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Abstract. We study the problem of selecting services and transfers in
a synchromodal network to transport freights with different characteris-
tics, over a multi-period horizon. The evolution of the network over time
is determined by the decisions made, the schedule of the services, and the
new freights that arrive each period. Although freights become known
gradually over time, the planner has probabilistic knowledge about their
arrival. Using this knowledge, the planner balances current and future
costs at each period, with the objective of minimizing the expected costs
over the entire horizon. To model this stochastic finite horizon optimiza-
tion problem, we propose a Markov Decision Process (MDP) model. To
overcome the computational complexity of solving the MDP, we pro-
pose a heuristic approach based on approximate dynamic programming.
Using different problem settings, we show that our look-ahead approach
has significant benefits compared to a benchmark heuristic.

Keywords: Synchromodal planning - Anticipatory planning - Inter-
modal transport - Approximate dynamic programming

1 Introduction

We consider the problem of selecting services and transfers in a synchromodal
network, to transport freights from their origin to their destination, while mini-
mizing costs over a multi-period horizon. In a synchromodal setting, all freights
are booked “mode-free”, meaning that there are no restrictions for selecting a
transportation mode or deciding the number transfers among the intermodal ter-
minals. The network operator is able to decide over all services in the network
even if they are not its own. However, the flexibility in selecting services and
transfers is encumbered by various time restrictions, such as service schedules
and freight time-windows, and by the variability in the arrival of freights over
time. In this paper, we study how these challenges can be tackled, heuristically,
in order to solve this stochastic and finite horizon optimization problem.

In synchromodal planning, it is possible to change the transportation plan to
bring a freight from its origin to its destination, at any point in time. Even though
the planner might have a complete plan at a given moment, only the first part
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of such a plan is implemented. The next decision moment, the planner has the
flexibility to change the original plan if necessary. Consequently, there are three
types of decisions each day: (i) transport a freight to its final destination, (ii)
transport a freight to an intermediate terminal, and (iii) postpone the transport
of a freight. All types of decisions incur some form of costs. The first and the
second type incur direct costs, which are costs realized by the services required
for the transportation of a freight. The third type has direct costs only in case
of holding costs. Since the problem is to minimize costs over a multi-period
horizon, the second and third type also incur future costs, which are costs that
are incurred on a posterior moment within the horizon. Future costs depend on
the new arriving freights and their characteristics (which are uncertain) and the
known transportation mode characteristics (e.g., schedules, capacity, etc.). The
optimal balance between direct and future costs guarantees the best performance
over the horizon. However, anticipating future costs is challenging.
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Fig. 1. Time evolution and planning example of service and transfer selection

Decisions are influenced by two types of time restrictions. The first type cor-
responds to the durations and schedules of services and transfers. As an example,
consider Fig. 1, which shows a possible plan spanning 5 days using both train
and barge. In this example, barges have a duration of 2 days, and the train
between Terminals 3 and 4 departs on even days. The second type corresponds
to the time-window of freights, which limit the feasible transportation services
and transfers, and thus the feasible decisions. In addition to the time restric-
tions, the variability in the number of freights that arrive each day and their
characteristics (i.e., origin, destination, time-window), also influence the deci-
sions. Although freights and their characteristics are unknown beforehand, there
is probabilistic information about their arrival. Every day, the planner must con-
sider all these characteristics and select which freights use the services available
that day, balancing direct and future costs.
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The objective of this paper is twofold: (i) to design a model and look-ahead
solution method that capture all problem characteristics and their effect on the
planning objective, and (ii) to explore the use of look-ahead decision methods
under several settings. We model the decision problem and the evolution of the
network using a Markov Decision Process (MDP) model. With this model, the
optimal trade-off between the three types of decisions, over time and under uncer-
tain demand, can be obtained. However, solving MDP models become unman-
ageable as problem instances grow larger. To overcome this, we use Approx-
imate Dynamic Programming (ADP), a framework that uses parts from the
MDP model and iteratively estimates future costs. ADP combines simulation,
optimization, and statistical techniques to solve an MDP heuristically.

