
Cristian Bogdan · Jan Gulliksen
Stefan Sauer · Peter Forbrig
Marco Winckler · Chris Johnson
Philippe Palanque · Regina Bernhaupt
Filip Kis (Eds.)

 123

LN
CS

 9
85

6

IFIP WG 13.2/13.5 Joint Working Conference
6th International Conference on Human-Centered Software Engineering, HCSE 2016
and 8th International Conference on Human Error, Safety,
and System Development, HESSD 2016
Stockholm, Sweden, August 29–31, 2016, Proceedings

Human-Centered
and Error-Resilient
Systems Development

Lecture Notes in Computer Science 9856

Commenced Publication in 1973
Founding and Former Series Editors:
Gerhard Goos, Juris Hartmanis, and Jan van Leeuwen

Editorial Board

David Hutchison
Lancaster University, Lancaster, UK

Takeo Kanade
Carnegie Mellon University, Pittsburgh, PA, USA

Josef Kittler
University of Surrey, Guildford, UK

Jon M. Kleinberg
Cornell University, Ithaca, NY, USA

Friedemann Mattern
ETH Zurich, Zürich, Switzerland

John C. Mitchell
Stanford University, Stanford, CA, USA

Moni Naor
Weizmann Institute of Science, Rehovot, Israel

C. Pandu Rangan
Indian Institute of Technology, Madras, India

Bernhard Steffen
TU Dortmund University, Dortmund, Germany

Demetri Terzopoulos
University of California, Los Angeles, CA, USA

Doug Tygar
University of California, Berkeley, CA, USA

Gerhard Weikum
Max Planck Institute for Informatics, Saarbrücken, Germany

More information about this series at http://www.springer.com/series/7408

http://www.springer.com/series/7408

Cristian Bogdan • Jan Gulliksen
Stefan Sauer • Peter Forbrig
Marco Winckler • Chris Johnson
Philippe Palanque • Regina Bernhaupt
Filip Kis (Eds.)

Human-Centered
and Error-Resilient
Systems Development
IFIP WG 13.2/13.5 Joint Working Conference
6th International Conference on Human-Centered Software Engineering, HCSE 2016
and 8th International Conference on Human Error, Safety,
and System Development, HESSD 2016
Stockholm, Sweden, August 29–31, 2016
Proceedings

123

Editors
Cristian Bogdan
KTH Royal Institute of Technology
Stockholm
Sweden

Jan Gulliksen
KTH Royal Institute of Technology
Stockholm
Sweden

Stefan Sauer
Universität Paderborn
Paderborn
Germany

Peter Forbrig
Universität Rostock
Rostock
Germany

Marco Winckler
University Paul Sabatier
Toulouse
France

Chris Johnson
University of Glasgow
Glasgow
UK

Philippe Palanque
University Paul Sabatier
Toulouse
France

Regina Bernhaupt
Ruwido Austria GmbH
Neumarkt
Austria

Filip Kis
KTH Royal Institute of Technology
Stockholm
Sweden

ISSN 0302-9743 ISSN 1611-3349 (electronic)
Lecture Notes in Computer Science
ISBN 978-3-319-44901-2 ISBN 978-3-319-44902-9 (eBook)
DOI 10.1007/978-3-319-44902-9

Library of Congress Control Number: 2016948596

LNCS Sublibrary: SL2 – Programming and Software Engineering

© IFIP International Federation for Information Processing 2016
This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the
material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now
known or hereafter developed.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.
The publisher, the authors and the editors are safe to assume that the advice and information in this book are
believed to be true and accurate at the date of publication. Neither the publisher nor the authors or the editors
give a warranty, express or implied, with respect to the material contained herein or for any errors or
omissions that may have been made.

Printed on acid-free paper

This Springer imprint is published by Springer Nature
The registered company is Springer International Publishing AG Switzerland

Preface

With this IFIP working conference, we premiered joining the International Conference
on Human-Centered Software Engineering (HCSE) and the International Conference
on Human Error, Safety, and System Development (HESSD). Together they became
HCSE+HESSD 2016.

In the tradition of both conference series, HCSE+HESSD 2016 was a single track
working conference which aimed at bringing together researchers and practitioners
interested in different areas of human-centered software engineering and in the
development of systems, in particular safety-critical systems, that are resilient to human
error. HCSE’s focus is on strengthening the scientific foundations of user interface
design, examining the relationship between software engineering and human-computer
interaction, and on establishing user-centered design as an essential part of software
engineering processes. HESSD emphasizes the design, management, and control of
safety-critical systems, the role of human error both in the development and in the
operation of complex processes, and leading-edge techniques for mitigating the impact
of human error on safety-critical systems, especially techniques that can be easily
integrated into existing systems engineering practices.

HCSE 2016 was the sixth in a series of conferences promoted by the International
Federation for Information Processing (IFIP) Working Group WG 13.2 on Method-
ologies for User-Centered Systems Design. Previous events were held in Salamanca,
Spain (2007); Pisa, Italy (2008); Reykjavik, Iceland (2010); Toulouse, France (2012);
and Paderborn, Germany (2014). While HCSE had initially been organized in con-
junction with other conferences, it has grown over the years and was held as a biennial
standalone conference in 2012 and 2014. HESSD 2016 was the eighth event in a series
of conferences promoted by the IFIP Working Group WG 13.5 on Resilience, Relia-
bility, Safety, and Human Error in System Development. This conference series has
been running for more than a decade. Since then its scope has grown with new
concerns – especially in autonomous systems and cyber security. Other problems – in
task analysis and situation awareness – continue to provide motivation for research
today just as they did back in 2004. The generation of new challenges illustrates the
vitality of the work being done in this area, the sustained focus on core problems
illustrates the generic importance of this area of research. In 2016 we joined HCSE and
HESSD together since there is a substantial overlap of topics, interests, and
participants.

HCSE+HESSD 2016 took place in Stockholm, Sweden, on August 29–31, 2016. It
was hosted and locally organized by the Media Technology and Interaction Design
Group of the KTH Royal Institute of Technology, Stockholm. The conference venue
was KTH’s OpenLab center.

HCSE+HESSD 2016 welcomed eleven full research papers, describing substantial
novel contributions and advanced results, and ten short papers, presenting late breaking
results, practice and experience reports, and practical evaluations. The program was

complemented by tool demonstrations and research poster presentations. Four of them
had their own paper contributions. All these papers are featured in this collection. We
received 32 complete submissions for peer review. All qualified submissions were
independently reviewed in a joint single-blind process by, in general, three reviewers,
who were selected members of the HCSE+HESSD 2016 Program Committee. In
addition, the papers and reviews were extensively discussed by the Program, Technical
Paper, and Demo and Poster Chairs to make the decisions. The Program Committee
made use of the possibility to recommend accepting submissions in other categories
than they were originally submitted for in some cases. The final decision on acceptance
was based on an additional meta-review after the authors had improved their contri-
butions according to the first-round review results. Our sincere gratitude goes to the
members of our Program Committee, who devoted countless hours to providing
valuable feedback to authors and ensuring the high quality of the shared HCSE
+HESSD 2016 technical program.

We thank Danica Kragic and Ivar Jacobson, our keynote speakers, who accepted to
give inspiring and insightful speeches at HCSE+HESSD 2016. Abstracts of their talks
are also presented in this proceedings volume. In addition, we express special appre-
ciation to the local organizer team in Stockholm. We are indebted to our sponsors for
their generous support in helping to make our conference special and successful.
Finally our thanks go to all the authors who actually did the research work and
especially to the presenters who sparked inspiring discussions with all the participants
at HCSE+HESSD 2016 in Stockholm.

July 2016 Cristian Bogdan
Jan Gulliksen
Stefan Sauer
Peter Forbrig
Chris Johnson

Philippe Palanque
Marco Winckler

Regina Bernhaupt
Filip Kis

VI Preface

HCSE+HESSD 2016 Technical
and Organizing Committee

General Conference Chairs

Cristian Bogdan KTH Royal Institute of Technology, Sweden
Jan Gulliksen KTH Royal Institute of Technology, Sweden

Technical Program Chair

Stefan Sauer SICP, Paderborn University, Germany

HCSE Technical Paper Chairs

Peter Forbrig University of Rostock, Germany
Marco Winckler ICS-IRIT, University Paul Sabatier, France

HESSD Technical Paper Chairs

Chris Johnson University of Glasgow, UK
Philippe Palanque ICS-IRIT, University Paul Sabatier, France

Demo and Poster Chairs

Regina Bernhaupt ruwido, Austria
Filip Kis KTH Royal Institute of Technology, Sweden

Proceedings Chair

Stefan Sauer SICP, Paderborn University, Germany

Publicity Chair

Filip Kis KTH Royal Institute of Technology, Sweden

Program Committee

Carmelo Ardito University of Bari Aldo Moro, Italy
Regina Bernhaupt ruwido, Austria
Cristian Bogdan KTH Royal Institute of Technology, Sweden
Birgit Bomsdorf Fulda University of Applied Science, Germany

Anders Bruun Aalborg University, Denmark
Luca Chittaro University of Udine, Italy
Bertrand David École Centrale de Lyon, France
Jonathan Day City University London, UK
Simone D.J. Barbosa Pontifical Catholic University (PUC) of Rio de Janeiro,

Brazil
Anke Dittmar University of Rostock, Germany
Camille Fayollas ICS-IRIT, University Paul Sabatier, France
Xavier Ferré Universidad Politecnica de Madrid, Spain
Holger Fischer SICP, Paderborn University, Germany
Peter Forbrig University of Rostock, Germany
Jan Gulliksen KTH Royal Institute of Technology, Sweden
Chris Johnson University of Glasgow, UK
Anirudha Joshi Indian Institute of Technology, India
Hermann Kaindl Vienna University of Technology, Austria
Filip Kis KTH Royal Institute of Technology, Sweden
Kati Kuusinen University of Central Lancashire, UK
Rosa Lanziolotti University of Bari Aldo Moro, Italy
Célia Martinie ICS-IRIT, University Paul Sabatier, France
Francisco Montero University of Castilla-La Mancha, Spain
Randall Mumaw NASA Ames Research Center, USA
Philippe Palanque ICS-IRIT, University Paul Sabatier, France
Fabio Paterno CNR-ISTI, Italy
Regina Peldszus Leuphana University of Lüneburg, Germany
Michael Pirker ruwido, Austria
Amy Pritchet Georgia Institute of Technology, USA
Stefan Sauer SICP, Paderborn University, Germany
Ahmed Seffah Lappeenranta University of Technology, Finland
Alistair Sutcliffe University of Manchester Business School, UK
Ricardo Tesoriero University of Castilla-La Mancha, Spain
Jan Van Den Bergh Hasselt University, Belgium
Åke Walldius KTH Royal Institute of Technology, Sweden
Janet Wesson Nelson Mandela Metropolitan University, South Africa
Marco Winckler ICS-IRIT, University Paul Sabatier, France

VIII HCSE+HESSD 2016 Technical and Organizing Committee

Institutional Sponsors

KTH Royal Institute of Technology
and

School of Computer Science and Communication

OpenLab

Scientific Sponsors

International Federation for Information Processing (IFIP)
Technical Committee TC 13 Human-Computer Interaction
Working Group WG 13.2 on Methodologies for User-Centered Systems Design
Working Group WG 13.5 on Resilience, Reliability, Safety and Human Error in
System Development

HCSE+HESSD 2016 Technical and Organizing Committee IX

Keynote Abstracts

Industrial Scale Agile – From Craft
to Engineering

Ivar Jacobson

Ivar Jacobson International
ivar@ivarjacobson.com

Abstract. The move towards agility has led to many benefits for the software
industry. It has broken the tyranny of the prescriptive waterfall approach to
software engineering, an approach that was causing more and more large project
failures, and it has allowed software developers to keep up with the ever
increasing demand for more and more innovative IT solutions. It has enabled
many companies to do great things, but in many cases has led to a culture of
entitlement, heroic programming and short-term thinking that threatens the
sustainability of the parent companies and the IT solutions that they depend on.
Little or no thought is put into maintainability, the heroes become potential
single points of failure, and the costs of keeping the lights on just keep growing
and growing. What is needed is a way to maintain the values of agility whilst
making software development more an engineering discipline than a craft; a
human-centered form of agile software engineering fit for the Internet Age.

Robotics and Automation: Challenges
and Potential

Danica Kragic Jensfelt

KTH Royal Institute of Technology
dani@kth.se

Abstract. Physical autonomous systems, also known as robots, are a result of a long-
term integration of mathematical modeling, software and hardware advances in
several fields of technology as well as social sciences. Robots are equipped with
various sensors and actuators that enable autonomous interaction with the environ-
ment. Similarly to biological systems, the environment provides context for inter-
actions, tools for executing tasks and means for grounding semantics. Central to
achieving this is representation and parameterization of multimodal sensory data that
enables safe, robust and scalable action generation. But deploying these systems in
human-populated environments is still an open problem and there are many scientific
challenges that need to be addressed. For humans and robots alike, objects in the
environment provide context for interactions, tools for executing tasks andmeans for
grounding semantics. In robotics, an important open problem is to detect, recognize
and categorize objects given sensory data, both prior to and during interaction with
objects. Central to solving this problem is to represent and parameterize sensory data
so to provide fast, robust and scalable solutions. This talk summarizes the current
state of the art and provides an insight in why robots are still not an integral part of our
daily lives.

Contents

Agile and Human-Centered Software Engineering

Responsibilities and Challenges of Product Owners at Spotify -
An Exploratory Case Study . 3

Sigurhanna Kristinsdottir, Marta Larusdottir, and Åsa Cajander

Supporting the HCI Aspect of Agile Software Development
by Tool Support for UI-Pattern Transformations . 17

Peter Forbrig and Marc Saurin

Human-Centered Software Engineering as a Chance to Ensure Software
Quality Within the Digitization of Human Workflows 30

Holger Fischer and Björn Senft

Usability Evaluation and Testing

Usability Problems Experienced by Different Groups of Skilled Internet
Users: Gender, Age, and Background . 45

Jane Billestrup, Anders Bruun, and Jan Stage

User-Test Results Injection into Task-Based Design Process for the
Assessment and Improvement of Both Usability and User Experience 56

Regina Bernhaupt, Philippe Palanque, François Manciet,
and Célia Martinie

Framework for Relative Web Usability Evaluation on Usability Features
in MDD. 73

Shinpei Ogata, Yugo Goto, and Kozo Okano

Testing Prototypes and Final User Interfaces Through an Ontological
Perspective for Behavior-Driven Development . 86

Thiago Rocha Silva, Jean-Luc Hak, and Marco Winckler

Socio-Technical and Ethical Considerations

Communication in Teams - An Expression of Social Conflicts 111
Jil Klünder, Kurt Schneider, Fabian Kortum, Julia Straube,
Lisa Handke, and Simone Kauffeld

http://dx.doi.org/10.1007/978-3-319-44902-9_1
http://dx.doi.org/10.1007/978-3-319-44902-9_1
http://dx.doi.org/10.1007/978-3-319-44902-9_2
http://dx.doi.org/10.1007/978-3-319-44902-9_2
http://dx.doi.org/10.1007/978-3-319-44902-9_3
http://dx.doi.org/10.1007/978-3-319-44902-9_3
http://dx.doi.org/10.1007/978-3-319-44902-9_4
http://dx.doi.org/10.1007/978-3-319-44902-9_4
http://dx.doi.org/10.1007/978-3-319-44902-9_5
http://dx.doi.org/10.1007/978-3-319-44902-9_5
http://dx.doi.org/10.1007/978-3-319-44902-9_6
http://dx.doi.org/10.1007/978-3-319-44902-9_6
http://dx.doi.org/10.1007/978-3-319-44902-9_7
http://dx.doi.org/10.1007/978-3-319-44902-9_7
http://dx.doi.org/10.1007/978-3-319-44902-9_8

Exploring the Requirements and Design of Persuasive Intervention
Technology to Combat Digital Addiction . 130

Amen Alrobai, John McAlaney, Huseyin Dogan, Keith Phalp,
and Raian Ali

Do You Own a Volkswagen? Values as Non-Functional Requirements 151
Balbir S. Barn

Human Error and Safety-Critical Systems

A Core Ontology of Safety Risk Concepts: Reconciling Scientific Literature
with Standards for Automotive and Railway . 165

Hermann Kaindl, Thomas Rathfux, Bernhard Hulin, Roland Beckert,
Edin Arnautovic, and Roman Popp

Complementary Tools and Techniques for Supporting Fitness-for-Purpose
of Interactive Critical Systems . 181

Dorrit Billman, Camille Fayollas, Michael Feary, Célia Martinie,
and Philippe Palanque

Demon Hunt - The Role of Endsley’s Demons of Situation Awareness
in Maritime Accidents . 203

Tim Claudius Stratmann and Susanne Boll

User and Developer Experience

Are Software Developers Just Users of Development Tools? Assessing
Developer Experience of a Graphical User Interface Designer. 215

Kati Kuusinen

A Conceptual UX-Aware Model of Requirements . 234
Pariya Kashfi, Robert Feldt, Agneta Nilsson,
and Richard Berntsson Svensson

Keep the Beat: Audio Guidance for Runner Training. 246
Luca Balvis, Ludovico Boratto, Fabrizio Mulas, Lucio Davide Spano,
Salvatore Carta, and Gianni Fenu

Models and Methods

The Goals Approach: Enterprise Model-Driven Agile Human-Centered
Software Engineering. 261

Pedro Valente, Thiago Rocha Silva, Marco Winckler,
and Nuno Jardim Nunes

XVI Contents

http://dx.doi.org/10.1007/978-3-319-44902-9_9
http://dx.doi.org/10.1007/978-3-319-44902-9_9
http://dx.doi.org/10.1007/978-3-319-44902-9_10
http://dx.doi.org/10.1007/978-3-319-44902-9_11
http://dx.doi.org/10.1007/978-3-319-44902-9_11
http://dx.doi.org/10.1007/978-3-319-44902-9_12
http://dx.doi.org/10.1007/978-3-319-44902-9_12
http://dx.doi.org/10.1007/978-3-319-44902-9_13
http://dx.doi.org/10.1007/978-3-319-44902-9_13
http://dx.doi.org/10.1007/978-3-319-44902-9_14
http://dx.doi.org/10.1007/978-3-319-44902-9_14
http://dx.doi.org/10.1007/978-3-319-44902-9_15
http://dx.doi.org/10.1007/978-3-319-44902-9_16
http://dx.doi.org/10.1007/978-3-319-44902-9_17
http://dx.doi.org/10.1007/978-3-319-44902-9_17

Engineering Context-Adaptive UIs for Task-Continuous
Cross-Channel Applications . 281

Enes Yigitbas and Stefan Sauer

UCProMo—Towards a User-Centred Process Model 301
Tom Gross

Using and Adopting Tools

Collaborative Task Modelling on the Web . 317
Marco Manca, Fabio Paternò, and Carmen Santoro

Ceiling and Threshold of PaaS Tools: The Role of Learnability
in Tool Adoption . 335

Rui Alves and Nuno Jardim Nunes

Demos and Posters

User Experience Evaluation Methods: Lessons Learned from an Interactive
TV Case-Study . 351

Dimitri Drouet and Regina Bernhaupt

Endev: Declarative Prototyping with Data . 359
Filip Kis and Cristian Bogdan

Collaborative Task Modeling: A First Prototype Integrated in HAMSTERS . . . 366
Marius Koller, Cristian Bogdan, and Gerrit Meixner

Accelerated Development for Accessible Apps – Model Driven
Development of Transportation Apps for Visually Impaired People 374

Elmar Krainz, Johannes Feiner, and Martin Fruhmann

Author Index . 383

Contents XVII

http://dx.doi.org/10.1007/978-3-319-44902-9_18
http://dx.doi.org/10.1007/978-3-319-44902-9_18
http://dx.doi.org/10.1007/978-3-319-44902-9_19
http://dx.doi.org/10.1007/978-3-319-44902-9_20
http://dx.doi.org/10.1007/978-3-319-44902-9_21
http://dx.doi.org/10.1007/978-3-319-44902-9_21
http://dx.doi.org/10.1007/978-3-319-44902-9_22
http://dx.doi.org/10.1007/978-3-319-44902-9_22
http://dx.doi.org/10.1007/978-3-319-44902-9_23
http://dx.doi.org/10.1007/978-3-319-44902-9_24
http://dx.doi.org/10.1007/978-3-319-44902-9_25
http://dx.doi.org/10.1007/978-3-319-44902-9_25

Agile and Human-Centered Software
Engineering

Responsibilities and Challenges of Product Owners
at Spotify - An Exploratory Case Study

Sigurhanna Kristinsdottir1, Marta Larusdottir2, and Åsa Cajander3(✉)

1 Kolibri, Reykjavik, Iceland
sigurhanna@gmail.com

2 Reykjavik University, Reykjavik, Iceland
marta@ru.is

3 Uppsala University, Uppsala, Sweden
asa.cajander@it.uu.se

Abstract. In Scrum, the Product Owner (PO) role is crucial for the team to be
successful in developing useful and usable software. The PO has many respon‐
sibilities and challenges, including being the link between customers, other stake‐
holders and their development teams. This exploratory case study conducted at
the software development company Spotify focuses on POs three responsibilities:
(a) Identification of customers, (b) Estimation of value of their teams’ work and
c) Forming a vision for the product. Additionally, challenges perceived by the
POs are studied. Data was gathered through five interviews and on site observa‐
tions. Results show that the POs activities are divided between daily work, such
as making sure that their teams are functional and long-term activities such as
making a vision for the product. The main challenge of the POs is to inspire and
encourage team members to collaborate and communicate within the team and
with stakeholders.

Keywords: Project management · Product management · Agile · Agile methods ·
Scrum · Product Owner (PO) · Software development

1 Introduction

Traditional project management approaches for software development, like the waterfall
approach, have been challenged by Agile approaches in recent years [2]. Agile is an
umbrella term for project management approaches such as Scrum, XP, and Kanban [21],
where Scrum is the most widely adopted Agile approach [25].

Scrum is an approach with a few ceremonies, roles and artefacts. The roles are called:
Product Owner (PO), Scrum Master (SM) and Team Member (TM) [20]. Management
responsibilities are divided among these three roles [19]. Pichler describes the PO role
as a new, multi-faced role that unites authority and responsibility that traditionally, in
the traditional processes was scattered across separate roles such as customer, product
manager and project manager [15]. Hence, when using Agile approaches the PO role in
some aspects replaces the role of various stakeholders. The PO has the authority to set
goals and shape the vision of a product and therefore the PO has other responsibilities

© IFIP International Federation for Information Processing 2016
Published by Springer International Publishing Switzerland 2016. All Rights Reserved
C. Bogdan et al. (Eds.): HCSE 2016/HESSD 2016, LNCS 9856, pp. 3–16, 2016.
DOI: 10.1007/978-3-319-44902-9_1

than the project manager that mainly writes requirements and does prioritization for the
team [15]. For example, the POs in Scrum projects in Iceland had various responsibilities
[23]. The proportion of the POs time collaborating with the team varied from 5 % to
70 % of their total working time. Furthermore, the POs used from 10 % to 50 % of their
working time collaborating with customers, users and other stakeholders [23].

The Product Owner role has not had much focus in academic research; the main
focus has been on productivity, teamwork and collaborative decision-making in Agile
teams rather than studying specific Agile roles. Additionally, more attention has been
on examining factors that drive organizations to initially adopt Agile approaches than
on those that affect their continued usage [16]. Still, the use of Agile approaches is
constantly increasing in software development [3, 25], thus the Product Owner role is
interesting and important since this role is often the link between business and devel‐
opment departments of an organization. One of the fundamental principles of Agile
approaches is to aim at satisfying the customers by producing valuable pieces of the
final product early in the development lifecycle [14].

This paper is an exploratory case study conducted at the software development
company Spotify at the end of February 2014. It is a description of the PO role at this
point in time and the main focus of the research is to study how POs identify customers
for their teams, how they measure value of their teams’ work, how they form vision and
communicate that to their teams, what their challenges are and how they deal with those.

The research questions in this study are:

1. What are the main responsibilities of the Product Owners? Particularly:
(a) How do Product Owners identify customers for their teams?
(b) How do they measure the value of their teams’ work?
(c) How do they form the product vision for their teams?

2. What are the challenges of a Product Owner, and how does he or she cope with them?

The structure of the paper is that first we describe some of the background literature
on Agile approaches and Scrum. We particularly describe the definitions of the POs role.
Then we describe the data gathering methods used in the study, followed by a section
describing the results. Finally we discuss the findings and give concluding remarks.

2 Background

This section describes Agile approaches and Scrum, the teamwork of Agile teams and
the PO role.

2.1 Agile Approaches and Scrum

The origin of Agile project management (Agile) was first described in a paper by
Takeuchi and Nonaka in 1986 [24], but Agile as a methodology gained attraction when
Sutherland and Schwaber [22] discussed the first Agile process (also called Agile
approach) for software development in the 1995 OOPSLA conference. They had

4 S. Kristinsdottir et al.

analysed common software development processes and found that traditional develop‐
ment approaches were not suitable for empirical, unpredictable and non-repeatable
processes such as development of software. The fundamental values and principles
behind Agile are described in the Agile manifesto [1].

Six obstacles in decision making in Agile have been analysed, which are: (a) unwill‐
ingness to commit to decisions; (b) conflicting priorities; (c) unstable resource availa‐
bility; and lack of: (d) implementation; (e) ownership; (f) empowerment [6]. The effect
of these obstacles is a lack of longer term, strategic focus for decisions, an ever-growing
list of delayed work from previous iterations, and a lack of team engagement.

In Scrum, the most common Agile process [25], the projects should be split up into
two to four week long iterations called sprints, each aiming to end up with a potentially
shippable product. In Scrum, self-organizing and strongly united teams are heavily
emphasized, typically with six to eight interdisciplinary team members. One of the
benefits of using Agile was claimed to be that customers’ needs are taken more into
account than when developing software using sequential processes [18]. The Scrum
team is self-organising and works independently during the sprints. Daily Scrum meet‐
ings are prescribed where the Scrum team meets and plans the work during the day, and
where the tasks are distributed in the group. The work in the Scrum team should be
guided by collaboration and communication. Demos of the outcome are made at the end
of every sprint. Agile teams should have a common focus, mutual trust and the ability
to reorganize repeatedly to meet new challenges. IT professionals appreciate the inherent
values in Scrum, which are speed and communication internal to the Scrum team. Also,
working in teams and focusing on a small number of tasks at a time is valued. The main
challenges are that including specialists in the teams is hard and Scrum does not always
match with external requirements for the organizations [13].

Being self-organised does not mean leaderless, uncontrolled teams but that the lead‐
ership is meant to be light-touch and adaptive, providing feedback and subtle direction.
Leaders of Agile teams are responsible for setting direction, aligning people, obtaining
resources and motivating the team [9]. The leader can be anyone with influence or
authority over the team and can include managers, POs and the SM [4]. In the next
subsection, definitions of the responsibilities of POs are described.

2.2 Definitions of the POs Role

Schwaber [19; pp. 6–7] defines the PO role as follows:

“The Product Owner is responsible for representing the interests of everyone with a stake in the
project and its resulting system. The Product Owner achieves initial and ongoing funding for
the project by creating the project’s initial overall requirements, return on investment (ROI)
objectives, and release plans. The list of requirements is called the Product Backlog. The Product
Owner is responsible for using the Product Backlog to ensure the most valuable functionality is
produced first and built upon; this is achieved by frequently prioritizing the Product Backlog to
queue up the most valuable requirements for the next iteration.”

Both the developing team and the people driving the business need to collaborate to
develop the final required product [14]. The PO is the link between the customer and
the user side of an organization and the development team. The team and the PO should

Responsibilities and Challenges of Product Owners at Spotify 5

constantly collaborate and plan together how to produce the most value for the business
[19]. The primary duties of the POs are making sure that all team members are pursuing
a common vision for the project, establishing priorities so that the highest-valued func‐
tionality is always being worked on and making decisions that lead to a good return on
the investment in the project or for the product [5, 11]. The responsibility of the PO is
to prioritize the work to be done by the team, but he or she should not be involved with
how the team does their work [10]. In commercial software development, the PO is often
someone from the marketing or production management side of an organization [5].

Picher describes that the PO should lead the development team to create a product
that generates the desired benefits for the customer and the user [15]. This includes
creating the product vision, prioritizing the product backlog, planning the releases,
involving stakeholders, managing the budget, preparing the product launch, attending
meetings, collaborating with the team and many other tasks.

Cohn [5] states that the PO role is challenging because the PO needs to address both
inward and outward facing needs simultaneously. The inward facing responsibilities
being participating in daily stand-up meetings, reviews, retrospectives as well as
management meetings, managing the product backlog, answering questions from the
team and being available to the team as much as possible. Outward facing responsibil‐
ities are to attend to user’s needs, manage stakeholder expectations, prioritize the product
backlog and develop a product strategy and vision. Furthermore Cohn [5] states that the
PO should provide just enough boundaries for the project so that the team is motivated
to solve the difficult problems but not providing so many boundaries that solving the
problems becomes impossible. In that way the role is more of an art than science.

Galen [8] states that the PO role is the most difficult one within the Agile or Scrum
team. A PO needs to be a highly skilled individual who understands the nuances of the
role and is enabled by the organization to take the time necessary to fully engage the
teams in value-based delivery. A skilled PO is a member of his team and should consider
the team as his or her primary customer. PO is a distinct member of the team in which
overall success or failure is a joint endeavour. The PO needs to give the team the right
things to do and make sure they do everything possible to qualify the work [8]. The PO
role can be difficult to staff with a single individual because the competences are so
broad and intimidating that it is hard to find an individual having all these skills [8].

In summary, Cohn, Galen and Pichler describe four aspects of the PO role, which
are: involving customers, focusing on value, creating a vision and that it is a challenging
role. Schwaber has a bit more focused definition, emphasising customer involvement
and value of the product as the main aspects. We therefore analyse the results according
to four themes in the paper: (1) customer involvement, (2) focusing on value, (3) making
a vision and (4) challenges of the PO role.

3 Method

Little research exists on the Product Owner role, and this study is exploratory in nature
and examines the role of Product Owners. The research is a qualitative case study

6 S. Kristinsdottir et al.

conducted at Spotify at the end of February 2014. This study was first presented as a
master thesis study and has been rewritten for the purpose of this publication.

3.1 Context of the Study and Participants

Spotify was founded in 2006 in Sweden and in 2008 they released their core product, a
music player named Spotify that can be used online or downloaded as an app on desktop
or mobile. Its users have access to one of the fastest growing catalogues of licensed
music in the world [17]. It has grown tremendously since it was founded, has a good
track record of product delivery and its products are loved by users and artists [12] Active
users are growing fast, they were over 20 million at the beginning of 2013 and paying
subscribers around 5 million [12]. At the time of this case study Spotify’s employees
were around 1.000 with software development taking place in three locations:
Stockholm, Gothenburg and New York.

Spotify has used Agile approaches in one form or another since it was founded in
2006. Their teams, which are called squads, used Scrum in the past but when they started
delivering all tasks ahead of the end of each three-week sprint they decided that each
team could be completely autonomous in the way they work. Some teams use Scrum
today but that is a minority of all the development teams. Most of the teams use Kanban
or some form of that. But each team still has a Product Owner and a Scrum Master. At
the time of the study, the product that was being developed was quite mature. The Agile
teams had been working on the product for years, and their way of working had matured
a lot, since the company was established.

As this is a case study the participants were selected in consultation with a profes‐
sional from Spotify. The participants were spread across the organization to insure that
they did not have the same background and were working in different projects and with
different parts of the product.

Five interviews were conducted. Three Product Owners were interviewed, one
director of Product Development, that was previously a Product Owner and one Scrum
Master, called Agile Coach at Spotify, to receive a better view on the Product Owner
role and his challenges. One of the Product Owners also had the role of an Agile Coach
at the time of the interview. The participants had various backgrounds; most of them
started as developers but had changed roles, two participants said it was because they
like to speak their opinion on the way things are done so they were asked to take the
Product Owner role on a team. The participants all had a good understanding of agile
processes and the business of Spotify.

The others happened to take on this role when the teams were set up according to
Scrum. The Product Owners work in different parts of the organization, which might
explain differences in their opinions.

3.2 Research Method

Case studies are the preferred method when how or why questions are being posed, when
the investigator has little control over events and the focus is on a contemporary
phenomenon within a real-life context [26]. The case study method allows the

Responsibilities and Challenges of Product Owners at Spotify 7

investigator to retain the holistic and meaningful characteristics of real-live events, such
as organizational and managerial processes.

As one of the researchers had the chance of conducting a research of the Product
Owner role at Spotify’s headquarters in Stockholm this research method was chosen.
Knowledge gained from this study is transferable to other settings through the interpre‐
tations of the reader.

In this exploratory case study we have used a mixed methods approach. The primary
data collection method was in-depth, face-to-face semi-structured interviews with five
employees at Spotify. The first step in data gathering was to prepare the interview
protocol and pilot test it prior to the study. After the pilot test there were minor changes
to the protocol. The protocol had: 7 questions on the background and experience of the
participants, 2 questions on the stakeholder focus, 2 questions focusing on value,
3 questions on the vision, 5 questions on teamwork, 4 questions on the challenges for
POs and 9 questions on the PO role in general.

The interviews were audio-recorded with the permission of the participants and then
transcribed verbatim. Their length was between 50–65 min. The quotations in the results
chapter are not always verbatim but slightly rephrased to be more readable.

Observation on site were also made through shadowing a Product Owner for a day
to observe his daily role. The shadowing included being present in all meetings the
Product Owner had that day: stand-up meetings with his teams, one-on-one meetings
with his team members and managerial meetings. Additionally informal conversation
was performed people in various roles around the organization.

Source data hence included field notes from the observations, transcripts from the
interviews, documents and photographs taken at site. The researcher spent three days at
Spotify finishing each day by documenting the observations as field notes and then used
the next day to seek clarification and gather more data.

3.3 Analysis of the Data

In the analysis we identified and coded the results into the four themes: (1) customer
involvement, (2) focusing on value, (3) making a vision and (4) challenges of the PO
role. When analysing customer involvement, both statements about the customers (the
person paying) and end users (the person using the software) are analysed, since the
users for the Spotify service are also customers.

The source documents were grouped by each participant and then analysed by the use
of the themes according the theme analysis [7]. Conclusions were finally drawn from the
data collected. Emphasis was put on understanding the participants’ lived experiences in the
Product Owner role and their different views. In order to answer the research questions, the
transcripts and field notes were read several times to obtain insight into each case.

8 S. Kristinsdottir et al.

4 Results

In this section the research results are divided into two sections, the first subsection
presents results from the interviews when it comes to the POs experience of the three
responsibilities. The second subsection presents the challenges the POs described that
they have had in practice.

4.1 Responsibilities of the Product Owners

In this subsection the Product Owners experiences regarding the three responsibilities
that are connected to their role in literature are described: (1) customer involvement,
(2) focusing on value and (3) making a vision.

4.1.1 Customer Involvement
The Product Owners that participated in the research worked with different kinds of
teams, those that develop new features and those that work on infrastructure or meas‐
urements that other teams then use to build their features on. The Product Owners did
agree that the teams should know who their customer is but they did not all find it their
responsibility to identify those customers and their needs and communicate those needs
to their team so that the teams are working on the most valuable tasks for the customer
at any given time. Some felt strongly about it being their responsibility while others
found it to be a team effort and not even something they should think about in their role.
Some said that the PO should make sure that discussing the customer needs should take
place within their team. Some of the Product Owners also tried to bring end user focus
to their teams by pointing out that even though their team was working on a platform
for an internal customer the team members still have to think of the end users as their
customers.

As one participant said: “We [Product Owners] should represent the customers’
interest, we are here to deliver something that users want to use and will love. Our
success should ultimately be customers who love the product.” But another one said:
“I would say that both the Product Owner and the team have an input on what the users
want, it might not be only the Product Owners responsibility to communicate that to the
team but he should be the one seeing to that we know what are the customers’ needs.”
One participant said that in a very broad sense this was his responsibility and in his daily
work he talked to many people in the organization to find out where there are needs for
his team to come in and work for other teams.

Some of the Product Owners mentioned customer services as being their main
connection to the end user. They felt that if the users are not happy with the software or
the changes the teams are doing to it they should see that in the number of complaints
from users and ultimately the number of users and take action if they were going down.
Spotify’s success should therefore be judged by numbers of users, if the numbers are
going up the users are satisfied and vice versa: “Internally I play the devil’s advocate;
I try to empathize with the users and make clear to the team that everyone depends on
us by asking questions like: If we brake something who will that affect?”

Responsibilities and Challenges of Product Owners at Spotify 9

One Product Owner mentioned that his team tried to write user stories to under‐
stand their user’s situation and figure out what their needs are. He believed that it is
his responsibility to make the team focus on why the program or system is working
on this specific task rather than another one but he said it can be a challenges as
there are developers who are happy to continue writing software and not ship
anything to the end user. He would like his developers to think of the end user and
launch the software out to them as soon as possible: “For me the heart of agility is
getting software to users and learning from them, listening to them and getting feed‐
back fast and that’s all there is to it.”

4.1.2 Focusing on Value
Most of the Product Owners found it difficult to measure the value of the work their
team was doing because often there was no transaction of money taking place. They
tried to use measurements but the teams themselves did not always control those as they
are mostly working for internal customers so it was hard to figure out what of the actual
end value is generated from each team. As one Product Owner put it: “We see very little
money here as Product Owners, it is strange but I don’t concern myself with money at
all actually.”

Spotify tracks global user satisfaction usage for changes of the software but as the
iterative changes to the software are so incremental it is difficult for the user to see them
or know about them. So the Product Owners use the number of users as their main
parameter of success. Then they try to build a dependency chain on metrics and work
with hypothesis, for example if Spotify has more music they have more users, if users
collect more music they will play more music, if users are able to find music easily they
will collect more music and so on.

One participant said that it should be up to the team to deliver return on invest‐
ment, not the Product Owner. He or she should just be the contact point for other
parts of the organization to make it a bit easier for the team to work uninterrupted
but in the best of teams the Product Owner is just another team member and the team
as a whole sets the goals that then bring value to the organization. If the Product
Owner tries to do it by himself chances are that the team will not buy into the goals:
“You can usually see when the team has set the goals as a whole rather than the
goals being delivered from someone else.”

One participant said that his team did not measure return on investment in any way
but verbal feedback from his internal customer was what he focuses on. His gut feeling
was therefore his main form of measurement.

4.1.3 Making a Vision
When the participants were asked if they lead the vision of the product development for
their teams most of them agreed that it was a difficult responsibility that they struggled
with. One participant said: “I think it’s important that the Product Owners sees to that
the team has a vision, that they know what it is, but I don’t think it is solely the Product
Owner who creates that vision, I think that the team does that together but the Product
Owner is responsible for that they have it”.

10 S. Kristinsdottir et al.

The Product Owners do not always know what that vision is as the organization has
been growing fast and the vision of a team tends to change relatively quickly: “Speaking
completely openly it is something we are struggling with, this question of the vision and
sharing it with the other teams because we are big and distributed. So how do you share
that vision? I think we overcomplicate it at the moment and I think we just need an
objective and should focus less on measurements.”

Each team is encouraged to come up with five measureable goals each quarter, but
one of the participants said that he does not like that because he thinks that often metrics
are gamed, especially if they come from the top down. He would rather have a vision
set at the top and then trust the teams and let them prove to the organization that what
they are doing is moving the whole organization in the right direction. Another partic‐
ipant agreed on this, the Product Owner should provide a vision but said that somebody
had to provide them with the organizational vision so that he is able to do that, the Product
Owner cannot come up with the vision on his own.

One participant said that he would like to think that he facilitates the visionary activ‐
ities for his team. But he said that his team has a much better insight into the needs of
the customers as the team is working much closer with them than he is. He does trust
his team to have much input on the vision of the development: “I get a very fluffy high
level overview but the team has very concrete details so I facilitate the vision but they
provide most of it.”

Another participant said he had a clear vision of how his product should be developed
but the organization as a whole did not have a shared vision for the end product. He said
his team starts to converge of this unspoken vision every two or three months so they
sit down and take a conversation about it but they never write it down, their world is
changing so fast that they do not want to put it in a document that is obsolete in a few
weeks. Another participant involves others in the visioning activities but then he
communicates the vision: “High-level vision for the company takes place in broad hall
meetings. That’s for the entire company and then I translate that into the reasons why
we are doing the things we are doing now.”

One participant said that his team works a bit with story mapping to try to figure out
what the big items for the future could be but as their goals changes so quickly it is
extremely hard to work on a long-term basis: “The longest project I’ve seen so far has
been about a year. And the business landscaped has typically changed so much over
time that at the end the product might not be quite right, good examples are the download
store and the iPod integration which were a good idea at the time but when they were
finally released it wasn’t anymore. Over all we change the goals, what we prioritize, so
often that it’s hard to have a longer term vision.”

4.2 Challenges of the PO Role

Part of this study was to gather information on the challenges a Product Owner faces at
Spotify.

One participant described the role as a combination of a diplomat adviser and juggler
because there are a lot of voices with different needs and the Product Owner needs to
communicate with all of them. The best way to do this was to be transparent so people

Responsibilities and Challenges of Product Owners at Spotify 11

see for themselves why things are done this way and not the other: “Be transparent
because you are not going to please everyone all the time. As long as you are transparent
about how you are doing things, how you make decisions and why certain things need
to be prioritized over other things you will succeed.”

It is the most challenging role on the team, said one participant, because there is
ultimately more responsibility in the Product Owner role than in other roles in the team:
“You have all those people wanting things from your team and for everyone what they
want is very important and that is the diplomat part of the role. The team should be
exposed to this pressure to an extent but the Product Owner should also protect the team
from that. The developers need to know that they are not working in a vacuum, there
are people who really care about what they are delivering but the Product Owner is
also protecting them which makes it a more challenging role.“

One participant said that the Product Owner role is challenging because even though
the team is responsible for their delivery the Product Owner is in the forefront of that,
the one seeing to that the delivery happens and it is compatible to what was initially
planned: “I think that is a tough thing to have on your shoulders.”

Being a Product Owner also means to align other people so that everyone has the
information they need to do the right job at every given moment: “It’s all about align‐
ment and knowing what others are doing, you should not be working in isolation, it’s
very hard to do the right thing if you don’t know what others are doing so the Product
Owners are the ones who just make sure that we don’t deviate on our own into what we
think it is we should be doing.”

Every Product Owner found it extremely important to spend time with the team every
day, as much as they physically could to but some struggled with that as they worked
with more than one team and had to attend to various meetings. Teamwork and collab‐
orative decision making seem to play a crucial role in the work the Product Owner does
with their team. The Product Owner is often guided by the team in what is technically
right, so he has to listen to the team and take their advice on how things should best be
done: “I’m there to represent the teams interest, fight their corner and to make their
case. Just this week we said we’re not going to make a release because the quality is
not there yet. That message comes from me to the stakeholders but it is informed and
guided by the voices of the team.”

The challenge is also that the Product Owner has to be an indirect leader of the team,
he has some authority to make decisions for the team but he very rarely wants to act on
that authority and be the only one making decisions that affect the whole team and their
work: “Product Owners are indirect leaders and many of them are totally inexperienced
when it comes to leading someone. Especially if it’s a junior team, so that is a big
challenge for a lot of the Product Owners.” The Product Owner has to get people excited
and aligned so that they know what is expected of them without actually telling them:
“The Product Owner is supposed to lead the team, engage and inspire it, make sure that
things are moving forward but it is very artificial to have just one person that does that,
the team itself needs to be interested in these kind of topics and discussions.” And the
challenge is also to see what is missing and add that to the mix: “I think the Product
Owner role involves picking up the slack, so if something isn’t working then it’s clearly
your Product Owners fault. Anything that is missing you’ll have to pitch in.”

12 S. Kristinsdottir et al.

Most of the Product Owners talked about the stakeholder side as being one of the
most challenging parts of their role. It is difficult to motivate a team that does not know
for whom it is working and lacks a purpose: “I think the special challenge is that we are
not very often doing particularly exciting or glamorous parts of the development, we’re
providing a platform and keeping developers motivated around that is a particular
challenge here. And focusing on the user value and remembering that we’ve not just got
internal customers, we’ve got users as well.” One participant said that his biggest chal‐
lenge was to sell his vision of the development to the developers on his team: “The
challenge is not only to sell the product to the end users but to sell the work that the
team needs to do to the team. Both are important but if I have to order them it’s selling
the work to the engineers that is more important.” Part of the role is to trust the team to
do their job and leave them to do just that: “Part of our role is actually to back off, let
people try things and trust them to do something interesting.”

Communication was also mentioned as being one of the Product Owners’ main
challenge: “When the Product Owner is good at communication I see the teams do a
really good job and when the Product Owner isn’t good at communication the teams
seem to struggle with what they should be working on.” And it’s not enough that the
Product Owner is a communicative person but he also has to make other people speak
to each other and see the big picture instead of focusing on their own task: “The more
people talk to each other the more they realize that teamwork is important and they get
more humble as they know what others are doing instead of getting stuck in their own
corner of the universe.”

All participants mentioned that they have come a long way and now find the role a
bit easier than when taking the role. The challenges were often the same but in different
situations and they feel they can use previous experience to handle them.

5 Discussion

The results show that all the participants are well aware of the responsibilities that are
described in literature [5, 8, 15, 19] and all of them attend those in some way or another,
although they have different approaches in their daily work to fulfil them. As described
by both Cohn [5] and Pichler [15] the role is multi-faced, inward and outward facing
and challenging. The results in this study show this quite clearly. Some respondents
commented that they needed to have one foot in the daily work and one foot in the future
and lead people to work on the right things at any given moment. Since Spotify has been
growing during the past years it might be that the POs have had to focus more on their
inward facing responsibilities as Cohn [5] describes them, dealing with their own team
on daily basis to make sure they are functional. The results indicate that when these
challenges have been met the POs can look ahead to the future and start to focus on
customer involvement, the vision of the product and the value their team is delivering
as these are among the outward facing needs [5].

At Spotify the role of the PO varies from one person to another. One aspect is that the
POs have a very communicative role and the individuals in the PO role have different

Responsibilities and Challenges of Product Owners at Spotify 13

communication competences. An additional aspect is that the responsibilities of the POs
are not necessarily the same in one part of the organization compared to another part of it.

The participants agreed that the PO role is often complicated and diverse and in some
ways it can be hard to describe what the actual daily work is and should be. There are
many tasks to juggle each day and the POs often felt that they were not delivering any
visible work to the team or the organization.

The biggest risk for Spotify is building the wrong product, meaning that the product
does not delight users or does not improve success metrics such as user acquisition or
user retention [12]. This is what is called “product risk” at Spotify. To compensate for
this, the POs make sure that the customers (end users) are represented when the teams
plan their work. Within the teams that build infrastructure or internal tools, there seems
to be a lack of understanding of whether the concept customer includes the end user or
not, that is if the teams should be focusing on the system from the users point of view
or focusing on the customer, which ofter are internal managers at Spotify or other teams
they are developing for. The end user is not always in the developers’ mind when they
are developing for infrastructure or measurement, we could say that the end user is
somewhat invisible. There were examples of teams not knowing who their primary
customer is. Helping the POs to identify their teams’ customers would give the teams a
better vision for the reason for why they are doing what they are doing and hopefully
empower team members and make them more involved in defining the vision for the
product. As the organization has different teams working for each other and a few are
developing directly for the end user, the visionary activities are blurred. There are indi‐
cations that strategic work is strong for the organization as a whole but that does not
seem to help the POs with their vision for their specific product development and the
communication of that to their teams.

As Cohn [5] states the PO should establish priorities so that the highest-valued func‐
tionality is always being worked on to maximise return on investment. The POs did not
think about the value of the tasks their teams are working on and did not prioritize them
according to return on investment, mainly because they don’t have the right tools to
measure the value of every task. It is also difficult to put a price on something you don’t
know how much effort is needed to finish.

Leading visioning activities for the product and communicate that to the team like
both Cohn [5] and Pichler [15] describe as one of the main responsibilities of the POs
is what the POs all struggle with. It is difficult for the teams to focus on the big picture
when they work on a limited amount of tasks each time.

This case study has contributed to the software development and project management
literature by examining the PO role at Spotify. This is a complex role with both inward
and outward facing responsibilities. Studying POs for three days might not give a gener‐
alizable picture of their duties, but the study gives an understanding of the POs respon‐
sibilities and challenges. The findings are interesting in regards to how the POs describe
the complexity of the role, how it is much more of a leadership role than a manager role
and how communication and people skills are crucial to the competences of a PO. The
PO has to work closely with the team and as soon as the team feels that they don’t have
a clear vision of where they are going they start to drift of and become dysfunctional.

14 S. Kristinsdottir et al.

6 Conclusion

It seems that the PO role is as diverse in practice as the literature describes it and the
challenges a PO faces each day are many as the results indicate. The POs need to have
one foot in the daily work and one foot in the future and lead people to work on the right
things at any given moment. The POs do not want to use their authority to make decisions
for the team but they want everyone to be involved in the work and in that way the team
should be able more productive and develop valuable products.

The PO is not a person who knows it all, as one participant put it: “I don’t think the
Product Owner is a magical person who has all the answers. You can give a steer on
priority, you can help make sure we are focusing on customer value but you don’t have
all the answers.”

In practice, the PO role seems to be much more of a leadership role than literature
has indicated so far and it would be interesting to research the role in relation to the
academic literature on leadership. The main challenge of the PO might therefore be to
inspire and encourage team members communicate openly. If the team members are
empowered and interested in their work the challenges seem to become much easier.

Acknowledgement. The authors would like to thank the participants and people at Spotify for
the opportunity to do this research at their offices in Stockholm. Special thanks to Anders Ivarson
who helped with arrangements and gave valuable comments on a draft of a thesis that this paper
is based on.

References

1. Beck, K., et al.: The Agile Manifesto (2001). http://www.Agilealliance.org/the-alliance/the-
Agile-manifesto/. Accessed 13 Jan 2014

2. Cervone, H.F.: Understanding Agile Project Management Methods using Scrum. Managing
Digital Libraries: the view from 30,000 feet. OCLC Syst. Serv. 27(1), 18–22 (2010)

3. Cooper, R.G.: What’s next? Res. Technol. Manage. 57, 20–31 (2014)
4. Cohn, M.: Agile Estimating and Planning. Prentice Hall, Upper Saddle River (2010)
5. Cohn, M.: Succeeding with Agile: Software development using Scrum. Addison-Wesley

Signature Series. Addison-Wesley, Pearson Education Inc., Upper Saddle River, NJ (2010)
6. Drury, M., Conboy, K., Power, K.: Obstacles to decision making in Agile Software

development teams. J. Syst. Softw. 85, 1239–1254 (2012)
7. Ezzy, D.: Qualitative Analysis: Practice and Innovation. Psychology Press, UK (2002)
8. Galen, R.: SCRUM Product Ownership: Balancing Value from the Inside Out, 2nd edn.

RGCG, LLC, Cary, NC (2013)
9. Hoda, R., Noble, J., Marshall, S.: The impact of inadequate customer collaboration on self-

organizing Agile teams. Inf. Softw. Technol. 53, 521–534 (2011)
10. Ivarsson, A., Kniberg, H.: Scaling Agile @ Spotify with Tribes, Squads, Chapters and Guilds

(2012). https://dl.dropboxusercontent.com/u/1018963/Articles/SpotifyScaling.pdf.
Accessed 13 Jan 2014

11. Kniberg, H.: Scrum and XP from the Trenches: How we do scrum (2007). http://infoq.com/
minibooks/scrum-xp-from-the-trenches. Accessed 7 Jan 2014

Responsibilities and Challenges of Product Owners at Spotify 15

http://www.Agilealliance.org/the-alliance/the-Agile-manifesto/
http://www.Agilealliance.org/the-alliance/the-Agile-manifesto/
https://dl.dropboxusercontent.com/u/1018963/Articles/SpotifyScaling.pdf
http://infoq.com/minibooks/scrum-xp-from-the-trenches
http://infoq.com/minibooks/scrum-xp-from-the-trenches

12. Kniberg, H.: How Spotify Builds Products (2013). http://dl.dropboxusercontent.com/u/
1018963/Articles/HowSpotifyBuildsProducts.pdf. Accessed 13 Jan 2014

13. Larusdottir, M.K., Cajander, A., Erlingsdottir, G., Lind, T., Gulliksen, J.: Challenges from
integrating usability activities in scrum - why is scrum so fashionable? In: Cockton, G.,
Larusdottir, M.K., Gregory, P., Cajander, A. (eds.) Integrating User Centred Design in Agile
Development. Springer, London (2016)

14. Misra, S.: Agile software development practices: evaluation, principles, and criticism. Int. J.
Qual. Reliab. Manage. 29(9), 972–980 (2011)

15. Pichler, R.: Agile Product Management with Scrum: Creating Products that Customers Love.
Addison-Wesley Signature Series. Addison-Wesley, Pearson Education Inc., Upper Saddle
River, NJ (2010)

16. Senapathi, M., Srinivasan, A.: Understanding post-adoptive Agile usage: an exploratory
cross-case analysis. J. Syst. Softw. 85, 1255–1268 (2012)

17. Spotify (n.d.) Labels and artists. https://www.spotify.com/se/about-us/labels/. Accessed 15
Jan 2014

18. Schwaber, K.: Scrum development process. In: Business Object Design and Implementation,
pp. 117–134. Springer, London (1995)

19. Schwaber, K.: Agile Project Management with Scrum. Microsoft Press, Redmond (2004)
20. Schwaber, K., Beedle, M.: Software Development with Scrum (2002)
21. Strode, D.E., Hope, B., Huff, S.L., Link, S.: Coordination in clocated Agile software

development projects. J. Syst. Softw. 85, 1222–1238 (2012)
22. Sutherland, J.V., Schwaber, K.: The SCRUM methodology. In: Business Object Design and

Implementation: OOPSLA Workshop (1995)
23. Sverrisdottir, H.S., Ingason, H.T., Jonasson, H.I.: The role of the product owner in Scrum –

comparison between theory and practices. Proceidia – Soc. Behav. Sci. 119, 257–267 (2014)
24. Takeuchi, H., og Nonaka, I.: The new product development game. Harvard Bus. Rev. 64(1),

137–146 (1986)
25. VersionOne: The 10th State of Agile Survey (2015). https://versionone.com/pdf/

VersionOne-10th-Annual-State-of-Agile-Report.pdf
26. Yin, R.K.: Case Study Research: Design and Methods, 4th edn. SAGE Publications,

Thousand Oaks (2009)

16 S. Kristinsdottir et al.

http://dl.dropboxusercontent.com/u/1018963/Articles/HowSpotifyBuildsProducts.pdf
http://dl.dropboxusercontent.com/u/1018963/Articles/HowSpotifyBuildsProducts.pdf
https://www.spotify.com/se/about-us/labels/
https://versionone.com/pdf/VersionOne-10th-Annual-State-of-Agile-Report.pdf
https://versionone.com/pdf/VersionOne-10th-Annual-State-of-Agile-Report.pdf

Supporting the HCI Aspect of Agile Software Development
by Tool Support for UI-Pattern Transformations

Peter Forbrig(✉) and Marc Saurin

University of Rostock, Albert-Einstein-Str. 22, 18051 Rostock, Germany
peter.forbrig@uni-rostock.de

Abstract. Continuous changing requirements of software are the result of
continuously changing reality. This reality can be considered as the context of the
software. Agile development methods allow quick adaptations to changing
requirements. Initially, agile development methods were focused on the devel‐
opment of the application core only. Recently, process models were discussed
that integrate HCI aspects. This paper will discuss ideas to integrate user evalu‐
ations into the development process. User interfaces are structured as UI-pattern
instances. Tool support is provided that allows the specification of pattern
instances as XAML specifications. Additionally, the tool allows the replacement
of one pattern instance by another one. In this way, different versions of the same
user interface can be generated rapidly without much effort. These different
versions can be evaluated with the help of users. Based on these usability tests
final decisions for the software design can be made. New requirements can be
captured additionally. This will be based on feedback of the users.

Keywords: UI-Patterns · Pattern instance transformation · Agile software
development · Human-Centered Design

1 Introduction

Our society changes continuously. Therefore, software solutions have to be adapted
during usage. However, even during the development requirements are not stable.
Developers have to react on dynamical changes. This is the reason for the need of agile
approaches. Classical development methods often fail.

Unfortunately, software engineers often focus on the development of the application
core only. Aspects of user interface design and HCI methods are not in the focus of their
work. That is the reason why process models of agile methods like SCRUM do not
contain HCI activities. Recently, there are several approaches like [2, 5–8, 15].

Agile development methods very much support the communication between devel‐
opers and customers. However, users should be involved as well.

The Human-Centered approach is accompanied with a phase where design decisions
are evaluated. To support design decisions tool support would be helpful that generated
different alternatives. Based on the user evaluation the best design can be selected and
further developed. We will present a tool that allows developers the development of

© IFIP International Federation for Information Processing 2016
Published by Springer International Publishing Switzerland 2016. All Rights Reserved
C. Bogdan et al. (Eds.): HCSE 2016/HESSD 2016, LNCS 9856, pp. 17–29, 2016.
DOI: 10.1007/978-3-319-44902-9_2

different user interfaces based on pattern transformations. Additionally, we will discuss
how this tool fits into agile development methods. We will discuss this aspect on a
specific process model for SCRUM.

The rest of the paper will be structured in the following way. First, we will discuss
the idea of UI patterns and the corresponding tool support. Afterwards, the integration
of the Human-Centered Design into SCRUM will be discussed. Additionally, it will be
shown how the developed tool can be used within the development process. Finally,
there will be a summary and an outlook.

2 UI-Patterns and Tool Support

2.1 UI-Patterns

The success story of patterns in computer science started with the well-known book by
the “Gang of Four” [3]. Later, this idea was adapted to different subdomains. In the
meantime, there exist patterns about workflows, tasks, ontologies, and a lot of other
aspects.

UI-Patterns have been proven to be very useful for designing interactive software
systems. Resource for that are e.g. [11, 16, 17], to mention only a few of them. Most of
existing libraries are for human browsing only. The application has to be performed
manually. However, there exist tools that allow the application of UI patterns.

The term pattern is sometimes used a little bit vague. In the final user interface, one
cannot see neither any pattern nor any pattern instance. One can only see the result of
the application of a pattern instance. Let us assume the following application process of
UI patterns:

1. Identification: A subset S’ of user interface elements S is identified that can be
transformed by a pattern. S’

2. Selection: A pattern P is selected that can be applied to S‘.
3. Adaptation: The pattern P is adapted to the current context of use M‘.

As a result, a pattern instance I is delivered. A(P,S’) = I
4. Integration: The instance I is integrated. It replaces M’ in M.

I(S’, S) = S* (Pattern instance I is applied to subset S’ of S and delivers a new set
of user elements S* – a new user interface)

Using this terminology a user interface presents the result of the application of pattern
instances. Pattern instances are the result of adaptations of patterns to the current context
of use. They are applied to existing elements and deliver new user interface elements.
However, to be short sometimes the structure of user interfaces is presented by the names
of the corresponding patterns only.

It was already mentioned that there exist tools supporting the application of UI
patterns. However, about the transformation of user interfaces by pattern is yet not
much reported even there exist papers about such transformations for a relatively long
time. Already in 2004 in [4] it was reported about the opportunity to transform user
interfaces that were constructed based on patterns. The paper discusses ideas, which

18 P. Forbrig and M. Saurin

pattern applications should be replaced by other ones in case the application should
run on mobile devices. They call it pattern mapping. We will recall only three
mapping rules of their Table 12.4. The enumeration comes from their pattern catalog.

P.1 Bread crumbs is replaced by

P.1 s – Shorter bread crumb trail; and
P.15 – Drop-down ‘History’ menu

P.2 Temporary horizontal menus replaced by

P.2 s – Shorter menu; and
P.3 – Link to full-page display of menu options ordered vertically.

We adapt this idea for mapping or transformations of pattern applications on the same
platform. It can be considered as refactoring like in [10]. With tool support, different
versions of a user interface can be generated quickly. A horizontal menu could e.g.
be transformed to a vertical one. Such kind of tool support is discussed in the next
section.

2.2 Tool Support of UI-Patterns Using XAML

Within a Master Thesis [12] a tool was developed for constructing and transforming
user interfaces based on UI-patterns. The tool is based on Visual Studio using the tech‐
nology of VSIX extensions and XAML specifications of user interfaces. Figure 1 shows
the XAML representation of the Split Pane Pattern in its horizontal version.

Fig. 1. Pattern specification in UI-Explorer 2.

Supporting the HCI Aspect of Agile Software Development 19

The UI-Explorer 2 tool uses representation files for patterns. Currently XAML is
used. It fits well to the provided features of WPF (Windows Presentation Foundation).
However, any other XML-based specification language like HTML or ASPX could be
used as well. The Grid-tag was used to represent patterns. Some attribute can be set
initially- They can be changed later. In the example above the master and detail part are
still empty. They can be filled later. Figure 2 demonstrates the application of the pattern.

Fig. 2. Application of the horizontal Split Pane Pattern.

Let us have a look at replacing the application SplitPaneH by SplitPaneV (split pane
vertical). UI Explorer 2 supports this kind of transformation and delivers the result
below.

Currently pattern applications can be transformed at one location only. For the future
it is planned to allow the replacement of all instances of a pattern application by another
one. It will also be possible to allow to replace a sequence of pattern applications by
another sequence of pattern application. This would include the replacement of one
pattern application by a sequence of applications as well as the replacement of a sequence
of pattern applications by one pattern application (Fig. 3).

20 P. Forbrig and M. Saurin

Fig. 3. Replacement of the application of the SplitPaneH by SplitPaneV.

Formally, this can be described by the following notation:

2.3 Case Study

To get an impression of the applicability of the tool, a case study was performed. The
websites of Lufthansa, Eurowings, and Norwegian were analyzed und their structure
according to UI-Patterns applications were analyzed. The resulting structure is shown
in Fig. 4.

An already refined and transformed version of the user interface is presented as
Fig. 5. The horizontal version of Master and Detail was replaced by a vertical one.

A further transformation yields to the result of Fig. 6. The navigation in the calendar
is replaced by a new pattern application. This structure corresponds to the structure of
the webpage of Norwegian (Fig. 7).

The case study had shown that the approach worked for examples of real applica‐
tions. The tool was able to handle transformations of different levels of abstractions
(Fig. 8).

Supporting the HCI Aspect of Agile Software Development 21

Fig. 4. Structure of the web-page of Eurowings.

Fig. 5. Refined and transformed part of the user interface of the web page of Eurowings.

22 P. Forbrig and M. Saurin

Fig. 6. Further transformed page that corresponds to the structure of that of Norwegian.

Fig. 7. Part of the detailed user interface of Eurowings.

Supporting the HCI Aspect of Agile Software Development 23

Fig. 8. Transformed detailed user interface of Eurowings within the Pattern Explorer 2 tool.

It is not astonishing, that based on the structure similarities even the detailed webpage
of Norwegian could be generated (Fig. 9).

Fig. 9. Detailed webpage that is very similar to that of Norwegian.

Currently, the structure of the user interface has to be modeled by hand. That means
that the creation of the result of the pattern instance applications has to be done by hand.

24 P. Forbrig and M. Saurin

However, in the future it is planned to integrate the approach into a model-based tool
chain that allows the generation of user interfaces. Parts of this tool chain can even be
model-driven. A combination with the approach of Yigitbas et al. [18] seems to be
promising.

3 Agile Development and Continuous Human-Centered Design

After introducing the developed tool a little bit, we will focus on the development process
and in which way the tool could be used. Additionally, we are interested to combine the
better of two worlds - the best of Human-Centered Design and Agile Development. The
first principle of the Agile Manifesto [1] is: “Our highest priority is to satisfy the
customer through early and continuous delivery of valuable software”. According to
this principle, customers are most important. This might be perfect from the business
perspective because the customer has to pay the bill. However, from the quality aspect
it is important to get the users involved as well.

User-Centered Design and nowadays Human-Centered Design are in the same way
popular within the community of usability and user experience experts as agile methods
for software engineers that focus on the application core. HCD focusses especially on
the context of use and the evaluation of design decisions. That seems to be the major
reasons for its popularity. In this context, user requirements are considered to be more
important than functional requirements coming from the customer. Finally, the users
will really get what they need to get their working tasks supported. ISO 9241-210 is a
standard for the HCD process that consists of a planning phase and four phases that are
performed in an iterative way.

In the first phase, stakeholders and their context of use are identified by analysts.
Typical application scenarios are specified. Additionally, tasks that have to be supported
are analyzed. Users and their roles are identified. The roles are related to tasks. However,
tasks are also related to objects that are changed by performing the task or that are used
as tools. Additionally, the context of use of the software under development is specified.
This can be the location, the surrounding persons or objects and in some cases available
services.

User requirements are specified based on this analysis. They contain besides func‐
tional and non-functional requirements additionally the goals of the users and their
profiles.

First design solutions are produced afterwards. They have to fulfill the identified
requirements. Such design solutions focus mainly on first ideas of user interfaces. This
can be mock-ups or running prototypes.

In the last phase of the HCD process, developed design solutions are evaluated. Very
often, the design solutions do not meet the requirements. They are not the wanted result.
Therefore, new considerations have to be made. In the worst case, one has to start with
the first phase again. The context of use has to be analyzed again. However, if the general
analysis of the context of use seems to be correct but some requirements were specified
in the wrong way, one has only to rewrite some requirements or has to identify some

Supporting the HCI Aspect of Agile Software Development 25

new ones. If only some design solutions did not meet the requirements, one has to look
for an alternative design. The optimal case is of course if the requirements of the users
are met immediately. In this case, the development process comes to an end and the
implementation of the application core can be performed.

Most of the time there will be several cycles until the design fulfills the analyzed
user requirements. A visual impression of the HCD process model is given by Fig. 10.

Fig. 10. The design process from ISO 9241-210–Human-centered design process (from https://
thestandardinteractiondesignprocess.wordpress.com/).

Even that Fig. 10 provides a good overview of the main ideas of the HCD process,
it does not provide hints how the idea of HCD can be integrated into the agile develop‐
ment process. However, the agile development process neglects the problems of HCD
as well. Indeed, it would be perfect to have an integrated process model considering
both aspects, the development of the application core and the development of the user
interface. Additionally, a common understanding of the role of the users would be
perfect.

A joined process model of both approaches was published by Paelke et al. [7]. They
called it Agile UCD-Process. (User-Centered Design was the predecessor of HCD.).
The process model suggests to have a common initial phase for developers and HCI
specialists. Afterwards there are activities of both groups. Unfortunately, it is not quite
clear in which order these activities are performed. Additionally, the requirements elic‐
itation is a little bit too much uncoupled from the software development process. A
stronger coupling was suggested by Paul et al. [9]. It additionally provides the names of
models that have to be specified in the corresponding phase of the software development
like user or task model.

26 P. Forbrig and M. Saurin

https://thestandardinteractiondesignprocess.wordpress.com/
https://thestandardinteractiondesignprocess.wordpress.com/

Two interleaving processes for developers and HCI specialists are suggested by Sy
[15]. She suggests that at the beginning, there has to be a common plan and some user
data have to be gathered. Afterwards, developers start in the first development cycle
with implementations that are not much related to the user interface. This could be e.g.
certain services of the application that are not related to user interface aspects. In parallel
HCI specialists provide certain design solutions for cycle two and gather customer data
for cycle three.

In cycle two developers implement the design solutions from cycle one and in parallel
their code from cycle one is tested by HCI specialists. Additionally, they design for the
next cycle and analyze for the cycle after the next cycle. This is the general development
pattern. In some way, interaction designers work two cycles ahead to developers in
analyzing customer data and one cycle ahead in developing design solutions.

A similar approach by separating the activities of analysts and developers was
presented in [2] for the SCRUM approach. The development cycle of analysts is
executed in parallel to the cycle of the developers. It runs at least one cycle ahead.

The suggested process model starts with an initial phase of all project members to
get a common understanding. Later it is intended that the HCD process is executed in
parallel to the development of the software. The HCD process should always be executed
on cycle ahead of the development process. This can be reached by in such a way that
developers start with configuration of the software development tools and with some
features not related to the user interface.

Following Sy [15], both cycles have always the same length. This is also the way,
companies we interviewed, work at the moment. However, this number of observed
companies is very small and the companies are not representative. We also recognized,
that they most of the time do not evaluate alternative designs. Most of the time there is
one design solution only and this solution goes into the final software system.

Fig. 11. Human-Centered Design Process for SCRUM.

Supporting the HCI Aspect of Agile Software Development 27

Indeed, applying HCD methods is sometimes long lasting. The usage of question‐
naires and interviews could sometimes not be possible within one sprint. In this way,
the HCD process could last two, three, or more sprints. A synchronization of these
activities might be the challenge for the future. A precise analysis of the requirements
and an intelligent planning would be necessary for these cases. It has to be observed in
the future, how companies behave, whether they pick up this idea or have activities of
the same length.

There is also the question, when to stop with the development. The distinction
between development and maintenance might not be useful anymore. Maintenance,
should also be done in an agile way and fits to the process of Fig. 11. Continuous Soft‐
ware Engineering might be a solution for that. It can be characterized as combination
of Software Engineering, Human-Centered Design, and Business Administration. An
overview of integrating SE and UE can be found in [14].

4 Summary and Outlook

In this paper, we discussed the advantages of following a pattern-based approach in
designing user interfaces. It allows the transformation of existing user interfaces based
on the exchange of one pattern instance by another one. In a case study based on the
websites Eurowings, Lufthansa, and Norwegian it was shown that pattern-based repre‐
sentations and transformations on different level of abstraction were possible.

It was shown that the structure of the website from Norwegian differs to the structure
of the website of Eurowings by some pattern transformations only. The results of the
transformations on an abstract and on a detailed refined level were presented. In this way,
different version of a user interface can be generated easily without many efforts. Partici‐
patory design can be supported is supported very well by the application of the UI-
Explorer 2 tool. Evaluations of different alternatives can be performed in an early stage
of development. This can be done with abstract or already very detailed specifications.

Currently, the pattern-based creation of user interfaces has to be done manually.
However, the model-based or model-driven development of such user interface speci‐
fication was already shown (e.g. [18]) and should be combined with the UI-Explorer 2
in the future.

It is suggested to apply the UI-Explorer 2 tool in an agile development process that
respects Human-Centered Design. Suggestion for a development process model for
SRCUM were discussed. It was discussed, how such a process model could looks like,
and whether sprints of the HCD process should last exactly one sprint or whether they
can last for two or three sprints because of the needed time.

References

1. Agile Manifesto. http://agilemanifesto.org/. Accessed 4 June 2015
2. Forbrig, P., Herczeg, M.: Managing the Agile process of human-centred design and software

development. In: Beckmann, C., Gross T. (eds.) INTERACT 2015 Adjunct Proceedings, pp.
223–232 (2015)

28 P. Forbrig and M. Saurin

http://agilemanifesto.org/

3. Gamma, E., Helm, R., Johnson, R., Vlissides, J.: Design Patterns: Elements of Reusable
Object-Oriented Software. Addison-Wesley Professional, Reading (1994)

4. Javahery, H., Seffah, A., Engelberg, D. and Sinnig, D.: Migrating user interfaces across
platforms using HCI patterns. In: [13], pp. 241–259 (2004)

5. Kuusinen, K.: Task allocation between UX specialists and developers in agile software
development projects. In: Abascal, J., Barbosa, S., Fetter, M., Gross, T., Palanque, P.,
Winckler, M. (eds.) INTERACT 2015. LNCS, vol. 9298, pp. 27–44. Springer, Heidelberg
(2015)

6. Memmel, T., Gundelsweiler, F., Reiterer, H.: Agile human-centered software engineering.
In: Proceedings of the 21st British HCI Group Annual Conference on People and Computers:
HCI…but not as we know it (BCS-HCI 2007), vol. 1, pp. 167–175. British Computer Society,
Swinton (2007)

7. Paelke, V., Nebe, K.: Integrating agile methods for mixed reality design space exploration.
In: Proceedings of the 7th ACM Conference on Designing Interactive Systems (DIS 2008),
pp. 240–249. ACM, New York. http://doi.acm.org/10.1145/1394445.1394471

8. Paul, M., Roenspieß, A., Mentler, T., Herczeg, M.: The usability engineering repository
(UsER). In: Hasselbring, W., Ehmke, N.C. (eds.) Software Engineering 2014 - Fachtagung
des GI-Fachbereichs Softwaretechnik, 25.-28. Februar 2014, Kiel. Gesellschaft für
Informatik e.V. (GI), pp. 113–118 (2014)

9. Paul, M.: Systemgestützte Integration des Usability-Engineerings in den Software-
Entwicklungsprozess, Ph.D. thesis, University of Lübeck (2015)

10. David Ricardo Do Vale Pereira, Uirá Kulesza: Refactoring a web academic information
system using design patterns. SugarLoafPLoP 2010, pp. 17:1–17:14 (2010)

11. Richard, J., Robert, J.-M., Malo, S., Migneault, J.: Giving UI developers the power of UI
design patterns. In: Smith, M.J., Salvendy, G. (eds.) HCII 2011, Part I. LNCS, vol. 6771, pp.
40–47. Springer, Heidelberg (2011)

12. Saurin, M: Integration der Werkzeugunterstützung für die Anwendung von UI-Patterns in der
agilen Softwareentwicklung. Master Thesis, University of Rostock 2016 (2016)

13. Seffah, A., Javahery, H.: Multiple User Interfaces - Cross-Platform Applications and Context-
Aware Interfaces. John Wiley & Sons, Ltd. (2004). ISBN: 0-470-85444-8

14. Sohaib, O., Khan, K.: Integrating usability engineering and agile software development: a
literature review. In: Proceedings of the International Conference on Computer design and
Applications (ICCDA), vol. 2, pp. 32–38 (2010)

15. Sy, D.: Adapting usability investigations for agile user-centered design. J. Usability Stud.
2(3), 112–132 (2007)

16. Tidwell, J.: Designing Interfaces. http://designinginterfaces.com/patterns/
17. Welie, M.: Patterns in interactive design. http://www.welie.com/patterns
18. Yigitbas, E., Mohrmann, B., Sauer, S.: Model-driven UI Development Integrating HCI

Patterns. LMIS@EICS 2015, pp. 42–46 (2015)

Supporting the HCI Aspect of Agile Software Development 29

http://doi.acm.org/10.1145/1394445.1394471
http://dblp.uni.trier.de/db/conf/sugarloafplop/sugarlloafplop2010.html#PereiraK10
http://designinginterfaces.com/patterns/
http://www.welie.com/patterns

Human-Centered Software Engineering
as a Chance to Ensure Software Quality

Within the Digitization of Human Workflows

Holger Fischer(B) and Björn Senft

SICP, Paderborn University, Zukunftsmeile 1, 33102 Paderborn, Germany
{hfischer,bsenft}@s-lab.upb.de

Abstract. Nowadays, a technological development boost can be
observed within information technology and its application possibilities.
This development results in a digitization of economic processes and
human workflows, e.g. within the manufacturing industry. Furthermore,
the discussion between digital assistance of employees vs. automation of
processes leads to an ongoing change of work tasks or employees’ respon-
sibilities. Decision-makers will have to focus on organizational, human as
well as on technological aspects to ensure organizational and employee’s
acceptance of digital solutions likewise. Despite all efforts, today’s soft-
ware products still lack of quality with regards to missing or unused
functionality and bad usability. Thus, current software engineering meth-
ods seem to be insufficient. Therefore, this paper describes an iterative
approach combining software engineering paradigms like human-centered
design and agility to enable decision-makers within manufacturing indus-
try to build digital tools that are accepted by their employees and are of
value for the company itself.

Keywords: Digital transformation · Change · Acceptance ·Workflows ·
Human-centered design · Agile · Software engineering · Work 4.0

1 Introduction

Having a look on today’s occupations, there are lots of reasons why people work.
The primary objective as well as the most important one is earning a living for
themselves and their families [1]. Further objectives include to be part of the
society, to create an own identity and to keep one’s own dignity. Work is vital
for everyone and for the society at all. It allows the people to participate, to use
their talents, to find contact, recognition and validation within a community.
Nowadays, we can perceive an evolution of the working environment due to the
digitization of manual workflows, work places or tools. Digitization within the
context of manufacturing industry describes the transformation process from tra-
ditional handmade activities towards computer-supported activities, e.g. operate

c© IFIP International Federation for Information Processing 2016
Published by Springer International Publishing Switzerland 2016. All Rights Reserved
C. Bogdan et al. (Eds.): HCSE 2016/HESSD 2016, LNCS 9856, pp. 30–41, 2016.
DOI: 10.1007/978-3-319-44902-9 3

HCSE to Ensure Quality Within the Digitization of Human Workflows 31

a robot or maintain a machine getting assistance through digital glasses. This
ongoing change and its impacts on the employees is also known as a part of
“Work 4.0” [2].

The overall term of Work 4.0 addresses multiple topics. Besides a cultural
shift (e.g. work-life balance, demographic change), changes in the standard
employment relationship or the globalized knowledge society, the main driver for
all these topics is the digitization and automation of human workflows. Software
solutions are increasing within the professional work context [3], e.g. enterprise
resource planning (ERP) solutions in the administration, cooperative robots in
the production or augmented reality glasses in the commissioning. The possibil-
ities are versatile, but they also encourage further discussions about the impacts
on the human working life. For example, thinking about the degree of automa-
tion within manufacturing industry, there are advantages and disadvantages for
digital assistance systems as well as for the complete automation [4]. Shall the
people or the system be in charge of control and decision within a process?
Shall we store the organization’s knowledge within the system or shall it be the
knowledge of the employee to react on sudden anomalies?

Bainbridge [4] describes some ironies of automation in her previous work,
which are still up to date. For example, developers of systems designate the
human to be the main source of error and build an automated substitute. At the
same time, these developers are also humans. Thus, operational errors are often
development failures based on insufficient assumptions. In addition, employees
are replaced with a system because these systems should be more efficient. Simul-
taneously, the employees shall monitor and maintain the system and manually
take over if necessary using all their knowledge that was replaced by the system
before. Hence, an adequate human-system interaction has to focus on the supply
with status information as well as to ensure situational awareness at any time.

In summary, human working environments, workflows and areas of respon-
sibilities are continuously changing. In addition, the concerns from outside the
organization are rising, too. Planning a digitization within an organization chal-
lenge the persons in charge to take multiple perspectives into account (see Fig. 1)
and deal with possible impacts of used technologies in advance, e.g. ensuring
jobs, prevent the loss of knowledge, prevent a temporal condensation of work,
increase the product quality. Therefore, modern software and system develop-
ment will have to increase their focus on the employees using the systems. Project
managers or IT departments cannot cope with the challenges on their own.
Especially employees respectively end users have to participate in the change
process due to the fact that they have to work with the systems at last. Thus,
the individual and organizational acceptance as well as the usability and user
experience of the system are crucial quality aspects. According to the World
Quality Report [5], CIOs and IT executives nominate “Ensure end-user satisfac-
tion” along with “Protect the corporate image” and “Increase quality awareness
among all disciplines” for the main three top quality objectives in the quality
assurance of software products. “Customer [or user] experience” is also one of the
five top influences on today’s IT strategies. Despite all efforts, today’s software

32 H. Fischer and B. Senft

Organization

Business

Human

Technology

Society

Politics

Legislation

Fig. 1. Concerns from outside the organization

products still lack of quality with regard to functionality and usability. Accord-
ing to the CHAOS manifesto [6], approximately 45 % of the analyzed software
projects have challenges within missing functionalities. In addition, business soft-
ware in the European medium-sized enterprises lack on unused functionalities
(36 %) as well as on unusable software (21 %) [7]. Thus, current software engi-
neering (SE) methods seems to be insufficient, because they don’t consider end
users in terms of active involvement during the development process.

The challenge addressed in this design paper is to establish a participatory
and iterative software engineering method combining paradigms like human-
centered design (HCD) and agility. Thus, decision-makers within industrial man-
ufacturing companies should be enabled to interdisciplinary build digital tools
instead of monolithic systems that are accepted by their employees, by the work
councils and are of value for the company itself.

The paper is structured as following: First, the authors discuss existing
approaches of SE methods with a focus on users and iterations regarding their
potentials for the use in the digitization within manufacturing industry. Then,
the authors present some contexts from industry project and elicit requirements
for an agile SE method. Finally, the concept is outlined and future work is
described.

2 Related Work

Several different software development approaches exist that focus on user partic-
ipation and iterative development. Therefore, an introduction to human-centered
design and agile development is given. Furthermore, a brief overview of combined
approaches is presented.

HCSE to Ensure Quality Within the Digitization of Human Workflows 33

2.1 Human-Centered Design

Human-Centered Design (HCD) is an established methodology within software
development with a focus on the users of a prospective system [8]. HCD intends
to create interactive solutions that match the users’ needs and expectations as
well as to support their tasks towards their specific goals. The advantages are
far-reaching and include increased productivity, improved quality of work, and
increased user satisfaction [9]. One of the central quality attributes for interactive
systems is their usability [10]. Especially tasks that are either time-sensitive or
security-critical benefit from user interfaces (UI), which are suitable, easily to
understand as well as controllable.

HCD includes lots of techniques to foster user participation (e.g. interviews,
observation, prototyping, etc.), but it is still a discussion how to select appropri-
ate techniques and how to integrate them on an operational level within existing
software development processes. Thus, outcomes are mostly not directly convert-
ible to software development, e.g. due to their narrative textual representation.
Furthermore, HCD is living the prototyping and experimentation concept. Using
paper-based or high-fidelity mockups, users’ needs will be validated or even dis-
covered during the ongoing development. Current software development methods
mostly focus on evolutionary high-fidelity prototypes close to final user interface.
However, low-fidelity paper-based prototype will encourage users to provide more
feedback because they hold the status of incompleteness and enable people to
think about their needs [11]. Hence, it will be necessary to “encourage” the
organizations in order to ensure software quality using throw-away prototypes.

2.2 Agile Software Development

Agile development (e.g. Scrum [12]) enables an incremental development of soft-
ware having a continuously runnable part of the software ready for reviews with
the customer. Therefore, transparency and inspection are two key factors to cre-
ate a common understanding within a project. However, agile development is not
targeted on modeling user requirements and human behavior in a comprehensive
way. Having inspections with the customer does not fulfill the expectations of
having a broad analysis and evaluation with multiple users who are currently
working with a system. Additionally, a systematic and documented way of deci-
sions concerning the interaction or the UI as well as a systematic treatment of
user feedback is missing. Talking about users within agile development often
means customer feedback or user stories. Unfortunately, customers are not nec-
essary real users of a system and may have a different idea about how a system
should work. While the customers’ focus is on the business values, the users are
more related to their workflow and tasks. In addition, user stories that are only
based on assumptions about users instead of empirical data might misdirect to
unutilized functionalities.

Agile model-driven development (AMDD) is an approach to specify mod-
els and implement solutions in an agile manner. Hence, it foster iterations of
specifications as well as on solutions. Ambler [13] propose a method to work

34 H. Fischer and B. Senft

on models, “which are just barely good enough that drive your overall devel-
opment efforts”. This is done in contrast to model-driven software development
approaches, where extensive models are created before starting to write source
code. Therefore, the AMDD lifecycle begins with an envisioning stage to specify
initial requirements and to sketch an initial architecture. After that, the actual
iterations start using model storming, modeling iteration and test-driven devel-
opment stages completed by an optional review of the developed increment. The
iterations are repeated until a software product result meets the requirements.

2.3 Agile HCD

Despite different positions towards requirements elicitation or upfront design,
agile development and HCD have some similarities. Both focus on quality assur-
ance while iterating with representative persons – business customers (agile
development) or users (HCD) – to request continuous feedback. Thus, the main
aspects are “quality”, “iterations” and “active involvement”.

Over the last years, several approaches have arisen that addresses the combi-
nation of agile methodologies and HCD. For example, Silva et al. [14] presented
a systematic literature review identifying 58 relevant papers as well as defining
eleven “agile usability patterns” [15] for the early stages of HCD [8]: Plan the
HCD activities, describe the context of use, specify user requirements. Belchev
and Baker [16] describe the pattern of having a “sprint zero”, conducting one-
to-one interviews in the users’ workplace to better understand the overall view
of a system before starting to develop. Sy and Miller [17] formulate the “one
sprint ahead” pattern to enable and synchronize the communication between the
development and UX team at defined times. Gothelf and Seiden [18] describes
his experience being a “UX specialist as product owner” to take real user needs
as well as customers’ interests into account for the prioritization of the product
backlog.

In summary, several approaches on user participation and iterative develop-
ment exist. Software engineering methods based on the Agile Manifesto [19] (e.g.
Scrum, XP, Kanban) help us to get more agile but focus on the development
itself. Taking the findings of Adolph [20], agile itself is a relative concept, a time
based strategy for operational success. It is about reacting to changing environ-
ments, respectively the model we have of an environment. This in an utterly
important finding as it shifts the focus from a building perspective to a holis-
tic view. Not only speeding up the development process is important, but also
improving the decision process. This means that the whole organization have to
be open-minded for agility instead of just the development itself. Existing agile
methods focus on single detached solutions or monolithic systems, which become
deployed at the end of the project. Addressing industrial manufacturing, it will
become necessary to digitize the process step-by-step with multiple digital assis-
tance services supporting human workflows. Deploying one digital service might
lead to impacts within the organization (e.g. temporal condensation of work or
changing tasks) and it will need an overall agility to react on these changing
work environments. Thus, digitization will be an ongoing process without any

HCSE to Ensure Quality Within the Digitization of Human Workflows 35

real end and the feedback during the everyday runtime of digital services have
to be taken into account.

3 Human-Centered Software Engineering Method

In order to develop a human-centered software engineering method for the man-
ufacturing industry, the different contexts within three industrial projects have
been analyzed using semi-structured one-to-one interviews as well as observa-
tions and visits of production facilities. Key questions of this procedure were:
How does the workflows look like? Is digital assistance a topic and for which
tasks? Are employees involved in the digitization process and how? Insights and
statements by the participants have been transcribed. Afterwards, requirements
for a software engineering method have been derived within a team workshop
based on these information. Then, an engineering method has been sketched
to discuss and evaluate its validity and applicability within the three industrial
projects.

3.1 Digitization Within Manufacturing Industry

Having a look at the digitization of human workflows within manufacturing
industry it is difficult to choose the suitable degree between digital assistance
and complete automation (see Fig. 2). Taking the example of order picking, the
first kind of digitization is the (1) “digital copy” of an actual workflow. Thus, a
clipboard can be switch to a mobile device with a digital checklist. The overall
workflow remains the same as before. A more automated digitization is the (2)
“digital assistance”. Using augmented reality (AR) and smart glasses the worker
can be supported with a pick-by vision system. Thus, the workflow will change
because the system undertakes human tasks and will make some automated
decisions. Now, the first impacts of the system within the workplace environment
might occur, because the person using the smart glasses might be distracted by
the system and might not observe its surrounding carefully, e.g. a forklift truck
that pass by. The third kind of digitization is the (3) “complete automation”. A
self-driving industrial truck might collect all parts from a warehouse by its own.
The worker in charge will become unnecessary. Thus, all the knowledge about
the process is implemented within the system. In a kind of system breakdown,
the remaining worker might not be familiar with the previous picking process
and the organization might struggle with the situation. Hence, the digitization of
human workflows within manufacturing industry depends on the decision with
multiple perspectives: business (e.g. reducing costs), human (e.g. changing tasks
or responsibilities), society (e.g. work-life balance), politics (e.g. saving jobs)
or legislation (e.g. work safety). Decision makers might not be able to predict
every impacts before starting to work on a digital system. An agile and human-
centered method will provide industrial organizations with an approach to deal
with the challenge.

36 H. Fischer and B. Senft

Actual Digitization Complete Automation

Manually Automatically

Pic
k-

by
Vis

io
n (A

R
)

C
lip

board

Ta
ble

t

Self-
driv

in
g In

dust
ria

l T
ru

ck

Digital Assistance

Warehouse

Fig. 2. Example: decision about the degree of automation within order picking

3.2 Industrial Contexts

Case 1: Facade Engineering. The organization of this case is active within
the context of building construction and supports their customers (e.g. archi-
tects, engineers, constructors) with free of charge services in order to convince
them to buy their building elements later on. Some stand-alone solutions exist
that supports the involved people with some assistance. With the aim to improve
the overall construction planning and coordination process and to connect exist-
ing solutions, a project has been set up to analyze the context of use within
the company (sales, engineering, consulting) as well as with the users of their
services.

Case 2: Door and Window Fittings Production. The organization of this
case is specialized in the production of individual door and window fittings.
The employees in the assembly line perform different task and have to pick
the parts of an order from the warehouse or have to adjust their machines or
tools according to the order specification. Every information is written on a
printed paper sheet that accompany the product through the assembly line.
Maintenance information are based on the experience of the employees. For
example, information about the quality of drill heads from the ones of Brazil vs.
the ones of France is individual knowledge and unknown by the sales department.
A project has been set up to analyze possibilities for assistance services and to
ensure the individual acceptance by the workers.

Case 3: ATM Assembly. The organization of this case produce all differ-
ent kinds of self-service systems, e.g. automated teller machines (ATM). The
automated production of the parts needed is followed by a manual assembly

HCSE to Ensure Quality Within the Digitization of Human Workflows 37

line. Multiply quality gates within this assembly line ensure the quality of the
products. As the number of produced machines is low within each order due to
individualization by the customer, quality problems are reported at a time when
they cannot be fixed anymore. A project has been set up to identify possibilities
for digitalization of paper-based documentation and quality assistance for the
worker.

3.3 Requirements

Based on the analysis of the industrial contexts, some requirements were elicited
to develop a software engineering method for the digitization within industrial
manufacturing.

Decision support: The decision-makers within an organization have to decide
which workflows they would like to digitize and in which way they would like to
do this. They have to balance different perspectives with different objectives for
a digitization. To take all perspectives into account, to foresee possible impacts
and to formulate a strategy, a matrix of key performance indicators (KPI) have
to be developed in order to ensure organizational acceptance.

Employee participation: All stakeholders (employee directly interacting with
the system; employee that are affected by the system; employee that perceive
itself to be affected by a decision, activity, or outcome) have to be involved in the
software development lifecycle. They have to participate in every development
stage starting with requirements elicitation in order to ensure an appropriate
workplace design and individual acceptance.

Big picture: Dependencies of human workflows and organizational processes
have to be identified in advance to achieve a broader view of the organization and
to enable an appropriate interaction and user experience of digitized assistance
services.

Task suitability: Users’ tasks have to be elicited properly as the system rep-
resents a tool to support the users in fulfillment of their tasks and goals.

Iterations: User requirements have to be elicited over iterations to evoke
implicit knowledge and user needs. The amount of iterations has to depend
on the quality of a functionality.

Agility: The organizational culture have to allow agile management of workflows
and assistance services during runtime in order to immediately react on impacts
within the work environment.

Interdisciplinary nature: Interdisciplinary decision-maker teams have to be
introduced comprising manager as well as workers, technology scientists, psy-
chologists, sociologists and designer to deploy an appropriate digitization and
to enable innovations through the employee. It will support the organizational
change within the software-using organization and will create a feeling of par-
ticipation and decision on the employee level.

38 H. Fischer and B. Senft

Architecture: The systems’ architecture has to be as flexible as possible to
react on changed as well as on new added requirements for the digitization.

3.4 HCSE Method

An agile SE method has been developed in accordance with the defined require-
ments and the given context of manufacturing industry (see Fig. 3). It is divided
into four major iterations: Envisioning, modelling, development, operation.

Envisioning: The approach starts with an envisioning stage to build an abstract
“big picture” of participating roles, their responsibilities and interactions within
the work environment. Thus, dependencies of human workflows and organiza-
tional processes as well as later impacts can be identified. Performing contextual
inquiries with interviews and observations all stakeholders are analyzed and their
context of use is described on an upper level using the concept of flow models
(addressed earlier in [21]). Based on this abstract model of the organization a
KPI matrix of acceptance criteria for organizational as well as individual accep-
tance of digital transformation is built. Thereby, a first architectural envisioning
of a possible systems’ architecture is conducted and quality metrics are defined.
Digitization of complex human workflows is step-by-step project. Therefore, the
system’s architecture should be designed as flexible as possible using e.g. modu-
larization concepts as well as service-oriented architectures (SOA). Hence, a kind
of “service toolbox” with multiple assistance services for the workers may arise.

Modelling: To develop each assistance service the concrete human workflow
that shall be digitized is analyzed using a deeper contextual inquiry. One focus
is also on the workplace to identify restrictions, e.g. no space for installing a
touch display or touch isn’t an option due to safety gloves the worker wears. All
analyzed information about the current workflow are described using task mod-
els, e.g. HAMSTER notation [22]. Then, the modeled tasks are allocated between
the human or the system based on the acceptance criteria the team decided on
before. Using these information, prescriptive task models are developed and the
needed functionality is derivated. A first validation of the new concept can be
achieved using evaluation techniques, e.g. focus groups. Preparing the develop-
ment of the modeled assistance service a model-to-model (M2M) transformation
is used. Thus, the task model is transformed into a dialog model respectively an
abstract user interface (AUI) model using interaction description languages, e.g.
IFML [23].

Development: The development of the user interface (UI) and the software
functionality may be done according to model-driven user interface develop-
ment paradigms, e.g. the CAMELEON reference framework [24]. Using model-
to-model transformations, the AUI model is than transformed in a concrete user
interface (CUI) model specified for the target platform. Based on the CUI model
the initial code for the final user interface (FUI) can be generated with a model-
to-code (M2C) transformation taking appropriate guidelines and style guides
into account. Performing usability test with usability experts as well as with
employees will ensure the quality of the interaction with the UI.

HCSE to Ensure Quality Within the Digitization of Human Workflows 39

O
pe

ra
tio

n

E
nv

is
io

ni
ng

M
od

el
lin

g
D

ev
el

op
m

en
t

U
se

r
In

te
rf

ac
e

D
ev

el
op

m
en

t

Q
ua

lit
y

A
ss

ur
an

ce

S
of

tw
ar

e
A

rc
hi

te
ct

ur
e

R
eq

ui
re

m
en

ts
 E

ng
in

ee
rin

g

A
cc

ep
ta

nc
e

K
P

Is
D

ig
it

al
 T

ra
n

sf
o

rm
at

io
n

(I
nd

iv
id

ua
l &

 O
rg

an
iz

at
io

na
l

A
cc

ep
ta

nc
e

C
rit

er
ia

)

C
on

te
xt

ua
l I

nq
ui

ry
(I

nt
er

vi
ew

s
&

O

bs
er

va
tio

ns
)

In
iti

al
 A

rc
hi

te
ct

ur
al

E

nv
is

on
in

g

In
iti

al
 S

et
up

&
 P

la
nn

in
g

Q
ua

lit
y

M
et

ric
s

S
ta

ke
ho

ld
er

In
iti

al
 F

lo
w

 M
od

el

E
nv

is
io

ni
ng

D
ep

en
de

nc
ie

s
Id

en
tif

yi
ng

A
cc

ep
ta

nc
e

C
rit

er
ia

 B
ui

ld
in

g

V
is

io
n

Q
ua

lit
y

M
od

el
(in

cl
. U

X

S
tr

at
eg

y)

F
lo

w
 M

od
el

M
od

el
s

B
as

e
D

om
ai

n
M

od
el

Ta
sk

 M
od

el
D

ia
lo

g
M

od
el

B
ac

kl
og

S
of

tw
ar

e
S

er
vi

ce
s

Ite
ra

tio
n

P
la

nn
in

g

D
ig

ita
l

A
ss

is
te

nc
e

S
er

vi
ce

To

ol
bo

x

W
or

kp
la

ce
A

na
ly

si
s

D
om

ai
n

M
od

el
in

g

P
re

sc
rip

tiv
e

Ta
sk

 M
od

el
in

g
Ta

sk
A

llo
ca

tio
n

M
2M

 T
ra

ns
f.

to

C
om

po
ne

nt
 M

od
el

(C
U

I)

D
ia

lo
g

M
od

el
 (

A
U

I)
C

re
at

io
n

G
ui

de
lin

es
(U

sa
bi

lit
y/

U
X

 P
at

te
rn

,
C

or
po

ra
te

 D
es

ig
n

S
ty

le
gu

id
e)

Im
pa

ct
 P

re
di

ct
io

n

F
un

ct
io

na
lit

y
D

er
iv

at
io

n

C
on

ce
pt

 V
al

id
at

io
n

(e
.g

. F
oc

us
 G

ro
up

s)

M
2C

 T
ra

ns
fo

rm
at

io
n

(F
U

I)

F
un

ct
io

na
lit

y
Im

pl
em

en
ta

tio
n

G
ra

ph
ic

al
 L

ay
ou

tin
g

U
sa

bi
lit

y
Te

st
s

P
la

nn
in

g
U

sa
bi

lit
y

Te
st

in
g

A
na

ly
si

s
D

es
cr

ip
tiv

e
Ta

sk
 M

od
el

in
g

C
on

te
xt

ua
l I

nq
ui

ry
(I

nt
er

vi
ew

s
&

O

bs
er

va
tio

ns
)

W
or

k
Im

pa
ct

s
A

na
ly

si
s

Lo
ng

 T
er

m

M
on

ito
rin

g
E

va
lu

at
io

n
P

la
nn

in
g

Fig. 3. Design & development method for employee-centered assistance systems

40 H. Fischer and B. Senft

Operation: As the digital transformation is a continuous step-by-step project,
lots of changes and impacts on the work environment (e.g. temporal condensation
of work, changing job knowledge conditions) will occur during runtime after
the deployment of a assistance service. For example, also an earlier deployed
service might conflict with the new one. Thus, the organization should be set
up according to an agile manner. Hence, a long term evaluation based on the
organizational and individual acceptance criteria can monitor these changes and
reflect the feedback back into modeling or development stage to improve or
replace an assistance service within the service toolbox.

4 Conclusion

In this paper, the lack of quality within today’s interactive systems due to insuf-
ficient software engineering methods, which don’t consider end users in terms of
active involvement during the development process, and the rigidity of require-
ments in the context of digital transformation have been discussed. The focus
has been on the digital transformation of human workflows within the man-
ufacturing industry. Next to the business perspective on reducing production
costs, further perspectives have to be taken into account. Employees as well as
society, politics or legislation addresses new challenges towards work structures,
working time or work environments. Therefore, an approach has been presented
that uses human-centered design to focus on the employees’ workflow as well as
iterations to set up an agile software engineering method that develop assistance
services instead of inflexible monolithic systems. It has been shown, but not yet
fully validated that the approach of four major stages addresses the specified
requirements of the digital transformation within the manufacturing industry.

In our future work we will further expand the concepts in more detail. In a
next step the matrix for individual and organizational acceptance criteria as a
concept for decision support will be elaborated within multiple workshops with
representatives of local industrial enterprises. Furthermore, the approach will be
enriched defining roles and responsibilities for the most critical parts. All steps of
the approach will be evaluated within further software projects as well as within
teaching activities.

