
Path Planning for Autonomous Inland
Vessels Using A*BG

Linying Chen(B), Rudy R. Negenborn, and Gabriel Lodewijks

Department of Maritime and Transport Technology,
Delft University of Technology, Delft, The Netherlands

L.chen-2@tudelft.nl

Abstract. To meet the transportation demand and maintain sustain-
able development, many countries are aiming to promote the compet-
itive position of inland waterway shipping in the transport system.
Autonomous transport is seen as a possibility for maritime transport to
meet today’s and tomorrow’s challenges. In realizing autonomous nav-
igation, path planning plays an important role. Being the most widely
used path planning algorithm for robotics and land-based vehicles, in
this paper we analyze A* and its extensions for waterborne applications.
We hereby exploit the fact that for vessels optimal paths typically have
heading changes only at the corners of obstacles to propose a more effi-
cient modified A* algorithm, A*BG, for autonomous inland vessels. Two
locations where ship accidents frequently occur are considered in simu-
lation experiments, in which the performance of A*, A*PS, Theta* and
A*BG are compared.

1 Introduction

Currently, economic development is putting enormous pressure on transport sys-
tems. Freight transport is likely to grow over the next decades [7]. If roads and
railways are the major means of transport for handling the growth, they will face
frequent congestion. Inland waterway shipping still have the capability of trans-
porting large additional volumes. It offers an environment-friendly alternative to
road and rail transport in terms of both energy consumption and gas emissions [6].
To meet the transportation demand and maintain sustainable development, many
countries are aiming to promote and strengthen the competitive position of inland
waterway shipping in the transport system.

Research has proposed many measures to improve the position of inland ship-
ping, such as optimizing ship dimensions [10], removing bottlenecks [5], improv-
ing utilization of ports [8] and locks [25]. Among these measures, employing
autonomous vessels has recently drawn much attention [13,27]. Autonomous
vehicles are already state-of-the-art in the land-based transport domain. There
exist several examples of self-driving and automated guided vehicles in modern
container terminals [26]. Consequently, applying autonomous vessels is seen as
a way to improve the safety and efficiency of inland shipping.

c© Springer International Publishing Switzerland 2016
A. Paias et al. (Eds.): ICCL 2016, LNCS 9855, pp. 65–79, 2016.
DOI: 10.1007/978-3-319-44896-1 5

66 L. Chen et al.

Safety can be improved as human error is one of the main causes of ship
accidents. Figure 1 shows the mains causes of ship accidents between 2005 and
2014 in Dutch inland waterways [14]. The category operation error includes alco-
hol/drug use, wrong estimation, fatigue, etc.; the category communication error
indicates not maintaining watch on correct VHF channel, unclear explanation,
etc.; the category environmental error includes disturbances caused by wind,
wave and current, poor visibility, etc.; the category equipment error indicates the
failure of engine, rudder or other navigation equipments. For autonomous vessels,
detection of obstacles, estimation of the risk, communication between vessels and
infrastructure can be done without humans. Thus, applying autonomous vessels
could be an efficient measure to reduce the number of accidents.

2005

2005

2005

2005 2005

2008

2008

2008

2008

2008

2011

2011

2011

2011

2011

2014

2014

2014

2014

2014

0

50

100

150

200

250

300

350

400

450

Operation error Communication error Enviormental error Equipment error Others

To
ta

l n
um

be
r

Causes

Fig. 1. The causes of the shipping accidents (based on [17]).

Efficiency can be improved by autonomous vessels due to the intelligent path
planning and better control of vessel motion. Communication and coordination
with infrastructures also make it possible for autonomous vessels to minimize
the waiting time at ports, locks, etc.

The overall architecture of an autonomous vessel is shown in Fig. 2. To realize
autonomous navigation, a vessel controller uses sensors to get self-state informa-
tion (e.g., position, speed and heading), environmental information (e.g., wind
speed, current velocity) and information of obstacles. Based on the obtained
information, optimal paths to follow and desired speed and heading with spec-
ified objectives and constraints can be determined. The commands are sent to
actuators for autonomous navigation.

In Fig. 2, the module ‘Path planning’ plays an important role in autonomous
navigation. It describes how the autonomous vessel make decisions regarding its
course to sail. The path planning problem can be subdivided into a global and a
local planning task: an approximate global planner computes paths ignoring the
kinematic and dynamic constraints; an accurate local planner accounts for the

Path Planning for Autonomous Inland Vessels Using A*BG 67

Vessel controller

Vessel

Path planning

Sensors
Radar, GPS, AIS,

environmental sensors ...

Path
generation

Position of
own-ship and
Obstacles

Motion
Controller

Disturbance
Wind, wave, current ...