The remainder of this paper is organized as follows. In Sect.2, we briefly
mention the relevant literature and specify our contribution to it. In Sect. 3, we
introduce the MDP model. In Sect. 4, we explain our ADP solution approach. In
Sect. 5, we test various designs within the ADP algorithm, and provide a com-
parison with benchmark heuristics. Finally, we close in Sect.6 with conclusions
and insights for further research.

2 Literature Review

In this section, we focus our attention on the literature about planning problems
in dynamic and flexible intermodal transportation networks. It is our goal to
provide an overview of the advantages and limitations of related work, i.e. possi-
ble solution methods. Extensive literature reviews about this area and thorough
explanation of modeling and solution approaches can be found in [2,14].

Synchromodal planning is the proactive organization and control of inter-
modal transportation services based on the latest information available [14]. In
such a planning paradigm, decision methods must balance the demand with all
available services and intermodal transfers each time new information becomes
known [13]. Although research about synchromodal planning methods is on its
infancy, several studies show how existing methods for intermodal transport
planning can be extended to such problem settings [16] and how significant
gains can be achieved in practice [9,16].

In intermodal transport planning, Dynamic Service Network Design (DSND)
problems are the closest to the synchromodal planning problems. DSND involves
the selection of transportation services and modes for freights, where at least
one feature of the network varies over time [14]. Due to the time-space nature
of DSND problems, graph theory and mathematical programming approaches
are commonly used in this area. However, these approaches have computational
limitations for large and complex time-evolving problem instances [15], which are
characteristics common to synchromodality [13]. To overcome these limitations,
additional designs, such as decomposition algorithms [5], receding horizons [6],
and model predictive control [10], are necessary. These additional designs are
less suitable for including probabilistic information in the decisions, which may
explain why most DSND studies assume deterministic demand [14] even though
the need to incorporate stochastic demand has been recognized [7].
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To incorporate stochasticity in DSND approaches, techniques such as sce-
nario generation [3,7], two-stage stochastic programming [1,8], and Approximate
Dynamic Programming (ADP) [4,11] have been used. Although these approaches
perform better than their deterministic counterpart, they have limitations when
considering synchromodal planning. In the scenario generation technique, plans
do not change as new information becomes available. In the two-stage stochas-
tic programming approach, explicit probabilistic constraints and high computa-
tional requirements limit their applicability to large instances. In ADP, a proper
design and validation of the approximation algorithm is crucial and challenging.
Nevertheless, ADP allows generic modeling of complex, time-revealing, stochas-
tic networks and a fast response time for updating plans.

To summarize, DSND research provides a useful base for synchromodal plan-
ning. Considering all challenges and opportunities mentioned before, we believe
that our contribution to the literature about stochastic DSND problems and
synchromodal planning has three key points. First, we design an MDP model
and solution method based on ADP that capture all problem characteristics
and their effect on the planning objective. Second, we explore the use of such a
look-ahead approach, under different problem settings, and provide design and
validation insights. Third, we compare the ADP approach against an advanced
sampling procedure and specify further research directions based on the insights.

3 Optimization Model

In this section, we present our optimization model. Following the DSND conven-
tion, we begin presenting the network parameters using a directed graph. Then,
we present the MDP model for our stochastic planning problem.

3.1 Input Parameters

We define a directed graph Gy = (Ny, A;), wheret € 7 ={0,1,2,..., 7™ — 1}
represents the finite planning horizon (i.e., T™?* decision periods), N; represents
the set of all nodes at time ¢, and A; represents the set of all directed arcs at time
t. In the remainder of the paper, we refer to a time period ¢ as a day, although
it is important to note that time can be discretized in any arbitrary interval.
Also in the remainder of the model description, all notation and formulations
indexed by t correspond to that day. Nodes N; represent physical locations where
freight can begin or end transportation, i.e., origins, intermodal terminals, and
destinations. We denote the set of origin nodes as N;°, the set of destination
nodes as NP, and the set of intermodal terminal nodes as N}. These three sets
are mutually exclusive, make up the set of all nodes, and are all indexed with i, j
and d. Note that this separation of the node sets applies to the model, but not
necessarily to the problem instance. For example, an intermodal terminal which
receives arriving freights will be modeled both as an origin and terminal node,
with all services between these two nodes properly adjusted. Arcs A; represent
all transportation services in the network. Similar to the node classification,
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we classify the arcs into three types. The set of arcs between an origin and an
intermodal node is denoted as AP = {(i,4)|i € N;° and j € NV} }. The set of arcs
between two intermodal terminal nodes is denoted as Al = {(i,j)|z’,j € ./\/tl}
The set of arcs between an origin or an intermodal node, and a destination, is
denoted as AP = {(i,d)|i € NP UN{ and d € NP}.