References

1. Maslow, A.H.: A theory of human motivation. Psychol. Rev. 50(4), 370–396 (1943)
2. German Federal Ministry of Education and Research (BMBF) re-imagining work -

green paper work 4.0 (2015). http://www.bmas.de/SharedDocs/Downloads/DE/
PDF-Publikationen/arbeiten-4-0-green-paper.pdf. Accessed April 2016

3. German Federal Ministry for Economic Affairs and Energy (BMWi) monitor-
ing report digital economy (2014). http://www.bmwi.de/EN/Service/publications,
did=686950.html. Accessed April 2016

4. Bainbridge, L.: Ironies of automation. Automatica 19(6), 775–779 (1983)

http://www.bmas.de/SharedDocs/Downloads/DE/PDF-Publikationen/arbeiten-4-0-green-paper.pdf
http://www.bmas.de/SharedDocs/Downloads/DE/PDF-Publikationen/arbeiten-4-0-green-paper.pdf
http://www.bmwi.de/EN/Service/publications,did=686950.html
http://www.bmwi.de/EN/Service/publications,did=686950.html

HCSE to Ensure Quality Within the Digitization of Human Workflows 41

5. Buenen, M., Walgude, A.: World quality report 2015–16, 7th edn. (2015). https://
www.capgemini.com/thought-leadership/world-quality-report-2015-16. Accessed
April 2016

6. Johnson, J.: CHAOS 2014. The Standish Group (2014)
7. Sage software GmbH: independent study on IT investments (2014). http://goo.gl/

qy0eM0. Accessed April 2016
8. ISO 9241–210: Ergonomics of human-system interaction - Part 210: Human-centred

design for interactive systems (2010)
9. Jokela, T.: An assessment approach for user-centred design processes. In: Proceed-

ings of EuroSPI 2001. Limerick Institute of Technology Press, Limerick (2001)
10. Bevan, N.: Quality in use - meeting user needs for quality. J. Syst. Softw. 49, 89–96

(1999). Elsevier Science Inc., New York
11. Walker, M., Takayama, L., Landay, J.A.: High-fidelity or low-fidelity, paper or

computer? Choosing attributes when testing web prototypes. In: Proceedings of
the Human Factors and Ergonomics Society Annual Meeting, vol. 46, no. 5, pp.
661–665 (2002)

12. Schwaber, K., Sutherland, J.: The Scrum Guide (2013). http://www.scrumguides.
org. Accessed April 2016

13. Ambler, S.W.: Agile model driven development (AMDD): the key to scaling
agile software development. http://agilemodeling.com/essays/amdd.htm. Accessed
April 2016

14. da Silva, T.S., Martin, A., Maurer, F., Silveira, M.: User-centered design and agile
methods: a systematic review. In: Proceedings of the AGILE Conference, pp. 77–
86. IEEE Computer Society, Washington (2011)

15. Bertholdo, A.P.O., da Silva, T.S., de O. Melo, C., Kon, F., Silveira, M.S.: Agile
usability patterns for UCD early stages. In: Marcus, A. (ed.) DUXU 2014, Part I.
LNCS, vol. 8517, pp. 33–44. Springer, Heidelberg (2014)

16. Belchev, B., Baker, P.: Improving Obama campaign software: learning from users.
In: Proceedings of the AGILE Conference, pp. 395–399. IEEE Computer Society,
Washington (2009)

17. Sy, D., Miller, L.: Optimizing agile user-centred design. In: Proceedings of CHI
Extended Abstracts on Human Factors in Computing Systems, pp. 3897–3900.
ACM, New York (2008)

18. Gothelf, J., Seiden, J.: Lean UX: Applying Lean Principles to Improve User Expe-
rience. O’Reilly, Sebastopol (2012)

19. Manifesto for agile software development (2001). http://www.agilemanifesto.org.
Accessed June 2016

20. Adolph, S.: What lessons can the agile community learn from a maverick fighter
pilot. In: Proceedings of the AGILE Conference, pp. 1–6. IEEE Computer Society,
Washington (2006)

21. Fischer, H., Rose, M., Yigitbas, E.: Towards a task driven approach enabling con-
tinuous user requirements engineering. In: 2nd Workshop on Continuous Require-
ments Engineering (CRE) (REFSQ-JP 2016), CEUR-WS.org, vol. 1564 (2016)

22. Martinie, C., Navarre, D., Palanque, P.: A multi-formalism approach for model-
based dynamic distribution of user interfaces of critical interactive systems. Int. J.
Hum. Comput. Stud. 72(1), 77–99 (2014). Academic Press, Duluth

23. Interaction flow modeling language (IFML). http://www.ifml.org
24. Calvary, G., Coutaz, J., Thevenin, D., Limbourg, Q., Bouillon, L., Vanderdon-

ckt, J.: A unifying reference framework for multi-target user interfaces. Interact.
Comput. 15, 289–308 (2003). Elsevier

https://www.capgemini.com/thought-leadership/world-quality-report-2015-16
https://www.capgemini.com/thought-leadership/world-quality-report-2015-16
http://goo.gl/qy0eM0
http://goo.gl/qy0eM0
http://www.scrumguides.org
http://www.scrumguides.org
http://agilemodeling.com/essays/amdd.htm
http://www.agilemanifesto.org
http://www.ifml.org

Usability Evaluation and Testing

Usability Problems Experienced by Different
Groups of Skilled Internet Users:
Gender, Age, and Background

Jane Billestrup(&), Anders Bruun, and Jan Stage

Department of Computer Science, Aalborg University,
9220 Aalborg East, Denmark

{jane,bruun,jans}@cs.aau.dk

Abstract. Finding the right test persons to represent the target user group,
when conducting a usability evaluation is considered essential by the HCI
research community. This paper explores data from a usability evaluation with
41 participants with high IT skills, to examine if age, gender, and job function or
educational background, has an impact on the amount and types of usability
problems experienced by the users. All usability problems were analysed and
categorised through closed coding, to group the test persons differently in
relation to gender, age, and job function or educational background. The study
found that the usability problems experienced across gender, age group and job
function or educational background, are approximately the same. This indicates
that the usual characteristics of test persons, might not be as important, and
opens up for further research in regards to, if users with different skill levels, in
regards to internet usage, might be more applicable.

Keywords: Usability evaluation � Test persons � Demography

1 Introduction

Usability evaluation is a strong tool for identifying areas of an interactive system that
need improvement. In practice, one of the key challenges for usability evaluators is to
find users that can participate as tests subjects. Recruitment of test subjects is chal-
lenging, and the time required for test sessions and the subsequent data analysis is
usually dependent on the number of the number of test subjects. Therefore, there have
been attempts to determine the minimal number of test users required for a usability
evaluation [4, 7, 11].

Combining Other researchers have criticised these attempts to define the minimal
number. One of the arguments is that different users experience different usability
problems [6, 9]. In these discussions, there has been little evidence as to the actual
differences between the usability problems experienced by different groups of users.

For specialised systems that are used by a homogeneous group of users, this issue is
not particularly relevant. However, for systems that are aimed at diverse and hetero-
geneous groups of users, it is highly relevant.

© IFIP International Federation for Information Processing 2016
Published by Springer International Publishing Switzerland 2016. All Rights Reserved
C. Bogdan et al. (Eds.): HCSE 2016/HESSD 2016, LNCS 9856, pp. 45–55, 2016.
DOI: 10.1007/978-3-319-44902-9_4

This paper presents results from an exploratory study of the usability problems
experienced by different users. The focus of this study was to what extent different test
persons, who are all experienced internet users, experience different types of usability
problems, across gender, age, and educational background or job function.

The system we evaluated was a government data dissemination website aimed at a
very broad user population. In the following section, the related work is presented,
followed by a description of the method used for data collection and analysis. Then the
results are presented, and finally, the results are discussed and concluded upon.

2 Related Work

The question about the number of test subjects needed in a usability evaluation has
been discussed for many years. Virzi [11] focused on the need exists to reduce the cost
of applying good design practices, such as user testing, to the development of user
interfaces. He was one of the first to experiment with the number of test subjects
needed. Over a series of 3 experiments, he found that 80 % of the usability problems
were detected with four or five subjects, additional subjects were less and less likely to
reveal new information, and the most severe usability problems were likely to be
detected with the first few subjects. In the experiments, he used test subjects who were
from the surrounding community or undergraduate students. There is no further
description of their demography.

Lewis [7] emphasices that the aim of a usability evaluation is to have representative
participants. He reports from an experiment with fifteen employees of a temporary help
agency who all had at least three months’ experience with a computer system but had
no programming training or experience. Five were clerks or secretaries and ten were
business professionals. In this study, using five participants uncovered only 55 % of the
problems. To uncover 80 % of the problems would require 10 participants. The results
show that additional participants discover fewer and fewer problems. The most
important result was that problem discovery rates were the same regardless of the
problem severity. Again, there is no concern for the demography of the test subjects.

Caulton [2] argues that the results obtained in these early experiments were based
on the assumption that all types of users have the same probability of encountering all
usability problems, and he denotes this as the homogeneity assumption. If that is
violated, more subjects are needed. He argues that with heterogeneous user groups,
problem detection with a given number of subjects is reduced. The more subgroups, the
lower the proportion of problems expected. If ten unknown user subgroups exist, 50
randomly sampled subjects should yield 80 % of the problems.

Law and Hvannberg [6] have worked more on the influence of subgroups on
problem detection through an experiment with usability tests conducted in four dif-
ferent European countries. They conclude that the heterogeneity of subgroups in a test
will dilute the problem detection rate. Not only for severe problems but also for
moderate and minor ones, the diluting effect implied a reduction. The problem
detection rate for the severe problems is significantly higher than for the less severe, but
the absolute value for the severe problems is not particularly high. Between nine
and ten participants were required to uncover 80 % of the severe problems, whereas

46 J. Billestrup et al.

15 participants were required to uncover 80 % of the minor problems. In addition, they
found no significant correlation between problem detection rate and problem severity
level. Based on their results, they reject that so-called “magic five” assumption as
11 participants were required to obtain 80 % of the usability problems.

More recently, there has been another attempt to define a specific “magic” number
[4]. This new attempt has been criticised for being flawed [9]. A detailed analysis has
been made of the use of the “magic five” assumption. None of these or the previous
references in this area have explored in more detail how heterogeneous different
subgroups are and how different user groups experience different usability problems.

3 Method

We have conducted an exploratory study of usability problems experienced by different
user groups. This section describes how the data was collected and analysed.

3.1 Data Collection

The data was gathered through a usability evaluation of a data dissemination website
(dst.dk). This site provides publicly available statistics about the population (e.g.
educational level or IT skills), the economy, employment situation, etc.

Test Persons. All test persons were invited through emails distributed across the
university. For this study data from 41 usability evaluations were included. The test
persons consist of 12 faculty members from Ph.D students to professors, from different
departments, 15 students in technical or non-technical educations, and 14 participants
from technical and administrative staff from different departments. All participants
received a gift with a value of approximately 20 USD for their participation. An
overview of the participants can be seen in Table 1 on the following page.

All test persons were placed in one of six groups in regards to gender and age. The
test persons varied in age between 21 and 66 years and consisted of 19 males and
22 females. All test persons were asked to assess their own skill level in regards to
Internet usage on a scale from 1 to 5, where 1 was the lowest and 5 the highest score.
The average for each group is shown in the table, none of the 41 test persons assessed
themselves lower than 4. Originally 43 usability evaluations were conducted, but the
data from two usability evaluations were excluded from this study, due to these test
persons assessed themselves at skill level 3 in regards to Internet usage. All test persons
were asked if they were familiar with, and used this website. 19 people answered that
they had never used the website, 20 answered that they were familiar with the site and
used it approximately once a year, and, two people answered that they use the website
approximately once a month.

Usability Evaluations. All tests were conducted as think-aloud evaluations in a
usability laboratory. The test monitor and test person were placed in different rooms
and communicated through microphone and speakers in order to avoid the possibility
of the test moderator’s body language or other visible expressions, influencing each test
person. All test persons were asked to fill out a short questionnaire after the test in
regards to their participation.

Usability Problems Experienced by Different Groups 47

Tasks. Each user solved eight tasks all varying in difficulty. Examples of this were that
the first task was to find the total number of people living in Denmark while a more
difficult task was to find the number hotels and restaurants with one single employee in
a particular area of Denmark.

Data Handling. All usability evaluations were recorded and the collected recordings
were analysed by conducting video analysis. All recordings were analysed by two
evaluators. Both evaluators had extensive previous experience in analysing video data.
The videos were analysed in different random order, to reduce possible bias from
learning.

Table 1. Demography for the 41 test persons.

Number of
people in each
category

Age Age
average

Gender Backgrounds Average
Internet
experience

6 < 27 24 M 5 Computer Science students 5
1 Computer Science faculty
member

8 < 27 22 F 5 Computer science students 4.6
2 humanities students
1 office trainee

8 27–44 36 M 4 computer science faculty
members

4.8

1 social science faculty
member

1 technical staff
1 administrative staff
1 engineering student

8 27–44 38 F 6 administrative staff 4.3
1 social science faculty
member

1 information science
student

5 44 < 55 M 3 computer science faculty
members

4.8

1 faculty member medicine
1 technical staff

6 44 < 50 F 4 administrative staff 4.5
1 faculty member computer
science

1 faculty member medicine

48 J. Billestrup et al.

The following characteristics were used to determine a usability problem;

(A) Slowed down relative to their normal work speed
(B) Inadequate understanding e.g. does not understand how a specific functionality

operates or is activated
(C) Frustration (expressing aggravation)
(D) Test moderator intervention
(E) Error compared to correct approach.

The data handling resulted in a list of 147 usability problems after duplicates had
been removed. To determine similarities between problems from each list, the usability
problems found by each evaluator were discussed. Across the analysis, the evaluators
had an any-two agreement of 0.44 (SD = 0.11), which is relatively high compared to
other studies [3]. Further information about the data collection can be found in [1].

Data Analysis. We also uncovered which types of usability problems that were
experienced by the different groups of participants. We did this through closed coding
[10] where each problem was categorised according to the 12 types listed in Nielsen
et al. [8]. Two of the authors conducted this coding and did so independently of each
other. It was decided in advance that the raters would code all and only use the data
from the codings where the authors agreed on the category independently of each other.
An interrater reliability analysis using the Fleiss Kappa statistic was performed to
validate the result. This determines the level of consistency among the two raters. The
result of was a moderate level of agreement (Kappa = 0.44, p < 0.001, 95 % CI =0.37,
0.52) [5]. The 12 categorised used for this study are described next.

Affordance relates to issues on the user’s perception versus the actual properties of
an object or interface.
Cognitive load regards the cognitive efforts necessary to use the system.
Consistency concerns the consistency in labels, icons, layout, wording, commands
etc. on the different screens.
Ergonomics covers issues related to the physical properties of interaction.
Feedback regards the manner in which the interface relays information back to the
user on an action that has been done and notifications about system events.
Information covers the understandability and amount of information presented by
the interface at a given moment.
Interaction styles concern the design strategy and determine the structure of
interactive resources in the interface.
Mapping is about the way in which controls and displays correlate to natural
mappings and should ideally mimic physical analogies and cultural standards.
Navigation regards the way in which the users navigate from screen to screen in the
interface.
Task flow relates to the order of steps in which tasks ought to be conducted.
User’s mental model covers problems where the interactive model, developed by the
user during system use, does not correlate with the actualmodel applied to the interface.
Visibility regards the ease with which users are able to perceive the available
interactive resources at a given time.

Usability Problems Experienced by Different Groups 49

The coding and analysis by two raters resolved in a list of 83 coded usability
problems, out of originally 147 usability problems. This reduction happened as all
usability problems where the raters did not agree on the category was removed from the
study.

These categorisations were used to distinguish if test persons experienced the same
type of usability problems, or if there were deviations across gender, age, job function
or educational background. The results of this analysis are presented in the following
section.

4 Results

In this section, we present the results from conducting this study. The results are
presented from four different perspectives. First, the test persons are divided into males
and females, then into the three age groups without taking the gender into perspective,
then, the test persons are divided into groups both in regards to age and gender, and
finally, the test persons are divided into groups in regards to education or work
function. This was conducted to show if gender, age or background plays a role in
regards to differences in the perceiving of usability problems. The numbers shown in
the tables in the result section represent an average number of usability problems found
per test person in each category. This was conducted to be able to compare groups
containing different numbers of test persons, and still make the numbers comparable.

The results show that problems were found in regards to five of the twelve closed
codings. Affordance, Cognitive Load, Feedback, Information, and Visibility, respec-
tively. As problems were not found relating to Consistency, Ergonomics, Interaction
Styles, Mapping, Navigation, User’s Mental Model, and Task Flow, these categori-
sations will not be mentioned further.

Note that all results are based on the number of problems to which the two raters
agreed on the categorisations, e.g. if the two raters did not agree on the code of a
particular problem, this was excluded from the result. Out of the total 147 problems the
raters agreed on 83.

4.1 Gender

We analysed whether males and females with similar skills in regards to internet usage
experienced the same amount and type of usability problems. The results are presented
in Table 2.

An independent samples t-test revealed no significant differences in the total
number of experienced between the genders (t = −0.9, df = 39, p > 0.2). We did,
however find significant differences when considering the problem types related to
feedback (t = −1.2, df = 10, p < 0.01) and information (t = −1.8, df = 39, p < 0.01).

50 J. Billestrup et al.

4.2 Age

We also analysed if age had an impact on the experienced amount of usability prob-
lems. The results are presented in Table 3 on the following page.

A one-way ANOVA test revealed no significant differences in number of experi-
enced problems between the three age groups (F = 1.02, df = 40, p > 0.3).

Table 2. The average number of usability problems experienced when dividing the test persons
by gender.

Group statistics

Gender N Mean Std. deviation Std. error mean

Affordance M 10 1,40 0,516 0,163
F 11 1,36 0,674 0,203

Cognitive load M 19 2,32 2,126 0,490
F 22 3,77 2,159 0,460

Feedback M 7 1,00 0,000 0,000
F 5 1,20 0,447 0,200

Information M 19 3,58 1,610 0,369
F 22 4,95 2,952 0,629

Visibility M 17 2,00 1,225 0,297
F 19 1,58 0,769 0,176

Total M 19 9,79 3,896 0,894
F 22 11,05 4,904 1,045

Table 3. Usability problems experienced by different age groups.

N Mean Std. deviation

Affordance <27 5 1,40 0,548
27–44 9 1,56 0,726
>44 7 1,14 0,378
Total 21 1,38 0,590

Cognitive load <27 14 3,79 2,326
27–44 16 3,81 2,257
>44 11 2,91 1,700
Total 41 3,56 2,134

Feedback <27 5 1,00 0,000
27–44 6 1,17 0,408
>44 1 1,00
Total 12 1,08 0,289

Information <27 14 5,29 2,555
27–44 16 4,19 2,562
>44 11 3,27 2,005
Total 41 4,32 2,494

(Continued)

Usability Problems Experienced by Different Groups 51

4.3 Job Function and Educational Background

Finally, we analysed if a large number of test persons with a background in computer
science had an impact in regards to the amount of usability problems experienced. The
results are presented in Table 4.

The table shows, that when dividing the test persons into job function or educa-
tional background, students which are not in computer science, experience more
problems related to cognitive load and information. A one-way ANOVA test revealed
no significant differences in the total number of problems experienced across job
function or educational background (F = 0.6, df = 40, p > 0.6).

Table 3. (Continued)

N Mean Std. deviation

Visibility <27 13 1,62 0,961
27–44 13 1,69 0,855
>44 10 2,10 1,287
Total 36 1,78 1,017

Total <27 14 11,43 4,767
27–44 16 10,69 4,771
>44 11 8,91 3,419
Total 41 10,46 4,456

Table 4. The average amount of usability problems experienced when dividing the test persons
in regards to job function or educational background.

N Mean Std. deviation

Affordance Other students 2 1,00 0,000
CS students 3 1,67 0,577
TAP 10 1,50 0,707
CS faculty 3 1,00 0,000
Other faculty 3 1,33 0,577
Total 21 1,38 0,590

Cognitive load Other students 4 5,75 0,500
CS students 11 3,27 2,195
TAP 15 3,47 1,846
CS faculty 7 4,00 2,887
Other faculty 4 1,75 0,500
Total 41 3,56 2,134

Feedback Other students 0
CS students 3 1,00 0,000
TAP 3 1,00 0,000
CS faculty 4 1,00 0,000

(Continued)

52 J. Billestrup et al.

5 Discussion

This study has focused on comparing the amount of usability problems found when
grouping the test persons in regards to gender, age, and job function or educational
background. This was conducted as all test persons assessed themselves as experienced
internet users, as each rated themselves as either 4 or 5 on a scale from 1 to 5, where
five was the highest score. This way, it could be explored if test persons of a high
degree of internet skills experienced different types of usability problems, or if they
could be considered a homogeneous group, where neither age, gender, and job function
or educational background made a difference in regards to the average amount of
usability problems.

5.1 Comparison with Related Work

Related work has shown that the amount of needed test persons varies [7, 11]. As
demographical data was not included in these studies it is not possible for us to draw
any conclusions in relation to the results from this study, though it raises the question
of, if the test persons chosen by Virzi [11] were more homogeneous than the test
persons chosen by Lewis [7] in regards to the skills of Internet usage or IT in general.

Table 4. (Continued)

N Mean Std. deviation

Other faculty
2 1,50

0,707

Total 12 1,08 0,289
Information Other students 4 5,00 3,559

CS students 11 4,55 2,067
TAP 15 4,87 3,021
CS faculty 7 3,14 1,069
Other faculty 4 3,00 1,826
Total 41 4,32 2,494

Visibility Other students 3 1,33 0,577
CS students 10 1,60 1,075
TAP 14 1,79 0,802
CS faculty 6 2,33 1,506
Other faculty 3 1,67 1,155
Total 36 1,78 1,017

Total Other students 4 12,25 4,031
CS students 11 10,00 4,123
TAP 15 11,20 5,003
CS faculty 7 10,14 4,140
Other faculty 4 7,75 4,787
Total 41 10,46 4,456

Usability Problems Experienced by Different Groups 53

This study has found indications that a user group can be homogeneous though a
variety in age and background. Our results indicated that the test persons from this
study experience around the same amount of usability problems in regard to each
categorization (Affordance, Cognitive Load, Feedback, Information, Visibility), across
gender, age, and background. This corresponds with Caultons’ conclusions about
homogeneous user groups experiencing the same usability problems [2].

This study shows no greater difference in regards to the types of usability problems
experienced by the test persons. This does not correspond with the findings of Law and
Hvannberg who concluded that the heterogeneity of subgroups in a test will dilute the
problem detection rate [6].

5.2 Implications for Usability Practitioners

Though further research is needed, this study indicates that recruiting test persons
across gender, and age might not be necessary, as these findings show that users with
approximately the same level of skills in regards to Internet usage, experience the same
amount of usability problems. If, the indication that skill level is key, when recruiting
test persons for usability evaluations, this means that the most important is to recruit
test persons of all skill levels of the target user group for the website or application,
and, that variety in age or gender is not important when recruiting test persons. The
implications might especially be of interest, when developing websites or applications
for large heterogeneous user groups e.g. public websites or self-service applications, as
these types of sites are targeted for all citizens in a country. This will make it chal-
lenging to represent all types of users when conducting usability evaluations, as a lot of
test persons would need to be recruited, and it would be costly to conduct this amount
of usability evaluations. On the contrary, if test persons only need to be recruited in
regards to their skill level of Internet usage and IT in general, this would reduce the cost
considerably.

6 Conclusion

This paper presents a study of to what extent different test persons, who are all
experienced internet users, experience different types of usability problems. This has
been presented across age, gender, and educational background or job function. The
results are interesting as it is indicated that the usability problems experienced by users
with a high level of internet experience do not vary significantly, across gender, age or
background. This means that finding test persons might not have to be balanced in
regards to neither gender or age, but that is more important to find test persons on all
levels of internet experience in the target user group. Our results also indicate that
people with an education in Computer Science do not experience significantly fewer
usability problems, than other experienced internet users.

54 J. Billestrup et al.

6.1 Limitations

We do recognise that further studies need to be conducted to be able to actually draw
conclusions across user groups at different levels of Internet experience and that these
results do not provide enough evidence to definitively rejecting the previously men-
tioned criticism of the “homogeneity assumption” by Law and Hvannberg [6]. This
means that further research should be conducted with more homogeneous user groups
with different levels of internet skills, and not just one group of experienced users. As it
needs to be investigated further if these results also are valid for other user groups with
lower skill levels in regards to Internet usage.

We also recognise the limitations of our test persons having a higher educational
background and a self-reported high expertise in internet usage. Also the fact that a lot
of the found usability problems were discarded at the coding phase and therefore not
included in the data analysis.

References

1. Bruun, A., Stage, J.: An empirical study of the effects of three think-aloud protocols on
identification of usability problems. In: Abascal, J., et al. (eds.) INTERACT 2015. LNCS,
vol. 9297, pp. 159–176. Springer, Heidelberg (2015)

2. Caulton, D.A.: Relaxing the homogeneity assumption in usability testing. Behav. Inf.
Technol. 20(1), 1–7 (2001)

3. Hertzum, M., Jacobsen, N.E.: The evaluator effect: a chilling fact about usability evaluation
methods. Int. J. Hum. Comput. Interac. 15, 183–204 (2003)

4. Hwang, W., Salvendy, G.: Number of people required for usability evaluation: The 10 ± 2
rule. Commun. ACM 53(5), 130–133 (2010)

5. Landis, J.R., Koch, G.G.: The measurement of observer agreement for categorical data.
Biometrics 33, 159–174 (1977)

6. Law, E.L-C., Hvannberg, E.: Analysis of combinatorial user effect in international usability
test. In: Proceedings of CHI (2004)

7. Lewis, J.R.: Sample sizes for usability studies: Additional considerations. Hum. Factors 36,
368–378 (1994)

8. Nielsen, C.M., Overgaard, M., Pedersen, M.B., Stage, J., Stenild, S.: It’s worth the hassle!
the added value of evaluating the usability of mobile systems in the field. In: Proceedings of
NordiCHI. ACM Press (2006)

9. Schmettow, M.: Sample size in usability studies. Commun. ACM 55(4), 64–70 (2012)
10. Strauss, A., Corbin, J.: Grounded theory methodology. Handbook of qualitative research

(1994)
11. Virzi, R.A.: Refining the test phase of usability evaluation: how many subjects is enough?

Hum. Factors 34, 457–468 (1992)

Usability Problems Experienced by Different Groups 55

User-Test Results Injection into Task-Based Design
Process for the Assessment and Improvement of Both

Usability and User Experience

Regina Bernhaupt1, Philippe Palanque2, François Manciet1, and Célia Martinie2(✉)

1 ruwido austria gmbh, Köstendorfer Straße 8, 5202 Neumarkt a. W., Austria
{regina.bernhaupt,francois.manciet}@ruwido.com

2 ICS-IRIT, University of Toulouse, 118, route de Narbonne, 31062 Toulouse, France
{palanque,martinie}@irit.fr

Abstract. User Centered Design processes argue for user testing in order to
assess and improve the quality of the interactive systems developed. The under‐
lying belief is that the findings from user testing related to usability and user
experience will inform the design of the interactive system in a relevant manner.
Unfortunately reports from the industrial practice indicate that this is not straight‐
forward and a lot of data gathered during user tests is hard to understand and
exploit. This paper claims that injecting results from user-tests in user-tasks
descriptions support the exploitation of user test results for designing the n+1
prototype. In order to do so, the paper proposes a set of extensions to current task
description techniques and a process for systematically populating task models
with data and analysis gathered during user testing. Beyond the already known
advantages of task models, these enriched task models provide additional benefits
in different phases of the development process. For instance, it is possible to go
beyond standard task-model based performance evaluation exploiting real
performance data from usability evaluation. Additionally, it also supports task-
model based comparisons of two alternative systems. It can also support perform‐
ance prediction and overall supports identification of usability problems and
identifies shortcomings for user experience. The application of such a process is
demonstrated on a case study from the interactive television domain.

Keywords: Task models · Usability evaluation · User experience evaluation ·
Process

1 Introduction

User-Centered Design (UCD) processes argue for user testing in order to assess and
improve the quality of the interactive systems developed. User-centered design and
development is typically performed iteratively with four major phases: (1) Analysis,
(2) Design, (3) Development/Implementation and (4) Evaluation [4]. In the analysis
phase the main goal is to understand who is (or will be) using the system, in what kind
of environment and for what kind of activities or tasks. Many notations, processes and

© IFIP International Federation for Information Processing 2016
Published by Springer International Publishing Switzerland 2016. All Rights Reserved
C. Bogdan et al. (Eds.): HCSE 2016/HESSD 2016, LNCS 9856, pp. 56–72, 2016.
DOI: 10.1007/978-3-319-44902-9_5

tools have been proposed for gathering information about the users either in formal (via
formal requirements as in [27] or formal task models [37]) or informal ways (via brain‐
storming [11] or prototyping [43]). One of the main advantages put forward by notations
is that they make it possible to handle real-size applications and, if provided with a
formal semantics, make it possible to reason about the models built with the notations
and assess the presence or absence of properties.

The design phase encompasses activities to create or construct the system according
to the analysis results. In the development phase the system is implemented and builds
the basis for the evaluation of the interactive system [33].

One of the most used methods to evaluate early versions of a system or a prototype
is user testing. The term user testing is broadly used in the area of human-computer
interaction but in general describes any form of evaluation of an interactive system that
involves users. User testing is associated with evaluating usability and now also incor‐
porates user experience evaluation [18]. Goal of user testing is to gather feedback from
users to identify usability problems or to understand what type of experience users have
when interacting with the product. User testing can be classified into user tests that are
either performed in the laboratory or in the field [29], where a user is asked to perform
a set of tasks during that study. Users performance is typically observed and recorded
(by video and for example measuring bio-physiological data) and users are asked for
verbal responses (interviews) or ratings (e.g. via standardized questionnaires like SUS
[8] or AttrakDiff [2].).

One key limitation for the majority of such user testing is how the results are made
available for the next iteration in the design and development process [18]. To help
inform the next iteration of a prototype, product and system, this information would be
ideally fed back to the analysis phase to inform or improve design.

To support usability and user experience (UX) as key software qualities in the design
and development cycle there is a need to:

(1) find a way to document the results of evaluation studies,
(2) allow the comparison of alternative approaches or systems,
(3) enable prediction of user behaviour and performance,
(4) support analysis of usability problems (efficiency, effectiveness and satisfaction),

and
(5) show how different functions or tasks of the user contribute to the various user

experience dimensions like aesthetics, emotion, identification, meaning and value
and in general to the overall user experience.

Goal of this paper is to show a solution for how to integrate results from user tests
in task models to support documentation, comparison, prediction and analysis of
usability problems and relation of tasks to the overall user experience.

The paper is structured as follows: section two presents a state of the art on usability
evaluation with a focus on user testing and an overview on user experience evaluation
followed by a short overview on task analysis and modelling.

Section three describes our proposed process model and section four shows how this
process model was applied in a case study in the area of interactive TV. We conclude
with a summary and a discussion of the paper in section five.

User-Test Results Injection into Task-Based Design Process 57

2 State of the Art

2.1 Usability Evaluation Methods

Usability Evaluation is a phase in iterative UCD processes with the goal to investigate
if the system is efficient to be used, effective when used and if users are satisfied [19].
Another central goal is to understand how users learn to use the system and (for complex
systems) how to train users. Methods for usability evaluation can be classified in
methods that are performed by usability experts, automatic methods, and those involving
real end-users.

Usability evaluation methods that are performed by experts rely on ergonomic
knowledge provided by guideline recommendations, or on the experts’ own experiences
to identify usability problems while inspecting the user interface. Known methods
belonging to this category include Cognitive Walkthrough [23, 42], formative evaluation
and heuristic evaluation [32] and benchmarking approaches covering issues such as ISO
9241 usability recommendations or conformance to guidelines [3]. Inspection methods
can be applied in the early phases of the development process through analysis of mock-
ups and prototypes. The lack of ergonomic knowledge available might explain why
inspection methods have been less frequently employed. Automatic methods include
approaches that enable automatic checking of guidelines for various properties (e.g. user
interface design, accessibility…).

Methods involving real users are commonly referred to as user testing. User tests
can be performed either in a laboratory or in the field with the main goal to observe and
record users’ activity while performing predefined activities that are typically described
as scenarios [29] representing parts of the tasks users can perform with the overall
system.

User tests are performance measurements to determine whether usability goals have
been achieved. These measurements if performed scientifically rigorous are then called
experiments or experimental evaluations [22], while tests with low numbers of partici‐
pants and the main goal to identify usability problems are referred to as usability studies
or usability tests [16].

A typical user test consists of several steps starting for example to obtain demo‐
graphic information (e.g. gender, age, competencies, experiences with systems, …) and
information on their preferences or habits. Participants provide that information typi‐
cally by answering questionnaires or answering interview questions. A second step is
then to ask users to perform a set of tasks. Their behaviour is observed and classified
e.g. identifying if users performed the task successful, how long it took them to perform
the task or how many errors were made. Users most often are video recorded (observa‐
tion of certain behaviours, movements or reactions) and system interaction can be
logged. Finally, users will provide feedback on the system e.g. filling out questionnaires
or answering interview questions. Questionnaires have been extensively employed [40]
to obtain quantitative and qualitative feedback from users (e.g. satisfaction, perceived
utility of the system, user preferences for modality) [32] and cognitive workload (espe‐
cially using the NASA-TLX method).

58 R. Bernhaupt et al.

More recently, simulation and model-based checking of system specifications have
been used to predict usability problems such as unreachable states of the systems or
conflict detection of events required for fusion. [31] proposed to combine task models
(based on Concur Task Tree (CTT) notation) with multiple data sources (e.g. eye-
tracking data, video records) in order to better understand the user interaction.

2.2 User Experience and Its Evaluation

User Experience (UX) still misses a clear definition especially when it comes to the fact
to try to measure the concept or related constructs or dimensions [21]. As of today the
term user experience can be seen as an umbrella term used to stimulate research in HCI
to focus on aspects which are beyond usability and its task-oriented instrumental values.
UX is described as dynamic, time dependent [20] and beyond the instrumental [17].
From an HCI perspective the overall goal of UX is to understand the role of affect as an
antecedent, a consequence and a mediator of technology. The concept of UX focuses
rather on positive emotions and emotional outcomes such as joy, fun and pride [17].

There is a growing number of methods available to evaluate user experience in all
stages of the development process. Surveys on these contributions are already available
such as [5] who present an overview on UX and UX evaluation methods or HCI
researchers who have summarized UX evaluation methods in a website [1]. Beyond that
work on generic methods, contributions have been proposed for specific application
domains, e.g. for interactive television [41]. User experience does include a look on all
the (qualitative) experience a user is making while interacting with a product [28]. The
current ISO definition on user experience focuses on a “person’s perception and the
responses resulting from the use or anticipated use of a product, system, or service”
[19]. From a psychological perspective these responses are actively generated in a
psychological evaluation process, and it has to be decided which concepts can best
represent the psychological compartments to allow to measure the characteristics of user
experience. It is necessary to under-stand, investigate and specify the dimensions or
factors that are taken into account for the various application domains.

User experience evaluation is done in the majority of cases in combination with a
usability study or test, applying additional UX questionnaires focusing on a selection of
user experience dimensions. Examples are the AttrakDiff questionnaire [2] measuring
hedonic and pragmatic quality and attractiveness, or Emo Cards [12] enabling the user
to show their emotional state [1].

Data from user experience evaluation can be classified in qualitative (e.g. descrip‐
tions of feelings of a user when interacting with a system) or quantitative (e.g. rating
scores). They can either reflect the user’s experience for the whole system, or can be
specifically associated to a task or sub-task (e.g. a physiological reaction like an
increased heart-rate while doing a specific sub-task).

All these usability and user experience evaluation methods have a common limita‐
tion: they do not specify in detail how the evaluation results, for example reports of
usability problems, task times, users’ perception of difficulty for usability or appreciation
levels, ratings or bio-physiological data for user experience can be used to inform the
next design iteration.

User-Test Results Injection into Task-Based Design Process 59

2.3 Task Models: Benefits and Limitations

Introduced by [34, 37], tasks models for describing interactive systems are used during
the early phases of the user-centered development cycle to gather information about
users’ activities. They bring several benefits when they are used throughout the devel‐
opment process and the operation time:

• They support the assessment of the effectiveness factor of usability as well as usability
heuristic evaluation [10, 39];

• They support the assessment of task complexity [14, 33, 44];
• They support the construction of training material and training sessions [25];
• They support the construction of the documentation for users [15];
• They help to support the errors done by users as wells as their anticipations [13, 38];
• They help to identify the good candidates for migration [24, 45];
• They help to provide users contextual help [35, 36];
• They support the redesign of system [46].

Nonetheless, task models suffer from various limitations:

• They miss quantitative information about performance data (number of errors per
task, ratings for each task…);

• They miss connection to user experience and other software quality attributes;
• Tool support and process support is limited when it comes to the integration of

usability and user experience evaluation data to inform the next iteration of design.

In terms of tools there are only few available that allow to describe tasks not only
representing activities but enabling the notion of error as well as the annotation of
necessary knowledge and system used for the interaction [26]. We thus decided to extend
the existing tool supported notation called HAMSTERS [13], as it is closest to what we
would need for re-injecting results from user tests.

3 How to Enhance Task Models with Data: A Process Proposal

For any complex system that is developed following an iterative UCD process it has
been reported that results from the usability evaluation phase of the system in stage (n)
have not been incorporated in the next version of the prototype or system (n+1). We
argue that task models can be beneficial in such an approach given that the tool support
is able to represent an interactive system in detail.

A task modelling tool thus has to be able to store the information gathered during
user-tests related to usability and UX. It must allow to connect task descriptions with
user test results to support the understanding and analysis of collected data related to
the task models. This way it is possible to identify limitations and how small activities
of the user, like performing a sub-task like a log-in to a system, can influence the overall
perception of the user experience of the system. We have been choosing HAMSTERS
as a tool to show how task models can be enhanced to show data gathered in user tests.

We propose a PRocess to ENhance TAsk Models (PRENTAM) shown in Fig. 1,
enabling the insertion of the data from the user tests in task models. Starting with (1) a

60 R. Bernhaupt et al.

task analysis that is based on a variety of artefacts and insights obtained with methods
like focus groups, interviews or ethnographic methods, the tasks a user can perform
when interacting with the system are described. Based on the task analysis the tasks are
modelled (2). Task modelling is supported by a variety of different tools; in our case
HAMSTERS1 [13].

Fig. 1. Proposed process flow to enhance task models ‘PRENTAM’

1 https://www.irit.fr/recherches/ICS/softwares/hamsters/.

User-Test Results Injection into Task-Based Design Process 61

https://www.irit.fr/recherches/ICS/softwares/hamsters/

(3) Task models form the basis for the next step that is the design and development
of the systems. We are aware that there is a variety of processes, methods and develop‐
ment stages included in this activity, but given that our contribution lies in how to re-
inject user test results into task models, we just provide an abstract phase in the process
model. Once a first prototype is available for evaluation the task models can be used to
extract scenarios that shall be tested in the user test (4). The user test then is conducted
through a Usability/UX study, following the same methods and procedures during the
test for each of the participants (5). Within the user test each scenario is performed by
a number of users. A set of different usability metrics can be measured which typically
include metrics for effectiveness (successfully performed tasks, number of errors, task
time in total, time measures for abstract tasks…) or satisfaction (users rating of the
perceived difficulty). In terms of user experience dimensions are measured using ques‐
tionnaires or interviews, observation like videos or eye-tracking, sometimes using bio-
physiological feedback. Typical dimensions for user experience are aesthetics, emotion,
identification, stimulation, meaning/value or social connectedness [7]. Data that is
collected during such a user test thus can be (a) qualitative data like responses of a user
in an interview, (b) quantitative data - ranging from ordeal to ratio data.

In (6), evaluation provides a multitude of data (sets) that has to be analysed, and
where data is subsequently extracted. Analysis includes grouping of data (for example
computing means and standard deviation) or statistical analysis (significance tests).

The analysed data then is injected in the task model (7). The important novelty aspect
of this proposed process is that it enhances the task models used with the data gathered
during the evaluation. Data is analysed and extracted from the evaluation and is injected
inside the task models. Each task is enriched with data, for example minimal task time
or maximal task time can be annotated as a property for the whole tasks or sub-tasks
(see also later Fig. 3 for a depiction how this looks like in HAMSTERS).

Data is injected on several levels of the task model. For data that is related to the
overall system evaluation this would be at the root of the task, while for data that is
related to a small activity or an error this is at the nodes of a sub-task. The notation is
using similar extensions as presented in [26].

The enriched task models can be used to understand and identify for example
usability problems or limitations in terms of user experience (8). Depending on the
problems found this will lead to changes in the system (System or Tasks Mending), e.g.
by enhancing or improving an interaction technique or by re-ordering sub-tasks or
activities (9). The enhanced task models then build the basis for the iteration of the
system. In some cases, this can also lead back to the analysis phase.

This process ends when results from the user study are good enough to allow a re-
lease of the product. Given that changes are made to the system the new system has to
be described starting again with a task analysis.

4 A Case Study from Interactive TV

Goal of this case study is to show how we followed the ‘PRENTAM’ during the devel‐
opment of an interactive TV system.

62 R. Bernhaupt et al.

4.1 The Interactive TV Prototype

The prototypical system that we designed and developed enables the user to watch live
television broadcast with associated functionalities including direct control like
changing channels, regulating volume or muting the sound and additional functionality
including Electronic Program Guide (EPG), a Video On Demand section (VOD), the
support of personalization with individual user profiles, storage of personal data like
photos and access to system settings (e.g. pin code registration to restrict access to
content for children). The system also allows the user to control video content (forward,
back, pause) and to time-shift programs. Figure 2 shows the main user interface and
EPG. The system is based on a simple six button navigation (up, down, left, right, ok,
back) with an overall good usability [40].

Fig. 2. Main menu (left) and electronic program guide (right) of the User Interface prototype.

In this Case Study we focus on one aspect of the system which was the introduction
of the ability to transfer content from the TV to other devices via selectable menu options
on the TV user interface. For example, this function allows the user to take away the
movie being watched on the TV to a mobile device (e.g. a tablet).

4.2 Following the “PRENTAM” Process Step by Step

Task Analysis (Step 1). A task analysis was performed to understand activities and
user goals that are related to using several devices while watching TV, including moving
data or content (movies) between these devices. The task analysis involves approaches
such as focus groups, interviews and ethnographic studies [41].

Task Modelling (Step 2). Based on the task analysis of the interactive TV system we
modelled the main system tasks using HAMSTERS. This modelling was based on
previous descriptions from [30].

Design and Development (Step 3). Based on the task models we have been designing
and developing three additional functionalities: (1) enabling the user watching a TV
show or program to access additional information related to that TV show on the tablet
(2) allow users to take away the currently displayed TV show or program on the tablet
and (3) to compare different movies in terms of user ratings before buying them.

User-Test Results Injection into Task-Based Design Process 63

Scenario Extraction (Step 4). One advantage of using task models is the ability to use
them to extract scenarios for the evaluation of the proposed system. We chose four
scenarios that covered the three additional functionalities:

0. User Test Scenario 0: Trial task to discover the system (change channels and access
video on demand section);

1. User Test Scenario 1: Get more information (number of episodes) about a TV show
in the program guide;

2. User Test Scenario 2: Get extra information about a movie (number of Os-car/
ratings);

3. User Test Scenario 3: Store information (ratings) about movies before buy-ing them
in order to compare them;

4. User Test Scenario 4: Continue to watch a movie on the second screen.

Usability and UX Study (Step 5). Thirty-two students in computer science from the
University of Toulouse took part in the study. Twenty-four were male and 8 were female.
The age of participants ranged from eighteen to twenty-five, with an average of 21.7
(SD = 1.65).

The evaluation study took place in a room that was arranged with two sofas, one
table and the desk where the TV screen and the audio system were placed. The TV screen
used was in fact a 21.5″ computer screen, full HD. The second screen used was a tablet
Google Nexus 7 running android 4.4. Users were video-taped during the session and we
had an eye-tracker installed to follow the eye-gaze.

The evaluation study was structured into four parts. During the first one, we asked
users questions about their media consumption habits, as well as their knowledge about
TV systems and second screen apps. The second part was dedicated to the use of the
system. The experimenter gave the user basic information about how the sys-tem works.
Each participant conducted four tasks with the system. For each task, a short introduction
into the scenario was given, followed by an explicitly formulated task assignment. Hints
were provided after a predefined time period. Additionally, each task had a time limit.
If a participant needed more time the task was stopped, counted as not solved and the
correct way to solve the task was explained to the user. After performing the four tasks,
and answering questions about each tasks (difficulty, comfort, naturalness of the inter‐
action technique) the experimenter asked the user to fill out the AttrakDiff [2] and the
SUS [8] questionnaire. The final part was an inter-view and the debriefing of the user.

During the evaluation study the following types of data have been gathered:

(a) data about demographics (age, gender, media consumption habits)
(b) data about the use of the system including time needed (measuring time in the

system) to complete a task, errors (performing a user observation with a written
protocol by the test leader), general user behaviour (video), eye-gaze (Eye-
Tracking) and user’s appreciation of the system including ratings on user experi‐
ence like naturalness or comfort

(c) data related to the user experience (e.g. AttrakDiff) and usability (e.g. SUS) of the
system

(d) interview data from the final interview.

64 R. Bernhaupt et al.

Evaluation and Analysis (Step 6). After a first step of cleaning up the data by identi‐
fying outliers and verifying the video material, data was analysed and prepared for
injection in the task model. This included a video analysis and re-visiting of observation
protocols reporting number of errors, task success and failures, preparation of average
task completion time, averages of ratings etc. (see Table 1).

Table 1. Tasks results: Average Execution Times for Successful Tasks (N, time, Standard Devi‐
ation) and Rating of Difficulty of the Task and Standard Deviation (SD).

Total
S H F Time (SD) R (SD)

T1 20 7 5 122 (51,53) 2,4 (1,21)
T2 25 6 1 111 (50,70) 2,1 (1,09)
T3 22 9 1 193 (68,26) 2,3 (1,02)
T4 39 2 1 67 (25,44) 1,6 (0,81)

For qualitative data like answers in interviews we summarized the number of positive
and/or negative comments related to usability and identified comments related to six
user experience dimensions including aesthetics, emotion, identification, stimulation,
social connectedness and meaning/value [7].

Data Injection into Task Model (Step 7). Once the evaluation results are analysed
and summarized the data related to the various usability and UX dimension is fed back
into the task model. The tool HAMSTERS allows the users to describe properties of
tasks and activities. Figure 3 shows screenshots of the tree tabs of the frame Properties
associated to a task model in HAMSTERS tool. Second and third tabs of this frame are
respectively presenting the Usability and the User Experience dimensions where data
can be included.

For the different types of data there are various other ways to represent them in the
task model. For data related to the overall system appreciation (AttrakDiff) or user
ratings on the overall usability of the system (SUS) the data is stored at high levels nodes
located at the top of the task tree. Data that is related to tasks or more specifically situa‐
tions e.g. when the user was reporting difficulties with the interaction technique at a
special instance while performing a task are stored directly at the relevant node (typically
a leaf of the tree).

Identification of Usability and User Experience Problems (Step 8). After the meas‐
urement information about usability and user experience has been entered in task prop‐
erties frame for each evaluated task in task models, usability and user experience issues
can be analysed in an integrated way. The data can complement standard performance
metrics like KLM [9]. Especially interesting in our case is an analysis of behaviours
where performance times are rarely available like time to change a devices or time for
speech and touch interaction for remote controls. In the presented case study, in terms
of usability problem identification, the task models clearly showed that the tasks were
rather long (see minimum and maximum execution time for sub-task “Transfer the
displayed program to the tablet” in Fig. 3(a)), complicated (see field “Difficulty rating”

User-Test Results Injection into Task-Based Design Process 65

a)

b)

c)

Fig. 3. In HAMSTERS tool, the Properties Frame Displaying Usability (b) and UX Data (c).

66 R. Bernhaupt et al.

for the sub-task “Transfer the displayed program to the tablet” in Fig. 3(b)) and users
were not much satisfied (see Fig. 3(b)), they would have preferred that the system
performs these tasks automatically. In addition, in terms of user experience, the transfer
if the viewed program from one device to another was perceived as less natural in terms
of user experience and needed improvement.

Furthermore, when looking at user experience, the annotations in the task model
allow the designer to revisit the task models and see what user experience dimensions
are most important for the users for the different (sub-) tasks. They showed especially
that users felt the tasks to be not natural (see field “Naturalness” for sub-task “Transfer
the displayed program to the tablet” in Fig. 3(c)).

System or Tasks Mending (Step 9). To decrease the task difficulty for transferring the
program to the second screen, as well as to improve the naturalness UX dimension of
the interactive TV prototype, we decided to introduce an automation for these tasks were
data is transferred between the devices. In order to enhance the usability and the user
experience, the process of performing tasks including both a TV and a tablet have been
simplified. By adding a remote control function on the tablet, the interactive TV proto‐
type automatically communicates the current state/information from the TV to the tablet
and supports the user accomplishing the task (e.g. take away of the movie). Figure 4
shows the new version of the task models for the task of content transfer including
automation.

This new version of the task model is linked to a new version of the prototype. The
insertion of results from user testing in task models was beneficial for the development
of the system. Having task models for the iterations of the system allowed us to compare

Table 2. Differences between the two task models (Opt: number of optional tasks, Ite: number
of iterative tasks, Nb: number of tasks)

Automation No automation
Opt Ite Nb Opt Ite Nb

User Tasks Perceptive Tasks 1 1
Motor Tasks 1 1 3 1

System Tasks System Tasks 1 1 2 0
Interactive Tasks Input tasks 1 3 2 7

Output tasks 1 2 2 2
I/O Tasks 0 1 1

Cognitive Tasks Cognitive Tasks 0 2
Cognitive Analysis Tasks 0 1
Cognitive Decision Tasks 1 1 1 1

Total Total User Tasks 1 1 4 0 0 2
Total System Tasks 1 1 2 0 0 0
Total Interactive Tasks 0 2 5 0 5 10
Total Cognitive Tasks 0 1 1 0 1 4
Total 2 5 12 0 6 16

User-Test Results Injection into Task-Based Design Process 67

how different types of automation affect the usability and the user experience of the
system, and what changes in the tasks and sub-tasks provoke a change in the perception
of the usability or user experience. Table 2 shows such an analysis of how the two task
models are different, in terms of number of tasks and tasks type involved (optional tasks,
or iterative tasks, i.e. tasks the user have to repeat several times).

Based on the evaluation of the automated system we found that efficiency and effec‐
tiveness were improved. For example, Usability was investigated using the SUS ques‐
tionnaire. A closer inspection of the SUS scores revealed that the type of the system did
have an observable influence on the SUS score (System A – with automation:
mean = 83.2, SD = 13.0; System B - without automation: mean = 68.2, SD = 15.5).
The results of the evaluation study have been published in [6].

Fig. 4. Task model: Showing an automated task that allows to transfer content by simply touching
the device with the remote control to indicate the transfer.

68 R. Bernhaupt et al.

5 Discussion: Benefits and Limitations

The interplay between usability evaluation and user interaction design is not as perfect
as we would wish for [18]. In lots of cases, evaluation results are simply not taken into
account for a design iteration, or are reinterpreted. Using a formal description including
task models can help to improve such a feedback of evaluation results to be better (re)
presented for design iterations. The proposed Task Model Enhancement Process
(PRENTAM) supports design and development with the following:

(1) the selection of scenarios for usability and user experience studies (e.g. check of
coverage)

(2) representation of evaluation data in the task model covering dimensions like user
satisfaction that were not represented until now in a task model

(3) representation of user performance values in the task model to sup-port/complete
predictive models like KLM

(4) validity checks if reality matches the assumptions and predictions. E.g. if the post
completion error is really a problem: how often does the error happen and is that
really an issue in terms of overall usability (and UX) perception

(5) the support for design and design decisions enabling to understand how to improve
the design to overcome usability problems and user experience limitations, and to
understand what parts of the current solution to keep (which avoids re-testing of
these branches)

(6) predict (forecast) for new designs if they have the same structure (which limits the
scope of the next evaluations)

(7) compare systems (e.g. different TV systems that support the same task can be
compared) or compare interaction techniques (e.d. different types of interaction
techniques for the same system).

In terms of user experience, the enhanced task model allows to understand how tasks
do contribute to an overall UX judgement and the various dimensions of UX.

6 Summary and Conclusion

There is a fundamental belief when applying user-centered design and development
processes that the findings from usability evaluations inform the user interaction design
in a relevant manner. Unfortunately this is very often not the case [18]. To overcome
this problem this article proposed the task model enhancement process (PRENTAM),
that feeds back evaluation data into task models and enhances them. Applying this
process to an (industrial) case study was a challenge but has shown that task modelling
has its rightful place in a design and development cycle for large and complex interactive
systems.

This is the first promising step toward systematic integration of usability and user
experience evaluation data into artefacts used and produced in the design phases. The
HAMSTERS tool currently only provides support to integrate quantitative values for
usability and user experience.

User-Test Results Injection into Task-Based Design Process 69

Further contributions will be to integrate continuous data like observation data
(videos, sound) or bio-physiological measurements (like eye-tracking, blood pres‐
sure…) which are currently simply connected via a link, but not integrated in the visual
display of the task model.

We will continue to explore this Task Model Enhancement Process (PRENTAM) in
the following iterations of the interactive TV prototype and at the same time start
enhancing the HAMSTERS tool to support even more data visualization especially for
the user experience dimensions.

References

1. All About UX: All UX Evaluation Methods. http://www.allaboutux.org/all-methods
2. AttrakDiff. www.attrakdiff.de
3. Bach, C., Scapin, D.: Ergonomic criteria adapted to human virtual environment interaction.

In: Proceedings of the 15th Conference on L’Interaction Homme-Machine, pp. 24–31. ACM,
New York (2003)

4. Baecker, R.M.: Readings in Human-computer Interaction: Toward the Year 2000. Morgan
Kaufmann Publishers, San Francisco (1995)

5. Bargas-Avila, J.A., Hornbæk, K.: Old wine in new bottles or novel challenges: a critical
analysis of empirical studies of user experience. In: Proceedings of the SIGCHI Conference
on Human Factors in Computing Systems, pp. 2689–2698. ACM, Vancouver (2011)

6. Bernhaupt, R., Manciet, F., Pirker, M.: User experience as a parameter to enhance automation
acceptance: lessons from automating articulatory tasks. In: Proceedings of the 5th
International Conference on Application and Theory of Automation in Command and Control
Systems, pp. 140–150. ACM, New York (2015)

7. Bernhaupt, R., Pirker, M.: Evaluating user experience for interactive television: towards the
development of a domain-specific user experience questionnaire. In: Kotzé, P., Marsden, G.,
Lindgaard, G., Wesson, J., Winckler, M. (eds.) INTERACT 2013, Part II. LNCS, vol. 8118,
pp. 642–659. Springer, Heidelberg (2013)

8. Brooke, J.: SUS-A quick and dirty usability scale. In: Jordan, P.W., Thomas, B.,
Weerdmeester, B.A., McClelland, A.L. (eds.) Usability Evaluation in Industry, pp. 189–194.
Taylor & Francis, London (1996)

9. Card, S.K., Moran, T.P., Newell, A.: The keystroke-level model for user performance time
with interactive systems. Commun. ACM 23, 396–410 (1980)

10. Cockton, G., Woolrych, A.: Understanding inspection methods: lessons from an assessment
of heuristic evaluation. In: Blandford, A., Vanderdonckt, J., Gray, P. (eds.) People and
Computers XV—Interaction without Frontiers, pp. 171–191. Springer, London (2001)

11. Dennis, J.S.V.A.R.: Computer brainstorms: more heads are better than one. J. Appl. Psychol.
78, 531–537 (1993)

12. Desmet, P., Overbeeke, K., Tax, S.: Designing products with added emotional value:
development and application of an approach for research through design. Design J. 4, 32–47
(2001)

13. Fahssi, R., Martinie, C., Palanque, P.: Enhanced task modelling for systematic identification
and explicit representation of human errors. In: Abascal, J., Barbosa, S., Fetter, M., Gross,
T., Palanque, P., Winckler, M. (eds.) INTERACT 2015, Part IV. LNCS, vol. 9299, pp. 192–
212. Springer, Heidelberg (2015)

70 R. Bernhaupt et al.

http://www.allaboutux.org/all-methods
http://www.attrakdiff.de

14. Fayollas, C., Martinie, C., Palanque, P., Deleris, Y., Fabre, J.-C., Navarre, D.: An approach
for assessing the impact of dependability on usability: application to interactive cockpits. In:
2014 Tenth European Dependable Computing Conference (EDCC), pp. 198–209 (2014)

15. Gong, R., Elkerton, J.: Designing minimal documentation using a GOMS model: a usability
evaluation of an engineering approach. In: Proceedings of the SIGCHI Conference on Human
Factors in Computing Systems, pp. 99–107. ACM, Seattle (1990)

16. Gram, C., Cockton, G. (eds.): Design Principles for Interactive Software. Springer, Boston
(1996)

17. Hassenzahl, M.: The interplay of beauty, goodness, and usability in interactive products.
Hum.-Comput. Interact. 19, 319–349 (2008)

18. Hornbaek, K., Stage, J.: The interplay between usability evaluation and user interaction
design. Int. J. Hum.-Comput. Interact. 21, 117–123 (2006)

19. ISO 9241-210 Ergonomics of Human-System Interaction Ergonomics of human-system
interaction – Part 210: Human-centred design for interactive systems (2010)

20. Karapanos, E., Zimmerman, J., Forlizzi, J., Martens, J.-B.: Measuring the dynamics of
remembered experience over time. Interact. Comput. 22, 328–335 (2010)

21. Law, E.L.-C., Roto, V., Hassenzahl, M., Vermeeren, A.P.O.S., Kort, J.: Understanding,
scoping and defining user experience: a survey approach. In: Proceedings of the SIGCHI
Conference on Human Factors in Computing Systems, pp. 719–728. ACM, New York (2009)

22. Lazar, D.J., Feng, D.J.H., Hochheiser, D.H.: Research Methods in Human-Computer
Interaction. Wiley, New York (2010)

23. Lewis, C., Polson, P.G., Wharton, C., Rieman, J.: Testing a walkthrough methodology for
theory-based design of walk-up-and-use interfaces. In: Proceedings of the SIGCHI
Conference on Human Factors in Computing Systems, pp. 235–242. ACM, New York (1990)

24. Martinie, C., Palanque, P., Barboni, E., Ragosta, M.: Task-model based assessment of
automation levels: application to space ground segments. In: 2011 IEEE International
Conference on Systems, Man, and Cybernetics (SMC), pp. 3267–3273 (2011)

25. Martinie, C., Palanque, P., Navarre, D., Winckler, M., Poupart, E.: Model-based training: an
approach supporting operability of critical interactive systems. In: Proceedings of the 3rd
ACM SIGCHI Symposium on Engineering Interactive Computing Systems, pp. 53–62. ACM,
New York (2011)

26. Martinie, C., Palanque, P., Ragosta, M., Fahssi, R.: Extending procedural task models by
systematic explicit integration of objects, knowledge and information. In: Proceedings of the
31st European Conference on Cognitive Ergonomics, pp. 23:1–23:10. ACM, New York
(2013)

27. Mavin, A., Maiden, N.: Determining socio-technical systems requirements: experiences with
generating and walking through scenarios. In: Proceedings of the 11th IEEE International
Requirements Engineering Conference, pp. 213–222 (2003)

28. McCarthy, J., Wright, P.: Technology as experience. Interactions 11, 42–43 (2004)
29. McGrath, J.E.: Methodology matters: doing research in the behavioral and social sciences.

In: Readings in Human–Computer Interaction, pp. 152–169. Elsevier (1995)
30. Mirlacher, T., Palanque, P., Bernhaupt, R.: Engineering animations in user interfaces. In:

Proceedings of the 4th ACM SIGCHI Symposium on Engineering Interactive Computing
Systems, pp. 111–120. ACM, New York (2012)

31. Mori, G., Paterno, F., Santoro, C.: CTTE: support for developing and analyzing task models
for interactive system design. IEEE Trans. Softw. Eng. 28, 797–813 (2002)

32. Nielsen, J., Mack, R.L. (eds.): Usability Inspection Methods. Wiley, New York (1994)
33. Norman, D.A., Draper, S.W.: User Centered System Design; New Perspectives on Human-

Computer Interaction. L. Erlbaum Associates Inc., Hillsdale (1986)

User-Test Results Injection into Task-Based Design Process 71

34. Palanque, P.A., Bastide, R., Sengès, V.: Validating interactive system design through the
verification of formal task and system models. In: Proceedings of the IFIP TC2/WG2.7
Working Conference on Engineering for Human-Computer Interaction, pp. 189–212.
Chapman & Hall, Ltd., London (1996)

35. Palanque, P., Martinie, C.: Contextual help for supporting critical systems’ operators:
application to space ground segments. In: AAAI, pp. 7–11 (2011)

36. Pangoli, S., Paternó, F.: Automatic generation of task-oriented help. In: Proceedings of the
8th Annual ACM Symposium on User Interface and Software Technology, pp. 181–187.
ACM, New York (1995)

37. Paternó, F., Mancini, C., Meniconi, S.: ConcurTaskTrees: a diagrammatic notation for
specifying task models. In: Howard, S., Hammond, J., Lindgaard, G. (eds.) Human-Computer
Interaction, INTERACT 1997, pp. 362–369. Springer, US (1997)

38. Paternó, F., Santoro, C.: Preventing user errors by systematic analysis of deviations from the
system task model. Int. J. Hum.-Comput. Stud. 56, 225–245 (2002)

39. Pinelle, D., Gutwin, C., Greenberg, S.: Task analysis for groupware usability evaluation:
modeling shared-workspace tasks with the mechanics of collaboration. ACM Trans.
Comput.-Hum. Interact. 10, 281–311 (2003)

40. Pirker, M., Bernhaupt, R., Mirlacher, T.: Investigating usability and user experience as
possible entry barriers for touch interaction in the living room. In: Proceedings of the 8th
International Interactive Conference on Interactive TV&Video, pp. 145–154. ACM,
New York (2010)

41. Pirker, M.M., Bernhaupt, R.: Measuring user experience in the living room: results from an
ethnographically oriented field study indicating major evaluation factors. In: Proceedings of
the 9th International Interactive Conference on Interactive Television, pp. 79–82. ACM,
New York (2011)

42. Polson, P.G., Lewis, C., Rieman, J., Wharton, C.: Cognitive walkthroughs: a method for
theory-based evaluation of user interfaces. Int. J. Man Mach. Stud. 36, 741–773 (1992)

43. Rettig, M.: Prototyping for tiny fingers. Commun. ACM 37, 21–27 (1994)
44. Swearngin, A., Cohen, M.B., John, B.E., Bellamy, R.K.E.: Human performance regression

testing. In: Proceedings of the 2013 International Conference on Software Engineering, pp.
152–161. IEEE Press, Piscataway (2013)

45. van Welie, M., van der Veer, G.C.: Groupware task analysis. In: Handbook of Cognitive Task
Design, LEA, NJ, pp. 447–476 (2003)

46. Wilson, S., Johnson, P.: Bridging the generation gap: from work tasks to user interface
designs. In: Computer-Aided Design of User Interfaces I, Proceedings of the Second
International Workshop on Computer-Aided Design of User Interfaces, Namur, Belgium,
5–7 June, pp. 77–94 (1996)

72 R. Bernhaupt et al.

Framework for Relative Web Usability
Evaluation on Usability Features in MDD

Shinpei Ogata(B), Yugo Goto, and Kozo Okano

Shinshu University, 4-17-1, Wakasato, Nagano 380-8553, Japan
{ogata,okano}@cs.shinshu-u.ac.jp, 12t5033c@shinshu-u.ac.jp

Abstract. Web usability in business applications is crucial for enhanc-
ing productivity and preventing critical user errors. One of the effective
methods to enhance the usability is employment of usability features
such as auto-complete and input validation. Then, such employment
should be designed so as to conform to actual end-users. However, its
evaluation forces developers to expend a lot of effort to design an appli-
cation, to create its Web prototypes, to observe user operations with
the prototypes, and to assess the usability of the employed usability fea-
tures. In this paper, a framework is proposed for evaluating the usability
depending on the employment efficiently even if the developers are non-
usability-specialists. Our framework has characteristics as follows so that
the developers can easily determine the usability with low creation costs.
(1) Support for creating Web prototypes, observing user operations, and
assessing the usability are integrated centered on a model-driven app-
roach. (2) The usability can be evaluated relatively and quantitatively
by recording user operations and analyzing the resulting logs.

Keywords: Model driven development · Screen transition model ·
Usability evaluation · Business web application · Operability · User error
protection

1 Introduction

Web usability in business applications is crucial for enhancing productivity
and preventing critical user errors. Efficiency and the ability to avoid user
errors belongs to “Operability” and “User error protection” respectively as sub-
characteristics of “Usability” [1].

One of the effective methods to enhance the usability is employment of
usability features [3–5] such as auto-complete and input validation. Develop-
ers should evaluate the effectiveness of such employment in the early steps of
application development because failure of the employment often causes fun-
damental restructuring a radical modification of the design of the interaction
between the users and the application.

c© IFIP International Federation for Information Processing 2016
Published by Springer International Publishing Switzerland 2016. All Rights Reserved
C. Bogdan et al. (Eds.): HCSE 2016/HESSD 2016, LNCS 9856, pp. 73–85, 2016.
DOI: 10.1007/978-3-319-44902-9 6

74 S. Ogata et al.

However, the evaluation forces developers to expend a lot of effort to design
an application, to create its Web prototypes, to observe user operations with the
prototypes, and to assess the usability of the employed usability features. What
is worse, such evaluation is often iterated many times to adjust the employment.
In addition to the effort problem, the observation and assessment requires a
high degree of special knowledge even though usability specialists do not often
participate in the development.

In this paper, a framework to improve the effort and special knowledge prob-
lems is proposed focusing on an important but limited area in the operability
and user error protection. Our framework helps developers to efficiently evaluate
the usability of usability features employed with low creation costs even if the
developers are non-usability-specialists. The evaluation process is supported by
our framework as follows.

Web prototype creation: Several different Web prototypes employing usabil-
ity features can be generated from a screen transition model by applying our
previous work [7] in order to mitigate the effort problem.

User operation observation: User operation logs consisting of browser
events and input values are recorded in order to assess the operability and
user error protection with input time and user errors respectively.

User operation assessment: Many raw logs are processed in order to com-
pare them relatively and quantitatively. This process also aims to help the
developers to grasp the result of the observation easily.

The effectiveness of our framework is preliminarily evaluated by applying
it to a part of a virtual e-commerce application. As a result of the evaluation,
our framework quantitatively showed how the usability features affected the
usability.

2 Usability in Ordinal Use of Business Web Applications

Usability generally covers various aspects of appropriateness recognizability,
learnability, operability, user error protection, user interface aesthetics and acces-
sibility according to ISO/IEC 25010 [1]. Enhancing usability can also enhance
productivity of companies [2].

2.1 Scope Limitation

Our research aims to help skilled end-users to operate their Web application
efficiently and correctly in normal use. In addition, our research also assumes
that such end-users can be easily specified by a development project. Under this
condition, the scope of usability is limited as follows.

– The priority of the appropriateness recognizability, learnability, user interface
aesthetics, and accessibility is low in comparison with the operability, and user
error protection because we target “skilled and specified” users.

Framework for Relative Web Usability Evaluation on Usability Features 75

– Each skilled office worker knows generally an important or laborious part of
his/her work even if he/she has never operated any existing applications. This
premise is advantageous in planning usability evaluation as follows.

1. Usage scenarios can be prepared concretely with hearing requirements for
the actual users. For “unspecified” users, such preparation is difficult. Here,
a usage scenario means concrete input/output values for achievement.

2. Although a skilled office worker often makes careless mistakes such as incor-
rect inputs, he/she does not make serious mistakes. Consequently, the evalu-
ation does not need excessive coverage of user operation paths extended over
irrelevant use cases.

These premises are important to make the iterative usability evaluation more
realistic because the number of combinations of usability features is too numer-
ous to evaluate the usability together with users.

2.2 Usability Measurement

Fundamental metrics, which form an essential guideline for improving the oper-
ability and user error protection, are defined as follows so that developers who are
non-usability-specialists can easily understand effective usability feature employ-
ment.

Input time. Input time is directly related to not only the operability but also
the productivity. In our research, input time is measured variously as the time
between specific browser events, as explained in Sect. 3.4.

User error. Preventing user errors makes the productivity more reliable. In
our research, user errors are defined as follows.

– One is a sequence of user operations that differ from the expected sequence of
user operations. The expected sequence means the sequence of user operations
that developers, customers or actual users can accept as correct and non-
redundant.

– The other error is the input of incorrect values. The expected input value is a
value that developers, customers or end-users can accept as correct.

3 Proposed Framework

3.1 Overview of Proposed Framework

A lot of usability evaluation methods have been proposed [6]. Also, methods
focusing on metrics which are measured from user operation or access logs have
been proposed [8–10]. As far as we know, there is no method of systematically
evaluating the usability feature employment in order to take one step further.

Figure 1 shows the overview of our framework. This framework consists of
three phases. The first one is the “preparation” in which several different Web

76 S. Ogata et al.

D
e

v
e

lo
p

e
r

Preparation

phase

Observation

phase

Assessment

phase

[not accepted] [accepted]

Web prototypes and

usage scenarios
User operation logs

Customers' decision

Fig. 1. The overview of our framework.

Ik
az

uc
hi

D
ev

el
op

er

Create models of screen
transitions and usability features

The models

Generate Web
prototypes

Generate specification
code for Akatsuki

The generated Web
prototypes with
specification code

Create usage
scenarios

The usage scenarios

Fig. 2. The preparation phase of our framework.

prototypes and scenarios for evaluating the usability are created. The second
one is the “observation” in which logs of user operations as browser events are
recorded. The last one is the “assessment” in which the logs among different Web
prototypes are analyzed and compared. Each of these processes is explained
in detail from Sect. 3.2. Our framework provides three tools called Ikazuchi,
Akatsuki, and Hibiki respectively, for the process support.

3.2 Preparation Phase

Figure 2 shows the preparation phase of our framework. Developers create Web
prototypes and usage scenarios in this phase. Generally, absolute evaluation is
difficult for developers who are non-usability-specialists because they may be
not able to determine the usability from its evaluation result. Therefore, rela-
tive evaluation comparing user operation logs between different Web prototypes
is supported in our framework. In the relative evaluation, the developers can
easily understand which prototype is better for users. However, the cost for cre-
ating several different Web prototypes is not low. To mitigate this problem, our
framework applies Ikazuchi [7] which is a Web prototype generation tool.

Ikazuchi. Ikazuchi is a tool for generating Web prototypes from a design
model of screen transitions. This tool and model have been proposed in

Framework for Relative Web Usability Evaluation on Usability Features 77

Fig. 3. Parts of prototypes to which specification code can be applied.

previous work [7]. A main characteristic of the method of the previous work
[7] is separation of concerns between the usability features and screen transi-
tions in this model. Then, different Web prototypes can be generated from this
model. For example, a Web prototype employing the usability features can be
generated by interpreting the whole model as it is. On the other hand, another
Web prototype employing no usability features can be generated from the screen
transition part without any usability features.

Thereby, Web prototypes that are compared in relative evaluation can be
obtained at a low creation cost. Ikazuchi tentatively supports four usability fea-
tures: auto-complete, auto-save, undo, and validator, which can be attached to
input items without changing screen’s structure. The screen transition model can
represent screens, screen components, and the items that are categorized into
three types as Input, Output, and Link. Figure 3(a) shows a part of a Web pro-
totype generated with the Ikazuchi. Figure 3(b) shows a part of a Web prototype
created by hand.

Specification Code. The specification code represents correspondence between
HTML tag ids and the model. An example of code written in JSON format is
shown as follows. The code consists of a page title, input items, and link items.

Specification code

{"title": "PaymentSettings",
"inputs":
{"name": ["input-977674685"],
"cardType": ["input-836427078"],
"cardNumber": ["input-1322642290"],
"expirationYear": ["input-2121199924"],
"expirationMonth": ["input-431570856"]},

"links": {"next": ["link-520162288"] }
}

78 S. Ogata et al.

S
e

rv
e

r
s
id

e
B

ro
w

s
e

r
e

x
te

n
s
io

n

A
k
a

ts
u

k
i

E
x
p

e
c
te

d
 u

s
e

r
D

e
v
e

lo
p

e
r

Provide the scenarios

and the prototypes

The prototypesThe scenarios

Turn on the Akatsuki for

user operation recording

The prototype

Insert a script and

specification code into the

prototype, for the recording

The modified prototype

Operate the

prototype

User operation logs

Store the logs

Understand the

scenarios

Become skilled

in the prototypes

Try to operate all combinations of

the prototypes and the scenarios

Stop the

recording

Each user starts and

stops the recording for

each scenario.

Each user iterates the

recording until all combinations

of the prototype and the

scenarios are tested.

Fig. 4. The observation phase of our framework.

This specification code can be generated for the generated Web prototypes
with the Ikazuchi but not for the product. That is, our framework requires the
hard coded values in the specification code so as to conform to the scenarios.
Such simplicity is useful for manually inserting the specification code into a Web
prototype even if the prototype was created manually. For our framework, the
Ikazuchi was extended so as to insert specification code into a generated proto-
type in order to record user operations corresponding to the model. Specification
code can be manually inserted into Web prototype created manually.

3.3 Observation Phase

Figure 4 shows the observation phase of our framework. The precondition of this
phase is preparation of both the scenarios and the Web prototypes containing the
specification code. That is, developers do not always need the Web prototypes
which can be generated with Ikazuchi but which are too simple. The following
actions must be conducted by expected users before recording user operations.

– The users have to become skilled in each prototype because the focus is on
operability and user error protection and not learnability. By excluding learn-
ability evaluations, it’s approximately valid to reuse the prepared scenarios
between use of the different prototypes.

– The users have to understand and validate the prepared scenarios by using
each prepared prototype because it’s difficult to imagine that skilled office

Framework for Relative Web Usability Evaluation on Usability Features 79

Table 1. The kinds of user operations and recording timing by Akatsuki

User operation Recording timing

Change of window size (1) A window.onResize event occurred, or (2) a
script for the recording was inserted

Change of scroll position (1) A window.onScroll event occurred, or (2) the
script was inserted

Change of mouse position (1) A document.onMouseMove event occurred

Operation of mouse buttons (1) A document.onMouseDown event occurred, or
(2) a document.onMouseUp event occurred

Input of keys (1) A document.onKeyDown event occurred, or (2) a
document.onKeyUp event occurred

Start of item input (1) A focus event on the item occurred

End of item input (1) A blur event on the item occurred

Screen transition (1) A click event on a link occurred

workers would misunderstand the scenarios even if they often make mistakes.
The validity of normal flow can be ensured at least by the validation.

With the above assumption, the users operate Web prototypes in accordance
with the scenarios. The Akatsuki tool is utilized to record the user operations.

Akatsuki. Akatsuki consists of a browser extension and a server side program
for recording user operations as browser events. The extension inserts a logging
script into a rendered Web page, while the server side program receives the user
operations from the extension and stores them into a database. The extension
is implemented as a Google chrome extension. The server side program and
database are implemented with PHP and MySQL respectively.

Table 1 shows both the kinds of user operations recorded by Akatsuki and
the timing of the recording. Table 2 shows the log contents for each kind of
user operation. The page title and input, output, and link items are recorded
together with their names represented in the screen transition model so that
the developers can review the model on the basis of the analyzed logs. The
specification code is used when an HTML tag as an event target is transformed
into such names.

3.4 Assessment Phase

Figure 5 shows the assessment phase of our framework. In this phase, the devel-
opers relatively evaluate the usability feature employment of the prototypes on
the basis of the user operation logs. The raw logs are numerous and difficult to
understand. To mitigate this problem, our framework provides the Hibiki tool
which analyzes the raw logs and transforms them into useful information.

80 S. Ogata et al.

Table 2. The user operations and corresponding log contents created by Akatsuki

User operation Log contents

Commons The recorded timestamp, page title, and recording
id of a log

Change of window size The width and height of a window

Change of scroll position The x axis of the horizontal scroll of a page and
the y axis of the vertical scroll

Change of mouse position The x and y axis of the cursor in a browser

Operation of mouse buttons The state (press or release) of a button and the
button type such as left, right, middle,
undefined

Input of keys The state (press or release) of an alphabet or
number key, the key code, and the state
(press) of specific keys such as Shift, Ctrl, Alt

Start of item input The name of an input item when the item was
focused

End of item input The name of an input item and the value of the
item when the item was focused

Screen transition The name of a link when the link is clicked

H
ib

ik
i

D
e

v
e

lo
p

e
r

Access to the

Hibiki

Analyze the user

operation logs
Display the results

The analyzed results
Assess the usability by

contrasting the results between

different prototypes

Fig. 5. The assessment phase of our framework.

Hibiki. Hibiki is a server side program in PHP that summarizes the recorded
logs into user operation time and input values. The largest unit of the summa-
rized information shows the user operations from the start of the recording to
the end. The information in this unit shows the result when a certain user oper-
ated a certain prototype in accordance with a certain scenario. Table 3 shows
the summarized information shown by Hibiki. Various differences can be ana-
lyzed by collecting this information. For example, differences in the users, in the
prototypes, in the scenarios, and in combinations of them can be shown.

Framework for Relative Web Usability Evaluation on Usability Features 81

4 Preliminary Evaluation

4.1 Overview

This evaluation aims to determine whether the difference in the usability result-
ing from usability feature employment can be quantitatively recognized from
the data shown by Hibiki. A part of a virtual e-commerce application is adopted
as an application example because a partial prototype is often used to evaluate
specifications in early stages of development.

For evaluating the potential effectiveness of the proposed method for observ-
ing user operations under conditions assuming actual development is important,
weakly restricted prototypes and scenarios which are often create by actual devel-
opers are used. In this evaluation, we observed user operations with weakly

Table 3. The kinds of analyzed information by Hibiki

Information type Explanation

Scenario achievement
time [millisecond]

Time from the start of user operation recording to the
end. The individual time is measured per scenario

Page sojourn time
[millisecond]

Time between screen transitions. Both the individual
and cumulative times are measured per page

Input time
[millisecond]

Time focusing on any input item on a page. The
individual time is measured per page

Mouse input time
[millisecond]

Time from a button press to the release on a page,
except for focus change. The individual time is
measured per release event

Click frequency
[number of times]

The number of button clicks on a page. One click is
countered per release event of the mouse button

Key input time
[millisecond]

Time from a key press to the release on a page. This
individual time is measured per release event of the
key

Key type frequency
[number of times]

The number of key types on a page. One key type is
countered per release event of a key

Backspace key type
frequency [number
of times]

The number of backspace key types on a page. One key
type is counted per release event of the key

Time interval to input
next item
[millisecond]

Blur time until focusing the next input item. The
individual time is measured per focus event of the
input item

Sequence of screen
transitions

Sequence of displayed pages in chronological order

Sequence of input item
focuses

Sequence of focused input items in chronological order

Values of input item The last value of an input item in a scenario

82 S. Ogata et al.

restricted prototypes because such prototypes are similar to one obtained in an
actual development process.

In this evaluation, there were two prototypes, six scenarios, and five users.
In this paper, we call the two prototypes A and B. A was automatically gener-
ated and B was created manually as shown in Fig. 3. Each prototype represents
screen transitions from the CartView screen to the PurchaseComplete screen.
This structure simply consists of five screens and transitions between them with-
out any branches. The scale of each of the six scenarios was categorized as large,
middle or small resulting in two of each category. Combinations of the proto-
types, scenarios, and users were determined so that no bias in learning resulted.

4.2 Result

From the evaluation, the total number of the logs obtained was 176,278. Of the
30 combinations that we tried, 26 of them resulted in valid data.

Table 4 shows the result of comparing the average input times (avg.) between
A and B where the difference between the averages is three or more seconds. ID
1, 2, 3, 4, and 6 shows that the users were able to efficiently operate A than
B, in average. All of these items of A employed an auto-complete as a usability
feature although these items of B employed no usability features. On the other
hand, all items of ID 5, 7, and 8 of B made the user operation more efficient.
The items of ID 7 and 8 of B employed a spinner with a default value as “1”
although the items of A employed no usability features. Regarding the item of

Table 4. The result for operability evaluation

ID Input item Avg. of A [sec.] Avg. of B [sec.]

1 PaymentSettings .name[0] 7.993 13.508

2 PaymentSettings .cardNumber[0] 8.463 15.442

3 BillingAddressSettings .billingAddress[0]
.address[0]

9.051 24.116

4 BillingAddressSettings .billingAddress[0]
.phoneNumber[0]

10.906 14.551

5 ShippingAddressSettings
.shippingAddress[0] .address[0]

26.404 21.995

6 ShippingAddressSettings
.shippingAddress[0] .assignedItems[0]
.name[0]

7.822 12.533

7 ShippingAddressSettings
.shippingAddress[0] .assignedItems[0]
.quantity[0]

5.299 1.774

8 ShippingAddressSettings
.shippingAddress[0] .assignedItems[1]
.quantity[0]

4.376 0.183

Framework for Relative Web Usability Evaluation on Usability Features 83

Table 5. The result for user error protection evaluation

Kinds of the errors Freq. Example

[MI] Mis-input a 1-byte
character instead of a 2-byte
one

11

[MU] Misunderstanding of the
scenarios

11 “Kawakami” as a last name was inputted
instead of “Kami kawa”.

[O] Omission of a part of a
string

5 “5300001” as postal code was inputted
instead of “530-0001”

[T] Typo 2 “Satoru” as a first name was inputted
instead of “Satoshi”. Both of the “ru”
and “shi” are one 2-byte characters in
Japanese

[MC] Mis-capitalization 1 “noboru” as the name on a credit card was
inputted instead of “NOBORU”

ID 5, both of A and B however employed the same input method without any
usability features.

As for user error protection evaluation, we analyzed input mistakes against
222 values expected in the total of all scenarios. A few of the expected values
were excluded because some values that were inputted through a date picker
written in Javascript were not collected. A total of 906 values were obtained for
the 222 expected values. 30 of the actual values were different than the expected
ones.

Table 5 shows user errors discovered in the evaluation. Usability features to
decrease those errors were not employed in both A and B. The errors such as
MI, MC, and a part of O can be automatically corrected employing functions for
formatting characters. A part of the errors of MU, O, and T may be avoidable
by employing auto-completes because the users inputted the correct value at
least once in a scenario although he/she inputted the wrong value in another
scenario. Meanwhile, auto-completes were useful to avoid most of these errors
but it promoted the error a little. For instance, one of the users inputted the
number of a credit card with blind acceptance of the auto-complete even though
the completed value was different than the expected value.

4.3 Discussion

The effectiveness of usability feature employment was shown quantitatively by
utilizing the information analyzed by Hibiki. Hibiki made the analysis of the
preliminary evaluation result efficient even though there were numerous logs.
However, it seems that the result shown as ID 5 of Table 4 did not depend on
the usability features. Consequently, various aspects such as user characteristics
and qualitative aspects should be considered for more precise evaluation. Tool
support is also needed to make the usability evaluation practical.

84 S. Ogata et al.

In the preliminary evaluation, there were still various non-stable factors such
as differences in scenario properties such as the amount of input/output data,
rigorous user operation sequences, and exhaustiveness and differences in pro-
totype properties such as layout and input methods. These factors may make
the effectiveness of usability feature employment ambiguous. Therefore, a more
rigorous evaluation process well supported by proper tools should be considered.

In addition, Ikazuchi can handle a few number of usability features yet.
The strategies of attaching usability features, the combinations of usability fea-
tures and the strategies of comparing the obtained logs should be considered for
observing a complex combinations of usability features by improving the capa-
bility of Ikazuchi. We plan to extend Ikazuchi to support more existing usability
features [3–5].

5 Conclusion

A framework for evaluating the operability and user error protection relatively
and quantitatively was proposed in this paper. In our framework, Web prototype
creation, user operation observation, and usability assessment are supported so
as to obtain the prototypes, the user operation logs, and the summarized logs
semi-automatically. Our framework strictly controls the evaluation conditions to
clarify the effectiveness of usability feature employment. As a result of the pre-
liminary evaluation, this paper quantitatively showed that the usability changed
depending on usability feature employment.

As future work, we plan to extend Ikazuchi so as to deal with more usability
features and their employment algorithms. We also attempt to extend Hibiki so
as to more easily grasp differences between different employment methods by
applying artificial intelligent algorithms. In addition, we consider how to obtain
the exhaustive scenarios by applying a model-based testing approach. Finally, a
large scale and rigorous evaluation applying experimental research approaches is
planned to show more reliably the effectiveness of our framework and to evaluate
the user error protection from the aspect of user mis-operation sequences.

Acknowledgment. This work was supported by JSPS KAKENHI Grant Number
JP15K15972.

References

1. ISO/IEC: systems and software engineering - systems and software quality require-
ments and evaluation (SQuaRE) - system and software quality models. ISO/IEC
Std. 25010: 2011 (2011)

2. Nielsen, J.: Usability Engineering. Morgan Kaufmann Publishers Inc., San Fran-
cisco (1993)

3. Folmer, E., Gurp, J.V., Bosch, J.: A framework for capturing the relationship
between usability and software. Softw. Process Improv. Pract. 8(2), 67–87 (2003)

4. Juristo, N., Moreno, A.M., Sanchez-Segura, M.-I.: Guidelines for eliciting usability
functionalities. IEEE Trans. Softw. Eng. 33(11), 744–758 (2007)

Framework for Relative Web Usability Evaluation on Usability Features 85

5. Roder, H.: Specifying usability features with patterns and templates. In: First
International Workshop on Usability and Accessibility Focused Requirements Engi-
neering, pp. 6–11 (2012)

6. Insfran, E., Fernandez, A.: A systematic review of usability evaluation in web
development. In: Hartmann, S., Zhou, X., Kirchberg, M. (eds.) WISE 2008. LNCS,
vol. 5176, pp. 81–91. Springer, Heidelberg (2008)

7. Kamimori, S., Ogata, S., Kaijiri, K.: Automatic method of generating a Web proto-
type employing live interactive widget to validate functional usability requirements.
In: 3rd International Conference on Applied Computing and Information Technol-
ogy/2nd International Conference on Computational Science and Intelligence, pp.
9–14 (2015)

8. Atterer, R., Wnuk, M., Schmidt, A.: Knowing the user’s every move: user activity
tracking for website usability evaluation and implicit interaction. In: 15th Interna-
tional Conference on World Wide Web, pp. 203–212 (2006)

9. Nakamichi, N., Sakai, M., Shima, K., Matsumoto, K.: Detecting low usability web
pages using quantitative data of users’ behavior. In: 28th International Conference
on Software Engineering, pp. 569–576 (2006)

10. Pansanato, L.T.E., Rivolli, A., Pereira, D.F.: An evaluation with web developers of
capturing user interaction with rich internet applications for usability evaluation.
Int. J. Comput. Sci. Appl. 4(2), 51–60 (2015)

Testing Prototypes and Final User Interfaces Through
an Ontological Perspective for Behavior-Driven

Development

Thiago Rocha Silva(✉), Jean-Luc Hak, and Marco Winckler

ICS-IRIT, Université Paul Sabatier, Toulouse, France
{rocha,jean-luc.hak,winckler}@irit.fr

Abstract. In a user-centered development process, prototypes evolve in iterative
cycles until they meet users’ requirements and then become the final product.
Every cycle gives the opportunity to revise the design and to introduce new
requirements which might affect the specification of artifacts that have been set
in former development phases. Testing the consistency of multiple artifacts used
to develop interactive systems every time that a new requirement is introduced is
a cumbersome activity, especially if it is done manually. This paper proposes an
approach based on Behavior-Driven Development (BDD) to support the auto‐
mated assessment of artifacts along the development process of interactive
systems. The paper uses an ontology for specifying tests that can run over multiple
artifacts sharing similar concepts. A case study testing Prototypes and Final User
Interfaces is presented to demonstrate the feasibility of this approach in early
phases of the design process, providing a continuous quality assurance of require‐
ments, and helping clients and development teams to identify potential problems
and inconsistencies before commitments with software implementation.

Keywords: Automated requirements checking · Behavior-Driven Development ·
Ontological modeling · Prototyping · Multi-artifact testing

1 Introduction

It is a common understanding that in user-centered design (UCD) processes, users’
requirements and needs are not always identified at once but they are rather revised/
tuned and incrementally introduced along the multiple iterations through the use of
Prototypes. When requirements are updated and/or new ones are introduced, the devel‐
opment team must cross-check their consistency with artifacts set in former development
phases. Testing and tracing requirements during the development of interactive system
is a daunting task specially because the development team has to deal with many cycles
of iterations, multiple artifacts (such as Task Models, Prototypes, User Stories,
Scenarios, etc.), and many design options for Prototypes that evolve until they reach the
status of Final Product.

The traceability of artifacts can be said as vertical and horizontal [19]. Vertical
traceability describes the relationship between artifacts that can be derived from each

© IFIP International Federation for Information Processing 2016
Published by Springer International Publishing Switzerland 2016. All Rights Reserved
C. Bogdan et al. (Eds.): HCSE 2016/HESSD 2016, LNCS 9856, pp. 86–107, 2016.
DOI: 10.1007/978-3-319-44902-9_7

other, for example from customer requirements to acceptance test cases. Horizontal
traceability refers to the evolution of the same artifact. The artifacts traceability problem
has been studied by several authors and a wide set of commercial tools have been devel‐
oped to address this problem in various approaches [16]. Nonetheless, solutions to
promote vertical traceability of artifacts are not allowing to effectively testing them
against requirements specifications.

Testing the consistency of artifacts with respect to user requirements is crucial for
the quality of the software under development. Moreover, the sooner the teams pay
attention to test their software components and especially their requirements specifica‐
tions, more effective will be the results towards a quality assurance of the product. As
argued by Lindstrom [21], failing to trace tests to requirements is one of the five most
effective ways to destroy a project. Nonetheless, according to Uusitalo et al. [17], trace‐
ability between requirements and tests used to assess the implementation are rarely
maintained in practice not only because of stringent enforcement of schedules and
budgets, but also because it is difficult to update traces when requirements change and
due to the difficulties to conduct testing processes manually.

In this context, Behavior Driven Development (BDD) [10] has aroused interest from
both academic and industrial community in the last years. Supported by a wide devel‐
opment philosophy that includes Acceptance Test-Driven Development (ATDD) [22]
and Specification by Example [23], BDD drives development teams to a requirements
specification based on User Stories [4] in a comprehensive natural language format. This
format allows specifying executable requirements, conducting to a “live” documentation
and making easier for clients to set their final acceptance tests. It guides the system
development and brings the opportunity to test Scenarios directly in the User Interface
with the aid of external frameworks for different platforms. However, this technique is
currently limited to test requirements against a fully implemented user interface using
specialized robots like Selenium WebDriver. Besides that, specifications using only
Scenarios are not self-sufficient to provide a concrete perception of the system to the
users and, at the same time, allow an overall description of the system in terms of tasks
that may be accomplished. This is particularly true in early phases of the development
process when the Prototypes are rudimental samples of interactive system.

In this paper we explore the use of BDD techniques for supporting automation of
user requirements testing of artifacts produced throughout the development process of
interactive systems. Our ultimate goal is to test multiple artifacts throughout the devel‐
opment process looking for vertical and bidirectional traceability of functional require‐
ments. To achieve this goal, a formal ontology model is provided to describe concepts
used by platforms, models and artifacts that compose the design of interactive systems,
allowing a wide description of UI elements (and its behaviors) to support testing activ‐
ities. Whilst the approach is aimed at being generic to many types of artifacts, in this
paper we have focused on Prototypes and Final UIs. In the following sections we present
the conceptual background, an overview of the underlying process for using the
approach and a case study that demonstrate its feasibility. Lately, we discuss related
works and the next steps for this research.

Testing Prototypes and Final User Interfaces 87

2 Conceptual Background

Hereafter is a summary of the basic concepts to explain how the approach works.

2.1 User Stories and Scenarios

A large set of requirements can be expressed as stories told by the user. Nonetheless,
the term User Story might have diverse meaning in the literature. In the Human-
Computer Interaction (HCI) field, a User Story refers to a description of users’ activities
and jobs collected during meetings, which is close to the concept of Scenarios given by
Rosson and Carroll [8]. Users and other stakeholders typically talk about their business
process emphasizing the flow of activities they need to accomplish. These stories are
captured in requirements meetings and are the main input to formalize a requirements
artifact. These meetings work mainly like brainstorm sessions and include ideally
several stakeholders addressing needs concerning features that may be developed. As
stated by Lewis & Rieman, “…scenarios forced us to get specific about our design, […]
to consider how the various features of the system would work together to accomplish
real work…” [9]. For Santoro [7], Scenarios provide informal descriptions of a specific
use in a specific context of application, so a Scenario might be viewed as an instance of
a use case. An identification of meaningful Scenarios allows designers to get a descrip‐
tion of most of the activities that should be considered in a task model. Given task models
have already been developed, Scenarios can also be extracted from them to provide
executable and possible paths in the system.

In the Software Engineering (SE), the term User Stories is typically used to describe
requirements in agile projects [4]. They are formatted to fulfil two main goals: (i) assure
testability and non-ambiguous descriptions and (ii) provide reuse of business Scenarios.
Figure 1 presents a template for formalizing User Stories.

Fig. 1. Template for specifying User Stories as defined by North [3] and Cohn [4]

A User Story is thus described with a Title, a Narrative and a set of Scenarios repre‐
senting Acceptance Criteria. The Title provides a general description of the story. The
Narrative describes the referred feature in terms of role that will benefit from the feature,
the feature itself, and the benefit it will bring to the business. The Acceptance Criteria
are defined through a set of Scenarios, each one with a Title and three main clauses:

88 T.R. Silva et al.

“Given” to provide the context in which the Scenario will be actioned, “When” to
describe events that will trigger the Scenario and “Then” to present outcomes that might
be checked to verify the proper behavior of the system. Each one of these clauses can
include an “And” statement to provide multiple contexts, events and/or outcomes. Each
statement in this representation is called Step.

In the Behavior-Driven Development (BDD) [10], the user point of view about the
system is captured by User Stories described according to the template shown in Fig. 1.
The BDD approach assumes that clients and teams can communicate using a semi-
structured natural language description, in a non-ambiguous way (because it is supported
by test cases).

In some extension, all approaches agree on that User Stories and Scenarios must
provide a step-by-step description of tasks being performed by users using a given
system. Nonetheless, there are some differences as illustrated by Table 1. This analysis
gives us the opportunity to establish a correlation between requirements identified in
User Stories, their representation in terms of tasks and the extracted Scenarios in both
UCD and SE approaches. We can notice that the main difference lies in the degree of
formality and their possible value to support automated test. Another remark we can
make is about the type of tasks mapped to Scenarios in SE. As SE consider only tasks
being performed by users when using an interactive system, User Stories in this context
address only Scenarios extracted from Interaction Tasks in Task Models; Cognitive
Tasks, for example, are not mapped to be SE Scenarios because they cannot be
performed in the system.

Table 1. Approaches for describing User Stories and Scenarios

Approaches Key facts Advantages Shortcomings
User Stories and/or

Scenarios by
Rosson and
Carroll [8]

Informal description
of user activities
contextualized in a
story

Highly flexible and
easily
comprehensive for
non-technical
stakeholders

Very hard to
formalize, little
evolutionary and
low reusability

Scenarios extracted
from Task Models
by Santoro [7]

Possible instance of
execution for a
given path in a Task
Model

Highly traceable for
Task Models

Dependency of Task
Models and low
testability

User Stories and/or
Scenarios by North
[3] and Cohn [4]

Semi-formal
description of user
tasks being
performed in an
interactive system

Highly testable and
easily
comprehensive for
non-technical
stakeholders

Very descriptive and
time consuming to
produce

2.2 Acceptance Testing of Functional Requirements

In this paper, we are interested in testing functional requirements that users raise through
the means of User Stories and Scenarios. In Software Engineering, the testing activity
covers several levels of abstraction, from low level of tests such as Unit and Integration

Testing Prototypes and Final User Interfaces 89

Testing to high level ones such as System and Acceptance Testing [20]. Low level tests
are focused on the quality of the code which we call White Box testing approach. On
the other hand, high level tests are more interested in the quality of the final product as
a whole which we call Black Box testing approach. Tests can also be focused on specific
aspects of the system such as Functional, Usability, Scalability or Performance aspects.

Functional Testing identifies situations that should be tested to assure the correct
working of the system under development in accordance with the requirements previ‐
ously specified. The Acceptance testing are tests made under the client/user point of
view to validate the right behavior of the system. For that clients might be able to run
their business workflows and to check if the system behaves in an appropriate manner.
Several techniques are employed to conduct functional testing such as Boundary Value
Analysis, Equivalence Class Testing, Decision Table Base Testing, etc. [20]. These
techniques support the development of test cases that might be specified to validate the
right implementation of the requirements.

The big challenge is that requirements are dispersed in multiple artifacts that describe
them in different levels of abstraction. Thus, tests should run not only in the final product,
but also in the whole set of artifacts to assure that they represent the same information
in a non-ambiguous way and in accordance with the whole requirements chain. More‐
over, testing should be performed along the development process as clients and users
introduce new demands or modify the existing ones all along the iterations. Regression
Testing is crucial to assure that the system remains behaving properly and in accordance
with the new requirements. However, manual Regression Tests are extremely time
consuming and highly error-prone. Therefore, automated tests are a key factor to support
testing in an ever-changing environment, allowing a secure check of requirements and
promoting a high availability of testing.

2.3 Computational Ontologies

According to Guarino et al. [11], computational ontologies are a mean to formally model
the structure of a system, i.e., the relevant entities and relations that emerge from its
observation, and which are useful to our purposes. Computational ontologies come to
play in this work as a mean to formalize the vocabulary and the concepts used in User
Stories, Scenarios and other artifacts during the development process of interactive
systems. Without a common agreement on the concepts and terms used it will be difficult
to support traceability of user requirements across many artifacts. Nowadays, some
approaches have tried to define languages or at least a common vocabulary for specifying
UIs in interactive systems. Despite the fact there is no such a standard, a few ontologies
are worthy of mention, including DOLPHIN [12], UsiXML [13] and W3C MBUI Glos‐
sary [14]. DOLPHIN [12] is a reference framework that formalizes concepts around task
models and in particular provides a mean to compare task model notations. UsiXML
(USer Interface eXtensible Markup Language) [13] is a XML-compliant markup
language that describes the UI for multiple contexts of use such as Character User Inter‐
faces (CUIs) or Graphical User Interfaces (GUIs). UsiXML consists of a User Interface
Description Language (UIDL) that is a declarative language capturing the essence of
what a UI is or should be independently of physical characteristics. UsiXML describes

90 T.R. Silva et al.

at a high level of abstraction the constituting elements of the UI of an application:
widgets, controls, containers, modalities and interaction techniques. More recently,
W3C has published a glossary of recurrent terms in the Model-based User Interface
domain (MBUI) [14]. It was intended to capture a common, coherent terminology for
specifications and to provide a concise reference of domain terms for the interested
audience. The authors’ initial focus was on task models, UI components and integrity
constraints at a level of abstraction independent of the choice of devices to implement
the models.

3 A New Approach for Multi-artifact Testing

The approach relies on the premise that user requirements expressed by the means of
User Stories and Scenarios can be specified using a standard user interface ontology
which will allow testing automation against multiple artifacts through the development
process of interactive systems. To explain how this could be, two figures (Figs. 2 and 3)
are presented hereafter. Figure 2 shows how User Stories support both Production Activ‐
ities and Quality Assurance Activities. Client, Users and Stakeholders are the main
source of User Stories that will be consumed by Requirements Analysts and User Inter‐
face (UI) designers in Production Activities and by Testing Analysts who are in charge
of building test cases and assessing artifacts in Quality Assurance Activities. The Fig. 3
provides a workflow view of activities that have been grouped in Fig. 2.

Fig. 2. Overview of the Requirements Model

The operationalization of the approach is made up in four main steps that are
pinpointed by numbers as follows: (1) definition of the ontology, (2) writing testable
requirements, (3) adding test cases, and (4) testing Prototypes and other artifacts. These
steps are described herein. To illustrate the operationalization of each step, we have
proposed a case study in the flight tickets e-commerce domain in a traditional airline
company, showing how the approach can support the testing of Prototypes and Final
UIs. This case was chosen because it is easily comprehensible and we believe it repre‐
sents a common activity for the most part of readers. For the study, we have selected
the American Airlines (AA) case to show these concepts. The AA model has been arbi‐
trarily chosen to conduct this work. However, as we know, the core of business models

Testing Prototypes and Final User Interfaces 91

for this kind of e-commerce is the same for all companies, so any other else could have
been chosen instead.

The online booking process of flight tickets is basically divided in 3 main sub
processes: searches of flights based on a provided set of data, the selection of the desired
flight(s) in a list of flights resultant from the search, and finally providing passengers
and payment data to conclude the booking. We have selected the two first processes for
this study as they are the most interactive ones and represent the main source of cognitive
efforts from users and designers. The third sub process is basically a data providing in
forms so it is not so relevant to demonstrate the concepts presented in the paper, even
though the whole process can be supported by this approach.

3.1 Step 1: Definition of the Ontology

The proposed ontology is largely inspired from existing languages and vocabularies
already described in the Subsect. 2.3, but to make it operational we have created an OWL
(W3C Web Ontology Language) specification covering concepts related to graphical

Fig. 3. Process View of the approach

92 T.R. Silva et al.

components (presentation and behavior) used to build Web and Mobile applications.
Figure 4 presents a general view of the ontology structure. We started modeling concepts
describing the structure of User Stories, Tasks and Scenarios. Following this, we have
modeled the most common Interaction Elements used to build Prototypes and Final User
Interfaces (FUIs) in the Web and Mobile environments. The dialog component that
allows us to add dynamic behavior to Prototypes and navigation to FUIs was modeled
as a State Machine (highlighted in the Fig. 4b). In this level, a Scenario that runs on a
given interface is represented as a Transition in the machine, while the interface itself
and the one resultant of the action were represented as States. Scenarios in the Transition
state have always at least one or more Conditions (represented by the “Given” clause),
one or more Events (represented by the “When” clause), and one or more Actions
(represented by the “Then” clause).

Fig. 4. Ontology representation: (a) Overall View, (b) State Machine Concepts

Figure 5 provides an example on how behavior specification is defined in the
ontology. In the example, the behavior “clickOn” (see bottom-left side of the figure) has
been associated to the Interaction Elements “Button”, “Menu_Item”, “Menu” and
“Link” to express that these ones are the elements that would be able to answer this
behavior when it is triggered. The ontology also specify that the behavior “ClickOn” is
triggered by objects Action (“Then” clause) and Event (“When” clause).

Figure 6 shows how a Behavioral Property (behavior of graphical components) is
mapped to Interaction Elements (presentation of graphical components) of the ontology.
Each behavior is suitable to receive (or not) two parameters as in the example “I choose
$elementName referring to $locatorParameters”, and to be triggered by the clauses
“Given”, “When” and/or “Then”. In the example, whilst the first parameter is associated
to a data for testing, the second parameter refers to the Interaction Element supported by
this behavior: “Radio Button”, “CheckBox”, “Calendar” or “Link”. The ontological
model describes only behaviors that report Steps performing common actions directly in
the User Interface through Interaction Elements. We call it Common Steps (see Sect. 4.2).

