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Preface

Computational logistics comprises the planning and implementation of large and
complex logistics tasks using modern information and communication technology
(ICT) and advanced decision support systems. It is applied in various areas, such as the
movement of freight and people. More and more it also touches on issues of digital
transformation. Optimization models and algorithms are combined with advanced
computer technology for obtaining good-quality solutions in a reasonable time as well
as for providing/allowing interactivity and visualization for a better understanding
of the problem and corresponding solutions. The use of information systems and
modern ICT for the design, planning, and control of large-scale logistics networks as
well as the complex tasks within them also belongs to the essential options for
advancing computational logistics.

The International Conference on Computational Logistics (ICCL) provides an
opportunity for academia, industry, and governmental agencies to share solutions,
address new challenges, and discuss future research directions in the application of
information, communication, optimization, and control technologies to logistic activ-
ities. The 7th International Conference on Computational Logistics was organized by
the Center for Mathematics Fundamental Applications and Operations Research
(CMAF-CIO), and was held at the University of Lisbon, Portugal, September 7–9,
2016.

CMAF-CIO appeared in 2015 as a result of the merging of two former units, the
Center for Mathematics and Fundamental Applications and the Operations Research
Center. The CMAF-CIO has a solid optimization group that has been working on the
modeling and resolution of numerous real-world problems, several of them arising in
the field of logistics/routing. Despite the existence of several protocols with govern-
mental agencies and private companies, CMAF-CIO still has the challenge to reduce
the gap between academic real-life-based projects and real-life applications. Thus, for
this conference, the company Wide Scope was invited as a partner. Wide Scope has
been working successfully in many real-life applications in Portugal and even abroad.
The Department of Statistics and Operations Research of the University of Lisbon was
also closely related to organizing the conference with some of its members being part
of the Organizing Committee of the conference. The ICCL conference provides an
opportunity to spread, to PhD and master’s students of the department, the knowledge
and information concerning the bridge between academia and industry.

The special theme of ICCL 2016 was “Road to Logistics Excellence.” Despite what
has already been achieved in the field of logistics, a proactive look ahead to refinement,
improvement, and advancement toward excellence is demanded. Decision analytics
and business intelligence are increasingly becoming the key drivers toward solving
logistics problems. While this allows us to have a better and advanced integration of
logistics processes within supply chains and supply chain networks, the road also opens
up for new opportunities. One of the grand challenges in logistics is the question of



how to cope with disturbances. While we perform optimization along the supply chain,
the vulnerability against errors, failures, and the like becomes even more severe.
Logistics excellence not only has to optimize every single part but it also has to think
about how to be proactive in avoiding disturbances, or—in case they still happen—how
to anticipate proper reactions.

This volume of Lecture Notes in Computer Science consists of 29 selected papers
presented at the conference. The contributors are from over 30 countries and all the
papers were accepted after a thorough review process. The papers were grouped into
the following themes:

– Container Terminals and Maritime Transportation
– Intermodal Transport
– Location and Routing
– (General) Logistics and Supply Chain Management

While we believe that these proceedings provide insight into the state-of-the-art of the
field, we expect that the development of these themes will continue to grow in the near
future, pointing to new research opportunities and paving the road to logistics excel-
lence. Also, a few critical areas have been recognized as the frontier where the links
between practical needs, policy requirements, and innovative academic contributions
are needed more than ever. These include further integration and/or synchronization in
all areas of logistics from warehouse design and operations to multimodal trans-
portation; fostering usage of large-scale computational techniques to tackle the com-
plexity of coordination; the increasing use of greener vehicles such as electric cars or
bicycles; and finally efficient ways to deal with disruptions or uncertainty that char-
acterize, for instance, maritime transportation.

Organizing a conference and publishing the proceedings comprise a significant
effort, for which we are grateful to the support of a large group of people. The greatest
thanks go to the authors, who kept the scientific debate open and at a high-quality
standard. We greatly appreciate the valuable cooperation of the reviewers who made a
substantial effort in evaluating the papers to achieve a high scientific standard. A
special thank you goes to our conference partner Wide Scope and especially Ana
Pereira, the Program Committee, and the local organizers in Lisbon.

ICCL 2016 in Lisbon was the seventh of its kind, after Shanghai (2010, 2012),
Hamburg (2011), Copenhagen (2013), Valparaíso (2014), and Delft (2015). The
contributions presented at ICCL 2016 and the papers in these proceedings show that
computational logistics has been spreading among different areas and businesses and
we are looking forward to the next developments!

September 2016 Ana Paias
Mario Ruthmair

Stefan Voß
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A Multi-product Maritime Inventory Routing
Problem with Undedicated Compartments

Elise Foss, Trine N. Myklebust, Henrik Andersson(B),
and Marielle Christiansen

Department of Industrial Economics and Technology Management,
Norwegian University of Science and Technology, Trondheim, Norway

henrik.andersson@iot.ntnu.no

Abstract. This paper considers the problem of routing bulk tankers
to minimize cost while managing the inventory in ports. Multiple non-
mixable products are transported and the allocation of products to
undedicated compartments onboard the ships is an important aspect
of the problem. A mixed integer programming formulation of the prob-
lem is proposed, and the model is strengthened by including several valid
inequalities. Computational results are reported for an evaluation of the
model and the valid inequalities. Results are also reported for two simpli-
fied models where either the compartments are dedicated or the products
are mixable.

1 Introduction

Maritime transportation has long taken a dominant role in global trade. Accord-
ing to AON (2012), 90 % of all goods traded across boarders are moved by the
maritime shipping industry. Remarkable improvements in the efficiency of mar-
itime transportation have been seen in the last 50 years, but still significant
improvements can be made by improving the routing and scheduling of ships
through the use of operations research.

A maritime inventory routing problem (MIRP) is a planning problem where
the problem owner has the responsibility for both the inventory management at
one or both ends of the maritime transportation legs and for the ship routing
and scheduling. MIRPs are considered to belong to the industrial shipping seg-
ment where the mainstay is liquid or dry bulk cargoes that is shipped in large
quantities. When transporting liquid bulk, the products are stored in large com-
partments onboard the ship. As of 2014, tankers have the second largest market
share with 29 % of the number of vessels in the markets (UNCTAD 2015).

The purpose of this paper is to give further attention to MIRPs handling
multiple non-mixable products with allocation to undedicated compartments.
Most of the literature on MIRPs with multiple products simplifies the allocation
of products by assigning them to dedicated compartments. Our goal is to develop
a model for a MIRP with allocation of products to undedicated compartments

c© Springer International Publishing Switzerland 2016
A. Paias et al. (Eds.): ICCL 2016, LNCS 9855, pp. 3–17, 2016.
DOI: 10.1007/978-3-319-44896-1 1



4 E. Foss et al.

and to explore the behavior of this model. The trade-off between the increased
realism of the model and the increase in complexity is evaluated by considering
two simplified models with dedicated compartments and mixable products.

The remainder of this paper is organized as follows. In Sect. 2 related litera-
ture on MIRPs and the handling of multiple products are reviewed. In Sect. 3, the
problem is described in detail. The mathematical formulation and valid inequal-
ities are presented in Sect. 4. The computational results for the undedicated
compartment model and the simplified models are reported and discussed in
Sect. 5. Finally, concluding remarks are given in Sect. 6.

2 Related Literature

Here, we review relevant literature on MIRPs addressing the transportation of
multiple products and the allocation of these. Two recent surveys on the area
of maritime transport optimization are Christiansen et al. (2012) and Andersson
et al. (2010).

Ronen (2002) was the first to study the transportation of multiple products
rather than a single product. Multiple products introduce new challenges like
the handling of different products in different ports and ship/product compat-
ibility. Similarly to the problem proposed in this paper, Hemmati et al. (2016)
have chosen not to enforce any restrictions on the combinations of products and
ports, i.e. each product can be consumed or produced in any number of ports.
Al-Khayyal and Hwang (2007), Siswanto et al. (2011), and Agra et al. (2014)
have a set of production ports and a set of consumption ports for each prod-
uct which in a greater degree limits the flow of products. In both Hemmati
et al. (2016) and Al-Khayyal and Hwang (2007), a ship is allowed to (un)load
different products at the same time, but a port cannot handle the same product
by different ships simultaneously. Agra et al. (2014) have solved this issue by
restricting the ports to only have one ship operating at a time.

In the context of multi-product MIRPs, the bulk products that are con-
sidered often need to be transported in different compartments due to their
non-mixable nature. Up until now, little research has addressed the issue of how
these products are to be loaded onboard the ship. Ronen (2002), Persson and
Göthe-Lundgren (2005), Dauzére-Pérès et al. (2007), and Hemmati et al. (2016)
all have models with multiple products, but disregard the allocation of prod-
ucts into compartments onboard the ship. Agra et al. (2014), Al-Khayyal and
Hwang (2007), and Li et al. (2010) assume the products to be non-mixable and
are thus forced to address the problem of allocating products to compartments.
They define each compartment to be dedicated to a specific product, introducing
a limitation on which products that can be carried by each compartment of a
ship. The use of dedicated compartments is the most used method of solving the
problem of allocating products to compartments.

Siswanto et al. (2011) introduce undedicated compartments which they define
to be a compartment that can take any product, however it can only store one
product at a time. In the event of an empty compartment, any product can
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be loaded to that compartment. However, Siswanto et al. (2011) assume that
only a ship with empty compartments returns to the production ports and thus
the danger of mixing products in the same compartment during the shipment is
removed.

3 Problem Description

The multi-product MIRP in this paper considers the transportation of multiple
non-mixable products and the allocation of the products to undedicated com-
partments onboard the ship. For maritime transportation this is especially rele-
vant for the shipping of liquid bulk products. Given the nature of the products
that are carried, the compartments must be washed regularly, and often before
they can be loaded with a different product. This is necessary to avoid pollution
of the products, e.g. to avoid a deposition of crude oil in the tankers. Since the
time used washing a compartment between switching products is insignificant
compared with the time used in port, it is disregarded.

We consider a short-sea transportation problem with a planning horizon that
spans a few weeks. It is solved with respect to the ship routing and scheduling,
inventory management in ports, and the allocation of products to compartments
on each ship. The objective is to minimize the costs consisting of four compo-
nents; sailing costs between ports, waiting costs outside a port, operating costs
in port, and (un)loading unit costs in port. One actor, which is the producer,
consumer of the shipping company, is responsible for both the inventory in ports
and the routing and scheduling of the ships, and for that reason the inventory
holding costs are ignored.

The problem deals with the transportation of multiple products in a many-
to-many distribution network. Each port has a berth capacity restricting the
number of ships operating in the port simultaneously.

Each ship has an initial start position either at a port or a point at sea. The
sailing time between all ports is known for all ships. A ship is not allowed to
visit a port without operating in that port. When a ship arrives at a port, it
may wait outside the port before starting to operate. Operate is the activity
of (un)loading products during a ship’s port visit. Waiting outside a port may
be necessary if e.g. there is no available berth at the port, or to better time the
start of operation with the inventory levels in the port. However, after a ship has
started to operate in a port, the ship is not allowed to wait and then continue
to operate. When a ship has finished all operating activities in a port, it must
immediately sail to its next destination port without waiting.

Over the course of the planning period, a port either consumes or produces
a set of products. All ports have one separate storage for each of the products it
handles and fixed lower and upper inventory limits are specified for each product
in each port. The initial inventory for each product in all ports is known. If a
port neither produces or consumes a given product during the planning horizon,
it does not handle that product and it does not have a storage of that product.

Each ship can carry a selection of products, possibly all. In addition, each
ship has a given number of undedicated compartments where products can be
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allocated. The compartments can vary in size and each have a maximum capacity.
The products that are transported cannot be mixed and thus a compartment
can only contain one product at a time. The capacity of a compartment in a ship
is often large compared with the quantity that is (un)loaded in a given port, and
hence it is natural to allow partial (un)loading. If a compartment has available
capacity it can be loaded with more of the same product which it currently
contains. However, if a compartment is emptied at a port, any product can now
be loaded into the compartment. Allocation of products, (un)loading in port and
the possibility of partial unloading are illustrated in Fig. 1.

Fig. 1. An example of allocation of three products to a ship with two compartments

At the start of each schedule, the initial load of a product in every com-
partment in each ship is known. When a ship visits a port, the binding loading
capacity under operation is the lowest of the ship’s and the port’s loading capac-
ity. When a product is loaded into a compartment, it continues to stay in that
compartment during sailing and waiting outside ports, until it is unloaded in
a different port. Hence, no reallocation of products between compartments can
take place between operating times in the ports. However, a product can be
reallocated to a different compartment via the storage of that product in the
port.

4 Model Description

The model is originally based on the work of Agra et al. (2013), but significant
modifications have been made to account for multiple products and undedicated
compartments. A time-discrete model is proposed to handle varying production
and consumption rates.

4.1 Mathematical Formulation

The formulation of the problem is described in four parts: flow conservation,
loading and unloading, inventory management, and objective function.
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Flow Conservation Constraints. Let V be the set of ships to be routed and
scheduled. Each ship v has a starting position either in port or a point at sea,
o(v), and an artificial point of destination d(v). The ships are routed to serve a
set of ports N and each ship will have one schedule over the planning horizon.
T defines the set of time periods and T is the total number of time periods
in the planning horizon. The number of time periods needed for each ship to
sail between two ports is assumed to be known, and the travel time for ship v
between port i and j is defined as Tijv.

Bit is the berth capacity in port i in time period t and limits the number of
ships simultaneously operating in the port. Each ship is assumed to have three
types of possible modes; sailing, waiting, and operating. To design the routing
constraints with these modes, three binary variables are needed. xijvt equals 1
if ship v sails from port i directly to port j starting at the beginning of period
t, and 0 otherwise. oivt equals 1 if ship v operates in port i in period t, and 0
otherwise. Finally, the waiting variable wivt equals 1 if ship v is waiting outside
port i in period t, and 0 otherwise. Figure 3 illustrates all the variables.

∑

j∈N∪d(v)

xo(v)jv1 + oo(v)v1 + wo(v)v1 = 1 v ∈ V (1)

∑

i∈N∪o(v)

∑

t∈T
xid(v)vt = 1 v ∈ V (2)

∑

j∈N∪o(v)

xjiv(t−Tjiv) + wiv(t−1) + oiv(t−1)

=
∑

j∈N∪d(v)

xijvt + wivt + oivt
i ∈ N , v ∈ V, t ∈ T (3)

oiv(t−1) ≤
∑

j∈N∪d(v)

xijvt + oivt i ∈ N , v ∈ V, t ∈ T (4)

oiv(t−1) ≥
∑

j∈N∪d(v)

xijvt i ∈ N , v ∈ V, t ∈ T (5)

∑

v∈V
oivt ≤ Bit i ∈ N , t ∈ T (6)

xijvt ∈ {0, 1} i ∈ N ∪ o(v), j ∈ N ∪ d(v), v ∈ V, t ∈ T (7)
wivt, oivt ∈ {0, 1} i ∈ N , v ∈ V, t ∈ T (8)

Constraints (1) and (2) ensure that the ships’ schedules have a beginning and
an end. If a ship travels directly from o(v) to d(v), the ship is not used and is idle
during the entire planning horizon. Constraints (3) are the ship flow conservation
constraints. Constraints (4) restrict the ships to only be able to wait prior to
operation. Constraints (5) enforce operations in a port, i.e. a ship cannot leave a
port prior to operating, while constraints (6) are the berth capacity constraints.
Constraints (7) and (8) are the binary restrictions.

Figure 2 shows an example of a ship’s route. As can be seen, at time period
one, t = 1, the ship sails directly from its origin node, o, and arrives in Port 2
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Fig. 2. Example of a ship route consisting of sailing s, waiting w, and operating o

at t = 5. Then, the ship waits at t = 6, operates in two time periods and sails
to Port 1 at t = 8. The ship waits outside Port 1 at t = 11 and operates at
t = 12. Finally, the ship sails to Port 3 and operates in one time period before
the schedule ends at t = 16 when the ship sails to the destination node, d.

Loading andUnloading Constraints. Let K be the set of all products, Kv the
set of products ship v can transport, and Vk the set of ships that can transport
product k. Q

V

v and Q
P

i define the upper (un)loading capacity of ship v and port
i in each time period. Thus, each ship can (un)load as many products or as much
of a product within one time period as long as it does not exceed the (un)loading
capacity of the port or the ship. A ship v has a set of compartments, defined as Cv,
and each compartment c has a capacityKvc. Each ship v starts with an initial load
in each compartment c of product k, defined asL0

vck. Variable lvckt denotes the load
onboard ship v of product k in compartment c at the end of time period t. Variables
qLivckt and qUivckt represent the quantity loaded and unloaded of product k to/from
compartment c by ship v from/to port i in time period t. Finally, to handle the
allocation of products, variable yvckt equals 1 if compartment c in ship v contains
product k at the end of time period t, and 0 otherwise.

∑

k∈Kv

∑

c∈Cv

(qLivckt + qUivckt) ≤ min{QV

v , Q
P

i }oivt i ∈ N , v ∈ V, t ∈ T (9)

lvck(t−1) +
∑

i∈N
qLivckt

=
∑

i∈N
qUivckt + lvckt

v ∈ V, c ∈ Cv, k ∈ Kv, t ∈ T (10)

lvck0 = L0
vck v ∈ V, c ∈ Cv, k ∈ Kv (11)

∑

k∈Kv

yvckt ≤ 1 v ∈ V, c ∈ Cv, t ∈ T (12)

lvckt ≤ Kvcyvckt v ∈ V, c ∈ Cv, k ∈ Kv, t ∈ T (13)

qLivckt, q
U
ivckt ≥ 0 i ∈ N , v ∈ V, c ∈ Cv, k ∈ Kv, t ∈ T (14)

lvckt ≥ 0 v ∈ V, c ∈ Cv, k ∈ Kv, t ∈ T (15)
yvckt ∈ {0, 1} v ∈ V, c ∈ Cv, k ∈ Kv, t ∈ T (16)
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Fig. 3. Illustration of variables

Constraints (9) ensure that a ship can only (un)load when it is operating in
a port and define the upper limit on the total quantity (un)loaded by a ship in
a time period. Constraints (10) represent the load balance for each ship, while
constraints (11) define the initial load of every product in every compartment
for each ship. Constraints (12) ensure that only one product can be in each
compartment at any time. The load capacity of each compartment is given in
constraints (13), which also enforce the binary variable yvckt to be 1 when there
is a load in a compartment. Constraints (14) and (15) define the non-negativity
constraints, while constraints (16) define the binary restrictions.

Inventory Management Constraints. The production/consumption quan-
tities of a product k in port i in time period t are denoted Pikt and Dikt, respec-
tively, and can vary over the planning horizon. Each port has a storage for each
product it handles, and the initial inventory of product k in port i is called S0

ik.
Sik and Sik define the upper and lower inventory limit in port i for product k,
respectively. Variable sikt gives the inventory level in port i of product k at the
end of time period t.

sik(t−1) +
∑

v∈V

∑

c∈Cv

qUivckt + Pikt

= Dikt +
∑

v∈V

∑

c∈Cv

qLivckt + sikt
i ∈ N , k ∈ K, t ∈ T (17)

Sik ≤ sikt ≤ Sik i ∈ N , k ∈ K, t ∈ T (18)

sik0 = S0
ik i ∈ N , k ∈ K (19)

Constraints (17) are the inventory balance for all ports and products. Con-
straints (18) state lower and upper inventory limits for each product in every
port. Lastly, constraints (19) define the initial inventory of each product.

Objective Function. The objective function, presented in (20), minimizes the
sailing-, waiting-, and operation costs as well as the variable (un)loading costs.
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Sailing-, waiting- and operating costs are defined as a fixed unit cost per time
period used on the activity. CT

ijv is the cost of ship v sailing from port i to j.
CW

v is the cost of waiting outside a port for ship v. CO
iv is the fixed cost of

ship v operating in port i. There is also a variable component, CQ
ivk, which is

defined as the cost per unit of product k (un)loaded in port i by ship v. We
assume that no costs are associated with switching between loading/unloading
different products in one compartment because switching time can be considered
insignificant compared with the length of a time period.

min
∑

v∈V

∑

i∈N∪o(v)

∑

j∈N∪d(v)

∑

t∈T
CT

ijvxijvt +
∑

i∈N

∑

v∈V

∑

t∈T
CW

v wivt

+
∑

i∈N

∑

v∈V

∑

t∈T
CO

ivoivt +
∑

i∈N

∑

v∈V

∑

c∈Cv

∑

k∈Kv

∑

t∈T
CP

ivk(q
L
ivckt + qUivckt) (20)

4.2 Valid Inequalities and Tightening Constraints

By exploiting the structure of the problem, valid inequalities have been developed
to strengthen the LP-relaxation of the problem and in turn reduce the solution
time. In this paper, only the most promising valid inequalities from our studies
have been included.

Minimum Number of Visits with Ship Capacity Sequence (MV). MV
is inspired by similar valid inequalities addressed by Andersson et al. (2015).
Here, a ship capacity sequence is introduced to avoid the generalization done
when the maximum ship capacity is used to calculate the lower bound for the
entire planning horizon.

The ship capacity sequence is defined over a subinterval of the planning
horizon and is built upon the maximum number of times each ship can visit
a port. To be able to define a maximum number of visits of each ship, two
assumptions are made, (1) each ship will only travel back and forth from port
i to its nearest port after the initial visit to port i and (2) each ship will only
operate one period in each port visit. With this, the maximum number of visits
ship v can make to port i in time interval T ′ = {T ′, . . . , T

′} is V MAX
iv :

V MAX
iv =

⌈
T ′ − Tjiv

2 · TMIN
i + 2

⌉
i ∈ N , v ∈ V (21)

T ′ is the length of time interval T ′, and TMIN
i is the sailing time for ship v

from port i to its nearest port. j denotes the ship’s position at the beginning of
the time interval.

Ship Capacity Sequence. The ship capacity sequence, defined for each port i,
gives the maximum amount of products that can be (un)loaded in a port in m
visits during a time interval. First, the highest ship capacity is added cumula-
tively to the capacity sequence a number of times equal to the maximum number
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of visits defined in (21). The same follows for the rest of the ships, in descending
order based on capacity. The length of the ship capacity sequence is equal to
the total number of visits to port i in the time interval, from all ships. The ship
capacity sequence of port i is denoted KV

i = {KV

i0,K
V

i1, . . . ,K
V

im} for i ∈ N .
Assume a fleet of two ships where the largest ship has a capacity of 200 and

can visit port i at most three times in time interval T ′. The other ship has a
capacity of 100 and can visit port i a maximum of two times. The ship capacity
sequence of port i, with K

V

i0 = 0 for the case of no loading, is then equal to
KV

i = {0, 200, 400, 600, 700, 800} for the given time interval.

Excess Production and Consumption. The excess production of product k in
port i, ePikT ′ and the excess consumption of product k in port i, eDikT ′ , during
time interval T ′ is defined in (22) and (23), respectively.

ePikT ′ =
∑

t∈T ′
Pikt + sik(T ′−1) − Sik i ∈ N , k ∈ K (22)

eDikT ′ =
∑

t∈T ′
Dikt − sik(T ′−1) + Sik i ∈ N , k ∈ K (23)

Since a ship can handle both excess consumption and production in the same
visit, the lower bounds on visits for produced and consumed products cannot
be added together. On this note, the maximum of ePikT ′ and eDikT ′ aggregated
over product, eiT ′ = max{

∑
k∈K ePikT ′ ,

∑
k∈K eDikT ′}, is used as the restricting

quantity in the inequalities.
If time interval T ′ starts at t = 1, then the incoming inventory level of

product k, sik(T ′−1) is equal to the initial inventory of that product, S0
ik. By

this, the minimum number of visits needed to serve the excess level can be
calculated a priori. Let pi be the first position in the ship capacity sequence
corresponding to a capacity high enough to cover eiT ′ . Hence, pi corresponds to
the minimum number of visits needed. In all other cases, the incoming inventory
is a variable and this simplification is impossible. The valid inequalities for time
interval T ′ are defined by (24) or (25) depending on the starting period of the
time interval.

∑

j∈N

∑

v∈V

∑

t∈T ′
xjivt ≥ pi i ∈ N (24)

∑

j∈N

∑

v∈V

∑

t∈T ′
xjivt ≥

eiT ′ + (m − 1)K
V

im − mK
V

i(m−1)

K
V

im − K
V

i(m−1)

i ∈ N , 1 < m < |KV

i | (25)

Valid inequalities (24) and (25) give a lower bound on the number of visits
to port i in time interval T ′.
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Minimum Number of Compartments per Product with Compartment
Capacity Sequence (MCP). MCP is an extension of a valid inequality pre-
sented by Andersson et al. (2015) adapted to account for both multiple products
and a heterogeneous set of tanks on the ships. A compartment capacity sequence
is designed equivalently to the ship capacity sequence, using compartment capac-
ities. The sequence is created for all products k and ports i and is written as CV

ik

= {CV

ik0, C
V

ik1, .., C
V

ikm}. The excess production, ePikT ′ , and consumption, eDikT ′ ,
are calculated in (22) and (23) respectively, and eikT ′ is the maximum of excess
production and consumption. Let pik represent the first position in the ship com-
partment capacity sequence sufficient to cover eikT ′ . pik is then the minimum
number of compartments needed for each port and product combination. When
NC

v is the number of compartments in ship v, the valid inequalities MCP for
time interval T ′ are presented in (26) and (27).

∑

j∈N

∑

v∈Vk

∑

t∈T ′
NC

v xjivt ≥ pik i ∈ N , k ∈ K (26)

∑

j∈N

∑

v∈Vk

∑

t∈T ′
NC

v xjivt

≥
eikT ′ + (m − 1)C

V

ikm − mC
V

ik(m−1)

C
V

ikm − C
V

ik(m−1)

i ∈ N , k ∈ K, 1 < m < |CV

ik| (27)

Minimum Number of Operation Periods (MO). The idea of imposing a
lower bound on the minimum number of operation periods has been introduced
by e.g. Agra et al. (2013) for a single-product inventory routing problem. Here,
it is extended to account for multiple products. Excess production, ePik, and
consumption, eDik are calculated by (22) and (23) respectively, but for the entire
planning horizon and thus the initial stock level is S0

ik. Under the assumption
that each product is either produced or consumed, only ePik or eDik is positive.
The minimum number of operation periods required by each port is equal to the
sum of operation periods required by each product. The valid inequalities (28)
enforce a lower bound on the number of operation periods needed in each port.

∑

v∈V

∑

t∈T
oivt ≥

⌈
∑

k∈K

ePik + eDik

min{QP

i ,max{QV

v ; v ∈ V}}

⌉
i ∈ N (28)

5 Computational Study

All instances of our mathematical programming models are solved using Mosel
Xpress-MP. Mosel Xpress-MP is run on a Hewlett Packard 64-bit Windows 7
Enterprise PC with Intel(R) Core(TM) i7-3770 3.40 GHz processor and 16.0 GB
(15.9 GB usable) RAM. Note that Xpress solves LP problems integrated with
the IP solution procedure. Due to the use of Presolve in Xpress, the LP bounds
that are reported in this chapter may be higher than if the LP relaxation of the
IP problem was solved explicitly.
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5.1 Instances and Data

The name of each instance is built up of two components; which case is used and
which valid inequality that has been added. The small case consists of two ships
with two compartments each, four ports, and three products and is denoted by
S. The medium case have three ships, with two or three compartments each, six
ports, and four products and is denoted M . Finally, the large case is equivalently
denoted L and consists of four ships, with two or three compartments each, eight
ports, and four products. To represent which of the three valid inequalities that
has been added, the notation introduced in Sect. 4.2 is used, namely MV for valid
inequalities defined in (24) and (25), MCP for valid inequalities in (26) and (27)
and MO for valid inequalities in (28). UC is used to refer to the instance where
no valid inequalities have been added.

MV and MCP use a time interval when deciding the binding capacity of a
ship or a compartment in the ship/compartment capacity sequence. Preliminary
testing showed that using the entire length of the time horizon as the length
of the time interval gives the tightest formulation. Thus, all succeeding tests
employ the full planning horizon as time interval. Andersson et al. (2015) present
results that indicate that starting the time interval in the first time period is
most beneficial. Thus, here the incoming inventory level of the time interval,
sik(T ′−1), is always equal to the initial inventory, S0

ik.

5.2 Exact Solution Method and Valid Inequalities

In this section, the results from the testing of the model and the valid inequalities
are presented. We have tested the valid inequalities independently, as well as
other interesting combinations. Table 1 shows the results from testing the model
alone, and with the different valid inequalities. We use bold font to identify
the best solution and best lower bounds in Table 1. Note that the LP bounds
presented below corresponds to results obtained from Xpress when it solves the
LP problem integrated with the IP solution procedure. This can lead to different
results than if the LP relaxation was solved explicitly.

As can be seen, MV tightens the formulation and increases the LP bound,
resulting in a more efficient branch-and-bound procedure. This is evident in
S MV as the time to optimality is improved from S UC. MCP gives an even
tighter formulation and higher LP bound than MV. S MCP gives a significantly
better time to optimality and has the best performance over all test cases, in
terms of both the highest bound and the lowest gap. MCP reduced the gap
between the LP solution and the optimal integer solution from 45.6 % to 15.9 %
in the small test case, and it is reasonable to believe that this reduction can
explain the high efficiency of this inequality. MV and MCP are the two best
performing valid inequalities, however, a combination of the two is not efficient.
The combination of the two increases the complexity more than it manages to
reduce the search space, and the time to optimality is higher than without any
valid inequalities.
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Table 1. Results of small-, medium- and large-sized test cases with different valid
inequalities. Running time 5000 s

Test case Info UC MV MCP MO MCP MV

S LP bound 16 257 18 975 25 199 16 419 20 395

Best solution 29 883 29 883 29 883 29 883 29 883

Best bound 29 883 29 883 29 883 29 883 29 883

Time to optimality 2 100 s 1 783 s 1 012 s 3 928s 3 463s

M LP bound 19 016 21 589 25 198 19 547 19 779

Best solution 35 633 42 415 36 673 35 233 35 153

Best bound 26 065 25 742 27 582 26 183 24 518

Gap 26.9 % 39.3 % 24.8% 25.7 % 30.3 %

L LP bound 24 473 28 293 34 391 24 592 29 377

Best solution 64 930 57 252 61 310 61 673 -

Best bound 31 017 30 718 34 933 30 782 30 443

Gap 52.2 % 46.3 % 43.0% 50.1 % -

Even though the LP bound is improved, S MO has the highest running time
to optimality. While MO has one of the highest running times to optimality in
the small test case, M MO finds a good integer solution and thus achieves one
of the best bounds. Even though MO showed a slight improvement from the
small- to the medium-sized test case, it did not show any improvement in the
large-sized test case.

5.3 Model Simplifications

To use undedicated compartments (UC) to model the handling of multiple non-
mixable products is a highly realistic approach to real life applications. However,
alternative approaches do exist, namely either employing dedicated compart-
ments (DC), or assuming the products to be mixable and thus no separate com-
partments are needed (NC). Only minor changes are needed to the UC model
introduced to employ either DC or NC, and explicit formulations for these mod-
els are not included. In this section, we report and compare the performance of
the three models. To be able to compare the models, no valid inequalities have
been added to the test instances. UC, DC, and NC are used to denote which
model is tested.

The UC model has the freedom to change which products that are loaded in
which compartments and can thus choose an optimal allocation of each prod-
uct, while DC must always adhere the capacity constraints of each product’s
dedicated compartment(s). This is a restriction of the UC model; less variables
are needed and the complexity of the model is reduced. In NC models, the
only capacity limit is the ship capacity, and NC is thus a relaxation of the
UC model. NC is an even greater simplification than DC. Compared with NC,
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the number of variables and constraints in UC increases approximately 30 % and
20 % respectively. The results of the test instances can be found in Table 2.

S NC is the first to prove optimality, followed by S DC and last S UC, as
expected. The optimal objective value in S DC is higher than those of S NC
and S UC, which illustrates that NC and UC utilize a degree of freedom not
applicable in DC. S NC did not, however, find a better solution than the optimal
solution of S UC. Note that the underlying flexibility on quantity (un)loaded of
all MIRP models in general, often makes it possible for a model with compart-
ments to adapt and replicate the solution of a model without compartments.
This would, however, not be possible in cases of tramp shipping where the ship
only (un)load fixed sized cargoes. For the medium-sized test case, the same pat-
tern is seen in the solutions and the size of the gaps as in the small test case.
However, due to the large gaps the results in the large-sized test case deviate
from the expected pattern.

Table 2. Model simplification results of the three test cases. Running time 5 000 s.

Test case Info NC UC DC

S Best solution 29 883 29 883 30 303

Best bound 29 883 29 883 30 303

Time to optimality 737 s 2 100 s 1 519 s

M Best solution 35 463 35 633 36 400

Best bound 26 296 26 065 26 803

Gap 25.8 % 26.9 % 26.4 %

L Best solution 57 713 64 930 52 500

Best bound 32 905 31 017 32 957

Gap 43.0 % 52.2 % 37.2 %

5.4 Comparison of the Model and Model Simplifications

We have chosen to compare the solutions of the model and the model simpli-
fications on the small-sized instances since he optimal solution is known for all
models. The focus is on the comparison of models with UC and DC results, since
the solutions of UC and NC proved to be equal for the tested case.

Figure 4 shows how the routing of the ships differ between UC and DC.
The UC model manages to find a shorter feasible route compared with the DC
model. Often the reason is that in UC the ships have the flexibility of loading a
compartment with any product the ship can carry after it is emptied. Emptying
a compartment of a product will thus free up capacity that can now be available
to all products. Another aspect of the flexibility contained in UC is the ability
to reallocate products in order to obtain the optimal allocation of products
to compartments. In DC, the dedication of products to compartments is not
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necessarily optimal, but it cannot be improved. For example, in the optimal
solution of DC, Product 3 is dedicated/fixed to the smallest compartment. In
contrast, Product 3 ends up using the largest compartment available in the fleet
in UC. Thus, in DC the compartment capacity of Product 3 is binding and
the fact that Product 3 is fixed to the smallest compartment prevents DC from
finding the optimal solution found by UC. This lack of flexibility is reflected in
the costs, and the possibility of saving economical values by using UC exists.

Fig. 4. Comparison of routing of ships with undedicated and dedicated compartments

When compartments are dedicated, the given capacities for each product
must remain the same through the planning horizon. This implies that the DC
model can be vulnerable to varying production rates while UC can more easily
adapt to a high variation in supply and demand during the planning horizon
by reallocating its products. UC handles the allocation of products in a more
realistic way than both NC and DC, however using undedicated compartments
come with the drawback of adding more complexity. The greater the number
of compartments in an UC model, the less capacity is locked to a product at a
time and the flexibility increases. As a result, the performance of a UC model
moves toward the performance of the NC model. In a DC model, however, the
performance is not dependent on the number of compartments due to the fact
that it always has one fixed capacity per product.

6 Concluding Remarks

In this paper, we developed a mathematical formulation for a maritime inventory
routing problem addressing the allocation of multiple products to undedicated
compartments onboard the ships. Three different types of valid inequalities were
developed and tested, the most promising using a capacity sequence to define
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the minimum number of compartment visits required in a port. Computational
results were also given for two simplified models to compare different ways of
handling the allocation of products. Employing undedicated compartments is the
most realistic approach to real life applications but it comes with the drawback
of added complexity. However, comparison with models employing dedicated
compartments or mixable products indicate a potential for economical savings
by using undedicated compartments.
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Abstract. We consider a single product maritime inventory routing
problem in which the production and consumption rates are constant
over the planning horizon. The problem involves a heterogeneous fleet
of ships and multiple production and consumption ports with limited
storage capacity. In spite of being one of the most common ways to
transport goods, maritime transportation is characterized by high levels
of uncertainty. The principal source of uncertainty is the weather con-
ditions, since they have a great influence on sailing times. The travel
time between any pair of ports is assumed to be random and to follow a
log-logistic distribution. To deal with random sailing times we propose a
two-stage stochastic programming problem with recourse. The routing,
the order in which the ports are visited, as well as the quantities to load
and unload are fixed before the uncertainty is revealed, while the time of
the visit to ports and the inventory levels can be adjusted to the scenario.
To solve the problem, a MIP based local search heuristic is developed.
This new approach is compared with a decomposition algorithm in a
computational study.

Keywords: Maritime transportation · Stochastic programming ·
Uncertainty · Matheuristic

1 Introduction

We consider a maritime inventory routing problem (MIRP) where a heteroge-
neous fleet of ships is transporting a single product between ports. There exists
one type of ports where the product is produced, and in the other ports the prod-
uct is consumed. The production and consumption rates are constant over the
planning horizon. At all ports, there exists an inventory for storing the product,
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and lower and upper limits are given for each port. Each port can be visited one
or several times during the planning horizon depending on the size of the storage,
the production or consumption rate, and the quantity loaded or unloaded at each
port visit. The MIRP consists of designing routes and schedules for a fleet of
ships in order to minimize the transportation and port costs, and to determine
the quantities handled at each port call without exceeding the storage limits.
The MIRP is a very important and common problem in maritime shipping and
is relevant when the actors involved in a maritime supply chain have the respon-
sibility for both the transportation of the cargoes and the inventories at the
ports. The shipping industry is capital intensive, so a modest improvement in
fleet utilization can imply a large increase in profit. Therefore, the ability of
ship operators to make good decisions is crucial. However, the MIRPs are very
complex to solve due to the high degree of freedom in the routing, scheduling,
number of port visits, and the quantity loaded or unloaded at each port visit.

There exists a solid amount of research and resulting publications within
MIRPs, and these have formed the basis of several surveys: Papageorgiou et al. [18],
Christiansen et al. [10], and Christiansen and Fagerholt [8,9]. In addition, Coelho
et al. [12] and Andersson et al. [4] surveyed both land-based and maritime inven-
tory routing problems. Maritime transportation is characterized by high levels of
uncertainty, and one of the most common uncertainties is the sailing times that are
affected by heavily changing weather conditions. In practice, unpredictable delays
may affect the execution of an optimal deterministic plan. In order to compensate
for such delays, it is possible for the ships to speed up when necessary. However, in
practice it will most often be beneficial to consider the uncertainty explicitly when
finding the optimal plan.

Even though maritime transportation is heavily influenced by uncertainty,
most of the research reported in the literature on maritime routing and schedul-
ing consider static and deterministic problems. However, some contributions
exist, and we describe the ones that are closest to the MIRP with stochastic
travel times studied here. For a ship routing and scheduling problem with pre-
defined cargoes, Christiansen and Fagerholt [7] design ship schedules that are less
likely to result in ships staying idle at ports during weekends by imposing penalty
costs for arrivals at risky times (i.e. close to weekends). The resulting schedule
needs to be more robust with respect to delays from bad weather and time in
port due to the restricted operating hours in port during weekends. Agra et al.
[3] solved a full-load ship routing and scheduling problem with uncertain travel
times using robust optimization. Furthermore, Halvorsen-Weare and Fagerholt
[14] analysed various heuristic strategies to achieve robust weekly voyages and
schedules for off-shore supply vessels working under tough weather conditions.
Heuristic strategies for obtaining robust solutions with uncertain sailing times
and production rate were also discussed by Halvorsen-Weare et al. [15] for the
delivery of liquefied natural gas. For a crude oil transportation and inventory
problem, Cheng and Duran [6] developed a decision support system that takes
into account uncertainty in sailing time and demand. The problem is formu-
lated as a discrete time Markov decision process and solved by using discrete
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event simulation and optimal control theory. Rakke et al. [19] and Sherali and
Al-Yakoob [20,21] introduced penalty functions for deviating from the customer
contracts and the storage limits, respectively, for their MIRPs. Christiansen and
Nygreen [11] used soft inventory levels to handle uncertainties in sailing time
and time in port, and these levels were transformed into soft time windows for a
single product MIRP. Agra et al. [2] were the first to use stochastic programming
to model uncertain sailing and port times for a MIRP with several products and
inventory management at the consumption ports only. A two-stage stochastic
programming model with recourse was developed where the first-stage consists
of routing, and loading/unloading decisions, and the second stage consists of
scheduling decisions. The model was solved by a decomposition approach sim-
ilar to an L-shaped algorithm where optimality cuts were added dynamically,
and the solution process was embedded within the sample average approxima-
tion method.

The objective of this paper is to present a general single product MIRP
with stochastic sailing times and a heuristic method to solve the problem. As
in the work by Agra et al. [2], we have developed a two-stage stochastic pro-
gramming model with recourse where the first-stage consists of routing and
loading/unloading decisions, and the second stage consists of scheduling deci-
sions. Although the two problems have several differences (the number of prod-
ucts considered, management inventory at supply ports, and random aspects of
uncertainty), this work was also motivated by the stability problems reported
for the approach followed by Agra et al. [2]. When the instances become harder,
the objective function values obtained by the heuristic approach had large levels
of variance. As in previous work we assume the inventory limits can be violated
with a penalty. Here we discuss in more detail the impact of the value of such
penalties on the stability of the solution procedure, since different penalty val-
ues may correspond to different decision maker strategies, and may influence the
efficiency of branch and cut based procedures. Low penalty values will be used
when backlogged consumption and excess of production are less important than
the routing cost, and generate low transportation cost solutions. High penalty
values create solutions that are averse to inventory limit violations. Since the
fractional solutions obtained by linear relaxations will present, in general, no
violation of the inventory limits, the integrality linear gaps tend to be much
higher when the penalty values are higher, which deteriorates the performance
of branch and cut based procedures. Additionally, in order to circumvent the
stability problems, we propose a new heuristic procedure which is based on a
local search heuristic that uses the solution from a corresponding deterministic
problem as a starting solution.

The remainder of this paper is organized as follows: The mathematical
model of the deterministic problem is presented in Sect. 2, while the stochastic
model is presented in Sect. 3. Section 4 presents the heuristic stochastic solu-
tion approaches. Extensive computational results are reported and discussed in
Sect. 5, followed by some concluding remarks in Sect. 6.
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2 Mathematical Model for the Deterministic Problem

In this section we introduce a mathematical formulation for the deterministic
problem.

Routing Constraints. Let V denote the set of ships and N denote the set of
ports. Each ship v ∈ V must depart from its initial position, that can be a point
at sea. For each port we consider an ordering of the visits accordingly to the
time of the visit.

The ship paths are defined on a network where the nodes are represented by
a pair (i,m), where i indicates the port and m indicates the visit number to port
i. Direct ship movements (arcs) from node (i,m) to node (j, n) are represented
by (i,m, j, n). For ease of notation, if a ship departs from a point at sea, an
artificial port is created and a single visit is associated with it.