We make three modeling assumptions with respect to the services between
different types of locations. First, we assume that services beginning at an ori-
gin, i.e., A? , as well as services ending in a destination, i.e., AP, are avail-
able every day and are realized by truck. This assumption corresponds to the
usual pre- and end-haulage operations in an synchromodal network. Second, we
assume that services between two intermodal terminals, i.e., Al are done by
high-capacity modes and never by truck. Although this is a simplification of
the network, trucks between intermodal terminals are rarely used. If the prob-
lem instance requires it, a truck service between two intermodal terminals can
be modeled using “dummy” nodes for the respective terminals, with other arcs
properly adjusted. Third, we assume there is at most one service between two
intermodal terminal nodes. Just as before, multiple services between two inter-
modal terminals can be modeled using more than one pair of nodes representing
those terminals. Note that the services between two intermodal terminals are not
necessarily the same every day to represent the schedules for the high-capacity
modes.

Services in the network have their starting and ending location modeled
as nodes within G;. For the service between two intermodal terminals (7,j) €
.A%, there is a mazimum capacity @Q; ;: measured in number of freights. For
all services involving an origin or a destination, we assume that there is an
unlimited number of trucks. All services (i,j) € A; have a service duration of
ij,t days, which lasts at least one day. All transfer and handling operations
at each location i € N, have a duration of Lf\ft days. To measure the total
time required for the service between two locations, we define the parameter
M = LY, + ij7t + L},. We assume that traveling directly to a destination by
truck is always faster than going through an intermodal terminal, i.e., Lf}d’t <
min; ey {Mi’j,t + Lﬁd,t},V(i, d) € AP. This assumption works in a similar way
as the triangle inequality in routing problems. All relevant costs from a service
(1,j) € A, are captured in the cost function C; ;. This means that, although
pre- and end-haulage decisions, as well as freight handling decisions, are outside
the scope of the planner, their costs can be captured with the function Cj ; ;.

Each day t, freights with different attributes become known to the planner.
These freights are characterized by an origin i € N;°, a destination d € NP, a
release day r € Ry = {0,1,2,..., R™*} and a time-window length k € K; =
{0,1,2,..., K[**}, where R and K;™®* are the maximum release day and
time-window length, respectively, that a freight can have. Note that the absolute
due-day is k days after r. Even though new freights and their characteristics are
only known until they arrive, there is probabilistic knowledge about their arrival.
In between two consecutive days t — 1 and t, a total of f € N freights arrive into
the system with probability pl;’t. A freight that arrives has origin i € N° with
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probability p?t, destination d € NP with probability pgt, release-day r € Ry
with probability pEt, and time-window length k € K; with probability p?t.

3.2 MDP Model

In this section, we transform the problem horizon, constraints, and objective into
the building blocks of an MDP: stages, state, decision, transition, and optimality
equations. The stages of the MDP are defined by ¢t € 7. The state Sy consists of
all freights in the network and their characteristics. To model these freights, we
introduce the variable F; g, 1 € Z7 that represents the number of freights at
location i € N° UN], that have destination d € NP, release day r € R}, and
time-window length k € K;; and define the state S; as seen in (1). The state
space is denoted as S, i.e., S; € S.

St = [Fivdarvkvt]ViENtOUNg,dGNP,T‘GRQ,kGKﬁ (1)

Note that we use a new set R} for the release days. The release day definition
at origin nodes remains the same. The release day at an intermodal terminal,
however, is now used to represent the days “left” for a freight to arrive at that
node. For example, if a released freight is sent to an intermodal terminal j
on a barge whose total service duration is four days, this freight will appear
the day after it was sent, as a freight with » = 3 at location j. This new set,
which is defined as R} = {O7 1,2,..., max {R;ﬁax, mMaxX(; j)e Al Mi,j,t}}, allows
us to model multi-day durations of services without the need of remembering
decisions from more than one day ago, i.e., to be more computationally efficient.
Note that, in case no total service duration is larger than R***, then R; = R;.
Time-window lengths £ still model the number of days after the release-day r,
within which the freight has to be at its final destination. We will elaborate more
on the evolution of the network over time later on in this section.