Testing Prototypes and Final User Interfaces 93

This is a powerful resource because it allows us to keep the ontological model domain-
free, which means they are not subject to particular business characteristics in the User
Stories, instigating the reuse of Steps in multiple Scenarios. Specific business behaviors
should be specified only for the systems they make reference, not affecting the whole
ontology.

Fig. 6. Behaviors being mapped to UI Elements

Technically and with this structure, the current version of the ontology bears an
amount of 422 axioms, being 276 logical axioms, 56 classes, 33 object properties, 17
data properties and 3 individuals.

3.2 Step 2: Writing Testable Requirements

The approach is focused on functional requirements. A functional requirement defines
statements of services that the system should provide, how the system should react to
particular inputs and how the system should behave in particular situations. To assure
that the system behaves properly, requirements should be expressed in a testable way.
Figure 7 presents the conceptual model that explains how testable requirements are
formalized in the approach. A requirement is expressed as a set of User Stories (US) as
in the template proposed by North [3] and Cohn [4]. User Stories are composed by a
Narrative and a set of Acceptance Criteria. Acceptance Criteria are presented as

Fig. 5. Ontology structure highlighting the definition of behaviors

94 T.R. Silva et al.

Scenarios and these last ones are composed by at least three main Steps (“Given”,
“When” and “Then”) that represent Behaviors which the system can answer. Behaviors
handle actions on Interaction Elements in the User Interface (UI) and can also mention
examples of data that are suitable to test them. Notice that these concepts are part of the
ontology shown in Sect. 3.1.

Fig. 7. Conceptual Model for testable requirements

Hereafter, we present two User Stories with their respective Scenarios to describe
and test the features of our case study. Figure 8 presents the User Story for searching
flights in which the user should provide at least: a type of ticket he wants (one-way or
round trip), the airport he wants to depart and arrive, the number of passengers, and
finally the date of depart and return. In the first Scenario (“One-Way Tickets Search”),
it is presented a typical search of tickets concerning a one-way trip from Paris to Dallas
for 2 passengers on 12/15/2016. According to the business rule, the expected result for
this search is a new screen presenting the title “Choose Flights”, in which the user might
select the desired flight in a list of flights matching his search. The second Scenario
(“Return Tickets Search”) simulates a round trip from New York to Los Angeles for
only 1 passenger, departing on 12/15/2016 and returning on 12/20/2016. For this case,
the same behavior is expected from the system, i.e., a new screen presenting the title
“Choose Flights”, in which the user might select the desired flight in a list of flights
matching his new search.

The User Story that selects the desired flight(s) is given in Fig. 9. The Scenario
“Select a diurnal flight”, using the Scenario “One-Way Tickets Search” already
executed, simulates the selection in the list of available flights, a couple of diurnal flights,
the AA6557 and the AA51. For this case, the behavior expected from the system is the
presentation of a new screen with the “Optional log in” message, indicating the user is
able to login in order to proceed to the booking, filling the passengers and payment data.

Testing Prototypes and Final User Interfaces 95

Fig. 9. User Story for Select the desired flight formatted for the testing template.

3.3 Step 3: Adding Test Cases

Test Cases are represented as Testing Scenarios that specify potential error situations
related to the Scenarios already defined to set Requirements. Testing Scenarios are the
responsible component to describe the situations in which the system should be verified,
covering as deeply as possible the largest set of features. Thereby, Scenarios and Testing
Scenarios compose the User Stories, providing in the same artifact, descriptions of
functionalities as well as the potential tests to verify the correct implementation of the
requirements. As we have leading with functional testing in the acceptance level, the
Black Box approach is used to check expected outcomes when predefined inputs are
provided to the system. Figure 10 shows the Scenarios “Search for flights with more

Fig. 8. User Story for Flight Ticket Search formatted for the testing template.

96 T.R. Silva et al.

than one year in advance” and “Search for a return flight before a departure flight” that
will be added to the User Story “Flight Ticket Search”. They present specific business
rules (and their tests) in the flight-booking domain. The expected outcome in both cases
is the impossibility to search flights.

Fig. 10. Two Scenarios added to the User Story for Flight Ticket Search.

3.4 Step 4: Testing Prototypes and Other Artifacts

The execution of testing in Prototypes and other artifacts is exemplified in Fig. 11. The top
part presents the Step of a Scenario describing the behavior “choose … referring to …”.
In the example, a user chooses the date of depart “12/15/2016” on the field “Depart” in a
form. This task is triggered when an event “When” occurs in the Scenario. This task is
associated to values for date of depart (“12/15/2016”) and field (“Depart”), indicating a
possible executable Scenario that can be extracted from that task. Following the ontology,

Fig. 11. Identifying behaviors through multiple artifacts

Testing Prototypes and Final User Interfaces 97

the behavior addressed by this task can be associated to multiple UI elements such as
Radio Button, CheckBox, Link and Calendar components. The arrows in the right side of
the figure indicate two implementations of this ontology, highlighting these associations.
First in OWL version at the top and then converted in Java code in the bottom.

When the UI element Calendar is chosen, a locator is triggered to trace this element
throughout the artifacts, thus allowing us to reach it for testing purposes. Figure 11 shows
this trace being made through a HAMSTERS Specification for Task Models [24] (in the
task “Choose Depart”), through a UsiXML Specification for Prototypes [13] (Calendar
“Depart”), and finally through a Java Specification for Final UIs (@ElementMap
“Depart” with the XPath reference “//input[@id=’departSelect’]” in a Calendar). For
the purposes of the illustration when testing the User Story “Flight Tickets Search”,
Fig. 12 presents the mapping of a Prototype and the Fig. 13 the mapping of a Final User
Interface. Figures 14 and 15 present respectively the mapping of the Prototype and the
Final UI for the User Story “Select the desired flight”.

Fig. 12. The “Find Flights” Prototype

Fig. 13. The “Find Flights” Final UI

Finally, the tests by a robot of the business rules “Search for flights with more than
one year in advance” and “Search for a return flight before a departure flight” is presented
in the Fig. 16. This behavior could have been implemented in several ways on the User
Interface. The chosen solution by developers was to block in the calendar the inappro‐
priate dates according to the business rules.

98 T.R. Silva et al.

Fig. 16. An attempt to select a return date before the departure date

4 Tool Support

This section presents a technical description about how tests are implemented in both
Prototypes and Final UIs artifacts. For operationalizing the test we employ tools like
Webdriver, JBehave and JUnit. Nonetheless, in order to integrate tests into development
process of Prototypes, other tools also have been developed.

4.1 Testing in the Prototype Level

For the test in the Prototype Level, we have developed a prototyping environment named
PANDA (Prototyping using Annotation and Decision Analysis) [25]. The development
of a Prototype using this tool is made thanks to a toolbar containing widgets

Fig. 14. The “Choose Flights” Prototype

Fig. 15. The “Choose Flights” Final UI

Testing Prototypes and Final User Interfaces 99

automatically generated from the OWL Ontology as described in the Subsect. 3.1. Once
the toolbar is generated, the user can create his Prototype by placing widgets, whose
properties are described in the ontology and presented in the edition area as illustrated
in the Fig. 17. Using this technique allows to have a mapping between the elements
described in the ontology (and thus, their properties and supported behavior) and each
widgets of the Prototype.

Fig. 17. PANDA screenshot

A PANDA Prototype features a state machine where states of the system are popu‐
lated with the elements in the display when the state is active. By linking states with
transitions, it is possible to specify the structure and the behavior of the Prototype. After
having developed the Prototype, it is possible to replace a transition with a Scenario.
Indeed, in the Fig. 17 we have a testing Scenario used as a transition in the state machine.
This Scenario links together the state “Find Flight” represented by the rectangle with a
grey header in the upper part of the Prototype with the state “Choose Flight” located in
the lower part. The state “Find Flight” represents the initial condition (indicated by the
“Given” clause) and the state “Choose Flight” represents the result of the Scenario
execution (indicated by the “Then” clause).

100 T.R. Silva et al.

PANDA supports Scenarios described in a text format which are imported in the
edition area. When importing a Scenario, PANDA parses the different Steps and
analyzes them by identifying the events, the tasks, the associated values and the targets
of the task, as illustrated in the Fig. 11 in the Subsect. 3.4. This identification is done by
splitting each line of the Scenario and identifying keywords like “Given” or “Then” and
the quote character. Quoted segments are interpreted as values except for the last quoted
element of each line, which is identified as the target of the task. Segments before the
quoted elements are considered as actions related to the values read. Each line read is
then registered as a Step of the Scenario. Figure 18 shows an example of a parsed Step.
The value “Paris” is associated to the action “I type”, “CDG – Paris Ch De Gaulle,
France” is associated to the action “choose” and “From” is associated to the locator “in
the field”. Keywords are ignored except for the word « Given » and « Then » which
introduce conditions and the final actions.

And I type "Paris" and choose "CDG - Paris Ch De Gaulle, France" in the field "From"

Fig. 18. Example of a split Step during the parsing

Once the Scenario have been parsed and attached between an initial and a resultant
state, it can be executed in order to find out if the Scenario is supported by the Prototype.
This execution can be made step-by-step or with the whole set of Steps of the Scenario
being executed at the same time. The system checks the state described in the Prototype
and the properties defined in the ontology loaded, as well as if each Step is possible
according to the task described in the Scenario. To do so, the system starts by making
a mapping between the widgets of the Prototype and the target of the tasks during the
execution, since Scenarios and states of the Prototype are independent. For the moment,
this mapping is based on the name of the widget, but other mapping methods will be
also considered. Then, for each Step whose target has been mapped, the system checks
if each actions or properties matches with the properties of the widget which were
defined in the ontology. As an example, in the Step “And I click on ‘Search’”, PANDA
looks for any widget named “Search” in the initial state, and check if the description of
the corresponding widget in the ontology support the behavior “ClickOn” (Fig. 19).

Fig. 19. Properties of a button in the tool PANDA with properties defined by the ontology

Testing Prototypes and Final User Interfaces 101

The results of the tests are displayed by a colored symbol next to each Step as shown
in the Fig. 20. A red “X” represents failure, a green “V” represents success a black “?”
represents an untested Step. There is currently no distinction between the different
reasons of test failure (e.g. widget not found, property not supported, etc.). In our
example, the button supports the event “#clickOn” which matches with the action
“I click on” of the Scenario. However, none of the UI Elements (Calendar, CheckBox,
Link or Radio Button) described in the ontology to support the behavior “chooseRefer‐
ringTo” was found.

Fig. 20. Example of results given during a Scenario testing

4.2 Testing in the Final UI Level

To test Final UI directly from User Stories, we use external frameworks (the so-called
robots) to provide automated execution in the Final UI. Robots mimic user interactions
with the Final UI by running Scenarios described in the User Stories. We use the robot
Selenium WebDriver to run navigational behavior and JBehave and Demoiselle Behave
to parse the Scenario script. Test results provided by the JUnit API indicate visually
which tests passed and which ones failed and why. Execution reports of User Stories,
Scenarios and Steps can be obtained by using the JBehave API.

Figure 21 presents the architectural model integrating tools and classes in the approach
for testing the Final UI. The ontological model described in the Sect. 3.1 provides a pre-
defined set of behaviors used at the Requirements Layer. Artifacts produced in Proto‐
typing and Task Layers are suitable to not only benefit from the ontology description to
model better requirements, but also to contribute with the development of new User
Stories. Pre-defined behaviors are mapped by the CommonSteps class that supports the
development of specific behaviors not covered by the ontology, and subsequently mapped
in the MySteps class. Both Steps are extracted from the User Stories that can be repre‐
sented in simple packages of text files. This structure composes the Requirements and
Testing Layer. The Presentation Layer includes the MyPages class that describes the link
between UI components defined in the ontology and the real UI components instantiated
on the interface under testing. This link is crucial to allow the Selenium WebDriver robot
and the other External Testing Frameworks to automatically execute the Scenarios in the
right components on the UI. Finally, the MyTest class is a JUnit class responsible to
trigger the tests, pointing which Scenarios should be executed and making the bridge
between UI components in the Presentation Layer and executable behaviors in the
Requirements and Testing Layer. Figure 22 shows the MyTest class automatically
executing the “Return Tickets Search” Scenario presented in the case study.

102 T.R. Silva et al.

Fig. 21. Architectural representation of automated testing in the Final UI

Fig. 22. Automated execution of the “Return Tickets Search” Scenario

Concerning the testing data, the approach offers two main strategies to set them out
of Scenarios. The first one is establish Data Providers to store values for variables that
can be used in the writing of Scenarios Steps. This mechanism is useful to render flexible
the reuse of data dynamically and to hide data in Scenarios without losing readability.
The second mechanism is the use of data storage in XML files. It is useful to work with
a large set of data that should be introduced in Scenarios at runtime. Figures 23 and 24
illustrate these mechanisms.

Testing Prototypes and Final User Interfaces 103

Fig. 23. Data in Data Provider: (a) data being associated to a variable to be used in the Step

Fig. 24. Data stored in a XML file: (a) data associated to XML file, (b) reference to dataset

5 Related Works

Efforts to specify requirements in a natural language, such as Language Extended
Lexicon (LEL) [18], have been studied since the 90’s. The authors propose a lexical
analysis of requirements descriptions in order to integrate scenarios into a requirements
baseline, making possible their evolution as well as the traceability of the different views
of the requirements baseline. Nonetheless, requirements specified through an ATDD
approach are recent in academic discussions. For example, Soeken et al. [1] propose a
design flow where the designer enters in a dialog with the computer where a program
processes sentence by sentence all the requirements creating code blocks such as classes,
attributes, and operations in a BDD template. The template proposed by the computer
can be revised which leads to a training of the computer program and a better under‐
standing of following sentences. Some works [1, 18] use different approaches to process
natural language; nonetheless none follow a User-Centered Design process.

Wolff et al. [5] proposes to link GUI specifications to abstract dialogue models.
Specifications are linked to task models describing behavioral characteristics. Proto‐
types of interactive systems are refined and interactively generated using a GUI editor.
The design cycle goes from task model to abstract user interfaces and finally to a concrete
user interface. It is an interesting approach to have a mechanism to control changes in
interface elements according to the task they are associated in the task models. However,
the approach is not iterative and does not provide the necessary testing component to
check and verify user interfaces against predefined behaviors from requirements.

104 T.R. Silva et al.

Martinie et al. [6] propose a tool-supported framework for exploiting task models
throughout the development process and even when the interactive application is
deployed and used. The framework allows connecting task models to an existing,
executable, interactive application thus defining a systematic correspondence between
the user interface elements and user tasks. The problem with this approach is that it only
covers the interaction of task models with Final UI, not covering other types of possible
requirements artifacts that can emerge along the process. Another problem is it requires
much intervention of developers to prepare the code to support the integration, making
difficult to adopt in applications that cannot receive interventions in the code level.

Buchmann and Karagiannis [15] present a modelling method for the elicitation of
requirements for mobile apps that enables semantic traceability for the requirements
representation. Instead of having requirements represented as natural language items
that are documented by diagrammatic models, the communication channels are
switched: semantically interlinked conceptual models become the requirements repre‐
sentation, while free text can be used for requirements annotations/metadata. The
authors claim that the method can support semantic traceability in scenarios of human-
based requirements validation, but using an extremely heavy modeling approach which
is not suitable to check requirements in a high level of abstraction. Besides that, the
method is not focused in providing a testing mechanism through common artifacts, but
only in validating the requirements modeled within the approach.

Käpyaho and Kauppinen [2] explore how prototyping can solve the challenges of
requirements in an agile context. Authors suggest that prototyping can solve some prob‐
lems of agile development such as the lack of documentation, poor communication tools,
but it also needs complementary practices such as the use of ATDD (Acceptance Test-
Driven Development). The authors conclude that one of the biggest benefits from proto‐
typing is that the prototypes act as tangible plans that can be relied on when discussing
changes.

6 Conclusion and Future Works

In this paper we have presented an approach aiming test automation that can help to
validate functional requirements through multiple artifacts used to build interactive
systems. For that, an ontology was provided to act as a base of common ontological
concepts shared by different artifacts and to support traceability and test integration
along the project. When representing the behaviors that each UI element is able to
answer, the ontology also allows extending multiple solutions for the UI design. We
have focused in this paper in the testing of Prototypes and Final UIs, but the same
solution can be propagated to verify and validate other types of artifacts like Task Models
and others, integrating the testing process and assuring traceability through artifacts.
The degree of formality of these artifacts, however, can influence the process of trace‐
ability and testing, making it more or less tricky to conduct. These variations should be
investigated in the future.

This approach also provides important improvements in the way teams should write
requirements for testing purposes. Once described in the ontology, behaviors can be

Testing Prototypes and Final User Interfaces 105

freely reused to write new Scenarios in natural language, providing test automation with
little effort from the development team. Another important advantage is that multi-arti‐
fact testing is provided with no intervention in the source code of the application. It is
also important to note that the concepts and definitions in the ontology presented herein
are naturally only one of the possible solutions to address and describe behaviors and
their relations with UIs. The ontology is provided ready to use for a new development
project, but it is not changeless and could be replaced for other behaviors, concepts and
relationships eventually more representatives for some contexts of development. Future
discussions might consider having ontologies as knowledge bases, keeping specific
behaviors for specific groups of business models. It would give us the possibility to also
reuse entire business Scenarios in systems sharing similar business models.

We have also presented tools that demonstrate the feasibility of the approach. So far,
PANDA supports automated testing only in the Medium-Fidelity Prototypes. However,
like Task Models, Low-Fidelity Prototypes can also be checked on their XML files to
validate if the interaction components referred in the Scenarios were considered in the
Prototype. Considering that High-Fidelity Prototypes and Final UIs are built using the
same level of fidelity for their interaction components, they both can also be tested by
equivalent means. Doing so would allow us testing Prototypes at different periods of the
design process, especially since the early phases, following their cycle of evolution and
successive refinements, while ensuring that the tests on different artifacts share the same
goals in terms of requirements.

The approach is still under development, so although the results of the first case
studies are promising, we have no more data yet about the difficulty to implement it in
different contexts (or platforms), neither about the time consumed to run it. Ongoing
work is currently being conducted to verify potential problems and inconsistencies when
working with multiple design options and manipulating more complex task models. We
are also refining the set of developed tools to better support the creation, visualization
and execution of the tests. Future works include experiments to evaluate the effective‐
ness and the workload when running the approach in real cases of software development,
as well as establishing other case studies including mobile platforms.

References

1. Soeken, M., Wille, R., Drechsler, R.: Assisted behavior driven development using natural
language processing. In: Furia, C.A., Nanz, S. (eds.) TOOLS 2012. LNCS, vol. 7304, pp.
269–287. Springer, Heidelberg (2012)

2. Kapyaho, M., Kauppinen, M.: Agile requirements engineering with prototyping: a case study.
In: IEEE International on Requirements Engineering Conference (RE) (2015)

3. North, D.: What’s in a story? (2016). http://dannorth.net/whats-in-a-story/
4. Cohn, M.: User Stories Applied: For Agile Software Development. Addison-Wesley

Professional, Reading (2004)
5. Wolff, A., Forbrig, P., Dittmar, A., Reichart, D.: Linking GUI elements to tasks: supporting

an evolutionary design process. In: Proceedings of the 4th International Workshop on Task
Models and Diagrams, pp. 27–34. ACM (2005)

106 T.R. Silva et al.

http://dannorth.net/whats-in-a-story/

6. Martinie, C., Navarre, D., Palanque, P., Fayollas, C.: A generic tool-supported framework
for coupling task models and interactive applications. In: Proceedings of the 7th ACM
SIGCHI Symposium on Engineering Interactive Computing Systems, pp. 244–253 (2015)

7. Santoro, C.: A Task Model-based Approach for Design and Evaluation of Innovative User
Interfaces. Presses Univ. de Louvain (2005)

8. Rosson, M.B., Carroll, J.M.: Usability Engineering: Scenario-Based Development of Human-
Computer Interaction. Morgan Kaufmann, San Francisco (2002)

9. Lewis, C., Rieman, J.: Task-Centered User Interface Design: A Practical Introduction.
University of Colorado, Boulder (1993)

10. Chelimsky, D., Astels, D., Helmkamp, B., North, D., Dennis, Z., Hellesoy, A.: The RSpec
book: Behaviour driven development with Rspec, Cucumber, and friends. Pragmatic
Bookshelf (2010)

11. Guarino, N., Oberle, D., Staab, S.: What is an ontology? In: Handbook on Ontologies, pp.
1–17. Springer, Heidelberg (2009)

12. Limbourg, Q., Pribeanu, C., Vanderdonckt, J.: Towards uniformed task models in a model-
based approach. In: Johnson, C. (ed.) DSV-IS 2001. LNCS, vol. 2220, pp. 164–182. Springer,
Heidelberg (2001)

13. Limbourg, Q., Vanderdonckt, J., Michotte, B., Bouillon, L., López-Jaquero, V.: USIXML: a
language supporting multi-path development of user interfaces. In: Feige, U., Roth, J. (eds.)
DSV-IS 2004 and EHCI 2004. LNCS, vol. 3425, pp. 200–220. Springer, Heidelberg (2005)

14. Pullmann, J.: MBUI - Glossary - W3C (2016). https://www.w3.org/TR/mbui-glossary/.
Fraunhofer FIT

15. Buchmann, R.A., Karagiannis, D.: Modelling mobile app requirements for semantic
traceability. Requirements Eng., 1–35 (2015)

16. Nair, S., de la Vara, J.L., Sen, S.: A review of traceability research at the requirements
engineering conference re@ 21. In: 2013 21st IEEE International Requirements Engineering
Conference (RE), pp. 222–229. IEEE (2013)

17. Uusitalo, E.J., Komssi, M., Kauppinen, M., Davis, A.M.: Linking requirements and testing
in practice. In: 16th IEEE International Requirements Engineering, RE 2008, pp. 265–270.
IEEE (2008)

18. Leite, J.C., Oliveira, A.P.: A client oriented requirements baseline. In: Proceedings of the
Second IEEE International Symposium on Requirements Engineering (1995)

19. Ebert, C.: Global Software and IT: A Guide to Distributed Development, Projects, and
Outsourcing. Wiley, New Jersey (2011)

20. Myers, G.J., Sandler, C., Badgett, T.: The Art of Software Testing. Wiley, New Jersey (2011)
21. Lindstrom, D.R.: Five ways to destroy a development project. IEEE Softw. 10, 55–58 (1993)
22. Pugh, K.: Lean-Agile Acceptance Test-Driven-Development. Pearson Education, Upper

Saddle River (2010)
23. Adzic, G.: Specification by Example: How Successful Teams Deliver the Right Software.

Manning Publications, Westampton (2011)
24. Martinie, C., Palanque, P., Winckler, M.: Structuring and composition mechanisms to address

scalability issues in task models. In: Campos, P., Graham, N., Jorge, J., Nunes, N., Palanque, P.,
Winckler, M. (eds.) INTERACT 2011, Part III. LNCS, vol. 6948, pp. 589–609. Springer,
Heidelberg (2011)

25. Hak, J.L., Winckler, M., Navarre, D.: PANDA: prototyping using annotation and decision
analysis. In: Proceedings of the 8th ACM SIGCHI Symposium on Engineering Interactive
Computing Systems, EICS 2016, Brussels, Belgium, 21–24 June, pp. 171–176. ACM (2016).
ISBN: 978-1-4503-4322-0

Testing Prototypes and Final User Interfaces 107

https://www.w3.org/TR/mbui-glossary/

Socio-Technical and Ethical
Considerations

Communication in Teams - An Expression
of Social Conflicts

Jil Klünder1(B), Kurt Schneider1, Fabian Kortum1, Julia Straube2,
Lisa Handke2, and Simone Kauffeld2

1 Software Engineering Group, Leibniz Universität Hannover,
Welfengarten 1, 30167 Hannover, Germany

{jil.kluender,kurt.schneider,fabian.kortum}@inf.uni-hannover.de
2 Department of Industrial/Organizational and Social Psychology, Technische
Universität Braunschweig, Spielmannstraße 19, 38106 Braunschweig, Germany

{julia.straube,l.handke,s.kauffeld}@tu-bs.de

Abstract. The more members a team has, the more information needs
to be shared with single team members or within the whole team. Suf-
ficient information sharing is difficult to ensure, since a project leader
will not be fully aware of all on-going information and communication
within the team. In software engineering, information flow is essential
for project success. In each part of the process, information like require-
ments or design decisions needs to be communicated with appropriate
persons. Neither missing nor wrong implemented requirements are desir-
able, since extra working hours or incomplete working results need to
be paid. Therefore, the right amount of information sharing is highly
desirable. To ensure this, communication is a mandatory requisite. Fur-
thermore, knowing about social conflicts is suitable, since these influence
the information flow.

In an experiment with 34 student software projects, we collected data
referring to internal team communication and mood. In these projects, we
could show a correlation between chosen communication channels, social
conflicts and mood. Since social conflicts foster an insufficient informa-
tion flow, knowing about these helps software developing teams to reach
higher quality and a higher customer satisfaction.

1 Introduction

Ensuring the right amount of information sharing with all involved persons is
often difficult. Some information only needs to be communicated with a few team
members, while other information needs to be shared within the whole team.

In software engineering, the impact of “appropriate” communication on
project success has been discussed frequently (e.g. [23,28]). Both, the commu-
nication with the customer and the inner team communication require special

c© IFIP International Federation for Information Processing 2016
Published by Springer International Publishing Switzerland 2016. All Rights Reserved
C. Bogdan et al. (Eds.): HCSE 2016/HESSD 2016, LNCS 9856, pp. 111–129, 2016.
DOI: 10.1007/978-3-319-44902-9 8

112 J. Klünder et al.

attention to provide high quality project results with well performing function-
alities [16]. Communication is important for working in groups. Furthermore,
motivated by the importance of information sharing within the project team,
communication has been proven to be a determinant of project success [19].

In software developing teams, wrong or insufficiently transmitted require-
ments often cause wrong or not implemented parts of the software [27]. There-
fore, insufficient communication can threaten project success. Otherwise, ade-
quate communication can foster project success. Hence, a good working com-
munication is desirable for all project members: The developer team that does
not want to spend time on implementing unnecessary program code, the project
leader who wants to complete the tasks, and lastly the customer who wants a
successful project. But not only requirements need to be shared within the team.
Also design decisions, customized standards, reports about bugs and many other
information need to be transported to the relevant persons.

As Stapel [30] pointed out, not only the intensity of communication, but also
the chosen communication channel is important for transmitting the desired
information. In the “Modes of Communication”, Cockburn [5] rated different
kind of communication channels by their effectiveness and richness. Among other
characteristics like synchronicity, the perceptions addressed by the media chan-
nels are one factor for the grading. For example, meetings with face to face
communication – in physical support with a white board – are the most effective
way to communicate [1,5]. As teams often do not have the opportunity to meet
regularly and since meetings often do not suffice for conveying the entire infor-
mation at hand, other ways of information sharing need to be used. In practice,
common alternatives are services like email, video chat, telephone or group and
single chat.

Schneider et al. [26] developed an approach to combine communication chan-
nels and the intensity. They used FLOW distance, which is defined to be a mea-
sure for the collaboration in teams.

In this contribution, we want to motivate the usage of FLOW distance by
achieving a relationship between FLOW distance, and hence communication
behavior, mood and social conflicts in software developing teams.

Along with the findings of Watson et al. [35], mood can be described using
positive and negative affect. While persons in a state of high negative affect
feel anger, disgust and fear, persons in a state of high positive affect feel active,
enthusiastic and alert [35]. The affects of persons working in groups converge
over time, meaning that the mood of all team members assimilate [6,32]. This
assimilation influences team performance as well as important process variables:
For example, Barsade [3] was able to prove that positive group mood is associated
with better performance and less conflicts.

This paper concentrates on the positive affect dimension, as we assume that
positive group mood facilitates action (cf. [21]) and will thus be beneficial, espe-
cially at the beginning of the project.

We are able to show that summarizing the chosen communication channels
and the communication intensity using FLOW distance has a relation to social

Communication in Teams - An Expression of Social Conflicts 113

conflicts and mood. The FLOW distance between two members measures the
indirections and barriers hampering the information flow when they communi-
cate. Given by the intuitive comprehension of distance, FLOW distance increases
with a decreasing collaboration and with the usage of non-direct communication
channels and vice versa.

In an experimental study on 34 student software projects, we show a correla-
tion between FLOW distance, social conflicts and mood at certain stages of the
project. Therefore, an increasing FLOW distance can be seen as indication for
difficulties within the team. Therefore, observing FLOW distance may be helpful
for the project leader. It helps assuming problems within the developing team
and working against lack of information sharing. In the case of a well-working
communication, the project leader finds out that there is no reason to modify or
adjust the used media channels.

The structure of this article is as follows: In the following Sect. 2, we give
an overview of related work in similar topics. In Sect. 3, we motivate and give
the definition of FLOW distance with its properties and the way of calculation.
Afterwards, we validate our approach in Sect. 4, followed by Sect. 5, in which we
discuss the results. Section 6 summarizes our work.

2 Related Work

The relationship between communication intensity, communication channels and
project success has been studied for a long time in software engineering. This
chapter gives an overview about already existing approaches in certain topics
which are related to this paper: The combination of social network analysis with
the FLOW method to analyze information flows and the distance, i.e. collabora-
tion, within the team referring to the communication intensity of a co-located
working software developing team.

The idea of combining social network analysis and communication inten-
sities is not entirely new. In the context of the collaboration within a team,
Damian et al. [8] studied the awareness among team members in global soft-
ware development teams using methods of social network analysis. They found
a positive correlation between communication and awareness within so-called
requirements-centered social network analysis.

Additional work often refers to team communication centralization that indi-
cates the degree to which communication is focused on a subset of participants
or even a single person. High centralization can be considered as an indication of
unequal communication participation (for other network measures of participa-
tion, such as Maverick score, see [24]). Centralization of communication compiles
structural and quantitative elements (weights) into an indicative number. It is
a widely-used metric in social network analysis.

Sauer et al. [25] applied social network analysis to team interaction. They
investigated the calculation of centralization for various kinds of small group
interactions. After having conceptualized group discussions as networks, they
were able to present a metric calculating a centralization for these networks

114 J. Klünder et al.

using extensions of Freeman’s metrics for centrality measures [11]. In the end,
they examine the relationship between team performance and centralization of
the interactions during the meeting.

In software engineering, Wolf et al. [38] also applied social network analysis
to team communication structures. They wanted to indicate the importance
of developer communication for software integrations. In order to reach this
aim, they used well-elaborated measures like density and centrality in general as
metrics.

The FLOW method serves for visualizing and analyzing information flows in
project teams. It was introduced and presented by Stapel et al. [31]. The gen-
eral structure of communication within the team is extended about the state of
information flow: Solid information summarize all information that is repeat-
able, long term accessible and comprehensible for third parties, whereas fluid
information is everything which is not solid.

Although most research concerning the distance in teams refer to distributed
software developing teams, there are some approaches that are comparable to
our approach, which focuses on co-located teams.

Bjarnason [4] identified different variants of distance in software engineering
literature. She stated that distance plays an important role in both, distributed
and co-located software development. In her systematic literature review, she
found eight different distances between people, i.e. within the team, also includ-
ing the geographical distance. In the context of this contribution, Bjarnason’s
results concerning the socio-cultural distance including among other things orga-
nizational and national culture, language and individual motivations, opinion
distance and organizational distance are important. The most important results
are those related to the psychological distance. Prikladnicki [24] has denoted
psychological distance as a “measure of the perceived psychological (subjective)
effort of an actor to communicate with another actor” [4].

There have already been various researches relating to FLOW distance.
Schneider et al. [26] presented a first approach of defining and using FLOW
distance. The authors evolved the idea of a “perceived distance” generated by
the communication intensity and a certain weighting of the used communication
media. Schneider et al. considered FLOW distance as “the number of weighted
indirections between source and target of an information flow” [28]. In the present
contribution, we will refine the definition and motivate this approach by pointing
out a relation between FLOW distance, social conflicts and mood.

3 FLOW Distance

FLOW distance is a metric combining communication intensity and used media.
Exploring the information flow within a project, FLOW distance simplifies the
detection of the wrong amount of communication and therefore indicates prob-
lems in information sharing. Considering the FLOW distance enables strategic
changes in the way of communication (for example by adding an obligatory
meeting each week) and hence a better flow of relevant information.

Communication in Teams - An Expression of Social Conflicts 115

In this contribution, we want to elaborate the already existing definition of
FLOW distance (cf. [26,28]) restricted to a static network of a single software
developing team consisting of three to five co-located working members. We
want the measure to consider the used media and the subjective communication
intensity between two persons within these teams. FLOW distance can also be
used to analyze the structure of a team using social network analysis.

The requests and restrictions can be summarized as follows:

– FLOW distance should consider the communication intensities and the used
media.

– It shall increase with a decreasing collaboration and vice versa.
– It has to be practicable, i.e. it needs to be easy to calculate and the input data

need to be collectable with low effort.
– For later research, it needs to be extendable towards bigger software developing

teams and to FLOW models1.

Fulfilling these requests yields to a few more definitions and analyses before
giving the definition of FLOW distance.

1. Creating a mathematical model of FLOW distance which allows a precise and
well-founded definition.

2. Weighting the used media with respect to their effectiveness and richness.
This needs to be done at least for the common used communication channels
“meetings (F2F)”, “video chats”, “chats”, “emails” and “phone calls”.

3. Defining and calculating the communication intensity only using easily col-
lectable data.

4. Giving the definition of FLOW distance and using it for calculation.

These steps will be executed in the course of this chapter.

3.1 Mathematical View

We consider FLOW distance as a mapping d: A×A → [0, 1], where A denotes the
set of all team members and [0, 1] is the unit interval2. We understand FLOW
distance as a metric from a mathematical point of view, i.e. it is (i) positive
definite, (ii) symmetric and (iii) the triangle-inequality holds:

(i) positive definite: The measure is always greater than or equal to zero. It
vanishes if and only if the two persons are the same, i.e. d(i, i) = 0 and
d(i, j) �= 0∀ i �= j.
This is useful, since there is no interpretation for negative distances between
two members and having a FLOW distance of zero between to different
members would mean that they spend the whole time together exchanging
each thought.

1 This extension will not be part of this contribution.
2 The restriction of the image of d to the unit interval helps comparing the FLOW

distances of different teams.

116 J. Klünder et al.

(ii) symmetric: Along the lines of Watzlawick’s findings [36], one cannot not
communicate, meaning that also if only i sends many emails to j without
receiving an answer, j communicates with i by receiving the emails. There-
fore, the mapping d should be symmetric, even if the communication is
one-directional.

(iii) triangle-inequality: The FLOW distance between two team members i and k
should be greater than or equal to the sum of the FLOW distances between
i and j and j and k, i.e. d(i, k) ≥ d(i, j)+ d(j, k). In the context of commu-
nication, this means that communicating via a third person let the distance
between the two other persons increase.

3.2 Media Richness and Effectivity

We consider the common used communication media “email”, “phone call”,
“video chat”, “chat” and “meeting”. Intuitively, the intensity and efficiency are
the largest in meetings, followed by video chat, chat, phone and email. There
are proper justifications to use this or a very similar grading of the media [10].

First of all, the more human senses the media addresses, the more information
can be transported. One does not only communicate by speaking; the facial
expression, the gestures and the voice are not less important than the used
words [7]. In meetings and video chats, most senses are addressed. In chats,
emails and in phone calls, there is only written or heard text. This way, we get
the following weighting:

meetings = video chat > email = chat = phone call

Furthermore, we should consider the synchronicity of the media [9]. Meanwhile
meetings, chats, video chats and phone calls are instantaneous, emails often need
much time until the receiver answers them. Therefore, the weighting of emails
should be smaller than the weighting of chat and phone calls, i.e.

meetings = video chat > chat = phone call > email

Due to the direct face-to-face communication without screens or bandwidth
(potentially limiting the information flow) and the interactions of team members
in one room, the importance of meetings should be bigger than the importance
of video chats. Therefore, we get the following final order of the efficiency and
effectivity of the media:

meetings > video chat > chat = phone call > email

Table 1 reflects the weighting of media gained by starting with 1 and increasing
the weighting about one unit at each jump in the previous ordering. These
weights will be used for calculating FLOW distance.

Cockburn’s [5] and Ambler’s [1] reflections support this ordering. In his
“Modes of Communication”, Cockburn proposes a grading of various communi-
cation channels referring to their “richness” and “effectiveness”. Figure 1 repre-
sents these findings, which can be retrieved in the grading above.

Communication in Teams - An Expression of Social Conflicts 117

Table 1. Media weighting for calculating FLOW distance

meeting 4

video chat 3

chat 2

phone call 2

email 1

Fig. 1. Modes of communication [1]

3.3 Communication Intensity

Calculating the FLOW distance requires a certain kind of communication inten-
sity. Therefore, each team member is asked to estimate the intensity of commu-
nication with respect to each other team member. This way, we gain a matrix
of the following structure:

⎡
⎢⎢⎢⎢⎣

0 a12 a13 a14 a15

a21 0 a23 a24 a25

a31 a32 0 a34 a35

a41 a42 a43 0 a45

a51 a52 a53 a54 0

⎤
⎥⎥⎥⎥⎦

where each aij has a value between 0 and 43. Ideally, this matrix is symmetric, i.e.
aij = aji for all team members i, j ∈ A. But since the statements concerning the
3 This area was fixed by the study design and may be adapted to other study designs.

118 J. Klünder et al.

intensity are all subjective and there does not exist a (non-technical) objective
reference, this matrix will probably never be symmetric. Therefore, we calculate
the average of each aij and aji to gain the resulting communication intensity
between i and j.

3.4 Calculation

To simplify the calculation of FLOW distance, let dij = d(i, j) denote the FLOW
distance between two team members i and j. To gain a comparability between
FLOW distances of different teams, we want to restrict the image of d to the
unit interval. Therefore, we need a certain kind of normalization.

As variables, we only need a list of used communication channels written by
person i respectively j and the perceived communication intensity.

In a first step, we calculate the product cij of the communication intensity
and the sum of the weightings of all used media. For example, if two persons
have communicated using chats (2), emails (1) and a face-to-face meeting (4)
with an average perceived intensity of 4, we would calculate

4 · (2 + 1 + 4) = 28,

where 2, 1 and 4 represents the weightings of the used media (see Table 1).
Then, FLOW distance dij is given by

dij = 1 − cij
c∗ ,

where c∗ denotes the theoretical maximum of cij within the regarded team con-
stellation. In a team with five members using meetings, video chats, chats, phone
calls and emails, c∗ would be calculated as

c∗ = 4 · (4 + 3 + 2 + 2 + 1) = 48,

where 4 is the maximal possible communication intensity.
Looking at the example of above, the FLOW distance is

dij = 1 − 28
48

≈ 0, 4167.

The FLOW distance of the whole team, d, is given by the average of the FLOW
distances of the team members, i.e.

d = avg{dij : i �= j ∈ A}.

3.5 FLOW Centralization

Using FLOW distance calculation, we can create the FLOW centralization which
gives an overview for the structure of the team. As centralization and centrality
are common measures in psychology and social network analysis to analyze team

Communication in Teams - An Expression of Social Conflicts 119

structures and the collaboration, FLOW centralization can be applied to further
calculations in social network analysis.

We start with an upper triangular matrix D, where the entry dij is given by
the FLOW distance between the members i and j. The FLOW centralization is
then calculated as follows:

We get the FLOW centrality of a person j by summing up over all FLOW
distances between this person and all other team member, i.e.

centrality(j) =
∑
i∈A

dij ,

where A again denotes the set of all team members and dij is the FLOW distance
(respectively the entries in D). The higher a person’s centrality, the closer he or
she is generally to the other team members.

Let now centralitymax denote the score of the team member who has the
maximum centrality, i.e.

centralitymax = max{centrality(j) : j ∈ A}.

Then, we calculate the FLOW centralization by

centralization =
∑
j∈A

centralitymax − centrality(j)
centrality∗ , (*)

where centrality∗ denotes the theoretical maximum of centrality.
Calculating centrality∗ bases on considering the star shape as network [11].

The star network has the largest centralization, which is why it is used to nor-
malize the FLOW centralization. In this network, we weight each edge with c∗,

C D

A B

E

Fig. 2. The star shape network with five persons. In this example, person E is the most
central team member.

120 J. Klünder et al.

which is defined to be the most possible communication interaction (gained by
using all media with the most perceived intensity). Figure 2 shows the star shape
network with five persons.

Considering not an individual’s centrality, but the group centralization allows
conclusions about the team internal structure4: The higher the centralization,
the more individual members communicate via one dominant actor rather than
directly to one another.

4 Empirical Validation

To motivate the use of FLOW distance and FLOW centralization, we want to
show the relationship between communication channels, perceived communica-
tion intensity and social conflicts.

As several studies have shown, a low degree in centralization appears to be
beneficial for team performance [25,28]. As software projects are considered to
be highly dynamic entities, communication structures may also be expected to
vary over time [2]. The project’s midpoint may be particularly relevant in this
case, as teams have been shown to display increased effort at this time [12,34].
Furthermore, at this stage of the project, team structures also seem to change, as
individual expectations and perceptions transform into shared group goals and
understandings [12,13]. Considering that team development during this point in
time also involves conflict resolutions [15], we assume that it will be influential
on how teams deal with relationship conflicts throughout the rest of the project.
We thus hypothesize that a higher degree of FLOW centralization in the middle
of the project will also be associated with increased social conflicts later on.

H1: The degree of FLOW centralization at midpoint will be positively related
to the degree of social conflict at the end of the project.

Positive affect has been known to increase social integration, i.e. the extent to
which people are positively linked to one another, as it can be linked to approach-
oriented and cooperative behaviors [18]. Furthermore, group affect seems to influ-
ence how members regulate their behaviors when facing a deadline [17], such as
a quality gate5 at project’s midpoint.

Interactions in early project stages have been shown to consist of long-lasting
effects [12,39]. We thus assume that the degree to which the team’s positive
affect after their first meeting will influence the degree of FLOW centralization
at midpoint.

H2: The degree of the team’s positive affect after the first meeting will negatively
influence the degree of FLOW centralization at midpoint.

4 The benefit of using FLOW centralization will be outlined in Sect. 5.2.
5 Within a quality gate in project course, a responsible person, the so-called gate

keeper, decides about the release of the next project step on the basis of clearly
determined quality criteria [29].

Communication in Teams - An Expression of Social Conflicts 121

In line with Totterdell et al.’s [33] assertion that social networks act like conduits
for affect to flow and converge through, we furthermore assume that positive
group affect after the first team meeting will decrease the incidence of social
conflicts at the end of the project via decentralized communication structures at
midpoint.

H3: Centralization will mediate the relationship between positive affect after
the first team meeting and social conflicts at the end of the project.

To validate these hypotheses, we conducted a study with 34 student software
projects.

4.1 Student Software Projects

At Leibniz Universität Hannover, the Software Engineering Group offers a yearly
repeating course called Software-Project (SWP), which is scheduled in the last
(third) year of the computer science bachelor curriculum. Participating in this
course is a requisite in order to complete the undergraduate studies.

In this course, the teams mostly consist of five students developing a software
for a customer, who is usually part of the software engineering group and who
has a real interest in project success. The projects resemble industrial projects,
but also consider the academic environment6. The students need to organize
themselves, i.e. they need to coordinate the meetings with the customer, within
their team, and with the advisors at the right time and in an appropriate way.
The teams get supported by a coach who is part of the software engineering
group.

Within the 15 weeks of the fall semester, the students learn to work in a team,
talk to the customer and organize the internal communication. To support them
and to get the ability to obtain feedback, the teams had to pass three quality
gates – after the requirements elicitation, after the design and at the end of the
project.

The students are free to choose time and location for their meetings. They
also autonomously decide on how often they meet and which communication
channels they use.

With regards to the technical experiences in executing a project, teams need
to elicit requirements, design, implement, and test their product. Thus, they
pass through all common phases of the waterfall model. They need to write a
requirements specification and either create a design or implement a prototype
of the product. Co-located in the process, they furthermore make a review of the
design respectively the prototype of another team. In the last step, they develop
the software, which needs to be approved by the customer.

6 A german description of all tasks can be found at http://www.se.uni-hannover.de/
pages/de:lehre fungate.

http://www.se.uni-hannover.de/pages/de:lehre_fungate
http://www.se.uni-hannover.de/pages/de:lehre_fungate

122 J. Klünder et al.

4.2 Study Design

In 2012 and 2013, a total of 165 students participated in the Software-Project.
They worked in 34 teams mostly consisting of five persons. There was only one
team consisting of four students, and two teams with three students. Each team
worked together for a period of 15 weeks. Due to missing data, we had to exclude
one team from the analyses. The final sample therefore consisted of 33 teams
(160 individuals).

During the course, the students were asked to fill in questionnaires at three
specific dates: after the initial meeting with the customer, after half of the project
duration and at the end of the project. Questionnaires contained items on e.g.
positive affect and social conflicts. We did not ask the students to report on the
cause of conflict, but the mostly arising conflicts have been caused by different
attitudes to work, reliability and different abilities to work in a team. Addition-
ally, the team members filled out a weekly online-questionnaire referring to the
interactions with other team members.

To assess the communication within the teams, we asked each team mem-
ber to record his or her communication with each other member of the team.
They were free to choose gradations between “not communicated at all” and
“very high”. We did not raise the frequency of the used communication media.
During a whole week, the frequency influences the perceived intensity, so that
measuring perceived intensity is sufficient for our approach. Furthermore, each
team member stated the used communication media with respect to every other
team member. The channels “in one room”, “video”, “chat”, “telephone” and
“email” were available. Additionally, the project leader was asked to state the
duration of all meetings and the presence of each team member.

4.3 Ethics Committee

The ethics committee at Leibniz Universität Hannover authorized this elevation
of data. We informed the students about the collection of data and the further
usage. All data records were anonymized and the data did not influence the
success of passing the course.

4.4 Methodology

Measures. Within the scope of this contribution, we used the following data:
FLOW centralization at midpoint of each project’s total duration was mea-

sured using a communication score derived from data obtained via the self-report
in week 7. Using the individual ratings of intensity and media, an undirected com-
munication matrix for each team and for every week was obtained by averaging
the two scores for communication intensity and by determining the maximum
value for media use for each communication pair, and then multiplying these
two scores (see Sect. 3.5). As described by the formula (*) in Sect. 3.5, FLOW
centralization was computed in adding up the differences between the most cen-
tral team member’s centrality and centralities of all other team members and

Communication in Teams - An Expression of Social Conflicts 123

subsequently dividing them by the theoretical maximum score of 576 (288 and
96 for the teams with four or three members respectively).

Social conflict was measured using the German version of Jehn’s [14] intra-
group conflict scale by Lehmann-Willenbrock, Grohmann and Kauffeld [22],
adapted to the context of teams. The scale consisted of four items with a six-level
range from 1 = “never/none” to 6 = “very often/very much”. An exemplary item
was “How much friction is there among members in your team?” The measure-
ment was taken at the end of the project. The reliability value for this scale was
α = .87.

Positive affect was measured using the German translation of the positive
and negative affect scale (PANAS) [35] by Kroehne et al. [20]. The response
format ranged from 1 = “not at all” to 5 = “extremely”. The questions were
answered after the first team meeting in week 1. The scale, which consisted of
ten items, showed a reliability of α = .85.

To obtain group level constructs for social conflict and positive affect, indi-
vidual scores were mean-aggregated to the team level.

Data Analysis. Statistical procedures were performed using SPSS 22 (IBM
Corp.). In order to avoid alpha error inflation, all three hypotheses were tested
in one mediation model. The PROCESS-macro for SPSS by Andrew F. Hayes7

was employed for the mediation analysis.
While the path from the mediator (FLOW centralization) to the dependent

variable (social conflict) was used to test the first hypothesis, the path from
the predictor (positive affect) to the mediator (FLOW centralization) served to
test the second. As both of these hypotheses are directed, we will later report
the results of one-tailed hypothesis tests. The third hypothesis was tested in

Positive
Affect

Social
Conflicts

FLOW
Centralization

H3

H1H2

-0.14
(-0.36 [-.96; -.12])

−0.11† 3.37∗∗

†p < .1, ∗p < .05, ∗∗p < .01

Fig. 3. Mediation model

7 For further information see http://www.afhayes.com.

http://www.afhayes.com

124 J. Klünder et al.

calculating the indirect effect from positive affect via FLOW centralization to
social conflict. Figure 3 shows the hypothesized mediation model8.

4.5 Results

Table 2 shows descriptive statistics and intercorrelations among the variables
under study. As Table 3 shows, the unstandardized coefficient between FLOW
centralization and social conflict was statistically significant (p = .007/2 ≈ .004).
The first hypothesis was thus supported. Showing a clear negative tendency, the
relationship between positive affect and FLOW centralization also reached sta-
tistical significance (p = .063/2 ≈ .03). The second hypothesis was thus also
corroborated. The relationship between positive affect and social conflict was
mediated by FLOW centralization. We tested the significance of this indirect
effect using bootstrapping procedures. Unstandardized indirect effects were com-
puted for each of 1000 bootstrapped samples, and the 95 % confidence interval
was computed by determining the indirect effects at the 2.5th and 97.5th per-
centiles. The bootstrapped unstandardized indirect effect was −.3551, and the
95 % confidence interval ranged from −.9553 to −.0169. Thus, the indirect effect
was statistically significant, supporting hypothesis 3.

Table 2. Descriptive statistics and intercorrelations among variables

M SD Min Max 1 2 3

1 Pos. affect 3.16 0.33 2.60 3.86 -

2 Centralization 0.15 0.11 0.01 0.51 −.31a -

3 Social conflict 2.36 0.75 1.35 4.19 −.22 .50** -
ap < .1, ∗p < .05, ∗∗p < .01

Table 3. Results of the mediation analysis

Centralization Social conflict

Coeff. SE t p Coeff. SE t p

Pos. Affect −0.11a 0.05 −1.93 .063 −0.14 0.37 −0.38 .705

Centralization - - - - 3.37∗∗ 1.16 2.90 .007

Constant 0.48∗∗ 0.17 2.78 .009 2.31a 1.26 1.84 .076
ap < .1, ∗p < .05, ∗∗p < .01

8 In order to ensure a better understanding of the results, coefficients are also included
in the model.

Communication in Teams - An Expression of Social Conflicts 125

5 Discussion

In this section, we consider the study’s limitations and threats to validity before
interpreting and discussing our findings.

5.1 Limitations and Threats to Validity

Referring to our evaluation with students, we had to make some limitations
with regards to the real world. These limitations may threaten the validity of
the collected data and therefore influence the results of our calculations. Along
with the classifications of threats to validity by Wohlin et al. [37], we divide the
threats into construct, external and internal validity and reliability.

Internal validity: We wanted to consider the changes over the course of the
projects. Therefore, all threats concerning the internal validity (e.g. maturation,
internal interactions and talking about the project, the questionnaires and the
collected data) were desired and to some extent even necessary.

External validity: Although there are some modifications of the student projects
towards industrial standards, the academic environment still influences the scope
and the duration of the projects. The ability of working together in a room each
week was supported by the academic environment, since all students mostly
worked at university and have been there five days per week. Project leader were
not able to access to a big pool of experiences, since they possessed the same
amount of experiences as the rest of their team. Therefore, a coach of the soft-
ware engineering group supported the teams, when any social, i.e. interpersonal,
problems occurred. Furthermore, we only considered projects with a duration
of 15 weeks with small teams (3–5 members). Almost all participants had the
same background in theory and the team internal experiences and knowledge
was comparable in all teams. This was given by forming the teams deliberately.
Beside these threats, there are no more relating to the external validity.

Construct validity: We formulated the questionnaires for the students in a gen-
eral manner and used reliable gradations and items. But we still cannot ensure
that our comprehension of the items correspond with the student’s comprehen-
sion. We tried to minimize the impact of this wrong understanding through the
presence of one of the researchers involved in the project while the students filled
out the extensive questionnaires. This threats arose by comparing the perceived
communication intensities (the communication matrices have not been symmet-
ric), for instance. We respected these irregularities in the definition of FLOW
distance. The weekly report was formulated in a very general manner, so that
we do not expect any deviations in the understanding.

Reliability: The study’s results are statistically significant. But there are still
a few threats concerning the reliability of the study. Different projects have
different scopes and the knowledge and experience base of each team is different
from the other teams. These factors can restrict the reliability of this study.

126 J. Klünder et al.

5.2 Interpretation

With our approach of using FLOW distance, we propose a way to comprehend
the influences of different communication channels on project success. Along
with the findings of our study, we are able to show two things:

(i) The mediation model consisting of FLOW centralization, social conflicts and
mood.

(ii) The appropriateness of using FLOW distance to combine the communication
channels and the perceived communication intensity.

The experiment supports our three hypotheses:

1. The degree of FLOW centralization at midpoint is positively related to the
degree of social conflict at the end of the project. (H1)

2. The degree of the team’s positive affect after the first meeting negatively
influences the degree of FLOW centralization at midpoint. (H2)

3. Centralization mediates the relationship between positive affect after the first
team meeting and social conflicts at the end of the project. (H3)

A suitable amount of information sharing is necessary for project success. There-
fore, ensuring information flow is very important for the project leader. Exchang-
ing information goes along with communication – often in meetings, via e-mail,
phone or in (video) chats.

Using certain communication channels can foster and ensure information
sharing. Obligatory meetings each week can guarantee a minimum of informa-
tion exchange. Phone calls, e-mails, conversations and chats in addition to the
meetings are also mandatory, since they can minimalize loss of information.

Along with our findings, asking each team member about the perceived com-
munication intensity and the used communication channels is a good way to
monitor the information flow.

Combining these data using FLOW distance also indicates social problems
and conflicts at the end of project. As shown in H1 and H2, high positive mood
influences FLOW centralization, which depends on FLOW distance and thus
on communication behavior. The FLOW centralization again has an impact on
social conflicts which can influence the project success.

As the deadline approaches, collaboration is very important. Social conflicts
at this point may impair project success, i.e. the successful completion of the
overall project. FLOW distance is an indicator for that kind of conflicts. Know-
ing about conflicts arising with an increasing probability can help solving them
before they occur.

Therefore, we are not only able to support the hypothesis that communica-
tion is important for project proceeding, for example because of its influence on
information sharing. Our approach of using FLOW distance as a metric for the
collaboration in teams is also target-oriented with respect to ensure an appro-
priate amount of information flow.

Communication in Teams - An Expression of Social Conflicts 127

6 Conclusions

This work introduces an approach of using FLOW distance to foster a suitable
amount of information flow in software development teams and therefore project
success.

Internal team communication is very important for project success: In each
part of the project, information needs to be shared within the whole team or
with certain team members.

FLOW distance is a measure combining communication intensities and the
used communication channels, which is much easier to assess than surveying
every interaction between two or more team members. Furthermore, based on
the calculation of FLOW distance, FLOW centralization can be calculated. It
can be applied to methods in social network analysis supporting the recognition
of team internal structures.

Using the data collection of 33 comparable software projects with 160 par-
ticipants, we are able to show the relationship between FLOW centralization,
social conflicts and mood at certain stages of the project. The degree of FLOW
centralization at midpoint is positively related to the degree of social conflicts
at the end of the project, which means that the chosen communication chan-
nels and the perceived communication intensity at midpoint are indicators for
social conflicts at project’s end. Furthermore, the degree of the positive affect
negatively influences the degree of FLOW centralization at midpoint: Positive
mood in the developing team (for example reducible to a successful start of the
project) has a negative impact on FLOW centralization which depends on com-
munication in the middle of the project. Moreover, the FLOW centralization
mediates the relationship between positive affect after the first team meeting
and social conflicts at the end of the project meaning that FLOW centralization
– and hence communication – links good mood at the start of the project and
social conflicts at project’s end.

Therefore, considering FLOW distance helps the project leader to get an
overview about possibly existing social conflicts and mood, which influence the
information flow and therefore project success. Considering the FLOW distance
can foster project success with respect to different metrics: requirement compli-
ance [27], customer satisfaction, and the team mood by preventing unnecessary
work through a sufficient information flow.

Future work will inter alia focus on the application of FLOW distance and
FLOW centralization in social network analysis to analyze internal team struc-
tures and indicate critical interpersonal combinations.

Acknowledgements. This work was funded by the German Research Society (DFG)
under grant number 263807701 (Project TeamFLOW, 2015–2017).

References

1. Ambler, S.W., et al.: Agile modeling (2002)
2. Balijepally, V.: Collaborative software development in agile methodologies - Per-

spectives from small group research. In: AMCIS 2005 Proceedings (2005)

128 J. Klünder et al.

3. Barsade, S.G.: The ripple effect: emotional contagion and its influence on group
behavior. Adm. Sci. Q. 47(4), 644–675 (2002)

4. Bjarnason, E.: Distances between requirements engineering and later software
development activities: a systematic map. In: Doerr, J., Opdahl, A.L. (eds.)
REFSQ 2013. LNCS, vol. 7830, pp. 292–307. Springer, Heidelberg (2013).
http://dx.doi.org/10.1007/978-3-642-37422-7 21

5. Cockburn, A.: Agile Software Development: The Cooperative Game. Pearson Edu-
cation, London (2006)

6. Collins, A.L., Lawrence, S.A., Troth, A.C., Jordan, P.J.: Group affective tone: a
review and future research directions. J. Organ. Behav. 34, 43–62 (2013)

7. Daft, R.L., Lengel, R.H.: Information richness. A new approach to managerial
behavior and organization design. Technical report, DTIC Document (1983)

8. Damian, D., Marczak, S., Kwan, I.: Collaboration patterns and the impact of dis-
tance on awareness in requirements-centred social networks. In: 15th IEEE Inter-
national Requirements Engineering Conference, RE 2007, pp. 59–68. IEEE (2007)

9. Dennis, A.R., Fuller, R.M., Valacich, J.S.: Media, tasks, and communication
processes: a theory of media synchronicity. MIS Q. 32(3), 575–600 (2008)

10. Figl, K.: Team and media competencies in information systems. Oldenbourg Verlag
(2010)

11. Freeman, L.C., Roeder, D., Mulholland, R.R.: Centrality in social networks: II.
Experimental results. Soc. Networks 2(2), 119–141 (1979)

12. Gersick, C.J.: Time and transition in work teams: toward a new model of group
development. Acad. Manage. J. 31(1), 9–41 (1988)

13. Jarvenpaa, S.L., Shaw, T.R., Staples, D.S.: Toward contextualized theories of trust:
the role of trust in global virtual teams. Inf. Syst. Res. 15(3), 250–267 (2004)

14. Jehn, K.A.: A multimethod examination of the benefits and detriments of intra-
group conflict. Adm. Sci. Q. 40, 256–282 (1995)

15. Jehn, K.A., Mannix, E.A.: The dynamic nature of conflict: a longitudinal study
of intragroup conflict and group performance. Acad. Manage. J. 44(2), 238–251
(2001)

16. Kauffeld, S., Lehmann-Willenbrock, N.: Meetings matter effects of team meetings
on team and organizational success. Small Group Res. 43(2), 130–158 (2012)

17. Knight, A.P.: Mood at the midpoint: affect and change in exploratory search over
time in teams that face a deadline. Organ. Sci. 26(1), 99–118 (2013)

18. Knight, A.P., Eisenkraft, N.: Positive is usually good, negative is not always bad:
the effects of group affect on social integration and task performance. J. Appl.
Psychol. 100(4), 1214 (2015)

19. Kraut, R.E., Streeter, L.A.: Coordination in software development. Commun. ACM
38(3), 69–82 (1995)

20. Krohne, H.W., Egloff, B., Kohlmann, C.W., Tausch, A.: Untersuchungen mit
einer deutschen Version der “Positive and Negative Affect Schedule” (PANAS).
DIAGNOSTICA-GOTTINGEN- 42, 139–156 (1996)

21. Kuhl, J., Kazén, M.: Volitional facilitation of difficult intentions: joint activation of
intention memory and positive affect removes stroop interference. J. Exp. Psychol.
Gen. 128(3), 382 (1999)

22. Lehmann-Willenbrock, N., Grohmann, A., Kauffeld, S.: Task and relationship con-
flict at work. Eur. J. Psychol. Assess. 27, 171–178 (2011)

23. Pikkarainen, M., Haikara, J., Salo, O., Abrahamsson, P., Still, J.: The impact of
agile practices on communication in software development. Empirical Softw. Eng.
13(3), 303–337 (2008)

http://dx.doi.org/10.1007/978-3-642-37422-7_21

Communication in Teams - An Expression of Social Conflicts 129

24. Prikladnicki, R.: Propinquity in global software engineering: examining perceived
distance in globally distributed project teams. J. Softw. Evol. Process 24(2), 119–
137 (2012)

25. Sauer, N.C., Kauffeld, S.: Meetings as networks: applying social network analysis
to team interaction. Commun. Methods Measures 7(1), 26–47 (2013)

26. Schneider, K., Liskin, O.: Exploring FLOW distance in project communication. In:
Proceedings of 8th International Workshop on Cooperative and Human Aspects of
Software Engineering (CHASE 2015), ICSE 2015 (2015)

27. Schneider, K., Liskin, O., Paulsen, H., Kauffeld, S.: Requirements compliance as
a measure of project success. In: Proceedings of the 4th IEEE Global Engineering
Education Conference (EDUCON 2013) (2013)

28. Schneider, K., Liskin, O., Paulsen, H., Kauffeld, S.: Media, mood, and meetings:
related to project success? ACM Trans. Comput. Educ. (TOCE) 15(4), 21 (2015)

29. Sondermann, J.P.: Interne Qualitätsanforderungen und Anforderungsbewertung.
Handbuch Qualitätsmanagement/Masing, München 2007, pp. 387–404 (2007)

30. Stapel, K.: Informationsflusstheorie der Softwareentwicklung. Dissertation,
Gottfried Wilhelm Leibniz Universität Hannover, München, April 2012

31. Stapel, K., Knauss, E., Schneider, K.: Using FLOW to improve communication
of requirements in globally distributed software projects. In: Collaboration and
Intercultural Issues on Requirements: Communication, Understanding and Soft-
skills, 2009, pp. 5–14. IEEE (2009)

32. Totterdell, P.: Catching moods and hitting runs: mood linkage and subjective per-
formance in professional sport teams. J. Appl. Psychol. 85(6), 848 (2000)

33. Totterdell, P., Wall, T., Holman, D., Diamond, H., Epitropaki, O.: Affect networks:
a structural analysis of the relationship between work ties and job-related affect.
J. Appl. Psychol. 89(5), 854 (2004)

34. Waller, M.J., Zellmer-Bruhn, M.E., Giambatista, R.C.: Watching the clock: group
pacing behavior under dynamic deadlines. Acad. Manag. J. 45(5), 1046–1055
(2002)

35. Watson, D., Clark, L.A., Tellegen, A.: Development and validation of brief mea-
sures of positive and negative affect: the PANAS scales. J. Pers. Soc. Psychol.
54(6), 1063 (1988)

36. Watzlawick, P., Bavelas, J.B., Jackson, D.D., O’Hanlon, B.: Pragmatics of Human
Communication: A Study of Interactional Patterns. Pathologies and Paradoxes.
WW Norton & Company, New York (2011)

37. Wohlin, C., Runeson, P., Höst, M., Ohlsson, M.C., Regnell, B., Wesslén, A.: Exper-
imentation in Software Engineering. Springer Science & Business Media, New York
(2012)

38. Wolf, T., Schroter, A., Damian, D., Nguyen, T.: Predicting build failures using
social network analysis on developer communication. In: Proceedings of the 31st
International Conference on Software Engineering, pp. 1–11. IEEE Computer Soci-
ety (2009)

39. Zijlstra, F.R., Waller, M.J., Phillips, S.I.: Setting the tone: early interaction pat-
terns in swift-starting teams as a predictor of effectiveness. Eur. J. Work Organ.
Psychol. 21(5), 749–777 (2012)

Exploring the Requirements and Design of Persuasive
Intervention Technology to Combat Digital Addiction

Amen Alrobai(✉), John McAlaney, Huseyin Dogan, Keith Phalp, and Raian Ali

Faculty of Science and Technology, Bournemouth University, Poole, UK
{aalrobai,jmcalaney,hdogan,kphalp,rali}@bournemouth.ac.uk

Abstract. Digital Addiction (DA) is an emerging behavioural phenomenon that
denotes an obsessive and problematic usage of digital media. Such usage could meet
various criteria of an addictive behaviour such as salience, conflict, tolerance and
withdrawal symptoms and, hence, it would raise new challenges and ethical consid‐
erations on the way we engineer software. Luckily, software as a medium for such
addictive usage could be also a medium for enacting a behaviour change and preven‐
tion strategy towards a regulated usage. However, due to the recentness of such
software-based interventions, we still need a body of knowledge on how to develop
them. In this paper, we conduct empirical research, through a diary study and an
online forum content analysis, to understand users’ perception of such emerging
systems. The results shed the light on a range of design aspects and risks when
building and validating such persuasive intervention technology.

Keywords: Digital addiction · e-Heath design · Design for behavioural change

1 Introduction

The wealth of information and digital connectivity is a characteristic of a modern society but
its excessive and obsessive use may result in a less sustainable society and create social and
mental well-being problems. The consequences of such Digital Addiction (hereafter DA)
on individuals and collectively, include poor academic performance, reduced social and
recreational activities, relationships breakups, low involvement in real-life communities,
poor parenting, depression and lack of sleep [1–3]. DA manifests psychological character‐
istics and along with dependency, the user can experience withdrawal symptoms (e.g.
depression, cravings, insomnia, and irritability). Estimates of DA vary according to country
and according to the definition of DA and the metrics used to measure it in the studies. Such
estimates of internet addiction suggest that 6 %–15 % of the general population test positive
on signs of addiction; this figure rises to 13–18 % among university students who have been
identified as most at risk for DA [4]; at 18.3 % UK has a relatively high prevalence of DA
amongst university students [5].

The existing literature on DA has focused mainly on users’ psychology. There is a
paucity of research that positions software and its developers as primary actors in the
development of DA. Notable exceptions are the research in [6, 7] which advocates that
by developing DA-aware architecture and design, software developers can minimise

© IFIP International Federation for Information Processing 2016
Published by Springer International Publishing Switzerland 2016. All Rights Reserved
C. Bogdan et al. (Eds.): HCSE 2016/HESSD 2016, LNCS 9856, pp. 130–150, 2016.
DOI: 10.1007/978-3-319-44902-9_9

addictive usage and thereby prevent or intervene early with DA. Software developers,
together with users, can use inputs from technology and psychology to create DA-aware
software and facilitate a healthy use of digital technology.

Technology-assisted behaviour change is an emerging topic and we are witnessing
an increase in its adoption in several domains and for different addictive and problematic
behaviours. For example, online intervention is being used for alcohol addiction and
encouraging a responsible drinking [8]. Also, the advances in information technology
and Web 2.0 have enabled a new range of possibilities including a more intelligent,
context-aware, continuous and social online intervention. As evidence, the use of mobile
applications for behaviour change is now a possibility, e.g. for smoking cessation [9],
medication adherence [10], diet and eating disorder [11], to name a few.

Despite the trend, there are still few principles and design guidelines on how tech‐
nology-assisted behaviour change should be engineered. Amongst other aspects, we lack
studies on users’ views and their requirements, personal and collective [12]. In general,
there is a limited amount of theory-based solutions and this deters their acceptance,
efficiency, usability and sustainability. In developing such solutions, there seem to be
interesting intersections amongst several disciplines. For example, topics like person‐
alisation, either based on automatic adaptation or user’s direct modifications [13], social
norms and social comparisons [8] which fall within a psychology remit, would be
familiar concepts in computing areas such as requirements personalisation [14] and
persuasive technology [15].

Software design can play a key role in facilitating addictive behaviours. Certain
interactivity can trigger preoccupation and an escalation of commitment and tendency
to allocate additional time and to a chosen task, e.g. in forum or email conversation.
Other can trigger the fear of missing out events that maybe currently happening, e.g.
newsfeeds in a social network. At the same time, we argue that software enjoys capa‐
bilities that can offer breakthrough solutions to manage such addictive behaviour. This
includes being transparent to users and providing real-time traceability of their usage
and intelligent and personalized feedback messages. Unlike other addictive mediums,
e.g. tobacco and alcohol, software can aid users to take an informed decision of their
usage more actively.

In this paper, we study a set of commercial e-health persuasive applications to combat
DA and collect evidence of their capabilities, design defects and their potential to cause
adverse impact. We explore such persuasive intervention technology (hereafter PIT)
from their users’ perspective. This will inform software engineering about the relevant
requirements and design facets and concerns and paradoxes to cater for. We follow a
qualitative approach and analyse users’ online feedback on a set of popular PIT and
conduct a diary study with a group of users having a problematic usage style to capture
their experience with such technology for a period of time. We conclude with a set of
recommendations to follow and risks to avoid when designing PIT for combatting DA.

The paper is structured as follows. We first present our method in Sect. 2. Then we
present the results in four categories of features related to PIT in Sect. 3. We then reflect on
the results from both design and psychological perspectives with the aim to inform their
development in Sect. 4. Study limitations presented in Sect. 5. Finally, we draw conclusion
and presents our future work in Sect. 6.

Exploring the Requirements and Design 131

2 Method

We followed a qualitative method to understand users’ perception of PIT for combatting
DA. Overall, multiple data sources were used to increase coverage and credibility of the
study. The first was the diary study to collect data in naturalistic settings. The second
was the follow-up individual interviews to develop a better understanding of the data
collected from the diary studies. The third was the analysis of an online forum to gather
more contextual knowledge about these applications. For an exploratory study, we
treated the data coming from the three sources equally and made the content analysis
under the assumption that such diversity will reveal more concepts.

We began with reverse engineering three popular smartphone application designed
to aid users regulate their usage and reduce their DA to extract their notable features.
An extra application (App.4) has been included later in the study. The reason will be
discussed in the following paragraph. Table 1 outlines the features of these applications
and categorises them based on their support dimension [16]. The popularity was meas‐
ured through the number of installs (over 1 M) and feedback provided (over 5 K). We
then aimed to get users’ perception of these features. This helped to decide the prominent
and significant features and to look at the requirements and contextual factors that can
influence their effectiveness and deficiencies.

Table 1. The features and design principles of the selected applications

Features App.1 App.2 App.3 App.4
Task support Monitoring & tracking • • • •

Coercive techniques • • • •
Goal settings • • •
Tunnelling

Social support Competition • •
Normative influence •
Recognition •
Social support • • •
Comparisons •

Dialogue support Rewarding • • • •
Reminders • • •
Addiction scoring • •

In the diary study, 14 participants were recruited (5 females and 9 males, with ages
ranging between 18 and 50). They were asked to use the three commercial PIT to combat
DA for two weeks and write down their observations and feelings about them and their
usage style. They were also asked to take snapshots of significant moments during the
usage and share that with the research team at least once every two days. The data
gathered was then used to support our interviews with those participants after the two
weeks. The interviews were audio recorded and transcribed. The studies followed the
principles and guidelines presented in [17]. The recruitment was based on convenience
sampling. The inclusion criterion was that the participants should have the feeling that

132 A. Alrobai et al.

the smartphones or social media is used in an excessive and obsessive way. Participants
who met that criterion were then sent an invitation email with a short questionnaire to
complete.

The research indicates that self-reports in which participants are simply asked if they
thought they have DA are strongly correlated with available psychometric measures to
assess DA [18]. However, CAGE questionnaire [19] was also used as a self-assessment
instrument for further validity check. The participants all declared at least one aspect of
problematic usage of their smartphones; they passed a pre-selection survey test which
was designed based on the CAGE questionnaire which is a screening self-report instru‐
ment to detect addictive behaviours by examining the addiction symptoms such as
conflict, tolerance, withdrawal symptoms, mood modification and salience.

The other data source utilised users’ online feedback and review on the same three
applications. However, we noticed from the analysis of the diary study data that users
wanted to be motivated by some sort of rewarding systems that reinforce their sense of
accomplishments and care of some virtual object of character. As such, we analysed one
more application that represents users’ achievements metaphorically by providing them with
virtual experience of looking after something, e.g. a tree or a pet, which would become less
healthy or less happy when they are busy with their usage of digital technology.

In the analysis of users’ online reviews and feedback, we analysed 733 informative
comments out of 5 K on the four applications (the three which were used in the diary
plus the added one). The ignored comments were mainly related to the technicality of
the applications or adding no value to our analysis by being so generic, e.g. “I uninstalled
this app, it exhausted the phone battery”, “this is absolutely a nice app”. 347 comments
were made by male users, 254 by female users and 105 by users with undeclared gender.

Three main behaviour change theories guided the analysis of the selected applications;
Control Theory [20], Goal-Setting Theory [21] and Social Cognitive Theory [22]. Control
Theory suggests that the behaviour is regulated based on the person’s intended behaviour
seen as a goal. The control system will then compare the actual behaviour with that intended
behaviour and actuate interventions if a deviation happens. Goal-Setting Theory empha‐
sises the relationship between the goals and performance. Challenging goals appear to
promote higher and persistent effort through motivating people to develop strategies that are
more effective. The accomplishment will then reinforce further motivation due to individ‐
uals’ satisfaction. Social Cognitive Theory suggests that behaviours are influenced by envi‐
ronmental aspects such as observing others. As such, changing learning conditions can
promote behavioural change. Overall, these theories were selected as they have been widely
implemented in behaviour change research and had an evidence base [23]. In the data anal‐
ysis phase, these established theories served as a conceptual basis for the priori coding
approach to identify potential coding categories [17]. Hence, other theories have emerged
during the process of the analysis such as Transtheoretical Model (TTM) [24]. Therefore,
our methodology utilized behaviour change theories to explain the data analysed rather than
controlling the analysis.

Qualitative content analysis was used. Although subjectivity is a common risk in
this type of studies, the content analysis process included three researchers, two as eval‐
uators and the third to take decision when a consensus was not reached.

Exploring the Requirements and Design 133

3 Results

In this section, we will present the results of our analysis of the popular PIT, their features
and how these features are seen by users and what concerns their usage would raise. The
taxonomy which represents the results is shown in (Fig. 1). We concluded four main
categories of features in this technology and we detailed that in the next four subsections.
This thematic map reflects the features that are considered by users as important. The
PIT studied could also contain other features, which we omitted mainly because of the
lack of relevance and influence from the users’ perspective. we also elaborated on users’
different views on the features.

3.1 Monitoring

Monitoring is an essential functionality of any self-regulation system. Measurement,
comparison and the monitor are the core building blocks of the monitoring activity,
while verifiability and transparency are monitoring-related principles that require a high
degree of details to increase trustworthiness and reliability from a users’ perspective
especially for personal and behaviour-related information.

Measurement. Tracking time on-screen, i.e. duration, was the predominant method to
calculate the addiction scores in all the reviewed applications. However, different appli‐
cations rely on different metrics to measure time on screen. Users commented that these
applications lack users’ goals identification. As such, all types of usage are included in
the measurement model without a special consideration of the intention and the reason
for that usage. Time spent is perhaps not a meaningful measure for judging addiction if
certain contextual factors are ignored and this requires intelligent and context-aware
monitors that also look at the requirements and goals of the usage.

A time-based measurement model can be affected by the so-called passive usage.
An example is the time between closing an application and screen auto-lock. Users
commented that they would like not to have passive usage counted against them. On the
other hand, receiving notifications, against their will including those coming from PIT,
is a debatable case. Some commented that this would still be a type of usage as it requires
additional cognitive load.

Frequency measurement is also used to estimate users’ engagement with software
products. The reviewed applications provided some frequency-based stats, e.g. screen
unlocks. Calculating addiction scores is the quantification of a wide range of frequency-
based and time-based stats to provide indications to the degree of usage. However,
applying non-validated methods will lead to false conclusions.

The use of quantifying methods that are not validated will lead to false assertions.
In more extreme bias users can use such misleading information to claim spontaneous
recovery, which is a defensive mechanism known as the flight into health tactic [25].
For example, a user commented: “I did not ever know how often I checked my phone, I
was using it about 200 times a day. Now I check it about 200 times a week thanks to
much for curing me”. Adopting factual and objective approaches, such as in the

134 A. Alrobai et al.

P
er

su
as

iv
e

In
te

rv
en

ti
on

T
ec

hn
ol

og
y

Fe
ed

ba
ck

Fo
rm

at

M
ot

iv
at

io
na

l

M
et

ap
ho

rs

Po
in

t-
ba

se
d

sy
st

em

L
ea

de
r-

bo
ar

d

E
va

lu
at

iv
e

Ju
dg

em
en

ta
l

D
ev

el
op

m
en

ta
l

N
eu

tr
al

 r
ep

or
ti

ng

D
el

iv
er

y
Pu

sh
/P

ul
l

O
bt

ru
si

ve
ne

ss

T
im

in
g

Pr
es

en
ta

tio
n

S
itu

at
io

na
l

aw
ar

en
es

s

In
te

ra
ct

iv
e

ta
sk

S

ou
rc

e
of

 tr
ig

ge
r

So
ci

al
 r

ol
e

T
im

e/
lo

ca
ti

on

A
ct

io
n

fl
ow

Po
st

po
ne

B
oo

km
ar

k

Ig
no

re

E
ng

ag
e

P
er

so
na

l/s
oc

ia
l c

on
te

xt

So
ci

al
 s

tr
uc

tu
re

In
fl

ue
nc

e
ac

tio
ns

G
am

if
ic

at
io

n
C

om
pe

tit
io

n

A
ch

ie
ve

m
en

t
A

tta
in

ab
il

ity

C
oe

rc
io

n

Pe
rs

ua
si

on

P
os

iti
ve

 p
un

is
hm

en
t

Po
si

tiv
e

re
in

fo
rc

em
en

t

N
eg

ot
ia

tio
n

M
on

ito
ri

ng

M
ea

su
re

m
en

t

D
ur

at
io

n

Fr
eq

ue
nc

y

P
as

si
ve

 u
sa

ge

M
in

dl
es

s
us

ag
e

Sa
lie

nc
e

C
om

pa
ri

so
n

Se
lf

Pe
er

s

Pr
og

re
ss

C
ha

ng
e

pa
ce

Pa
tte

rn
 o

f
ch

an
ge

s

M
on

it
or

Se
lf

Pe
er

s

C
om

pu
te

ri
se

d
sy

st
em

V
er

if
ia

bi
lit

y

T
ra

ns
pa

re
nc

y

Fi
g.

 1
.

C
on

te
nt

 a
na

ly
si

s o
f u

se
rs

’ v
ie

w
s o

f P
IT

 to
 c

om
ba

t d
ig

ita
l a

dd
ic

tio
n

Exploring the Requirements and Design 135

comment above, could provide more persuasive effect. Yet, careful feedback is still
essential to avoid any misleading conclusions.

Mindless usage is another factor that can also influence the measurement models. It can
be characterised by the lack of conciseness and awareness during the present interaction
with smartphones. This type of usage cannot be identified by duration or frequency. A tech‐
nique like eye tracking might be able to identify this behaviour assuming that eye move‐
ments, which are guided by cognitive processes, during normal reading, are different from
that during mindless reading and this helps automated detection.

Designing systems that can capture, measure and even intervene with the state of
preoccupation, i.e. salience, is one of the open challenges for the design of interactive
e-health and ICT-facilitate behaviour change. Salience attribute is one of the six clinical
criteria proposed in [26] to identify addictive behaviours. It refers to the state when users
are not actually engaged in the behaviour, yet they cannot stop thinking about it. For
example, a user commented “I got so tired of thinking in Facebook statuses. Fellow
addicts know what I am talking about”. The challenge stems from the fact that such
events do not occur in the system environment “points-based systems are a good moti‐
vational approach but how will [the system] monitor off-line behaviour or preoccupa‐
tion”. Thus, designers may need to incorporate users in the monitoring process and
feedback loops in order to enable the system to react to such violation. However, proac‐
tive and intelligent masseurs that require stimulus identification and minimisation would
be more advantageous from the usability perspective.

Comparison. All monitoring and feedback processes need to adopt some comparison
approaches, or benchmarks, in order to measure users’ progress. The overall findings
indicate that users may need to be involved in the design phase to understand what would
work well for them to avoid providing comparisons in a form that may negatively
influence the user or cause them to disengage with the intervention system.

While the system can compare the user to his self-past, this can be done at different
levels of granularity to reflect preferences on visualising the progress. For example,
instead of comparing to the overall self-past usage, the system can compare the usage
on each application individually. Such an approach was not implemented in all the
reviewed applications. In fact, one of the applications provided very detailed stats but
they were not in a quantified form to facilitate self-comparisons “I have not figured out
yet how to see specifics of the applications that I do use … just the overall usage!”.

While comparing the performance with peers or self can help to motivate users
progressive change, this social element may lead to negative experience, such as
unhealthy competition. We argue that this approach can provide better outcomes when
considering the stage of change according to the Transtheoretical Model (TTM) [24]
stage of addiction, i.e. early, intermediate and severe and also the stage of treatment pre-,
post- and during treatment. Also, the competition between peers is likely to impact self-
esteem and self-efficacy (our perception of regulating the behaviour). A user who is in
the early stages of the change, e.g. contemplation, may be compared to others in the
advanced stages, e.g. maintenance. Although this upward social comparison is suggested
to inspire those who are in worse off condition [27], it may also severely lower their
self-esteem. For example, a user commented that gamifying the systems can be effective

136 A. Alrobai et al.

with caution “fun is needed but what about non-addicts appearing in a leaderboard?!”.
In other words, having users with different degrees of addiction in the comparison can
have adverse effects. This also applies for those who are in the better off as they may
use it as a defensive mean by using it and ignoring the other symptoms of addiction such
as salience and conflict.

Showing the progress while performing the comparison can provide more mean‐
ingful information to users. This is a subtype of self-comparison by which users can
compare themselves according to their own goals. It can also be a subtype of social-
comparison when the goals setting is performed collaboratively as a group activity such
as in surveillance systems.

The monitoring system can also compare the pace of users’ progress toward the
healthy usage. We labelled this as monitoring the changing pace. For example, one of
the applications uses a metaphorical system in which users were enabled to grow trees
to represent the progress towards healthier use. This application can be enhanced by
monitoring the time between planting trees or how many trees planted in a given period
of time to assess the pace of change. While planting trees entails implicit peers- or self-
comparisons, the changing pace will be assessed by monitoring the outcomes. As such
the reference point to compare with will keep changing in a progressive form.

As a follow-up, it may be argued that monitoring the pattern of changes can empower
stage-based intervention systems. These systems are mainly built upon the TTM which
takes pragmatic approach by focusing on “how” rather than “why” users progress
through stages of change [24]. While there is still a lack of concrete evidence of its
effectiveness on behavioural change [28], improving the tailoring system to take into
consideration the unique motivational characteristics and trigging cues of each stage,
provided promising outcomes [29]. The gap here is to identify the influential elements
of the personalised information led to that improvement. This on its own is an indication
of the applicability of stage-based interventions. However, one of the open challenges
is collecting the evidence to confirm the stage transition to identify the current stage and
then provide the right stage-matched interventions (SMI) [30]. In PIT, the monitorability
of software-mediated interactions can help to facilitate monitoring that pattern of
changes in order to assess the current stage and inform the tailoring system to provide
effective and personalised interventions.

Monitor. This component refers to the agent who will do the monitoring activity itself.
It can be performed by the users themselves, by peers or by a computerised system.
Selecting one of those agents will have an influence on the other requirements and design
choices. For example, the design of peer groups monitoring will require careful feedback
engineering to avoid damage to social relationships or the development of maladaptive
peer norms of usage. In groups’ dynamics, the conformity effect can be a threat when a
user temporary changes their behaviour only to conform and to avoid any contrary
actions from peers. While this is considered a positive behaviour [31], this could be only
positive in tasks adopted within a group to speed up achieving collective goals. In group-
based treatment, however, this can be a threat as the relapse will be inevitable afterward,
i.e. when users detach.

Exploring the Requirements and Design 137

Verifiability. PIT need to provide means to verify the accuracy of their measurements
and judgement of users’ usage and behaviour in order to maximise their credibility and
acceptability. Some of the reviewed applications provide detailed reports of usage. Such
information can be used to support the claims of self-regulatory systems. One user criti‐
cised the subjectivity of the measurement of their addiction score or level: “The appli‐
cation allows seeing usage by time and some arbitrary addiction score”. Our study
indicated that the ability to verify the measurement process itself is much needed for
such PIT especially if we consider the tendency of addicts to tolerate the increasing
usage and deny reality.

Transparency. Transparency has been highlighted as a key requirement. Users
commented that they would like to see how scores are calculated and how the judgement
on their usage is made. However, there was a wide range of scenarios that these systems
utilize in the addiction scoring. Yet, users felt uncomfortable with not being involved
in deciding them or even knowing them. This is a typical attitude in health-related inter‐
action when patients require knowing details even if they may not fully understand them.
One of the scenarios is the aforementioned “passive usage”. Some of the passive usage
cases were not identified by the designers. A user commented: “I didn’t realise it counts
the time the screen is left on even if you aren’t using any of the applications”. Thus,
transparency requires carful elicitation and modelling to reach to an acceptable level.
Participatory design and lifelong personalization approaches can support transparency
by which users can be part of the decision-making process. This could increase adoption
of the decisions and judgements made by the PIT but also introduce the risk of being
biased and ineffective.

3.2 Feedback

Feedback is mainly to inform users about their performance and can take different forms.
Feedback is one of the main pillars in self-regulation systems, which function to express
users’ status and to act as a motivational tool. The users’ comments show that feedback
techniques among these applications should be given a special considered in terms of
the timing, format, delivery method and presentation.

Format. This refers to the type of content included in the feedback system. Feedback
design can play a very important role to help different type of users to track their progress,
yet should not conflict other design principles to avoid creating an addictive experience
by itself. For example, a user criticised one of the applications “this application is
addictive as well. Actually made me use my [mobile] more”.

Motivational feedback is a complex type of feedback that visualises users’ progress
in a meaningful and gamified form to enrich their experience. Users commented that
they would like to have point-based and metaphorical-based systems as well as leader‐
boards for this type of feedback “why can’t I connect to Facebook? I wanted to compare
the high scores”. A user suggested that the metaphorical system could be improved by
adding “a delay before the tree dies when using other applications. A notification could
say, quickly, your tree is dying”. Leaderboards, however, could have a contradictory

138 A. Alrobai et al.

characteristic as they “may encourage unhealthy competition while they should be more
about supporting each other not beating each other” especially in e-health solutions.

Evaluative feedback uses reference points to compare with, such as benchmarking,
social or group’s norms, but most importantly to show them how their performance
scores were derived. Allowing users to set up their own reference points to compare
with can be effective “I wish this application would allow me to set a time limit I feel is
appropriate. If I use my phone for work, it is almost impossible to get [good] score which
is pretty irritating when I have really cut down [time wasted] on my phone”. The self-
set reference point is linked to the concept of “goal choice” which is influenced heavily
by past experience, past performance and some social influences [32]. A follow-up of
this feedback is to guide the users to what areas they should improve in their usage and
potentially enlighten them to think of what steps to take, e.g. using reductions and
tunnelling [15]. This feedback needs to be timely to show the user the causes of the
provided feedback when the usage contextual properties and cues are still fresh in their
minds. However, users’ feedback also indicated that timeliness might not be always
appreciated especially if the user is still in a mental status of preoccupation about what
they did or are doing on their smartphones.

Judgemental feedback can take an assessment manner in terms of judging the usage
style to be right or wrong, healthy or addictive, etc. While this type can still carry some
evaluative feedback attributes, it can be loaded with some emotive and judgmental
terminologies, such as “you had an unusual and unhealthy usage style today” or “your
usage is above the average time we expected for you today”, etc. Users differ in terms
of their motivations to accept and follow self-regulation systems. Sometimes this genu‐
inely relates to their usage goals and other contextual factors, e.g. those who engage
heavily with technology but still do not show addiction symptoms or those stating they
are the “digital native” generation. As such, judgemental feedback messages may not
suit all users “I just want data about how I use my phone, not silly platitudes about living
my life to the fullest. This application was not for me”. Techniques like authority and
social proof [33] as well as basing the judgement on the measure or goal given by the
user [21] would potentially help in increasing users’ acceptance of such kind of feedback.

Developmental feedback can be used to offer fitting suggestions and tailored achiev‐
able plans, which can have greater persuasive powers. In terms of higher education, this
maps to the formative assessment, which aims to constructively and iteratively evaluate
performance and give suggestions for the next steps. A user commented that PIT would
help them “to realise what they need to prioritise”.

Some users preferred neutral reporting feedback, which only reports their usage stats
without any further assessment and judgement “don’t really like the score thing.
Showing more real stats would be more useful”.

Delivery. Self-regulation systems can communicate feedback messages following
push or pull approaches. Designers need to understand users’ requirements in terms of
when to apply covert and overt feedback. The pull approach does not require the user
to check their status as long as that will be prompted automatically following specific
predefined event-based or interval-based modes. The push approach entails that the user
is triggered to check their status. The pull approach can lead also to further addictive

Exploring the Requirements and Design 139

habits. For example, a user commented about an application uses trees metaphor “it
seems counterintuitive to be building a forest on your phone, meaning you will inevitably
keep coming back on to check your progress”. The push approach, also, has a side effect
by acting as a stimulus to initiate unnecessary usage “I love this application! But they
should do something about getting notifications because those are tempting me”. This
approach may work for certain personality types and cultures. The pull approach could
increase the sense of ownership and the fact that the user leads the querying process
would encourage commitment and consistency [33] and hence the success of the change.
We still do not have designated approaches for validating these design options when
implemented in software systems.

Obtrusiveness can be, but not necessarily, one of the accompanying attributes when
implementing the push approach, which may then affect users’ experience. Obtrusive
feedback, which can take a form of popup notifications, demands high attention and
positions itself as a priority. Many users highlighted that feedback mechanisms were
very obtrusive due to the lack of contextual considerations “this application doesn’t let
me define what works for me. Feels like a nosy parent … there’s a problem when a note
pops up saying that I have spent too much time.” However, as most interventions,
obtrusiveness is still essential and participants stated that a “wake-up call” could be
needed occasionally even if it violates some usability requirements.

Timing. The reviewed applications applied different usage-related timing strategies to
deliver the feedback. Some were criticised of being very distractive, while others were
very preferable. Feedback can be delivered during users’ interaction with their mobile,
after the usage (i.e. immediately after locking the screen or closing a specific applica‐
tion), while the user is away from the mobile, i.e. offline, or immediately after unlocking
the screen. Users also commented that right timings are highly likely to motivate users.
A user commented: “I like the fact that when I go to unlock my phone it tells me how
many times I’ve unlocked it. Then I can think no I don’t need to check”.

Presentation. Presentation not only relates to the visual appearance of the feedback
but also to what extent the information is consistent with users’ attitudes and preferences,
e.g. whether the message is a gain- or loss-framed, its friendliness, strictness, personal,
etc. A user commented “there was a graph of how much I used my phone during the
week. I found that quite useful because I could compare the days. Which ones I used it
the most”. In the systems that allow users to set their own plans, the colour coding can
have a negative influence on how users set their own plans especially within social
settings “If I am enabled to decide myself the maximum time I can use my phone, I am
more likely to put high numbers. So in worst case, I’ll get the orange colour. So I don’t
look that bad”. As such, using statistical figures rather than colour coding in the inter‐
vention systems that enable self-setting of goals, can be more effective to eliminate self-
bias. That bias can be used as a mechanism to minimize perceived impact on the self-
image.

140 A. Alrobai et al.

3.3 Influence Actions

This component aims at helping users regulating their usage by implementing behav‐
ioural change theories and techniques.

Punishment. Positive punishment can discourage behaviour by delivering a punish‐
ment when that behaviour is performed. Negative punishment, on the other hand, can
discourage behaviour by removing positive stimulus when that behaviour is performed.
Our study shows that these two forms of conditioning can strength likelihood of a
healthier digital life style, e.g. “when I pick up my phone and get distracted, I get a
notification telling that my tree died. This motivates me to stay focused next time”. The
tree is the symbolic object a user cares of and reduces the usage to avoid causing harm
to it.

Positive Reinforcement. The system can be improved by implementing a rewarding
scheme to assign specific rewards to different actions. Secondary actions linked to stim‐
ulus control such as a deliberate disabling Internet connection can be also rewarded “I
wish you could get points for putting it in airplane mode or something”.

Gamification. Self-regulation systems can be empowered by implementing some
gaming elements to create a more engaging experience. Amongst the different game
mechanics, competition and achievements seem to be predominant, still with potential
for misuse.

Competition can be individual-based or even team-based to maximise users’ expe‐
rience. Any decline in the team performance can be perceived as an individual reason‐
ability. Proper design of competition-based gamification can increase users’ engagement
significantly “I would suggest is if you added a ‘buddy/friends list’ so you can compete
with your friends”. The risk here is that the competition can take an adverse form, i.e.
towards more use, or becomes itself addictive. For example, a user commented, “I can
see making it competitive to worsen the addiction, would members want to get better
and therefore get addicted to the points/rewards/making their avatar better?”.

Providing users with tangible achievements can increase the likelihood of long-term
engagement, which will particularly help to sustain users’ behavioural change. Achieve‐
ments are normally provided to users on an individual basis. However, users can be
provided with individual achievement experience within the group context. As such,
achievements can be provided to peers to gain social recognition. This is just an example
to show how social and achievement aspects can be combined to create a very engaging
experience, yet to be supported by consistency and commitment principles as a powerful
social influence [33] to avoid relapse. A user commented: “I really like this application.
Rather just sounding alarm or something, it gives a sense of accomplishment”.

Some users criticised the rewarding system in some of the PIT. They pointed out
that the long time and efforts needed to progress in the levelling system made it signif‐
icantly difficult to get the rewards and this was very disappointing. On the other hand,
the applications provide more attainable rewards seem to motivate users substantially
“the little rewards or accomplishments I get are nice little reinforcements for low phone
use”. One approach that can be taken into consideration is to increase the difficulty as

Exploring the Requirements and Design 141

the user progress in the behavioural change stages, e.g. those of the Transtheoretical
Model.

Coercion. The converge of the monitoring processes can have a significant impact on
users’ experience. We mean by coverage what can be included in the monitoring, e.g.
application usage, lunches, device unlocks or even within-application interactions such
as likes, posts and sharing. For example, some of the reviewed applications provided
functionality to exclude applications from the monitoring process or to allow user
specify monitoring preferences “there should be a new feature in which the phone will
close on its own after a certain time period which can be set by the users”. Such flexibility
is required to avoid unnecessary coercive interventions. Users normally have the
tendency to exclude work-related applications such as email clients and navigation
applications. However, this flexibility would certainly need to be implemented with high
caution, as addicts tend to deny reality and invent untrue reasons for excluding an appli‐
cation “Some people like me need to not be able to manually [stop the monitoring]”.
Other applications provide “snoozing” feature to support task continuity or even to pause
the monitoring activity “a pause feature would be amazing because sometimes I want
to get food while studying and I don’t want to spend time on the app”.

Persuasion. Persuasion is a very important principle to influence users’ intentions and
behaviours. Tunnelling, social comparison, reminding, rewarding and suggestion were
the most requested techniques by the users “it would be better to get software recom‐
mendations for planning the allowed time of usage and to update this based on my actual
usage”. Research on evaluating effectiveness and sustainability of the technology-
assisted version of such techniques in general, and for DA in particular, is still to be
done. For example, personality traits besides the type and stage of addiction could have
a high impact on the acceptance and effectiveness of persuasion and also coercion.

Negotiation. Users’ conflicting requirements require carful identification and resolu‐
tion. The question here is how to intelligently negotiate requirements in a way that
considers the peculiarities in addicts’ behaviour such as tolerance and denial of reality.
For example, most of the PIT enable users to exclude certain applications from the
monitoring activity and this was perceived as a desirable functionality “I wish this
application would allow you to set a time limit you feel is appropriate for green, or have
certain applications like e-mails and phone calls do not count against you”. We argue,
here, that it would be more efficient to exclude them in the influence layer, but not
monitoring and feedback according to (Fig. 1). This is to alert users when addiction
patterns are identified in one of the excluded applications. In some scenarios, however,
coercive approaches can be used when such patterns are detected as these systems should
perceive users as two interconnected personas; current user and user-to-be.

3.4 Situational Awareness

Situation includes a wide range of variables related to the performed task. The lack of
knowledge about tasks’ context as well as poor elicitation of a user’s mental models,

142 A. Alrobai et al.

can affect user experience when implementing self-regulation systems. Thus, expanding
the exploratory investigation to include contextual factors is essential to provide empir‐
ical rational needed to inform the design of software-based interventions and promote
the intended behavioural change. Data analysis of the collected comments highlighted
the critical principles below.

Interactive Task. Users highlighted that the system should distinguish between tasks
in terms of their nature, e.g. seriousness “I just uninstalled this after I nearly had an
accident. Upon setting GPS map route the reminder pop out blocking my map in the
midst of driving”, another commented “fails to meaningfully distinguish between
productive phone use and addiction”, and also who initiated it, i.e. triggered by attribute
“only counts the interactions initiated by the phone user. If a call comes in, it should
not be counted”. Again, there seems to be a grey area between the two cases, e.g.
receiving a message on Facebook as a result of sharing a post and the escalating commit‐
ment on social networks. Here, we propose the severity as an important quantifiable
task-related attribute to enrich measurements models. In order to achieve this, different
interactions need to be categorised based on their implications on the usage style. In the
previous example, the sharing a post is likely to cause a high volume of responses, which
can aggravate habitual checking. This is unlike other tasks which can be categorised as
human to machine interactions. Such interactions can be less problematic as the social
element is messing. This also suggests categorising interactions based on their social
roles which denote the notion of the extent to which interaction motivate or demotivate
face-to-face interactions. For example, interactions that encourage face-to-face commu‐
nications, such as organising events using software-mediated tools, may need to be
treated as positive interactions that should be promoted by the system rather than those
encouraging online participation which can still be counted against addiction score.
Thus, understanding the goal of the interactions and the task being done is essential for
decision-making, e.g. on the type of feedback to give and measurement to apply.

Time/Location. The system should enable users to decide when and where they want
to be monitored. These contextual variables can be very sensitive when it comes to
feedback messages. Time, location and tasks can also be combined to identify prob‐
lematic usage. For example, users can be enabled to select the morning as a working
period and any Facebook usage during that time whether it is exempted from monitoring
or not will be counted in the addiction score. However, implementing such scenario for
users who do not want coercion approaches can create conflicting requirements.

Action Flow. In less coercive settings, the design of PIT is required to minimise
affecting user experience. One way of doing that is by providing users with more flex‐
ibility to support taking appropriate decisions as intuitively as possible. Research has
shown that self-control has very limited resources for tasks involving a strong desire.
So, when users utilise the power of self-control in the initial task, subsequent tasks are
compromised due to “self-control depletion” [23]. A user commented “It needs a strong
mechanism to prevent us from simply turning off [digital addiction] rules. This is
because self-control is a limited resource that depletes as the day goes by. So when it’s
late in the afternoon won’t have the energy to stop myself from simply disabling the

Exploring the Requirements and Design 143

rules”. As such, the software must use up this valuable resource intelligently to avoid
“ego depletion”. One way of doing that through intervention systems is to use self-
control resources for the high problematic tasks only such as entirely blocking certain
applications. Bolstering self-control through software means is an important aspect to
promote behavioural change. For this, we propose the postponing and bookmarking
techniques to supports task continuity for users who do not like strict coercive
approaches. The former technique enables the user to postpone a promoted desired task
to be performed later but at the right time. As such the spontaneous urge to perform the
task will be controlled with minimum use of self-control resources since the task can be
performed later. The bookmarking technique is to maintain the point of usage before
the intervention happened. A user commented: “the application will not kick me out
when time is up. However, it will prevent me from starting it again if I have used it
already for longer than the allowed time”. While both techniques could be particularly
the case with gaming addicts, implementing such interaction is irrelevant to multiplayer
video games where more than one player engaged in the same game simultaneously.
This highlights the need for consideration of conflicting requirements, which can be
addressed by an ontology supported by behavioural change theories and domain
reasoner to help designers mapping the interaction artefacts to the application domain.

The intervention software can prompt all muted notifications or those were post‐
poned during the controlled time. One way of strengthening self-efficacy is by utilising
the actions taken towards these notifications. Simply by counting the ignored ones for
the user not against him and to reflect that positively on his addiction score. As users
are still expected to engage with those notifications, they should not be penalised when
that is performed out of the controlled time. This emphasises the importance of having
considerate interventions which can be categorised as a special form of considerate
requirements for social software proposed in [34]. For example, a user commented, “I
don’t look at my phone when I drive so it would be nice to [reward me]”. This class of
requirements seems to be fundamental and should be advocated to allow evaluating such
interactions against addicts’ perception of consideration to avoid any potential harms
resulting from interventions.

