

γ
·
(

α − c − cR − τ
√

2 (β − γ) (fR − fE)
− 2

)

.

In the zero-profit case (0 ≤ F ≤ 1), from (4), exploiting constraint πM(r,N) = 0
we can express the variety as a function of markup r:

N̄ = Nzp (r) =
β − γ

γ
·
(

α − c − τ − r
√

(β − γ) (fR − fE)
− 2

)

The retailer maximizes her profit

πR = Nzp(r) · [r − cR]q(r,Nzp(r)) − N∗(r)fRdi

choosing the markup r.
The equilibrium values of quantities, prices, markups and variety are sum-

marized in the following lemma.

Lemma 1. Under taxation τ ≥ 0, the equilibrium magnitudes q̄, p̄, r̄, N̄ and
under the retailer’s profit πR are parametrically determined, as shown in the
following table, for both cases PP (F ≡ fR−fE

2(fM+fE) > 1) and ZP (F ≤ 1)

q̄ p̄ − c r̄ − cR N̄ πR

PP
B

√
F

β − γ
B

√
F D

(β − γ)(D − 2B
√

F )
γ · B

√
F

(
D − 2B

√
F

)2

γ

ZP
B

β − γ
B D − (1 − F ) B

(β − γ)(D − (1 + F )B)
γ · B

(D − (1 + F ) B)2

γ

where

A ≡ α − c − cR, B ≡
√

(β − γ) · (fM + fE), D =
A − τ

2
.

The welfare in the PP case is W̄pp =
(D−2B

√
F)·
(

τ+3A−2B· (2+3F )√
F

)

4γ while in the

ZP it becomes W̄zp =
1
4γ

· (D − B · (1 + F )) · (τ + 3A − 2B · (2 + 3F )) . The

manufacturer’s profit in the PP case is πM = (fM + fE) · (F − 1).
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Impact of parameters on equilibria and optimum. We observe that the
equilibria in the two cases are rather different. When the manufacturer’s profit
is positive, her fixed cost fM has no direct impact on retailer’s behavior and
equilibria, being just a constant in her objective function. Similarly the retailer’s
fixed cost fR, when it is small enough (ZP case), has no impact on q̄, N̄ .

Moreover, from Lemma 1 we have that the entrance fee fE affects the size
of the firm q in an opposite way in PP and ZP cases, lowering and increasing
it, respectively. By contrast, in both cases, taxes do not influence the size of the
equilibrium firm q̄ and the mill price p̄. However, markup r moves in the opposite
direction than the tax: it decreases under growing tax τ > 0 but increases under
subsidy, as if the retailer expropriates half of the government’s subsidy from the
consumer, softening thereby the change in the final sales price (p̄+r+τ) imposed
by τ . The impact of subsidy, i.e. τ < 0, on quantity q̄ works through increasing
diversity N̄(τ). This shift, in turn, pulls up the price index P in such a way,
that the demand for a variety in formula (2) remains unaffected. Similarly, a
positive tax τ > 0 should affect both the retailer’s markup r and the variety N
negatively. Which direction is socially beneficial then?

Solving the system (12)–(13) w.r.t. q,N , and comparing the market equi-
librium values q̄, N̄ (regulated by tax τ and entrance fee fE) with the social
optimum, we immediately obtain the following proposition

Proposition 1. (i)The firm’s socially-optimal size and diversity are:

qsopt =
√

2(fM + fR)/(β − γ), (14)

Nsopt =
β − γ

γ
·
(

α − c − cR√
2 · (fM + fR) (β − γ)

− 1

)

. (15)

(ii) The firm’s socially-optimal size qsopt can be bigger than unregulated equi-
librium outputs; in particular, qsopt > 2q̄PP and qsopt >

√
2q̄ZP when fE = 0.

However, a moderate positive entrance fee (i.e. fE ∈ (0, fM + 2fR]) softens this
kind of distortion in ZP case.

The distortion of output mentioned in Proposition 1 (ii) can be explained
by the usual reasoning on monopoly. To cover fixed costs, each producer sets a
big market price exceeding the marginal cost. Then, the potential mutual benefit
between the firm and consumer is forgone, sales are (inefficiently) lowered by a
too high price. Therefore, the firm becomes (inefficiently) small. This kind of
distortion can be partially cured by an entrance fee. For instance, to reach the
optimal firm size (14) in the (plausible) ZP case, the government should allow
for a positive entrance fee. When it reaches magnitude fE = fM + 2fR, the firm
size could become optimal, but a positive entrance fee simultaneously changes
the mass of firms, and its overall impact on welfare seems to be unclear. We will
come back to this issue in another section.

Comparing the socially optimal product diversity (15) with the market out-
comes (N̄) of Lemma 1, we obtain the following claim.
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Claim. Under zero regulation (τ = 0, fE = 0) and the restriction on retailer’s
fixed cost fR < fM, the market equilibrium diversity (mass of firms) in ZP case
appears smaller than the socially-optimal diversity, i.e. Nsopt.

Thus, in a rather reasonable case, the market diversity appears insufficient
provided our hypothesis of non-additive quasilinear utility; with an additive non-
quasilinear utility, instead, the opposite distortion appears when the demand is
sufficiently flat (Dixit-Stiglitz [5]). One can also see that a subsidy pulls the
diversity up, as well as the output.

Somewhat surprisingly, the parameter γ reflecting substitution among the
varieties, does not influence the sign of the diversity distortion, but only its
magnitude. The direction of distortion can be explained by (inefficiently) high
market price and low quantity, as already discussed. Indeed, according to (13),
the social planner, when choosing Nsopt, compares the left-hand side (the mar-
ginal benefit from launching one additional firm), with the right-hand side, the
industry fixed cost fM + fR. In other words, the consumer surplus per variety
is compared with a sort of marginal cost of increasing variety N .2 According to
Lemma 1, the market chooses N differently: a firm enters the market only when
the gross operating profit per variety (p + r − c − cR)q weakly exceeds the gross
fixed cost fM+fR. Clearly, a smaller q and the inability to completely absorb the
potential consumer surplus, both affect negatively the market choice of diversity
N , in comparison with social decision Nsopt. Until now we have explored only
the ZP case; similar considerations could be made also in the PP case.

In general, we see that the benevolent government should choose some dif-
ferent variables (q,N) than the market does. Since a direct dictate over the
industry is politically infeasible, we discuss from now on the indirect tools. These
are taxation, allowing entrance fee, and licensing, used to reach a “second-best
optimum”.

4 Welfare Consequences of Taxation

Sales taxes are the rule in many countries, but are they welfare-enhancing under
a leadership of the retailer? In this section, we focus only on taxation in order
to separately investigate its effects on welfare. Therefore we assume here that
entrance fee fE is fixed (even equal to zero). Being τ the tax that a retailer
pays for each unit sold, the amount Nτq is transferred to the government (or to
consumers in the lump-sum form).

The tax can influence the market in the Pigouvian way, by reducing sales,
while using the same logic, sales can be stimulated by sales subsidization
(financed from the budget as a lump-sum taxation on consumers in the amount
Nτq, or by licensing).

To find a fiscal policy that maximizes social welfare, we use the formulae
in Lemma 1 that depend on tax sτ , and maximize the equilibrium welfare W̄

2 A negative impact on the consumer’s satisfaction from other varieties (through para-
meter γ) could be taken into account as “a cost of launching a new firm,” but with
a continuum of firms this impact is negligible.
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w.r.t. τ . In both cases, PP and ZP , we can obtain the explicit formulae for
optimal taxation τ∗

W or subsidization of the retailer.

Proposition 2. In any case it is optimal to subsidize, in the PP case the
socially-optimal value of τ is τ∗

pp =
(√

F + 2√
F

)
· B − A < 0, while in the

ZP case, the optimal choice is τ∗
zp = (1 + 2 · F ) · B − 2 · δ < 0. Corresponding

diversity and welfare magnitudes at the regulated equilibrium are:

W̄pp

(
τ∗
pp

)
=

1
8 · γ

·
(

2B√
F

− 2A + 5B ·
√

F

)2

,

W̄zp

(
τ∗
zp

)
=

1
8γ

· ((3 + 4 · F ) · B − 2A)2 ,

N̄zp

(
τ∗
zp

)
=

β − γ

γ
·
(

A

B
− 3 + 4 · F

2

)

. (16)

What is the motivation behind the optimality of welfare-enhancing subsi-
dies? One side of the story is the well-known effect in monopolistic regulation.
A monopolist tends to reduce the output and rise her price above the socially-
efficient level (namely, under linear demand she reduces the quantity twice). As
a response, the government can soften this tendency by artificially increasing
the marginal revenue from each unit sold. It means a sales subsidy. This politi-
cally tough measure can be compensated by expensive license, i.e., a lump-sum
payment by the monopolist to finance the market stimulation activity.

This usual monopolistic scenario is complemented in the specific context
studied in this paper by a two-tier monopoly and by asking to stimulate a
“socially-efficient diversity” (see Dixit and Stiglitz [5]). In this paper, under
additive non-quasi-linear utility, the diversity is excessive whenever the demand
function is more flat (“less log-convex”), than a power function. Under our non-
additive preferences with direct substitution, we have observed the opposite ten-
dency: insufficient product diversity, too few producers. As we have seen, a sales
subsidy of reasonable size mitigates both kinds of distortion in outputs and in
diversity. However, the first-best optimum is not reached by such a measure, as
one can see comparing (15) to (16), and recalling that output is not affected by
a tax.

From the above considerations, we may deduce that small outputs and insuf-
ficient diversity leads to distortion also in presence of regulation by subsidies.
There is room for a heavier governmental intervention compensating both these
market imperfections. Next section shows that allowing the retailer to impose
an entrance fee further enhances welfare.

5 Entrance Fee and Welfare

In real life, the relationship between manufacturers and retailers has several
dimensions. In particular, a manufacturer in Russia typically pays to the retailer
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some entrance fee monthly or annually, independently from sales volume. The fee
was formally banned by the federal law, but now it takes the form of obligatory
advertising by the manufacturer or/and low-price campaigns. The shops argue
that the fee is necessary, it is the way to cover the fixed cost of retailing, and we
shall see that such “compensation” is optimal at the equilibrium.

The entrance fee value fE and taxes have been considered as fixed in this
section. Now, unlike (9)–(11), we enrich the retailer’s profit maximization prob-
lem with fE as an additional variable:

πR = N · (r − cR) · q(r,N) − N · (fR − fE) → max
r,N,fE

(17)

πM = (p(r,N) − c)q(r,N) − (fM + fE) ≥ 0. (18)

In the Online Appendix [12], we show that asymmetric optimization (treating
similar producers in a different way) cannot bring a higher profit than with the
symmetric optimization above considered. Moreover, only the ZP kind of equi-
libria exists since ∂πR

∂fE
= N > 0. Hence, the maximum of the objective function

is achieved on the boundary, where πM = 0 and case PP becomes impossible.
So (17)–(18) has a closed form solution obtained expressing the optimal size N

via markup r and entrance fee fE as N = N (r, fE) = β−γ
γ ·

(
A+cR−(r+τ)

B − 2
)

.

Substituting fE = fE(N) into πR, we can simplify the profit maximization
problem as

πR (r, fE) = − (r − cR + τ − A + 2B (fE)) (r − cR − 2F (fE) · B (fE))
γ

→ max
r, fE

.

Solving the above problem, we obtain a closed-form expression for the equilib-
rium price and corresponding quantity and variety.

Lemma 2. When an entrance fee fE > 0 is chosen and kept by the retailer, it
exactly compensates the retailer’s fixed cost (fE = fR), whereas the equilibrium
quantity, price, markup, variety and profit are expressed as

qE pE rE NE fE πE
R

B
β−γ B + c D + cR − B

β − γ

γ · B
· (D − B) fR

1
γ

· (D − B)2
,

while the welfare is WE = − 1
8γ

· (τ − A + 2 · B) · (τ + 3 · A − 4 · B) .

By comparing the values pE , qE ,WE in Lemma 2 with the ZP-equilibrium
values p̄, q̄, W̄ in Lemma 1, we obtain the following conclusion about the benefits
of a two-part tariff practice.

Proposition 3. When (under any given tax τ) the retailer exploits an entrance
fee fE > 0 levied on the manufacturer price, the equilibrium values pE , qE , rE

differ from the ZP-equilibrium values pZP , qZP obtained without a fee (fE = 0);
more precisely: (a) pE > pZP , i.e., entrance fee pushes up the mill price; (b)
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rE < rZP , i.e., it pulls down the markup; (c) pE + rE < pZP + rZP , i.e., it
pulls down the retail price; (d) qE > qZP , i.e., it pushes up output; (e) qENE >
qZP NZP , i.e., it pushes up total consumption; (f) WE > WZP , πE

R > πZP
R , it

pushes up social welfare and the retailer’s profit.

The main finding here is that entrance fees improve social welfare, in contrast
with the ideas of Russian legislators, prohibiting them in 2010. The explanation
is the following. The relations between the retailer and the manufacturers are
a sort of “two-tier monopoly” and therefore generate the well-known “double
marginalization” effect. It means that each producer sets a high monopolistic
price (being a monopolist for her specific variety), and the retailer adds her
markup above the supplier’s markup. As a result, under linear demand, the
quantity consumed can become four times less than the socially-efficient one.
Instead, the entrance fee or two-part-tariff is a pricing tool bringing the retailer
to keep part of this social loss and thereby increase total welfare.

In essence, the entrance fee works as if the retailer should indirectly collect
ownership of the industry in her hands. It is a well-known effect in IO theory,
but usually it is analysed with the opposite kind of leadership: a single producer
collecting the profits of her multiple retailers. Now, after several huge chain-stores
became the leaders, such relations turned upside-down. This paper shows that
neither the version of leadership, nor the monopolistic competition among the
producers (the issue of diversity and free entry) can overthrow the benefits of the
two-part tariff, with or without governmental taxation or subsidies. Primarily, to
better exploit the two-part tariff benefits, the government may wish to directly
choose an entrance fee (license fee), instead of allowing the retailer to choose it.
Should such indirect measure be sufficient or not to attain a true optimum is a
topic of further study. Other possible extensions are to study a retailing context
under general additive preferences as in [14] and trade as in [15,16].

6 Conclusions

The age of dominant chain-stores requires to consider the case of a monopo-
listic retailer as a leader in the vertical retailing relations, under monopolistic
competition among the producers. The retailer “plans the market,” chooses the
diversity and attempts to collect the benefits. Such monopolism yields socially
insufficient mass of firms (diversity) and insufficient output of each firm. In
this situation, negative sales tax (i.e., subsidized sales) improves welfare in both
respects, output and diversity. Moreover, if the retailer imposes an entrance
fee for producers (two-part tariff) to cover her fixed costs, this turns out to be
beneficial for the society. This pricing tool partially overcomes “double marginal-
ization” distortion, because it indirectly merges the industry. Thus, under our
assumptions, welfare considerations cannot justify common legal restrictions on
the chain-stores and positive sales-tax, suggesting instead the opposite public
measures.



Chain Store Against Manufacturers: Regulation Can Mitigate Distortion 493

Acknowledgments. The study has been funded by the Russian Academic Excel-
lence Project ’5-100’. We gratefully acknowledge partial financing this project by grant
SSD SECS-S/06, 571/2014 from Department of Management of University Ca’ Foscari
Venezia, by grants 15-06-05666, 16-01-00108 and 16-06-00101 from RFBR. Also we
acknowledge to many our colleagues for useful comments and discussions.

References

1. Bykadorov, I.A.: Product Diversity in a Vertical Distribution Channel under
Monopolistic Competition. The Economic Education and Research Consortium
(EERC), Working Paper 10/03E (2010)

2. Bykadorov, I.A., Kokovin, S.G., Zhelobodko, E.V.: Product diversity in a vertical
distribution channel under monopolistic competition. Math. Game Theory Appl.
2(2), 3–41 (2010). (In Russian)

3. Bykadorov, I.A., Kokovin, S.G., Zhelobodko, E.V.: Product diversity in a vertical
distribution channel under monopolistic competition. Autom. Remote Control. 75,
1503–1524 (2014)

4. Bykadorov, I.A., Kokovin, S.G.: Effectiveness of retailer’s market power: monopo-
listic competition of producers. Vestnik NSUEM 1, 326–337 (2014). (In Russian)

5. Dixit, A.K., Stiglitz, J.E.: Monopolistic competition and optimum product diver-
sity. Am. Econ. Rev. 67, 297–308 (1977)

6. Ottaviano, G.I.P., Tabuchi, T., Thisse, J.-F.: Agglomeration and trade revised. Int.
Econ. Rev. 43, 409–436 (2002)

7. Spengler, J.J.: Vertical integration and antitrust policy. J. Polit. Economy. 53,
347–352 (1950)

8. Perry, M.K., Groff, R.H.: Resale price maintenance and forward integration into a
monopolistically competitive industry. Q. J. Econ. 100, 1293–1311 (1985)

9. Tirole, J.: The Theory of Industrial Organization. MIT Press, Cambridge (1988)
10. Ingene, C.A., Parry, M.E.: Mathematical Models of Distribution Channels. Kluwer

Academic Publishers, New York (2004)
11. Choi, S.C.: Price competition in a channel structure with a common retailer. Mark.

Sci. 10, 271–296 (1991)
12. Bykadorov, I., Ellero, A., Funari, S., Kokovin, S., Pudova, M.: Chain store against

manufacturers: regulation can mitigate market distortion. Online appendix (2016).
https://www.hse.ru/en/org/persons/38617864-Other

13. Combes, P.-P., Mayer, T., Thisse, J.-F.: Economic Geography. The Integration of
Regions and Nations. Princeton University Press, Princeton (2008)

14. Zhelobodko, E., Kokovin, S., Parenti, M., Thisse, J.-F.: Monopolistic competition
in general equilibrium: Beyond the Constant Elasticity of Substitution. Economet-
rica 80(6), 2765–2784 (2012)

15. Antoshchenkova, I.V., Bykadorov, I.A.: Monopolistic competition model: the influ-
ence of technological progress on equilibrium and social optimality. Math. Game
Theory Appl. 6(2), 3–31 (2014). (In Russian)

16. Bykadorov, I., Gorn, A., Kokovin, S., Zhelobodko, E.: Why are losses from trade
unlikely? Econ. Lett. 129, 35–38 (2015)

https://www.hse.ru/en/org/persons/38617864-Other


On the Existence of Immigration Proof Partition
into Countries in Multidimensional Space

Valeriy M. Marakulin1,2(B)

1 Sobolev Institute of Mathematics RAS,
4 Acad. Koptyug Avenue, Novosibirsk, Russia

marakulv@gmail.com
2 Novosibirsk State University, 2 Pirogova Street, Novosibirsk, Russia

Abstract. The existence of immigration proof partition for commu-
nities (countries) in a multidimensional space is studied. This is a
Tiebout type equilibrium its existence previously was stated only in one-
dimensional setting. The migration stability means that the inhabitants
of a frontier have no incentives to change jurisdiction (an inhabitant at
every frontier point has equal costs for all possible adjoining jurisdic-
tions). It means that inter-country boundary is represented by a contin-
uous curve (surface).

Provided that the population density is measurable two approaches
are suggested: the first one applies an one-dimensional approximation,
for which a fixed point (via Kakutani theorem) can be found after that
passing to limits gives the result; the second one employs a new general-
ization of Krasnosel’skii fixed point theorem for polytopes. This approach
develops [8] and extends the result to an arbitrary number of countries,
arbitrary dimension, possibly continuous dependence on additional para-
meters and so on.

Keywords: Country formation · Alesina and Spolaore’s world · Migra-
tion · Stable partitions · Multidimensional space · Krasnosel’skii fixed
point theorem

1 Introduction

In the seminal paper [1] a basic model of country formation was offered. In this
model, the cost of the population individuum is described as the sum of the
two values—the ratio of total costs and the total weight of the population plus
transportation costs to the center of the state. This model has been investigated
in a number of subsequent studies, but in each of them deals with the case of
one-dimensional region and the interval-form countries (country formation on
the interval [0, 1]).

A progress in the resolution of the problem of existence was made in [2], where
the well known Gale–Nikaido–Debreu lemma was applied to state the existence
of nontrivial immigration proof partition for interval countries, i.e. such that
no one has incentive to change their country of residence. In [2] rather strong
c© Springer International Publishing Switzerland 2016
Y. Kochetov et al. (Eds.): DOOR 2016, LNCS 9869, pp. 494–508, 2016.
DOI: 10.1007/978-3-319-44914-2 39
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assumptions were made on the distribution of the population—continuous den-
sity, separated from zero. Next, in [5] the mathematical part of the approach was
significantly strengthened and extended to the case of distribution of the popu-
lation, described as a Radon measure (probability measure defined on the Borel
σ-algebra). In [8] a new significant advancement was suggested; it disseminates
the result (existence theorem) to the case of 2 or higher dimensional region.
The proof in [8] is very elegant and is based on the application of KKM-lemma
(Knaster–Kuratowski–Mazurkiewicz), but the result is essentially limited by the
presence of capitals with fixed positions in the space. In this paper, I intend to
take the next step and let capitals (or other relevant parameters) be changed
continuously in space, which is important for example in the context of party
formation. The proof is based on a new original generalization of Krasnosel’skii
fixed point theorem, which is extended to the case of a convex polytope (bounded
polyhedron) that is interesting in its own right.

In the second section, we consider a particular case of division of a rectan-
gular area into two countries at a given measurable random distribution of the
population. Here a basic one-dimensional approximation is described, for which
a fixed point (via Kakutani theorem) can be found, and then the limit process
gives the result.

The third section provides further generalization of the existence result which
is extended to an arbitrary number of countries, arbitrary dimension, and pos-
sibly continuous dependence on a finite number of significant parameters for
country formation (capitals and so on).

2 The Partition into Two Countries on the Plane
via One-Dimensional Approximation

The division of the one-dimensional world on countries surely cannot be consid-
ered as a satisfactory solution of the problem. However, 2-dimensional formula-
tion seems to be a fundamentally more difficult problem. Now, for a particular
example of division of a rectangular area in two countries, we consider an approx-
imating design allowing to find a solution by passing to the limit.

First, we define the principle of stability which is applied to countries located
on the plane. As in the case of one-dimensional world, it must be such division
that boundary residents have no incentive to change their jurisdiction. Thus, the
costs for any boundary resident should be the same with respect to any of the
possible for her/him adjoining jurisdictions. It is assumed that the boundaries
between two countries allow continuous parametrization, i.e. they are an image
of the interval from R for some continuous one-to-one mapping. As a result, as in
the one-dimensional case, the function of individual costs of inhabitants should
be continuous on the whole field of country division, that is, country partition
must implement continuous “gluing” of country-depended individual costs.