At each stage, the planner must decide how many released freights to trans-
port and to postpone, for all locations. Remind that, in a synchromodal network,
only the first part of the plan to transport a freight to its destination is imple-
mented at each decision moment. Consequently, at every stage, the decision to
transport a freight can be either to send it directly to its final destination, or
to send it to an intermodal terminal. To model this decision, we introduce the
variable x; j q.x+ € ZT, which represents the number of freights having destina-
tion d € NP and time-window length k € K; that are transported from location
i to location j using service (i,5) € A;. Thus, the decision vector x; consists of
all transported freights in the network, as seen in (2a).

Tt = [Iiaﬁdvkvt]v(i,j)EAt,dGNtD,kefo, (2a)
s.t.

Z Tijakt < Fiaoks, Yie NCUN, de NP kek, (2b)
JENTULd}
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Tidd LA  +2 Fi,d,o,Lgfd,t,t, V(i,d) € AD k € K, (2c)

i,d,t?

Tijake =0, V(i,j) € A, d € NP k€ Kilk < M;ju+ Mjay (2d)
Z Z Tigake < Qiges V(i) € A (2¢)

deNP keK,

The decision x; depends on the state S; and the feasible decision space A%,
which has four constraints. First, the number of freights transported from one
location to all other locations cannot exceed the number of released freights
available at the start location, as seen in (2b). Second, released freights whose
time-window length is as long as the duration of direct transport (i.e., trucking)
must be transported using this service, as seen in (2c). Third, freights whose
time-window length is smaller than the duration of the shortest path between
an intermodal terminal and their destination cannot be transported via that
terminal, as seen in (2d). Fourth, transport between two intermodal terminals
cannot exceed the capacity of the long-haul vehicle, as seen in (2e).

After making a decision x;_1, but before entering the state S, new freights
become known to the planner. We represent new freights with origin i € N°,
destination d € NP, release day r € Ry, and time-window length k € K;, by
E‘,d,r,k,t- We denote the vector of all new freights that arrive between stages t —1
and t by Wy, as seen in (3). This vector represents the exogenous information
(i.e., new random freights) that became known between stages t — 1 and t.

Wi = [Fi,d,r,k,t (3)

}VieNf),deNtD,reRt,kelCt
The evolution of the network over time is influenced by decisions, exogenous
information, and various time relations. We represent this evolution by using
a transition function S™, as seen in (4a). The general idea of SM is to define
the freights at S; using only the previous-stage decision x;_; and the exogenous
information W;. Although decisions can span more than one day (i.e., when the
duration of a service is longer than a day), we use freight release days (i.e., new
set R}) and time-window lengths to avoid remembering a decision for more than
one stage. When freights are not transported, they remain at the same location
and their release days and time-window lengths decrease. However, when freights
are transported from a given location ¢ to an intermodal terminal j, they are
modeled as freights whose release day increases and their time-window length
decreases in line with the total duration of transport M; ;.. To model all these
relations, SM classifies freight variables Fy i a1 into seven categories, as shown
in (4b)—(4h). To exemplify in detail the workings of these categories, consider
(4c). These constraints apply to released freights at an intermodal terminal ¢ with
destination d and time-window length k. These freights are the result of three
types of freights: (i) released freights in the same terminal, from the previous
stage, that had the same destination, that had one additional day in the time-
window, and that were not transported to any other node (i.e., Fy_1.4,0,k+1 —
ZjeAt Ti_1,ijdk+1); (i) freights in the same node, from the previous stage,
that had the same destination, that had a release-day of one, and that had the
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same time-window length (i.e., Fy_1;4.1,%); and (iii) freights that arrived from
other locations to ¢, that have the same destination, whose total duration of
transportation was one period, and whose time-window length was k + M ; ; at
the moment of the decision x;_1 (i.e., ZjeA,,\Mj,i,tzl T 1 jidk+ M., ) All other
constraints work in a similar fashion.