We define SA as the set of possible nodes (i,m), SA
v as the set of nodes

that may be visited by ship v, and set SX
v as the set of all possible movements

(i,m, j, n) of ship v.
For the routing we define the following binary variables: ximjnv is 1 if ship

v travels from node (i,m) directly to node (j, n), and 0 otherwise; wimv is 1 if
ship v visits node (i,m), and 0 otherwise; zimv is equal to 1 if ship v ends its
route at node (i,m), and 0 otherwise; yim indicates whether a ship is making
the mth visit to port i, (i,m), or not. The parameter μ

i
denotes the minimum

number of visits at port i and the parameter μi denotes an upper bound on the
number of visits at port i.

wimv −
∑

(j,n)∈SA
v

xjnimv = 0, ∀v ∈ V, (i,m) ∈ SA
v , (1)

wimv −
∑

(j,n)∈SA
v

ximjnv − zimv = 0, ∀v ∈ V, (i,m) ∈ SA
v , (2)

∑

v∈V

wimv = yim, ∀(i,m) ∈ SA, (3)

yim = 1, ∀(i,m) ∈ SA : m ∈ {1, · · · , μ
i
}, (4)

yi(m−1) − yim ≥ 0, ∀(i,m) ∈ SA : μ
i
+ 1 < m ≤ μi, (5)

ximjnv ∈ {0, 1}, ∀v ∈ V, (i,m, j, n) ∈ SX
v , (6)

wimv, zimv ∈ {0, 1}, ∀v ∈ V, (i,m) ∈ SA
v (7)

yim ∈ {0, 1}, ∀(i,m) ∈ SA. (8)

Equations (1) and (2) are the flow conservation constraints, ensuring that a ship
arriving at a node also leaves that node or ends its route. Constraints (3) ensure
that a ship can visit node (i,m) only if yim is equal to one. Equations (4) fix
yim to 1 for the mandatory visits. Constraints (5) state that if port i is visited
m times, then it must also have been visited m − 1 times. Constraints (6)–(8)
define the variables as binary.
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Loading and Unloading Constraints. Parameter Ji is 1 if port i is a pro-
ducer; −1 if port i is a consumer. Cv is the capacity of ship v. The minimum
and maximum loading and unloading quantities at port i are given by Q

i
and

Qi, respectively.
In order to model the loading and unloading constraints, we define the fol-

lowing continuous variables: qimv is the amount loaded or unloaded from ship
v at node (i,m); fimjnv denotes the amount that ship v transports from node
(i,m) to node (j, n). The loading and unloading constraints are given by:

∑

(j,n)∈SA
v

fjnimv + Jiqimv =
∑

(j,n)∈SA
v

fimjnv, ∀v ∈ V, (i,m) ∈ SA
v , (9)

fimjnv ≤ Cvximjnv, ∀ v ∈ V, (i,m, j, n) ∈ SX
v , (10)

Q
i
wimv ≤ qimv ≤ min{Cv, Qi}wimv, ∀v ∈ V, (i,m) ∈ SA

v , (11)

fimjnv ≥ 0, ∀v ∈ V, (i,m, j, n) ∈ SX
v , (12)

qimv ≥ 0, ∀v ∈ V, (i,m) ∈ SA
v . (13)

Equations (9) are the flow conservation constraints at node (i,m). Constraints
(10) require that the ship capacity is obeyed. Constraints (11) impose lower and
upper limits on the loading and unloading quantities. Constraints (12) and (13)
are the non-negativity constraints.

Time Constraints. We define the following parameters: TQ
i is the time

required to load/unload one unit of product at port i; Tijv is the travel time
between port i and j by ship v. It includes also any set-up time required to
operate at port j. TB

i is the minimum time between two consecutive visits to
port i. T is the length of the time horizon, and Aim and Bim are the time win-
dows for starting the mth visit to port i. To ease the presentation we also define,
for each node (i,m), the following upper bound for the end time of the visit:
T ′

im = min{T,Bim + TQ
i Qi}. Given time variables tim that indicate the start

time of the mth visit to port i, the time constraints can be written as:

tim +
∑

v∈V

TQ
i qimv − tjn +

∑

v∈V |(i,m,j,n)∈SX
v

max{T ′
im + Tijv − Ajn, 0}ximjnv

≤ T ′
im − Ajn, ∀(i,m), (j, n) ∈ SA, (14)

tim − ti,m−1 −
∑

v∈V

TQ
i qi,m−1,v − TB

i yim ≥ 0, ∀(i,m) ∈ SA : m > 1, (15)

Aim ≤ tim ≤ Bim, ∀(i,m) ∈ SA. (16)

Constraints (14) relate the start time associated with node (i,m) to the start
time associated with node (j, n) when ship v travels directly from (i,m) to (j, n).
Constraints (15) impose a minimum interval between two consecutive visits at
port i. Time windows for the start time of visits are given by (16).
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Inventory Constraints. The inventory constraints are considered for each
port. They ensure that the stock levels are within the corresponding limits and
link the stock levels to the loading or unloading quantities. For each port i, the
consumption/production rate, Ri, the minimum Si, the maximum Si and the
initial S0

i stock levels, are given. We define the nonnegative continuous variables
sim indicating the stock levels at the start of the mth visit to port i.

The inventory constraints are as follows:

si1 = S0
i + JiRiti1, ∀i ∈ N, (17)

sim = si,m−1 − Ji

∑

v∈V

qi,m−1,v + JiRi(tim − ti,m−1), ∀(i,m) ∈ SA : m > 1,

(18)

sim +
∑

v∈V

qimv − Ri

∑

v∈V

TQ
i qimv ≤ Si, ∀(i,m) ∈ SA|Ji = −1, (19)

sim −
∑

v∈V

qimv + Ri

∑

v∈V

TQ
i qimv ≥ Si, ∀(i,m) ∈ SA|Ji = 1, (20)

siμi
+

∑

v∈V

qi,μi,v − Ri(T − tiμi
) ≥ Si, ∀i ∈ N |Ji = −1, (21)

siμi
−

∑

v∈V

qi,μi,v + Ri(T − tiμi
) ≤ Si, ∀i ∈ N |Ji = 1, (22)

sim ≥ Si, ∀(i,m) ∈ SA|Ji = −1, (23)

sim ≤ Si, ∀(i,m) ∈ SA|Ji = 1. (24)

Equations (17) calculate the stock level at the start time of the first visit to a
port, and Eq. (18) relate the stock level at the start time of mth visit to the stock
level at the start time of the previous visit. Constraints (19) and (20) ensure that
the stock levels are within their limits at the end of each visit. Constrains (21)
impose a lower bound on the inventory level at time T for consumption ports,
while constrains (22) impose an upper bound on the inventory level at time T
for production ports. Constraints (23) and (24) ensure that the stock levels are
within their limits at the start of each visit.

Objective Function. The objective is to minimize the total routing costs,
including traveling and operating costs. The traveling cost of ship v from port
i to port j is denoted by CT

ijv and it includes the set-up costs. The objective
function is defined as follows:

Min C(X) =
∑

v∈V

∑

(i,m,j,n)∈SX
v

CT
ijvximjnv. (25)
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3 Mathematical Model for the Stochastic Problem

In the stochastic approach, the sailing times between ports are assumed to be inde-
pendent and random, following a known probability distribution (a log-logistic
probability distribution which is discussed in Sect. 5). As in the work by Agra
et al. [2], the model introduced here is a recourse model with two levels of deci-
sions. The first-stage decisions are the routing, the port visits sequence, and
the load/unload quantities. These decisions must be taken before the scenario is
revealed. The corresponding first-stage variables are ximjnv, zimv, wimv, yim, and
qimv. The adjustable variables are the time of visits and the inventory levels. In
the stochastic approach we allow the inventory limits to be violated by including
a penalty Pi for each unit of violation of the inventory limits at each port i. In
addition to the variables tim(ξ), and sim(ξ) indicating the time and the stock level
at node (i,m), when scenario ξ is revealed, new variables rim(ξ) are introduced
to denote the inventory limit violation at node (i,m). If i is a consumption port,
rim(ξ) denotes the backlogged consumption, that is the amount of demand satis-
fied with delay. If i is a production port, rim(ξ) denotes the demand in excess to
the capacity. We assume the quantity in excess is not lost but a penalty is incurred.

The main goal of the stochastic approach is to find the solution that mini-
mizes the routing cost C(X) plus the expected penalty value for inventory devia-
tion to the limits, Eξ(Q(X, ξ)), where Q(X, ξ) denotes the minimum penalty for
the inventory deviations when scenario ξ with a particular sailing times vector is
considered and a set of first stage decisions, denoted by X, is fixed. In order to
avoid using the theoretical joint probability distribution of the travel times, we
follow the common Sample Average Approximation (SAA) method, and replace
the true expected penalty value Eξ(Q(X, ξ)) by the mean value of a large ran-
dom sample Ω = {ξ1, . . . , ξk} of ξ, obtained by the Monte Carlo method. This
larger set of k scenarios is regarded as a benchmark scenario set representing the
true distribution [17].

The objective function of the SAA model becomes as follows:

Min C(X) +
1

|Ω|
∑

ξ∈Ω

∑

(i,m)∈SA

Pirim(ξ). (26)

In addition to the routing and loading and unloading constraints (1)–(13), the
SAA problem has the following time and inventory constraints.
Time constraints:

tim(ξ) +
∑

v∈V

T Q
i qimv − tjn(ξ) +

∑

v∈V |(i,m,j,n)∈SX
v

T Mximjnv,

≤ T M , ∀(i, m), (j, n) ∈ SA, ξ ∈ Ω, (27)

tim(ξ) − ti,m−1(ξ) −
∑

v∈V

T Q
i qi,m−1,v − T B

i yim ≥ 0, ∀(i, m) ∈ SA : m > 1, ξ ∈ Ω, (28)

Aim ≤ tim(ξ) ≤ BM
im, ∀(i, m) ∈ SA, ξ ∈ Ω. (29)

The inventory constraints are similar to the constraints for the deterministic
problem, but now including the possible violation of the inventory limits. The
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big constant TM is now set to 2T since the visits to ports can now occur after
time period T . Similarly, BM

im is set to 2T . The inventory constraints are as
follows:

si1(ξ) = S0
i + JiRiti1(ξ) − Jiri1(ξ), ∀i ∈ N, ξ ∈ Ω, (30)

sim(ξ) − Jiri,m−1(ξ) = si,m−1(ξ) − Jirim(ξ) − Ji

∑

v∈V

qi,m−1,v + JiRi(tim(ξ) − ti,m−1(ξ)),

∀(i, m) ∈ SA : m > 1, ξ ∈ Ω, (31)

sim(ξ) +
∑

v∈V

qimv − Ri

∑

v∈V

T Q
i qimv ≤ Si, ∀(i, m) ∈ SA|Ji = −1, ξ ∈ Ω, (32)

sim(ξ) −
∑

v∈V

qimv + Ri

∑

v∈V

T Q
i qimv ≥ Si, ∀(i, m) ∈ SA|Ji = 1, ξ ∈ Ω, (33)

siμi
(ξ) +

∑

v∈V

qi,μi,v − Ri(T − tiμi
(ξ)) + riμi

(ξ) ≥ Si, ∀i ∈ N |Ji = −1, ξ ∈ Ω, (34)

siμi
(ξ) −

∑

v∈V

qi,μi,v + Ri(T − tiμi
(ξ)) − riμi

(ξ) ≤ Si, ∀i ∈ N |Ji = 1, ξ ∈ Ω, (35)

sim(ξ), rim(ξ) ≥ 0 ∀(i, m) ∈ SA : m > 1, ξ ∈ Ω. (36)

For brevity we omit the description of the constraints as their meaning is similar to
the meaning of the corresponding constraints for the deterministic problem. The
stochastic SAA model is defined by (26) and the constraints (1)–(13), (27)–(36),
and will be denoted by SAA-MIRP.

Next we make two important remarks.

Remark 1. The SAA-MIRP model has relatively complete recourse, since for
each feasible solution to the first stage, the inclusion of r variables ensures that
the second stage has always a feasible solution.

Remark 2. When a first stage solution X is known, the second stage variables
can easily be obtained by solving k separate linear subproblems.

4 Solution Methods

While the deterministic model can be solved to optimality for small size
instances, the SAA-MIRP model becomes much harder with the inclusion of
the inventory violation variables r, and cannot consistently be solved to opti-
mality for large sample sizes. We consider M separate sets Ωi, i ∈ {1, . . . , M}
each one containing � � k scenarios. The SAA-MIRP model is solved for each
set of scenarios Ωi, (replacing Ω by Ωi in model SAA-MIRP) giving M candi-
date solutions. Let us denote by X1, . . . , XM , the first stage solutions of those
candidate solutions. Then, for each candidate solution the value of the objective
function for the large sample zk(Xi) = C(Xi) + 1

k

∑
ξ∈Ω Q(Xi, ξ) is computed

and the best solution is determined by X∗ = argmin{zk(Xi) : i ∈ {1, . . . , M}}.
The average value over all sets of scenarios, z̄� = 1

M

∑M
i=1 zi

� is a statistical esti-
mate for a lower bound on the optimal value of the true problem and zk(X∗), is
a statistical estimate for an upper bound on the optimal value.
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Henceforward we discuss two procedures for solving the SAA-MIRP model for
the small sets Ωi. When employing scenario generation solution procedures it is
desirable that no matter which set of scenarios is used, one obtains approximately
the same objective function value. This is referred to as stability requirement
conditions [17]. Agra et al. [2] used a decomposition scheme for a stochastic
MIRP that was shown to be insufficient to reach stability for hard instances.
Here we revisit this procedure and introduce an alternative method.

4.1 Decomposition Procedure

A common approach to solve stochastic problems is to decompose the model into
a master problem and one subproblem for each scenario, following the idea of the
L-shaped algorithm [5]. The master problem consists of the first stage variables
and constraints (constraints (1)–(13)), and recourse variables and constraints
(27)–(36) defined for a restricted set of scenarios. The subproblems consider fixed
first stage decisions, and are solved for each scenario to supply new variables and
constraints to the master problem. Since the problem has relatively complete
recourse, the resulting subproblems are feasible.

We first solve the master problem including only one scenario to optimality.
Then for each disregarded scenario we check whether a penalty for inventory limit
violations is incurred when the first stage decision is fixed. If such a scenario
is found, we add to the master problem additional variables and constraints
enforcing that deviation to be penalized in the objective function. Then the
revised master problem is solved again, and the process is repeated until all the
recourse constraints are satisfied. Hence, as in the L-shaped method, the master
problem initially disregards the recourse penalty, and an improved estimation
of the recourse penalty is gradually added to the master problem by solving
subproblems and adding the corresponding constraints. A formal description of
this process is given below.

Algorithm 1. Decomposition procedure.
1: Consider the master problem with the scenario corresponding to the deterministic problem

2: Solve the master problem

3: while There is a scenario ξ ∈ Ωi leading to an increase of the objective function cost do
4: Add constraints (27)–(36) for scenario ξ
5: Reoptimize the master problem with the new constraints using a solver for α seconds
6: end while

To check whether there is a scenario ξ ∈ Ωi leading to an increase of the
objective function cost, one can use a simple combinatorial algorithm that, for
each scenario, determines the earliest arrival time based on the computation of
a longest path in an acyclic network [2].
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4.2 MIP Based Local Search Procedure

In order to circumvent some possible stability problems resulting from the pre-
vious procedure, which is based on a truncated branch and cut procedure, we
propose a heuristic approach that iteratively searches in the neighborhood of a
solution. The procedure starts with the optimal solution from a deterministic
model, and ends when no improvement is observed. For the starting solution we
either use the deterministic model (1)–(25), with no inventory violations allowed,
or the stochastic model containing only one scenario where all travelling times
are set to their expected value. To define the neighborhood of a solution, let w
denote the solution vector of w variables. Following the local branching idea of
Fischetti and Lodi [13], we consider as the neighborhood of a solution, the set of
solutions that can differ in at most Δ variables, focusing only on the ship visit
variables wimv. This local search can be done by adding the following inequality,

∑

(i,m)∈SA
v ,v∈V |wimv=0

wimv +
∑

(i,m)∈SA
v ,v∈V |wimv=1

(1 − wimv) ≤ Δ. (37)

Inequality (37) counts the number of variables wimv that are allowed to flip their
value from the value taken in the solution. Note that the routing variables as
well as the quantities to load and unload can be changed freely.

In each iteration of the heuristic procedure, the SAA-MIR model restricted
with the inclusion of (37) is solved in its extensive form (without the decompo-
sition procedure), since preliminary tests have not shown clear benefits in using
the decomposition technique in the restricted model. The procedure is described
in Algorithm 2.

Algorithm 2. MIP based Local Search procedure
1: Solve either model (1)–(25), or the SAA-MIRP with a single scenario consisting of

expected travel times
2: Set w to the optimal value of w
3: repeat
4: Add constraint (37) to the model defined for � scenarios
5: Solve the model for α seconds
6: Update the solution w
7: until No improvement in the objective function is observed

5 Computational Tests

This section presents some of the computational experiments carried out to test
the two solution approaches for a set of instances of a maritime inventory routing
problem. The instances are based on real data, and come from the short sea ship-
ping segment with long loading and discharge times relative to the sailing times.
These instances result from those presented in [1], with two main differences.
One is the computation of the traveling times, which we discuss in detail below,
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and the other is the production and consumption which we assume here to be
constant, where the rates are given by the average of the corresponding values
given in the original set of instances. The number of ports and ships of each
instance is given in the second column of Table 2. The time horizon is 30 days.
Operating and waiting costs are time invariant.

Distribution of Travel Times and Scenario Generation

Here we describe the sailing times probability distribution as well as how sce-
narios are generated. We assume that the sailing times Tijv(ξ) are random and
follow a three-parameter log-logistic probability distribution. The cumulative
probability distribution can be written as

F (Tijv(ξ)) =
1

1 + (1t )
α

,

where t = Tijv(ξ)−γ
β .

This type of distribution was used in [15] for an LNG (liquefied natural gas)
tanker transportation problem, and was motivated by the sailing times calculated
for a gas tanker between Rome (Italy) and Bergen (Norway), as reported in
[16]. In the three-parameter log-logistic probability distribution, the minimum
travel time is equal to γ, and the expected travel time is equal to E[Tijv(ξ)] =

βπ
α sin(π/α) + γ. The three parameters, in [15], were set to α = 2.24, β = 9.79, and
γ = 134.47. In our settings, the deterministic travel time Tijv, given in [1], is set
to the expected travel time value, that is, Tijv = E[Tijv(ξ)]. In addition, we let
γ = 0.9×Tijv, α = 2.24 (the same value as in [15], since α is a form parameter),
and β is obtained from the equation Tijv = E[Tijv(ξ)] = βπ

α sin(π/α) + γ. In order
to draw a sample, each travel time is randomly generated as follows. First a
random number r from (0, 1] is generated. Then the travel time Tijv(ξ) can be

found by setting r =
1

1 + (1t )
α

, which gives Tijv(ξ) = γ + β

(
1 − r

r

)− 1
α

.

Computational Results

All tests were run on a computer with an Intel Core i5-2410M processor, hav-
ing a 2.30GHz CPU and 8GB of RAM, using the optimization software Xpress
Optimizer Version 21.01.00 with Xpress Mosel Version 3.2.0.

The number of ports and ships of each instance is given in the second column
of Table 1. The following three columns give the size of the deterministic model
(1)–(25), and the last three columns give the size for the complete stochastic
model SAA-MIRP with � = 25.

Table 2 gives the optimal values of several instances for the deterministic
model. Columns “No violations” give the optimal value (column C(X)) and
running time in seconds (column Time) for the model (1)–(25) with no inventory
limit violations allowed. The following columns consider the stochastic model
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Table 1. Summary statistics for the seven instances

Inst. (|N |, |V |) Deterministic model Stochastic model

# Rows # Col # Int. var. # Rows # Col # Int. var.

A (4,1) 765 545 273 8413 1713 273

B (3,2) 767 590 302 5303 1466 302

C (4,2) 1214 1042 530 8798 2210 530

D (5,2) 1757 1622 822 13157 3082 822

E (5,2) 1757 1622 822 13157 3082 822

F (4,3) 1663 1539 787 9183 2707 787

G (6,5) 4991 5717 2909 20687 7469 2909

with the expected travel times scenario only. For three different penalty values
for inventory limit violations (Pi = 1×�, Pi = 10×� and Pi = 100×�, where the
� is omitted for ease of notation) we provide the routing cost C(X), the value of
the inventory violation (columns Viol) and the running time (columns Time).

Table 2. Instances and the corresponding routing costs and inventory violations for
the expected value scenario

Inst. No violations Pi = 1 Pi = 10 Pi = 100

C(X) Time C(X) Viol Time C(X) Viol Time C(X) Viol Time

A 130.7 1 6.7 60.0 0 130.7 0.0 0 130.7 0.0 0

B 364.8 6 5.2 235.0 0 364.8 0.0 13 364.8 0.0 19

C 391.5 15 14.7 172.0 0 290.5 3.0 4 324.5 0.5 10

D 347.1 3 55.9 177.0 4 347.1 0.0 42 347.1 0.0 52

E 344.9 343 55.8 184.0 4 344.9 0.0 194 344.9 0.0 181

F 460.9 290 182.0 110.0 3 460.9 0.0 437 460.9 0.0 442

G 645.8 2962 336.3 176.5 17 645.8 0.0 6947 645.8 0.0 16296

Table 2 shows the influence of the penalty on the solution value and instance
hardness. The running times are small when Pi = 1 and tend to increase with the
increase of the penalty. For small penalty values the instances become easier to
solve than for the case with hard inventory bounds. When the penalty increases,
the integrality gaps also increase (as fractional solutions contain, in general,
no violation of the inventory limits) making the instances harder to solve. For
Pi = 10, Pi = 100 and for the case where violations are not allowed, the solutions
coincide for all instances except instance C.

Next we report the results using both procedures following the solution app-
roach described in Sect. 4 with M = 10 sets of scenarios with size � = 25,
and a large sample of size k = 1000. In Tables 3, 4, and 5, we present the compu-
tational results for the decomposition procedure using branch and cut to solve
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each master problem with a running time limit of t = 1, t = 2, and t = 5 min.
After this time limit, if no feasible solution is found, then the running time is
extended until the first feasible solution is found. For each table we give the
results for the three considered cases of penalties, denoted by Pi = 1, Pi = 10,
and Pi = 100. For each penalty we report the following values: the routing cost
C(X) of the best solution X∗ obtained with the procedure described in Sect. 4;
the average number of violations (columns V iol) for solution X∗; the variance

between samples σ̂2
B =

1
(M − 1)M

M∑

i=1

(zi
� − z̄�)2; the variance in the larger

sample σ̂2
L =

1
(k − 1)k

∑

ξ∈Ω

(C(X∗) + Q(X∗, ξ) − zk(X∗))2 ; and the running

time, in seconds, of the complete solution procedure. The running time includes
solving the M stochastic problems, and for each solution, computing the penalty
value for the large set of k samples.

Variances σ̂2
B and σ̂2

L are used to evaluate the stability of the procedure. One
can observe that when the penalties increase, the variance for the large sample,
σ̂2

L, increases as expected. For the variance between samples, σ̂2
B, the value also

increases when we compare Pi = 1 against the other values. Such behavior can
be explained by the fact that each master problem is solved by a branch and
cut procedure and as explained above, when the penalty increases, the integral-
ity gaps also increase making the instances harder to solve. For those harder
instances the branch and cut algorithm acts as a heuristic since the search tree
is truncated when the time limit is reached. Thus, the variance tends to increase
when we compare those cases where the instances are solved to optimality (some
instances with Pi = 1) against those cases where the solution procedure acts,
in general, as a heuristic (most instances with Pi = 10 and Pi = 100). However
between the cases Pi = 10 and Pi = 100 there is no obvious trend. There are
instances where the decomposition procedure had a better degree of in-sample
stability for Pi = 100 than for Pi = 10. Perhaps as the penalty cost is so high,
for some instances the solver identifies the same solution (a solution which is
robust in relation to inventory bounds violation and minimizes the routing cost)
for most of the small samples Ωi considered. In general, we may state that the
decomposition procedure tends to be less stable with the increase of the penal-
ties. There is no clear decrease in the variances when the running time limit is
increased.

In Table 6, we report the computational results for the MIP based local search
heuristic, starting with a solution obtained by using a single scenario consisting
of expected travel times in the SAA-MIRP model. Based on preliminary results,
not reported here, we chose Δ = 2. The running time limit is set to 5 min, how-
ever for most iterations the restricted problem is solved to optimality quickly. In
Table 7, we report the corresponding results for the same heuristic but starting
with a solution obtained using the model (1)–(25), that is, the model where no
deviations to the inventory limits are allowed. We can see that using hard inven-
tory limits for the starting solution leads to a better solution for six instances
and worse for two instances.
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Table 3. Computational results using the decomposition procedure with a running
time limit for each master problem set to 1 min

Inst. Pi = 1 Pi = 10 Pi = 100

C(X) Viol σ̂2
B σ̂2

L Time C(X) Viol σ̂2
B σ̂2

L Time C(X) Viol σ̂2
B σ̂2

L Time

A 130.7 0.0 4 0 105 130.7 0.0 27 0 116 130.7 0.0 27 0 118

B 364.8 1.4 13 0 492 364.8 1.4 64 5 3654 364.8 1.3 57 413 4965

C 263.5 3.0 73 0 151 343.9 2.5 91 0 292 411.5 0.0 36 2 749

D 347.1 2.0 190 0 1627 347.1 2.1 2463 5 3975 347.1 2.2 205 514 3524

E 344.9 3.2 358 0 2277 344.9 5.8 5830 13 5394 260.4 18.4 1945 698 4262

F 501.1 0.1 145 0 327 460.9 0.0 451450 0 5361 460.9 0.0 44413 0 4993

G 433.0 133.9 2136 1 1115 484.8 213.6 71357 151 6962 457.6 212.1 2121500 6 7696

Table 4. Computational results using the decomposition procedure with a running
time limit for each master problem set to 2 min

Inst. Pi = 1 Pi = 10 Pi = 100

C(X) Viol σ̂2
B σ̂2

L Time C(X) Viol σ̂2
B σ̂2

L Time C(X) Viol σ̂2
B σ̂2

L Time

A 130.7 0.0 4 0 102 130.7 0.0 27 0 114 130.7 0.0 27 0 109

B 364.8 1.4 13 0 583 364.8 1.4 1368 5 6143 364.8 1.3 7539 413 8413

C 263.5 3.0 73 0 150 343.9 2.5 91 0 301 391.5 0.0 54 2 928

D 347.1 2.0 190 0 2367 363.2 0.2 792 0 7133 347.1 2.1 314 486 6602

E 344.9 3.2 358 0 2716 363.9 3.2 8839 7 8637 352.9 0.2 1809 40 9032

F 501.1 0.1 145 0 333 460.9 0.0 7025 0 7368 460.9 0.0 4024 0 7824

G 433.0 133.9 2136 1 3260 543.7 154.5 95489 135 10837 442.3 121.9 746118 9670 13003

When comparing the variances with those observed for the decomposition
procedure one can observe that the variances between samples are in general
lower, meaning that the local search procedure presents a higher degree of
in-sample stability than the classical decomposition approach. For the larger
sample, both procedures present similar variance values, except for the harder
instance (G with Pi = 100) where the new heuristic procedure provides better
out-of-sample stability. The running times of the local search heuristic are also
lower than those for the decomposition procedure.

Table 5. Computational results using the decomposition procedure with a running
time limit for each master problem set to 5 min

Inst. Pi = 1 Pi = 10 Pi = 100

C(X) Viol σ̂2
B σ̂2

L Time C(X) Viol σ̂2
B σ̂2

L Time C(X) Viol σ̂2
B σ̂2

L Time

A 130.7 0.0 4 0 102 130.7 0.0 27 0 116 130.7 0.0 27 0 121

B 364.8 1.4 13 0 602 364.8 1.4 1350 5 11781 364.8 1.3 76 413 17530

C 263.5 3.0 73 0 148 343.9 2.5 91 0 277 391.5 0.0 31 2 1611

D 347.1 2.0 190 0 4120 347.1 2.0 590 5 15130 430.3 1.1 395 127 16889

E 344.9 3.2 358 0 6827 352.9 0.2 1791 1 21592 360.9 3.4 5474 768 25769

F 501.1 0.1 145 0 321 460.9 0.0 36 0 11118 460.9 0.0 11200 0 13218

G 433.0 133.9 2136 1 6421 534.0 57.3 54937 4 20462 517.0 107.3 43724 23544 21564
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Table 6. Computational results using the MIP based local search heuristic

Inst. Pi = 1 Pi = 10 Pi = 100

C(X) Viol σ̂2
B σ̂2

L Time C(X) Viol σ̂2
B σ̂2

L Time C(X) Viol σ̂2
B σ̂2

L Time

A 130.7 0 4 0 205 130.7 0.0 54 0 210 130.7 0.0 54 0 210

B 260.7 32.7 74 0 406 364.8 1.3 22 4 698 364.8 1.3 44 400 769

C 263.5 3.0 87 0 388 391.5 0.0 11 0 704 411.5 0.0 131 0 944

D 377.2 6.2 28 0 2729 347.1 2.0 1 5 2768 347.1 2.0 48 490 2610

E 405.3 5.6 0 0 3731 344.9 3.1 0 7 3728 344.9 3.1 63 718 3694

F 460.9 0.0 46 0 1484 460.9 0.0 197 0 3438 460.9 0.0 197 0 3118

G 711.9 4.8 239 3 5174 679.5 1.6 602 5 6116 798.9 13.3 731 3246 9686

Table 7. Computational results using the MIP based local search heuristic with the
starting solution obtained for the deterministic model with hard inventory constraints

Inst. Pi = 1 Pi = 10 Pi = 100

C(X) Viol σ̂2
B σ̂2

L Time C(X) Viol σ̂2
B σ̂2

L Time C(X) Viol σ̂2
B σ̂2

L Time

A 130.7 0 4 0 72 130.7 0.0 54 0 89 130.7 0.0 54 0 96

B 345.2 3.8 24 0 383 364.8 1.3 22 4 722 364.8 1.3 44 400 719

C 263.5 3.0 87 0 266 354.5 0.5 38 0 533 391.5 0.0 57 0 630

D 347.2 2.0 28 0 1097 347.1 2.0 1 5 2992 347.1 2.0 48 490 3675

E 344.9 3.1 0 0 1214 344.9 3.1 0 7 3227 344.9 3.1 63 718 5822

F 460.9 0.0 46 0 941 460.9 0.0 460 0 1670 460.9 0.0 197 0 1388

G 654.9 1.8 138 0 4592 679.5 1.6 994 5 8130 912.5 0.6 402 112 10332

Table 8. Cost zk(X) of the best solution obtained with each one of the solution
procedures

Inst. Pi = 1 Pi = 10 Pi = 100

Decomp. MIPLS Decomp. MIPLS Decomp. MIPLS

A 130.7 130.7 130.7 130.7 130.7 130.7

B 441.0 441.0 725.6 696.0 3707.2 3632.3

C 338.5 338.5 968.9 479.5 454.1 391.5

D 397.7 397.7 857.0 853.9 3261.5 5414.2

E 422.0 422.0 405.1 1115.2 8804.7 8047.7

F 502.9 460.9 460.9 460.9 460.9 460.9

G 3780.8 692.4 14861.1 1085.8 268712.0 2359.6

Finally, in Table 8 we present the overall cost zk(X) for the best solution
obtained with the two solution procedures. Columns Decomp. give the cost value
for the decomposition procedure using a time limit of 5 min, and columns MIPLS
give the corresponding value for the MIP based local search heuristic using the
starting solution with no inventory deviations. The best result from the two
approaches is highlighted in bold.

We can see that the new MIP based local search procedure is better than
the decomposition procedure in ten instances and worse in two. The decom-
position procedure performs well when instances can be solved to optimality.
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Overall, we may conclude that the local search heuristic is more attractive than
the decomposition procedure based on the branch and cut when the instances
are not solved to optimality, since the local search heuristic is faster, presents
better levels of in-sample stability for almost all instances and better levels of
out-of-sample stability for the hardest instance, and provides good quality solu-
tions. On the other hand, for the instances that can be solved to optimality, the
decomposition procedure is the best option.

6 Conclusions

We consider a maritime inventory routing problem where the travel times are sto-
chastic. The problem is modeled as a two-stage stochastic programming problem
with recourse, where violations of inventory limits are penalized. A decomposi-
tion procedure that solves the master problem using a commercial solver and a
MIP based local search algorithm, are proposed. For several instances the mas-
ter problem is not solved to optimality within reasonable running times. Hence
both procedures can be regarded as heuristics. The two procedures are tested for
stability using different values for the penalties. A computational study based
on a small set of benchmark instances shows that when the penalties are low,
the instances are easier to solve by exact methods, and the decomposition pro-
cedure can be used efficiently. On the other hand, when penalties are high, the
integrality gaps tend to increase making the decomposition procedure, that uses
the branch and cut to solve the master problem, less stable than the MIP based
local search heuristic. Additionally, the new proposed heuristic is in general faster
than the decomposition procedure.
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Abstract. Roll-on/Roll-off (RoRo) ships represent the primary source
for transporting vehicles and other types of rolling material over long dis-
tances. In this paper we focus on operational decisions related to stowage
of cargoes for a RoRo ship voyage visiting a given set of loading and
unloading ports. By focusing on stowage on one deck on board the ship,
this can be viewed as a special version of a 2-dimensional packing prob-
lem with a number of additional considerations, such as one wants to
place vehicles that belong to the same shipment close to each other to
ease the loading and unloading. Another important aspect of this prob-
lem is shifting, which means temporarily moving some vehicles to make
an entry/exit route for the vehicles that are to be loaded/unloaded at
the given port. We present several versions of a new mixed integer pro-
gramming (MIP) formulation for the problem. Computational results
show that the model provides good solutions on small sized problem
instances.

Keywords: Maritime transportation · 2D-packing · Roll-on Roll-off

1 Introduction

Roll-on/Roll-off (RoRo) vessels are the preferred choice when transporting vehi-
cles and other types of rolling material around the globe. However, due to more
efficient short sea feeder traffic in and out of main ports, the containerized fleets
are becoming more and more of a threat to the RoRo segment. Therefore, it is
important for the RoRo industry to continuously improve and become more effec-
tive, maintaining the position as the leading maritime transportation method for
this type of cargo.

A RoRo ship transports different types of vehicles, such as cars, trucks, heavy
rolling machinery, and trains, as illustrated in Fig. 1. During loading, the vehicles
typically enter the ship through a ramp placed at the stern or the side and from
there they are placed in one of several decks on the ship. A major problem that
occurs when loading/unloading the cargo is shifting, which means temporarily
c© Springer International Publishing Switzerland 2016
A. Paias et al. (Eds.): ICCL 2016, LNCS 9855, pp. 35–49, 2016.
DOI: 10.1007/978-3-319-44896-1 3
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moving some vehicles to make an entry/exit route for the vehicles that are to be
loaded/unloaded at a given port. This forces the ship to stay longer in the port
and increase the cost of workers. Therefore, it is important to develop a good
stowage plan that brings as much cargo as possible, utilizing the available space
on the decks, while at the same time keeps the cost and time spent on shifting
as low as possible.

Fig. 1. RoRo vessel. Source: WWL

In the field of RoRo-transportation, strategic planning is concerned with a
time horizon of several years, and typically involves decisions such as determining
the fleet size and mix, see for example [11]. In [2] the authors consider fleet
deployment in RoRo-shipping on a tactical level. At the operational level of
planning, the greater part of research regarding RoRo-ships focuses on safety
and stability, such as [8]. Despite its importance, research within stowage on
RoRo-ships is scarce, and to the authors’ knowledge, only the research conducted
in [9,10] exists on stowage on board RoRo-ships.

In other fields of maritime transportation, stowage problems are more com-
mon, as e.g. tank allocation problems in maritime bulk shipping [7]. However, the
vast majority of literature regarding stowage in maritime transportation focuses
on stowage problems for container ships. The containers are stacked on top of
one another, and when dispatching a certain container, containers stacked on
top of it needs to be removed. The objective in container stowage problems is
therefore often to minimize the loading/unloading time of all containers [1] or
the number of container movements [3]. Where a container is lifted straight up
from its position, a vehicle’s entry/exit route needs to be calculated for each
vehicle in the RoRo ship stowage problem (RSSP). This is a complicating fac-
tor, considering the deck layout and ramp placement, which makes the stowage
plans difficult to evaluate. The RSSP presented in [9] aims at deciding a deck
configuration with respect to height, which optional/spot cargos to carry, and
how to stow the vehicles carried during the voyage, given a predefined route.
The authors in [9] propose a mixed integer programming (MIP) model and a
heuristic method for solving this problem, where the objective is to maximize
the sum of revenue from optional cargoes, minus the penalty costs incurred when
having to move cargoes when performing the stowage along the route. For mod-
eling purposes, the authors in [9] divide each deck into several logical lanes into
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which the vehicles are lined. The vehicles enter the ship at the stern, and are
unloaded according to the last in-first out (LIFO) principle. However, dividing
the decks into lanes may be too restricting, limiting the possibilities of finding
good solutions. Therefore, the models presented in this paper does not rely upon
this assumption.

As stowing vehicles on a deck may be seen as packing problem, a short review
of cutting and packing problems is now presented. The authors in [13] present a
typology of cutting and packing problems, partially based on the original ideas
in [4]. According to this typology, the RoRo ship stowage problem is classified as
either a two-dimensional knapsack problem (2KP) or a multiple heterogeneous
large object placement problem (MHLOPP). Here, a fixed number of small items
have to be allocated on a smaller number of large objects, where each item
increase the profit by a specified value, if placed. This is transferable to the
RSSP, where all vehicles (small items) from the mandatory cargoes and the
carried spot cargoes have to be allocated on one of the ships decks (large objects).
The authors in [5] present an exact tree-search procedure for solving the 2KP,
where the algorithm limits the size of the tree search using a bound derived
from a Lagrangean relaxation of a binary formulation of the problem. In [6] two
types of hybrid algorithms to solve the 2KP are suggested. Recently, in [12] a
heuristic for solving a pickup and delivery allocation problem for offshore supply
vessels is proposed. In terms of mathematical modeling, the resulting problem
is seen as a rich variant of the 2KP, using a grid representation of the deck.
Several constraints are evaluated, many of them comparable to the RSSP, such
as packing constraints, weight limitations, adjacency of delivery/pick-up cargoes,
positioning of dangerous and refrigerated cargoes.

The objective of this paper is to propose a new and more realistic mathemat-
ical model for the RoRo ship stowage problem. We focus on stowage of a single
deck, which is an essential building block in solving the problem for multiple
decks, i.e. for the whole ship.

The outline of the remaining of the paper is as follows: Sect. 2 describes the
RoRo ship stowage and the shifting problems in detail. The proposed mathemat-
ical model is presented in Sect. 3. Computational results are reported in Sect. 4,
while concluding remarks are provided in Sect. 5.

2 Problem Description

In this section, the stowage challenges for a RoRo ship are presented. First,
the general RoRo ship stowage problem (RSSP) is presented. Then, a detailed
description of the two-dimensional RoRo ship stowage problem for one deck
(2DRSSP) is given, which is the problem we aim to solve in this paper. Finally,
the shifting problem is presented. This research is based on a collaboration with
one of the world’s largest RoRo-shipping companies, operating more than 50
RoRo ships all over the world.

The RSSP focuses on how to utilize the ships decks, carrying a number of
cargoes along a voyage with a predefined given set of loading and unloading
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ports to visit. A cargo (or a shipment) is defined as a set of vehicles or units
of some other rolling material that are to be loaded and unloaded at the same
ports. In this work, the term vehicle is used to describe the content of the cargo.
The cargoes are divided into two categories, mandatory cargoes and optional
cargoes. Mandatory cargoes have to be transported due contractual terms, while
optional cargoes are only desirable to transport if they can increase the profit
on the voyage given available capacity on the deck. For every vehicle and deck,
the weight, width, height and length are known. At each port, a fixed number
of mandatory cargoes are present. There is also a given upper limit of optional
cargoes the ship may take at each loading port. The objective is to maximize
the revenue from optional cargoes while keeping the shifting cost to a minimum.
Different factors complicate the problem, such as weight limits on the deck,
stability considerations, and placement of vehicles.

In this paper, a simplification of the RSSP is addressed, namely the two-
dimensional RoRo ship stowage problem (2DRSSP) that arises if we consider
only one deck. The problem may then be reduced to a two-dimensional packing
problem, where one has to stow all mandatory cargoes and then stow as much
optional cargo as possible in the space that is left, and at the same time keep the
shifting costs to a minimum. It is assumed that each vehicle is placed longitudinal
to the deck, i.e. with its front facing the bow, which is most common. Stability
constraints are not included in the model, as considering the stability of a single
deck gives no real value. However, in the case where all decks are considered,
the stability calculation becomes an essential part of the problem. Height and
weight limitations are implicitly taken care of in the pregeneration of feasible
areas of the deck for stowing each cargo.

Fig. 2. A possible solution to the packing problem for each sailing leg during the
voyage. Grey squares marked X is unavailable space, and squares marked E is the
entry/exit point.
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To illustrate the problem, a small example is shown in Fig. 2. Here, there are
three mandatory cargoes, with four vehicles of different sizes. There is also one
optional cargo, with two vehicles. It is assumed that no flexibility is allowed for
the cargoes, meaning that one have to bring all or none of the vehicles of the
optional cargo and all vehicles of the mandatory cargoes. There are four ports
along the voyage, first two loading and then two unloading ports. The four ports
indicate that the problem has a total of three sailing legs, where a leg is defined
as the part of the voyage between two subsequent ports. The figure shows a
feasible stowage plan for each sailing leg. It should be noted that a given cargo
cannot be moved from one sailing leg to the next. From the solution one can
also see that even though it is enough area on the deck to bring the optional
cargo, the outline of the deck makes it impossible to include it. This example
illustrates that allocating vehicles based only on a deck’s area capacity, could
give infeasible solutions.

Given a feasible solution from the 2DRSSP, as illustrated in Fig. 2, the shift-
ing costs associated with the stowage plan must be evaluated. The shifting costs
reflect the costs and/or time used to move cargoes in order to access other car-
goes that are to be unloaded at a given port. For each vehicle, both an entry and
exit route needs to be calculated. The total shifting cost of a voyage, is given
by the sum of shifting costs for each entry/exit route for all vehicles along the
voyage. The shifting model discussed in Sect. 3.3 is used to evaluate the total
shifting cost for a stowage plan along a voyage.

3 Mathematical Models

In this section, we propose a MIP model for the 2DRSSP. First, some modeling
choices and definitions that are used in the mathematical model are introduced.
Then, the objective functions and the constraints of the mathematical model are
presented. Finally, the evaluation of the shifting is discussed.

