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Abstract. Optimal transportation plans for fleets with electric-powered
vehicles (EPVs) differ substantially from plans generated for fleets with
combustion-powered vehicles (CPVs). The main reasons for this differ-
ence are the reduced range and payload of EPVs (compared to CPVs) as
well as their increased efficiency. In this paper, transportation plans for
CPVs and EPVs which must not be recharged during route fulfillment
are analyzed by computational experiments. The advantages of CPVs
with respect to totally driven distances, number of used vehicles and the
ability to generate feasible plans are opposed to the advantages of EPVs
with respect to CO2 emissions. Additionally it is shown that the spe-
cific drawbacks of CPVs and EPVs can be mitigated by exploiting the
flexibility of a fleet which is composed of both, EPVs and CPVs.

Keywords: Vehicle routing · Electric-powered vehicles versus
combustion-powered vehicles · Mixed vehicle fleet · Energy consump-
tion · Reduction of CO2 emissions · Adaptive large neighborhood search

1 Motivation and Problem Description

The usage of electric-powered vehicles (EPVs) for cargo transportation brings
about new challenges for research on transportation planning [8]. One of the
challenges which are frequently accepted by the research community is the small
range (operating distance) of EPVs, which is caused by the limited battery
capacity. The scarce energy capacity of EPVs either allows only short vehicle
routes, or alternatively and in contrast to combustion-powered vehicles (CPVs),
detours to recharging stations become necessary, see [12]. Furthermore, the pay-
load of EPVs is reduced due to the high weight of the batteries. Compared to
CPVs of the same size (with respect to gross weight), an increased number of
EPVs is needed for fulfilling a given set of transportation tasks. Consequently,
the proportion between fixed and variable costs is changing. That is why research
on the fleet size and the utilization of mixed vehicle fleets require new specific
investigations, e.g. [3]. Altogether, new tour planning methods considering the
specific characteristics of EPVs are required.
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Few trucking companies have recently started using EPVs (see e.g. [19]).
Of course, they do not replace all CPVs of their fleet by EPVs. In fact, they
use EPVs tentatively for getting experience in applying electric power for cargo
transport on roads. That is why EPVs usually are not used in fleets consisting
exclusively of EPVs. They mostly are part of a mixed fleet composed of vehi-
cles with electric traction and conventional, i.e. combustion-powered, vehicles.
Furthermore, EPVs nowadays are almost exclusively used for local traffic on
short-distance routes. Apart from some exceptions, trucking companies operate
EPVs in that way that they avoid recharging during their routes. Exceptions
refer to planning situations where EPVs can be recharged during the service
time at customer locations. However, this requires precise agreements and coop-
eration between the trucking companies and the operators of customer locations.
Detours to charging stations are avoided since the extra traveling distance and,
even more important, the loss of time would be very costly. The usage of recharg-
ing stations is excluded in our paper since for local transport recharging on tour
would be economically useless due to the driver wages which have to be paid for
the time when drivers and vehicles are idle.

Out of the above reasons and in contrast to most research on vehicle rout-
ing for EPVs, we assume that recharging will only be done at the depot of the
trucking company. That is why the tour lengths of routes planned for EPVs have
to be adapted to the maximum range which can be driven by an EPV without
recharging. Moreover, it might even happen that there is no feasible transporta-
tion plan for fulfilling a given set of transportation tasks with a homogeneous
fleet of EPVs since some distances between customer locations are simply too
long for EPVs. Since we are considering routes which have to be completed by one
driver within one day, the tour length is additionally limited for any vehicle type
by the maximum permissible daily driving time prescribed by EC-regulations.

EPVs are more energy-efficient than CPVs. However, one of the major draw-
backs of EPVs is that their capabilities are more restrictive than those of CPVs;
e.g. EPVs have a lower range and a lower payload. Consequently, using EPVs
instead of CPVs leads to a reduction of the solution space for routing and
scheduling. This means that the solution quality may decrease, and e.g. in case
of distance minimization, the total travel distance of the vehicles will increase.
However, the amount of increase of travel distances is not known in advance
without knowing the characteristics of the deployed vehicles and transportation
tasks at hand. Anyway, increased travel distances of EPVs will in turn cause
increased energy consumption. That is why this paper is focusing on the follow-
ing research questions:

1. What is the effect of the reduced range and payload of EPVs (compared to
CPVs) on the travel distances and on the feasibility of transportation plans?

2. What is the amount of energy reduction or emission reduction reachable by
using EPVs instead of using CPVs?

3. Can the typical strengths of EPVs (low energy consumption) and CPVs (high
range and payload) be exploited by a fleet which is composed of both, EPVs
and CPVs?
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For investigating Question 1, transportation plans for test instances with
short transportation distances are considered and the traveling distances
obtained by these transportation plans are opposed for CPVs on the one hand
and EPVs on the other hand. Then, the transportation distances are stepwise
stretched or compressed in order to explore the impact of traveling distances on
transportation plans; and the demands regarding transportation tasks are also
modified in order to see the impact of capacity limitations of the vehicles.