For the sake of simplicity, we consider now a particular case of a rectangular
area of possible settlement represented by rectangle �ABCD in the Fig. 1. We
assume that ci(·), i = 1, . . . , n, are functions of individual costs, depending on the
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place of individual location, given by coordinates (x, y) ∈ �ABCD, the weight
of the resident jurisdiction μi(Si), the location of its center rc(Si), metrics ρ(·, ·)
(to specify the distance to the center) and so on. The basic model representation
of these cost functions is

ci(x, y, δi, rc(Si)) =
gi

δi
+ ρ((x, y), rc(Si)), gi > 0, i ∈ N = {1, 2, . . . , n}. (1)

Here scalar variables δi > 0 are associated with the i-th country mass of popu-
lation, i.e. δi = μi(Si); gi > 0 is an expenditure (costs) on the maintenance of
government and they are uniformly distributed among the country citizens. The
second summand ρ((x, y), rc(Si)) presents an individual expenditure specified
by inhabitant location at the point (x, y) ∈ �ABCD. In general, cost functions
may have sufficiently general form but they always continuously depend on cer-
tain country parameters and obey some other specific assumptions (see Sect. 3).
Everywhere below we assume
(P) The distribution of population is described by an absolutely continuous prob-
ability measure μ such that supp(μ) = �ABCD.1

The idea of approach is that given coordinate system (potentially curved),
a stable partition, specified for one-dimensional world, must be implemented
along every coordinate line. At the same time, the function of individual costs
must be calculated relative to the position of “center” of the country and the
general population distributed in two-dimensional space. It is not easy to find
such a partition. To solve the problem we apply a special “one-dimensional
approximation”, relatively which a country partition can be found by a fixed
point theorem (Brouwer or Kakutani).

The construction is as follows: specify m−2 straight lines parallel to the base
of the rectangle, m ≥ 3. Let the lower base have the number m, the top one—the
number 1, and all others be numbered from the top to the bottom. Each i-th
segment is divided into two parts by the point xi, which can be considered the
point from interval [0, 1] (length of the base �ABCD), i = 1, . . . ,m. Straight line
segments connecting consecutive points x1, . . . , xm, form a polygon line, which
we accept as the boundary between the left and right countries. Now, if density
f(x, y) is presented then it is possible to integrate it over each of the country
area, finding the weights (size) μ(S) of their populations.

Within each country its “center” (the capital) rc(S) ∈ S is specified. We
assume these positions depend continuously from a given country settings x =
(x1, . . . , xm) ∈ [0, 1]m. Thus we have:

μ(Sleft) =
∫

Sleft

f(x, y)dxdy ≥ 0, rc(Sleft) = rleft(x1, . . . , xm) ∈ Sleft

μ(Sright) =
∫

Sright

f(x, y)dxdy ≥ 0, rc(Sright) = rright(x1, . . . , xm) ∈ Sright.

1 This being combined means that μ(A) > 0 ⇐⇒ ∫
A

dxdy > 0 for every measurable
A⊆�ABCD.
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Fig. 1. Possible division into two countries of the rectangular area ABCD, m = 6.

Moreover, without loss of generality

μ(Sleft) + μ(Sright) = 1.

The fact that we talk about the “mass of the population” and the “distance to
the center” (transport availability of capital) as the main parameters determining
the costs of individuals in a country is only an interpretation of the cost function
in the context of the main model variant. The same can be said about the
property of the center of the country be located on its territory—it is just a
natural variant of content, from a mathematical point of view, the center could
be anywhere. The really important fact is (described below) certain specific
properties of individual costs.

Next we consider a point-to-set mapping, whose fixed point gives the desired
country partition. The construction of mapping applies the ideas borrowed from
the one-dimensional case, see [6]. Define

X = [0, 1]m.

Now we specify a point-to-set mapping of X into itself.
Let c1(·), c2(·) be the functions of individual costs depending on the weight

of the jurisdiction population μ1(x), μ2(x), location of its center rc(S1), rc(S2),
metrics ρ(·, ·) (to determine the distance to the center) and a place of the individ-
ual location specified by coordinates (x, y) ∈ �ABCD. The basic model repre-
sentation of these functions is (1). Now we shall consider that they are functions
of a general form continuously depending on x = (x1, . . . , xm) ∈ [0, 1]m for
μ(Sk(x)) > 0, k = 1, 2. Additionally, we assume that

(i) ck(x, y,x) > 0 for μ(Sk) �= 0 and
(ii) ck(x, y,x) → +∞ if μ(Sk) → 0, k = 1, 2.

For the functions of (1) this condition is always satisfied. At the same time, if the
density f(·) of the population is so that

∫
A

dxdy > 0 implies
∫

A
f(x, y)dxdy > 0

for every measurable subset A ⊂ �ABCD (i.e. each subset of nonzero area
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(Lebesgue measure) has a population of non-zero mass), the latter requirement
is equivalent to

{
c1(x, y,x) → +∞ ⇐⇒ x → (0, . . . , 0),
c2(x, y,x) → +∞ ⇐⇒ x → (1, . . . , 1). (2)

For the boundary points x1, . . . , xm of country areas let us find an excess
cost of possible (two) jurisdictions (constants y1, . . . , ym in the argument are
excluded)

hi(x) = c1(xi,x) − c2(xi,x), i = 1, . . . , m.

Notice that (2) implies that for all i = 1, . . . , m, hi(x) → +∞ for x → 0, and
x → 1 when hi(x) → −∞.

Next we define the (single-valued) map ϕ : X → X = [0, 1]m putting

ϕi(x) =

{
xi − xi

2 · hi(x)
1+hi(x)

, for hi(x) ≥ 0,

xi + 1−xi

2 · hi(x)
hi(x)−1 , for hi(x) ≤ 0.

(3)

By construction, this mapping is well defined everywhere on X with the excep-
tion of two points x = 0 = (0, . . . , 0) and x = 1 = (1, . . . , 1), values of which
can be defined by continuity:

ϕ(0) = (0, . . . , 0), ϕ(1) = (1, . . . , 1).

It is obvious that according to the construction these points are trivial fixed
points of ϕ(·), that does not comply with the requirements of the division of
rectangular area. Further construction and analysis will focus on finding of the
nontrivial fixed point corresponding to the division of the area into two countries
with non-zero masses of the population.

Now we define a point-to-set mapping Φ from X = X × Δ to X, where
Δ = {(μ1, μ2) | μ1 + μ2 = 1, μ1 ≥ 0, μ2 ≥ 0}, by formula: for (μ1, μ2) =
(μ(Sleft(x)), μ(Sright(x))) specify

Φ(x, ν) =

⎧
⎨

⎩

{ ν1
μ1

ϕ(x)}, for ν1 ≤ μ1, μ1 �= 0,

{ ν2
μ2

ϕ(x) + μ2−ν2
μ2

(1, . . . , 1)}, for ν2 ≤ μ2, μ2 �= 0,

X, for ν1 = μ1 = 0 or ν1 = μ1 = 1.

(4)

The second mapping Ψ : X ⇒ Δ is specified as follows

Ψ(x) = argmax
ν∈Δ

〈H(x), ν〉. (5)

where H(x) = (H1(x),H2(x)) and

I+ = {i | hi(x) ≥ 0, i = 1, . . . , n}, I− = {i | hi(x) ≤ 0, i = 1, . . . , n}
are defined by formulas2

H1(x) = [ inf
i=1,...,m

hi(x)]+ +
∑

i∈I+

xi
hi(x)

hi(x)+1 , I+ �= ∅

H2(x) = [ sup
i=1,...,m

hi(x)]− +
∑

i∈I−
(1 − xi)

hi(x)
hi(x)−1 , I− �= ∅.

2 We use standard notations z+ = sup{z, 0} and z− = sup{(−z), 0} for any real z.
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If I+ = ∅ or I− = ∅, then by definition H1(x) = 0 and H2(x) = 0, respectively.
Constructed map is well defined everywhere excepting 0 and 1 for which we
postulate

Ψ(0) = (1, 0), Ψ(1) = (0, 1).

Finally, we define the resulting mapping

Υ : X ⇒ X, Υ (x, ν) = Φ(x, ν) × Ψ(x, ν);

its fixed points give us the desired result. The following lemma describes the
important properties of the mapping Υ (·).
Lemma 1. The mapping Υ : X ⇒ X is a Kakutani map, i.e. it has closed graph
and for every κ ∈ X takes non-empty convex values.

Proof of Lemma 1. We check the properties of Ψ(·). We need to show that it
has a closed graph. First, we establish the continuity of H = (H1,H2). To this
end, we consider the functions

g−(t) =
{

t
t−1 , for t ≤ 0,

0, for t ≥ 0,
g+(t) =

{
t

t+1 , for t ≥ 0,

0, for t ≤ 0,

which obviously are continuous on [−∞,+∞]. From the construction one can
now derive

H1(x) = [ inf
i=1,...,m

hi(x)]+ +
m∑

i=1

xi · g+(hi(x)),

H2(x) = [ sup
i=1,...,m

hi(x)]− +
m∑

i=1

(1 − xi)g−(hi(x)).

This form of representation clearly implies the continuity of H(·) at all points
except for 0 and 1. So, everywhere on X, excepting these points, Ψ(·) is closed. It
is also closed at zero, since by construction (due to the first term) H1(x) > 0 and
H2(x) = 0 for all x sufficiently close to zero. Consequently, in some neighborhood
of zero Ψ(x) ≡ (1, 0), which means that the closure of Ψ(·) at 0. Closeness at 1
is stated in a similar way.

All other required properties of the mapping Υ (·) are established by a routine
checking of definitions. Lemma is proved.

Lemma 2. Under the above assumptions, the map ϕ(·) has nontrivial fixed
point in X such that the mass of the population of each country is nonzero.

Proof of Lemma 2. Consider any fixed point

(x̄, ν̄) ∈ Υ (x̄, ν̄),

which does exist due to Lemma 1 and Kakutani fixed point theorem. Let us
show that this point satisfies

0 < ν̄1 < 1 & x̄ �= 0, x̄ �= 1. (6)
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Suppose that the first country has zero mass of the population, that is
μ(Sleft(x̄)) = μ1 = 0. This is possible only if x̄ = 0 that implies hi(x̄) = +∞
∀i = 1, . . . ,m ⇒ H1(x̄) > 0 and H2(x̄) = 0. Now by formula (5) and properties
of the fixed point we conclude ν̄ = (ν̄1, ν̄2) = (1, 0) that due to (4) in the case
ν1 = 1 ≥ 0 = μ1 and μ2 = 1, ν2 = 0 implies

ν̄2
μ2

ϕ(x) +
μ2 − ν̄2

μ2
(1, . . . , 1) = (1, . . . , 1) �= 0 = x̄.

This contradiction proves x̄ �= 0.
The case of the second country with zero population mass is considered in a

similar way:

μ(Sright(x̄)) = μ2 = 0 ⇐⇒ x̄ = (1, . . . , 1) ⇒ hi(x̄) = −∞ ∀i = 1, . . . , m.

Therefore, H2(x̄) > 0 and H1(x̄) = 0, that due to (5) implies ν̄ = (ν̄1, ν̄2) =
(0, 1). By construction (4) in the case ν1 ≤ μ1 and μ1 = 1, ν1 = 0 one has

ν̄1
μ1

ϕ(x̄) = (0, . . . , 0) �= (1, . . . , 1) = x̄,

that proves (6). This due to (5) allows to conclude H1(x̄) = H2(x̄). Let us show
now that H1(x̄) = H2(x̄) = 0 is the only possibility.

Suppose H1(x̄) = H2(x̄) �= 0. Firstly notice that [ inf
i=1,...,n

hi(x̄)]+ > 0 is now

impossible since otherwise H1(x̄) > 0 and H2(x̄) = 0 that is invalid. Likewise, it
is impossible [ sup

i=1,...,n
hi(x̄)]− > 0. Therefore, both of these terms in the definition

of H vanish. Now, from the definition of H one can conclude that there are i, j
such that

hi(x̄) > 0 & x̄i · hi(x̄)
hi(x̄) + 1

�= 0 ⇒ x̄i > 0,

hj(x̄) < 0 & (1 − x̄j) · hj(x̄)
hj(x̄) − 1

�= 0 ⇒ x̄j < 1.

Next, we turn again to the properties of the fixed point and the formula (4). In
the first case, for 0 < ν1 ≤ μ1 < 1 ⇒ 0 < λ = ν1

μ1
≤ 1, via x̄i > 0 we have

x̄i > Φi(x̄, ν̄) = λϕi(x̄) = λ

[

x̄i − x̄i

2
· hi(x̄)
hi(x̄) + 1

]

.

In the second case, for 0 < λ = ν2
μ2

≤ 1, via x̄j < 1 we have

x̄j < Φi(x̄, ν̄) = λϕj(x̄) + 1 − λ = λ

[

xj +
1 − x̄j

2
· hj(x̄)
hj(x̄) − 1

]

+ 1 − λ.

Both cases are impossible. Consequently, it is proved H1(x̄) = H2(x̄) = 0. By
construction, this is equivalent to

x̄i
hi(x̄)

hi(x̄) + 1
= 0, hi(x̄) ≥ 0 ∀i = 1, . . . , m,
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(1 − x̄j)
hj(x̄)

hj(x̄) + 1
= 0 hj(x̄) ≤ 0 ∀j = 1, . . . ,m.

Now due to (3) this means that x̄ ∈ X is a nontrivial fixed point of ϕ(·).
Theorem 1. Let the individual costs be given by (1) and centers be situated on
a line parallel to the axis of abscissa. Then for each positive integer m ∈ N there
exists the partition of �ABCD into two countries Sleft(x) and Sright(x), with
piecewise linear boundary formed by the points xk, . . . , xl, 1 < k +1 ≤ l − 1 < m
where all xk+1, . . . , xl−1 are immigration proof.

Corollary 1. Let the costs in formula (1) be calculated relative to the Euclidean
distance. Then in the conditions of Theorem 1 boundary points xk+1, . . . , xl−1

are suited on classical hyperbola. In the case of a more general form of the metric
(for example, for p-norm), these points belong to a generalized hyperbola.

Fig. 2. Partition according to (i)–(ii) for const < 0 ⇐⇒ g2μ(Sleft) < g1μ(Sright).

Proof of Theorem 1. Consider a fixed point

x = (x1, . . . , xn) = ϕ(x),

which satisfies the conclusion of Lemma 2. Note that from the construction of
ϕ(·) for each i = 1, . . . , m (formula (3)) only one of three possibilities is realized:

(i) hi(x) = 0,
(ii) hi(x) > 0 ⇒ xi = 0,
(iii) hi(x) < 0 ⇒ xi = 1.
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Indeed, for example consider alternative (ii). Assuming the contrary, one
concludes xi

hi(x)
hi(x)+1 > 0, that implies xi > ϕi(x)—contradiction with fixed

point. Alternative (iii) is checked out in a similar manner.
Next we consider alternative (i) and the corresponding set of points xi onto

coordinate segments. All these points can be described as the intersection of the
coordinate segments with the curve described by the equation

h(x, y) = c1(x, y,x) − c2(x, y,x) = 0,

where x can be treated as a constant. Specifically, x = (x1, . . . , xm) plays the
role of parameters defining curve in the most general terms. To illustrate the
idea and to formulate concrete result we turn to the analysis of a particular
case, given in formula (1), recall:

ck(x, y, μ(Sk), rc(Sk)) =
gk

μ(Sk)
+ ρ((x, y), rc(Sk)), gk > 0, k = 1, 2.

Here we are interested in the curve which is completely determined by the pop-
ulation mass μ(Sk) and centers rc(Sk) of two countries k = 1, 2. Both of these
parameters are continuous functions of x. For a given fixed point they are fixed.
Therefore, in the case of the Euclidean distance in the plane equation of the curve
defines the classic hyperbola (geometric definition), which presents the boundary
between two countries:

h(x, y) = 0 ⇐⇒ ||(x, y)−rc(S1)||2−||(x, y)−rc(S2)||2 =
g2

μ(S2)
− g1

μ(S1)
= const.

The sign of the constant determines which of two branches one must take: neg-
ative constant corresponds to the branch which is nearest to the first center and
vice versa. The described situation is illustrated in Fig. 2 which represents the
hyperbolic boundary case with a negative right hand side. The alternatives (i)–
(ii) are implemented now and (i), (iii)—for the polar case. Of course, case (i)
is possible in a pure form. Notice also that options (ii) and (iii) do not occur
simultaneously: this follows from the convexity of the rectangular area and the
convexity of one of the areas bounded by the hyperbola.

Finally, as soon as the centers of the country are located on a common straight
line parallel to the base, this line is parallel to the coordinate segments and
therefore each of these segments has the only point of intersection with the
hyperbola or do not intersect it at all (the cases (ii) and (iii)). It establishes the
existence of numbers k and l from the theorem statement. Theorem 1 is proved.

Theorem 2. Let for the rectangle �ABCD individual costs be defined by (1)
and centers of the country be located on a line parallel to the axis of abscissa.
Then there is immigration proof division into two countries Sleft and Sright with
a continuous boundary.

Remark 1. It is an immaterial fact that the considered area is a rectangular.
This result holds for any convex closed bounded domain. So, this result can be
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generalized, and the continuous dependence on parameters defining the country
center is the only requirement, but it will require substantial transformation of
presented proof. The simplest method is to consider moving coordinate lines
parallel to the line passing through the centers of countries. �

Proof of Theorem 2. Let us consider an increasing family

Yξ ⊂ Yξ+1 ⊂ [0, 1], ξ = 1, 2, . . .

of points on the y-axis defining intercountry piecewise–linear boundary. We
choose a family so that

cl

⎛

⎝
⋃

ξ∈N

Yξ

⎞

⎠ = [0, 1].

For every ξ ∈ N, Lemma 1 takes place, that implies: for every ξ hyperbola is
specified by the parameters of the country centers (focuses) rc(S

ξ
left), rc(S

ξ
right)

and “population masses” μ(Sξ
left), μ(Sξ

right). These parameters vary under limits
and therefore they contain convergent subsequences. Without loss of generality
we can assume that already presented sequences are converged. Limit values

r̄k = lim
ξ

rc(S
ξ
k), μ̄k = lim

ξ
μk(Sξ

k), k = 1, 2

define a limit hyperbola. For this hyperbola one can easily prove two key facts
that give the desired result:

(i) μ̄k �= 0, k = 1, 2, proof by contradiction with the fixed point property
xξ ∈ ϕ(xξ) for all ξ ∈ N.

(ii) Let ξ̄ ∈ N and yξ̄ ∈ Yξ̄ be fixed. As soon as Yξ̄ ⊂ Yξ ∀ξ ≥ ξ̄, then a
sequence (xξ, yξ̄), ξ ≥ ξ̄ of points is defined; they satisfy all fixed point
relations. In the rectangle they are, starting with some number, either points
located on the left or on the right hand side, or couple (xξ, yξ̄) is placed
on ξ-th hyperbola (the intersection of ξ̄-th segment with the hyperbola).
Since hyperbola converge to the limit option, then their (the only!) points
of intersection with a fixed line will be convergent, i.e. (xξ, yξ̄) → (x̄ξ̄, yξ̄),
ξ → ∞. Consequently, the limit values of the population μ̄k = limξ μk(Sξ

k),
k = 1, 2 for countries with piecewise-linear boundaries coincide with the
value (mass) of the population of marginal hyperbola areas.

Thus, we have found a nontrivial fixed point this is the map (in the space
of continuous functions) whose graph consists of a (non-empty) intersection of
the hyperbola with the area, and possibly two vertical segments. This fragment
of the hyperbola is the desired boundary between two countries. Theorem 2 is
proved.
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3 General Partition into Three or More Countries

Now we consider a general method that allows us to establish the existence of
immigration proof division into n countries not only on the plane, but in any
finite-dimensional space. It is not a possible generalization only, but an oppor-
tunity in its context to consider more general problems, e.g. partition according
to party affiliation.

The initial construction is similar to the one proposed in [8]. We need to divide
the area A ⊂ R

l into n counties, N = {1, . . . , n}. The difference is that the cost
function ci(·) may depend not only on the mass δi ∈ [0, 1] of country, individual
location x ∈ A, but also additional parameters y ∈ Y , which can be changed
according to a partition configuration. In particular, y can be used as a center of
the country as well as other important for country formation parameters. It is
assumed that the cost functions depend continuously on δ ∈ Δ(n−1) and y ∈ Y ;
moreover Y (the range of y) is convex and compact. More specifically, in addition
to assumption (P) (page 3) we impose
(C) For each i ∈ N costs ci(·) are defined and continuous on

A × Y × (Δ(n−1) \ Fi), where Fi = {δ ∈ Δ(n−1) | δi = 0},

and obey

(i) ci(x, y, δ1, . . . , δn) → +∞ when (x, y, δi, δ−i) → (x̄, ȳ, 0, δ̄−i), i.e. δ̄i = 0;
(ii) the set of indifferent agents

Aij(y, δ) = {x ∈ A | ci(x, y, δ) = cj(x, y, δ)}

has zero Lebesgue measure ∀j �= i, and for all fixed (y, δ) ∈ Y × Δ(n−1).

Note the difference between our assumption and the one in [8]: the continuity
relative to all variables and for item (ii)—the set Aij(y, δ) may depend on y ∈ Y
and masses of other jurisdictions δk, k �= i, j.

The idea of the proof is that for a collection (δ1, . . . , δn, y) of nominal para-
meters one can put into correspondence a similar collection of real parameters,
calculated for an immigration stable partition defined by nominal ones. While
doing so, we define a mapping with a nontrivial fixed point which obeys all
requirements of country partition we seek for. Now we consider this construc-
tion in more details.

Let us consider a standard simplex Δ(n−1) = {δ ∈ R
n | ∑

δi = 1, δi ≥ 0 ∀i},
the mappings Si : (δ, y) → Si(δ, y) ⊂ A, (δ, y) ∈ Δ(n−1) × Y , i ∈ N , and
M : (Si)i∈N → (μi)∈N defined by formulas3:

Si(δ, y) = {x ∈ A | ci(x, δ, y) = min
j∈N

cj(x, δ, y)}, μi(δ, y) = μ(Si(δ, y)), i ∈ N.

3 Here as above μ(·) is absolutely continuous measure on A, specifying the resettlement
of the population.
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Assuming also that there is a continuous F : Δ(n−1) × Y → Y , we obtain the
resulting map

[M × F ](δ, y) = M(δ, y) × F(δ, y), (δ, y) ∈ Δ(n−1) × Y.

Clearly, it suffices to find a nontrivial fixed point δ̄ = (δ̄1, . . . , δ̄n) ∈ Δ(n−1),
ȳ ∈ Y of this map, i.e.