3.1 Assumptions and Modeling Approach

Our approach to solve the 2DRSSP splits the problem in two phases. First, we
solve the stowage problem for a given deck. Then, we evaluate the number of
shifts needed when applying the resulting stowage plan for the voyage. This
results in two models: A stowage model and a shifting model. It is a reasonable
approach to deal with these two problems in sequence, since the results of the
stowage, i.e. the extra revenue from optional cargoes that can be transported, is
assumed more important than the shifting costs.

Still the results from the stowage influence the shifting costs. Therefore, to
implicitly take into account the shifting when determining a stowage plan, dif-
ferent objective functions are proposed and tested. Two concepts are introduced
with expectation to reduce the shifting costs, namely grouping and placement.
Placing vehicles from the same cargo next to each other is denoted as group-
ing. By grouping vehicles together, the shifting costs may decrease, as vehicles
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from the same cargo can use the same entry/exit route. The example in Fig. 2
shows how vehicles from the same cargo are grouped together. Placing cargoes
which are on the ship for the most number of sailing legs farther away from
the entry/exit than cargoes with shorter time on the vessel, is known as place-
ment. This is introduced based on the expectation that vehicles placed farthest
away from the entry/exit, is probably less exposed to shifting, and those squares
should therefore be more costly to use.

Instead of dividing the deck into lanes such as [9], we suggest a grid represen-
tation of the deck, as illustrated in Fig. 3. This enables us to represent real deck
layouts in a better way, and the resulting stowage plan becomes more realistic.
This is done by defining a set of rows I and columns J . Square (1, 1) is defined as
the square located at stern, on the ship’s port side (bottom left corner in Fig. 3).
All squares are assumed to be of the same size.

Fig. 3. Illustration of the grid representation of a deck. The 1’s indicate that the
corresponding square is unusable.

Each cargo c ∈ C consists of Nc identical vehicles. If, in practice, one is to
carry a cargo consisting of heterogeneous vehicles, this cargo is split into several
cargoes consisting of identical vehicles. When all vehicles in a cargo are identical,
the number of squares needed to place a vehicle from that cargo is equal for all
vehicles in the cargo. For a given grid representation of the deck, each vehicle
in a cargo needs SL

c length squares, and SW
c width squares to be placed on the

deck. These parameters will vary with the grid resolution chosen, given by the
number of rows times the number of columns (|I||J |). The area of the resulting
square usage always gives an overestimation of the actual area usage. Increased
resolution will give a more detailed representation of the deck and the vehicles,
but increases the number of variables in the model.

The ports are assumed to be separated into two regions, one supply region
and one demand region, where the loading ports are visited before the unloading
ports. This is how most voyages are in RoRo-shipping. Also following common
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practice, it is assumed that once a vehicle is placed, it stays in the same location
during the whole voyage. From this it follows that all carried vehicles are to
be placed on the deck on the sailing leg between the last loading port and the
first unloading port. Hence, by generating a stowage plan for this sailing leg,
the vehicle placements for all other sailing legs can be derived from this stowage
plan.

3.2 2DRSSP Stowage Model

Indices
c : cargo
i : row
j : column

Sets
C : set of all cargoes
CO : set of all optional cargoes
CM : set of all mandatory cargoes
Ic : set of all rows where the corner of a vehicle in cargo c can be placed

Ic = {1, ...|I| − SL
c + 1}

Jc : set of all columns where the corner of a vehicle in cargo c can be placed
Jc = {1, ..., |J | − SW

c + 1}

Parameters
LD : length of deck
WD : width of deck
CL

c : length of one vehicle in cargo c
CW

c : width of one vehicle in cargo c
B : minimum clearance between vehicles
Nc : number of vehicles in cargo c
SL
c : number of length squares needed to place one vehicle from cargo c

SL
c = � (CL

c +B)|I|
LD �

SW
c : number of width squares needed to place one vehicle from cargo c

SW
c = � (CW

c +B)|J |
WD �

PL
c : loading port of cargo c

PU
c : unloading port of cargo c, PU

c > PL
c

Rc : revenue earned if optional cargo c is taken
Uij : 1 if square (i, j) is unusable, 0 otherwise
Eij : 1 if square (i, j) is an exit square, 0 otherwise
D : A small positive number that will increase the value of the objective

function if vehicles from the same cargo are grouped together
CS

ij : The artificial cost of using square (i, j) for a vehicle
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Decision Variables
xijc : 1 if the lower left corner of a vehicle from cargo c is placed in

square (i, j), 0 otherwise
yc : 1 if optional cargo c is taken, 0 otherwise
uijc : Number of vehicles from the same cargo c placed next to square (i, j),

if a vehicle from cargo c is placed in (i, j)

Objective Functions. The objective of the 2DRSSP is to maximize the revenue
from optional cargoes, minus the penalty costs incurred when shifting vehicles.
Since the stowage model does not explicitly evaluate shifting cost, four objective
functions are proposed and tested in an effort to place vehicles in a way that
reduce the need for shifting.

max z =
∑

c∈CO
Rcyc (1)

max z =
∑

c∈CO
Rcyc +

∑

c∈C

∑

i∈Ic

∑

j∈Jc

Duijc (2)

max z =
∑

c∈CO
Rcyc −

∑

c∈C

∑

i∈Ic

∑

j∈Jc

i+SL
c −1∑

i′=i

j+SW
c −1∑

j′=j

(PU
c − PL

c )
CS

i′j′xijc

SL
c S

W
c

(3)

max z =
∑

c∈CO
Rcyc +

∑

c∈C

∑

i∈Ic

∑

j∈Jc

(Duijc −
i+SL

c −1∑

i′=i

j+SW
c −1∑

j′=j

(PU
c − PL

c )
CS

i′j′xijc

SL
c S

W
c

)

(4)

The objective function (1) maximizes the revenues from optional cargoes. The
objective function (2) maximizes the revenues from optional cargoes and the
artificial value of placing vehicles from the same cargo together. The objective
function (3) maximizes the sum of revenues from optional cargoes minus the
placement cost of each vehicle in all carried cargoes. The placement cost for
each vehicle is a function of the number of sailing legs a vehicle is placed on
the ship, multiplied with the cost of using the chosen square placement. The
cost of using a square should reflect the square’s probability of being exposed to
shifting. The objective function (4) combines objectives (2) and (3).

Unusable Space and Entry/Exit Squares. Some squares are unusable due
to ramp placement, deck outline, pillars, etc. These constraints are handled in
the variable declaration of the model. For all squares (i, j), if the corner of a
vehicle from cargo c cannot be placed in that square due to unusable space
(Uij = 1) or entry/exit squares (Eij = 1), then xijc is fixed to zero for the given
cargo and square.



2D-Packing with an Application to Stowage 43

Common Constraints
∑

i∈Ic

∑

j∈Jc

xijc = Nc, c ∈ CM (5)

∑

i∈Ic

∑

j∈Jc

xijc = Ncyc, c ∈ CO (6)

i+SL
c −1∑

i′=i

j+SW
c −1∑

j′=j

xi′j′c ≤ 1, c ∈ C, i ∈ Ic, j ∈ Jc (7)

min(i+SL
c −1,|Ic′ |)∑

i′=max(i−SL
c′+1,1)

min(j+SW
c −1,|Jc′ |)∑

j′=max(j−SW
c′ +1,1)

xi′j′c′ ≤ Mcc′(1 − xijc),

c ∈ C, c′ ∈ C\{c}, i ∈ Ic, j ∈ Jc (8)

xijc ∈ {0, 1}, c ∈ C, i ∈ Ic, j ∈ Jc (9)

yc ∈ {0, 1}, c ∈ CO (10)

Constraints (5) guarantee that all the mandatory cargoes are placed on the
deck. Constraints (6) ensure that all vehicles in an optional cargo are placed on
the deck, if the optional cargo is taken. Constraints (7) guarantee that at most
one vehicle from the same cargo uses the same place on the deck. Constraints (8)
make sure that different cargoes do not use the same place on the deck. Min
and max expressions are included to ensure that the constraints do not include
squares outside the deck area. An upper bound on Mcc′ is given by (SL

c + SL
c′ −

1)(SW
c + SW

c′ − 1). Constraints (9) and (10) force the variables to take binary
values.

Grouping Constraints

uijc ≤ xi+SL
c ,jc + xi−SL

c ,jc + xi,j+SW
c ,c + xi,j−SW

c ,c, c ∈ C, i ∈ Ic, j ∈ Jc (11)

uijc ≤ Mxijc, c ∈ C, i ∈ Ic, j ∈ Jc (12)
∑

i∈Ic

∑

j∈Jc

uijc ≥ 2Nc − 2, c ∈ CM (13)

∑

i∈Ic

∑

j∈Jc

uijc ≥ (2Nc − 2)yc, c ∈ CO (14)

uijc ≥ 0, c ∈ C, i ∈ Ic, j ∈ Jc (15)

Constraints (11) force uijc to take a value equal to the number of vehicles from
the same cargo placed next to the vehicle in square (i, j). Constraints (12) ensure
that the number of neighboring vehicles is only calculated for the squares where
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a vehicle is placed. The upper bound on M is 4, which is the maximum number
of neighboring vehicles, defined as a vehicle placed exactly in front, behind, left
or right of a vehicle. Thus, a vehicle placed in xi+SL

c ,j+1,c = 1 is not defined
as a neighbor, even though it could be interpreted as a neighbor in practice.
This modeling choice is made to reward practical stowage solutions. Constraints
(13) and (14), in addition to (11) and (12) enforce vehicles from same cargo to
have a total number of neighbors greater than or equal to the weakest form of
compactness. Given that every vehicle is placed next to a vehicle from the same
cargo, the weakest form of compactness is a line. In this case, all vehicles would
have two neighbors, except the vehicles at each end of the line, which will only
have one neighbor. The lower bound on the total number of neighboring vehicles
for a cargo in this case is given by: 2Nc −2. Finally, non-negativity requirements
for the variables related to grouping are given in (15).

3.3 2DRSSP Shifting Model

Based on a given feasible solution from the stowage model described in Sect. 3.2,
we want to evaluate the solution with respect to the shifting cost. The cost of
shifting a given vehicle is set as a function of the area of the vehicle, since the cost
of moving a large vehicle, e.g. a semi-trailer, is assumed higher than the cost of
moving a small vehicle, e.g. a 3-door car. The shifting cost could also be based on
other considerations than the area, e.g. expected time usage or shifting distance.
It is assumed that a vehicle that is shifted is moved out of the deck during the
port call and returned to the exact same square when the loading/unloading is
done. We assume that each vehicle can move one square horizontally or vertically.
In practice, vehicles have a given turning radius and can therefore not move
sideways. However, sideways movement is assumed possible, as the inclusion of
turning radius would drastically increase the modeling complexity of the shifting
evaluation.

The most apparent shifting evaluation method is to treat the stowage solution
as a node network, and solve it as a shortest path problem (SPP). For each
port, an entry or exit route for all vehicles in every loaded or unloaded cargo
could be calculated. However, this approach would only give an upper bound
on the number of shifts, since it does not take into account the shifts made for
other entering/exiting vehicles. In order to determine the entry/exit routes for
all exiting vehicles simultaneously, a shifting model for the 2DRSSP has been
developed. As the shifting model only evaluates a given stowage solution, the
model is only briefly discussed in the following paragraph.

The objective of the shifting model is to find an optimal entry and exit path
for each vehicle v in cargo c for the related loading and unloading ports of the
cargoes, in order to minimize the total shifting cost. The problem is solved for
every port, and the sum of the shifting cost for all ports along the given voyage
is reported as the objective value. A small example for a given port is given in
Fig. 4. An exit path for both of the vehicles V1 and V2 is to be decided. The
shortest path problem gives a shifting cost of 6 for V1, and 2 for V2, which
gives a total shifting cost of 8. The 2DRSSP shifting model provides a better
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Fig. 4. Solution to the SPP for each vehicle to the left, and the optimal solution from
the shifting model to the right. V1 and V2 indicates the vehicles that are to be unloaded,
while A is the number of squares the other vehicles are occupying and indicate the cost
to move those vehicles.

result. By taking into account that each vehicle only is shifted once, both V1
and V2 could use the squares where the shifted vehicle were placed. This gives
an optimal solution of shifting cost equal to 6.

4 Computational Study

This section presents a computational study performed on a number of test
instances generated from real data from the case company. The mathematical
models are implemented in Mosel and solved using the commercial optimization
software Xpress. The test instances were run on a computer with Intel Core
i7-3770 (3.40 GHz) CPU and 16 GB RAM, running on Windows 7 Enterprise
64-bit Operating System. Section 4.1 describes the test instances, while the com-
putational results are presented and discussed in Sect. 4.2

4.1 Test Instances

The test instances are generated based on cargo data provided by the company.
A typical real-sized deck has a length greater than 100m and width greater than
40 m. Using decks with areas of this size and a practical grid resolution, the
stowage model is most likely not going to provide a solution within a reasonable
amount of time. Hence, two smaller deck layouts are used to test the model.
These layouts are created based on a scaled outline of a typical real sized deck.
A deck measuring 45m×20m and a deck measuring 20m×10m are used, named
decks 1 and 2, respectively. The cargo sets are randomly generated subsets of
a real cargo list provided by the company. For each cargo set, the number of
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mandatory cargoes is low enough to ensure a feasible solution, and the number
of optional cargoes is set such that the total area usage for all cargoes at least
exceeds the decks area capacity. This is done to ensure that the 2DRSSP stowage
model has to evaluate which optional cargoes to carry. For each instance, the
number of length and width squares needed for each vehicle is pre-calculated,
based on the vehicles length, width and the minimum clearance required between
the cars, as well as the grid resolution. The discretization process from a real
deck layout to a grid representation reduces the available area, due to an over-
estimated area usage of the unusable space. The resulting area available of total
area and test instances are provided in Table 1.

Table 1. Test instances characteristics.

Test Deck # Length Width Grid Cargo Area available

instance of deck (m) of deck (m) resolution set of total area

i10j10c1d1 1 45 20 10× 10 1 80 %

i15j15c1d1 1 45 20 15× 15 1 88 %

i20j20c1d1 1 45 20 20× 20 1 96 %

i10j10c2d1 1 45 20 10× 10 2 80 %

i15j15c2d1 1 45 20 15× 15 2 88 %

i20j20c2d1 1 45 20 20× 20 2 96 %

i10j10c3d2 2 20 10 10× 10 3 90 %

i20j20c3d2 2 20 10 20× 20 3 95 %

i10j10c4d2 2 20 10 10× 10 4 90 %

i20j20c4d2 2 20 10 20× 20 4 95 %

i10j10c5d2 2 20 10 10× 10 5 90 %

i20j20c5d2 2 20 10 20× 20 5 95 %

4.2 Results 2D Stowage Model

A goal in this computational study is to evaluate the performance of different
model versions with regard to revenue generated, shifting cost and solution time.
Even though the instances used is a scaled down version of real sized decks, the
provided examples give valuable information of the performance of the different
objectives for further study on the RoRo stowage problem.

The different objectives presented in Sect. 3.2 aim at influencing the vehi-
cle placements so that the shifting cost is reduced. From this, five versions of
the stowage model are presented in Table 2. Common for all the model versions
is that the objective is to maximize the revenue generated from optional car-
goes. For the basic model version N, this is the only objective. Model version
P additionally influences the vehicles placement by introducing square costs.
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Table 2. Model versions

Model version Objective Constraints

Normal (N) (1) (5)–(10)

Placement (P) (3) (5)–(10)

Hard grouping (H) (1) (5)–(10), (11)–(15)

Soft grouping (S) (2) (5)–(10), (11)–(12), (15)

Placement + Soft grouping (SP) (4) (5)–(10), (11)–(12), (15)

This results in placing vehicles carried for the most sailing legs furthest away
from the exit, where the probability of being exposed to shifting is less. Model
version H enforces a weak form of compactness to each cargo, placing the vehi-
cles together. Model version S rewards grouping of vehicles. For each vehicle in
a cargo, a higher number of neighboring vehicles from the same cargo increases
the objective value. Finally, model version SP penalizes placement and rewards
grouping.

Each of the 12 instances from Table 1 was tested on the following versions of
the MIP model: N, P, H, and S and SP. A maximum running time of 7200 s was
set for the MIP model. If optimality was not proven within that time, the best
solution is reported together with the gap from the upper bound. If the absolute
gap between best bound and best solution was less than 0.01% the search was
terminated. The clearance between vehicles was set to 0.15m,D = 0.001, and
the square cost, CS

ij , was set to one thousand of the minimum number of squares
to reach an exit for each square (i, j). Table 3 shows the average results over all
instances, obtained within the time limit of 7200 s.

Table 3. Average results for all test instances for the stowage model.

Extension Gap (%) Time (s) # optional cargo Revenue optional Area used (%) # of shifts

N 59.72 3600 1.33 17.67 78.53 9.91

P 24.03 3075 1.58 20.33 81.23 7.42

H1 35.34 3212 1.42 18.08 65.32 11.10

S 17.38 3432 1.58 20.50 81.75 8.36

SP 0.01 1778 1.58 20.50 81.75 5.64
1Two instances did not provide a feasible solution.

The main objective of this problem is to maximize the revenue from the
optional cargoes, while minimizing the shifting cost can be considered as a sec-
ondary objective. Since the extra terms in the objective functions (2)–(4) have a
minor contribution to the objective value, the revenue of bringing an extra cargo
always exceeds the cost of where to place or/and group the vehicles. The model
versions N, P, S, and SP would therefore generate the same optional revenue in
their optimal solutions, but the vehicles’ placement could differ. The H-version
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is a bit different, as constraints (13)–(14) reduce the solution space. This model
could therefore give an optimal solution which generates less revenue than the
optimal solution for the other four models, or even give infeasible solutions,
as for the two instances. The infeasible solutions may indicate that constraints
(13)–(14) are too strict, excluding possible good stowage solutions.

Without evaluating the shifting cost of the solutions, there are some inter-
esting findings regarding the performance of the different model versions. Model
versions S and SP provide the best average revenue generated within the time
limit. The stowage plans are not necessarily identical, but they do at least carry
the same set of optional cargoes for every instance. The average gap for model
version SP is 0.01, which implies that the optimal set of optional cargoes is
carried for every instance. Based on the average gap, and the solution time, we
conclude that version SP performs best on the given test instances.

For each model version and each instance, the shifting costs for the resulting
stowage plans are calculated, using the 2DRSSP shifting model, briefly described
in Sect. 3.3. This is done in order to evaluate the placement strategies used by the
different versions of the stowage model. In Table 3, the average number of shifts
for each model version is reported instead of the shifting costs. The two measures
have a high correlation, and number of shifts is chosen for readability purposes.
When evaluating the solutions it is important to consider the number of optional
cargoes carried. As the revenues generated using the different model versions
vary, the number of vehicles on the deck differ. With more vehicles on the deck,
the number of shifts is expected to be higher. The computational results from
the stowage model showed that the SP version of the model achieved the highest
optional revenue on average. This implies that the resulting stowage plans from
SP carry the largest number of vehicles. Despite this, the stowage plans from
SP actually give the best results with regards to the total number of shifts. On
average, model version SP gives the stowage solutions with the lowest number of
shifts, lowest computational time, and carries the most optional cargoes. From
this, it is reasonable to conclude that both grouping and placement modifications
is preferable to incorporate in a RoRo stowage model.

5 Concluding Remarks

The RoRo stowage problem is an essential part of the operational decisions for
RoRo-operators in order to maintain their competitive position in the vehicle
transportation market. We have proposed a mixed integer programming model
for the two-dimensional RoRo ship stowage problem for one deck (2DRSSP).

Five alternative version of the 2DRSSP stowage model have been evaluated
using 12 test instances. Test results showed that the inclusion of both group-
ing and placement objectives in the stowage model was preferable. This model
version provided the overall best results, both regarding the revenue generated
from optional cargoes, and the number of shifts.

However, the complexity of the problem limits the use of the models for real-
life problems. We believe, however, that the research presented in this paper
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provide both important insights and modeling components that can be used
in future research. A heuristic solution method is currently being tested, and
preliminary results show that it provides feasible solutions to realistically sized
problem instances for one deck. The natural extension to multiple decks is a
promising venue for future research.
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Abstract. This paper considers a vessel pickup and delivery problem
that arises in the case of disruptions in the supply vessel logistics in the
offshore oil and gas industry. The problem can be modelled as a multi-
vehicle pickup and delivery problem where delivery orders are trans-
ported by supply vessels from an onshore supply base (depot) to a set
of offshore oil and gas installations, while pickup orders are to be trans-
ported from the installations back to the supply base (i.e. backload).
We present both an arc-flow and a path-flow formulation for the prob-
lem. For the path-flow formulation we also propose an efficient dynamic
programming algorithm for generating the paths, which represent feasi-
ble vessel voyages. It is shown through a computational study on various
realistic test instances provided by a major oil and gas company that the
path-flow model is superior with respect to computational performance.

Keywords: Disruption management · Offshore supply · Vehicle routing

1 Introduction

Norway is a major oil and gas producer with a total petroleum production of
about 230 million Sm3 (standard cubic meters) in 2015 [8]. This production takes
place from offshore installations on the Norwegian continental shelf with about 60
oil and gas fields. To ensure continuous production, the offshore installations are
supplied with different equipment and material by specialized offshore supply
vessels (OSVs). The OSVs represent one of the largest cost elements in the
upstream supply chain, where the annual costs of one OSV amount to millions
of USDs.

The oil and gas companies operating on the Norwegian continental shelf usu-
ally have a long-term plan for supplying its offshore installations, where a set of
voyages are to be sailed on a weekly basis by a given chartered fleet of OSVs.
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Avoyage performedbyanOSVstarts at the onshore supply base, then theOSVvis-
its and services a set of offshore installations in a pre-determined sequence, before
returning to the supply base. In addition to bringing all types of products that are
needed to the offshore installations, the OSVs also carry backload from the instal-
lations to the supply base. Each voyage is scheduled to take two or three days and
each OSV usually completes two or three voyages each week. Figure 1 illustrates a
weekly plan where three OSVs are scheduled to visit five installations.

Fig. 1. Illustration of a weekly plan including three OSVs (Star, Symphony and Fore-
sight) and five offshore installations (GRA, BID, DSD, BRA, HAD). Each voyage is
represented by a rectangle, where the shaded area represents the time at the supply
base [10].

The offshore installations are located in a part of the world where weather
conditions can be harsh, especially during the winter season. Sometimes wave
heights may limit both an OSV’s sailing speed and its ability to perform unload-
ing/loading operations at the installations. Another major source of disruptions
to the plan comes from unexpected orders or extra high demand from the off-
shore installations, which especially occurs after periods with bad weather where
the installations have not been serviced for some days. To mitigate the effects of
these disruptions, the planners may have to deviate from the planned voyages
and re-route the OSVs. They also have the possibility to charter an extra OSV
from the spot market to handle the disruptions, though at a very high cost.

In this paper we study the problem of how to determine the OSV voyages
for the next days after a disruption has occurred. The goal is to return to the
long-term plan before the next voyage is planned to start for each OSV. Using
the example from Fig. 1, suppose that the planner on Monday morning receive
reports saying that the weather will be bad for the next two days, resulting in
increased sailing and service times at the offshore installations. The planner then
needs to determine how to adjust the next voyage for the OSVs Star (starting on
Monday) and Symphony (starting on Tuesday) so that they hopefully can start
on their next voyages on Thursday and Friday, respectively. These decisions affect
both the service level perceived by the offshore installations, in case of delays in
their services, and the sailing and chartering costs. Hence, the objective of the
problem is to minimize these costs, while at the same time maintain a sufficient
service level to the offshore installations and avoid delays of the OSVs that cause
knock-on effects to the long-term plan.

Several papers address routing in the upstream supply chain for the offshore
oil and gas industry. [5] study a pickup and delivery problem that arises in the
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service of offshore installations in the Norwegian Sea. Unlike the problem studied
in this paper, they consider the routing of only one OSV. [11] extend the problem
by taking into account demands for multiple commodities and the stowage of
these commodities in dedicated compartments onboard the OSVs. They present
a mathematical model of the problem and a heuristic to provide high quality
solutions in a short amount of time.

As we can see in Sect. 2, the problem studied in this paper can be modelled as
a multi-vehicle pickup and delivery problem where the delivery orders are trans-
ported from the supply base and the pickup orders (i.e. backload) are returned
to the depot. The offshore installations might be visited once or twice, either
conducting pickup and delivery simultaneously or at different points in time,
possibly by different OSVs. Using the classification proposed by [1], our problem
can be viewed as a special version of the 1-M-1|P-D|m, i.e. a one-to-many-to-one
pickup and delivery problem with multiple vehicles. Problems of this type have
been studied in the literature, though in very different contexts than ours. [3]
studies a problem arising in reverse logistics, and, as this paper, propose both an
arc-flow and path-flow model for the problem. [9] studies the same problem, but
also takes into account time limits on the vehicles. However, in contrast to our
problem neither allow customers to be visited twice and they do not consider
the possibility of chartering an extra vessel/vehicle.

Relatively few studies regarding disruption management in ship routing exist,
and to the authors’ knowledge there exist no publications on disruption man-
agement in offshore supply logistics. However, in container liner shipping there
exist a few studies, such as [2], which consider the vessel schedule recovery prob-
lem. Different recovery actions are proposed in the case of disruptions, such as
increasing speed, canceling deliveries, and swapping port visits. A model consid-
ering sailing costs, delays, and misplaced cargo is presented, and it is run with
data from real life cases. [7] proposes a mathematical model for simultaneous
rescheduling of ships and cargo in a container liner network. Poor weather con-
ditions, port congestion, low port productivity, towage, tidal windows, and sev-
eral other sources of disruptions are mentioned. The model’s suggested recovery
actions include changing the departure or arrival time at ports, transshipment of
cargo between ports, and speed adjustments. The possible measures to handle
disruptions in [2,7] are to some extent the same as the ones available in our
problem, such as canceling orders and re-routing. However, increasing speed to
reduce delays will be less effective in our problem due to shorter sailing distances
and is therefore not included, while the possibility of chartering additional OSVs
from the spot market is an additional option available in offshore supply.

The contribution of this paper is to propose and test two mathematical mod-
els of the problem, i.e. an arc-flow and a path-flow model. For the path-flow model
we also propose an efficient dynamic programming algorithm for generating the
paths (feasible OSV voyages). It is shown that the path-flow model is superior
to the arc-flow model with regards to computational performance.

Section 2 provides a formal description of the problem together with an arc-flow
and a path-flow model of the problem. The dynamic programming algorithm for
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generating all feasible paths are presented in Sect. 3, while computational experi-
ments are shown in Sect. 4. Finally, some concluding remarks are given in Sect. 5.

2 Problem Description and Mathematical Models

The problem studied in this paper can be formulated on a graph G = (N ,A).
At a given point in time there are n cargoes that must be transported from
the onshore depot to different offshore installations, while at the same time m
cargoes need to be transported from (possibly different) installations and back
to the onshore depot. The set of nodes N = {0, ..., n+m+1} contains two nodes
representing the onshore supply depot (nodes 0 and n+1) and one node for each
cargo to be picked up or delivered. The set N can be divided into the set N P =
{1, ..., n} containing all pickup nodes, and the set N D = {n + 2, ..., n + m + 1}
containing all delivery nodes. We use the term sibling nodes to denote a pickup
and a delivery node that is associated with the same offshore installation. The set
of arcs A consists of arcs between all node pairs, with the following exceptions:
there are no arcs entering node 0, no arcs leaving node n + 1, and for sibling
nodes there are no arcs from the pickup node to the delivery node since it is
always preferable to deliver before picking up at an installation.

Each cargo occupies a given number of square meters on the deck of an OSV,
and for each node i ∈ N D we denote this area Di, while for each node i ∈ N P

we denote it Pi. In addition, a penalty cost CR
i is incurred if node i ∈ N cannot

be serviced on the planned upcoming set of voyages and must be postponed.
This penalty can be set differently for each cargo depending on the importance
of its delivery or pickup.

To transport the cargoes, a set of OSVs is available. Let V = {1, ..., k + 1}
denote the set of OSVs, where k + 1 represents an OSV chartered from the spot
market. Each OSV v has a total deck capacity Qv measured in square meters,
and a cost CS

vij and time Tvij associated with sailing from node i to node j, and
servicing node j. Note that both of these parameters are weather dependent,
however, we assume that they are known at the time of planning. Since we are
only planning the next voyage, i.e. the next couple of days, this is a reasonable
assumption. For example, if we know that the weather will be bad in the next
couple of days we adjust CS

vij and Tvij accordingly. Further, let TMIN
v be the

time OSV v is available to begin the next voyage, and let TMAX
v be the planned

departure time of the subsequent voyage for OSV v. However, we do allow the
OSV to return back to the depot up to Γ hours after TMAX

v , but at a cost of
CD

v per hour. The OSV k + 1 must be chartered for a whole number of time
periods (days), where the length of a time period is denoted by the parameter
H, and the daily time charter rate is represented by CTC .

2.1 Arc-Flow Model

The variable xvij equals 1 if OSV v sails arc (i, j), and 0 otherwise. The auxiliary
variable yvi equals 1 if OSV v visits node i, and 0 otherwise. If the visit to node i
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is postponed (i.e. not serviced on the voyage of any of the OSVs), the variable ui

equals 1, and 0 otherwise. The cargo load variables lvij equal the load measured
in square meters on OSV v when sailing arc (i, j). If the arc is not traversed, the
corresponding load variable is equal to 0. The number of hours OSV v arrives at
the depot after TMAX

v is represented by the variable tDv . The number of whole
days that the OSV k + 1 from the spot market needs to be chartered is denoted
by tTC . To simplify the notation, the constraints are defined using sets of nodes,
even though some constraints may contain combinations of the indices v, i, and
j for which the corresponding variable xvij does not exist. In these cases the
missing variable can be assumed to take the value 0. The operational planning
and disruption management problem can be formulated as follows:

Objective

min
∑

v∈V

∑

(i,j)∈A
CS

vijxvij + CTCtTC +
∑

i∈N
CR

i ui +
∑

v∈V\{k+1}
CD

v tDv (1)

subject to:
∑

i∈N\{0}
xv0i = 1 v ∈ V (2)

∑

i∈N\{n+1}
xvi(n+1) = 1 v ∈ V (3)

∑

j∈N
xvji −

∑

j∈N
xvij = 0 v ∈ V, i ∈ N\{0, n + 1} (4)

yvi −
∑

j∈N\{i}
xvij = 0 v ∈ V, i ∈ N (5)

∑

v∈V
yvi + ui = 1 i ∈ N\{0, n + 1} (6)

lvij ≤ (Qv − Pj)xvij v ∈ V, i ∈ N , j ∈ N P (7)

lvij ≤ Qvxvij v ∈ V, i ∈ N , j ∈ N D (8)

lvij ≥ Pixvij v ∈ V, i ∈ N , j ∈ N P (9)

lvij ≥ Djxvij v ∈ V, i ∈ N D, j ∈ N D (10)

lvij ≥ (Pi + Dj)xvij v ∈ V, i ∈ N P , j ∈ N D (11)
∑

i∈N
lvij + Pjxvjh − lvjh + Qvxvjh ≤ Qv v ∈ V, j ∈ N P , h ∈ N (12)

∑

i∈N
lvij − Djxvjh − lvjh + Qvxvjh ≤ Qv v ∈ V, j ∈ N D, h ∈ N (13)

∑

j∈ND

Djyvj − lv0i + Qvxv0i ≤ Qv v ∈ V, i ∈ N (14)
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lvi(n+1) −
∑

j∈NP

Pjyvj + Qvxvi(n+1) ≤ Qv v ∈ V, i ∈ N (15)

tTC ≥

⎛

⎝
∑

(i,j)∈A
T(k+1)ijx(k+1)ij

⎞

⎠ 1
H

(16)

TMIN
v +

∑

(i,j)∈A
Tvijxvij − TMAX

v ≤ tDv v ∈ V\{k + 1} (17)

tDv ≤ Γ v ∈ V\{k + 1} (18)
∑

i∈S

∑

j∈S
xvij ≤ |S| − 1 v ∈ V,S ⊂ N , |S| ≥ 2 (19)

xvij ∈ {0, 1} v ∈ V, (i, j) ∈ A, (20)
yvi ∈ {0, 1} v ∈ V, i ∈ N (21)
ui ∈ {0, 1} i ∈ N (22)

tDv ≥ 0 v ∈ V\{k + 1} (23)

tTC ∈ Z
+ (24)

The objective function (1) consists of four parts. The first term summarizes
the costs related to sailing and servicing nodes for all OSVs, while the second
term expresses the cost related to chartering an OSV from the spot market.
The third and fourth terms are artificial costs that penalize orders that are
postponed and OSVs that return to the onshore supply depot later than planned.
Constraints (2) and (3) ensure that all voyages begin and end at the depot,
while constraints (4) conserve the flow through the problem defining network.
The auxiliary variables are set by constraints (5), and constraints (6) ensure
that all nodes are either serviced by an OSV or the visit is postponed until
a later voyage. Further, constraints (7)–(11) ensure that the capacity of each
OSV is not violated on any arc along its route, while constraints (12) and (13)
are the cargo flow conservation constraints. Since the model does not distinguish
between cargo that is to be delivered to an installation and backload, constraints
(14) ensure that the total amount of cargo to be delivered to installations on
a voyage equals the load on-board when the OSV leaves the depot. Similarly,
constraints (15), together with constraints (7) and (8), ensure that the load on-
board, when the OSV arrives at the depot, equals the total amount of picked
up cargo on a voyage. If an OSV is chartered from the spot market, constraint
(16) calculates the time it is used, and rounds up to the nearest whole day.
Constraints (17) calculate the delay of each OSV when returning to the depot,
while constraints (18) assure that the delay is not more than Γ hours for each
OSV in the long-term fleet. Finally, constraints (19) are the subtour eliminating
constraints, and constraints (20)–(24) define the domain of each set of variables.
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2.2 Path-Flow Model

Arc-flow models are well suited to describe a problem, however, they often per-
form inferior to path-flow models due to the large number of constraints and a
relatively weak linear programming bound. In this section we describe a path-
flow model obtained by applying Dantzig-Wolfe decomposition to the Arc-flow
model presented above. A path through the graph G for vessel v is considered
feasible if it satisfies constraints (2)–(5), (7)–(21), (23) and (24).

Let the set Rv contain all feasible paths for OSV v, and let the parameter Ari

be equal to 1 f node i is included on path r, and 0 otherwise. The cost associated
with sailing and servicing all nodes on path r for OSV v is denoted by CS

vr. This
includes the sailing costs (CS

vij) and any penalty costs from returning to the
depot late (CD

v ). In addition, let CS
(k+1)r for all paths r associated with the OSV

chartered from the spot market include the time charter costs CTC , in addition
to the fixed charter costs. Further, let variable λvr equal 1 if OSV v use path r,
and 0 otherwise. As for the arc-flow model, if the visit to node i is postponed, the
variable ui equals 1, and 0 otherwise. Using this notation the path-flow model
can be formulated as follows:

min
∑

v∈V

∑

r∈Rv

CS
vrλvr +

∑

i∈N
CR

i ui (25)

subject to:
∑

v∈V

∑

r∈Rv

Ariλvr + ui = 1 i ∈ N\{0, n + 1} (26)

∑

r∈Rv

λvr ≤ 1 v ∈ V (27)

λvr ∈ {0, 1} v ∈ V, r ∈ Rv (28)
ui ∈ {0, 1} i ∈ N (29)

The objective function (25) corresponds to (1) for the arc-flow model, and
sums the costs related to the voyages for all OSVs and the costs associated
with nodes that are postponed until a later voyage. Constraints (26) ensure
that all nodes are either serviced by an OSV or postponed until a later voyage,
while constraints (27) ensure that each OSV sails at most one voyage. Finally,
constraints (28) and (29) put binary restrictions on the variables.

3 Path Generation Using Dynamic Programming

In this section we describe how we generate all feasible paths through graph G
which are needed to solve the path-flow model described in Sect. 2.2. All paths
are generated for each OSV v through |N | stages, where |N | is the number of
nodes in the network. The chosen approach applies full enumeration of possible
paths with removal of infeasible and dominated paths.
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Algorithm 1 shows the pseudocode for the generation of paths, and is based
on the labeling algorithm described in [6]. In this approach all partial paths are
encoded using labels which stores each (partial) path and the accumulation of
resources along the path. Let Mp be the set of all labels representing paths of
length p. The algorithm begins by creating an initial label representing a path
starting at the depot node, and an empty set of labels representing complete
feasible paths R. Then, while p is less than or equal to the number of nodes
in G, we create new labels L′ by extending all labels L representing a path of
length p to all nodes i ∈ N . If the label L′ is feasible it is added to the set Mp+1,
unless it is extended to the depot node, in which case it is added to the set R.
Once all labels in Mp have been extended to labels in Mp+1 we check all pairs
of labels in Mp+1 to see whether we can remove some labels due to dominance,
and the counter p is updated. Finally, all labels in R are returned, and their
corresponding paths are added to the path-flow model.

In the following we explain what data is stored in a label, how a label is
extended, what constitutes a feasible extension of a label, and under what cir-
cumstances we can say that one label dominates another.

Algorithm 1. Pseudocode for dynamic voyage generation
1: procedure voyageGenerator
2: Create initial label
3: Add initial label to initial stage M1

4: R = ∅
5: p = 1
6: while p ≤ |N | do
7: for all labels L in stage Mp do
8: for all nodes i in N do
9: Create new label L′ by extending label L to node i

10: if L′ is feasible then
11: if i = n + 1 then
12: Add L′ to R
13: else
14: Add L′ to Mp+1

15: end if
16: end if
17: end for
18: end for
19: Remove all dominated states from Mp+1

20: p = p + 1
21: end while
22: Return R
23: end procedure
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3.1 Label Data

In each stage, new labels are created containing the following data:

– i - The current node
– R - The predecessor label
– V - The set of nodes visited
– C - The sailing and service cost
– T - The sailing and service time
– πD - The maximum deck capacity occupied at any point along the path
– πP - The deck capacity needed for backload

In the following we use i(L) to denote the current node i for label L and
similarly use R(L), V (L), C(L), T (L), πD(L) and πP (L) for the rest of the label
data.

The initial label represents an OSV starting at the depot pickup node. The
initial state has no predecessor, which is denoted by null.

L0 = {0, null, ∅, 0, 0, 0, 0},

3.2 Label Extension

When extending a label along an arc (i(L), j), a new label L′ is created at node j.
The label data are updated as follows:

i(L′) = j (30)
R(L′) = L (31)

V (L′) = V (L)
⋃

{j} (32)

T (L′) = T (L) + TS
vi(L)j (33)

C(L′) = C(L) + CS
vi(L)j +

{
max{CD

v ∗ (T (L′) + TMIN
v − TMAX

v ), 0}, if j = n+ 1

0, otherwise

(34)

πD(L′) =

{
max{πD(L) + Dj , π

P (L)}, if j ∈ N D

max{πD(L), πP (L) + Pj}, if j ∈ N P
(35)

πP (L′) =

{
πP (L), if j ∈ N D

πP (L) + Pj , if j ∈ N P
(36)

Equations (30) and (31) update the current node and the predecessor for L′.
The new current node is marked as visited in Eq. (32). The time and cost data
are updated in Eqs. (33) and (34). The capacity data are updated in Eqs. (35)
and (36) according to whether node j is a delivery or a pickup node. Figure 2
illustrates how the capacity data are updated along a path.
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Fig. 2. Illustration showing how capacity data are updated during label extension.
Requested delivery and backload size is given for each delivery and pickup node, respec-
tively. The current amount of cargo carried on deck of the OSV is given for each arc.

Proposition 1. Let Lf be the final label associated with a path r. Then πD(Lf )
equals the maximum load onboard the OSV on path r.

Proof. Let the maximum load on path r be carried on arc (i∗, j∗). Then the
maximum load on r is

li∗j∗ =
∑

j∈ΩP

Pj +
∑

j∈ΘD

Dj ,

where ΩP ⊆ N P is the set of pickup nodes already visited and ΘD ⊆ N D is the
set of delivery nodes not yet visited.

Consider the labels L1 and L2 with current nodes i1 and i2, respectively.
L1 is the predecessor of L2, and both labels are predecessors of Lf . Let N D

f

denote the set of delivery nodes in the path of Lf . Assume, without the loss of
generality, that the nodes visited on path r are numbered in the sequence they
are visited. Then, the load on deck after visiting node i1 and i2, denoted by li1
and li2 , respectively, is

li1 =
∑

j∈ND
f

Dj −
∑

0≤j≤i1

Dj +
∑

0≤j≤i1

Pj , and (37)

li2 =
∑

j∈ND
f

Dj −
∑

0≤j≤i2

Dj +
∑

0≤j≤i2

Pj . (38)
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Assume that either li1 or li2 is the maximum load on r. The difference in load is

li1 − li2 =
∑

i1<j≤i2

Pj −
∑

i1≤j≤i2

Dj (39)

If li1 > li2 , then

πD(L2) = max{πD(L1) +
∑

i1≤j≤i2

Dj , π
P (L1) +

∑

i1<j≤i2

Pj}

= πD(L1) +
∑

i1≤j≤i2

Dj , and

li∗j∗ =
∑

j∈ND
f

Dj −
∑

0≤j≤i1

Dj +
∑

0≤j≤i1

Pj

If li2 > li1 , then

πD(L2) = max{πD(L1) +
∑

i1≤j≤i2

Dj , π
P (L1) +

∑

i1<j≤i2

Pj}

= πP (L1) +
∑

i1<j≤i2

Pj , and

li∗j∗ =
∑

j∈ND
f

Dj −
∑

0≤j≤i2

Dj +
∑

0≤j≤i2

Pj

Not depending on which of li1and li2 is greatest, the maximum load can be
expressed as

li∗j∗ =
∑

j∈ΩP

Pj +
∑

j∈ΘD

Dj = πD(Lf ).

Thus, Proposition 1 is correct.

Additional remark: if node i∗ were a delivery node, then the load on board
before visiting i∗ would be greater than li∗j∗ . Thus, i∗ is a pickup node. Similar,
if j∗ were a pickup node, then the load on board after visiting j∗ would be
greater than li∗j∗ . Thus, j∗ is a delivery node.