Desired
position

Propeller
speed,

Rudder angle

Position, heading and
speed of own-ship

Dimensions of infrastructures

Vessel motion

Manoeuvrability
Constrains

Global path
planner

Collision
avoidance

Distance between
own-ship and

target-ship

Intention of
target-ship controller

(if applicable)

Infrastructure
operation schedules

Mission: origin,
destination, aim...

Target-ship

Reference path

Collision
avoidance actions

Obstacle
identification

Rules and Regulations

Communication
among controllers

Navigation materials:
chart, tide tables...

 voyage plan of other vessels
(if applicable)

Actuators
Propeller, rudder

Vessel dynamics

Fig. 2. The overall architecture of autonomous vessels.

constraints and generates feasible local trajectories [20]. The final path are deter-
mined on the basis of reference path provided by the global planner according to
the transport mission, known stationary obstacles (e.g., islands, shallow waters)
and infrastructure operation schedules, and the collision avoidance actions tak-
ing into account the regulations and the limitation of infrastructures (e.g., width
and depth of waterways). Communication between vessel controllers will help the
controller make better path planning decision. As a starting point, this paper
focuses on the global path planning problem.

Many path planning algorithms have been developed for the navigation of
unmanned surface vehicles aswell as robots, such asArtificialPotential Fieldmeth-
ods [23], EvolutionaryAlgorithms [12], andHeuristic SearchAlgorithms [4,19]. For
a detailed review of path planning and collision avoidance technologies and tech-
niques, see [2,21]. Among these methods, the group of heuristic search algorithms,
especially A* and its extensions, are commonly used to determine the path from
an origin to a destination for land-based vehicles [18,22].

Compared with mobile robotics path planning, the static obstacles in inland
waterway networks are usually larger and continuous. Clear passages (water-
ways) can be found in the map. Moreover, when autonomous vessels are in a
hybrid environment where exist vessels operated by humans. In order to ensure
safety it is necessary that autonomous vessels comply with navigation rules
throughout their missions [2]. Several recent efforts have been made to integrate
rules into path planning algorithms [11,19].

In order to find a suitable global path planning algorithm for inland
autonomous vessels, in this paper we carry out a comparison among A* and its
extensions. We moreover propose a new algorithm called A*BG for autonomous
inland vessels. Based on the existing algorithms, A*BG takes advantage of grid

68 L. Chen et al.

search and visibility check, which improves the searching and computational
properties.

The remainder of this paper is organized as follows. In Sect. 2, a brief intro-
duction of the inland waterway transport system is provided. A* and its exten-
sions are elaborated on in Sect. 3. Based on this, the new algorithm A*BG is
proposed in Sect. 4. Simulation experiments are carried out to assess the perfor-
mance of the algorithms in Sect. 5. Conclusions and future research are presented
in Section 6.

2 Inland Waterway System

The main function of an inland waterway system is to fulfill the transport
demand, i.e., to transport goods or people from one place to another. As shown in
Fig. 3, two main components in waterway systems are vessels and infrastructures.
Vessels are the means of transport. Infrastructures are necessary to guarantee
a sound navigation: waterways provide navigable waters; locks create stepped
navigational pools with reliable depths; bridges balance the road traffic and the
waterborne traffic.

Vessels

Vessel controller s

Inland waterway system

Vessel controller
⁄ ⁄

Real-time
speed,

position,
heading

Propeller
speed,
rudder
angle

Vessel controller
A

Vessel controller
B

Real-time
speed,

position,
heading

Propeller
speed,
rudder
angle

Controllers

Rules and
regulations

Environmental
factors

Infrastructure
controllers

Infrastructures

Real-time
state

Operation
schedule

Predicted time of arrival

Operation schedule

Vessel A Vessel ⁄ ⁄ Vessel B

Measures and actions
between controller
and system

Information of other vessels
(position, direction ...) that
controllers obtain via
sensors

Communication between
vessels

Communication between
vessels and
infrastructures

Uncontrollable factors
that controllers should
consider

Fig. 3. Inland waterway system.

Rules and regulations provide suggestions to the skippers. These “rules of the
road” specify the types of maneuvers that should be taken in situations where
there is a risk of collision. Vessels navigating in waterways are also influenced by
the external environment (e.g., wind, current and waves).

The architecture of an autonomous vessel in Fig. 2 can be regarded as the
detail explanation of the relation of a vessel controller and a vessel in Fig. 3.
When vessels navigating between the origins and destinations, controllers control
the propeller and rudder to let the vessel move to desired position. The sensors

Path Planning for Autonomous Inland Vessels Using A*BG 69

measure the practical speed and headings of the vessel and provide them to the
controllers as feedbacks. Vessel controller can obtain the position and direction
of other vessels via sensors. When there is a risk of collision, actions that should
be taken to avoid the collision are decided by the controllers. The communication
between vessel controllers can help controllers to cooperate with each other.