ȳ = F(δ̄, ȳ), μi(δ̄, ȳ) = δ̄i, ∀i ∈ N, such that δ̄ = (δ̄1, . . . , δ̄n) � 0.

It is proven in [8] that4 that: for some 0 < ε < 1

(i) the map M(·) is continuous on Δ
(n−1)
ε and

(ii) M(·) maps the ε-sub-simplex

Δ(n−1)
ε = {δ ∈ R

n |
∑

δi = 1, δi ≥ ε ∀i ∈ N}

so that the faces of Δ
(n−1)
ε pass into the corresponding faces of initial sim-

plex, i.e.

δ = (δ1, . . . , δn) ∈ Δ(n−1)
ε & δi = ε ⇒ μi(δ) = 0, M(δ) = (μ1(δ), . . . , μn(δ)).

Fig. 3. Initial and embedded sub-simplexes Δ
(n−1)
ε and the mapping M(·).

The properties (i), (ii) can be easily extended to our case although now we
need to find a fixed point of the map M×F . So, the existence of the required fixed
point can be proved via (i), (ii). Note that the Brouwer fixed point theorem (and
similar theorems) cannot be applied in the case, because M(·) being defined on

4 This is Lemma 1 from [7], where its comprehensive proof is also presented.
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Δ
(n−1)
ε ×Y is not a mapping into itself, i.e. requirement M(Δ(n−1)

ε ×Y )⊆Δ
(n−1)
ε

is not true. Moreover, I do not know any other workable theorem for our case. In
[8] further argumentation is based on the application of KKM-lemma (Knaster–
Kuratowski–Mazurkiewicz), which is rather elegant solution to the issue, but it
is limited to a particular case of fixed (unchanged) capitals. In our case this
means the lack of postulated dependence of M on y ∈ Y .

The foregoing reasons yield the need in additional analysis and proving of
the following theorem, which can be viewed as a (new) generalization of Kras-
nosel’skii’s theorem in case of a bounded polyhedron (simplex) see [3] and its
generalizations in [4].

Let M ⊂ R
n be a convex bounded polyhedron and A(M) be its affine hull.

Let d ∈ riM be a point in the relative interior of a polyhedron M , and Ft,
t = 1, . . . ,m its non-trivial faces of a maximum dimension (one less than M).
With every facet associate cone Kt ⊂ A(M) with a vertex at d:

Kt = {d + λ(κ − d) | κ ∈ Ft, λ ≥ 0} ⇒ A(M) = ∪
t=1,...,m

Kt.

Theorem 3. Let f : M → A(M) be a continuous mapping defined on a polyhe-
dron M and d ∈ riM , A(M), Ft, Kt be defined as described above. Let one of
the conditions hold:

(i) Compressive form
f(Ft) ⊂ M, ∀t = 1, . . . , m. (7)

(ii) Expansive form

f(Ft) ⊂ Kt \ riM, ∀t = 1, . . . ,m. (8)

Then f(·) has a fixed point in M.

Proof of Theorem 3. Consider the following parametrization in the affine space
A(M), spanned by a polyhedron M . As A(M) = ∪t=1,...,mKt point x ∈ A(M)
can be specified as x = d + λ(κ − d), where real λ > 0 and, for x �= d, the vector
κ ∈ ∪t=1,...,mFt on the boundary of the polyhedron are defined one-to-one. Now
the points of the polyhedron can be associated with pairs (λ, κ) for 0 ≤ λ ≤ 1
and a continuous map can be unambiguously extended onto pairs (λ, κ). Next
we consider the alternatives of the theorem.

(i) Compressive form. Let f(λ, κ) = (λ′, κ′). We now define a new mapping5

g(λ, κ) = (1 ∧ λ′, κ′). Obviously, g : M → M is continuous and due to Brouwer
theorem it has a fixed point x̄ = (λ̄, κ̄) = g(λ̄, κ̄). Let us show that this point
is also a fixed point of f . Indeed, the difference in the values of f and g can be
revealed only if λ̄ < 1 and λ̄′ > 1. But then λ̄ = 1 ∧ λ̄′ = 1, that cannot be true
for the fixed point.

5 Here a ∧ b = min{a, b}.
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(ii) Expansive form. Without loss of generality we can assume that f(λ, κ) =
(λ′, κ′) and λ′ ≤ 2. Otherwise, consider the new mapping f ′(λ, κ) = (2 ∧ λ′, κ′),
which has the same fixed points on M as the original one. Next, we define
g(λ, κ) = (2λ − λ′, κ′). For (λ, κ) ∈ Ft we have λ = 1, 1 ≤ λ′ ≤ 2 and therefore
0 ≤ 2λ − λ′ ≤ 1, which implies g(Ft) ⊂ M ∀t. By the above item (i), g(·)
has in M a fixed point (λ̄, κ̄) i.e. there is (λ̄, κ̄) = (2λ̄ − λ′, κ′). Writing this
componentwise we have κ̄ = κ′ and λ̄ = 2λ̄ − λ′ ⇒ λ̄ = λ′, but this means that
(λ̄, κ̄) is a fixed point of f . Theorem 3 is proved.

Remark 2. Note that we apply the parametrization A(M) via (λ, κ) only to
specify a transformation of the initial function f which does not change fixed
points. A new function defined in this way is continuous and maps M into itself.

Notice that the assumption d ∈ riM is essential—without it the theorem
statement becomes wrong, appropriate examples can be easily constructed.
The analysis of the proof shows that Theorem 3 can be generalized to the case
of the Cartesian product of maps provided that the first satisfies the condition
of Theorem 3 and the second map obeys the conditions of Brouwer theorem or
it can be reducible to it. �

So now we can formulate the main result. In the case of our interest we have

M : Δ(n−1)
ε × Y → Δ(n−1).

If as a central point d ∈ M = Δ
(n−1)
ε one considers the center of simplex

( 1
n , . . . , 1

n ) = d then, by expansive property (ii) of the map M, condition (ii) of
Theorem 3 is fulfilled. Now if

F : Δ(n−1)
ε × Y → Y

is any continuous map, then the map M×F has a fixed point in X = Δ
(n−1)
ε ×Y .

As a result we proved the following

Theorem 4. Let A be a compact subset of a finite dimensional linear space and
μ be a measure on A. If assumptions (P), (C) are satisfied, then the area A can
be nontrivially partitioned into any number of immigration proof communities.
This partition can also obey any consistent continuous requirements.

Notice that this result does not imply Theorem 2, in which we did not require
restrictive assumption C(ii). Thus Theorems 2 and 4 complement each other.

The mapping F , introduced into the design of the search of a fixed point,
expresses some additional requirements for cross-country division. For example,
one can impose requirements on the centers (the capital) of countries. In par-
ticular, one can require the capital be located in the center of gravity of the
countries and so on.
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Abstract. This paper is devoted to Nash equilibrium search in
quadratic n-person game, where payoff function of each player is
quadratic with respect to its strategic variable. Interactions between
players are defined by corresponding bilinear terms in the payoffs. First,
the statement is considered without any assumptions on payoffs’ con-
cavity. We use Nikaido-Isoda approach in order to reduce Nash equilib-
rium problem to optimization problem with nonconvex implicitly defined
objective function. We propose global search algorithm based on the lin-
earization of implicit part of the objective by linear support minorants.
This technique allows to determine numerically whether the game has
no equilibria. Then payoffs are assumed to be concave with respect to its
strategic variables, and we suggest d.c. decomposition of the objective,
thus corresponding local search method is applicable. Computational
results are provided in the paper. Local search method is compared with
extragradient equilibrium search algorithm.

Keywords: Nash equilibrium · Nikaido-Isoda function · Support
function · d.c. decomposition · Extragradient method

1 Introduction

A lot of investigations are devoted to methods for computing Nash equilibrium,
and between them the so-called Nikaido-Isoda approach is widely used, especially
for generalized Nash equilibrium problems (GNEP). GNEP differs from standard
Nash equilibrium problem (NEP) by coupled strategy sets. It means that in
GNEP for every player his or her strategy set depends on rival players choices.
Nikaido-Isoda approach leads to an optimization problem which turns out to be
equivalent to NEP (in particular sense).

One of the first investigations devoted to GNEP and Nash equilibrium com-
puting can be found in [1]. In [2] one can find algorithms for computing gener-
alized Nash equilibrium using convex programming techniques. In both papers,
convergence of algorithms depends on identical conditions. More recent investi-
gations are concerned with algorithms based on Nikaido-Isoda approach, ideas
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of regularization of Nikaido-Isoda function, and relaxation methods (see, for
example, [3–8]). Gradient-type approach to equilibrium programming problems
was proposed in [9]. It is worth to note that all of mentioned papers examine
problems with imposed concavity assumption on payoffs.

Games with quadratic payoffs and coupled constraints have been considered
in [10,11]. In these papers, the concavity assumption on payoffs is used as well.
2-person game with quadratic payoffs is described in [12] as a particular case of
bilinear equilibrium programming problem.

The present investigation is devoted to Nash equilibrium search in quadratic
n-person game with independent strategy sets. In contrast to papers on Nash
equilibrium search known for the author, we in the first part of our paper do not
make any assumptions on concavity of players’ payoff functions. It is well-known
that payoff concavity with respect to player’s variable is a standard proposition
widely used for algorithms’ convergence. It also ensures existence of Nash equilib-
rium due to Kakutani’s fixed point theorem [13] (if some additional presumptions
on strategy sets are made). We abandon the concavity assumption and propose
numerical procedure based on Nikaido-Isoda approach for computing Nash equi-
librium in quadratic game of certain form. Moreover, such a procedure is able
to determine whether the game has no equilibria if this is the case. Preliminary
research on equilibrium computing in quadratic 2-person game with non-concave
payoffs were made by the author in [14]. Here we present more detailed discussion
provided with some illustrative examples and extended computational results.
Also we consider the case with (player-) concave payoffs and propose d.c. decom-
position of the objective function. It allows us to use local search method for d.c.
functions. D.c. decomposition is based on the Lagrange dual problem for certain
optimization problem gained by Nikaido-Isoda approach.

Following [10–12], in the framework of this paper, quadratic game is a game,
where every player’s payoff function is quadratic with respect to its strategic
variable. In addition, payoff function of every player is assumed to be linear
with respect to another players’ variables, and it is defined by corresponding
bilinear terms. In other words, quadratic game under consideration generalizes
bilinear n-person game by adding quadratic term to every payoff function.

At the same time even the class of bilinear games is rather wide. It includes in
particular the mixed extension of bimatrix games as well as of polymatrix games,
and differs from these classes by an arbitrary strategy set for every player [15].
In polymatrix game players choose their strategies from symplexes. As we show
in the paper, it makes significant impact on the difficulty of Nash equilibrium
search.

1.1 Nikaido-Isoda Approach

Now we discuss an approach associating a NEP with an optimization problem.
One of the main feature of the approach is as follows: if the set of Nash equilibria
is nonempty then the corresponding optimization problem is turn out to be
equivalent to the NEP.
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Let us consider a noncooperative n-person game in strategic form. The set of
players is N = {1, 2, . . . , n}, the set of strategies of ith player is Xi ⊂ R

ni , and
the payoff function of ith player is fi : X → R, where X = X1×· · ·×Xn is the set
of strategy profiles, and R denotes the set of real numbers. We suppose that Xi is
a compact set for every i ∈ N , the function

∑n
i=1 fi is continuous over the set X,

and fi(xi, ·) is continuous function over the set X1×· · ·×Xi−1×Xi+1×· · ·×Xn for
each fixed xi ∈ Xi, and for every i ∈ N . The problem is to find Nash equilibrium
for the given game, i.e. to find a point x∗ ∈ X meeting the following conditions:

fi(xi, x
∗
−i) � fi(x∗) ∀xi ∈ Xi, ∀i ∈ N, (1)

where (xi, x
∗
−i) = (x∗

1, . . . , x
∗
i−1, xi, x

∗
i+1, . . . , x

∗
n).

A function ϕ : X × X → R such as

ϕ(x, y) =
∑

i∈N

[fi(yi, x−i) − fi(x)] (2)

is referred to as Nikaido-Isoda function. It is known, that a point x∗ ∈ X is Nash
equilibrium in the game stated above if and only if [16]

max
y∈X

ϕ(x∗, y) = 0. (3)

Note that
F (x) = max

y∈X
ϕ(x, y) � 0 ∀x ∈ X. (4)

Then the next result immediately follows. If the set of Nash equilibria in the
game stated above is nonempty, then it coincides with the set of solutions of the
following optimization problem:

F (x) → min, x ∈ X. (5)

On the other hand, the set of Nash equilibria in the game is empty if and only if

F (x) > 0 ∀x ∈ X. (6)

Consequently, every solution of (5), where objective function attains zero value,
is Nash equilibrium in the game. If objective does not attain zero over the feasible
set X, then the game has no equilibrium points. Hence, Nikaido-Isoda theorem
gives an opportunity to apply optimization techniques to NEP.

One of the main difficulty on this way is implicitly defined objective func-
tion F . In some particular cases, the “inner” maximization problem that defines
objective F can be solved analytically. The examples of such cases are the mixed
extensions of bimatrix games and, more general, of polymatrix games. In these
classes of games payoff functions have bilinear form and the strategy set of every
player is a simplex. These are the key features that allow an explicit form of F .
Problem (5) in explicit form for bimatrix games first was given in [17,18]. This
result then was used for comprehensive research on computation of Nash equi-
librium for the mixed extension of bimatrix games in [5]. Detailed investigation
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of equivalent problem (5) for polymatrix games one can find in [19]. However,
quadratic games with arbitrary polyhedra as the strategy sets (even if they are
box-constrained) do not admit explicit form of F .

The second issue to deal with is nonconvexity of objective F . As we show in
the paper, there can be local minima of F that are not Nash equilibria.

It should be mentioned that equivalence between NEP and optimization
problem of form (5) in general is only correct for the games with independent
strategy sets. In the games with coupled players’ strategies Nash equilibria may
exist that do not solve (5) (see [20] for the example).

2 Global Search

Here we consider quadratic game without the concavity assumption and propose
a method for Nash equilibrium search based on Nikaido-Isoda approach. First
we customize n-person game from Sect. 1.1 as the following quadratic game. All
notations stay the same. Let the strategy set of ith player be non-empty compact
set of form

Xi = {xi ∈ R
mi | Aixi � bi} , (7)

and let ith player’s payoff function be defined as

fi(x) = x�
i

(
1
2
Bixi + di

)

+
∑

j �=i

x�
i Cijxj , (8)

where all matrices and vectors have proper sizes. (a�) is the transpose of a.
Consider the following block-structured matrices:

C =

⎛

⎜
⎜
⎝

0 C12 . . . C1n

C21 0 . . . C2n

. . . . . . . . . . . .
Cn1 Cn2 . . . 0

⎞

⎟
⎟
⎠ , B =

⎛

⎜
⎜
⎝

B1 0 . . . 0
0 B2 . . . 0

. . . . . . . . . . . .
0 0 . . . Bn

⎞

⎟
⎟
⎠ , A =

⎛

⎜
⎜
⎝

A1 0 . . . 0
0 A2 . . . 0

. . . . . . . . . . . .
0 0 . . . An

⎞

⎟
⎟
⎠ .

Then Nikaido-Isoda function for the game (7)–(8) can be written as

ϕ(x, y) =
1
2
y�By + y�(Cx + d) − x�

(
1
2
B + C

)

x − x�d,

and the equivalent problem (5) takes the form

F (x) = max
y∈X

[
1
2
y�By + y�(Cx + d)

]

− x�
(

1
2
B + C

)

x − x�d → min
x∈X

, (9)

where d = (d1, d2, . . . , dn), X = {x ∈ R
m | Ax � b}, and m = m1 + · · · + mn.

In order to handle with implicitly defined objective we propose to make
approximation of implicit term by linear support minorant functions. Recall
that support minorant for some function ρ in some feasible point x̃ refers to a
function l such that for every feasible x

l(x) � ρ(x), l(x̃) = ρ(x̃).
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Let us make the following notations:

ψ(x, y) =
1
2
y�By + y�(Cx + d),

ρ(x) = max
y∈X

ψ(x, y).

It is clear, that ρ is convex function over the set X. Hence linearization of ρ in
arbitrary point from X gives us linear support minorant for ρ. Let xk be the
kth iteration point. Then support minorant for ρ in xk is the function ψ(x, yk),
where

yk ∈ Arg max
y∈X

ψ(xk, y).

Optimization problem with approximated objective function F on the kth iter-
ation takes the form

F̃k(x) = max
0�i�k

{
ψ(x, yi)

} − x�
(

1
2
B + C

)

x − x�d → min
x∈X

. (10)

One can easily reformulate problem (10) as

θk(α, x) = α − x�
(

1
2
B + C

)

x − x�d → min
(α,x)

, (11)

α � ψ(x, yi), 0 � i � k, (12)

x ∈ X. (13)

Let vector (α∗, x∗) be a solution of (11)–(13). Then, obviously, x∗ solves (10),
moreover F̃k(x∗) = θk(α∗, x∗). The next point xk+1 is chosen as a vector x∗.
The numerical procedure should be stopped if

F ∗ − F̃k(xk+1) � ε,

where F ∗ is the best known objective value (record) and ε is a small positive
real number. The following algorithm represents our discussion.

Global Search Algorithm.

1. Choose an initial point x0 ∈ X, and small positive numbers ε1 and ε2. Set
F ∗ = +∞, and k = 0.

2. Solve the problem
ψ(xk, y) → max, y ∈ X,

and assign the solution to yk.
3. Compute the record: if ϕ(xk, yk) � F ∗ then assign ϕ(xk, yk) to F ∗.
4. Solve the problem (11)–(13). Let (α∗, x∗) be a solution. Assign x∗ to xk+1.
5. If F ∗ − F̃k(xk+1) � ε1 then STOP, else set k = k + 1 and go to the Step 2.
6. If F ∗ � ε2 then xk+1 is Nash equilibrium for the game (7)–(8), else the game

has no equilibrium points.
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Therefore, it needs to solve two nonconvex quadratic programming problems
on each iteration of the algorithm. These problems can be solved, for example,
by excess search between all stationary points for small dimension and box-
constrained strategy sets. Another way is to use some of existing global solvers.
We program the algorithm in GAMS with Couenne as a solver for nonconvex
problems [21]. Convergence of described algorithm to global solution is estab-
lished in [22,23].

Let us consider two examples of the game (7)–(8) with two players and indef-
inite matrix B.

Example 1. N = {1, 2}, X1 = X2 = [−1, 1],
f1(x1, x2) = x2

1 + x1x2, f2(x1, x2) = −x2
2 + 1

2x1x2.
This game has two Nash equilibria: (1, 1

4 ) and (−1,− 1
4 ). The plot of function F

is presented on the Fig. 1 (on the left). Let (1, 1) be initial point, and ε1 = ε2 =
10−5, then global search algorithm needs only two iterations for converging to
equilibrium point. Results of computing one can find in the Table 1.

Example 2. N = {1, 2}, X1 = X2 = [−1, 1],
f1(x1, x2) = x2

1 + x1x2, f2(x1, x2) = −x2
2 − x1x2.

This game does not have any equilibria since minx∈X F (x) = 0.25 > 0. The plot
of function F is presented on the Fig. 1 (on the right). Algorithm parameters
have the same values as in the Example 1. The Table 2 presents iterations of
global search.

Fig. 1. Plot of the function F (x1, x2) for the game with two Nash equilibria (left) and
for the game without Nash equilibria (right).

In the Table 3, we gather computational results of global search for randomly
generated problems with box-constrained strategy sets. Tolerance parameters ε1
and ε2 were set to 10−4 and 10−5 respectively. Notation in the table is as fol-
lows: Dimension is a total dimension of the game, Problems is a number of games
generated for a given dimension, With NE is a number of problems with equi-
librium (as the algorithm shows), Without NE is a number of problems without
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Table 1. Iterations of global search algorithm for the Example 1

k xk F ∗ F̃k(x
k+1)

0 (1, 1) 0.5625 −1.6875

1 (−1,−1) 0.5625 0

2 (−1,−0.25) 0 0

Table 2. Iterations of global search algorithm for the Example 2

k xk F ∗ F̃k(x
k+1)

0 (1, 1) 2.25 −1.00

1 (−1,−0.5) 1.00 0.25

2 (−1, 0) 0.25 0.25

Table 3. Global search for randomly generated problems

Dimension Problems With NE Without NE It It (with NE) It (without NE)

4 50 28 22 5 4 5

6 50 25 25 7 6 8

8 30 16 14 9 6 12

10 30 26 4 10 9 16

12 10 7 3 7 5 11

14 10 10 0 11 11 —

equilibria, It is an average number of iterations, It (with NE) and It (without NE)
are the average numbers of iterations for problems with and without equilibrium
respectively.

Systematic solving global optimization problems is computationally expen-
sive procedure, what may be unacceptable for large scale problems. Hence it is
worth to take into account one particular case of the game that considerably
lowers computational time spending on equilibrium search. If for every pair of
players mixed partial derivatives of their payoffs are equal to each other, i.e.

Cij = C�
ji , i ∈ N, j ∈ N, i �= j,

then the game (7)–(8) is a potential game [24]. In such a case every (global)
solution of the problem

P (x) → max, x ∈ X

is Nash equilibrium. Here P is explicit (generally nonconvex) function reffered to
as a potential. Potential function for the game (7)–(8) is defined by the formula

P (x) =
∑

i∈N

[
1
2
x�

i Bixi + x�
i di +

1
2

∑

j �=i

x�
i Cijxj

]

.
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Note that the set of local non-global maxima of a potential may contain equi-
librium points as well.

3 Local Search

In this section we consider the game (7)–(8) with strictly concave players’ pay-
offs with respect to its strategic variables. The following discussion is the fur-
ther investigation for that made in [25]. In the present paper, it is extended
by improved computational results and a comparison of proposed method with
extragradient algorithm. For convenience we assume that fi from (8) is the loss
function for ith player. Hence, the concavity assumption should be replaced by
the convexity one. It is equivalent to the condition that for every i ∈ N matrix
Bi is positively definite. It implies that matrix B is positively definite too. Then
the equivalent optimization problem (9) should be rewritten as

F (x) = x� (Cx + d) +
1
2
x�Bx + max

y∈X

[

−y� (Cx + d) − 1
2
y�By

]

→ min
x∈X

, (14)

The convexity assumption provides strict concavity of inner maximization prob-
lem in (14):

ψ(x, y) = −y� (Cx + d) − 1
2
y�By → max, y ∈ X, for some fixed x ∈ X.