3.3 Feasible Extension

An extension of state L to state L′ along an arc (i(L), j) is feasible if the
following hold:

j /∈ V (L) (40)

k /∈ V (L), if j ∈ N D and j and k are siblings. (41)

T (L) + TS
vi(L)j ≤ TMAX

v + Γ − TMIN
v , if j = n + 1 (42)

T (L) + TS
vi(L)j + TS

vj(n+1) ≤ TMAX
v + Γ − TMIN

v , if j �= n + 1 (43)

max{πD(L) + Dj , π
P (L)} ≤ Qv, if j ∈ N D (44)

max{πD(L), πP (L) + Pj} ≤ Qv, if j ∈ N P (45)
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If the inequality (40) holds, node j is not already visited in path in label L.
Inequality (41) assures that the pickup node should never be visited before the
delivery node for the same installation. A sibling of a delivery node is defined
as the corresponding pickup node of the installation, if one exists. Likewise, the
sibling of a pickup node is the delivery node of the installation. As stated in
inequality (42), the time needed to service the nodes in a path sailed by OSV
v should not exceed the time available to v, where τ is the maximum allowed
delay on a voyage. If node j is not the depot delivery node, there should also be
enough time available to sail back to the onshore supply depot. This is assured
by inequality (43). The inequalities (44) and (45) hold if the load on deck at any
point of the path does not exceed the available deck capacity of the OSV.

3.4 Label Domination

At each stage, all labels dominated by anoter label are identified and removed.
The label dominance criteria are:

Proposition 2. The label L1 dominates L2 if

V (L1) = V (L2), (46)
i(L1) = i(L2), (47)
C(L1) ≤ C(L2), (48)
T (L1) ≤ T (L2). (49)

Note that V (L1) = V (L2) also implies that πP (L1) = πP (L2) and πD(L1) =
πD(L2). Because the cost and time and non-decreasing and separable resources,
it can easily be shown that Proposition 2 is a valid dominance criterion.

4 Computational Study

In this section we present a comparison of the computational performance of the
two models. In Sect. 4.1 we describe the test instances used, while in Sect. 4.2
we present the computational results.

4.1 Test Instances

The test instances are based on data supplied by Statoil, the major Norwegian
oil and gas company, and consist of an onshore supply depot and a set of offshore
installations. As of today, each onshore supply depot services up to 13 offshore
installations (28 nodes). However, when looking at recovery planning, it is rare
that all the installations are to be visited within the short planning horizon. We
have thus created instances with 4 to 8 installations (10 to 18 nodes). These
instances are summarized in Table 1, which gives the id of each instance (ID),
the name of the associated depot (Depot), the number of nodes (# Nodes), and
the number of OSVs (# OSVs).
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Three versions of each instance are tested:

– No disruptions All vessels have normal sailing speeds and all cargoes are
of (roughly) normal size. These instances are denoted using the standard IDs
from Table 1.

– Reduced sailing speed due to adverse weather conditions. This is done by
reducing the speed of each vessel from ten to five knots, and thus, increasing
the sailing time. The increase in sailing time will also affect the sailing costs.
The ID for these instances have a superscript “S” for speed, e.g. MS

12.
– Large cargo sizes, which often is the case after periods where adverse

weather conditions have made supplying the offshore installations impossi-
ble or too costly. This is done by setting the demand and backload amount
to the triple of the size used in the non-disrupted case to ensure that deck
capacity becomes a binding constraint. The ID for these instances have a
superscript “L” for load, e.g. ML

12.

The reason for these choices of disruptions is that both speed reductions and
more cargo to transport are the most common consequences of bad weather
conditions. Either the speed of each vessel is reduced for a period of time, or the
cargo has piled up both at the depot and at the installations because the OSVs
have been prevented from sailing for a few days.

Table 1. Test instances used to compare the arc-flow and the path-flow models. #OSVs
includes one spot vessel.

ID Depot # Nodes # OSVs

M10 Mongstad 10 2

M12 Mongstad 12 2

Å14 Ågotnes 14 2

F16 Florø 16 2

Å18 Ågotnes 18 3

4.2 Test Results

The arc-flow and path-flow models have been tested on a computer running Win-
dows 7 with an Intel i7-3770 3.40 GHz CPU and 16 GB of RAM. The dynamic
programming algorithm for the apriori generation of paths for the path-flow
model is implemented in Java, while the arc-flow and path-flow models are
implemented in Xpress-IVE 1.24.04 with Xpress-Mosel 3.6.0 and solved with
Xpress-Optimizer 21.01.04 [4]. For both models we set an upper time limit of
one hour (3,600 s).

The results of the computational tests can be seen in Table 2. For the arc-
flow model the optimality gap (Opt. gap) and the computational time (Time)
are given, while for the path-flow model we only give the computing time (Time).
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Table 2. Comparison of the arc-flow and path-flow solution methods. For the arc-flow
model the optimality gap (Opt. gap) and the solution time is presented and for the
path-flow model the total solution time, including the time it takes to generate all
paths, is presented.

ID Arc-flow Path-flow

Opt. gap Time [s] Time [s]

M10 0.0 % 0.1 0.13

MS
10 0.0 % 7.2 0.06

ML
10 0.0 % 3.0 0.03

M12 0.0 % 0.4 0.51

MS
12 68.9 % >3 600 0.38

ML
12 0.0 % 709 0.04

Å14 0.0 % 0.6 13.1

Å
S
14 63.3 % >3 600 13.0

Å
L
14 38.7 % >3 600 0.56

F16 0.0 % 0.4 529.3

FS
16 77.0 % >3 600 553.4

FL
16 46.4 % >3 600 101.3

Å18 69.6 % >3 600 >3 600

Å
S
18 94.8 % >3 600 >3 600

Å
L
18 68.6 % >3 600 1 222

The reason for this, is that in the instances where the path-flow model exceeds
the time limit it does so while generating paths, and thus we do not have any
optimality gap in those instances. As can be seen from the results, except for
the two instances Å14 and F16, the path-flow model finds the optimal solution
in less time than the arc-flow model. The path-flow model is also able to find
the optimal solution in six instances where the arc-flow model cannot within the
given time limit. This shows that the path-flow model is superior to the arc-flow
model with respect to the computational performance for this problem.

5 Concluding Remarks

In this paper we have studied a vessel pickup and delivery problem that arises
in the case of disruptions in the supply vessel logistics in the offshore oil and
gas industry. We have shown that the problem can be modelled as a multi-
vehicle pickup and delivery problem and proposed two alternative formulations
for the problem, i.e. an arc-flow and a path-flow formulation. For the path-flow
formulation we have also proposed an efficient dynamic programming algorithm
for generating the paths, which represent feasible vessel voyages. It was shown
through a computational study on various realistic test instances provided by a
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major oil and gas company that the path-flow model was superior with respect
to computational performance.

Even though the path-flow model presented in this paper can solve many
instances to optimality, there is a need for methods that can provide high qual-
ity solution to even larger instances in a short amount of time. An interest-
ing extension of this work would therefore be to look either at more advanced
exact solution methods, such as branch-and-price, or to develop heuristic solu-
tion methods for the problem.
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Abstract. To meet the transportation demand and maintain sustain-
able development, many countries are aiming to promote the compet-
itive position of inland waterway shipping in the transport system.
Autonomous transport is seen as a possibility for maritime transport to
meet today’s and tomorrow’s challenges. In realizing autonomous nav-
igation, path planning plays an important role. Being the most widely
used path planning algorithm for robotics and land-based vehicles, in
this paper we analyze A* and its extensions for waterborne applications.
We hereby exploit the fact that for vessels optimal paths typically have
heading changes only at the corners of obstacles to propose a more effi-
cient modified A* algorithm, A*BG, for autonomous inland vessels. Two
locations where ship accidents frequently occur are considered in simu-
lation experiments, in which the performance of A*, A*PS, Theta* and
A*BG are compared.

1 Introduction

Currently, economic development is putting enormous pressure on transport sys-
tems. Freight transport is likely to grow over the next decades [7]. If roads and
railways are the major means of transport for handling the growth, they will face
frequent congestion. Inland waterway shipping still have the capability of trans-
porting large additional volumes. It offers an environment-friendly alternative to
road and rail transport in terms of both energy consumption and gas emissions [6].
To meet the transportation demand and maintain sustainable development, many
countries are aiming to promote and strengthen the competitive position of inland
waterway shipping in the transport system.

Research has proposed many measures to improve the position of inland ship-
ping, such as optimizing ship dimensions [10], removing bottlenecks [5], improv-
ing utilization of ports [8] and locks [25]. Among these measures, employing
autonomous vessels has recently drawn much attention [13,27]. Autonomous
vehicles are already state-of-the-art in the land-based transport domain. There
exist several examples of self-driving and automated guided vehicles in modern
container terminals [26]. Consequently, applying autonomous vessels is seen as
a way to improve the safety and efficiency of inland shipping.

c© Springer International Publishing Switzerland 2016
A. Paias et al. (Eds.): ICCL 2016, LNCS 9855, pp. 65–79, 2016.
DOI: 10.1007/978-3-319-44896-1 5
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Safety can be improved as human error is one of the main causes of ship
accidents. Figure 1 shows the mains causes of ship accidents between 2005 and
2014 in Dutch inland waterways [14]. The category operation error includes alco-
hol/drug use, wrong estimation, fatigue, etc.; the category communication error
indicates not maintaining watch on correct VHF channel, unclear explanation,
etc.; the category environmental error includes disturbances caused by wind,
wave and current, poor visibility, etc.; the category equipment error indicates the
failure of engine, rudder or other navigation equipments. For autonomous vessels,
detection of obstacles, estimation of the risk, communication between vessels and
infrastructure can be done without humans. Thus, applying autonomous vessels
could be an efficient measure to reduce the number of accidents.
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Fig. 1. The causes of the shipping accidents (based on [17]).

Efficiency can be improved by autonomous vessels due to the intelligent path
planning and better control of vessel motion. Communication and coordination
with infrastructures also make it possible for autonomous vessels to minimize
the waiting time at ports, locks, etc.

The overall architecture of an autonomous vessel is shown in Fig. 2. To realize
autonomous navigation, a vessel controller uses sensors to get self-state informa-
tion (e.g., position, speed and heading), environmental information (e.g., wind
speed, current velocity) and information of obstacles. Based on the obtained
information, optimal paths to follow and desired speed and heading with spec-
ified objectives and constraints can be determined. The commands are sent to
actuators for autonomous navigation.

In Fig. 2, the module ‘Path planning’ plays an important role in autonomous
navigation. It describes how the autonomous vessel make decisions regarding its
course to sail. The path planning problem can be subdivided into a global and a
local planning task: an approximate global planner computes paths ignoring the
kinematic and dynamic constraints; an accurate local planner accounts for the
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Fig. 2. The overall architecture of autonomous vessels.

constraints and generates feasible local trajectories [20]. The final path are deter-
mined on the basis of reference path provided by the global planner according to
the transport mission, known stationary obstacles (e.g., islands, shallow waters)
and infrastructure operation schedules, and the collision avoidance actions tak-
ing into account the regulations and the limitation of infrastructures (e.g., width
and depth of waterways). Communication between vessel controllers will help the
controller make better path planning decision. As a starting point, this paper
focuses on the global path planning problem.

Many path planning algorithms have been developed for the navigation of
unmanned surface vehicles aswell as robots, such asArtificialPotential Fieldmeth-
ods [23], EvolutionaryAlgorithms [12], andHeuristic SearchAlgorithms [4,19]. For
a detailed review of path planning and collision avoidance technologies and tech-
niques, see [2,21]. Among these methods, the group of heuristic search algorithms,
especially A* and its extensions, are commonly used to determine the path from
an origin to a destination for land-based vehicles [18,22].

Compared with mobile robotics path planning, the static obstacles in inland
waterway networks are usually larger and continuous. Clear passages (water-
ways) can be found in the map. Moreover, when autonomous vessels are in a
hybrid environment where exist vessels operated by humans. In order to ensure
safety it is necessary that autonomous vessels comply with navigation rules
throughout their missions [2]. Several recent efforts have been made to integrate
rules into path planning algorithms [11,19].

In order to find a suitable global path planning algorithm for inland
autonomous vessels, in this paper we carry out a comparison among A* and its
extensions. We moreover propose a new algorithm called A*BG for autonomous
inland vessels. Based on the existing algorithms, A*BG takes advantage of grid
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search and visibility check, which improves the searching and computational
properties.

The remainder of this paper is organized as follows. In Sect. 2, a brief intro-
duction of the inland waterway transport system is provided. A* and its exten-
sions are elaborated on in Sect. 3. Based on this, the new algorithm A*BG is
proposed in Sect. 4. Simulation experiments are carried out to assess the perfor-
mance of the algorithms in Sect. 5. Conclusions and future research are presented
in Section 6.

2 Inland Waterway System

The main function of an inland waterway system is to fulfill the transport
demand, i.e., to transport goods or people from one place to another. As shown in
Fig. 3, two main components in waterway systems are vessels and infrastructures.
Vessels are the means of transport. Infrastructures are necessary to guarantee
a sound navigation: waterways provide navigable waters; locks create stepped
navigational pools with reliable depths; bridges balance the road traffic and the
waterborne traffic.
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Fig. 3. Inland waterway system.

Rules and regulations provide suggestions to the skippers. These “rules of the
road” specify the types of maneuvers that should be taken in situations where
there is a risk of collision. Vessels navigating in waterways are also influenced by
the external environment (e.g., wind, current and waves).

The architecture of an autonomous vessel in Fig. 2 can be regarded as the
detail explanation of the relation of a vessel controller and a vessel in Fig. 3.
When vessels navigating between the origins and destinations, controllers control
the propeller and rudder to let the vessel move to desired position. The sensors
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measure the practical speed and headings of the vessel and provide them to the
controllers as feedbacks. Vessel controller can obtain the position and direction
of other vessels via sensors. When there is a risk of collision, actions that should
be taken to avoid the collision are decided by the controllers. The communication
between vessel controllers can help controllers to cooperate with each other.

Infrastructure controllers making schedules with the predicted time of arrival
reported by vessel controllers and also keep an eye on the state of the infra-
structures (e.g., availability, waiting time and length of the line). In return, the
operation schedules also have impacts on vessel controllers decision making on
the route, departure time and speed choices.

3 Existing Path Planning Algorithms

In this section, A* and its improved extensions and their characteristics are
introduced. The method to apply the algorithms to inland autonomous vessels
considering rules and regulations is explained as well.

3.1 A*

A* is the most widely used path planning algorithm, which can be applied on
metric or topological map [4]. This algorithm uses a combination of heuristic
searching and searching based on the shortest path. A* is defined as best-first
algorithm, because each node in the map is evaluated by the function:

f(sstart, s, sgoal) = g(sstart, s) + h(s, sgoal) (1)

where g(sstart, s) provides the length of the shortest path from a start node sstart
to node s found so far, h(s, sgoal) provides an estimate of the distance from node
s to goal node sgoal, f(sstart, s, sgoal) provides an estimate of the length of a
shortest path from the start node sstart via node s to the goal node sgoal.

A* uses a priority queue Open to perform the repeated selection of mini-
mum f(sstart, s, sgoal) nodes to expand (expanding a node means this node is
a candidate in the shortest path). At each step, the node s with the minimum
f(sstart, s, sgoal) is removed from Open. The unblocked neighbor nodes which
are in the line-of-sight of node s are recorded in the set nbrlos(s). For each
s′ in nbrlos(s), its related values are updated: parent(s′) = s, g(sstart, s′) =
g(sstart, s) + distance(s, s′). If s′ is already included in Open, A* compares the
two g(sstart, s′) in nbrlos(s) and Open, and updates the s′ with lower g(sstart, s′).
If not, s′ is added to Open. The algorithm then repeats this procedure until s is
sgoal. The length of the path that A* finds is then f(sstart, sgoal, sgoal).

The basic A* is restricted to a so-called 8-connectivity grid. This means that
the path it finds is based on the connection between the closest possible nodes.
The turning angle of each movement is restricted to multiples of 45◦, which
makes the path linked in a zigzag style. Consequently, the path A* finds is not
guaranteed to be the optimal path.
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3.2 A* with Larger Neighborhood

The length and smoothness of the paths A* finds are influenced by the connec-
tivity of possible nodes which is determined by so-called ‘neighborhood’. The
term ‘neighborhood’ indicates the area that A* algorithm explores in a single
step, which determines the successor nodes that can be reached from a source
node.

One method to improve A* is to enlarge the neighborhood. As shown in Fig. 4,
when neighborhood = 1 is considered, the algorithm can search 8 successor
nodes. This is the most frequently used A*. 8 directions are possible to move
into in a single step. When the neighborhood increases to 2, 16 more grids and 8
more directions can be searched in each step. Thus, the larger the neighborhood
is, the more successor nodes the algorithm can reach, and the more directions
are possible to be explored in a single step.
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Fig. 4. Neighborhood in A* algorithm.

It is considered that a larger neighborhood results in the discovery of a shorter
path due to the increased fineness of possible directions. However, the compu-
tation time will also increase since more nodes need to be explored at each
step. The trade-off must be made between the optimality of the path and the
computation time in terms of requirements during for implementation.

3.3 A* with Post-smoothing

A* with Post-smoothing (A*PS) runs A* on grids and then smooths the resulting
path, which often shortens it at the cost of an increase in computation time.
Denote by [s0, s1, ..., sn] the path that A* finds on grids, with s0 = sstart and
sn = sgoal. A*PS firstly uses s0 as the current node. It then find out the farthest
node si that is in line-of-sight with s0 on the path from sn to s1. Then, A*PS
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removes the intermediate nodes s1 to si−1 from the path, thus shortening it.
Then si becomes the current node and A*PS repeats this procedure until it
reaches the end of the path.

A*PS typically finds shorter paths than A* on grids, but is not guaranteed
to find the optimal path [3,22]. The reason for this is that it only considers
resulting paths and thus cannot make informed decisions regarding other paths
during the A* search, which motivates the idea of interleaving smoothing [3].

3.4 Theta*

Theta* is an extension of the A*, which resides in the visibility test between suc-
cessor nodes and the parent nodes. The main difference between A* and Theta*
is that Theta* considers the path from the parent(s) to node s′. In each step,
when s (the node with the lowest f(sstart, s, sgoal) in Open) expanding its succes-
sors s′ in nbrlos(s), the visibility between s′ and parent(s) is checked. If parent(s)
is visible to s′, parent(s′) becomes parent(s), and g(s′, sstart), h(s′, sgoal) and
f(sstart, s′, sgoal) are updated correspondingly. Thus, parent(s) and s′ are directly
connected. A detailed description of Theta* can be found in [3].

Theta* reduces some unnecessary heading changes taking advantage of the
visibility test. Since Theta* carry out line-of-sight checks between a source node
and its neighbor nodes, the computation time of Theta* is longer than A* and
A*PS. However, Theta* is not guaranteed to find optimal paths. The parent of
a node should be a visible neighbor of the node or a parent of a visible neighbor,
which lead to a limitation of expanding nodes [3,22].

3.5 A* Adaptation Considering Navigation Regulations

As mentioned, it is necessary to take the navigation rules and regulations into
account when planning paths for inland autonomous vessels. Thus, adaption
should be made when applying A* and its extensions to inland vessels.

The main regulations in Dutch inland waterways are the RPR (Rijnvaart-
politiereglement, Rhine Navigation Police Regulations) and the BPR (Binnen-
vaartpolitiereglement, Inland Waterways Police Regulations). One important
item related to global path planning in these two regulations is: ‘if two ves-
sels encounter each other with the risk of collision, the vessel not following the
starboard side of the waterway must give way to the ship following the star-
board side’ [15]. Accordingly, vessel controllers generally choose the path on the
starboard side of the waterway as preferred path. To reflect this circumstance,
the middle line of a waterway is applied to separate the vessel traffic from differ-
ent directions when implementing the path planning algorithms for autonomous
inland vessels.

The paths that the planning algorithms compute are usually close to the bor-
der of obstacles. Because of ship-bank interaction, sailing closer to the obstacles
will increase the risk of collision [20,24]. For the sake of safety, vessels usually
keep a certain distance from the obstacles. Therefore, buffer areas are set around
the obstacles. When planning the path, the paths via the buffer areas are still



72 L. Chen et al.

available to vessels with a penalty in path length. In this way, when implement-
ing A* and its extensions, f(sstart, s, sgoal) of a grid in a buffer area is larger
than its original value when there is no buffer areas.

4 A* on Border Grids

The algorithms presented in Sect. 3 are not guaranteed to find the optimal paths.
An algorithm named A* on Visibility Graphs (A*VG) has been proven to be able
to find the optimal paths on a map with disjoint polygonal obstacles [1,3]. In
A*VG, visibility graphs are constructed before the A* search. If two locations do
not pass through any obstacle, an edge is drawn between them to represent the
visibility connection. The paths A*VG finds are along the edge and have heading
changes only at the border of obstacles. However, A*VG can be slow. Visibility
checks need to be performed for every pair of blocked nodes to determine whether
or not there should be a visibility edge between them.

The above mentioned algorithms have different advantages and disadvan-
tages. The characteristics of each algorithm are concluded in Table 1. A* on grid
maps are simple and with relatively low computation time. However, the path
it calculates is usually the longest. Theta* and A*VG take the advantage of the
visibility check, and the paths these two algorithm find are relatively shorter. At
the same time, their computation times are longer. Based on the comparison, a
new algorithm for inland autonomous vessels is proposed next.

Table 1. Summary of the characteristics of the algorithms.

Algorithm Description Typical path length Computation

time

Advantage Disadvantage

A* A* Longest Shortest Simple;

Modifiable

Not any angle;

Zigzag style

path

A*PS A* + Post process

visibility test

Shorter than A* Longer than

A*

Any angle Rely on the path

found by A*

Theta* A* + Resides in

visibility test

Shorter than A*PS Longer than

A*PS

Any angle Long computation

time

A*VG A*+Visibility graph Optimal (with

polygonal obstacles)

Longest Any angle Long computation

time

Inspired by A*VG, in the new algorithm, the border of the obstacles are
decomposed into grids. The grids in the line-of-sight of a source node are its
successor nodes. This algorithm is represented as A* on Border Grids (A*BG).

Algorithm 1 shows the pseudo code of A*BG. s is the node with the lowest
f(sstart, s, sgoal) in Open. Line-of-sight checks are carried out between the source
node s and all border grids. The nodes visible to s are included in the set
Candidates as the candidate successors to be expanded. For each node s′ in
Candidates, if it is visible to parent(s), its parent(s′) and other related values
will be updated. Then, the node with lowest f(sstart, s, sgoal) in Open is assigned
to s again. This procedure is repeated until s is sgoal.



Path Planning for Autonomous Inland Vessels Using A*BG 73

Algorithm 1. A*BG
1 while s �= sgoal do
2 s ← node with the smallest f(sstart, s, sgoal) in Open;

3 Candidates = ∅;
4 foreach n ∈ BorderGrids do
5 if lineofsight(n, s) then

6 parent(n) = s;
7 g(n) = g(s) + distance(n, s); h(n) = distance(n, sgoal);

8 Candidates.Insert(n, parent(n), g(sstart, n), h(n, sgoal), f(sstart, n, sgoal))

9 foreach s′ ∈ Candidates do
10 if lineofsight(s′, parent(s)) then

11 if g(sstart, parent(s)) + distance(parent(s), s′) < g(sstart, s′) then

12 parent(s′) = parent(s);

13 g(sstart, s′) = g(sstart, parent(s)) + distance(parent(s), s′);

14 if s′ ∈ Open then
15 if g(sstart, s′) in Candidates < g(sstart, s′) in Open then

16 Remove the item s′ from Open

17 else continue; // Do not execute line 18

18 Open.Insert(s′, parent(s′), g(sstart, s′), h(s′, sgoal), f(sstart, s′, sgoal))

Inspired by Theta* and A*VG, A*BG considers the connection of parent(s)
and s′, and the paths A*BG calculated only have heading changes at where line-
of-sight is blocked, which reduces unnecessary heading changes and the path
length. Applying border grids instead of visibility graph can greatly reduce the
number of visibility test. Using border grids instead of transferring the whole
map into grids reduces the amount of nodes the algorithm need to search, which
makes the algorithm faster. Moreover, regarding all visible border grids as can-
didates when expanding successors, A*BG does not influenced by the size of
neighborhood and it is able to search in every direction.

5 Simulation Experiments

To test the performance of the algorithms, in this section, we compare A*, A*PS,
Theta* and A*BG with respect to their path length and computation time.

5.1 Case Study Areas

Safety is one of the main factors that should be kept in mind when planning for
autonomous vessels. Consequently, we choose for our experimental areas inland
waterway regions where relatively many accidents have taken place in the past.

The locations of ship accidents occurred in Dutch inland waterways during
2008–2015 are shown in Fig. 5. The places where accidents frequently occur are
ports and intersections. Accordingly, we choose an intersection and a port area
for carrying out the experiments. Case Study 1 is the area of the Oude Maas.



74 L. Chen et al.

Fig. 5. Location of ship accidents [16] and case study areas (maps taken from [9]).

Table 2. Experimental results.

Neighbor-
hood

A* A*PS Theta* A*BG

Computation Path length Computation Path length Computation Path length Computation Path length

time (s) (unit) time (s) (unit) time (s) (unit) time (s) (unit)

Case Study 1

1 45.86 514.99 45.93 497.98 46.09 495.63 93.23 494.39

2 112.48 501.63 112.54 497.04 121.57 494.95

3 210.09 497.32 210.13 495.29 226.37 494.85

4 333.05 496.06 333.09 494.94 364.32 494.58

5 485.30 495.45 485.33 494.68 532.33 494.57

6 660.84 495.07 660.86 494.56 722.57 494.49

7 862.00 494.84 862.02 494.49 975.32 494.47

8 1083.59 494.70 1083.61 494.48 1198.15 494.42

9 1333.76 494.61 1333.79 494.45 1473.00 494.42

10 1611.61 494.56 1611.63 494.44 1791.48 494.41

Case Study 2

1 87.67 540.78 87.77 514.14 94.50 514.24 502.15 510.32

2 241.38 517.98 241.45 512.23 262.70 511.52

3 468.63 512.68 468.67 511.57 510.03 511.12

4 771.08 511.49 771.12 511.22 833.87 510.97

5 1143.20 511.22 1143.25 511.07 1236.45 510.58

6 1591.53 510.85 1591.57 510.68 1713.21 510.58

7 2118.28 510.76 2118.32 510.67 2262.04 510.49

8 2721.35 510.73 2721.39 510.66 2903.01 510.34

9 3390.31 510.71 3390.35 510.66 3615.47 510.33

10 4143.80 510.71 4143.84 510.66 4380.30 510.33

It is an intersection near the Port of Rotterdam, where is the convergent place
of river Noord, Benede-Merwede, Dordsche Kil and Oude Maas. Case Study 2
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is Port of Rotterdam. It is the largest port in Europe and the place accidents
most frequently occurred.

5.2 Setup

All algorithms tested in our experiments are grid-based. Thus, the maps of our
case study areas are transfered into 500 × 250 grids. The length of 1 grid is 1
unit. The buffer area in Case study 1 is two grids near the obstacles and in
Case study 2 is 1 grid. Vessels can sail in the buffer area, but with a penalty
length. We use middle lines to take the regulations into consideration. To study
the influence of the size of neighborhood, the algorithms are carried out with
increasing neighborhood (from neighborhood = 1 to neighborhood = 10).

The algorithms tested in our experiments maintain three values for every
node: g(sstart, s) is the length of the path from sstart to s; h(s, sgoal) is the

(a) Case Study 1.

(b) Case Study 2.

Fig. 6. Experiment results (Ngb: Neighborhood of the algorithms).
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straight-line distance of s and sgoal; f(sstart, s, sgoal is the sum of g(sstart, s)
and h(s, sgoal). We use the Euclidean distance in the experiments. The distance
between two nodes N(x, y) and N ′(x′, y′) is

√
(x − x′)2 + (y − y′)2. That is, the

distance from one grid to an adjacent left\right\up\down node is 1 unit, and to
an adjacent diagonal node is

√
2 units.

The experiments are run on a PC with a dual-core 3.2GHz Intel(R) Core(TM)
i5-3470U CPU and 8GB of RAM. Each case has been repeated for 5 times.

5.3 Experiment Results

The results of the simulation experiments are shown in Table 2 and Fig. 6. The
path length and average computation time over 5 repetitions are provided.
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(a) Paths calculated by A* with different size of neighborhood.
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(b) Paths found by different algorithms (neighborhood = 1).

Fig. 7. Paths found in Case study 1.
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As shown in Table 2, two case studies show similar relations between the
path length, computation time and the size of neighborhood. For A*, A*PS
and Theta*, with the increase of neighborhood, the length of the paths becomes
shorter, but the computation time increase dramatically as well. When the neigh-
borhood is small, the length of the paths that the three algorithms found differs
greatly. The difference decreases when the neighborhood is enlarged (Fig. 6). The
path length of the three algorithms then approaches to a certain value.

With respect to A*BG, the size of neighborhood does not influence the results
of A*BG. In the two case studies, A*BG shows the best performance. The path it
computed is shorter than the shortest path the other three algorithms find, and
the computation time is much shorter. Similar to other three algorithms, when
the planning area becomes larger, the computation time of A*BG increases.

Figure 7 shows the path found in Case study 1. The paths calculated by A*
with different size of neighborhood are shown in Fig. 7(a) as an example to show
the impacts of the neighborhood size. Because the length of paths that the tested
algorithms find differs greatly when neighborhood = 1, this situation is chosen as
an example to present the difference of the paths found by different algorithms
in Fig. 7(b). The main difference among the paths lies in the bend segments.
The algorithms which find the shorter paths, A* when neighborhood = 10 and
A*BG, find smoother paths at the bend segments.

6 Conclusions and Future Research

Autonomy is seen as a possibility for maritime transport to meet today’s and
tomorrow’s challenges. In realizing autonomous navigation, path planning plays
an important role. As a starting point of path planning for inland autonomous
vessels, a modified A* algorithm (A*GB) is proposed to solve the global path
planning problem. In this paper, we carry out experiments to compare the per-
formance of A*, A*PS, Theta* and A*GB. Two places where ship accidents
frequently occurred in the past are chosen as case study areas. The path length
and computation time of each algorithms is analyzed. Trading off the path length
and computation time, the performance of A*GB is more satisfying for inland
autonomous vessels’path planning.

There are several directions in which this research will be extended. Firstly,
when the planning area is larger, the computation time increases and the fineness
of the grids also decreases, which affect the performance of the algorithm. The
principle of Model Predictive Control can then be used to solve this problem.
Long voyages are divided into smaller segments, after which a vessel updates
its path at subsequence decision steps. Secondly, in this paper, the impact of
infrastructures is not included. As important components in inland waterway
system, infrastructures such as locks and bridges have great impact on inland
shipping. Most delays are caused by operation of locks and bridges. Global path
planning should also consider these influences. Finally, real-time information
should also be taken into account. If preplanned paths are blocked due to acci-
dents, or if there is a long waiting time at a certain lock, it is important that
the vessel can replan its path according to real-time information.
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Moreover, the global path planner considered here only provides reference
paths considering static obstacles for an autonomous vessel. Algorithms for local
path planning, i.e., collision avoidance, are needed to deal with the moving obsta-
cles. These moving obstacles not only include other autonomous vessels, but also
vessels operated by humans. With different obstacles, the information available
is different. Besides, the actions controllers take and the resulting trajectories of
the vessels operated by humans are uncertain. How the autonomous vessel com-
municates and coordinates with others using different sources of information and
deals with uncertainties are future research problems.
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Abstract. We consider a container terminal that has to make appoint-
ments with barges dynamically with only limited knowledge about future
arriving barges, and in the view of uncertainty and disturbances. We
study this problem using a case study at the Port of Rotterdam, con-
sidering a proposed multi-agent system for aligning barge rotations and
terminal quay schedules. We take the perspective of a single terminal
participating in this system and focus on the decision making capabili-
ties of its intelligent agent. Using simulation, with input settings based
on characteristics of the larger terminals within the Port of Rotterdam,
we analyze the benefits of our approach. We conclude that a terminal can
increase its utilization significantly by using various sources of flexibility
in the operational planning.

Keywords: Terminal planning · Quay scheduling · Dynamic assign-
ment · Multi-agent system · Simulation

1 Introduction

The Port of Rotterdam, located in the Netherlands, is the largest port in Europe
and the world’s tenth-largest container port in terms of twenty-foot equivalent
units (TEU) handled. Over the past years there has been a tremendous growth
in container transportation, going from less then 0.4 TEU in 1970 to over 12 mil-
lion TEU in 2015. During these years, the quality and accessibility of hinterland
transportation has become increasingly important. The number of transported
containers to the hinterland has grown tremendously, and nowadays the hinter-
land services form a large share in the total transportation bill [11]. To reduce
the pressure on the current road infrastructure as well as to reduce greenhouse
gas emissions, the port aims for a modal shift from road to barge or train. Here
we focus on barge hinterland container transportation. Specifically, we take the
perspective of a terminal operator on how it can improve its operational perfor-
mance when making appointments with barges dynamically and in real-time.

A major problem in the port is the poor alignment of barge and terminal
operations. This poor alignment results in uncertain dwell times of barges and a
significant loss of capacity for terminal operators. Typically, barges have to visit
c© Springer International Publishing Switzerland 2016
A. Paias et al. (Eds.): ICCL 2016, LNCS 9855, pp. 80–95, 2016.
DOI: 10.1007/978-3-319-44896-1 6
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about eight terminals when visiting the port. The sequence in which the termi-
nals are visited, determines to a large extent the time a barge needs to complete
all its loading and unloading activities. An additional problem is that a delay at
one terminal propagates quickly to the other terminals. The alignment of barge
and terminal operations, the so-called barge handling problem, is considered to
be the most urgent problem in hinterland barge container transportation by the
Port of Rotterdam. Solving this problem improves the hinterland connectivity
and thereby the attractiveness of the port significantly, and stimulates a modal
shift towards barge transportation.

To provide a solution for the barge handling problem, an agent-based decision
support system has been proposed [5,6]. The reason to use a multi-agent (or
distributed planning) system is that players are reluctant to share information
with their competitors and prefer to have control over their own operations. In
earlier research, the focus was on decision support for barge operators. However,
the new way of working will have a major impact on the way terminal operators
make appointments with barge operators. Opposed to the old situation, where
appointments were made manually and the terminal planning was made off-line,
the new situation requires real-time (partly) automated decision making.

The objective of this paper is to come up with operational planning rules
for terminals to efficiently utilize their capacity given the changed setting in
which they have to operate, i.e., a setting in which they have to make reliable
appointments with barges taking into account future events and disturbances,
e.g., delayed arrivals of container vessels. To support the operational planning
rules, we present various sources of flexibility and provide numerical results on
the impact of using them on quay utilization and barge waiting times.

The remainder of this paper is structured as follows. In Sect. 2, we give a
brief overview of the relevant literature. In Sect. 3, we present our model, the
decisions involved, and our solution approach. We present our simulation model,
with corresponding numerical results, in Sects. 4 and 5. We close with conclusions
in Sect. 6.

2 Literature Review

During the last decade, a substantial amount of research has been conducted to
increase the efficiency of container terminal operations. Different subjects within
this area include the berth allocation problem, quay and yard cranes assignment
and scheduling, and yard storage management and container stacking. Extensive
literature reviews on these subjects can be found in [1,24,28].

A closely related problem is the berth allocation problem (BAP), which con-
cerns the assignment of berths to ships such that berth utilization is maximized
or the waiting time for ships are minimized. Extensive literature reviews on this
subject can be found in [2,23,24,26]. The literature on the BAP makes assump-
tions which do not hold for the barge handling problem. First, the arrival times
of vessels are generally assumed to be known [1,19,26]. This assumption is made
for the so-called static BAP, where ships are waiting at the start of the planning
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horizon, but also for the dynamic BAP where ships arrive during the planning
horizon [2,10], as also considered in this paper. The planning of quay cranes is
called the quay crane assignment problem (QCAP) and the quay crane schedul-
ing problem (QCSP). A recent trend in the BAP literature is to combine these
three problems, see, e.g., [1,9,14,20,21] for an overview.

Although our focus is on a terminal as a single decision maker, research on
multi-agent systems is relevant since we aim at an implementation environment
where the single terminal participates in such a system. In the area of road
transportation, many examples of agent-based approaches can be found [16].
However, applications of agents in transportation via water are scarce and most
papers have focused on the alignment of activities at a single terminal [3]. Exam-
ples include the optimal placement of containers in the yard [7], strategies for
the cranes to minimize the trucks’ wait time [27], simulation of ships and their
allocation [25], and simulation of various strategies regarding the movement of
containers from the ship into the yard [8]. A multi-agent cooperative planning
system between multiple intermodal transport operators is considered in [13].

Agent-based or distributed planning approaches for inland barge traffic in the
port of Rotterdam have been suggested by various authors. Initially, the focus
was on creating an off-line planning system, where barge rotations were planned
one day in advance [22]. From this work it became clear that a decentralized
control structure offers an acceptable solution for the parties involved [18]. Next,
the focus was on real-time agent-based planning [6]. Based on these agent-based
systems, two multi-player games have been developed [5,17] that contributed to
the acceptance among barge operators of the proposed multi-agent system.

In this paper, we contribute to the existing literature by studying how to
schedule ships (barges and container vessels) such that a high quay utilization
is realized. We take the perspective of a single terminal that operates within a
port-wide multi-agent system for the barge handling problem as described in [6].
A consequence of using this system is that the terminal agent has to respond to
barge handling requests dynamically, in real-time, and partly automatic.

3 Model Description

First, we describe the environment within which the terminal operates (Sect. 3.1).
Next, we present our modeling assumptions and notation (Sect. 3.2), our objec-
tive (Sect. 3.3), and the decisions we have to make (Sect. 3.4).

3.1 Multi-agent Environment

We illustrate our approach using the multi-agent system from [6]. In the remain-
der of this section, we briefly explain this system to understand the decisions a
terminal has to make in this specific case.

Starting point of the distributed planning approach is improving the relia-
bility of appointments. The basic idea of the proposed system is that terminal
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and barge operators get a software agent that act on their behalf. This plan-
ning approach is preferred by the operators, because it enables them to stay in
control of their own operations and share only limited information. The crucial
information shared by the terminal agents are the so-called service-time profiles.
A service-time profile (STP) is issued on request of a barge operator and denotes
a guaranteed maximum service time given a certain arrival time at the terminal,
where service time is defined as the sum of the waiting and handling time at
this terminal. Hence, an STP is barge and time specific. Barge operators can
use the STPs to optimize their rotation (sequence of terminals visits). Terminal
operators in turn can use the STPs to indicate preferred handling times thereby
optimizing their capacity utilization.

Barges arrive in the port over time. On arrival in the port, the barge operator
requests STPs at all terminals he has to visit. A terminal has to reply instan-
taneously and has to do so with only limited knowledge about future arriving
barges. After receiving all STPs, the barge operator determines its best rotation
and announces its preferred arrival time at the terminal. The terminal oper-
ator makes an appointment by confirming the barge’s latest arrival time and
a guaranteed maximum service time. By making the appointment, the barge
commits to a latest arrival time and the terminal commits to a latest depar-
ture time (namely the latest arrival time plus the guaranteed maximum service
time). When barges arrive after their latest arrival time, the appointment will
be canceled, regardless of the reason for the delay. During the whole process
from planning to execution, the terminal has to deal with uncertainty and dis-
turbances, such as uncertain arrival times and handling times of barges and
container vessels, as well as cancellations and no-shows.

3.2 Assumptions and Notation

As stated earlier, we take the perspective of a single terminal. We assume that
the activities at other terminals are reflected in the arrival process of barges at
the terminal of interest. This assumption is not unrealistic, since terminals do
not share their operational information with each other for competitive reasons.
As point of reference, we consider the large terminals within the Port of Rotter-
dam. These terminals are characterized by high volumes, large numbers of quay
resources, and high utilization rates. Our focus is on the operational planning
level of the terminal. This means that decisions made at the tactical level (such
as the amount of capacity deployed) are considered fixed.

The planning process starts with a barge n ∈ N requesting an appointment
at the terminal. We assume that this barge has a preferred (or earliest) arrival
time en. When the barge cannot be scheduled within a given planning period, it
will be rejected (rn = 1). Obviously, rejection is often not possible in practice
and the terminal has to assign additional capacity to handle these requests. How-
ever, using the number of rejected requests, we can gain insight in the amount
of additional capacity that needs to be assigned. If the barge is not rejected,
(rn = 0), we provide the barge an STP. This STP gives for each possible latest
arrival time ln a service-time sn = dn−ln, with dn being the latest departure time.
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The latest departure time dn is guaranteed by the terminal when the barge arrives
on time (an ≤ ln), with an being the actual arrival time. When the barge arrives
too late (an > ln), the appointment will be canceled (rn = 1). We further intro-
duce a handling time hn for the time required to load/unload the containers from
barge n, and a planned starting time bn, with ln ≤ bn ≤ dn − hn. The actual
starting time might take place before ln in case of an early arrival. We illustrate
the notation using the example schedule of Fig. 1. Here, the first ship arrives ear-
lier than its latest arrival time (a1 < l1) and handling of the ship is started earlier
than its latest arrival time (b1 < l1). The other ships have a planned starting time
bn equal to their latest arrival time ln. For ship 3, we have the possibility to post-
pone the starting time b3 by two time units because the service time s3 is two time
units longer than the handling time h3 = 3.

IdleShip 1Idle Ship 2

0 4 6 9 12Time

Activity Ship 3

14

Idle

T

l1 d1 b2,l2 d2,b3,l3 d3

s1 s2 s3

1

b1a1

Current time

2

Fig. 1. Illustration of a schedule

3.3 Objective

The objective of the terminal operators we interviewed in the Port of Rotter-
dam is to maximize the utilization of their quay resources. More specifically,
to maximize the utilization of crew, crane(s), and berthing position(s), and in
this sequence. We make two comments regarding the utilization rate as terminal
objective. First, maximizing the utilization of quay resources cannot be done
without keeping an eye on the waiting time of barges. Given the variability in
barge arrivals, a utilization rate of 100 % will definitely lead to infinite waiting
times for the barges. Second, if the capacity of the terminal is fixed during a
certain time period by decisions made at the tactical level, as we assume in this
paper, then the utilization rate of a terminal only depends on the barges we
accept to handle within this period. Therefore, the main objective is to make
appointments, in such a way that the utilization rate of the terminal within a
given time period is maximized. Since we assume the capacity to be fixed, this
results in the maximization of the sum of the handling times of all accepted
barges within the given time period, i.e., max(

∑
∀n∈N (1 − rn)hn), subject to

having an average waiting time for the accepted barges below a reasonable
bound.