Infrastructure controllers making schedules with the predicted time of arrival
reported by vessel controllers and also keep an eye on the state of the infra-
structures (e.g., availability, waiting time and length of the line). In return, the
operation schedules also have impacts on vessel controllers decision making on
the route, departure time and speed choices.

3 Existing Path Planning Algorithms

In this section, A* and its improved extensions and their characteristics are
introduced. The method to apply the algorithms to inland autonomous vessels
considering rules and regulations is explained as well.

3.1 A*

A* is the most widely used path planning algorithm, which can be applied on
metric or topological map [4]. This algorithm uses a combination of heuristic
searching and searching based on the shortest path. A* is defined as best-first
algorithm, because each node in the map is evaluated by the function:

f(sstart, s, sgoal) = g(sstart, s) + h(s, sgoal) (1)

where g(sstart, s) provides the length of the shortest path from a start node sstart
to node s found so far, h(s, sgoal) provides an estimate of the distance from node
s to goal node sgoal, f(sstart, s, sgoal) provides an estimate of the length of a
shortest path from the start node sstart via node s to the goal node sgoal.

A* uses a priority queue Open to perform the repeated selection of mini-
mum f(sstart, s, sgoal) nodes to expand (expanding a node means this node is
a candidate in the shortest path). At each step, the node s with the minimum
f(sstart, s, sgoal) is removed from Open. The unblocked neighbor nodes which
are in the line-of-sight of node s are recorded in the set nbrlos(s). For each
s′ in nbrlos(s), its related values are updated: parent(s′) = s, g(sstart, s′) =
g(sstart, s) + distance(s, s′). If s′ is already included in Open, A* compares the
two g(sstart, s′) in nbrlos(s) and Open, and updates the s′ with lower g(sstart, s′).
If not, s′ is added to Open. The algorithm then repeats this procedure until s is
sgoal. The length of the path that A* finds is then f(sstart, sgoal, sgoal).

The basic A* is restricted to a so-called 8-connectivity grid. This means that
the path it finds is based on the connection between the closest possible nodes.
The turning angle of each movement is restricted to multiples of 45◦, which
makes the path linked in a zigzag style. Consequently, the path A* finds is not
guaranteed to be the optimal path.

70 L. Chen et al.

3.2 A* with Larger Neighborhood

The length and smoothness of the paths A* finds are influenced by the connec-
tivity of possible nodes which is determined by so-called ‘neighborhood’. The
term ‘neighborhood’ indicates the area that A* algorithm explores in a single
step, which determines the successor nodes that can be reached from a source
node.

One method to improve A* is to enlarge the neighborhood. As shown in Fig. 4,
when neighborhood = 1 is considered, the algorithm can search 8 successor
nodes. This is the most frequently used A*. 8 directions are possible to move
into in a single step. When the neighborhood increases to 2, 16 more grids and 8
more directions can be searched in each step. Thus, the larger the neighborhood
is, the more successor nodes the algorithm can reach, and the more directions
are possible to be explored in a single step.

1

1 1

1

… …

Neighborhood = 1

Neighborhood =2

Neighborhood = 10

… …

2

1

2 1 1 2

2

2

10 9 8 7 6 5 4 3 2 1

10

9

8

7

6

5

4

3

2

1

10

9

8

7

6

5

4

3

2

1

0 1 2 3 4 5 6 7 8 9 10

Fig. 4. Neighborhood in A* algorithm.

It is considered that a larger neighborhood results in the discovery of a shorter
path due to the increased fineness of possible directions. However, the compu-
tation time will also increase since more nodes need to be explored at each
step. The trade-off must be made between the optimality of the path and the
computation time in terms of requirements during for implementation.

3.3 A* with Post-smoothing

A* with Post-smoothing (A*PS) runs A* on grids and then smooths the resulting
path, which often shortens it at the cost of an increase in computation time.
Denote by [s0, s1, ..., sn] the path that A* finds on grids, with s0 = sstart and
sn = sgoal. A*PS firstly uses s0 as the current node. It then find out the farthest
node si that is in line-of-sight with s0 on the path from sn to s1. Then, A*PS

Path Planning for Autonomous Inland Vessels Using A*BG 71

removes the intermediate nodes s1 to si−1 from the path, thus shortening it.
Then si becomes the current node and A*PS repeats this procedure until it
reaches the end of the path.