Sy = sM (Stflaxtfla Wt)

s.t. (4a)
Fiiaok = Fi—1,,d,0k+1 — Z Te—1,i4.dk+1 + Fro14.d,1,6 + Fid,0ks
JEA:
Vie NP, de NP k+1e K, (4b)

Fyiaok = Fi—1,4,d,0k+1 — E Ti—1,i,5,dk+1 + Fi—1,i,d,1,k
JEA:

+ E Tt—1,5,i,d,k+M; ;19
JEALM; ;=1

Vie N, de NP k+1€K, (4c)
Fiia,0,kmx = Fio1,d,1, ke + F a0, k00,
Vie NP,d e NP (4d)
Fyiark = Fi—1idr+1.6 + Fridorks
Vie NO,de NP,r +1€Ry|r > 1,k € K, (4e)
Fyidarke =Fi15dr1,k+ Z Tt—1,jyisd kM 0
JEA M ie=r+1
Vie NLde NPor+1eRjr>1,kek, (4f)
Fiia 1m0 = > Ti—1,j,i,d ket Mj, 0
JEALM; i +=|R}|+1
Vie Ni,d e NPk € Ky, (4g)

Fiia,rmox g = Fyi g Rmox ks
Vie NP, de NP ke K, (4h)

The goal is to minimize the total costs over a multi-period horizon, consid-
ering all possible states that can occur each day, and considering the stochastic
arrival of freight. To do so, we define a policy m as a function that maps each
possible state S; € S to a decision ] € X;. Consequently, the objective is to
determine the policy 7 from the set of all policies IT that minimizes the expected
costs over the planning horizon, given an initial state Sy, as seen in (5):

minE |0 =Y Y (G XY ||| ©)

teT teT (i,5)EA, deNP keK,
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To solve this stochastic and sequential optimization problem, we transform (5)
into the Bellman’s equations (6). In these equations, the expected next-stage
cost is computed using the value of the next-stage state S;+1 (obtained using
SM) the decision 27, a realization of the exogenous information w € 2,1, and
the associated probability p2***. The solution to all recursive equations of (6),
e.g., through backward induction, provide the optimal policy for the MDP.

Ve(So) = min | Gy (2f) + Y pIt - Vigr (SY (Sa,w)) | VS, €S (6)

Ty €
wEN41

However, solving the Bellman equations (6) for large problems is computationally
challenging. The state space S, decision space X;, and the realizations of the
exogenous information in §2; grow larger with an increasing size of the problem
instance. Due to these three “curses of dimensionality” [12], our MDP model
is solvable only for tiny problem instances. Notwithstanding, the MDP model
serves as a base for our ADP approach.

4 Solution Approach

Our solution approach is based on ADP, which is a heuristic solution method
for MDP models that uses various constructs and algorithmic strategies. Its
main idea is to replace the expected next-stage costs in (6) by a Value Func-
tion Approximation (VFA), and to update this function via a simulation of the
exogenous information. This update procedure is done iteratively, as shown in
Fig. 2, with the end result being the approximated values of the solution to the
Bellman’s equations, and thus a policy 7. Certainly, the choice of (i) VFA, (ii)
the update procedure, and (iii) the number of iterations, has an influence on
the performance, i.e., solution quality and computational time. In the follow-
ing paragraphs we describe the choices we make and indicate their expected
performance.

Initialize
state and[ ™| for n=1to N
VFA
for t=0 to T -1
Make decision Simulate Update x
Equation (7) Sample w € (2, Equation(9) n=

t< e

n<N

Fig. 2. Overview of the ADP algorithm

In our ADP approach, the expectation of future costs in (6) is replaced by an
. . . TN . .« .
value function approximation V, (S;""), where S;"" is the so-called post-decision
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state, i.e., the state after a decision has been made but before the new exogenous
information becomes known. As seen in (7), this construct avoids specifying all
realizations of the exogenous information (2;.

V(S = min (Ci(a) + V7 (S5) (7)
T EX

To avoid the large state space, the optimality equation in (7) is solved for one
state at each stage, starting from the initial state Sy. The transition from one
state to the next uses a sample from (2,11, obtained through a Monte Carlo
simulation, and the transition function S defined in (4a). This process is per-
formed for the entire planning horizon, and repeated for IV iterations, hence the
superscript n in the approximate value function and post-decision state.