Personal/Social Context. Personal context relates to the innate feeling and status of
the user, e.g. mood. Social context refers to the both the position of the user within a
group either in the real world or on a social network. Sensitivity to such context is hard
to achieve but with advances in sensing mechanisms, e.g., smart watch, and machine
intelligence, we speculate this would become eventually a reality. Social elements can
influence users’ perceptions towards intervention mechanisms. Yet, what is accepted
and being effective in human-to-machine interactions, might be harming in social
settings due to different factors such as digital identity. We looked at how social context
would affect users’ willingness to use this type of intervention systems. User raised the
importance of having a space that is free of criticism “I think it needs to be a safe space
that people can feel free to explore their issues without fear of criticism”. Having the
social elements would also influence what feedback format should be adopted. For
example, judgemental feedback is not preferable in such settings “I wouldn’t consider
any group which labelled an individual’s use of a medium or set of media in such a

144 A. Alrobai et al.

sweepingly judgemental way to be an efficient mode of help”. In terms of being within
an online social network, users also raised the need for considering the social structure
within social intervention system. A user commented, “I prefer groups in which
members know each other. Nothing is against family members being in the group. But
they might be still seen as strangers by others and this may influence how they commu‐
nicate with me, e.g. when my daughter is in the group”.

4 Designing PIT to Combat Digital Addiction

Our analysis in Sect. 3 demonstrated the need for careful considerations and design
principles when using PIT in the domain of DA. In this section, we discuss those aspects
in light of the literature and other relevant study and then highlight the need for testing
and validating methods for this technology. Finally, we pinpoint the main issues and
challenges in designing PIT for DA and where the future research studies are needed.

PIT is an example of how technology is enabling individuals to engage with the field
of behaviour change in a way that has in the past primarily been restricted to health
educators and policy makers. Researchers and practitioners working in behaviour
change have developed an extensive research literature on theories of behaviour change,
and an evidence base to support the efficacy of different techniques. This knowledge is
reflected in sources such as NICE (National Institute for Health and Care Excellence)
guidelines on behaviour change for individuals (https://www.nice.org.uk/Guidance/
PH49), which advise on best practice. It is interesting how many of the characteristics
of the selected PIT mirror the NICE recommendations for behaviour change in other
potentially addictive behaviours such as alcohol and tobacco use. For example, as noted,
all of the applications include some form of monitoring, which is the first step of many
behaviour change approaches in alcohol and drug use.

Nevertheless, behaviour is determined by a multitude of factors, and as such, there
can be a discrepancy between the behaviour change strategies, which should be expected
to work according to theory and those which have an actual impact. PIT may or may
not have some basis in behaviour change theory, but even if designed with the best of
intentions and some relevant knowledge it may not provide any benefit to users, and
may even have harmful effects. There are several examples of large-scale behaviour
change campaigns that have been unsuccessful, such as the DARE (Drug Abuse Resist‐
ance Education) programme in the USA that failed to bring about change and was alleged
to inadvertently reduce the self-esteem of participants [35].

Even simple and apparently commonsensical strategies such as suggesting that the
individual avoids thinking about certain behaviour may be harmful. For example, it has
been noted that advising people to try and avoid thinking about certain behaviour, as
often done for instance in relation to smokers and avoiding thinking about cigarettes,
can actually increase the compulsion to engage in that behaviour [17]. Care must also
be taken that a behaviour change strategy is not chosen simply because it is opportune.
PIT is especially suited to social comparisons that allow users to see how their usage
compares to that of their peers, with the assumption being that those who behave in an
excessive way will reduce their usage. However as noted with regards to alcohol use in

Exploring the Requirements and Design 145

https://www.nice.org.uk/Guidance/PH49
https://www.nice.org.uk/Guidance/PH49

American college students individuals may base their identity of being the most extreme
amongst their group, in which case highlighting to them how they compare to their peers
may on reinforce that behaviour [36]. Finally, in any behaviour change, there is the issue
of reactance. This refers to when individuals feel that they are being manipulated and
respond by engaging more actively in the behaviour that they feel they are being
dissuaded from. Overall it could be argued that behaviour change is easy to achieve, but
ensuring that the change occurs in the intended direction is much more challenging.

We can conclude that the requirements engineering and design for PIT introduce
challenges in several areas including the decision on the relevant stakeholders and their
decision rights and priorities. The failure stories of traditional behaviour change prac‐
tices send also an alarm on the need for novel testing and validation for PIT. Testing for
long-term consequences, e.g. decreased self-esteem, and collective side effects, e.g.
creating certain norms of usage, would necessitate novel ways on validating whether
such software does meet the requirements sustainably and without unpredictable side
effects. This requires a joint effort of multiple disciplines including requirements engi‐
neering, human-computer interaction and psychology.

The term universal design describes the concepts of designing for all regardless of their
age, gender and abilities [37]. As such, PIT should not be designed with the mind-set of one

Table 2. Design concerns and their potential sources in PIT to combat DA

UX concerns Source of concerns
Lack of interest Experience fails to engage, ineffective rewarding

system, poor levelling design, willingness and
readiness to change

Lack of trust Unreliable addiction scoring, lack of verifiability and
transparency, uncertainty of agenda of
application’s developer(s)

Lowering self-esteem Peer-pressure, upward social comparisons, low sense
of self-efficacy, assigning to non-matched groups

Creating
misconceptions

Addiction scoring, minimising the seriousness of the
addicting, providing non-stage matched
interventions

Biased decisions Downward social comparisons, self-set goals, flight
into health, denial of reality, influence from past
experience and performance

Creating addictive
experience

Pull and push feedback approaches, gamified
experience, creating

pre-occupation with targeted behaviour,
poor stimulus control

Impacting user
experience

Obtrusiveness, distraction, coercive techniques,
affecting workflow, lack of requirements
negotiations, neglect personalised experience

Unsustainable change Social elements (e.g. conformity effect), losing
interest

Self-image impact Identification as addict, experience of relapsing

146 A. Alrobai et al.

size fits all and should cater for complex inter-related networks of variables. We view the
domain of behavioural change, as an important effort to provide reactive approaches to deal
with this issue. However, there is an evident lack of test frameworks to validate the effec‐
tiveness of intervention systems built based on the theories of behavioural change. Vali‐
dating the effectiveness of such technology requires a unique set of pre-conditions such as
willingness to change, openness to shortcomings, being free from denial of reality and also
the seriousness of the condition. The challenge here is how to measure these factors, e.g.
change readiness, to control their influence on the validity of the intervention system.

Also turning the system into social software by including peers in the monitoring
activity requires assessing the long-term outcomes and their sustainability. The validity
of such change might be distorted due to various confounding factors arising from peer
pressure and other negative influences such as the short-term change only to conform
to the group’s norms. Table 2 summarizes the findings of the paper from the perspective
of users’ experience (UX) and what could be the source of concerns from the design
perspective and also psychological and contextual perspectives.

5 Study Limitations

The study has two main limitations that may have an influence on how the features in
PIT were seen by the participants. Firstly, in the measurement of participants’ level of
addiction, we used the CAGE questionnaire as a simple and inexpensive instrument that
does not cater for the wide spectrum of cases and levels of addiction. Generally, psycho‐
metric measures have major issues in the addiction criteria itself such as the lack of
considering the context of use, the aspects related to the temporal dimension such as
compensating relationship breakdown [38] and preoccupation which has been high‐
lighted in the results section of this paper. This explains why “no gold standard” for
diagnosing and assessing DA yet exist [39]. The second limitation relates to the fact that
those who installed the apps were help-seekers only. Apparently, non-help seekers may
have different views and perception about features in PIT. Finally, an additional limi‐
tation is about the choice of the apps. Analysing extra apps might lead to discovering
additional concepts and risks of this technology in the domain of DA.

6 Conclusions and Future Work

In this paper, we explored users’ perception of PIT for combating DA and argued the
need for a more careful and holistic approach to technology-assisted behaviour change
in DA. The unique contribution of this work derives from its attempt to analyse various
views, potentials and risks related to a dual use and dual effect of such technology.

Throughout the analysis of the users’ comments and the developers’ feedback to
those comments on the online forum, we noticed the rush to embrace this technology in
order to cope with the market demand without careful consideration of its adverse effects.
A prominent example is dealing with fundamental issues such as the measurement of
DA, which requires extensive research, as merely a technical problem promised to be
addressed in the next updates. Hence, the outcome of technology designed for

Exploring the Requirements and Design 147

behavioural change is currently doubtful at least in the area of DA. We argue that more
research is needed in the area of testing and validating the effectiveness of this tech‐
nology on the intended behaviour in the short and long terms. For example, how can we
assess the threats of users’ rejection of the interactive intervention systems? Another
example is the negative feelings that can be evoked, such as guilt and obligation, of
certain design elements. The former may reinforce the relapse behaviours and the latter
may aggravate addiction-related behaviours such as fear of missing out. While trade-
offs is a common observation in HCI research, in the domain of addictive behaviours
such compensation may propose undesirable effects.

The participatory approach can help to reduce unpredictable effects. However, there
is a need to devise methods and guidelines supported by best practices to govern and
engineer the users’ involvement itself especially for the digital addicts user groups who
may exhibit a denial of reality. Hence, more research is still needed to utilize user-centred
and participatory approaches for designing PIT to combat DA. For example, it is not
clear whether and how to involve ex-addicts in the design and test processes. While ex-
addicts may have more empathy for addicted users, they might dictate their opinion due
to their bias and their own experience.

In our future work, we will define metrics for addictive software and addictive
behaviour to make DA subject to a more accurate monitoring and adjustment process.
We will study the design of software-based behaviour change at the precautionary and
recovery stages. In particular, we will focus on motivational approaches and the use of
their software-based version, for example, persuasive technology and entertainment
computing [40]. We aim to investigate the requirements engineering and software vali‐
dation for DA-related behavioural change and their challenges, such as the denial of
requirements of addicts and their conflicts. We will investigate the stakeholders set and
their decisions rights in the engineering process, including addicts, the ethical issues
around the engineering process and the sustainability of software-facilitated prevention
and early-intervention for DA and their potential short and long-term side-effects. This
will obviously require an inter-disciplinary research.

Acknowledgements. This research has been partially supported by Bournemouth University
through the Fusion Investment Fund and PGR Development Fund and also by StreetScene
Addiction Recovery. We would like also to thank Yasmeen Abdalla for her valuable contribution
in conducting the diary study in the early stages of this research.

References

1. Kuss, D.J., Griffiths, M.D.: Online social networking and addiction—a review of the
psychological literature. Int. J. Environ. Res. Public Health 2011 8, 3528–3552 (2011)

2. Echeburúa, E., de Corral, P.: Addiction to new technologies and to online social networking
in young people: a new challenge. Adicciones 22(2), 91–95 (2009)

3. Young, K.S.: Internet addiction: symptoms, evaluation and treatment. In: Innovations in
Clinical Practice: A Source Book (1999)

4. Young, K.S., de Abreu, C.N.: Internet Addiction: A Handbook and Guide to Evaluation and
Treatment. Wiley, Hoboken (2011)

148 A. Alrobai et al.

5. Kuss, D.J., Griffiths, M.D., Binder, J.F.: Internet addiction in students: prevalence and risk
factors. Comput. Hum. Behav. 29, 959–966 (2013)

6. Ali, R., Jiang, N., Phalp, K., Muir, S., McAlaney, J.: The emerging requirement for digital
addiction labels. In: Fricker, S.A., Schneider, K. (eds.) REFSQ 2015. LNCS, vol. 9013, pp.
198–213. Springer, Heidelberg (2015)

7. Alrobai, A., Phalp, K., Ali, R.: Digital addiction: a requirements engineering perspective. In:
Salinesi, C., Weerd, I. (eds.) REFSQ 2014. LNCS, vol. 8396, pp. 112–118. Springer,
Heidelberg (2014)

8. Bewick, B.M., Trusler, K., Mulhern, B., Barkham, M., Hill, A.J.: The feasibility and
effectiveness of a web-based personalised feedback and social norms alcohol intervention in
UK university students: a randomised control trial. Addict. Behav. 33, 1192–1198 (2008)

9. Bricker, J.B., Mull, K.E., Kientz, J.A., Vilardaga, R., Mercer, L.D., Akioka, K.J., Heffner,
J.L.: Randomized, controlled pilot trial of a smartphone app for smoking cessation using
acceptance and commitment therapy. Drug Alcohol Depend. 143, 87–94 (2014)

10. Dayer, L., Heldenbrand, S., Anderson, P., Gubbins, P.O., Martin, B.C.: Smartphone
medication adherence apps: potential benefits to patients and providers. J. Am. Pharm. Assoc.
53, 172–181 (2013)

11. Pagoto, S., Schneider, K., Jojic, M., DeBiasse, M., Mann, D.: Evidence-based strategies in
weight-loss mobile apps. Am. J. Prev. Med. 45, 576–582 (2013)

12. Dennison, L., Morrison, L., Conway, G.: Opportunities and challenges for smartphone
applications in supporting health behavior change: qualitative study. J. Med. 15, e86 (2013)

13. Dumas, B., Signer, B., Lalanne, D.: Fusion in multimodal interactive systems: an HMM-
based algorithm for user-induced adaptation. In: EICS, pp. 15–24 (2012)

14. Sutcliffe, A.G., Fickas, S., Sohlberg, M.M.: Personal and contextual requirements
engineering. In: RE, pp. 19–30 (2005)

15. Fogg, B.J.: Persuasive Technology: Using Computers to Change What We Think and Do
(Interactive Technologies) (2002)

16. Torning, K., Oinas-Kukkonen, H.: Persuasive system design: state of the art and future
directions. In: Persuasive, article no. 30 (2009)

17. Lazar, D.J., Feng, D.J.H., Hochheiser, D.H.: Research Methods in Human-Computer
Interaction. Wiley, New York (2010)

18. Widyanto, L., Griffiths, M.D., Brunsden, V.: A psychometric comparison of the internet
addiction test, the internet-related problem scale, and self-diagnosis. Cyberpsychology
Behav. Soc. Networking 14, 141–149 (2011)

19. Ewing, J.A.: Detecting alcoholism: the CAGE questionnaire. Jama 252(14), 1905–1907 (1984)
20. Carver, C.S., Scheier, M.F.: Control theory: A useful conceptual framework for personality–

social, clinical, and health psychology. Psychol. Bull. 92, 111–135 (1982)
21. Locke, E.A., Latham, G.P.: A theory of goal setting & task performance (1990)
22. Bandura, A.: Social cognitive theory: an agentic perspective. Annu. Rev. Psychol. 52, 1–26 (2001)
23. Webb, T.L., Sniehotta, F.F., Michie, S.: Using theories of behaviour change to inform

interventions for addictive behaviours. Addiction 105, 1879–1892 (2010)
24. Prochaska, D.J.O.: Transtheoretical model of behavior change. In: Gellman, M.D., Turner,

J.R. (eds.) Encyclopedia of Behavioral Medicine, pp. 1997–2000. Springer, New York (2013)
25. Frick, W.B.: Flight into health: a new interpretation. J. Humanistic Psychol. 39, 58–81 (1999)
26. Griffiths, M.: A “components” model of addiction within a biopsychosocial framework. J

Subst. Use 10, 191–197 (2005)
27. Taylor, S.E., Lobel, M.: Social comparison activity under threat: downward evaluation and

upward contacts. Psychol. Rev. 96, 569–575 (1989)

Exploring the Requirements and Design 149

28. West, R.: Time for a change: putting the transtheoretical (stages of change) model to rest.
Addiction 100, 1036–1039 (2005)

29. Borland, R., Balmford, J., Hunt, D.: The effectiveness of personally tailored computer-
generated advice letters for smoking cessation. Addiction 99(3), 369–377 (2004)

30. Sutton, S.: Back to the drawing board? A review of applications of the transtheoretical model
to substance use. Addiction 96(1), 175–186 (2001)

31. Toseland, R.W., Rivas, R.F.: An Introduction to Group Work Practice. Pearson Education
Limited, Boston (2005)

32. Locke, E.A., Latham, G.P.: New directions in goal-setting theory. Curr. Dir. Psychol Sci.
15, 265–268 (2006)

33. Cialdini, R.B.: Influence. HarperCollins, New York (2009)
34. Ali, R., Jiang, N., Jeary, S., Phalp, K.: Consideration in software-mediated social interaction.

In: RCIS, pp. 1–11 (2014)
35. Lynam, D.R., Milich, R., Zimmerman, R., Novak, S.P., Logan, T.K., Martin, C., Leukefeld,

C., Clayton, R.: Project DARE: no effects at 10-year follow-up. J. Consult. Clin. Psychol.
67, 590–593 (1999)

36. Carter, C.A., Kahnweiler, W.M.: The efficacy of the social norms approach to substance abuse
prevention applied to fraternity men. J. Am. Coll. Health 49, 66–71 (2000)

37. Center for Universal Design: The Principles of Universal Design. https://www.ncsu.edu/ncsu/
design/cud/about_ud/docs/use_guidelines.pdf

38. Griffiths, M.: Internet addiction - time to be taken seriously? Addict. Res. 8, 413–418 (2000)
39. Kuss, D.J., Griffiths, M.D., Karila, L., Billieux, J.: Internet addiction: a systematic review of

epidemiological research for the last decade. Curr. Pharm. Des. 20, 4026–4052 (2014)
40. Jiang, J., Phalp, K., Ali, R.: Digital Addiction: Gamification for Precautionary and Recovery

Requirements. In: REFSQ Workshops, pp. 224–225 (2015)

150 A. Alrobai et al.

https://www.ncsu.edu/ncsu/design/cud/about_ud/docs/use_guidelines.pdf
https://www.ncsu.edu/ncsu/design/cud/about_ud/docs/use_guidelines.pdf

Do You Own a Volkswagen? Values
as Non-Functional Requirements

Balbir S. Barn(B)

Middlesex University, Hendon, London NW4 4BT, UK
b.barn@mdx.ac.uk

Abstract. Of late, there has been renewed interest in determining the
role and relative importance of (moral) values in the design of soft-
ware and its acceptance. Events such as the Snowden revelations and
the more recent case of the Volkswagen “defeat device” software have
further emphasised the importance of values and ethics in general. This
paper posits a view that values accompanied by an appropriate frame-
work derived from non-functional requirements can be used by designers
and developers as means for discourse of ethical concerns of the design
of software. The position is based on the Volkswagen “Dieselgate” case
study and a qualitative analysis of developers views from Reddit discus-
sion forums. The paper proposes an extension of an existing classification
of requirements to include value concerns.

1 Introduction

Values are a key driver of human behaviour and are seen as an important com-
ponent in societal and environmental sustainability. However, current software
engineering practice does not pay sufficient attention to the notion of values
given the role of software and systems in so-called “smart city” sustainability
actions. Critically, there is no sufficiently expressive machinery to describe how
values such privacy and security are elicited, negotiated, mediated and accom-
modated in systems design beyond either early stages such as contextual design.
For the purposes of this paper, values are what Friedman refers to: ownership
and property; privacy, freedom from bias, universal usability, trust, autonomy,
informed consent and identity. She defines values as: what a person or group of
people consider important in life [13].

The paper’s position is motivated by the recent so-called “Dieselgate” media
story concerning Volkswagen. On 18th September 2015, Volkswagen, USA was
accused by the US Environment Protection Agency (EPA) of installing an ille-
gal “defeat device” software that dramatically reduces nitrogen oxide (NOx)
emissions - but only when the cars were undergoing strict emission tests.

This paper advances the notion that (moral) values are distinct from non
functional requirements or even softgoals as in goal oriented requirements engi-
neering (GORE) approaches but can benefit from being incorporated into Non-
Functional Requirements (NFR) frameworks. In order to present this position,

c© IFIP International Federation for Information Processing 2016
Published by Springer International Publishing Switzerland 2016. All Rights Reserved
C. Bogdan et al. (Eds.): HCSE 2016/HESSD 2016, LNCS 9856, pp. 151–162, 2016.
DOI: 10.1007/978-3-319-44902-9 10

152 B.S. Barn

the paper takes a case example approach. Firstly, a summary outlining the key
issues arising from the Volkswagen “defeat device” is presented in Sect. 2. The
case example is analysed with respect to value concerns. In contrast to other
recent analyses of the Volkswagen case [29], the paper augments the analysis
by taking concrete views from developers. Evidence is drawn from the Reddit
discussion forum section on Coding where developers posted 80 items over a
four day period [25]. Section 3 presents this analysis. In doing so, this paper
concretely proposes how an existing classification mechanism for requirements
can be extended. Section 4 draws on the academic literature on values, ethics
and non functional requirements to provide further support for the proposition
that values can be classified as a special case of non-functional requirement. In
Sect. 5, the paper concludes by offering a roadmap for further research.

2 Case Study and Approach

Interpretative, exploratory case study research is a first step to understanding
phenomena as input for further research. The Volkswagen case study is impor-
tant from two perspectives: Firstly, its impact on environmental pollution and
secondly, the subsequent apportioning of blame on software engineers respon-
sible for the “defeat device” software and their (implicit) unethical actions.
A descriptive (non-value laden) account of the Volkswagen case study is pre-
sented next using the investigative reports from two quality newspapers, the
Guardian and the New York Times.

2.1 Volkswagen Case Study

The story was first reported in the media on the 18th of September, 2015 with a
claim that around 482,000 cars were affected in USA. However this story begins
much earlier. In 2014, a non-profit group, the International Council on Clean
Transportation worked with the California Air Resources Board and researchers
at West Virginia University to conduct on-road diesel emissions tests of cars
including two Volkswagens and a BMW X5. The researchers found that when
tested on the road some cars emitted almost 40 times the permitted levels of
nitrogen oxides yet performed flawlessly in lab conditions. Subsequently the fed-
eral body and the Environmental Pollution Agency (EPA) were both involved
in negotiations with Volkswagen. Eventually in September 2015, when delays on
announcing new 2016 models could not be explained, the EPA announced the
violation of the Clean Air Act [33]. The basis of this violation was the discov-
ery of software sub-routines that detected when the car was being tested and
then activated equipment that reduced emissions. But the software turned the
equipment off during regular driving, increasing emissions far above legal lim-
its, possibly to save fuel or to improve the car’s torque and acceleration. Note
that while all cars undergo strict emission tests, manufacturers have always been
able to manipulate the settings of the parameters for emission tests. The story
developed and up to 11 million cars were affected [26] leading to around 25 bil-
lion Euro being wiped off the company’s market value [3]. Eventually, the CEO,

Do You Own a Volkswagen? 153

Martin Winterkorn resigned but denied personal wrongdoing. At the same time.
VW’s CEO in USA, Michael Horn in a testimony before US Congress identified
the true authors of his company’s deception [7]: “This was a couple of rogue
software engineers who put this in for whatever reason.”

As a further justification, he described the “defeat device” as a line of code
“hidden in millions of software code”. Since then, following investigations in
Germany, other senior managers appear to have been implicated and were sus-
pended. Huber, the acting head of VW’s supervisory board, called the crisis a
“moral and policy disaster” and went on to say: “The unlawful behaviour of
engineers and technicians involved in engine development shocked Volkswagen
just as much as it shocked the public” [1].

Since initial reporting of this case, Federal and California regulators have
begun an investigation into a second computer program in Volkswagen’s diesel
cars that also affects the operation of the cars’ emission controls.

2.2 Approach

A notable aspect of the media reporting of the Volkswagen defeat device story is
the lack of discussion of ethical considerations that engineers are subject to, in
the act of engineering a system. Both US and Germany have strong engineering
codes of ethics yet these have not featured in any reporting. Given the relation-
ship between ethics and values, this paper analyses this case study from that
perspective and by drawing upon a qualitative analysis of the Reddit discussion
forum section on coding. The thread, entitled: “‘Rouge’(sic) Software Engineers
blamed for VW emissions (would this be a bug or feature?)” received 80 items
that were posted over a over four day period (12 October to 15 October)[25].

The approach presented has reliability limitations of the analysis of the Red-
dit posts. A single developer forum was identified through search queries. Various
forums such as StackOverflow were investigated but there were no discussions
about the Volkswagen “defeat device”. There are a limited number of partici-
pants who posted discussion items. Although there are over 65,000 readers who
subscribe to the coding forum, 27 participants posted comments, from which 7
posted at least twice. The data is is largely indicative and an appropriate future
research avenue would be to explore developer’s perspectives.

3 Case Study Analysis

The first question is one of ethics and its relationship to (software) engineering
and the section begin with a provocative prompt:

“Engineers are the un-acknowledged philosophers of the postmodern
world.” [21].

In part, the reason for this is straightforward: an engineer may not ask about
what they should be doing, or may find that a solution that cannot be achieved
by technical expertise alone. From this it follows that ethical judgements such
as responses to questions of environmental protection following violations of the

154 B.S. Barn

Clean Air Act are required. Hence, philosophy is an internal practical need.
So did the “rogue” engineers alluded to by Horn seek this ethical judgement?
A more complex explanation is also offered by Mitcham: engineering is mod-
elling a new philosophy of life. One interpretation of this is: we have moved
from a natural environment to one where we increasingly present humans as
information-centric entities whose production and consumption of information
occurs through engineered artefacts. Such a world demands continuous evalua-
tion of ethical concerns.

The codes of engineering ethics such as that developed by the Association of
German Engineers [8]1 provide some insight as to what is expected in terms of
norms of behaviour from engineers. For example:

– Engineers are responsible for their professional actions and tasks correspond-
ing to their competencies and qualifications while carrying both individual
and shared responsibilities.

– Engineers are aware of the embeddedness of technical systems into their soci-
etal, economic and ecological context, and their impact on the lives of future
generations.

– Engineers apply to their professional institutions in cases of conflicts concern-
ing engineering ethics.

The Engineering ethics principles also give guidelines on how to resolve conflict-
ing values. In cases of conflicting values, engineers give priority: to the values of
humanity over the dynamics of nature; to issues of human rights over technology
implementation and exploitation; to public welfare over private interests; and to
safety and security over functionality and profitability of their technical solu-
tions. It would appear that the software developers responsible for developing
and installing the “defeat device’ violated a normative code of conduct. What
is not known is whether the developers concerned were able to escalate it to
their managers, their professional body and in the last resort, directly inform
the public or refuse co-operation altogether as directed in paragraph 3.4 of the
VDI code of ethics for engineers [8]. Both the media reporting and the posts
on the Reddit Coding forum by developers find no mention of ethical concerns
directly. For the latter, there are references and extensive dialogue that tries to
account for defensive actions and how to minimise potential fallout:

gullibleboy : I agree. Thankfully, I have never been asked to write code that was blatantly

illegal. And I would like to think I would have enough integrity to say no. But, I certainly

would make sure to get written confirmation, from my superiors, to ensure that I was not

made the patsy. Any seasoned developer would do the same.

Retaining evidence of written confirmation such as in email, while potentially
difficult and desirable raises other legal issues.

LongUsername: Will be surprising to see if they have written evidence. It happened at

least 5 years ago, and I know many companies with an automatic email deletion policy of

1 http://www.vdi.eu/engineering/.

http://www.vdi.eu/engineering/

Do You Own a Volkswagen? 155

about 2 years. Even if there were explicit instructions, unless the engineer thought enough

to archive the email off (in violation of data retention policies), it may be gone.

Resolving conflicting values appears to be core philosophical action that engi-
neers will always have to deal with. While the VDI code of ethics provides rules
to apply in cases of conflict, it may not always be appropriate to recourse to the
professional body. Some times conflict of values are also a proxy for conflicting
goals. The comment by frezik below makes that point. It might be the case that
the requirements specifications are poorly specified and the design process does
not allow for the conflict resolution. It could also be possible that “requirements
creep”, created un-wanted changes that should not have got through an approval
process.

mallardtheduck: In a “normal” vehicle, all profiles should conform to the relevant emissions

standards. In this case, my suggestion is that VW’s programmers/engineers started with

“good” profiles and over the process of tweaking/improving them, ended up making the

more common profiles violate said standards. Whether this was done deliberately or not is

hard to say. Either way it’s something that should have been caught and probably was, but

was “hushed up” by persons higher up the chain.

The idea of a “rogue” software engineer is also interesting when observed
from different perspectives. A “rogue” engineer could have inserted the software
that did exactly what the company required against the express wishes of her
manager. In which case, the problem is even bigger in terms of questioning the
entire software engineering practice at Volkswagen.

PCLoad Letter : From this you can draw the conclusion that there are no software audits

on the code running millions of these cars and no one in QA or the engineering divisions

even questioned when the emissions tests came back much lower that expected? That is a

much bigger problem than a Rogue engineer.

Conversely, in his testimony to Congress, Michael Horn, although implau-
sible, may have meant to imply that the engineers were “rogue” because they
had not reported the software behaviour as required by the engineering codes of
practice and their company. A notion gently supported by a developer:

MuonManLaserJab: For it to be “rogue engineers”, they would have had to decide to keep

the facts a secret while writing the cheat...

It is constructive to consider why the developers on Reddit have focussed on
defence rather than ethical concerns. Partly, it is explained by how engineers
work. The way that engineering (and code development) happens as reported
in [21] by Louis Bucciarelli in his ethnographic studies of engineers: when stu-
dents are doing engineering problems it is generally thought that they “ought
not to get bogged down in useless ‘philosophical’ diversions” [6, pp. 105–106]. At
this stage of their engineering career, students are practicing to be engineers.
The developer’s world (when they are engaged in problem solving) is also highly
abstract. It is one of programming syntax, data structures, and program com-
ments that refer only to functional requirements. Such an abstract world does
not leave room for ethical concerns that might have serious implications for soci-
ety at large. The question arises: where and how in the process of design can

156 B.S. Barn

these critical diversions be accommodated? The problem is further compounded
by deadline pressures resulting in poor decisions and is also offered as an expla-
nation.

frezik: The situation I’m thinking of here is when the programmer is told “we need the

ECU tweaked on this car to make x mpg highway while passing emissions tests, and we

need it by date y”. They make a profile that makes the mpg requirement, and they make

another profile that makes the emissions requirement. They try to combine them to meet

both goals, but they run out of time. Under pressure, they do something stupid and illegal,

and make the emissions test run when test mode is detected, and mpg mode otherwise.

Following on from ethical concerns, is a consideration of who else was involved
the chain of decision making that led to the insertion of the “defeat device”
software. The developers point out that software running the engine control unit
would have gone through numerous code reviews.

rfinger1337 : VW has a responsibility to know whats in the code. It wouldn’t get past

testing, code review...

GuyNamedNate2 : It really depends on what their code reviewing /auditing practices are...I

would hope and expect an organization as big as VW would have avionics-quality processes.

AllGloryToHypno-Toad : if this company is writing engine management software without

code reviews and testing, then that’s another issue. This should have come up and many,

many times.

Modern software engineering can also create spaces whereby an engineer may
not be aware that he has violated his engineering ethics codes. For example, com-
ponent based design mandates black box design through well defined interfaces
that supports specific functional requirements. Developers may end up writing
code for a software component without an awareness of the wider context of
where that component may be used. Thus we see:

LongUsername: Unfortunately, The real coders may not have known what they were doing.

Tell the programmer who does the emissions system to “disable the emissions system when

this flag over here is set... It’s for test-purposes only.” and tell the guy working on the

steering system “when the wheel doesn’t change position for X amount of time, set this

global flag over there that says we’re on a Dyno”.

Cultural issues within the organisation are also of concern. The engineering
community either chose deliberately to not report the rogue engineers to the
organisation or even outside, or were not able to because of the cultural climate.
A Reuters report published in the Guardian on 10th October described the
culture under the former CEO, Martin Winterkorn [1] as authoritarian. Bernard
Osteloh was quoted as saying: “We need in future a climate in which problems
aren’t hidden but can be openly communicated to superiors...We need a culture
in which it’s possible and permissible to argue with your superior about the best
way to go.”. The reality as presented by the developers is different:

Toranaga : I dunno, fall guys get fired... Whistle-blowers get exiled to Siberia.

Do You Own a Volkswagen? 157

4 Values Versus Non Functional Requirements

In this section, it becomes apparent that a common implicit position in current
software engineering practice is that of non functional requirements (NFR) being
used as a proxy for accounting for values. The literature is examined and used
to argue that existing approaches for managing NFRs would not have sufficed to
prevent the Volkswagen case. A further argument advanced is that values need
to be unpicked in order for them to be used effectively by engineers. Simply,
we want to provide engineers with the necessary machinery to allow them to
externalise their philosophical deliberations as they practice their craft.

4.1 Non Functional Requirements

NFRs have been extensively studied by the software engineering community as
they are recognised as important factors to the success of a software project
[12, for example]. Despite their importance, NFRs are poorly understood and
often neglected in the software design process. A satisfactory understanding of
NFRs remains elusive and is attributed to three key problems: lack of a workable
definition; difficulties of classifying types of NFRs; and representing NFRs in
the design process [15]. Further, once NFRs have been identified, they need to
be assigned properties (attributes) which can be measured. Not all NFRs have
attributes and notably, the systematic review by Mairiza et al. shows that of
the 252 types of NFR identified, over 50 % were without attributes [18]. This is
relevant to values.

One consistent view of NFRs is: they are a quality attribute of a system
that its stakeholders care about and hence will affect their degree of satisfaction
with the system. These qualities end up being referred to as “ilities”. Examples
include: reliability, testability, usability, portability etc. Mairiza et al. identify 115
such quality characteristics [18]. Such sayilities are hard to characterise in ways
that can support rigorous engineering and are ultimately subjective and stake-
holder specific [11]. Further, implementations of sayilities may be cross-cutting
across many software components and may also impinge on the meta-systems
used for constructing a system under question.

An inspection of several empirical studies all omit any consideration of treat-
ing values as NFRs [16,18,19,31]. While security and privacy are both moral
values, their treatment as NFRs are from a system perspective and not from
that of the end user’s moral concerns. A survey of software architects to con-
sider NFRs conducted by Ameller et al. also found that values as we define them
do not feature as NFRs even in a category of non-technical NFRs (i.e. not those
such as performance etc.) [2]. Overall, this implies a conclusion where, either val-
ues are systematically ignored in the practice of NFR elicitation or values may
not be NFRs. Certainly, the ethics/values discussions did not feature strongly
in the media reporting and the coder’s comments on Reddit.

We now consider the relevance of techniques of requirements engineering to
values. Over recent years, goal oriented requirements engineering (GORE) [22]
has began to dominate practice [16] particularly with respect to NFRs with the

158 B.S. Barn

NFR Framework [9] being the most widely cited. In the NFR Framework, NFRs
or goals that are hard to express (softgoals), and their decisions are captured in
goal graphs and refined into detailed concrete goals. Others following the GORE
tradition include i* [35]. GORE based techniques present a variety of options for
analysis such as providing a more formal basis of how goals realise other goals,
conflict between goals and the positive and negative contributions goals make
to other goals and ultimately tradeoffs between goals. GORE approaches would
appear to be a promising area for further examination from a values perspective.

4.2 Values and Value Sensitive Concerns

Investigating the intertwining and entailment of values and technology develop-
ment has been an ongoing area of research mostly originating in the domain of
human-computer interaction (HCI) [30]. In the HCI literature, values are iden-
tifiable entities that are built in by design or accident through the affordances
of the technology [13]. These considerations have been termed Value Sensitive
Design (VSD) by Friedman [13], who refers to: ownership and property; privacy,
freedom from bias, universal usability, trust, autonomy, informed consent and
identity.

This is contrasted with sociology and social psychology where values are
criteria that are used to evaluate or make judgements about events or people
encountered, helping explain individual and collective behaviour [5]. As social
interactions become increasingly mediated by technology then these two inter-
pretations of values merge and in doing so, they govern user action or non-action
within technology [17]. Thus design choices that explicitly consider values can
change the affordances of resulting technologies [14,27].

The problem of identifying and qualifying values has many facets: their indi-
vidual or shared nature; their realisation in concrete features; their subjective
or objective location; their accidental or intended role with respect to system
functionality [28]. A further complexity is that all these facets operate along
a continuum so an intended or accidental property is not simply two possible
states of a value. These complexities prevent their widespread acknowledgement
and treatment. In particular, there is no general theoretical framework to allow
stakeholders in the design process to identify, qualify and successively map into
usable data the relevant values for the application at stake. In short, the under-
standing of values and their contribution to technology acceptance is not the-
oretically grounded into the entire software development lifecycle. As discussed
earlier, GORE approaches (particularly, the use of softgoals) have the poten-
tial to represent values. However, softgoals cannot be directly linked to direct
or indirect stakeholders. Further, ’“Values are not goals, they are assumptions
(more precisely, evaluations). A value is a judgment, though very general and
vague. It says of something that it is good or bad. A goal is a regulatory state in
someone’s mind” ([20] reported by Pommeranz et al. [23]). It would appear that
values and their multi-dimensional nature requires new GORE-like approaches
that allow designers to engage in a philosophical discourse about their systems
and their shaping of society.

Do You Own a Volkswagen? 159

4.3 Value Architectures

In summary, values are not referenced in meta reviews of NFRs, nor are exam-
ple values listed as an “ility”. So either values are systematically ignored in the
practice of NFR elicitation or values may not be NFRs. The complexity of values
cannot be accounted for by simple attributes and importantly, typical NFR elic-
itation approaches do not allow designers to engage in a necessary philosophical
dialogue about those “...problems that engineers admit cannot be resolved simply
with engineering methods alone....professional ethical issues.” [21, p.31].

It is also clear that GORE based approaches, particularly the notion of soft-
goals, is a promising area of research for incorporating values as these provide
qualitative mechanisms for resolution that are sufficient. Thus we propose the
following:

1. Extend the Glinz classification to include a values category;
2. Develop processes and the necessary vocabularies to allow ethical discus-

sions of the impact of values of design decisions that can contribute a “value
architecture” in much the same way as functional requirements contribute to
application architectures and NFRs lead to technical architectures of system.

Glinz proposed a classification of requirements based on concerns - something
that is a matter of interest to a system. A concern is a performance concern if
timing or volume is a matter of interest. The set of all requirements are par-
titioned into functional requirements, performance requirement, specific quality
requirements and constraints. Alongside the classification, are a set of rules that
are applied in order in order to classify a given requirement. We propose extend-
ing this classification and rule base as follows.

We introduce Value defined as: a requirement that pertains to value concern.
Such a concern is classified by the introduction of an additional classification rule.
“...a specific moral value that the system or component shall either support or
prevent erosion of.”. The resulting classification and rule set is shown in Fig. 1.
The benefits of this extension allows us to specifically consider values as a concern
in the requirements process. While it is relatively straight forward to develop
measures for attributes such as Performance, defining a measure for value is
much harder and requires agreement amongst stakeholders. By interacting with
stakeholders using the trigger question, we open a channel for that necessary
philosophical dialogue alluded to by Mitcham and necessary for the agreement.

Having addressed the requirements classification concern, the next stage is
to develop value sensitive processes that can take advantage of the classification.
The proposal here is to adapt the work of Yoo et al. [34] to support value elic-
itation, ethical discussions of the impact of values of design decisions and their
capture suitable for engineers. Their work develops a framework for account-
ing for values using participatory design approaches. Evaluations on the efficacy
of this approach have been reported elsewhere [4] but the technical machin-
ery to support this remains an ongoing research challenge. For example, can a
value expression language be used to both specify value requirements, and pro-
vide input for technology acceptance models such [32]? Such models use survey

160 B.S. Barn

Fig. 1. Extension of Glinz’s concern-based taxonomy and classification rules

based research instruments that do not have questions about values. Practical
considerations can be dealt with as functional requirement specifications are
developed and be part of the descriptive frameworks used in requirement speci-
fication. A greater challenge is during the design of the software interactions. It
is proposed that the trigger question can be integrated in processes that check
if a requirement has been implemented. With regard to the original case study,
stages where the trigger question could have been invoked include: code reviews,
and componentisation of software.

5 Conclusion

The Volkswagen case study illustrates the importance of the role of ethics and
its subsuming notion of values in software practice. Developers currently do not
appear to engage in meaningful discussions about values that are explicit or
those that emerge through the use of systems. It is notable, that the developers
on the Reddit platform were relatively subdued in their discussion of ethical /
value concerns. This paper has proposed that such hesitancy is partly linked to
how functional and non functional requirements are managed. On the surface,
values appear to have similarities with NFRs but the view is taken that just
as NFRs present problems of representation, definition and classification, val-
ues may generate similar issues. Hence an extension of Glinz’s concerns-based
taxonomy for requirements that accounts for values is presented. In doing so, a
channel for necessary dialogue with stakeholders about the ethics of decisions
that programmers and designers is opened. Epistemological study to develop
the necessary frameworks for such a dialogue is an important first step. Future
research plans include: empirical data collection of values and their impor-
tance to relevant communities such as developers; the development of informal,

Do You Own a Volkswagen? 161

semi-formal and formal conceptual models of values and related concepts; and
experimental evidence of evaluation of such models. Identifying where trigger
questions can be incorporated is also a critical element in any processes. In
today’s hyper-connected world where systems are increasingly delivered in a
pervasive form, such as through “apps” on smart phones, the risk to erosion of
values, as well as, threats to social and societal sustainability are paramount.
Values need to be formally accounted for in software engineering practice.

References

1. Reuters Agency. Volkswagen executives describe authoritarian culture under for-
mer ceo (2015). http://www.theguardian.com/business/2015/oct/10/volkswagen-
executives-martin-winterkorn-company-culture

2. Ameller, D., Ayala, C., Cabot, J., Franch, X.: How do software architects consider
non-functional requirements: an exploratory study. In: 2012 20th IEEE Interna-
tional on Requirements Engineering Conference (RE), pp. 41–50. IEEE (2012)

3. Arnett, G.: The scale of the volkswagen crisis in charts (2015). http://www.the
guardian.com/news/datablog/2015/sep/22/scale-of-volkswagen-crisis-in-charts

4. Barn, B., Barn, R.: Resilience and values: antecedents for effective co-design of
information systems. In: 23rd European Conference on Information Systems (ECIS
2015), AISNet Library (2015)

5. Bennett, R.: Factors underlying the inclination to donate to particular types of
charity. Int. J. Nonprofit Voluntary Sect. Mark. 8(1), 12–29 (2003)

6. Bucciarelli, L.L.: Designing Engineers. MIT press, Cambridge (1994)
7. C-SPAN.org. Hearing on volkswagen emissions violations (2015). http://www.

c-span.org/video/?328599-1/hearing-volkswagen-emissions-violations
8. Christ, H.: Fundamentals of engineering ethics. VDI the Association of Engineers,

Dusseldorf (2002)
9. Lawrence Chung, B., Nixon, E., Mylopoulos, J.: Non-functional requirements.

Softw. Eng. (2000)
10. Dardenne, A., Van Lamsweerde, A., Fickas, S.: Goal-directed requirements acqui-

sition. Sci. Comput. Program. 20(1–2), 3–50 (1993)
11. Dou, K., Wang, X., Tang, C., Ross, A., Sullivan, K.: An evolutionary theory-

systems approach to a science of the ilities. Procedia Comput. Sci. 44, 433–442
(2015)

12. Ebert, C.: Putting requirement management into praxis: dealing with nonfunc-
tional requirements. Inf. Softw. Technol. 40(3), 175–185 (1998)

13. Friedman, B.: Value-sensitive design. Interactions 3(6), 16–23 (1996)
14. Friedman, B., Nissenbaum, H.: Bias in computer systems. ACM Trans. Inf. Syst.

(TOIS) 14(3), 330–347 (1996)
15. Glinz, M.: On non-functional requirements. In: 15th IEEE International on

Requirements Engineering Conference 2007, RE 2007, pp. 21–26. IEEE (2007)
16. Franco, A.J.: Requirements elicitation approaches: a systematic review. In: 2015

IEEE 9th International Conference on Research Challenges in Information Science
(RCIS), pp. 520–521. IEEE (2015)

17. Locke, E.A.: The motivation sequence, the motivation hub, and the motivation
core. Organ. Behav. Hum. Decis. Process. 50(2), 288–299 (1991)

http://www.theguardian.com/business/2015/oct/10/volkswagen-executives-martin-winterkorn-company-culture
http://www.theguardian.com/business/2015/oct/10/volkswagen-executives-martin-winterkorn-company-culture
http://www.theguardian.com/news/datablog/2015/sep/22/scale-of-volkswagen-crisis-in-charts
http://www.theguardian.com/news/datablog/2015/sep/22/scale-of-volkswagen-crisis-in-charts
http://www.c-span.org/video/?328599-1/hearing-volkswagen-emissions-violations
http://www.c-span.org/video/?328599-1/hearing-volkswagen-emissions-violations

162 B.S. Barn

18. Mairiza, D., Zowghi, D., Nurmuliani, N.: An investigation into the notion of non-
functional requirements. In: Proceedings of the 2010 ACM Symposium on Applied
Computing, pp. 311–317. ACM (2010)

19. Matoussi, A., Laleau, R.: A survey of non-functional requirements in software
development process. Departement dÕInformatique Universite Paris, 12 (2008)

20. Miceli, M., Castelfranchi, C.: A cognitive approach to values. J. Theory Soc. Behav.
19(2), 169–193 (1989)

21. Mitcham, C.: The importance of philosophy to engineering. Teorema: Revista Inter-
nacional de Filosof́ıa, pp. 27–47 (1998)

22. Mylopoulos, J., Chung, L., Yu, E.: From object-oriented to goal-oriented require-
ments analysis. Commun. ACM 42(1), 31–37 (1999)

23. Pommeranz, A., Detweiler, C., Wiggers, P., Jonker, C.: Elicitation of situated val-
ues: need for tools to help stakeholders and designers to reflect and communicate.
Ethics Inf. Technol. 14(4), 285–303 (2012)

24. Raymond, E.S.: The Cathedral & the Bazaar: Musings on Linux and Open Source
by an Accidental Revolutionary. O’Reilly Media Inc., Sebastopol (2001)

25. reddit. “rouge” software engineers blamed for vw emissions (would this be a bug
or feature?) (2015). https://www.reddit.com/r/coding/comments/3ogtqw/rouge
software engineers blamed for vw emissions/?

26. Ruddick, G.: Vw scandal: chief executive martin winterkorn refuses to quit (2015).
http://www.theguardian.com/business/2015/sep/22/vw-scandal-escalates-volks
wagen-11m-vehicles-involved

27. Shilton, K.: Values levers: building ethics into design. Sci. Technol. Hum. Values
38(3), 374–397 (2012)

28. Shilton, K., Koepfler, J.A., Fleischmann, K.R.: Charting sociotechnical dimensions
of values for design research. Inf. Soc. 29(5), 259–271 (2013)

29. Spinellis, D.: Developer, debug thyself. IEEE Softw. 33(1), 3–5 (2016)
30. Suchman, L.: Do categories have politics? the language/action perspective recon-

sidered. In: Human Values and the Design of Computer Technology, pp. 91–106.
Center for the Study of Language and Information (1997)

31. Svensson, R.B., Höst, M., Regnell, B.: Managing quality requirements: a system-
atic review. In: 2010 36th EUROMICRO Conference on Software Engineering and
Advanced Applications (SEAA), pp. 261–268. IEEE (2010)

32. Venkatesh, V., Morris, M.G., Davis, G.B., Davis, F.D.: User acceptance of infor-
mation technology: toward a unified view. MIS Q. 27(3), 425–478 (2003)

33. Wikipedia Clean air act (United States) (2015). https://en.wikipedia.org/wiki/
Clean Air Act (United States)

34. Yoo, D., Huldtgren, A., Woelfer, J.P., Hendry, D.G., Friedman, B.: A value sensitive
action-reflection model: evolving a co-design space with stakeholder and designer
prompts. In: Proceedings of the SIGCHI Conference on Human Factors in Com-
puting Systems, pp. 419–428. ACM (2013)

35. Yu, E.S.K.: Towards modelling and reasoning support for early-phase require-
ments engineering. In: Proceedings of the Third IEEE International Symposium
on Requirements Engineering 1997, pp. 226–235. IEEE (1997)

https://www.reddit.com/r/coding/comments/3ogtqw/rouge_software_engineers_blamed_for_vw_emissions/?
https://www.reddit.com/r/coding/comments/3ogtqw/rouge_software_engineers_blamed_for_vw_emissions/?
http://www.theguardian.com/business/2015/sep/22/vw-scandal-escalates-volkswagen-11m-vehicles-involved
http://www.theguardian.com/business/2015/sep/22/vw-scandal-escalates-volkswagen-11m-vehicles-involved
https://en.wikipedia.org/wiki/Clean_Air_Act_(United_States)
https://en.wikipedia.org/wiki/Clean_Air_Act_(United_States)

Human Error and Safety-Critical
Systems

A Core Ontology of Safety Risk Concepts

Reconciling Scientific Literature with Standards
for Automotive and Railway

Hermann Kaindl1(B), Thomas Rathfux1, Bernhard Hulin2, Roland Beckert1,
Edin Arnautovic1, and Roman Popp1

1 Institute of Computer Technology, TU Wien, Vienna, Austria
kaindl@ict.tuwien.ac.at

2 Berner & Mattner Systemtechnik GmbH, Munich, Germany

Abstract. Safety is a major concern for both automobiles and railway
vehicles. The related standards provide definitions of the same concepts
such as Risk, Harm, Hazard, etc., which we consider here as the core
concepts. However, related conceptual models existing in the scientific
literature either are inconsistent or do not cover the core concepts com-
prehensively.

We modeled the core of these safety concepts ourselves both in meet-
ings and with tool support, based on the definitions given in the related
standards. As a result, this paper presents a small core ontology of safety
risk concepts for reconciling the scientific literature with standards. Since
it matches the terminology of the related standards, it may serve as a
reference model in the future. In fact, we already used it ourselves for
systematically studying where human error may compromise safety.

1 Introduction

In the context of our overall effort to support reuse in safety risk analysis (see,
e.g., [18], we have been working on tool support. Such a tool needs to allow for
input, handling and storing information on concepts like Hazard. Our chosen
approach to generate parts of such a tool using Eclipse, a related metamodel has
to be defined.

So, we looked up standards and related scientific literature to gather infor-
mation for such a metamodel. Unfortunately, we found inconsistencies between
the terminology of the standards with conceptual models in the literature. In
addition, we could not find any conceptual model in the literature that would
cover the core concepts comprehensively.

In particular, we investigated this issue in the context of automobiles and
railway vehicles. In general, all such vehicles are covered by the generic standard
IEC 61508 [3], which has the scope of Electrical / Electronical / Programmable
Electronic Safety-related Systems (E/E/PE) and is based on ISO/IEC Guide 51
[5]. For practical reasons, more specific standards apply:

c© IFIP International Federation for Information Processing 2016
Published by Springer International Publishing Switzerland 2016. All Rights Reserved
C. Bogdan et al. (Eds.): HCSE 2016/HESSD 2016, LNCS 9856, pp. 165–180, 2016.
DOI: 10.1007/978-3-319-44902-9 11

166 H. Kaindl et al.

Fig. 1. Taxonomy of standards under investigation

– ISO 26262 [4] for automobiles, and
– EN 50126 [1] & TR 50126-2 [2] for railway systems.

Figure 1 depicts the relationships between these standards in the notation of
the Unified Modeling Language (UML) [22], see omg.org for the current version.
The arrow head points from the specific standards to the more general one (IEC
61508), which is also associated with ISO/IEC Guide 51.

ISO/IEC Guide 51:2014 [5] provides requirements and recommendations for
the drafters of standards for the inclusion of safety aspects. This standard is
applicable to any safety aspect related to people, property or the environment,
or to a combination of these.

ISO 26262 is the functional safety standard for road vehicles and is derived
from the generic functional safety standard IEC 61508. It deals with the possible
hazards that could result from function failure in the electrical/electronic system
in automotive vehicles.

EN 50126 is relevant for the whole railway system and not limited to railway
vehicles. In contrast to IEC 61508 and ISO 26262, the railway standard EN
50126 is not limited to hazards resulting from malfunctioning of E/E/PE.

Primarily based on the terminology of these standards as defined in their
glossaries, we started modeling of what we consider the core safety concepts. In
addition, we employed tool support for finding relations between these concepts.
In the course of several iterations over model versions in meetings, the models
were most importantly extended and refined by expert knowledge from both the
automotive and railway domains. We present here the resulting core ontology.

While it may have various applications in practice as a reference model in
the future, we already used it for a preliminary but systematic study on where
human error may compromise safety. This involved both traversing the graph of
ontology concepts and looking at it as a whole.

The remainder of this paper is organized in the following manner. First, we
motivate our work explicitly and discuss related work in the scientific literature.
Then we elaborate on our effort on conceptual modeling of terminology from
standards. Based on that, we explain our resulting core ontology of risk concepts.
In addition, we sketch its fit into an upper ontology. As a possibility to make use
of our ontology, we sketch how human error may compromise safety.

http://omg.org

A Core Ontology of Safety Risk Concepts 167

2 Motivation

While we originally strived for a metamodel for our tool support, our motiva-
tion for creating such a core ontology soon became more fundamental. In fact,
safety assessment is in many ways subjective, partly because of individual risk
perception, experience, education, cultural pressure and habits.

To reduce the arbitrariness of safety assessment, experts defined safety con-
cepts such as Risk, Hazard and Accident. However, definitions in natural language
are inherently ambiguous. With an ontology, at least the relations among the
concepts contained can be made precise. They can also be visualized in figures
as shown below, and such figures can support a common understanding of safety
concepts.

In addition, even the definitions of safety core concepts such as Risk are not
consistent between different safety standards. For example, while it is defined
in the ISO 26262 standard [4] for the automotive domain as “combination of
the probability of occurrence of harm and the severity of that harm”, for the
railway domain it is defined as “the rate of occurrence of accidents and incidents
resulting in harm (caused by a hazard) and the degree of severity of that harm”
[2]. For creating our core ontology, we made an ontological decision in favor of
the former definition, since it is actually derived from the ISO/IEC Guide 51 [5].

Being precise and consistent in this regard is actually a major concern in
practice. This was, for instance, a major lesson learned by the author of this
paper who is a safety expert in the railway domain, in an international project
for the installation of a people mover. According to this real-world experience, if
understandable and consistent definitions are not introduced in an early project
phase, later much time will be wasted with discussions and with the reformula-
tion of documents for the safety case.

Moreover, the consistency of definitions of safety concepts may become
important after an accident in legal courts. Interpretations of safety concepts
may be discussed there and related questions raised, such as the following:

– What was the interpretation of the safety concept x for the safety case?
– What are other interpretations of this safety concept (in the standards used

or other similar ones)?
– Would the other interpretation have led to additional safety requirements?
– Could the accident have been avoided if such additional safety requirements

were taken into account?

Our core ontology of safety risk concepts may help to answer such questions
consistently.

3 Related Work in the Literature

Ambiguity of safety standard terminology and the problems resulting are dis-
cussed in [12,23]. Models of safety standards can contribute to avoid misunder-
standings and conflicting views on the concepts behind the terminology.

168 H. Kaindl et al.

Such a model for IEC 61508, with the focus on creating a chain of evidence for
safety compliance demonstration, is proposed in [21]. Unfortunately, as explained
below, there are ontological problems with this model, in particular its Risk
concept. Another model of a few concepts from ISO/IEC Guide 51, from which
IEC 61508 takes many of the core glossary definitions, can be found in [23]. It
only centers around a model of Risk, but also this model has ontological problems
as explained below. Hence, we could not base our core ontology on either of these
papers.

A discussion of evolving definitions of the concepts Risk, Hazard and Mishap
in military standards is discussed in [28]. As a result, a formalized model for
calculating hazard and mishap occurrence probabilities is presented. The onto-
logical view of risk-related concepts in these military standards is quite different
from the one in automotive and railway standards. Hence, it was not possible to
base our core ontology on this work, either. However, the increasing importance
of the Mishap concept in the evolution of military standards suggests to us the
importance of the related Accident concept. As explained below, the inclusion
of Accident into our core ontology was only in the course of an evolution of our
conceptual models.

The closest attempt to our ontological modeling in this paper can be found
in [13], where we focused on the differences in automotive and railway standards
and unified them conceptually as far as possible. In contrast, the current paper
provides a core ontology of the common safety concepts. In addition, there was
no model of Risk yet in [13].

Our development of a core ontology of safety risk concepts may be consid-
ered as a simple application of Ontology Engineering (OE) [8]. OE represents
“the set of activities that concern the ontology development process, the ontol-
ogy life cycle, and the methodologies, tools and languages for building ontolo-
gies” ([9], as cited in [25]. Typical activities in OE are Domain Analysis and
Specification (knowledge acquisition, and the definition of ontological purpose,
including its use cases, users, etc.), Conceptualization (structuring of domain
knowledge), and Implementation (expressing the ontology using an appropriate
ontology representation language). On top of the activities for ontology building
are the activities for ontology utilization and application (e.g., building tools for
the defined use cases). Another important activity in OE is ontology evaluation.
The goal of ontology evaluation is to estimate the quality of the ontology, and
it includes ontology validation (investigation if the ontology represents the real-
world domain concepts and their relationships appropriately, and if it fulfills the
ontology use case and purpose), and verification (proving consistency and that
the ontology is correctly constructed according to the language used, etc.) [10].
However, most of the ontology evaluation approaches [6] deal with large, complex
and more or less formally represented ontologies (e.g., in OWL or description
logic) and are not suitable for our case.

Since we have used a semi-formal representation in UML without constraints,
logic formalisms, etc., and having in mind the current size of our core ontology,
explicit ontology verification is not feasible. Regarding validation, we iteratively

A Core Ontology of Safety Risk Concepts 169

reviewed the results from ontology development steps using expert knowledge.
In our future work, we plan to validate the ontology against use cases. Another
option for ontology validation would be to automatically create an ontology
from standards and (or) scientific literature and qualitatively compare it to our
manually created ontology. Sfar et al. [24] use a similar comparison to evaluate
automatically created ontologies against a “gold-standard” ontology created by
humans. So, using ontology learning [27] for the validation of our core ontology
would be a valid goal for our future research. We already gained first experience
in comparing semi-automatically created taxonomies (light-weight ontologies) to
manually created domain models in requirements engineering [7].

4 Conceptual Modeling of Terminology from Standards

Conceptual modeling is, in general, not that simple. Regarding models of safety
concepts in the literature, we particularly found inconsistencies in [23] and in
[21]. In both cases, these are supposedly related to misunderstandings of the
aggregation relationship of UML.

In [23], a categorization of the concept Risk is correctly modeled using gen-
eralization of the classes representing the subconcepts in UML. However, “Dam-
age” (supposedly used here as a synonym of Harm) is modeled there as an
aggregation of three special cases of Harm, and this should rather be modeled
as well using generalization.

In [21], the concept Risk is modeled as class with a few UML attributes,
including “likelihood” and “consequence”. Assuming that they correspond to
Probability and Severity according to the standards that we model below, there is
an interesting modeling issue. In the specification of UML, an attribute is said to
be “semantically equivalent to a composition association”. When considering this
statement more precisely, the question arises, in which sense an attribute is part
of an object. In the UML metamodel, attribute is part of class in a composition.
In this sense, an attribute is an entity of its own, which defines UML. But in the
specification of UML as well as in [22], attributes are also said to be “composition
relationships between a class and the classes of its attributes”. In this sense, an
attribute would model the same relationship as a composition. A simple example
shows that this view is questionable. The region of a wine can be modeled as its
attribute (as one of possibly several), but this does not mean that any particular
region is “part of” a particular wine. Already in [26], “attribution” was said to
be often confused with a whole-part relationship. The argument that these are
different relationships was another simple example: “While towers have height
as one of their attributes, height is not a part of a tower.”

Therefore, it is rather the class representing the concept Harm that may
have (among others) the attributes Probability and Severity, see Fig. 2. While we
think that this is a ‘true’ model of these concepts (according to the standards
under consideration), this way of modeling raises yet another issue. How would
it be possible in such a model to represent that this combination of Probability
and Severity of Harm is Risk? All this justifies the ontological decision to model
this inner core as given below (using aggregation).

170 H. Kaindl et al.

Fig. 2. Harm class with attributes

For the actual modeling involved for achieving our proposed core ontology,
we pursued two different ways. We employed tool support for getting automated
suggestions for association relationships, and we had a series of expert meetings,
i.e., meetings involving two safety experts. Note, that the tool run was only after
the second of a total of four meetings. So, it was not intended to bias the whole
effort but only to see more exactly what can be extracted directly from the given
glossaries.

4.1 Tool-Supported Modeling

After the second meeting (as sketched below), we tried tool-supported model-
ing. We were interested in getting suggestions for (binary) association relations
between any two of the core concepts under discussion in the meetings, based
on their glossary definitions in the standards under investigation. Our major
interest was to see what exactly these definitions say about potential relations
between the concepts defined.

More precisely, we employed the tool RETH (Requirements Engineering
Through Hypertext), a tool for requirements specification according to the
method with the same name. RETH combines object-oriented technology and
hypertext. It was developed under the guidance of the first author of this paper
some time ago, see, e.g., [16].

For tool-supported modeling in the course of creating our core ontology of
safety risk concepts, we used the RETH tool to automatically generate glossary
links, see [17]. More generally, it is a semi-automated generation that allows
the user to reject a suggested link, but we refrained from this option in order
not to influence the result. Based on such links, we let the tool automatically
generate (binary) association relations in a second step, see [15]. According to the
heuristic behind that, RETH simply generates an association, if and only if there
is a glossary link in either direction. Of course, such proposed associations can
be deleted manually, e.g., if they are transitive and, therefore, may be considered
redundant. Again, we refrained from this option in order not to influence the
result. Note, that this tool can also propose generalizations, e.g., for Risk being
more general than Individual Risk (based on an obvious linguistic clue), but we
did not have such a case here.

Let us show an example of an entry for a concept and its definition as an
excerpt from a linearized tool output:

A Core Ontology of Safety Risk Concepts 171

Fig. 3. Conceptual model with tool-generated associations

Risk

– Source of Definition
ISO/IEC Guide51:2014

– combination of the probability of occurrence of harm and the severity of that
harm

– A-0 Severity
– A-1 Probability
– A-2 Harm

The link to “harm” was already given in this standard, but not the one to
“severity”, which was generated by the tool. The associations in this case only
correspond to out-going links from this concept and are shown here through a
generated name and a link to the associated concept.

The resulting model from the tool run is shown in UML in Fig. 3. With
respect to our inner core of concepts around the concept Risk, the association
A-2 is a typical case of a redundant transitive relation, which can be deleted
in order not to clutter the diagram. A-0 and A-1 are simply shown here as
associations, while they may be modeled as their special case of an aggregation
in UML. However, the tool does not have any clue for such a distinction. (Note,
that the UML definition of an aggregation is vague, and attempts to formalize
them in logic are difficult.)

172 H. Kaindl et al.

An interesting observation is that the concept Accident is shown here in
isolation, i.e., without any association relation with any of the other concepts of
this model. Hence, let us have a look at its definition:

Accident

– Source of Definition
EN 50126-1

– an unintended event or series of events resulting in loss of human health or
life, damage to property or environmental damage

In fact, there is no link that could have been found by the tool, while this text
can be interpreted in such a way that Accident may be related to Harm. This
concept is directly associated in the model with the concept Hazard, however,
based on the following definition:

Hazard

– Source of Definition
ISO 26262-1

– potential source of harm caused by malfunctioning behaviour of the item
– A-4 Harm
– A-6 Malfunctioning Behaviour
– A-7 Function

The reader is encouraged to compare this model with the ones created and
elaborated at the meetings as sketched below, especially regarding this direct
association. Note, in addition, that the concept Malfunctioning Behaviour was
finally not included into our core ontology, although it would make sense, but it
seemed to be less important in the standards under investigation.

4.2 Expert Meetings

As indicated above, we had four expert meetings including two safety experts,
one primarily in the railway domain, the other in automotive. The other par-
ticipants have primarily background in software and symbolic modeling, in par-
ticular also on ontologies. Note, that all participants of these meetings are also
authors of this paper. Each meeting had five to six participants, and the dura-
tion was, on average, approximately seven hours. Between these meetings, we
aligned ourselves via email and telecommunication, while we primarily worked
on different tasks.

The starting point was a metamodel intended to create an Eclipse-based tool
for supporting reuse of safety risk analyses. This metamodel included among
other classes for requirements, etc., the following ones: Function, Failure, Hazard,
Severity and Tolerable Hazard Rate (see also [18]).

Since this metamodel was considered insufficient by these authors, the rel-
evant standards were consulted, first IEC 61508 and ISO Guide 51. Since the

A Core Ontology of Safety Risk Concepts 173

Fig. 4. White board with sticky notes from second meeting

terms in these standards are not unambiguously defined, we decided to look
for conceptual models that we could adopt for the metamodel needed. Unfortu-
nately, as explained above, we could not find a comprehensive model of the core
safety terms as needed in the scientific literature. It even contained conceptual
models that are inconsistent with the terminology of these standards.

In the course of a first meeting of all the authors, we primarily discussed an
integration of a Risk model with the concepts corresponding to the classes of our
previous metamodel. Immediately after this first meeting, however, the safety
expert of the railway domain criticized that Accident was missing in our model
and pointed to the definition according to EN 50126. Additionally, he proposed
to introduce Hazardous Situation for representing preconditions that could lead
to an Accident.

In our second meeting, we discussed possible inclusions of these concepts
into our model. Even though neither IEC 61508 nor ISO 26262 define Accident
explicitly, we decided to extend our model with this concept. In order to deter-
mine reasonable associations between the given concepts, we used sticky notes
with a concept name per note, and arranged them on a white board (for the
result see Fig. 4). As shown above, an association between Accident and Harm is
obvious, but what causes the occurrence of such an unintended event? The defi-
nitions do not clarify that. So, the safety experts’ knowledge was brought in and

174 H. Kaindl et al.

Fig. 5. Conceptual model in the course of the third meeting

led to the inclusion of Accident between Hazard and Harm. Still, we could not
determine associations of Hazardous Situation with the other concepts, although
some relation with Hazard is suggestive.

Between the second and the third meetings, we used the RETH tool as
explained above. While the resulting model is fairly similar to the one after
our second meeting, the tool could not find any association of Accident with the
other concepts.

In the third meeting, we examined the association between Hazard and Acci-
dent more closely. In particular, we took ISO 26262 into account, which defines
Hazardous Event as the combination of a Hazard and an Operational Situation.
According to the glossary definitions, there is a missing link between Hazard
and Accident, because an Accident is a result of a single event or a series of
events. After long discussion, we erroneously decided to add both the concepts
Hazardous Event and Accident as one named Hazardous Event / Accident due
to their apparent similarity, resulting in the conceptual model given in Fig. 5.

After even more discussion in the course of the third meeting, we split Haz-
ardous Event and Accident, and defined an association named “may cause”
between them.

In the fourth meeting, we reviewed the resulting model from the third meet-
ing and did not find a flaw, while there are always options for other ontological
decisions. The only change was adding Triggering Event, with an association
named “triggers” with Accident. This model intends to reflect that both Haz-
ardous Event and Triggering Event are preconditions of an Accident.

5 Our Core Ontology

The resulting conceptual model is shown in Fig. 6. We consider it as a core
ontology of safety risk concepts. While our sketch of its evolution above should
already serve as an explanation, a few more explanations are still necessary for
the rationale of some of its parts.

The ontological decision for the aggregation of Risk (instead of attributes) is
explained above in detail. Such an aggregation relation in UML is shown as a

A Core Ontology of Safety Risk Concepts 175

Fig. 6. Resulting conceptual model defining a core ontology of safety risk concepts

diamond, see Figs. 5 and 6. The rationale for the aggregation of Hazardous Event
is by analogy. In fact, both underlying definitions in the standards use the same
formulation “combination of”.

The name of the association between Accident and Harm, “results in”, sug-
gests that every accident results in harm. Otherwise, this unintended event or
series of events would not be considered an accident according to the definition
of Accident in EN 50126 (see also above). Instead of naming it “may results in”,
which somehow involved yet another probability, our railway expert suggested
to assign Severity 0 in case there is no resulting human Harm. In this way, our
model resolves the very narrow and conflicting definition of Harm in the ISO
26262 standard, which is restricted to human health but not to goods or the
environment.

The concepts Function and Failure are only relevant for ‘Functional Safety’,
i.e., when assessing Harm based on analyzing potential failures of each function
of a system. This has to be done according to ISO 26262 in the automotive
domain. For other kinds of safety analyses, these concepts may be ignored.

Overall, this core ontology is an interesting combination of both the automo-
tive and the railway domains. The concepts shown in blue are common, while
the others are based on terminology from ISO 26262 and EN 50126, respectively.

6 Upper Ontology

For such an ontology, also its fit into a so-called upper ontology is important.
Upper ontologies represent general concepts to be used for creating more specific
domain ontologies such as ours. In this regard, let us focus on a specific problem.

176 H. Kaindl et al.

In our meetings, we struggled with the terms Hazardous Situation and Haz-
ardous Event. In fact, there is no clear conceptual differentiation between the
concepts Situation and Event in the standards that we used. To clarify this, we
looked into several upper ontologies. OpenCyc [19] is the largest and the best
known upper ontology, containing around 105 generic concepts. OpenCyc defines
the concept of a Situation roughly as a state and as specializations of Intangi-
ble and Temporal concepts. Event is defined as a specialization of Situation (a
dynamic situation in which the state of the world changes). Contrary to Event,
in a Static Situation (as another specialization of the concept Situation), objects
and their relations do not change over time. OpenCyc also defines the concept
of DangerousSituation as a specialization of Situation where “a significant risk
of death, injury, or property damage exists”. Even though these definitions are
not precise enough for safety analysis (e.g., DangerousSituation has the word
“Hazard” as a synonym, but the safety standards explicitly distinguish between
these two concepts), it seems as though the conceptualizations of OpenCyc fit
well the intrinsic meaning of the safety-related concepts of our ontology.

Deeper investigation on the relation to other upper ontologies (e.g., ABC
upper ontology [14], General Formal Ontology [11], or SUMO — Suggested
Upper Merged Ontology [20]) will be part of our future work.

7 Human Error

Human error may compromise safety in the context of safety-critical systems.
Let us sketch how our core ontology of safety risk concepts can be used for a
systematic analysis of human error.

First, the graph of ontology concepts can be traversed systematically, where
each concept is investigated regarding human error. In particular, additional
hazards caused by human error are important. They may lead to additional
hazardous events and accidents as well. With respect to user errors, e.g., espe-
cially the triggering events of accidents are of interest. Design and development
errors as well as manufacturing, construction and installation errors seem to be
more related to functions and related failures. Also maintenance errors are to be
studied in this context.

With the help of the ontology, human error can be identified or classified
systematically, see Table 1. The three concepts Function, Failure and Hazard at
the left of Fig. 6 are relevant for human error analysis if an operator or main-
tainer is involved in fulfilling or supporting a function, respectively. For example,
a train driver of certain railway vehicles has to fulfill part of the so-called Park-
ing function. For the analysis of human error in such a case, the acting humans
are considered part of the system. Such an analysis is especially important in
degraded modes with more intensive use of human capabilities. In general, the
traversal of the ontology guides from each instance of Function to analyzing it
with regard to Failure and Hazard. This functional safety analysis has to inves-
tigate which failures may be caused by such a human error, and which hazards
may result. Analogously to operator error, errors of maintainers can be analyzed

A Core Ontology of Safety Risk Concepts 177

in this way. For example, in a railway vehicle the generation of pressurized air
is safety-relevant, since many functions such as braking are implemented based
on it. Filtering of dust and dirt in the pressurized air is a crucial point, since
air pipes may become locked by dust and dirt. Hence, the dust filters have to be
changed after at least one year. If this does not happen, e.g., caused by human
error in maintenance, these filters will lose their required function.

Table 1. Classification of human error related to concepts of the ontology.

Role of human Related concepts Possible reason

Operator Function, Failure, Hazard Operator involved in Function

Maintainer Function, Failure, Hazard Maintainer supporting Function

Person at risk Hazardous Event, Accident Self rescue

User Triggering Event, Accident Misuse

Affected persons of operator errors can, of course, be the operator who caused
the hazard, but also others, such as passengers of a train. Related to persons
at risk, i.e., all involved humans that may suffer Harm from a given Hazard,
the concepts Hazardous Event and Accident are particularly important for the
analysis of human error. Their instances need to be analyzed especially regarding
possibilities for escaping or avoiding any instances of Harm, e.g., through self
rescue, and what kind of human error may happen in this course. The avoidance
of harm must be recognizable, understandable, possible and desirable. For exam-
ple, in case of large and abnormal vibrations in a wagon of a train, pulling the
emergency brake may be the most appropriate action to be taken by a passenger.
However, there are some problems involved in such a situation. First of all, the
passenger needs to recognize that these vibrations are abnormal. Given that, the
passenger has to understand that it is reasonable or necessary for him or her to
act. In addition, the passenger needs to figure out which actions are possible,
e.g., pulling the emergency brake or moving to another part of the train. Finally,
the passenger needs to judge that such an action is desirable, since unjustified
pulling an emergency brake is also subject to being punished, and decide to
actually perform such an action. In particular, such an analysis of human error
needs to take into account that humans involved in an accident are usually under
stress, and the more stressed humans are the more likely they commit errors.

The concept of a Triggering Event related to an Accident is relevant in the
context of unintended or intended misuse. An example of a triggering event is
pushing the button for opening doors of a train during the Operational Situation
in a tunnel at high speed (say, 300 km/h). In such a situation, the aerodynamic
forces can be strong enough to pull a passenger out of the train if a door in the
vicinity opens. This human error of misuse is covered by electronic locking of
the doors, where unlocking a door in such a situation would be an instance of
Hazard.

178 H. Kaindl et al.

Such a systematic analysis of human error may, in turn, suggest an integration
of additional technical assistance systems. These are intended to reduce the
possibilities of human error or its negative effects. The overall safety assessment
needs to find a balance between human and technical aspects related to hazards
and risks.

Another potential use of our core ontology related to human error is to look
at it as a whole. After all, it is currently fed into a tool for supporting reuse of
risk analyses (through a related metamodel). When risk analyses with all the
related information according to our model will be reused for similar cases, e.g.,
previous hazards will be taken into account that otherwise may be overlooked
by human error.

Even regarding standards, both their creation and their application, there
is some potential use of our core ontology. After all, it is based on ISO 26262,
EN 50126 and IEC 61508. Problems often arise from contradicting or arbitrary
definitions, or even missing definitions. For example, in ISO 26262 the term
“accident” is not defined even though it is used in some of its parts. For the
creation of future (versions of) standards, human error may be reduced through
this and enhanced ontologies.

8 Conclusion and Future Work

Primarily based on the glossaries of standards for automotive and railway, we
created conceptual models, both using tool support and in a series of expert
meetings. Especially in these meetings, of course, expertise of two safety experts
played a major role in the evolution of these models. We consider the resulting
model a core ontology of safety risk concepts covering both domains, which
also fits into a major upper ontology. As a preliminary application of this core
ontology, we used it for systematically studying possibilities of human error
compromising safety.

In on-going and future work, we base a corresponding metamodel for tool
creation using Eclipse on this core ontology. This metamodel will also include
requirements-related concepts, which we have sufficient previous experience with.
Using the resulting tool, and indirectly our core ontology, we will perform case
studies, focusing on reuse of risk analyses. In this course, we will particularly
investigate whether this reuse can help to reduce human error of omitting impor-
tant information on previously known hazards, etc. All this will be important
for the sake of validation of our proposed approach. Also extending the scope,
e.g., to avionics or healthcare will be of interest.

Acknowledgment. Part of this research has been carried out in the RiskOpt project
(No. 845610), funded by the Austrian BMVIT (represented by the Austrian FFG).

References

1. EN 50126-1, Railway applications – The specification and demonstration of relia-
bility, availability, maintainability and safety (RAMS). Part 1: Basic requirements
and generic process, September 1999

A Core Ontology of Safety Risk Concepts 179

2. CLC/TR 50126-2, Railway applications – The specification and demonstration of
reliability, availability, maintainability and safety (RAMS). Part 2: Guide to the
application of EN 50126-1 for safety, February 2007

3. IEC 61508, Functional safety of electrical/electronic/programmable electronic
safety-related systems, May 2010

4. ISO 26262, Road vehicles - Functional safety, November 2011
5. ISO/IEC Guide 51 - Safety aspects - Guidelines for their inclusion in standards

(2014)
6. Brank, J., Grobelnik, M., Mladenić, D.: A survey of ontology evaluation techniques.

In: Proceedings of 8th International Multi-conference Information Society, pp. 166–
169 (2005)

7. Casagrande, E., Arnautovic, E., Woon, W.L., Zeineldin, H.H., Svetinovic, D.: Semi-
automatic system domain data analysis: a smart grid feasibility case study. IEEE
Trans. Syst. Man Cybern. Syst. PP(99), 1–11 (2016)

8. Fernandez-Lopez, M., Gomez-Perez, A., Juristo, N.: Methontology: from ontologi-
cal art towards ontological engineering. In: Proceedings of the AAAI 1997 Spring
Symposium, Stanford, USA, pp. 33–40, March 1997

9. Gómez-Pérez, A., Fernández-López, M., Corcho, O.: Ontological Engineering: With
Examples from the Areas of Knowledge Management, e-Commerce and the Seman-
tic Web. Advanced Information and Knowledge Processing. Springer, New York
Inc. (2007)

10. Hajdu, M., Skibniewski, M.J., Bilgin, G., Dikmen, I., Birgonul, M.T.:
Selected papers from creative construction conference 2014 ontology eval-
uation: an example of delay analysis. Procedia Eng. 85, 61–68 (2014).
http://www.sciencedirect.com/science/article/pii/S1877705814018955

11. Herre, H.: General formal ontology (gfo): a foundational ontology for conceptual
modelling. In: Poli, R., Obrst, L. (eds.) Theory and Applications of Ontology, vol.
2. Springer, Berlin (2010)

12. Hogganvik, I., Stolen, K.: Risk analysis terminology for IT-systems: does it match
intuition? In: 2005 International Symposium on Empirical Software Engineering
2005, p. 10, November 2005. http://dx.doi.org/10.1109/ISESE.2005.1541810

13. Hulin, B., Kaindl, H., Rathfux, T., Popp, R., Arnautovic, E., Beckert, R.: Towards
a common safety ontology for automobiles and railway vehicles. In: European
Dependable Computing Conference (2016, to appear)

14. Hunter, J.: Enhancing the semantic interoperability of multimedia through a core
ontology. IEEE Trans. Circ. Syst. Video Technol. 13(1), 49–58 (2003)

15. Kaindl, H.: How to identify binary relations for domain models. In: Proceedings of
the Eighteenth International Conference on Software Engineering (ICSE-18), pp.
28–36. IEEE, Berlin, March 1996

16. Kaindl, H.: A practical approach to combining requirements definition and object-
oriented analysis. Ann. Softw. Eng. 3, 319–343 (1997)

17. Kaindl, H., Kramer, S., Diallo, P.S.N.: Semiautomatic generation of glossary links:
a practical solution. In: Proceedings of the Tenth ACM Conference on Hypertext
and Hypermedia (Hypertext 1999), Darmstadt, Germany, pp. 3–12, February 1999

18. Kaindl, H., Popp, R., Raneburger, D.: Towards reuse in safety risk analysis based
on product line requirements. In: 2015 IEEE 23rd International Requirements Engi-
neering Conference (RE), pp. 241–246, August 2015

19. Lenat, D.B.: Cyc: a large-scale investment in knowledge infrastructure. Commun.
ACM 38(11), 33–38 (1995). http://doi.acm.org/10.1145/219717.219745

http://www.sciencedirect.com/science/article/pii/S1877705814018955
http://dx.doi.org/10.1109/ISESE.2005.1541810
http://doi.acm.org/10.1145/219717.219745

180 H. Kaindl et al.

20. Niles, I., Pease, A.: Towards a standard upper ontology. In: Proceedings of the
International Conference on Formal Ontology in Information Systems, FOIS 2001,
vol. 2001, pp. 2–9. ACM, New York (2001). http://doi.acm.org/10.1145/505168.
505170

21. Panesar-Walawege, R.K., Sabetzadeh, M., Briand, L., Coq, T.: Characterizing the
chain of evidence for software safety cases: conceptual model based on the IEC
61508 standard. In: 2010 Third International Conference on Software Testing, Ver-
ification and Validation, pp. 335–344, April 2010. http://dx.doi.org/10.1109/ICST.
2010.12

22. Rumbaugh, J., Jacobson, I., Booch, G.: The Unified Modeling Language Reference
Manual. Addison-Wesley, Reading (1999)

23. Schnieder, L., Schnieder, E., Ständer, T.: Railway safety and security —two sides
of the same coin? In: International Railway Safety Conference 2009 (2009). http://
www.intlrailsafety.com/bastad/20090928/09-stander/paper.pdf

24. Sfar, H., Chaibi, A.H., Bouzeghoub, A., Ghezala, H.B.: Gold standard based eval-
uation of ontology learning techniques. In: Proceedings of the 31st Annual ACM
Symposium on Applied Computing, SAC 2016, pp. 339–346. ACM, New York
(2016). http://doi.acm.org/10.1145/2851613.2851843

25. Simperl, E.P.B., Tempich, C.: Ontology engineering: a reality check. In: Meersman,
R., Tari, Z. (eds.) OTM 2006. LNCS, vol. 4275, pp. 836–854. Springer, Heidelberg
(2006). http://dx.doi.org/10.1007/11914853 51

26. Winston, M.E., Chaffin, R., Herrmann, D.: A taxonomy of part-whole relations.
Cogn. Sci. 11, 417–444 (1987)

27. Wong, W., Liu, W., Bennamoun, M.: Ontology learning from text: a look
back and into the future. ACM Comput. Surv. 44(4), 20:1–20:36 (2012).
http://doi.acm.org/10.1145/2333112.2333115

28. Zhao, N., Zhao, T.: An event-chain risk assessment model based on definition
evolution in safety criterions. In: 2011 9th International Conference on Reliability,
Maintainability and Safety (ICRMS), pp. 573–578, June 2011. http://dx.doi.org/
10.1109/ICRMS.2011.5979333

http://doi.acm.org/10.1145/505168.505170
http://doi.acm.org/10.1145/505168.505170
http://dx.doi.org/10.1109/ICST.2010.12
http://dx.doi.org/10.1109/ICST.2010.12
http://www.intlrailsafety.com/bastad/20090928/09-stander/paper.pdf
http://www.intlrailsafety.com/bastad/20090928/09-stander/paper.pdf
http://doi.acm.org/10.1145/2851613.2851843
http://dx.doi.org/10.1007/11914853_51
http://doi.acm.org/10.1145/2333112.2333115
http://dx.doi.org/10.1109/ICRMS.2011.5979333
http://dx.doi.org/10.1109/ICRMS.2011.5979333

Complementary Tools and Techniques for Supporting
Fitness-for-Purpose of Interactive Critical Systems

Dorrit Billman1, Camille Fayollas2, Michael Feary3,
Célia Martinie2(✉), and Philippe Palanque2

1 San Jose State University, San Jos, USA
dorrit.billman@nasa.gov

2 ICS-IRIT, University of Toulouse, Toulouse, France
{fayollas,martinie,palanque}@irit.fr

3 NASA Ames Research Center, Mountain View, USA
michael.s.feary@nasa.gov

Abstract. Sound design of complex, interactive, safety critical systems is very
important, yet difficult. A particular challenge in the design of safety-critical
systems is a typical lack of access to large numbers of testers and an inability to
test early designs with traditional usability assessment tools. This inability leads
to reduced information available to guide design, a phenomenon referred to as
the Collingridge dilemma. Our research proposes to address parts of this problem
with the development of tools and techniques for generating useful information
and assessing developing designs early, to minimize the need for late change.
More generally, we describe a set of three tools and techniques to support the
process of ensuring fitness-for-purpose of complex interactive systems, helping
designers focus on interaction across different functions of an overall system.
These different tools and techniques support different parts of the overall design
and evaluation process, but are focused on improving the coverage and effec‐
tiveness of evaluating interaction.

Keywords: Work analysis and representation · Interactive systems behavior ·
Complementary approaches · Safety-critical systems · Aviation

1 Introduction

Design of complex, interactive, safety critical systems requires an analysis of both the
purpose (mission) the technology is intended to support, the users, and the environmental
and social context in which the technology is to be used to determine whether the concept
or prototype is fit for its purpose. Early in the process it is easy to make changes to the
requirements or design concept, but it may be difficult to determine whether a candidate
design or requirement specification will in fact meet the work needs. Later in the process

The rights of this work are transferred to the extent transferable according to title 17 § 105 U.S.C.

© IFIP International Federation for Information Processing 2016 (outside the US)
Published by Springer International Publishing Switzerland 2016. All Rights Reserved
C. Bogdan et al. (Eds.): HCSE 2016/HESSD 2016, LNCS 9856, pp. 181–202, 2016.
DOI: 10.1007/978-3-319-44902-9_12

there is much more information available, but the cost of change is much greater. This
is known as the Collingridge Dilemma [11], which states that when change is easy,
information to guide change is scarce; when information is available, change is difficult.

In the context of critical systems, the Collingridge Dilemma manifests in two broad
challenges, which we will refer to as coverage and effectiveness. The coverage challenge
concerns adequacy or sufficiency of the technology to support the work for which it was
designed. For example, is the information needed for the task provided and are the
actions to be taken supported? Are the needed tasks available at the right time without
being locked out? Are actions specified for all reachable conditions? The effectiveness
challenge concerns how much of the technology is actually necessary for the work,
versus technology which is not needed for the work. For example, are information and
operators provided that do not support the work? Are multiple, redundant methods
provided that do not benefit the work? Does operation of the technology itself add
excessive overhead? Quality of how the effectiveness challenge has been addressed
might be measured in terms of unnecessary “features” and lines of code or in terms of
end user time or effort to accomplish work. Finally, even for technology that roughly
provides capabilities sufficient to get the job done, without a great deal of unnecessary
elements, the technology can differ in how well the elements are organized or configured.
When any of these aspects are poor, the technology will not be well-aligned with the
work, and will not be well fit for purpose.

Where work domains are simple, it may be feasible to develop technology that is
aligned with the work informally, by relying on design skill and prior experiences. As
work and supporting technology becomes more complex, systematic methods supported
by appropriate tools become increasingly valuable. In this paper, we propose a process,
and three tools and techniques for ensuring that the requirements, design, and resulting
system in fact support the intended work missions, and are fit for purpose. The tools and
techniques address the Collingridge Dilemma through their intended use early in the
design process.

This article is structured as follows. Section 2 presents, after an overview and anal‐
ysis of the existing development processes, a new process for ensuring fitness for
purpose of interactive critical systems prototypes. Section 3 presents three tools and
techniques for supporting this process, along with its detailed description when using
these tools. Section 4 presents the application of the proposed development process to
an illustrative example from the commercial aviation domain. Section 5 discusses the
complementarity of the three tools and techniques and the perspectives of the proposed
approach. Finally, Sect. 6 concludes the paper.

2 Development Processes for Ensuring Fitness for Purpose
of Interactive Critical Systems Prototypes

This section first presents an overview of the existing development processes. From the
analysis of these existing processes, we then propose a new process for ensuring fitness
for purpose of Interactive Critical Systems prototypes.

182 D. Billman et al.

2.1 Related Work

Three research strands are relevant to our work. Most of the existing system and software
development processes do not include prototyping activities. User centered-design does
include prototyping as a key activity in design processes. Work-centered design focuses
on analysis of the needs dictated by the work, rather than those based on technology or
the user.

Development Processes. Early development process models [21, 28] promoted the
construction of reliable software by building the “system right”. To try to address the
concern of building the “right system”, the spiral development process promoted by
Boehm [5] has introduced the production of specific artifacts called prototypes in order
to first identify the adequacy of the current version of the software with clients’ require‐
ments, and second provide a framework for handling explicitly iterations. Such iterative
processes were not delivering as expected, as demonstrated by a thorough study of more
than 8000 project [6]. As identified in this study, the main drawback of these early
software development processes (beyond the inherent difficulty of building large and
complex system products) was the difficulty of identifying user needs and of producing
software meeting user needs while encompassing ever evolving new technologies. Iter‐
ative or agile approaches, such as Scrum [29], advocate that requirements tuning is
performed by means of rapid and systematic iterations. However, even in the last version
of Scrum1, there is still no reference to the end user. This has been clearly stated and
identified in [30] where User Centered and Agile approaches where compared and
assessed. Beyond that, task/artifact life cycle, as identified in [10], introduces a different
perspective on user needs evolution. It argues that providing users with a new tool (even
if the tools are perfectly in line with their needs) will change the needs as the work and
practice of users will evolve due to this particular new tool. This demonstrates the need
to involve end users throughout the development process to validate the systems and to
redefine their needs [18]. Another very different problem lies in the iterative nature of
the agile and spiral processes. Software can be hard to manage, test, and modify because
it has been built by frequently adding new functionalities without following a global and
thorough design. While this might not be a big problem when small and rather simple
applications are considered, when it comes to large scale and complex systems (as
aircraft flight decks) this might have significant impacts both in term of development
costs and resources but also in terms of reliability and dependability. To handle such
complexity model-based approaches such as UML or [24] provide abstraction and
domain specific notations. However, approaches such as Scrum or the Spiral model
reject the use of models due to the cost in terms of effort and time.

User-Centered Design Processes. Even though it took a long time to make its way in
the area of system and software engineering, the necessity of designing systems and
software compliant with user needs and user capabilities recognized much earlier in the
area of Human-Computer Interaction. The User Centered Design approach (introduced
in [23]) has promoted user-related consideration to the center of the development

1 https://www.scrum.org.

Complementary Tools and Techniques 183

https://www.scrum.org

processes. Several processes have since been proposed to take into account usability
while designing an interactive system. Hartson et al. [17] and Collins [12] identified
mandatory steps to design usable system. Curtis & Hefley [13] first tried to match soft‐
ware development processes with usability engineering and techniques. Rauterberg [27]
identified more precisely design steps to involve end-users in an iterative-cyclic devel‐
opment process. Goränsson et al. [16] proposed a design process centered on usability:
“The usability design process is a UCSD approach for developing usable interactive
systems, combining usability engineering with interaction design, and emphasizing
extensive active user involvement throughout the iterative process”. This work empha‐
sizes that design processes for interactive systems must be highly iterative and must
promote multiple designs through evolvable prototypes in order to accommodate
requirement changes that result from usability evaluations. However, such processes
have put too much emphasis on the user side, forgetting the complex reality of software
development.

Further, user involvement and prototyping activities are not enough to ensure that
the technology is fit for the intended purpose. Users’ goals and work has to be described
and compared with system functions in a systematic way.

Work-Centered Design. Work Focused Design emphasizes the importance of under‐
standing the work to be supported. Cognitive Work Analysis [26, 31] emphasizes the
importance of Work Domain Analysis as the first and fundamental step of ecological
design [7]. Work Centered Design [8, 14] and related approaches [2, 3] also emphasize
the importance of work analysis and representation to guide technology design. Our
work shares this orientation, and in this paper we aim to lay out a specific design process
and associated tools and methods to provide explicit, structured guidance for designing
to fulfill work needs.

2.2 A Process for Ensuring Fitness for Purpose of Interactive
Critical Systems Prototypes

The proposed process takes into account several inputs, namely, the extant systems, the
work environment, and the mission that has to be performed by the operator. Figure 1
presents an abstract view of this process. It makes explicit the three phases (detailed in
the following subsections) that have to be performed before the evaluation, develop‐
ment, and deployment of the interactive critical system:

• Work and task analysis loop;
• Early prototyping loop;
• Full-scale software prototyping loop.

The proposed process is complementary with other HCI techniques such as user
evaluations. As each of these phases is iterative, several version of prototypes are
produced and can be iteratively tested with users before being refined in the next iteration
of the loop.

184 D. Billman et al.

Fig. 1. Process for ensuring fitness for purpose of Interactive Critical Systems prototypes

Work and Task Analysis Loop. The work and task analysis loop aims to specify the
scope of work that technology is intended to support (work analysis) and to specify the
more specific sequences of actions that will accomplish that work (task analysis). Design
and evaluation of technology for safety critical work should be based on the functionality
needed for the work. If work needs are not specified, there is no basis to assess whether
the technology is fit for the intended purpose. To represent work needs at this level
requires specifying the component functions across the scope of work relevant to the
design/evaluation goal. An analysis for a flight deck design or evaluation needs to be of
broader scope than for (re)design of one part. A component function maps onto a high-
level task, or goal, to be accomplished to carry out the needed work.

For work analysis, the level of specification must be fairly abstract, in order to be appli‐
cable across alternative technology designs. To see why applicability across alternative
designs is important, consider what is needed from a design and from an evaluation perspec‐
tive. From the design perspective, a characterization of the work that the technology should
support should apply across the space of possible designs. The characterization should allow
a designer to understand what the space of appropriate solutions might be and consider
alternative possibilities; it should provide high-level guidance to the designer during devel‐
opment to ensure that the design does support the work needs. From the evaluation perspec‐
tive, a characterization of the work needs should allow assessment of how and how well one
particular design meets the various needs but it should also allow comparison of alternative
designs with respect to fitness for purpose.

Complementary Tools and Techniques 185

For task analysis, it is valuable to build a more specific representation of tasks needed
to accomplish the work, once technologies and policies for accomplishing the work are
specified. A task analysis typically specifies how particular technology (radio commu‐
nication with ATC) or policies (pointing so co-pilot can verify action) are used to build
a sequence of actions carrying out a particular work function. The task analysis and task
modeling phase aims at understanding and describing user activities. It precisely iden‐
tifies goals, tasks, and activities that have to be done by the operator. Task models bring
additional advantages to task analysis: representing the structure of the gathered infor‐
mation about operators’ activities and enabling use of software tools to compute, analyze
and simulate these models. When supported by (a) a task modeling notation and (b) a
tool featuring human task-refinement (cognitive, motor, perceptive tasks) and complex
activity editing and simulation, this step enables qualitative analysis of user or operator
tasks.

Prototyping and Requirements Specification Loop. The prototyping and require‐
ments specification loop is usually done by designers. This phase aims at rapidly building
first versions of the interactive system and at evaluating and modifying early designs of
user interfaces. The result of the evaluation of the final version enables requirement
specification for the final device. These requirements will then be used as inputs for the
full-scale prototyping loop.

Full-Scale Software Prototyping Loop. The full-scale software prototyping loop is
usually done by developers. This phase aims at refining the requirements from the
prototyping and requirement specification loop by refining them in a precise and unam‐
biguous way.

The full-scale software prototyping loop produces very high-fidelity prototypes, thus
specifying a complete and unambiguous description of the interactive system. This
description enables fine tuning these prototypes.

This loop also supports the activity of ensuring conformance and compatibility
between the different representations of the interactive system (e.g., the tasks models or
work representations and the systems models). Indeed, the full-scale prototype can be
compared to the work and task representations of the interactive system, thereby
ensuring that the system’s behavior will be fully compatible with user tasks.

The final full-scale software prototype can then be used for the evaluation, devel‐
opment, and deployment of the interactive system.

This process helps to ensure in a systematic way that prototypes are developed taking
into account the critical tasks that the users will have to perform, even numerous and
complex. With this process, the focus is set on the reliability of the developed interactive
system with regards to the work that has to be performed. This process may be applied
to safety-critical as well as non-safety-critical systems but, in terms of costs and benefits,
is more intended to be applied to interactive systems for which functions are numerous
and complex.

186 D. Billman et al.

3 Tools and Techniques Supporting the Proposed Process

In this section, we first preview the set of tools and techniques that we use to support
the proposed process. We first present the MAESTRO work and technology represen‐
tation. Second we present the ADEPT prototyping tool. Third, we present the CIRCUS
development environment and its associated notations for full-scale prototyping. The
illustrated in Fig. 1 is then expanded to show how these tools and techniques support its
different phases.

3.1 MAESTRO Work and Technology Representation

Matrix-Assisted Exploration of Structured Task-Technology Relations and Organiza‐
tion (MAESTRO) is a process and representation to guide development of the (formal
or informal) requirement specification. It characterizes what work needs to be done,
what information is needed to do the work, and what changes as a result of doing the
work. Broadly, it focuses on “usefulness” rather than “usability.” Thus, it is not intended
to cover all aspects needed in requirements. It provides guidance both for design and
evaluation, helping ensure that designers are building to the criteria on which the result
will be evaluated [4].

We decompose work into a set of constituent work functions (roughly, abstract
tasks), and into a set of the domain variables, both the information needed as input and
the control variables changed as output. The input variables represent the information
and resources needed by a function (to accomplish a goal). The output variables represent
the changes that are intentionally produced as the result of carrying out the function. In
cognitive work, the input variables are primarily information needed for the task and
the output variables are actions taken as the result of some decision. In piloting, infor‐
mation such as current wind or airspeed are examples of input variables and control
settings such as target altitude or flap position are examples of output variables. The
work functions, domain variables, and their relationship can be represented in a matrix.
Work functions form one dimension and the input/output variables form the second
dimension. Cells in this binary matrix code whether or not a particular variable is relevant
to a particular work function as 1 s or 0 s.

3.2 ADEPT

The Automation Design Evaluation and Prototyping Tool (ADEPT) is intended to help
designers rapidly build, evaluate and modify interactive prototype automated devices
and their user interfaces [15]. It is intended to fill a gap between early storyboarding of
a device, and a full-scale software prototype. ADEPT relies on a table based formalism
to enable domain experts, who may not have formal programming expertise to define
the behavior of the prototype technology. The ADEPT tool can produce a software
prototype, but the prototype is only intended to be used to test the behavior of the device,
and the result of the evaluation is intended to define the specification for the final device.

Complementary Tools and Techniques 187

3.3 CIRCUS Integrated Development Environment

CIRCUS, which stands for Computer-aided-design of Interactive, Resilient, Critical and
Usable Systems, is an integrated development environment embedding both system and
task modeling functionalities. The CIRCUS environment targets the following user
types: engineers, system designers, and human factors specialists. It aims at helping
them to achieve their specific tasks during the design and development of interactive
critical systems. CIRCUS embeds features for the formal verification of the system’s
behavior as well as features for assessment of compatibility between the user’s task and
the system’s behavior. The CIRCUS environment integrates three tools for task
modeling, system modeling and their synergistic validation:

• The HAMSTERS (Human-centered Assessment and Modeling to Support Task
Engineering for Resilient Systems) notation and its tool (named the same) have been
designed to provide support for ensuring consistency, coherence, and conformity
between user tasks and interactive systems at the model level [1]. The HAMSTERS
notation (a) enables structuring users’ goals and sub-goals into a hierarchical tasks
tree in which qualitative temporal relationship among tasks are described by opera‐
tors [20] and (b) encompasses notation elements including a wide range of specialized
tasks types, explicit representations of data and knowledge, device descriptions,
genotypes and phenotypes of errors, and collaborative tasks. The HAMSTERS tool
provides means for editing and simulating HAMSTERS task models.

• The PetShop (Petri Net workshop) tool [25] provides support for creating, editing,
simulating and analyzing system models using the ICO (Interactive Cooperative
Objects) notation [22]. The ICO notation is a formal description technique devoted
to specify interactive systems. Using high-level Petri nets for dynamic behavior
description, the notation also relies on an object-oriented approach (dynamic instan‐
tiation, classification, encapsulation, inheritance and client/server relationships) to
describe the structural or static aspects of systems.

• The SWAN (Synergistic Workshop for Articulating Notations) tool enables the co-
execution of the ICO system models with the corresponding HAMSTERS user’s task
models [1]. This is done through the editing of correspondences between system and
task models and their co-execution. This co-execution presents several advantages
such as helping in guaranteeing the application effectiveness and can be partially
automated as presented in [9].

3.4 Process Instantiated with the Set of Notation and Tools

Figure 2 presents the expansion of the process illustrated in Fig. 1 and shows how the
tools and techniques we use support its different phases. The work analysis is supported
by the MAESTRO tool and technique and this phase leads to work and technology
matrices. These matrices can be used as inputs for the task analysis phase, helping by
giving a description of work functions that can be used as a high-level representation of
user tasks. The task analysis phase is supported by the HAMSTERS tool, and leads to
the creation of tasks models. These two representations must be checked in order to
ensure their completeness and consistency. Once this is achieved, these two

188 D. Billman et al.

representations are used to refine the work and mission needs and are used as inputs for
the prototyping and requirements specification loop.

Fig. 2. Process for ensuring fitness for purpose of Interactive Critical Systems prototypes
instantiated with the set of notation and tools

The prototyping and requirements specification loop is supported by the ADEPT
tool. The resulting ADEPT prototypes are analyzed and verified and, once their consis‐
tency and completeness is checked, are used to define the requirements for the interactive
system specification. These requirements and ADEPT prototypes are used as inputs for
the full-scale software prototyping loop.

Complementary Tools and Techniques 189

The full-scale software prototyping loop is first supported by the PetShop tool (and
ICO notation) for the prototyping task. Once the ICO-PetShop prototypes are complete
and consistent, they can be used as inputs for the editing of correspondence and co-
execution phase (supported by the SWAN tool) enabling to ensure their consistency and
completeness with tasks models. Once the ICO-PetShop prototypes are complete and
consistent with the tasks models, they can be used for the evaluation, development and
deployment of the interactive system.

4 Illustrative Example

We apply the proposed three-phase development process to an illustrative example from
the commercial aviation domain. First, we describe the illustrative example. Second, for
each of the three phases of the process (i.e., work and task analysis, early prototyping,
and full scale software prototyping), we apply our set of tools and techniques, to the
illustrative example.