For answering Question 2, transportation plans for CPVs and EPVs are com-
pared with respect to the average values for energy consumption and CO2 emis-
sions. For CPVs, it is widely accepted that the following Eq. (1) is a good and rea-
sonably simplified approximation for the expected energy consumption of a truck k
carrying payload of weight qij from a location i to a location j with dij representing
the travel distance for the non-stop travel between i to j [5,6,17].

Fk = ak · dij + bk · qij · dij (1)

In Eq. (1), ak denotes the energy consumption of a CPV k per 100 km while bk
denotes the vehicle specific energy consumption per ton payload and 100 km. In
this paper, Eq. (1) is also applied for estimating the expected energy consumption
for EPVs. Of course, the values for ak and bk substantially differ for CPVs and
EPVs. Since EPVs make use of recuperation of energy whenever it is possible, the
difference between energy consumptions of EPVs and CPVs is strongly sensitive
to the type of use of EPVs.

Nevertheless, for an averaged prediction of the energy consumption which
has to restrict to ex-ante parameters of vehicle operation, Eq. (1) can be applied
to EPVs in the same way as to CPVs. For comparing the emissions of CPVs and
EPVs, the generated problem instances which have been solved for answering
Question 1 are reconsidered and evaluated with respect of the energy consump-
tion of vehicles. Question 3 will be investigated by allowing fleets with both,
EPVs and CPVs, to be used for tour fulfillment.

Light-Duty and Medium-Duty trucks are frequently used in distribution logis-
tics, and within this class of trucks, vehicles with 7.5 tons gross weight and those
with 18 tons gross weight are very popular and widely-used. The truck market
has offered many products for these vehicles types. Moreover, there are man-
ufacturing companies which offer EPVs of 7.5 tons gross weight (e.g. [20]) and
of 18 tons gross weight (e.g. [21]). Table 1 shows the specific characteristics of
CPVs and EPVs of a size of 7.5 tons gross weight and 18 tons gross weight (c.f.
[18,21,22]). The energy consumption declared by the manufacturers for EPVs
is adjusted to two different modes of usage: city traffic and overland traffic. The
lower value for energy consumption in Table 1 refers to city traffic while the
higher value refers to overland traffic. For the EPV with 18 tons gross weight,
the manufacturer only announces values for the weight and energy consumption
of a chassis without platform. In Table 1, it is assumed that a platform with a
weight of 4 tons is supplemented to the chassis (with a weight of 5 tons). The
values for payload and energy consumption are adapted accordingly.

The remainder of the paper is structured as follows. Section 2 introduces
the vehicle routing problem with time windows and limitations for energy
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Table 1. Characteristics of CPVs and EPVs

Vehicle type CPV-7.5 to EPV-7.5 to CPV-18 to EPV-18 to

→ Practical example UPS-P80 UPS-P80E IVECO Stralis E-FORCE

Traction

→Engine Diesel Electric Diesel Electric

→Energy content 70 l 62 kWh 200 l 2 × 120 kWh

→Maximal range 450 km 130 km 1,200 km 350 km

Weights

→Empty weight 3.5 to 4 to 9 to 12 to

→Payload 4 to 3.5 to 9 to 6 to

Energy consumption (per 100 km)

→ Empty vehicle 13 l 40–44 kWh 18 l 73.3–80 kWh

→ Loaded vehicle 16.2 l 60–63 kWh 24 l 90–95 kWh

consumption (VRPTW-EC). To generate near optimal transportation plans for
the VRPTW-EC an Adaptive Large Neighborhood Search (ALNS) is used. The
ALNS is presented in Sect. 3. Section 4 presents the results of computational
experiments and derives answers for the research questions 1 to 3. Finally the
paper closes with a summary of the findings.

2 Mathematical Model

The mathematical formulation for the VRPTW-EC is built by extending the
traditional VRP-formulation (see [2]). The main extensions are:

– the implementation of time windows for customers
– the implementation of tour length restrictions (regarding traveled time and

energy consumption)
– the consideration of different types of vehicles (regarding capacity, tour length

restrictions and energy consumption)

The VRPTW-EC is described by the following mathematical model (c.f. [16]):

Indices:

i, j locations: i, j ∈ I where 0 and n + 1 represent the depot, I ={0, ..., n + 1}
k vehicles: k ∈ K where k describes the vehicle parameters, K = {1, ..,m}
Parameters:

dij travel distance between locations i and j
tij time for traveling from location i to j (tij = dij/v where v represents the

average traveling speed)
αj time window starting time of customer j
βj time window ending time of customer j
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sj service time of customer j
qj demand of customer j
Qk capacity of vehicle k
Tk maximum tour length of vehicle k (regarding travel time)
ak energy consumption of the empty vehicle k per kilometer
bk energy consumption for the load of vehicle k per ton and kilometer
Ek maximum energy content for vehicle k (regarding liters of diesel or kWh)