The general outline of an ADP algorithm can be found in Fig. 4.7, page 141,
of the book of [12]. We now focus on two designs (i.e., variations) we propose for
that algorithm. Our first design uses a commonly proposed ADP setup. We use
basis functions for V; (ST™) and the non-stationary least squares method for
updating this function. A basis function ¢, (S;"") is a quantitative characteristic
of a given feature a of a post-decision state S;"" that describes, to some extent,
the value of that post-decision state. Examples of features in our problem are the
number of freights for a given destination and the number of freights at a given
intermodal terminal. Given a set of features 4, the approximated next-stage
costs in (7) are the result of the product between the basis function ¢,(S;"")
and the weight 07 , for each feature a € A, as seen in (8).

(S = 300 e (SET) (8)

acA

The weight 67, depends on the iteration n because it is updated after each
iteration, using observed costs, to improve future cost estimates. We use a Non-
stationary Least Squares (NLS) method for updating these weights since it gives
more emphasis to the recent observation than to the previous one. This emphasis
is necessary at early iterations, where initial conditions might bias the approx-
imation and the result of the ADP approach. The weights 07 ,, for all a € A,
are updated each iteration n using the observed error (i.e., difference between

the next-stage estimate from the previous iteration V::ll ( f_’;) and the cur-
rent estimate 0}), the value of all basis functions ¢aq (S™), the optimization
matrix H", and the previous weights Ga ;, as seen in (9). For a comprehensive
explanatlon on the NLS method, we refer to (12].

00 = Onr" = Huou (SP™) (VIS (ST) = 7) (9)

The first design considers downstream costs only through a one-step estimate.
Since estimates can be off, especially in early iterations, it might be beneficial
to look ahead more than one step. To do this, our second design builds on the
first one and uses two additional constructs. First, we add a valid inequality
to the decision space X; as follows. If a direct service for a freight between
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its origin and its destination is cheaper than going from its origin to a given
intermodal terminal and subsequently to its destination, we prevent this freight
from going to that intermodal terminal when its time-window length allows only
a direct service after the intermodal terminal. Second, we add another estimate
to V; (&™), as seen in (10). In this new approximate value function, C; (S©™)
is an estimate of the downstream cost obtained simulating a fixed rule for the
remaining of the horizon, under different demand realizations, and « is a weight

x,mn

to balance the use of basis functions and simulations for V? (Sy").

VISP = a Y 00 a (SPT) + (1) Ty (S7™) (10)
acA

At last, the output of our two ADP designs are the weights Hé\ft. The resulting
policy m maps state S; € S to decision =] as seen in (11).

zy = argmin | Cy (a]) + Z 9(11\; a (St) (11)
a€A(SY)

5 Numerical Experiments

In this section, we explore the value of our ADP designs through a series
of numerical experiments. Using three small instances, we compare the costs
achieved by our ADP approach against a benchmark policy and an advance sam-
pling procedure. The benchmark policy mimics a planning approach commonly
used in practice. The sampling procedure extends the benchmark policy with a
methodology commonly considered in the literature. The section is divided as
follows. First, we introduce our experimental setup. Second, we show, analyze,
and discuss the results of our experiments.

5.1 Experimental Setup

For the three instances, we use a network containing a single origin, three inter-
modal terminals, and three destinations over a planning horizon of 15 days.
Each day, there are three services between the intermodal terminals, with capac-
ities and durations as shown in Fig.3. The fixed costs of these services are of
Cfy = Cf3 = 100 and Cf'3 = 150. The variable costs range between 36 and
44, and are equal to the Euclidean distance between the terminals in a plane of
100 x 50 distance units, as shown to scale in Fig. 3. In addition, every day there
is a direct service between the origin and the terminals, between the origin and
the destinations, and between the terminals and the destinations; and they all
have duration of one day. There are no fixed costs for the direct services, and
the variable cost range varies between 241 and 927, and are equal to ten times
the Euclidean distance between the two locations they connect. The number of
freights that arrives each day varies between f = {0,1,...,4}, with probabil-
ity pl; as shown in Fig.3. In the three instances, each freight has destination
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d € {4,5,6} with probability p? as shown in Fig. 3, and is always released (i.e.,
p& = 1). Each freight has a time-window length k = {1,2,...,5} with proba-
bility p%f according to the instances considered. In instances where freights have
short time-windows, there are not many feasible options for transportation and
almost none for postponement. In instances with large time-windows, the oppo-
site occurs. To test the value of look-ahead decisions, we create instances with
different time-window length distributions, as shown in Fig. 3.