A*PS typically finds shorter paths than A* on grids, but is not guaranteed
to find the optimal path [3,22]. The reason for this is that it only considers
resulting paths and thus cannot make informed decisions regarding other paths
during the A* search, which motivates the idea of interleaving smoothing [3].

3.4 Theta*

Theta* is an extension of the A*, which resides in the visibility test between suc-
cessor nodes and the parent nodes. The main difference between A* and Theta*
is that Theta* considers the path from the parent(s) to node s′. In each step,
when s (the node with the lowest f(sstart, s, sgoal) in Open) expanding its succes-
sors s′ in nbrlos(s), the visibility between s′ and parent(s) is checked. If parent(s)
is visible to s′, parent(s′) becomes parent(s), and g(s′, sstart), h(s′, sgoal) and
f(sstart, s′, sgoal) are updated correspondingly. Thus, parent(s) and s′ are directly
connected. A detailed description of Theta* can be found in [3].

Theta* reduces some unnecessary heading changes taking advantage of the
visibility test. Since Theta* carry out line-of-sight checks between a source node
and its neighbor nodes, the computation time of Theta* is longer than A* and
A*PS. However, Theta* is not guaranteed to find optimal paths. The parent of
a node should be a visible neighbor of the node or a parent of a visible neighbor,
which lead to a limitation of expanding nodes [3,22].

3.5 A* Adaptation Considering Navigation Regulations

As mentioned, it is necessary to take the navigation rules and regulations into
account when planning paths for inland autonomous vessels. Thus, adaption
should be made when applying A* and its extensions to inland vessels.

The main regulations in Dutch inland waterways are the RPR (Rijnvaart-
politiereglement, Rhine Navigation Police Regulations) and the BPR (Binnen-
vaartpolitiereglement, Inland Waterways Police Regulations). One important
item related to global path planning in these two regulations is: ‘if two ves-
sels encounter each other with the risk of collision, the vessel not following the
starboard side of the waterway must give way to the ship following the star-
board side’ [15]. Accordingly, vessel controllers generally choose the path on the
starboard side of the waterway as preferred path. To reflect this circumstance,
the middle line of a waterway is applied to separate the vessel traffic from differ-
ent directions when implementing the path planning algorithms for autonomous
inland vessels.

The paths that the planning algorithms compute are usually close to the bor-
der of obstacles. Because of ship-bank interaction, sailing closer to the obstacles
will increase the risk of collision [20,24]. For the sake of safety, vessels usually
keep a certain distance from the obstacles. Therefore, buffer areas are set around
the obstacles. When planning the path, the paths via the buffer areas are still

72 L. Chen et al.

available to vessels with a penalty in path length. In this way, when implement-
ing A* and its extensions, f(sstart, s, sgoal) of a grid in a buffer area is larger
than its original value when there is no buffer areas.

4 A* on Border Grids

The algorithms presented in Sect. 3 are not guaranteed to find the optimal paths.
An algorithm named A* on Visibility Graphs (A*VG) has been proven to be able
to find the optimal paths on a map with disjoint polygonal obstacles [1,3]. In
A*VG, visibility graphs are constructed before the A* search. If two locations do
not pass through any obstacle, an edge is drawn between them to represent the
visibility connection. The paths A*VG finds are along the edge and have heading
changes only at the border of obstacles. However, A*VG can be slow. Visibility
checks need to be performed for every pair of blocked nodes to determine whether
or not there should be a visibility edge between them.

The above mentioned algorithms have different advantages and disadvan-
tages. The characteristics of each algorithm are concluded in Table 1. A* on grid
maps are simple and with relatively low computation time. However, the path
it calculates is usually the longest. Theta* and A*VG take the advantage of the
visibility check, and the paths these two algorithm find are relatively shorter. At
the same time, their computation times are longer. Based on the comparison, a
new algorithm for inland autonomous vessels is proposed next.

Table 1. Summary of the characteristics of the algorithms.

Algorithm Description Typical path length Computation

time

Advantage Disadvantage

A* A* Longest Shortest Simple;

Modifiable

Not any angle;

Zigzag style

path

A*PS A* + Post process

visibility test

Shorter than A* Longer than

A*

Any angle Rely on the path

found by A*

Theta* A* + Resides in

visibility test

Shorter than A*PS Longer than

A*PS

Any angle Long computation

time

A*VG A*+Visibility graph Optimal (with

polygonal obstacles)

Longest Any angle Long computation

time

Inspired by A*VG, in the new algorithm, the border of the obstacles are
decomposed into grids. The grids in the line-of-sight of a source node are its
successor nodes. This algorithm is represented as A* on Border Grids (A*BG).