3.4 Decisions

The main decision of the terminal is to set the service-times sn = dn − ln, for
all possible latest arrival times ln, as part of the STP. To create the STP in
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real-time, we assume that the terminal starts with a list of intervals in which
barges can be handled. These intervals depend on, e.g., opening times, scheduled
ships, and resource capacities, and do not depend on a specific barge. Without
loss of generality, we assume that the intervals are given by the maximum length
of the idle periods between planned ships as shown in Fig. 1. Since the terminal
has some flexibility in choosing the planned starting times (see Sect. 3.5), the
interval between ship n and ship n+1 is given by planning the starting times of
ships before ship n + 1 as early as possible and for ships after ship n as late as
possible, resulting in an interval [bn + hn, bn+1]. These intervals are determined
for each possible insertion position. Upon a barge request, the terminal (i) makes
a selection of intervals to offer to the barge operator and (ii) constructs the STP
using these intervals, see [6]. These two decisions are based on the amount of
buffer and slack to be used respectively (see Sect. 3.5). After an appointment
has been made, the terminal has to schedule the starting times bn and has the
option to re-schedule barges (see Sect. 4).

3.5 Sources of Flexibility

We approach the problem from a practical point of view by considering various
sources of flexibility. We define a source of flexibility as a factor that offers
planning flexibility in the terminal schedule. From multiple interviews with barge
and terminal operators within the Port of Rotterdam, we conclude that sources
of flexibility are used frequently to deal with real-time decision making under
uncertainty. With this approach, we aim to provide insight into the benefits of
deploying these sources of flexibility to improve terminal performance.

There are several factors in the planning and execution of barges that poten-
tially improve the planning flexibility of the terminal. We mention the following
instruments terminals might use:

– Buffer. The terminal might only consider intervals that are at least a buffer wn

longer then the required handling time hn, i.e., intervals shorter then hn +wn

are not offered to the barge.
– Slack. The terminal can add slack vn to an appointment with a barge, such

that the latest departure time becomes dn = ln + hn + vn. This way, the
terminal has flexibility in choosing the planned starting time bn and postpone
it up to ln + vn.

– Re-scheduling. The terminal may reschedule barge appointments thereby
improving its quay schedules.

– Cancellation. The terminal can cancel appointments, e.g., when a schedule
becomes infeasible.

Even though the terminal as no (or little) influence on it, the characteristics
of barges might also provide a potential source of flexibility. We mention the
following:
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– Early arrival. A barge arrives earlier than its latest arrival time (an < ln).
– Cancellation. A barge cancels an appointment at the terminal, meaning that

the terminal can use the time that comes free for other purposes.
– Deviation in handling time. The handling time distribution of a barge may

impact the flexibility of the terminal to fill an interval.

Note that not all of these sources of flexibility are desired by the terminal.
For instance, a cancellation by a barge is usually a disturbance in the schedule,
although it can sometimes be welcomed when the terminal deals with delays.
Here we assume that cancellations just take place and therefore consider it as a
potential source of flexibility.

4 Simulation Model

To investigate the impact of the different sources of flexibility, we use discrete
event simulation. To provide realistic insights, we use the large terminals within
the Port of Rotterdam as point of reference. The simulation settings are based
on these terminals and on interviews with barge operators as reported in [4]. An
overview of our simulation model is given in Fig. 2.

We determine the arrival rate of barges and container vessels using a desired
utilization rate (instead of the other way around). The desired quay utilization
rate in the simulation is set to 85 %, with a share of 45 % for barges and 40 %
for container vessels. These numbers are based on 2006 figures from two large
terminals within the Port of Rotterdam, see [4]. The 85 % is also close to the
average utilisation of 86.6 % for North European deep seaports [15] and in line
with the Drewry Maritime Research forecasts for average container terminal
utilization world wide. We choose to control the utilization rate and derive from
that the mean interarrival time for both barges and container vessels:

mean interarr. time =
mean handling time · (1 − cancellation rate)
terminal capacity · desired utilization rate

, (1)

where the terminal capacity is given by the amount of time this terminal is open
multiplied with the number of quays.

Barges arrive with exponentially distributed interarrival times upon which a
preferred arrival time is determined and announced to the terminal. The pre-
ferred arrival time is drawn uniformly between the current time and 48 h later.
This way, we mimic a realistic arrival process, i.e., a barge that arrives later
may be processed earlier than another barge that arrived earlier. The number of
containers to load/unload, announced by a barge, is distributed according to a
Weibull distribution (parameters shown in Table 1). The handling time per con-
tainer is assumed to be 3 min. We assume that the exact number of containers
to load/unload is known at the start of handling a barge.

Container vessels arrive according to a Poisson process. They announce their
arrival time and total number of containers to load and unload three weeks
prior to their initial planned arrival time. The handling of a container vessel has
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Fig. 2. Overview of the simulation model

priority over the handling of barges. The handing time, in minutes, is drawn
from the Beta distribution with α = 1.14, β = 8.3, multiplied by 6400.

Without loss of generality, we assume the terminal is open 24 h per day
and has 4 quays. A quay is a combination of resources that are all necessary to
handle a ship; both sea vessels and barges are handled at one quay. The schedule
of the terminal will consist of several gaps (intervals), since it is not likely that
barges are scheduled directly after one another. When the terminal receives an
announcement of the barge preferred arrival time en at the terminal, it schedules
the latest arrival time ln of this barge at the first possible starting time after
en. Initially, the terminal schedules each barge with starting time bn = ln and
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latest departure time dn = an + hn + vn. The terminal can start the handling of
a barge earlier than its latest arrival time if the barge arrives earlier and when
no appointments with other barges are violated.

During the simulation, four types of disturbing events may take place that
require an action of the terminal. First, a barge arrives earlier than planned,
this becomes known upon arrival. Earliness in minutes is drawn uniformly from
[0, x], where x is an experimental factor (see Table 1). Second, a barge cancels
its appointment. The fraction of barges that cancel their appointment is an
experimental factor (see Table 1), and cancellation by a barge happens at a
uniform time [0, 5] h prior to its latest arrival time. Third, the handling time of a
barge might be different than announced before, this becomes known upon the
start of handling. We use a uniform deviation [−4, 5] in the number of containers,
using a lower bound of 1. Fourth, a container vessel arrives at a different moment
or has a different handling time, this information will be announced by the
container vessel 48 h prior to its latest arrival time. Regarding the deviation
in total handling time of a container vessel, we assume a uniform deviation
[−20%, 20%]. Regarding the deviation in arrival time, we assume a uniform
delay [−8, 8] h, using the current time as lower bound.

In case of a disturbance, the terminal applies a policy as shown in Fig. 2 and
described below.

– On arrival of a barge. The terminal checks if it can start handling the barge
without violating other appointments. If not, the barge will be cancelled.

– On cancellation of a barge. In case of cancellation by a barge, the terminal
can perform two actions, namely not to reschedule or to reschedule. Not to
reschedule means that the terminal plans all barges in one specific quay sched-
ule as early as possible while keeping the sequence of scheduled barges on a
specific quay the same. To reschedule means that the terminal reconsiders
all quay schedules, and may change the timing, the sequence, and the quay
where barges are planned. The rescheduling procedure is as follows. The ter-
minal makes a list of all candidate barges that could be scheduled in the new
gap that arose after the cancellation. Candidate barges are barges of which
(i) the handling has not been started, (ii) the planned starting time is greater
than the start of the new gap, and (iii) that fit into the new gap. The barge
with the lowest latest arrival time of all candidate barges is scheduled in the
new gap. If this barge does not fill the gap completely, then the terminal looks
for the next candidate barge until either the gap is filled or the list of can-
didate barges is empty. The same procedure is then applied for all gaps that
arise after moving the barges to the new gap until all gaps are filled or no
candidate barges for rescheduling are available anymore.

– On handling a barge. Upon the start of handling a barge, it might appear that
the handling time will be longer then planned. As a result, other appointments
might become infeasible. The terminal will not cancel the barge currently in
process. Instead, the terminal will check for each barge and container vessel
planned after this barge whether the appointment is going to be violated. If
an appointment with a barge is violated, then this appointment is cancelled.
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Table 1. Experimental factors with their corresponding low and high values

No. Factor Low High Comment

1 Early arrival 120 0 The barge arrives in the low scenario a uniformly
distributed time between 0 and 120 min earlier,
and in the high scenario at its latest arrival
time

2 Handling time − + Weibull distribution for the number of containers
to load and unload, with parameters λ = 2.1
and κ = 33.9 for the low value and with
parameters λ = 1 and κ = 30 for the high value
(corresponding with a mean of 30min and
standard deviation of 15 and 30min)

3 Cancellations 0 0.2 Fraction of barges that cancel an appointment

4 Re-scheduling No Yes Re-schedule on cancellation of a barge, see the
policy for ‘on cancellation of a barge’

5 Slack 0 40 Minutes slack to add to appointments

6 Buffer 0 30 Minutes buffer to use between appointments

If an appointment with a container vessel is violated due to a scheduled barge,
then the barge appointment is cancelled.

– On receiving an update from a container vessel. When a container vessel
announces its real arrival time and the required handling time, then the ter-
minal updates the quay schedules. In case the container vessel appointment
conflicts with scheduled barges, then the barge appointments are cancelled.
If the appointment conflicts with an earlier scheduled container vessel, then
the arrival time of the container vessel is updated with the completion time
of the earlier scheduled container vessel. If the appointment conflicts with
later scheduled container vessels, then the appointments with later scheduled
container vessels are postponed.

To analyze the effects of the different sources of flexibility, without consider-
ing the computationally intractable full-factorial design, we split our analysis in
two parts. In the first part, we use a 2k factorial design [12], where we choose
two levels (high and low) for each of the six factors (sources of flexibility), which
means that we have 26 = 64 possible factor-level combinations. Table 1 denotes
the six sources of flexibility that are considered, with their respective high and
low values. The values 120 min early arrival, 40 min slack, and 30 min buffer
correspond with roughly the 95th, 87th, and 86th percentiles of the distribution
in handling time deviations of all ships, respectively. In the second part of our
analysis, we perform a full factorial experiment using the most promising factors
found in the first part.

We validated our model by comparing it with [4] under similar conditions
without using the various sources of flexibility. To provide accurate results, we
replicate each experiment five times, where each replication has a warm-up
period of 10 days and a run length of 365 days.
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5 Numerical Results

In this section, we present the results from the simulation experiments described
in the previous section.

Factorial Analysis. The results (averaged over all replications) of each scenario
considered with respect to both, the utilization rate and the average barge wait-
ing time, are shown in Fig. 3. The design points follow the logic from [12]; using
‘−’ and ‘+’ to denote the low and high level respectively, the first five design
points are given by: (−,−,−,−,−,−), (+,−,−,−,−,−), (−,+,−,−,−,−),
(+,+,−,−,−,−), and (−,−,+,−,−,−).

Fig. 3. Results for the 2k factorial design

We draw the following conclusions. First, scenarios with slack (scenarios 17–
32 and 49–64) result in the highest average quay utilization rate. Clearly, a
relatively low amount of slack provides enough flexibility to deal with distur-
bances; a slightly lower value for the buffer and a much higher value for earliness
have a much lower impact on the utilization rate. Second, in scenarios where
barges arrive early (the uneven scenarios), we observe a higher utilization rate
than the corresponding scenarios in which barges arrive at their latest arrival
time. This is different when also slack is added to appointments (compare, e.g.,
scenarios 1–16 with 17–32). Third, if barges arrive early, they usually have more
waiting time. When also slack is added to the appointments, then the waiting
time increases even further (compare, e.g., scenarios 1–16 with 17–32). Fourth,
a buffer seems to have effect only when also slack is used in the appointments
(small differences between scenarios 49–64 and 17–32 with slack and almost no
differences between scenarios 33–48 and 1–16 without slack). Finally, re-planning
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on cancellations seems to have no visible impact (compare, e.g., scenarios 1–8
with 9–16, or scenarios 49–56 with 57–64).

The above mentioned observations are confirmed by the main effects and the
two-way interaction effects (results not shown). The two sources of flexibility with
the largest positive impact on the terminal performance are early arrivals and
slack. The buffer has a much lower impact, but may be interesting to have a closer
look at. The factors 2 (handling time distribution), 3 (fraction of cancellations),
and 4 (re-scheduling on cancellation), have hardly any impact on the utilization
rate of the terminal or on the average barge waiting time. This explains why
there are many scenarios with almost similar results.

Zooming in on Three Sources of Flexibility. In this section we focus on
three sources of flexibility that have the highest impact on the terminal per-
formance, namely slack, early arrivals, and the buffer. We evaluate these fac-
tors in all combinations using broader ranges then considered in the 2k facto-
rial analysis: slack ∈ {0, 40, 80, 120}, early arrival ∈ {0, 30, 60, 120}, and buffer
∈ {0, 20, 40, 60}. For clarity of presentation, we fix one parameter at a time to
its second lowest value while varying the other two (the remaining combinations
exhibit similar patterns).

Figure 4 shows, for a given buffer of 20 min, the impact of early arrival and
slack on the utilization rate and the waiting time of the barge respectively. We
draw the following conclusions. First, early arrival of barges positively impacts
the utilization rate of the terminal, but worsens the average waiting time of
barges. Second, the extent to which early arrivals contribute to an improvement
of the quay utilization rate depends on the amount of slack used. If slack is being
used (≥40), then early arrivals only have a limited effect on the utilization. Third,
if 40 min slack is used (in case no barge arrives early), then the quay utilization
rate improves from about 60 % to more than 80 %, whereas the average waiting
of barges increases with less than 10 min.

Fig. 4. Varying length of early arrival time for given buffer of 20min
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Fig. 5. Varying buffer for given slack of 40min

Fig. 6. Varying slack for given length of 30 min early arrival time

Figure 5 shows, for a given slack of 40 min, the impact of early arrivals and
the buffer on the quay utilization rate and the average waiting time. We conclude
that a positive buffer improves the utilization rate of the terminal for different
levels of early arriving barges. Moreover, a small buffer of 20 min already leads to
the greatest improvement of the utilization rate if barges arrive 30 min or more
early. We further see that a larger buffer leads to a minor decrease in waiting
times.

Figure 6 shows, for a given maximum of 30 min earliness, the impact of slack
and the buffer on the quay utilization rate and the average waiting time. We
conclude that a buffer does not add value when slack is zero. When using a
positive amount of slack, the buffer improves the utilization rate of the terminal
with a few percent points. With respect to the average waiting time, we also find
that the impact of a buffer is relatively small.

Summarizing we conclude that, within the experimental setting considered, a
quay utilization rate of 82 % can be realized with a minimum use of three sources
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of flexibility, namely slack (40 min), a buffer (20 min), and early arrivals (uni-
formly between 0 and 30 min). Without the use of these sources of flexibility,
the quay utilization rate is as low as 60 %. Note that the maximum utiliza-
tion rate that could be realized in our experimental setting is 85 %. The main
takeaway from these results is that in environments with uncertainty and distur-
bances, dynamic appointment making can be supported by the relatively simple
concepts of slack and buffers. We belief that these insights also apply to other
settings, such as dynamic appointment scheduling in hospitals.

6 Conclusions

We focused on the operational planning of a terminal operator that has to plan
dynamically and partly automatic. As a case of reference, we assumed that the
terminal has to make appointments by means of an intelligent software agent
that is part of the multi-agent system as described in [6]. The main challenge
for the terminal agent is to make appointments with barges dynamically with
only limited knowledge about future arriving barges. During the whole process
from planning to execution, the terminal has to deal with uncertainty and dis-
turbances, such as uncertain arrival and handling times of barges and container
vessels, as well as cancellations and no-shows.

Using simulation, we explored the deployment of various sources of flexibility
that are naturally available to the terminal. To give realistic insights, we used
the large terminals within the Port of Rotterdam as point of reference for our
experimental setup. From our numerical results, we found three major sources of
flexibility, namely (i) early arrivals of barges, (ii) the use of slack in appointments,
and (iii) the use of a buffer between appointments. For the instances considered,
we found that a terminal, with a target utilization of 85 %, could significantly
increase its performance using these sources of flexibility. Specifically, an increase
in utilization rate from 60 % to 82 % can be realized with a minimum use of the
two sources of flexibility (slack of 40 min and a buffer of 20 min). This major
increase in utilization is achieved under a minor increase in barge waiting times
(5 min).
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Abstract. Large seaports usually contain multiple terminals serving
container vessels, railways, trucks and other modes of hinterland trans-
portation. Every time an inland vessel enters a seaport, it visits several
terminals for loading and unloading containers. A vessel rotation is the
sequence in which a vessel visits the different terminals in a large sea-
port. Currently, in a seaport like the port of Rotterdam, around 40%
of the inland vessels have to spend a longer time in the port area than
originally planned, due to the low utilization of terminal quay resources
and uncertainty of waiting times at different terminals. To better utilize
the terminal resources in the ports, as well as to reduce the amount of
time inland vessels spend in the port area, this paper first proposes a new
model in which inland vessels coordinate with each other with respect to
the arrival, departure time and the number of inter-terminal containers
carried, besides their conventional hinterland containers, with the aim
to prevent possible conflicts of their rotations. Then, a logic-based Ben-
ders’ decomposition approach is proposed to minimize the total time the
inland vessels spent in the port. We compare the performance of the
proposed approach with the performance of a centralized approach on
the aspects of the runtime, solution quality, and three logistical perfor-
mance indicators. Simulation results show that the proposed approach
generates both faster optimal and faster high-quality solutions than the
centralized approach in both small and large problem instance.

1 Introduction

Nowadays, larger ports are being constructed to keep up with the growth of con-
tainerized shipping. Large ports usually consist of multiple terminals serving con-
tainer vessels, railways, and other forms of hinterland transportation. Figure 1
shows the main terminals in the port of Rotterdam. As we can see, there are sev-
eral clusters of terminals in a port. Containers are often transferred between ter-
minals when they are transshipped between different modes of transportation.
This type of movement is called inter-terminal transportation (ITT) [5,10,13,14].
There is a range of types of vehicles for ITT, including railway, truck, and con-
tainer ships, each coming with its advantages and disadvantages. Comparing with
c© Springer International Publishing Switzerland 2016
A. Paias et al. (Eds.): ICCL 2016, LNCS 9855, pp. 96–115, 2016.
DOI: 10.1007/978-3-319-44896-1 7
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Fig. 1. Container terminals in Port of Rotterdam (adapted from [11])

land-based vehicles, container vessels have shorter connecting distances, as well as
higher capacity for containers. In this paper we mainly focus on the container ves-
sels for inter-terminal transport and investigate from a logistical perspective the
possibility of using inland vessels for ITT.

On a typical day, around 25 inland vessels visit the port of Rotterdam, with
each vessel visiting on average 8 different container terminals [9]. In earlier papers
[3,4], a vessel rotation is defined as the sequence in which the vessel visits differ-
ent terminals in a large seaport. In this paper, we consider other more advanced
features in a vessel’s rotation, including the arrival and departure time at dif-
ferent terminals, as well as the number of containers to load and unload at
each terminal. As there may be some extra space on inland vessels for carry-
ing containers when they travel between terminals, we investigate in this paper
the possibility of using inland vessels also for ITT, which could provide a extra
income for the inland vessel operators and also alleviate the congestion of land-
based vehicles. Thus, we consider two types of containers: optional inter-terminal
containers and the mandatory conventional hinterland containers that need to
be loaded and unloaded at different terminals.

The goal of this paper is to improve the coordination among the inland ves-
sels traveling between terminals in the port area, so that they can transport their
mandatory hinterland containers, as well as inter-terminal containers that need
to be transported from one terminal to another in an automatic and efficient way.
This concerns finding the optimal rotations for the inland vessels so that they can
finish the transport task in the port area with shorter time. We first propose a
model in which the inland vessels coordinate with each other both the transport of
inter-terminal containers besides their mandatory hinterland containers. Since the
complexity of the problem increases substantially with the increase of the number
of vessels and terminals considered, an exact approach would be unable to handle
larger problem instances with more vessels and terminals. Therefore, we propose
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a logic-based Benders decomposition approach with the aim to minimize the total
time of stay of inland vessels in the port area.

The planning of vessel rotations involves many equalities and logical condi-
tions between inland vessels. For example, the waiting time that a vessel spends
at a terminal not only depends on the departure times of the other vessels
that are currently being handled at the same terminal, but also depends on
the sequences how the other vessels visit the previous terminals on their rota-
tions. This means that the calculation of the waiting time of a inland vessel at
a terminal involves a sequence of variables representing how this vessel visit the
previous terminals, as well as a sequence of variables how the other vessels visit
the previous terminals on their rotations. As this type of relation is difficult to
be represented using mathematical equations, we make use of the logical opera-
tors in constraint programming to formulate the coordination problem of inland
vessels.

Benders decomposition has been originally proposed for solving large mixed-
integer programming problems by [1]. The classical Benders decomposition solves
a problem by partitioning it into a mixed-integer master problem and linear sub-
problems. The solution process iterates between solving the master problem and
the linear subproblems [6]. Benders decomposition can profitably combine math-
ematical programming and constraint programming, since one approach can be
applied to solve the master problem and the other to solve the subproblem,
depending which is the most suitable for the particular problem structure. This
sort of combination has yielded substantial speedups in the computation [12].

Conventional Benders decomposition assumes that the master problem be
mixed-integer and the subproblems be linear. In our case, however, we face a
problem that involves logical relations between vessel operators and is most
suitable for constraint programming techniques. Therefore, we use a general-
ized Benders decomposition, defined as logic-based Benders decomposition to
solver the problem. Logic-based Benders decomposition was introduced by [8]
and further developed by [7]. A major advantage of the logic-based Benders
decomposition is that the subproblem does not need to have a specific form: it
can be an optimization problem, a constraint program, or a simple feasibility
problem [15]. We make use of the logic-based Benders decomposition framework
by decomposing the problem into a rotation generation master problem and a
rotation evaluation sub-problem, both formulated as constraint programming
problems. The master problem is formulated as optimization problem, and the
sub-problem is formulated as a satisfaction problem.

This paper is organized as follows. In Sect. 2, we introduce the formulation
of the rotation generation master problem and the rotation evaluation problem,
respectively. Solution approaches are presented in Sect. 3. Simulation results are
given in Sect. 4. Conclusions and future work are provided in Sect. 5.
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2 Mathematical Problem Formulation

In practice, inland vessel operators already have the information of the set of
terminals to be visited, the number of containers to load and unload at each
terminal, and the distance between any two terminals before they enter the port
area. We also consider that due to the capacity limits of terminal quay resources,
a limited number of vessels can be served simultaneously at the same terminal.
In addition, we assume that each terminal should be visited exactly once and
that every vessel enters and leaves the port via a port entrance and exit point.

Fig. 2. Benders decomposition approach

To make the model formulation more realistic, we also consider the following
three practical constraints in inter-terminal transport of inland vessels in large
seaports:

– Restricted opening times of terminals: terminals can be closed during a certain
period of the day;

– Priority of sea-going vessels: sea-going vessels have priority over inland vessels,
and their rotations have been decided days ahead and cannot be changed;

– Different terminal capacities and sizes: in practice the terminals in the port
have different numbers of quays and can serve different numbers of vessels
simultaneously.

It is important to consider these factors in the mathematical formulation
from an application perspective. Taking into account restricted opening times of
terminals means that the loading and unloading process of a inland vessel can
be interrupted by the closing time. Consequently, the closing times of terminals
would affect the service time and waiting time of the vessels in the terminal.
Considering the priority of sea-going vessels means that during the service time
window of the sea-going vessels, the inland vessels cannot be served. This also
affects the service time and waiting time of the vessels. In addition, in practice
different terminals have different capacities, opening times, and other character-
istics (number of quays, berths, cranes, ..., etc.). For example, certain terminals
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will be closed during the night, and this would increase the waiting time of the
vessels that arrive during the night, or this could cause the vessels to visit other
terminals that are open. These aspects have not been taken into account in the
formulations of the vessel rotation planning in earlier works.

We make use of the logic-based Benders decomposition framework to decom-
pose the problem into a rotation generation master problem and a rotation eval-
uation subproblem, as shown in Fig. 2. During a iteration, the master problem
decides on the sequences of vessels’ visits to terminals, as well as the number of
inter-terminal containers the involved inland vessels transport from one termi-
nal to another, this thus generates initial rotations for the inland vessels. The
resulting rotations are evaluated in the subproblem, in which we calculate for
each vessel the waiting times at different terminals. Based on the waiting times
calculated in the subproblem, we generate a Benders cut, which is a constraint
on the waiting times in the subproblem and the visiting sequences of vessels to
terminals in the master problem. Then the Benders cut is added to the master
problem to exclude variable assignments that can be no better than the previous
solution. After that, the master problem is re-solved with the new Benders cut
to find a better solution. This procedure continues until no better solution can
be found.

Our formulation is based on time-segment graphs. An example of a time-
segment graph is given in Fig. 3, showing three rotations of three vessels. For
example, as vessel 1 and 2 visit terminal 1 first, therefore, we also refer to this
situation as terminal 1 is on the first segment of vessel 1 and 2’s rotations.

Time horizon

Vessel 1

Vessel 2

Vessel 3

Terminal 1 Terminal 3 Terminal 4 Terminal 7 Terminal 9 Terminal 8 Terminal 6

Terminal 1 Terminal 2 Terminal 4 Terminal 7 Terminal 3

Terminal 2 Terminal 1 Terminal 3 Terminal 7 Terminal 4 Terminal 6

Segment 1 Segment 2 Segment 3 Segment 4 Segment 5 Segment 6 Segment 7

Arrival 
time

Departure
time

...

Fig. 3. Time-segment graph for instance with 3 vessels

The parameters that will be used below in our formulation are shown in
Table 1. Since we also aim to investigate the potential of making use of the extra
space on the inland vessels when they are traveling between two terminals, we
consider two types of containers in this phase: besides the mandatory hinterland
containers that need to be loaded and unloaded from different terminals (repre-
sented by um

i and lmi ), we also consider inter-terminal containers Rij that need
to be transported between terminals in the port.



A Logic-Based Benders Decomposition Approach to Improve Coordination 101

Table 1. Parameters used in problem formulation

Symbols Definitions

M The number of vessels entering the port

Nm The set of terminals that vessel m needs to visit

Qi The set of quays in terminal i

Rij The number of inter-terminal containers that need to be
transported from terminal i to j

Kmax
m The number of segments on the rotation of vessel m

tloadi /tunloadi The average loading/unloading time, per loaded container at
terminal i

T entrance
i The traveling time from the entrance/exit of the port to terminal i

T departure
jq The latest departure time of the vessels being served in terminal j

at quay q

T travel
ij The traveling time between terminal i to j

lmi /um
i The numbers of hinterland containers that need to be

loaded/unloaded by vessel m at terminal i

Ccapacity
m The carrying capacity of vessel m in TEU

Coriginal
m The original number of containers on of vessel m before entering the

port in TEU

[W j
s , W j

e ] The closing time period of terminal j

[Sj
q , E

j
q ] The service time period of the sea vessel at quay q of terminal j

2.1 Rotation Generation Master Problem

As most of the constraints we consider are logical constrains, we formulate both
the master problem and sub problem based on constraint programming. The
following constraint programming problem defines the master problem. It uses
several sets of variables. Table 2 shows the decision variables used in the master
problem. In addition, we also introduce auxiliary variables, emm′k, g

q
jkr, f

q
jkr and

hq
jk to determine variables rmk and wmk. Variable emm′k is used to determine

the ranking of the arrival time of vessel m at segment k. Variables λjkr, ξjk and
ηq
jkr are used to determine the waiting time of vessel m at segment k. Variable

λjkr represents the possible starting time for vessels that will visit terminal j on
segment k with the ranking of r. Variable ηq

jkr represents the departure time of
terminal j on segment k of the vessel with rank r. Variable ξjk represents the
latest departure time of terminal j on segment k.

The aim of the master problem is to generate initial rotations for the vessels,
and we therefore formulate the objective as minimizing the sum of the vessels
spending in the port area:
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Table 2. Decision variables in the master problem

Symbols Definitions

zm
jk 1 if terminal j is on segment k of vessel m’s rotation

τm
k−1,k Traveling time between segment k − 1 and segment k for vessel m

αm
i Arrival time of vessel m at terminal i

βm
i Departure time of vessel m at terminal i

γm
i Service time of vessel m at terminal i

vm
ij The number of inter-terminal containers from terminal i to j carried by

vessel m

bmi The number of containers on vessel m when it leaves terminal i

Wwait
m The sum of waiting time of vessel m

amaster
mk Arrival time of vessel m at segment k

dmaster
mk Departure time of vessel m at segment k

smaster
mk Service time of vessel m at segment k

wmaster
mk Waiting time of vessel m at segment k

tmaster
mk The terminal vessel m visits on segment k

rmaster
mk Ranking of the arrival time of vessel m at segment k

min
M∑

m=1

(
dmaster
mKmax

m
+ T entrance

tmaster
mKmax

m

+ Wwait
m

)
,

where dmaster
mKm

is the departure time of vessel m when it leaves the last terminal
on its rotation, and T entrance

tmaster
mk

is the traveling time from the last terminal to the
port entrance/exit point, taking into account the following constraints:

(
τm
k,k+1 − T travel

ij

)
zmikzmj,k+1 = 0 ∀i, j ∈ Nm,∀m ∈ M,k ∈ {1, 2, . . . ,Kmax

m } (1)
Kmax

m∑

k=1

zmjk = 1,
∑

j∈Nm

zmjk = 1 ∀j ∈ Nm,∀k ∈ {1, 2, . . . ,Kmax
m } (2)

∑

m∈M

vm
ij = Rij ∀i, j ∈ Nm,∀m ∈ M (3)

k∑

k′=1

vm
ij zmikzmjk′ = 0 ∀i, j ∈ Nm,∀m ∈ M,∀k′ < k ≤ Kmax

m (4)

vm
ij �= 0 → αm

j ≤ T deadline
j ∀i, j ∈ Nm,∀m ∈ M (5)
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bmi =

(
Coriginal

m + lmi − um
i +

∑
p∈Nm

vm
ip

)
zm
i1

+

⎛
⎝lmi − um

i +

Km
max∑

k=2

∑
p∈Nm

(
bmp zm

p,k−1z
m
ik

)
+
∑

p∈Nm

vm
ip −

∑
p∈Nm

vm
pi

⎞
⎠ (1 − zm

i1 )

∀i, p ∈ Nm, m ∈ M

(6)

bmi ≤ Ccapacity
m i ∈ Nm,m ∈ M (7)

αm
i = T entrance

i zmi1 +

⎛

⎝
Kmax

m∑

k=2

⎛

⎝
∑

p∈Nm

(βm
p + T travel

pi )zmp,k−1

⎞

⎠ zmik

⎞

⎠ (1 − zmi1 )

∀i, p ∈ Nm,∀m ∈ M

(8)

βm
i = αm

i + γm
i ∀i ∈ Nm,∀m ∈ M (9)

γm
i = lmi tload + um

i tunload +
∑

p∈Nm

vm
iptload +

∑

p∈Nm

vm
pit

unload

∀i, p ∈ Nm,∀m ∈ M

(10)

element(
∑

j∈Nm

jzmjk, Nm, tmaster
mk )

∀j ∈ Nm,∀m ∈ M,∀k ∈ {1, 2, . . . ,Kmax
m }

(11)

element(tmater
mk , (γm

1 , γm
2 , . . . , γm

|Nm|), s
mater
mk )

∀j ∈ Nm,∀m ∈ M,∀k ∈ {1, 2, . . . ,Kmax
m }

(12)

element(tmater
m1 , (αm

1 , αm
2 , . . . , αm

|Nm|), a
mater
m1 )

∀j ∈ Nm,∀m ∈ M,∀k ∈ {1, 2, . . . ,Kmax
m }

(13)

amaster
mk = dmk−1 + τm

k−1,k ∀j ∈ Nm,∀m ∈ M,∀k ∈ {2, . . . , Kmax
m } (14)

amaster
mk (1 − emm′k)zmjkz

m′
jk < amaster

m′k

∀m,m′ ∈ M,∀j ∈ {Nm ∩ Nm′},∀k ∈ {1, 2, . . . ,Kmax
m }

(15)

amaster
mk ≥ amaster

m′k emm′kz
m
jkz

m′
jk

∀m,m′ ∈ M,∀j ∈ {Nm ∩ Nm′}∀k ∈ {1, 2, . . . ,Kmax
m }

(16)



104 S. Li et al.

rmaster
mk =

M∑

m=1

emm′k ∀m,m′ ∈ M,∀k ∈ {1, 2, . . . ,Kmax
m } (17)

wmaster
mk = max (amk, λtmkkrmk

) − amk ∀m ∈ M,∀k ∈ {1, 2, . . . ,Kmax
m } (18)

dmaster
mk = amaster

mk + smaster
mk + wmaster

mk ∀m ∈ M,∀k ∈ {1, 2, . . . ,Kmax
m } (19)

λj11 = T departure
j ∀j ∈ Nm (20)

λjk1 = ξjk−1 ∀j ∈ Nm,∀k ∈ {1, 2, . . . ,Kmax
m } (21)

ξjk = ηjkrmax
j

∀j ∈ Nm,∀k ∈ {1, 2, . . . ,Kmax
m } (22)

λtm′kkrmk+1 = ηtmkkrmk
∀m,m′ ∈ M,∀k ∈ {1, 2, . . . ,Kmax

m } (23)

ηtmkkrmk
= max

(
amaster
mk , λtmkkrmk

)
+ smaster

mk

∀m ∈ M,∀j ∈ Nm,∀k ∈ {1, 2, . . . ,Kmax
m }

(24)

Constraints (1) state that if terminal i and terminal j are on segment K and
segment K + 1 of vessel m’s rotation, the traveling time of vessel m between
segment K and segment K + 1 equals T travel

ij . Constraints (2) ensure that each
terminal will only be visited once. Constraints (3) ensure that the inter-terminal
containers that need to be transported from terminal i to terminal j will be
transported by the M vessels. Constraints (4) state that at terminal i vessel m
will not carry the inter-terminal containers that need to be transported from
i to already visited terminals. Constraints (5) ensure that the inter-terminal
containers need to be transported to the destination before the deadline.

Constraints (6) state that the number of containers on vessel m when it
leaves the first terminal equals the initial number of containers on-board, plus
the number of hinterland containers that need to be loaded at terminal i and
inter-terminal containers that need to be transported from terminal i, minus the
number of hinterland containers that need to be unloaded at terminal j. Addi-
tionally, the number of containers on vessel m when it leaves terminal i that is
not the first visited terminal is equal to the number of containers on-board at the
previous terminal, plus the number of inter-terminal and hinterland containers
that need to be loaded at terminal i, minus the number of inter-terminal and
hinterland containers that need to be unloaded at terminal i. Constraints (7)
ensure that the number of containers on-board will not exceed the capacity of
each vessel.

Constraints (8) state that if vessel m will visit terminal i as the first terminal,
then the arrival time at i equals the traveling time from the port entrance point
to terminal i, and that the arrival time at terminal i equals the departure time
from the previous terminal plus the traveling time. Constraints (9) state that
the departure time equals the arrival time plus the service time. Constraints
(10) ensure that the service time at terminal i equals the sum of the loading
and unloading time for the inter-terminal containers and hinterland containers.
Constraints (11) state the that if zmjk = 1, vessel m will visit terminal j on
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the k-th segment of its rotation. Constraints (12) state that the service time of
vessel m at segment k equals to the service time of vessel m at terminal tmater

mk

it visits at segment k. Similarly, Constraints (13) ensure that the arrival time of
vessel m at its first segment of its rotation equals to the arrival time of vessel
m at terminal tmater

mk . Constraints (14) establish the arrival time at segment k
of vessel m’s rotation. Constraints (15), (16) and (17) establish the calculation
of the ranking of the arrival times of vessels that arrive at the same terminals
at the same segment. Constraints (18) and (19) state the calculation of waiting
and departure time of vessel m on segment k, respectively.

Constraints (20) state that the possible starting time for the first vessel arriv-
ing at terminal j on its first segment equals T departure

j , which is the latest depar-
ture time of the vessels that have already be served before the upcoming vessels.
Constraints (21) ensure that in the subsequent segments (k > 1), the possible
starting time for the first vessel arriving at terminal j on segment k equals the
latest departure time of the vessels that arrived earlier at terminal j on seg-
ment k − 1. Constraints (22) state that the latest departure time of terminal j
on segment k equals the maximum departure time of the vessels that arrive at
terminal j at segment k. Constraints (23) state that for the next vessel that will
arrive at terminal tm′k on segment k with ranking rmk + 1, the possible start
time will then be the departure time of the vessel m that arrived earlier with
ranking rmk. Constraints (24) ensure that the latest departure time of terminal
j on segment k will be updated accordingly each time when a vessel has been
loaded and unloaded.

2.2 Rotation Evaluation Subproblem

Once the master problem has determined the sequence of vessels to different ter-
minals, the waiting time of these rotations needs to be evaluated. The solutions
from the master problem include the arrival, departure time at different ter-
minals, and the number of inter-terminal containers to load and unload at each
terminal. Based on the optimal solution from the master problem, which consists
of the optimal rotations for each vessel, we calculate the respective waiting times.
Therefore, the subproblem is a satisfaction problem using the CP formulation.

Table 3. Decision variables in the sub-problem

Symbols Definitions

asub
mk Arrival time of vessel m at segment k

dsub
mk Departure time of vessel m at segment k

ssubmk Service time of vessel m at segment k

wsub
mk Waiting time of vessel m at segment k

tsubmk The terminal vessel m visits on segment k

rsubmk Ranking of the arrival time of vessel m at segment k
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The decision variables in the subproblem are shown in Table 3. We also intro-
duce auxiliary variables, emm′k, g

q
jkr, f

q
jkr and hq

jk to calculate variable rsubmk and
wsub

mk . Variable δmm′k is used to calculate the ranking of the arrival time of vessel
m at segment k. Variables gqjkr, h

q
jk and fq

jkr are used to calculate the waiting
time of vessel m at segment k. Variable gqjkr represents the possible starting time
at quay q for vessels that will visit terminal j on segment k with the ranking of r.
Variable fq

jkr represents the departure time at quay q of terminal j on segment
k of the vessel with rank r. Variable hq

jk represents the latest departure time at
q of terminal j on segment k.

Given the solutions αm∗
i , βm∗

i , γm∗
i and km∗

ij from the master problem, we
introduce the following constraints:

tsubmk = tsubm′k → asub
mk(1 − δmm′k) < asub

m′k ∀m,m′ ∈ M,∀k ∈ {1, 2, . . . ,Kmax
m }

(25)

tsubmk = tsubm′k → asub
m′kδmm′k < asub

mk ∀m,m′ ∈ M,∀k ∈ {1, 2, . . . ,Kmax
m } (26)

rsubmk =
M∑

m=1

δmm′k ∀m,m′ ∈ M,∀k ∈ {1, 2, . . . ,Kmax
m } (27)

gqj11 = T departure
jq ∀j ∈ Nm,∀q ∈ Qj (28)

gqjk′1 = h1
jk′−1 ∀j ∈ Nm,∀k′ ∈ {2, . . . , Kmax

m } (29)

hq
jk = fq

jkrmax
j

∀j ∈ Nm,∀k ∈ {1, 2, . . . ,Kmax
m } (30)

gqtm′kkrmk+1 = fq
tmkkrmk

∀m,m′ ∈ M,∀k ∈ {1, 2, . . . ,Kmax
m } (31)

gqtmkkr
�= min

(
g1tmkkrmk

, . . . , g
Qtmk

tmkkrmk

)
→ hq

tmkk
= gqtmkkrmk

∀m ∈ M,∀k ∈ {1, 2, . . . ,Kmax
m }

(32)

For gqtmkkrmk
= min(g1tmkkrmk

, g2jkrmk
, . . . , g

Qtmk

tmkkrmk
), and to make the formu-

lation concise, we defines θ = max
(
asub
mk , gqtmkkrmk

)
. We can then introduce the

following constraints:

θ ≤ W
tsub
mk

s ∧ θ ≤ W
tsub
mk

e ∧ θ + ssubmk ≥ W
tsub
mk

s

→ wsub
mk = W

tsub
mk

e + θ − W
tsub
mk

s − asub
mk

∀m ∈ M,∀k ∈ {1, 2, . . . ,Kmax
m },∀q ∈ Qtmk

(33)
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θ ≤ W
tsub
mk

s ∧ θ ≤ W
tsub
mk

e ∧ θ + ssubmk ≥ W
tsub
mk

s

→ fq
tmkkrmk

= W
tsub
mk

e + ssubmk + θ − W
tsub
mk

s ;

∀m ∈ M,∀k ∈ {1, 2, . . . ,Kmax
m },∀q ∈ Qtmk

(34)

θ > W
tsub
mk

s ∧ θ < W
tsub
mk

e ∧ θ + ssubmk > W
tsub
mk

s

→ wsub
mk = W

tsub
mk

e − asub
mk ;

∀m ∈ M,∀k ∈ {1, 2, . . . ,Kmax
m },∀q ∈ Qtmk

(35)

θ > W
tsub
mk

s ∧ θ < W
tsub
mk

e ∧ θ + ssubmk > W
tsub
mk

s

→ fq
tmkkrmk

= W
tsub
mk

e + ssubmk ;

∀m ∈ M,∀k ∈ {1, 2, . . . ,Kmax
m },∀q ∈ Qtmk

(36)

θ > W
tsub
mk

e ∨ θ + ssubmk < W
tsub
mk

s → wsub
mk = θ − asub

mk (37)
∀m ∈ M,∀k ∈ {1, 2, . . . ,Kmax

m },∀q ∈ Qtmk
(38)

θ > W
tsub
mk

e ∨ θ + ssubmk < W
tsub
mk

s → fq
tmkkrmk

= θ + ssubmk (39)

∀m ∈ M,∀k ∈ {1, 2, . . . ,Kmax
m },∀q ∈ Qtmk

. (40)

Constraints (25) and (26) show the comparison of the arrival time of the vessels
that arrive at the same terminal on the same segments in order to calculate
the ranking of vessel m on segment k in constraints (27). Constraints (28)–(31)
determine the calculation of waiting time of vessel m at segment k. Constraints
(28) state that the possible starting time for the first vessel arriving at terminal
j on its first segment at quay q equals T departure

jq , which is the latest departure
time of the vessels already being served before the upcoming vessels. Constraints
(29) state that in the subsequent segments (k′ > 1), the possible starting time
for the first vessel arriving at quay q of terminal j on segment k′ equals the latest
departure time of the vessels arrived earlier at terminal j on their segment k′−1.
Constraints (30) ensure that the latest departure time at quay q of terminal j on
segment k equals maximum departure time of the vessels that arrive at terminal
j on segment k. Constraints (31) state that for the next vessel that will arrive
at terminal tmk on segment k with ranking rmk + 1, the possible starting time
is the departure time of the vessel that arrived earlier with ranking rmk.

Constraints (32)–(39) ensure that for vessel m that will arrive at terminal
tmk on segment k with ranking rmk, it will be served at quay q if q has the closest
possible starting time, and q updates its latest departure time fq

ktmk
accordingly.