Moreover, taking into account non-emptiness, compactness, and convexity of
strategy space Xi for every i ∈ N one can immediately conclude that equilib-
rium point always exists due to Kakutani’s fixed point theorem. It implies that
minx∈X F (x) = 0. Hence we propose to use local search method joined with
multistart from random initial point, since we can easily verify whether a point
given by the procedure is Nash equilibrium.

As ψ(x, ·) is strictly concave function and the set X is defined by linear
constraints, we have

max
y∈X

ψ(x, y) = min
λ�0

max
y∈Rm

L(y, λ;x) for every x ∈ X,

where λ is a vector of Lagrange multipliers, and

L(y, λ;x) = −y�(Cx + d) − 1
2
y�By − λ�(Ay − b)

is Lagrange function. Obviously, L(·, λ;x) attains its maximum over Rm in the
point, where the first derivative with respect to variable y equals to zero. Then in
view of non-singularity of matrix B which is ensured by its positive definiteness,
we have y∗ = −B−1

(
Cx + d + A�λ

)
such as

max
y∈X

ψ(x, y) = min
λ�0

L(y∗, λ;x) for every x ∈ X. (15)
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Executing substitution, we get:

L(y∗, λ;x) =
1
2

(Cx + d)�
B−1 (Cx + d)

+ (Cx + d)�
B−1A�λ +

1
2
λ�AB−1A�λ + λ�b. (16)

Then the equalities (15) and (16) imply

max
y∈X

ψ(x, y) =
1
2

(Cx + d)�
B−1 (Cx + d) +

min
λ�0

[

(Cx + d)�
B−1A�λ +

1
2
λ�AB−1A�λ + λ�b

]

∀x ∈ X.

(17)

With respect to (17) the problem (14) may be rewritten as

F (x) = g(x) − h(x) → min
x∈X

, (18)

where

g(x) = x�
(

C +
1
2
B +

1
2
C�B−1C

)

x + x� (
C�B−1d + d

)
+

1
2
d�B−1d,

h(x) = −min
λ�0

v (x, λ) ,

v (x, λ) = λ�AB−1Cx +
1
2
λ�AB−1A�λ + λ� (

b + AB−1d
)
.

Next, we formulate the statement that allows us to proceed to numerical
method for solving (18).

Proposition 1. Functions g and h are convex.

Proof. Using the symmetry of matrix B and denoting z = (B + C)x, quadratic
part of g can be easily represented as

x�
(

C +
1
2
B +

1
2
C�B−1C

)

x =
1
2
x� (B + C)�

B−1 (B + C) x =
1
2
z�B−1z.

Since B is positive definite, then z�B−1z > 0 for any non-zero z, at the same
time z(x)�B−1z(x) � 0 for any x. Hence, g is convex. Function v is linear with
respect to x then h is convex too.

Thus, we represent F as a difference of two convex functions (d.c. decompo-
sition). Our further suggestion is to use for solving problem (18) the well-known
iterative local search d.c. algorithm [26]. Its main idea is a linearization of concave
term of objective in current iteration point and solving derived convex optimiza-
tion problem. In such a way, original nonconvex problem reduces to series of
convex problems. Next, we describe the steps of this algorithm as it applies to
(18). We propose to use linearization at the same manner as in the previous
section. Thus we omit detailed discussion and proceed with an algorithm.
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Local Search Algorithm.

1. Choose initial point x0 ∈ X, and small numbers ε1 > 0, ε2 > 0. Set k = 0.
2. Get λk+1 as a solution of convex minimization problem:

λk+1 = arg min
λ�0

v
(
xk, λ

)
.

3. Get xk+1 as a solution of convex linearized problem:

xk+1 = arg min
x∈X

[
g (x) + v

(
x, λk+1

)]
.

4. If F (xk+1) � ε1 then STOP: xk+1 is a global solution of (18) and is Nash
equilibrium in the game. Else if

∥
∥xk+1 − xk

∥
∥ � ε2 then STOP: xk+1 is a local

solution and is not an equilibrium for the game. Otherwise, set k = k +1 and
go to the Step 2.

3.1 Computational Experiment

Proposed local search for d.c. functions was compared with extragradient
method [12]. Every iteration of extragradient algorithm consists of two half-
steps, and for the game (7)–(8) (where fi is a loss function) has the form

xk = πX

(
xk − tk

(
(B + C)xk + d

))
,

xk+1 = πX

(
xk − tk

(
(B + C)xk + d

))
.

Here πX(·) denotes projection operator onto the set X, and step length tk is
chosen meeting the following condition:

2 t2k ‖(B + C)(xk − xk)‖2 � (1 − δ)‖xk − xk‖2, 0 < δ < 1.

The stop criterion for extragradient method we used:

‖xk+1 − xk‖ � ε3.

It should be noted that the convergence of extragradient algorithm to equilibrium
point is ensured if (B+C) is positive semi-definite. As matrix C is arbitrary, it is
not the case in general. However, since extragradient algorithm does not need to
solve any optimization problems during computation, it consumes significantly
less time.

Computational experiment was made for randomly generated problems with
two players. For all problems we set

X = {x ∈ R
m | −10 � xi � 10, i = 1, . . . ,m} ,

and also set ε1 = 10−4, ε2 = ε3 = 10−6. Both methods started from identi-
cal randomly generated initial points (multistart). Program was composed in
MatLab. Convex mathematical programming problems on the Step 2 and the



Search of Nash Equilibrium in Quadratic n-person Game 519

Table 4. Computational results of local search for d.c. functions and extragradient
method

Dimension MS Method It(av) NE Loc NE(uniq) Loc(uniq) Time(av) Max(it)

2 20 dcls 71 20 0 3 — 0.47 0

exgr 77 20 0 2 — 0.02 0

4 20 dcls 123 15 5 3 1 0.81 0

exgr 74 20 0 1 — 0.02 0

6 20 dcls 94 17 3 5 2 0.65 0

exgr 126 20 0 2 — 0.03 0

8 20 dcls 26 20 0 3 — 0.19 0

exgr 85 20 0 2 — 0.02 0

10 20 dcls 96 12 8 1 3 0.71 0

exgr — 0 0 — — — 20

10 20 dcls 79 6 14 3 7 0.59 0

exgr 123 20 0 2 — 0.03 0

12 20 dcls 1051 3 17 3 8 8.24 0

exgr — 0 0 — — — 20

14 20 dcls 273 14 6 2 4 2.14 0

exgr 142 20 0 2 — 0.04 0

16 20 dcls 230 6 14 1 6 1.88 0

exgr — 0 0 — — — 20

18 20 dcls 811 12 8 3 6 6.74 0

exgr — 0 0 — — — 20

20 20 dcls 1281 15 5 6 3 11.33 0

exgr 1343 20 0 2 — 0.37 0

30 20 dcls 3308 8 12 5 11 39,23 0

exgr 325 20 0 2 — 0,11 0

40 20 dcls 3244 0 20 — 19 54,20 0

exgr — 0 0 — — — 20

50 10 dcls 3062 0 10 — 8 57.06 0

exgr 440 2 0 1 — 0.15 8

60 10 dcls 2656 0 10 — 10 61.30 0

exgr 2072 2 0 1 — 0.74 8

70 10 dcls 5504 0 10 — 10 168.14 0

exgr 2356 10 — 2 — 0.88 0

80 10 dcls 2499 0 10 — 10 88.25 0

exgr 9908 10 — 1 — 3.93 0

90 10 dcls 3536 0 10 — 10 160.99 0

exgr — 0 0 — — — 10

100 10 dcls 3928 0 10 — 10 216.26 0

exgr — 0 0 — — — 10
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Step 3 were solved by standard solver Quadprog. Computation was performed
on the PC with AMD FX-8350 4.00 GHz CPU. Maximal number of iteration
was set to 40000. Results are gathered in the Table 4.

Notation is as follows: Dimension denotes a total dimension of the game, MS
is a number of initial points, dcls denotes local search for d.c. functions, exgr
denotes extragradient method, It(av) is an average number of iteration, NE is
a number of starts that gain equilibrium point, Loc is a number of starts that
gain non-equilibrium point, NE(uniq) is a number of unique equilibrium points
gained by multistart, Loc(uniq) is a number of unique non-equilibrium points
gained by multistart, Time(av) is an average time spending for a single start (in
seconds), Max(it) is a number of starts where stop criterion does not hold. For
computing the number of iterations and time, we took into account starts with
fulfilled stop criterion only.

Computational experiment shows that both algorithms joined with multistart
are able to find more than one unique Nash equilibrium. However, there are the
problems without any equilibria found by both methods. Also experiment shows
that extragradient algorithm which is suitable for equilibrium search converges
to equilibrium points only, while local search for d.c. functions converges to sta-
tionary points of the objective function F , and there may exist non-equilibrium
points among them.

4 Conclusion

In the paper we investigate two statements of quadratic n-person game. The first
one is the game without the concavity assumption on every player’s payoff with
respect to its strategic variable. Whereas in the second statement this assump-
tion takes place. In both cases Nikaido-Isoda approach leads to optimization
problem with nonconvex implicitly defined objective function to be minimized
over the set of game strategy profiles. For the first statement, we propose global
search method which either computes Nash equilibrium or finds out that the
game has no equilibria if this is the case. Global search algorithm represents the
series of nonconvex quadratic programming problems. For the second statement,
we construct d.c. decomposition of implicit objective function in corresponding
optimization problem. It allows us to use local search which is based on lin-
earization of concave term in d.c. decomposition. It is worth to implement local
search with multistart as it can converge to non-equilibrium local minima.
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Abstract. We consider stochastic programming problems with prob-
abilistic and quantile objective functions. The original distribution of
the random variable is replaced by a discrete one. We thus consider a
sequence of problems with discrete distributions. We suggest conditions,
which guarantee that the sequence of optimal strategies converges to
an optimal strategy of the original problem. We consider the case of
a symmetrical distribution, the case of the loss function increasing in
the random variable, and the case of the loss function increasing in the
optimization strategy.

Keywords: Stochastic programming · Probabilistic criterion · Value-
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1 Introduction

The probabilistic and quantile (value-at-risk) objective functions [1] are used in
stochastic programming to take into account risks. As it is described in [1], they
can be applied in different economic and engineering systems, i.e., for planning
a budget, for correction of a satellite orbit, etc.

Let us consider the stochastic programming problem in general formulation

G[Φ(u, Y )] → min
u∈U

, (1)

where u is a strategy, U is a set of feasible strategies, Φ(u, x) is a loss function,
G is a probabilistic functional (e.g., probability, quantile, or expectation), Y is a
random variable defined on a probability space (Ω0,F0,P0). We suppose that Y
has realizations x ∈ X ⊂ R

1. The distribution function of the random variable
Y is denoted by F (x) � P0{Y ≤ x}. In this paper, we consider stochastic
programming problems with probabilistic and quantile objective functions.

S.V. Ivanov—Supported by Russian Science Foundation (project 15-11-10009).

c© Springer International Publishing Switzerland 2016
Y. Kochetov et al. (Eds.): DOOR 2016, LNCS 9869, pp. 525–537, 2016.
DOI: 10.1007/978-3-319-44914-2 41



526 A.I. Kibzun and S.V. Ivanov

It is known that these problems are difficult to solve if the random parameters
are continuous. However, stochastic programming problems with probabilistic
criteria can be reduced to mixed integer programming problems if the random
parameters are discrete [2]. Mixed integer programming problems can be solved
using available software. So we can try to replace the original continuous random
variable Y by a discrete one. We thus get a discrete approximation of original
problem (1).

Discrete approximations of stochastic programming problems with expecta-
tion criterion have been considered in many works (see, e.g., [4–7]). Methods
described in these works are based on approximate computation of integrals.
Approximations of stochastic programming problems with probabilistic criteria
are less researched. We can emphasize works [8,9]. The discretization of the
quantile objective function in [8] is also made by approximate computation of
integrals. Also, we would like to notice that in this work the strategy depends on
random variables. In the present paper, we assume that the strategy is chosen
before a realization of the random variable appears. In [9] convergence of confi-
dence strategies, i.e., guaranteeing an upper bound of the optimal value of the
quantile objective function, is proven.

Let us describe our technique of the discretization. We suppose that a
sequence of independent random variables {Yk}, k ∈ N, with the distribution
function F (x) is given. Let this sequence be defined on the probability space
(Ω0,F0,P0).

It is known that the distribution function F (x) can be estimated with the
sample distribution function

F̂ (n)(x) � M(x)
n

, (2)

where M(x) �
∑n

k=1 θ(x − Yk),

θ(x) �
{

0, x < 0;
1, x ≥ 0.

(3)

It is easily seen that M(x) is the random number of elements of the sample
Y1, . . . , Yn such that Yk ≤ x, k = 1, n. By the Glivenko-Cantelli theorem,

sup
x∈R1

|F̂ (n)(x) − F (x)| a.s.−−→ 0 as n → ∞. (4)

Notice that F̂ (n)(x) is random. Let us denote by F̂ (n)(x, ω) the realization of the
sample distribution function for the elementary event ω ∈ Ω0. From convergence
(4) it follows that the probability P0 of the event

lim
n→∞ F̂ (n)(x, ω) = F (x) (5)

is equal to one.
Let us fix an elementary event ω0 ∈ Ω0. For this elementary event we intro-

duce a new probability space (Ω,F ,P). Let us introduce random variables Xn,



Convergence of Discrete Approximations 527

n ∈ N, defined on the probability space (Ω,F ,P). We suppose that the random
variable Xn has the distribution function

Fω0
n (x) � M(x, ω0)

n
, (6)

where M(x, ω0) �
∑n

k=1 θ(x − Yk(ω0)). Notice that for every fixed ω0 ∈ Ω0 we
have

Fω0
n (x) = P{Xn ≤ x} = F̂ (n)(x, ω0), n ∈ N. (7)

Let us define the following sequence of discrete approximations of original
problem (1)

un(ω0) ∈ Arg min
u∈U

G[Φ(u,Xn)], n = 1, 2, 3, . . . (8)

From (5) it follows that Xn tends in distribution to a random variable X hav-
ing the same distribution function F (x) as the random variable Y . The random
variable X is defined on the probability space (Ω,F ,P). We can suppose that
the distribution functions of {Xn} are known. In this paper, we do not require
that random variables Xn are discrete, they can have arbitrary distributions.
Our purpose is to obtain conditions guaranteeing that optimal strategies un(ω0)
of these problems converge to an optimal strategy of problem (1). In this paper,
we are going to develop this technique for problems that can be solved using
deterministic equivalents [3]. This is the first step to solve the problem for an
arbitrary statement.

2 Statement of the Problem

Let a probability space (Ω,F ,P) be given. Let X be a random variable defined
on the probability space (Ω,F ,P). Let X have realizations x ∈ X ⊂ R

1 and a
distribution function F (x). Let u ∈ R

m be an optimization strategy. Let U ⊂ R
m

be a set of feasible optimization strategies. We assume that the set U is compact.
Let Φ(u, x) : U × X → R

1 be a loss function. Let us consider the probability
function

Pϕ(u) � P{Φ(u,X) ≤ ϕ}, (9)

where ϕ is a fixed parameter. Let us define the quantile function

ϕα(u) � min{ϕ : Pϕ(u) ≥ α}, (10)

where α is a fixed probability level.
Let us consider the probability maximization problem

U∗
ϕ � Arg max

u∈U
Pϕ(u) (11)

and the quantile minimization problem

U∗
α � Arg min

u∈U
ϕα(u). (12)



528 A.I. Kibzun and S.V. Ivanov

Let {Xn} be a random sequence defined on the probability space (Ω,F ,P)
such that Xn

d−→ X as n → ∞, i.e., Xn converges in distribution to X. The
distribution functions of Xn are assumed to be known and are denoted by Fn(x).
For all n ∈ N let us define the probability function

P (n)
ϕ (u) � P{Φ(u,Xn) ≤ ϕ} (13)

and the quantile function

ϕ(n)
α (u) � min{ϕ : P (n)

ϕ (u) ≥ α}. (14)

Consider the sequence of probability maximization problems

u(n)
ϕ ∈ Arg max

u∈U
P (n)

ϕ (u), n = 1, 2, 3, . . . , (15)

and the sequence of quantile minimization problems

u(n)
α ∈ Arg min

u∈U
ϕα(u), n = 1, 2, 3, . . . (16)

Since the set U is compact, the sequence {u
(n)
ϕ } has a convergent subsequence

{u
(nk)
ϕ }. Also, the sequence {u

(n)
α } has a convergent subsequence {u

(nk)
α }. Let us

denote the limits of the sequences {u
(nk)
ϕ } and {u

(nk)
α } by ūϕ and ūα respectively.

Our purpose is to suggest conditions, which guarantee that the solutions ūϕ and
ūα are optimal to original problems (9) and (10), i.e., ūϕ ∈ U∗

ϕ, ūα ∈ U∗
α.

Remark 1. Let the random sequence {Xn} be constructed according to (6). Then
the sequences {u

(n)
ϕ }, {u

(n)
α } and the limits ūϕ, ūα depend on ω0 ∈ Ω0. To

show it, we can denote them by {u
(n)
ϕ (ω0)}, {u

(n)
α (ω0)}, ūϕ(ω0), ūα(ω0) respec-

tively. Hence we can consider these sequences to be random. If we guarantee
that ūϕ(ω0) ∈ U∗

ϕ, ūα(ω0) ∈ U∗
α for almost all ω0 ∈ Ω0, then we will be able to

guarantee that

P0{ω0 : ūϕ(ω0) ∈ U∗
ϕ} = 1, (17)

P0{ω0 : ūα(ω0) ∈ U∗
α} = 1, (18)

i.e., {u
(n)
ϕ }, {u

(n)
α } have subsequences converging almost surely to optimal solu-

tions of the original problems. To simplify notation, we omit dependence strate-
gies on ω0 ∈ Ω0. All the results below are obtained for a fixed elementary event
ω0 ∈ Ω0.

3 Auxiliary Propositions

3.1 Uniform Convergence of Distribution Functions

Let us consider a random sequence {Xn} converging in distribution to a random
variable X. Recall that Fn(·) and F (·) are the distribution functions of Xn and
X respectively. The following theorem provides the uniform convergence of the
distribution functions.
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Theorem 1 ([10, p. 152]). Let Xn
d−→ X as n → ∞. Assume that the random

variable X is continuous. Then

lim
n→∞ sup

x∈R1
|Fn(x) − F (x)| = 0. (19)

3.2 Probability Function Maximization

Let us consider the following auxiliary problem

U∗
F � Arg max

u∈U
F (r(u)), (20)

where r(·) : Rm → R
1 is a continuous function, F (·) is the distribution function

of the random variable X. Also, let a sequence of optimization problems

U
(n)
F � Arg max

u∈U
Fn(r(u)) (21)

be given. Here, Fn(·) is the distribution function of the random variable Xn. Let
us assume that there exists a convergent sequence {un} such that un ∈ U

(n)
F . Its

limit is denoted by ū.

Lemma 1. Let the following conditions hold:

(i) The function F (·) is continuous;
(ii) The function r(·) : Rm → R

1 is continuous;
(iii) Xn

d−→ X;
(iv) un ∈ U

(n)
F ;

(v) un → ū as n → ∞.

Then ū ∈ U∗
F

Proof. Let us first prove that

lim
n→∞ Fn(r(un)) = F (r(ū)). (22)

To simplify notation, let us denote gn(u) � Fn(r(u)), g(u) � F (r(u)). From (i)
and (ii) it follows that g(·) is continuous. Then

|Fn(r(un)) − Fn(r(ū))| = |gn(un) − g(ū)| ≤ |gn(un) − g(un) + g(un) − g(ū)| ≤
|gn(un) − g(un)| + |g(un) − g(ū)|. (23)

Since g(·) is continuous, |g(un) − g(ū)| → 0 as n → ∞. Notice that

|gn(un) − g(un)| ≤ sup
x∈R1

|Fn(x) − F (x)|. (24)

According to Theorem 1, supx∈R1 |Fn(x) − F (x)| → 0 as n → ∞. Therefore
equality (22) holds.
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To prove the lemma, assume the converse, i.e., ū /∈ U∗
F . Then there exists a

strategy u∗ ∈ U such that g(u∗) = g(ū) + c, where c > 0. According to (i) and
(v), gn(u∗) → g(u∗) as n → ∞. Hence there exists a number N such that for
any n > N we have

|gn(u∗) − g(u∗)| = |gn(u∗) − (g(ū) + c)| ≤ c

3
, (25)

|gn(un) − g(ū)| ≤ c

3
. (26)

Then

g(ū) +
2
3
c ≤ gn(u∗) ≤ g(ū) +

4
3
c, (27)

g(ū) − 1
3
c ≤ gn(un) ≤ g(ū) +

1
3
c. (28)

Hence gn(u∗) > gn(un), i.e., the strategy un is not optimal to problem (21). This
contradicts to assumption (iv).

3.3 Quantile Function Minimization

Let us denote by [X]α the α-quantile of a random variable X. Consider the
following problem

U∗
r � Arg min

u∈U
r(u, [X]α), (29)

where r(·) : U ×R
1 → R

1 is a continuous function. Let a random sequence {Xn}
be given. Let us consider the sequence of problems

U (n)
r � Arg min

u∈U
r(u, [Xn]α). (30)

Let un ∈ U
(n)
r . We assume that the sequence {un} converges to a value ū as

n → ∞.

Lemma 2. Let the following conditions hold:

(i) [Xn]α → [X]α as n → ∞;
(ii) The function r(·) : U × R

1 → R
1 is continuous;

(iii) un ∈ U
(n)
r ;

(iv) un → ū as n → ∞.

Then ū ∈ U∗
r .

Proof. Let us assume the converse, i.e., ū /∈ U∗
r . Hence there exist c > 0 and

u∗ ∈ U∗
r such that r(u∗, [X]α) = r(ū, [X]α) − c. Since r(·) is continuous,

lim
n→∞ r(un, [Xn]α) = r(ū, xα). (31)
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It follows that there exists a number N such that for any n > N we have

|r(u∗, [Xn]α) − r(u∗, [X]α)| = |r(u∗, [Xn]α) − (r(ū, [X]α) − c)| ≤ c

3
, (32)

|r(un, [Xn]α) − r(ū, [Xn]α)| ≤ c

3
. (33)

From this, we conclude that

r(u∗, [Xn]α) < r(un, [Xn]α). (34)

This contradicts the optimality of un.

4 Deterministic Equivalents

In this section, we give deterministic equivalents to original problem (9) and (10).
We will use these equivalents to prove theorems in the next section.