Variables:

qijk cargo of vehicle k traveling between locations i and j
tj service starting time at location j
yjk =1 if customer j is served by vehicle k,

=0 otherwise
xijk =1 if vehicle k serves location j immediately after serving location i,

=0 otherwise

minimize z =
∑

k∈K

∑

(i,j)∈I×I

dij · xijk, (2)

subject to:
∑

j∈I\{0}
x0jk = 1, ∀k ∈ K, (3)

∑

i∈I\{n+1}
xi,n+1,k = 1, ∀k ∈ K, (4)

∑

i∈I

xihk −
∑

j∈I

xhjk = 0, ∀k ∈ K,h ∈ I \ {0, n + 1}, (5)

∑

k∈K

yjk = 1, ∀j ∈ I \ {0, n + 1}, (6)

∑

j∈I

qj · yjk ≤ Qk, ∀k ∈ K, (7)

ti + si + tij − Tk · (1 − xijk) ≤ tj , ∀k ∈ K, (i, j) ∈ I × I, (8)
αi ≤ ti ≤ βi, ∀i ∈ I, (9)

∑

i∈I

qijk −
∑

i∈I\{0,n+1}
qjik = qj · yjk, ∀k ∈ K, j ∈ I \ {0, n + 1} (10)

qijk − Qk · xijk ≤ 0, ∀k ∈ K, (i, j) ∈ I × I (11)
∑

(i,j)∈I×I

tij · xijk ≤ Tk, ∀k ∈ K, (12)

∑

(i,j)∈I×I

dij · (ak · xijk + bk · qijk) ≤ Ek, ∀k ∈ K, (13)

qijk ≥ 0, ∀k ∈ K, (i, j) ∈ I × I (14)
ti ≥ 0, ∀i ∈ I, (15)

xijk ∈ {0, 1}, ∀k ∈ K, (i, j) ∈ I × I, (16)
yjk ∈ {0, 1}, ∀k ∈ K, j ∈ I. (17)
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The Objective (2) minimizes the tour length. Constraints (3), (4) and (5) are
the flow constraints. Whereas constraints (3) require that each vehicle has to
leave the starting depot 0, constraints (4) dictate that all vehicles have to reach
the duplicated depot n + 1 at the end of the tours. Constraints (5) observe that
each customer is reached and left by the same vehicle. Constraints (6) ensure
that all customers are assigned to one vehicle which means that yjk is equal
to the value obtained by summarizing xijk for all customers i. The amount of
demand must not exceed the vehicles’ capacity (constraints (7)). Constraints
(8) are an adaption of the sub-tour elimination restrictions described in [7] and
set the service starting time for all nodes. The time windows are restricted by
constraints (9). Constraints (10) are responsible for balancing the flow of goods.
These equations allow the determination of the amount of cargo flow on each
edge. Constraints (11) inhibit any transportation on unused edges. Otherwise
it would be possible that the demanded quantities take paths differing from
those of the vehicles. Since we consider daily planning for distribution logistics,
the maximum tour length is restricted due to the maximum operation times of
drivers. Whereas the constraints (12) limit the tour length regarding the travel
time, constraints (13) restrict the amount of energy available for tours. The
transport of negative payload is excluded by constraints (14) and negative times
are excluded by constraints (15). Finally, constraints (16) and (17) define the
domains of the decision variables.

3 Solution Method

To solve the VRPTW-EC we propose a modified ALNS. The ALNS was intro-
duced by Ropke and Pisinger (see [9,11]). It proposes improving an initial solu-
tion (i.e. transportation plan) by a ruin and recreate strategy (c.f. [13]). In an
iterative approach a feasible transportation plan is destroyed by a removal oper-
ator and repaired by an insertion operator until a certain stop criterion is met
(e.g. maximal number of iterations). To investigate large solution spaces, an
ALNS uses several removal and insertion operators that reshuffle up to 40 % of
all transportation tasks per iteration. Thereby an adaptive procedure guides the
selection of the removal and insertion operators. To deal with local optima, sim-
ulated annealing (SA) is used, where better solutions are always accepted and
worse solutions are accepted with a predefined probability [4].

3.1 Procedure of ALNS

Algorithm 1 visualizes the procedure of an ALNS. The procedure of the ALNS
starts with the generation of an initial transportation plan s (line 1). Typically,
this initial transportation plan results from a construction heuristic. In our case,
the initial transportation plan is generated by a savings algorithm (c.f. [1]), where
customers are merged to vehicle routes based on savings of travel distances.