If q does not have the closest possible starting time, then the latest departure
time will not be updated, as shown in Constraints (32). We also consider the
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Fig. 4. Six possible relations between a vessel’s arrival, departure time window and
closing of the terminal (adapted from [4])

closing times of certain terminals in Constraints (33)–(39). Figure 4 shows six
possible relations of a vessel’s arrival, departure time window and the closing
of a terminal. When a vessel is assigned to a quay of a terminal, it has to wait
until the other vessel that is being served at the quay has left. Thus, the actual
starting time for vessel m with arrival time amk is max(amk, g

q
tmkkrmk

), and the
updated departure time is max(amk, g

q
tmkkrmk

)+sm,tmk
. Then the updated arrival

and departure time window (max(amk, g
q
tmkkrmk

),max(amk, g
q
tmkkrmk

) + sm,tmk
)

is compared with the closing time of the terminal. The waiting time of the vessel,
as well as and the updated departure time from the quay (when the vessel has
left) caused by situation (1) and (5) in Fig. 4 are represented by Constraints (33)
and constraints (34), respectively. Similarly, the waiting time of the vessel and
the updated departure time from the quay caused by situation (2) and (6), are
represented by Constraints (35) and (36). In addition, the waiting time of the
vessel and the updated departure time from the quay caused by situation (3)
and (4), are represented by Constraints (37) and (39).

We also consider sea-going vessels, which always have priority over inland
vessels. The calculation of the waiting time caused by sea-going vessels is sim-
ilar to the calculation of the waiting time caused by closing of terminals in
Constraints (33)–(39). The difference is that the time windows of the sea-going
vessels are more specific regarding the quay assigned. The start and end time
window [Sj

q , E
j
q ] represents the estimated start and end time of the sea-going

vessel at quay q of terminal j.

3 Solution Approach

The basic steps of the logic-based decomposition approach are shown in Algo-
rithm 1. During one iteration, the algorithm first solves the master problem and
generates initial solution zm∗

jk , αm∗
i , βm∗

i , and γm∗
i . Based on the initial solution,

the subproblems is solved to determine the waiting time wsub∗
mk for each vessel m.

Then we create Benders cuts based on wsub∗
mk and master problem variable zmjk.
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Algorithm 1. Basic steps of the Benders decomposition approach
1: Solve rotation generation master problem

(a): generate initial solution using CP solver;
2: Solve rotation evaluation subproblem

(b): use solution zm∗
jk , αm∗

i , βm∗
i , and γm∗

i from master problem as the input;

(c): calculate waiting time wsub∗
mk for each vessel m;

3: Derive Benders cut
(e): create a Benders cut with subproblem solution wsub∗

mk and master problem
variable zm

jk;
4: while termination criteria not reached do

(f): add new Benders cut to the master problem;
(g): re-solve the master problem and then subproblem;

5: return sbest and obj(sbest)

According to [2], a valid Benders cut as a logical expression should adhere
to two conditions: (1) the cut removes the current solution from the master
problem; (2) the cut does not eliminate any global optimal solution. As a result,
the cut should remove the current solution from the master problem since using
the same assignment requires an increase in the sum of round-trip time.

The cut from subproblem in iteration h is therefore:

Wwait
m ≥

Kmax
m∑

k=1

wsub∗
mkh −

Nm∑

j=1

Kmax
m∑

k=1

(1 − zmjk)w
sub∗
mkh. (41)

Here, Wwait
m is a master problem variable representing the sum of vessel m’s

waiting time at different terminals, and wsub∗
mkh is the waiting time for vessel m

found in iteration h when solving the rotation evaluation subproblem. This cut
states that the future solution of the master problem can only decreases the total
round-trip time if another sequence of a vessel’s visits to terminals is given. That
is, if the same assignment is given to the subproblem, the zmjk variables that are
part of this cut will all equal to 1. If this is the case, then (1 − zmjk) = 0 for
all m and the waiting time of the subproblem becomes a lower bound on Wm.
When a different visiting sequence of a vessel is made and at least one of the
zmjk variables that previously had a value of 1 turns to 0, the waiting time of
vessel m at that terminal j is removed from the subproblem. This would result
in a smaller lower bound for Wm, which consists of the sum of waiting time with
waiting at terminal j removed. This cut follows the 2 conditions defined by [2]
to be a valid cut: the cut removes the current solution from the master problem
and does not eliminate any global optimal solutions.

4 Experimental Results

Simulation experiments are carried out to assess and analyze the effectiveness
of the proposed approach. In this section, we first describe the experimental
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setting. To evaluate the performance of the proposed method, we compare the
runtime, quality of solutions, and three logistical performance indicators with
a centralized CP approach in which the master problem and sub problem are
considered at the same time as a CP model. The three performance indicators
include: total round-trip time (i.e., the sum of the round-trip time of all vessels),
total waiting time (i.e., the sum of the waiting time of all vessels) and departure
time of the last vessel (i.e., the time when the last vessel leaves the port area).

4.1 Experimental Settings

Our experiments are performed on an Intel Core i5-2400 CPU with 4GB of RAM
using a Windows 7 system. As a CP solver we use the CPLEX 12.6 CP solver.
The Benders decomposition approach is implemented in C++. In the experi-
ments, we assume that the terminals are open 12 h a day (6:00 am–6:00 pm).
The number of inter-terminal containers that need to be transported ranges
from 20 TEU to 60 TEU, and the capacity of the inland vessels ranges from 150
TEU to 250 TEU. In addition, we consider the arrival times of the vessels at the
port entrance point are within a range of four hour’s length, which means that
we coordinate the inland vessels every four hours. To evaluate the performance
of the proposed approach, we use a centralized formulation for comparison, in
which the master problem and the sub problem are considered as a large CP
problem.

We set up two cases, a small case, and a large case. In Case 1, we consider
3 vessels, in which each vessel visits 3 terminals. We set up this small instance
because this is the largest instance the centralized approach can handle with a
one hour runtime limit.

In Case 2, we consider 8 vessels, in which each vessel visits 8 terminals. As
the complexity of the problem increases substantially in Case 2, the centralized
approach is not able to solve the problem to optimality with a reasonable time.
Therefore, to compare with proposed approach, we impose 4 different run time
limits, including 180 s, 360 s, 720 s, and 1800 s on the proposed approach and the
centralized approach in Case 2. We do not set up longer time limits because in
practice, the vessels are entering the port area every now and then, therefore
rotations being generated for more than 1 h would be unsuitable for application.

For each case, we set up 10 different instances with vessels that arrive within
a 4-h time range. In each instance, we vary the required number of containers
the vessels need to transport and the ID of the terminals the vessels need to
visit. For each instance, we run 10 repetitions of experiments after which the
average values are generated.

4.2 With Coordination and Without Coordination

Figures 5 and 6 illustrate the implemented rotations before and after coordina-
tion, respectively. Those rotations are the implemented considering the practical
situations, including the closing time of terminals, the terminal capacities, as
well as the priority of sea-going vessels. The waiting time at different terminals
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Fig. 6. An example of implemented of rotations generated with coordination

are included, represented as the blocks in dots. Here we use the results from
one of the experiments in Case 2, as an example to visualize the rotations and
show the differences. The numbers in the block represent the terminal each ves-
sel has visited. The length of the block in bold line with numbers represents the
length of the times of stay in each terminal. The block in dots are the waiting
time of each vessel at different terminals. As we can see, the implemented rota-
tions with coordination have shorter round-trip time, as well as shorter waiting
time. A more extensive analysis on the quality and logistical performance of
the rotations generated with the proposed coordination approach is given in the
subsequent sections.

4.3 Quality of Solutions

Firstly, we compare the runtime of the proposed approach with a centralized
formulation. Figure 7 shows the comparison of the proposed logical Bender’s
cut approach to the centralized formulation with respect to the CPU runtime in
Case 1. The values reported in the figure are the ratio of CPU runtimes1 between
the proposed approach and the centralized approach. We can see that in 90 %
of the instances, Benders decomposition method obtains the optimal solution
faster than the centralized formulation. In addition, the Benders decomposition
method is on average 50 % faster than the centralized formulation among the
10 instances. It is clear that the Benders decomposition approach is capable of
solving smaller problem instances in significantly shorter times.

1 Ratio of CPU runtime = total CPU runtime from proposed approach
total round−trip time from centralized approach

.
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Fig. 7. Comparison of CPU runtime in Case 1

Secondly, for larger problem instances, as it is difficult to obtain optimal
solutions in a reasonable time, we therefore impose 4 different run time limits
for the 10 instances in Case 2. Figure 8 presents the results that are obtained
with 180 s, 360 s, 720 s, and 1800 s. Similar to Fig. 7, the values in the figure are
the ratio of objective values2 between proposed approach and the centralized
approach. As we can see, in 99 % of the experiments we carried out for the
10 instances in Case 2, the Benders method obtains better solutions than the
centralized approach with the same runtime limits. In addition, in instances
6, 7 and 9, the centralized approach cannot generate even feasible solutions
within 180 s, and in instances 6, it cannot generate feasible solutions within 360 s.
The complexity of the constraints make is hard for the centralized approach to
find initial solutions. In addition, as the Benders cut generated could effectively
prevent the master problem from revisiting similar areas of the search space,
we can also see that with the increase of run time, the Benders decomposition
approach has even better solutions than the centralized approach.

Table 4. Comparison of logistical performance indicators in Case 2

Time limits Total round-trip time Total waiting time Departure timea

Max(%) Min(%) Avg.(%) Max(%) Min(%) Avg.(%) Max(%) Min(%) Avg.(%)

180 s 103.13 83.85 94.05 108.84 70.50 88.30 99.08 88.22 93.14

360 s 103.36 69.77 90.63 109.40 42.26 80.63 98.86 61.85 86.98

720 s 98.39 68.93 85.76 91.16 41.27 64.58 94.28 61.19 70.77

1800 s 100.30 71.97 86.81 97.68 45.82 68.37 94.48 62.71 73.49
aThe time when the last vessel leaves the port area.

2 Ratio of objective value = objective value from proposed approach
objective value from centralized approach

.
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Fig. 8. Comparison of objective values with run time limits in Case 2

4.4 Logistical Performances

We also compare the proposed approach with respect to logistical performance
indicators, as shown in Table 4. Table 4 shows the maximum, minimum, and
average ratio between the proposed approach and the centralized approach with
respect to the total round-trip time, total waiting time and the departure time
of the last vessel. These ratios equal to the values of the total round-trip time,
total waiting time, departure time of the last vessels from the proposed approach,
divided by the values of the total round-trip time, total waiting time, departure
time of the last vessels from the centralized approach, respectively.

As can be seen in the table, in most experiments, the proposed approach
has better solutions than the centralized approach. In relatively shorter run-
time like 180 s, the proposed approach does not show significant improvement
comparing with the centralized approach, with on average 5 % less total round-
trip time, 12 % less total waiting time and 7 % less the latest departure time.
With the increase of runtime limits, the improvements of the proposed app-
roach on the three logistical performance indicators increase substantially. With
a 1800 seconds’ runtime limits, the Benders decomposition approach finds better
solutions with on average 15 % less shorter total round-trip time, 32 % less total
waiting time, and 27 % less departure time.

5 Conclusions and Future Work

With the growth of container transport volume in large seaports, this paper
investigates how inland vessels could be used for inter-terminal transportation in
a larger seaport in an efficient way. We propose a logic-based Benders decompo-
sition approach to generate optimal rotations for a set of inland vessels in a large
seaport that coordinate among each other also the transport of inter-terminal
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containers. Simulation results demonstrate that the decomposition approach can
lead both to faster and higher-quality solutions compared with a centralized app-
roach.

From the application perspective, provided the required container volume
transported between terminals, and the number of vessels coming into the port
area within a certain time range, the proposed approach can give vessel operators
optimal rotations with which these vessels can transport the required number
of containers with shortest time. The contribution is threefold: firstly, the vessel
operators could transport inter-terminal containers without having to spend a
longer time in the port, this could bring economic benefits for the vessel opera-
tors; secondly, the terminals could serve the vessels in an efficient way, in which
the idle time of terminal resources could be reduced; thirdly, using inland vessels
for inter-terminal transport could alleviate the congestion on roads and railways.

For future work, the extensibility of the approach will be investigated. For
situations in which disturbances or accidents happen, the approach needs to
react to the disturbances in a quick manner. In addition, though we are able
to solve problem instances for practical settings in this paper, future work will
investigate possible heuristics based on the Benders decomposition approach for
even larger port instances.
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Abstract. The immense growth of containerized transport and the
increasing frequency of calls of mega-vessels at terminals, serving as
transshipment points, require powerful planning methods for the efficient
fulfillment of inter-terminal transportation tasks. Collaborative planning,
and in particular the exchange of tasks among carriers, is a promising
instrument for increasing the efficiency of inter-terminal transportation.
The exchange of tasks can be organized by auctions performed by the
carriers. Three different collaborative planning scenarios are presented
in this paper. These scenarios are evaluated by computational experi-
ments. Based on the preferences of terminal operators and the outcome
of computational experiments, recommendations for collaborative inter-
terminal transportation are derived.

Keywords: Inter-terminal transportation · Collaborative transporta-
tion planning · First-price auction · Forwarding profit · Collaboration
profit

1 General Scenario for Inter-Terminal Transportation

Inter-Terminal Transportation (ITT) refers to the transportation of transship-
ment containers between different terminals in a port or between terminals of
neighboring ports. At first glance, ITT might seem avoidable, either through
scheduling container vessels that will transship containers to arrive at the same
terminal, or by placing key logistics components of a port all in the same loca-
tion. However, in nearly every mid to large sized port some amount of ITT is
required, due to the fact that avoiding ITT would involve building rail, barge,
and container ship connections all in one place, and there simply is not enough
space [10]. The importance and amount of ITT is growing due to the increasing
frequency of calls of mega-vessels which are using ports as transshipment points.
Table 1 shows the recent and expected amounts of ITT at the ports of Busan
(in Korea), which is one of the major container transshipment points in the
world. There are several ports in the Busan area which are used as terminals for
the Korean hinterland transport and as important transshipment points within
the transportation net for international container flows. Many of the incoming
c© Springer International Publishing Switzerland 2016
A. Paias et al. (Eds.): ICCL 2016, LNCS 9855, pp. 116–130, 2016.
DOI: 10.1007/978-3-319-44896-1 8
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transshipment containers pass more than one container terminal in the Busan
area since their point of origin and their point of destination are served by ship
routes which are assigned to different terminals. Consequently, there are many
containers which have to be carried from their incoming terminal to their outgo-
ing terminal. For providing transportation links, which are connecting ingoing
container flows with outgoing container flows, a collaborative transportation
planning system generates transportation tasks and assigns these tasks to truck-
ing companies, which are paid for the tasks and are responsible for the fulfillment
of all tasks which have been assigned to them. In the Busan area, ITT has suf-
fered from decreasing operation profits during the last few years. That is why
the Busan Port Authority (BPA) has initiated a project for surveying and ana-
lyzing the efficiency and quality of ITT processes. An outcome of this project is
the proposal to implement an ITT platform which is intended to improve ITT
processes [9]. This platform should enable the exchange of tasks among carriers
to take advantage of collaborative transportation strategies. For the operation
of the platform, a resource and profit sharing concept is needed.

Research related to collaborative planning in the direction of ITT is scarce,
but becomes increasingly important for coordinating ITT flows [4,7,8]. In partic-
ular, using software platforms in combination with vehicle routing is a promising
remedy for inefficient ITT [3]. This paper presents and evaluates collaborative
approaches for ITT, which refer to the ITT platform intended by the BPA [9].
The assignment of tasks to trucking companies (carriers) is predefined and con-
sidered as given data in this paper. The task assignments identify carriers as own-
ers of their tasks. The freight payments (shipper-freights) made to the owners of
tasks are specified in advance. Moreover, we assume that the shipper-freight of
a task is not only known to the owner of the task but also to all other carriers.
Carriers expect to reduce their transportation costs through forwarding some of
their own ITT tasks to other carriers; i.e., tasks are allowed to be arbitrarily
exchanged among carriers.

In the following sections, we analyze planning scenarios for carriers which are
involved in ITT. First, the isolated planning situation of each single carrier is
considered. Second, the scenario for central planning of ITT is discussed. Then,
three different collaborative scenarios are presented. The presented collabora-
tive scenarios are an elementary approach for task exchange and two extended
approaches with an enlarged potential for resource sharing. All scenarios are
described as IP (Integer Programming) models and are evaluated by computa-
tional experiments.

Table 1. The latest and expected amounts of ITT at Pusan Ports [6]

2010 2020 2030

Total amounts of containers 262,072 RT 416,721 RT 629,382 RT

ITT containers 236,636 RT 376,954 RT 584,628 RT

14,194 TEU (100%) 22,354 TEU (157%) 34,630 TEU (244%)

RT: Revenue Tons; TEU: Twenty-foot equivalent unit
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2 Isolated Planning Scenario and Central Planning
Scenario

There are several carriers c ∈ C = {1, ...,m} which have been entrusted with
ITT tasks. The carriers have own homogeneous fleets Kc which are positioned
at carrier-individual depots Oc. Consider K = K1... ∪ ...Km to be the set of all
available vehicles of the coalition and O = {O1, ..., Om} to be the set of all carrier
depots. All routes of a carrier’s vehicles start and end at the carrier’s depot
Oc. An ITT task consists of carrying one container or a pair of two containers
as a full-truckload from a pickup location (terminal for arrival) to a delivery
(terminal for departure) location. Additionally, time windows are specified for
the ITT tasks. That is why the ITT problem can be perceived as a Full-Truckload
Pickup and Delivery Problem with Time Windows (FTL-PDPTW) including
several carriers with different depots.

Assume that LOC = (O1, ..., Om, loc1, ..., loc2n) is the list consisting of
all carrier depots followed by all pickup and delivery locations of the FTL-
PDPTW. Let each locj ∈ {loc1, ..., locn} denote a pickup location, and let
{locn+1, ..., loc2n} consist of all delivery locations. Consider J to be the set which
is composed of all carrier depots Oc (c = 1, ...,m) and of all pickup and delivery
transportation tasks j = (locj , locj+n) with 1 ≤ j ≤ n. Let Jc denote the set
containing the depot Oc and all ITT tasks which are owned by carrier c. Each
task has assigned a shipper-freight Fj(1 ≤ j ≤ n). Further on, the operation
time of a task j (including time for waiting and service at the locations as well
as time for traveling from the pickup to the delivery location) amounts to tj .
Each task j has to be performed within a given time window [aj , bj ]. Finally,
the distance matrix for locations in LOC is denoted by DIST (loci, locj).

An FTL-PDP can be considered as an asymmetric multiple traveling sales-
man problem with time windows (amTSPTW) [1] if the depot respectively the
set of transportation tasks of the FTL-PDP are taken as the salesman’s start-
ing point respectively the set of customer locations of the amTSP. The ITT
problem for central planning can be transformed to an amTSPTW with several
depots (several starting points of the salesmen). The transportation distance
dfj of task j (i.e., the full traveling distance) is equal to DIST (j, j + n). The
empty traveling distance deij from a depot Oc to a task j can be calculated as
DIST (Oc, j) and, reversely, the empty traveling distance from j to the depot is
equal to DIST (j + n,Oc). The empty traveling distance deij between two tasks
i and j is given by DIST (i+n, j) for all i, j ∈ J . We assume a constant average
travel speed v. Consequently, the time needed for traveling from i to j is equal
to deij/v. The traveling time of drivers and their vehicles k ∈ K is limited to a
maximum duration T . Let fc denote the transportation costs per travel unit for
loaded traveling of vehicles of carrier c; and let ec denote the costs per empty
travel distance unit for vehicles of carrier c. The variable zojc indicates whether
a task j is owned by a carrier c (zojc = 1) or not (zojc = 0). The binary variable
yjk = 1 if task j is fulfilled by vehicle k, otherwise yjk = 0. The variable xijk

is one if vehicle k is fulfilling task j straight after task i, and otherwise xijk is
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zero. The decision variable wik represents the departure time of vehicle k after
the service operation at customer location i.

First, we consider the Central Planning for ITT. All assignments of tasks
to carriers are completely ignored; i.e., any vehicle of any carrier can fulfill any
transportation task independently of the assignments made by the a collabo-
rative transportation planning system. This planning situation can be formally
described by the following basic ITT-model (1)–(12):

max
∑

i∈J\O
Fi −

⎡

⎣
∑

i∈J\O

∑

k∈K

(
fc · dfi · yik

)
+

∑

i∈J

∑

j∈J

∑

k∈K

(
ec · deij · xijk

)
⎤

⎦ (1)

s.t.
∑

i∈J

xijk =
∑

i∈J

xjik ∀j ∈ J,∀k ∈ K (2)

∑

i∈J

xijk = yjk ∀j ∈ J \ O,∀k ∈ K (3)

∑

k∈K

yjk = 1 ∀j ∈ J \ O (4)

∑

j∈J\O
xOcjk ≤ 1 ∀c ∈ C,∀k ∈ K (5)

∑

j∈J\O
xOcjk = 0 ∀c ∈ C,∀k /∈ Kc (6)

∑

j∈J

xOcjk =
∑

i∈J

xiOck ∀c ∈ C,∀k ∈ K (7)

∑

i∈J\O
(ti · yik) +

∑

i∈J

∑

j∈J

(
deij/v · xijk

)
≤ T ∀k ∈ K (8)

wik + deij/v + tj − M · (1 − xijk) ≤ wjk ∀i ∈ J,∀j ∈ J \ O,∀k ∈ K (9)

aj ≤ wjk ≤ bj ∀j ∈ J,∀k ∈ K (10)
xijk ∈ {0, 1} ∀i ∈ J,∀j ∈ J,∀k ∈ K (11)
yjk ∈ {0, 1} ∀j ∈ J,∀k ∈ K (12)

The objective function (1) maximizes the total profit contribution (revenue) of
the collectivity of all carriers. The total revenue is the difference between the
sum of all shipper-freights and the traveling costs for the routes serving all
transportation tasks. Equation (2) guarantees the balance of flow for the vehi-
cles. Equation (3) establishes the connections between vehicles and transporta-
tion tasks served by them. Equation (4) ensures that each task is served exactly
once. Constraints (5) require that each vehicle is used at most once. Constraints
(6) are responsible for assigning a carrier’s vehicles to the carrier’s depot. Con-
straints (7) ensure that each vehicle which is leaving its depot Oc will come back
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to that depot. All vehicles are irrevocably assigned to drivers. The duration of
the vehicles’ routes are limited by Constraints (8). Constraints (9) and (10) are
needed for modeling the time windows and are guaranteeing sub-tour elimina-
tion. Finally, Constraints (11) and (12) specify the integral conditions for the
variables xijk and yjk.

Second, we consider Isolated Planning for ITT. Now, each carrier is planning
independently from all other carriers and is fulfilling all own transportation tasks
with own vehicles. Isolated planning can be performed by solving the basic model
(1)–(12) separately for each individual carrier. Solving the model separately for
a carrier c means restricting the set of carriers C to {c}, O to {Oc}, K to Kc,
and J to Jc. Equation (7) is not needed for the isolated planning and thus can
be omitted. The revenue (profit) Rc gained by a single carrier c is equal to the
optimal solution of the separately solved model (1)–(12). The entire optimal
transportation plan for all carriers is composed of the individual transportation
plans of all carriers. It can alternatively be derived simultaneously by one holistic
model. In this case, the basic model (1)–(12) has to be extended by the following
restriction (13).

∑

k∈Kc

yjk = zojc ∀j ∈ J \ O,∀c ∈ C (13)

3 The Bidding Process for Collaborative ITT

In collaborative scenarios, carriers form a coalition and agree to exchange trans-
portation tasks within the coalition in order to enhance their transportation
efficiency. Most approaches presented in literature for collaborative transporta-
tion planning [11,12] are based on combinatorial auctions [2]. However, since
the ITT-players in Busan wish to have a direct and transparent influence on
the task exchange and on the amount of profits generated by their own ITT
tasks, a first-price sealed bid auction [5] is applied. In addition to this auction
type, this paper investigates the effects of manually released limits for bidding
prices (freight payments). These limits reflect the requirements of the coalition
partners for profits gained by their own tasks and the freight payments obtained
for tasks which they receive from other coalition partners.

The collaborative planning scenarios considered in this paper are based on
the following assumptions. All transportation tasks as well as the amount of
the shipper-freight for these tasks are known to all carriers. Any transportation
task which has been assigned by a collaborative transportation planning system
to a carrier can be offered for exchange by that carrier. The exchange of tasks
actually has the effect of a reallocation of tasks to carriers. The outcome of the
reallocation determines which carrier will actually fulfill which task. Indepen-
dently of any possible task exchange, the shipper-freight for a task is paid to the
owner of the task. In case that a task is transferred, the owner of the task will
make a freight payment (carrier-freight) to that carrier who has actually fulfilled
the task.
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For each ITT task j offered for exchange within the coalition, the owner of
the task requires a minimum relative profit pj (a percentage rate of the original
shipper-freight) for transferring task j to a coalition partner. This means, the
owner is willing to accept a reallocation of task j to any other carrier if the
freight which has to be paid to this carrier is below Fj · (1 − pj). Additionally to
offering own tasks for exchange, carriers c can bid for any task j by announcing
a maximum rebate (discount) rjc that they are willing to grant on the original
shipper-freight; i.e., the bidder is willing to take over task j if the carrier-freight
is above Fj · (1 − rjc). The announcement of the carrier-freight corresponds to
specifying the price in a first bid auction.

Transferring a transportation task j to carrier c fulfills the requirement for
minimum forwarding profit of the task owner if and only if pj ≤ rjc. In this case
the bid rjc is called acceptable; and the corresponding task reallocation is called
admissible. If there are no acceptable bids (i.e., there is no carrier c offering a bid
with rjc ≥ pj), then task j will not be transferred and will have to be fulfilled
by the task owner. For uniformity reasons we consider the announced minimum
relative profit pj as a bid given by the task owner for an own task j.

The revenue Rc (= R1
c + R2

c) of a single carrier is composed of the rev-
enue R1

c drawn from fulfilling tasks by own vehicles and the revenue R2
c that

has been realized by transferring own tasks to coalition partners. The trans-
portation revenue R1

c is equal to the total freight paid to carrier c minus the
transportation costs of carrier c. The total freight paid to c is composed of the
shipper-freights for own tasks which have not been transferred to other carriers
and the carrier-freights for tasks which have been received from other carriers.
The transportation costs of c are equal to the costs for fulfilling all tasks which
have been reallocated to c, including own tasks which are not transferred. The
forwarding revenue R2

c of a carrier c is equal to the sum of the forwarding profits
of all forwarded own tasks. The forwarding profit of a single task emanates from
the difference between the shipper-freight and the carrier-freight. The revenue R
of the coalition of all carriers can be determined by summing up the individual
revenues Rc of all carriers.

4 Collaborative Planning Scenarios

We assume that the following data is given for each ITT task j: the shipper-
freight Fj , the owner cj of task j, and all bids rjc made by any coalition partner c.
The collaborative planning process is realized by an auction with bids for ITT
tasks. The outcome of the auction depends on the auction type and the bidding
made by the coalition partners. The partners are bidding for single tasks and
they are allowed to specify arbitrary values for their bids.

Scenario A (first-price auction). In Scenario A, a sealed first-price auction
[5] takes place. The best acceptable bid for a task is taken as winning bid;
i.e., a task j is transferred to that carrier c who has announced the highest
rebate rjc for task j. The binary variable zrjc is used for indicating whether a
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task j is reallocated to carrier c (zrjc = 1) or not (zrjc = 0). Thus, zrjc = 1
if and only if ric = max{ric′ |c′ ∈ C}. In case of ties, one of the best bids
is selected randomly. The optimal transportation plans of individual carriers
can be generated by separately solving for each carrier the isolated planning
problem under the assumption that all tasks have been reassigned according to
the outcome of the sealed first-price auction; i.e., the values of zojc in Eq. (13)
have to be replaced by the values of zrjc. Alternatively, the Scenario A can be
solved holistically in one single step by employing the basic ITT-model (1)–(12)
for the entire coalition (like in the central planning scenario) and additionally
fixing the values of yik and zrjc by the following restrictions:

∑

k∈Kc

yjk = zrjc ∀j ∈ J \ O,∀c ∈ C (14)

zrjc ≤
(
rjc − max

c′∈C
{rjc′}

)
+ 1 ∀j ∈ J \ O,∀c ∈ C (14’)

Constraints (14) constitute the link between zrjc and yjk. Constraints (14’)
guarantee that zrjc = 1 if and only if rjc is a best bid. As a consequence of strictly
reallocating tasks to carriers according to the first-price strategy, it is possible
that some partners will have more reallocated tasks than they can fulfill with
their own vehicles. That is why we assume that the carrier fleets will be big
enough for any outcome of the auction in Scenario A or additional vehicles of
subcontractors will be hired if necessary.

Scenario B (freight margins). The reallocation strategy of Scenario B is exploit-
ing the flexibility for task exchange which is provided by the relative margins
mjc = max((rjc − pj), 0) for possible freight payments. Not only the best bids
are considered as winning bids, but all acceptable bids are candidates for being
selected as winning bids; i.e., all bids with mjc > 0. The decision on the allo-
cation of tasks (by determining winning bids) and the transportation planning
are carried out simultaneously. This can be done by solving the basic model
(1)–(12) for the entire coalition under the condition that only admissible reallo-
cations (i.e., those which are corresponding to acceptable bids) are allowed. This
condition can be implemented in the model by adding the following restrictions:

∑

k∈Kc

yjk ≤ M · mjc + zojc ∀j ∈ J \ O,∀c ∈ C (15)

Equation (15) ensures that a task j can only be reallocated to a carrier c if it has
originally been assigned to c (zojc = 1) or if the reallocation to another carrier
is admissible. An admissible reallocation generates a forwarding profit which
complies with the task owner’s requirement for minimum relative profit (i.e.,
pj < rjc). Otherwise, the right side of Eq. (15) becomes zero and forces yjk = 0.
Consequently, the requirements (defined by pj) for minimum forwarding profits
are fulfilled for each single task j.
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Scenario C (positive forwarding profits). In Scenario C, as a kind of relaxation
of Scenario B, the task owners’ requirements for minimum relative profits are
not fulfilled for each single task but only in an aggregated way for all tasks
owned by a single carrier. Equation (16) guarantees for each carrier c that the
aggregated absolute amount of discounts granted by carriers which are fulfilling
the tasks owned by carrier c exceeds the amount of forwarding profits which are
at least required by carrier c for all transferred own tasks, including the tasks
that carrier c has not transferred. This practically means that R2

c ≥ 0 for all
carriers c. Note that Eq. (16) is linear since zoic is a predefined constant value.

∑

i∈J\O

∑

c′∈C

Fi · ric′ · zoic · zric′ ≥
∑

i∈J\O
Fi · pi · zoic ∀c ∈ C (16)

5 A Problem Instance for ITT

In this section, the reallocation of tasks and the resulting revenues for different
scenarios are demonstrated for an ITT example. There are three terminals and
three carriers. At each terminal there is one carrier located. Each carrier has
three own vehicles (including optional vehicles of subcontractors). The distance
between a terminal and the carrier depot which is attached to this terminal
is zero. The distances between all locations (i.e., the terminals 1, 2, and 3)
are given by the symmetric matrix DIST (loc1, loc2) with DIST (1, 2) = 20 km,
DIST (1, 3) = 12 km and DIST (2, 3) = 9 km. There are nine transportation
tasks j = (loc1, loc2)j with loc1 respectively loc2 as pickup respectively delivery
location: (3, 1)1, (3, 2)2, (1, 2)3, (2, 1)4, (1, 3)5, (3, 2)6, (2, 3)7, (1, 3)8, (2, 1)9.
Carriers C = {1, 2, 3} are located at the terminals 1, 2, 3; and they are the
owners of the sets of tasks {1, 2}, {3, 4, 5, 7}, {6, 8, 9} respectively. The loaded
traveling distances dfj and the empty traveling distances deij are derived from
the matrix DIST . The shipper-freights Fj (j = 1, ..., 9) are 200, 200, 120, 120,
120, 200, 220, 90, 220, respectively. All tasks have to be fulfilled within 8 h.
The operation time tj uniformly amounts to 2.0 h for any tasks and the average
traveling speed is set to 20 km/h. The unit costs for loaded traveling amounts to
fc = $4 for all carriers c; and their unit cost for empty travel distance amounts
consistently to ec = $3.5. The traveling costs are that high since they cover the
costs for waiting at the pickup and delivery locations. Table 2 shows the bids for
tasks. Bids for own tasks are marked by italic and underlined typeset.

Table 2. Bids rjc for transportation tasks (j ∈ J \ O and c ∈ C)

1 2 3 4 5 6 7 8 9

c1 0.2 0.2 0.2 0.2 0.2 0.15 0.2 0.15 0.15

c2 0.18 0.18 0.15 0.15 0.15 0.1 0.15 0.1 0.1

c3 0.25 0.25 0.12 0.12 0.12 0.3 0.12 0.3 0.3
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Table 3. Reallocation of tasks and revenues for different scenarios

Isolated Planning Scenario A Scenario B Scenario C Central Planning

R 788 851 872 935 935

A1 {1,2} {3,4,5,7} {1,5} {3,4} {}
R1 242 247 250 118 100

(R1
1 +R2

1) (242 + 0) (147 + 100) (200 + 50) (32 + 86) (0 + 100)

A2 {3,4,5,7} {} {3,4,7} {2,7} {3,4,8,9}
R2 263 116 257 375 250

(R1
2 +R2

2) (263 + 0) (0 + 116) (233 + 24) (312 + 63) (200 + 50)

A3 {6,8,9} {1,2,6,8,9} {2,6,8,9} {1,5,6,8,9} {1,2,5,6,7}
R3 283 488 365 442 595

(R1
3 +R2

3) (283 + 0) (488 + 0) (365 + 0) (442 + 0) (564 + 31)

Table 3 shows the reallocation of tasks to carriers and the revenues for
different scenarios. Ac denotes the set of tasks allocated to carrier c; i.e.,
Ac = {j ∈ J \ O|zrjc = 1}. The entries for one scenario (column) in Table 3
indicate the assignment of revenues to carriers (i.e., the fragmentation of the
total profit R to carrier profits R1, R2, and R3).

Based on the set of tasks A1, A2, and A3 shown in Table 3 for allocating tasks
to carriers, the routes performed by the carriers 1, 2, and 3 can be generated for
the different scenarios. Figure 1 illustrates the empty trips within these routes
in case of Isolated Planning (Fig. 1a) and in case of Central Planning (Fig. 1b).
In Fig. 1 the terminals 1, 2 respectively 3 are denoted by T1, T2 respectively
T3. The depot Oc of a carrier c whose empty trips are illustrated in a graph of
Fig. 1 is marked by a square around the circle. Each arc (i, j) in Fig. 1 represents
an empty trip of length deij which accrues when one of carrier’s c vehicles is
traveling empty between two terminals. An arc (i, j) denotes either an empty
trip from a carrier’s depot (O1, O2 or O3 in Fig. 1) to a pickup location of task j,
a trip from the delivery location of transportation task i to the pickup location
of transportation task j or a vehicle’s trip back to its depot after it has finished
task j.

6 Computational Analysis

Several computational experiments have been performed for ITT on problem
instances with randomly generated transportation tasks. More precisely, small
problem instances with 16 transportation tasks have been solved with a com-
mercial solver (CPLEX) for Integer Programming. Consider the set LOC of all
locations (pickup locations, delivery locations and carrier depots) of the PDPTW
which is describing the ITT problem. For all instances generated for our exper-
iments, there are five terminals (1, ..., 5) and three carriers with own depots at
the terminals 1, 2, and 3. Each carrier has three vehicles. The distances between
the terminals 1, 2, 3 are the same as in the example of Sect. 5. Additionally,
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(a) Isolated Planning (b) Central Planning

Fig. 1. Empty trips of carriers

the distances between Terminal 4 and the terminals 1, 2, 3 are 21 km, 2 km, and
10 km, respectively. The distances between Terminal 5 and the terminals 1, 2, 3,
4 are 22 km, 2 km, 11 km, and 2 km, respectively. All distances between relevant
locations are stored in the matrix DIST (loci, locj). For each transportation task
two terminals, one as pickup location and the other as delivery location, are ran-
domly selected. Since the vehicles are partly traveling over publicly accessible
roads in an area with much traffic, the average traveling speed v is relatively
low and is set to 20 km/h in our experiments. The loaded traveling distances dfj
and empty traveling distances deij are derived from DIST (loci, locj) according
to the description in Sect. 2. The values for the shipper-freight Fj depend on
the transportation distance and on the number (e.g., one 20-foot container, one
40-foot container, or two 20-foot containers) as well as the type (e.g., standard
container, high cube container, 45-foot container) of the transported container.
In our experiments, the shipper-freights are randomly determined between (7·dfj )
and (9 · dfj ). The traveling costs fc and ec amount to the same values as in the
example in Sect. 5. The planning horizon is one day (24 h for the time interval
[0, 24]). The maximal operation time T of a driver and a vehicle is 8 h. The
operation time tj of a task j is composed of the time for loaded traveling as
well as an estimated service time of 0.2 h and an expected waiting time of 0.5 h
at each pickup or delivery location. Thus, the operation time tj assumed in our
experiments amounts to tj = dfij/v + 2 · (0.2 + 0.5), which means that operation
times can vary between 110 min and 140 min for a single transportation task.
There are experiments on tight time-windows with a length of 6 h and wide time
windows with a length of 12 h. The time windows [aj , bj ] for transportation tasks
j are equally distributed over the entire planning horizon. Traveling to the first
pickup location or traveling home from the last delivery location can last up to
one hour. That is why for tight time windows with bj = aj +6, the values for aj
can vary between [1, 17]. For wide time windows with bj = aj + 12, the values
for aj can vary between [1, 11].

We have randomly generated and tested 30 problem instances. The bids are
also randomly generated. Since the bids for tasks (i.e., the values rjc for the
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maximum discount) are chosen arbitrarily and absolutely independently from
the values for pj (minimum required profits), the solution space of the scenarios
A, B, and C might be very small. Thus, the carriers must release reasonable
bids in order to provide options for advantageous exchanges of transportation
tasks. Since the original assignment zojc of tasks made by a collaborative trans-
portation planning system is an admissible reallocation zrjc, the scenarios B and
C will always generate solutions which are superior (with respect to the objec-
tive function, i.e., the total profit of the coalition) or identical to those of the
isolated solution. For Scenario A, however, it is possible that the total profit of
the coalition will be smaller than the total profit reached for isolated planning.
For all our experiments, the generated bids are equally distributed within the
intervals [0, 20] for pj and [10, 30] for rjc. All problem instances have successfully
been solved for each scenario without any optimality gap. Table 4 summarizes
the averaged values for the revenues achieved by the carriers for the different
scenarios. A comparison of the revenues for isolated planning with those for cen-
tral planning quantifies the collaboration potential (maximal reachable profit
increase by collaboration). The collaboration potential for our experiments aver-
agely amounts to 144 %, which is rather high compared to other scenarios for
collaborative transportation planning. ITT problems generally provide a high
potential for collaboration since there usually are only few locations and many
transportation tasks which can be efficiently combined to round trips between
the few existing locations.

Table 4. Averaged revenues for different scenarios

Isolated Planning Scenario A Scenario B Scenario C Central Planning

R 209 221 500 510 510

R1 10 27 167 177 195

(R1
1 +R2

1) (10 + 0) (–81 + 108) (115 + 52) (120 + 57) (145 + 50)

R2 105 114 188 185 167

(R1
2 +R2

2) (105 + 0) (6 + 108) (128 + 60) (122 + 63) (107 + 60)

R3 94 81 145 148 150

(R1
3 +R2

3) (94 + 0) (–26 + 107) (77 + 68) (78 + 70) (75 + 75)

Comparing the averaged revenues achieved by the different collaborative sce-
narios shows that Scenario A can only slightly increase the total profit of the
isolated planning. Scenario B comes very close to the results of central planning.
This demonstrates the positive effect which can be realized by exploiting the
given freight margins defined by the bids instead of strictly applying a first-price
auction. Scenario C reaches the optimal value of central planning. This means
that the potential for collaboration has fully been exploited while simultaneously
the aggregated carrier requirements for minimum forwarding profits of their own
tasks are fulfilled. The results of Table 4 further show that the profit allocation
(i.e., the fragmentation of the total profit R) to collaborating carriers differs a
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Table 5. Averaged collaboration profits (CP ) and portion of test cases with profit
decrease

Scenario A Scenario B Scenario C Central Planning

CP 12 (41/90) 291 (14/90) 301 (9/90) 301 (13/90)

CP1 16 (13/30) 156 (0/30) 166 (0/30) 184 (0/30)

CP2 10 (12/30) 83 (5/30) 81 (2/30) 62 (6/30)

CP3 –14 (16/30) 52 (9/30) 54 (7/30) 55 (7/30)

lot for different scenarios. The collaboration profit of a scenario is defined as the
difference of the revenue for isolated planning and the revenue achieved for that
scenario. Table 5 summarizes the averaged collaboration profit CP for the whole
coalition and the averaged collaboration profits CP1, CP2, and CP3 for single
carriers 1, 2, and 3. Reallocations of tasks which are based on the bidding of
carriers may cause greatly imbalanced revenues with high values for the profit
increase for some carriers and low values for other carriers. The collaboration
profits may even be negative for some carriers (see e.g., CP3 for Scenario A).
The values in brackets in Table 5 refer to reallocations which have caused a profit
reduction for any coalition partner in any of the 30 problem instances. The val-
ues indicate the quotient of the number of reallocations with profit reductions
in relation to the number of all 90 reallocations performed for a given scenario.
These values show that even for Scenario C and the Central scenario, which
have a high amount of additional profit to share between the partners, there is
a probability of more than 10% that an individual partner will suffer from a
decrease of the own profit due to reallocation. That is

∑

i∈J\O
Fi · (1 − r̄ic) · zric +

∑

i∈J\O
Fi · r̄ic · zoic · zric

+
∑

i∈J\O
Fi · (r̄ic − pi) · zoic · (1 − zric)

−

⎡

⎣
∑

i∈J\O

∑

k∈K

(
fc · dfi · yik

)
+

∑

i∈J

∑

j∈J

∑

k∈K

(
ec · deij · xijk

)
⎤

⎦ ≥ Rc(I) ∀c ∈ C

(17)

why an additional restriction for the alignment of collaboration profits is added to
the optimization models of the different planning scenarios. Let Rc(I) denote the
revenue of carrier c for the Isolated Scenario. For a given ITT problem instance,
Rc(I) is a constant which can be determined by solving the model (1)–(12) sep-
arately for each carrier. The profit alignment caused by the Eq. (17) guarantees
that no carrier will have a negative collaboration profit in any problem instance.