4.1 Case of Symmetrical Distribution

Let us consider the case when

Φ(u, x) = r(s(u)(x + c)), (35)

where s(·) : U → R
1 is a function, r(·) : R1 → R

1 is a strictly increasing, contin-
uous function, c is a real number. We suppose that s(u) �= 0 for all u ∈ U . Let
us assume that the distribution of X is symmetrical, i.e., for all x ∈ R

1:

F (x) � P{X ≤ x} = P{−X ≤ x}. (36)

A similar case has been considered in [3] where X is a continuous random vector
with spherically symmetrical distribution, the function s(·) is linear.

Theorem 2. If the loss function is given by (35), s(u) �= 0 for all u ∈ U , the
distribution of X is symmetrical, then

Pϕ(u) = F

(
r−1(ϕ) − cs(u)

|s(u)|
)

(37)

is the probability function, where the function r−1(·) is the inverse of r(·);
ϕα(u) = r (|s(u)|[X]α + cu) (38)

is the quantile function.

Proof. Let us first prove (37). We have

Pϕ(u) = P {Φ(u,X) ≤ ϕ} = P {r(s(u)(X + c)) ≤ ϕ} =

P
{
s(u)(X + c) ≤ r−1(ϕ)

}
. (39)
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If s(u) > 0, then

P
{
s(u)(X + c) ≤ r−1(ϕ)

}
= P

{

X ≤ r−1(ϕ) − cs(u)
s(u)

}

=

F

(
r−1(ϕ) − cs(u)

|s(u)|
)

. (40)

If s(u) < 0, then

P
{
s(u)(X + c) ≤ r−1(ϕ)

}
= P

{

X ≥ r−1(ϕ) − cs(u)
s(u)

}

=

P
{

−X ≤ r−1(ϕ) − cs(u)
|s(u)|

}

= F

(
r−1(ϕ) − cs(u)

|s(u)|
)

. (41)

Let us prove (38):

ϕα(u) = min
{

ϕ : F

(
r−1(ϕ) − cs(u)

|s(u)|
)

≥ α

}

=

min
{

ϕ :
r−1(ϕ) − cs(u)

|s(u)| ≥ [X]α

}

= min {ϕ : r (|s(u)|[X]α + cu) ≤ ϕ} =

r (|s(u)|[X]α + cu) . (42)

Therefore, in this case, original problem (9) is equivalent to the problem

U∗
ϕ = Arg max

u∈U
F

(
r−1(ϕ) − cs(u)

|s(u)|
)

, (43)

problem (10) is equivalent to

U∗
α = Arg min

u∈U
r (|s(u)|[X]α + cu) . (44)

4.2 Case of Loss Function Increasing in Random Variable

Consider the case when the function Φ(u, x) is strictly increasing in x and contin-
uous in x. Let us denote by Φ−1

x (u, ϕ) the inverse of Φ(u, x) with respect to x, i.e.,

Φ(u, Φ−1
x (u, ϕ)) = ϕ. (45)

Theorem 3 ([3]). Let the function Φ(u, x) be strictly increasing in x and con-
tinuous in x. Then the probability function is

Pϕ(u) = F (Φ−1
x (u, ϕ)) (46)

and the quantile function is

ϕα(u) = Φ(u, [X]α). (47)
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Remark 2. It has been proven [11] that (47) is valid if Φ(u, x) is nondecreasing
in x.

In this case, we can write deterministic equivalents

U∗
ϕ = Arg max

u∈U
F (Φ−1

x (u, ϕ)), (48)

U∗
α = Arg min

u∈U
Φ(u, [X]α). (49)

4.3 Case of Loss Function Increasing in Optimization Strategy

Let
Φ(u, x) = r(s(u), x), (50)

where s(·) : Rm → R
1, the function r(s, x) : R1 × R

1 → R
1 is strictly increasing

in s and continuous in s.

Theorem 4 ([3]). Let Φ(u, x) be given by (50), then

Pϕ(u) = Fξ(−s(u)), (51)

where
Fξ(x) = P{ξ ≤ x}, (52)

ξ � −r−1
s (ϕ,X), r−1

s (ϕ, x) is the inverse of r(s, x) with respect to s.

Under assumptions of Theorem 4, original problem (10) is equivalent to

U∗
ϕ = Arg max

u∈U
Fξ(−s(u)), (53)

5 Main Results

Let us consider the sequences {u
(n)
ϕ } and {u

(n)
α } defined in Sect. 2. As we noticed

above, these sequences have convergent subsequences {u
(nk)
ϕ } and {u

(nk)
α }. We

will suggest conditions, which guarantee that these sequences converge, i.e., every
partial limit of the sequence {u

(n)
ϕ } is optimal to problem (9) and every partial

limit of {u
(n)
α } is optimal to (10).

5.1 Case of Symmetrical Distribution

Firstly, consider the case introduced in Sect. 4.1 when

Φ(u, x) = r(s(u)(x + c)) (54)

where s(·) : U → R
1 such that s(u) �= 0 for all u ∈ U , r(·) : R1 → R

1 is a strictly
increasing, continuous function, the distribution of X is symmetrical.

Theorem 5. Let the following conditions hold:
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(i) Φ(u, x) is defined by (54);
(ii) The function s(·) : U → R

1 is continuous such that s(u) �= 0 for all u ∈ U ;
(iii) The distributions of X and Xn are symmetrical;
(iv) Xn

d−→ X as n → ∞;
(v) The random variable X is continuous;
(vi) u

(n)
ϕ ∈ Arg maxu∈U P

(n)
ϕ (u).

Then every partial limit ūϕ of the sequence {u
(n)
ϕ } belongs to the set U∗

ϕ.

Proof. Let {u
(nk)
ϕ } be a convergent subsequence of the sequence {u

(n)
ϕ }. From

Theorem 2 it follows that

U∗
ϕ = Arg max

u∈U
F

(
r−1(ϕ) − cs(u)

|s(u)|
)

, (55)

u(n)
ϕ ∈ Arg max

u∈U
Fn

(
r−1(ϕ) − cs(u)

|s(u)|
)

, n ∈ N. (56)

Since s(·) is continuous and s(u) �= 0, the function u 	→ r−1(ϕ)−cs(u)
|s(u)| is also

continuous. Then, according to Lemma1, ūϕ = limk→∞ u
(nk)
ϕ ∈ U∗

ϕ.

Theorem 6. Let the following conditions hold:

(i) Φ(u, x) is defined by (54);
(ii) The function s(·) : U → R

1 is continuous such that s(u) �= 0 for all u ∈ U ;
(iii) The distributions of X and Xn are symmetrical;
(iv) [Xn]α → [X]α as n → ∞;
(v) u

(n)
α ∈ Arg minu∈U ϕ

(n)
α (u).

Then every partial limit ūα of {u
(n)
α } belongs to U∗

α.

Proof. Let {u
(nk)
α } be a convergent subsequence of the sequence {u

(n)
α }. From

Theorem 2 we have

U∗
α = Arg min

u∈U
r (|s(u)|[X]α + cu) , (57)

u(n)
α ∈ Arg min

u∈U
r (|s(u)|[Xn]α + cu) . (58)

Since the function r(·) is strictly increasing and continuous, according to
Lemma 2, we conclude that ūα = limk→∞ u

(nk)
α ∈ U∗

α.

5.2 Case of Loss Function Increasing in Random Variable

Consider the case introduced in Sect. 4.2.
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Theorem 7. Let the following conditions hold:

(i) The function Φ(u, x) is strictly increasing in x and continuous in x;
(ii) The function Φ−1

x (u, ϕ) is continuous in u ∈ U ;
(iii) Xn

d−→ X as n → ∞;
(iv) The random variable X is continuous;
(v) u

(n)
ϕ ∈ Arg maxu∈U P

(n)
ϕ (u).

Then every partial limit ūϕ of {u
(n)
ϕ } belongs to U∗

ϕ.

Proof. From Theorem 3 it follows that

U∗
ϕ = Arg max

u∈U
F (Φ−1

x (u, ϕ)), (59)

u(n)
ϕ ∈ Arg max

u∈U
Fn(Φ−1

x (u, ϕ)), n ∈ N. (60)

Since the function Φ−1
x (u, ϕ) is continuous in x, we conclude from Lemma 1 that

ūϕ ∈ U∗
ϕ.

Theorem 8. Let the following conditions hold:

(i) The function Φ(u, x) is nondecreasing in x and continuous in (u, x);
(ii) [Xn]α → [X]α as n → ∞;
(iii) u

(n)
ϕ ∈ Arg maxu∈U P

(n)
ϕ (u).

Then every partial limit ūα of {u
(n)
α } belongs to U∗

α.

Proof. From Theorem 3 and Remark 2 it follows that

U∗
α = Arg min

u∈U
Φ(u, [X]α), (61)

u(n)
α ∈ Arg min

u∈U
Φ(u, [Xn]α), n ∈ N. (62)

Since the function Φ(u, x) is continuous, according to Lemma 2, we have ūα ∈ U∗
α

5.3 Case of Loss Function Increasing in Optimization Strategy

Consider the case introduced in Sect. 4.3. Let us denote by Fξn(x) the prob-
ability function of the random variable ξn � −r−1

s (ϕ,Xn). We recall that
ξ � −r−1

s (ϕ,X), Fξ(·) is the distribution function of the random variable ξ.

Theorem 9. Let the following conditions hold:

(i) Φ(u, x) = r(s(u), x), where the function s(·) : Rm → R
1 is continuous, the

function r(s, x) : R1 ×R
1 → R

1 is strictly increasing in s and continuous in
s;

(ii) ξn
d−→ ξ as n → ∞;
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(iii) The random variable ξ is continuous;
(iv) u

(n)
ϕ ∈ Arg maxu∈U P

(n)
ϕ (u).

Then every partial limit ūϕ of the sequence {u
(n)
ϕ } belongs to U∗

ϕ.

Proof. From Theorem 4 it follows that

U∗
ϕ = Arg max

u∈U
Fξ(−s(u)), (63)

u(n)
ϕ ∈ Arg max

u∈U
Fξn(−s(u)), n ∈ N. (64)

Since the functions Φ(·) and s(·) are continuous, according to Lemma reflemma1,
we conclude that ūϕ ∈ U∗

ϕ.

6 Conclusion

In this paper, we have suggested conditions guaranteeing the convergence of
discrete approximation of stochastic programming problems with probabilistic
and quantile objective function. We should notice that these conditions describe
very particular cases of these problems. Therefore, more general conditions of
convergence should be the topic of future works. We hope that obtained results
can be expanded to the case of continuous probability and quantile functions.
However, from the proofs of the suggested theorems it follows that the conditions
Xn

d−→ X and [Xn]α → Xα cannot be restricted.
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Abstract. In this paper, a new Leaky-LMS (LLMS) algorithm that modifies
and improves the Zero-Attracting Leaky-LMS (ZA-LLMS) algorithm for sparse
system identification has been proposed. The proposed algorithm uses the
sparsity of the system with the advantages of the variable step-size and l0-norm
penalty. We compared the performance of our proposed algorithm with the
conventional LLMS and ZA-LLMS in terms of the convergence rate and
mean-square-deviation (MSD). Additionally, the computational complexity of
the proposed algorithm has been derived. Simulations performed in MATLAB
showed that the proposed algorithm has superiority over the other algorithms for
both types of input signals of additive white Gaussian noise (AWGN) and
additive correlated Gaussian noise (ACGN).

Keywords: Adaptive filters � Sparse system identification � Leaky LMS � L0-
norm penalty

1 Introduction

In adaptive filtering technology, the least-mean-square (LMS) algorithm is a commonly
used algorithm for system identification (see Fig. 1), noise cancellation or channel
equalization models [1]. Although it is a very simple and robust algorithm, its per-
formance deteriorates for some applications which have high correlation, long filter
length, sparse signals etc. In the literature, many different LMS-type algorithms were
proposed to improve the performance of the standard LMS algorithm.

Leaky-LMS algorithm was proposed [2, 3] to overcome the issues when the input
signal is highly correlated, by using shrinkage in its update equation. Another LMS
based algorithm VSSLMS uses a variable step-size in update equation of the standard
LMS to increase the convergence speed at the beginning stages of the iterations and
decrease MSD at later iterations [4, 5]. In order to improve the performance of the LMS
algorithm when the system is sparse (most of the system coefficients are zeroes),
ZA-LMS algorithm was proposed in [6].

In [7], the author proposed the ZA-LLMS algorithm which combines the LLMS
algorithm and the ZA-LMS algorithm for sparse system identification. A better per-
formance was obtained for AWGN and ACGN input signals. In [8], a high perfor-
mance algorithm called zero-attracting function-controlled variable step-size LMS
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(ZAFC-VSSLMS) was proposed by using the advantages of variable step-size and l0-
norm penalty. We were motivated by the inspiration of the combination of these two
algorithms. So in this paper we proposed a new algorithm that combines the ZA-LLMS
and ZAFC-VSSLMS algorithms. In the next section, a brief review of the LLMS and
ZA-LLMS algorithms is provided. We describe the proposed algorithm in Sect. 3 with
computational complexity and convergence analysis. In Sect. 4, the simulations are
presented and the performance of the algorithm is compared. Conclusions are drawn in
the last section.

2 Review of the Related Algorithms

2.1 Leaky-LMS (LLMS) Algorithm

In a system identification process, the desired signal is defined as,

dðnÞ ¼ wT
0xðnÞþ mðnÞ ð1Þ

where w0 ¼ ½w00; . . .;w0N�1�T are the unknown system coefficients with length N,
xðnÞ ¼ ½x0; . . .; xN�1�T is the input-tap vector and vðnÞ is the additive noise. In addition
to being independent of the noise sample vðnÞ with zero mean and variance of r2t , the
input data sequence xðnÞ and the additive noise sample vðnÞ are also assumed to be
independent.

The cost function of the LLMS algorithm is given by,

J1ðnÞ ¼ 1
2
e2ðnÞþ cwTðnÞwðnÞ ð2Þ

where w(n) is the filter-tap vector at time n, c is a positive constant called ‘leakage
factor’ and eðnÞ is the instantaneous error and given by,

Fig. 1. Block diagram of the system identification process.

A Robust Leaky-LMS Algorithm for Sparse System Identification 539



eðnÞ ¼ dðnÞ � wTðnÞxðnÞ ð3Þ

The update equation of the LLMS algorithm can be derived by using the gradient
method as,

wðnþ 1Þ ¼wðnÞþ l
@JðnÞ
@wðnÞ

¼ ð1� lcÞwðnÞþ leðnÞxðnÞ
ð4Þ

where µ is the step-size parameter of the algorithm.

2.2 Zero-Attracting Leaky-LMS (ZA-LLMS) Algorithm

The cost function of the LLMS algorithm was modified by adding the log-sum penalty
of the filter-tap vector as given below:

J2ðnÞÞ ¼ 1
2
e2ðnÞþ cwTðnÞwðnÞþ c0

XN
i¼1

ð1þ wij j
n0

Þ ð5Þ

where c0 and n0 are positive parameters. Taking the gradient of the cost function and
subtracting from the previous filter-tap vector iteratively, then the update equation was
derived as follows [7]:

wðnþ 1Þ ¼ ð1� lcÞwðnÞþ leðnÞxðnÞ � q
sgn½wðnÞ�
1þ n wðnÞj j ð6Þ

where q ¼ lc0

n0 is the zero-attracting parameter, n ¼ 1
n0 and sgn(.) operation is defined as,

sgnðxÞ ¼
x
xj j if x 6¼ 0
0 if x ¼ 0

�
ð7Þ

3 The Proposed Algorithm

3.1 Derivation of the Proposed Algorithm

An improved sparse LMS-type algorithm was proposed in [8] by exploiting the
advantages of variable step-size and recently proposed [9] l0-norm which gives an
approximate value of �k k0. We modify the cost function of that algorithm by adding the
weight vector norm penalty as,
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J3ðnÞÞ ¼ 1
2
e2ðnÞþ cwTðnÞwðnÞþ e wðnÞk k0 ð8Þ

where ε is a small positive constant and wðnÞk k0 denotes the l0-norm of the weight
vector given as,

wðnÞk k0’
XN�1

k¼0

ð1� e�k wðnÞj jÞ ð9Þ

where λ is a positive parameter. Deriving (8) with respect to w(n) and substituting in
the update equation we get,

wðnþ 1Þ ¼ ð1� lðnÞcÞwðnÞþ lðnÞeðnÞxðnÞ � qðnÞsgn½wðnÞ�e�k wðnÞj j ð10Þ

where qðnÞ ¼ lðnÞek is the sparsity aware parameter and depends on the positive
constant λ and lðnÞ which is the variable step-size and given in [6] as

lðnþ 1Þ ¼ alðnÞþ csf ðnÞ
eðnÞ2
ê2msðnÞ

ð11Þ

where 0\a\1; cs [ 0 are some positive constants and eðnÞ is a mean value of the
error vector. ê2msðnÞ is the estimated mean-square-error (MSE) and is defined as

ê2msðnÞ ¼ bê2msðn� 1Þþ ð1� bÞeðnÞ2 ð12Þ

where b is a weighting factor given as 0\b\1 and f ðnÞ is a control function given
below

f ðnÞ ¼ 1=n n\L
1=L n� L

�
ð13Þ

A summary of the algorithm is given in Table 1.
It is seen that the update equation of the ZA-LLMS algorithm has been modified by

changing the constant step-size µ with µ(n) given in [8] and the zero-attractor

q sgn½wðnÞ�
1þ n wðnÞj j with qðnÞsgn½wðnÞ�e�k wðnÞj j.

3.2 Computational Complexity

The update equation of the conventional LMS algorithm has O(N) complexity and has
been calculated as 2N + 1 multiplications and 2N additions at each iteration [10]. For
ð1� lcÞwðnÞ in LLMS N + 1 extra multiplications and one addition are required. In
the update equation of the estimated MSE used in the algorithm proposed in [8], 3
multiplications and 2 additions are required additionally to compute the ê2msðnÞ. For
update equation of lðnÞ, we need 5 multiplications and one addition. The
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computational complexity of the zero attractor, qðnÞsgn½wðnÞ�e�k wðnÞj j, requires
N multiplications for k wðnÞj j, N additions for e�k wðnÞj j (taking the first two terms of
Taylor series), N multiplications for qðnÞsgn½wðnÞ�, N multiplications for one by one
element product of k wðnÞj j by qðnÞsgn½wðnÞ� and N comparisons for sgn½wðnÞ�. So,
overall complexity of the zero attractor is 3N multiplications, N additions and N com-
parisons. The overall computational complexity of the proposed algorithm requires
6N + 10 multiplications, 3N + 4 additions and N comparisons, that is, (O
(N) complexity.

4 Simulation Results

In this section, we compare the performance of the proposed algorithm with LLMS and
ZA-LLMS algorithms in high-sparse and low-sparse system identification settings.
Two different experiments are performed for each of AWGN and ACGN input signals.
To increase the reliability of the expected ensemble average, experiments were repeated
by 200 independent Monte-Carlo runs. The constant parameters are found by extensive
tests of simulations to obtain the optimal performance as follows: For LLMS:
µ = 0.002 and γ = 0.001. For ZA-LLMS: µ = 0.002, γ = 0.001, ρ = 0.0005 and
ξ = 30. For the proposed algorithm: ρ = 0.0005 and λ = 8.

In the first experiment, all algorithms are compared for 90 % high-sparsity and
50 % low-sparsity of the system with 20 coefficients having in the first part two ‘1’ and
18 ‘0’; in the second part ten ‘1’ and ten ‘0’ for 5000 iterations. Signal-to-noise ratio
(SNR) is kept at 10 dB by regulating the variances of the input signal and the additive
noise. The performance of the algorithm is compared in terms of convergence speed

and MSD ¼ E w0 � wðnÞk k2
n o

. Figures 2 and 3 give the MSD vs. iteration number of

the three algorithms for 90 % sparsity and 50 % sparsity levels respectively. In Fig. 2,

Table 1. Summary of the SBFC-VSSLMS algorithm.
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Fig. 2. Steady state behavior of the LLMS, ZA-LLMS and the proposed algorithm for 90 %
sparsity with AWGN.
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Fig. 3. Steady state behavior of the LLMS, ZA-LLMS and the proposed algorithm for 50 %
sparsity with AWGN.
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Fig. 4. Steady state behavior of the LLMS, ZA-LLMS and the proposed algorithm for 90 %
sparsity with ACGN.
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Fig. 5. Steady state behavior of the LLMS, ZA-LLMS and the proposed algorithm for 50 %
sparsity with ACGN.
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the proposed algorithm has a convergence speed of around 1000 iterations and MSD
about −37 dB, while the others are close to each other at a convergence speed of 2500
iterations and MSD of −26*28 dB. Figure 3 shows that the proposed algorithm has a
convergence speed of 1100 iterations and MSD of −29.9 dB while the other algorithms
have convergence speed and MSD about 3000 iterations and −26 dB, respectively. The
figures show that, the proposed algorithm has a fairly fast convergence with lower
MSD than that of the other algorithms.

In the second experiment, all conditions are kept as same as in the previous
experiment except the input signal type. A correlated signal is created by the AR(1)
process as xðnÞ ¼ 0:4xðn� 1Þþ v0ðnÞ and the normalized. Figures 4 and 5 shows that
the proposed algorithm has a faster convergence and lower MSD than the other
algorithms for 90 % sparsity and 50 % sparsity levels respectively.

5 Conclusions

In this work, we proposed a modified leaky-LMS algorithm for sparse system identi-
fication. It was derived by combining the ZA-LLMS and ZAFC-LMS algorithms. The
performance of the proposed algorithm was compared with LLMS and ZA-LLMS
algorithms for 90 % and 50 % sparsity levels of the system with AWGN and ACGN
input signals in two different experiments performed in MATLAB. Additionally, the
computational complexity of the proposed algorithm has been derived. It was shown
that the computational complexity of the proposed algorithm is O(N) as same as in
other LMS-type algorithms. Besides, the simulations showed that the proposed algo-
rithm has a very high performance with a quite faster convergence and lower MSD than
that of the other algorithms. As a future work, it is recommended that the proposed
algorithm can be modified for transform domain or be tested for non-stationary
systems.
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Abstract. The separating plane method with additional clippings and
stockpiling (SPACLIP-S) for nonsmooth optimization is proposed in
this paper. Both the theoretical and experimental investigations of the
method showed that this method is efficient and widely applicable
to nonsmooth optimization problems with convex objective functions.
Computational experiments demonstrated a rather high performance of
SPACLIP-S when applied to the Web page ranking problem. Web page
ranking approach is widely used by search engines such as Google and
Yandex to order Web pages. Page ranking problem is one of the most
important problems in information retrivial due to wide range of applica-
tions. In this paper an iterative regularization method with a new penalty
function for solving PageRank problem is also presented. Finally, exper-
imental results of comparison of SPACLIP-S and other algorithms for
solving test PageRank problems are provided.