Algorithm 1 shows the pseudo code of A*BG. s is the node with the lowest
f(sstart, s, sgoal) in Open. Line-of-sight checks are carried out between the source
node s and all border grids. The nodes visible to s are included in the set
Candidates as the candidate successors to be expanded. For each node s′ in
Candidates, if it is visible to parent(s), its parent(s′) and other related values
will be updated. Then, the node with lowest f(sstart, s, sgoal) in Open is assigned
to s again. This procedure is repeated until s is sgoal.

Path Planning for Autonomous Inland Vessels Using A*BG 73

Algorithm 1. A*BG
1 while s �= sgoal do
2 s ← node with the smallest f(sstart, s, sgoal) in Open;

3 Candidates = ∅;
4 foreach n ∈ BorderGrids do
5 if lineofsight(n, s) then

6 parent(n) = s;
7 g(n) = g(s) + distance(n, s); h(n) = distance(n, sgoal);

8 Candidates.Insert(n, parent(n), g(sstart, n), h(n, sgoal), f(sstart, n, sgoal))

9 foreach s′ ∈ Candidates do
10 if lineofsight(s′, parent(s)) then

11 if g(sstart, parent(s)) + distance(parent(s), s′) < g(sstart, s′) then

12 parent(s′) = parent(s);

13 g(sstart, s′) = g(sstart, parent(s)) + distance(parent(s), s′);

14 if s′ ∈ Open then
15 if g(sstart, s′) in Candidates < g(sstart, s′) in Open then

16 Remove the item s′ from Open

17 else continue; // Do not execute line 18

18 Open.Insert(s′, parent(s′), g(sstart, s′), h(s′, sgoal), f(sstart, s′, sgoal))

Inspired by Theta* and A*VG, A*BG considers the connection of parent(s)
and s′, and the paths A*BG calculated only have heading changes at where line-
of-sight is blocked, which reduces unnecessary heading changes and the path
length. Applying border grids instead of visibility graph can greatly reduce the
number of visibility test. Using border grids instead of transferring the whole
map into grids reduces the amount of nodes the algorithm need to search, which
makes the algorithm faster. Moreover, regarding all visible border grids as can-
didates when expanding successors, A*BG does not influenced by the size of
neighborhood and it is able to search in every direction.

5 Simulation Experiments

To test the performance of the algorithms, in this section, we compare A*, A*PS,
Theta* and A*BG with respect to their path length and computation time.

5.1 Case Study Areas

Safety is one of the main factors that should be kept in mind when planning for
autonomous vessels. Consequently, we choose for our experimental areas inland
waterway regions where relatively many accidents have taken place in the past.

The locations of ship accidents occurred in Dutch inland waterways during
2008–2015 are shown in Fig. 5. The places where accidents frequently occur are
ports and intersections. Accordingly, we choose an intersection and a port area
for carrying out the experiments. Case Study 1 is the area of the Oude Maas.

74 L. Chen et al.

Fig. 5. Location of ship accidents [16] and case study areas (maps taken from [9]).

Table 2. Experimental results.

Neighbor-
hood

A* A*PS Theta* A*BG

Computation Path length Computation Path length Computation Path length Computation Path length

time (s) (unit) time (s) (unit) time (s) (unit) time (s) (unit)

Case Study 1

1 45.86 514.99 45.93 497.98 46.09 495.63 93.23 494.39

2 112.48 501.63 112.54 497.04 121.57 494.95

3 210.09 497.32 210.13 495.29 226.37 494.85

4 333.05 496.06 333.09 494.94 364.32 494.58

5 485.30 495.45 485.33 494.68 532.33 494.57

6 660.84 495.07 660.86 494.56 722.57 494.49

7 862.00 494.84 862.02 494.49 975.32 494.47

8 1083.59 494.70 1083.61 494.48 1198.15 494.42

9 1333.76 494.61 1333.79 494.45 1473.00 494.42

10 1611.61 494.56 1611.63 494.44 1791.48 494.41

Case Study 2

1 87.67 540.78 87.77 514.14 94.50 514.24 502.15 510.32

2 241.38 517.98 241.45 512.23 262.70 511.52

3 468.63 512.68 468.67 511.57 510.03 511.12

4 771.08 511.49 771.12 511.22 833.87 510.97

5 1143.20 511.22 1143.25 511.07 1236.45 510.58

6 1591.53 510.85 1591.57 510.68 1713.21 510.58

7 2118.28 510.76 2118.32 510.67 2262.04 510.49

8 2721.35 510.73 2721.39 510.66 2903.01 510.34

9 3390.31 510.71 3390.35 510.66 3615.47 510.33

10 4143.80 510.71 4143.84 510.66 4380.30 510.33

It is an intersection near the Port of Rotterdam, where is the convergent place
of river Noord, Benede-Merwede, Dordsche Kil and Oude Maas. Case Study 2

Path Planning for Autonomous Inland Vessels Using A*BG 75

is Port of Rotterdam. It is the largest port in Europe and the place accidents
most frequently occurred.