The initial transportation plan s is stored as the actual best known solu-
tion sBest (line 2); and the start temperature of the SA is determined (line 3).
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Algorithm 1. Procedure of ALNS

1 Generation of initial transportation plan s;
2 sBest := s;
3 T := T0;
4 for i ← 0 → itmax do
5 s′ ← s;
6 Choose a random value for q in the range [q1, q2];
7 Choose a removal and an insertion operator by a roulette wheel selection;
8 Remove q transportation tasks from s′ by removal operator ;
9 Reinsert removed transportation tasks in s′ by insertion operator ;

10 if fs′ < fsBest then
11 sBest ← s′;
12 end

13 if random[0, 1] < e− fs−f
s′

T then
14 s ← s′;
15 end
16 T := T · ς;
17 Adjust probabilities for roulette wheel selection;

18 end
19 return sBest;

Afterward, the improvement heuristic is applied in an iterative approach (lines
4–18) until a certain number of iterations itmax is reached. In each iteration the
ALNS modifies the initial solution s, so that a new neighbor solution s′ is devel-
oped. Thereby, customers are removed from the current transportation plan and
reinserted into the remaining transportation plan. To increase the diversity of
the improvement heuristic a randomly chosen number q of transportation tasks
in the range [q1, q2] is reshuffled in each iteration (line 6). Simultaneously, a
removal operator and an insertion operator are chosen randomly by a roulette
wheel selection, where the probability to select an operator depends on its per-
formance in earlier iterations (line 7). Whereas the well-known operators worst
removal, random removal, and shaw removal [14] as well as new sequence removal
are available, the used insertion operators are different versions of the regret-k
heuristics [10] with and without a noise factor (c.f. [11]). The removal operators
remove q transportation tasks from the initial transportation plan (line 8); and
the insertion operators reinsert those transportation tasks in the transportation
plan (line 9).

A neighborhood solution s′ is accepted as new best solution, if its objective
value fs′ improves the objective value of the best known solution fsBest (line
10–12). To avoid stucking in local optima, an SA supervises the accepting of
a neighborhood solution s′ as new initial solution s, where a solution with a
higher objective value is accepted always as new initial solution and a worse
solution is accepted with a probability (line 13–15). Furthermore, in each itera-
tion the temperature T is reduced by a cooling rate ς = (0, 1) (line 16), and the
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probabilities for the roulette wheel selection are adjusted (line 17; c.f. [11]).
Finally, the best transportation plan is returned (line 19).

3.2 Modifications to ALNS

The modifications made to the ALNS refer to the adaptation of removal oper-
ators. The shaw removal was originally provided for the pick-up and delivery
problem, where the idea is preferably to remove similar transportation tasks. To
suit the VRPTW-EC, the shaw removal is slightly modified. Our version of the
shaw removal rates the similarity γ(ij) of a transportation task i to a randomly
chosen transportation task j �= i based on Eq. (18). Thereby, the features dis-
tance between the transportation tasks dij , the similarity of the time windows
(|αi − αj |, |βi − βj |) and the demands (|qi − qj |) are considered. All terms of
Eq. (18) are normalized to values between (0, 1]; i.e. the terms are divided by
the specific maximal values. Furthermore, the individual terms are extended by
weights δ1, δ2, and δ3. To increase the flexibility, the weights for the individual
function terms are randomly re-chosen in the range [0, 10] for each using of the
shaw removal.

γ(ij) = δ1 ·
(

dij
dmax

)
+ δ2 ·

( |αi − αj | + |βi − βj |
αmax + βmax

)
+ δ3 ·

( |qi − qj |
qmax

)
(18)

Since the problem described by the VRPTW-EC has the special feature to
consider heterogeneous fleets of vehicles, removal operators that force the use of
different vehicles are worth investigating. That is why we introduced the sequence
removal. It removes connected parts of tours from transportation plans, in order
to enable the assignment of these parts to small vehicles. Overall, we propose
three versions of the sequence removal, where one of the following strategies is
randomly chosen for each application of the sequence removal:

– remove all transportation tasks of a random tour
– remove all transportation tasks after a random edge of a random tour
– remove all transportation tasks after the edge with the highest distance of a

random tour

Regardless of which version of the sequence removal is used the procedure
is repeated until at least q transportation tasks are removed from the initial
transportation plan.

4 Computational Experiments

The effects of using either EPVs or CPVs for vehicle routing are demonstrated
for vehicles of different size. Based on the vehicle characteristics shown in Table 1,
the experiments presented in this section are performed for vehicles with 7.5 tons
gross weight and for vehicles with 18 tons gross weight. CPVs and EPVs behave
differently with respect to the energy needed to fulfill a set of transportation
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tasks. In case of EPVs the energy consumption needed for traveling strongly
depends on the type of application. Especially, it is to a high degree dependent
on the traffic and road conditions relevant for fulfilling transportation tasks,
and most typical for EPVs, the average travel efficiency (i.e. the energy con-
sumption per travel distance) in urban traffic deviates a lot from the aver-
age efficiency reachable for overland traffic. Actually, the efficiency of EPVs
in overland traffic is much lower than the efficiency in city traffic while for
CPVs the difference between city and overland traffic is not generally signifi-
cant. That is why we differentiate between three types of vehicle usage: CPV
(V C), EPV in city traffic (V EC), and EPV in overland traffic (V EO). Each type
of vehicle usage is considered for vehicles of 7.5 tons gross weight and 18 tons
gross weight. Altogether we consider six types of vehicle utilization in Table 2:
V C(7.5), V EC(7.5), V EO(7.5), V C(18), V EC(18), V EO(18).