Keywords: Nonsmooth convex optimization · Subgradient methods ·
Black-box minimization · Pagerank problem

1 Introduction

We consider the following problem of unconstrained convex nondifferentiable
optimization:

min
x ∈Rn

f(x), (1)

where f(x) is a convex nonsmooth objective function, x = (x1, x2, . . . , xn) ∈ R
n.

It is assumed that this problem is solvable.
This kind of problems arises in many scientific and engineering areas, for

example, in interval analysis [1], economics [2], image denoising [3], control theory
[4], neural network training, data mining, computational chemistry and physics,
etc. Certain techniques (for instance, decompositions, dual formulations, penalty
functions methods) for solving smooth problems leads directly to the necessity
to solve nonsmooth problems. Nonsmooth optimization (NSO) addresses such
kind of problems.

There are several approaches to solve NSO problems. First, derivative-free
methods like [5] can be used. However, these methods become inefficient for large-
scale minimization problems. There are different kinds of smoothing techniques
c© Springer International Publishing Switzerland 2016
Y. Kochetov et al. (Eds.): DOOR 2016, LNCS 9869, pp. 547–560, 2016.
DOI: 10.1007/978-3-319-44914-2 43



548 E. Vorontsova

(see, for example, [6]) but they are not, in general, as efficient as the nonsmooth
approach [7]. Special methods for solving NSO problems can be divided at two
main groups: subgradient methods (see e.g. [2]) and bundle methods (see e.g.
[8–12]). All these methods are based on the assumption that the entire accessible
information on the objective function f(x) of the problem (1) is provided by a
subgradient oracle, and at any arbitrary point x̄ only the objective function value
f(x̄) and a single subgradient g ∈ ∂f(x̄) (generalized gradient [13]) arbitrarily
chosen from the subdifferential ∂f(x̄) (that is, the set of subgradients) of the
function f(x) can be found.

The subgradient method proposed for the first time by Shor [14] has the
simplest computational scheme

xk+1 = xk − hkgk, gk ∈ ∂f(xk), k = 0, 1, . . . ,

where the conditions
∞∑

k=1

hk = ∞, hk → +0,
∞∑

k=1

h2
k < ∞ for step multipliers

hk are sufficient for convergence to the solution of (1). However, the rate of
convergence with such step size rule is very low. The best choice rule for the
step size hk is known as the B.T. Polyak rule [15] but under the condition
that the optimum value f∗ = min

x ∈Rn
f(x) is known in advance. Among other

methods of step size control, the technique from [16] can also be mentioned.
However, various numerical experiments and theoretical analysis demonstrated
that subgradient methods may have low convergence and many of them suffer
from serious drawbacks. That is why search for new, more efficient algorithms
continues.

The next stage of the development of NSO methods is connected with the
emergence of the bundle methods, for example, the level method [17] developed
in 1995. The basic idea of bundle methods is to approximate the subdifferential
of the objective function by gathering subgradients from previous iterations into
a bundle. Among recent publications in the field of bundle methods, the methods
with inexact oracle (if most of the time the available information from oracle is
inaccurate) [18–20] should be mentioned. For more details about bundle methods
see, for example, [11,12] and the references therein.

This article is devoted to the further investigation and improvement of sep-
arating plane (SP) methods [21–25] for solving unconstrained problems of mul-
tidimensional convex NSO that does not require additional information on the
internal structure of the function being optimized, and are the representatives of
the so-called black-box optimization. And at the same time SP methods can be
classified as bundle methods, but with an important theoretical feature. Methods
work in the extended conjugate space of subgradients and the Legendre-Fenchel
conjugate of f(x) [26] f∗(g) = sup

x
{gx − f(x)}. More precisely, SP methods

replace the problem (1) with computing the corresponding Legendre-Fenchel
conjugate function at the origin of the conjugate space. As the investigations of
SP methods showed, this idea of replacement increased the rate of convergence.
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The rest of this paper is organized as follows. The SP algorithm with addi-
tional clippings is described in Sect. 2. Some improvements of the original SP
algorithm is proposed in Sect. 3 where new, modified SP algorithm with clippings
and stockpiling is presented. The algorithm is called SPACLIP-S. In Sect. 4.1, we
give a description of the so-called PageRank problem, which can be reformulated
as NSO problem and can be solved by SP method with additional clippings and
by SPACLIP-S. In this section an iterative regularization method with a new
penalty function for solving PageRank problem is also presented. In Sect. 4.2,
we test the performance of the proposed algorithm and compare it with other
numerical methods. Section 5 concludes the paper.

2 Separating Plane Method with Clippings

Separating plane methods are based on the idea of replacement of the initial
minimization problem (1) by the problem of computing the Legendre-Fenchel
conjugate at zero:

f(x∗) = min
x ∈Rn

f(x) = − sup
x

{0 · x − f(x)} = −f∗(0) (2)

where the function f∗(g) = sup
x

{gx−f(x)} is the Legendre-Fenchel conjugate of

the function f(x). Problem (2) can be interpreted as the problem of searching
the intersection point of the conjugate function’s graph with the vertical line
{0} × R+. The optimal point x∗ can be obtained as a subgradient of f∗: x ∈
∂f∗(0).

The SP methods construct sequences of outer and inner approximations of
the epigraph of f∗ (epi f∗ = {(μ, g) : μ ≥ f∗(g)}) by means of convex polyhedral
sets U and D. At each iteration of the algorithm the approximations are grad-
ually refined. Eventually we obtain converging lower and upper estimates for
f∗(0). The set D is modified by the addition of new points (gk, f∗(gk)) located
on the graph of f∗.

In [23,24] the following changes for SP methods were suggested. At each
iteration we execute an additional step that removes the upper part of epi f∗:

sup
(g, ε)∈ epi f∗

{gx − ε}, (3)

ε ≤ v

where the upper-bound estimate v can be obtained as the solution of a linear-
programming problem and is also an estimate found by the Kelley’s cutting
plane method [27]:
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v = min
(0, ε)∈ D

ε = min
(0, τ) ∈ conv

{
(gi, f∗(gi)), i = 1, 2, ..., k

}
+ {0} × R+

τ =

= min

τ =
k∑

i=1

λif
∗(gi),

0 =
k∑

i=1

λigi,

λi ≥ 0,
k∑

i=1

λi = 1

τ = min

0 =
k∑

i=1

λigi,

λi ≥ 0,
k∑

i=1

λi = 1

k∑

i=1

λif
∗(gi),

(4)
where conv A denotes the convex hull of a set A (the intersection of all convex
sets that contain the set A).

Such clippings localizes possible points of the epigraph of f∗ and the inner
approximation D more precisely. The SP algorithm with additional clippings is
illustrated in Fig. 1.

Fig. 1. Typical iteration of separating plane algorithm with additional clippings
(SPACLIP)

3 Separating Plane Method with Clippings
and Stockpiling

This section is devoted to a new modification of SP method with additional
clippings, namely, SP method with clippings and stockpiling. The main idea
of stockpiling is to use the additional data returned by the subgradient oracle
during the operations of the line-search algorithm.
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As in the standard SP method, problem (3) may be easily transferred to the
space of primal variables x ∈ R

n, but, in this case, an auxiliary one-dimensional
minimization problem arises with a rather unexpected objective function. In
fact, denoting a dual variable u for an additional constraint, we obtain

sup
(g, ε)∈ epi f∗; ε ≤ v̄

{gx − ε} = sup
g

inf
u ≥ 0

{
gx − f∗(g) + u(v̄ − f∗(g))

}

= inf
u ≥ 0

{
uv̄ + sup

g
{gx − (u + 1)f∗(g)}

}
= inf

u ≥ 0

{

uv̄ + (1 + u) f

(
x

1 + u

)}

= −v̄ + inf
ǔ≥1

{
ǔ(v̄ + f(ǔ−1 x))

}
= −v̄ + inf

ǔ≥1
ϕ(ǔ, x), (5)

where ǔ = (1 + u) and ϕ(ǔ, x) = ǔ(v̄ + f(ǔ−1x)).
It is easy to show that the function ϕ(ǔ, x) is convex with respect to the set

of variables (ǔ, x) if f(x) is a convex function. The proof of this particular case
see, for example, in [24].

It was suggested to solve one-dimensional NSO problem (5) by a fast line-
search algorithm [28] since it can achieve superlinear or even quadratic con-
vergence rate under favorable conditions. A special implementation of the fast
line-search algorithm was created for the SPACLIP algorithm. The results of
numerous computational experiments showed that this algorithm is rather effi-
cient as a computational block for solving (5) within SPACLIP.

Another opportunity to improve convergence rate of SPACLIP is to use trial
points of one-dimensional search as additional source of information for con-
struction of the inner approximation D. During every iteration of SPACLIP the
line-search procedure calculates a series of values of the objective function f(x)
and subgradients of f(x) for its own purpose. These values can be added to
the inner approximation D of the epigraph of the conjugate f∗ of f(x). This
modification of the SPACLIP can be called stockpiling.

Heuristic justification of the effect of such stockpiling is as follows. Calculated
in the iteration process of the line-search algorithm new points are added to D.
Next, it is needed to make a projection onto D from the point of the current
record of the objective function f , taken with the opposite sign (see Fig. 2).
The projection is performed using the suitable affine subspace method (SimPro
[29]), which has a globally higher-than-linear convergence rate. The numerical
experiments showed that the presence of additional points in the convex set
D, onto which the projection is performed do increase the convergence rate of
SimPro method. One of the reasons for such effect is that the algorithm performs
a very few removals of vertices from the basis. So, the added points are usually
good perspective points, they refine inner approximation of epi f∗ and improve
the convergence rate of SimPro method for finding the projection.

3.1 Algorithm of SP Method with Clippings and Stockpiling

Finally, the algorithm of SP Method with clippings and stockpiling will look like
the following.
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Fig. 2. Projection onto Dk from the point of the current record of the objective func-
tion, taken with the opposite sign

Step 0. Initialization. Set the iterations’ counter k = 0 and determine an
initial point x0 ∈ dom f of the minimizing sequence {x0, x1, x2, . . .}.

Step 1. D0 creation. In order to avoid future problems with projection onto
the polyhedron Dk, it is suggested to add an auxiliary point (0, α), where
α ∈ R, α > 0, such that α > f∗(0) = −min f(x), to D0. By construction,
(0, α) belongs to epi f∗. If this addition is made, the problem (4) will always
have a solution.

Step 2. Current record. Compute inf
0∈ Uk(ω)

ω = ωk, where Uk is the kth outer

approximation of the epi f∗. The latter problem can be solved recurrently
as follows:

ωk = max {ωk−1, −f(xk−1)}, k ≥ 1. (6)

And ω0 = −∞ for k = 0. In fact, −ωk is the current record of the objective
function f (see Fig. 1).

Step 3. Projection. Find the vector z̄k = (zk, ξk) – the projection of a point
(0, ωk) onto the polyhedron Dk. As mentioned above, the polyhedron Dk is
the inner approximation of the epigraph of f∗. To solve this problem, the
suitable affine subspace method [29] is used.

Step 4. Update. Compute the next element of the minimizing sequence

xk = −zk / ξk.

Step 5. Clipping. Determine a cutting level of the upper part of epi f∗, i.e., v̄.
The value v̄ is found by solving the linear programming problem (4).

Step 6. One-dimensional minimization. Solve the one-dimensional non-
smooth minimization problem (5). Let ǔk be a computed at the kth iteration
solution of (5).
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Step 7. Stockpiling. Add new points (gi ∈ ∂f(xi), f∗(gi)), i = i1, . . . , im
to the inner approximation, i.e., the polyhedron Dk. These new points were
calculated in the iteration process of the fast line-search algorithm during
Step 6.

Step 8. Update 2. Compute xk = ǔ−1
k xk.

Step 9. Inner approximation renewal. Add a pair (gk ∈ ∂f(xk), f∗(gk)) to
the inner approximation, i.e., the polyhedron Dk.

Step 10. Stop. If any of completion conditions is satisfied, then quit. Otherwise,
increase the iterations’ counter k by one and go to the Step 1.

The next section contains computational results for this new algorithm and
experimental comparison with the old one.

4 Numerical Experiments: PageRank Computation

We conclude this paper with the results of numerical experiments. Numerical
experiments demonstrated quite satisfactory computational performance of SP
Algorithm with CLIPpings and Stockpiling (SPACLIP-S). Moreover, the algo-
rithm described above is compared with the SPACLIP method.

The codes were written by the author in Octave programming language [30]
under a Linux operating system. The syntax of Octave is very close to MATLAB,
and this system is a convenient tool for developing first versions of computational
algorithms.

4.1 PageRank

A set of pages in the Web may be modeled as nodes in a directed graph G =
(V, E). The edges, E, between nodes (vertices, V ) represent references from one
web page to another. A graph of a simple 3-page Web is shown in Fig. 3. The
directed edge from Node 1 to Node 2 signifies that Page 1 has a link to Page 2,
and so on. However, Page 1 has no link to Page 3, so there is no edge from Node
1 to Node 3. All the nodes in this graph have loops, i.e. the pages have links
to themselves. Clearly, Page 3 is the least important in this graph. But how to
measure the importance of each page (or nodes in graphs) in general?

The most acknowledged methods of measuring importance of nodes in graphs
are based on random surfer models. First of all, PageRank [31] and HITS [32]
should be mentioned. The other important approaches of ordering the pages
according to relevance which are based on machine learning technics can be
found, for example, in [33,34]. In this section we consider the classical PageRank
model only and how the problem of measuring importance of nodes in graphs
can be solved by a number of methods including SPACLIP-S and SPACLIP.

The PageRank algorithm constructs web pages’ importance hierarchies based
upon the link structure of the Web. The score of a node equals to its probability
in the stationary distribution of a Markov process. Calculating the probabil-
ity vector corresponds to finding a maximal eigenvalue of web-graph transition
matrix. This can be done by means of iterative numerical methods.
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1

2

3

Fig. 3. Directed graph represent-
ing Web of three pages

A =

⎛

⎝
1 1 0
1 1 0
1 1 1

⎞

⎠ (7)

P =

⎛

⎝
1/2 1/2 0
1/2 1/2 0
1/3 1/3 1/3

⎞

⎠ (8)

A transition matrix P is constructed as follows:

pij =

{
1

deg (vi)
, if the edge (vi, vj) exists,

0, otherwise,

where deg (v) is the degree of vertex v, i.e. the number of outbound links from
page v. For the 3-node graph in Fig. 3, the adjacency matrix A is shown in
equation (7), and the transition matrix P is shown in equation (8).

Brin and Page [35] add an adjustment matrix 1
neeT to P , where n is the

order of P and e is a all-ones vector. Sometimes the matrix eeT can be replaced
with a matrix veT , where v is a personalization vector (for more details see [36]).
To ensure the random surfer does not get stuck in a dangling node (node with
no outgoing edges) the following suggestions were made. At each node,

1. With probability 1 − α the surfer jumps to a random place on the Web,
2. With probability α the surfer decides to choose, uniformly at random, an

outlink of the current node.

Google reportedly uses α = 0.85. Thus, we construct a new stochastic matrix Mα

as
Mα = α PT + (1 − α)

1
n

eeT .

The PageRank vector for a graph with transition matrix P and damping fac-
tor α is the unique probabilistic eigenvector xα of the matrix Mα, corresponding
to the eigenvalue 1 (for a proof and additional details, see, for example, a sur-
vey [37], the book [36] or [38]). However, the eigenvector xα can differ strongly
from the eigenvector of P [37].

Because of huge size of transition matrix it is impossible to solve systems
x = xP or x = Mα x for the real Web graph. The alternative way of computing
the probabilistic eigenvector corresponding to the eigenvalue 1 is given by well-
known Power method

xk+1 = xk P, k = 0, 1, 2, . . .
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The method works for the regular stochastic matrices, but its convergence rate
can not be fast enough. In this section it is suggested to use an idea of 
1-
regularization by Polyak B.T., Timonina A.V. and Tremba A.A. [39,40] (PTT
method) for solving PageRank problem with some modifications. The 
1-re-
gularization approach and its modifications proposed in this article can be used
to solve PageRank problem in the case when the spectral gap condition on tran-
sition matrix is not satisfied. Spectral gap of a matrix is the difference between
the two largest modulus eigenvalues. Practical experiments in [41] showed that
the PTT method is the best choice when there is no guarantee that the spectral
gap of P is big enough. In other cases, when the spectral gap condition is sat-
isfied, other methods can be chosen (for example, the Reduced Power Method
[42], Markov Chain Monte Carlo method [41], see also the references in [41]).
It should also be mentioned that an algorithm for robust eigenvector approxi-
mation is proposed in [43]. But robust alternatives to the standard PageRank
technique is a different subject, which is not covered in this article.

We consider the task of computing the probabilistic eigenvector as optimiza-
tion problem

min ‖Mα x − x‖1 + β

(∣
∣
∣
∣
∣

n∑

i=1

xi − 1

∣
∣
∣
∣
∣
+

n∑

i=1

[xi]−
)

, (9)

where ‖y‖1 is 
1-norm of vector y = (y1, y2, . . . , yn) ∈ R
n, i.e.

n∑

i=1

|yi|; β > 0

is a penalty parameter and [a]− = max{0, −a}.
Numerical experiments showed that optimization algorithms for finding opti-

mal value of objective function in (9) can be used for solving web page ranking
problem. We used SPACLIP and SPACLIP-S methods for solving (9). Indirect
benefits from the applying of nonsmooth optimization methods for solving the
problem (9) is that it is possible to use nonsmooth penalty functions to guaran-
tee that the solution vector x is a standard simplex in R

n. Nonsmooth penalty
functions are exact, which means that, for certain choices of their penalty para-
meters, a minimization with respect to x can yield the exact solution of the
nonlinear optimization problem [44].

4.2 Experimental Results

In first test problem we found PageRank vector for the simple 3-page Web shown
in Fig. 3 by SPACLIP, SPACLIP-S methods and Power method. The code of
Power method was taken from [36]. Running the code of Power method in Octave
3.6.4 with a convergence tolerance of 10−10 and α = 0.85 produces the following
results:
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Iter. PageRank vector ‖xP − x‖1 ‖Mα x − x‖1
0 [ 1/3, 1/3, 1/3 ] 8.377580 6.2832
1 [ 0.427777778, 0.427777778, 0.144444444 ] 0.192593 1.0704e-01
2 [ 0.454537037, 0.454537037, 0.090925926 ] 0.121235 3.0327e-02
3 [ 0.462118827, 0.462118827, 0.075762346 ] 0.101016 8.5927e-03
4 [ 0.464267001, 0.464267001, 0.071465998 ] 0.095288 2.4346e-03
5 [ 0.464875650, 0.464875650, 0.070248699 ] 0.093665 6.8980e-04
6 [ 0.465048100, 0.465048100, 0.069903798 ] 0.093205 1.9544e-04
7 [ 0.465096962, 0.465096962, 0.069806076 ] 0.093075 5.5376e-05
8 [ 0.465110806, 0.465110806, 0.069778388 ] 0.093038 1.5690e-05
9 [ 0.465114728, 0.465114728, 0.069770543 ] 0.093027 4.4454e-06
10 [ 0.465115840, 0.465115840, 0.069768321 ] 0.093024 1.2595e-06

. . .
19 [ 0.465116279, 0.465116279, 0.069767442 ] 0.093023 1.4821e-11

Then the same test problem was solved by SPACLIP and SPACLIP-S meth-
ods. The initial vector x0 was the same, and the penalty parameter β was equal
to 0.3. The results are as follows:

Iter. PageRank vector ‖Mα x − x‖1
SPACLIP

1 [ 0.310571, 0.310571, 0.046318 ] −
2 [ 0.021836, 0.021836, 0.178326 ] −
3 [ 0.465116, 0.465116, 0.069767 ] 1.9429e-16
4 [ 0.465126, 0.465126, 0.069747 ] −

SPACLIP-S
1 [ −0.29508, −0.29508, −2.40984 ] −
2 [ 0.310571, 0.310571, 0.046318 ] −
3 [ 0.021836, 0.021836, 0.178326 ] −
4 [ 0.465116, 0.465116, 0.069767 ] 3.3723e-15

The last iteration from SPACLIP method was unsuccessful, so the answer
was taken from the previous iteration. Because the methods are not monotone,
such situations sometimes arise. In that case SPACLIP and SPACLIP-S methods
return a point with the objective function’s minimal value. It happened in this
test solved by SPACLIP method only. The overall results of all three methods
are shown in Table 1. The Power method was the fastest, but SPACLIP-S took
second place. The answer (PageRank vector) was the same for all three meth-
ods. This simple test showed that SP methods can be used for the solution of
PageRank problem. But the dimension of the first test problem was really small.
In second test problem we used SP methods for for finding large-size PageRank
vector.

Table 2 and Fig. 5 present results of our experiments on a test problem
2 – Hollins University Web graph. The dataset of the hollins.edu Web site
crawled on January, 2004 and consists of 6012 nodes. It is now available on
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Table 1. Comparison of the methods on the test problem 1 (P matrix 3 × 3)

Method Time, s Number of iterations ‖Mαx − x‖1

Power method 9.25e-4 19 1.4821e-11

SPACLIP 0.122 4 1.9429e-16

SPACLIP-S 0.059 4 3.3723e-15

http://www.limfinity.com/ir/data/hollins.dat.gz. The structure of the adjacency
matrix of this graph is shown in Fig. 4. The matrix is sparse, so each dot repre-
sents a nonzero in the matrix.

Table 2. Comparison of the methods and β choice on the test problem 2 (P matrix
6012 × 6012)

Method Time, s Number of iterations ‖Mαx − x‖1

Power method 0.0765 58 21.948

SPACLIP-S, β = 0.3 4499.8 276 1.2256

SPACLIP-S, β = 0.2 4354.4 260 1.0646

SPACLIP-S, β = 0.1 3950.5 252 1.3047

SPACLIP-S, β = 6.6e-4 4445.6 285 0.51836

Power method failed the test problem 2. Its results, which are shown in
Table 2, were obtained only after normalizing the vector x on each iteration by
dividing all the components of vector x by vector’s sum, otherwise the method
diverged. The other experiments were devoted to the selection of the penalty
parameter β. This parameter should be chosen as follows: β ≤ 1 (the maximum

Fig. 4. Adjacency matrix of the graph of hollins.edu Web site

http://www.limfinity.com/ir/data/hollins.dat.gz
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Fig. 5. Convergence results for SP methods on the test problem 2 (P matrix 6012 ×
6012)

element of the matrix P ) and β ≥ 6.6e-4 (the average number of incoming or
outgoing links 3.97 divided by 6012).

5 Conclusions

The separating plane method with additional clippings and stockpiling
(SPACLIP-S) for nonsmooth optimization is proposed in this paper. The method
belongs to the family of separating plane methods. Both the theoretical and
experimental investigations of the method showed that this method is efficient
and widely applicable to nonsmooth optimization problems with convex objec-
tive functions.