K
Qas=2 | \E 10 14.0.27,0.27,0.18,0.1 7
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Fig. 3. Network characteristics for the test instances

Using these instances, we test four planning methods: a benchmark heuristic,
our two ADP designs (named ADP 1 and ADP 2), and an advance sampling
procedure. The set of features A consists of all state variables and a constant of
1. The weight a for ADP 2 is defined as a = max {25/ (25+n — 1), 0.05} and
the sampling method is the same as the advance sampling procedure introduced
in the next paragraph. The number of iterations is set to 100 and the NLS para-
meters used are those recommended by [11]. Although these settings achieved a
fast convergence of the ADP algorithm in our tests, the resulting approximate
value functions (i.e., policy) is heuristic and not necessarily optimal.

The benchmark heuristic strikes for a balance between using the intermodal
services efficiently (consolidate as many freights as possible) and the postpone-
ment of freight. It consists of fours steps: (i) define the shortest and second
shortest path for each freight to its final destination, without considering fixed
costs for services between terminals, (ii) calculate the savings between the short-
est and second shortest path and define these as savings of the first intermodal
service used in the shortest path, (iii) sort all freights in non-decreasing time-
window length, i.e., closest due-day first, and (iv) for each freight in the sorted
list, check whether the savings of the first intermodal service of its shortest path
are larger than the fixed cost for this service; if so, use this service for the freight,
if not, postpone the transport of the freight. Naturally, all capacities, durations,
and time-windows must be checked while doing these steps.

The sampling procedure consists of three steps: (i) enumerate all feasible
decisions, (ii) for each feasible decision, estimate future costs by sampling, in a
Monte Carlo fashion and using common random numbers across the decisions,
realizations of the exogenous information for the remainder of the planning hori-
zon, and simulating the use of the benchmark heuristic for making decisions with
these samples, and (iii) choose the decision with the lowest sum of direct and
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estimated future costs. Although heavily computationally intensive (i.e., not
applicable to larger instances), this procedure exploits the benefits of looking-
ahead in decision making.

The tests are done using ten test states in each instance. To define these states
for each instance, we do a simulation of the benchmark heuristic, beginning with
an empty state, for a horizon of 15 days. We save the state at the end of the
horizon. We replicate this procedure 10,000 times, and choose the ten states that
were observed the most. For each of the test states, we simulate each planning
method 100 times, using common random numbers across the methods. Note
that these 100 simulation replications are different from the 100 iterations of the
ADP algorithm. Thus, we test the ADP approach in two phases: (i) learning
phase through 100 iterations and (ii) simulation phase of using the resulting
policy in (11) for 100 replications.

5.2 Experimental Results and Discussion

First, we analyze Instance I;. This is the most flexible test instance since all
freights have a time-window length of 5 days when they arrive. The results are
shown in Table 1. We show the costs for the benchmark heuristic, and the relative
savings, as a percentage, of the other planning methods when compared to the
benchmark. In addition, we show the number of freights of each test state and
the computational time. The computational time (in seconds) is given as the
total simulation time for the 100 replications of the 15-day horizon.

Table 1. Results for Instance I

State | Total Benchmark ADP 1 ADP 2 Sampling
Freights | Solution | Time (s) | Solution | Time (s) | Solution | Time (s) | Solution | Time (s) ‘

1 4 12221 0.92 —13.6% | 29.94 —33.9% | 101.31 —43.3% | 688.29
2 7 14684 0.94 —12.8% | 52.06 —32.7% | 96.67 —39.9% | 1687.18
3 5 13042 0.92 —13.1% | 31.68 —27.5% | 81.46 —41.5% | 827.15
4 6 13863 0.94 —12.3% | 32.99 —25.9% | 81.42 —39.0% | 832.67
5 6 13863 0.91 —12.0% | 108.62 —30.0% | 111.21 —42.3% | 1356.80
6 6 13863 0.94 —10.4% | 102.12 —31.3% | 67.58 —42.9% | 1317.73
7 5 13042 0.94 —12.6% | 40.26 —23.4% | 81.99 —41.5% | 893.59
8 4 12221 0.92 —14.7% | 37.44 —25.0% | 78.41 —38.9% | 547.66
9 2 10579 0.94 —14.9% | 31.72 —29.9% | 45.13 —42.4% | 611.18
10 5 13042 1.01 —11.2% | 30.81 —32.9% | 42.92 —40.6 % | T727.28