4.1 Illustrative Example Description

For much of a commercial aviation flight, airplane automation draws the targets guiding
flight from a flight plan. However, tactical adjustments to the flight are not unusual, and
require manual, in-flight entry of the new target values. Frequently, these changes in
lateral, vertical, or speed targets are in response to instructions from air traffic control
(ATC) to deviate to from the flight plan in response to other traffic. The pilot provides
the changed lateral, vertical or speed targets to the aircraft automation through one
particular component of the flight deck, which we will refer to as a generic Autoflight
Control Interface (ACI). We will illustrate tactical adjustments to flight and use of the
ACI to carry out this work as our case study. We use this case study to illustrate how
our tools and techniques can be used to:

• represent the work and tasks,
• rapidly define and assess some concept ACI behavior, and
• represent and assess interaction with a specific ACI design.

This domain provides a valuable example of system design that had unexpected
effects when deployed, due to difficulty aligning the imagined work with the actual
operational context.

Work Function Studied in this Illustrative Example. We focus on the descent phase of
flight because it has greater the likelihood of deviations from the flight plan, producing
higher workload for the pilot. Arrival processes are becoming increasingly complex, in turn
imposing increasing workload on the pilot. As airliners near their intended destination to a
busy airport, they are usually cleared to fly along a prescribed route known as a Standard
Terminal Arrival Route (STAR) to provide an orderly flow of aircraft. The STAR contains
lateral and vertical path flight plan information that pilots can enter into the aircraft automa‐
tion to provide precise navigation. If all goes according to plan, the aircraft will fly the exact

190 D. Billman et al.

lateral and vertical path specified in the STAR, however, in busy airspace it is not
uncommon to receive amendments to the flightplan instructions; these clearances specify
new limits and restrictions for the airliner. A frequent example is to receive an altitude
restriction to ensure that aircraft are safely separated vertically. For our example we will
suppose an aircraft is cruising at 33000 ft/10000 m, and is cleared for a STAR which
contains vertical flightplan information to 10000 f/3000 m, but is interrupted by Air Traffic
Control requesting to not descend below 26000 ft/8000 m.

The ACI Device. In order to select and engage an altitude limit value, the pilot will use
the ACI device. The one used in this illustrative example is depicted in Fig. 3. With this
particular device, the pilot selects an altitude value by rotating the altitude selection
knob. This value appears within the altitude selection display area. When the pilot
decides that the desired value is selected, s/he engage it as the altitude limit value by
pushing the altitude limit engagement pushbutton. This causes the altitude limit to be
displayed within the altitude limit display area and passes this value to the aircraft auto‐
mation which restricts the airliner’s descent.

Fig. 3. Panel for altitude management of the ACI device used in this paper.

4.2 Work and Task Analysis

The work and task analysis loop aims to specify the scope of work that the ACI is
intended to support (work analysis) and to specify the more specific sequences of actions
that will be accomplished with it (task analysis). Both our work analysis and task analysis
use the idea of abstract characterizations. Concerning work analysis, an abstract level
of representation means that work functions and variables are characterized at a level
of abstraction that a subject matter expert would naturally adopt when asked to describe
work to be performed at a high-level. Concerning task analysis, an abstract task is one
that can be refined in a set of concrete activities. Abstract representation pulls back from
the details of how work is done with a specific interface or technology, allowing this to
be specified at a later or lower analysis. This is important because it allows comparison
across alternative technologies and interfaces and it provides guidance before such
details are specified.

Work Analysis. MAESTRO is a process for gathering the work functions and work
variables needed in a work domain and representing their relationships in a matrix.
Matrix rows represent work functions, columns represent variables (information input

Complementary Tools and Techniques 191

or output controls), and cells represent whether or not the column variable is relevant to
the row work function. We use a binary matrix because we want to start with the
“simplest possible” representation and because this enables certain methods for finding
structure in the relationships between work functions and variables. Of course, other
processes and representations could be developed; one extension of our matrix repre‐
sentation would be using cells to code richer information about functions and variables
than simply relevant/nonrelevant.

a)

b)

Fig. 4. (a) A high level view of a work matrix showing the patterns of relevant variables (cells
with “1”s). Rows show all 19 work functions in Descent phase, and several dozen of the 189
variables as columns. (Variables are truncated.) The intact matrix provides a census of all the
information and control variables used in the domain and all the component work functions. The
matrix is sorted to focus on the first work function, obtain-descent-clearance (ODC), with rows
ordered by how many of ODC’s variables are also relevant to that row’s work function. The matrix
also shows that work functions vary greatly in their number of relevant variables. Highlighting
shows overlapping clusters of relevant variables. (b) A detail view showing the content of the
variables and functions in this group.

Our example matrix shows work functions and variables for the descent phase of
flight, with 19 work functions and 189 variables of which 68 are shown. Figure 4-a
provides a “bird’s eye view” of the distribution of “1’s” in the matrix showing where a

192 D. Billman et al.

variable is relevant to a work function. The rows and columns in this matrix view have
been manually sorted to place a focal work function, obtain descent clearance, in the
first row, to sort the variables this function uses to the left, and to sort the other work
functions so that those that also use these variables move to the top. This shows a cluster
of work functions and variables that have similar usage. Figure 4-b shows the content
of this example cluster. Informally, one can see that there are multiple clusters of mutu‐
ally relevant variables, throughout the matrix. While manual sorting is shown here, we
also use clustering and biclustering methods to find related groups [4]. For example,
clustering shows that target speed and altitude and cleared speed and altitude are used
together in many tasks, which also share additional variables. Note that not all cockpit
interfaces group this information together, or clearly distinguish been cleared and
current-control altitude across autoflight modes.

To build the matrix in this example, three domain experts (pilots) generated the
functions and variables. A human factors expert reconciled the alternative terms and the
domain experts reviewed the resulting standardized row and column names. Then the
pilots filled in the cells of the standard matrix. We provided a browser-based interface
to an underlying database, so users could scroll through sets of variables, selecting those
relevant to a work function. The work functions and variables were grouped into labeled
categories to aid presentation in the interface, but the categories were not part of the
underlying work matrix.

Work analysis can provide input to task analysis by identifying the functions that
need to be translated into tasks, accomplished within assumptions about the particular
technology and resources available. The variable census could be used to check whether
or to what degree the needed information and controls are provided for.

The work matrix provides several ways of providing guidance and of assessing an
interaction design. The assessment is made possible because the variables provide a
‘common language’ linking the work and the technology. Just as variable sets are needed
for the work, technology provides variable sets for the work, both as input to the operator
through displays, and by providing the operator with the means of affecting change
through controls. Technology can also be represented in a matrix with variables as
columns; matrix rows represent elements within the technology such as a panel on the
ACI, or a page on a display for the flight management computer.

The fit of technology to work can be evaluated at the level of individual variables
and work functions, or in terms of clusters. Not all relevant variables are necessarily
provided by the technology. For example, the ACI panel in Fig. 3 represents several
related variables: the currently controlling altitude, the source of the currently control‐
ling altitude or mode (i.e., from flight plan or from pilot’s adjustment), the current alti‐
tude clearance limit, and a “scratch pad” holding a value (such as an issued but not in-
use clearance) the pilot has noted but not commanded. The fact that all these variables
are represented, and represented together, is a strength of this interface. Alternative
designs may not distinguish a “planning” value from a commanded value; or information
needed together maybe provided in different components, such as the ACI showing only
the mode requested by the pilot but not showing the mode actually controlling the
airliner. This example illustrates how a technology assessment can be made at the level
of an individual work function.

Complementary Tools and Techniques 193

Tasks Analysis. The tasks analysis phase leads to several tasks models representing the
different activities that have to be performed by the pilots in order to fly the plane. In
the current example, we are more interested in the activities that have to be performed
during the descent phase. Figure 5 presents an extract of the task model describing the
activities that have to be performed during the descent phase. This model enables to see
that the pilot flying the plane (PF) has to perform several concurrent tasks. For readability
purposes, we only described here the following tasks: “Manage descent energy”,
“Manage compliance with decent/STAR”, “Monitor performance to clearance limit”,
“Review destination weather”. These tasks can be further detailed and are thus repre‐
sented in Fig. 5 as folded abstract tasks. While performing these tasks, the pilot can be
interrupted by the reception of a clearance (“Manage an ATC clearance” folded abstract
task). This task is the one we are focusing on in this example and is detailed in Fig. 6.

Fig. 5. “Manage descent phase” task model

Fig. 6. Details of “Manage an ATC clearance” task

194 D. Billman et al.

In this task, first the pilot perceives (from the radio) the ATC clearance (“Perceive
ATC clearance” perceptive task in Fig. 6), analyzes it, decides to execute it (“Analyze
ATC clearance” and “Decide to execute clearance” cognitive tasks in Fig. 6) and notifies
the ATC of the clearance acceptance through the radio (“Talk to accept clearance”
interactive input task in Fig. 6). Then, the pilot executes the clearance: s/he first set the
altitude limit value (“Set the altitude limit value” abstract iterative task) by (in the case
of the ACI device presented in Fig. 3) turning the altitude selection knob (bottom right
in Fig. 3 and “set selected altitude value” interactive input task in Fig. 6) until the desired
value is obtained (“Decide that desired selected altitude value is OK” cognitive task in
Fig. 6). Finally, the pilot has to engage the selected altitude value as the limit value
(“Engage altitude limit value” abstract task in Fig. 6) and then to check with the pilot
monitoring if this value is correct (“Check altitude limit value with PM” in Fig. 6).

Both work analysis and task analysis can aid assessment and refinement of the needs
at the level of the work domain. This can be done in terms of coverage, overhead, and
organization.

Concerning coverage, for each work function, the technology can be assessed for
whether the variables needed for that work function are provided. Generally, higher
coverage means that more aspects of the work can be supported by the technology; less,
then, must be done in the head, with paper and pencil, or through means outside the
technology. Providing a census of the tasks and variables is the simplest and most direct
way a work matrix can contribute to design and evaluation. In complementary way,
HAMSTERS task models bring an additional support to assess whether all the tempo‐
rally ordered user actions can be performed with the system functions.

Concerning overhead, technology typically requires variables specific to managing
that technology and not directly related to the work per se. For example, most require a
control for turning the technology on or off. While some overhead is likely necessary,
a large number of distinctions and operations in the technology that are unrelated to the
work and to the tasks add extrinsic complexity and usually weaken the design.

Concerning organization, the “just right” collection of variables should not only be
included in the technology, but they should be organized to align with the work. Ideally,
the variables needed for a single work function or task should be accessible together, in
space and time. For visual displays, this typically would mean co-location of information
in space. For information presented in a multi-page interface, it would mean minimal
navigation time. For controls and displays used together, it means that the perception
and action modalities do not conflict. The hand and gaze can coordinate. While multiple
effectors–hand, voice, feet–might be used on different controls, their use should not
conflict, nor make displayed information inaccessible. For simple domains, perhaps a
bank teller machine, it may be possible to provide a near-ideal design for each work
function. However, for complex domains, the needs of one work function will likely
compete with those of another: the ideal grouping of variables for one work function
may be different from that of another. Clustering methods can identify groups of vari‐
ables and of tasks that behave similarly; such clusters can prioritize support for variables
with similar groupings of variables. Biclustering methods simultaneously group rows
by columns and columns by rows, provide a useful way of identifying structure, partic‐
ularly where there are multiple, overlapping groups, possibly with exceptions.

Complementary Tools and Techniques 195

4.3 Prototyping and Requirements Specification

ADEPT is used for the early development of testable prototypes to support designers in
the specification of requirements. ADEPT uses an object-oriented tabular format to
specify software input conditions and resulting behaviors to reduce programming
language knowledge requirements. This enables the domain-expert designer to focus on
the development of the prototype. The ADEPT interface (Fig. 7) consists primarily of
a software logic editing tool combined with a Graphical User interface editing tool. In
the Logic Editor, each set of input conditions and corresponding behavior is represented
as a column, and can be read vertically as an “IF” (input condition) “THEN” (software
behavior) with “OR” conditions represented as thin grey row dividers, and “AND”
conditions as thick grey row dividers associated with variables. ADEPT allows the
designer to drag and drop graphical objects from the User Interface editor into the Logic
Editor to enable development of prototype interfaces.

Fig. 7. ACI represented in ADEPT

Specifying the ACI device in ADEPT allows us to start to think about requirements
for the device. For example, should the device need an altitude to be set below the aircraft
altitude before the start of the descent? What should happen if the altitude is set above
the aircraft altitude while descending? The ADEPT prototyping environment lets
designers with domain knowledge explore these questions, and provides automatic tools
to confirm that prototype addresses each combination of input conditions, and that there
are no duplicate software behaviors that might lead to confusion when addressing each
situation identified.

4.4 Full-Scale Software Prototyping

The full-scale software prototyping loop is divided into two steps: (i) the full-scale soft‐
ware prototyping using the ICO notation (and the PetShop tool), leading to the creation

196 D. Billman et al.

of ICO prototypes and (ii) its validation through the co-execution of the tasks and
systems models. The result of these two steps, in the case of the ACI illustrative example
are detailed in the following subsections.

ICO-Petshop Prototypes. Figure 8. presents the ICO model of the behavior of the ACI
device (which is presented in Fig. 3). It is important to note that this model is completed
by two functions (the activation and rendering functions) that define the connections
between this model and the ACI device elements: the activation function defines the
connection from the ACI input elements to the model transition firing and the rendering
function defines the connection from the state of the model to the ACI output elements.
Here we will focus just on the part of the model corresponding to the work presented in
Sect. 4.1 and detailed in the task model presented in Fig. 6.

Fig. 8. ICO model of the ACI behavior for altitude management–Rectangles represent transitions
(purple ones are enabled and light gray one are disabled); ellipses represent places; purple circles
within places represent tokens (the number is the number of tokens in the place). (Color figure
online)

The ICO notation is based on high-level Petri nets, its complete definition can be
find in the following paper [22]. When the pilot sets the selected altitude value (i.e.,
using the altitude selection knob of the ACI depicted in Fig. 3), the startIncrementAlti‐
tude transition is fired (if the pilot has incremented the altitude; otherwise, the startDe‐
crementAltitude transition is fired). This firing leads to the creation of a token
(containing the value of the current selected value) in the editedLimitAltitude place. The
presence of a token in this place leads to the display of the selected altitude value within
the altitude selection area. Therefore, the incrementAltitude (resp. decrementAl-
titude) transition is fired when the pilot turns the knob in order to increment (resp.
decrement) the current selected value, leading to the modification of the value contained
in the token within the editedLimitAltitude place. When the pilot pushes the

Complementary Tools and Techniques 197

altitude limit engagement pushbutton, the setClearanceLimitAltitude transi‐
tion is fired, leading to the shifting of the token contained by editedLimitAlti-
tude place to the cleranceLimitValue. This token shifting leads to the clearing
of the altitude selection area and to the display of the selected altitude value within the
altitude limit display area.

Editing of Correspondence and Co-Execution. Once the ICO-PetShop prototype is
obtained, the “editing of correspondence and co-execution” step is performed using the
SWAN tool. This iterative step leads to a list of correspondences between task-model
elements and system-model elements, enabling the co-execution of both task and system
models.

To define this list, the developer has first to identify the event sources (transitions of
the system model that are connected to the ACI input elements through the activation
function) and the renderers (places of the system model that are connected to ACI output
elements through the rendering function) of the application. Then, s/he is in charge of
putting these elements in correspondence with the elements of the task models: inter‐
active input tasks may be connected to event sources and interactive output tasks may
be connected to renderers.

Figure 9 illustrates this editing of correspondences. The first correspondence presents
the connection between the “Engage altitude limit” interactive input task and the
setClearanceLimitAltitude event handler (corresponding to the setClear-
anceLimitAltitude transition. The second correspondence presents the connec‐
tion between the “Display new altitude limit” interactive output task and the clear-
anceLimitValue state holder (corresponding to the clearanceLimitValue
place).

Fig. 9. Correspondence editing between HAMSTERS models and ICO models

Once this correspondence editing step is done, the developer is able to co-execute
the tasks and systems models and check if there are inconsistencies between them (e.g.,
a task that should be available according to the task model but that is not within the
system model). S/he is then able to correct iteratively the tasks or the systems models
according to the detected discrepancy. This step helps in guaranteeing the application
effectiveness and can be partially automated as presented in [9]. If the effectiveness

198 D. Billman et al.

requirements are met, the ICO-PetShop prototypes can then be used for the evaluation,
development and deployment of the interactive system.

5 Discussion

The process presented here integrates complementary approaches and this integration
builds on the strength of each approach and mitigates their weaknesses. Altogether, they
cover a wider range of design and evaluation needs, and provide better assurance that
technology will be fit for purpose.

5.1 Complementarity

MAESTRO provides an integrated perspective in terms of the resources needed across
the domain, spanning both the information and controls needed. Overall, this represen‐
tation is distinctive, however, a compiled list of information needed (as in the columns
of the matrix) is similar to the information census proposed within the ecological inter‐
face approach [7]. The work functions, enumerated in the rows, can provide input to a
task analysis, as used by HAMSTERS or ADEPT. Although it provides a broad repre‐
sentation of work needs, MAESTRO leaves out many aspects of work, including
temporal structure and means-ends relations, even when these are inherent in the work
and not a consequence of a particular technology choice. HAMSTERS, in turn provide
support for describing and analyzing temporal relationships between the tasks, as well
as means-ends relations between required devices to perform an action (or a temporally
ordered set of action). While potentially using work matrices as input, HAMSTERS can
also provide feedback to the work analysis, for example, by indicating places where a
more specific level of representation would help with the design task at hand.

ADEPT can check the logical structure of a design based on a very early prototype.
The result of this check can provide assurance that it is worth developing a more
complete and detailed prototype, and can guide specification of formal requirements for
the finished system. PETSHOP in turn, links prototype development with early evalu‐
ation. SWAN, uses PETSHOP input to feed tools for an analyst to link task descriptions
to the operations being carried out by automation (or other computational system),
through its interface. This allows the analyst to determine how tasks map onto the capa‐
bilities of the technology, what is covered or omitted, and by what means.

5.2 Perspectives

For each approach that has been integrated in the process, many improvements are
envisioned. For instance, for MAESTRO, we have applied and extended biclustering
and associated visualization tools to examine the organization implicit in a matrix.
However, ways of filtering, comparing, and evaluating clusters would aid interpretation
at the organization level. Methods for systematic comparison of the structure in the work
matrix with the structure in technology matrix could be implemented in future work.
For CIRCUS, integration of tasks and system descriptions could be used for automatic

Complementary Tools and Techniques 199

generation and execution of test scenarios. Analysis of what functions can be automated
is an important topic for future research. The proposed overall process and representation
flow is novel, and has no integrated use or evaluation has been done. Some individual
components have been used helpfully to guide system development, providing an
informal evaluation of that component. For example, ADEPT has been used to prototype
concepts in aviation automation research and development.

At the process level, providing support (e.g., guidelines and related tools) to the
information flow between the phases would help ensure that all the outputs from a phase
are taken into account in an appropriate manner and in a systematic way.

6 Conclusion

This article presents a tool-supported approach that aims at ensuring that the require‐
ments, design, and resulting system support the intended work missions, and are fit for
purpose. The proposed suite of tools and methods that are proposed for instantiating this
process, collectively support design and development of safety-critical software
systems. This set of integrated complementary approaches allows designers and devel‐
opers identify information and behaviors that might have been otherwise missed. The
approach also supports storage of information gathered and proposes analysis tools to
reason about it. Knowledge gained from applying the approach can then be re-injected
in the design process to improve the interactive system.

This approach has been defined and applied using a simple case study from the
interactive cockpit. Each technique integrated in the approach has been applied to much
larger case studies, but work remains to be done to ensure that the approach can scale
to operational systems.

It is important to note that interaction techniques in cockpits are going beyond the
WIMP paradigm used in the case study, and the approach should be extended to address
new interaction techniques for future cockpits such as multi-touch, gestures, and audio
feedback.

References

1. Barboni, E., et al.: Beyond modeling: an integrated environment supporting co-execution of
tasks and systems models. EICS 2010, pp. 165–174 (2010)

2. Billman, D., et al.: Benefits of matching domain structure for planning software: the right
stuff. In: ACM Press, p. 2521 (2011)

3. Billman, D., et al.: Needs analysis and technology alignment method: a case study of planning
work in an international space station controller group-part 1. J. Cogn. Eng. Decision Making
9(2), 169–185 (2015)

4. Billman, D., et al.: Representing work for device design and evaluation using biclustering.
In: Presented at the Human Factors & Ergonomics Society, Washington, D.C. (2016)

5. Boehm, B.: A spiral model of software development and enhancement. ACM SIGSOFT
Softw. Eng. Notes 11(4), 14–24 (1986)

200 D. Billman et al.

6. Boehm, B.: A view of 20th and 21st century software engineering. Invited talk, IEEE
International Conference on Software Engineering 2006. http://www.isr.uci.edu/icse-06/
program/keynotes/boehm.html

7. Burns, C.M., Hajdukiewicz, J.R.: Ecological interface design. CRC Press, Boca Raton (2004)
8. Butler, K.A. et al.: Work-centered design: a case study of a mixed-initiative scheduler. In:

Proceedings of the SIGCHI Conference on Human Factors in Computing Systems, pp. 747–
756. ACM (2007)

9. Campos, J.C. et al.: Systematic automation of scenario-based testing of user interfaces. In:
EICS 2016, pp. 138–148 (2016)

10. Carroll, J.M., et al.: The task-artifact cycle. In: Carroll, J.M. (ed.) Designing Interaction:
Psychology at the Human-Computer Interface. Cambridge University Press, Cambridge
(1991)

11. Collingridge, D.: The Social Control of Technology. Palgrave Macmillan, London (1981)
12. Collins, D.: Designing Object-Oriented user interfaces. Benjamin Cummings, Redwood City

(1995)
13. Curtis, B., Hefley, B.: A WIMP no more: the maturing of user interface engineering.

Interactions 1(1), 22–34 (1994)
14. Eggleston, R.G.: Work-centered design: a cognitive engineering approach to system design.

In: Proceedings of the Human Factors and Ergonomics Society Annual Meeting, vol. 47(3),
263–267 (2003)

15. Feary, M.: Automatic detection of interaction vulnerabilities in an executable specification.
In: Harris, D. (ed.) HCII 2007 and EPCE 2007. LNCS (LNAI), vol. 4562, pp. 487–496.
Springer, Heidelberg (2007)

16. Göransson, B., et al.: The usability design process - integrating user-centered systems design
in the software development process. Softw. Process Improv. Pract. 8(2), 111–131 (2003)

17. Hartson, H., Hix, D. Human-computer interface development: concepts and systems for its
management. ACM Comput. Surv. 21(1) 1989

18. Hussain, Z., Slany, W., Holzinger, A.: Investigating agile user-centered design in practice: a
grounded theory perspective. In: Holzinger, A., Miesenberger, K. (eds.) USAB 2009. LNCS,
vol. 5889, pp. 279–289. Springer, Heidelberg (2009)

19. Martinie, C., et al.: Multi-models-based engineering of collaborative systems: application to
collision avoidance operations for spacecraft. EICS 2014, pp. 85–94 (2014)

20. Martinie, C., Palanque, P., Winckler, M.: Structuring and composition mechanisms to address
scalability issues in task models. In: Campos, P., Graham, N., Jorge, J., Nunes, N., Palanque,
P., Winckler, M. (eds.) INTERACT 2011, Part III. LNCS, vol. 6948, pp. 589–609. Springer,
Heidelberg (2011)

21. McDermid, J., Ripken, K.: Life cycle support in the Ada environment. ACM SIGAda Ada
Lett. III(1) (1983)

22. Navarre, D., et al.: ICOs: a model-based user interface description technique dedicated to
interactive systems addressing usability, reliability and scalability. ACM TOCHI 16(4), 1–
56 (2009)

23. Norman, D., Draper, S. (eds.): User Centered System Design: New Perspectives on Human-
Computer Interaction. Lawrence Erlbaum Associates, Hillsdale (1986)

24. Palanque, P., et al.: Supporting usability evaluation of multimodal man-machine interfaces
for space ground segment applications using petri net based formal specification. In:
SpaceOps 2006 (2006)

25. Palanque, P., Ladry, J.-F., Navarre, D., Barboni, E.: High-fidelity prototyping of interactive
systems can be formal too. In: Jacko, J.A. (ed.) HCI International 2009, Part I. LNCS, vol.
5610, pp. 667–676. Springer, Heidelberg (2009)

Complementary Tools and Techniques 201

http://www.isr.uci.edu/icse-06/program/keynotes/boehm.html
http://www.isr.uci.edu/icse-06/program/keynotes/boehm.html

26. Rasmussen, J., et al.: Cognitive Systems Engineering. Wiley, New York (1994)
27. Rauterberg, M.: An iterative-cyclic software process model. In: SEKE 1992 (1992)
28. Royce, W.: Managing the development of large software systems. In: IEEE Wescon, pp. 1–

9 (1970)
29. Schwaber, K.: Agile Project Management with Scrum. Microsoft Press, Redmond (2004)
30. Sy, D., Miller, L.: Optimizing agile user-centred design. In: CHI 2008 extended abstracts on

Human Factors in Computing Systems (CHI EA 2008), pp. 3897–3900. ACM (2008)
31. Vicente, K.J.: Cognitive work analysis: toward safe, productive, and healthy computer-based

work. Lawrence Erlbaum Associates, Mahwah (1999)

202 D. Billman et al.

Demon Hunt - The Role of Endsley’s Demons
of Situation Awareness in Maritime Accidents

Tim Claudius Stratmann(B) and Susanne Boll

Carl von Ossietzky Universität Oldenburg, Oldenburg, Germany
{tim.claudius.stratmann,susanne.boll}@uni-oldenburg.de

Abstract. Human Error is the cause of most maritime accidents. In a
majority of the cases the source of the Human Error is a lack of Situation
Awareness. Endsley et al. have identified eight causes that corrupt the
Situation Awareness of human operators, the so-called Demons of Situ-
ation Awareness (SA Demons). We analyzed over five-hundred maritime
accident reports for each of the eight SA Demons to provide a ranking
of the causes and to identify the most prominent ones. Addressing these
SA Demons enables maritime system designers to enhance the Situation
Awareness of maritime operators and thereby improves the safety at sea.

Keywords: Situation awareness · Accident analysis · Maritime ·
Human Error

1 Introduction

Human Error accounts for 80–85% of maritime accidents [2]. The type of Human
Errors are diverse, however they can be classified. Prior work of Grech et al.
showed that a lack of Situation Awareness causes about 71 % of all Human
Error related accidents [9]. Similar findings have been made in other transporta-
tion domains. The problem of a lack in Situation Awareness was extensively
investigated in the aviation domain.

Mica R. Endsley has defined Situation Awareness as “the perception (level 1)
of the elements of the environment within a volume of time and space, the com-
prehension (level 2) of their meaning, and the projection (level 3) of their status
in the near future” [6]. In 1999 Endsley introduced a taxonomy of Situation
Awareness errors [7]. This taxonomy later led to the definition of the so-called
Demons of Situation Awareness (SA Demons) [8]. The SA Demons stand for
eight common causes for a lack of Situation Awareness. They address all three
levels of Situation Awareness.

The aim of our work is to classify maritime accidents by Endsley’s SA
Demons. Moreover we provide our corpus of 1376 maritime accident reports
and perform our analysis on a subset of it. We investigate the occurrences and

c© IFIP International Federation for Information Processing 2016
Published by Springer International Publishing Switzerland 2016. All Rights Reserved
C. Bogdan et al. (Eds.): HCSE 2016/HESSD 2016, LNCS 9856, pp. 203–212, 2016.
DOI: 10.1007/978-3-319-44902-9 13

204 T.C. Stratmann and S. Boll

distribution of the eight SA Demons in a corpus of 535 maritime accident reports.
Information about occurrences and distribution of the SA Demons enables mar-
itime system designers to adjust their systems to the SA related needs of the
operator and to build assistance systems that focus on mitigating the specific
cause of SA errors.

2 Related Work

Most scientific accident analyses in the maritime domain focus on the statistical
classification of error causes, whereas the investigations of safety authorities
focus on deriving guidelines to prevent the same accidents from happening again.
Human Error as cause of maritime accidents is no new phenomenon. As long
ago as 1987 Wagenaar et al. analyzed 100 maritime accidents, of which 96 were
caused by Human Error [13].

In 2005 Baker et al. published their three year enduring analysis of maritime
accidents from the United States, Australia, Canada, Norway and the United
Kingdom. Their results show that the frequency of accidents is declining, but
that Human Error continues to be the dominant factor in approximately 80 to
85 % of maritime accidents [2,3]. According to their findings failures in Situa-
tion Awareness are a causal factor in the majority of accidents attributed to
Human Error. They identified some significant factors associated with Situation
Awareness failures which include: Cognitive and decision errors, Knowledge-
Skill-Ability errors, task omissions and risk taking. They expect most of them
to be artifacts of fatigue.

Endsley et al. determined eight types of causes for failures in Situation Aware-
ness, the so-called Demons of Situation Awareness (SA Demons) [8]. The follow-
ing list1 describes each SA Demon and states the Situation Awareness levels it
affects.

SAD1 Attention Tunneling (SA level 1)
Good Situation Awareness is dependent on switching attention among
multiple data streams. Locking in on certain data sources and excluding
others is attention tunneling.

SAD2 Requisite Memory Trap (SA level 2)
The working memory processes and holds chunks of data to support Sit-
uation Awareness level 2. The working memory is a limited resource.
Systems that rely on robust memory do not support the user.

SAD3 Workload, Anxiety, Fatigue, and other Stressors (SA level 1 and
2)
Stress and anxiety are likely issues in the warning environment. WAFOS
taxes attention and working memory.

SAD4 Data Overload (SA level 1)
There is more data available than can be processed by the human “band-
width”.

1 Based on: http://www.au.af.mil/au/awc/awcgate/noaa/anti situation awareness.
pdf.

http://www.au.af.mil/au/awc/awcgate/noaa/anti_situation_awareness.pdf
http://www.au.af.mil/au/awc/awcgate/noaa/anti_situation_awareness.pdf

The Role of Endsley’s Demons of Situation Awareness in Maritime Accidents 205

SAD5 Misplaced Salience (SA level 1)
Salience is the “compellingness” of a piece of data, often dependent on
how it is presented.

SAD6 Complexity Creep (SA level 1, 2 and 3)
Complexity slows down the perception of information and it undermines
the understanding and the projection of information.

SAD7 Errant Mental Models (SA level 2 and 3)
Wrong mental model may result in incorrect interpretation of data.

SAD8 Out-of-the-loop syndrome (SA level 1)
For example: Automated systems that do not involve the human until
there is a problem.

Antão et al. used BNN models to analyse maritime accidents [1]. Other work
dealing with human error in maritime accidents is [4,5,10,12].

3 Corpus

Performing an analysis on specific SA error causes requires a data source
with a high level of detail. Therefore we retrieved full-text reports of mar-
itime accident investigations. The full corpus consists of 1376 maritime acci-
dent reports from five transportation safety authorities between the years 1987
and 2015. The reports were gathered from the British Marine Accident Inves-
tigation Branch (MAIB)2, the American National Transportation safety Board
(NTSB)3,the United States Coast Guard (USCG)4, the Australian Transporta-
tion safety Board (ATSB)5 and the Transportation safety Board of Canada
(TSBC)6(Table 1).

Table 1. This table gives an overview of the retrieved corpus. The table shows the
total number of available full-text reports, the time period covered by the reports and
the country of origin. (last update: April 15, 2016)

Authority MAIB NTSB USCG ATSB TSBC

Reports 535 152 202 80 407

Period 1989–2015 1994–2015 2005–2015 1987–2015 1990–2015

Country Great Britain USA USA Australia Canada

We specifically chose authorities from these countries, because they have English
as their first language and a high number of available full-text reports. We share
2 https://www.gov.uk/government/organisations/marine-accident-investigation-

branch.
3 http://www.ntsb.gov/investigations/accidentreports/pages/accidentreports.aspx.
4 http://www.uscg.mil/.
5 https://www.atsb.gov.au/marine/.
6 http://www.tsb.gc.ca/eng/rapports-reports/marine/index.asp.

https://www.gov.uk/government/organisations/marine-accident-investigation-branch
https://www.gov.uk/government/organisations/marine-accident-investigation-branch
http://www.ntsb.gov/investigations/accidentreports/pages/accidentreports.aspx
http://www.uscg.mil/
https://www.atsb.gov.au/marine/
http://www.tsb.gc.ca/eng/rapports-reports/marine/index.asp

206 T.C. Stratmann and S. Boll

our full corpus on request to support further research in this area. For our
following analysis we focused on the MAIB sub-corpus, but we intend to apply
the same method of analysis to the whole corpus in the future (Fig. 1).

4 Analysis

Fig. 1. This chart shows a segmentation
of the corpus in relevant subsets. The SA
Demons are colored in blue. (Color figure
online)

The MAIB corpus consists of over
five hundred accident reports. In
order to classify these accident
reports we applied a request-oriented
classification approach. We used
boolean queries to perform a full-
text search on all documents in the
corpus. Beforehand the corpus had
to be prepared and a list of keywords
had to be created in order to build
meaningful queries. The preparation
of the corpus is described in the fol-
lowing. Thereafter we describe the
generation of keywords and our clas-
sification method.

4.1 Preparation

place
safeti

engin

crew
high good

analysi

vessel

purpos
result

closeneed

recommend

take

indic

po
si

t

within
avail

person

regul

carri

da
m

ag

immedi

eq
ui

p

owner

arriv

action

second

will

m
ai

b

length

identifi re
qu

ir

circumst
report

possibl

although
effect

main

also

issu

ensur

unit

therefor

re
du

c
co

nt
in

u

addit

occur

sa
fe

section found

consid

follow
use

necessari

type

m
ad

e

port

provid

incid

work

marin

twoone

area

note

regist

fit

clear

includ
complet

part

pr
ev

en
t

remain

year

make
locat

allow

taken
th

re
e

si
m

ila
r

first

may

day

le
ft

state

side

Fig. 2. This is a word cloud of the one hun-
dred most frequent terms in the MAIB Cor-
pus. The terms have been reduced to their
stem using the SnowballC stemming algo-
rithm.

In order to perform an analysis
on the gathered corpus of accident
reports some pre-processing of the
corpus is necessary. We gathered
full-text maritime accident reports
in English and PDF-format from
five transportation safety authori-
ties. As preparation for the analy-
sis we extracted the plain-text from
the reports in PDF-format and per-
formed simple cleaning of the reports
by removing the front page and fix-
ing character encoding issues. Fur-
ther we converted the reports to
lowercase in order to simplify case-
insensitive search. As some reports
consisted of several files we merged
these documents into one. After
this preparation one document rep-
resents one accident.

For the exploration of the corpus
we created a document-term-matrix

The Role of Endsley’s Demons of Situation Awareness in Maritime Accidents 207

of the corpus and checked the most frequent terms. Furthermore this enabled us
to check term correlations in the corpus. We used R version 3.2.4 with a number
of text-mining packages to perform this. The creation of the document-term-
matrix requires some further pre-processing in R. The following pre-processing
steps were conducted on the data-frame in R, only. We removed URLs, punc-
tuation, numbers, standard English stop-words and some custom stop-words
from the corpus. From the pre-processed corpus we created a tf-idf-weighted
document-term-matrix. Figure 2 shows a word cloud of the one hundred most
frequent terms in the corpus.

4.2 Generation of Keywords

A list of keywords for each SA Demon was created. The selected keywords were
derived from the description of the SA Demons and examples from [8] and key-
words identified during the exploration of the corpus. The keyword list was
complemented with fitting synonyms of the keywords using wordnet [11].

A meaningful choice of keywords and the proper construction of the boolean
queries is critical to the success of the retrieval. Adjusting the query based on the
exploration of the corpus always bears the danger of overfitting the queries to the
specific corpus. Furthermore the composition of the queries directly influences
the precision and recall of the retrieval. Although we did not measure the recall,
we tried to achieve a good balance between precision and recall.

The iterative exploration of the corpus showed unexpected usage of keywords,
such as ‘fatigue’ in ‘fatigue wear’ of machine parts. The identification of these
negative keyword combinations helped us to increase the precision of our search
queries. We increased the recall of the query be reducing the keywords in the
queries to their stems. The aim was to create a list of queries that can be applied
to any set of maritime accident reports in English.

The generation of fitting keywords is a semi-automated process that highly
relies on the judgment of a human analyst. In summary, the process consists of
the following steps:

1. derive keywords from definitions and examples
2. find fitting synonyms for keywords using wordnet
3. explore corpus, find term-correlations for the keywords, and add new key-

words
4. reduce some keywords to their stems to increase the recall based on human

judgment

Furthermore we added keywords for Situation Awareness and Human Error
to be able to search on a meta level if none of the keywords for a SA Demon
returns any results. Table 2 shows the resulting list of generated keywords for
each of the SA Demons.

4.3 Retrieval Method

We classified the documents into the SA Demon categories by using boolean
queries constructed from the SA Demon keywords. We performed test queries to

208 T.C. Stratmann and S. Boll

Table 2. This table shows the generated keywords for each SA Demon. Some of them
are reduced to their stem to increase their recall.

SA Demon Keywords

SAD1 Preoccupied (himself/herself), pre-occupied
(himself/herself), focus, not attent, no attent, fixate,
concentrate, not note

SAD2 Forget, forgot, not remember, no memory

SAD3 Fatigue, workload, stress;

Negative keyword combinations:

Fatigue crack, fatigue wear, unlikely, distress, rope stress

SAD4 Occupied, data overload

SAD5 Caught attention, attracted attention, draw attention,
distract, mislead attention

SAD6 Misinterpret, not understand, complex

SAD7 Misinterpret, misunderstand, misunderstood, not correct

SAD8 Not aware, unaware

Human Error Human error, human element, human factor

Situation Awareness Situation, aware

Table 3. This table shows the composition of the boolean search queries for each SA
Demon.

SA Demon Query

SAD1 (preoccupied ∧ (himself ∨ herself)) ∨ (pre-occupied ∧ (himself ∨
herself)) ∨ (attent ∧ not) ∨ focus

SAD2 (human ∧ error) ∨ (human ∧ element) ∨ (human ∧ factor) ∨ (situation ∧
aware)

SAD3 fatigue ∧ ¬crack ∧ ¬wear ∧ ¬not ∧ ¬unlikely ∨ workload

SAD4 occupied

SAD5 (human ∧ error) ∨ (human ∧ element) ∨ (human ∧ factor) ∨ (situation ∧
aware)

SAD6 (human ∧ error) ∨ (human ∧ element) ∨ (human ∧ factor) ∨ (situation ∧
aware)

SAD7 misinterpret

SAD8 not ∧ aware

identify the keyword combinations with the best balance of precision and recall.
Table 3 shows the final queries we used to retrieve the accidents caused by the
SA Demons.

For SAD2, SAD5, and SAD6 we could not find a fitting query that specifically
retrieves them. Queries constructed from SAD6 keywords always delivered SAD7

The Role of Endsley’s Demons of Situation Awareness in Maritime Accidents 209

problems, as the keywords are to similar. The keywords for SAD5 are often
used by the authors of the accident reports to emphasize their findings and
recommendations, e.g. “[...] draw the attention of Owners, Skippers, Mates and
crews to [...]”. We therefore used a more general query for these SA Demons.

We applied the pipeline and filters design pattern to implement the boolean
queries as a unix pipeline combining the unix programs find and grep. The
advantage of this approach over using an indexing search engine is the support
of full-text search. To remove false positives, the query results were inspected
manually in the context of the sentences containing the positive keywords. If we
were unsure, the sentence before and after the finding was also inspected.

5 Results

The SA Demons with the highest proportion in the investigated sample were
WOFAS with fatigue as main cause, errant mental models, and attention tun-
neling. We were not able to find accidents caused by requisite memory trap, mis-
placed salience or complexity creep. Not all Situation Awareness related accidents
can be explained by the SA Demons. During analysis we found some accidents
caused by a lack of Situation Awareness that could not be derived directly from
a SA Demon, such as insufficient trip planning.

Table 4. Retrieved occurrences of SA Demons in MAIB Corpus. The Percentage
behind the absolute counts indicates the count relative to the corpus size.

SA demon Description True positives Query precision

SAD1 attention tunneling 36 (7 %) 0.14

SAD2 requisite memory trap not found -

SAD3 WOFAS 216 (40 %) 0.87

SAD4 data overload 34 (6 %) 0.17

SAD5 misplaced salience not found -

SAD6 complexity creep not found -

SAD7 errant mental models 40 (7 %) 0.93

SAD8 out-of-the-loop syndrome 7 (1 %) 0.02

Total 333 (62%)

Expected 300–321 (56–60%)

Table 4 shows the results of our request-oriented classification. The table lists
the absolute count of retrieved accidents and the precision of the query for each
SA Demon. The query precision is the positive predictive value of the query-
request on the corpus.

It is calculated as follows:

query precision =
number of true positives

number of true positives + number of false positives

210 T.C. Stratmann and S. Boll

Moreover we calculated an estimate of the total number of results based
on statistics from related work. This provides us with a weak sanity check of
the total number of retrieved accidents related to SA problems. For the MAIB
corpus this estimate amounts to 300–321 accidents. We based the estimate on
the results of Baker et al. stating that in about 80–85% of maritime accidents
Human Error is the dominant factor [2]. Further Grech et al. have stated that
about 71 % of maritime accidents caused by Human Error are caused by a lack
of Situation Awareness [9]. We combined these two statistics in the following
calculations:

estimatelower = 535 × (71% × 80%) = 535 × 56% = 300
estimatehigher = 535 × (71% × 85%) = 535 × 60% = 321

6 Discussion

The relationship between documents and SA Demons is a many-to-many rela-
tionship. That means more than one SA Demon could have lead to the accident.
Our previously introduced weak sanity check suggests that our retrieval was
quite successful. However, without knowing the number of false negatives and
the recall of our retrieval this is just an educated guess.

We did not find any accidents caused by requisite memory trap, misplaced
salience or complexity creep. However, the fact that we were not able to find them
does not mean they do not exist. We expected these demons to be hard to find.
Endsley has already stated in her definition of the SA Demons that “complex-
ity is a subtle SA Demon” [8]. Requisite memory trap is an internal processing
problem that is hard to observe. The same applies to misplaced salience. As our
source of data are accident reports, the completeness of the data regarding SA
failures depends on the ability of the respective inspector conducting the inves-
tigation to identify human errors and their causes. The completeness therefore
varies from inspector to inspector depending on their interpretation abilities and
work experience.

The most frequent found SA Demons all affect Situation Awareness Level 1.
This confirms prior work by Grech et al. identifying Situation Awareness Level 1
as most prominent cause for a lack of Situation Awareness [9].

7 Conclusion

Our results confirm that Situation Awareness Level 1 is the most prominent
source of Human Error in maritime accidents. Likewise it is the most prominent
one of the three levels of Situation Awareness. All in all, the SA Demons with
the highest proportion in the investigated sample were WOFAS with fatigue as
main cause, errant mental models, and attention tunneling. We were not able to
find accidents caused by requisite memory trap, misplaced salience or complexity

The Role of Endsley’s Demons of Situation Awareness in Maritime Accidents 211

creep, however we still think that these exist. Unfortunately detecting these SA
Demons in maritime accident investigation reports will remain difficult, unless
it becomes part of the investigation itself. We advise taking special care of the
SA Demons WOFAS, errant mental models, data overload and attention tunnel-
ing when designing new interfaces for ship bridges. Our findings might also be
beneficial for the design of user interfaces for Vessel Traffic Management (VTM)
centers. We intend to improve our retrieval method by labeling ship personnel
in the corpus using a custom-built tool for named-entity-recognition of maritime
personnel such as the ‘master’ or the ‘OOW’7. This will enable us to use higher
level queries such as PERSON ∧ fatigue. Also, we intend to apply our method of
analysis to our full corpus of retrieved reports with refined keywords and queries
in the future. We expect to get similar results in relation to the corpus size and
to find further examples of SA failures caused by SA Demons.

Acknowledgments. We thank the Ministry of Science and Culture of Lower Saxony
for supporting us with the graduate school Safe Automation of Maritime Systems
(SAMS).

References

All links were last followed on April 15, 2016.

1. Antão, P., Guedes Suares, C., Grande, O., Trucco, P.: Analysis of maritime acci-
dent data with bbn models. In: Martorell et al. (eds.) Safety, Reliability and Risk
Analysis: Theory, Methods and Applications. Taylor & Francis Group, London
(2009)

2. Baker, C., McCafferty, D.: Accident database review of human element concerns:
what do the results mean for classification?. In: Proceedings of the International
Conference Human Factors in Ship Design and Operation, RINA Feb. Citeseer
(2005)

3. Baker, C.C., Seah, A.K.: Maritime accidents and human performance: the statis-
tical trail. In: MarTech Conference, Singapore (2004)

4. de la Campa Portela, R.: Maritime casualties analysis as a tool to improve research
about human factors on maritime environment. J. Marit. Res. 2(2), 3–18 (2005)

5. Chauvin, C., Lardjane, S., Morel, G., Clostermann, J.P., Langard, B.: Human and
organisational factors in maritime accidents: analysis of collisions at sea using the
hfacs. Accid. Anal. Prev. 59, 26–37 (2013)

6. Endsley, M.R.: Toward a theory of situation awareness in dynamic systems. Hum.
Factors J. Hum. Factors Ergon. Soc. 37(1), 32–64 (1995)

7. Endsley, M.R.: Situation awareness and human error: designing to support human
performance. In: Proceedings of the High Consequence Systems Surety Conference,
pp. 2–9. Lawrence Eribaum Associates (1999)

8. Endsley, M.R., Jones, D.G.: SA demons: the enemies of situation awareness. In:
Designing for Situation Awareness: An Approach to User-Centered Design, chap.
3, pp. 31–41. CRC Press (2011)

7 Officer of the watch.

212 T.C. Stratmann and S. Boll

9. Grech, M.R., Horberry, T., Smith, A.: Human error in maritime operations: analy-
ses of accident reports using the leximancer tool. In: Proceedings of the Human
Factors and Ergonomics Society Annual Meeting. vol. 46, pp. 1718–1721. SAGE
Publications (2002)

10. Koester, T.: Human error in the maritime work domain. In: Proceedings of 20th
European Annual Conference on Human Decision Making and Manual Control,
pp. 149–158 (2001)

11. Miller, G.A.: Wordnet: a lexical database for english. Commun. ACM 38(11), 39–
41 (1995)

12. Rothblum, A.M.: Human error and marine safety. In: National Safety Council
Congress and Expo, Orlando, FL (2000)

13. Wagenaar, W.A., Groeneweg, J.: Accidents at sea: Multiple causes and impossible
consequences. Int. J. Man Mach. Stud. 27(5), 587–598 (1987)

User and Developer Experience

Are Software Developers Just Users
of Development Tools? Assessing Developer

Experience of a Graphical User
Interface Designer

Kati Kuusinen1,2(&)

1 University of Central Lancashire, Preston, Lancashire PR1 2HE, UK
kkuusinen@uclan.ac.uk

2 Tampere University of Technology, Tampere, Finland

Abstract. Software developers use software products to design and develop
new software products for others to use. Research has introduced a concept of
developer experience inspired by the concept of user experience but appreciating
also the special characteristics of software development context. It is unclear
what the experiential components of developer experience are and how it can be
measured. In this paper we address developer experience of Vaadin Designer, a
graphical user interface designer tool in terms of user experience, intrinsic
motivation, and flow state experience. We surveyed 18 developers using
AttrakDiff, flow state scale, intrinsic motivation inventory and our own DEXI
scale and compare those responses to developers’ overall user experience
assessment using Mann-Whitney U test. We found significant differences in
motivational and flow state factors between groups who assessed the overall
user experience either bad or good. Based on our results we discuss the factors
that construe developer experience.

1 Introduction

Software development, especially the design and development of the graphical user
interface (GUI) strongly benefits from the developers’ ability to emphasize with the user
and understand user needs. Simultaneously, it requires numerous technical skills to
create GUIs. Traditionally GUI development has been done manually via application
programming interfaces (APIs) which generally are interfaces to components often
represented as libraries. Thus, when using APIs, developers program the GUI by calling
required widgets and components via the API and giving parameters for them manually.
The resulting GUI is only visible after it is runnable. Often in such approach, GUI is first
designed and drawn by UI (user interface) designers separate from front-end developers.
The design is often communicated to developers as ready-made static images of the
future GUI, which might not be fully implementable as such [10, 11, 25].

Considering notation, we will use “GUI designer” throughout the paper to refer to
software and “UI designer” to refer to a person.

Another approach for designing and developing GUIs is to use a GUI designer
which often is a WYSIWYG (what you see is what you get) editor that allows the

© IFIP International Federation for Information Processing 2016
Published by Springer International Publishing Switzerland 2016. All Rights Reserved
C. Bogdan et al. (Eds.): HCSE 2016/HESSD 2016, LNCS 9856, pp. 215–233, 2016.
DOI: 10.1007/978-3-319-44902-9_14

designer/developer to produce GUIs by dragging and dropping UI elements on screen
layout. This approach can, for instance, help those UI designers who are less experi-
enced in programming to produce more implementable design and developers would
only need to refactor the produced code [23]. Or it could help a developer somewhat
knowledgeable in user experience (UX) issues to produce design that a UX specialist
could only review to ensure the quality of use.

Although qualities of both software developers and development work have been
studied, developers have rarely been seen as users of development tools in the research.
As developers are users of, for instance, GUI designers, all that is true to any user
according to UX definitions (e.g. [19]), should apply also to developers. However, the
dualistic role of the developer both as user of development tools and designer of new
software products makes the developer special: Besides being users of GUI designers,
developers should be able to understand the human user to be able to fulfill their needs
with the GUI under development. A concept of developer experience (DX) has been
suggested to address the particularities to software development [9]. The concept of DX is
influenced by the concept of UX [9]. Moreover, DX consists of aspects related to cog-
nition, affect, and conation and understanding of the concept should help practitioners in
improving project environments with respect to developers’ perceptions and feelings [9].

This paper has two main contributions. First, we present our DEXI scale developed
for assessing the particularities of DX. Then we explore which factors of UX, flow state
experience and intrinsic motivation correlate with developers’ overall UX assessment
regarding the assessed GUI designer (Vaadin Designer, https://vaadin.com/designer)
thus contributing towards increased understanding of developer experience. Finally, we
discuss these findings in relation to both related research and our previous findings on
DX of integrated development environments.

The rest of this paper is organized as follows. Section 2 introduces background and
related work. Section 3 describes the survey study method including description of the
procedure and participants. Section 4 presents survey results. Section 5 discusses the
results and Sect. 6 discusses the validity and possibilities for future work. Finally,
Sect. 7 gives concluding remarks to the paper.

2 Background

Traditional GUI development has based on desktop screen model born in 1980’s [31].
The model, based on windows and menus on a desktop computer screen used with a
physical keyboard and a mouse was dominant from 1980’s to around millennium when
handheld devices started to become more common [31]. In fact, the desktop GUI
generally still works in a similar fashion it was introduced in the 1980’s. Mobile
devices, however, have introduced new design challenges with their small-sized
screens, virtual keyboards on touch screens, voice control mechanisms etc. [24, 31]. In
addition, interoperability demands of cross-platform environments introduce additional
requirements for GUI design: The variety of platforms and operating systems has never
been as massive as it is today. Furthermore, embedded systems and internet of things
bring totally new kind of considerations on the research field of human-computer
interaction.

216 K. Kuusinen

https://vaadin.com/designer

2.1 GUI Designers

Commonly used GUI designers, sometimes called also GUI builders, include Eclipse
Window Builder, Flex Builder, JetBrains Swing GUI designer, Netbeans Swing GUI
Builder, Sencha Architect, and Vaadin Designer. GUI designers offer a visual interface
to the underlying component and widget libraries. Therefore, designing the UI with
GUI designer software can help to mitigate the problem with unimplementable design
often seen when UX designers produce UI design as static UI images that developers
need to interpret and amend for implementation. Such problems have been reported, for
instance in [10, 11, 25].

In general, GUI designers help reduce the number of lines of code developers need
to write for the GUI since those tools generate part of the code [31]. They also make
GUI development faster [31] and can help UI designers and developers cooperate better
and the designer to produce more implementable design compared to the use of static
UI images as design artefacts [22, 23]. In cross-platform environments where GUI
needs to be designed for several platforms, creating design manually is time-consuming
[31]. The variety, functionality, and use of GUI design tools has grown rapidly during
the mobile era. Moreover, digital prototyping and design tools have replaced paper
prototyping in many organizations because of their fastness to use, repeatability, and
detailed look and feel [22, 23]. In addition, responsive design (design that scales based
on the screen size of the device) makes the use of paper prototypes difficult as the
designer cannot design fixed-sized screens and with paper prototypes it is hard to
understand what will be visible for the user at once [23].

In addition to actual GUI designer software, there are numerous prototyping tools
available for rapid prototyping before the GUI building. Those include, for instance,
Balsamiq, InVision, and Pencil. These tools differ from GUI designers in that they are
mostly intended for sketching and making mock-ups and prototypes instead of creating
the production version of the UI.

2.2 User Experience

The standard definition of user experience (UX) is as follows: a “person’s perceptions
and responses resulting from the use and/or anticipated use of a product, system or
service” [19]. Commonly, UX is understood as subjective, context-dependent, and
dynamic [29]. It is affected by user’s expectations, needs and motivation, system’s
characteristics such as purpose and functionality, and the context of use including
physical, organizational and psychological aspects [18]. One of the most commonly
referred models of UX, the hedonic-pragmatic model divides user experience into
hedonic or non-utilitarian dimension and pragmatic or instrumental dimension [15].
Hassenzahl [15] further divides hedonic quality into two sub dimensions of identifi-
cation and stimulation while instrumental quality contains mostly items related to
usability and usefulness. Usability is often seen as a necessary precondition for good
UX [16, 28].

Are Software Developers just Users of Development Tools? 217

2.3 Developer Experience

Developer experience (DX) is a recent concept addressing the experience of software
development [9]. Whereas UX occurs in relation to the use of software, DX addresses
the creation of new software. Consequently, UX does not cover all aspects of DX [8]:
Developers use development tools in order to create software that provokes experience
in the user. On the other hand, developers are users of development software and thus it
can be argued that the concept of UX can be applied also to software developers. What
makes the developer special, however, is the dualistic nature of being simultaneously
both producer and user of software.

Fagerholm’s concept of DX [8] presents that DX is the sum of cognitive, affective,
and conative mental processes of developer in a context consisting of social and
technical environments in which they interact with other developers and numerous
technical artefacts (Fig. 1).

The concept of DX aims at providing an intuitive abstraction of the vast variety and
quantity of human factors that influence developers and the outcomes of software
development [9]. While UX considers the context of use, DX considers the context of
development. DX includes also aspects beyond software tools, such as development
processes,modelingmethods, and othermeans of structuring development tasks. Some of
these aspects are embedded in tools such as GUI builders while others are part of orga-
nizational practices. The software development activity and environment differ in sig-
nificant ways from other information-intensive activities and environments. For example,
software development requires a nested understanding: developers use software installed
on a computer system to build another software system that is to be used by users to
accomplish their task in their particular domain providing them desired UX. Also,
developers frequently configure and extend their tools, and are in effect continuously
developing both the development environment and the end product at the same time.

Fig. 1. Concept of developer experience [8]

218 K. Kuusinen

2.4 Motivation and Flow State Experience in Software Development

One of the current influential theories of motivation is the self-determination theory
from Deci and Ryan [7]. They distinguish between intrinsic and extrinsic motivations.
Intrinsic motivation refers to engaging in a task because of it is inherently pleasurable
and satisfying whereas extrinsic motivation refers to engaging in a task because of its
outcomes, the task is used as a means to lead to the outcome [7].

Developer motivation is as an important factor in software development. Majority
of studies on motivation in development context report that developers are distinct from
other occupational groups with respect to motivation [1]. “The work itself” is the most
commonly cited motivator, but there is a lack of detail regarding what aspects of the
work is motivating, how motivational processes occur, and what the outcomes of
motivating developers are [1, 12]. Investigations into affective aspects of software
development show the importance of considering also affect. The presence and vari-
ation of developers’ emotions over time has been documented [36]. Programming tasks
are influenced by mood [21], and happiness has been found to have productivity
benefits [14]. This underlines the importance of considering affective aspects both for
purposes of well-being and outcomes.

Flow experience refers to a state of concentration so focused that it amounts to
absolute absorption in an activity [4]. Applicable to both work and leisure [5], flow
builds on intrinsic motivation and internal reward over the achievement rather than on
external goal or recognition. Its effect can be characterized as being totally focused on a
particular task at hand, so that the person becomes fully immersed in a feeling of
energized focus, full involvement, and enjoyment in the process of the activity. While
immersed, three conditions have to be met to achieve a flow state [6]:

1. One must be involved in an activity with a clear set of goals and progress;
2. The task at hand must have clear and immediate feedback;
3. One must have a good balance between the perceived challenges of the task at hand

and their own perceived skills, so that there can be confidence in one’s ability to
complete the task at hand.

These three conditions of flow state experience are comparable with what the
literature has found focal for software developers and development work. For example,
clear goals, technically challenging work, knowing the purpose of tasks, making good
use of skills, and getting feedback are widely reported motivators of software devel-
opers [1, 35]. In addition, the core of software development work is writing the pro-
gram code, which demands the ability to concentrate and work alone for several hours
[2]. Both these motivators of developers and the nature of development work makes the
concept of flow state experience interesting in the context of software development.

3 Method

Our research has an overall goal to increase understanding of DX. We aim to clarify
how flow state experience, intrinsic motivation, and UX are intertwined in software
development and with developer experience. This will enable improvement of

Are Software Developers just Users of Development Tools? 219

development tools to better support developers’ ability to experience flow in their work
and to enhance developers’ intrinsic motivation towards their work. Our hypothesis is
that these factors make developers’ work more enjoyable and increases their produc-
tivity. We have previously conducted a similar study in the context of integrated
development environments [26].

This paper reports a survey study that was organized for two main reasons. (1) To
examine the relationship of flow state experience, intrinsic motivation, and developer
experience and (2) to evaluate the DX of a commonly used GUI designer called Vaadin
Designer. The survey was organized together with Vaadin Ltd, the provider of the GUI
designer under evaluation.

We present the following research question:
What kind of relation does developer experience and the ability of Vaadin designer

to fulfill developers’ needs have with flow state experience and intrinsic motivation?

3.1 Survey Contents

We conducted a survey study measuring developers’ self-reported experiences con-
sidering a particular GUI designer. Our web survey consisted of the following four
scales:

1. the Short Dispositional Flow State Scale (SDFS-2) [20] used in its entirety,
2. parts of the Intrinsic Motivation Inventory (IMI) [34] including questions related to

interest/enjoyment, perceived competence, effort/importance, and perceived choice,
and

3. the short version of the AttrakDiff-2 (SAD-2) [17] used in its entirety, and
4. our own Developer Experience Scale (DEXI) [26]. The scales, except DEXI, were

selected since they are widely used and validated. They are also short enough to be
combined in a survey.

In addition, we asked for overall UX assessment (OUX) and overall ability of the
GUI designer to fulfill the needs of the respondent (NFS) as follows:

“How would you rate the overall user experience of Vaadin Designer?” using a
seven-point Likert scale from “Bad” (1) to “Good” (7), and

“How well does Vaadin Designer respond to your needs?” using a seven-point
Likert scale from “Not at all” (1) to “Completely” (7). All other measurements are
compared to OUX assessment. NFS has no special role in this paper, it is used only as
one of the independent variables.

Furthermore, we asked the following open-ended questions considering the use of
GUI designers: “In your opinion, what are the best qualities of Vaadin Designer?”,
“How could Vaadin Designer better support your development work?”, and “Describe
the ideal way of creating UI”.

Finally, we also asked demographics including experience of software development
in years, experience of the particular GUI designer (seen it in use, used it [once or
twice, a few times, several times, regularly for less than a month, regularly for over a
month but less than a year, regularly for over a year]), age, country the respondent was
based in (list of countries provided), size of the organization they were working for

220 K. Kuusinen

(individual developer, micro organization (< 10 employees), small (10–100),
medium-sized (100–1000), large (over 1000 employees)), and the user group of the
GUI designer they belonged (UI designer [they design the UI, someone else does the
coding], UI developer [they produce the code], evaluator [typically architect or lead
developer who assess the feasibility of different technologies for the organization],
other).

Next we present the used scales in detail. We measured the frequency with which
developers experience different dimensions of flow during software development
activities by using the Short Dispositional Flow State Scale (SDFS-2) [20]. We used
a 7-level Likert scale, ranging from 1 (never) to 7 (always). The instructions for the
questions were “Please evaluate how often (from 1 = never to 7 = always) you
experience the following while you are doing development work with Vaadin
Designer”. The SDFS-2 measures nine dimensions of flow, each with one item
(Table 1). In addition to the nine SDFS-2 items, an additional item was included to
measure the experience of frustration: “I feel frustrated”.

Intrinsic Motivation Inventory (IMI). Since the original IMI is long and partially
repetitive, and shorter versions have been commonly used [30], we used a shortened
version (Table 2). Utilized scale included selected items from the following IMI
subscales: interest/enjoyment (the actual self-report measure of intrinsic motivation),
perceived competence, effort/importance, and perceived choice. Framing of the ques-
tion and assessment scale was according to IMI. Thus, the question was as follows:
“For each of the following statements‚ please indicate how true it is for you‚ using the
following scale”, and we utilized a seven-level scale ranging from 1 (not at all true) to 7
(very true).

DX and UX assessment. Both DEXI scale and Short AttrakDiff 2 were used in
the survey to assess DX or UX of the particular GUI designer tool. The wording from
AttrakDiff [15] was used with both scales as follows: “With the help of the word-pairs,
please enter what you consider the most appropriate description for Vaadin Designer:”
The short version of AttrakDiff-2 (SAD-2) was used as such [17]. It contains four items

Table 1. SDFS-2 scale. Dimensions of state of flow and related survey items [20]

Flow item Survey question

Challenge-skill balance I feel I am competent enough to meet the high demands of the
situation

Action awareness I do things spontaneously and automatically without having to
think

Clear goals I have a strong sense of what I want to do
Unambiguous feedback I have a good idea while I am performing about how well I am

doing
Concentration on task I am completely focused on the task at hand
Sense of control I have a feeling of total control
Loss of
self-consciousness

I am not worried about what others may be thinking of me

Transformation of time The way time passes seems to be different from normal
Autotelic experience The experience is extremely rewarding

Are Software Developers just Users of Development Tools? 221

Table 2. Selected subscales and survey items of IMI [34]

Subscale Survey item

Interest/Enjoyment I enjoy UI creation very much
I think UI creation is a boring activity
I enjoy using Vaadin Designer very much

Perceived competence I am satisfied with my performance at UI creation
I am pretty skilled in UI creation
I am pretty skilled in using Vaadin Designer

Effort/Importance It is important to me to do well in UI creation
Perceived choice I use Vaadin Designer because I have no choice

Table 3. Short AttrakDiff 2 [17]

Measurement Word-Pairs

SAD_General Bad–Good
SAD_General Ugly–Beautiful
SAD_Practical Confusing–Structured
SAD_Practical Practical–Impractical
SAD_Practical Unpredictable–Predictable
SAD_Practical Simple–Complicated
SAD_Hedonic Dull–Captivating
SAD_Hedonic Stylish–Tacky
SAD_Hedonic Cheap–Premium
SAD_Hedonic Creative–Unimaginative

Table 4. DEXI scale

Quality Survey question Source

DEXI_G Recommendable–Not recommendable [33, 37]
DEXI_P Efficient–Inefficient [13, 37]
DEXI_P Flexible–Inflexible [13]
DEXI_P Easy to learn–Difficult to learn [13, 37]
DEXI_P Limited–Extensive [13]
DEXI_P Uninformative–Informative [37]
DEXI_H Motivating–Discouraging [9, 37]
DEXI_H Increases respect–Decreases respect [37]
DEXI_H Enjoyable–Unenjoyable [37]
DEXI_H Promotes creativity–Suppresses creativity [2, 37]
DEXI_H Engaging–Uninvolving [2, 37]
DEXI_H Brings me closer to others–Separates me from others [2, 9, 13, 37]

222 K. Kuusinen

(word-pairs) for both practical (PQ) and hedonic quality (HQ), and one for measuring
goodness and beauty each (general quality GQ) (Table 3).

We formed our own DEXI scale for measuring additional items related to devel-
opers’ UX, or DX. Thus, we aimed at construing a scale that would be relevant for
software development. We selected word-pairs for DEXI from the dataset of a
meta-study considering the often used UX items in research tailored for work-related
systems [37], amongst concepts that have been used to describe DX [9], and amongst
those characteristics of development platforms developers find beneficial [13]. We
utilized the structure and wording of AttrakDiff in DEXI. We selected 5 items
(DEXI_P) measuring pragmatic quality and 6 items (DEXI_H) measuring hedonic
(non-utilitarian) quality. One item (DEXI_G) measured general quality (Table 4).
DEXI scale was piloted with students in a code camp experiment and used in a study
reported in [26].

3.2 Procedure

We organized an online survey to evaluate Vaadin Designer, a commonly used GUI
designer. The survey was organized together with Vaadin ltd, the provider of Vaadin
Designer. The survey had a front page presenting informed consent statements adopted
from World Health Organization’s Informed consent form template for qualitative
studies [38]. Participants were informed of the organizer, purpose, target respondents,
contents, and confidentiality of the survey as well as of the expected completion time
and treatment of the information they will provide. We instructed only those who have
been using the GUI designer to respond to the survey, and to respond only once. The
survey was available for the respondents for four weeks. However, no notifications
were sent for the request of the company.

3.3 Respondents

In total, we got 20 responses of which 18 were valid. Organizations of the 18 respondents
were as follows, individual developers: 4, micro businesses: 4, small businesses: 3,
middle-sized businesses: 4, and large businesses: 3. Mean experience from software
development was 10 years ranging from 1 to 25 (SD: 7 years). Three of the respondents
considered themselves UI designers, 9 were UI coders, 4 were evaluators and 2 were
full-stack developers. Regarding the experience of the assessed GUI designer, one
respondent had onlywatched a demonstration or somebody else using theGUI designer, 4
had tried it once or twice, 4 had used it a few times, 4 several times, 2 had used it regularly
for less than amonth, and 3 had used it regularly formore than amonth but less than a year.
Given this, respondents can be considered experts in software development but novices in
using the GUI designer. Respondents’ mean age was 36, SD 10 years, range 21 to 59
years. The respondents were from all over the world: Germany: 4 respondents, India: 2,
Spain: 2,US: 2, and 1 from each of the following:Belgium,Columbia, Ecuador,Hungary,
Indonesia, Italy, Portugal, and Romania. Thus, 11 respondents were from European
countries, 3 from Americas, and 3 from Asian countries.

Are Software Developers just Users of Development Tools? 223

3.4 Analysis

The design of data analysis was finalized after the data gathering to suit the small data
set of 18 valid responses. Thus, we approach the research question “what kind of
relation does developer experience and the ability of Vaadin designer to fulfill
developers’ needs have with flow state experience and intrinsic motivation?” from two
angles with two statistical methods using SPSS. First we run a more robust statistical
test, namely Mann-Whitney U test on the data and compare between those respondents
who assessed their overall UX with Vaadin Designer high and those who assessed it
low. Second, we run Kendall’s Tau correlation analysis on the data to address which
items in each scale correlate with the overall UX assessment. Both Mann-Whitney U
test and Kendall’s Tau correlation analysis are nonparametric methods suitable for
smaller and non-normal datasets. In Kendall’s Tau correlation analysis, we calculate
the correlation between OUX and each item in SDFS-2 and IMI. In using
Mann-Whitney U, we test for equality of means to compare responses of those
developers who assessed OUX in the seven-point scale 3 or lower (close to “bad”) and
those who assessed OUX 5 or higher (close to “good”). In the valid dataset, there were
8 respondents that considered the OUX of the GUI designer bad (ratings 1–3) and 9
who considered it good (ratings 5–7), thus one of the respondents assessed OUX with
four, neutral, and this assessment was discarded from the analysis. We name the
respondent groups “OUX_bad” (ratings 1–3) and “OUX_good” (ratings 5–7),
respectively. Our null hypothesis for Mann-Whitney U is as follows:

H: “The distribution of [each survey item] is the same across respondent groups OUX_bad and
OUX_good.”

The hypothesis states that respondents assessing OUX as bad (group OUX_bad)
cannot be significantly separated from those assessing it good (group OUX_good) in
their responses to DX, UX, intrinsic motivation, and flow state experience. If the
hypothesis is not supported, it means that there is statistically significant difference in
responses between those groups.

3.5 Impact of Demographics

We ran Kendall’s Tau and Mann-Whitney U test between OUX and demographic
variables where feasible. There were no significant correlations and the null hypothesis
remained for all demographics: there were no statistically significant differences in the
demographics between groups of OUX_good and OUX_bad, i.e. between those who
assessed overall UX high (good) and those who assessed it low (bad).

4 Results

We present first the Mann-Whitney U test results, continue with Kendall’s Tau cor-
relation analysis and end the results section with answers to the open-ended questions.

224 K. Kuusinen

4.1 Mann-Whitney U Test Results

Table 5 presents only statistically significant values of Mann-Whitney U test to save
space. These are the items for which the null hypothesis is not supported. Thus, for all
the items in Table 5, there is a statistically significant difference between those
respondents who considered the overall UX of the GUI designer bad (1–3) and those
who considered it good (5–7 on a seven-point scale from bad to good). It means these
items can also be used to differentiate between those groups of respondents. For
example, respondents who do things spontaneously and automatically without having
to think also consider the overall UX good significantly more often than those who do
not, and vice versa. These results indicate that it is important to support developer flow
and prevent frustration to ensure good developer experience.

Participants who assessed UX of Vaadin Designer high enjoyed using the Designer
more and considered themselves more skilled with the Designer significantly more
often than participants who assessed UX low. Furthermore, they were more sponta-
neous in their tasks and felt frustration significantly less than low assessors. Thus, in
this data set, flow state experience (challenge-skill balance in particular) and intrinsic
motivation towards the tool had an impact on user experience assessment.

Of the UX items in SAD-2 and DEXI, the null hypothesis was not supported for 2
of 3 word-pairs measuring general quality, for 5 of 9 word-pairs measuring practical
quality and 2 of 10 measuring hedonic quality. In DEXI scale 6 out of 12 word pairs
(50 %) were able to differentiate between OUX_bad and OUX_good whereas SAD_2
was able differentiate between those only with 3 word pairs out of the total 10 (30 %).

Table 5. Statistically significant Mann-Whitney U test results between respondent groups
OUX_good and OUX_bad for NFS and all subscales (OUX, SDFS-2, IMI, SAD-2, DEXI).
N = 17

Survey item per subscale U p r

How well does Vaadin Designer respond to your needs? 3.50 <.001 0.77
I do things spontaneously and automatically without having to think 8.50 <.01 0.65
I feel frustrated 6.00 <.01 0.71
I enjoy using Vaadin Designer very much 8.50 <.01 0.65
I am pretty skilled in using Vaadin Designer 11.00 <.05 0.61
SAD_G Bad–Good 2.00 <.001 0.81
SAD_P Unpredictable–Predictable 12.00 <.05 0.58
SAD_P Practical–Impractical 7.00 <.01 0.69
DEXI_G Recommendable–Not recommendable 6.50 <.01 0.70
DEXI_P Easy to learn–Difficult to learn 10.00 <.05 0.62
DEXI_P Flexible–Inflexible 9.00 <.01 0.64
DEXI_P Efficient–Inefficient 5.50 <.01 0.73
DEXI_H Motivating–Discouraging 1.00 <.001 0.83
DEXI_H Enjoyable–nenjoyable 6.00 <.01 0.71

Are Software Developers just Users of Development Tools? 225

Moreover, no word-pairs measuring hedonic quality in Short AttrakDiff 2 were able to
differentiate OUX_good and OUX_bad whereas two word-pairs, namely motivating–
discouraging and enjoyable–unenjoyable in DEXI were. However, larger datasets are
required for further evaluation of the scales.

4.2 Kendall’s Tau Correlation Analysis

As expected, overall UX assessment (OUX) strongly correlated with need fulfillment
(NFS), rs = .84, p = < .001. This finding is in line with Hassenzahl’s results [17].
Correlations between OUX and individual items in Short AttrakDiff 2 and DEXI scales
are presented in Table 6. What is notable is that 9/12 (75 %) of word-pairs in DEXI
scale significantly correlated with OUX while only 4/10 (40 %) of SAD2 had a sig-
nificant correlation with OUX, all of the latter measuring pragmatic or general quality.
Otherwise there is nothing surprising, the majority of the word-pairs correlate with
OUX which can be anticipated as all the items are to address UX.

Table 6. Results of Kendall’s Tau (rs) correlation analysis between overall UX (OUX) assess-
ment and individual items of SAD2 and DEXI scales. Legend: SAD = Short AttrakDiff 2,
G = general quality, P = practical quality, H = hedonic quality, n.s. = not significant. N = 18

Measure Items rs p

SAD_G Bad–Good .770 <.001
SAD_P Practical–Impractical −.650 <.05
SAD_P Confusing–Structured .530 <.01
SAD_P Unpredictable–Predictable .470 <.05
SAD_H Stylish–Tacky v.330 n.s.
SAD_P Simple–Complicated −.310 n.s.
SAD_H Dull–Captivating .270 n.s.
SAD_G Ugly–Beautiful .240 n.s.
SAD_H Creative–Unimaginative −.130 n.s.
SAD_H Cheap–Premium .090 n.s.
DEXI_H Motivating–Discouraging −.780 <.001
DEXI_G Recommendable–Not recommendable −.750 <.001
DEXI_P Efficient–Inefficient −.680 <.001
DEXI_P Flexible–Inflexible −.630 <.01
DEXI_H Enjoyable–Unenjoyable −.620 <.01
DEXI_P Easy to learn–Difficult to learn −.570 <.01
DEXI_H Increases respect–Decreases respect −.440 <.05
DEXI_H Promotes creativity–Suppresses creativity −.430 <.05
DEXI_H Engaging–Uninvolving −.400 <.05
DEXI_H Brings me closer to others–Separates me from others −.360 n.s.
DEXI_P Limited–Extensive −.230 n.s.
DEXI_P Uninformative–Informative .170 n.s.

226 K. Kuusinen

Intrinsic motivation. OUX had a significant correlation with both items that
measure intrinsic motivation in relation to the assessed GUI designer, namely I enjoy
using Vaadin Designer very much and I am pretty skilled in using Vaadin Designer
(Table 7). The first mentioned measure interest/enjoyment while the second measures
perceived competence, both related to the tool under evaluation. Other items had no
significant correlations with OUX.

Flow state experience. Regarding flow state experience, OUX correlated with the
following items. I feel frustrated, the experience is extremely rewarding, the way time
passes seems to be different from normal, I have a feeling of total control, I do things
spontaneously and automatically without having to think, and I feel I am competent
enough to meet the high demands of the situation (Table 8). Thus, there was a sig-
nificant correlation between OUX and perceived competence item both in IMI and
SDFS-2 as well as between OUX and enjoyment in IMI and autotelic experience in
SDFS-2. These findings are in line with our previous results considering integrated
development environments [26]; perceived competence and items assessing enjoyment
were correlated in that study too.

Table 7. Results of Kendall’s Tau (rs) correlation analysis between overall UX (OUX) assess-
ment and individual items of IMI subscale. N = 18

Intrinsic motivation item rs p

I enjoy using Vaadin Designer very much .560 <.01
I am pretty skilled in using Vaadin Designer .490 <.01
I think UI creation is a boring activity .350 n.s.
I use Vaadin Designer because I have no choice −.290 n.s.
It is important to me to do well in UI creation −.150 n.s.
I enjoy UI creation very much .100 n.s.
I am satisfied with my performance at UI creation .090 n.s.
I am pretty skilled in UI creation .040 n.s.

Table 8. Results of Kendall’s Tau (rs) correlation analysis between overall UX (OUX) assess-
ment and individual items of SDFS-2. N = 18

Dispositional flow state scale item rs p

I feel frustrated −.740 <.001
The experience is extremely rewarding .570 <.01
The way time passes seems to be different from normal .500 <.01
I have a feeling of total control .490 <.05
I do things spontaneously and automatically without having to think .460 <.05
I feel I am competent enough to meet the high demands of the situation .420 <.05
I am completely focused on the task at hand .290 n.s.
I am not worried about what others may be thinking of me .260 n.s.
I have a good idea while I am performing about how well I am doing .100 n.s.
I have a strong sense of what I want to do .090 n.s.

Are Software Developers just Users of Development Tools? 227

4.3 Responses to Open-Ended Questions

Respondents considered the GUI developer makes the GUI creation process faster
compared to the traditional method. They also liked that the GUI developer enables
rapid feedback gathering on the actual working UI. They desired for full support on
drag and drop feature in that the whole UI could be created simply by placing com-
ponents on screen. Moreover, they asked for proper support for web UIs and responsive
design and that the GUI designer would create proper code based on the UI design on
selected programming language instead of HTML. Ideally, the system should also offer
support for user involvement in the UI design process.

5 Discussion

5.1 Research Question Revisited

This paper addressed the following research question:

“What kind of relation does developer experience and the ability of Vaadin designer to fulfill
developers’ needs have with flow state experience and intrinsic motivation?”

We addressed the research question first in terms of scale items’ ability to differ-
entiate between respondent groups with low and high overall UX assessment
(OUX_bad and OUX_good), respectively. The null hypothesis was rejected for flow
state experience scale item “I do things spontaneously and automatically without
having to think”, the additional item “I feel frustrated”, and intrinsic motivation
inventory items “I enjoy using Vaadin designer very much”, and “I am pretty skilled in
using Vaadin Designer” which means that on these items, there is statistically signif-
icant difference between responses of those developers assessing OUX good
(OUX_good) and those that assess it bad (OUX_bad). Second, we addressed the
research question with a correlation analysis. The same IMI scale items resulted from
both analyses: “I enjoy using Vaadin designer very much”, and “I am pretty skilled in
using Vaadin Designer” correlated with OUX assessment and could differentiate
between OUX_bad and OUX_good. This result is in line with our previous finding:
intrinsic motivation was a significant predictor of DX in [26]. A number of flow state
scale items were correlated with OUX, including the two items that were able to
differentiate between OUX_good and OUX_bad. Mann-Whitney U test is more
powerful than correlation analysis and thus it is expected that the correlation analysis
includes the results of the test.

5.2 Discussion on Related Research

We got similar results in two previous studies. In our study with integrated develop-
ment environments, hedonic quality was on the borderline of being significant predictor
of DX (p = .05) while DX could not be predicted from pragmatic or generic quality
[26]. Moreover, in a study on work-related systems [27], we found that rather than the
system being professional, respondents appreciated that the system made them feel

228 K. Kuusinen

professional about themselves. Similarly, in this study, system being creative was not
associated with DX while the system making the developer feel creative was. In fact,
many of the DEXI scale items measuring hedonic quality address the emotion the
system evokes in the respondent rather than qualities of the system (motivating, pro-
motes creativity, increases respect, and brings me closer to others). Furthermore, of
word pairs measuring pragmatic quality, simple-complicated has been difficult to
interpret in work-related context and it does not correlate significantly with DX in this
study. Our explanation is that simple systems generally cannot address all the com-
plexity many work-related activities require. For instance, software development has
often been described as complex whereas constructing physical buildings is only
complicated [3]. Similarly, it is not straightforward to interpret the word pair ‘techni-
cal–human’ of AttrakDiff [15] in development context which is both technical and
human.

‘Limited–extensive’ and ‘informative–uninformative’ were important for DX
considering IDEs [26] while they were uncorrelated with DX in this study. Our
explanation is that IDEs unlike GUI designers need to be extensive because software
systems often are unique and base on new technologies and their combinations whereas
GUIs often are conventional and base on design conventions while more interesting
solutions are hidden from the user beneath the presentation layer. Moreover IDEs are
large development environments whereas GUI designers are inherently much more
limited systems.

Research on GUI designers and GUI design tools is scarce. There are papers on
developed designs on new GUI tools but research on their usage on this century seems
to be nonexistent. To our knowledge, Myers [31] is still the most extensive article on
the topic. There was a workshop on “The Future of User Interface Design Tools” in
CHI conference in 2005 [32] but the extended abstract nor the few citing papers do not

Fig. 2. Most relevant factors of intrinsic motivation and flow state experience to developer
experience.

Are Software Developers just Users of Development Tools? 229

contain articles on GUI designers or developer work on GUI creation. Also research on
developer experience is still scarce.

Figure 2 summarizes our statistical test results both from the study on GUI
designers presented in this paper and on IDEs presented in [26]. Based on these studies,
the most relevant factors of flow state experience and intrinsic motivation are enjoy-
ment and reward the work offers.

Sense of control was a significant predictor of DX in [26]. Perceived competence
and challenge-skill balance help the developer to manage with demanding tasks while
working spontaneously and automatic without having to think is often understood as
working under flow state experience. These are commonly mentioned motivation
factors in related research [1] and our research connects them with development tools
and developer experience of those tools. Advanced technologies motivate developers in
their work [1] and development tools are often intertwined with utilized technologies.

6 Limitations and Future Work

The most obvious threat to validity is arguably the small respondent number, 18
software specialists. This is particularly critical for correlation analysis, especially
considering the large number of connected variables. Small sample size can cause
fluctuation in correlation values which makes the analysis less powerful and thus
reduces the likelihood of reflecting a true effect. It also prevented us from using more
powerful methods. For Mann-Whitney U test the respondent number is sufficient
although the test would have benefitted from a larger sample size.

Further studies are needed to validate DEXI scale and to gain better understanding
on the concept of DX. In addition, the population was diverse which can be seen both
strengthening the results but also making the data incoherent. Our results however, are
in line with our previous results considering another dataset on DX of integrated
development environments [26] which is to increase the likelihood of reliability in this
study.

The results cover only one GUI designer. Thus, larger respondent populations and
users of several GUI designers ought to be studied. Moreover, to compare the DX of
APIs and GUI designers in larger scale remains another interesting topic for future
research. In addition, user groups such as UI/UX designers and UI/front-end developers
and their needs could be studied separately or in comparison to increase the under-
standing of how designers and developers can better work together. DEXI scale could
also be evaluated in the context of end user development and to compare developers’
and end user developers’ experiences. Finally, it could be interesting to study if there
was a difference between developers’ assessment of overall UX score and overall DX
score and how those relate to UX and DEXI scales. To conclude, this study does not
come without its limitations but it serves as one opening to further DX studies and it is
also one of the scarce studies on GUI designer tools.

230 K. Kuusinen

7 Conclusion

This paper presented a survey study on developer experience (DX) of a GUI designer
tool. It introduced DEXI scale for assessing DX of development tools. We presented
both quantitative and qualitative results on DX, measured with Short AttrakDiff 2 [17],
a commonly used UX scale and DEXI scale specifically designed to assess DX. We
found a statistically significant difference in responses between those developers who
assessed the overall UX of the GUI builder good and those who assessed it bad
considering both their flow state experiences and intrinsic motivation. Our results
suggest that developer experience can be improved by fostering the developer’s interest
and enjoyment, offering rewarding experiences, supporting challenge-skill balance and
feeling of competence. Finally, supporting action awareness and providing a sense of
control are also key factors of good DX. Considering what software developers
appreciate in GUI designer tools, we found that making the GUI design process faster
and ensuring early feedback on the working version of the GUI under development
were especially liked. Finally, the optimal way to create GUIs was often described as
having full support on drag and drop and on responsive design, involving the user in
the process, and the ability of the GUI designer tool to export the design into specific
programming language instead of HTML code.

Acknowledgment. I want to thank all the survey respondents for their valuable contribution.
I also want to thank Vaadin for making the study possible. I am grateful for my contact person in
the company for their help in organizing the survey. This research has been conducted while I
was working for Tampere University of Technology, Finland. My research has been supported
by TEKES as part of the Need for Speed research program of DIGILE (Finnish Strategic Centre
for Science, Technology and Innovation in the field of ICT and digital business).

References

1. Beecham, S., Baddoo, N., Hall, T., Robinson, H., Sharp, H.: Motivation in software
engineering: A systematic literature review. IST 50, 860–878 (2008)

2. Capretz, L.F., Ahmed, F.: Making sense of software development and personality types.
IT professional 12(1), 6–13 (2010)

3. Coplien, J.O., Bjørnvig, G.: Lean Architecture: For Agile Software Development. Wiley,
Hoboken (2011)

4. Csikszentmihalyi, M.: Flow: the psychology of optimal experience, vol. 41. HarperPerennial,
New York (1991)

5. Csikszentmihalyi, M., LeFevre, J.: Optimal experience in work and leisure. J. Pers. Soc.
Psychol. 56(5), 815–822 (1989)

6. Csikszentmihalyi, M., Abuhamdeh, S., Nakamura, J.: Flow. In: Elliot, A.: Handbook of
Competence and Motivation. The Guilford Press, New York pp. 598–698 (2005)

7. Deci, E., Ryan, R.M.: Self-Determination Theory. Handbook of Theories Of Social
Psychology. SAGE, Los Angeles (2012). ISBN 9780857029607

8. Fagerholm, F.: Software developer experience: Case studies in lean-agile and open-source
environments. Doctoral Thesis. Series of publications A, report A-2015-7. University of
Helsinki (2015). ISBN 978-951-51-1747-2

Are Software Developers just Users of Development Tools? 231

9. Fagerholm, F., Münch, J.: Developer experience: concept and definition. In: Proceeding
International Conference on Software and System Process, pp. 73–77. IEEE Press (2012)

10. Ferreira, J., Sharp, H., Robinson, H.: User experience design and agile development:
managing cooperation through articulation work. Softw. Pract. Experience 41(9), 963–974
(2011). Wiley

11. Ferreira, J., Sharp, H., Robinson, H.: Values and assumptions shaping agile development
and user experience design in practice. In: Martin, A., Wang, X., Whitworth, E., Sillitti, A.
(eds.) XP 2010. LNBIP, vol. 48, pp. 178–183. Springer, Heidelberg (2010)

12. Franca, A.C.C., Gouveia, T.B., Santos, P.C.F., Santana, C.A., da Silva, F.Q.B.: Motivation
in software engineering: a systematic review update. In: Proceeding Evaluation and
Assessment in Software Engineering (EASE), pp. 154–163 (2011)

13. Gass, O., Meth, H., Maedche, A.: PaaS characteristics for productive software development:
an evaluation framework. IEEE Internet Comput. 18(1), 56–64 (2014)

14. Graziotin, D., Wang, X., Abrahamsson, P.: Software developers, moods, emotions, and
performance. IEEE Softw. 31(4), 24–27 (2014)

15. Hassenzahl, M.: The interplay of beauty, goodness and usability in interactive products. In:
Proceeding HCI. Lawrence Erlbaum Associates, vol. 19, no. 4, pp. 319–349 (2004)

16. Hassenzahl, M.: User experience (UX): towards an experiential perspective on product
quality. In: Proceeding of 20th International Conference of the Association Francophone
d’Interaction Homme-Machine, pp. 11–15. ACM (2008)

17. Hassenzahl, M., Diefenbach, S., Göritz, A.: Needs, affect, and interactive products–facets of
user experience. Interact. Comput. 22(5), 353–362 (2010)

18. Hassenzahl, M., Tractinsky, N.: User experience - a research agenda. Behav. Inf. Technol 25
(2), 91–97 (2006)

19. ISO 9241. Ergonomic requirements for office work with visual display terminals (VDTs) –
Part 11: Guidance on usability. International Organization for Standardisation, Genève
(1998)

20. Jackson, S.A., Martin, A.J., Eklund, R.C.: Long and short measures of flow: the construct
validity of the FSS-2, DFS-2, and new brief counterparts. JSEP 30(5), 561 (2008)

21. Khan, I.A., Brinkman, W.-P., Hierons, R.M.: Do moods affect programmers’ debug
performance? Cogn. Technol. Work 13(4), 245–258 (2011)

22. Kuusinen, K.: BoB - A framework for organizing within-iteration UX work in agile
development. In: Cockton, G., Larusdottir, M.K., Gregory, P., Cajander, Å. (eds) Integrating
User Centred Design in Agile Development

23. Kuusinen, K.: Integrating UX work in agile enterprise software development. Doctoral
thesis, Publication 1339, Tampere University of Technology (2015)

24. Kuusinen, K., Mikkonen, T.: On designing UX for mobile enterprise apps. In: Proceeding
Software Engineering and Advanced Applications (SEAA) 2014, pp. 221–228 (2015)

25. Kuusinen, K., Mikkonen, T., Pakarinen, S.: Agile user experience development in a large
software organization: good expertise but limited impact. In: Winckler, M., Forbrig, P.,
Bernhaupt, R. (eds.) HCSE 2012. LNCS, vol. 7623, pp. 94–111. Springer, Heidelberg
(2012)

26. Kuusinen, K., Petrie, H., Fagerholm, F., Mikkonen, T.: Flow, intrinsic motivation, and
developer experience in software engineering. In: Sharp, H., Hall, T. (eds.) XP 2016.
LNBIP, vol. 251, pp. 104–117. Springer, Heidelberg (2016)

27. Kuusinen, K., Väätäjä, H., Mikkonen, T., Väänänen, K.: Towards understanding how agile
teams predict user experience. In: Cockton, G., Larusdottir, M.K., Gregory, P., Cajander, Å.:
(eds) Integrating User Centred Design in Agile Development

232 K. Kuusinen

28. Lallemand, C., Gronier, G., Koenig, V.: User experience: a concept without consensus?
Exploring practitioners’ perspectives through an international survey. Comput. Hum. Behav.
43, 35–48 (2015)

29. Law, E., Roto, V., Hassenzahl, M., Vermeeren, A., Kort, J.: Understanding, scoping and
defining user experience: a survey approach. In: Proceeding of CHI 2009, pp. 719–728
ACM (2009)

30. McAuley, E., Duncan, T., Tammen, V.V.: Psychometric properties of the Intrinsic
Motivation Inventory in a competitive sport setting: a confirmatory factor analysis. Res.
Q. Exerc. Sport 60, 48–58 (1989)

31. Myers, B., Hudson, S.E., Pausch, R.: Past, present, and future of user interface software
tools. ACM Trans. Comput.-Hum. Interact. (TOCHI) 7(1), 3–28 (2000)

32. Olsen Jr., D.R., Klemmer, S.R.: The future of user interface design tools. In: CHI 2005
Extended Abstracts on Human Factors in Computing Systems, pp. 2134–2135. ACM (2005)

33. Reichheld, F.F.: The one number you need to grow. Harvard Bus. Rev. 81(12), 46–55
(2003)

34. Ryan, R.M.: Control and information in the intrapersonal sphere: an extension of cognitive
evaluation theory. J. Pers. Soc. Psychol. 43, 450–461 (1982)

35. Sharp, H., Baddoo, N., Beecham, S., Hall, T., Robinson, H.: Models of motivation in
software engineering. Inf. Softw. Technol. 51(1), 219–233 (2009)

36. Shaw, T.: The emotions of systems developers: an empirical study of affective events theory.
In: Proceeding Computer Personnel Research: Careers, Culture, and Ethics in a Networked
Environment, SIGMIS CPR 2004, pp. 124–126. ACM (2004)

37. Sundberg, H.-R.: The importance of user experience related factors in new product
development – Comparing the views of designers and users of industrial products. In: 23rd
Nordic Academy of Management Conference, 12–14 August 2015, Copenhagen, Denmark
(2015)

38. World Health Organization, Informed consent form template for qualitative studies. http://
www.who.int/rpc/research_ethics/informed_consent/enTools

Are Software Developers just Users of Development Tools? 233

http://www.who.int/rpc/research_ethics/informed_consent/enTools
http://www.who.int/rpc/research_ethics/informed_consent/enTools

A Conceptual UX-Aware Model of Requirements

Pariya Kashfi1,2(B), Robert Feldt1,2,3, Agneta Nilsson1,2,
and Richard Berntsson Svensson3

1 Software Engineering Division, Department of Computer Science and Engineering,
Chalmers University of Technology, Gothenburg, Sweden

{robert.feldt,agneta.nilsson}@chalmers.se
2 Gothenburg University, Gothenburg, Sweden

pariya.kashfi@chalmers.se
3 Software Engineering Research Lab, School of Computing,

Blekinge Institute of Technology, Karlskrona, Sweden
{robert.feldt,richard.berntsson.svensson}@bth.se

Abstract. User eXperience (UX) is becoming increasingly important
for success of software products. Yet, many companies still face various
challenges in their work with UX. Part of these challenges relate to inad-
equate knowledge and awareness of UX and that current UX models are
commonly not practical nor well integrated into existing Software Engi-
neering (SE) models and concepts. Therefore, we present a conceptual
UX-aware model of requirements for software development practitioners.
This layered model shows the interrelation between UX and functional
and quality requirements. The model is developed based on current mod-
els of UX and software quality characteristics. Through the model we
highlight the main differences between various requirement types in par-
ticular essentially subjective and accidentally subjective quality require-
ments. We also present the result of an initial validation of the model
through interviews with 12 practitioners and researchers. Our results
show that the model can raise practitioners’ knowledge and awareness
of UX in particular in relation to requirement and testing activities. It
can also facilitate UX-related communication among stakeholders with
different backgrounds.

Keywords: Software quality · Quality requirements · User experience ·
Usability · Non-task-related · Hedonic · Non-instrumental

1 Introduction

To deliver a system that is consistent and of high quality, practitioners need to
take a large number of quality characteristics into account in development [1].
Some of these characteristics are internal or relate to the development process
and mainly concern developers (e.g., traceability) while others such as perfor-
mance and usability are critical for end users [2]. Usability is defined as “the

c© IFIP International Federation for Information Processing 2016
Published by Springer International Publishing Switzerland 2016. All Rights Reserved
C. Bogdan et al. (Eds.): HCSE 2016/HESSD 2016, LNCS 9856, pp. 234–245, 2016.
DOI: 10.1007/978-3-319-44902-9 15

A Conceptual UX-Aware Model of Requirements 235

extent to which a system, product or service can be used by specified users to
achieve specified goals with effectiveness, efficiency and satisfaction in a speci-
fied context of use.” [3]. At a more abstract level, the actual experience of the
end users with a piece of software also needs to be taken into account. This has
led to introducing and studying the concept of User eXperience (UX): a user’s
holistic experience and perception of functionalities and quality characteristics
of a piece of software [4]. Researchers emphasize that developers cannot nec-
essarily create the intended experience for the end users (e.g. feeling scared in
a video game, or motivated in an e-learning system) merely thorough assuring
usability [5].

Nevertheless, studies show that software companies often face various chal-
lenges in their work with UX. Among other things, researchers relate these chal-
lenges to practitioners’ low knowledge and awareness of UX and low industrial
impact of UX theories [6,7]. This can be addressed at least partially by develop-
ing suitable practical UX models [1,7]. Models can be formal (e.g., analytical)
or informal (e.g., conceptual). In this study, we developed a conceptual require-
ment model that presents the interrelation between UX, functional and quality
requirements.

We focused on requirements because they play an important role in effec-
tive practice of UX. For instance, Ardito et al. [8] empirically show that if
practitioners fail to include UX in requirements documents, UX practices often
become neglected in projects [8]. Similarly, Lanzilotti et al. [9] argue that if
UX is excluded from requirements documents, often limited or no resources get
assigned to UX work.

Our model mainly targets software development practitioners, especially
those who have little or no UX background and experience. The main goal of the
model is to (i) help increasing practitioners’ knowledge and awareness of UX, and
(ii) facilitate overcoming current UX-related communication gap among practi-
tioners. We aim to achieve these goals through providing a common terminology
that is familiar to and understandable for practitioners with both Software Engi-
neering (SE) and Human Computer Interaction (HCI) backgrounds.

Admittedly, various UX models have been developed so far, mainly in the
field of HCI [4,10]. But such models are often too complex and use terminolo-
gies less familiar to practitioners with SE or similar technical backgrounds [11].
In addition, these models do not clearly present the interrelation between UX
and other software quality characteristics and their corresponding models (e.g.,
ISO/IEC 25010). For instance, Hassenzahl [4] discusses how utility (i.e., rele-
vant functionality) and usability contribute to achieving a better UX. However,
his model lacks references to other quality characteristics and makes no explicit
connection to other software quality models or standards. Through mapping UX
models and concepts to models and standards in SE and using similar terminolo-
gies as them, we can facilitate a better understanding of UX among practitioners
with more technical backgrounds.

In the field of SE as well, there have been efforts to model the concept of UX
as an emerging software quality characteristic. Some researchers have focused on

236 P. Kashfi et al.

extending ISO/IEC standards on software quality models to incorporate UX [12].
In ISO/IEC 25010, concepts related to UX are included in the definition of
Quality in Use (QiU): “the degree to which a product or system can be used
by specific users to meet their needs to achieve specific goals with effectiveness,
efficiency, freedom from risk and satisfaction in specific contexts of use.” Similar
to UX, QiU also emphasizes users’ personal (aka. non-task-related) needs and
emotional reactions, and includes ‘pleasure’ (i.e., an emotional consequence of
interacting with a piece of software) as a quality characteristic. In ISO/IEC
25010, usability is a part of Product Quality (PQ) model. This model includes
properties of the software product and computer system that determine the
quality of the product in particular contexts of use. According to this standard,
PQ affects QiU, i.e., the experience of users.

Both Hasssenzahl’s model of UX [4] and ISO/IEC 25010 software quality
model [2] are well established in HCI and SE communities respectively. There-
fore, our model is inspired by these two models. Our model presents a categoriza-
tion of quality requirements based on whether they can be measured objectively
or not. To the best of our knowledge, current requirements literature does not
include such a categorization. Our model aims to be a descriptive, simple, prac-
tical, and actionable model for practitioners rather than a contribution to UX
models and theories.

This paper presents our model and the results of its initial validation through
interviews with researchers and practitioners. Section 2 describes our methodol-
ogy. Section 3 presents the model and our analysis of the interview data. Section 4
includes the discussion and ends with our conclusion and suggestions for future
research.

2 Research Approach

Our model was developed in close collaboration with industry. We followed the
steps suggested by Gorschek et. al. [13] in their technology transfer model :

– problem issue in industry: as elaborated in Sect. 1, we were motivated by
previous empirical findings on challenges with UX work in software industry;
and that many of these challenges relate to practitioners’ lack of knowledge
and awareness of UX.

– study state of the art and problem formulation: the model was devel-
oped based on ample literature study on UX and software quality characteris-
tics. Two main models that inspired our work are Hassenzahl’s UX model [4]
and the most recent ISO/IEC standard on software quality [2].

– candidate solution: in a series of workshops, the authors developed and
refined a UX-aware model of requirements.

– validation in academia: validation in academia was performed through
interviews with four researchers. Two of the researchers have a SE background
and the other two a HCI background with focus on UX.

– static validation in industry: for initial industrial (i.e., static) validation in
industry, we interviewed eight practitioners with different backgrounds, from
four companies.

A Conceptual UX-Aware Model of Requirements 237

We selected our industrial interviewees based on their backgrounds and roles
in the companies. Four of them represent technical roles (e.g., developers and
management with technical background) and four represent design roles (e.g.,
interaction designers and management with design background). This served to
validate the model from two different perspectives: SE and HCI. When quoting
the interviewees, we did not include their role titles since we did not see a notice-
able difference among the views in relation to the roles. Instead, to emphasize
the views in relation to the two communities that our model targets, the quotes
are marked with either SE or UX.

The interviews were performed individually, face-to-face, and lasted between
30 to 60 min. We chose semi-structured interviews [14] to collect more of the
interviewees’ viewpoints and reflections. For this purpose, an interview guide
was developed that included five main questions about correctness and under-
standability of the model (e.g. are the definitions provided by the model clear?
how do they relate to your understanding of these concepts?)

In our study, we also paid attention to validity threats [14]. To increase con-
struct validity (i) we minimized selection bias by selecting the subjects based
on their role and experience, and (ii) we minimized the influence of researcher’s
presence on the behavior and response of the subjects by guaranteeing the confi-
dentiality of the data. To increase internal validity, we recorded the interviews in
audio format, and in three cases in form of extensive notes. To increase external
validity, we sampled a number of different organizations in different industrial
domains. However, since the interviews are just a sample they should be inter-
preted with some caution.

3 Results and Analysis

As Fig. 1 depicts, our model introduces the concept of UX requirements and puts
it in relation to two other requirement types: objective Quality Requirements
(objective QRs) and Functional Requirements (FRs). The model also includes
definitions of these different requirement types. UX requirements cover aspects
such as usability, usefulness, emotions, aesthetics, motivations, and values. For
instance, ‘the end user shall feel in control’ (emotions), ‘the system shall have a
minimalistic design’ (aesthetics), ‘the system shall facilitate getting quick access
to trendy news’ (motivations), ‘the system shall advocate recycling’ (values).

Our model is presented using a reverse pyramid to emphasize that higher lay-
ers emerge from and depend on requirements below. For example, an objective
QR that describes performance needs to be stated in relation to some (or sets
of) specific functions or features on which the performance is to be measured.
Thus, it assumes some FRs have already been (or at least could have been)
established. This is why QRs are often known to be cross-cutting. Similarly, a
user’s perception of the software (i.e., UX) can be constrained by UX require-
ments but implies some FRs or objective QRs that the perception is based on.
UX literature emphasizes this by highlighting the emergent nature of UX [4]. We

238 P. Kashfi et al.

stress that the use of layers does not mean one should first consider or imple-
ment the lower levels of requirements. Also, the size of the areas do not reflect
the quantity or significance of different requirement types.