Proposed optimization algorithm was applied to the Web page ranking prob-
lem. The second part of the article relating to PageRank problem, was made
under the impression from [33,45]. The iterative regularization method with a
new penalty function for solving PageRank problem was also presented. Exper-
imental results of comparison of SPACLIP, SPACLIP-S and Power method for
solving two test PageRank problems showed that SPACLIP-S can be applied for
solving ranking problems.

In terms of future work, it would be interesting to adjust SP methods for more
effective calculations work with sparse matrices. Moreover, further theoretical
and numerical research is needed for the proposed algorithm.
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17. Lemaréchal, C., Nemirovskii, A., Nesterov, Y.: New variants of bundle methods.
Math. Program. 69(1), 111–147 (1995)
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Abstract. In Euclidean plane geometry, Apollonius’ problem is to con-
struct a circle in a plane that is tangent to three given circles. We will
use a solution to this ancient problem to solve several versions of the
following geometric optimization problem. Given is a set of customers
located in the plane, each having a demand for a product and a bud-
get. A customer is satisfied if her total, travel and purchase, costs do
not exceed her budget. The task is to determine location of production
facilities in the plane and one price for the product such that the revenue
generated from the satisfied customers is maximized.

Keywords: Pricing problem · Facility location · Apollonius’ problem ·
Complexity · Exact algorithm

1 Introduction

Consider the following geometric Stackelberg game. A leader in the game is a
company producing a single product in large quantities in uncapacitated pro-
duction facilities. The company has to determine location of m facilities in a
Euclidean plane and a selling price p per unit of the product, one for all facili-
ties. Followers in this game are n customers of the company. Let J denotes the
set of these customers. Each customer j ∈ J is situated in the plane and her
coordinates are given by a point xj ∈ Q

2. Each customer j ∈ J is single-minded,
i.e., she is willing to purchase either her full demand dj ∈ Z+, known to the
company, or nothing. Moreover, each customer j ∈ J announces to the company
her budget bj ∈ Z+ indicating that the product will be purchased only if the
sum of travel and purchase costs does not exceed her budget, i.e.,

dj × p + cj × ||xj − y|| ≤ bj , (1)
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where cj is the customer travel cost per distance unit, || · || is the Euclidean
norm and y is the closest to the customer facility. Here, we also assume that
the travel costs are known to the company. If the budget constraint expressed
by the Eq. (1) for customer j ∈ J is satisfied, we call the customer a winner.
The winner purchases the product and the company generates revenue of dj × p
from that winner. The problem is to find a revenue maximizing strategy for the
leader, i.e., to determine location of facilities and the price such that the total
revenue generated from the winners is maximized.

Further we denote the set of facilities by I, the location of facility i ∈ I
by yi ∈ R

2, a feasible strategy of the leader by (y, p), and the set of winners
by J(y, p) ⊆ J . We refer to this problem as the location-pricing problem. Fur-
thermore, without loss of generality we assume cj = 1 for all customers j ∈ J ,
otherwise we normalize the instance dividing the demands and the budgets by
the customer travel costs.

In this work, we first address the location-pricing problem with one facility
and three customers having unit demands. This problem is solved by using a solu-
tion to the Apollonius’ problem. Then, we extend the algorithm to the problem
with n customers having arbitrary demands. We present an algorithm solving
the location-pricing problem with m facilities. We conclude with discussion and
some open problems.

2 A Single Facility Case with Three Customers

Consider a simple special case of the location-pricing problem with one facility
and three customers. Notice, in any optimal solution, the budget constraint of
at least one of the customers must be tight, otherwise the company can increase
the revenue by increasing the price. Thus, for three customers we have three
distinct cases: one-, two-, or all three budget constraints are tight. We present
derivations for the latter case with all three budget constraints being tight. The
other two cases are even simpler though treated similarly.

Theorem 1 (Generalized Apollonius’ Problem). Given positive integers
b1, b2, b3, d1, d2, d3 and three points x1, x2, x3 ∈ Q

2 in general positions, the fol-
lowing system of equalities has at most eight solutions, all expressible in a closed
analytic form.

||xj − y||2 = (bj − dj × p)2, j ∈ {1, 2, 3}.

Proof. The geometric intuition of the proof can be illustrated on a special case
with d1 = d2 = d3 = 1. We defer the formal proof of the general case with
arbitrary values for d1, d2, d3 and derivation of the closed form formulas to the
complete journal version of this paper.

For d1 = d2 = d3 = 1, a solution to the system is a solution to the famous
Apollonius’ Problem [1]: Given three circles, B1, B2, B3, in a plane with centers
x1, x2, x3 and of radii b1, b2, b3, respectively, find a circle B0 tangent to all three
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b1
b2

b3

x1

x2

x3

y

p

Fig. 1. Apollonius problem

given circles; for illustration see Fig. 1. Here, the solution to the system and to
the Apollonius problem is a circle B0 of radius p centered at y.

Intuitively, any three distinct circles generically have eight different circles
that are tangent to them. The number eight comes from the fact that solution
circles can enclose or exclude the three given circles in eight different ways: (1)
B0 does not enclose the whole interior of neither of the given circles; (2–4) B0

encloses the entire interior of exactly one of the circles, B1 or B2 or B3; (5–7)
B0 encloses the entire interior of exactly two out of three circles; (8) B0 encloses
all three given circles. ��

3 Discretization of the Location-Pricing Problem

In fact, Theorem 1 allows us to restrict the search for optimal solutions to the
location-pricing problem among finitely many location-pricing pairs, making the
location-pricing problem a combinatorial optimization problem. Even stronger,
the number of possibly optimal location-pricing pairs is cubic in the number of
customers and independent on the number of facilities.

Theorem 2 (Location-Price Discretization). For any instance of the loca-
tion-pricing problem with n customers, there is a set S of pairs (y, p) ∈ R

2 ×R
+

of size O(n3) such that some pair (y, p) ∈ S is an optimal solution to the location-
pricing problem.

Proof. Let P = P1 ∪ P2 ∪ P3, where

P1 =
{
bj
dj

: j ∈ J

}

,
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P2 =
{
bj + bk − ||xj − xk||

dj + dk
: j, k ∈ J

}

,

P3 =
⋃

J ′⊂J: |J ′|=3

{
p ∈ R+ : ∃y ∈ R

2 s.t. bj − ||xj − y|| − djp = 0, ∀j ∈ J ′} .

Here, set P3 is simply the union of radii p of solution circles of the Generalized
Apollonius Problem from Theorem 1 for all possible triplets of winners in J . We
shall argue that P contains an optimal price to the location-pricing problem.

Consider an optimal solution (y, p) of the location-pricing problem. We
already argued that at least one of the budget constraints must be tight.

Assume that the budget constraint of only one customer j ∈ J is tight. Then
the optimal location of the facility is y = xj and the optimal price is p = bj/dj .
This forms the first set P1 of possibly optimal prices and the corresponding set
Y1 = {xj : j ∈ J} of possibly optimal facility locations. Notice, the number
of potentially optimal pairs here is linear in n. Similarly, P2 and P3 are formed
when the number of tight budget constraints is 2 and 3, respectively. Since for
P2 and for P3 we have to consider all possible pairs and triplets of tight budget
constraints, respectively, the cardinality of P2 is quadratic and the cardinality
of P3 is cubic in n.

In the case when more than three budget constraints are tight, the system
of equations becomes overdetermined: we have only three variables, p and two
coordinates of y, while the number of equations is at least four. In this case, if a
solution to the system exists, it will be fully determined by a subset consisting of
only three equations. This brings us back to the case with only triplets of bud-
getary constraints and the set of possibly optimal prices P3. Potentially optimal
facility locations are found by solving the Generalized Apollonius Problem for y.
Since there are at most eight solutions to the Generalized Apollonius Problem
for every triplet of constraints, we have a cubic number of potentially optimal
facility locations. This proves the theorem. ��

For a single facility case of the location-pricing problem we can straightfor-
wardly enumerate all O(n3) possible facility locations together with prices from
P . For every location-pricing pair, the revenue is evaluated in O(n) time. Then,
the maximum revenue solution is the optimal solution to the problem and we
have proven the following theorem.

Theorem 3. The location-pricing problem with one facility and n customers
can be solved in O(n4) time.

4 Multiple Facilities

Not surprisingly, the geometric location-pricing problem becomes intractable
when the number of facilities becomes an input parameter.

Theorem 4. The location-pricing problem with m facilities and n clients is
strongly NP-hard.
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Proof. Consider the following geometric minimum hitting set problem on unit
disks: given n unit disks in the plane and a positive integer K, does there exist
a hitting set of size K, i.e., a set of points in the plane such that every given
disk contains at least one point of the set? Here, the disks are given by rational
coordinates of their centers.

We reduce this minimum hitting set problem, known to be strongly
NP-complete [2–4], to the location-pricing problem with m = K + 1 facilities.
Given n unit disks in the minimum hitting set problem, we construct the input of
the location-pricing problem as follows. For every disk we create a disk customer
located in the center of the disk. Every disk customer j has budget bj = 2, and
unit demand and transportation costs, dj = cj = 1. Pick a point z on distance at
least 3 from all disk customers. Create a controlling customer at point z, having
budget of 1, travel costs of 1 and demand of M , where M is a sufficiently large
number to be defined later. We claim that, for a suitable choice of M , a hitting
set of size K exists if and only if the location-pricing problem on K +1 facilities
has a solution with revenue M + n.

We first argue that, for sufficiently large M , the optimal price is exactly one
per unit of the product. For contradiction, consider two cases: the optimal price
is p0 > 1 and the optimal price is 0 < p0 < 1.

Let the optimal price p0 be strictly greater than 1. Then, the product is
not affordable for the controlling customer, as her budget is 1. From the disk
customers the company can get revenue at most 2n, as the budget of each disk
customer is 2. On the other hand, if the company sets the price to be 1, it can
generate revenue of M from the controlling customer alone. For M > 2n, this
implies p0 > 1 is a suboptimal price.

Let 0 < p0 < 1, then at price p0, the company generates revenue p0M from
the controlling customer and kp0 from the disk customers, where k is the number
of winners among the disk customers. By Theorem 2, we may assume that p0

is at most p∗ = max{p ∈ P : p < 1}. Thus, the optimal revenue is at most
(n + M)p0 ≤ (n + M)p∗. On the other hand, the optimal revenue is at least M
as the unit price is a feasible solution. Thus, M ≤ (n + M)p∗ or equivalently
M ≤ np∗/(1 − p∗). However, if we set M > np∗/(1 − p∗), we have that the
revenue of M generated by unit price is greater than the optimal revenue, a
contradiction.

Now, if the price is fixed at p = 1, the company gets revenue M from the
controlling customer and revenue 1 from each disk customer who is the winner.
Any disk customer cannot afford traveling further than one distance unit as her
budget is 2 and for the product she already must pay 1. This implies that a
customer is a winner if and only if a facility is located within radius 1 from the
customer location, or equivalently, if a facility hits the customer’s disk. Notice,
one facility must be reserved to cover the controlling customer. Thus, to max-
imize the revenue, the other K facilities must hit the maximum number of n
unit disks around the disk customers. Therefore, for n unit disks in the plane a
geometric hitting set of size K exists if and only if the corresponding instance
of the location-pricing problem has a solution of revenue M + n. ��
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On the positive side, if the number m of facilities is fixed (a constant), we can
enumerate all possible choices for m facilities among O(n3) options of the set S
as in Theorem 2. Again, choosing the maximum revenue option, we obtain an
optimal solution to the problem. This result is reported in the following theorem.

Theorem 5. The location-pricing problem with m facilities and n customers
can be solved in nO(m) time.

5 Location and Pricing on the Line

Consider a special case of the location-pricing problem, where all input points
of the customers are co-linear. In this case, the location-pricing problem can be
solved in polynomial time.

The most important ingredient of the algorithm is again the discretization
theorem.

Theorem 6. For any instance of the location-pricing problem with n co-linear
customers, there is a set S of pairs (y, p) ∈ R

2 × R
+ of size O(n2) such that

some pair (y, p) ∈ S is an optimal solution to the location-pricing problem.

Proof. The proof of this theorem repeats the lines of the proof of Theorem 2.
Moreover, from the co-linearity of the customers we know that the locations of
the facilities will also be co-linear with the customers. Thus, the locations of the
customers as well as facility locations are specified by a single coordinate. Hence,
a system with already three tight budgetary constraints becomes overdetermined
as we have only two variables: one for price and one for a point coordinate.
Therefore, we have to consider only the doubles of tight budgetary constraints
that reduces the size of the set S to O(n2). ��

Now, for an arbitrary number m of facilities, we can construct a dynamic pro-
gram that finds the optimal solution, i.e., m location-pricing pairs, in polynomial
time. Without loss of generality we assume that all customers are situated on a
line. For simplicity, let set S be specified by y-coordinates of the points and the
price set P . Let N denote the size of set S. Again, without loss of generality, we
assume that coordinates of points in set S are arranged in non-decreasing order:
y1 ≤ y2 ≤ . . . ≤ yN .

For every price p ∈ P , we compute facility locations maximizing the total
revenue. Let g(p, k, j), 0 ≤ k < j ≤ N + 1, denote the revenue generated by
customers/winners from the interval [yk, yj ], i.e., the customers who can afford
buying the product at price p at the nearest endpoint of the interval, either in
yk or in yj . We assume here that y0 = −∞ and yN+1 = +∞. Given p ∈ P ,
all values for g can be computed in O(n5) time. By Theorem 6, the number of
possible prices is quadratic in n. Thus, computing all values for g for all possible
prices p takes O(n7) time.

Let f(p, i, j), i = 1, 2, . . . ,m, j = 1, 2, . . . , N, denote the maximal revenue
generated at price p by all customers from the interval (−∞, yj ] subject to
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allocation of the i-th facility at yj . To initialize the lookup table, we define
the values f(p, 1, j) = g(p, 0, j) for all j = 1, 2, . . . , N . The following recursive
formula completes the dynamic programming table. For all i = 2, 3, . . .m and
j = 1, 2, . . . , N + 1 compute

f(p, i, j) = max
1≤k<j

{f(p, i − 1, k) + g(p, k, j)} (2)

Then, f(p,m,N+1) is the maximum revenue generated at price p. Notice, filling-
in the lookup table requires O(mn5) time. Enumerating over all possible prices
solves the location-pricing problem. Therefore, the dynamic programming takes
O(mn7) time and we have the following theorem.

Theorem 7. For any instance of the location-pricing problem with n co-linear
customers, an optimal solution to the location-pricing problem can be constructed
in O(mn7) time.

6 Open Problems

Interestingly, if the company is allowed to differentiate the prices among the
facilities, even the problem on the line becomes highly non-trivial. This is due to
the fact that the customers with sufficiently large budgets can afford traveling
to further facilities, i.e., not the nearest ones, to get there the product at a lower
price. Thus, our first open question is whether or not the problem on the line
with price differentiation is polynomially solvable.

The second open problem is to construct an FPT algorithm for the geometric
location-pricing problem parametrized by the number m of facilities, i.e., running
in time f(m)poly(n) for some function f(·).
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Abstract. In this paper the location and design problem is considered.
The point of this is that a Company is going to open markets to attract
the largest share of total customers demand. This share varies flexibly
depending on the markets location and its design variant. The Company
vies for consumers demand with some pre-existing competitors markets.
The mathematical model is nonlinear, therefore, there are difficulties in
the application of exact methods and commercial solvers for it. The ways
of constructing upper bounds of the objective function are described.
Two algorithms based on the Variable Neighborhood Search approach
are proposed. To study the algorithms a series of test instances similar to
the real data of the applied problem has been constructed, experimental
analysis is carried out. The results of these studies are discussed.

Keywords: Discrete optimization · Integer programming · Upper
bound · Location problems · Variable neighborhood search

1 Introduction

A lot of economic situations are described with a help of mathematical models
of discrete location problems. Often they are quite hard both from theoretical
and practical points of view. Obtaining optimal solutions to such problems with
the help of exact algorithms, including software packages, may require signifi-
cant time and computer resources. In recent years, methods for the approximate
solution of various applied problems have been actively developed. They include
the local search algorithms [1]. In this article we develop Variable Neighbor-
hood Search Approach for the location and design problem. Two versions of the
algorithm proposed for the problem are under consideration. Some numerical
experiments have been carried out on the test instances. For the analyses of the
quality of obtained solutions, the upper bounds are used.

2 Problem Formulation

The new Company plans to locate its facilities (supermarkets), which differ from
one another in design: size, range, etc. Clients of each point choose to use the
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facilities of Company or its competitors depending on their attractiveness and
distance. The Company’s goal is to attract a maximum number of customers,
i.e. to serve the largest share of total demand. This share for the Company is
not fixed. It depends on where and what design options open up new enterprises
and, as a result, whose markets will be chosen by customers. Therefore, it can
be classified as a multivariant location problem.

For the first time this problem is described by Kraas, O. Berman, R. Aboolian
in [3]. Let us write out the mathematical model according to [2]. Let R be the
set of facility designs, r ∈ R. There are wi customers at the point i of discrete
set N = {1, 2, . . . , n}. All customers have the same demand, so each item can
be considered as one client with weight wi. The distance dij between the points
i and j is measured, for example, in Euclidean metric or equals to the shortest
distance in the corresponding graph. Let P ⊆ N be the set of potential facility
locations. It is assumed that C ⊂ P is the set of pre-existing competitor facilities.
The Company may open its markets in S = P \C taking into account the budget
B and the cost of opening cjr facility j ∈ S with design r ∈ R.

Such flexible choice of customers is represented in the gravity-type spatial
interaction models. These models are known as the brand share models in the
marketing literature [4]. According to these models the utility uij for a customer
at point i ∈ N of a facility at location j ∈ S can be written as an exponential
function.

Let xjr = 1, if facility j is opened with design variant r and xjr = 0 otherwise,
j ∈ S, r ∈ R. To determine the usefulness uij of the facility j ∈ S for
the customer i ∈ N the supplementary coefficients kijr are introduced:
kijr = ajr(dij +1)−β . They depend on the sensitivity β of customers to distance
to facility and attractiveness ajr. These two parameters are used in the spatial
interaction models. In practice to determine the measures of attractiveness of
each facility survey of the population is conducted. The survey data are processed
using regression analysis.

Utility uij =
∑R

r=1 kijrxjr. The total utility for the customers in point i ∈ N
from the facilities controlled by the competitors is Ui(C) =

∑
j∈C uij .

The demand function is

g(Ui) = 1 − exp
(

− λiUi

)

,

where λi is the characteristic of flexible demand in point i, λi > 0; Ui is the
total utility for a customer at i ∈ N from all open facilities:

Ui =
∑

j∈S

R∑

r=1

kijrxjr + Ui(C) = Ui(S) + Ui(C).

The company’s total share of facility i ∈ N :

MSi =
Ui(S)

Ui(S) + Ui(C)
=

∑
j∈S

∑R
r=1 kijrxjr

∑
j∈S

∑R
r=1 kijrxjr +

∑
j∈C uij

.
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Then the mathematical model looks like:

max
∑

i∈N

wi · g(Ui) · MSi, (1)

∑

j∈S

∑

r∈R

cjrxjr ≤ B, (2)

∑

r∈R

xjr ≤ 1, j ∈ S, (3)

xjr ∈ {0, 1}, r ∈ R, j ∈ S. (4)

Based on above notation, the objective function (1) looks as follows:

max
∑

i∈N

wi

(

1 − exp
(

− λi

(∑

j∈S

R∑

r=1

kijrxjr + Ui(C)
)))

· (5)

·
( ∑

j∈S

∑R
r=1 kijrxjr

∑
j∈S

∑R
r=1 kijrxjr +

∑
j∈C uij

)

.

The objective function (5) reflects the Company’s goal to maximize the share
of customers demand. Inequality (2) takes into account the available budget.
Condition (3) shows that for each facility only one variant of the design can be
selected.

3 Upper Bounds

It is known that the location problem considered in this paper is NP-hard [5].
Sience the objective function (5) is non-linear, it is impossible to use the linear
programming methods to solve problem (2)–(5). In this case, the calculation of
estimates of the objective function becomes relevant. Below there is an observa-
tion for constructing the upper bound for (5) proposed by Yu. Kochetov.

Let us consider the objective function (1) of a location and design problem.
When λi is close to 1, the multiplier of the objective function behaves as a
constant:

1 − exp
(

− λi

(∑

j∈S

∑

r∈R

kijrxjr + Ui(C)
))

≈ 1.

Then the initial problem is equivalent to the following one:

max
∑

i∈N

wi ·
( ∑

j∈S

∑
r∈R kijrxjr

∑
j∈S

∑
r∈R kijrxjr + Ui(C)

)

, (6)

∑

j∈S

∑

r∈R

cjrxjr ≤ B, (7)

∑

r∈R

xjr ≤ 1, j ∈ S, (8)

xjr ∈ {0, 1}, r ∈ R, j ∈ S. (9)
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It can be reduced to a problem of mixed-integer linear programming. To do
this, we represent the objective function (6) in the following way:

max
∑

i∈N

wi ·
( ∑

j∈S

∑
r∈R kijrxjr

∑
j∈S

∑
r∈R kijrxjr + Ui(C)

)

=

=
∑

i∈N

∑

j∈S

∑

r∈R

wikijrxjr∑
j∈S

∑
r∈R kijrxjr + Ui(C)

=
∑

i∈N

∑

j∈S

∑

r∈R

zijr,

where
zijr =

wikijrxjr∑
j∈S

∑
r∈R kijrxjr + Ui(C)

, i ∈ N, j ∈ S, r ∈ R.

The nonlinear model (2)–(5) is reduced to the mixed-integer programming
model by introducing service variables:

yi =
wi∑

j∈S

∑
r∈R kijrxjr + Ui(C)

, i ∈ N.

Then zijr is given by the inequalities:

kijryi + m(xjr − 1) ≤ zijr ≤ kijryi,

zijr ≤ xjrwi,

where m = max
wikijr

Ui(C)
, i ∈ N, j ∈ S, r ∈ R. (10)

The following linear model is obtained:

max
∑

i∈N

∑

j∈S

∑

r∈R

zijr, (11)

kijryi + m(xir − 1) ≤ zijr ≤ kijryi, i ∈ N, j ∈ S, r ∈ R, (12)
zijr ≤ xjrwi, i ∈ N, j ∈ S, r ∈ R, (13)

∑

r∈R

∑

j∈S

zijr + yiUi(C) = wi, i ∈ N, (14)

∑

j∈S

∑

r∈R

cjrxjr ≤ B, (15)

xjr ∈ {0, 1}, j ∈ S, r ∈ R. (16)

Condition (14) says that every customer spends the budget proportionally to
the utility either from the Company’s facilities or from a competitor. Problem
(11)–(16) can be solved exactly.