Table 2 shows the values for the parameters ak (energy consumption of the
empty vehicle k per kilometer) and bk (energy consumption for the load of vehi-
cle k per ton and kilometer) for the above six types of vehicle utilization. These
parameter values are derived from Table 1 by taking the energy consumption per
100 Km for the empty vehicle and the loaded vehicles as basis. In case of EPVs,
the declaration for average energy consumption announced by the manufacturers
of these vehicles varies considerably between a lower bound and an upper bound.
That is why we take the values declared for the lower bound as the value for
V EC , and the declared upper bound as the value for V EO. Note that, although
the energy consumption of EPVs in overland traffic is always higher than the
energy consumption in city traffic, the value of the proportionality factor bk (i.e.
the increase of consumption per ton and km) is lower for overland traffic than for
city traffic. This is caused by the values announced by the manufacturers for the
average lower and upper bounds for fuel consumption and the values derived for
empty and full vehicles Additionally to the parameters for energy consumption,
Table 2 shows for all six vehicle types the values for the parameters Ek (energy
content for vehicle k regarding tank volume or battery capacity) and Tk (maxi-
mum tour length for vehicle k in km). The duration of daily tours is restricted
by the EC-regulations for maximum driving times and by the regulations for
working hours. That is why an upper limit for the sum of driving times and
service times is statutory for daily trips of vehicles. We include the limitation on
tour durations by restricting the maximum possible tour length (sum of trav-
eled distances). Since we assume that smaller vehicles usually handle local tours
with many stops and larger vehicles will execute larger tours with less stops, we
fix the maximum tour length to 450 km for 7.5-ton-vehicles and to 500 km for
18-ton-vehicles. For EPVs the maximum tour length is additionally limited due
to their limited battery capacity.

The generation of test instances is based on the adaptation of the well-known
Solomon instances [15]. In order to adjust the customers’ demands to the capacity
of the used vehicles and to adjust the tour lengths to the maximal range of
the vehicles, a demand-factor and a length-factor are introduced. The demand-
factor linearly and uniformly increases the demands of all customers occurring in
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Table 2. Considered vehicle types

V C(7.5) V EC(7.5) V EO(7.5) V C(18) V EC(18) V EO(18)

ak 0.13 0.4 0.44 0.18 0.73 0.8

bk 0.8 × 10−5 0.571 × 10−5 0.543 × 10−5 0.667 × 10−5 0.278 × 10−5 0.25 × 10−5

Ek 70 62 62 200 240 240

Tk 450 450 450 500 500 500

Table 3. Characteristics of test sets

S-1 S-2 S-3 S-4 S-5 S-6 S-7 S-8 S-9

Demand-factor 20 20 20 30 30 30 50 50 50

Length-factor 0.5 1.0 2.0 2.0 3.0 4.0 2.0 3.0 4.0

Vehicle size 7.5 to 7.5 to 7.5 to 18 to 18 to 18 to 18 to 18 to 18 to

the original Solomon instances. The length-factor linearly stretches all distances
between any location pair. Additionally, the durations of the time windows of
the Solomon instances are stretched according to the length-factor applied to
the traveling distances. The values of the demand- and the length-factor are
modified within a reasonable scope in order to investigate the effects of varying
distances and weights on differently sized CPVs and EPVs. Altogether, nine test
sets S-1 to S-9 have been generated (see Table 3).

In our computational experiments, the nine test sets of Table 3 are solved for
each of the following scenarios for vehicle utilization:

– (A) homogeneous fleet of CPVs
– (B) homogeneous fleet of EPVs (city traffic)
– (C) homogeneous fleet of EPVs (overland traffic)
– (D) fleet of CPVs and EPVs (city traffic)
– (E) fleet of CPVs and EPVs (overland traffic)

The scenarios (D) and (E) are implemented by using a homogeneous fleet of
CPVs for solving the test sets S-1 to S-9 and subsequently replacing CPVs in
the obtained solutions by EPVs whenever it is possible. A CPV can be replaced
by an EPV if the tour assigned to that CPV is not too long for the range of
the EPV respectively its payload is not exceeded. Furthermore, the test sets S-2,
S-4, and S-7 are solved by considering various heterogeneous fleets of CPVs and
EPVs.