5.2 Setup

All algorithms tested in our experiments are grid-based. Thus, the maps of our
case study areas are transfered into 500 × 250 grids. The length of 1 grid is 1
unit. The buffer area in Case study 1 is two grids near the obstacles and in
Case study 2 is 1 grid. Vessels can sail in the buffer area, but with a penalty
length. We use middle lines to take the regulations into consideration. To study
the influence of the size of neighborhood, the algorithms are carried out with
increasing neighborhood (from neighborhood = 1 to neighborhood = 10).

The algorithms tested in our experiments maintain three values for every
node: g(sstart, s) is the length of the path from sstart to s; h(s, sgoal) is the

(a) Case Study 1.

(b) Case Study 2.

Fig. 6. Experiment results (Ngb: Neighborhood of the algorithms).

76 L. Chen et al.

straight-line distance of s and sgoal; f(sstart, s, sgoal is the sum of g(sstart, s)
and h(s, sgoal). We use the Euclidean distance in the experiments. The distance
between two nodes N(x, y) and N ′(x′, y′) is

√
(x − x′)2 + (y − y′)2. That is, the

distance from one grid to an adjacent left\right\up\down node is 1 unit, and to
an adjacent diagonal node is

√
2 units.

The experiments are run on a PC with a dual-core 3.2GHz Intel(R) Core(TM)
i5-3470U CPU and 8GB of RAM. Each case has been repeated for 5 times.

5.3 Experiment Results

The results of the simulation experiments are shown in Table 2 and Fig. 6. The
path length and average computation time over 5 repetitions are provided.

50 100 150 200 250 300 350 400 450 500

50

100

150

200

250

D

O

D

O

neighborhood=1
neighborhood=2
neighborhood=3
neighborhood=4
neighborhood=5
neighborhood=6
neighborhood=7
neighborhood=8
neighborhood=9
neighborhood=10

50 100 150 200 250 300 350 400 450 500

50

100

150

200

250

D

O

D

O

neighborhood=1
neighborhood=2
neighborhood=3
neighborhood=4
neighborhood=5
neighborhood=6
neighborhood=7
neighborhood=8
neighborhood=9
neighborhood=10

280 300 320 340 360 380

160

170

180

190

200

210

220

(a) Paths calculated by A* with different size of neighborhood.

50 100 150 200 250 300 350 400 450 500

50

100

150

200

250

D

O

A*
A*PS
Theta*
A*BG

280 300 320 340 360 380
160

170

180

190

200

210

220

(b) Paths found by different algorithms (neighborhood = 1).

Fig. 7. Paths found in Case study 1.

Path Planning for Autonomous Inland Vessels Using A*BG 77

As shown in Table 2, two case studies show similar relations between the
path length, computation time and the size of neighborhood. For A*, A*PS
and Theta*, with the increase of neighborhood, the length of the paths becomes
shorter, but the computation time increase dramatically as well. When the neigh-
borhood is small, the length of the paths that the three algorithms found differs
greatly. The difference decreases when the neighborhood is enlarged (Fig. 6). The
path length of the three algorithms then approaches to a certain value.

With respect to A*BG, the size of neighborhood does not influence the results
of A*BG. In the two case studies, A*BG shows the best performance. The path it
computed is shorter than the shortest path the other three algorithms find, and
the computation time is much shorter. Similar to other three algorithms, when
the planning area becomes larger, the computation time of A*BG increases.

Figure 7 shows the path found in Case study 1. The paths calculated by A*
with different size of neighborhood are shown in Fig. 7(a) as an example to show
the impacts of the neighborhood size. Because the length of paths that the tested
algorithms find differs greatly when neighborhood = 1, this situation is chosen as
an example to present the difference of the paths found by different algorithms
in Fig. 7(b). The main difference among the paths lies in the bend segments.
The algorithms which find the shorter paths, A* when neighborhood = 10 and
A*BG, find smoother paths at the bend segments.

6 Conclusions and Future Research

Autonomy is seen as a possibility for maritime transport to meet today’s and
tomorrow’s challenges. In realizing autonomous navigation, path planning plays
an important role. As a starting point of path planning for inland autonomous
vessels, a modified A* algorithm (A*GB) is proposed to solve the global path
planning problem. In this paper, we carry out experiments to compare the per-
formance of A*, A*PS, Theta* and A*GB. Two places where ship accidents
frequently occurred in the past are chosen as case study areas. The path length
and computation time of each algorithms is analyzed. Trading off the path length
and computation time, the performance of A*GB is more satisfying for inland
autonomous vessels’path planning.