On average, ADP 1 achieves savings of 12.8%, ADP 2 of 29.2%, and the
sampling procedure of 41.2% when compared to the benchmark heuristic. All
three methods that explicitly look-ahead in their decisions perform better than
the benchmark that does so only implicitly. The sampling method performs the
best, at a higher computational expense (more than 10 times the computational
time of ADP, and 1000 times the one of the benchmark, on average). For large
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instances, or even small ones where time is discretized into smaller intervals,
this method would not be applicable. ADP 2 performs second best, at a higher
computational expense during the learning phase than ADP 1 (965s instead
of 116, on average). However, during the actual decision making for the entire
planning horizon, both ADP designs have similar computational time (50 and
79, on average, respectively, for I;). ADP 1 lowest savings indicate that a one-
step look-ahead is not sufficient for a good solution. Furthermore, the difference
between the two ADP designs suggests that further research that explicitly con-
siders a few stages in advance, such as rolling-horizon procedures within the
ADP framework, can improve performance significantly.

The average results across the test states of Is and I3 are shown in Table 2.
Note that each instance has its own set of test states, which differs from the other
instances. Furthermore, note that I and I35 have significantly less flexibility than
I due to their time-window length, only 40 % and 0.05 % of arriving freights can
use any intermodal connection, respectively.

Table 2. Average results for Instance I3 and I3

Instance | Benchmark ADP 1 ADP 2 Sampling
Solution | Time (s) | Solution | Time (s) | Solution | Time (s) | Solution | Time (s)

I 11078 0.88 —5.2% |10.52 —9.8% |13.89 —31.2% | 217.19

I3 12874 1.01 2.9% 3.19 0.4% 2.31 —-3.3% | 36.95

The larger savings from all look-ahead methods in I; and I, compared to
I3, indicate that the more flexibility there is, the better it is to look-ahead when
making decisions. In I, similar results to I; are achieved, but with significantly
less cost savings. In I3, the benchmark heuristic performs better than the ADP
approach, and the sampling achieves small savings. In most states of I3, the
only feasible option (time-wise) for freights is to use a direct service via truck.
In such a setting, decision making methods that focus on current costs, such
as the benchmark heuristic, perform well since there are hardly consolidation
opportunities to anticipate for. However, a robust ADP design should be able to
learn such a policy, as the sampling method seems to do. In a sensitivity analy-
sis (results not shown), we observed that the number of iterations and the NLS
parameters had a small impact on the solution quality, compared to the impact
of different approximate value functions (e.g., more basis functions, the sam-
pling method, etc.). In a similar way, the different approximate value functions
had a significant difference in computational time during the learning phase,
but not during the decision-making phase. Further research on adaptations of
the approximating function of future costs within the ADP algorithm, such as
aggregates, hierarchical functions and state representatives, is necessary.
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6 Conclusions

We developed an MDP model and an ADP algorithm for selecting services and
transfers for freights in a synchromodal network. With the MDP model, the opti-
mal balance between transporting and postponing freights, in different locations
of the network, over time, and under uncertain demand, can be achieved. With
the ADP algorithm, the computational burden of the MDP model is reduced
while preserving all of its modeling functionalities.

Through numerical experiments, we explored the value of using look-ahead
decisions in our planning problem and reflected on the value and the limitations
of our ADP designs. We observed that the more time-window flexibility and
number of freights there are, the better the look-ahead methods perform. We also
observed that the two methods that look-ahead more than one stage performed
better than the standard one-step look-ahead ADP approach. Further research
about ADP designs that explicitly consider a few stages in advance (e.g., rolling
horizon, sampling, approximate policy iteration) and other, possibly non-linear,
value function approximations, are relevant for synchromodal planning.
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