Table 6 summarizes the averaged values for the revenues achieved by the
carriers for the different scenarios in case that Eq. (17) is added to the central
model (1)–(12) in order to guarantee that none of the carriers will ever have
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Table 6. Averaged revenues for different scenarios with Eq. (17)

Isolated
Planning

Scenario A
with (17)

Scenario B
with (17)

Scenario C
with (17)

Central
Planning

R 209 - 470 485

R1 10 - 134 140 195

(R1
1 +R2

1) (10 + 0) - (89 + 45) (94 + 46) (145 + 50)

R2 105 - 174 177 167

(R1
2 +R2

2) (105 + 0) - (132 + 42) (138 + 39) (107 + 60)

R3 94 - 162 169 150

(R1
3 +R2

3) (94 + 0) - (121 + 41) (124 + 45) (75 + 75)

Table 7. Averaged collaboration profits (CP ) for scenarios with (17) and portion of
test cases with profit decrease

CP CP1 CP2 CP3

Scenario A - - - -

Scenario B 261 (0/90) 123 (0/30) 69 (0/30) 69 (0/30)

Scenario C 276 (0/90) 128 (0/30) 73 (0/30) 75 (0/30)

a negative collaboration profit caused by the reallocation of tasks of a given
problem instance. Based on the results of Tables 6 and 7 summarizes the averaged
collaboration profit CP for the whole coalition and the averaged collaboration
profits CP1, CP2, and CP3 for single carriers 1, 2, and 3. Additionally, like
in Table 5, the values in brackets show the quotient (n/90) of reallocations for
which any of the three carriers in any of the 30 problem instances had a decrease
of own revenue due to collaboration.

Adding Eq. (17) to the model for Scenario A yields that none of the 30 test
instances has a feasible solution; i.e., all sealed first-price auctions performed on
our test set result in reallocations with at least one carrier having a negative
collaboration profit. For Scenario B respectively Scenario C, Eq. (17) has the
effect that the total revenue of the whole coalition is averagely reduced by 6%
respectively 5% and that the distribution of the collaboration profit among
the individual partners is adjusted. Without applying Eq. (17) the collaboration
profit for Scenario B respectively Scenario C is divided in portions of 54% (for
Carrier 1), 28% (for Carrier 2) and 18% (for Carrier 3) respectively 55%, 27%,
18%. Adding Eq. (17) yields the following results: 46%, 27%, 27% respectively
47%, 26%, 27% for Scenario B respectively Scenario C.

7 Conclusions

ITT problems are characterized by the existence of many transportation tasks
combining a relatively low number of different locations (the terminals). That
is why ITT tasks which have been more or less randomly assigned to different
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carriers provide great potential for improving the transportation efficiency by
reallocating tasks within collaborative approaches. The experiments in Sect. 6
have shown that a reallocation of tasks based on a sealed first-price auction was
not even able to exploit a small part of this collaboration potential, even if we
assume reasonable and meaningful bids for ITT tasks. If we extend the options
for reallocation by accepting all bids which meet the freight margins (require-
ments given by the carriers for the minimum forwarding profits and maximum
discounts of transportation tasks), the planning situation improves dramatically.
By this kind of relaxation for task reallocation (Scenario B), averagely 98% of
the collaboration potential could be realized in our experiments. In a further
relaxation the price announcements postulated for single bids are aggregated for
each carrier. By this kind of relaxation for task reallocation (Scenario C), 100%
of the collaboration potential could be realized in our experiments.

The above computational results show that there are great discrepancies with
respect to the collaboration profits of individual carriers. Up to a certain degree,
this has to be accepted since, due to diverse isolated planning situations, some
carriers are in privileged positions from scratch (carrier 1 in our experiments)
and some other carriers are in worse positions (carrier 3 in our experiments).
However, there is reason to exclude reallocations of tasks which will worsen
the situation of some carriers since such reallocations would raise incentives for
carriers to leave the coalition. That is why it could be required that no carrier
should have a negative collaboration profit caused by the exchange of ITT tasks.
According to the above experiments, this requirement will reduce the total profit
of the coalition by 6% for Scenario B and 5% for Scenario C.

If the carriers insist that their limits for forwarding profits and discounts are
strictly observed for each single task and if they do not want to accept that the
situation of single carriers will be worsened by collaboration, then they should
choose Scenario B with the additional Eq. (17) for profit alignment. In this case
86% of the collaboration potential of the entire coalition has been reached while
all expectations of the coalition partners will be measured up. If carriers want to
increase their collaboration profit, they can choose Scenario C with Eq. (17). In
this case 95% of the collaboration potential has been reached in our experiments.
The collaborative approaches presented in this paper exploit the full information
transparency within the coalition. In particular, all tasks and their freights are
known to all carriers. This could be a drawback which actually reduces the
acceptance of the approaches unless there is a strong port authority prescribing
the rules for collaboration. In future research, approaches with less information
exchange will be developed.
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Abstract. Container terminals across the world sort the containers in
the stacks in their yard in a process called pre-marshalling to ensure their
efficient retrieval for onward transport. The container pre-marshalling
problem (CPMP) has mainly been considered from a deterministic per-
spective, with containers being assigned an exact exit time from the yard.
However, exact exit times are rarely known, and most containers can at
best be assigned a time interval in which they are expected to leave. We
propose a method for solving the robust CPMP (RCPMP) to optimal-
ity that computes a relaxation of the robust problem and leverages this
within a solution procedure for the deterministic CPMP. Our method
outperforms the state-of-the-art approach on a dataset of 900 RCPMP
instances, finding solutions in many cases in under a second.

1 Introduction

The container trade is an increasingly important component of the global economy.
Roughly 182 million twenty-foot equivalent units (TEU) of containers were trans-
ported by sea in 2014, with the total throughput at the world’s ports being “more
than two and a half times that number” [23]. The world’s largest port, Shanghai,
China, handled over 35 million TEU in 2014, and the largest port in Europe, Rot-
terdam, the Netherlands, transferred over 12 million TEU. With more and more
containers being shipped around the world, ensuring efficient transportation of
containers through terminals is becoming increasingly challenging.

Container terminals wish to avoid delays in loading/unloading and trans-
shipping containers, as shippers are especially sensitive to lateness [24]. There
are a number of sources of delay within container ports, such as moving contain-
ers between terminals [21], internal container handling and vehicle dispatching
operations [6], and delays due to improper stacking in the yard. We focus on
this last source of delay, as quickly and efficiently removing containers from the
yard is critical for ensuring ships, trains and trucks can depart the terminal on
time.

When containers enter the yard, it is often not clear exactly when they will
leave, meaning it is not possible to optimally arrange the containers according
c© Springer International Publishing Switzerland 2016
A. Paias et al. (Eds.): ICCL 2016, LNCS 9855, pp. 131–145, 2016.
DOI: 10.1007/978-3-319-44896-1 9
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to their exit time. Thus, some containers with early exit times may be blocked
by containers with later exit times stacked above them. We call this situation a
misoverlay. When containers are misoverlaid, blocking containers must be first
moved out of the way to retrieve a container below them, thus wasting time.
Given that vessels can load thousands of containers in a single port, retrieval
delays can quickly accumulate, resulting in a postponed departure of a vessel.
Ideally, containers would be already correctly sorted when vessels berth at a
port, ensuring their efficient retrieval during busy periods.

We focus on solving the robust version of the pre-marshalling problem, in
which containers in stacks are rearranged during off-peak times. We assume
that the exact time containers will leave the stacks is not known, but can be
estimated within some time interval. The goal is to sort the containers in a
minimal number of container moves such that no containers are misoverlaying
any other containers.

Although there has been much work on the deterministic pre-marshalling
problem in recent years (e.g., [4,12,13,20]) both for optimal and heuristic
approaches, the robust container pre-marshalling problem (RCPMP) has only
been addressed in a single article [17]. We introduce a novel relaxation of the
RCPMP that allows the problem to be solved to optimality using the iterative
deepening A* (IDA*) technique for the CPMP from [20]. We experimentally ana-
lyze several different options for using this relaxation and show that our approach
outperforms the state-of-the-art constraint programming technique from [17] on
a dataset of 900 RCPMP instances. In fact, our IDA* based approach solves 349
instances to optimality in under a second compared to 11 instances for the CP
model, and overall solves 546 instances compared to 61 for CP within an hour.

We first formally describe the RCPMP in Sect. 2, then present related work
in Sect. 3. Next, we describe our solution approach for the RCPMP in Sect. 4.
Computational results are given in Sect. 5, and we conclude and discuss future
research opportunities in Sect. 6.

2 Robust Container Pre-marshalling

In the yard of a container terminal, containers are usually stored in blocks that
contain several rows of container stacks (see Fig. 1). In many ports, rail mounted
gantry cranes (RMGCs) perform the movement or shuffling of containers. A row
of stacks in a block is referred to as a bay, as seen in Fig. 2. A bay has a maximum
height restriction on how many containers may be stacked on top of one another,
defined by a number of tiers. The yard acts as a buffer for containers being
transferred between ships, trucks and trains.

The goal of the CPMP is to sort the containers of a single bay based on the
departure times of the containers from the bay. The departure times are referred
to as groups.1 In the RCPMP, we assume that the departure times of the con-
tainers are not known exactly. This is a realistic assumption, as trucks, ships and

1 A group is called a priority in [4,5] and referred to as an exit time in [19].
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Fig. 1. The layout of a container terminal.

RMGC
Vehicle

Yard block Bay

(a) Top view of an RMGC.

RMGC

Vehicle

Trolley

(b) Front view of an RMGC.

Fig. 2. A rail-mounted gantry crane over a yard block, from [20].

trains often do not arrive in ports exactly as scheduled. In the robust version of
pre-marshalling presented in [17], containers are assigned time intervals in which
they will depart the stacks. We generalize this notion and replace the time inter-
vals of containers with a blocking matrix, in which it is explicitly specified which
containers may be stacked on other containers. This allows terminal operators to
not only perform robust pre-marshalling, but also to incorporate other stacking
rules into the final layouts of the bays.

Formally, a bay is defined by a number of stacks S and a maximum number
of tiers T . There are C containers that must be re-ordered within the bay. The
function c(s, t) returns the container in stack s, tier t, if there is one, otherwise
it returns the value 0. The blocking matrix is defined with the function

b(i, j) ∈
{

0 if container i may be placed above container j,
1 if container i blocks container j.

A bay is considered sorted if b(c(s, t′), c(s, t)) = 0 for all 1 ≤ s ≤ S, 1 ≤ t <
t′ ≤ T . In other words, in every stack there should not be any container placed
above another container if doing so would cause a misoverlay. Given a specified
configuration of a bay, the goal of the RCPMP is to find a minimal set of moves
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Fig. 3. A bay being sorted, with blocking containers shown in gray; the corresponding
blocking matrix is in Fig. 4.

(a)

1 2 3 4 5 6

1 1 0 0 0 0 1

2 1 1 1 1 1 1

3 1 1 1 0 1 1

4 1 1 1 1 1 1

5 1 0 1 0 1 1

6 1 0 0 0 0 1

(b)

Fig. 4. The time intervals (x-axis) from the bay in Fig. 3 (left) and a blocking matrix
(right) for representing the time intervals of the containers.

to sort the bay, where a single move consists of taking a container from the top
of one stack and moving it to the top of another stack.

Figure 3 shows an example RCPMP where containers are labeled with an ID.
The blocking matrix for the containers is given in Fig. 4, along with the time
intervals for each container used to generate the matrix. We build a blocking
matrix out of time intervals for containers as follows. When the time intervals
for containers i and j overlap, we let b(i, j) = b(j, i) = 1. When the intervals
are non-overlapping, we set b(i, j) = 1 if the earliest exit time of container i is
greater than the latest exit time of container j. If neither one of these is the
case, we let b(i, j) = 0.

We make several assumptions regarding the RCPMP. First, we assume we
are operating a crane on a single bay. This assumption is standard in the pre-
marshalling and container relocation literature [3,13]. This assumption is based
on the fact that moving containers within a bay is quick and easy for a RMGC,
but moving the RMGC between bays takes significantly longer. Furthermore,
there are safety considerations in systems with multiple cranes or in which trucks
are loaded at the side of the stacks, rather than in front or back of the block.
We also assume that all container moves within a bay have the same cost. This
means that we do not consider that some moves might take slightly more time
than other moves, again because moves within a single bay tend to be cheap.
Finally, we assume that time intervals for containers can be estimated with
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some precision. We believe that with the amount of data available to container
terminals today, this can be done in a reasonable fashion.

3 Related Work

The container relocation literature is quite rich. We distinguish between prob-
lems involving intra-bay and inter-bay exchanges of containers. Besides the
CPMP there are also problems assuming that containers must be moved outside
of the terminal, implying some reshuffling. This can be motivated by means of
loading sequences for vessels [2] as well as requiring time windows given by a
truck appointment system [11]. Note that the CPMP is also closely related to
blocks world planning; see, e.g., [7].

It has been shown that the CPMP is NP-hard [2], and a comprehensive survey
on the CPMP and related problems is provided in [2,14]. There are quite a few
papers proposing solution approaches for solving the CPMP. A heuristic tree
search algorithm is given in [1], and the corridor method paradigm is introduced
in [4]. An explicit optimization model is defined in [13]. Some comments on
logical observations leading to a lower bound are provided in [25]. Algorithms
with direct heuristics have been developed by [9]; a neighborhood search heuristic
is given in [12]. More recent heuristics are those by [5,10,26]. A metaheuristic
using a biased random key genetic algorithm has been proposed by [8]. Moreover,
[5] incorporates a simple A* algorithm that was later improved and appended
with some symmetry breaking rules and an IDA* approach by [20], which is a
central component in our work. An approach similar to [20] with less general
versions of the branching rules is described in [27]. A version of the CPMP is
addressed in [22] in which reach stackers can access containers from the side of
the stacks.

Regarding the RCPMP, there is only the work of [17], which proposes a
constraint programming approach as indicated above.

4 Solution Procedure

We base our solution method on the iterative deepening A* (IDA*) search intro-
duced in [20]. However, we note that any optimal search procedure for the CPMP
could be used with our proposed relaxation of the RCPMP. Briefly described,
we use a constraint program to assign groups as in the deterministic CPMP to
the containers of the RCPMP. We use the relaxation to compute a lower bound
on the number of moves necessary to sort the bay, and use this as guidance for
the IDA* search.

4.1 RCPMP Relaxation

We define a binary constraint satisfaction problem that converts an RCPMP
bay into a CPMP bay. The goal is to make a CPMP bay in which the blocking
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relations match those of the RCPMP as closely as possible. We note that if any
containers in the RCPMP are mutually blocking, i.e., b(i, j) = b(j, i) = 1, then
the relaxation will likely underestimate the true number of moves necessary to
solve the problem, as the CPMP has no mechanism to model mutually blocking
containers. Let the decision variable xi ∈ {1, . . . , C} define the container group
for container i. We model the following objective and constraints to relax the
RCPMP into the CPMP.

min
∑

1≤i≤C

xi (1)

xi < xj ∀1 ≤ i < j ≤ C such that b(i, j) = 0 ∧ b(j, i) = 1 (2)
xj < xi ∀1 ≤ i < j ≤ C such that b(i, j) = 1 ∧ b(j, i) = 0 (3)
xi �= xj ∀1 ≤ i < j ≤ C such that b(i, j) = 1 ∧ b(j, i) = 1 (4)

xi ∈ {1, . . . , C} ∀1 ≤ i ≤ C (5)

The objective function (1) minimizes the values of the groups to try to force
the relaxation to place as many containers as possible into similar groups. We
note that the objective function is not strictly necessary; in fact, sometimes
leaving it out results in a stronger relaxation. We explore this experimentally in
the following section. Constraints (2) and (3) ensure that if a container blocks
some other container, it receives a higher group value, thus also blocking that
container in the relaxation. Constraints (4) prevent containers that block each
other from being in the same group. We leave the order of these containers open
for the solver to determine, as either ordering of the containers could be used.

The IDA* approach used with this relaxation, which we describe in more
detail in the following subsection, requires that the lower bound on the number
of moves necessary to solve the problem be valid, i.e., given an unsorted bay the
lower bound never overestimates the number of moves needed to sort the bay.
Let LB return the number of moves in a valid lower bound procedure for the
CPMP. Example lower bounds are the lower bound proposed by Bortfeldt and
Forster in [1] (BFLB) or the “direct” lower bound discussed in [20]. Furthermore,
let Relax (bay) compute the mapping of the RCPMP to the CPMP presented in
the previous model on a given bay . Finally, let opt(bay) indicate the minimal
number of moves necessary for sorting the bay. We now show that applying a
lower bound heuristic for the CPMP on the relaxation of the RCPMP is also a
lower bound for the RCPMP. For the following proof, we say that two containers
are mutually blocking if for containers i and j, b(i, j) = b(j, i) = 1.

Proposition 1. LB(Relax(bay)) ≤ opt(bay)

Proof. Any container that must be moved in the RCPMP will also have to be
moved in the relaxation. Consider a container c that blocks a container c′, i.e.,
b(c, c′) = 1. In the case where b(c′, c) = 0, inequalities (2) and (3) ensure that
the group of c is greater than the group of c′, guaranteeing that it will block c′ in
the relaxation. Should b(c′, c) = 1, the group of c could be smaller than the one
assigned to c′. However, this does not matter because in the relaxation either c
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blocks c′ or c′ blocks c, meaning that either c must be moved away from c′ (or c′

away from c) or no move is required in the relaxation, which is not more moves
than would be required in the RCPMP. ��

Fig. 5. The relaxation of the bay shown in Fig. 3, with the original container IDs shown
in the bottom right corner of each container.

Figure 5 shows the relaxation of the bay given in Fig. 3. Instead of being
labeled with its ID, each container is now labeled with the group assigned by the
binary constraint satisfaction problem. Several pairs of containers are mutually
blocking, and this cannot be captured in the relaxation. For example, containers
3 and 5 (groups 4 and 3, respectively) are mutually blocking, so in the RCPMP
container 5 may not be placed on top of container 3, however in the relaxation
placing a container with group 3 on top of one with group 4 is valid. Nonetheless,
the lower bound provided is still useful for the RCPMP. In this case, the Bortfeldt
&Forster lower bound returns a value of 3. The optimal number of moves is
actually 4, although the gap in this lower bound turns out to be due to a weakness
in the lower bound, rather than due to the relaxation.

4.2 IDA* for the CPMP

IDA* is a so-called “heuristic search” algorithm for finding solutions to path
planning problems in graphs (see, e.g. [18]). We note that the term “heuristic
search” comes from the field of AI and refers to the use of a heuristic in the
algorithm for guiding the search. In contrast to the meaning of a heuristic search
in Operations Research, IDA* is guaranteed to find an optimal solution to a
problem or prove that none exists, given that the guiding heuristic is admissible,
i.e., it never overestimates the number of steps required to reach a goal state.
IDA* is given a root node of a graph where it begins its search, and it attempts
to find a goal node by expanding the nodes along a search fringe.

The IDA* algorithm successively performs a depth-limited depth first search
in the search graph. The objective function of a graph node, x, is given by
f(x) = g(x) + h(x), where g(x) is the number of nodes in the path from the
root node to the node x and h(x) is a heuristic that estimates the number of
nodes necessary to reach the goal node from x. As mentioned above, IDA* will
always find the optimal solution or indicate that no solution can be found when
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Algorithm 1. An IDA* algorithm for the CPMP, from [20].
1: function CPMP-IDA*(n, g, h, k, kmax )
2: if k ≥ kmax then return no solution
3: m ← CPMP-IDA*-Recur(n, g, h, k)
4: if m �= ∅ then
5: return m
6: else
7: return CPMP-IDA*(n, g, h, k + 1, kmax )

8: function CPMP-IDA*-Recur(n, g, h, k)
9: if misoverlays(n) = 0 then return n

10: for m ∈ branches(n) do
11: if g(m) + h(m) ≤ k then
12: r ← CPMP-IDA*-Recur(m, g, h, k)
13: if r �= ∅ then return r
14: return ∅

h(x) is admissible. Thus, h(x) is a lower bound on the number of nodes left to
explore. When h(x) is consistent (monotone), meaning that h(x′) ≥ h(x) holds
for any successor node x′ of x, no node in the graph must be explored more than
once. IDA* differs from its well-known variant, A*, in that it has a low memory
footprint, but requires more CPU time. A* can run out of memory on even
small problems because the entire search fringe must be saved. IDA* avoids this
problem by repeating itself in each iteration. We refer to [20] for a more detailed
discussion of IDA* versus A* for the CPMP.

The CPMP (and RCPMP) can be solved using IDA* by the following graph
model. Each node in the graph represents a configuration of containers in the
bay. The root node is the starting configuration of the bay, and the goal is
represented by any bay configuration in which the containers are sorted. An arc
between nodes i and j exists if moving a single container in configuration i from
the top of a stack to the top of another stack results in the configuration j.

Algorithm 1 provides the pseudocode for the IDA* approach for solving the
CPMP. The input to the algorithm is given by the parameters n, g, h, k and kmax ,
which are the initial solution, the functions g and h as previously described, the
current IDA* depth, and the maximum depth allowed, respectively. When the
maximum depth is exceeded, then no solution exists and the algorithm immedi-
ately exits. Otherwise, a depth first search is started with the given depth limit
k. When this search finds a solution, m, it is returned on line 5, otherwise the
IDA* is called again and k is incremented by one.

The function CPMP-IDA*-Recur in Algorithm 1 performs the depth lim-
ited search. The function first checks whether the bay configuration provided
(parameter n) is a valid solution. If it is, this is returned. Otherwise, all con-
figurations that can be reached from configuration n are explored if their lower
bound is less than k. In [20] several symmetry breaking and branching rules are
introduced for the branches function to reduce the number of nodes explored
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in each iteration. We refer to [20] for the full details about these rules, but note
that they are all also applicable for solving the RCPMP.

4.3 Extending IDA* to the RCPMP

We now present our approach for solving the RCPMP building off of the pre-
vious two subsections. We first compute a relaxation of the RCPMP using the
previously defined binary constraint satisfaction problem. The relaxation can be
computed with or without the objective function (1). When computed with the
objective function, we sometimes do not find a relaxation within a given timeout.
When this happens, we remove the objective function and resolve the constraint
program. If the relaxation is solved without the objective function, then the user
can choose how many solutions to examine. The relaxation with the best root
node lower bound is chosen for the rest of the search.

Once a relaxation is found, for each container i, let ri indicate the group value
of the container as computed in the relaxation and R(n) be the configuration
specified by the relaxation for RCPMP configuration n. First, we modify CPMP-
IDA* and CPMP-IDA*-Recur to accept the function R. Second, we change
the condition of the if statement in line 11 to be g(m) + h(R(m)) ≤ k. In other
words, instead of checking the lower bound of the RCPMP configuration, we
examine its relaxation. If the relaxation’s lower bound is less than k, we explore
the configuration m, otherwise we throw the configuration away. No further
changes are necessary and any RCPMP instance with a blocking matrix can
now be solved to optimality.

5 Computational Results

We now evaluate our proposed method. We use Intel Xeon E5506 CPUs at
2.13 GHz for all experiments. We allow a single process to use up to 3.5 GB of
RAM. We implement our IDA* approach in C++ and interface with the solver
G12 with lazy constraints through the MiniZinc language [15]. We conduct three
sets of experiments. First, we analyze options for computing the relaxation of
the RCPMP. Second, we investigate the quality of the relaxation in comparison
to the optimal number of moves for several categories of RCPMP instances.
Finally, we compare our approach to the state-of-the-art CP model from [17].

5.1 Dataset

We made a robust CPMP problem generator that can generate problem instances
with varying numbers of stacks, tiers, containers, time horizons, and container
exit time intervals. The generator and instances we have generated for this paper
are available at https://bitbucket.org/eusorpb/rcpmp-as. We note that we did
not have any real data from a container terminal to base our generator on;
however, its probability distributions could be easily changed to model real data.

https://bitbucket.org/eusorpb/rcpmp-as
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Given a number of stacks, tiers and a fill percentage, from which the number
of containers is derived, an instance is generated as follows. A maximum time t
is specified and containers are assigned a discrete time interval beginning in the
range [1, t] uniformly at random. The duration of each container’s time interval
is chosen uniformly at random within the range [1, s], where s is a specified
maximum interval time. We then make a list of the containers, shuffle it, and
place containers into a random non-full stack until all containers are in the bay.

Table 1 provides the parameters we used for generating our dataset. We set
the maximum time of an instance to ten times the number of stacks times the
number of tiers times the fill percentage. We note that there is no guarantee
that the instances we generate are feasible, especially when the fill percentage is
0.8. We orient the sizes of the instances we generate on the sizes of bays in real
terminals. To the best of our knowledge, very few bays are larger than 10 stacks
by 5 tiers, due to the physical limitations of the RMGCs.

Table 1. Instance generation parameters for our dataset.

Tiers {3, 4, 5, 6, 10}
Stacks {5, 8, 10}
Fill percent {0.4, 0.6, 0.8}
Max. interval duration {4, 8}

5.2 Relaxation Model Solutions

We first assess the quality of the relaxation model with and without the objec-
tive function across our dataset. Usually when solving the relaxation with an
objective function there is only a single solution returned by the solver. How-
ever, removing the objective function value allows for multiple solutions on most
instances in our dataset. Furthermore, some of these instances have different
lower bounds, meaning there is the potential for strengthening the problem relax-
ation by analyzing multiple solutions.

Objective Function Quality. We generated as many relaxation solutions as
possible for each instance for 10 s and compared this with the optimal values
found using the objective function. In all cases, we found at least one relaxation
mapping within 10 s that was as good as the value found using the objective
function. In 29 cases, we could not find a relaxation using the objective function
within the time limit, and using an objective function finds worse relaxations on
194 instances. On these instances, the median gap between using an objective
function and not using one is only 1 move, with an average of 1.46 moves,
meaning usually the objective function finds a good value. Ten instances had
a gap of 3 moves, seven a gap of 4 moves, and one instance a gap of 5 moves.
Note that these high gaps are only on instances with a fill percentage of larger
than 0.6 and mostly have 24 slots or more.
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Fig. 6. We examine all relaxations found within 10 s and take the best one as a reference
value. This figure shows the number of times using a timeout of 1 s (dashed) or 10 s
(solid) finds worse values when examining a given number of relaxations.

Number of Solutions. We examine the quality of the relaxation compared to
how many solutions are examined and for how much time in Fig. 6. The y-axis
shows the number of instances in which the best root node relaxation found had
less moves than when we examine all solutions for 10 s. While only observing
10 relaxations leads to a large number of instances with a gap for both a 10 s
and 1 s timeout, observing 50 solutions with a 10 s timeout is already enough to
lower the gap to 38 instances. We note that when we only allow a 1 s timeout of
our constraint programming solver, it is unable to find many solutions; hence we
do not improve significantly even when allowing more and more relaxations to
be examined. Nonetheless, these results are promising as in most cases we can
find good solutions with the relaxation quickly. We therefore use a 1 s timeout
with up to 500 relaxations for the rest of this work.

5.3 Relaxation Quality

Given that the Bortfeldt &Forster lower bound can often have a gap of several
moves on the deterministic version of pre-marshalling, we provide an analysis
of its gap on the RCPMP to ensure that the gap using the relaxation is not
unreasonable. Table 2 provides the average gaps over all instances of a given
number of stacks and tiers in (a) and grouped by fill percentage in (b) for using
the objective function in the relaxation (R-Obj), as well as checking up to 500
solutions with a 1 s (R-1s-500) and 10 s timeout (R-10s-500). We provide the
average over instances that were solved and over all instances. In the cases where
the instance could not be solved, the best bound proven is used to compute the
gap. Surprisingly, even some large instances have rather small gaps, such as those
with 6 or 10 stacks. Of course, this only holds for instances that are solved – gaps
for all instances might seem low in these categories, but really this just means
the solver could not prove a higher bound. On smaller instances, we see that
sometimes the gap can be rather large, with 3 stacks and 10 tiers having gaps of
upwards of 8 moves even on instances that were solved. When grouping instances
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Table 2. Average gap of the relaxation root node lower bound to the final solution or
highest bound proven.

S T
R-Obj R-1s-500 R-10s-500

Solved All Solved All Solved All

3
5 2.3 9.9 2.1 9.7 2.1 9.7
8 6.4 10.9 6.1 10.8 6.1 10.8

10 8.4 12.7 8.0 12.5 8.0 12.5

4
5 1.8 5.3 1.6 5.2 1.6 5.2
8 4.8 7.3 4.5 7.2 4.5 7.2

10 5.9 7.6 5.9 7.6 5.9 7.6

5
5 2.7 2.7 2.5 2.5 2.5 2.5
8 3.3 5.0 3.2 5.0 3.2 5.0

10 4.1 5.7 4.2 5.7 4.2 5.7

6
5 2.3 2.3 2.1 2.1 2.1 2.1
8 3.0 4.1 3.0 4.0 3.0 4.0

10 2.8 4.6 2.7 4.5 2.7 4.5

10
5 1.2 1.3 1.1 1.1 1.1 1.1
8 1.0 2.0 1.1 2.0 1.1 2.0

10 1.5 2.3 1.3 2.3 1.3 2.3

(a) Grouped by stacks and tiers.

Fill
R-Obj R-1s-500 R-10s-500

Solved All Solved All Solved All
0.4 2.4 2.4 2.2 2.2 2.2 2.2
0.6 4.3 4.9 4.2 4.8 4.2 4.8
0.8 4.6 9.5 4.3 9.4 4.3 9.4

(b) Grouped by fill percentage.

by their fill percentage, we observe, unsurprisingly, that the fill percentage has
a strong impact on the quality of the relaxation lower bound. Dense instances
have rather high gaps, and indeed, these instances are very difficult to solve.
In summary, these results show that while the relaxation provides a reasonable
starting point for solving the RCPMP, there is still significant room for improving
the lower bound.

5.4 Comparison to the State-of-the-Art

We compare our approach to an implementation of the state-of-the-art constraint
programming model presented in [17]. We note that the CP model does not
support a blocking matrix, but rather accepts intervals in which the containers
will leave the bay. Since our instance generation assigns containers time intervals
before computing the blocking matrix, this poses no problems for comparability.
Furthermore, we acknowledge that our implementation of the CP model is not
the same as the original. Unfortunately, the original could not be provided for
comparison. We use a different variable and value selection scheme, but note
that we are also using a newer version of the Choco solver (3.3.3) [16].

In Table 3 we show the number of instances solved and the average CPU time
required for each category of stacks, tiers and fill percentage. We use a timeout
of 3600 s (1 h) of CPU time for execution of the IDA* and CP approaches. Each
instance category has 20 instances, 10 of which have container time intervals
between 1 and 4 time units (inclusive) and 10 instances with time intervals
between 1 and 8 time units (inclusive). Our approach outperforms the CP model
across all instances, both when using the objective function in the relaxation,
and when checking the first 500 relaxation solutions found in a second. We note
that extending this time to 10 s provided practically no performance increase,
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Table 3. Number of instances solved and average CPU time required for the IDA*
with two parameterizations and the CP model from [17].

S T Fill
IDA* CP [17]

1s-Obj. 1s-500 Default
# CPU # CPU # CPU

3

5
0.4 20 0.0 20 0.0 18 17.1
0.6 19 180.0 19 180.0 10 2312.0
0.8 0 3600.0 0 3600.0 0 3600.0

8
0.4 20 0.0 20 0.0 4 3071.2
0.6 19 243.5 19 185.9 0 3600.0
0.8 0 3600.0 0 3600.0 0 3600.0

10
0.4 20 3.1 20 0.6 0 3600.0
0.6 7 2527.6 7 2527.8 0 3600.0
0.8 0 3600.0 0 3600.0 0 3600.0

4

5
0.4 20 0.0 20 0.0 17 855.5
0.6 20 0.0 20 0.0 2 3409.9
0.8 1 3420.0 1 3420.0 0 3600.0

8
0.4 20 0.0 20 0.0 0 3600.0
0.6 19 303.0 19 241.7 0 3600.0
0.8 0 3600.0 0 3600.0 0 3600.0

10
0.4 20 5.8 20 5.8 0 3600.0
0.6 10 2283.3 11 2160.6 0 3600.0
0.8 0 3600.0 0 3600.0 0 3600.0

5

5
0.4 20 0.0 20 0.0 9 2329.2
0.6 20 0.0 20 0.0 0 3600.0
0.8 20 120.6 20 101.7 0 3600.0

8
0.4 20 0.1 20 0.1 0 3600.0
0.6 15 1238.9 16 1079.3 0 3600.0
0.8 0 3600.0 0 3600.0 0 3600.0

10
0.4 20 85.9 20 85.8 0 3600.0
0.6 5 3008.5 6 2885.7 0 3600.0
0.8 0 3600.0 0 3600.0 0 3600.0

S T Fill
IDA* CP [17]

1s-Obj. 1s-500 Default
# CPU # CPU # CPU

6

5
0.4 20 0.0 20 0.0 1 3410.6
0.6 20 0.0 20 0.0 0 3600.0
0.8 20 178.4 20 126.5 0 3600.0

8
0.4 20 0.4 20 0.4 0 3600.0
0.6 17 1515.9 18 1409.1 0 3600.0
0.8 0 3600.0 0 3600.0 0 3600.0

10
0.4 18 434.0 18 412.6 0 3600.0
0.6 1 3521.4 1 3521.4 0 3600.0
0.8 0 3600.0 0 3600.0 0 3600.0

10

5
0.4 20 4.0 20 4.0 0 3600.0
0.6 19 332.7 20 132.7 0 3600.0
0.8 16 992.4 19 486.5 0 3600.0

8
0.4 18 428.1 18 428.2 0 3600.0
0.6 4 2979.8 5 2975.8 0 3600.0
0.8 0 3600.0 0 3600.0 0 3600.0

10
0.4 8 2446.2 9 2263.1 0 3600.0
0.6 0 3600.0 0 3600.0 0 3600.0
0.8 0 3600.0 0 3600.0 0 3600.0

even though we previously showed that slightly better lower bounds for the root
node can be achieved.

Analyzing the performance of the IDA* approach by fill rate, we see that as
long as bays are not too full, we can solve most RCPMP instances. The IDA*
can solve instances with a fill rate of 40 % in nearly all combinations of tiers and
stacks, with the only exceptions being 6 stacks/10 tiers and 10 stacks with 8 and
10 tiers. Furthermore, bays with a 60 % fill rate are in most cases solvable, with
only a few exceptions in low stack/tier instances. Finally, 80 % filled bays show
an interesting property. While small instances are quite difficult, and we cannot
solve them,2 nonetheless, the IDA* solves all instances with 5 or 6 stacks and 5
tiers with an 80 % fill, indicating that more time may just be necessary on other

2 We note that it may be possible that some of these instances do not have a solution
in which there are absolutely no misoverlays.
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instances. Note that these instances are particularly difficult as the lower bound
is not very tight, and several containers must be handled multiple times.

6 Conclusion and Future Work

We presented an IDA* approach for solving the RCPMP that harnesses a relax-
ation of the RCPMP to compute lower bounds on the solution quality. We inves-
tigated several options for using the relaxation within the IDA* from [20], deter-
mining that reasonable lower bounds can be found on the RCPMP even using
a lower bound for the CPMP. We further showed that our approach dominates
the state-of-the-art across a large dataset of instances with various sizes and
properties.

A number of avenues for future work remain open. First, higher quality lower
bound computations are necessary to further close the gap between the root
bound node and the final solution of the model for both the CPMP and RCPMP.
Second, the IDA* approach could be extended to entire yard blocks with a
cost function for inter-bay container movements. Third, algorithm selection
approaches were successfully applied to the CPMP in [19] and would likely result
in improved performance for the RCPMP as well. Finally, infeasible instances
for the RCPMP can occur when many containers cannot be stacked on top of
each other. In these cases, a version of the RCPMP that seeks to minimize the
number of misoverlays in the final bay configuration would provide more useful
solutions to terminal operators.
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References

1. Bortfeldt, A., Forster, F.: A tree search procedure for the container pre-marshalling
problem. Eur. J. Oper. Res. 217(3), 531–540 (2012)

2. Caserta, M., Schwarze, S., Voß, S.: Container rehandling at maritime container
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Abstract. To increase the productivity of the storage yard of a container ter-
minal, two identical yard cranes are often deployed in a yard block. In theory,
the productivity of a yard block may be doubled with twin-cranes. However,
crane interference may severely lower the combined productivity of the
twin-cranes. In this paper, we propose an online job dispatching method for twin
yard cranes when side loading is used. The method adopts the non-zero-sum
game approach to induce the cooperative behaviour in the dispatching and
scheduling of jobs for the two cranes to minimize the total job completion time.
A one-step lookahead algorithm and a two-step lookahead algorithm are pro-
posed. We evaluate our algorithms against Ng’s lower bound of total completion
time for twin-cranes and against the greedy heuristic Smallest Completion
Time-First. Our experiments showed that our dispatching and scheduling
algorithm performs very well.

Keywords: Yard crane dispatching and scheduling � Optimization � Container
terminal

1 Introduction

The storage yard of a container terminal is for the temporary storage of containers.
After containers are unloaded from a vessel, they are stored in the yard before being
loaded onto another vessel or before being collected by external trucks/trains/barges to
deliver to other inland places later (and vice versa). In-terminal vehicles transport
containers between the vessels and the yard, and between the yard and the truck
holding area(s)/railyard/barge handling positions. External trucks may also directly
transport containers to/from the yard from/to places outside the terminal. Previous
studies have pointed out that yard crane (YC) operations are of great importance and
likely to be a potential bottleneck to the overall terminal performance (Li et al. 2009).

The storage yard is organized in a number of yard blocks. In many terminals,
containers are arranged in a number of rows and slots in a yard block as shown in
Fig. 1. Vehicles travel along lanes to load/unload containers at the side of a yard block.
Side loading is the common practice in most transshipment-intensive terminals. Yard
Cranes (YCs) need to move among different slot locations to serve vehicle jobs. To
increase the productivity of a storage yard in a high-throughput terminal, two identical
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YCs (twin-YCs) are often deployed in one yard block. It is intended that these two YCs
work simultaneously as much as possible to increase the yard productivity. In theory,
the productivity of the yard block may be doubled. However, when these two YCs run
along the same track, the two YCs cannot pass each other and have to maintain a safe
separation distance at all times. There is another fact about this kind of YC system in a
yard block. We assume that the YCs do not move beyond either end of a yard block.
Otherwise the vehicle traffic between the blocks will be disrupted by the YCs.
Therefore a few slots at each end of the block will be the exclusive zone for one YC
where the other YC cannot access. For such a yard block, given a list of incoming
storage and retrieval jobs, the scheduling and dispatching of YCs is the deciding factor
of how much productivity can be achieved. We consider the problem of scheduling and
dispatching two identical cranes (twin cranes) when side loading is used.

The scheduling and dispatching algorithm will assign jobs that are coming to the
yard block to the two YCs. It will also schedule the operations of the two YCs such that
crane interferences are minimized and handled properly. Interference between YCs
happens when one YC wants to access a slot which is on the other side of the other YC
or is too close to the other YC. Interference causes delay in YC’s operation and reduces
productivity. This means the objective of the algorithm is not a single YC’s produc-
tivity but the combined efficiency of the twin YCs. To achieve good combined effi-
ciency of the two YCs, cooperation between the YCs is very important.

In many works presented in the past, the objective is to minimize the total (average)
vehicle waiting time (Ng and Mak 2005a, b; Kumar and Omkar 2008; Guo et al. 2011);
or to minimize the makespan (Jung and Kim 2006; Lee et al. 2007), that is, the total
time taken to finish a set of jobs by the YC. An objective equivalent to minimizing total
vehicle waiting time is to minimize total job completion time (NG 2005). This is
because under the assumption that job arrival times are known and the time taken by a
YC to move a container between a vehicle and a yard stack (job processing time) is
almost constant, total job completion time minus the sum of job arrival times and the
sum of the job processing times is the total vehicle waiting time.

In this paper, we present two twin-YC dispatching and scheduling algorithms based
on the non-zero-sum game approach where a YC exhibits cooperative behavior in
selecting the next job to do. The objective of the algorithms is to minimize total job
completion time. In order to evaluate the performance of the algorithm, we use an

Vehicle

Row
2

1

… Slot/bay

1 2  3  4 . . . 
Yard Crane

. 

Vehicle loading/unloading points

Fig. 1. A yard block with twin-yard cranes
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algorithm proposed by Ng (2005) that computes the lower bound to the total job
completion time. Experiments with two different yard block sizes, tree different YC
utilization rates and three different planning window sizes are used.

The rest of the paper is structured as follows. We review the related studies in
Sect. 2. Our twin-YC dispatching and scheduling algorithms are presented in Sect. 3.
The experimental evaluations are presented in Sect. 4. Conclusion is drawn in the last
section.

2 Related Work

There are a number of different types of crane systems. A Double-Rail-Mounted-
Gantry (DRMG) crane system for a yard block has two rail tracks and a smaller crane
that can pass through a bigger one. A twin crane system using either two
Rail-Mounted-Gantry (RMG) cranes or Rubber-Tyred-Gantry (RTG) cranes have
identical cranes and they cannot pass through each other. A triple RMG crane system
has one bigger crane and two identical cranes and the bigger crane allows a smaller
crane to pass through. Loading/unloading can be done either at the side of a yard block
(referred to as side-loading) or only at the two ends of the yard block (referred to as
end-loading).

First, consider the end-loading scenario. Due to the problem complexity in dis-
patching two or more YCs, Mixed Integer Program (MIP) models were commonly
employed just to formulate problems while heuristic methods were proposed to find
near-optimal solutions. Cao et al. (2008) used a combined greedy and Simulated
Annealing (SA) algorithm to minimize the loading time of containers for a DRMG
crane system. Vis and Carlo (2010) proposed a SA based algorithm for a DRMG crane
system to minimize the makespan, i.e. the period between the starting time of the first
YC operation and the finishing time of the last YC operation. Stahlbock and Voss
(2010) evaluated different online algorithms for sequencing and scheduling of jobs for
automated DRMGs serving a yard block. They showed that under high workload, the
SA approach performed better than the priority rule-based heuristics.

Dorndorf and Schneider (2010) considered scheduling triple RMGs with
end-loading in automated terminals. They used beam search to assign jobs to YCs and
a crane routing method that minimized crane waiting times.