All instances were solved by the ALNS described in Sect. 3 with a maximum
of 50,000 iterations. The ALNS was implemented in a C++-application and
computed on a Windows 7 PC (i7-2600 processor with 3.4 GHz, 16 GB RAM).
The results obtained for the utilization scenarios (A), (B), and (C) are presented
in Table 4.
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To establish comparability among the energy consumption of CPVs and
EPVs, both, diesel consumption and electricity consumption, are converted into
the resulting values for Tank to Wheel (T2W) emissions and Well to Wheel
(W2W) emissions. Whereas, the T2W rates the CO2 emissions of the energy
consumed by the vehicle, the W2W also rates the CO2 emissions of the energy
production. For CPVs applies that one liter diesel accords with 2.629 kg CO2

emissions for T2W respectively 3.168 kg CO2 emissions for W2W [18]. Simul-
taneously, one kWh equates 0.542 kg CO2 emissions for T2W and 0.57 kg CO2

emissions for W2W [23].
The entries in Table 4 show that the test sets with the lowest of the provided

length-factors (0.5 in test set S1, 2.0 in test set S-4, and 2.0 in test set S-7) per
fixed demand-factor and fixed vehicle size could always be solved for all three
scenarios (A), (B) and (C). In case of vehicles with 7.5 tons gross weight and a
demand-factor of 20 (i.e. test set S-2), all three scenarios are also solvable for a
length factor with the value 1.0. All other test sets are only solvable for scenario
(A), i.e. for using CPVs. Averaged over all test sets which are solvable for all
scenarios, the number of used vehicles increases by 17 % respectively 18 % in
case that CPVs are replaced by EPVs in city traffic respectively overland traffic.
Moreover, the total travel distance increases by 10.0 % respectively 10.8 %. On
the opposite side, the amount of T2W emissions decreases by 13 % respectively
by 6 % if the values of [18,23] are used for calculating the T2W-values for CPVs
and EPVs. However, for one of the test sets (S-7) the total amount of emis-
sions even increases if for overland transport CPVs are replaced by EPVs. The
average values for distance decrease and emission increase in Table 4 (i.e. 13 %
respectively 6 %) have to be opposed to the fact that, according to the values of
[18,23], replacing a travel distance of an empty 7.5 tons respectively 18 tons CPV
by a travel distance of a corresponding EPV would imply an emission reduction
33.4 % respectively 12.2 %.

Table 5 shows the results for mixed vehicle fleets in case of city traffic (sce-
nario (D)). In scenario (D), the solutions of scenario (A) are modified by replac-
ing CPVs by EPVs as much as possible. For each test set we consider the situa-
tion that 0, 2, 4, or an unlimited number (∞) of EPVs are available for replacing
CPVs. The quotient (u/a) in Table 5 denotes the number u of actually used EPVs
divided by the number a of available EPVs.

In contrast to the results of the scenarios (B) and (C) with homogeneous
electric-powered fleets (see Table 4), all test sets of Table 5 can be solved by using
the mixed fleets considered in Table 5 since there are always enough CPVs avail-
able in the scenarios shown in Table 5. Increasing the number of available EPVs
has the effect that an increased number of EPVs actually are used. However,
averaged over all test cases, only one-third of the available EPVs are deployed
since in all other cases the generated routes are too energy-consumptive for
EPVs. Anyway, using mixed fleets according to Table 5 for fulfilling the routes
which have been generated for a homogeneous fleet of CPVs, has the advan-
tage that on the one hand all test sets can be solved successfully and on the
other hand the CO2 emissions can be reduced compared to a pure CPV-fleet.
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Table 4. Results of test sets for scenarios (A), (B), (C)

Test sets Scenario Solvable Vehicle (num) Length (km) Energy consumption T2W (kg) W2W (kg)

(l) (kWh)