There are several directions in which this research will be extended. Firstly,
when the planning area is larger, the computation time increases and the fineness
of the grids also decreases, which affect the performance of the algorithm. The
principle of Model Predictive Control can then be used to solve this problem.
Long voyages are divided into smaller segments, after which a vessel updates
its path at subsequence decision steps. Secondly, in this paper, the impact of
infrastructures is not included. As important components in inland waterway
system, infrastructures such as locks and bridges have great impact on inland
shipping. Most delays are caused by operation of locks and bridges. Global path
planning should also consider these influences. Finally, real-time information
should also be taken into account. If preplanned paths are blocked due to acci-
dents, or if there is a long waiting time at a certain lock, it is important that
the vessel can replan its path according to real-time information.

78 L. Chen et al.

Moreover, the global path planner considered here only provides reference
paths considering static obstacles for an autonomous vessel. Algorithms for local
path planning, i.e., collision avoidance, are needed to deal with the moving obsta-
cles. These moving obstacles not only include other autonomous vessels, but also
vessels operated by humans. With different obstacles, the information available
is different. Besides, the actions controllers take and the resulting trajectories of
the vessels operated by humans are uncertain. How the autonomous vessel com-
municates and coordinates with others using different sources of information and
deals with uncertainties are future research problems.

Acknowledgment. This research is supported by the China Scholarship Council
under Grant 201426950041.

References

1. de Berg, M., Cheong, O., van Kreveld, M., Overmars, M.: Computational Geome-
try: Algorithms and Applications, pp. 323–333. Springer, New York (2008)

2. Campbell, S., Naeem, W., Irwin, G.: A review on improving the autonomy of
unmanned surface vehicles through intelligent collision avoidance manoeuvres.
Ann. Rev. Control 36(2), 267–283 (2012)

3. Daniel, K., Nash, A., Koenig, S., Felner, A.: Theta*: any-angle path planning on
grids. J. Artif. Intell. Res. 39(2010), 533–579 (2010)

4. Duchoň, F., Babinec, A., Kajan, M., Beňo, P., Florek, M., Fico, T., Jurǐsica, L.:
Path planning with modified a star algorithm for a mobile robot. Procedia Eng.
96, 59–69 (2014)

5. Economic commission for Europe: inventory of most important bottle-
necks and missing links in the E waterway network. Technical report.
ECE/TRANS/SC.3/159/Rev.1, Economic Commission for Europe, Inland Trans-
port Committee, United Nations (2013)

6. European Commission: Naiades II: Towards quality inland waterway transport.
Technical report COM 623, European Commission (2013)

7. European Commission: The European Union explained: Transport. Technical
report European Commission (2014)

8. Froese, J.: Safe and efficient port approach by vessel traffic management in water-
ways. In: Ocampo-Martinez, C., Negenborn, R.R. (eds.) Transport of Water versus
Transport over Water. Operations Research/Computer Science Interfaces Series,
vol. 58, pp. 281–296. Springer, New York (2015)

9. Google Maps: Port of Rotterdam, Street map (2016). https://www.google.nl/
maps/@51.8820487,4.4343202,10.75z

10. Hekkenberg, R.: Technological challenges and developments in European inland
waterway transport. In: Ocampo-Martinez, C., Negenborn, R.R. (eds.) Transport
of Water versus Transport over Water. Operations Research/Computer Science
Interfaces Series, vol. 58, pp. 297–313. Springer, New York (2015)

11. Kuwata, Y., Wolf, M., Zarzhitsky, D., Huntsberger, T.: Safe maritime autonomous
navigation with COLREGS using velocity obstacles. IEEE J. Oceanic Eng. 39(1),
110–119 (2014)

12. Lazarowska, A.: Ship’s trajectory planning for collision avoidance at sea based on
ant colony optimisation. J. Navig. 68(2), 291–307 (2015)

https://www.google.nl/maps/@51.8820487,4.4343202,10.75z
https://www.google.nl/maps/@51.8820487,4.4343202,10.75z

Path Planning for Autonomous Inland Vessels Using A*BG 79

13. Li, S., Negenborn, R.R., Lodewijks, G.: Distributed constraint optimization for
addressing vessel rotation planning problems. Eng. Appl. Artif. Intell. 48(2016),
159–172 (2016)

14. Movares Projectteam MNV’13: Monitoring nautische veiligheid 2013. Technical
report, Rijkswaterstaat Water, Verkeer en Leefomgeving, Afdeling Veiligheidsman-
agement en Verkeersveiligheid (2013)