Note that the constant m in (10) may be selected in various ways. This will
determine the accuracy of the upper bounds.

4 Variable Neighborhood Search Approach

The use of solver CoinBonmin [6] for location and design problem can calculate
only a record but not the optimal solution even when CPU time t → ∞ [7].
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Solving such problems requires a significant investment of time and computing
resources. In this regard, one of the approaches to its solution is the use of
approximate methods. In this paper we develop Variable Neighborhood Search
approach [8,9] for the considered problem. The frame of Variable Neighborhood
Search algorithm (VNS) is the following [8].

Scheme of VNS algorithm

Initialization. Select a set of neighborhood structures Nk, k = 1, . . . , kmax, that
will be used in the search; find an initial solution x; choose a stopping condition.

Repeat the following until the stopping condition is met:
(1) Set k := 1.
(2) Until k = kmax, repeat the following steps:
(a) Shaking. Generate a point x′ at random from the k-th neighborhood of

x (x′ ∈ Nk(x));
(b) Local search. Apply some local search method with x′ as initial solution;

denote the obtained local optimum by x′′;
(c) Move or not. If this local optimum x′′ is better than the best incumbent,

move to x := x′′, and continue the search with N1, k := 1; otherwise, set
k := k + 1.

We propose a variant of VNS approach which is called the Relaxed Neighbor-
hood Search Algorithm (RVNS). Unlike the basic VNS there is no step “Local
search” in RVNS. The basic idea of VNS approach is to explore a set of pre-
defined neighborhoods successively to provide a better solution. Therefore, an
important step is the choice of neighborhoods set. Here the new types of neigh-
borhoods are used for the algorithm [10]. They will be described below.

Let the vector z = (zi) be such that zi corresponds to facility i: zi = r iff
xir = 1. The feasible initial solution z is obtained using special deterministic
procedure.

Neighborhood 1 (N1). Feasible solution z′ is called neighboring for z if it can be
obtained with the following moves:

(a) choose one of the open facilities p with design variant zp and close it;
(b) select the facility q which is closed and has highest attractiveness; then open

facility q with the design variant zp.

Neighborhood 2 (N2). Feasible solution z′ is called neighboring for z if it can
be obtained with the following operations:

(a) choose one of the open facilities p with design variant zp and reduce the
number of design variant;

(b) select the facility q and increase the number of design variant of it.

Neighborhood 3 (N3). Unlike Neighborhood 2 on the step b) select the facility
q which is closed; then open the facility q with the design variant zp.

Lin-Kernighan neighborhood (LK) was applied as Neighborhood 4 [11].
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5 Experimental Study

The validation of the VNS algorithm was conducted for the following data: the
neighborhoods N1, N2, N3 and LK were used; the local descent was carried
out with the help of the neighborhood Lin-Kernighan, it consists of 9 elements.
RVNS algorithm uses neighborhoods N1, N2, LK; Lin-Kernighan neighborhood
consists of 9 elements. The facilities p in the neighborhood N1, the facilities p, q
in N2 and q in N3 were selected randomly. Number of restarts shaking trials
without improvement is limited by 100 for both algorithms. Stopping criteria
for VNS and RVNS was an exploration of neighborhoods without improvement
of the solution.

To study the algorithms a series of test instances similar to the real data
of the applied problem has been constructed [2]. The test instances consist of
two sets with Euclidean and arbitrary distances. They contain 96 instances for
location of 60, 80, 100, 150, 200 and 300 facilities; 3 types of design variants are
used, the budget of 3, 5, 7, 9 is limited; the demand parameter is λi = 1, i ∈ N ;
the customer sensitivity to the distance is high (β = 2).

The parameter m was calculated by formula (10) and m = max wikijr, i ∈ N,
j ∈ S, r ∈ R. Therefore, the two values UB1 and UB2 for the upper bound were
obtained respectively. It should be noted that UB1 coincides with UB2 for all
tasks with arbitrary distances. For all tasks with Euclidean distances the UB2
is closer to optimal solution than UB1. It is interesting to note that deviation
UB2 from UB1 increases with the dimensions of problems. Thus the maximal

Table 1. Best known solutions

Arbitrary distances Euclidean distances

Tests UB1=UB2 GAMS VNS RVNS UB1 UB2 GAMS VNS RVNS

300.3.1 36.151 36.150 36.143 36.143 43.560 43.180 — 35.183 35.183

300.3.2 57.166 54.12 57.158 57.158 65.977 65.256 — 54.446 54.446

300.3.3 75.524 74.41 75.513 74.615 86.951 86.228 — 73.053 73.053

300.3.4 96.111 94.47 96.097 96.097 107.227 106.504 — 91.081 91.081

300.5.1 30.332 30.02 30.334 28.463 36.502 36.193 — 30.899 30.899

300.5.2 51.054 51.04 51.051 51.051 58.776 58.371 — 50.514 50.514

300.5.3 67.507 66.99 67.503 67.503 80.024 79.418 — 69.360 69.360

300.5.4 86.437 81.93 86.312 83.178 100.468 99.785 — 87.756 87.848

300.7.1 36.427 36.43 36.427 36.427 43.957 43.730 — 36.154 36.154

300.7.2 55.631 53.69 55.627 55.627 69.487 69.179 — 57.568 57.568

300.7.3 74.619 74.62 74.610 74.177 93.207 92.748 — 77.670 77.787

300.7.4 95.276 92.83 95.266 95.266 115.810 115.256 — 96.992 97.119

300.9.1 31.827 31.83 31.823 31.823 36.107 36.041 — 32.093 32.093

300.9.2 51.279 48.65 51.274 51.274 58.020 57.934 — 51.503 51.503

300.9.3 69.004 67.09 69.000 67.420 79.212 79.086 — 70.294 70.293

300.9.4 88.340 85.87 85.603 81.537 99.909 99.773 — 88.947 88.947
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and average deviations are equal to 27.4 % and to 11.9 % for |N | = 60, and they
are equal to 1.09 % and to 0.56 % for |N | = 300 respectively.

Table 1 shows the values of the upper bounds (UB1, UB2), the best solutions
are found by CoinBonmin solver built into GAMS [7] and by algorithms VNS
and RVNS for tests with the largest dimension from sets with Euclidean and
arbitrary distances.

Table 2 contains some information about minimal (min), average (av) and
maximal (max) CPU time (in seconds) of the proposed algorithms for test prob-
lems using a PC Intel i5-2450M, 2.50 GHz, memory 4 GB.

The test instances with Euclidean distances proved to be difficult for the Coin-
Bonmin solver. In particular the maximum CPU time for test instances with |N | =
60 was more than 63 h. In all instances with a dimension of 300 the CoinBonmin
solver could not find a feasible solutions in 25 min. While maximal running time of
the proposed algorithms does not exceed 25 min. In the remaining test instances
algorithms have been compared to the upper bound and among themselves. In 5
test instances with Euclidean distances VNS algorithm improved the record values
found by RVNS. The average deviation of the VNS from the upper bound UB2 was
12.1 % (RVNS 12.1 %). The average time of the VNS algorithm until the stopping
criterion triggered was 181.35 s (RVNS 4.28 s).

In the test instances with arbitrary distances CoinBonmin found the records
for all tasks. The average time until the stopping criterion triggered was 139.39 s
(RVNS 4.69 sec.). During this time in 27 test instances with arbitrary distances
VNS algorithm improved RVNS records. The average deviation from the upper
bound obtained by VNS was 0.14 % (RVNS 0.7 %).

Analyzing the results we can say that in 15 test instances the records of
VNS coincided with upper bounds in the test instances with arbitrary distances.
Therefore we can conclude that the VNS algorithm found the optimal solutions
for 15 test instances. In addition CoinBonmin has found 10 optimal solutions and
RVNS has found 9 such solutions. Optimal solutions have not been obtained on
the series with the Euclidean distance. The confidence interval for the probability
of obtaining an optimum (the confidence level is 95 %) is between 0.56 and 0.94.

In general we can say that VNS obtains solutions closer to the optimum,
while RVNS algorithm is faster in comparison with other considered algorithms.

Table 2. CPU Time (sec)

Arbitrary distances Euclidean distances

Tests VNS RVNS VNS RVNS

|N | min av max min av max min av max min av max

60 10.94 21.92 46.16 0.36 0.75 1.33 12.29 20.52 39.26 0.34 0.70 1.05

80 21.32 34.16 86.34 0.66 1.41 2.57 23.04 36.49 83.92 0.62 1.15 2.02

100 38.01 60.95 152.16 1.06 1.92 2.76 32.58 48.47 100.74 0.74 1.50 2.83

150 76.11 97.48 141.28 2.32 4.21 6.53 75.41 145.97 451.60 1.64 3.64 6.18

200 115.05 183.43 295.40 3.61 7.17 11.74 109.51 222.46 447.04 2.80 5.33 8.22

300 265.45 438.38 643.23 5.56 12.70 22.49 268.04 614.21 1408.92 7.65 13.35 21.27
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6 Conclusion

In this paper we have developed two variants of algorithms based on the Variable
Neighborhood Search approach for the location and design problem. New neigh-
borhoods of a special type allowed us to find the optimal solutions. Computational
experiment was carried out on a series of test examples based on real data. The
ways of constructing upper bounds of the objective function have described. The
proposed algorithms found new best known solutions or solutions with smaller rel-
ative error. Having in mind the complexity and size of the considered problem we
can conclude that the computational times are rather good.

The obtained results indicate the usefulness of the Variable Neighborhood
Search approach for solving the commercial-size problem.
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Kochetov for their attention to our paper and helpfull comments.
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Abstract. In the present paper, we formulate the network equilibrium
problem with mixed demand containing the fixed and variable compo-
nents. We present the equilibrium conditions and the conditions for exis-
tence of solution of this problem. In addition, we show that the network
equilibrium problem with mixed demand generalizes the network equi-
librium problems with fixed demand and elastic demand and establish
the connection with the auction equilibrium problem. Preliminary com-
putational experiments are also presented.

Keywords: Network equilibrium problem · Fixed demand · Elastic
demand · Mixed demand

1 Introduction

The network equilibrium problems with fixed and elastic demand, which arise in
different areas, including telecommunication and transport networks, have long
been known and investigated in detail (see, for example, [1]–[3]).

In the present paper, we generalize the network equilibrium problems with
fixed and elastic demand and propose the network equilibrium problem with
mixed demand containing the fixed and variable components. For this problem,
we present the equilibrium conditions and the conditions for existence of solution
and establish the connection with the auction equilibrium problem.

In the next section, we remind the definitions of the network equilibrium
problems with fixed and elastic demand.

2 Preliminaries

We remind that the network equilibrium problem with fixed demand is to find
a point x∗ ∈ X such that

〈G(x∗), x − x∗〉 ≥ 0 ∀x ∈ X, (1)
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c© Springer International Publishing Switzerland 2016
Y. Kochetov et al. (Eds.): DOOR 2016, LNCS 9869, pp. 578–583, 2016.
DOI: 10.1007/978-3-319-44914-2 46



On a Network Equilibrium Problem with Mixed Demand 579

where X =

⎧
⎨

⎩
x

∣
∣
∣
∣
∣
∣

∑

p∈Pw

xp = dw, xp ≥ 0, p ∈ Pw, w ∈ W

⎫
⎬

⎭
,

G is a cost mapping, which will be defined below. Here V is the set of network
nodes, A is the set of directed links, W is the set of origin-destination nodes
(O/D-pairs) (i, j), i, j ∈ V . For each w ∈ W the set Pw of simple directed paths
joining w and the fixed demand value dw > 0 are given.

The problem is to distribute the demand flow dw for each O/D-pair w ∈ W
among the given set of paths Pw, using the equilibrium criterion. xp denotes
the variable value of flow passing through the path p. Therefore, the set X is a
Cartesian product of simplices, its dimension equals

∑
w∈W |Pw|.

Paths and links are connected by the incidence matrix with elements

αpa =

{
1, if link a belongs to path p ,

0, otherwise.

The values of link flows are defined as follows: fa =
∑

w∈W

∑
p∈Pw

αpaxp, a ∈ A.
For each link a a continuous cost function Ca is given, in the general case this
function can depend on all link flows. The summary cost function for path p
has the form Gp(x) =

∑
a∈A αpaCa(f). The equilibrium state for this network

is such an element x∗ ∈ X that

∀w ∈ W, q ∈ Pw, x∗
q > 0 =⇒ Gq(x∗) = min

p∈Pw

Gp(x∗) . (2)

The network equilibrium problem with elastic demand is to find such a vector
(x∗, d∗) ∈ K that

〈G(x∗), x − x∗〉 − 〈λ(d∗), d − d∗〉 ≥ 0 ∀(x, d) ∈ K , (3)

where K =

⎧
⎨

⎩
(x, d)

∣
∣
∣
∣
∣
∣

∑

p∈Pw

xp = dw, xp ≥ 0, p ∈ Pw, w ∈ W

⎫
⎬

⎭
.

In this model the demand dw is a variable value for all w ∈ W . For each O/D-
pair w ∈ W a so-called disutility function λw of dw is given, which is supposed
to be continuous.

For this problem the equilibrium conditions have the following form: a vector
composed of path flow variables and demand variables (x∗, d∗) ∈ K is a solution
to problem (3), if the correlations hold:

Gp(x∗)

{
= λw(d∗) ifx∗

p > 0 ,

≥ λw(d∗) ifx∗
p = 0 .

(4)

3 Main Results

In the present paper, we consider the network equilibrium problem with mixed
demand. In this problem, the fixed and variable components of demand are
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simultaneously used. The feasible set takes the form

KM =

⎧
⎨

⎩
(x, d)

∣
∣
∣
∣
∣
∣

∑

p∈Pw

xp = dconstw + dw, xp ≥ 0, p ∈ Pw, dw ≥ 0, w ∈ W

⎫
⎬

⎭
,

where dconstw ≥ 0 ∀w ∈ W ; dconstw and dw are the constant and variable demands
for w ∈ W , respectively. The formulation of variational inequality has the form
similar to the problem with elastic demand: Find a vector (x∗, d∗) ∈ KM such
that

〈G(x∗), x − x∗〉 − 〈λ(d∗), d − d∗〉 ≥ 0 ∀(x, d) ∈ KM . (5)

The proof of solution existence for the considered problem is based on the
results obtained by I.V.Konnov in paper [4] for the network equilibrium problem
with elastic demand.

We will use the coercivity condition in the following form [4]:
(C1) There exists a number r > 0 such that for any point (x, d) ∈ KM and each
w ∈ W the following implication holds true

dw > r =⇒ ∃p ∈ Pw such that xp > 0, Gp(x) ≥ λw(d) .

Theorem 1. Let the feasible set KM be nonempty, functions Ca ∀a ∈ A and
λw ∀w ∈ W be continuous. If condition (C1) is fulfilled, then problem (5) has a
solution.

The proof of this theorem follows Theorem 2 from [4].
We remind also that in paper [4] the equivalence of auction equilibrium prob-

lems and network equilibrium problems with fixed and elastic demand has been
proved. Concerning the network equilibrium problem with mixed demand, we
note that it corresponds to a two-side multi-commodity auction, where each
product is associated with multiple sellers and one buyer, the bid/offer vol-
umes are bounded from below by zero and unbounded from above, and an outer
demand for each product can also exist.

The following theorem presents the equilibrium conditions for problem (5).

Theorem 2. A vector (x∗, d∗) ∈ KM is a solution to problem (5) if and only if
it satisfies conditions

(a) if x∗
p > 0, then Gp(x∗) = min

q∈Pw

Gq(x∗),

i.e., only paths with minimal costs have nonzero flows;
(b) if x∗

p > 0 and d∗
w > 0, then Gp(x∗) = λw(d∗),

i.e., for nonzero variable demand the cost values for paths with nonzero flows
are equal to the value of disutility function for this O/D-pair;

(c) if x∗
p = 0 or d∗

w = 0, then Gp(x∗) ≥ λw(d∗),
i.e., the value of disutility function cannot exceed the cost values for paths of this
O/D-pair.

The proof of this theorem follows from [4], Proposition 1.
At last, we show that the network equilibrium problem with mixed demand

generalizes network equilibrium problems with fixed and elastic demand.
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Proposition 1. 1. In network equilibrium problem with mixed demand (5) we
set dconstw = 0 for all w ∈ W . We obtain network equilibrium problem with elastic
demand (3).
2. Let in network equilibrium problem with mixed demand (5) the cost functions
be given so that Gp(x) > 0 with xp > 0, for all xp ∈ Pw, p ∈ Pw, w ∈ W . We
set disutility functions λw identically equal to zero for all w ∈ W . We obtain
network equilibrium problem with fixed demand (1).

The first assertion of Proposition 1 is evident. The second assertion follows from
Theorems 1 and 2.

When for some O/D pair the nonzero fixed and variable demands are simul-
taneously used, one can interpret the value of fixed demand as a guaranteed low
bound of demand, which must be satisfied in any case. Therefore, the system
can provide flows on the most important directions.

On the other hand, the network equilibrium problem with mixed demand
can be interpreted as some compromise between interests of separate O/D-pairs
and the whole system. Then the values of fixed demand can be given “from
below”, as requests of O/D-pairs, and the disutility functions can be obtained
“from above”, as a regulation mechanism for the whole system.

4 Numerical Experiments

For solution of the network equilibrium problem (NEP) with fixed or elastic
demand, the projection method is commonly used, which was originally proposed
for constrained minimization problems (see [5]). We have applied a modification
of this method from [6].

For simplicity we denote by π the projection operator onto the set KM .
Gradient projection algorithm

Step 0. Let an accuracy ε > 0, parameters α ∈ (0, 1), β ∈ (0, 1), and an initial
point (x0, d0) ∈ KM be given. We set k = 0.
Step 1. If ‖(xk, dk)−π[(xk, dk)−(G(xk),−λ(dk))]‖ ≤ ε, then we obtain the given
accuracy level, the calculation process stops.
Step 2. We find the minimal nonnegative integer m, which satisfies the inequality

〈(G(xk,m),−λ(dk,m)), (xk,m, dk,m) − (xk, dk)〉 ≤
α〈(G(xk),−λ(dk)), (xk,m, dk,m) − (xk, dk)〉,

where (xk,m, dk,m) = π[(xk, dk) − βm(G(xk),−λ(dk))].
Step 3. We set (xk+1, dk+1) = (xk,m, dk,m), k = k + 1 and go to Step 1.

Let us consider the network example from [7] with the non-potential mapping
G (Fig. 1). The network is composed of 25 nodes and 40 links. 5 nodes of the
set Ṽ = {1, . . . , 5} are terminal nodes, O/D pairs can include these nodes only.
An additional constraint requires that nodes from the set Ṽ cannot be used
as intermediate nodes in any path. Beside links directed from and to terminal
nodes, there exist inner and outer loops, which are clockwise and anticlockwise
oriented, respectively.
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Fig. 1. Bertsekas–Gafni network, 25 nodes, 40 links, 5 O/D pairs

The set of O/D pairs W = {(1, 4), (2, 5), (3, 1), (4, 2), (5, 3)}.
The set of links A contains 4 subsets:
a) highway links: Ah = {(6, 7), (8, 9), (10, 11), (12, 13), (14, 15), (17, 18),

(19, 20), (21, 22), (23, 24), (25, 16)};
b) exit links: Ax = {(16, 1), (15, 1), (24, 2), (7, 2), (22, 3), (9, 3), (20, 4), (11, 4),

(18, 5), (13, 5)};
c) entrance links: Ae = {(1, 6), (1, 17), (2, 25), (2, 8), (3, 23), (3, 10), (4, 21),

(4, 12), (5, 19), (5, 14)};
d) bypass links: Ab = {(15, 6), (7, 8), (9, 10), (11, 12), (13, 14), (16, 17),

(18, 19), (20, 21), (22, 23), (24, 25)}.
Let some function z : R → R and scale coefficient μ > 0 be given. Then the

link cost function Ca of link a = (i, j) depends on the link flows vector f and is
defined as follows:

Ca =

⎧
⎨

⎩

z(fa), if a ∈ Ax ∪ Ab,
10z(fa) + 2μz(fã), if a ∈ Ah, where ã ∈ Ax, ã = (j, s),

z(fa) + μz(fã), if a ∈ Ae, where ã ∈ Ab, ã = (s, j).

We present numerical results for several examples of problem with the accu-
racy value ε = 0.0001 and different initial data. In all examples, z(fa) = 1 + fa,
α = 0.5, β = 0.5, μ = 0.5.

Example 1. The problem with fixed demand. The values of fixed demand are (1,
4, 1, 4, 1). We obtain the minimal values of cost functions (82.37, 101.13, 97.63,
101.49, 81.88).

Example 2. The problem with elastic demand (i.e., the fixed demands are null).
The disutility functions λw(dw) = 100 − 0.5dw for all w ∈ W .

We obtain the demand vector (2.39, 2.39, 2.39, 2.39, 2.39), the minimal values
of cost functions are (98.8, 98.8, 98.8, 98.8, 98.8).
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Example 3. Theproblemwithmixed demand.The fixed demands are (1, 4, 1, 4, 1).
The disutility functions λw(dw) = 100 − 0.5(dw + dconstw ) for all w ∈ W .

We obtain the demand vector (1.81, 4, 1, 4, 1.87), the values of cost functions
(99.09, 108.14, 99.57, 108.7, 99.07). In this example, for the second, third, and
fourth O/D-pairs the fixed demand is satisfied only, and for other pairs there
exists the additional nonzero variable demand value.

Example 4. The problem with mixed demand. The fixed demands are (1, 2.5, 1,
2.5, 1). The disutility functions λw(dw) = 100 − 0.5dw for all w ∈ W .

We obtain the demand vector (2.36, 2.54, 2.3, 2.53, 2.38), the values of cost
functions are (99.31, 99.98, 99.35, 99.98, 99.31). In this example, for each OD-
pair the fixed demand is satisfied and there exists the additional nonzero elastic
demand value.

In Table 1 we compare calculation results for problems with fixed, elastic,
and mixed demand and present the numbers of iterations for different accuracy
values.

Table 1. Numbers of iterations for different accuracy values

Accuracy 0.001 0.0001 0.00001 0.000001

NEP with fixed demand (Example 1) 24 29 33 38

NEP with elastic demand (Example 2) 24 30 37 43

NEP with mixed demand (Example 3) 26 31 36 46

In conclusion we note that, in our opinion, the proposed model of network
equilibrium with mixed demand is promising for the further investigation and
can be used in practical applications.
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