In our model, we divide QRs into two categories of objective and subjective.
We emphasize that both FRs and objective QRs can be evaluated objectively
(i.e. measured/tested) without reference to a specific end user. On the contrary,
a group of requirements are subjective and should be singled out among the
QRs. Since these requirements always involve users’ subjective perception, we
call them UX requirements. We note that in practice, objective QRs often can
also involve subjectivity since it is not cost-effective to specify them to a degree
that they are fully objectively measurable. This means that the subjectivity
of these requirements is accidental1. On the other hand, UX heavily relies on
human perception and is essentially subjective [4].

The role of human perception (and therefore subjectivity) increases as we
move upwards in the model. For instance, a user may perceive particular features
of software to be secure while another user may perceive the same features as
insecure. In addition, the level of abstraction typically increases as we move
upwards in the model. For instance ‘shall evoke a sense of trust’ is a more
abstract concept compared to ‘shall be secure’ (objective QR) or ‘shall have a
log-in function’ (FR).

UX of a piece of software, among other aspects, emerges from underlying
functionalities and objective quality characteristics (i.e., objective QRs), and
the user’s perception of them in each certain situation [4]. A designer can select
a group of specific functionalities to increase the likelihood of creating a par-
ticular experience for the end users [4]. To emphasize the emergent nature of
UX, we used a reverse pyramid in our model. Putting UX requirements on top
highlights that UX emerges from the underlying functionalities and quality char-
acteristics. For instance, in order to be trustworthy (abstract) the system pro-
vides a good overview of the functions available (concrete). This resembles the
cross-cutting nature of other quality characteristics. Researchers emphasize that
although practitioners may manipulate UX through these underlying elements,
they still cannot guarantee a certain overall UX [4,10].

The model was validated through interviews with eight software practitioners
and four researchers. All of the interviewees were positive regarding clarity and
understandability of the model. For instance, one of the interviewees said: “My
first impression of the model is that it is clear and easy to read. It is easy to
understand what UX is and what extra ‘things’ are needed to make more UX-
aware decisions.” (SE). The participants had some suggestions regarding the
terms and shapes used in the model. These suggestions were taken into account
when revising the model to the version we have presented above. From the
interviewees’ perspective, the main potential use and benefits of the model are
as follows:

1 The terms essential and accidental were originally used by Aristotle, and later
adopted in the context of software development by Brooks [15] in his classification
of complexities in software engineering.

A Conceptual UX-Aware Model of Requirements 239

Fig. 1. A UX-aware model of requirements

Raising knowledge and awareness of various requirement types. The
interviewees stated that the model can raise knowledge and awareness of the
role of all requirement types in achieving the intended UX. Pointing to the two
bottom layers of the model, one of the interviewees stated: “You can define some-
thing that looks really cool [. . .] but to consistently deliver a good UX, we need
to go the whole way down.” (HCI). Moreover, the interviewees generally agreed
that to achieve the intended UX, FRs and objective QRs are important but
not enough. In their view, the model clearly presents this matter. In addition,
according to the practitioners, the two communities still disagree on the impor-
tance of viewing quality characteristics from not only the system perspective
but also the end users’ perspective. Regarding this a designer stated: “We have
quite an argument with technical people because [in our view] the perceived per-
formance is more important than the actual performance, usually.” (HCI). Some
practitioners with SE background believed UX requirements can be treated the
same as other types of requirements: “The practical application of discussions,
elicitation, specifying UX goals and UX requirements, all of this is something
we already do for any other goals and requirements.” (SE). This contradicts the
view of practitioners with UX knowledge: “[SE people] go through emotions and
have it in their check lists, but it is not at the center of their effort [. . .]. That’s
perfectly fine when you work with the functional level, but there are tons of other
complexities that you need to consider.” (HCI).

Raising knowledge and awareness of UX-aware testing. The concept of
testing and its challenges was repeatedly brought up by the interviewees. They
generally agreed that quantitative methods are insufficient for UX evaluation.
For instance, one reason is that while they can identify the problem areas in
design, they cannot explain why these problems exist. They, therefore, cannot
sufficiently inform the re-design of the software. Nevertheless, as the intervie-
wees highlighted, the field of SE puts more emphasis on quantitative methods.
Regarding this, one interviewee stated: “I think we have a problem that we have
not addressed yet. When we write our requirements specifications we think all
requirements should be testable either by a unit test, product test or system test;

240 P. Kashfi et al.

and subjective requirements are very hard to test, so I think we tend not to include
them in our requirements specifications.” (SE).

Facilitating UX-related communication. The interviewees highlighted the
model can improve communication among stakeholders through a common ter-
minology that is understandable for stakeholders with both SE and HCI back-
grounds. One of the interviewees stated: “a common terminology among the staff
will improve the communication, particularly between us and the managers.”
(HCI). In addition, presenting the model to practitioners opened up a series
of discussions about how the companies support different requirement types in
their current practices.

4 Discussion

Current software quality and UX models are evidently not practical or actionable
[6,7,16]. Therefore, we saw a need for a practical model that can summarize and
clarify the current UX models and connect them to software quality models.
Requirements play an important role in effective UX work [8,9]; thus our model
focuses on requirements.

In order to overcome the shortcomings of the current UX models, our model
clearly situates UX requirements in relation to FRs and other QRs. The model
is also simple, clear, and understandable for practitioners with both SE and HCI
background as our initial validation shows.

The model also sheds light on UX-aware elicitation and documentation of
requirements. By introducing the notion of UX requirements the model explic-
itly groups those quality requirements that are essentially subjective and relate
to the end users’ perception. We performed an initial validation of the model
through interviews with researchers and practitioners. The validation confirmed
correctness of the model, and that it can facilitate enhancing knowledge and
awareness of UX and UX-related communication among practitioners.

In contrast to the approach taken in ISO/IEC 25010, we separated UX
requirements from other QRs in our model. The reason was to emphasize that
UX requirements are essentially subjective, and separate them from accidentally
subjective quality requirements, what we call objective QRs. By doing so, the
model can extend and complement the current models of UX and software qual-
ity. We have summarized our view on subjectivity and objectivity of different
requirement types in Table 1.

FRs are objective by nature: we can objectively evaluate whether a piece
of software satisfies a specific FR or not. This is a binary evaluation: either
a functionality is implemented in the software or not. On the contrary, QRs
(including usability) are known to be more difficult to evaluate. This has led
practitioners to often evaluate QRs subjectively and based on their personal
judgment [1]. Still, this does not mean that these requirements are not possible
to be evaluated objectively. Therefore, in our model we call them ‘objective QRs’
and emphasize that they are essentially objective but still in practice accidentally
subjective.

A Conceptual UX-Aware Model of Requirements 241

Table 1. Differences in subjectivity and objectivity of various requirement types, and
how they are treated in practice

Functional
require-
ments

UX requirements Objective quality requirements

Essentially objective Yes Yes

Essentially
subjective

Yes

Accidentally
subjective

Yes

Possible to evaluate
objectively

Yes Yes

Objectively
evaluated in
practice

Yes Sometimes

Subjectively
evaluated in
practice

Yes Sometimes

If a requirement is subjective by accident, this means that the subjectivity
is not a result of its nature but other reasons such as lack of knowledge and
awareness, tools and methods, or costs. In theory, it is possible and even recom-
mended to evaluate these requirements objectively. Accidental subjectivity can
be overcome as the field of requirements engineering matures. For instance, by
developing more tools and methods to facilitate measuring these requirements
objectively (e.g. [17,18]).

In contrast to FRs and objective QRs, UX requirements are essentially sub-
jective. UX heavily relies on human perception and is therefore by nature subjec-
tive. Even in cases when UX is measured, the measurement is an approximation
of the real experience of users. Especially since the phenomenon of experience
is prone to fabrication and fading since it heavily relies on human memory [21].
Still, practitioners can approximately measure UX through gathering users’ opin-
ions, for instance using questionnaires (e.g. AttrakDiff, Self-assessment Manikin,
the affect gird [20]). For an overview of various approaches to UX evaluation and
measurement, we can refer to Law et al. [21] and Zimmermann [20].

When measuring UX, statistically significant number of heterogeneous users
need to be involved to guarantee reliable results [21]. In contrast to UX require-
ments, practitioners can test objective QRs even without involving users (e.g.,
automatically). For instance, practitioners can automatically compute usability
measures by running a user interface specification through some program [22].
UX requirements also differ from objective QRs in that their metrics and mea-
sures are not agreed upon or standardized yet; that makes their measurement
even more difficult. On the other hand, for objective QRs (including usability)
practitioners have access to relevant standards, e.g., ISO/IEC 9126 [23].

242 P. Kashfi et al.
T
a
b
le

2
.
C

h
a
ra

ct
er

is
ti

cs
o
f
U

X
a
n
d

th
ei

r
im

p
li
ca

ti
o
n

fo
r

p
ra

ct
ic

e
o
f
so

ft
w

a
re

d
ev

el
o
p
m

en
t

a
n
d

fu
tu

re
re

se
a
rc

h
,
es

p
ec

ia
ll
y

co
n
ce

rn
in

g
U

X
re

q
u
ir

em
en

ts

C
h
a
ra

ct
er

is
ti

cs
o
f
U

X
Im

p
li
ca

ti
o
n
s

fo
r

p
ra

ct
ic

e
O

p
en

re
se

a
rc

h
p
ro

b
le

m
s

A
bs
tr
a
ct

a
n
d
em

er
ge
n
t:

ex
p
er

ie
n
ce

em
er

g
es

fr
o
m

u
n
d
er

ly
in

g
fu

n
ct

io
n
a
li
ti

es
a
n
d

o
b
je

ct
iv

e
q
u
a
li
ty

ch
a
ra

ct
er

is
ti

cs

–
p
ra

ct
it

io
n
er

n
ee

d
to

id
en

ti
fy

U
X

re
q
u
ir

em
en

ts
a
n
d

re
fi
n
e

th
em

in
to

co
n
cr

et
e

F
R

s
a
n
d

o
b
je

ct
iv

e
Q

R
s

(s
a
m

p
le

m
et

h
o
d

in
[1

9
])

–
U

X
re

q
u
ir

em
en

ts
a
re

d
iffi

cu
lt

to
re

fi
n
e

a
n
d

tr
a
n
sl

a
te

in
to

d
es

ig
n

so
lu

ti
o
n
s

a
n
d

m
o
re

co
n
cr

et
e

re
q
u
ir

em
en

ts
;
th

er
e

a
re

li
m

it
ed

g
u
id

el
in

es
to

su
p
p
o
rt

th
a
t

–
p
ra

ct
it

io
n
er

s
n
ee

d
to

ev
a
lu

a
te

U
X

b
o
th

h
o
li
st

ic
a
ll
y

a
n
d

v
ia

ev
a
lu

a
ti

n
g

it
s

u
n
d
er

li
n
g

el
em

en
ts

,
i.
e.

,
u
se

rs
’
p
er

ce
p
ti

o
n

o
f
o
b
je

ct
iv

e
Q

R
s

a
n
d

F
R

s
(f

o
r

a
su

m
m

a
ry

o
f
ev

a
lu

a
ti

o
n

m
et

h
o
d
s

se
e

[2
0
])

–
st

il
l,

th
er

e
is

n
o

st
a
n
d
a
rd

iz
ed

a
n
d

a
g
re

ed
u
p
o
n

se
t

o
f
U

X
m

ea
su

re
s

a
n
d

m
et

ri
cs

–
th

er
e

a
re

li
m

it
ed

g
u
id

el
in

es
o
n

h
ow

to
ch

o
o
se

su
it

a
b
le

U
X

m
ea

su
re

s
a
n
d

m
et

ri
cs

a
n
d

in
te

rp
re

t
th

ei
r

fi
n
d
in

g
s

to
im

p
ro

v
e

th
e

ov
er

a
ll

U
X

E
ss
en

ti
a
ll
y
su
bj
ec
ti
ve
:

ex
p
er

ie
n
ce

h
ea

v
il
y

re
li
es

o
n

h
u
m

a
n

p
er

ce
p
ti

o
n

th
er

ef
o
re

is
es

se
n
ti

a
ll
y

su
b
je

ct
iv

e

–
q
u
a
li
ta

ti
v
e

u
se

r
o
p
in

io
n

sh
o
u
ld

b
e

u
se

d
in

ev
a
lu

a
ti

o
n
s

(f
o
r

a
su

m
m

a
ry

o
f
ev

a
lu

a
ti

o
n

m
et

h
o
d
s

se
e

[2
0
])

–
th

er
e

a
re

li
m

it
ed

th
eo

ri
es

o
n

th
e

re
la

ti
o
n
sh

ip
b
et

w
ee

n
U

X
a
n
d

m
em

o
ry

–
w

h
en

m
ea

su
ri

n
g

U
X

,
p
ra

ct
it

io
n
er

s
n
ee

d
to

in
v
o
lv

e
st

a
ti

st
ic

a
ll
y

si
g
n
ifi

ca
n
t

n
u
m

b
er

o
f

u
se

rs
to

g
u
a
ra

n
te

e
re

li
a
b
le

d
a
ta

(f
o
r

m
o
re

in
fo

rm
a
ti

o
n

se
e

[2
0
,2

1
])

T
em

po
ra
l:

ex
p
er

ie
n
ce

ca
n

ch
a
n
g
e

ov
er

ti
m

e
p
ra

ct
it

io
n
er

s
n
ee

d
to

a
ss

u
re

th
a
t

th
e

re
la

ti
o
n

b
et

w
ee

n
ti

m
e

a
n
d

ex
p
er

ie
n
ce

is
re

fl
ec

te
d

in
re

q
u
ir

em
en

ts
te

st
in

g
a
ct

iv
it

ie
s

–
cu

rr
en

t
b
o
d
y

o
f
k
n
ow

le
d
g
e

in
cl

u
d
es

li
m

it
ed

th
eo

ri
es

o
n

th
e

re
la

ti
o
n
sh

ip
b
et

w
ee

n
U

X
a
n
d

ti
m

e

–
p
ra

ct
it

io
n
er

s
h
av

e
li
m

it
ed

a
cc

es
s

to
to

o
ls

a
n
d

m
et

h
o
d
s

to
h
a
n
d
le

te
m

p
o
ra

li
ty

in
ev

a
lu

a
ti

o
n

A Conceptual UX-Aware Model of Requirements 243

The emergent nature of UX can partially explain why practitioners and
researchers still do not agree on UX metrics and measures. For example,
Law et al. [21] empirically show that often practitioners and researchers have
two different attitudes towards UX measurement. They are either strongly con-
vinced that it is “necessary, plausible and feasible” to measure UX through its
finest underlying elements, or doubtful about the “necessity and utility” of mea-
suring these elements. Law et al. further discuss that practitioners do not still
have enough guidelines on how to choose suitable UX measures and metrics
to measure these elements or to interpret the findings to better re-design the
software [21].

We identified at least one more issue that relates to the abstract and emer-
gent nature of UX: practitioners still do not have enough support for refining UX
requirements to more concrete design solutions and requirements (i.e. FRs and
objective QRs) [7]. One of the few existing methods for a UX-aware requirements
work is developed by Hassenzahl [19]. Hassenzahl [19] emphasizes that, in their
work with UX, practitioners should refine the abstract requirements into func-
tionalities and concrete quality characteristics. He further emphasizes that this
should be performed in close collaboration with the end users’ representatives.

Temporality is another important characteristic of UX that differentiates
UX requirements from objective QRs. Temporality implies that experience of
a user with a piece of software can change over time [4]. Researchers therefore
recommend practitioners to take the whole spectrum of interaction into account
when designing or evaluating the UX of a piece of software [24]. Practitioners
should pay attention to the users’ experiences not only during, but also before
and after the interaction [4,10]. Thus, UX requirements should also reflect the
spectrum of experience. For instance, a UX requirement may concern users’
first impression: “average score of responses to questionnaire questions on initial
impression and satisfaction should be higher than X.” Another requirement may
concern users’ overall experience: “average score of responses to questionnaire
questions should be higher than X.” In contrary, FRs and objective QRs are not
dependent on time. For instance, practitioners get the same results if they repeat
measuring performance or security of the software over time (providing that
the software and the test context, e.g., CPU load, have not changed). Table 2
summarizes the main characteristics of UX and how they lead to differences
between UX and other requirement types.

As a key initial step, to perform UX-aware requirements and evaluation work,
practitioners require to understand the differences between UX requirements
and objective QRs. But there are still a number of important issues that need
attention to and plan for improvements. For instance, to facilitate a UX-aware
requirement elicitation, practitioners require knowledge and awareness of human
psychological needs and their relation to ‘experiences’. They need to know what
to look for and how to look for it. To facilitate a UX-aware requirements docu-
mentation, practitioners need to have access to tools, methods and guidelines on
how to document and communicate the results of elicitation in form of various
UX requirements. In addition, these tools and methods should be integrated into

244 P. Kashfi et al.

current requirements tools and methods. To facilitate a UX-aware verification
and validation, practitioners need to have access to suitable tools, methods and
guidelines that can help investigating whether these requirements are satisficed
or not. Other open research problems concern traceability, conflict resolution,
prioritization, and cost-estimation of UX requirements.

To start investigating how to better support UX requirements in practice, we
suggest the communities to first investigate current tools, methods and guidelines
for supporting usability in the above activities. We do not however claim that
current tools, methods and guidelines for supporting usability are established
and flawless; for the purpose we suggest here they do not need to be so. Since
UX and usability are related, we believe we can get inspired by and learn from
usability literature since it is comparatively more mature. Still, we need to pay
attention to essential differences between the two concepts.

We hope to have convinced the reader that UX in general, and UX require-
ments in particular are worth pursuing in software development research and
practice. We facilitate this through explicitly separating essentially subjective
UX requirements from other requirement types, and raising knowledge and
awareness of these requirements. However, as we mentioned, there are still a
number of open research questions that the communities need to address. We
also hope to have inspired extending current software quality and requirements
models and standards to better support the concept of UX. Future research
should introduce the model to software development companies, provide even
more detailed advice and examples on how to elicit, document, and break down
UX requirements and refine them to other more concrete requirement types.

References

1. Chung, L., do Prado Leite, J.C.S.: On non-functional requirements in software engi-
neering. In: Borgida, A.T., Chaudhri, V.K., Giorgini, P., Yu, E.S. (eds.) Mylopoulos
Festschrift. LNCS, vol. 5600, pp. 363–379. Springer, Heidelberg (2009)

2. ISO: ISO 25010: Systems and software engineering - Systems and software Quality
Requirements and Evaluation (SQuaRE) - System and software quality models.
International Organisation for Standardisation, Geneva, Switzerland (2011)

3. ISO: ISO 9241: Ergonomics of human-system interaction - Part 210: Human-
centred design for interactive systems. International Organisation for Standard-
isation, Geneva, Switzerland (2010)

4. Hassenzahl, M.: The thing and I: understanding the relationship between user
and product. In: Blythe, M.A., Monk, A.F., Overbeeke, K., Wright, P.C. (eds.)
Funology: from Usability to Enjoyment, pp. 31–42. Kluwer Academic (2003)

5. Hassenzahl, M.: Experience Design: Technology for All the Right Reasons. Morgan
& Claypool, San Francisco (2010)

6. Lallemand, C., Koenig, V., Gronier, G.: How relevant is an expert evaluation of user
experience based on a psychological needs-driven approach? In: Proceedings of the
8th Nordic Conference on Human-Computer Interaction: Fun, Fast, Foundational
(NordiCHI 2014), pp. 11–20. ACM, New York (2014)

7. Kashfi, P., Nilsson, A., Feldt, R.: Integrating user eXperience practices into Soft-
ware Development Processes: the implication of subjectivity and emergent nature
of UX. PeerJ Computer Science (in submission) (2016)

A Conceptual UX-Aware Model of Requirements 245

8. Ardito, C., Buono, P., Caivano, D., Costabile, M.F., Lanzilotti, R.: Investigat-
ing and promoting UX practice in industry: an experimental study. Int. J. Hum.
Comput. Stud. 72(6), 542–551 (2014)

9. Lanzilotti, R., Costabile, M.F., Ardito, C., Informatica, D., Aldo, B.: Addressing
usability and UX in call for tender for IT products. In: Proceedings of the 15h
IFIP TC 13 International Conference Human-Computer Interaction (INTERACT
2015), pp. 1–8 (2015)

10. Wright, P., McCarthy, J.: Experience-Centered Design: Designers, Users, and Com-
munities in Dialogue. Synthesis Lectures on Human-Centered Informatics. Morgan
& Claypool, San Francisco (2010)

11. Kashfi, P., Nilsson, A., Feldt, R.: Supporting practitioners in prioritizing user expe-
rience requirements. In: Proceedings of 3rd International Workshop on Require-
ments Prioritization for Customer Oriented Software Development: (RePriCo
2012), vol. 19–23 (2012)

12. Bevan, N.: UX, Usability and ISO standards. In: Proceedings of the 26th Annual
Conference on Computer Human Interaction (CHI 2008), pp. 1–5. ACM, New
York, April 2008

13. Gorschek, T., Wohlin, C., Carre, P., Larsson, S.: A model for technology transfer
in practice. IEEE Softw. 23(6), 88–95 (2006)

14. Runeson, P., Höst, M.: Guidelines for conducting and reporting case study research
in software engineering. Empirical Softw. Eng. 14(2), 131–164 (2008)

15. Brooks, F.P.: No silver bullet essence and accidents of software engineering. Com-
puter 20(4), 10–19 (1987)

16. Folstad, A.: The relevance of UX models and measures. In: Proceedings of the 1st
International Workshop on the Interplay between UX and Software Development
(I-UxSED 2010), pp. 8–10 (2010)

17. Gilb, T., Brodie, L.: Competitive Engineering: A Handbook for Systems Engi-
neering Requirements Engineering, and Software Engineering Using Planguage.
Elsevier Ltd. (2005)

18. Berntsson Svensson, R., Regnell, B.: A case study evaluation of the guideline-
supported QUPER model for elicitation of quality requirements. In: Fricker, S.A.,
Schneider, K. (eds.) REFSQ 2015. LNCS, vol. 9013, pp. 230–246. Springer, Hei-
delberg (2015)

19. Hassenzahl, M., Wessler, R., Hamborg, K.C.: Exploring and understanding product
qualities that users desire. In: Proceedings of the 5th Annual Conference of the
Human-Computer Interaction Group of the British Computer Society (IHM-HCI
2001), pp. 95–96 (2001)

20. Zimmermann, P.G.: Beyond usability-measuring aspects of user experience. Ph.D.
dissertation, Swiss Federal Institute of Technology Zurich (2008)

21. Law, E.L.C., van Schaik, P., Roto, V.: Attitudes towards user experience (UX)
measurement. Int. J. Hum. Comput. Stud. 72(6), 526–541 (2014)

22. Nielsen, J.: Usability inspection methods. In: Conference Companion on Human
Factors in Computing Systems - CHI 1994, pp. 413–414. ACM Press, New York
(1994)

23. ISO: ISO 9126: Software engineering - Product quality - Part 4: Quality in use met-
rics. International Organisation for Standardisation, Geneva, Switzerland (2004)

24. Wright, P., McCarthy, J., Meekison, L.: Making Sense of Experience. In:
Blythe, M., Overbeeke, K., Monk, A., Wright, P. (eds.) Funology. Human-
Computer Interaction Series, vol. 3, pp. 43–53. Springer, Netherlands (2005)

Keep the Beat: Audio Guidance for Runner
Training

Luca Balvis, Ludovico Boratto, Fabrizio Mulas, Lucio Davide Spano(B),
Salvatore Carta, and Gianni Fenu

Department of Mathematics and Computer Science, University of Cagliari,
Via Ospedale 72, 09124 Cagliari, Italy

{luca.balvis,ludovico.boratto,fabrizio.mulas,davide.spano,
salvatore,fenu}@unica.it

Abstract. Understanding how to map the feedback by fitness apps into
concrete actions during the exercise performance is crucial for their effec-
tiveness, for both inexperienced and advanced users. In this paper we
focus on audio feedback for running, describing a beat-rhythm repre-
sentation of the target cadence for helping the user in keeping it. We
designed the feedback system in order to balance two conflicting objec-
tives: its effectiveness in helping the user in reaching the training goal
and its intrusiveness with respect to concurrent activities (e.g., listening
to the music). We detail how we track the user’s cadence through stan-
dard smartphone sensors, how and when we generate the audio messages.
Finally, we discuss the results of a user-study, showing effectiveness with
respect to the adherence to the exercise goal and the overall usability.

Keywords: Audio guidance · Beats · Running · Training · Evaluation ·
Fitness

1 Introduction

Smartphones have embedded sensors of increasing quality through the years,
which quickly substituted entry-level devices for different tasks, such as e.g. tak-
ing pictures, videos, recording audio, browsing the internet. In particular, inertial
sensors (accelerometers, gyroscopes, compass) and GPS receivers constituted the
basis for the entry level activity tracker, which is now represented by different
smartphone apps. The activity tracker applications are now spread also among
the entry-level users, since they are very cheap, if compared with professional
devices and applications.

Opening the market to such kind of users is a big opportunity for fitness
application providers, but it is also a big challenge: the design of dedicated
devices was targeted to professional users, which need many precise measures

c© IFIP International Federation for Information Processing 2016
Published by Springer International Publishing Switzerland 2016. All Rights Reserved
C. Bogdan et al. (Eds.): HCSE 2016/HESSD 2016, LNCS 9856, pp. 246–257, 2016.
DOI: 10.1007/978-3-319-44902-9 16

Keep the Beat: Audio Guidance for Runner Training 247

they are able to interpret directly. Many app users are not experts instead, so
they would need a more intuitive representation of the tracked data.

If we focus on the information needed during the exercise, this is even more
difficult: the user not only has to understand what the tracked data means, but
she has also to take decisions based on such data for continuing the session. In
this paper we consider the running activity as an example of the latter case:
while running, the user should keep a target cadence, and smartphone appli-
cations help her tracking and reporting its current value. During the training,
the application cannot rely on the visual channel, so audio messages are usu-
ally preferred. However, many runners are used to listen to the music or other
entertainment content that may require the audio channel (e.g., audiobooks).
Therefore, it is important for the feedback system to provide the relevant infor-
mation without prevent the user to carry-out such entertainment activities and
taking the complete control of the audio channel [11,13].

Considering the information the system provides to the user, reporting the
current cadence is useful, but what if its value is not in line with the target?
Entry-level users may have difficulties in mapping the application reported differ-
ence between the target and the current cadence into a concrete running action.
Professional users have less difficulties in interpreting the values, however they
still need to repeatedly check the measures and to take decisions accordingly.

In this paper we describe a generic audio feedback engine for runners, whose
architecture allows providing adaptable audio feedback, exploiting the audio
channel only when needed. It is possible for designers to control the number
and the type of the generated feedback messages, while users may override the
notification frequency in order to fine-tune it to their needs. The feedback system
relies only on built-in smartphone hardware for tracking the activity. We describe
the software component that senses the user’s cadence, together with the rule
system that decides how and when the application generates the audio messages.
We detail how we configured it for providing a beat-rhythm representation of
the correct cadence, which helps the user in keeping the target for the current
training. In order to keep it unintrusive, the beats are played only if the user is
running out of range.

Finally, we provide the results of a user-study having a twofold objective. The
first one was to compare the effectiveness of the beat feedback in helping the user
in keeping the target pace, comparing it to providing natural language messages.
The second goal was to collect a qualitative data on different usability dimensions
for the proposed feedback, showing both a very good perceived precision and
completeness for provided information.

2 Related Work

Mobiles have been used as activity trackers even before they were equipped
with inertial sensors [1]. Since then, the tracking techniques have evolved and
now it is possible to track the user’s steps with a good level of precision using
inertial sensors such as accelerometers [12] or gyroscopes [4], which are included

248 L. Balvis et al.

in majority of smartphone models nowadays. For tracking the user’s cadence, we
built our prototype on top of such approaches, as many other commercial apps.

Even though several academic studies have been performed to support users
in their running activities, finding applications that work in the real world and
have an audio support is rarer. The three platforms that involve most users, i.e.,
Endomondo1, Runtastic2, and Nike+3, all offer a form of audio support in which
it is possible for the user to let the application read statistics when she covered
a given distance or a specific amount of time has passed. These statistics involve
common information, such as the average pace, speed, calories burned, heartbeat,
etc. A form of support that provides the user with indications about the speed
is provided by u4fit (previously known as Everywhere Run) [6]. Differently from
the other applications, it checks the current pace of the user and compares it
with the objective she had, and plays an audio support that tells the user to
speed up or slow down.

The topic of providing effective audio feedback to users has been investigated
under different perspectives in literature, especially considering mobile devices,
which are often used while carrying-out different tasks. For this reason, different
audio techniques have been developed for helping users in making selections
without looking to the mobile screen [15]. Considering the particular application
of audio feedback for providing guidance during physical activities, it is possible
to find examples for different sports in literature. For instance, Nylander et al. [8]
created an audio feedback for guiding the user in reaching the highest point of
acceleration just before hitting the ball. Stienstra et al. [10] used a sonification
technique for guiding professional skaters with a feedback on their performance
in real time.

Considering running applications, we can find examples of auditory feedback
in different work in literature. MPTrain [9] includes a set of sensing devices
connected to a mobile phone, that are able to sense both the user’s pace and
physiological parameters, exploiting music for helping the user in achieving her
goal. Our work focuses on built-in smartphone hardware and exploits an explicit
feedback rather than on an implicit song selection. An evolution of this work,
TripleBeat [2], introduced additional features like competition and a visual inter-
face for motivating the user during the exercise.

Song playlists may be used as implicit feedback for helping users in keep-
ing the target cadence. Indeed, music has different effects in the runner’s per-
formance, such as the synchronization of the cadence with the song tempo [11]
and an overall higher performance and less perceived fatigue [13]. For instance,
RockMyRun4 is a commercial running application that selects songs from a playlist
according to the user’s hear rate, steps or target cadence, in order to increase the
motivation and her performance. Even if this has been proven to be an effective
support, it has two main drawbacks. Firstly, if the user is not willing to listen to

1 https://www.endomondo.com/.
2 https://www.runtastic.com/.
3 https://secure-nikeplus.nike.com/plus/.
4 http://www.rockmyrun.com/.

https://www.endomondo.com/
https://www.runtastic.com/
https://secure-nikeplus.nike.com/plus/
http://www.rockmyrun.com/

Keep the Beat: Audio Guidance for Runner Training 249

the music during the exercise, she cannot receive the application feedback. In addi-
tion, it may happen that the user would like to listen to specific song that maybe do
not match with the feedback requirements. In contrast, our feedback mechanism
exploits the audio channel only when needed and not for the whole duration of the
exercise.

PaceGuard [3] exploits a pulse feedback, similar to the one exploited in this
paper, played during the whole exercise and adapted to the current user’s per-
formance. Differently from PaceGuard, we provide the audio feedback only if the
cadence is out of range. In the meantime, other smartphone applications may
use the audio channel (e.g., music players, voice calls). Considering smartphone-
based applications, the audio feedback has been exploited for providing a remote
support for encouraging users during races [14]. RunRight [7] creates a visual
representation of the running movement using the acceleration on the vertical
and horizontal axis. Similarly to the approach proposed in this paper, the system
provides also a metronome for communicating the running cadence to the user,
which changed randomly after a predefined amount of time. Our approach com-
bines the information coming from the inertial sensors with the audio feedback
for helping the user in reaching the training goal.

3 Audio Support

In our work, we considered a scenario where the user should keep a target
cadence, which is defined in advance according to the user’s training goal (e.g.,
preparing for a competition) and the intensity not exceeding her capabilities.
The target may be selected with the help of a trainer or by the user herself,
but the application does not suggest it, since without heart-rate measures it
would not be able to determine the correct intensity and this may lead to heart
problems.

We designed the audio feedback support considering the trade-off between
two aspects: the first one is the need to guide the user and to help her in keeping
the correct cadence, while the second one is the intrusiveness of the support. On
the one hand, sending messages each time we register a high difference between
the current and the expected cadence guarantees the quickest possible user’s
reaction. On the other hand, if the user has difficulties in keeping the cadence,
the feedback would be frustrating and it would take the complete control of the
audio channel, preventing the users to perform other entertainment activities
while running (e.g., listen to the music, radio or audio books).

Therefore, we designed a support able to adapt its behaviour to the user
needs, which is configurable through different parameters, each one having a
default value, which may be changed by the user for fine-tuning. The parameter
set is the following:

– Sampling interval (is): the frequency for calculating the current cadence.
The default value is 1 min.

– Target cadence (k): the cadence that our user should keep during the current
activity (or the current part of it), expressed in terms of steps per minute.

250 L. Balvis et al.

– Tolerance (ε): the number of steps per sampling interval that can be tolerated
if a user is above or under the desired cadence, in order to consider her current
cadence as correct. This allows us to define a tolerance range, as k ± ε. The ε
default value is 5.

– Feedback message duration (tf): the number of seconds the audio message
should last. The default value is 15 s.

– Frequency of positive feedback messages (1
ip

): the number of minutes
that should pass between an audio message and the next, when the user’s
cadence is correct. The default value for ip is 4 min.

– Frequency of negative feedback messages (1
in

): the number of minutes
that should pass between an audio message and the next, when the cadence
of the user is out of range. The default value for in is 1 min.

The audio feedback module contains two main components, separating the
cadence tracking from the set of rules for generating the feedback messages:

1. Cadence analyser. This component analyses the current cadence of the
user, in order to decide if it is correct, high or low.

2. Feedback manager. Given the decision of the cadence analyser and the
current settings, this component decides whether a feedback message should
be sent to the user and, if this is the case, it is responsible for creating it.

In the next sections, we describe in detail the two components.

3.1 Cadence Analyser

Given the current cadence of the user, i.e., the number of steps done in the
last minute, this component determines if an audio message to support the user
should be played, according to the constraints given as input to the application.
It tracks the user’s cadence exploiting the Step Counter Sensor5 provided with
the default Android SDK, which internally exploits the accelerometers.

The cadence analyser component is a simple state machine, depicted in Fig. 1.
It classifies the user’s cadence into three classes, corresponding to its internal
states:

1. Correct, when the user’s cadence v is inside the target range k ± ε;
2. High, when the user’s cadence v is higher than the maximum of the range

k + ε;
3. Low, when the user’s cadence v is lower than the minimum of the range k− ε;

The state transitions are defined through the value of Δ, which we calculate
as follows (v is the current user’s cadence)

– if |k − v| < ε, then Δ = 0;
– if v > k + ε, then Δ > 0;
– if v > k − ε, then Δ < 0;

5 http://developer.android.com/guide/topics/sensors/sensors motion.html.

http://developer.android.com/guide/topics/sensors/sensors_motion.html

Keep the Beat: Audio Guidance for Runner Training 251

Fig. 1. The Pace Analyser state machine

In each state, if Δ = 0 the machine fires a transition towards Correct, if
Δ > 0 the next state is High, otherwise the next state is Low.

Besides its internal state, the component exposes a variable Δt, that tracks
how long the machine is in the current state. This variable is increased of is each
time the machine fires a transition towards the same state and reset to zero each
time the transition is towards a different state. The component raises an event
each time a transition is fired, passing as arguments the current state s and Δt.

3.2 Feedback Manager

The feedback manager component registers to the events raised by the cadence
analyser, and it contains a set of rules for generating the audio feedback. In the
current configuration, we included three rules, which we summarise in Table 1.

The first rule (line 1) triggers while the user is running for a long time
(longer than in) at a high cadence (s is High). It resets Δt to zero, renders a
speech message for informing the user that her current cadence is too high, i.e.
“Your cadence is too high. Try to follow this rhythm:” (line 3) and generates
the beat feedback (line 4). The rules handling the other two cases, respectively
low cadence (lines 5–8) and current cadence (lines 9–12) are similar: they render
a different message through the text-to-speech, and we consider a different time
in the correct case (ip).

As already discussed while introducing the paper, we represent the cadence
information as a rhythm, in order to allow the user to synchronize her steps with
the beats. The PlayBeats procedure generates such feedback on the fly, creat-
ing and playing an audio stream containing a number of beat samples equally

252 L. Balvis et al.

Table 1. Rules for triggering audio feedback in the Feedback manager module.

distributed in its duration. Such number n is obtained according to two parame-
ters: the target cadence k and feedback message duration tf , as defined in Eq. 1:

n =
1
60

· k · tf (1)

The peak of each beat is positioned exactly in each n-th fraction of tf . The
duration between two beats is filled with silence. The resulting message contains
a simple click with the rhythm to be followed by the user. After tf seconds (15
by default), the audio channel is released by the feedback manager and it can
be used again by other applications (e.g., the music player).

3.3 Discussion

We would like to point out here a set of relevant properties of the proposed
audio feedback support. The first one is its flexibility: the separation of the two
components makes it possible to provide different kinds of messages without
changing the cadence tracking algorithm and vice versa. By maintaining the
same communication protocol, it would be possible to exploit more sophisticated
strategies for deciding if the cadence of our user is correct or not. The second
important aspect is the possibility to configure the feedback messages through a
set of rules, which may be defined differently by interface designers for increasing
the effectiveness of the messages, and obtaining different types of feedback. As
an example, we can consider the audio guidance provided by u4fit [6]. It exploits
text-to-speech messages for informing the user in natural language, providing
also quantitative information with messages such as e.g. “You’re 10 s per km
slower, speed up!”. Such messages may be easily generated modifying the rules
in Table 1, using k−v as parameter for both the text to speech messages (increase
ad decrease) and removing the calls to PlayBeats.

Keep the Beat: Audio Guidance for Runner Training 253

It would be possible to support a completely different feedback mechanism,
such as for instance selecting a song from a playlist having a tempo that helps the
user in increasing or decreasing her cadence, similarly to RockMyRun6. Accord-
ing to the difference between the current and the target cadence (k − v), the
rules in Table 1 would enqueue a song with a slower, faster or similar tempo for
respectively decreasing, increasing and keeping constant the user’s cadence.

The rules are also quite straightforward to understand even for users, if repre-
sented in natural language. This is very important, in order to enable the user’s
control over the feedback mechanism: if users have means for inspecting the rules
and modify them (through guided procedures), it is more likely that they will
be able to get the feedback they need. However, we are also aware that the large
majority of the users are not willing to configure such aspects, therefore a good
default mechanism is still crucial.

Finally, the parameters used for tuning the feedback and the run-time gen-
eration of the messages allows to exploit them in complex workouts, composed
by different phases where the user should keep different cadences, or containing
an adaptation of the target according to the current user’s performance.

4 Evaluation

A user test has been carried out in order to evaluate the ability of the audi-
tory support to guide the users in keeping a constant cadence during the work-
out, while maintaining the feedback unintrusive. Therefore, as baseline approach
for providing feedback, we selected the approach among the currently available
applications that we considered the most informative while keeping an unintru-
sive approach, which is the one used by u4fit. It exploits text-to-speech messages
for informing the user in natural language, providing also quantitative informa-
tion with messages such as e.g. “You’re 10 s per km slower, speed up!”.

It is worth pointing out that the experiment setting is different from the
studies by Terry et al. [11] and by Waterhouse et al. [13], since in these studies
the music stimulus was available during the whole exercise, causing the reported
synchronization effect. Instead, we provide feedback messages (either in natural
language or through the beats), only when the user is out of range or, if the
user is in range, we provide confirmation feedback at regular time intervals. We
study the effectiveness of two different feedback types in this context.

Besides the comparative study, we included in the evaluation a set of qual-
itative aspects for understanding the overall user experience with the proposed
support, in order to assess whether unintrusive feedback techniques are accept-
able for users.

4.1 Test Design

In order to perform the comparison between the two feedback types, we created
two different prototypes, one providing feedback through voice (V) and one
6 http://www.rockmyrun.com/.

http://www.rockmyrun.com/

254 L. Balvis et al.

through the beats (B). In the V condition we configured the rules for obtaining
the feedback used in u4fit, while in the B condition we used the rules described
in this paper, with the default values for the parameters.

We recruited the participants among the students of the University of
Cagliari, through both board notices and social networks, asking for people
already following a training programme in running (at any level). Before starting
the test, each user filled a demographic questionnaire and read a description of
the experiment aim and organization. We explained them that the goal of the
test was to evaluate the effectiveness of two types of feedback for helping them
in keeping a constant cadence during the workout.

After that, each user started with a calibration phase, where we asked them to
run at a sustainable cadence. We measured the user’s cadence during a workout
without providing any feedback and, in order to set a target speed that would be
sustainable for him/her, we took the median value of the session. The cadence
was measured using the same step-counter included in the two prototypes.

For the comparison phase we used a within-subject design: each user tried
both prototypes during two different workouts. In order to avoid the carry-
over effect, half of the users started from condition V and half of them started
from condition B. In both conditions we set the same target cadence, which we
obtained during the calibration.

During the workout, the application logged the current cadence, expressed
in number of steps per minute. With this data we were able to calculate the
difference between the target and the current cadence for each minute of the
workout, whose duration was fixed to 20 min.

At the end of each workout condition, we requested them to rate the following
aspects of the audio feedback, in a 1 to 7 Likert scale (1 strongly disagree, 7
strongly agree). We also report the question asked:

– Usefulness: Please rate how useful the audio feedback was (1 useless, 7 very
useful);

– Timeliness: Please rate how timely the audio feedback was (1 useless, 7 very
useful);

– Completeness: I had all the information I needed.
– Effort: I did not have to reason on the feedback information in order to

understand what it meant.
– Satisfaction: I was satisfied by the provided information.
– Precision: The provided information was precise.

In addition, we included an open-ended question for collecting suggestions
and/or observations on the audio feedback.

4.2 Test Results

Twelve persons participated to the test, nine males and three females, their age
ranged from 23 to 31 years old (x̄ = 27.33, s = 2.46). Most users have an average
experience with running: three of them have a training once a month, one once

Keep the Beat: Audio Guidance for Runner Training 255

every two weeks, two once a week, five twice a week and one once every two
days. The experience with apps for running was quite low: half of them never
used them, two use it once every ten trainings, while four use apps during every
session. Instead, the experience with smartphone is high for all users, all of them
use apps more than once a day.

In order to evaluate the effectiveness of the two designs, we measured how
good it would be to fit the recorded cadence of the user during each session with
the constant value obtained from the calibration phase. In order to measure the
fitting quality we used the root-mean-square error (RMSE), defined in Eq. 2 as
the standard deviation of the difference between the target cadence c and the
actual user’s cadence pt at minute t (n is the duration in minutes of the workout).

RMSE =

√∑n
t=1(c − pt)2

n
(2)

We registered a higher value of the RMSE in the vocal condition (x̄V =
4.84, sV = 3.79), while in the beat condition we registered both a lower central
and spread values (x̄B = 2.33, sB = 0.50). The paired t-test highlighted a
significant difference between the two means (t(11) = 2.23, p < 0.05), and the
95 % confidence interval of such difference is 2.50 ± 2.48.

This shows that the beat feedback is more effective for users and that they
are able to better control their cadence while running also in the case feedback
is provided only when they are out of range. The users were able to synchronize
their cadence with the beats even if the stimulus was not continuous during the
whole exercise.

The results of the qualitative assessment are shown in Fig. 2. The boxplot
shows that the ratings expressed for the beats version are consistently higher
than those for the voice version. In particular, we found a significant difference
for the usefulness (t(11) = 2.24, p < 0.05, CI = [0.02; 2.15]) and a practical
significance for the precision (t(11) = 1.98. p < 0.07, CI = [−0.13; 2.48]). It is
also important to notice that the timeliness of the feedback received good ratings
and there is no perceived difference between the two conditions (as expected,
since the Cadence Analyser had the same settings in both cases).

In the open ended questions, the users asked for more feedback when their
cadence was in line with the target in both versions. Increasing the number of
audio messages is obviously possible, but we should find a good balance between
this need and the usage of the audio channel for e.g., listening to the music.
Providing too many messages may be annoying in that case. One of the users
suggested to increase the number of messages through the time, especially at the
end of the training, which would be easily supported with our engine.

Considering the vocal message condition, the users highlighted in the com-
ments some difficulties in understanding how much they should increase or
decrease their speed. Once the message communicated that the cadence was
not in line with the target, it was not easy for them to articulate their inten-
tion into actions. Instead, in the beats condition the user recognized that it was

256 L. Balvis et al.

Fig. 2. Qualitative evaluation summary

easy to understand how much they should change their cadence. However, they
suggested to complete such information with overall information on the training
(duration, kilometers covered, average cadence, etc.).

5 Conclusion and Future Work

In this paper we discussed an audio feedback engine for providing cadence infor-
mation to runners while training. We discussed how we tracked the current
cadence and the rules for sending audio messages, trying to balance the trade-
off between the timeliness and the effectiveness of the information and the dis-
turbance for the user. We reported the results of a user-study comparing this
technique with the one currently used in different smartphone apps in the mar-
ket. Finally we reported a qualitative evaluation of its overall usability.

In future work, we aim to include such feedback system into a more complex
training support, where the user may set different cadences for different parts
of the workout. In addition, we would like to provide the feedback system to a
larger number of users, and extracting different standard default configuration
profiles. In addition, we would also enhance the feedback system in order to
exploit data coming from more advanced sensors that runners may own (e.g.,
heart-rate sensors, GPS, etc.).

Keep the Beat: Audio Guidance for Runner Training 257

References

1. Consolvo, S., McDonald, D.W., Toscos, T., Chen, M.Y., Froehlich, J., Harrison, B.,
Klasnja, P., LaMarca, A., LeGrand, L., Libby, R., Smith, I., Landay, J.A.: Activity
sensing in the wild: a field trial of ubifit garden. In: Proceedings of CHI 2008, pp.
1797–1806. ACM (2008). http://doi.acm.org/10.1145/1357054.1357335

2. De Oliveira, R., Oliver, N.: Triplebeat: enhancing exercise performance with per-
suasion. In: Proceedings of MobileHCI 2008, pp. 255–264. ACM (2008). http://
doi.acm.org/10.1145/1409240.1409268

3. Fortmann, J., Pielot, M., Mittelsdorf, M., Büscher, M., Trienen, S., Boll, S.:
Paceguard: improving running cadence by real-time auditory feedback. In: Pro-
ceedings of MobileHCI 2012, pp. 5–10. ACM (2012). http://doi.acm.org/10.1145/
2371664.2371668

4. Jayalath, S., Abhayasinghe, N.: A gyroscopic data based pedometer algorithm. In:
Proceedings of ICCSE 2013, pp. 551–555 (2013)

5. Moens, B., Muller, C., van Noorden, L., Franěk, M., Celie, B., Boone, J.,
Bourgois, J., Leman, M.: Encouraging spontaneous synchronisation with d-jogger,
an adaptive music player that aligns movement and music. PloS One 9(12), e114234
(2014)

6. Mulas, F., Carta, S., Pilloni, P., Manca, M.: Everywhere run: a virtual personal
trainer for supporting people in their running activity. In: Proceedings of ACE
2011, pp. 70:1–70:2. ACM (2011)

7. Nylander, S., Jacobsson, M., Tholander, J.: Runright: real-time visual and audio
feedback on running. In: CHI 2014 Extended Abstracts, CHI EA 2014, pp. 583–586.
ACM (2014). http://doi.acm.org/10.1145/2559206.2574806

8. Nylander, S., Kent, A., Tholander, J.: Swing sound: experiencing the golf swing
through sound. In: CHI 2014 Extended Abstracts, pp. 443–446. ACM (2014).
http://doi.acm.org/10.1145/2559206.2574789

9. Oliver, N., Flores-Mangas, F.: Mptrain: a mobile, music and physiology-based per-
sonal trainer. In: Proceedings of MobileHCI 2006, pp. 21–28. ACM (2006). http://
doi.acm.org/10.1145/1152215.1152221

10. Stienstra, J., Overbeeke, K., Wensveen, S.: Embodying complexity through move-
ment sonification: case study on empowering the speed-skater. In: Proceedings
of CHItaly 2011, pp. 39–44. ACM (2011). http://doi.acm.org/10.1145/2037296.
2037310

11. Terry, P.C., Karageorghis, C.I., Saha, A.M., D’Auria, S.: Effects of synchronous
music on treadmill running among elite triathletes. J. Sci. Med. Sport 15(1), 52–57
(2012)

12. Tomlein, M., Bielik, P., Krtky, P., tefan Mitrk, Barla, M., Bielikov, M.: Advanced
pedometer for smartphone-based activity tracking. In: Proceedings of BIOSTEC
2012, pp. 401–404 (2012)

13. Waterhouse, J., Hudson, P., Edwards, B.: Effects of music tempo upon submaximal
cycling performance. Scand. J. Med. Sci. Sports 20(4), 662–669 (2010)

14. Woźniak, P., Knaving, K., Björk, S., Fjeld, M.: Rufus: remote supporter feedback
for long-distance runners. In: Proceedings of MobileHCI 2015, pp. 115–124. ACM
(2015). http://doi.acm.org/10.1145/2785830.2785893

15. Zhao, S., Dragicevic, P., Chignell, M., Balakrishnan, R., Baudisch, P.: Earpod: eyes-
free menu selection using touch input and reactive audio feedback. In: Proceedings
of CHI 2007, pp. 1395–1404. ACM (2007). http://doi.acm.org/10.1145/1240624.
1240836

http://doi.acm.org/10.1145/1357054.1357335
http://doi.acm.org/10.1145/1409240.1409268
http://doi.acm.org/10.1145/1409240.1409268
http://doi.acm.org/10.1145/2371664.2371668
http://doi.acm.org/10.1145/2371664.2371668
http://doi.acm.org/10.1145/2559206.2574806
http://doi.acm.org/10.1145/2559206.2574789
http://doi.acm.org/10.1145/1152215.1152221
http://doi.acm.org/10.1145/1152215.1152221
http://doi.acm.org/10.1145/2037296.2037310
http://doi.acm.org/10.1145/2037296.2037310
http://doi.acm.org/10.1145/2785830.2785893
http://doi.acm.org/10.1145/1240624.1240836
http://doi.acm.org/10.1145/1240624.1240836

Models and Methods

The Goals Approach: Enterprise
Model-Driven Agile Human-Centered

Software Engineering

Pedro Valente1,2,3(&), Thiago Rocha Silva1, Marco Winckler1,
and Nuno Jardim Nunes2

1 Institut de Recherche en Informatique de Toulouse (IRIT),
Université Paul Sabatier, Route de Narbonne, 118, 31400 Toulouse, France

pvalente@uma.pt, {rocha,winckler}@irit.fr
2 Madeira Interactive Technologies Institute (MITI), University of Madeira,

Caminho da Penteada, 9020-105 Funchal, Portugal
njn@uma.pt

3 Software Applications Development Office, University of Madeira,
Colégio dos Jesuítas, 9000-082 Funchal, Portugal

Abstract. Business Process Improvement (BPI) is a key issue in the devel-
opment of the enterprise competitiveness. However, achieving a level of soft-
ware development performance that matches enterprise BPI needs in terms of
producing noticeable results in small amounts of time requires the existence of a
comprehensive and also agile Software Development Process (SDP). Quite
often, SDPs do not deliver software architectures that can be directly used for
in-house development, as specifications are either too close to the user interface
design or too close to business rules and application domain modeling, and
produce architectures that do not cope with software development concerns. In
this paper we present the Goals Approach, which structures business processes
to extract requirements, and methodologically details them in order to specify
the user interface, the business logic and the database structures for the archi-
tecture of a BPI. Our approach aims in-house software development in small and
medium enterprises.

Keywords: Enterprise engineering � Software engineering � Human-Computer
Interaction � Agile software development process � Software architecture

1 Introduction

Software development within enterprises still lacks performance, and reports show that
effectiveness is far from being achieved as software-project full-success rates in terms
of time and budget are still as low as about 30 % [1]. Furthermore, there is still a long
way until software development is achieved in a patterned and predictable way
regarding development effort, so it can be established as a consistent source of revenue
following investment within enterprises [2].

Nevertheless, the advances of Software Engineering (SE) have taken us at least
from a chaotic state of the practice [3], to a more inspiring situation where enhanced

© IFIP International Federation for Information Processing 2016
Published by Springer International Publishing Switzerland 2016. All Rights Reserved
C. Bogdan et al. (Eds.): HCSE 2016/HESSD 2016, LNCS 9856, pp. 261–280, 2016.
DOI: 10.1007/978-3-319-44902-9_17

executive management support and increased user involvement in the Software
Development Process (SDP) are appointed as factors for software project success [4].

In our research, we investigated whether it would be possible to establish a direct
relation between concepts valuable for enterprise management and the implementation
of a supporting Information System. And by stating the hypothesis that, it is possible if
a cross-consistent definition of concepts is established between the enterprise concepts
that model its human interaction, and if this interaction specification is evidenced in the
architecture of a software system.

In this paper we present the Goals Approach. The Approach was empirically
developed following the application of different methods in order to maximize software
development performance in a medium sized enterprise, filling the gaps left by the used
methods in terms of business specification and software architecting. Goals targets
tailored in-house development of Information Systems for Small and Medium Enter-
prises (SMEs), which is characterized by needs of agility concerning the supportive
Software Development Process (SDP) as a way to allow the achievement of observable
organizational changes in limited amounts of time [5]. Goals defines a SDP that applies
a straightforward methodology that analyses the enterprise in a top-down process in
order to produce an Enterprise Structure of valuable business concepts as requirements.
The methodology continues by means of the detail of the Enterprise Structure com-
ponents, in order to design and structure, also in a top-down process, the user interface,
the business logic and the database (given an MVC architectural pattern [6]), and
compose a final Software Architecture that can be used for software implementation
management.

In short, our approach aims at establishing a cross-consistent bridge of enterprise
and software concepts, and applies a methodology to derive them, which can be
summarized in the following way (back-bone components are underlined): the human
interaction is represented by means of Business Processes, User Tasks, User Intentions
and User Interactions; the User Interface is represented by Interaction Spaces and
Interaction Components; its Business Logic by means of Business Rules, User Inter-
face and Database System Responsibilities, and the database by means of Data Entities
and Fields.

The Goals Approach SDP is presented in Sect. 2. Its methodology is presented in
Sects. 3 (Analysis Phase) and 4 (Design Phase). The related work is presented in
Sect. 5, conclusions are presented in Sect. 6, and future work in Sect. 7.

2 Software Development Process

Our approach Software Development Process (SDP) defines a Human-Centered Soft-
ware Engineering (HCSE) methodology that integrates the Enterprise Engineering
(EE) and Human-Computer Interaction (HCI) perspectives in the process of defining a
Software Architecture for a given Business Process Improvement (BPI) problem.

The SDP defines an Analysis Phase that identifies Business Processes (BP, Step 1),
User Tasks (UT, Step 2), Interactions Spaces (IS, Step 3), Business Rules (BR, Step 4)
and Data Entities (DE, Step 5) in order to compose an enterprise model, the Enterprise
Structure, by means of relating all the identified components of this Phase.

262 P. Valente et al.

The Design Phase uses the Enterprise Structure in order to methodologically detail
UTs using a Task Model (Step 6), an Interaction Model (in order to design the User
Interface, Step 7), structure the Business Logic (Step 8) and the Database (Step 9), and
elaborate a final Software Architecture (Step 10) of the Information System. Table 1
presents the SDP, including elements as inputs (I), output (O) or both (I/O) at each Step.

Table 1. Goals Software Development Process (I – Input. O – Output. IO – Input and Output.)

Analysis Phase Design Phase
Steps 1 2 3 4 5 6 7 8 9 10

Business Inputs
Enterprise Functional
Description

I I

Business Regulations I
Business Concepts I I
User Collaboration I I
Enterprise Structure Components
Business Process (BP) O I I
User Task (UT) O I I I
Interaction Space (IS) O I I I I
Business Rule (BR) O I IO I
Data Entity (DE) O IO IO I
User Behavior Specification
User Intentions O I
User Interactions O
Software Architecture Components
Aggregation Space O I I I
Interaction Component O I I I
Interaction Object O I I
User Interface System
Responsibility

O IO IO I

Database System Responsibility O IO IO I
Output Models
Service Model O I
Business Process Model O I
UT – IS Relation O I
UT – IS – BR Relation O I
Enterprise Structure O I I I I
Task Model O I
Interaction Model O I I I
User Interface Design O
Business Logic Structure O I
Database Structure O I
Software Architecture O

The Goals Approach: Enterprise Model-Driven Agile Human-Centered 263

The Software Development Process (SDP) presented in Table 1 presents the
information used in each Step. The “Business Inputs” provide unstructured information
that must be available in the enterprise domain in any format. The “Enterprise Structure
Components”, “User Behavior Specification” and “Software Architecture Compo-
nents” are elements that take part as inputs (I), outputs (O) or both (I/O) in the “Output
Models” of each Step, and are used consecutively in the following steps, in a
straight-lined process.

The application of the SDP presents a trade-off in terms of agility and traceability
i.e. agility is constrained by the need to maintain traceability of all the elements as this
is the primary foundation of the method. Traceability defines a structure between
business and software concepts, that enables relating organizational changes in terms of
changes in its supporting software system. Hence, the approach presupposes an initial
effort for the documentation of a Software Architecture that later can be used to
facilitate software development.

There are two distinct cases of changes. The ones that involve the Enterprise
Structure, and the ones that are circumscribed to the Software Architecture. By the
analysis of the SDP it is possible to identify both the Enterprise Structure (Step 5) and
Interaction Model (Step 7) as core models of enterprise and of software respectively as
both provide input for the final Steps (8, 9 and 10) of the SDP. Changes to the
Interaction Model (Step 7) involve User Collaboration in order to specify interaction
with the system, and involve a set of Software Architecture components that concern
the support of a single User Task (UT). Oppositely, changes to the Enterprise Structure
have a bigger impact in the Software Architecture, as this model also provides input for
the Interaction Model (of Step 7) concerning a specific Business Process Improvement
that involves Business Process and related UTs reorganization.

In any of the cases, the type of components (Enterprise Structure or Software
Architecture) which are changed directly specifies the following Steps that need to be
carried out. This is done means of the traceability of one Step components and Steps in
which they are used as inputs when changed. In this way, by increasing the number of
changed components the number of Steps that need to be carried out also increases, and
consequently the software development effort also increases, providing a concrete
perspective on the effort related to organizational and software changes.

In our approach, when the BPI does not imply the reorganization of the UTs of the
BP, the method can be started from the Design Phase, which is the agile characteristic
of the SDP. Directly relating our approach to the Agile Manifesto [7], it reduces the
“need to follow a specific plan” other than the plan defined by traceability in Table 1.
Defines “User Collaboration” (in Steps 6 and 7) for the specification of human inter-
action. And facilities the specification of a future architecture, with no need for further
“comprehensive documentation”, avoiding the chaos that can be generated in software
development when carried out without architectural-documentation support.

Following the Analysis and Design Phases, the process continues with the
Implementation and Testing Phases (which detail is out of the scope of the this paper),
and use the Software Architecture to guide software development, and the User
Interface Design, Task Model and User Stories to guide the Information System test
before deployment.

264 P. Valente et al.

2.1 Foundations

The Goals Approach was developed by means of the continuous application of the
Wisdom method [8] and its extension Process Use Cases Model [9] for the elicitation of
requirements from business processes as Essential Use Cases (based on the Activity
Modeling (AM) [10] method), in the process of architecting software for purposes of
in-house tailored development in a medium-sized enterprise. The applicability of the
architectural Wisdom method, and the relevancy of the representation of business pro-
cess flows as sequences of Use Cases led to the definitive establishment of the combined
software development method (initially named Goals Software Construction Process
[11]) as it supported the team needs in terms of producing a programmable software
architecture. The model enabled dialogue among stakeholders on BPI decisions, and
allowed the identification of patterns of reusability concerning implementation.

The relation between business and software was further complemented by means of
the inclusion of the concept of the DEMO method Action Rule [12] as the
business-specific component of the Business Logic of the Software Architecture. This
introduced a new separation of concerns which positively contributed to the organi-
zation of the remaining software-specific components. The Approach further benefited
in terms of the theoretical validation of the patterned structure that relates enterprise
and software concepts, as the Goals Enterprise Structure is compatible with the DEMO
concepts of Transaction, Action Rule and Object Class. Goals adds to those concepts
the notion of Interaction Space (IS) and the Goal of each Business Process (BP) that
build-up a structure that provides the back-bone of the final Software Architecture.

This consolidated relation between enterprise and software concepts provides the
core structure that allows the application of a methodological process that focus on user
needs by means of the application of the BDD method [13]. The detail provided by
BDD extends the application of the architectural Wisdom method in terms of physical
interaction between the user and computer (clicks, keys, etc.), providing the base

Table 2. Enterprise Structure components definition, origin and symbol.

Component Definition Origin Symbol

Business Process
(BP)

A network of UTs that lead to a Goal DEMO

User Task
(UT)

A Complete Task within a BP AM

Interaction Space
(IS)

The Space that supports a UT
(with the same BRs and DEs)

Wisdom

Business Rule
(BR)

A Restriction over
DEs Structural Relations

DEMO

Data Entity
(DE)

Persistent Information about a
Business Concept

Wisdom

The Goals Approach: Enterprise Model-Driven Agile Human-Centered 265

mechanism that specifies the User Interface, Business Logic and Database components
with a level of detail usable for system programming.

One particular view that matters concerning the methodology application, are the
fundamental conceptual Enterprise Structure definitions on which it is based. The
Enterprise Structure components, their definition, origin and symbol are presented in
Table 2.

Goals defines as the top of the enterprise hierarchy, the Goal of the Business
Process (BP). The BPs are composed by a series of User Tasks (UT), which once
combined, lead the BP to the Goal. Those “Goals” are what names the approach. The
human interaction between Actors that carry on, each his UT, happens in a given
Interaction Space (IS) that makes available a series of Data Entities (DEs) that are
subject to a number of Business Rules (BR) in order to be used by Actors. Each UT is
considered complete when there is nothing that the Actor can do beyond his respon-
sibility in order to further attain the Goal of the BP. This logic of the enterprise view
provides the structure that is validated by means of the compatibility of concepts with
the DEMO methodology, as every Goals component can be directly related or pater-
nally derived from DEMO concepts. The difference between the two approaches is that
DEMO does not consider the spaces where the human interaction happens, does not
semantically structure the Business Process Goal, and cannot be directly related to the
implementation parts of a Software Architecture, as DEMO defines separate ontologies
for enterprise and software representation.

Figure 1 presents the relation between the main DEMO and Goals components, in
which the DEMO concept of Business Process as an interrelated set of Transactions
(“T1” and “T2” in the Figure) directly relates to the concept of BP of Goals. Further-
more, DEMO Transaction Acts (“rq”, “pm”, “st”, “ac”) related toGoals UTs in terms on
consecutive Acts performed by the same Actor (e.g. sequence “T1 rq pm st ac” in
“Pattern A”, “T1 pm st” in A01 of “Pattern B” and “T1 pm T2 rq” in “Pattern C”.

Fig. 1. Relation between DEMO and Goals main conceptual structures.

266 P. Valente et al.

And the Interaction Space identification is based on the space that is used by (between)
Actors in order to support their interaction of any two UTs.

The mechanism that derives ISs from UTs and relates them to BRs and DEs serves
as a bridge that relates business conceptual definitions (the BP and the UT) with the
business-and-software-recognizable concepts of IS, BR and DE. This mechanism, that
relies on the architectural Wisdom method for the identification of the IS, and the
application of principle of merging consecutive UTs based on the Essential Use Case
(EUC) definition application, serves as a door to the identification of business regu-
lations (BRs) and business concepts (DEs) that must be available for the ongoing
transactional process between two Actors, defining as a basic logic and structure for the
enterprise functional description.

3 Analysis Phase

The Analysis Phase develops the Enterprise Structure, in which the Interaction Space
(IS) concept is the mechanism that establishes the relation between the User Tasks
(UT) of the Business Process (BP), and Business Rules (BR) that constraint existing
Data Entities (DE). Each component is identified in a top-down methodological process
in five Steps: Step 1–Business Process Identification; Step 2–User Task Identification;
Step 3–Interaction Space Identification; Step 4–Business Rule Identification; and
Step 5–Data Entity Identification.

3.1 Step 1–Business Process Identification

Goals defines a Business Process (BP) as “A network of User Tasks that lead to a
Goal”. The Goal is the objective, and also names the BP. It is expressed as a unique set
of related enterprise business concepts (Data Entities, DE) that support its execution,
and compose the enterprise domain model. The establishment of a relation between the
BP and the set of DEs that the Information System will manage provides an increased
awareness on the problem begin solved, and also increased communication capability
between project stakeholders. Stakeholders in-depth their knowledge of the specific
part of the enterprise that is being evolved. This facilitates the BPI development, and in
practical terms results in faster and more productive project meetings, increasing the
probability of developing projects in less time.

The relation between BPs and DEs is also useful in order to design the BP Model,
which relates BPs, Actors and DEs, increasing the perception on how a BP uses and
produces certain business concepts from a higher level of abstraction. We present the
relation by means of the application of the Process Use Cases Model [9] adapted to the
current Goals notation. The meta-model and an example are presente in Fig. 2.

Figure 2 presents the meta-model of the BP Model, in which it can be read that only
one actor can “Initiate” a BP, but an unlimited number of Actors can participate in it, and
also, that an unlimited number of DEs can be used by a BP. It also presents an example
where Actor “Customer” initiates the BP, Actors “Collaborator” and “Director” par-
ticipate in it, and the DE “Request” is used and the DE “Approval” is produced.

The Goals Approach: Enterprise Model-Driven Agile Human-Centered 267

3.2 Step 2–User Task Identification

The User Task (UT) definition is derived from the concept of Essential Use Case
(EUC) [10], which defines a Use Case as a “complete and meaningful task (carried out
in relationship with a system)”. This definition is adapted to the enterprise context
based on the principle that the BP is a network of interrelated UTs, and that each UT is
carried out by a single Actor, unless they are carrying out the same UT, performing
cooperative work [14]. Since a BP always has a limited number of tasks, all UTs can be
considered as meaningful, thus, we abandon the term “meaningful” and simply define a
UT as a “Complete Task within a BP”. We also apply the principle that an Actor
(a User) never carries on two UTs consecutively and separately, which is a restriction
that aims user performance and software development efficiency, in order to induce the
reduction of the articulatory distance of the UT i.e. the user’s effort [15], and suggest
that the necessary tools should be provided using as little User Interface implemen-
tation space as possible. If two UTs are consecutive, then they can be merged in a
single sequence of acts, expressed by a single UT, leading to is completion in the same
way.

The relations between UTs are what designs a BP. The consecutive relation is the
most common, as it supports the most usual BP flow. Yet, it is not sufficient to
represent more complex services that must be available in different interaction points
(also called as touchpoints) which usually have back-end support, and may be visited
by the customer, but not necessarily in pre-defined order. This need for flexibility can
be attained by the definition of conditional relations between UTs. Hence, we further
define the conditional relation, meaning that the execution of a specific path of the BP
is conditioned to the will of the responding Actor to carry on his task. This reflects the
case when an enterprise suggests its customers the execution of a given action as a
sequence of any other interaction, but will never be sure that they will follow the
suggestion, and yet, continues to provide that customer the remaining service. The
representation of services as a consecutive or conditioned sequence of UTs allows the
representation of the service as a BP, and the possibility of well-defining a software
architecture that paternally supports the service in a same way it supports the BP.

Figure 3 presents the meta-model of the UT, in which it can be read that: one Actor
can carry on many UTs (and vice-versa); one BP can have one or more UTs (and
vice-versa); and that one UT can consecutively or conditionally trigger one or more
UTs. The example shows the initial UT being triggered by Actor “Customer” and
consecutive UTs “Promise” and “Approve” being carried out by Actors “Collaborator”
and “Director”, and as the response tasks, “State” and “Acknowledge” being carried

Fig. 2. Business Process Model meta-model, and BP Model example.

268 P. Valente et al.

out by Actors “Collaborator” and “Customer” respectively. The relation between UT
“State” and “Acknowledge” is conditioned to Actor “Customer” will to carry it on.

3.3 Step 3–Interaction Space Identification

The Interaction Space (IS) definition is derived from Wisdom original concept of
Interaction Space, as a space (a User Interface) where the “user interacts with functions,
containers and information in order to carry on a task”. We adapt this concept to the
enterprise context by means of its generalization in order to consider the same purpose
for the support of the UTs interaction in person, as in any of the cases, the same BRs
and DEs also apply. Goals (re)defines the IS as “The Space that supports a UT (with
the same BRs and DEs)”. Hence, one IS supports the interaction between two users in
person or remotely while each one carries on his own UT. Even if many UTs are
carried out by many Actors in a cooperative way, the UTs will still be different, since at
least one UT has initiated the other(s). If two Actors carry on the same UT remotely,
then they are necessarily performing cooperative work [14].

The identification of ISs is derived from the interaction between the sequenced UTs
of the BP, in order to support one Actor request and other Actor response, as in any
case the same BRs and DEs apply.

Figure 4 presents the meta-model that specifies that an IS supports many UTs,
having at least a consecutive relation and at most one conditional relation. The example
shows the derivation of ISs that supports the interaction between Actors “Customer”
and “Collaborator”, and Actors “Collaborator” and “Director”, by means of ISs

Fig. 3. User Task meta-model and example.

Fig. 4. Interaction Space meta-model and example.

The Goals Approach: Enterprise Model-Driven Agile Human-Centered 269

“Request Bureau” and “Approval Office” respectively. This is based on the principle
that the UTs that Actors operate in cooperation are subject to the same BRs and DEs.
Hence, the “Request”, “Promise”, “State” and “Acknowledge” UTs that Actors
“Customer” and “Collaborator” carry on cooperatively are supported by the IS
“Request Bureau”. The same happens with UTs “Promise”, “State” and “Approve” and
IS “Approval Request”.

3.4 Step 4–Business Rule Identification

The Business Rule (BR) definition is provided by DEMO notion of Action Rule, which
defines a structure of decision (using pseudo-code) that applies restrictions to the
identified Object Classes concerning the execution of business Transactions. These
restrictions are paradigmatic relations (considering a semiotic association [16]) which
are applied to the syntactic relations (also considering a semiotic definition) that exist
between Data Entities (DEs), producing a new valuable business concept that cannot
be expressed by the simpler relations between DEs. Hence, we define the BR as
“A Restriction over DEs Structural Relations”.

BRs represent regulations or explicitly defined requirements that should be elicited
during the Analysis Phase in order to understand the constraints which the user is
subject to when carrying on a UT. One important clarification is that BRs do not
represent collaboration impositions between Actors, since these rules are already
expressed by the BP design. BRs are the grounding foundation of the Information
System Business Logic (given an MVC pattern), as they are the more business-specific
programmed class concerning the structuring of this layer. The Business Logic will
also be complemented with programmed parts that are responsible for the IS (User
Interface) presentation and for the DEs (database) management, as will be presented in
Step 8–Business Logic Structuring.

Figure 5 presents the meta-model concerning the relation between BRs, IS and
DEs, in relations of many to many. The example shows that IS “Request Bureau” uses
BR “Over 18”, and that IS “Approval Office” uses BR “Approval Conditions”. It also

Fig. 5. Business Rules meta-model and example.

270 P. Valente et al.

defines that BR “Over 18” uses DE “Request”, and that BR “Approval Conditions”
uses DEs “Request” and “Approval”.

3.5 Step 5–Data Entity Identification

The Data Entities (DE) definition is provided by Wisdom as a “class of perdurable
information about a business concept”. This means that persistency will be maintained
by the Information System, and that it will enclose meaningful concepts which are
recognized within the enterprise by those who have knowledge about it. The enclosed
meanings (the concepts) can also be related between each other, allowing a repre-
sentation of reality by means of a computerized system which is made available for
usage by means of a database application. These “meanings” are represented by Data
Entities in Goals, and enclose attributes. In terms of common database objects, DEs are
implemented by tables, and attributes are implemented by fields.

DEs are related between each other by means of the semiotic association of syn-
tactic relations, which are expressed in Goals using an Unified Modeling Language
(UML) [17] association, which also implies the definition of the multiplicity between
the related DEs. The association multiplicity will typically be of one to many, or many
to many. The definition of a specific multiplicity (e.g. 1 to 5) is uncommon, and should
be expressed by a BR, as it is usually volatile (it will eventually change). The definition
of relations of one to one is also uncommon, as in those cases the DEs meaning can
usually be conciliated in a single DE.

As mentioned in Step 1–Business Process Identification, the identification of DEs
should be carried along the BP identification and the consequential Steps, so that the
analyst at this stage already has a well-defined notion of the concepts involved in the
BPI under analysis (and also how they relate between each other). In the current Step,
the DEs only need to be identified and related to the BRs in order to compose the
Enterprise Structure, the final artefact of the Analysis Phase, as depicted in Fig. 6 with
the DEs as a support of the Enterprise Structure.

Fig. 6. Enterprise Structure meta-model and example.

The Goals Approach: Enterprise Model-Driven Agile Human-Centered 271

The Enterprise Structure presented in Fig. 6 is composed by every identified
component until this moment and also by their relation to other components. It rep-
resents a relation which is representative of the enterprise in terms of a logic that relates
BPs, UTs, ISs, BRs and DEs in terms of dependency and functional specification. It
can be used in order to identify the implications of changing the enterprise in terms of
its impact in the software structure, since, changing BPs, UTs or BRs, which is
common in the business management domain, will inevitably change the underlying
Information System to which the three lower levels layers (IS, BR and DE) are an
inherent part.

The SDP continues with the elaboration of the Design Phase.

4 Design Phase

The Design Phase details the Enterprise Structure by means of the application of specific
techniques that further specify and complement each component (Business Process
(BP), User Task (UT), Interaction Space (IS), Business Rule (BR) or Data Entity (DE))
with new software specific components that structure the Software Architecture. The
final Software Architecture is composed by the User Interface (View), Business Logic
(Controller) and Database (Model) layers, which are related to the IS, BR and DE
concepts respectively, given an MVC architectural pattern [6].

Each Software Architecture component is conceived in a top-down methodological
process that details and completes the User Interaction (Step 6–Task Model), the User
Interface (Step 7–Interaction Modeling), the Business Logic (Step 8–Business Logic
Structuring) and the DE layer (Step 9–Database Structuring), and finishes with the
composition and analysis of the Software Architecture (Step 10–Software Architecture
Composition).

4.1 Step 6–Task Model

The Task Model details User Tasks (UTs) in order to obtain information to carry on the
User Interface design, which happens in Step 7–Interaction Modeling. The Task Model
specifies the UT in terms of User Intentions (steps that the user takes to complete the
task) and System Responsibilities (that provide the necessary information), following a
traditional decomposition of an Essential Use Case (EUC) [10].

The decomposition of the UT in terms of User Intentions is carried out my means of
the application of the Concur Task Trees (CTT) technique [18]. CTT defines the User
Intentions as a hierarchical decomposition of what the user wishes to do in order to
complete his task (the UT). This logic, is inherited from Wisdom, is maintained in
Goals, and is represented using and UML Activity Diagram [17]. Each User Intention
has an associated System Responsibility (SR) that provides the necessary information
to an Interactive Component that supports User Interaction. The SR is a programmed
class which is part of the Information System Business Logic, a layer which is com-
posed in Step 8–Business Logic Structuring. Interactive Components are spaces that

272 P. Valente et al.

provide the adequate implementation to allow data management, and are implemented
by means of a User Interface programming language e.g. PHP.

The Task Model presents the flow of User Intentions that lead to the accom-
plishment of the UT. Each User Intention uses an Interaction Component by means of
one or more User Interaction that in its turn also use System Responsibilities (SR) that
supplies it with the necessary information. This relation is defined as the Wisdom
architectural specification pattern i.e. the human-computer interaction happens in a
User Interface part (the Interaction Component) and is supported by a programmed
class (the SR). This type of SR is called as User Interface SRs. The last User Intentions
of the Activity Diagram always lead to SRs that manages information, which in this
case are called as Database SRs. If new Data Entities (DE) are identified by means of
the Task Model elaboration, then they must also be represented in the DEs structure,
which occurs in Step 9–Database Structuring.

Figure 7 presents the meta-model of the Task Model, where it can be read that a UT
has up to n initial User Intentions, and up to m last User Intentions that use
m + n Interaction Components (which compose the IS that supports the UT). Each
Interaction Component supports one User Intention, and uses one User Interface
System Responsibility (SR) or one Database SR. The example shows the decompo-
sition of UT “Request”, which has two initial User Intentions (“Choose Request” and
“Fill Request”) and one final (“Submit Request”). The first two relate to User Interface
SRs “Request Choice” and “Fill Request”, and the last relates to Database SR “Confirm
Submission”, meaning that the UT can be carried out by means of 3 interactions, which
are supported by 3 System Responsibilities and 3 Interaction Components.

4.2 Step 7–Interaction Modeling

The Interaction Modeling is carried out by means of the application of the Behavior
Driven Development (BDD) method [13] that further specifies each User Intention as
User Interactions, and also frames it in terms of used Interactions Spaces (ISs), spec-
ifying the navigation between the User Tasks (UT) of the Business Processes (BP).
BDD is an agile software development method that describes the system behavior
based on a User-Centered Design (UCD) perspective, producing pseudo-code for User

Fig. 7. Task Model meta-model and example.

The Goals Approach: Enterprise Model-Driven Agile Human-Centered 273

Interface specification. BDD specifies User Stories that state that a system feature
(a UT) which is used within a certain scenario (the IS), will result in specific system
behavior which is expressed in the User Interface. The pseudo-code has the following
syntax.

Given [State] When [Interaction] Then [System Behavior]

Where [State] represents the actual state of the system in the current scenario, the
Aggregation Space [19], which is (are) the IS(s) where the UT occurs; [Interaction] is a
flow of User Interactions that matches the User Intentions of the Task Model, speci-
fying how the UT can be completed; and, [System Behavior] is the expected outcome
that triggers User Interface and Database System Responsibilities. BDD interactions
also specify the Data Entities (DEs) fields used in each User Interaction. This speci-
fication facilitates the mapping between Systems Responsibilities and DEs that occurs
in Step 8–Business Logic Structuring, and the completion of the Database specification
that happens in Step 9–Database Structuring.

BDD User Stories are represented by an Activity Diagram, and specify a User
Intention that occurs before the Task Model in order to reference an IS, and details each
User Intention using the pseudo-code which is presented in Table 3.

Figure 8 presents the User Stories User Interaction meta-model and an example that
specifies the Task Model User Intentions using the pseudo-code presented in Table 3.

Table 3. Relation between BDD pseudo code syntax and Software Architecture components.

BDD pseudo-code Goals Component

Given (provides Aggregation Space identification)
Feature ‘Feature’ User Task ‘Feature’
Scenario ‘Scenario’ User Intention ‘Scenario’
Click, Choose, Set User Intentions ‘Click’, ‘Choose’ or ‘Set’
Display ‘Page’ or
Go to ‘Page’

User Interface System Responsibility ‘Display Page’ +
Interaction Space ‘Page’

Field Data Entity Field
Then (last) System Responsibilities

Fig. 8. User Interaction meta-model and example.

274 P. Valente et al.

Now it is possible to design the User Interface by composing the generated com-
ponents in each Interaction Component. Figure 9 shows a representation of the User
Interface which identifies the Aggregation Space “Request Form”, that uses the
Interaction Space “Request Bureau”, and the Interaction Components “Request
Choice” that is composed of Field “Type”, “Fill Request” which is composed of Field
“Age”, and the “Request Command” as the button “Submit Request”, which trigger the
User Interface SRs “Request Choices” and “Request Fields”, and Database SR
“Confirm Submission”, respectively.

4.3 Step 8–Business Logic Structuring

The Business Logic Structuring is carried out by defining the relations that each System
Responsibility (SR) has to Data Entities (DEs), since the relation with the Interaction
Spaces and Interaction Components is already established. The specification of each
relation is dependent on the definition of to which DE the Fields identified in Step 7–
Interaction Modeling, belong to, which will also have an impact in the elaboration of
Step 9–Database Structuring.

Figure 10 shows the manual mapping that was done between SRs and DEs.
Business Rule “Over 18” is inherited from the Enterprise Architecture. User Inter-
face SR “Request Choices” has been mapped to DE “Request”, and it is assumed that

Fig. 9. User Interface Design example.

Fig. 10. Business Logic Structure example.

The Goals Approach: Enterprise Model-Driven Agile Human-Centered 275

Fields “Type” and “Age”, belongs to DE “Request”. By means of the analysis of the
semantic of the Database SR “Confirm Submission” manages DE “Request”.

4.4 Step 9–Database Structuring

The Database Structuring is now possible since all the DEs are identified. Since two
DEs (a and B) have been identified, and DE “Request” provides information for a given
Field, it is possible to assume that DE “Request” only related to a single record in DE
“Approval”, yet, on the contrary, any record in DE “Approval” can be related to many
records in DE “Request”. Figure 11 presents the Database Structure.

4.5 Step 10–Software Architecture Composition

The Software Architecture is the model that relates all the previously identified com-
ponents in a single structure. It can be used to specify implementation responsibilities,
and priority (within a software development team).

The meta-model of the approach is presented in Fig. 12, where it is possible to
identify that the relation between BP and DE is now supported by means of the
Software Architecture structure.

Fig. 11. Database Structure example.

Fig. 12. Software Architecture meta-model and example.

276 P. Valente et al.

The implementation priority applied to the Software Architecture example, would
be: DE “A” (since it will be used in) Business Rule “Over 18”; Database SR “Request
Choices”; User Interface SR “Request Fields”; and only then User Interface SR
“Confirm Submission”. Interaction Components “Request Choice”, “Fill Request” and
“Request Command” can follow any order, and once developed, the IS “Request
Bureau” and the Aggregation Space “Request Form” can be implemented and tested.
For purposes of implementation, each IS will need a specific template per Actor in
order to define its perspective according to “his” Task Model. The SRs will usually
imply the definition of complex algorithms, and the Database will usually need the
development of interfacing objects that facilitate data retrieval and update.

The architecture provides the advantage that the separation of implementation
concerns is already defined at this stage, reducing significantly management efforts.

5 Related Work

Our approach can be compared to ArchiMate [20] and BPMN [21] in the perspective
that it provides an enterprise and software structuring language. It is different in the
perspective that it applies a methodology that derives software implementation speci-
fications from business business models, in a business Model-Driven Architecture
(MDA) process.

Concerning existing MDA approaches, and regarding the specific HCI perspective,
the closest solutions are methods that design the user interface based on user task and
domain models, as Sukaviriya‘s [22], Sousa‘s [23] and Cedar [24]. Our approach is
different as it complementarily conceives the business logic layer based on enterprise
business rules and coordination structures.

The I-Star framework [25] is a requirements engineering method that has a similar
approach to Goals concerning the user perspective, as it considers the complete task (a
UT) as a Goal that is decomposed in Tasks (which are User Intentions), that can be
further decomposed in the same way that Goals further identifies User Interaction. The
main difference between the approaches is that Goals further defines the supporting
Information System.

There are more holistic MDA approaches to software architecting, like the Living
Models [26], the Formal Design Analysis Framework [27], Zikra’s [28], which also
structure the business logic based on business process models, that yet, do not design
the user interface.

Considering the enterprise-driven development, the Generic Software Development
Process (GSDP) [29] is based on DEMO models, from which it derives the business
rules, data structure, and business process design. And uses this information to con-
ceive an enterprise operating system, which however, does not apply a structured user
interface conception [30]. The Inter-enterprise Service Engineering (ISE) [31] uses
BPMN business process models to automate the design of the user interface in detail,
but, however, does not structure the remaining parts of the Information System.

The Goals Approach: Enterprise Model-Driven Agile Human-Centered 277

6 Conclusions

Our approach inherently aims at facilitating requirements elicitation, focuses on user
needs, and simplifies traceability between business requirements and software imple-
mentation, which matches project management needs and user involvement in the SDP,
in what we believe to be the more important contribution of our work.

The validation of results, at this moment is mostly empirical, yet since the method
as been developed by means of its application for over a decade, the techniques
applied, including the notation, have been thoroughly revised. Five projects elaborated
using this method were previously statistically analyzed for purposes of software effort
estimation, from which it was possible to derive enhanced patterns of effort, which
gives some guarantees about the stability of the development process [32].

Despite the existence of 10 Steps, the choice to maintain compatibility of concepts
with Enterprise Engineering, Human-Computer Interaction and Software Engineering
concepts, facilitates the understanding of the methodology by the specific domain
professional experts. Yet, understanding it as a whole is more difficult as it crosses the
enterprise and software domains, and for that reason it needs further application in
order to be possible to inspect its usage in terms of effectiveness.

The introduced concept of Interaction Space (IS), as a framework of support for
enterprise business-driven cooperative work is an extension of the traditional HCI
interaction space that aims the simplification of the conception of the user interface.
This simplification results in the specification of less implementation components and
more manageable software architectures for a single BPI, resulting in more feasible and
probably more successful software projects. This forecasts small BPI as a good strat-
egy, since based on The Standish Group reports, projects under 1 M$ (one million
dollars) cost are believed to be up to 10 times more successful than 10 M$ projects [1].

A controllable set of architectural components will usually be implemented with
great efficiency (concerning work-hours) by programmers with knowledge of the
domain. These circumstances induce iterative enterprise and information system
development, matching the continuous software development proclaimed by the Agile
Manifesto [7].

7 Future Work

Future work mostly concerns the continuation of the development of the approach
concerning cooperative work, more specifically: a social perspective for the patterned
conception of the user interface in terms of information visualization and tool execution
permissions; a contextual perspective that facilitates user interface design decisions in
terms of usability objectives; the User Interface design and prototype procedure
specification; the elaboration of a business process model that supports the specification
of cooperative work beyond the 2-actor swinlanes; the development of a Platform
Specific Model for software generation; and the application of the approach by other
software development teams as a strategy to further validate the presented techniques.

278 P. Valente et al.

Ackownledgments. First author would like the acknowledge the scientific and finantial support
from the afilliated institutions.

References

1. The Standish Group. Chaos Report (2014)
2. Valente, P., Aveiro, D., Nunes, N.: Improving software design decisions towards enhanced

return of investment. In: Proceedings ICEIS 2015, pp. 388–394 (2015)
3. Morgenshtern, O., Raz, T., Dvir, D.: Factors affecting duration and effort estimation errors in

software development projects. IST 49, 827–837 (2007)
4. The Standish Group. Chaos Report (2013)
5. Gerogiannis, V., Kakarontzas, G., Anthopoulos, L., Bibi, S., Stamelos, I.: The

SPRINT-SMEs approach for software process improvement in small-medium sized
software development enterprises. In: Proceedings of ARCHIMEDES III (2013)

6. Zukowski, J.: The model-view-controller architecture. In: John Zukowski’s Definitive Guide
to Swing for Java 2 (1999). ISBN 978-1430252511

7. Agile Manifesto. http://agilemanifesto.org/iso/en/ Accessed 02 May 2016:
8. Nunes, N.: object modeling for user-centered development and user interface design: the

wisdom approach. Phd Thesis. Universidade da Madeira (2001)
9. Valente, P., Sampaio, P.: Process use cases: use cases identification. In: Proceedings of

ICEIS 2007, Vol. Information Systems Analysis and Specification, pp. 301–307 (2007)
10. Constantine, L.: Human activity modeling - toward a pragmatic integration of activity theory

and usage-centered design. In: Seffah, A., Vanderdonckt, J., Desmarais, M.C. (eds.) Human-
Centered Software Engineering. HCI, pp. 27-51. Springer, London (2009)

11. Valente, P.: Goals software construction process: goal-oriented software development. VDM
Verlag Dr. Müller (2009). ISBN 978-3639212426

12. Dietz, J.: Enterprise Ontology - Theory and Methodology. Springer, Heidelberg (2006).
ISBN 978-3540331490

13. Chelimsky, D., Astels, D., Helmkamp, B., North, D., Dennis, Z., Hellesoy, A.: The RSpec
Book (2010). ISBN 1934356379

14. Grudin, J.: Computer-supported cooperative work: history and focus. IEEE Comput. 27(5),
19–26 (1994)

15. Winckler, M., Cava, R., Barboni, E., Palanque, P., Freitas, C.: Usability aspects of the
inside-in approach for ancillary search tasks on the web. In: Abascal, J., Barbosa, S., Fetter,
M., Gross, T., Palanque, P., Winckler, M. (eds.) INTERACT 2015. LNCS, vol. 9297,
pp. 211–230. Springer, Heidelberg (2015)

16. Damjanovic, V., Gasevic, D., Devedzic, V.: Semiotics for ontologies and knowledge
representation. In: Proceedings of Wissens Management, pp. 571–574 (2005)

17. Booch, G., Jacobson, I., Rumbaugh, J.: The Unified Modeling Language Users Guide.
Addison-Wesley, Menlo Park (1998)

18. Paternò, F.: Model-Based Design and Evaluation of Interactive Applications. Springer,
London (1999)

19. Costa, D., Nóbrega, L., Jardim Nunes, N.: An MDA Approach for Generating Web
Interfaces with UML ConcurTaskTrees and Canonical Abstract Prototypes. In: Coninx, K.,
Luyten, K., Schneider, K.A. (eds.) TAMODIA 2006. LNCS, vol. 4385, pp. 137–152.
Springer, Heidelberg (2007)

20. Archimate Foundation: Archimate Made Practical (2008)

The Goals Approach: Enterprise Model-Driven Agile Human-Centered 279

http://agilemanifesto.org/iso/en/

21. Völzer, H.: An overview of BPMN 2.0 and its potential use. In: Mendling, J., Weidlich, M.,
Weske, M. (eds.) BPMN 2010. LNBIP, vol. 67, pp. 14–15. Springer, Heidelberg (2010)

22. Sukaviriya, N., Sinha, V., Ramachandra, T., Mani, S., Stolze, M.: User-centered design and
business process modeling: cross road in rapid prototyping tools. In: Baranauskas, C.,
Abascal, J., Barbosa, S.D.J. (eds.) INTERACT 2007. LNCS, vol. 4662, pp. 165–178.
Springer, Heidelberg (2007)

23. Sousa, K., Mendonça, H., Vanderdonckt, J., Rogier, E., Vandermeulen, J.: User interface
derivation from business processes: a model-driven approach for organizational engineering.
In: Proceedings of 2008 ACM SAC, pp. 553–560 (2008)

24. Akiki, P.: Engineering adaptive model-driven user interfaces. The Open University. PhD
Thesis (2014)

25. Aguilar, J., Zaldívar, A., Tripp, C., Misra, S., Sánchez, S., Martínez, M., García, O.: A
solution proposal for complex web application modeling with the I-star framework. In:
Proceeding International Workshop on Software Engineering Process and Applications,
pp. 135–145 (2014)

26. Breu, R., Agreiter, B., Farwick, M., Felderer, M., Hafner, M., Innerhofer–Oberperfler, F.:
Living models – ten principles for change–driven software engineering. Int. J. Softw.
Inform. (2010)

27. Dai, L., Cooper, K.: Using FDAF to bridge the gap between enterprise and software
architectures for security. Sci. Comput. Program. 66, 87–102 (2007)

28. Zikra, I.: Integration of enterprise modeling and model driven development. Stockholm
University. PhD Thesis (2014)

29. Kervel, S., Dietz, J, Hintzen, J., Meeuwen, T., Zijlstra, B.: enterprise ontology driven
software engineering. In: Proceedings of ICSoft 2012 (2012)

30. Hintzen, J., Kervel, S., Meeuwen, T., Vermolen, J., Zijlstra, B.: A professional case
management system in production, modeled and implemented using DEMO. In:
Proceedings of 16th IEEE Conference on Business Informatics (2014)

31. Dividino, R., Bicer, V., Voigt, K., Cardoso, J.: Integrating business process and user
interface models using a model-driven approach. Proc. ISCIS 2009, 492–497 (2009)

32. Alves, R., Valente, P., Nunes, N.: Improving software effort estimation with human-centric
models: a comparison of UCP and iUCP accuracy. In: Proceeding of EICS 2013, pp. 287–296
(2013)

280 P. Valente et al.

Engineering Context-Adaptive UIs
for Task-Continuous Cross-Channel Applications

Enes Yigitbas(B) and Stefan Sauer

s-lab - Software Quality Lab, Paderborn University, Zukunftsmeile 1,
33102 Paderborn, Germany

{eyigitbas,sauer}@s-lab.upb.de

Abstract. The user interfaces (UIs) of interactive systems become
increasingly complex since many heterogeneous and dynamically
changing contexts of use (platform, user, and environment) have to be
supported. Developing UIs for such interactive systems often requires
features like UI adaptivity and seamless task-continuity across devices,
demanding for sophisticated UI development processes and methods.
While existing engineering methods like human-centered design process
and model-based UI development approaches serve as a good starting
point, an integrated engineering process addressing specific requirements
of adaptive UIs supporting task-continuity across different devices is not
fully covered. Therefore, we present a model-based engineering approach
for building context-adaptive UIs that enable a personalized, flexible
and task-continuous usage of cross-channel applications. Our engineering
approach supports modeling, transformation and execution of context-
adaptive UIs. To show the feasibility of our approach, we present an
industrial case study, where we implement context-adaptive UIs for a
cross-channel banking application.

Keywords: Model-based development · UI adaptation · Multi-device
UI development · Cross-channel applications · Task-continuity

1 Introduction

Today users are surrounded by a broad range of networked interaction devices
(e.g. smartphones, smartwatches, tablets, terminals etc.) for carrying out their
everyday activities. Due to the growing number of such interaction devices, new
possible interaction techniques (e.g. multi-touch or tangible interaction) and dis-
tributed user interfaces transcending the boundaries of a single device, software
developers and user interface designers are facing new challenges. As the user
interfaces of interactive systems become increasingly complex since many hetero-
geneous contexts of use (platform, user, and environment) have to be supported,

This work is based on “KoMoS”, a project of the “it’s OWL” Leading-Edge Clus-
ter, partially funded by the German Federal Ministry of Education and Research
(BMBF).

c© IFIP International Federation for Information Processing 2016
Published by Springer International Publishing Switzerland 2016. All Rights Reserved
C. Bogdan et al. (Eds.): HCSE 2016/HESSD 2016, LNCS 9856, pp. 281–300, 2016.
DOI: 10.1007/978-3-319-44902-9 18

282 E. Yigitbas and S. Sauer

it is no longer sufficient to provide a single “one-size-fits-all” user interface. The
problem increases even more if we consider dynamic changes in the context of use.
In this case, allowing flexible and natural interaction with such devices requires
additional features like UI adaptivity to automatically react to the changing con-
text of use parameters at runtime and task-continuity for supporting a seamless
handover between different devices. For illustrating the problem, we introduce a
real world example scenario which is derived from the banking domain.

While customers accessed banking services solely via isolated channels
(through banking personnel or ATM) in the past, using different channels dur-
ing a transaction is nowadays increasingly gaining popularity. Depending on the
situation, customers are able to access their banking services where, when and
how it suits them best. In the world of Omni-Channel-Banking, customers are in
control of the channels they wish to use, experiencing a self-determined “Omni-
Channel-Journey”. For example, if the customers pursue an “Omni-Channel-
Journey” for a payment cashout process, they can begin an interaction using
one channel (prepare cashout at desktop at home), modify the transaction on
their way on a mobile channel, and finalize it at the automatic teller machine
(ATM) (see Fig. 1). It is important to notice, that each channel has its own spe-
cial context of use and eventually the contextual parameters (user (U), platform
(P), and environment (E)) can change if there is a channel switch. Thus, Omni-
Channel-Banking brings the industry closer to the promise of true contextual
banking in which financial services become seamlessly embedded into the lives
of individual and business customers.

Fig. 1. Example scenario: Omni-Channel-Journey with task-continuity

However, the advancement from Multi-Channel- to Omni-Channel-Banking
(compare Table 1) is a difficult task for developers of such systems. Developers
are facing the following challenges:

– C1: Support for modeling and adaptation of heterogeneous user interfaces
(UIs) satisfying different contexts of use (user, platform, environment).

Engineering Context-Adaptive UIs for Cross-Channel Applications 283

Table 1. Multi-Channel-Banking vs. Omni-Channel-Banking

Multi-Channel-Banking Omni-Channel-Banking

Fixed channel usage Flexible channel usage

Separation of channels Integration of channels

Data redundancy in channels Data synchronization between channels

Little or no channel switch Continuous channel switch

– C2: Support for a flexible channel usage depending on the context.
– C3: Support for a seamless handover between channels allowing task-

continuity. When the user moves from one device to another, the user is able
to seamlessly continue her task.

According to Petrasch [1], the effort of implementing an application’s user
interface constitutes at least 50 percent of the total implementation effort. Devel-
oping separate applications for each potential device and operating system is
neither a practical nor a cost effective solution, especially if we consider hetero-
geneous contexts of use as they were described in the example scenario above.
Model-based User Interface Development (MBUID) is a promising candidate for
mastering the complex development task in a systematic, precise and appro-
priately formal way. For tackling the above mentioned challenges we present
a model-based engineering process for context-adaptive UIs which integrates
human-centered design aspects into the development process. Our engineer-
ing approach provides specific support especially for modeling, transformation,
and execution of context-adaptive UIs enabling task-continuous usage of cross-
channel applications.

The paper is structured as follows: First, we describe some background infor-
mation and related work in the area of engineering methods for UIs, cover-
ing multi-device and cross-channel UI development as well as UI adaptation.
Then, we present our model-based engineering approach for the development
of context-adaptive UIs supporting task-continuity. After that, we present the
instantiation of our engineering approach based on a case study from the bank-
ing domain. Finally, we conclude with a summary and an outlook for future
research work.

2 Background and Related Work

In recent years, a number of approaches have addressed the problem of engi-
neering user interfaces for different contexts of use. Our work is inspired by
and based on existing approaches from the area of model-based UI development,
adaptive UIs and distributed user interfaces (DUIs). In this section, we especially
review prior work that explores the development of multi-device, cross-channel
and adaptive user interfaces (UIs) supporting task-continuity.

284 E. Yigitbas and S. Sauer

2.1 Multi-device UI Development

The development of multi-device UIs has been subject of extensive research [2],
where different approaches were proposed to support efficient development of
UIs for different target platforms. On the one hand, model-based UI develop-
ment approaches were proposed which aim to create multi-device UIs based
on the transformation of abstract user interface models to final user interfaces.
Widely studied approaches are UsiXML [25], MARIA [3] and IFML1 that sup-
port the abstract modeling of user interfaces and their transformation to multi-
device UIs including web interfaces. In [4], we present a specialized approach
for model-based development of heterogeneous UIs for different target platforms
including self-service systems like ATMs. On the other hand, there are also exist-
ing approaches like Damask [5] and Gummy [6] following the WYSIWYG para-
digm. While Damask is a prototyping tool for creating sketches of multi-device
web interfaces, Gummy is a design environment for graphical UIs that allows
designers to create interfaces for multiple devices using visual tools to auto-
matically generate and maintain a platform-independent description of the UI.
While above mentioned approaches support the development of multi-device UIs
regarding specification and generation of UIs for different target platforms, they
do not cover mechanisms to support channel switches and data synchronization
between different target platforms at runtime.

2.2 Cross-Channel UI Development

Previous work by the research community has covered concepts and techniques
to dynamically support the distribution of UIs by supporting task-continuity
for the end-users. One of the concepts is called UI migration, which follows the
idea of transferring a UI or parts of it from a source to a target device, while
enabling task-continuity through carrying the UI’s state across devices. In [9], we
present a model-based framework for the migration and adaptation of user inter-
faces across different devices. In [7] and similarly in [24], the authors present a
solution to support migration of interactive applications among various devices,
including digital TVs and mobile devices, allowing users to freely move around
at home and outdoor. The aim is to provide users with a seamless and sup-
portive environment for ubiquitous access in multi-device contexts of use. In
the case of web applications, most solutions rely on HTML proxy-based tech-
niques to dynamically push and pull UIs [8]. An extension of this concept is pre-
sented in [10], where the authors propose XDStudio to support interactive devel-
opment of cross-device UIs. In addition, there is also existing work on the spec-
ification support for cross-device applications. In [11] for example, the authors
present their framework Panelrama which is a web-based framework for the con-
struction of applications using DUIs. In a similar work [12], the authors present
Conductor, which is a prototype framework serving as an example for the construc-
tion of cross-device applications. While above mentioned approaches support the
1 http://www.ifml.org.

http://www.ifml.org

Engineering Context-Adaptive UIs for Cross-Channel Applications 285

specification and development of cross-channel UIs for different target platforms,
they do not address combining the aspect of UI adaptation for different contexts
of use with task-continuity.

2.3 Adaptive UIs

In recent research works, adaptive UIs have been promoted as a solution for
context variability due to their ability to automatically adapt to the context of
use at runtime. A key goal behind adaptive UIs is plasticity, denoting a UI’s
ability to preserve its usability across multiple contexts of use [13]. Norcio and
Stanley [14] consider that the idea of an adaptive UI is straightforward since
it simply means: “The interface should adapt to the user; rather than the user
must adapt to the system.” Based on [15] we can generally differentiate between
the following types of adaptive UIs:

Adaptable user interfaces allow interested stakeholders to manually adapt the
desired characteristics; example: a software application that supports the manual
customization of its toolbars by adding and removing buttons. Semi-automated
adaptive user interfaces automatically react to a change in the context-of-use by
changing one or more of their characteristics using a predefined set of adapta-
tion rules. For example: an application can use a sensor to measure the distance
between the end-user and a display device, and then trigger predefined adapta-
tion rules to adjust the font-size. Fully-automated adaptive user interfaces can
automatically react to a change in the context-of-use. However, the adaptation
has to employ a learning mechanism, which makes use of data that is logged
over time. One simple example is a software application, which logs the number
of times each end-user clicks on its toolbar buttons and automatically reorders
these buttons differently for each end-user according to the usage frequency.