15. Rijkswaterstaat: Binnenvaartpolitiereglement (1983). http://wetten.overheid.nl/
BWBR0003628/2016-01-01#DeelI Hoofdstuk6 AfdelingI Artikel6.01

16. Rijkswaterstaat: Scheepsongevallen significant (2016). https://geoweb.rijkswater
staat.nl/westnederlandnoord/GeoWeb41/?Viewer=WNN Scheepsongevallen

17. Rijkswaterstaat: Scheepsongevallendatabase (2016). https://www.rijkswaterstaat.
nl/zakelijk/verkeersmanagement/scheepvaart/scheepsongevallenregistratie/index.
aspx

18. Sariff, N., Buniyamin, N.: An overview of autonomous mobile robot path plan-
ning algorithms. In: Proceedings of the 4th Student Conference on Research and
Development, pp. 183–188. Selangor, Malaysia (2006)

19. Shah, B.C., Švec, P., Bertaska, I.R., Sinisterra, A.J., Klinger, W., Ellenrieder, K.,
Dhanak, M., Gupta, S.K.: Resolution-adaptive risk-aware trajectory planning for
surface vehicles operating in congested civilian traffic. Autonomous Robots, first
Online (2015)

20. Siegwart, R., Nourbakhsh, I.R., Scaramuzza, D.: Introduction to Autonomous
Mobile Robots, 2nd edn. MIT Press, Cambridge (2011)

21. Statheros, T., Howells, G., Maier, K.M.: Autonomous ship collision avoidance nav-
igation concepts, technologies and techniques. J. Navig. 61(1), 129–142 (2008)

22. Uras, T., Koenig, S.: An empirical comparison of any-angle path-planning algo-
rithms. In: Proceedings of the 8th Annual Symposium on Combinatorial Search,
pp. 206–210. Ein Gedi, Israel (2015)

23. Vaneck, T.W.: Fuzzy guidance controller for an autonomous boat. IEEE Control
Syst. Mag. 17(2), 43–51 (1997)

24. Vantorre, M., Delefortrie, G., Eloot, K., Laforce, E.: Experimental investigation of
ship-bank interaction forces. In: Proceedings of International Conference on Marine
Simulation and Ship Maneuverability, pp. 1–9. Kanazawa, Japan (2003)

25. Verstichel, J., Causmaecker, P.D., Spieksma, F., Berghe, G.V.: The generalized
lock scheduling problem: an exact approach. Trans. Res. Part E: Logistics Transp.
Rev. 65, 16–34 (2014)

26. Xin, J., Negenborn, R.R., Corman, F., Lodewijks, G.: Control of interacting
machines in automated container terminals using a sequential planning approach
for collision avoidance. Transp. Res. Part C: Emerg. Technol. 60(2015), 377–396
(2015)

27. Zheng, H., Negenborn, R.R., Lodewijks, G.: Predictive path following with arrival
time awareness for waterborne AGVs. Transportation Research Part C: Emerging
Technologies (2015). http://dx.doi.org/10.1016/j.trc.2015.11.004

http://wetten.overheid.nl/BWBR0003628/2016-01-01#DeelI_Hoofdstuk6_AfdelingI_Artikel6.01
http://wetten.overheid.nl/BWBR0003628/2016-01-01#DeelI_Hoofdstuk6_AfdelingI_Artikel6.01
https://geoweb.rijkswaterstaat.nl/westnederlandnoord/GeoWeb41/?Viewer=WNN_Scheepsongevallen
https://geoweb.rijkswaterstaat.nl/westnederlandnoord/GeoWeb41/?Viewer=WNN_Scheepsongevallen
https://www.rijkswaterstaat.nl/zakelijk/verkeersmanagement/scheepvaart/scheepsongevallenregistratie/index.aspx
https://www.rijkswaterstaat.nl/zakelijk/verkeersmanagement/scheepvaart/scheepsongevallenregistratie/index.aspx
https://www.rijkswaterstaat.nl/zakelijk/verkeersmanagement/scheepvaart/scheepsongevallenregistratie/index.aspx
http://dx.doi.org/10.1016/j.trc.2015.11.004

	Path Planning for Autonomous Inland Vessels Using A*BG
	1 Introduction
	2 Inland Waterway System
	3 Existing Path Planning Algorithms
	3.1 A*
	3.2 A* with Larger Neighborhood
	3.3 A* with Post-smoothing
	3.4 Theta*
	3.5 A* Adaptation Considering Navigation Regulations

	4 A* on Border Grids
	5 Simulation Experiments
	5.1 Case Study Areas
	5.2 Setup
	5.3 Experiment Results

	6 Conclusions and Future Research
	References