S-1 (A) Yes 10.61 533.54 76.22 — 200.39 239.19

(B) Yes 11.41 561.77 — 271.77 147.30 154.91

(C) Yes 11.41 562.53 — 292.64 158.61 166.81

S-2 (A) Yes 10.66 1,068.20 160.93 — 423.09 505.00

(B) Yes 11.78 1,141.86 — 548.77 297.43 312.80

(C) Yes 12.13 1,173.51 — 602.06 326.32 343.17

S-3 (A) Yes 11.34 2,228.96 316.00 — 830.75 991.60

(B) No — — — — — —

(C) No — — — — — —

S-4 (A) Yes 9.36 2,019.45 402.70 — 1,058.69 1,263.66

(B) Yes 10.77 2,137.87 — 1,709.16 926.37 974.22

(C) Yes 10.86 2,150.40 — 1,840.14 997.36 1,048.88

S-5 (A) Yes 9.64 3,037.05 601.97 — 1,582.57 1,888.97

(B) No — — — — — —

(C) No — — — — — —

S-6 (A) Yes 10.75 4,315.00 844.26 — 2,219.56 2,649.28

(B) No — — — — — —

(C) No — — — — — —

S-7 (A) Yes 11.30 2,229.15 457.31 — 1,202.27 1,435.04

(B) Yes 14.95 2,595.36 — 2,106.52 1,141.73 1,200.72

(C) Yes 14.95 2,596.40 — 2,251.06 1,220.75 1,283.10

S-8 (A) Yes 11.36 3,338.90 684.59 — 1,799.78 2,148.24

(B) No — — — — — —

(C) No — — — — — —

S-9 (A) Yes 11.70 4,605.03 937.19 — 2,463.89 2,940.90

(B) No — — — — — —

(C) No — — — — — —

If the number of available EPVs which are available for substituting CPVs is
unrestricted (i.e. a = ∞ in Table 5), then the total T2W emissions for all consid-
ered test sets are reduced by 3.2 % compared to the strict usage of CPVs only.
The values shown in Table 5 refer to the usage of EPVs in city traffic. In case
of overland traffic (scenario (E)) the averaged values of the columns of Table 5
deviate in the following way: the average number of used EPVs (u) is decreasing
by 8.4%; and the value for T2W emissions is increasing by 0.9%.

Since the objective of all vehicle routing experiments in this paper is given
by the minimization of traveling distances, the objective values and the optimal
solutions do not depend on the fact whether CPVs or EPVs are used. However,
since CPVs are more flexible with respect to range and payload, there will be
many routes which are only executable by CPVs. That is why mixed fleets
should be investigated more intensively. Table 6 shows the results of additional
experiments on mixed fleets for the test sets S-2, S-4 and S-7. The additional
experiments are restricted to the above test sets since these test sets are the only
ones of Table 4 which can always be solved for the homogeneous scenarios (B)
and (C); i.e. an arbitrary combination of CPVs and EPVs will always be able
to fulfill all given transportation tasks of the test instances occurring in these
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Table 5. Results of test sets for scenario (D)

Test sets EPVs (u/a) Energy consumption T2W W2W

(l) (kWh) (kg) (%) (kg) (%)

S-1 0/0 76.22 — 200.39 — 239.19 —

1.84/2 61.74 49.47 189.14 (−5.66) 221.95 (−7.27)

3.07/4 53.50 77.43 182.62 (−8.77) 212.03 (−11.24)

5.77/∞ 39.86 120.46 170.08 (−13.92) 193.74 (−17.57)

S-2 0/0 160.93 — 423.09 — 505.00 —

1.71/2 135.72 81.59 401.02 (−5.30) 472.39 (−6.56)

2.84/4 121.17 128.64 388.27 (−8.22) 453.55 (−10.19)

5.02/∞ 101.40 186.91 367.90 (−12.37) 424.75 (−15.13)

S-3 0 / 0 316.00 — 830.75 — 991.60 —

1.07/2 300.94 49.72 818.13 (−1.50) 972.70 (−1.88)

1.27/4 299.00 55.94 816.38 (−1.67) 970.14 (−2.09)

1.32/∞ 298.47 57.58 815.89 (−1.72) 969.43 (−2.15)

S-4 0/0 402.70 — 1, 058.69 — 1, 263.66 —

1.43/2 342.45 245.92 1, 033.58 (−2.32) 1, 214.77 (−3.79)

2.48/4 299.53 421.08 1, 015.69 (−3.92) 1, 179.95 (−6.39)

5.96/∞ 202.22 896.12 963.13 (−8.07) 1, 088.35 (−12.61)

S-5 0 / 0 601.97 — 1, 582.57 — 1, 888.97 —

1.36/2 536.23 286.23 1, 555.13 (−1.72) 1, 835.58 (−2.81)

2.30/4 495.61 433.98 1, 538.17 (−2.75) 1, 802.58 (−4.48)

3.60/∞ 457.84 588.02 1, 522.36 (−3.64) 1, 771.87 (−5.94)

S-6 0/ 0 844.26 — 2, 219.56 — 2, 649.28 —

1.18/2 791.42 215.50 2, 197.45 (−1.00) 2, 606.32 (−1.62)

1.64/4 773.71 287.75 2, 190.04 (−1.32) 2, 591.91 (−2.15)

1.86/∞ 767.50 313.06 2, 187.43 (−1.41) 2, 586.86 (−2.29)

S-7 0/0 457.31 — 1, 202.27 — 1, 435.04 —

1.11/2 423.32 138.78 1, 188.13 (−1.11) 1, 407.48 (−1.81)

1.66/4 406.35 208.04 1, 181.06 (−1.62) 1, 393.72 (−2.65)

2.68/∞ 381.73 308.53 1, 170.78 (−2.29) 1, 373.17 (−3.74)

S-8 0/0 684.59 — 1, 799.78 — 2, 148.24 —

1.14/2 641.22 176.99 1, 781.71 (−0.95) 2, 113.04 (−1.55)

1.63/4 621.23 258.58 1, 773.36 (−1.36) 2, 096.81 (−2.21)

2.21/∞ 604.10 328.44 1, 766.20 (−1.67) 2, 082.88 (−2.72)