A classification of different adaptation techniques was introduced by Opper-
mann [18] and refined by Brusilovsky [17]. UIs with adaptation capabilities have
been proposed in the context of various domains (e.g. [19,20,26] or [27]) and there
are also proposals for integrating adaptive UI capabilities in enterprise applica-
tions (e.g. [16]). Although above mentioned approaches already present technical
solutions for supporting UI adaptivity and model-based development approaches
were proposed in the past (e.g. [23]), an engineering process for the development
of context-adaptive UIs enabling task-continuity is not fully covered. Leaning
on existing concepts of adaptive/cross-channel UIs and our previous work [21],
where we propose a meta-method for engineering advanced user interfaces, we
present a model-based engineering approach for developing context-adaptive UIs
enbaling task-continuous usage of cross-channel applications.

3 Engineering Process

In this section, we present a model-based engineering process for development
of context-adaptive UIs in order to tackle the motivated challenges C1, C2
and C3. Figure 2 gives a general overview of our engineering process which is

286 E. Yigitbas and S. Sauer

Fig. 2. Model-based engineering approach for developing context-adaptive UIs sup-
porting task-continuity

divided into four main steps:: UI Modeling, Adaptation Modeling, Transforma-
tion, and Execution and Adaptation.

In the following subsections each engineering step is explained in more detail
by describing the used artifacts and activities.

3.1 UI Modeling

For supporting the development of various UIs allowing access for different chan-
nels and minimizing recurrent development efforts in establishing the needed
Front-ends, our engineering process begins with the UI Modeling step. The goal
of this step is specification of an abstract UI representation that serves as a
basis for the transformation and generation of heterogeneous UI variants for dif-
ferent channels. For accomplishing this step, we decided to use existing modeling
languages standardized by the Object Management Group (OMG). As a conse-
quence, in the UI Modeling step we make use of UML Class Diagrams and the
Interaction Flow Modeling Language (IFML). In the beginning of the engineering
process, the developers use UML Class Diagrams for specifying a Domain Model
describing the data entities of the user interface. After that, they make use of
the Interaction Flow Modeling language (IFML) that supports the modeling of
the structure, content and navigation needed to characterize the UI Front-End
in an abstract manner. For performing the UI Modeling step, the developers are
able to use the open source IFML Editor Eclipse plugin2 that enables a complete
specification of the abstract UI model referencing the Domain Model entities.

3.2 Adaptation Modeling

After modeling the core UI characteristics using a Domain and Abstract UI
model, the developers need to specify adaptation rules that decide how the
user interface is adapted to specific contextual parameters (e.g. user, platform
and environment) at runtime. Therefore, our engineering approach provides an
Adaptation Modeling step, which allows explicit modeling of UI adaptation rules.

2 http://ifml.github.io.

http://ifml.github.io

Engineering Context-Adaptive UIs for Cross-Channel Applications 287

For defining the adaptation rules, we first introduce a metamodel for context
modeling (Context-IFML) that serves as a basis for describing the contextual
parameters in a fine grained and extensible manner. After that, we introduce an
adaptation metamodel (Adapt-IFML) for specifying complete adaptation rules.

Figure 3 gives an overview of our metamodel for context modeling. The meta-
model ContextModel (Context-IFML) consists of the three main classes User,
Platform, and Environment that characterize the specific contextual parame-
ters. The class User for example, is subclassified in PersonalInformation, Pref-
erences and Knowledge, while the classes provide different attributes to specify
varying peculiarities of a user. Similarly different forms of the platform and char-
acteristics of the environment can be specified with the help of Context-IFML.
This way, the developers are able to specify heterogeneous context of use sce-
narios and to explicitly define the events and conditions for adapting the UI.
For the complete definition of an adaptation rule we introduce the metamodel
for adaptation modeling (Adapt-IFML) that is depicted in Fig. 4. Regarding our
metamodel an adaptation model consists of different adaptation rules that are
structured according to the Event-Condition-Action (ECA) paradigm. While the
preconditions of an adaptation rule (event and condition) are specified based on
the context model, the Action class provides different mechanisms to adapt the
UI at runtime. Basically three different UI adaptation operations are supported,
namely Task-, Navigation- and Layout-ChangeOperation, while each of them can
be aggregated to more complex UI adaptation operations called ComposedAc-
tion. Task-ChangeOperations support adaptation by flexibly showing and hiding
interaction elements of the UI. By using the operations AddViewComponent or
DeleteViewComponent specific UI interaction elements like tables, textfields etc.
can be shown or hidden depending on the specified adaptation rule. In a similar
way, the Navigation-ChangeOperation can be used for adding, deleting and redi-
recting links between user interface flows. This way, the navigation flow of the
UI can be flexibly adapted based on the contextual parameters that are defined
in the preconditions. Our metamodel for adaptation modeling also supports the
definiton of Layout-ChangeOperations like ChangeFont or SplitViewContainer
for dividing a complex UI view container into multiple view containers, so that
small screen sizes for example are satisfied. For supporting the Adaptation Mod-
eling step, we extended the standard IFML metamodel with Context-IFML and
Adapt-IFML according to the previous description. Based on this extensions the
developers are able to specify different UI adaptation rules that are evaluated at
runtime.

3.3 Transformation

After finishing the modeling steps, the developers are facing the task to define
transformations to generate numerous UI Front-Ends for different channels.
Therefore, in the transformation step several model-to-text transformation (M2T)
templates are defined that transfer the abstract UI models into final UIs
that are running on different target platforms in order to support access to

288 E. Yigitbas and S. Sauer

ContextModel

Env ironment

Us er

Pre fere nces Knowle dgePersonalInformation

Platform

OperatingSystem

De v ice

Se nsor Sc reen

Ne twork Connection

Ba tteryLev e l

GPS Ac celerome ter

TimeDate NoiseLe v el Mov ementStatus Wheather Location

Fig. 3. Metamodel for context modeling (Context-IFML)

Adaptation Model Adaptation Rule

Ev ent Condition ActionContext

Us er Platform Env ironment Va lue Operator

Tas k_ChangeOpe ration Na v igation_ ChangeOperation Layout_ChangeOperation ComposedAction

De leteV iewComponentAddViewComponent AddNav Link

De leteNav Link

Re direc tNav Link

ChangeFontSize ChangeFont

ChangeColor SwitchWidgetType

SplitVie wContainerRe orderView Elements

«th rows»

Fig. 4. Metamodel for adaptation modeling (Adapt-IFML)

different channels (Front-End). By generating different UI views and support-
ing different UI - Channels, users are able to flexibly select the channel of
their choice depending on the context. For supporting the transformation step,
we implemented an Xtend3 plugin that maps the abstract UI model elements
to specific elements of a target language/technology. The implemented Xtend

3 http://www.eclipse.org/xtend.

http://www.eclipse.org/xtend

Engineering Context-Adaptive UIs for Cross-Channel Applications 289

plugin includes different Xtend templates to transfer the IFML source model into
final user interfaces that support different context of use parameters. During the
transformation process, not only the mapping between the source abstract UI
model and the target final user interface (FUI) is established, but also the speci-
fied adaptation rules are transformed into the target language of the FUI, so that
the generated UI can adapt itself at runtime according to the predefined rules.

3.4 Execution and Adaptation

For practical usage of the resulting final user interfaces that were reached after
the modeling and transformation steps, the developers need an execution envi-
ronment that executes and adapts the UIs according to the specified adapta-
tion rules. For supporting this task, we present a solution architecture enabling
automatic UI adaptation and synchronization. Figure 5 gives an architectural
overview of the execution environment for context-adaptive UIs. The solution
architecture is based on IBM’s MAPE-K [22] loop, where an Adaptation Man-
ager monitors and adapts the Context-Adaptive UI that can run on different
platforms. The Adaptation Manager consists of five main components that work
according the adaptation rules that were specified in the Adaptation Model : The
Monitor component is responsible for observing context information that are
provided by the Context Manager. All contextual parameters that were defined
based on the Context Model are observed, so that the Analyze component is able
to decide whether adaptation is needed. Therefore, the conditions for triggering
an adaptation rule are analyzed and if adaptations are required, an adaptation
schedule is done by the Plan component. Finally, the adaptation operations are
performed by the Execute component, so that an adapted UI can be presented.
The Knowledge base is responsible for storing data that is logged over time
and can be used for inferring future adaptation operations. In addition to UI
adaptation, for supporting a seamless handover between channels and allowing
task-continuity for the user, our solution architecture includes a dedicated Syn-
chronization Server which is responsible for storing and sharing of data (e.g. UI

Fig. 5. Architectural overview of context-adaptive UIs

290 E. Yigitbas and S. Sauer

state or user preferences). The UI state including entered input data by the users
is stored and restored so that when the user moves from one channel to another,
the user is able to seamlessly continue her task on the new UI-Channel.

4 Instantiation of Engineering Process

In this section, the instantiation of the development process according to the
previously described engineering process is presented in more detail. To show the
feasibility of our approach, we first present the setting of an industrial case-study
dealing with the implementation of context-adaptive UIs for a cross-channel
banking application employing web-based technologies. After that, we present
the instantiation of the engineering process by describing the implementation of
the different steps.

4.1 Setting of the Case Study

Our “Omni-Channel-Banking” case-study supports a variety of different chan-
nels to access banking services. Figure 6 shows its overall architecture.

On each device - PC, Mobile, ATM - the client application is running as
a single-page web application inside a browser. Each device has an underlying
Context Manager that observes and delivers context information to the Back-
End Server, which is responsible for

– serving an application to the browser, adapted to a particular context of use,
– serving application specific data to the client via HTTP/REST,
– managing application state and UI adaptation,
– requesting information from a Transaction Processing Back-End and serving

it to the client,
– sending financial transactions to the Transaction Processing Back-End for

execution.

Fig. 6. Case-Study application architecture

Engineering Context-Adaptive UIs for Cross-Channel Applications 291

The data format for all data exchanged through HTTP/REST requests is
JavaScript Object Notation (JSON).

The Transaction Processing Back-End is not part of our application, but
represents an existing infrastructure for processing financial transactions. The
Back-End Server communicates with this transaction processing system. The
communication protocol between the Transaction Processing Back-End and our
sample application’s Back-End Server depends on an existing infrastructure.
Thus, the Back-End Server needs to provide a custom adapter for interfacing
with this system.

In our case study, PC and mobile applications are identical concerning their
functionality. The main difference comes from adaptation to different context
of use scenarios (e.g. screen sizes, operation through keypad/touch screen etc.).
This also includes spreading of functiontionality on the mobile device over mul-
tiple dialogs, compared to the PC application. In contrast to PC and mobile
clients, the application architecture of the ATM client is significantly different.
This is due to the need for supporting a whole variety of ATM specific hard-
ware devices, like NFC Reader, Card Reader, Encrypting Pin Pad (EPP), Cash
Dispenser, etc. For interoperability reasons, ATM vendors are using a common
software stack called XFS, which is layered on top of device specific drivers. XFS
stands for Extensions for Financial Services and is standardized by CEN, the
European Commitee for Standardization. Since a browser itself can not directly
access the XFS-API, we delegate device control to a Device-Proxy Server run-
ning directly on the ATM.

4.2 UI/Adaptation Modeling and Transformation

For realizing the modeling (UI and adaptation) and transformation step of
the engineering approach, we have implemented a model-based UI development
(MBUID) process which is depicted in Fig. 7. This MBUID process supports the
modeling of UIs and adaptation rules as well as their transformation to final user
interfaces, which are the view parts of the single-page application rendered as
HTML5 by the browser. Based on the open source IFML Editor Eclipse plugin
developers are able to specify the domain and abstract UI model. In Fig. 8 the
domain model and an excerpt of the abstract UI model showing the login view
are depicted for the example scenario of our case study. As a complementary
modeling step, the IFML extensions Context-IFML and Adapt-IFML allow the
specification of adaptation rules for UI adaptation at runtime. For showing the
structure of such adaptation rules, Fig. 9 shows two exemplary adaptation rules
represented as a table. For transforming these models into final web UI views,
we implemented an Xtend plugin that maps the IFML model elements to spe-
cific HTML5 elements. The Xtend plugin includes different Xtend templates to
transfer the IFML source model into web UIs supporting different context of use
parameters.

During the transformation process, the application’s view is built upon basic
components with a custom look &feel, like buttons, text input fields, dropdown
lists, tables, etc. As a basis for these components, we did not use AngularJS

292 E. Yigitbas and S. Sauer

Fig. 7. Implemented model-based UI development process

Fig. 8. Exemplary domain model and excerpt of the abstract UI model

directives, but implemented components based on theHTML5Web Components4

specification promoted by Google as W3C standard.
Our custom components are sensitive to the context of use they are being

used in and adapt themselves accordingly. On mobile devices and on the ATM,
for example, buttons are larger and more suitable for touch operation than on
desktop devices.

Figure 10 shows buttons and text input fields. Their desktop representation is
depicted on the left side, their mobile appearance on the right side of the picture.

During the transformation process for all device classes, a button is created
the same way:
<komos−button colorscheme=” cs1 ” ng−c l i c k=” conf i rm () ”>

Confirm
<komos−button>

4 https://www.w3.org/TR/components-intro.

https://www.w3.org/TR/components-intro

Engineering Context-Adaptive UIs for Cross-Channel Applications 293

Fig. 9. Examples for adaptation rules

Fig. 10. Buttons and text fields for desktop and mobile

The following example shows how to create a text input field with a label by
mapping an IFML simple field element to the following code snippet:
<komos−t e x t f i e l d label=”Current PIN” ng−model=”model . currentPin ”>

</komos−t e x t f i e l d >

In order to provide a unified layout management for our application, our
model-to-text (M2T) transformation process implements a custom layout man-
ager. It provides an easy to use grid layout system, based on row and column ele-
ments realized as AngularJS directives. Under the hood, it uses HTML5 Flexbox.
Figure 11 shows the generated code snippet to create the login dialog that is
depicted below.

Beside the mapping from abstract UI models to HTML5 views, we have
established a transformation process for translating the adaptation rules into
the target language of the final user interface, so that runtime adapation of the
UI can be supported. As we have decided to use the Nools5 engine as a rule-based
execution environment for executing context-adaptive UIs (see Subsect. 4.4 for
details), we implemented particular Xtend templates to transform the Adapt-
IFML adaptation rules to rules specified with the Nools DSL. The result of such
a generated adaptation rule is shown in Fig. 12.

4.3 Execution and Adaptation (Front-End)

While the previous subsection presented our MBUID process to support the
modeling and generation of view aspects of the Front-End, this subsection deals
with the execution of the resulting UIs. In this context, we especially present
the controller part of the Front-End, which is responsible for application logic
and communication with the Back-End Server. In conjunction with this topic,

5 https://github.com/C2FO/nools.

https://github.com/C2FO/nools

294 E. Yigitbas and S. Sauer

Fig. 11. Desktop UI: generated code snippet and corresponding login dialog

Fig. 12. Example of a generated adaptation rule that is represented in the Nools DSL

we also present the aspect of channel handover and task-continuity. The aspect
of UI adaptation at runtime will be explained in the next subsection.

As shown in Fig. 13, the Front-End consists of a HTML5/JavaScript single-
page application running in a web browser. It exchanges JSON messages with
the Back-End Server through HTTP/REST.

The browser application’s main building blocks are:

Engineering Context-Adaptive UIs for Cross-Channel Applications 295

Fig. 13. Front-End Architecture

– AngularJS6: Google’s open-source web application framework for developing
single-page applications in JavaScript

– UI Router7: flexible client-side routing with nested views in AngularJS
– Web Components: UI components with custom look & feel
– Layout Manager: custom layout manager

AngularJS supports the model-view-controller (MVC) design pattern by
decoupling the application’s presentation layer, which is defined through HTML5
(see previous subsection), from the model and application logic by two-way data-
binding through a $scope object. In addition, AngularJS provides a variety of
other services, including modularization and definition of custom directives.

UI Router is the client-side routing component of AngularJS and the cen-
tral key component to implement task continuity. The developer assigns a par-
ticular application state, identified by a name (protected.main), with a view
(main.html) and a controller (MainCtrl):
angular . module (’komosApp ’) . c on f i g (func t i on ($ s ta t eProv ide r) {

$s ta t eProv ide r
. s t a t e (’ p ro tec ted . main ’ , {

u r l : ’ / ’ ,
templateUrl : ’ p ro tec ted /main/main . html ’ ,
c o n t r o l l e r : ’ MainCtrl ’ ,
au thent i ca t e : true

}) ;
}) ;

In order to support task continuity and transfer application state between
devices, the current state name and its associated context are saved to the
Back-End Server.

Inside a view controller and prior to saving a state, all context information
necessary for recovery is added to a state-context object. This includes the UI’s

6 https://angularjs.org.
7 https://github.com/angular-ui/ui-router/wiki.

https://angularjs.org
https://github.com/angular-ui/ui-router/wiki

296 E. Yigitbas and S. Sauer

view-model, as well as any other necessary information associated with the cur-
rent state.
var context = {

// th e v iew model :

viewModel : $scope . model ,

// s t a t e s p e c i f i c a r b i t r a r y p r o p e r t i e s :

param1 : someValue ,

data : someData

} ;

P e r s i s t S t a t e S e r v i c e . save (’ protec ted . main ’ , context , func t i on (err , data) {
i f (e r r) model . e r r o r s . message = e r r . data . message ;

}) ;

We implemented an AngularJS service named PersistStateService, which
converts the object context to JSON and sends it to the Back-End Server,
where it is stored under the name of the state, e.g. protected.main. To invoke
a previously saved state, the application just needs to retrieve the current state
name and invoke it:
$rootScope . $ s t a t e . go (’ p rotec ted . main ’) ;

On instantiation of the AngularJS controller associated with this state, the
controller calls the service’s restore method to retrieve the previously stored
information:
Pe r s i s t S t a t e S e r v i c e . r e s t o r e (’ p rotec ted . main ’ , f unc t i on (err , context) {

i f (e r r) {
model . e r r o r s . message = e r r . data . message ;

} else {
// context now contains the prev ious l y saved information
$scope . model = context . viewModel ; // t h i s updates the UI ! !
someValue = context . param1 ;
someData = context . data ;

}
}) ;

Both, saving and retrieving context data for a state happens within the same
controller. Each controller knows exactly which data needs to be saved in order
to be able to restore itself. This information is hidden from other parts of the
application. The only knowledge necessary from the outside is the name of the
state, protected.main in our example.

Because of AngularJS’ two-way data-binding, assigning the view-model to
$scope.model immediately updates the view.

4.4 Execution and Adaptation (Back-End)

The application’s Back-End is implemented in JavaScript (see Fig. 14) and uses
Node.js8 as its runtime environment. It is built upon Google’s V8 JavaScript
engine also used by Google Chrome and provides a high-performance runtime
environment for non-blocking and event-driven programming.

ExpressJS9, which is a middleware for Node.js, provides components for
processing of requests and routing. An application sets up request handlers,
8 https://nodejs.org.
9 https://expressjs.com.

https://nodejs.org
https://expressjs.com

Engineering Context-Adaptive UIs for Cross-Channel Applications 297

Fig. 14. Back-End architecture

Fig. 15. Context-Adaptive UIs for a cross-channel banking web application supporting
task-continuity

which are automatically invoked when a client request arrives. Within a request
handler, the request is processed, a response is prepared and returned. Request
handlers communicate with the database or Transaction Processing Back-End.

For execution and adaptation of the final UIs at runtime, our Back-End
Server integrates Nools as a rule-based execution environment for represent-
ing the Adaptation Manager. Nools is an efficient RETE-based rule engine for
Node.js written in JavaScript and provides an API and rule language (DSL)
for specifying fact and rules. By transforming context information to facts and
translating the specified adaptation rules to Nools rules, the Nools engine sup-
ports the automatic adaptation of UIs at runtime as reaction to dynamically
changing context of use parameters.

The document database MongoDB10 belongs into the category of NoSQL
(“Not Only SQL”) databases. In this context, a “document” consists of a
user-defined data structure of key-value pairs, which is associated with a key.
Documents can also contain other documents. The schema of a database is
dynamic and can be modified at runtime. To access the database in an object-

10 https://www.mongodb.org.

https://www.mongodb.org

298 E. Yigitbas and S. Sauer

oriented fashion, we use an Object Document Mapper called Mongoose on top of
MongoDB’s Node.js driver.

The instantiation of our engineering approach and interaction of all described
technologies resulted in the demonstrator which is shown in Fig. 15. Our demon-
strator shows the implementation of context-adaptive UIs for a cross-channel
banking web-application that supports different channels (Desktop, Tablet, and
ATM) for a cash payout process enabling task-continuity for the customers.

5 Conclusion and Outlook

This paper presents a model-based engineering approach that supports system-
atic and efficient development of context-adaptive UIs for heterogeneous and
dynamically changing contexts of use (user, platform, environment). The pro-
posed engineering approach supports modeling, transformation and execution
of context-adaptive UIs that enable a personalized, flexible and task-continuous
usage of cross-channel applications. The feasibility of the approach was shown
based on an industrial case study, where the implementation of context-adaptive
UIs for a cross-channel banking web application is presented. Furthermore, indus-
trial experiences resulted in positive feedback regarding the applicability and
efficiency of the approach. However, we plan to evaluate the efficiency and effec-
tiveness of the approach in more complex development scenarios. Future work
will also cover the evaluation of usability aspects for end-users of the generated
and adapted UIs as well as for the developers using the tools and languages
proposed in our approach.

References

1. Petrasch, R.: Model based user interface design: model driven architecture und
HCI patterns. In: GI Software-technik-Trends, Band 27, Heft 3, pp. 5–10 (2007)

2. Paternò, F., Santoro, C.: A logical framework for multi-device user interfaces. In:
Proceedings of the 4th ACM SIGCHI Symposium on Engineering Interactive Com-
puting Systems (EICS 2012), pp. 45–50. ACM, New York (2012)

3. Paternò, F., Santoro, C., Spano, L.D.: MARIA: a universal, declarative, multiple
abstraction-level language for service-oriented applications in ubiquitous environ-
ments. ACM Trans. Comput.-Hum. Interact. 16(4), 19 (2009)

4. Yigitbas, E., Fischer, H., Kern, T., Paelke, V.: Model-based development of adap-
tive UIs for multi-channel self-service systems. In: Sauer, S., Bogdan, C., Forbrig,
P., Bernhaupt, R., Winckler, M. (eds.) HCSE 2014. LNCS, vol. 8742, pp. 267–274.
Springer, Heidelberg (2014)

5. Lin, J., Landay, J.A.: Employing patterns and layers for early-stage design and
prototyping of cross-device user interfaces. In: Proceedings of the SIGCHI Confer-
ence on Human Factors in Computing Systems (CHI 2008), pp. 1313–1322. ACM,
New York (2008)

6. Meskens, J., Vermeulen, J., Luyten, K., Coninx, K.: Gummy for multi-platform
user interface designs: shape me, multiply me, fix me, use me. In: Proceedings of
the working conference on Advanced Visual Interfaces (AVI 2008), pp. 233–240.
ACM, New York (2008)

Engineering Context-Adaptive UIs for Cross-Channel Applications 299

7. Paternò, F., Santoro, C., Scorcia, A.: Ambient intelligence for supporting task con-
tinuity across multiple devices and implementation languages. Comput. J. 53(8),
1210–1228 (2010)

8. Ghiani, G., Paternò, F., Santoro, C.: Push and pull of web user interfaces in multi-
device environments. In: Proceedings of the International Working Conference on
Advanced Visual Interfaces (AVI 2012), pp. 10–17. ACM, New York (2012)

9. Yigitbas, E., Sauer, S., Engels, G.: A model-based framework for multi-adaptive
migratory user interfaces. In: Kurosu, M. (ed.) HCI 2015. LNCS, vol. 9170, pp.
563–572. Springer, Heidelberg (2015)

10. Nebeling, M., Mintsi, T., Husmann, M., Norrie, M.: Interactive development of
cross-device user interfaces. In: Proceedings of the SIGCHI Conference on Human
Factors in Computing Systems (CHI 2014) (2014)

11. Yang, J., Wigdor, D.: Panelrama: enabling easy specification of cross-device web
applications. In: Proceedings of the SIGCHI Conference on Human Factors in
Computing Systems (CHI 2014), pp. 2783–2792. ACM, New York (2014)

12. Hamilton, P., Wigdor, D.J.: Conductor: enabling and understanding cross-device
interaction. In: Proceedings of the SIGCHI Conference on Human Factors in Com-
puting Systems (CHI 2014), pp. 2773–2782. ACM, New York (2014)

13. Coutaz, J.: User interface plasticity: model driven engineering to the limit! In: Pro-
ceedings of the 2nd ACM SIGCHI Symposium on Engineering Interactive Com-
puting Systems, p. 18. ACM (2010)

14. Norcio, A.F., Stanley, J.: Adaptive human-computer interfaces: a literature survey
and perspective. IEEE Trans. Syst. Man Cybern. 19, 399–408 (1989)

15. Akiki, P.A., Bandara, A.K., Yijun, Y.: Adaptive model-driven user interface devel-
opment systems. ACM Comput. Surv. 47(1), 33 (2014). Article 9

16. Akiki, P.A., Bandara, A.K., Yijun, Y.: Integrating adaptive user interface capabili-
ties in enterprise applications. In: Proceedings of the 36th International Conference
on Software Engineering (ICSE 2014), pp. 712–723. ACM, New York (2014)

17. Brusilovsky, P.: Adaptive hypermedia. User Model. User-Adap. Inter. 11(1–2), 87–
110 (2001)

18. Oppermann, R.: Individualisierte Systemnutzung. In: Paul, M. (ed.) GI - 19.
Jahrestagung I. Informatik-Fachberichte, vol. 222, pp. 131–145. Springer, London
(1989)

19. Gajos, K.Z., Weld, D.S., Wobbrock, J.O.: Automatically generating personalized
user interfaces with Supple. Artif. Intell. 174(12–13), 910–950 (2010)

20. Jovanovic, M., Starcevic, D., Jovanovic, Z.: Bridging user context and design mod-
els to build adaptive user interfaces. In: Sauer, S., Bogdan, C., Forbrig, P., Bern-
haupt, R., Winckler, M. (eds.) HCSE 2014. LNCS, vol. 8742, pp. 36–56. Springer,
Heidelberg (2014)

21. Sauer, S.: Applying meta-modeling for the definition of model-driven development
methods of advanced user interfaces. In: Hussmann, H., Meixner, G., Zuehlke,
D. (eds.) MDD of Advanced User Interfaces. SCI, vol. 340, pp. 67–86. Springer,
Heidelberg (2011)

22. Kephart, J.O., Chess, D.M.: The vision of autonomic computing. Computer 36(1),
41–50 (2003)

23. Clerckx, T., Luyten, K., Coninx, K.: DynaMo-AID: a design process and a runtime
architecture for dynamic model-based user interface development. In: Feige, U.,
Roth, J. (eds.) DSV-IS 2004 and EHCI 2004. LNCS, vol. 3425, pp. 77–95. Springer,
Heidelberg (2005)

300 E. Yigitbas and S. Sauer

24. Luyten, K., Van den Bergh, J., Vandervelpen, C., Coninx, K.: Designing distributed
user interfaces for ambient intelligent environments using models and simulations.
Comput. Graph. 30(5), 702–713 (2006)

25. Limbourg, Q., Vanderdonckt, J., Michotte, B., Bouillon, L., López-Jaquero, V.:
USIXML: a language supporting multi-path development of user interfaces. In:
Feige, U., Roth, J. (eds.) DSV-IS 2004 and EHCI 2004. LNCS, vol. 3425, pp.
200–220. Springer, Heidelberg (2005)

26. Demeure, A., Calvary, G., Coninx, K.: COMET(s), A software architecture style
and an interactors toolkit for plastic user interfaces. In: Graham, T.C.N. (ed.)
DSV-IS 2008. LNCS, vol. 5136, pp. 225–237. Springer, Heidelberg (2008)

27. Ghiani, G., Manca, M., Paternò, F., Porta, C.: Beyond Responsive Design: context-
dependent multimodal augmentation of web applications. In: Awan, I., Younas, M.,
Franch, X., Quer, C. (eds.) MobiWIS 2014. LNCS, vol. 8640, pp. 71–85. Springer,
Heidelberg (2014)

UCProMo—Towards a User-Centred
Process Model

Tom Gross(&)

Human-Computer Interaction Group,
University of Bamberg, Bamberg, Germany

tom.gross@uni-bamberg.de

Abstract. The field of Software Engineering has a long tradition of developing
sophisticated process models and methods and tools for its support. At the same
time in the field of Human-Computer Interaction process models, methods, and
tools have been developed and standardised internationally. Approaches from
both fields have a lot to offer. However, despite great approaches for joining
strengths and advantages of both fields, synergies are not yet fully used. In this
paper I present the UCProMo User-Centred Process Model that provides an
integrated approach by leveraging on existing process models, methods, and
tools from both fields. UCProMo capitalises on clear phases, iteration, and
strong involvement and participation of users throughout the whole process,
which leads to integrated results and models of technology (esp. software) and
ultimately to smooth user journeys through the whole system.

Keywords: Software engineering � Human-Computer Interaction � Process
model � Methods and tools

1 Introduction

In any kind of endeavour to design and develop systems, a structured approach is
indispensable. This particularly applies to Software Engineering (SE) and Human-
Computer Interaction (HCI). Process models support a structured approach by sug-
gesting process phases and the order in which those phases should be gone through.

In SE over the last decades many great process models have been presented. The
traditional waterfall model already provided a list of steps [18]. Later, Boehm pub-
lished the famous ‘Spiral Model of Software Development and Enhancement’ in [3]. It
suggests to go through the steps in a spiral from inside out and to continually expand
the results of each phase in each circle. The Unified Process [14] has been a big leap
and seen many variations and refinements. Many other process models contributed to a
heterogeneous landscape of process models.

In HCI a parallel emergence and evolution of process models could be witnessed.
These models have many similarities with those in SE. Yet, two distinctions are that in
general in HCI the involvement of users throughout the whole process played a central
role, and the evaluation of the results with users had a high priority. For instance, the
‘Star Life Cycle’ of Hartson & Dix [10] suggested that from any phase there should be a
connection to an evaluation phase that is in the heart of the process model. The diversity

© IFIP International Federation for Information Processing 2016
Published by Springer International Publishing Switzerland 2016. All Rights Reserved
C. Bogdan et al. (Eds.): HCSE 2016/HESSD 2016, LNCS 9856, pp. 301–313, 2016.
DOI: 10.1007/978-3-319-44902-9_19

of process models within HCI, eventually led to a standard process model for the
‘Human-Centred Design of Interactive Systems’ recommended by the International
Standardisation Organisation (ISO) in the ISO 9241-210 [13].

Great contributions have been made towards combining approaches from SE and
HCI. Most prominently, Usage-Centred Design is based on the idea to use ‘abstract
models to solve concrete problems’ [8, p. 26]. It combines the HCI perspective of an
early focus on users, their tasks, and their contexts with the SE paradigm of a strong
focus on clear abstract models for analysis and design. Later, Activity Theory was
integrated into the Usage-Centred Design model to become the Human Activity
Modelling approach with better representations of human use of tools and artefacts [6].
Nunes picked up the strong orientation of actual usage or use and suggested a
use-case-driven software development approach to combine SE and HCI [17].

Despite such great approaches for joining strengths and advantages of both fields,
the potential for synergies is not yet fully used. Clearly both communities—the SE and
the HCI—have reached out mutually. For instance, agile approaches put a strong focus
on users and early on put a priority to user stories and user interfaces, etc. [1]. Yet, a
challenge that remains is that some basic paradigms in SE and HCI are not com-
mensurable. For instance, by and large in SE the perspective is abstract that leads to a
great overview by focusing on the fundamental structure and behaviour of the overall
system, and in HCI it is concrete that gives a detailed impression of the user interface
by early focusing on the user experience. These perspectives shine through—even in
combinations such as Usage-Centred Design there is a clear priority for models over
interfaces; the authors call it a ‘model-driven approach’ [8, p. 42]. Other approaches
such as the Human Activity Modelling offer a compromise of perspectives, but at the
price of losing the original expressive power of both sides (i.e., high abstraction in SE;
high concreteness in HCI).

In this paper I present the UCProMo User-Centred Process Model that provides an
integrated approach by leveraging on existing process models from SE and HCI. Using
the UCProMo model is easy and straightforward—designers and developers individ-
ually or in teams just need basic knowledge and experience in either field. Overall the
approach follows the requirements for light, agile, and lean development published
very recently in [15]. In the next section I discuss the background and related work of
process models in SE, HCI, and beyond. Then I present the UCProMo User-Centred
Process Model with its generic method-agnostic processes. A discussion and conclu-
sions summarise the contributions and glance at future work.

2 Background and Related Work

Three categories of process models are relevant to our approach—process models from
SE, from HCI, and combinations.

302 T. Gross

2.1 Process Models in SE

The field of SE has a long tradition of sophisticated process models and methods and
tools for its support. Sommerville explains: ‘the systematic approach that is used in
software engineering is sometimes called a software process. A software process is a
sequence of activities that leads to the production of a software product.’ [19, p. 9].
And he continues: ‘a software process model is a simplified representation of a soft-
ware process. […] These generic models … are abstractions of the process that can be
used to explain different approaches to software development.’ [19, p. 28].

The waterfall model and the spiral modal are important early predecessors. The
waterfall provided a detailed list of steps everybody should follow: system require-
ments; software requirements; analysis; program design; coding; testing; operation. It
foresaw small iterations [18]. Its fundamental contribution was to lay out basic steps
that are still relevant today. Later, Boehm published the ‘Spiral Model of Software
Development and Enhancement’ [3]. It suggests to go through the steps in a spiral—
inside out—and to continually expand the results of each phase in each cycle. The very
important take away message—that is still important today—is to iterate and especially
to continually re-evaluate the results.

More recently, the Unified Process was suggested as a ‘set of activities needed to
transform a user’s requirements into a software system’ [14, p. 4]. It is use-case driven
(i.e., it departs from users and functionality for them); architecture-centric (i.e., all static
and dynamic aspects of the system to be built); and iterative-incremental (i.e., it
‘divides the work into smaller slices or mini-projects.’ [14, p. 7]). Each cycle has four
phases: inception (i.e., development of ideas), elaboration (i.e., specification of use
cases and design of system architecture, construction (i.e., development of the system),
and transition (i.e., movement from development via first beta-tests towards deploy-
ment). Orthogonal to the phases the Unified Process defines five core workflows.
Requirements mainly fall into inception and elaboration; analysis mainly into elabo-
ration; design between elaboration and construction; implementation into construction;
and test between construction and transition [14]. The Unified Process was probably
the biggest leap towards systematically including users and users’ needs and require-
ments. Since then many variations and refinements were suggested—a very
wide-spread being the Rational Unified Process by Kruchten [16].

2.2 Process Models in HCI

In HCI many process models have been suggested. Despite the fact that the basic goal
and also some basic steps are the same as in SE there are quite some differences.

For many years the HCI community has been using a standard process model with
the title ‘Human-Centred Design of Interactive Systems’. It is now part of the ISO 9241
on Ergonomics of Human-System Interaction in the part ISO 9241-210 Human-Centred
Design Processes for Interactive Systems [13] (formerly it was published in ISO
13407:1999 [12]). Its processes are: identification of the need for human-centred design;
understanding and specification of the context of use; specification of the user and
organisational requirements; production of the design solutions; and evaluation of the
design against the requirements.

UCProMo––Towards a User-Centred Process Model 303

Also Unified Reference Frameworks have been developed to facilitate the process
of developing user-centred systems by abstracting from hardware properties in abstract
user interfaces [4]. And, Contextual Design offers a process model that has a strong
focus on understanding users activities and requirements in the context where the users
are using the system [11].

2.3 Process Models that Combine SE and HCI

Out of the approaches that combine process models from SE and HCI the
Usage-Centred Design and the Human Activity Design have been most influential to
our approach.

The Usage-Centred Design (UCD) draws from the Unified Process and combines it
with principles from HCI. Like the Unified Process it is based on models; it uses
‘abstract models to solve concrete problems’ [8, p. 26]. Whereas the Unified Process
suggests models that roughly correspond to its core workflows (i.e., a use-case model;
an analysis model; a design model; a deployment model; an implementation model;
and a test model), the UCD has three simple models at its core: the role model
representing the relationships between users and the system; the task model showing
the structure of the tasks that users need to perform; and the content model laying out
the functionality of the user interface. Through the focus on these three principal
models UCD aims to move away from an early focus on concrete users and concrete
user interface designs that often prevail in HCI.

In the later Human Activity Modelling (HAM) [6] Constantine extended his UCD
with Activity Theory. The cornerstones are activities, which are basically seen as a
collective endeavour in which a community of participants transforms a material into
an object. This community of participants uses tools and applies rules and division of
labour to organise itself. HAM has three principal models: the activity context model
that did not exist in UCD represents human activities; the participation model is an
adaptation of the role model and describes user roles, yet now including the context of
the activities in which they occur; and the performance model is based on the previous
task model and contains user actions targeted at either other users or artefacts.

2.4 Summary of Background and Related Work

Overall the gap between both fields has not been fully bridged. As we have seen—
despite the great progress in process models in SE and in HCI as well as stimulating
combinations of SE and HCI approaches in the UCD and HAM—an integrated
approach that leverages on the expressive power of both SE and HCI and can be
flexibly applied by designers and developers of software with any knowledge and
experience is still missing.

The related work also shows that some terms are not used consistently, which can
be misleading—especially with respect to clearly distinguishing users and developers.
For instance, as we have seen in the quotes above, the term activity has been used in the
literature to refer to both, the things that developers are doing to develop concepts and

304 T. Gross

systems and the things that users are doing with the system. In order to disambiguate
terms this paper uses the following: a process refers to the whole endeavour of
developing a system from the beginning to the end and independently of the path that is
taken. A phase refers to a distinct and significant part of the process. Iteration refers to
one cycle of steps that can be repeated eventually. The terms task, activity, and action
are only used for user interaction with the system.

3 The UCProMo User-Centred Process Model

In the this section I present the UCProMo User-Centred Process Model with its generic
method-agnostic phases. The related work above provides great stimuli for our process
model. It leads to the following requirements for our process model that can be seen as
an aggregated summary of the different advantages and strengths:

• Phases should be clearly defined and have definite beginnings and endings while at
the same time allow flexible coupling, feedback and feedforward to other phases for
an iterative as well as incremental process.

• Abstract modelling that allows keeping the complete system in focus should be
combined with concrete users, user requirements and needs, and designs.

• Heterogeneous approaches and results throughout analysis and exploration, speci-
fication, design and development, and testing should be supported.

• There should be a clear paradigm of analysis (i.e., modelling the status quo) on the
one hand and design (i.e., modelling the future system) on the other. At the same
time analysis and design should go hand in hand; and appropriate redesign should
always be possible (i.e., this is in contrast to UCD and HAM where tasks are
primarily analysed and modelled rather than (re-)designed).

Subsequently I introduce the core phases of the UCProMo User-Centred Process
Model.

3.1 Plan the Human-Centred Design Process

Before the actual phases of the human-centred design process (HCD) can start, all parts
of the project need to be planned and time and resources need to be allocated. This can
be seen as phase zero of the process. At the beginning it should be clarified how
usability is addressed throughout the whole process. The ISO 9241-210 recommends:
to analyse ‘how usability relates to the purpose and use of the product, system or
service (e.g., size, number of users, relationship with other systems, safety or health
issues, accessibility, specialist application, extreme environments); and to estimate how
bad usability might negatively influence the project by analysing ‘the levels of the
various types of risk that might result from poor usability (e.g., financial, poor product
differentiation, safety, required level of usability, acceptance)’; and finally, to be clear
about the general conditions of the project in the sense of the ‘nature of the devel-
opment environment (e.g., size of project, time to market, range of technologies,
internal or external project, type of contract)’ [13, p. 8].

UCProMo––Towards a User-Centred Process Model 305

3.2 Understand and Define Users, Tasks, and Contexts

After the project planning the first real phase aims at understanding and specifying
users, tasks, and contexts. The best way to do that is to go through the following steps:
produce an inventory of all items; describe a profile of the most central characteristics
for each item; and chart a map of the structure and relationships among all items.

The user model consists of the user inventory; user profiles; and a user map.
The user inventory contains the

essential roles (e.g., author of a book),
and role characteristics (e.g., expecta-
tions, responsibilities), as well as the
essential user characteristics that have an
influence on how they play their role
(e.g., knowledge, skills, experience). For
the user profiles it is advisable to iden-
tify permutations of common essential
user roles and user characteristics and
generate profile descriptions for them
(e.g., author of a book with limited
technical knowledge). The user map is a
chart consisting of a node as a stan-
dardised labelled icon for each individual user profile and links as lines representing
connections between them. In the basic form simple links are used, if needed, links can
have types and directions to represent specific relationships among users (e.g.,
a hierarchy). If more semantics are preferable, further details can be added to the nodes
representing central characteristics visually (i.e., an active role which actively partici-
pates vs. a focal role which is mandatory vs. a passive role of audience who passively
participates). Figure 1 shows a simple example of a user map.

The task model consists of a task inventory; task profiles; and a task map. The task
inventory is a collection of all essential tasks, where each task consists of events and
processes that are clustered together and have a logical sequence (e.g., invite co-author
for writing book together). Very often tasks are nested and a hierarchical decomposition
helps for gaining a better understanding. Tasks are comparable to use-cases in SE, and to
scenarios in HCI in that they also represent and structure the users’ activities. Each task
profile contains a structured description of a sequence of user activities that is free of
technical details. The task map is—like the user map—a chart that puts the essential
individual tasks into perspective and in relation to each other. Since for large systems
task maps can get quite complex, it is very important from the beginning to focus on
essential tasks that are of vital interest to the users as well as the project team. In analogy
to user maps, in the simplest form, the task map provides a simple, yet informative,
overview containing a node as a standardised labelled box for each task and links as
lines showing connections between them. To add more semantics links can be typed
(e.g., showing temporality, specialisation, extension, or composition). Figure 2 shows a
simple task map.

Fig. 1. UCProMo User Map example.

306 T. Gross

The context model consists of a context inventory; context profiles; and a context
map. Here a context is defined as: ‘the interrelated (i.e. some kind of continuity in the
broadest sense) conditions (i.e. circumstances such as time and location) in which
something (e.g. a user, a group, an artefact) exists (e.g. presence of a user) or occurs
(e.g. an action performed by a human or machine)’ [9, p. 286]. The context inventory
brings together all contexts in which users perform their tasks. Furthermore, mobile use
needs to be considered when analysing the context. The context profiles should for each
context or trajectory identify all information relevant to the user performing the
respective task. A profile should include the technical (e.g., hardware, software, net-
work connectivity), the physical (e.g., noise, thermal conditions, vibration, space and
furniture), the organisational (e.g., work practices, assistance, interruptions), and the
social environment (e.g., other persons in the same room). The context map—analo-
gous to the user map and the task map—provides a visual overview of all contexts and
their relations. It shows individual contexts as nodes in labelled boxes and links
between contexts as simple lines. Again, in the basic form the context map includes all
contexts and their connections; in more detailed versions the links represent the rela-
tionships between contexts—contexts can have temporal relations (e.g., followed-by)
and can be nested (e.g., contains vs. part-of).

3.3 Specify System Requirements

This phase also defines a core model—the integration model. Despite the similarities
and overlaps with the models that define users, tasks, and contexts there is one essential
difference regarding the attitude with which the model is created in this phase: whereas
in the previous phase the models have pure analytical purposes and document the
state-of-the art, the model of this phase is design-oriented and anticipates, specifies, and
defines future aspects of the system and related issues.

The integration model provides a hierarchical description of the task that users can
perform with the future system, where activities are interactions with the system
towards solving specific problems and with a purpose. Activities are composed of
actions, and actions are composed of operations. For instance, an activity could be to

Fig. 2. UCProMo Task Map example.

UCProMo––Towards a User-Centred Process Model 307

write an email, where a specific action could be to add a recipient, which is done
operationally by selecting an entry from the address-book and adding it to the ‘To:’
field of the email program. The integration model consists of integration profiles and an
integration map; and it is complemented by the performance map. The integration
profiles specify the design of future activities the system should support and aim to
inform interaction design. They consist of four parts: purpose describes the motive and
objective of the respective activity; place and time describe the context of the activity
in terms of time and location it takes place; participation describes the user roles (and
characteristics) involved in the activity; and performance provides details how the
activity is performed. The integration map is a complex chart that not only builds on
and integrates the user map, task map, and context map from the previous phase, but
also moves from a presentation of the state-of-the-art to an anticipation and specifi-
cation of the future system. It consists of different categories of nodes representing
users with activity levels, roles, centrality; and tasks that are clustered into contexts.
Figure 3 shows an example of an integration map (please note that the symbols for
boundary, control, and entity class resemble to the extensions of the graphical notation
of UML by [14, p. 439]).

The performance map goes beyond the task map and is also design-oriented rather
than analysis-oriented. In the simple version the performance map includes nodes as
standardised labelled boxes representing activities and links as untyped connections
between the nodes. The basic model can be extended by tasks—so for each decom-
posable activity all contained tasks are drawn into the model. This provides more
information on the users’ interaction with the system. Figure 4 shows a generic
example of a performance map.

Co-Author

Author

Editor

Reader

GroupTextEditor

TextReader

TextManipulationControl

TextReadingControl

Document

Boundary Class Entity ClassControl Class

TextProduction

TextConsumption

Fig. 3. UCProMo Integration Map example with a text production context (top) and a text
consumption context (bottom).

308 T. Gross

3.4 Design User Tasks, and User Interactions

The tasks designs and interactions designs should—given they were carefully specified
—logically follow from the previous models. Theoretically task designs describe how
the users will accomplish their tasks with the system, whereas interaction designs
illustrate how the tasks will exactly be performed with the future system. With the aim
of remaining generic in the UCProMo process model (i.e., not diving into concrete
screen designs, etc.) the two perspectives are combined into one unified interaction
space model. This model describes the interaction between the users and the system in
the form of summaries of the abstract path the users can take through the system. It
consists of interaction space profiles, and an interaction space map.

The interaction space profiles contain abstract, yet detailed, information on indi-
vidual interfaces in terms of its information contents and interaction components for
user input. It is important to note that the interaction space profiles initially do not need
to have any visual representation (e.g., showing the proportions of the different parts of
the user interface). Interaction space profiles resemble essential use cases of
Usage-Centred Design [7]. However, approaches such as Usage-Centred Design [7]
and Contextual Design [11] often proceed in a bottom-up manner—that is, depart from
individual cases and aggregate them. The UCProMo suggests a hybrid approach, where
the interaction space profiles and map are developed in sync having the user journey or
customer journey in mind. This is important for many reasons—such as for consistency
in similar interaction types among individual profiles.

The interaction space map has nodes as standardised labelled boxes for each
interaction space as well as links as lines representing connections of interaction spaces.
The connections between the interaction spaces are navigation paths that the users can
follow when using the system. This map provides a general overview of the interaction
space landscape, and additionally serves as a tool to judge and optimise the breadth and

Fig. 4. UCProMo Performance Map example.

UCProMo––Towards a User-Centred Process Model 309

depth of the user interaction. In
fact, when designing the interac-
tion space model there is a
trade-off between having simple
interaction spaces with few ele-
ments (and consequently a high
number of interaction spaces to
cover the whole functionality) and
having complex interaction spaces
with many elements (and conse-
quently fewer interaction spaces
and less navigation effort for the
users). Figure 5 shows an excerpt
of an interaction space map.

3.5 Develop the System

The actual implementation and test of the system are core activities in each process
model—both in terms of their importance for the overall success of the project, and in
terms of the money, time, and other resources spent in this phase in comparison to the
other phases.

Still, the actual implementation is in many process models only briefly covered.
This probably has several reasons, one of which being that it is a rather practical
endeavour and a completely different terrain. As Jacobson et al. write in their book on
‘The Unified Software Development Process’ in the introduction to their chapter on
‘Implementation’: ‘Fortunately, most of the system’s architecture is captured during
design. The primary purpose of implementation is to flesh out the architecture and the
system as a whole.’ [14, p. 267].

3.6 Evaluate the System

The evaluation of the system from a HCD perspective in general (besides expert
evaluations and simulations) involves direct contact with users—typically presenting
them some results and getting feedback. These results do not only refer to the final
product, but also to any result that is generated throughout the process—particularly
including the different models that can and should be verified with users.

ISO has clear recommendations on how evaluations should be done. They should
include adequate allocation of resources to evaluation; early planning of evaluation;
enough testing and analysing of the results and eventually prioritising the reactions
triggered by the results; and appropriate communication with all stakeholders
involved [13].

As a matter of fact user evaluation is also a vital part of the overall software testing
that is very important for any kind of software (and hardware) project. From this
perspective the software test has two goals [19]: to show that the software successfully

Fig. 5. UCProMo Interaction Space Map excerpt.

310 T. Gross

fulfils all requirements; and to eventually find problems which can then be solved. It is
important to note what Sommerville—quoting Dykstra—points out: ‘Testing can only
show the presence of errors, not their absence’ [19, p. 206]. Likewise user evaluation
can only proof the effectiveness (degree to which the users reach their goal), efficiency
(effort that is required to reach the goal), and satisfaction (comfort and pleasure when
using the system) of the current users, and only assume that the same holds true for
future user populations.

3.7 Deploy the System

The final phase after a successful evaluation is Deploy the System. A successful
evaluation can happen already in the first iteration, or in later iterations, and at least
theoretically it could also be possible that it never happens but that the system is still
rolled out. This phase is beyond the scope of this paper.

4 Discussion and Conclusions

In this paper I motivated the need for an integrated process model leveraging on both
SE and HCI processes. I introduced the generic UCProMo User-Centred Process
Model with its phases and models that can be easily followed and produced by
designers and developers without an SE or HCI background.

UCProMo supports clearly defined phases and iterative and incremental feedfor-
ward and feedback cycles. It combines abstract modelling from SE with concrete user
experience design from HCI. And it supports the whole range of activities from
analysis and exploration to specification to design and development and testing.
Finally, it is lean and lightweight but at the same time has built-in redundancy between
analysis and design—that is, it documents the state-of-the-art in user, task, and context
models for analysis; and it generates an integration model (i.e., integration map and
performance map) as abstract representation of the statics and dynamics of the future
system and the interaction space map as concrete design of the interaction with the
future system.

It is on purpose that the interaction spaces and the interaction space map in the
design phase resemble use-cases that are in many process models very early in the
analysis phase. Indeed, human-centred analysis and design should not take for granted
and analyse the activities as they are and build a system around them, but rather it
should creatively reflect current practice and—together with the users—eventually
redesign activities where appropriate. An example of theory-based creative modelling
is [2], where the authors depart from a framework of social interaction from social
science as input for their models.

The fact that UCProMo aims at rapid modelling should not be confused with other
approaches with similar goals. For instance, agile modelling by Ambler has great
suggestions on how to apply existing UML models and notations in a lean way [1]. The
UCProMo, however, suggests generic models that complement existing UML models
and notations.

UCProMo––Towards a User-Centred Process Model 311

Finally, I did not have the space to address basic principles that apply to many areas
of design likewise. For instance, Cockton has suggested ‘meta-principles for any design
process: receptiveness, expressivity, committedness, credibility, inclusiveness, and
improvability’ [5, p. 2223].

While the process model leverages on fantastic input from great existing work in
HCI and SE, it still would benefit from a proper validation. In the future it should be
applied to human-centred software engineering projects to get feedback of designers
and developers.

Acknowledgements. I would like to thank all members of the Cooperative Media Lab in
Bamberg as well as the colleagues from the Madeira Interactive Technologies Institute for
inspiring discussions. Thanks to the anonymous reviewers for great feedback.

References

1. Ambler, S.: Agile Modelling: Effective Practices for eXtreme Programming and the Unified
Process. Wiley, New York (2002)

2. Beckmann, C., Gross, T.: Social computing–bridging the gap between the social and the
technical. In: Meiselwitz, G. (ed.) SCSM 2014. LNCS, vol. 8531, pp. 25–36. Springer,
Heidelberg (2014)

3. Boehm, B.W.: A spiral model of software development and enhancement. IEEE Comput.
21(5), 61–72 (1988)

4. Calvary, G., Coutaz, J., Thevenin, D., Limbourg, Q., Bouillon, L., Vanderdonckt, J.: A
unifying reference framework for multi-target user interfaces. Interact. Comput. 15(3),
291–315 (2003)

5. Cockton, G.: Getting there: six meta-principles and interaction design. In: Proceedings of the
Conference on Human Factors in Computing Systems - CHI 2009, pp. 2223–2232. ACM,
New York (2009)

6. Constantine, L.L.: Human activity modelling: towards a pragmatic integration of activity
theory and usage-centred design. In: Seffah, A., Vanderdonckt, J., Desmarais, M.C. (eds.)
Human-Centred Software Engineering: Software Engineering Models, Patterns, and
Architectures for HCI, pp. 27–51. Springer, Heidelberg (2009)

7. Constantine, L.L., Lockwood, L.A.D.: Software For Use: A Practical Guide to the Models
and Methods of Usage-Centred Design. Addison-Wesley, Reading (1999)

8. Constantine, L.L., Lockwood, L.A.D.: Usage-centred engineering for web applications.
IEEE Softw. 19(2), 42–50 (2002)

9. Gross, T., Prinz, W.: Modelling shared contexts in cooperative environments: concept,
implementation, and evaluation. Comput. Support. Coop. Work: J. Collaborative Comput.
13(3–4), 283–303 (2004)

10. Hartson, H.R., Hix, D.: Human-computer interaction development: concepts and systems for
its management. ACM Comput. Surv. 21(1), 5–92 (1989)

11. Holtzblatt, K., Beyer, H.R.: Contextual design. In: Soegaard, M., Dam, R.F. (eds.) The
Encyclopedia of Human-Computer Interaction, 2nd edn. The Interaction Design Foundation,
Aarhus (2016)

12. ISO. ISO 13407: 1999 - Human-Centred Design Processes for Interactive Systems.
ISO - International Organisation for Standardisation

312 T. Gross

13. ISO/IEC. ISO 9241-210:2010: Ergonomics of Human-System Interaction - Part 210: Human-
Centred Design for Interactive Systems. International Organization for Standardization

14. Jacobson, I., Booch, G., Rumbaugh, J.: The Unified Software Development Process.
Addison-Wesley, Reading (1998)

15. Jacobson, I., Spence, I., Kerr, B.: Use-case 2.0. Commun. ACM 59(5), 61–69 (2016)
16. Kruchten, P.B.: The Rational Unified Process: An Introduction. Addison-Wesley, New York

(2003)
17. Nunes, N.J.: What drives software development: bridging the gap between software and

usability engineering. In: Seffah, A., Vanderdonckt, J., Desmarais, M.C. (eds.) Human-
Centred Software Engineering: Software Engineering Models, Patterns, and Architectures
for HCI, pp. 9–25. Springer, Heidelberg (2009)

18. Royce, W.W.: Managing the development of large software systems. In: Proceedings of the
Ninth International Conference on Software Engineering – ICSE 1987, pp. 328–338. IEEE
Computer Society Press, Los Alamitos (1987). Reprint from 1970

19. Sommerville, I.: Software Engineering 9. Pearson Education Limited, Harlow (2011)

UCProMo––Towards a User-Centred Process Model 313

Using and Adopting Tools

Collaborative Task Modelling on the Web

Marco Manca(✉), Fabio Paternò, and Carmen Santoro

CNR-ISTI, HIIS Laboratory, Via Moruzzi 1, 56124 Pisa, Italy
{marco.manca,fabio.paterno,carmen.santoro}@isti.cnr.it

Abstract. Task modelling is a widely recognized activity when designing inter‐
active applications. In this perspective, it is the meeting point between various
stakeholders. However, most of the automatic environments that currently allow
task modelling only support single users, thus limiting the possible interactions
and discussions amongst them. In this paper we present Collaborative CTT, a new
Web-based multi-user tool for specifying task models. The tool allows several
users, who may even be physically separated, to work on the same model at the
same or different time. Among its features, the tool includes mechanisms specific
for this type of HCI modelling in order to support coordination, communication
and mutual awareness among participants. We discuss the aspects we have
addressed in designing the task modelling tool, its main collaborative features,
and also report on user feedback gathered through formative tests.

Keywords: Task models · Collaborative modelling · Responsive Web

1 Introduction

Task modelling is a useful method for various activities in the user interface design and
development process. It helps to better understand the application domain, record the
results of interdisciplinary discussions, support user interface design, usability evalua‐
tion, and documentation. The nature of task modelling as a multi-disciplinary process
is widely accepted: in order to properly carry out task modelling it is important to involve
various experts, stakeholders, designers and users. In addition, with the increasing need
for collaboration among stakeholders, and also the need to reduce costs, which often
forces teams to collaborate also from different locations, it is becoming increasingly
important to create a shared understanding and joint representations of the interactive
systems being designed. As a consequence, enabling interactive collaborative modelling
in this area can prove to be valuable as it could make collaborations more effective and
productive. For instance, in some situations it might be interesting for UI designers to
carry out the modelling work together with users at the same time but from different
locations, or it would be interesting for the members of the same design team to be able
to carry out the modelling activity in a collaborative manner. Unfortunately, most of the
tools that support task modelling only allow for single users, and they do not enable
various users to share the task models and collaboratively edit them. Thus, we judged
it interesting to investigate the opportunities offered by a multi-user, collaborative, Web-
based task modelling tool.

© IFIP International Federation for Information Processing 2016
Published by Springer International Publishing Switzerland 2016. All Rights Reserved
C. Bogdan et al. (Eds.): HCSE 2016/HESSD 2016, LNCS 9856, pp. 317–334, 2016.
DOI: 10.1007/978-3-319-44902-9_20

In particular, the main goals of this work are to design a tool able to:

• Support a shared view of task models across various devices and associated users;
• Support concurrent editing of task models by multiple users;
• Provide mechanisms to synchronize editing of some parts of the task models;
• Provide mechanisms to create mutual awareness of the concurrent activities in the

modelling process.

To these ends, we have opted for a responsive Web-based implementation because
this would facilitate its adoption given its wide interoperability across various devices,
and we have adopted the ConcurTaskTrees (CTT) notation [19] since it is widely known
in the task modelling community.

In the paper after reviewing the state of the art, we introduce some scenarios that
have motivated our work; next we discuss how we have designed the features that
support the collaboration in editing the task model, describe how it has been imple‐
mented, and report on two user tests. Lastly, we draw some conclusions and provide
indications about future work.

2 State of the Art

Collaborative modelling has received some attention in some domains. For example,
Collaborative Protégé and WebProtégé [12] are extensions of the existing Protégé
(http://protege.stanford.edu), also enabling collaborative ontology editing. Support in
this direction is also provided by some commercial tools. For example, VPository (from
Visual Paradigm, http://www.vpository.com/) offers a central repository for storing
user’s software design projects with version control capabilities and, in this regard, it is
far from providing the support offered by a truly collaborative environment. In [18] a
review of tools that support collaborative processes for creation of various forms of
structured knowledge was presented. However, we note that little attention has been
paid to collaborative modelling support in HCI so far.

Before analysing this aspect more closely, it can be useful to highlight the difference
between tools for collaborative task modelling, and tools supporting task modelling of
collaborative applications. The first case is the one which we address in this paper, i.e.
we analyse tools enabling users to jointly create a model in remote or co-located places
(e.g. collocated groups of designers in a room, team members in distant places), in a
synchronous or asynchronous manner. In the second case, the focus is on tools allowing
designers to model systems where multiple users act in a collaborative manner. So, in
the first case the multi-user dimension concerns the users of the modelling tool, in the
second case it regards the users of the application to design.

On the one hand, the latter case (tools supporting task modelling of collaborative
applications) has been the subject of several contributions. Indeed, proposed notations
for modelling multi-user applications include: the COMM (COlaborative and Multi‐
Modal) notation and its on-line editor for specifying multi-user multimodal interactive
systems [13]; CTML [3, 26], a task-based specification framework for collaborative
environments, consisting of a language and a tool for editing/animating CTML models;

318 M. Manca et al.

http://protege.stanford.edu
http://www.vpository.com/

CUA (Collaboration Usability Analysis) [22], a modelling technique allowing designers
to model the main features of a group work situation that will affect groupware usability.
Other proposals along the same lines have been put forward by Penichet et al. [21], van
der Veer et al. [25], Guerrero-Garcia et al. [8], Giraldo et al. [9], Molina et al. [15, 16].
On the other hand, little has been proposed for collaborative task modelling tools. Even
recent proposals [1] have addressed the issue of adapting to various device types but not
collaborative aspects. Some basic support for collaboration during task modelling has
been provided in tools such as HAMSTERS [14] and CTTE [17], which enable users to
re-use fragments of task models (even created by other users) within their own task
model specifications. However, our goal is to provide a truly collaborative tool in which
users actually share the same model, which they can collaboratively modify even at the
same time.

A literature review of approaches in the area of collaborative modelling, although
not specifically focused on task modelling is in [23], other proposals still in the same
area are [10, 24]. Some degree of collaborative support is provided by FlexiLab [11], a
UI multi-model editor for HCI implemented as a Web-based application. It mainly
supports the possibility of interactively sending fragments of the model from one user
to another. This allows several designers to work on separate fragments of the same
model, which is especially useful when dealing with large models. While FlexiLab
provides some level of collaboration and communication support, our proposal
addresses the concurrent editing of the same model by multiple users with multiple
devices, which implies additional features also for mutual awareness and coordination
(e.g. sharing focus, locking a task for editing).

In this area, one relevant experience to mention is SPACE-DESIGN [2, 5], which is
a synchronous, generic (i.e. domain independent) collaborative modelling tool, which
is extensible and also reconfigurable for a specific domain. SPACE-DESIGN has been
used for task modelling through the CTT notation [4]: starting with a CTT specification,
the tool adapts its UI to provide some collaborative support for modelling with this
notation by including widgets for awareness, communication and coordination. Such
paper also reports on a user test that indicates that a generic collaborative modelling tool
has advantages in comparison to the use of a single-user tool (such as CTTE) combined
with a shared window system such as NetMeeting, especially in regards to the awareness
mechanisms offered. The test indicated that when using SPACE-DESIGN, fewer situa‐
tions of conflict occurred with respect to the alternative setting (CTTE + NetMeeting).
While we agree on the fact that the collaborative modelling approach is a more suitable
solution, we note that SPACE-DESIGN was able to support only a limited number of
basic modelling functionalities (e.g. create, read, update and delete models).

Another relevant experience has been Quill [6, 7], a Web-based development envi‐
ronment that aimed to enable various stakeholders of a Web application to collabora‐
tively adopt a model-based UI design. Quill attempted to support several users to
concurrently participate in a common work project in a distributed fashion with live
updates. In Quill each user has a specific role (junior or senior), which provides access
to specific features of the application. Quill also has a revision control mechanism by
which the changes suggested by juniors are passed for review to the senior who has the
responsibility for committing them. Similarly to Quill, the results of Collaborative CTT

Collaborative Task Modelling on the Web 319

can be included in a comprehensive MBUI-development framework (such as MARIAE
[20]). However, in our case the mechanism for deciding the changes is more flexible
since rights can be assigned dynamically and not statically to the users. Overall, we can
conclude that our proposal addresses an area still underexplored concerning the possi‐
bility of supporting collaboration in task modelling.

3 Target Scenarios

The design of the tool has been driven by some scenarios that we briefly describe in this
section and are based on our experience in teaching task modelling and in research
projects in which task modelling has been used.

Educational use in the classroom. In our experience teaching how to create and modify
a task model may not be trivial. Once the conceptual aspects have been introduced and
studied there is a strong need to do some concrete exercise to better understand how to
apply in practise the concepts. An effective exercise is to develop the task model together
(teacher and students) in a laboratory in which all students have their own computer (it
can be a PC or a tablet or a smartphone). The teacher can start the modelling to show
how to approach the associated issues and the students can see the results directly in
their devices, while at the same time they can browse the model in order to analyse its
features without immediately make any change. At some point the teacher may want to
highlight some parts of the model and so impose his/her view on all the devices, centred
on the selected part. Once students start to be familiar with the modelling activity it can
be useful to gradually allow them to directly carry it out. A good exercise is to make
some extension or some modification to the model in the class exercise given that
creating a task model from scratch may still be premature. Thus, the teacher may want
to ask specific student(s) to detail how a high level task should be carried out or perform
some modification on a part of the model developed. This implies the need to assign the
possibility of editing the shared model to a specific student and make it possible that her
modifications are updated in the teacher and other students views.

A workgroup aiming at designing an application. An example of sector in which CTT
has been often applied is the air traffic control domain1 in which the design decisions
need to be carefully analysed in order to prevent human errors that can even threaten
human life. In designing such applications it is important to involve all the relevant
stakeholders, such as the air traffic controllers, the application developers, the experts
in the relevant regulations. When such groups are in the same room (same place/same
time) their discussion could be more effective with a collaborative modelling tool. Thus,
they could start the discussion with the task model developed by one of them, and the
others can point issues associated with some design decisions using a shared focus, and
more clearly indicate alternative ways to accomplish some tasks by directly editing the
shared model.

1 https://www.eurocontrol.int/ehp/?q=node/1617.

320 M. Manca et al.

https://www.eurocontrol.int/ehp/?q=node/1617

Distributed synchronous workgroup (different places/same time). For various reasons
the meetings amongst the various stakeholders in the same room are not always possible.
Thus, it is useful to support the possibility of collaboratively editing the task model
remotely. In this case there is a need for additional tools that support the communication
among the participants (e.g. a chat), to have a precise indications of what editing has
been made by each involved participant (e.g. a shared log) and to have dynamic feedback
on what the other users are doing.

Distributed asynchronous workgroup (different place/different time). In some cases it
is not even possible to arrange a remote meeting because of work constraints. Thus, it
is still useful to have the possibility of sharing a model, which can be eased by some
cloud support, and facilitate its collaborative editing. In this way when one participant
accesses the shared model s/he can work on the modifications carried out by the others.
There can be some different opinions regarding how to design some parts, thus it is still
important on the one hand to give all participants the possibility of proposing and
discussing their solutions, and on the other hand to make a final decision, which can be
taken by the moderator or through a vote.

4 The Design of the Collaborative Features

In this section we describe how we addressed the requirements raised by the target
scenarios in the proposed tool.

4.1 Roles and Access Rights in Handling Task Models

In terms of roles we have adopted a solution in which there is a ‘Moderator’ who is the
user who starts the collaborative session and invites the other participants (‘Collabora‐
tive Users’). The latter can have various ways to participate, which are defined by their
assigned access rights.

Such rights/authorizations are related to the ability to modify the model, invite further
participants, and/or the possibility to assign the shared focus to other members.

Thus, all users can read the models (e.g. visualise, navigate, etc.), but only those who
have received the corresponding rights can modify them (a locking mechanism is
provided in order to avoid that the models get inconsistent states due to e.g. simultaneous
changes).

The environment supports dynamic groups, thus users can be added or leave the
collaborative session at any time.

4.2 Enhancing Mutual Awareness Among Users

Users can independently browse the task model. When they set the focus on one task
then their personal view is adapted in such a way to centre the entire model around
that task. Figure 1 shows an example in which two users have different focuses on
the same model at the same time, and thus receive different views of it. One user has

Collaborative Task Modelling on the Web 321

the focus on the EnableAccess task while the other on WithDrawCash. The red
circles in Fig. 1 indicate the number of task that are not visualized because they are
out of the screen area.

Fig. 1. Example of multiple views of the same task model (Color figure online)

Figure 1 refers to the initial version of the application. In the second version, we
added some cues for enabling users be aware of which task the other users are
currently focusing on. The various local focus of the other users are represented through
small circles shown near the correspondent tasks, to highlight the part of the model that
is being considered at that time by the other users. The circles have different colors (each
colour is associated to a different user) and contain the initial letters of the name of the
corresponding user (see Fig. 2).

Fig. 2. Task models annotated with representations of the local focus of the other users

In addition, each user has an event logger panel (see Fig. 3 bottom-left part), listing
in temporal order all the actions carried out by each user while collaboratively working
on a task model. For each action it indicates a timestamp, the user who carried it out,
the type of action (e.g. lock, unlock, edit, set shared focus, update temporal operator),
and the task(s) involved. The logger considers actions carried out even at different times

322 M. Manca et al.

by different groups of users on the model. It is worth noting that, in the second version
of the tool, we decided not visualising anymore the lock/unlock events generated when
an authorised user performs a model modification, in order to avoid too long lists of
events. Indeed, the lock/unlock events are very frequent and in any case a graphical
feedback is provided to users in the main area of the application to highlight the occur‐
rence of such events.

Fig. 3. Example of task modification in Collaborative CTT.

4.3 Coordination Between Users Collaboratively Handling a Task Model

One further issue addressed in this work has been how to design flexible collaborative
editing while supporting an efficient and coordinated way to work. This has been
addressed by considering the typical hierarchical structure of task models. In order to
support flexibility, users are for example allowed to change at the same time parts of the
tree-like task model structure that are independent each other, which means that there
is no intersection between the subtrees currently modified by the users. Indeed, modi‐
fying a task can involve different types of possible changes, e.g. the user can delete the
task and some/all of its children, change name, type, category, associated platforms,
specify whether the task is iterative or optional, modify its description, associated objects
and pre/post-conditions, if any. In order to coordinate the editing work, when a user is
modifying a task, that task and its subtasks (in practise the subtree having as its root the
task currently edited) are ‘locked’ to avoid concurrent changes on that part of the task
model by other users at the same time. When this locking mechanism occurs, all the
other users participating in the collaborative session receive a notification of the lock,
and the locked task will be highlighted in red in their view of the task model so that they
are aware that it will not be possible to edit it (see Fig. 3) anymore until the other user
unlocks it. When a user locks a task, a timeout is set so that if the lock is not released

Collaborative Task Modelling on the Web 323

within the defined time interval then the system performs an automatic procedure to
release all the locked tasks.

In particular, Fig. 3 shows the user interface of Collaborative CTT (initial version)
while modelling an ATM (Automated Teller Machine) system. As you can see, the
logger panel, the voting system and the chat are located in the bottom part of the user
interface and can be hidden when more screen area is necessary to edit the model. There
are two users: John (on the left side), and Bill (on the right side). On the left side John
selected the Access task and started editing it: in this way he locked the selected task
and all its subtasks. This event is communicated to the server-side part of the environ‐
ment, which updates the model and sends this information to all clients involved in the
collaborative session. Each connected client receives the lock information and auto‐
matically updates the interface by adding a red background to the sub-tree locked (see
Bill’s view in Fig. 3). When the tasks are locked other users cannot edit them.

When the editing is finished the locked tasks are released and all users are notified
of the unlock operation. Moreover, users will also be notified of the changes in the task
attributes in a temporary banner shown in the top area and in the event console log, if a
new task has been added (the new task is highlighted with a blue background in the other
users’ view) or if a task (and its subtasks) is deleted. The user who plays the role of
moderator also has the possibility to reject modifications carried out by other users when
s/he deems them inappropriate.

The rationale behind how we have designed the locking was rooted in the hierarchical
nature of the task model specification. Since a high-level task is described hierarchically
in terms of its sub-tasks, by locking the entire sub-tree we aim to prevent two users
editing parts that are semantically tightly connected simultaneously.

In the initial version of the application the locking mechanism was activated as soon
as the user opened the panel for editing the task (see an example in Fig. 3, left side).
However, sometimes users just open this panel to see additional information about the
task and not necessarily to edit it, so these cases do not really require the use of a locking
mechanism. Thus, in the second version we decided postponing the time when the
locking mechanism is actually activated: it is carried out only when the user actually
selects the operation to do (e.g. add/edit/delete task).

By considering in particular the target scenario of educational use in the classroom,
and our experiences in the discussions carried out during task modelling activities, we
noticed that often there is a need for sharing the same focus on the task model. During
a collaborative session, it can happen that different users select different tasks and have
different model layouts in front of them at the same time, depending on the task currently
having the focus. This supports a flexible way to work but at some point there could be
the need to discuss some specific parts of the model, and thus it is important that all users
have the same model layout in front of them with the part under discussion shown in
the central part of the working area. In Collaborative CTT this is achieved through the
possibility to set a shared focus. This operation allows all users participating in the
collaborative session to coordinate their focus on a particular task (only if they have the
corresponding authorization). The selected task will be placed in the centre of their
working areas, it will be highlighted in green and the icons associated to this task and
its immediate siblings will be enlarged, while the presentation of the neighbouring tasks

324 M. Manca et al.

gradually decrease in size when progressively moving further away from the task that
currently has the focus.

4.4 Supporting Communication Between Users

In the collaborative application we provided support for communication between the
participating users by means of a chat, which is especially useful when the involved
users are not in the same place. Figure 3 shows the chat (in the first version of the tool).
In the second version we provided users with the possibility to interactively select tasks
within the chat. By means of typing the [task] keyword within the chat, the tool shows
a list of the tasks included in the currently task model, from where they can interactively
select the task to refer within a conversation. In addition, if the user types some letters
of the task name the list of the task names is automatically filtered accordingly. After
the message is sent by a user, it is added to the chat area of all users. If a chat message
contains a task identifier this is shown as a link, which can be selected in order to place
the corresponding task in the centre of the working area.

Within the application we also provided users with a voting system, which can be
useful to make a decision when there are different views on how to address a specific
aspect of a task model. It allows a user to propose a topic for the vote, which is shown
to all users who can express their agreement or not, and finally shows the result. If the
topic concerns a task, selecting the task name in the topic description makes it possible
to centre the model in the personal view around such task. It is worth noting that in the
evaluations reported in this article the voting system was not used because just two users
were considered for each test session.

4.5 Cloud Support for Sharing Task Models

Users who collaboratively edit a task model may be located in various places and using
different devices, thus we decided making the models shared in a collaborative session
available in the cloud. In particular, all the users have a private repository and also have
access to a shared repository in which the models collaboratively shared by users are
saved. It is worth noting that, since the task models created through Collaborative CTT
and those created through Desktop CTTE share the same XSD schema describing the
underlying language, users can indifferently use Collaborative CTT and desktop CTTE
for accessing the models contained in their spaces.

4.6 Implementation

From the implementation point of view Collaborative CTT has been obtained by
applying the Model View Controller (MVC) pattern. The model is the task model
description stored in the server-side. Each user request that implies some modification
in the task model is sent to the controller (server-side), which manipulates the model
and sends back the response to all involved clients that update their view accordingly.
All the communication involving the collaborative functions exploits Web socket mech‐
anisms that allow pushing information from server to clients avoiding polling. When a

Collaborative Task Modelling on the Web 325

user accesses Collaborative CTT, a Web socket connection to the server is opened and
the client subscribes to receiving updates about collaborative functions (such as shared
focus, current users focus, temporal operator update, add/edit/delete a task, chat
messages, propose or vote a topic) specifying the corresponding callback function that
will handle the received information.

5 User Feedback

Two formative tests were conducted to collect user feedback on the usability and useful‐
ness of the features provided in the tool, and receive suggestions for improvements. In
both cases the tests were carried out in pairs.

In the initial test the two users were in the same room, while in the second the two
users were in different rooms. Thus, the first evaluation addressed the same time/same
place setting, and represents the first (but also the second) scenario, whereas the second
evaluation covered the same time/different place setting (distributed synchronous work‐
group scenario). For the initial assessment we deemed it more useful to deal with users
in the same room to better control the experiment and more easily monitor the users’
behaviour.

The second test was carried out with a version of the tool which had undergone some
small refinements as a result of the first formative test in order to improve its usability.
In particular, in the second version we reduced the time when a task is actually locked
in order to increase the possibility for users to work in parallel, we refined the chat (which
was not used much during the first exercise), and we improved the mutual awareness
between users by also showing where the local focus of each user was positioned. The
purpose was not to provide a formal comparison between the two tests because various
conditions changed, but to obtain progressive feedback that has been useful to orient the
evolution of the tool.

5.1 Participants and Tasks

Initial Test. Fourteen people (2 females) aged 25 to 47 (M = 32.2, SD = 6) participated.
All had good experience/familiarity with CTT. They were selected by using the profes‐
sional network of authors, choosing people having familiarity with CTT notation and
potentially interested in the tool. In the end, a pool including experts in HCI (e.g.
academic researchers) and Computer Science students (with familiarity with CTT)
participated in the evaluation exercise. For the test, users were asked to edit a previously
created task model, which describes an ATM system in its “current” design. By using
the tool, they had to edit this task model in a collaborative manner so that the new model
would describe a possible, envisaged, “new” ATM system. The description of the
features that the new system should support (and which they had to include in the model),
were provided to them through four tasks to carry out.

In particular, users were required to include the specification of the following tasks
in the model: (i) add the possibility to access the ATM system using additional modalities
apart from the current one (which is typically done through inserting a card and then

326 M. Manca et al.

typing in the code), namely: using either fingerprints, a smartphone or a smartwatch; (ii)
once a user has logged in to the system, the presentation should adapt by means of e.g.
enlarging the fonts, improving the contrast, removing elements in the UI; (iii) once the
user has selected withdrawal, the system should calculate the amount that the user typi‐
cally gets and then suggests it to the user, who can accept it or not; (iv) the possibility
to visualise the current user balance and see the transactions made during a certain
interval of time (the user would have to choose a timeframe from: today/1 week/15 days/
1 month). After jointly accomplishing such tasks, users had to independently fill in an
online questionnaire.

Second Test. We were not able to involve four of the 14 people who participated to
the first user test, so in the end only 10 users (2 females), aged 25 to 47 participated in
the second test (M = 33.4, SD = 6.2), all having quite a good experience/familiarity
with CTT.

For the test we asked the users to edit a task model containing a partial specification
of the features typically supported by a smartphone (e.g. enter a pin to access, make a
call, handle messages). In the test, users were requested to edit the task model so that it
will also include additional possibilities according to the following tasks. Task1: refine
a task named “Show General Information” by further showing the time, the battery level
and the network connectivity level. Task2: edit the “HandleMessages” task by modelling
the tasks supporting users while they create a message to send to a contact. In our case,
only two types of messages were considered: SMS and Whatsapp messages. Users had
to model the fact that, in both cases the user can use text to create the content of the
message. However, in the case of SMS messages, the user can also send, attached to the
textual message, memos, contacts, calendar events, and notes. In the case of Whatsapp
messages, the user can send additional types of files: images, videos, and audio files (in
addition to memos, contacts, calendar events, and notes). Task3: add the possibility that
a telephone call can occur any time during the use of the phone and then interrupt any
task the user was currently doing with the smartphone. At the end of the telephone call,
the user should be able to continue the interaction suspended previously.

As in the previous test, after jointly accomplishing such tasks, users had to inde‐
pendently fill in an online questionnaire.

5.2 Procedure and Design

Before the tests, the users were provided with instructions about how to access the tool,
a general textual introduction, and a video showing its main features. In both tests users
performed the test in pairs. For the first test they were in the same room, each using a
PC, and they were placed in such a way that they could easily talk to each other, but
could not see the screen of the other participant. They were allowed to talk and chat
freely during the test. For the second test, the two users were in different rooms, still
using the same equipment as in the first test (PCs). In both cases, two researchers
observed the interactions occurring during the experiment.

One of the users initially acted as the moderator, inviting the other user to join the
collaborative session: in this condition the two users completed the first two tasks, and

Collaborative Task Modelling on the Web 327

then they swapped their roles. This was done in order to have both users act in both roles
and test the corresponding functionalities.

After the test, the users filled in a questionnaire, which included first a demographic
section (about e.g. education, experience/familiarity with task modelling), and then a
section with questions specifically related to the tool.

5.3 Results

In the questionnaire, a 5-point scale was used to provide ratings on the tool features:
[1 to 5; 1 = not usable at all/not useful at all, 2 = not very usable/not very useful,
3 = neutral, 4 = usable/useful, 5 = very usable/very useful]. We report the median and
Interquartile Range (IQR) values.

Setting Shared Focus. First test. Usability [Median = 4; IQR = 5-3.25 = 1.75] Useful‐
ness [Median = 4.5; IQR = 5-4 = 1].

Many users found this mechanism useful (one user even suggested extending it to
temporal operators) for better turning/pointing the team’s attention toward a specific
task-related issue/discussion, and especially useful to quickly focus on a task when
dealing with large model specifications. However, from the usability point of view, one
user found the provided mechanism difficult to understand since it requires two actions
(clicking on the task and then select the button for setting a shared focus). Another user
suggested making the visualisation of the shared focus different from the user’s own
focus (although each user has only one focus at any given time), to better distinguish
them. There was only one user who explicitly criticised having his current focus changed
by others: instead, he would have preferred to see where the other users currently had
the focus and then decide to change his own focus accordingly. The second version of
the tool addressed this issue to some extent by providing the possibility to show also the
local focus of the other users.

Second test. Usability [Median = 4; IQR = 4.75-4 = 0.75] Usefulness [Median = 4.5;
IQR = 5-4 = 1].

A user said “sometimes I forgot that the other user had set the shared focus, thus I
made modifications to a wrong subtree.” Another user said that he would have liked to
use the mouse right click to access the button to activate the shared focus instead of
using the menu in the top-right part of the application. Regarding the usefulness of this
functionality, one user suggested further testing this functionality with more than two
users. Another user had qualms about the fact that when using this functionality the
overall interaction would slow down a bit.

User Authorisations. First test. Usability [Median = 4; IQR = 5-4 = 1] Usefulness
[Median = 4.5; IQR = 5-4 = 1].

Two users would have preferred a different, more compact layout for their settings
(e.g. one row per user, using checkboxes or toggle switches).

Second test. Usability [Median = 4; IQR = 4-4 = 0] Usefulness [Median = 4.5;
IQR = 5-4 = 1].

328 M. Manca et al.

Nothing was particularly noted apart the fact that, in line with what had already been
highlighted in the previous test, a user suggested having a more compact layout for
visualising users’ access rights (he suggested using accordion menus).

Mutual Awareness Mechanisms. First test. Usability [Median = 4; IQR = 5-4 = 1]
Usefulness [Median = 4; IQR = 5-4 = 1].

Users were asked whether it was easy for them to be aware of other people partici‐
pating in the same session and their current activities (e.g. understand when another user
joins a collaborative session, or be informed of the actions that other users are doing/
have done on the shared model). Overall, users expressed high appreciation of the
usefulness of the support provided by the tool allowing them to be aware of other users’
activities. Nonetheless, three users recommended some further improvements to its
usability, with different suggestions: one proposal was to associate a colour to each
participant to more easily identify users in the same session (and also the user who
currently acts as the moderator), and/or to identify the current users by changing different
portions of the task model; another user suggested using a short sound to signal when a
new user joins a session; another user suggested using a small square around the graph‐
ical task representation and then identify the users who are currently focusing on that
task by displaying their names (or initials) beside the square. Some of these aspects were
addressed in the second version.

Second test. Usability [Median = 4.5; IQR = 5-4 = 1] Usefulness [Median = 5;
IQR = 5-5 = 0].

In the second test one user expressed concerns over the possibility that using the
users’ initials could cause conflicts, and so suggested using icons rather than initials.
Another user raised the issue that it is difficult to know who the users currently connected
in the session at any given time are. Another user said: “As ‘Owner’ of the task, I received
an overwhelming amount of notifications of task modifications, which interrupted my
work several times. I suggest collecting all the notifications into a side box, in order to
not block the owner’s work.”

Chat. First test. Not evaluated in the first test because users were in the same room.

Second test. Usability [Median = 4.5; IQR = 5-4 = 1] Usefulness [Median = 5;
IQR = 5-5 = 0]. One user raised an issue connected with the fact that it was difficult for
the moderator to discuss a modification to the model suggested by another user before
accepting/rejecting it. In addition, the same user said “When the chat window is mini‐
mized, every time I receive a new message/information about a new event, I must maxi‐
mize it in order to read the message/event notification. I suggest that you write (the first
part of) the event notification/text message in the window header. In this way, while the
chat window is minimized, I can get an idea of the event notification/message” Other
two users also highlighted the importance of better drawing the user’s attention to the
most recent message (e.g. by blinking for a few seconds). A user suggested having the
possibility to have a voice chat for more easily communicating with the other users.

Collaborative Task Modelling on the Web 329

Visualisation of Logged Events. First test. [Median = 4; IQR = 5-4 = 1] Usefulness
[Median = 4; IQR = 4-4 = 0]. This feature received quite mixed comments. On the one
hand, one user found it very useful and reported looking more often at the area dedicated
to event logging than the one showing the model. Nevertheless, the user suggested better
structuring the visualization of the logs, by indicating, for example, first the type of event
and the author, in order to speed up the extraction of relevant information. On the other
hand, a pair of users said that they did not look much at this panel, while one highlighted
the usefulness of this feature especially for remote users. Indeed, users often talked to
each other, not only to identify a shared strategy for editing the task model, but also to
request confirmation of actions made through the tool (instead of just checking the event
log). Another user suggested rendering just the editing events in the panel (e.g. not
providing information on the locking events), since they are the really meaningful ones
from the user’s perspective. Another user suggested adding the possibility to go through
past events and even ‘re-play’ them.

Second test. Usability [Median = 4; IQR = 4-3 = 1] Usefulness [Median = 4;
IQR = 4.75-3 = 1.75].

Two users suggested hiding it by default and having the possibility to show it on
request. Another user said that he noticed some changes sometimes but then he preferred
looking at the model to understand what happened. Another user suggested classifying
the events, by distinguishing between events occurring on the task model and other types
of events (e.g. chat modifications, notifications about user joining the session, etc.)

Coordination (Lock Mechanism). First test. Usability [Median = 4.5; IQR = 5-3 = 2]
Usefulness [Median = 5; IQR = 5-5 = 0]. Users really appreciated the availability of
the locking mechanism to avoid including inconsistencies in the model due to concurrent
and uncontrolled modifications. However, some users highlighted that the lock mech‐
anism can slow down the collaborative process excessively, suggesting keeping it only
for the time that it is strictly necessary (e.g. when the user actually starts modifying some
property of the model, and releasing it just afterwards).

Second test. Usability [Median = 4; IQR = 5-4 = 1] Usefulness [Median = 5;
IQR = 5-4 = 1].

A user complained that, as the moderator of the session, he received many notifica‐
tions about task changes, which made it difficult to work on the model properly: “As
owner of the task, I received many notifications of task modifications, which interrupted
my work several times. I suggest collecting all the notifications into a side box, in order
to not block the owner’s work.” Another user said that the locking mechanism could be
difficult to handle, he suggested better using the chat for coordinating the work.

Rejection/Acceptance. First test. Usefulness [Median = 4; IQR = 4.75-4 = 0.75].
On the one hand, users acknowledged the need and the importance of providing the

moderator with the possibility to act as “super-user” to decide on the modifications to
actually apply to the model (among the ones proposed by other users), and then main‐
taining the control of it. Nonetheless, two participants suggested providing the moder‐
ator with some means for justifying rejection of a proposal made by another user (e.g.

330 M. Manca et al.

by means of adding a text field where the moderator can explain the reasons for rejecting
a change), so that all members can develop and keep a shared mutual knowledge/view
of the correctness of the specification (documented in the model) and its rationale and
evolution. On the other hand, confirming every step done by the other partners was
judged a bit tiring from the moderator’s point of view (a user admitted sometimes having
lost his own focus to check requests of change from the other user).

Second test. Usefulness [Median = 4; IQR = 4.75-4 = 0.75].
Two users acknowledged its usefulness but at the same time they highlighted that

the moderator frequently had to interrupt his work to deal with accept/reject requests.
Another user pointed out the fact that when a request arrives, the user cannot discuss it
with the partner but just accept/reject it.

Most Usable Functionality and Least Usable Functionality. First test. The func‐
tionalities that were most appreciated from a usability point of view were the shared
focus (seen as a way to have a better “organised” collaborative session), and the possi‐
bility to concurrently modify a model. Among the least usable functionalities, users
reported the locking mechanism (which could slow down the collaborative editing), and
the event log list (not particularly structured and currently including events not very
meaningful from the user’s perspective).

Second test. Four users particularly appreciated the chat (which was improved), one user
most liked the fact that the task model portions been edited by other users are highlighted
graphically. Regarding the least useful functionalities, one user mentioned the logger,
and two mentioned the locking mechanism.

Most Useful Scenario(s) of Use. First test. For assessing this aspect we envisioned
four basic scenarios of use (corresponding to those introduced in Sect. 3) and we asked
users to select the scenario(s) (one or more than one) they found most suitable for
exploiting the features of Collaborative CTT. The usage scenarios which received the
highest approval were: distributed workgroup (selected 10 times) and workgroups
aiming at designing an application (10 times as well). The educational scenario was also
rated highly (9 times). The scenario that was judged the least useful was the different
places/different times scenario (2 times). In any case, the tool was judged by users as
highly flexible in supporting rather different scenarios. From users’ comments it seems
to offer the best opportunities when synchronous (same time) scenarios are to be
supported. An advantage highlighted by users is the fact that, by using the tool, users
do not need to exchange task model specifications. The educational setting was also
judged appropriate for using the tool because in such settings the tool is able to support
a good interaction between the teacher and the students while facilitating the work of
both. In other words, Collaborative CTT facilitates teachers explaining task models (by
using e.g. shared focus functionality and being a Web-based tool) and at the same time
it makes possible an active and collaborative participation of students in building task
models, giving them the opportunity to put in practice and apply the theoretical knowl‐
edge gained in concrete examples.

Collaborative Task Modelling on the Web 331

Second test. One user said that the tool can be fruitfully used in all the four mentioned
settings. However, for a future version of the tool he suggested improving that the
mechanism used by the moderator to accept/reject the suggested modifications because
it is time consuming (and thus he has less time available for working on the model). One
user declared that the application should fit all the target scenarios, especially the “same
time/different places” one. Another user declared that the Educational use fits particu‐
larly well. However, also other settings are suitable, but in these cases there should not
be anyone needed to confirm/reject the changes of other members.

Further Suggestions. First test. One user suggested adding a non-transparent back‐
ground when the circular menu for task editing appears, in order to avoid visualisation
problems between the circular menu and the task model visualised underneath. Addi‐
tional suggestions included adding a voice chat in the system and using sounds for
notifying important events.

Second test. A user suggested removing the locking mechanism and increasing mutual
awareness through user icons; another user suggested adding the possibility to edit tasks
with drag-and-drop; another user suggested enabling right-click when possible.

5.4 Discussion

First test. Overall, the results of the test show that Collaborative CTT was appreciated
although some aspects (e.g. the lock mechanism and the limited level of mutual aware‐
ness) should be subjected to further refinement. Participants especially liked the flexi‐
bility provided by the tool in supporting different types of scenarios of use, the most
promising ones being when users exploit the tool in a synchronous manner. Another
aspect that users particularly liked was the possibility to work (through a Web-based
tool) on the same shared model in a concurrent yet organised/controlled manner. In this
way the possibility of reworking and duplication as well as the need of exchanging
models between members should be reduced, thereby leading to faster and more produc‐
tive task modelling sessions. As evaluators, we noticed low parallelism between users
(i.e. when one user started to edit one task the other rarely started editing another task).
However, this can be explained by the users’ low familiarity with the tool, and the fact
that they tended to follow the sequence of test tasks strictly. Participants verbally
discussed the strategy to follow to build the task model for satisfying the test require‐
ments and, being in the same room, they did not use the chat much. Nonetheless, they
fruitfully used other tool features (e.g. shared focus) to coordinate their activities during
actual editing.

Second test. The researchers noticed increased parallelism among participants: in all the
tests users started to work on different tasks from the beginning and then they used the
tool features to coordinate/verify their work for finally satisfying the test requirements.
This enabled us to test the appropriateness of the tool in situations where users actually
edit different parts of the model in parallel. This improved parallelism was probably due
to two factors. The first one could be greater users’ familiarity with the tool: users felt

332 M. Manca et al.

more confident controlling the tool and its features, and therefore exploited it in a more
flexible manner. Another possible explanation could be that the remote chat-based
communication used in the second experiment was slower than the direct communica‐
tion used in the first test, therefore users were further stimulated to more efficiently and
concurrently edit the model to save time. Nonetheless, the comments received suggest
further refining the mechanism supporting the modifications made to the shared task
models, which currently may overload the work of the moderator, especially when many
requests for modifications have to be analysed in a short time.

6 Conclusions

Currently, most of the automatic environments enabling task modelling only support single
users, thus limiting the possible interactions and discussions amongst them. In this paper
we present a new Web-based multi-user tool for specifying task models. Among its
features, the tool includes relevant mechanisms supporting coordination, communication
and mutual awareness between participants. In the paper we discuss the aspects we have
addressed in designing the collaborative features in a task modelling tool, what type of
mechanisms have been developed for their support, and also report on two formative user
tests which provided promising feedback, also identifying aspects that could be subject to
further refinement. A video showing the tool is available at https://www.youtube.com/
watch?v=AapwdNIz5V8&feature=em-share_video_user. The tool is publicly available at
http://coll-ctt.isti.cnr.it.

Future work will be dedicated to further empirical testing in both educational and
industrial projects.

References

1. Anzalone, D., Manca, M., Paternò, F., Santoro, C.: Responsive task modelling. In:
Proceedings of EICS 2015, pp. 126–131. ACM Press (2015)

2. Duque, R., Gallardo, J., Bravo, C., Mendes, A.J.: Defining tasks, domains and conversational
acts in CSCW systems: the SPACE-DESIGN case study. J. UCS 14(9), 1463–1479 (2008)

3. Forbrig, P., Dittmar, A., Brüning, J., Wurdel, M.: Making task modeling suitable for
stakeholder-driven workflow specifications. In: Stephanidis, C. (ed.) Universal Access in
HCI, Part I, HCII 2011. LNCS, vol. 6765, pp. 51–60. Springer, Heidelberg (2011)

4. Gallardo, J., Molina, A.I., Bravo, C., Redondo, M.A.: Collaborative modelling of tasks with
CTT: tools and a study. In: CADUI 2008, pp. 245–250 (2008)

5. Gallardo, J., Molina, A., Bravo, C., Gallego, F.: A system for collaborative building of use
case models: communication analysis and experiences - experiences of use and lessons
learned from the use of the SPACE-DESIGN tool in the domain of use case diagrams. In:
Proceedings of the 9th International Conference on Evaluation of Novel Approaches to
Software Engineering (ENASE 2014), pp. 59–68 (2014)

6. Genaro Motti, V., Raggett, D., Van Cauwelaert, S., Vanderdonckt, J.: Simplifying the
development of cross-platform web user interfaces by collaborative model-based design. In:
SIGDOC 2013, pp. 55–64 (2013)

7. Genaro Motti, V., Raggett, D.: Quill: a collaborative design assistant for cross platform web
application user interfaces. In: WWW (Companion Volume) 2013, pp. 3–6 (2013)

Collaborative Task Modelling on the Web 333

https://www.youtube.com/watch%3fv%3dAapwdNIz5V8%26feature%3dem-share_video_user
https://www.youtube.com/watch%3fv%3dAapwdNIz5V8%26feature%3dem-share_video_user
http://coll-ctt.isti.cnr.it

8. Guerrero-Garcia, J., Gonzalez-Calleros, J., Vanderdonckt, J.: Comparative analysis of task
model notations, vol. 22 (NE-1), pp. 90–97. ENC, March 2012

9. Giraldo, W.J., Molina, A.I., Ortega, M., Collazos, C.A.: Integrating groupware notations with
UML. In: Forbrig, P., Paternò, F. (eds.) HCSE/TAMODIA 2008. LNCS, vol. 5247, pp. 142–
149. Springer, Heidelberg (2008)

10. Gutwin, C., Penner, R., Schneider, K.A.: Group awareness in distributed software
development. In: CSCW 2004, pp. 72–81 (2004)

11. Hili, N., Laurillau, Y., Dupuy-Chessa, S., Calvary, G.: Innovative key features for mastering
model complexity: flexilab, a multimodel editor illustrated on task modeling. In: EICS 2015,
pp. 234–237 (2015)

12. Horridge, M., Tudorache, T., Nyulas, C., Vendetti, J., Fridman Noy, N., Musen, M.A.:
WebProtégé: a collaborative Web-based platform for editing biomedical ontologies.
Bioinformatics 30(16), 2384–2385 (2014)

13. Jourde, F., Laurillau, Y., Nigay, L.: COMM notation for specifying collaborative and
multimodal interactive systems. In: EICS 2010. ACM (2010)

14. Martinie, C., Barboni, E., Navarre, D., Palanque, P.A., Fahssi, R., Poupart, E., Cubero-Castan,
E.: Multi-models-based engineering of collaborative systems: application to collision
avoidance operations for spacecraft. In: EICS 2014, pp. 85–94 (2014)

15. Molina, A.J., Redondo, M.A., Ortega, M.: A methodological approach for user interface
development of collaborative applications: a case study. Sci. Comput. Program. 74(9), 754–
776 (2009)

16. Molina, A.I., Redondo, M.A., Ortega, M.: A conceptual and methodological framework for
modeling interactive groupware applications. In: Dimitriadis, Y.A., Zigurs, I., Gómez-
Sánchez, E. (eds.) CRIWG 2006. LNCS, vol. 4154, pp. 413–420. Springer, Heidelberg (2006)

17. Mori, G., Paternò, F., Santoro, C.: Design and development of multi-device user interfaces
through multiple logical descriptions. IEEE Trans. Softw. Eng. 30(8), 507–520 (2004). IEEE
Press

18. Noy, N.F., Chugh, A., Alani, H.: The CKC challenge: exploring tools for collaborative
knowledge construction. IEEE Intell. Syst. 23(1), 64–68 (2008)

19. Paternò, F.: Model-based Design and Evaluation of Interactive Applications. Springer,
New York (1999). ISBN 1-85233-155-0

20. Paternò, F., Santoro, C., Spano, L.D.: Engineering the authoring of usable service front ends.
J. Syst. Softw. 84(10), 1806–1822 (2011). Elsevier

21. Penichet, V.M., Lozano, M.D., Gallud, J.A., Tesoriero, R.: Task modelling for collaborative
systems. In: Winckler, M., Johnson, H. (eds.) TAMODIA 2007. LNCS, vol. 4849, pp. 287–
292. Springer, Heidelberg (2007)

22. Pinelle, D., Gutwin, C., Greenberg, S.: Task analysis for groupware usability evaluation:
modeling shared-workspace tasks with the mechanics of collaboration. ACM Trans.
Comput.-Hum. Interact. 10(4), 281–311 (2003)

23. Renger, M., Kolfschoten, G.L., de Vreede, G.-J.: Challenges in collaborative modeling: a
literature review. In: Dietz, J.L.G., Albani, A., Barjis, J. (eds.) CIAO! 2008 and EOMAS
2008. LNBIP, vol. 10, pp. 61–77. Springer, Heidelberg (2008)

24. Rittgen, P.: Group consensus in business process modeling: a measure and its application.
IJeC 9(4), 17–31 (2013)

25. Van der Veer, G., Kulyk, O., Vyas, D., Kubbe, O., Ebert, A.: Task modeling for collaborative
authoring. In: ECCE 2011, pp. 171–178 (2011)

26. Wurdel, M., Sinnig, D., Forbrig, P.: Toward a formal task-based specification framework for
collaborative environments. In: López-Jaquero, V., et al. (eds.) Computer-Aided Design of
User Interfaces VI, Chap. 20, pp. 221–232. Springer, London (2009)

334 M. Manca et al.

Ceiling and Threshold of PaaS Tools:
The Role of Learnability in Tool Adoption

Rui Alves1(&) and Nuno Jardim Nunes1,2

1 Madeira Interactive Technologies Institute,
Polo Científico e Tecnológico da Madeira,

2nd Floor Caminho da Penteada, 9020-105 Funchal, Madeira, Portugal
rui.alves@m-iti.org, njn@uma.pt

2 Universidade da Madeira, Campus Universitário da Penteada,
9020-105 Funchal, Madeira, Portugal

Abstract. Cloud services are changing the software development context and
are expected to increase dramatically in the forthcoming years. Within the cloud
context, platform-as-a-service tools emerge as an important segment with an
expected yearly growth between 25 to 50 % in the next decade. These tools
enable businesses to design and deploy new applications easily, thereby
reducing operational expenses and time to market. This is increasingly important
due to the lack of professional developers and it also raises a long standing issue
in computer-aided software engineering: the need for easy to learn
(low-threshold), functional (high-ceiling) tools enabling non-experts to create
and adapt new cloud services. Despite their importance and impact, no research
to date addressed the measurement of tools’ ceiling and threshold. In this paper
we describe a first attempt to advance the state of the art in this area through an
in-depth usability study of platform-as-a-service tools in terms of their threshold
(learnability) and ceiling (functionality). The measured learnability issues evi-
denced a strong positive correlation with usability defects and a weaker corre-
lation with performance. Remarkably, the fastest and easiest to use and learn
tool falls into the low-threshold/low-ceiling pattern.