S-9 0/0 937.19 — 2, 463.87 — 2, 940.90 —

0.7/2 910.35 109.50 2, 452.66 (−0.43) 2, 919.09 (−0.69)

0.88/4 904.05 135.20 2, 450.02 (−0.52) 2, 913.97 (−0.84)

1.0/∞ 900.80 148.44 2, 448.66 (−0.56) 2, 911.32 (−0.91)
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Table 6. Results for a heterogeneous fleet of CPVs and EPVs

Test sets CPVs avail. CPVs (num) EPVs (num) Length (km) T2W W2W

(kg) (%) (kg) (%)

S-2 20 10.66 0.00 1,068.20 423.09 — 505.00 —

10 9.16 1.55 1,068.45 405.11 (−4.25) 478.39 (−5.27)

9 8.68 2.05 1,066.89 398.49 (−5.81) 468.93 (−7.14)

8 7.89 2.88 1,070.69 390.54 (−7.69) 456.83 (−9.54)

7 6.91 3.88 1,072.97 377.67 (−10.74) 437.65 (−13.34)

6 5.96 4.86 1,077.60 368.63 (−12.87) 423.75 (−16.09)

5 4.98 5.88 1,079.41 356.88 (−15.45) 406.26 (−19.55)

S-4 20 9.36 0.00 2,019.45 1, 058.69 — 1, 263.66 —

10 7.88 1.61 2,022.40 1, 037.96 (−1.96) 1, 222.35 (−3.27)

9 7.46 1.95 2,024.94 1, 031.59 (−2.56) 1, 208.80 (−4.34)

8 7.02 2.36 2,023.13 1, 025.40 (−3.14) 1, 197.87 (−5.21)

7 6.50 2.95 2,019.73 1, 013.83 (−4.24) 1, 177.26 (−6.84)

6 5.77 3.61 2,022.29 1, 005.94 (−4.98) 1, 160.62 (−8.15)

5 4.91 4.68 2,033.29 995.16 (−6.00) 1, 136.52 (−10.06)

S-7 20 11.30 0.00 2,229.15 1, 202.27 — 1, 435.04 —

10 9.77 1.59 2,229.13 1, 181.42 (−1.73) 1, 394.66 (−2.81)

9 8.96 2.55 2,245.63 1, 176.26 (−2.16) 1, 379.22 (−3.89)

8 8.00 3.88 2,271.42 1, 172.01 (−2.52) 1, 362.87 (−5.03)

7 7.00 5.09 2,302.29 1, 163.77 (−3.20) 1, 337.30 (−6.81)

6 6.00 6.63 2,331.64 1, 158.40 (−3.65) 1, 317.84 (−8.17)

5 5.00 7.79 2,364.04 1, 153.14 (−4.09) 1, 296.70 (−9.64)

test sets. In contrast to Table 5, where the number a (available EPVs for the
test cases of Table 4) is introduced and stepwise increased, Table 6 shows the
effects of decreasing the limit of available CPVs on the test cases of Table 4. In
this case the vehicle routing algorithm is forced to use EPVs due to the lack
of available CPVs. Like in Table 5, the first line for each scenario in Table 6 is
equal to the first line of that same scenario in Table 4 since there are enough
CPVs available for generating the same solutions as for Scenario (A). As shown in
Table 6, stepwise decreasing the number of available CPVs has the effect that the
total travel distances are increasing while the emissions are decreasing. In case of
city traffic a limitation to five CPVs implies an increment of travel distances by
1.0 %, 0.7 %, 6.0 % and a decline of emissions by 15.5 %, 6.0 %, 4.1 % for test sets
S-2, S-4, S-7 respectively. The values of Table 6 can be opposed to corresponding
values for homogeneous electric-powered fleets for city traffic (Scenario (B) of
Table 4). For Scenario (B) the growth of travel distances compared to a pure fleet
of CPVs (Scenario (A)) is 9.8 %, 5.8 %, and 16.4 % and the reduction of emissions
is 29.7 %, 12.5 %, and 5.0 %. This clearly shows the potential of a mixed fleet to
reduce the emissions tremendously while the travel distances are only increasing
slightly. In case of overland traffic, the results for using mixed fleets for the test
sets S-2, S-4 and S-7 are similar to the results for city traffic. Compared to city
traffic, the overland travel distances increase by 0.1% and the T2W emissions
increase by 1.5%.
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5 Conclusion

The main contributions of our paper are (i) the comparison of EPVs and CPVs
(ii) by considering not only the reduced range but also the reduced payload of
EPVs and (iii) analyzing the benefits of mixed fleets consisting of EPVs and
CPVs. The analysis of the experiments presented in this paper clearly measures,
demonstrates and contrasts the specific strengths of CPVs and EPVs. Moreover
it could be shown that the drawbacks of CPVs and EPVs can be mitigated by
deploying a mixed fleet consisting of electric-powered as well as combustion-
powered trucks.
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