Keywords: PaaS � Threshold � Ceiling � Learnability

1 Introduction

Within the next 30 years the demand for software applications will grow exponen-
tially1. Yet, our capability to increase the number of professional software developers
and/or their productivity will at best stabilize or grow linearly. Bezivin call it the
impossible equation (see Fig. 1) stating that “How, with the same amount of people
(code producer and managers, about 1 % of the total population), to produce an order
of magnitude more of software applications than now?”2.

1 http://semat.org.
2 https://modelseverywhere.wordpress.com/2013/02/15/one-percent-software-professionals-in-
advanced-countries/.

© IFIP International Federation for Information Processing 2016
Published by Springer International Publishing Switzerland 2016. All Rights Reserved
C. Bogdan et al. (Eds.): HCSE 2016/HESSD 2016, LNCS 9856, pp. 335–347, 2016.
DOI: 10.1007/978-3-319-44902-9_21

http://semat.org
https://modelseverywhere.wordpress.com/2013/02/15/one-percent-software-professionals-in-advanced-countries/
https://modelseverywhere.wordpress.com/2013/02/15/one-percent-software-professionals-in-advanced-countries/

This equation seems impossible to solve because, on one hand it is not practical to
educate a larger percentage of the world population to develop professional software.
On the other hand, lessons from the past show that whatever progress we may achieve
in software tools, the productivity of software professionals will not improve by a
major factor. As stressed by Bezivin, the key to solving these problems probably lies in
the collaboration between professional developers and end-users.

This is a long-standing challenge in engineering interactive systems. In order to
enable end-users to contribute to software development, we need to provide new
languages and development environments that effectively suite their needs and are easy
to learn and operate. These tools are known after the seminal paper about “the past,
present and future of user interface software tools” [1] as low-threshold and high
ceiling tools. In fact, a major trait in tools’ acceptance is the role of threshold and
ceiling (the threshold is how difficult it is to learn how to use a tool and the ceiling is
how much can be done using the tool). Successful tools in the past 25 years are claimed
to either be low-threshold/low-ceiling, or high-threshold/high-ceiling [1]. Despite all
efforts we struggle to find tools that enable low-threshold and high-ceiling.

Currently, one major trend lies in what is usually known as cloud infrastructure,
involving platforms and solution stacks as a service model of computing. These involve
software-as-a-service (SaaS), infrastructure-as-a-service (IaaS) and platform-as-a-service
(PaaS). The focus of this paper is the PaaS model in which the end-user controls software
deployment and configuration settings, while the vendor provides everything required to
host the application [2]. PaaS are characterized by providing low initial cost, incremental
growing, self-service, resource sharing, automated deployment, management services,
lifecycle management and reuse [3].

In this paper we attempt to advance the state of the art by increasing our under-
standing about what these concepts mean and how they can be effectively measured. We
do this through: (1) a methodological approach to assess the usability and functionality
of PaaS tools, (2) the results from a comparative study of three PaaS tools with 22
subjects and (3) statistical analysis looking for correlations between dimensions such as
learnability issues, usability defects and performance. Lastly, in the discussion section,
we contrast our findings with the prevailing literature and then present our conclusions.

Fig. 1. The impossible equation (from http://modelseverywhere.wordpress.com)

336 R. Alves and N.J. Nunes

http://modelseverywhere.wordpress.com

1.1 State of the Art

Both software engineers and designers often complain that their tools are unsupportive
and unusable [1]. While many studies have analyzed and tried to better support general
software development practices [4, 5], qualitative studies on user interface related
practices, in software development, are relatively rare. Furthermore, the work of Seffah
and Kline, showed a gap between how tools represent and manipulate programs and the
actual experience of the developer [5]. However, ceiling and threshold related issues
were not specifically addressed.

Among the distinct sets of existing development tools, there is a group of literature
on computer-aided software engineering (CASE) tools [1, 4, 6, 7], which we think
worth assessing if the findings related to these tools prevail in the scope of this work.
This prior research suggests that: (1) few organizations use CASE tools; (2) many
organizations abandon the use of the tools; and (3) countless developers, working for
organizations that own CASE tools, do not actually use them. Moreover, Jarzabek and
Huang argued that CASE tools should be more user-oriented and use rigorous mod-
eling, in order to better blend into the software development practice [7]. Yet, figures
on the adoption of these tools seem to contradict the goals driving their development.
Though, a new breed of tools has emerged, in particular Platform-as-a-Service (PaaS),
which claim to bridge previous gaps and promise easier and faster development, even
for non-experts. Intrigued by these apparently conflicting forces, we found room to
contribute by researching the role of learnability in tools adoption.

2 Research Question

Since practitioners often complain about the suitability of tools for their work, we realized
that threshold and ceiling are claimed as attributes that play amajor role in tools adoption.
Moreover, successful tools are said to either be low-threshold/low-ceiling or high-
threshold/high-ceiling. The issue is that we lack knowledge on how to measure these
concepts. Thus, we hypothesized that the threshold is associated with tool’s adoption. So,
if a tool is hard to learn then it’s adoption is more likely to be low, since people will seek
out easier solutions. Thework presented here is part of amajor project, which in the future
will help us shed some light on tools adoption andwe focus on how to define andmeasure
the core concepts of the framework for tools’ threshold and ceiling measurement.

In this paper we measure the initial learnability of tools and assess the relationships
between the learnability issues and the usability defects, as well as eventual impacts on
subjects’ performance. Additionally, recognizing that the terminology is not consistent
and before jumping into the details, we would like to clarify the core concepts used in
this paper. For instance, learnability is the attribute of a system, which allows users to
rapidly begin working with it [8]. In this paper a learnability issue is any problem
preventing users from quickly understand how to use the system to do a task. A defect
is a breakdown in usability, an obstacle to perform a desired task or a problem in the
smooth functioning of the system. A usability defect is generally a mismatch between
what the user wants, needs or expects and what the system provides. Finally, perfor-
mance is the time a participant took to do a task.

Ceiling and Threshold of PaaS Tools 337

3 Study

The research study described here was conducted over a period of six months
(September 2013–February 2014) and expands the sample of the study described in a
previous publication [9]. Participants were asked to play the role of a small shop owner
willing to replace his spreadsheet to manage products with a web application. For that
purpose, this owner is giving a try to PaaS tools and will try three tools (Knack [10],
Mendix Business Modeler 4.7.0 [11] and OutSystems Studio 8.0 [12]).

PaaS is a growing and highly competitive sector with more than 70 vendors,
making it hard to select which PaaS tools to test. We surveyed the web for comparisons
and picked two tools that are popular and comparable to the tool proposed by the
vendor that asked us to evaluate their tool. Additionally, prior to deployment, we
performed three pilots to improve the test instructions, assess the duration, complete-
ness and suitability of proposed tasks. Furthermore, we faced two major challenges to
run this study: (1) how to record subjects’ actions so that they did not felt observed and
(2) the test duration. To address both, upon subjects’ informed consent, we recorded
video and audio and captured screen actions using 15” laptop built-in features. Having
no extra hardware helped subjects perceive it naturally. Additionally, the amount of
tools tested was constrained by the fact that subjects will do the same set of tasks on
each tool. As such, it proved unfeasible to add more tools (due to subjects’ engagement
and motivation) since the test duration roughly spanned from 2.5 h to 3 h per subject.
Because of this plus the fact that we required participants to be completely new (initial
learnability) to all tested tools, volunteers were scarce.

3.1 Sample

We used a sample of 22 subjects from both genders, divided into two even groups:
(G1) comprised people who run small businesses and (G2) IT experts. The rationale for
choosing these groups was to contrast their results and assess if PaaS is ready for
non-IT experts, as claimed by some vendors. On average, subjects were 30 years old
(minimum 22 and maximum 43). Circa 30 % had worked for less than one year and
40 % had between four and nine years of experience, while 20 % had already worked
for more than ten years. The vast majority (60 %) holds a bachelor degree and 35 %
hold a master’s degree. Additionally, none of the G1 subjects had any experience
building web applications or had ever used the tools of the trade, whereas all, but one,
G2 subjects were experienced in building web apps. Among the G2 subjects, IDEs
were popular tools used to create web apps (50 % uses Netbeans, 40 % Dreamweaver)
but no one had used or even knew of PaaS tools.

3.2 Methodology

As previously stated, this paper expands (from ten to 22 subjects) and builds on top of a
previous publication [9]. A detailed explanation of the methodology used was already
provided in the methodology section of [9], please refer to this reference for further

338 R. Alves and N.J. Nunes

detail on the methodology used. Here we focus on the results and provide a statistical
analysis of the results to complement the claims and findings stated in [9].

4 Results

Three dependent variables were measured in this study, specifically (i) learnability
issues, (ii) usability defects, and (iii) performance. Additionally, based on subjects’
level of success to complete each task, learnability scores were computed also.

4.1 Learnability Issues

Grossman’s et al. classified learnability issues into five categories: (i) awareness,
(ii) locating, (iii) transition, (iv) task-flow and (v) understanding. For detailed expla-
nation on each category please refer to [16]. Table 1 summarizes each category
measured weight. The most frequent categories are highlighted in bold and account for
50 % + of issues per group/tool. The transition category is the less frequent, except for
G1 in Knack. We used the transition category to compute a ratio between all categories
and transition, to learn what categories hinders users the most. Table 2 stresses the
proportionality among categories and we found evidence that understanding and
task-flow issues hinder users the most, being three times more prevalent than transition
issues. In brief, these figures provide empirical evidence that Knack was easier to learn
than Mendix and Outsystems. Moreover, all tested tools seem to have a lot of tech-
nicalities since all fail to make it easier for non-technical users to quickly learn how to
use the tool, risking their putative success in this niche.

4.2 Usability Defects

The usability defects were categorized according to their relation to the interface. The
icons/graphics category are related to a graphical design issue (similar icons). The
bars/windows category is directly related to using bars or high level commands.When the
defect was related to buttons or input fields then it was categorized as menus/commands,
whereas defects classified as interaction are, for instance, double clicking creates

Table 1. Learnability issues weight per tool.

Ceiling and Threshold of PaaS Tools 339

somethingwithout questioning the user). Finally, the text/feedback category are issues on
the textual terminology and text feedback on the interface.

Table 3 summarizes the weight of each usability defect category, per tool and
group. In the same table we have highlighted, in bold, the top two categories per group
and tool, which account for more than 50 % of all defects. Similarly to learnability
issues, we have also computed a ratio between all categories and bars/windows, to
grasp an idea of what categories have a stronger impact on subjects Table 4. In brief,
the trend found on learnability issues is also true here and provides empirical evidence
that Knack was easier to use than Mendix and Outsystems. Moreover, all tools seem to
suffer from usability defects and fail to make it fully usable for non-technical users,
which PaaS vendors claim to be their target.

4.3 Performance

Table 5 shows the performance, in hours, per group/tool. Curiously, the tasks that took
longer in each tool, took longer for both groups. Additionally, we found that the
amount of time spent in each task ranged a lot per tool, although the tasks were the

Table 2. Relative impact of each learnability issue category.

Table 3. Usability defects weight per tool.

Table 4. Relative impact of each usability defect category.

340 R. Alves and N.J. Nunes

same for all tools tested. For instance, while in Knack the T4 and T5 were the tasks that
took more time to do, in Outsystems these two tasks were the quickest ones. These
differences could evidence the intrinsic difficulty to accomplish a task in one tool,
which in turn could be associated with high, or low frequency of learnability issues,
thus impacting tools’ threshold. In brief, our results provide evidence that the longer it
takes to finish the task, the harder it is to learn how to do it. Performance figures follow
the trend found in Sects. 4.1 and 4.2, providing empirical evidence that Knack is faster
to use than Mendix and Outsystems.

4.4 Statistical Analysis

The results highlighted a difference between tools where Knack (classified as
low-threshold/low-ceiling) was the fastest, easiest to learn and use tool being tested,
whereas the other two tools produced similar performance results. In this section we
investigated if there is statistical evidence, which could ground the previous claims.
The tools used in this study were encoded in one independent variable and we mea-
sured the differences for each dependent variable (learnability issues, usability defects
and performance). Additionally, we also sought for possible correlations.

Differences. We have used a repeated measure analysis of variance (ANOVA) to test
if there are differences between conditions (Knack, Mendix and Outsystems), where the
same participants are being measured on the same variable (learnability issues, usability
defects or performance). The groups are related because they contain the same cases
(the subjects) and each group is a repeated measurement on a dependent variable. This
led us to the null hypothesis: H0: all related group means are equal. The alternative
hypothesis is Ha: at least one related group mean is different, which would provide
evidence on statistical differences between tools, if verified. We verified all the
assumptions and found no outliers, in learnability issues, by inspecting the boxplots for
values greater than 1.5 box-lengths from the edge (dark grey boxplots on Fig. 2). Data
is normally distributed in all three conditions, as assessed by Shapiro-Wilk’s test
(p > 0.05) and Mauchly’s Test of Sphericity indicated that the sphericity assumption
has not been violated, v2 (2) = 1.048, p = 0.592. Having satisfied all assumptions, we
computed the repeated measures ANOVA, which yielded statistically significant
changes in the amount of learnability issues found per tool, F(2, 42) = 8.868,

Table 5. Performance (aggregated time spent) in hours.

Ceiling and Threshold of PaaS Tools 341

p < 0.001, partial η2 = 0.297. Although this result rejects the null hypothesis and
retains the alternative hypothesis, we cannot directly determine where exactly the
differences between groups lie. To clarify this uncertainty, a post hoc analysis with a
Bonferroni adjustment revealed that the amount of learnability issues significantly
decreased from Outsystems to Knack (1.68 (95 % CI, 0.25 to 3.12) issues per subject,
p < 0.05) and from Mendix to Knack (2.64 (95 % CI, 0.97 to 3.76) issues, p < 0.01),
but not from Mendix to Outsystems (0.68 (95 % CI, −0.98 to 2.34) issues, p = 0.895).
As such, these results provide statistical evidence that Knack offers less learnability
issues for first time users than the other tested tools.

The same procedure was applied to usability defects and we found no outliers (light
grey boxplots on Fig. 2). Yet, we realized that Knack data was not normally distributed
(p = 0.041), although it is normally distributed for Mendix and Outsystems, p > 0.05.
Nevertheless, we run the test because the repeated measures ANOVA is fairly robust to
deviations from normality. Mauchly’s Test of Sphericity indicated that the assumption
of sphericity was met (v2 (2) = 2.46, p = 0.292) and the repeated measures ANOVA
test elicited a statistically significant change in the amount of usability defects per tool,
F(2, 42) = 12.519, p < 0.0005, partialη2 = 0.373. A post hoc analysis with Bonfer-
roni’s adjustment revealed that the amount of usability defects significantly decreased
from Mendix to Knack (2.091 (95 % CI, 0.01 to 4.2) defects per subject, p < 0.05) and
from Outsystems to Knack (3.455 (95 % CI, 1.7 to 5.2) defects per subject,
p < 0.0005), but not from Mendix to Outsystems (1.364 (95 % CI, 0.2 to 2.93) defects
per subject, p = 0.102). Given these results, there is statistical evidence that Knack has
less usability defects than the other tested tools.

In what concerns performance, the first assumption was violated since there are
outliers in Knack and Mendix datasets. Moreover, although the Shapiro-Wilk’s test
yielded p > 0.05 for Knack and Outsystems, the normality test returned a negative
result for Mendix (p = 0.038). Thus, contrarily to what happened with learnability
issues and usability defects, we cannot make any statement about statistical evidence
on performance differences between the three tools by using this test.

Fig. 2. Learnability issues and usability defects

342 R. Alves and N.J. Nunes

To sum up, we found statistical evidence that (1) Knack was easier to learn (for first
time users) than Mendix and Outsystems, (2) Knack was easier to use than Mendix and
Outsystems. These findings are in line with the results section. However, we found no
statistical evidence that subjects were faster in Knack than in Mendix or Outsystems,
although the figures in the results section point towards that direction.

Correlations. There is no statistical test to determine the association between three
continuous variables, which is our case and Pearson’s correlation was not suitable since
there was no linear relationship between variables, as assess by inspecting a scatterplot.
As such, we opted for Spearman’s correlation. Thus, the null hypothesis is H0: there is
no association between the variables and the alternative hypothesis is Ha: there is an
association between the variables. Two of the three assumptions of the Spearman’s
correlation relate to the study design, which we met both (to have two continuous or
ordinal variables and the two variables represent paired observations). The third
assumption requires to determine whether there is a monotonic relationship between
two variables. A monotonic relationship does one of the following: (i) as the value of
one variable increases, so does the value of the other variable or (ii) as the value of one
variable increases, the other variable value decreases. The Spearman’s correlation test
unveiled that there was a strong positive correlation between the amount of identified
learnability issues and usability defects, rs(20) = 0.724, p < 0.01. Preliminary analysis
showed the relationship to be monotonic, as assessed by visual inspection of a scat-
terplot. In the other two cases, although the monotonic relationship was not fully clear,
there was a remarkably positive correlation between the amount of learnability issues
and subjects’ performance (rs(20) = 0.466, p < 0.01) and a moderately positive cor-
relation between the amount of usability defects found and subjects’ performance, rs
(20) = 0.352, p < 0.01.

5 Threshold and Ceiling

As successful tools are said to either be low-threshold/low-ceiling, or high-threshold/
high-ceiling, we plotted the tested tools within this framework [1]. We achieved the
threshold by measuring the learnability of tools. As aforementioned, Knack is easy to
learn whereas Mendix and Outsystems scored as regular. Yet, the other attribute i.e.
ceiling, was missing. Since ceiling shows how much can be done using the system,
there are two major approaches one can take to assess it: (1) compare tools usage over
time or (2) compare the features each tool offers [1]. The first option, which could yield
results based on empirical data and could be grounded on actual tool usage, proved
impractical due to time constraints and lack of actual users to whom we could refer.
Thus, we selected the second option and measured each tool ceiling by comparing the
features offered by the tool. To do this we identified another tool (www.force.com),
which is supposedly one of the most complete in the PaaS context, and compared it to
the tested tools feature set. This approach yielded that from a total of 31 features,
Knack matches with seven, Mendix matches 29 features and Outsystems 31 features.
Therefore, the computed ceiling was 23 % for Knack, 94 % for Mendix and 100 % for
Outsystems.

Ceiling and Threshold of PaaS Tools 343

http://www.force.com

Additionally, we ranked it according to this ceiling scale: (i) very low [0 to 19 %],
(ii) low [20 to 39 %], (iii) regular [40 to 59 %], (iv) high [60 to 79 %] and (v) very high
[80 to 100 %]. This means that according to our measure Knack is low ceiling and
Mendix and Outsystems are both very high ceiling. Table 6 summarizes the threshold
and ceiling classification based on aggregated data (for initial learnability). Threshold is
a measure for how difficult it is to learn a tool and is obtained by inverting the
learnability scores. Upon surveying the literature, we found several learnability metrics
from which we selected two: (M1) the percentage of users who complete a task without
any help and (M2) the percentage of users who complete a task optimally [16]. In M1
users could not ask task-flow related questions. In M2 users must complete the task
without help [17]. The aggregated results based on all 330 tasks (22 subjects did five
tasks each in three distinct tools) performed, provide empirical evidence that Knack is
the easiest tool tested, which reached the easy to learn score with 63 %, followed by
Outsystems with a score of regular (53 %) and Mendix ranked last with 46 %. This
means that if a tool is easy to learn then the threshold is low or if a tool is very difficult
to learn then the threshold is very high. Inversely, the ceiling is determined directly
(100 % matching of features is very high ceiling). As such, only one tool (Knack)
matches the low-threshold/low-ceiling or high-threshold/high-ceiling pattern identified
in [1]. The other tools do not match this pattern. The difference in Outsystems was only
7 %, which made us wonder if a bigger sample would make a difference or if it will
make the gap between tools even bigger.

6 Discussion

The work presented here is part of a major project addressing other tools and devel-
opment environments, here we focused only on the building blocks of the framework
for tools’ threshold and ceiling measurement, because they were reported as key
attributes in tools adoption [1]. As such, we measured the learnability issues and
usability defects found per subject and tool, as well as subject performance.

With regard to the learnability issues, the Grossman et al. classification [16] was
helpful for clustering issues. The raw data and the statistical analysis provided evidence
that Knack was easier to learn than Mendix and Outsystems. This is arguably of little
interest for generalization purposes. Yet, the fact that, in general, task-flow and
understanding related issues are three times more prevalent than transition issues,

Table 6. Overall threshold and ceiling classification.

344 R. Alves and N.J. Nunes

presents a clear hint for aspects that vendors need to observe in order to increase their
tools learnability. This previous claim is moderately in line with the findings from [9]
where understanding and task-flow related issues hinders users the most, although with
distinct proportionality. One fact that could justify this difference is the sample size
which comprised ten subjects in [9] and 22 here.

Regarding the usability defects, which were reported as a major issue preventing
adoption [18], we found statistical evidence that Knack was easier to use than Mendix
and Outsystems. Additionally, the differences between categories of defects was not as
evident as the learnability issues, yet, defects related to interaction, menus/commands
and text/feedback happen twice as often as defects related to bars and windows. Again,
tools creators should take this evidence into account so that they can diminish the
existing usability barriers and make these tools fully usable for non-technical users,
which some PaaS vendors target for. Moreover, the performance data shows that Knack
was quicker to use than Mendix and Outsystems, although no statistical evidence was
found (not all needed assumptions to run the repeated measures ANOVA test were met).

Remarkably, the correlation tests revealed a strong positive correlation between the
number of learnability issues and the usability defects, which stresses the visceral
relationship between these two attributes. Noteworthy is also the positive correlation
between the number of learnability issues and performance issues (this result hints that
the more learnability issues, the longer it takes to do the task) yet, correlation is not an
implication. Lastly, a moderately positive correlation between usability defects and
performance should also be highlighted.

Additionally, regarding the ceiling/threshold, our findings are in line with Myers
et al., who claim that successful tools are either low-threshold/low-ceiling or high-
threshold/high-ceiling [1]. The fact is that the fastest, easiest to learn and use tool was
the only low-threshold/low-ceiling tool tested (Knack). Yet, the success and adoption
of tools is far more complex than simply measuring a tool’s threshold and ceiling
(social and motivational factors, for instance, are claimed to play a major role). As
such, since our sample comprises only three tools we cannot make any claim based on
this finding. Having said that, we came to realize that both academia and industry are
still failing, to build tools that allow us to create sophisticated systems easily
(low-threshold and high ceiling) [19], and that this is a demanding challenge which
requires further research to address it.

Jeng claims that learnability is inferred from the amount of time required to achieve
user performance standards [20]. Yet, in our study, we had no access to real users’
performance figures. To do that we would need to perform an extended test with more
tools and users. Nevertheless, our goal in this phase was to measure initial learnability,
and was not intended to be a longitudinal study.

A note of caution when interpreting these results should be observed due to the
intrinsic subjectivity of these evaluations. The fact that all measures were obtained
from analyzing video and audio recordings is prone to subjective interpretation. For
instance, when identifying learnability issues, one researcher can consider a fact as an
issue whereas another person could skip it. However, if there is no perfect way to do
this, it does not mean that we should give up. Instead, to know and understand the
underlying facts that impact tool adoption is an objective worth pursuing, and one
which could benefit the entire community. As such, we suggest that a pool of analysts

Ceiling and Threshold of PaaS Tools 345

should review the recordings and doubtful cases should be pair reviewed to reduce bias.
Another hypothetical weakness of this work is the sample size, which is arguably
small. However, we cannot ignore how complex this kind of study is. Knowing that
(1) subjects should have no experience at all in all three tools, and that (2) each subject
spent roughly 2.5 to 3 h using these tools and got no incentives to do so, we can easily
understand why did it took us half a year to reach 22 subjects, which heavily limited
our efforts to have a bigger sample, with a larger set of tools.

7 Conclusion

The cloud infrastructure is pushing the requirements of development tools in the face of
the increasing needs of software and the growing importance of cloud infrastructure.
PaaS is becoming an important because it facilitates the deployment of applications or
services reducing cost and complexity. PaaS are required to handle tasks from editing
code to debugging, deployment, runtime, and management. The prevailing literature on
development tools hints at several factors contributing to PaaS adoption: (1) software
engineers and designers often complain that their tools are unsupportive and unusable
[1], (2) there is a demand for tools more user-oriented tools, which better blend into the
software development practice [7] and (3) a gap between how tools manipulate pro-
grams and the developers’ actual experiences [1].

Since tools ceiling and threshold are among the key factors impacting tools
adoption [2] and, due to the lack of existing knowledge on how to measure these
attributes, we researched how to measure the threshold by assessing tools initial
learnability. For that purpose, we have used a hybrid protocol by making use of
think-aloud and question-asking. In brief, all tested tools seem to fail to make it easy to
learn, use and perform for non-technical users, which some PaaS vendors claim to be
their major target market. Additionally, although threshold and ceiling measurement
proved to be challenging and the findings must be thoughtfully analyzed (for instance,
high learnability may be necessary for a low threshold, but high learnability may not
guarantee a low threshold), we think this is an effort worth pursuing, in light of
contributing to our understanding on how to design the tools of the future.

The authors would like to thank Claudio Teixeira, Amanda Marinho and Monica
Nascimento for their help to conduct the study described in this paper.

References

1. Myers, B., Hudson, S.E., Pausch, R.: Past, present, and future of user interface software
tools. ACM Trans. Comput. Hum. Interact. 7, 3–28 (2000)

2. Rimal, B.P., Choi, E., Lumb, I.: A taxonomy and survey of cloud computing systems. In:
Fifth International Joint Conference on INC, IMS and IDC 2009, NCM 2009, pp. 44–51.
IEEE (2009)

3. Lawton, G.: Developing software online with platform-as-a-service technology. Computer
41, 13–15 (2008)

4. Iivari, J.: Why are CASE tools not used? Commun. ACM 39, 94–103 (1996)

346 R. Alves and N.J. Nunes

5. Seffah, A., Metzker, E.: The obstacles and myths of usability and software engineering.
Commun. ACM 47, 71–76 (2004)

6. Campos, P., Nunes, N.J.: Practitioner tools and workstyles for user-interface design. Softw.
IEEE 24, 73–80 (2007)

7. Jarzabek, S., Huang, R.: The case for user-centered CASE tools. Commun. ACM 41, 93–99
(1998)

8. Holzinger, A.: Usability engineering methods for software developers. Commun. ACM 48,
71–74 (2005)

9. Alves, R., Teixeira, C., Nascimento, M., Marinho, A., Nunes, N.J.: Towards a measurement
framework for tools’ ceiling and threshold. In: Proceedings of the 2014 ACM SIGCHI
Symposium on Engineering Interactive Computing Systems, pp. 283–288. ACM, Rome
(2014)

10. Knack- the easiest online database builder and web app builder. https://www.knackhq.com/?
ref=getapp

11. App Platform for The Enterprise | Mendix. http://www.mendix.com/
12. OutSystems Platform - High Productivity Platform as a Service – PaaS. http://www.

outsystems.com/platform/
13. Hanington, B., Martin, B.: Universal Methods of Design: 100 Ways to Research Complex

Problems, Develop Innovative Ideas, and Design Effective Solutions. Rockport Publishers,
Beverly (2012)

14. Lewis, C., Rieman, J.: Task-centered user interface design. A Practical Introduction (1993)
15. Kato, T.: What “question-asking protocols” can say about the user interface. Int. J. Man

Mach. Stud. 25, 659–673 (1986)
16. Grossman, T., Fitzmaurice, G., Attar, R.: A survey of software learnability: metrics,

methodologies and guidelines. In: Proceedings of the SIGCHI Conference on Human
Factors in Computing Systems, pp. 649–658 (2009)

17. Linja-aho, M.: Evaluating and Improving the Learnability of a Building Modeling System.
Helsinki University of Technology (2005)

18. Malavolta, I., Lago, P., Muccini, H., Pelliccione, P., Tang, A.: What industry needs from
architectural languages: a survey. IEEE Trans. Softw. Eng. 39(6), 869–891 (2013)

19. Myers, B.A., Rosson, M.B.: Survey on user interface programming. In: Proceedings of the
SIGCHI Conference on Human Factors in Computing Systems, pp. 195–202. ACM,
Monterey (1992)

20. Jeng, J.: Usability assessment of academic digital libraries: effectiveness, efficiency,
satisfaction, and learnability. Libri 55, 96–121 (2005)

Ceiling and Threshold of PaaS Tools 347

https://www.knackhq.com/?ref=getapp
https://www.knackhq.com/?ref=getapp
http://www.mendix.com/
http://www.outsystems.com/platform/
http://www.outsystems.com/platform/

Demos and Posters

User Experience Evaluation Methods: Lessons Learned
from an Interactive TV Case-Study

Dimitri Drouet1 and Regina Bernhaupt2(✉)

1 IRIT, ICS Group, 118, Route de Narbonne, 31062 Toulouse, France
Dimitri.Drouet@irit.fr

2 Ruwido, Köstendorferstr. 8, 5202 Neumarkt, Austria
Regina.Bernhaupt@ruwido.com

Abstract. Evaluating user experience (UX) is a complicated endeavour due to
the multitude of existing factors, dimensions and concepts that all contribute to
UX. We report lessons learned from conducting a user study that was adapted to
not only evaluate usability but also several aspects of the user experience. In this
study we evaluated some of the most important factors of user experience
including aesthetics, emotions, meaning and value as well as naturalness. Based
on these experiences we propose a set of possible improvements to enhance
existing user study approaches. These improvements aim at incorporating a
variety of methods to support the various aspects of user experience including all
experiences before, during and after interaction with a product.

Keywords: User experience · Evaluation methods · Aesthetics · Emotion ·
User-centered development process

1 Introduction

User Experience (UX) is defined as “a person’s perception and the responses resulting
from the use or anticipated use of a product, system, or service.” following the ISO
standard [6]. McCarthy and Wright [15] argue that UX is a holistic term, as the sum of
a set of factors or concepts can be more than just the individual parts. Using a more
industry oriented approach, user experience has to be evaluated somehow by enabling
some kind of measurement or feedback, to be able to improve the experience. One way
is to focus on a set of (well defined) factors or dimensions that are known to be contri‐
buting to the overall user experience. In the domain of interactive TV the following UX
dimensions have been mentioned to be of importance [5]: aesthetics, emotion, meaning
and value, identification/stimulation and (if the interactive TV systems support such
functionality) social connectedness. Depending on what the specific interactive TV
system offers in terms of interaction technique, functionality or content, these dimen‐
sions are complemented by factors like perceived quality of service (smoothness), natu‐
ralness of the interaction technique (e.g. naturalness, eyes-free usage) or engagement.

Evaluation of user experience is still a challenging task. There is a summary of
methods available at allaboutUX [1], describing methods like experiential contextual

© IFIP International Federation for Information Processing 2016
Published by Springer International Publishing Switzerland 2016. All Rights Reserved
C. Bogdan et al. (Eds.): HCSE 2016/HESSD 2016, LNCS 9856, pp. 351–358, 2016.
DOI: 10.1007/978-3-319-44902-9_22

inquiry [1] that is a variation of contextual inquiry focusing on emotional aspects when
performing the method instead of focusing on usability problems. Other methods like
UX expert evaluation also have their origin in the evaluation of usability and have been
adapted to support user experience evaluation. Other methods including questionnaires,
like the AttrakDiff, [2] are applicable once a first prototype or system is available,
enabling the user to interact and experience the product. The main problem of all these
methods originally developed for usability evaluation is that they have to be adapted.
What is important for such and adaptation is the fact that user experience is not just the
experience during usage but can be divided in momentary, episodic, cumulative user
experience [1]. In our case we are working on the evaluation of user experience in the
field of interactive TV. The usage context thus is in people’s homes, especially in the
living room. Thus different dimensions of user experience are evaluated for this specific
context.

Our goal was to identify how standard usability studies can be adapted to include
factors or (sub-) dimensions of user experience. We focused on aesthetics, emotions,
meaning/value and naturalness of the interaction in this standard laboratory based user
study comparing a standard remote control with a remote control providing a kind of
haptic feedback with continuous input. Based on the case-study we show if and how our
adaptations where helpful for the evaluation of user experience, before, during and after
interacting with the interactive system. We conclude with a description of specific chal‐
lenges we faced and present some lessons learned.

2 State of the Art

User experience has been defined in several ways. While the ISO definition focuses on
the users perceptions it is as important to take the context into account. As Hassenzahl
and Tractinsky [9] defines it, user experience is “A consequence of a user’s internal
state, the characteristics of the designed system and the context within which the inter‐
action occurs.”. What is important for user experience is that an experience is mainly
made out of the actual experience of usage, but also includes the encounter with the
system (before usage) and experience that are after the usage of the product. Figure 1
shows how UX is changing over time with periods of use and non-use, and describing
that a user experience is a combination of the experience before, during and after inter‐
acting the product, and that the cumulative UX is formed based on a series of momentary
and episodic experiences.

For the evaluation of UX there are various methods available [3]. Using the classi‐
fication on who is involved, we can distinguish method that are expert-oriented (one
expert, group of experts), user-oriented (one person, pairs of users, several users) and
automatic methods [2]. Classifying methods by development stage or phase [13] we can
distinguish methods for the conceptual and design phase like anticipated experience
evaluation [7] or co-discovery [11]. Such methods support to design for specific expe‐
riences and enable early insights on people’s experiences with such a concept [8]. For
the implementation and development phase when partly functional or functional proto‐
types are available user experience can be evaluated performing user studies that are

352 D. Drouet and R. Bernhaupt

combined with methods that enable the measurement of the user experience. Most of
these user experience evaluation methods have in common that they stem from standard
usability evaluation methods and have been adapted to incorporate user experience [10].

Fig. 1. The various types of user experience ranging from the first encounter with the system to
long term experiences that form up the overall cumulative user experience from [1] with
permission of the authors.

In the area of interactive TV (iTV) the overall user experience has become a distin‐
guishing factor for the choice of the TV system or service [14]. The evaluation of inter‐
action techniques and systems is performed in the majority of studies using combinations
of interviews, questionnaires and observation. The development of specific UX evalu‐
ation methods for interactive TV systems has been sparse [5].

3 Problem Description, Method Selection and Adaptation

Focus of this work was to investigate how to enhance or adapt a standard usability study
with UX measurements to be able to evaluate the UX of a newly developed interactive

User Experience Evaluation Methods 353

TV system. This iTV system supports 360° videos with a novel type of remote control
with haptic feedback and a kind of continuous input (not a simple button press). Main
focus for the set up of the method and the adaptation of the method was the need to
understand to which degree such an interaction technique would enhance the user expe‐
rience, compared to a standard remote. For us important was if the interaction would be
perceived as natural and usage of the remote would be possible without looking at the
remote (this is called eyes-free usage).

An experimental usability study in its standard form typically involves users that are
performing a set of tasks with a (prototypical) system in a usability lab. Activities of
users are logged using video recordings and recording events within the interactive
system. Such studies typically measure in terms of usability the effectiveness (e.g.
number of errors, usability problems and task success), efficiency (e.g. time necessary
for performing a task) and the perceived satisfaction (e.g. interview questions). These
measures are combined with usability questionnaires like the SUS questionnaire or
interview questions at the end of the study.

In terms of user experience we adapted the method to include the following:
For aesthetics: taking a part of the IPTV-UX questionnaire [5] that was filled out

after performing the tasks and investigating hedonic quality as dimension provided by
the AttrakDiff. To evaluate emotion: Emocards after each task were used and video
observation of facial expressions was conducted. To understand identification/stimula‐
tion: we used the sub-dimensions of the AttrakDiff questionnaire. To evaluate of
meaning and value: interview questions. Interaction technique (naturalness, eyes-free
usage): naturalness of interaction and eyes-free usage was evaluated using rating scale
question. Given that the system did not provide any social communication features and
was just a prototype we did not include social connectedness and service quality as UX
dimensions.

For the experimental design we counterbalanced remote control order (standard
remote called r 97 vs new remote called r 197). The evaluation was based on a fully
functional user interface prototype for interactive TV and a high-fidelity remote control
prototype that is close to mass-production.

Figure 2 shows how we have been adjusting the experimental usability study to also
cover the various time ranges of the UX. To understand the first encounter with the system
we video-recorded the user. The video can be used to classify user reaction when first
seeing, touching and interacting with the product. During the tasks users are video recorded
and eye-gaze is recorded using an eye-tracker. This allows to analyze emotional reactions
and to measure objectively the level of eye-gaze towards the remote control). For the
momentary user experience we asked each study participant after performing a task some
rating-questions on the subjective experience (eyes-free perception, naturalness, emotion).
The cumulative user experience is measured using the AttrakDiff [2] questionnaire. And the
after usage user experience is evaluated using interview questions. With this adaptation not
all UX dimensions are explored for all types of user experience (before, during, after,
momentary, episodic, cumulative). The decision to incorporate these measurements was
informed by several factors: maximal duration of each session should not exceed 1,5 h,
availability of validated measures and of course the goal of the evaluation to understand UX
of the newly developed interaction technique.

354 D. Drouet and R. Bernhaupt

Fig. 2. Depiction of the assembly of various methods to investigate user’s experiences before,
during and after usage

4 Procedure and Results

The experimental user study was performed in June 2016 in an office of IRIT that was
equipped with a television screen. The user was seated on a sofa with about 3 m of
distance. Each session lasted around 1.5 h. Experimentation involved two different
systems, from which we only report the variation of the interaction technique when
controlling 360° video. Ten participants (age 19 to 23; mean 21.5, SD 1.27) took part
in the study and were awarded 20 € for their participation. The procedure followed
closely the steps described in Fig. 2.

For the momentary UX the participants description included a wide range of
comments that were analyzed qualitative in a word cloud, showing the difference in
experience the participants had when interacting with the two different remote controls.
The episodic UX ranged from surprising to feeling in control. The perception of natu‐
ralness was 1.65 (for the r 197) and 1.55 (for the r 97), on a scale from 1 (natural) to 5
(not natural). Cumulative UX: Results in terms of user experience showed that the new
type of remote control r 197 was in terms of cumulative user experience perceived as
desired while the traditional remote r 97 was perceived as task oriented (Fig. 3). Due to
limited space we are not able to report all types of data.

User Experience Evaluation Methods 355

Fig. 3. Results for the AttrakDiff questionnaire showing the traditional remote control r 97 and
the new type of remote control r 197.

What is the important aspect and contribution is the understanding that the different
types of UX can be contradictory and need interpretation. For example the short usage
ratings for naturalness differ from the overall evaluation of the user experience. For
naturalness the standard remote control was preferred, while for the overall experience
measured with the AttrakDiff the r 197 was rated as more desired.

A possible interpretation is that users are facing an unpleasant situation in a user test
and thus on a short time evaluation feel more comfortable with a technology there are
used to (in this case the r 97). Thus in the short time they got the remote in their hand
(7.15 min on average) during the test, it is hard for them to get a real feeling about a new
kind of remote control (r 197). This could explain why they are considering the tradi‐
tional remote control as more natural than the new type of remote despite that they are
putting the new type of remote in the desire category and the traditional in the task
oriented category. This demonstrates that the combination of various methods can be
helpful to understand how the overall user experience develops over time.

5 Lessons Learned

To have a general understanding of the overall user experience it is important to combine
methods and methodological approaches that enable the measurement before, during
and after interacting with the product in a user study. The combination and combined
analysis is key to get a more holistic understanding of UX.

Using a user study is a feasible method to get a reasonably fast first understanding
on the overall user experience and allows to evaluate user’s first impressions and first
time or early usages.

Analysis of the multitude of data and their integration into a bigger picture is
currently difficult to achieve. There are no standards for how to integrate differing user

356 D. Drouet and R. Bernhaupt

experience descriptions and how to conclude from them in a quick and easy way. Using
textual analysis or grounded theory to interpret text could be a possibility but will be
complicated facing the need to also include quantitative data.

One key limitation at the moment is the missing data on later stages of user experi‐
ence and how user experience is changing over long term use. Figure 1 clearly shows
longer term usage experiences, while the user study in Fig. 2 only evaluates very early
stages. There is work on these areas [12] on how time affects user experience, but how
to integrate longer term evaluation in user studies is currently not solved.

Performing a user study per se incorporates a variety of artifacts due to the method‐
ology [1]. Participants can feel uncomfortable in the testing situation and this might
influence the feedback on the UX. Possible counter-steps can be the triangulation of
methods and the incorporation of methods that can be applied at later stages (e.g. Field
studies or long-term Diaries) to balance limitations of individual methods.

6 Conclusion

The inclusion of user experience as a central driver for software development is a difficult
endeavor. This paper reports on first results on how to adapt an experimental user study
to include user experience measurements for before, during and after usage of a system
and discusses briefly lessons learned for such an approach. Our research goal is to start
to establish a framework that allows the comparison of adaptations and combinations
of UX evaluation methods, e.g. by expanding current work on the notation of UX eval‐
uation results in a task-modeling tool [4].

A special focus of our future work will be on measuring UX after usage e.g. by
performing post-usage interviews or using creative forms of reminders to prompt
memory of the user to describe these after usage experiences. One possible way would
be send a video about the interactive system or product to the user, combined with a set
of questions to gather post-usage feedback. We feel that the phase of after usage is
currently not reasonably addressed by the HCI research community, but it would be
central to the understanding how users form opinions on a product due to the experience
they made and how such a post usage experience leads to the establishment of a connec‐
tion with a product or brand.

References

1. All about UX: all UX evaluation methods. http://www.allaboutux.org/all-methods
2. AttrakDiff. www.attrakdiff.de
3. Bernhaupt, R. (ed.): Game User Experience Evaluation, p. 285. Springer, London (2015)
4. Bernhaupt, R., Palanque, P., Manciet, F., Martinie, C.: User-test results injection into task-

based design process for the assessment and improvement of both usability and user
experience. In: Bogdan, C., et al (eds.) HCSE 2016/HESSD 2016. LNCS, vol. 9856, pp. 56–
72. Springer, Switzerland (2016)

User Experience Evaluation Methods 357

http://www.allaboutux.org/all-methods
http://www.attrakdiff.de

5. Bernhaupt, R., Pirker, M.: Evaluating user experience for interactive television: towards the
development of a domain-specific user experience questionnaire. In: Kotzé, P., Marsden, G.,
Lindgaard, G., Wesson, J., Winckler, M. (eds.) INTERACT 2013, Part II. LNCS, vol. 8118,
pp. 642–659. Springer, Heidelberg (2013)

6. ISO 9241-210 Ergonomics of Human-System Interaction - Part 210: Human-Centred Design
for Interactive Systems (2010)

7. Gegner, L., Runonen, M.: For what it is worth: anticipated experience evaluation. In: 8th
International Conference on Design and Emotion, London, UK (2012)

8. Hagen, U.: Designing for player experience: how professional game developers communicate
design visions. J. Gaming Virtual Worlds 3, 259–275 (2011)

9. Hassenzahl, M., Tractinsky, J.: User experience-a research agenda. Behav. Inf. Technol.
25(2), 91–97 (2006)

10. Hassenzahl, M.: The thing and I: understanding the relationship between user and product.
In: Blythe, M.A., Overbeeke, K., Monk, A.F., Wright, P.C. (eds.) Funology, pp. 31–42.
Springer, Amsterdam (2003)

11. Jordan, P.: Designing Pleasurable Products. Taylor and Francis, London (2000)
12. Karapanos, E., Zimmerman, J., Forlizzi, J., Martens, J.-B.: Measuring the dynamics of

remembered experience over time. Interact. Comput. 22, 328–335 (2010)
13. Lazar, J., Feng, H.J., Hocheiser, H.: Research Methods in Human-Computer Interaction.

Wiley, Chichester (2010)
14. Lehtonen, T.K.: The domestication of new technologies as a set of trials. J. Consum. Cult.

3(3), 363–385 (2003)
15. McCarthy, J., Wright, P.: Technology as experience. Interactions 11, 42–43 (2004)

358 D. Drouet and R. Bernhaupt

Endev: Declarative Prototyping with Data

Filip Kis(B) and Cristian Bogdan

KTH Royal Institute of Technology, Stockholm, Sweden
{fkis,cristi}@kth.se

Abstract. The trend of Open Data and Internet-of-Things initia-
tives contribute to the ever growing amount of data available through
web APIs. While building web applications has become easier with
recent advancement in web development technologies and proliferation
of JavaScript frameworks, the access to data from various APIs and data
stores still poses certain challenges. It often requires complex setup and
advanced programming skills that hinder the rapid prototyping efforts.
Therefore, we propose Endev, a declarative framework for prototyping
applications that is built on modern web technologies and supports build-
ing modern web applications, that utilize the vast amount of available
data, without the need for setup or write complex JavaScript code.

Keywords: UI modeling · GUI generation · Interactive prototypes ·
Discourse model · Query annotations

1 Introduction

The Open Data and the Internet-of-Things trends are producing more and more
data that users are expected to have access to via GUIs of interactive appli-
cations. At the same time building such data-centric applications requires less
effort than ever, for skilled developers, thanks to cloud services, popularization of
scripting development technologies (e.g. JavaScript, Python) and the omnipres-
ence of web1. However, the setup and advanced programming skills required to
build interactive prototypes hinders the rapid prototyping efforts.

Prototyping is the key activity in human-centered software engineering
process as it allows designers to explore design alternatives and include end-
users early on in the process. Various prototyping methods, from sketching to
using dedicated prototyping tools, are used in practice, however, the research
shows that designers desire better tools that would allow them to prototype
the flow of data and advanced interaction [6,9]. Furthermore, a survey of 4000

1 Web is becoming the platform of choice for many applications as it is easier to
maintain (no installs or updates) compared to desktop or mobile applications.

c© IFIP International Federation for Information Processing 2016
Published by Springer International Publishing Switzerland 2016. All Rights Reserved
C. Bogdan et al. (Eds.): HCSE 2016/HESSD 2016, LNCS 9856, pp. 359–365, 2016.
DOI: 10.1007/978-3-319-44902-9 23

360 F. Kis and C. Bogdan

designers [3] shows that HTML is preferred prototyping tool over tools specif-
ically designed for prototyping (e.g. InVisio) or even general design tools (e.g.
Photoshop, InDesign).

Building on these research results, and with the aim to support rapid pro-
totyping of data-centric applications, we demonstrate Endev [7] – a declarative
prototyping solutions. The declarative HTML annotations allow users to proto-
type interactions with, and connection to, data. Endev is developed as JavaScript
library and utilizes cloud services to support data storage and API access with-
out the need for server setup or dedicate development environments.

2 Related Work

Declarative languages have played an important role in UI development and
especially in web design where HTML and CSS are dominating as markup tech-
nologies for defining UI layout. Modern client-side web development frameworks
(e.g. Angular [2], Ember [1]) use declarative data-binding constraints that pro-
vide more dynamic features, such as keeping HTML elements automatically in
synchronization with the application data values, though they still require sig-
nificant amount of non-declarative code to access the backend or the API data.

Quilt [4] is a recent solution that provides HTML annotations to connect the
interface to a spreadsheet that serves as the datastore. Quilt allows both data
read and write and keeps the interface in synchronization with the spreadsheet
data. Another solution based on spreadsheets as the datastore is Gneiss [5].
Unlike Quilt, Gneiss is a live programming mashup environment where, instead
of using HTML annotations, the users can drag and drop widgets to the page and
connect them with spreadsheet values. A key feature of Gneiss is the support
for any REST2 web service returning JSON3 data which can be interactively
combined in the spreadsheet before their data is used in the interface. The main
drawback for Gneiss compared to Endev is that the users are limited to working
with UI widgets existing in the system, which significantly reduces the design
possibilities.

XFormsDB [10] is a declarative data binding solution that binds to server-side
data. It is based on the XForms4, a W3C Recommendation, that was designed to
be the next generation of HTML forms. XFormsDB depends on having a complex
server setup and supports only XML based databases, thus it is not ideal for
quick prototyping. Furthermore, even though XForms are relatively old-standard
(first version published in 2007), none of the major browsers currently natively
supports it.

2 Representational State Transfer protocol - most widely used protocol for web service
APIs.

3 JavaScript Object Notation - data format often used by exchanging data through
web services.

4 https://www.w3.org/MarkUp/Forms/.

https://www.w3.org/MarkUp/Forms/

Endev: Declarative Prototyping with Data 361

3 Setup-Free Prototyping with Endev

During prototyping, it is often important to be able to share the prototype with
other stakeholders to solicit feedback. When the prototype is interactive, includes
data, or requires a complex setup, it becomes hard to share it beyond screen-
shots or video recordings that capture only fixed path interaction. However,
Endev addresses these challenge by utilizing modern web technologies and cloud
services.

With Endev the users can prototype web applications that provide data
storage and other features that contemporary users expect (e.g. drag-and-drop
interaction, real-time data synchronization) by writing HTML and annotating
it with declarative expressions. Such prototypes can be executed in any browser,
which makes them easily sharable. In other words, the prototype can be sent
by email, shared over Dropbox or put on-line in one of the code playgrounds
(e.g. CodePen5, JsFiddle6) for easy access and modification.

We will use an example Wish List app (shown in Fig. 1) to demonstrate how
a prototype can be built with Endev. The goal of the Wish List app is to give
the users possibility to setup their wish list (e.g. for a birthday or Christmas).
Each item on the list can optionally include a picture that the users can retrieve
by searching through public pictures on Flickr.

Fig. 1. The Wish List prototype showing the items on the list (with name and option-
ally an image) on the left (Current list) with possibility to add a new item on the right
(Add item to the list). At the top right the users can type the name of the new item,
while in the bottom right they can search and select a picture that should be associated
to the item.

The following sections will describe how the two main challenges (storing the
wish listdataandgettingthepictures fromFlickr)areachievedthroughprototyping

5 http://codepen.io/.
6 https://jsfiddle.net/.

http://codepen.io/
https://jsfiddle.net/

362 F. Kis and C. Bogdan

with Endev. The more comprehensive and interactive tutorial covering the main
features of Endev is available on-line7.

4 On-the-fly Creation of Own Data

Storing the data is typically not a concern that is addressed during UI prototyp-
ing. The designers normally use dummy data that is either not possible to edit
or, at a more advanced stage of the prototyping, the edits are temporary (e.g.
refresh of the page or reload of the app reset the data). However, there is a value
in working with the data that is stored. For instance, when testing with users
they get to experience the flow of the application by experiencing the interaction
with the data. Furthermore, if there is a need to quickly modify the design, the
user-entered data is still there and thus makes the comparison of alternatives
easier to compare.

Listing 1.1 shows the HTML code with Endev annotations needed to list the
items from the wish list and add a new item to the list. The code is the same
code used for the application shown in Fig. 1 without the additional layout-only
HTML code.
Current list
<div data-from="firebase:WishList item" data-auto-update ="true">

<input data-value="item.name"/>

</div>

Add item to list
<input data-value="newItem.name"/>

<button data-insert-into ="firebase:WishList"

data-click="insert({ name:newItem.name ,image:newItem.image})">
Add

</button>

Listing 1.1. Endev code of Wish List app (see Fig. 1) for listing the items in the wish
list and adding a new item to the list.

In this example data-from and data-insert-into annotations are used to
connect to the data storage for which we use Firebase8 cloud storage. Firebase is
a document-based storage, therefore, there is no need to define the data structure
before hand. Instead, data is stored as-is and on-the-fly.

We have seen, in the related work, some solutions use spreadsheets to allow
building applications quickly without the need for complex database setup. How-
ever, document-based data storage provides more complex data objects com-
pared to spreadsheets thus allowing for more complex use-cases. Furthermore,
Firebase is just one of several data providers offered by Endev and others (e.g.
spreadsheet storage) can be added easily.

Other annotations like data-value and data-click serve to bind the values
to some UI elements or user actions respectively. Finally, the data-auto-update
annotation enables automatic updates of the values in the Current list, in other
7 http://www.endevjs.org/tutorial.
8 https://firebase.google.com/.

http://www.endevjs.org/tutorial
https://firebase.google.com/

Endev: Declarative Prototyping with Data 363

words, as soon as the users modify any of the items in the list the changes are
saved automatically.

5 Seamless Integration of API Data

The second challenge of the Wish List app is to integrate with Flickr search
API so that an image can be associated with the wish list item. Traditionally
such feature would be prototyped with dummy data instead of having a real
API integration. However, with more and more web services generating data
and applications that work with them it is important that prototyping includes
working with real API data. Web service data, compared to proprietary domain-
data, comes with certain challenges (e.g. quality, reliability, latency) that are
often out of control of application developers. For instance, the end-users or
designers might expect the results from API to be the same as when they use the
actual service where the data comes from. While, in reality, the service provider
might have different algorithms for these two cases. Experiencing the differences
early on in the prototyping allows for better management of expectations and
thus better design.

Accessing APIs requires certain amount of complex and error-prone code [8]
that needlessly increases the prototyping effort. Endev addresses this by provid-
ing seamless mechanism for reading web service data that is seen by the users as
just another data provider. In other words, the difference between reading their
own data (as seen in Listing 1.1) and the data coming from an API is in the
string that defines the data source (e.g. data-from annotation).

Listing that follows shows how the users can read data from Flickr API based
on the inputed search term.
Search for an image
<input data-value="searchTerm"/>
<div data-from="yql:flickr.photos.search result"

data-where="result.text= searchTerm AND
result.api_key ='_API_KEY_OMITTED_ '">

<div data-from="result.photo photo">
<img src="http://farm{{photo.farm }}. staticflickr.com/{{ photo.server }}/{{

photo.id}}_{{photo.secret }}.jpg"
data-insert-into ="firebase:PhotoCollection"
data-click="newItem.image ='_LONG_URL_OMITTED_ '">

<small data-from="yql:flickr.people.info2 people"
data-where="people.user_id = photo.owner AND

people.api_key ='_API_KEY_OMITTED_ '">
by {{ people.person.username }}

</small>
</div>

</div>

Listing 1.2. Endev code of Wish List app (see Fig. 1) for searching public images on
Flickr and, when one image is clicked, adding it to the new item.

The first data-from has similar meaning as in Listing 1.1. However, instead
of getting data from Firebase, Endev now uses Yahoo Query Language platform9

to directly access the Flickr search API. Since the data returned by the API is

9 https://developer.yahoo.com/yql/.

https://developer.yahoo.com/yql/

364 F. Kis and C. Bogdan

hierarchical (i.e. contains an item called photo that contains an array of actual
photo results) the second data-from is used to access each item in the array.
The final data-from is used to access another Flickr API which returns the
information about the owners of the photos based on their ids. Finally, the
data-click sets the value of the image of the newItem which was used in Listing
1.1 when creating the new item for the list.

6 Behind the Scenes

Endev is implemented as JavaScript framework with architecture shown in Fig. 2.
Endev Core is responsible for caching (on the client-side) and querying the data
from one of the Endev Providers which, in turn, access the data and keep it
in sync with the data storage. Endev Annotations are built on top of Anuglar,
therefore, Endev supports evolutionary prototyping as the prototype can evolve
beyond the capabilities provided by Endev. Thus, Endev can be used to either
quickly prototype a completely new application or just a new feature in already
existing applications. In both cases the prototype can evolve into a more stable
system without the need of re-implementing the whole interface from scratch.

Fig. 2. Endev architecture

Endev: Declarative Prototyping with Data 365

7 Conclusion and Future Work

In this paper we demonstrated Endev, the tool for prototyping interactive appli-
cations with data. Endev enables prototyping with real data, created by the
users or coming from a web service, through declarative annotations without
the need for complex setup or server orchestration. The prototypes are simple
HTML files that can easily be shared among all the stakeholders and require
only a browser to be executed.

While the declarative annotations employed by Endev provide a uniform
way of accessing data, there is a challenge in finding and understanding the
growing amount of web service data. Endev currently supports a basic way of
exploring the data returned from an API, however, in the future we would like to
explore how to better support the discovery and understanding of APIs during
prototyping.

References

1. Ember.js - A framework for creating ambitious web ... (2011). http://emberjs.com/
2. AngularJS - Superheroic JavaScript MVW Framework (2014). https://angularjs.

org/
3. The Tools Designers are Using Today (2015). http://tools.subtraction.com/
4. Benson, E., Zhang, A.X., Karger, D.R.: Spreadsheet driven web applications. In:

Proceedings of the 27th Annual ACM Symposium on User Interface Software and
Technology (UIST), New York, USA, pp. 97–106. ACM, New York (2014)

5. Chang, K.S.P., Myers, B.A.: Creating interactive web data applications with
spreadsheets. In: ACM Symposium on User Interface Software and Technology
(UIST), pp. 87–96, New York, USA. ACM, New York (2014)

6. Grigoreanu, V., Fernandez, R., Inkpen, K., Robertson, G.: What designers want:
needs of interactive application designers. In: IEEE Symposium on Visual Lan-
guages and Human-Centric Computing 2009, VL/HCC 2009, pp. 139–146, Sep-
tember 2009

7. Kis, F., Bogdan, C.: Declarative setup-free web application prototyping combining
local and cloud datastores. In: 2016 IEEE Symposium on Visual Languages and
Human-Centric Computing (VL/HCC). IEEE Computer Society (2016)

8. Myers, B.A.: Separating application code from toolkits. In: Proceedings of the 4th
Annual ACM Symposium on User Interface Software and Technology (UIST), New
York, USA, pp. 211–220. ACM, New York (1991)

9. Myers, B.A., Park, S.Y., Nakano, Y., Mueller, G., Ko, A.J.: How designers design
and program interactive behaviors. In: 2008 IEEE Symposium on Visual Languages
and Human-Centric Computing (VL/HCC), pp. 177–184. IEEE Computer Society,
Washington, D.C. (2008)

10. Vuorimaa, P., Laine, M., Litvinova, E., Shestakov, D.: Leveraging declarative lan-
guages in web application development. World Wide Web 19(4), 519–543 (2016)

http://emberjs.com/
https://angularjs.org/
https://angularjs.org/
http://tools.subtraction.com/

Collaborative Task Modeling: A First Prototype
Integrated in HAMSTERS

Marius Koller1(✉), Cristian Bogdan2, and Gerrit Meixner1

1 UniTyLab, Heilbronn University, Heilbronn, Germany
{marius.koller,gerrit.meixner}@hs-heilbronn.de

2 CSC, MID, KTH Royal Institute of Technology, Stockholm, Sweden
cristi@kth.se

Abstract. Task models are introduced in several use-cases in academia. They
are usually created in collaboration between different people and disciplines.
There exist many notations and associated graphical editors to create the models.
However, these editors do not have integrated functions to support collaborative
work. In this work, we propose the integration of collaborative functions in the
HAMSTERS task modeling tool.

Keywords: Task modeling · Collaborative support · HAMSTERS

1 Introduction

The creation of task models is a complex undertaking that is usually performed by people
from different professions and backgrounds. It is unlikely that just one person is working
on task models in a given project. Therefore, task models will often be the result of some
kind of collaboration. To support task authors and their daily work, digital support for
the collaborative creation of task models is necessary. The needed digital support
depends on the nature of task model creation process in each group.

In this demo we propose an integration of collaborative features in the HAMSTERS
task modeling tool. We focus on the communication between the collaborators as well
as on awareness between them. The proposed and prototyped functions are being imple‐
mented and will be evaluated in the future.

2 Task Models

Task Models are a well-known concept in research and academia. Task modeling has
its foundations in the Hierarchical Task Analysis (HTA) that was defined in 1967 by
Annett and Duncan [1]. HTA has the goal to analyze the user’s tasks and structure it
hierarchically. Many different task modeling notations were defined and are used in
different, mostly academic, use cases, for different purposes. For example, the Useware
Markup Language (useML) [7] aims to generate user interfaces that are based on the
created task models. For this purpose, the in useML defined Usemodel is transformed

© IFIP International Federation for Information Processing 2016
Published by Springer International Publishing Switzerland 2016. All Rights Reserved
C. Bogdan et al. (Eds.): HCSE 2016/HESSD 2016, LNCS 9856, pp. 366–373, 2016.
DOI: 10.1007/978-3-319-44902-9_24

to other models and at the end it is possible to generate the final user interface. The
Groupware Task Analysis (GTA) aims to support the task-based development of collab‐
orative applications [14] (we should however distinguish collaboration during task
modeling from collaboration of end users modeled by collaboration-aware task models
such as GTA). The Méthode Analytique de Description (MAD) is a semi-formal method
to record user tasks based on interviews [11] that can be used during the requirements
analysis phase. The ConcurTaskTrees (CTT) are and well-known approach [9] which
has dominated research approaches lately. CTT aims to analyze and record the user’s
task and generate models from them. The Human-centered Assessment and Modeling
to Support Task Engineering for Resilient Systems (HAMSTERS) [6] uses some
concepts from CTT and aims to identify possible human errors and to prevent them.

Most of these notations have graphical representations and editors to create graphical
task models. For instance, HAMSTERS (see Fig. 1) and CTT’s editors CTTE [10] and
Responsive CTT [2] use small icons for the representation of tasks. For the different
type of tasks there are specific icons defined and used in the models. UseML’s editor
Udit [8] represents the items with boxes and differs them using a color-code. CTTE and
Udit are stand-alone software whereas Responsive CTT is web-based.

Fig. 1. The graphical editor HAMSTERS.

3 Computer Supported Cooperative Work

The field of Computer Supported Cooperative Work (CSCW) has been aiming to support
technology-mediated collaboration for several decades.

Collaborative editors are an important area of CSCW research, and it is collaborative
task model editors that we aim to create a system for collaborative editing. It needs to
support the following features, according to [4]:

Collaborative Task Modeling 367

1. Distribution: the clients are not co-located but distributed and connected over the
internet or an internal network.

2. Sharing: the clients should be able to share documents but be aware with whom
they are sharing it.

3. Autonomy: a document has an owner that has the right manage it, e.g. grant access.
4. Reliability: the stored data has to be robust to connection losses and be accessible

when a client crashes.
5. Reconfiguration: the clients should easily configure the system and its behavior.
6. Concurrency: the system has to allow editing at one time.
7. Consistency: the stored data has to be consistent even during the concurrent editing.
8. Performance: the responses should have a reasonable delay that allows a fluent

working with the system.
9. High-Quality User Interface: the provided user interface should support the clients

during their work.

Sutcliffe defines requirements for groupware, some of them are similar to the above
[13]. He adds for example the “group’s collective goal awareness” – that means the
group should be aware of its goal, means why they are collaborate and that may include
sub-goals. Also, possible conflicts have to be managed in a transparent and fair way.
Sutcliffe’s findings do not change the defined requirements but support and extend them.

One challenge in CSCW is the concept of “awareness” defined as “understanding
the activity of others in the context of one’s own activity” [3]. One central question is
“what should the user be aware of?” [12].

4 Collaborative Support in Task Modeling Environments

To understand the needs for a collaborative support we need to know: who are the
collaborators? What are their professions, background? We found in a small pilot-study
that many different professions engage in task model authoring. They may not have a
technical background and this needs to be taken into account in the collaborative graph‐
ical editor design. We identified three groups: Usability Experts, Software Developers/
Engineers and User Interface Designers. From literature and other projects, we know
that in some cases the management is involved as well. In our own studies we found
that the teams may be distributed and the interaction or collaboration –which means the
implemented process - differs between companies.

We looked at four task modeling tools and evaluated their possibilities for cooper‐
ation support.

At first we identified features that afford some sort of collaboration. The most basic
form for developers is the sharing of file with a Version Control System (VCS) like for
example Git or Subversion (SVN). Other ways of sharing files, like simple “saving in
the cloud” and sharing with others – at the same or different time. Also an important
aspect for collaboration is the communication. There are different communication-
channels that could be used: text-based chat, call or video-telephony. For the distributed
creation of task models, it is useful if users could comment on tasks, branches of a tree

368 M. Koller et al.

model or on the whole model. Users may want to know how a model evolved during
the creation. For that a history feature is useful where the users can see what was changed.

As shown in Table 1, HAMSTERS is the only tool that provides some aspects of
collaborative support. HAMSTERS has an integrated version control (VCS) that allows
the users to share their project. The history is closely related to the VCS. The view shows
the underlying XML-file and shows the differences between the selected version and
the current working-copy. There is no possibility to show the differences in the graphical
representation.

Table 1. Analyzed tools.

Feature Udit CTTE Responsive CTTE HAMSTERS
Sharing � ? ? ✓
Chat � � � �

Comment � � � �

History � � � ✓

Several incipient collaboration features are supported by other modeling tools as
well. In CTTE it is possible to upload the file to a public or private repository at HIIS.
Responsive CTTE could be able to share the models. Since it is web-based and the
models are saved on servers, it could be possible to share the files. Currently this function
is not implemented. Udit has no functionality for collaboration integrated.

Hili et al. [5] introduce with FlexiLab a tool that offers collaborative functions amongst
others. They focus in their work on real-time communication and sharing of models. The
sharing enables the users to work on different parts of a model and share it.

5 Mock-Ups of Collaborative Functions

Since we have some functions that are already integrated in HAMSTERS, we decided
to continue working with it adding collaborative support. In order to generate ideas on
how a collaborative support could look like, and in order to be able to analyze and judge
these design ideas, we developed prototypes for the different collaborative functions.
The ideas are being implemented as online prototypes, and prepared for demo. Since
HAMSTERS is based on NetBeans™, we intend to stick on the NetBeans tab-based
navigation concept.

The first function that we considered is the communication between users. We thus
integrated a tab that shows a chat tool We decided to introduce a tab with the same
behavior like the other tabs (e.g. tabs could be arranged according to the user’s prefer‐
ences). An important point to keep in mind is that the chat has to be visible for every
user, including what was said before he or she joined the talk. The mockup is depicted
in Fig. 2.

As a second major function we identified commenting. We believe that for the
collaborative creation it is important to tell the other editors how you are thinking while
designing a task model. The comments are anchored on specific parts of a task model.
Therefore, we intend to introduce comments that can be attached to a specific task or a

Collaborative Task Modeling 369

branch of the model. The possibility to add a comment will be shown at the object of
interest. Depending on the kind of task. e.g. Abstract Task or User Task, the comment
will refer to a whole branch or only to this specific task. The first comment in Fig. 3
includes the possibility to comment on the whole branch while the second comment or
conversation is regarding this particular task. It will be possible to start discussions
within the comments.

The current HAMSTERS implementation of a history is readable only by experts,
e.g. Software Engineers, as it is based on version control specific to software. Users from
other disciplines that use the application and its models are currently not able to under‐
stand the changes without an expert explanation. To support such users, we will intro‐
duce a graphical representation of task model history. One design alternative is to display
history as grayed-out objects.

The sharing of the model with real-time editing may need changes in the user account
structure of HAMSTERS. For example, we need to display the currently active users
and which users have access to the model (see Fig. 4). To achieve that, we have to provide
a login for the users. Again, to be consistent with the existing UI design of HAMSTERS
we will introduce a tab that contains the currently active users and the users that have
access to the model.

Fig. 2. The integrated chat.

370 M. Koller et al.

Fig. 4. Sharing the model.

After implementing such basic collaborative support for task editing, we will look
into more advanced support, derived from field studies of task modeling that we are
conducting. For example, awareness [4, 11] will be initially supported only by our
history feature, which is a good beginning is history is shown permanently in a tab, and
maybe recent changes are promoted in the tab title. More awareness support can be
added to emphasize important task model changes made by collaborators.

Fig. 3. Two comments on tasks.

Collaborative Task Modeling 371

6 Conclusions

We regard task modeling as complex interdisciplinary collaborative work. Different
disciplines and profession combine their knowledge and expertise in these artifacts.
However, in the current tools for task modeling we found only little
collaborative support. Only HAMSTERS includes with SVN and Git which are well-
known collaborative tools for software developers. We propose new features that intro‐
duce collaborative support in HAMSTERS. We believe that especially the possibility
to comment on tasks or branches will support distributed teams that work asynchro‐
nously. The other features will ease the creation of task models in groups, too.

We are in the process of implementing the collaborative task modeling features and
we aim to later evaluate these features.

References

1. Annett, J., Duncan, K.D.: Task analysis and training design. Occup. Psychol. 41, 211–221
(1967)

2. Anzalone, D., et al.: Responsive task modelling. In: Proceedings of the 7th ACM SIGCHI
Symposium on Engineering Interactive Computing Systems, pp. 126–131. ACM, New York
(2015)

3. Dourish, P., Bellotti, V.: Awareness and coordination in shared workspaces. In: Proceedings
of the 1992 ACM Conference on Computer-supported Cooperative Work, pp. 107–114 ACM,
New York (1992)

4. Greif, I., et al.: A case study of CES: a distributed collaborative editing system implemented
in Argus. IEEE Trans. Softw. Eng. 18(9), 827–839 (1992)

5. Hili, N., et al.: Innovative key features for mastering model complexity: flexilab, a multimodel
editor illustrated on task modeling. In: Proceedings of the 7th ACM SIGCHI Symposium on
Engineering Interactive Computing Systems, pp. 234–237 ACM, New York (2015)

6. Martinie, C., et al.: A generic tool-supported framework for coupling task models and
interactive applications. In: Proceedings of the 7th ACM SIGCHI Symposium on Engineering
Interactive Computing Systems, pp. 244–253 ACM, New York (2015)

7. Meixner, G., Seissler, M., Breiner, K.: Model-driven useware engineering. In: Hussmann, H.,
Meixner, G., Zuehlke, D. (eds.) Model-Driven Development of Advanced User Interfaces.
SCI, vol. 340, pp. 1–26. Springer, Heidelberg (2011)

8. Meixner, G., et al.: Udit–a graphical editor for task models. In: Proceedings of the 4th
International Workshop on Model-Driven Development of Advanced User Interfaces
(MDDAUI), Sanibel Island, USA, CEUR Workshop Proceedings. Citeseer (2009)

9. Paternò, F.: ConcurTaskTrees: an engineered notation for task models. In: The Handbook of
Task Analysis for HCI, pp. 483–503 (2003)

10. Paternò, F. et al.: CTTE: an environment for analysis and development of task models of
cooperative applications. In: CHI 2001 Extended Abstracts on Human Factors in Computing
Systems, pp. 21–22 ACM, New York (2001)

11. Rodriguez, F.G., Scapin, D.L.: Editing MAD* task descriptions for specifying user interfaces,
at both semantic and presentation levels. In: Harrison, M.D., Torres, J.C. (eds.) Design,
Specification and Verification of Interactive Systems 1997, pp. 193–208. Springer, Vienna
(1997)

372 M. Koller et al.

12. Schmidt, K.: The problem with ‘awareness’: introductory remarks on ‘awareness in CSCW’.
Comput. Support. Coop. Work CSCW 11(3–4), 285–298 (2002)

13. Sutcliffe, A.: Applying small group theory to analysis and design of CSCW systems. In:
Proceedings of the 2005 Workshop on Human and Social Factors of Software Engineering,
pp. 1–6. ACM, New York (2005)

14. Van Der Veer, G.C., et al.: GTA: groupware task analysis—modeling complexity. Acta
Psychol. (Amst.) 91(3), 297–322 (1996)

Collaborative Task Modeling 373

Accelerated Development for Accessible Apps –
Model Driven Development of Transportation

Apps for Visually Impaired People

Elmar Krainz(B), Johannes Feiner, and Martin Fruhmann

FH Joanneum, Kapfenberg, Austria
{elmar.krainz,johannes.feiner,martin.fruhmann}@fh-joanneum.at

http://www.fh-joanneum.at

Abstract. Implementing usable and accessible user interfaces is a chal-
lenge, especially for mobile applications. App developers have to include
accessibility in an additional step during the implementation, very often
they overlook this extra workload.

There are concepts which combine Model Driven Development (MDD)
for apps or semi-automatic support to create accessible software. But
helpful tools to support accessibility features for apps during the imple-
mentation are hardly discussed in literature.

The aim of this paper is a concept of model-based software develop-
ment for accessible apps. Within the domain of transportation apps, we
provide a model to create an app scaffold with the required elements and
accessibility features included from the beginning.

Keywords: Model Driven Development · Mobile apps · Accessibility

1 Introduction

Mobile applications are one of today’s fastest growing software areas1. Apps,
with simple intuitive user interfaces, are easy to use. The UI is mostly based on
graphical representation a touch input.

For visually impaired and blind people this interaction paradigm is a chal-
lenge. Accessible web or desktop applications are already widespread, but this
know-how cannot always be adopted to mobile apps.

Including accessibility is a challenge for developers and therefore it is handled
more like a feature or add-on than a prerequisite. This work shows an approach
to use Model-Driven Development (MDD) to create accessible mobile apps.

1 http://www.smartinsights.com/mobile-marketing/mobile-marketing-analytics/
mobile-marketing-statistics/.

c© IFIP International Federation for Information Processing 2016
Published by Springer International Publishing Switzerland 2016. All Rights Reserved
C. Bogdan et al. (Eds.): HCSE 2016/HESSD 2016, LNCS 9856, pp. 374–381, 2016.
DOI: 10.1007/978-3-319-44902-9 25

http://www.smartinsights.com/mobile-marketing/mobile-marketing-analytics/mobile-marketing-statistics/
http://www.smartinsights.com/mobile-marketing/mobile-marketing-analytics/mobile-marketing-statistics/

Accelerated Development for Accessible Apps 375

2 Related Work

The topics Accessibility, Mobile Applications and Model-Driven Development
are part of current research. This is also visualised in Fig. 1, which shows the
overlapping domains of Model Driven Development (MDD), Accessibility and
Mobile Development. There is already some exiting work which covers the outer
intersections. For example, Accessibility and Mobile Development or Accessibil-
ity and Mobile Applications have been covered by previous papers, but seldom
all three fields of research are discussed together in the scientific community.

Mobile

MDD

Accessibility

Model Driven Design
& Mobile App Development

& Accessibility

Model Driven Design
& AccessibilityMobile App Development

& Accessibility

Model Driven Design
& Mobile App Development

Fig. 1. The research focus is in the intersection of Model Driven Development (MDD),
Mobile App Development, and Accessibility.

The main contribution of this work lays in the middle of the three cir-
cles, namely the intersection of all three domains. Following existing research
is related to our approach:

The book Model driven Software Development (MDSD) from Voelter et al.
covers the (semi-) automatic generation of software [20], but mentions mobile
devices only in one minor example and accessibility is not covered at all. In
the fast growing area of mobile applications there is also a need for this agile
and effective methods to create software. There are different approaches. Barrnet
et al. [4] describes a tool to generate data-driven apps based on a Domain Specific
Language (DSL, compare [7]), with MD2 form Heitkoetter et al. [11] even cross-
platform apps are created from a model. The latter tool focuses on business apps
where common source code is compiled into native iOS and Android apps, sadly
neglecting accessibility topics.

376 E. Krainz et al.

MDD also helps to include accessibility in the development process. The
Johar framework from Andrews and Hussain [1] uses an interface interpreter
to create accessible applications for a range of users with different abili-
ties. González-Garćıa et al. [8,9] use a model-based graphical editor tool
to design an accessible web based media player. The UsiXML presented by
Vanderdonckt [19] promotes the integration and use of a User Interface Descrip-
tion Language (UIDL).

For accessibility combined with mobile app development, there are several
publication which discuss smartphone-based assistive technologies for the blind.
For example, Narasimhan et al. [15] presented in 2009 the mobile phone tool
Trinetra to assist visually impaired people during grocery shopping. Guidelines
to develop for visually impaired and blind people can be found in [17]. Harder [10]
discussed the possibilities for general mobility already in 1999, but for several
modern approaches of implementation and design of touch-based smartphone
interfaces see [4,12–14]. These contributions focus on accessible way-finding apps
as well as new ways of touchscreen usage for blind people.

3 A Concept for Model-Driven-Development
for Accessible Apps

This work shows a concept to generate transportation apps for visually impaired
and blind people. These people have special needs when it comes to live an inde-
pendent life. Traveling and moving on their own is a very important factor [10].
Various apps are available to support this user group, but not every app provides
an accessible user interface.

The innovative part of the empirical work in this contribution uses MDD
to generate accessible apps. With the help of a meta model a concrete model
of an transportation app is designed. Several features and workflows for the
domain of transportation apps are included in this model. For example, most
transportations apps need the functionality to fetch the current GPS position,
which is part of the meta-model. Specifying getposition (see Sect. 3.1) in the
model adds to appropriate code to the app. With an instance of this model an
app scaffold is generated.

Based on best practices for accessible apps (see [4,12–14]) and the adoption of
common standards (see [5,18]) required accessibility features are included from
the beginning.

App programmers open the generated sources in the development environ-
ment (IDE) and can focus on the business logic which is not generated auto-
matically. The resulting app has a simplified workflow and an accessible user
interface (see screenshot in Fig. 2).

3.1 Model

Concerning the model, we choose a domain specific approach. Which leads to a
very specific and a straightforward model. We choose the domain of mobility and

Accelerated Development for Accessible Apps 377

Fig. 2. Screenshot of the resulting routing app.

transportation apps. These kinds of apps help visually impaired, and disabled
people to be more independent while travelling. For this reason a research on
common transportation apps was necessary.

Transportation apps like Google Maps, OSM Routing or apps from different
public transport companies have similar features. These are:

– Fetching your actual position
– Entering a target location
– Searching for a location
– Showing a route
– Display a map
– Receiving infos from public transport

These features and workflows within an app are defined in a model. With
a defined notation developers are able to build the scaffold of their own trans-
portation app.

3.2 Modeling Language

Domain Specific Languages (DSL) help you to describe a model in your
domain [7]. In this work an internal DSL is used. The language definition and
the dedicated models are written in XML. We choose XML, because there are
various tools available to create and process XML-based languages. But in the
end it is more the less a personal decision, which language you use [6]. For better
usability and non programmers a visual editor to create the model based on this
DSL would be helpful.

Example of an GPS position finder app:

<?xml version="1.0" encoding="UTF-8"?>
<app appname="whereami"

378 E. Krainz et al.

package ="at.fhj.modeling">
<screen name="startscreen"

transition="mainscreen">
</screen>
<screen name="mainscreen"

transition="back" >
<action function="getposition">

<input type="button"/>
<outout type="text"/>

</action>
</screen>

</app>

3.3 App Accessibility

People with special needs are nowadays able to operate standard computers
without great difficulties. With the help of, for example, a braille display and
build-in features of an operating system a visually restricted person can perform
tasks on a PC. Visually impaired and blind people where also used to handle
key-based mobile phones with screenreader software as add-on. With the uprise
of touch-based smartphones these users had to find new ways of interaction.

On the popular mobile platforms iOS and Android are already some accessi-
bility features included. The VoiceOver2 system on iPhone allows a blind person
to use a smartphone. On the Android platform TalkBack3 is the integrated acces-
sibility feature to react the user’s touch input to voice output. But both systems
can only provide an accessible user experience if an app is created properly.
Developers have to follow the guidelines for iOS [3] or for Android [2]. Both
platforms have some similarities but have also some big differences.

The Web Accessibility Initiative (WAI) of the W3C provides standards to
improve accessibility for the Web. The actual standard for web applications is
WCAG 2.0 [5] this guideline is based on general principles for accessible devel-
opment rather then technical solutions. Therefore this standard provides a basis
for non web solutions as well. Relevant principles of WCAG 2.0 [5] are:

– Perceivable
– Operable
– Understandable
– Robust

These principles are relevant to modern web applications but can be applied to
non-web contents like mobile applications.

Currently a first public draft for a new standard for mobile accessibility [18] is
available. This document describes how the principles and guidelines of existing
standards like WCAG 2.0 can also be applied to native mobile apps.
2 http://www.apple.com/accessibility/ios/voiceover/.
3 http://www.google.com/accessibility/on-the-go.html.

http://www.apple.com/accessibility/ios/voiceover/
http://www.google.com/accessibility/on-the-go.html

Accelerated Development for Accessible Apps 379

In an (semi-) automatic generation process we have to consider platform
independent principles and also platform related source code enhancements.

3.4 App Generation

With the model specified in Sect. 3.1 we are now able to generate an app scaffold
for accessible transportation apps. This step, also known as transformation [20],
is handled by a chain of tools. The first one in this chain is JAXB [16], whose task
is to read the XML file and transform it into Java objects. Having the information
stored in objects allows now to use it in combination with the Android command
line tools to create an Android project scaffold. After this we are triggering a
templating engine which generates the files, which are needed for the structure
specified in the model. The process from XML-based model to a final app is
illustrated in Fig. 3. The previous step also includes the mentioned accessibility
features which are noticed in the Sect. 3.3.

Fig. 3. Workflow from Meta-Model to Model to App Scaffold to final App.

The outcome from this transformation process is an app scaffold with acces-
sibility features. All required app components (e.g. start-activity) and libraries
(e.g. routing-lib) are available in the app project. Further product flavours can
be integrated in the app’s source code. Features like content description for inte-
grated screen reader support or active voice output in selected parts of the app
are automatically generated.

380 E. Krainz et al.

4 Conclusion

In this paper we describe the combination of the topics accessibility, mobile
apps and model-driven development. In the Section related work we looked at
the intersection of these domains.

In the empirical part of this work we build a meta-model for the domain
of transportation apps. With an instance of this model one can create a app-
scaffold for accessible transportation apps. In the model-transformation process
all main-screens, workflows and platform related accessibility features are pro-
duced. Developers can focus on the app features, because accessibility is build
in from the beginning.

Further work will be the improvement of this concept concerning the utility
and usability of the model generation and transformation.

Acknowledgments. This work was funded by the Austrian research funding associ-
ation (FFG) under the scope of the program Mobility of the Future within the research
project PONS.

References

1. Andrews, J.H., Hussain, F.: Johar: a framework for developing accessible applica-
tions. In: Proceedings of the 11th International ACM SIGACCESS Conference on
Computers and Accessibility, ASSETS 2009, pp. 243–244. ACM, October 2009

2. Android: Accessibility - usability - google design guidelines. http://www.google.
com/design/spec/usability/accessibility.html

3. Apple: Accessibility on ios. https://developer.apple.com/accessibility/ios/
4. Barnett, S., Vasa, R., Grundy, J.: Bootstrapping mobile app. development. In:

Proceedings of the 37th International Conference on Software Engineering, ICSE
2015, vol. 2, pp. 657–660. IEEE Press, Piscataway (2015)

5. Caldwell, B., Reid, L.G., Cooper, M., Vanderheiden, G.: Web content accessibility
guidelines (WCAG) 2.0. W3C recommendation, W3C, December 2008. http://
www.w3.org/TR/2008/REC-WCAG20-20081211/

6. Fowler, M.: Parserfear (2008). http://martinfowler.com/bliki/ParserFear.html
7. Fowler, M.: Domain-Specific Languages. Pearson Education, Upper Saddle River

(2010)
8. González-Garćıa, M., Moreno, L., Mart́ınez, P.: A model-based tool to develop an

accessible media player. In: Proceedings of the 17th International ACM SIGAC-
CESS Conference on Computers & Accessibility, ASSETS 2015, pp. 415–416. ACM,
New York (2015)

9. González-Garćıa, M., Moreno, L., Mart́ınez, P., Miñon, R., Abascal, J.: A model-
based graphical editor to design accessible media players. J. UCS 19(18), 2656–2676
(2013)

10. Harder, A., Kasten, E., Sabel, B.A.: Möglichkeiten der mobilität blinder men-
schen. Aktuelle Augenheilkunde 2, 8–13 (1999). http://www.med.uni-magdeburg.
de/∼harder/mob1/mob1.html

11. Heitkötter, H., Majchrzak, T.A., Kuchen, H.: Cross-platform model-driven devel-
opment of mobile applications with md2. In: Proceedings of the 28th Annual ACM
Symposium on Applied Computing, SAC 2013, pp. 526–533. ACM (2013)

http://www.google.com/design/spec/usability/accessibility.html
http://www.google.com/design/spec/usability/accessibility.html
https://developer.apple.com/accessibility/ios/
http://www.w3.org/TR/2008/REC-WCAG20-20081211/
http://www.w3.org/TR/2008/REC-WCAG20-20081211/
http://martinfowler.com/bliki/ParserFear.html
http://www.med.uni-magdeburg.de/~harder/mob1/mob1.html
http://www.med.uni-magdeburg.de/~harder/mob1/mob1.html

Accelerated Development for Accessible Apps 381

12. Krajnc, E., Feiner, J., Schmidt, S.: User centered interaction design for mobile
applications focused on visually impaired and blind people. In: Leitner, G., Hitz,
M., Holzinger, A. (eds.) USAB 2010. LNCS, vol. 6389, pp. 195–202. Springer,
Heidelberg (2010)

13. Krajnc, E., Knoll, M., Feiner, J., Traar, M.: A touch sensitive user interface app-
roach on smartphones for visually impaired and blind persons. In: Holzinger,
A., Simonic, K.-M. (eds.) USAB 2011. LNCS, vol. 7058, pp. 585–594. Springer,
Heidelberg (2011)

14. Mattheiss, E., Krajnc, E.: Route descriptions in advance and turn-by-turn instruc-
tions - usability evaluation of a navigational system for visually impaired and blind
people in public transport. In: Holzinger, A., Ziefle, M., Hitz, M., Debevc, M. (eds.)
SouthCHI 2013. LNCS, vol. 7946, pp. 284–295. Springer, Heidelberg (2013)

15. Narasimhan, P., Gandhi, R., Rossi, D.: Smartphone-based assistive technologies for
the blind. In: Proceedings of International Conference on Compilers, Architecture,
and Synthesis for Embedded Systems, CASES 2009, pp. 223–232. ACM, New York
(2009)

16. Ort, E., Mehta, B.: Java architecture for xml binding (JAXB). Sun Devel-
oper Network, March 2003. http://www.oracle.com/technetwork/articles/javase/
index-140168.html

17. Park, K., Goh, T., So, H.J.: Toward accessible mobile application design: develop-
ing mobile application accessibility guidelines for people with visual impairment.
In: Proceedings of Conference on Human Computer Interaction Korea, HCIK 2015,
pp. 31–38. Hanbit Media Inc., South Korea (2014)

18. Patch, K., Spellman, J., Wahlbin, K.: Mobile accessibility: how wcag 2.0 and other
w3c/wai guidelines apply to mobile. Technical report, W3C (2015)

19. Vanderdonckt, J., Limbourg, Q., Michotte, B., Bouillon, L., Trevisan, D., Florins,
M.: Usixml: a user interface description language for specifying multimodal user
interfaces. In: Proceedings of W3C Workshop on Multimodal Interaction WMI,
vol. 2004 (2004)

20. Völter, M., Stahl, T., Bettin, J., Haase, A., Helsen, S.: Model-driven Software
Development: Technology, Engineering. Management. Wiley, New York (2013)

http://www.oracle.com/technetwork/articles/javase/index-140168.html
http://www.oracle.com/technetwork/articles/javase/index-140168.html

Author Index

Ali, Raian 130
Alrobai, Amen 130
Alves, Rui 335
Arnautovic, Edin 165

Balvis, Luca 246
Barn, Balbir S. 151
Beckert, Roland 165
Bernhaupt, Regina 56, 351
Berntsson Svensson, Richard 234
Billestrup, Jane 45
Billman, Dorrit 181
Bogdan, Cristian 359, 366
Boll, Susanne 203
Boratto, Ludovico 246
Bruun, Anders 45

Cajander, Åsa 3
Carta, Salvatore 246

Dogan, Huseyin 130
Drouet, Dimitri 351

Fayollas, Camille 181
Feary, Michael 181
Feiner, Johannes 374
Feldt, Robert 234
Fenu, Gianni 246
Fischer, Holger 30
Forbrig, Peter 17
Fruhmann, Martin 374

Goto, Yugo 73
Gross, Tom 301

Hak, Jean-Luc 86
Handke, Lisa 111
Hulin, Bernhard 165

Kaindl, Hermann 165
Kashfi, Pariya 234
Kauffeld, Simone 111
Kis, Filip 359
Klünder, Jil 111

Koller, Marius 366
Kortum, Fabian 111
Krainz, Elmar 374
Kristinsdottir, Sigurhanna 3
Kuusinen, Kati 215

Larusdottir, Marta 3

Manca, Marco 317
Manciet, François 56
Martinie, Célia 56, 181
McAlaney, John 130
Meixner, Gerrit 366
Mulas, Fabrizio 246

Nilsson, Agneta 234
Nunes, Nuno Jardim 261, 335

Ogata, Shinpei 73
Okano, Kozo 73

Palanque, Philippe 56, 181
Paternò, Fabio 317
Phalp, Keith 130
Popp, Roman 165

Rathfux, Thomas 165

Santoro, Carmen 317
Sauer, Stefan 281
Saurin, Marc 17
Schneider, Kurt 111
Senft, Björn 30
Silva, Thiago Rocha 86, 261
Spano, Lucio Davide 246
Stage, Jan 45
Stratmann, Tim Claudius 203
Straube, Julia 111

Valente, Pedro 261

Winckler, Marco 86, 261

Yigitbas, Enes 281

	Preface
	HCSE+HESSD 2016 Technical and Organizing Committee
	Keynote Abstracts
	Industrial Scale Agile – From Craft to Engineering
	Robotics and Automation: Challenges and Potential
	Contents
	Agile and Human-Centered Software Engineering
	Responsibilities and Challenges of Product Owners at Spotify - An Exploratory Case Study
	Abstract
	1 Introduction
	2 Background
	2.1 Agile Approaches and Scrum
	2.2 Definitions of the POs Role

	3 Method
	3.1 Context of the Study and Participants
	3.2 Research Method
	3.3 Analysis of the Data

	4 Results
	4.1 Responsibilities of the Product Owners
	4.1.1 Customer Involvement
	4.1.2 Focusing on Value
	4.1.3 Making a Vision

	4.2 Challenges of the PO Role

	5 Discussion
	6 Conclusion
	Acknowledgement
	References

	Supporting the HCI Aspect of Agile Software Development by Tool Support for UI-Pattern Transformations
	Abstract
	1 Introduction
	2 UI-Patterns and Tool Support
	2.1 UI-Patterns
	2.2 Tool Support of UI-Patterns Using XAML
	2.3 Case Study

	3 Agile Development and Continuous Human-Centered Design
	4 Summary and Outlook
	References

	Human-Centered Software Engineering as a Chance to Ensure Software Quality Within the Digitization of Human Workflows
	1 Introduction
	2 Related Work
	2.1 Human-Centered Design
	2.2 Agile Software Development
	2.3 Agile HCD

	3 Human-Centered Software Engineering Method
	3.1 Digitization Within Manufacturing Industry
	3.2 Industrial Contexts
	3.3 Requirements
	3.4 HCSE Method

	4 Conclusion
	References

	Usability Evaluation and Testing
	Usability Problems Experienced by Different Groups of Skilled Internet Users: Gender, Age, and Background
	Abstract
	1 Introduction
	2 Related Work
	3 Method
	3.1 Data Collection

	4 Results
	4.1 Gender
	4.2 Age
	4.3 Job Function and Educational Background

	5 Discussion
	5.1 Comparison with Related Work
	5.2 Implications for Usability Practitioners

	6 Conclusion
	6.1 Limitations

	References

	User-Test Results Injection into Task-Based Design Process for the Assessment and Improvement of Bot ...
	Abstract
	1 Introduction
	2 State of the Art
	2.1 Usability Evaluation Methods
	2.2 User Experience and Its Evaluation
	2.3 Task Models: Benefits and Limitations

	3 How to Enhance Task Models with Data: A Process Proposal
	4 A Case Study from Interactive TV
	4.1 The Interactive TV Prototype
	4.2 Following the “PRENTAM” Process Step by Step

	5 Discussion: Benefits and Limitations
	6 Summary and Conclusion
	References

	Framework for Relative Web Usability Evaluation on Usability Features in MDD
	1 Introduction
	2 Usability in Ordinal Use of Business Web Applications
	2.1 Scope Limitation
	2.2 Usability Measurement

	3 Proposed Framework
	3.1 Overview of Proposed Framework
	3.2 Preparation Phase
	3.3 Observation Phase
	3.4 Assessment Phase

	4 Preliminary Evaluation
	4.1 Overview
	4.2 Result
	4.3 Discussion

	5 Conclusion
	References

	Testing Prototypes and Final User Interfaces Through an Ontological Perspective for Behavior-Driven ...
	Abstract
	1 Introduction
	2 Conceptual Background
	2.1 User Stories and Scenarios
	2.2 Acceptance Testing of Functional Requirements
	2.3 Computational Ontologies

	3 A New Approach for Multi-artifact Testing
	3.1 Step 1: Definition of the Ontology
	3.2 Step 2: Writing Testable Requirements
	3.3 Step 3: Adding Test Cases
	3.4 Step 4: Testing Prototypes and Other Artifacts

	4 Tool Support
	4.1 Testing in the Prototype Level
	4.2 Testing in the Final UI Level

	5 Related Works
	6 Conclusion and Future Works
	References

	Socio-Technical and Ethical Considerations
	Communication in Teams - An Expression of Social Conflicts
	1 Introduction
	2 Related Work
	3 FLOW Distance
	3.1 Mathematical View
	3.2 Media Richness and Effectivity
	3.3 Communication Intensity
	3.4 Calculation
	3.5 FLOW Centralization

	4 Empirical Validation
	4.1 Student Software Projects
	4.2 Study Design
	4.3 Ethics Committee
	4.4 Methodology
	4.5 Results

	5 Discussion
	5.1 Limitations and Threats to Validity
	5.2 Interpretation

	6 Conclusions
	References

	Exploring the Requirements and Design of Persuasive Intervention Technology to Combat Digital Addiction
	Abstract
	1 Introduction
	2 Method
	3 Results
	3.1 Monitoring
	3.2 Feedback
	3.3 Influence Actions
	3.4 Situational Awareness

	4 Designing PIT to Combat Digital Addiction
	5 Study Limitations
	6 Conclusions and Future Work
	Acknowledgements
	References

	Do You Own a Volkswagen? Values as Non-Functional Requirements
	1 Introduction
	2 Case Study and Approach
	2.1 Volkswagen Case Study
	2.2 Approach

	3 Case Study Analysis
	4 Values Versus Non Functional Requirements
	4.1 Non Functional Requirements
	4.2 Values and Value Sensitive Concerns
	4.3 Value Architectures

	5 Conclusion
	References

	Human Error and Safety-Critical Systems
	A Core Ontology of Safety Risk Concepts
	1 Introduction
	2 Motivation
	3 Related Work in the Literature
	4 Conceptual Modeling of Terminology from Standards
	4.1 Tool-Supported Modeling
	4.2 Expert Meetings

	5 Our Core Ontology
	6 Upper Ontology
	7 Human Error
	8 Conclusion and Future Work
	References

	Complementary Tools and Techniques for Supporting Fitness-for-Purpose of Interactive Critical Systems
	Abstract
	1 Introduction
	2 Development Processes for Ensuring Fitness for Purpose of Interactive Critical Systems Prototypes
	2.1 Related Work
	2.2 A Process for Ensuring Fitness for Purpose of Interactive Critical Systems Prototypes

	3 Tools and Techniques Supporting the Proposed Process
	3.1 MAESTRO Work and Technology Representation
	3.2 ADEPT
	3.3 CIRCUS Integrated Development Environment
	3.4 Process Instantiated with the Set of Notation and Tools

	4 Illustrative Example
	4.1 Illustrative Example Description
	4.2 Work and Task Analysis
	4.3 Prototyping and Requirements Specification
	4.4 Full-Scale Software Prototyping

	5 Discussion
	5.1 Complementarity
	5.2 Perspectives

	6 Conclusion
	References

	Demon Hunt - The Role of Endsley's Demons of Situation Awareness in Maritime Accidents
	1 Introduction
	2 Related Work
	3 Corpus
	4 Analysis
	4.1 Preparation
	4.2 Generation of Keywords
	4.3 Retrieval Method

	5 Results
	6 Discussion
	7 Conclusion
	References

	User and Developer Experience
	Are Software Developers Just Users of Development Tools? Assessing Developer Experience of a Graphical User Interface Designer
	Abstract
	1 Introduction
	2 Background
	2.1 GUI Designers
	2.2 User Experience
	2.3 Developer Experience
	2.4 Motivation and Flow State Experience in Software Development

	3 Method
	3.1 Survey Contents
	3.2 Procedure
	3.3 Respondents
	3.4 Analysis
	3.5 Impact of Demographics

	4 Results
	4.1 Mann-Whitney U Test Results
	4.2 Kendall’s Tau Correlation Analysis
	4.3 Responses to Open-Ended Questions

	5 Discussion
	5.1 Research Question Revisited
	5.2 Discussion on Related Research

	6 Limitations and Future Work
	7 Conclusion
	Acknowledgment
	References

	A Conceptual UX-Aware Model of Requirements
	1 Introduction
	2 Research Approach
	3 Results and Analysis
	4 Discussion
	References

	Keep the Beat: Audio Guidance for Runner Training
	1 Introduction
	2 Related Work
	3 Audio Support
	3.1 Cadence Analyser
	3.2 Feedback Manager
	3.3 Discussion

	4 Evaluation
	4.1 Test Design
	4.2 Test Results

	5 Conclusion and Future Work
	References

	Models and Methods
	The Goals Approach: Enterprise Model-Driven Agile Human-Centered Software Engineering
	Abstract
	1 Introduction
	2 Software Development Process
	2.1 Foundations

	3 Analysis Phase
	3.1 Step 1–Business Process Identification
	3.2 Step 2–User Task Identification
	3.3 Step 3–Interaction Space Identification
	3.4 Step 4–Business Rule Identification
	3.5 Step 5–Data Entity Identification

	4 Design Phase
	4.1 Step 6–Task Model
	4.2 Step 7–Interaction Modeling
	4.3 Step 8–Business Logic Structuring
	4.4 Step 9–Database Structuring
	4.5 Step 10–Software Architecture Composition

	5 Related Work
	6 Conclusions
	7 Future Work
	Ackownledgments
	References

	Engineering Context-Adaptive UIs for Task-Continuous Cross-Channel Applications
	1 Introduction
	2 Background and Related Work
	2.1 Multi-device UI Development
	2.2 Cross-Channel UI Development
	2.3 Adaptive UIs

	3 Engineering Process
	3.1 UI Modeling
	3.2 Adaptation Modeling
	3.3 Transformation
	3.4 Execution and Adaptation

	4 Instantiation of Engineering Process
	4.1 Setting of the Case Study
	4.2 UI/Adaptation Modeling and Transformation
	4.3 Execution and Adaptation (Front-End)
	4.4 Execution and Adaptation (Back-End)

	5 Conclusion and Outlook
	References

	UCProMo—Towards a User-Centred Process Model
	Abstract
	1 Introduction
	2 Background and Related Work
	2.1 Process Models in SE
	2.2 Process Models in HCI
	2.3 Process Models that Combine SE and HCI
	2.4 Summary of Background and Related Work

	3 The UCProMo User-Centred Process Model
	3.1 Plan the Human-Centred Design Process
	3.2 Understand and Define Users, Tasks, and Contexts
	3.3 Specify System Requirements
	3.4 Design User Tasks, and User Interactions
	3.5 Develop the System
	3.6 Evaluate the System
	3.7 Deploy the System

	4 Discussion and Conclusions
	Acknowledgements
	References

	Using and Adopting Tools
	Collaborative Task Modelling on the Web
	Abstract
	1 Introduction
	2 State of the Art
	3 Target Scenarios
	4 The Design of the Collaborative Features
	4.1 Roles and Access Rights in Handling Task Models
	4.2 Enhancing Mutual Awareness Among Users
	4.3 Coordination Between Users Collaboratively Handling a Task Model
	4.4 Supporting Communication Between Users
	4.5 Cloud Support for Sharing Task Models
	4.6 Implementation

	5 User Feedback
	5.1 Participants and Tasks
	5.2 Procedure and Design
	5.3 Results
	5.4 Discussion

	6 Conclusions
	References

	Ceiling and Threshold of PaaS Tools: The Role of Learnability in Tool Adoption
	Abstract
	1 Introduction
	1.1 State of the Art

	2 Research Question
	3 Study
	3.1 Sample
	3.2 Methodology

	4 Results
	4.1 Learnability Issues
	4.2 Usability Defects
	4.3 Performance
	4.4 Statistical Analysis

	5 Threshold and Ceiling
	6 Discussion
	7 Conclusion
	References

	Demos and Posters
	User Experience Evaluation Methods: Lessons Learned from an Interactive TV Case-Study
	Abstract
	1 Introduction
	2 State of the Art
	3 Problem Description, Method Selection and Adaptation
	4 Procedure and Results
	5 Lessons Learned
	6 Conclusion
	References

	Endev: Declarative Prototyping with Data
	1 Introduction
	2 Related Work
	3 Setup-Free Prototyping with Endev
	4 On-the-fly Creation of Own Data
	5 Seamless Integration of API Data
	6 Behind the Scenes
	7 Conclusion and Future Work
	References

	Collaborative Task Modeling: A First Prototype Integrated in HAMSTERS
	Abstract
	1 Introduction
	2 Task Models
	3 Computer Supported Cooperative Work
	4 Collaborative Support in Task Modeling Environments
	5 Mock-Ups of Collaborative Functions
	6 Conclusions
	References

	Accelerated Development for Accessible Apps -- Model Driven Development of Transportation Apps for Visually Impaired People
	1 Introduction
	2 Related Work
	3 A Concept for Model-Driven-Development for Accessible Apps
	3.1 Model
	3.2 Modeling Language
	3.3 App Accessibility
	3.4 App Generation

	4 Conclusion
	References

	Author Index