Park et al. (2010) studied heuristic methods and local search methods for
scheduling twin RMGs in an automated container terminal. Different from others, they
considered the need to reshuffle containers when a container to be retrieved is not on
top of stack. The reshuffling work was treated as independent jobs. Choe et al. (2012)
proposed Genetic Algorithm to schedule twin YC operations in an automated terminal
with end-loading. Gharehgozli et al. (2015) used an adaptive large neighborhood
search heuristic to schedule twin RMGs to minimize the makespan.

There are only a few studies on the side-loading scenario, which is the one con-
sidered by this paper. Ng (2005) studied the problem of scheduling multiple YCs to
handle jobs with different ready times within a yard zone with MIP and heuristics. Guo
and Huang (2012) proposed space and time partitioning methods to manage the
workload among multiple YCs working in a row of yard blocks. Huang et al. (2015)
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proposed a job dispatching algorithm with lookahead to minimize total job tardiness for
twin YCs.

3 The YC Dispatching and Scheduling Algorithm

3.1 The Problem

For each job i that will come to a yard block to be processed by the twin YCs, it has a
ready time (ri) which is the time the vehicle is expected to arrive at the yard block. The
time for gantry movement by one of the YC from the position of job j to that of job
i (sji) is also provided. The YC dispatching and scheduling algorithm will plan the jobs
with a lookahead window that consists of n jobs. s0i is the YC gantry time from its
position at the start of the lookahead window to the position of job i. The time for
gantry movement by the other YC from the position of job j (j = 1, 2, …, n) to that of
job i is the same since the two YCs are identical. The job service time (pi) by the YC is
the time for a YC to load/unload a container. We assume that all jobs involve the top of
the stack in a yard block. This is also the assumption in Ng (2005) and more justifi-
cations for this are given in the next section. Therefore all pi are the same. Due to the
uncertainty of the terminal operations, job ready time (ri) are only known for jobs in the
near future. In other words, the size of the lookahead window, n, cannot be a very large
value.

Our objective of the YC dispatching and scheduling algorithm is to assign the jobs
to one of the two YCs and sequence the jobs for both YCs so as to

minimize Rn
i¼1Ci ð1Þ

If there is only one crane in the yard block, the completion time for job i is equal to
its start time + process time, that is, Ci = max(Cj + sji, ri) + pi, if job j is the job handled
before job i by the YC. When there are two cranes in the block, delays may be incurred
due to crane interference which may cause two changes to crane schedule. The first one
happens when YC A wants to move to a slot which is blocked by the other YC B. YC A
has to wait until B completes its operation and moves away. Then Ci = max(Cj +
sji + wi, ri) + pi, where wi is the waiting time of the crane before it can proceeds to the job
location. The second change to the crane schedule due to interference is when YC B
completes its operation and has to move enough distance so that crane A can proceed to
its job location. Due to this move, B’s starting position and available time for its next
operation change accordingly. Obviously, if a job is within the safety zone of B so A
cannot access (the end portion of the block only B can access), YC B has to handle this
job. C0 is the time a YC is available to start to move to the position of its first job in the
lookahead window. C0 may be different for different YCs.

3.2 The Twin-Crane Dispatching and Scheduling Algorithm

We propose an approach to assign jobs in a lookahead window of n jobs one at a time
to one of the two YCs in the twin YC yard block. This is done every time a YC is about
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to complete its current operation. We call this YC the current YC. It is a two-step
procedure to assign a job to the current YC and work out the work schedule for the
current YC to complete this job. The first step is to get the YC to examine its own
interests and prioritize the next few jobs that serve the interests of this YC. In order not
to be serving its own interests only, prioritization of the next few jobs for the other YC
based on the other YC’s interests is also done. In other words, the high priority jobs
from each single YC’s perspective are identified. These are the jobs the YC would
choose without consideration of the impact of their choice on the other YC. The second
step is to introduce the cooperative behaviour to the current YC by playing a
non-zero-sum game. The objective is to choose the next job which leads to a win-win
situation. So the YC selects its next job in order to achieve the best combined efficiency
of the two YCs. In doing so, it may select a lower priority job in place of a higher
priority job if it is in the common interests of the two YCs. The idea is a YC should
choose the job which helps maximize its own productivity but at the same time, this
choice would have minimum adverse impact on the other YC’s productivity. In this
way the two YCs will finish all the jobs with good efficiency. Figure 2 presents the
outline of the approach.

In the first step of the online algorithm (line 3), it starts by gathering information
like arrival time and job position for the next x jobs that are coming to the yard block.
These jobs form the current lookahead window. In line 4, some heuristic rules can be
used to evaluate these jobs’ priorities with respect to the current YC. The priorities of
these x jobs with respect to the other YC are also evaluated. Based on the priority
values, h jobs with the highest priority values are selected as the current YC’s and the
other YC’s strategies respectively in the non-zero-sum game.

The second step of the approach (line 5 and line 6) tries to choose a job from its
highest priority h jobs such that its choice will have minimum adverse effect on the
future operations of the other crane. We propose two variations: a one-step lookahead
algorithm and a two-step lookahead algorithm. One-step lookahead algorithm means
the current YC will examine the h possible choices for its next job. The benefits of each
choice and the impact of this choice on the other YC will be evaluated. Two-step
lookahead algorithm means the current YC will examine the possible choices of its next
two jobs among the h jobs. There are h(h–1) choices of the next two jobs. Each choice

1. currentYC = YC that has the earlier completion time for its current job;
2. otherYC = YC that has the later completion time for its current job;
3. JobSet = set of x jobs that are already in the yard block or are coming to the yard 

block;
4. A priority based selection of h jobs from JobSet for the current YC and h’ jobs 

for the other YC.  (h=h’ if there is no overlap in the two selected groups of jobs)
5. Construct the payoff matrix of the non-zero-sum game between the current YC 

and the other YC; 
6. Assign job r to the currentYC that gives the best payoff.

Fig. 2. Outline of the cooperative approach.
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(of two jobs) is evaluated by the benefits of scheduling the first job in the choice as the
current YC’s next job and the effect of scheduling this job on the other YC and on its
own second job in the choice.

In the one-step lookahead algorithm, two jobs with the highest priority values for
the current YC and three jobs with the highest priority values for the other YC are
considered. The payoff matrix representing the non-zero-sum game is shown in
Table 1.

In Table 1 the two rows for the current YC represent its 2 highest priority valued
jobs and the three columns for the other YC represent its 3 highest priority valued jobs.
Each cell represents the scenario where the current YC takes the job labelled by the row
and the other YC takes the job labelled by the column of the matrix as their next jobs.
For example, cell(curBest1, othBest1) represents a lookahead scenario where job
curBest1 is assigned to the current YC and othBest1 will be assigned to the other YC
later. In this scenario, the payoff of the current YC is represented by curP and the payoff
of the other YC by othP in the cell. In general, a cell in the matrix is calculated by

Cðm; nÞ ¼ ð999999; 999999Þ if (jobm == job n)

= (Cm + Cm0 ,Cn) otherwise
ð2Þ

where Cm is the completion time of job m if m is the current YC’s next job and Cn is the
completion of job n if n is the other YC’s next job after the other YC completes its own
current job. Job m

0
is the other job in the two highest priority valued jobs for the current

YC. Cm0 is the completion time of job m
0
if m

0
was done after m by the current YC. Cm0

is used as a penalty for not choosing m
0
as the current YC’s next job. Therefore possible

clashing of m
0
with the other YC is not considered. The scenario m == n will happen

when the set of two highest priority jobs for the current YC intersects with the set of
three highest priority jobs for the other YC. If m

0
== n, set Tm0 to zero.

When Cm the completion time of job m is computed, its possible interference with
the current operation of the other YC is taken into consideration. When there is crane
interference, a crane cannot move to the location of its target job but has to wait in its
current location. Therefore

Cm ¼ maxðCi þ sim þwm; rmÞþPm ð3Þ

Table 1. One-step lookahead game.

Other YC
othBest1 othBest2 othBest3

Current YC curBest1 (curP, othP)
curBest2
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where wm is the waiting time of the crane (if any) before it proceeds to the location of
job m. Ci is the YC available time before job m. The waiting time wm of the crane is
computed by

wm ¼ C
0
current � Ci ð4Þ

where C
0
current is the completion time of the current job of the other YC. When this other

YC completes its current operation, it has to move away so that the current YC can
move to its new job location. The gantry time of this YC to the nearest slot which is
safe from the current YC is added to C

0
current after the computation of wm to indicate its

available time for its next operation.
Similarly, when the completion time of job n is computed, its possible interference

with the current YC doing job m is taken into consideration. Cn is calculated in the
same way as Cm. Column “othBest3” in a row for job m is by default (999999, 999999)
and is only computed if m == othBest1 or m == othBest2.

After the cell values are computed for the matrix, the cell with the lowest curT +
othT will be identified. Suppose this cell is from row r and column c. This means that
assigning job r to the current YC will allow the other YC to have a chance to take job
c and the sum of the job completion times is the best among other combinations of job
assignments. In other words, this is the best choice for the current YC when it chooses
one of its own highest priority jobs while bringing minimum adverse effect on the other
YC’s next job. Note that only the current YC will be assigned the job r. Job c is not
assigned to the other YC at this point. When the other crane finishes its own current
job, it will become ‘the current YC’ in the algorithm to get a job assigned. At that point,
a job will be selected which causes minimum adverse effect on the other YC’s next job.
‘The other YC’ at that point will be the current YC now.

In the two-step lookahead algorithm three jobs with the highest priority values for
the current YC and three jobs with the highest priority values for the other YC are
considered. The matrix representing the game is shown in Table 2. The three jobs with
the highest priority values for the current YC are labelled by curBest1, curBest2 and
curBest3. The three jobs with the highest priority values for the other YC are labelled
by othBest1, othBest2 and othBest3.

Each row labeled by (job1, job2) for the current YC in the matrix means that the
next job for the current YC will be job1 and the job after that will be job2. Each column

Table 2. Two-step lookahead game.

Other YC
othBest1 othBest2 othBest3

Current YC curBest1, curBest2 (curT, othT)
curBest2, curBest1
curBest1, curBest3
curBest3, curBest1
curBest2, curBest3
curBest3, curBest2
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for the other YC in the matrix means the next job for the other YC. For example, cell
((curBest1, curBest2), othBest1) represents the scenario where the current YC will do
job curBest1 and then job curBest2 while the other YC will do job othBest1 after it
finishes its own current job. The cell will store the payoff for the current YC and that for
the other YC. The value of the cell will be computed by

Cððm1;m2Þ; nÞ ¼ ð999999; 999999Þ if ðm1¼¼ nÞ or ðm2¼¼ nÞ
= (Cðm1;m2Þ;CnÞ otherwise:

ð5Þ

C(m1, m2) is the payoff of the current YC and Cn is the payoff of the other YC. C(m1, m2)

is defined as

Cðm1;m2Þ ¼ Cm1 þCm2 if ðm3 ¼¼ nÞ
= Cm1 þCm2 þCm3 otherwise:

ð6Þ

Cm1 is the completion time of job m1 if m1 is the current YC’s next job, Cm2 is the
completion time of job m2 if m2 is the job after m1. Job m3 is the job that is not
included in (m1, m2) among the three highest priority valued jobs for the current YC.
Cm3 is the completion time of job m3 if m3 is done after m2. Cm3 is used as a penalty
for not choosing m3 in the tentative plan. Therefore possible clashing of m3 with the
other YC is not considered. It is called a tentative plan because only one job will be
assigned to the current YC even though we are examining the scenarios of the next two
jobs for the crane. Cn is the completion time of job n if n is the other YC’s next job after
its own current job. Cm1, Cm2 and Cn are calculated by (3). Cm3 is calculated by (3) but
wm is zero. To save computational time, the computation of the cell values C((m1, m2),
n) in each row will stop after the first column where (m1 6¼ n) and (m2 6¼ n).

In the same way as the one-step lookahead algorithm, the cell with the lowest
curT + othT will be identified. Suppose this cell is C((m1*, m2*), n*). Job m1* will be
assigned to the current YC. It is an assignment which, after giving m1* to the current
YC, allows the other YC to take n* after its own current job and the current YC to take
m2* after m1*, and this lookahead scenario yields better/equally good total completion
time results up to m2* and n in the job sequences of the current YC and the other YC
respectively.

4 Performance Evaluation

To evaluate the performance of the proposed YC dispatching and scheduling algorithm,
simulation experiments were carried out. The YC dispatching models are programmed
in C ++ language under Microsoft Visual Studio 2010 using Dell Precision T3500,
Windows 7 64-bit OS, Intel(R) Xeon(R) CPU with 3.2 GHz and 6 GB RAM.

We evaluate our algorithms against Ng’s lower bound (LB) for total completion
time for a 2-YC yard block (NG 2005). Our twin-crane dispatching and scheduling
algorithms include the one-step lookahead (LA1) and two-step lookahead (LA2)
algorithms. Our implementation of the integer program in Ng’s LB algorithm is done
using MATLAB. Since the objective of YC dispatching and scheduling in this study is
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to minimize total completion time, we also include a greedy heuristic the Smallest
Completion Time-First (SCF) algorithm in the evaluation. In this heuristic method,
after a YC completes a job, it will select the next job based on which job it can finish
earliest among the remaining jobs without the consideration of crane interference. The
finishing time of a job is based on the current position of the YC, gantry movement
time to the location of the job, the job’s arrival time and the container move time
between the stack and the vehicle. Forty independent runs are done for each experi-
mental setting.

First we use the same setting as Ng’s experiments when he compared his heuristic
algorithm with the lower bound (NG 2005). A yard block has 40 slots. A YC takes
4 min to do one container move between a yard location and a vehicle. The constant
4 min of YC storage and retrieval time represents the scenario where the majority
containers are transshipment containers (for a transshipment intensive terminal). They
have better predicted storage and retrieval times than import/export containers with
external trucks. Due to this, the container allocation system is able to allocate the
containers in such a way that most of the times they are on top of the stack with no
reshuffling need when their storage/retrieval operation comes. The YC gantry move-
ment time is 3 s per slot. YC separation distance is 1 slot/bay. The inter-arrival time for
jobs has the mean of 2 min. We use three different sizes of lookahead window: 10 jobs,
20 jobs and 30 jobs. The results are shown in Table 3. We cannot compare our
heuristic algorithms with Ng’s heuristic because we do not know what distribution he
used for inter-arrival time. We use an exponential distribution.

Table 3 shows the minimum, mean and maximum of

total completion time of algorithm x� Ng0s LB of total completion time

Ng0s LB of total completion time
100%

LAP1 has a mean total completion time which is 12.73 % – 16.41 % from the lower
bound of total completion time. LAP2 has a mean total completion time which is
8.90 % – 14.55 % from the lower bound of total completion time. SCF has a mean total
completion time which is 16.02 % – 17.27 % from the lower bound of total completion
time. LAP1 is better than SCF and LAP2 is much better than SCF. When it takes 4 min
to complete one container move and jobs are coming one every 2 min, the 2 YCs have
a 100 % utilization rate. Even under this condition, the algorithms are performing
reasonably well.

Table 3. Total completion time (TCT) performance: (TCTx – TCTLB)/TCTLB*100 %

Number of jobs 10 20 30
Algorithm LAP1 LAP2 SCF LAP1 LAP2 SCF LAP1 LAP2 SCF

Minimum 0.94 1.05 1.43 5.95 3.10 3.14 4.69 2.33 4.78
Mean 15.04 9.82 16.83 16.41 14.55 17.27 12.73 8.90 16.02
Maximum 39.37 44.03 44.97 39.43 28.43 43.70 23.16 19.05 37.86
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We then use two sizes of yard blocks to evaluate our lookahead algorithms against
Ng’s lower bound. The two sizes are 40 slots and 50 slots. The time a YC takes to
move a container is set to be 75 s. The average of inter-arrival time of jobs is 75 s and
100 s respectively. This creates test conditions of 90 % and 67.5 % utilization of YCs
respectively without including the waiting time of YC due to crane interference. The
other settings are the same as the previous experiment. For the 40-slot yard block,
Tables 4 and 5 show the mean, the median, the 75 percentile, the 90 percentile and the
maximum from the 40 runs for the 90 % YC utilization scenario and Tables 6 and 7
show the results for the 67.5 % YC utilization scenario.

Tables 4 and 5 show that our LA1 and LA2 algorithms are able to produce results
which are close to the lower bound value of the total completion time for jobs. The
mean total completion time of LA1 is 6 % – 12 % from the lower bound. The mean
total completion time of LA2 is 5 % – 8 % from the lower bound. The mean total
completion time of SCF is 8 % – 15 % from the lower bound. We presented the
percentage differences of mean, median, 75 percentile, 90 percentile and the maximum
between LAP1/LAP2/SCF and the lower bound value to show the profiles. It can be
seen that LAP1 is better than the simple SCF in many of these statistical indicators and
LAP2 is better than SCF in all these indicators. At worst (maximum), LAP2 is about
7.7 % – 14.4 % from the lower bound while SCF is about 12.4 % – 25.9 % from the
lower bound.

Table 4. Total completion time (TCT) performance (90 % YC utilization, 40-slot block): (TCTx –

TCTLB)/TCTLB*100 %

Number of jobs 10 20 30
Algorithm LAP1 LAP2 SCF LAP1 LAP2 SCF LAP1 LAP2 SCF

Mean 9.58 7.52 12.41 8.02 6.87 8.96 6.09 4.96 7.82
Median 7.95 6.68 11.32 7.20 5.12 8.29 6.00 4.42 6.73
75 percentile 11.39 9.73 14.27 9.09 7.50 9.61 7.14 5.72 9.14
90 percentile 16.03 11.96 19.35 11.24 11.60 11.13 8.33 6.83 9.06
Maximum 14.28 10.24 14.39 14.01 14.41 20.79 11.35 9.77 18.89

Table 5. Total completion time (TCT) performance (90 % YC utilization, 50-slot block): (TCTx –

TCTLB)/TCTLB*100 %

Number of jobs 10 20 30
Algorithm LAP1 LAP2 SCF LAP1 LAP2 SCF LAP1 LAP2 SCF

Mean 12.18 8.10 14.86 8.93 7.46 11.05 6.82 5.24 8.32
Median 11.81 8.65 15.16 7.75 5.80 10.20 6.23 5.36 7.81
75 percentile 13.98 10.72 21.92 11.75 10.47 12.72 7.30 5.78 9.68
90 percentile 22.01 12.05 21.13 13.80 11.51 13.38 8.46 6.80 8.87
Maximum 20.60 13.72 25.87 13.79 11.54 17.77 9.23 7.74 12.40
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Tables 6 and 7 show the results when the YC utilization rate is at around 67.5 %. In
this condition, the YCs are less busy than the previous two utilization levels. The mean
total completion time of LA1 is 3.23 % – 7.82 % from the lower bound. The mean total
completion time of LA2 is 2.53 % – 6.77 % from the lower bound. The mean total
completion time of SCF is 4.14 % – 11.20 % from the lower bound. Generally, a bigger
lookahead window produces better results. At this YC utilization level, even the SCF
can be said to produce acceptable results. However LAP2 still leads to better results and
the computational time consumed is very little, as shown in Table 8. Table 8 shows the
computational time for the 90 % YC utilization level for the 40-slot yard block. The
amounts of computational time for other experimental setting are very similar.

With these results, we see that LAP2 is better than LAP1 in producing smaller total
completion time. The computational time of LAP2 is also not excessive. So it may be
worthwhile to investigate whether it is beneficial to look ahead more jobs. This will be
left for future studies.

Table 6. Total completion time (TCT) performance (67.5 % YC utilization, 40-slot block):
(TCTx – TCTLB)/TCTLB*100 %

Number of jobs 10 20 30
Algorithm LAP1 LAP2 SCF LAP1 LAP2 SCF LAP1 LAP2 SCF

Mean 5.89 4.36 7.81 3.96 3.20 5.05 3.23 2.53 4.14
Median 4.55 3.21 6.39 3.71 2.40 4.75 2.97 1.92 4.29
75 percentile 6.24 5.04 8.53 4.23 4.24 5.10 3.45 2.73 4.51
90 percentile 12.42 7.68 10.89 5.55 5.52 6.22 4.96 4.10 5.42
Maximum 10.83 8.03 12.10 12.15 5.31 9.40 6.16 8.55 6.39

Table 7. Total completion time (TCT) performance (67.5 % YC utilization, 50-slot block):
(TCTx – TCTLB)/TCTLB*100 %

Number of jobs 10 20 30
Algorithm LAP1 LAP2 SCF LAP1 LAP2 SCF LAP1 LAP2 SCF

Mean 7.82 6.77 11.20 4.72 4.19 6.01 3.50 2.83 4.29
Median 7.23 6.28 10.33 4.54 4.23 5.88 3.19 2.89 4.48
75 percentile 9.33 8.40 15.30 5.46 5.03 6.65 3.81 3.17 4.82
90 percentile 14.73 11.60 18.74 7.14 6.68 7.23 4.75 3.38 4.61
Maximum 12.77 11.90 18.11 7.81 6.56 8.77 5.60 4.33 5.42

Table 8. Computational time of LAP1, LAP2 and SCF (seconds).

LAP1 LAP2 SCF

40-slot block (90 % YC utilization) 10 0.004 0.006 0.001
20 0.014 0.019 0.004
30 0.028 0.036 0.010
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5 Conclusions

We propose two algorithms based on the cooperative approach of the non-zero-sum
game for solving the twin-YC scheduling and dispatching problem. Simulation
experiments are conducted to evaluate all algorithms proposed, together with the
Smallest Completion time First heuristic, against a lower bound of total completion
time. The results show that the two-step lookahead algorithm performs well.

In real operations, the safe/practical separation distance is 3 slots for RMGs and 8
slots for RTGs. We use 1 slot separation distance in order to have the same setting as
the lower bound algorithm. More experiments will be conducted to evaluate the per-
formance of our algorithms using various settings in practice.
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Abstract. We study the management of containers in a logistic chain
between a supplier and a manufacturer in a ramp-up scenario where
the demand is stochastic and expected to increase. This paper extends
our previous study with deterministic demand. We consider a periodic
review system with T periods of R time steps. The supplier sends full
containers at every step and receives empty containers every period. We
consider positive lead times. To face demand increase, the manufacturer
can purchase reusable containers at a setup cost while the supplier can
buy single-use disposables. Using a dynamic programming framework,
we develop an online exact algorithm and an offline heuristic.

1 Introduction

We consider a closed-loop supply chain between a manufacturer and its supplier
in which the items are transported in packages. A package is either a returnable
container or a one-way disposable. In our application from the research project
“Visual Logistics Management (VILOMA)”, the supplier sends items to the
manufacturer on a daily basis, and orders empty containers back on a weekly
basis. Disposables like cardboard boxes are directly available by the supplier
and are used whenever no container is available. In our scenario, the demand is
expected to increase, so we need an efficient purchasing plan of containers. In
particular, purchasing new containers incurs a setup cost and should hence only
be done occasionally. Moreover, it takes a few days to transport the packages to
their destination. This paper extends the container purchasing and repositioning
problem from Jami et al. [1] to stochastic demands.

This paper builds up on three streams of research, namely the stochastic
inventory control, the stochastic lot-sizing and the empty container reposition-
ing. Among stochastic inventory control systems, we are particularly interested
in a lost-sales behavior where unmet demand is lost, as it is equivalent to our use
of disposables. It is well-known in the literature that lost-sales models are very
complex. Janakiraman and Muckstadt [2] derive properties of optimal policies in
a stochastic inventory control with lost-sales and fractional lead time. Fractional
lead times correspond in our case to transportation times shorter than one week.
Contrary to them, holding costs in our setting are incurred not only at the end
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of each week, but also every day. Halman et al. [3] solve a stochastic inventory
control problem using dynamic programming. Moreover, they prove the con-
vexity of the cost functions and derive a fully-polynomial time approximation
scheme (FPTAS). Our paper uses L�-convexity (L-natural convexity), which is
a generalization of convexity introduced by Murota [4]. Zipkin [5] applies it to
characterize optimal inventory control policies in a system with lost-sales and
lead times. Simchi-Levi et al. [6] summary some results we use in this paper.
Chen et al. [7] use the L�-convexity properties from [5] and deduce a pseudo-
polynomial approximation scheme similar to the FPTAS in [3].

Lot-sizing usually consists in purchasing non-returnable items given a pur-
chasing setup cost and a holding cost. A fundamental study has been proposed by
Wagner and Within [8] when the demand is deterministic. They solve the prob-
lem using dynamic programming. Lot-sizing problems with stochastic demands
are very challenging. Bookbinder and Tan [9] describe three alternative gener-
alizations of the lot-sizing problem: a dynamic strategy, a static strategy and a
static-dynamic strategy. In the dynamic strategy, every decision is taken online.
In the static approach, the purchasing quantities are decided at the beginning of
the time horizon. In the static-dynamic strategy, purchasing times are chosen at
the start, but the actual quantities are dynamically decided. Levi and Shi [10]
consider the dynamic strategy and develop a randomized cost-balancing policy
that is at most three times as expensive as the optimal policy. Vargas [11] solves
the static stochastic lot-sizing problem when unmet demand is backlogged. Özen
et al. [12] compute a static-dynamic strategy using a dynamic program similar
to ours.

Finally, empty container repositioning processes (ECR) manage container
flows to ensure that demands are satisfied. This stream of research usually does
not include container purchasing. Erera et al. [13,14] consider ECR in the chem-
ical industry, and extend their deterministic model to stochastic demand using
a robust optimization approach with budget. Li et al. [15] study a ECR over
multiple ports with immediate lead times and stationary demands. They use a
Markov decision process framework and prove that the cost functions are con-
vex. They deduce that the optimal solution has a threshold-control structure,
represented by a minimum and a maximum stock level at each port. Lam et al.
[16] use approximate dynamic programming to solve the multi-period ECR.

Our paper is structured as follows. Section 2 describes our container purchas-
ing management problem. In Sect. 3, we model a Markov decision process for the
online strategy. In Sect. 4, we show that the cost function are L�-convex if we
remove the setup costs. In Sect. 5, we propose an heuristic for the offline strat-
egy using dynamic programming and L�-convexity. Simulations in Sect. 6 test
the performance of the heuristic. Finally, we discuss future research directions.

2 Problem Description

We use the interval notation [x, y] to denote the set of integral values between
x and y. We consider a time horizon of T periods, where each period is divided
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into R time steps. We denote by (t, r) ∈ [0, T − 1] × [0, R − 1] the point in time
defined by the time step r of period t. For convenience, we sometimes write
time (t, R) instead of (t + 1, 0). At time (t, r) the supplier must fulfill a demand
dt,r, realization of the random variable Dt,r. We assume that the demand cannot
exceed a value Dmax. We denote by Lord (resp. Ldel) the ordering (resp. delivery)
delay, i.e. number of time steps required to send empty containers (resp. full
containers) from the manufacturer to the supplier (resp. from the supplier to
the manufacturer). These lead times are assumed short, but not negligible:

0 < Lord + Ldel ≤ R (1)

We call order size βt the number of empty containers sent from the manufac-
turer to the supplier at time (t, 0), and denote by αt the number of containers
purchased before ordering. At time (t, r), the sequence of events is:

1. If r = 0, the manufacturer purchases αt containers, then the supplier orders
βt empty containers.

2. Demand Dt,r occurs and is fulfilled using the available packages.
3. Outgoing containers arrive to their respective locations:

– The containers used for demand at time (t, r) − (Ldel − 1) are added to
the manufacturer stock.

– If r = Lord − 1, βt containers are added to the supplier stock.

A consequence of positive delivery times is that full containers sent to the manu-
facturer during period t after time step r = R−Ldel will arrive after the ordering
of empty containers at period t + 1 and can only be ordered again starting from
period t + 2. We call a time step r early if r ≤ R − Ldel and late otherwise.

At the beginning of each period t, we denote by Xt the supplier stock, by
Yt the manufacturer stock and by Zt the number of outgoing full containers.
We call container fleet size Ut the number of containers in the system before
purchasing. By (1), there is no outgoing order at time (t, 0) and thus:

Ut = Xt + Yt + Zt. (2)

We consider the following costs. At time (t, r), a disposable costs Cdis(t, r).
Container holding costs are Cman(t, r) for the manufacturer and Csup(t, r) for
the supplier. We assume a non-speculative cost structure so that we rather let
unused containers in the manufacturer stock:

0 < Cman(t, r) < Csup(t′, r′) ∀t, r, t′, r′ (3)

At period t, container purchasing incurs a setup cost of Csetup(t) plus an addi-
tional cost Ccont(t) per container. We suppose that it is always more profitable
for the supplier to fulfill the earliest demand with the containers at disposal.
Thus, the supplier will never hold containers while buying disposables.

Our objective is to find a purchasing and ordering policy minimizing the
expected costs over the whole time horizon. Container ordering is an operational
decision, because it has to be done dynamically depending on the supplier stock.



162 N. Jami et al.

Therefore, we take the order decision βt during period t Meanwhile, we see
container purchasing as a tactical decision where at purchasing decision should
look into the future to avoid additional purchasing in the near future, due to the
setup costs. We consider two different strategies:

1. An online strategy, where the purchasing size αt is decided at period t.
2. An offline strategy, where αt is decided at t = 0.

Our online strategy extends the dynamic strategy from Bookbinder and Tan [9]
and our offline strategy extends their static strategy. We do not consider in this
paper an extension of the static-dynamic strategy, where the purchasing times
are fixed first and the quantities are dynamically chosen. We believe that this
third strategy is less impactful in a container management problem than in a lot-
sizing without containers due to the stability of the container stocks. However,
this strategy is a meaningful future research direction as we would like to quantify
the impact of dynamically deciding on the exact purchasing quantities on the
expected costs of the system in the context of container management.

We conclude this section with an NP-hardness result using a similar reduction
as in Halman et al. [3].

Lemma 1 (Halman et al. [3]). The problem of computing the convolution of
N independent random variables is NP-hard with respect to N . In particular, this
problem is equivalent to computing the distribution of the sum of N independent
random variables.

Proposition 1. Even under stationary cost functions, the container production
planning problem is NP-hard with respect to R for each of the three strategies.

Proof. Suppose that the container purchasing costs Csetup(t) and Ccont(t) are
null and the time horizon consists in a single period: T = 1. Thus, every decision
is taken at the beginning of the time horizon, so any policy is at the same
time online and offline. The objective is to find an ordering quantity minimizing
the costs over R time steps of demand, which is equivalent to computing the
distribution of the sum of R independent random variables. By Lemma1 this
problem is NP-hard with respect to R. ��

3 Online Strategy

We model the online problem as a Markov decision process over R ·T time steps,
where the state at time (t, r) is noted St,r. The decision γt at period t is:

γt := [αt, βt] (4)

In this paper, we use capital letters for random variables and lower case letters
for their realization. The realizations of St,r, Xt,r, Yt,r, Zt,r are thus denoted
by st,r, xt,r, yt,r, zt,r. We denote by Pt,r(d) := P(Dt,r = d) the probability that
variable Dt,r takes value d. We only need three parameters in St,r:
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St,r := [Xt,r, Yt,r, Zt,r]. (5)

Since the decisions are only taken at times (t, 0), we define St,0 := [Xt, Yt, Zt] as
our main states, while states St,r for r > 0 are only transition states used to avoid
the computation of R simultaneous demand variables, which would take a lot of
time as shown by Lemma 1. Consider t ∈ [0, T − 1] and r > 0. We define Xt,r as
the supplier stock at time (t, r). We define Yt,r as the ensured manufacturer stock
at time (t, r) for time (t + 1, 0), that is the current manufacturer stock plus the
number of full containers which left the supplier before time (t, r) and arriving
between times (t, 1) and (t + 1, 0). We define Zt,r as the ensured outgoing fleet at
time (t, r) for time (t+1, 0) plus the outgoing order size. Thus, for r ∈ [1, Lord−1],
Zt,r equals βt; for r ∈ [Lord,R−Ldel] we have Zt,r = 0; and for r > R−Ldel, Zt,r

is the number of full containers which left the supplier before time (t, r) and will
arrive to the manufacturer after time (t + 1, 0). Note that Xt, Yt, Zt correspond
to the definition of Xt−1,R, Yt−1,R, Zt−1,R, so our notations are consistent. Let
Δt,r be the number of containers used for demand Dt,r:

Δt,r := min{Dt,r,Xt,r} (6)

Consider state st,r = [xt,r, yt,r, zt,r], demand realization dt,r inducing δt,r :=
min{dt,r, xt,r} full containers sent at time (t, r), and possibly decision γt =
[αt, βt]. The next state at time (t, r + 1) is then:

– For r = 0:

st,1[st,0,γt, dt,0] = [xt,0 − δt,0; yt,0 + αt − βt + zt,0 + δt,0; βt] (7)

– For r ∈ [1, Lord − 2]:

st,r+1[st,r, dt,r] = [xt,r − δt,r; yt,r + δt,r; zt,r] (8)

– For r = Lord − 1:

st,r+1[st,r, dt,r] = [zt,r + xt,r − δt,r; yt,r + δt,r; 0] (9)

– For r ∈ [Lord + 1, R − Ldel]:

st,r+1[st,r, dt,r] = [xt,r − δt,r; yt,r + δt,r; 0] (10)

– For r > R − Ldel:

st,r+1[st,r, dt,r] = [xt,r − δt,r; yt,r; zt,r + δt,r] (11)

Lemma 2. The state and action parameters at each time (t, r) verify:

– 0 ≤ xt,r ≤ (R + Lord) · Dmax

– 0 ≤ yt,r ≤ (R + Lord + Ldel) · Dmax

– 0 ≤ zt,r ≤ Ldel · Dmax

– 0 ≤ αt ≤ (R + Lord + Ldel) · Dmax
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– 0 ≤ βt ≤ R · Dmax

Moreover, an upper bound of the optimal container fleet size is:

UM := (R + Lord + Ldel) · Dmax ≤ 2 · R · Dmax (12)

Proof. The maximum demand between two ordering arrivals is R ·Dmax. There-
fore, whenever we order more than R · Dmax containers, some containers will
be left in the supplier stock before the next order arrival. We deduce: ∀t, βt ≤
R ·Dmax. Likewise, if the inventory position is above (R+Lord) ·Dmax, the stock
before order arrival will not be empty, hence: xt,r ≤ xt +βt ≤ (R+Lord) ·Dmax.
The maximum container fleet size is so that we can create an ordering policy
never buying any disposable. It is thus bounded by the maximum inventory posi-
tion given that the number of outgoing containers is maximum. The number of
outgoing containers at r = 0 is bounded by: zt ≤ Ldel · Dmax. We hence have
the upper bound UM := (R + Lord + Ldel) · Dmax of the optimal fleet size. Any
container over UM will stay in the manufacturer stock during the whole process,
hence only incurring additional purchasing and holding costs. Since we will never
have more than UM containers, we will never purchase more than UM containers
at once and the manufacturer will never have more than UM containers in stock:
αt, yt ≤ UM = (R + Lord + Ldel) · Dmax. ��

We denote by EoH the end of the time horizon, i.e. time (T, 0). Let ϕ∗
t,r(s)

be the expected cost of an optimal policy starting from state s at time (t, r)
up to EoH, and ϕ∗

t (s) := ϕ∗
t,0(s). Let ϕ∗

t (s,γ) be the minimum expected cost
starting from state s and decision γ at time (t, 0) and up to EoH, when future
decisions are taken optimally. Then:

ϕ∗
t (s) = min

γ
ϕ∗

t (s,γ) (13)

We denote by ψt,r(s, d) the costs incurred at time (t, r) when starting from state
s and under demand d, and by ψt(s,γ, d) the costs at time (t, 0) under state s,
decision γ and demand d.

– For r = 0:

ϕ∗
t (s,γ) =

∑

d

Pt,0(d) ·
(
ψt(s,γ, d) + ϕ∗

t,1 (st,1[s,γ, d],γ)
)

(14)

– For r ∈ [1, R − 1]:

ϕ∗
t,r(s) =

∑

d

Pt,r(d) ·
(
ψt,r(s, d) + ϕ∗

t,r+1 (st,r+1[s, d])
)

(15)

The single time step costs ψt,r must be defined as a function of the current state
s, demand d and decision γ. The ensured manufacturer stock Yt,r is greater than
the actual manufacturer stock as it contains the full containers which should
arrive later in the current period. Therefore, the cost ψt,r must already include
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the manufacturer holding cost of the Vt,r full containers from their planned
arrival (t′, r′) up to the next ordering time (t′ + 1, 0). At time (t, 0), we consider
in addition the holding cost for each container which has not been ordered and
will thus stay idle in the manufacturer stock up to the next ordering time (t+1, 0).
Let Cman(t, r → R) denote the total manufacturer holding cost of a container
from time (t, r) to time (t+1, 0), so that Cman(t, R−1 → R) = Cman(t, R−1) and
Cman(t, R → R) = 0. We define the single step cost function ψt,r as following:

– If r = 0:

ψt,r(s,γ, d) =(d − δ) · Cdis(t, 0) + δ · Cman(t, Ldel → R)
+ (x − δ) · Csup(t, 0) + (y + α − β) · Cman(t, 0 → R) (16)

– If r ∈ [1, R − Ldel]:

ψt,r(s, d) =(d − δ) · Cdis(t, r) + δ · Cman(t, r + Ldel → R)
+ (x − δ) · Csup(t, r) (17)

– If r > R − Ldel:

ψt,r(s, d) =(d − δ) · Cdis(t, r) + δ · Cman (t + 1, r + Ldel − R → R)
+ (x − δ) · Csup(t, r) (18)

Algorithm 1 computes an optimal online policy to the container purchasing
problem. We note that the optimal policy corresponding to ϕ∗

t is computed at
the same time as its expected cost, so we will equivalently say that we compute
an optimal policy or its expected cost.

Algorithm 1. Online Exact Algorithm
ϕ∗

T (s) := 0 for all s;
for period t from T − 1 to 0 do

for step r from R − 1 to 1 do
for each state st,r do

Compute ϕ∗
t,r(st,r) using (14), (17) and (18);

for each state st do
for each decision γt do

Compute ϕ∗
t (st,γt) using (13), (15) and (16);

ϕ∗
t (st) := minγ

[
ϕ∗

t (st,γ)
]
;

return ϕ∗
t ([0, 0, 0]);

Theorem 1. Algorithm1 computes an optimal online policy in O
(
T ·R5 ·D6

max

)

time.

Proof. By Lemma 2, the state space is O(R3 ·D3
max), the demand space O(Dmax)

and the decision space O(R2 · D2
max). There are T time steps with decision and

(R − 1) · T steps without, so the total complexity is O
(
T · R5 · D6

max

)
. ��
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4 L�-Convexity Under Linear Costs

In this section, we exclude the setup costs Csetup(t) from the process, and prove
that the cost functions are then L�-convex with respect to the decision γt. We
use alternative states similarly to Zipkin [5].

4.1 Literature Results

We denote by E a one dimensional space, and by E+ its restriction to positive
values. The vector of ‘1’ is denoted e. Given two vectors w = [w1, . . . , wn] ∈ En

and w′ = [w′
1, . . . , w

′
n] ∈ En, we define:

w ∧ w′ :=
[
min{w1, w

′
1}, . . . ,min{wn, w′

n}
]

(19)

w ∨ w′ :=
[
max{w1, w

′
1}, . . . ,max{wn, w′

n}
]

(20)

Definition 1. A space En is lattice if for each w,w′ ∈ En and λ ∈ E+, the
vectors (w + λ · e) ∧ w′ and w ∨ (w′ − λ · e) are also in En.

Definition 2. A function f : En → R is L�-convex if En is lattice and for each
w,w′ ∈ En and λ ∈ E+, we have:

f(w) + f(w′) ≥ f
(
(w + λ · e) ∧ w′) + f

(
w ∨ (w′ − λ · e)

)
(21)

Theorem 2 [Simchi-Levi et al. 2013].

1. Any set with representation {w ∈ En : l ≤ w ≤ u, wi − wj ≤ vi,j ∀i �= j} is
lattice, where l,u ∈ En and vi,j ∈ E(i �= j). In fact, any closed lattice set in
the space En can have such a representation.

2. A function f : En → R is L�-convex if and only if the function g(w, λ) :=
f(w − λ · e) is L�-convex.

3. If f1, f2 : En → R are L�-convex and λ ∈ E+, then λ·f1+f2 is also L�-convex.
4. If f(·, ·) : En × Em → R is L�-convex with respect to its first parameter, then

g(v) := Ew[f(v,w)] is also L�-convex, if it is well defined.
5. If f(·) : En → R is L�-convex, then g : En+1 → R defined by g(v, λ) :=

f(v − λ · e) is also L�-convex.
6. If f(·, ·) : En × Em → R is L�-convex, then the function g(v) := infwf(v,w)

is also L�-convex.
7. The minimum of a L�-convex function can be found using a binary search.

We consider the following two hypothesis used by Chen et al. [7], adapted to
our model with T periods of R time steps:

Conjecture 1. For each time (t, r), state s, decision γ, demand d, the functions
ϕ∗

t,r(s), ψt(s,γ, d), ψt,r(s, d) are L�-convex and their definition domain is lattice.

Conjecture 2. For each time (t, r), the functions st,1[s,γ, d] and st,r+1[s, d]
computing the next state are L�-convex in (s,γ) for every demand realization d.

Chen et al. [7] prove that under Conjectures 1 and 2, the cost functions of the
problem are L�-convex, so by Theorem 2.(7) we can use a binary search to find
the optimal decision in logarithmic time with respect to the decision space.
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4.2 Application to Our Case

We set the number of containers δt,r ∈ [0, dt,r] used for demand dt,r as a decision
variable. By assumption, the value of δt,r minimizing the expected costs is:

δ∗
t,r = min(xt,r, dt,r). (22)

For time (t, r) t, we define state ŝt,r as following:

– For r = 0:
ŝt,0 := [xt; −yt − zt; −zt] (23)

– For r = 1:

ŝt,1 :=
[
x̂t,0 − δ∗

t,0; ŷt,0 + ẑt,0 + βt − αt − δ∗
t,0; βt

]
(24)

– For r ∈ [2, Lord − 1]:

ŝt,r :=
[
x̂t,r−1 − δ∗

t,r−1; ŷt,r−1 − δ∗
t,r−1; ẑt,r−1

]
(25)

– For r = Lord:

ŝt,Lord
:= [x̂t,Lord−1 + ẑt,r−1; ŷt,Lord−1; 0] − δ∗

t,Lord−1 · e (26)

– For r ∈ [Lord + 1, R − Ldel]:

ŝt,r := [x̂t,r−1; ŷt,r−1; 0] − δ∗
t,r−1 · e (27)

– For r ∈ [R − Ldel + 1, R]:

ŝt,r := [x̂t,r−1; ŷt,r−1; ẑt,r−1] − δ∗
t,r−1 · e (28)

We easily check using Theorem 2.(1) and Lemma 2 that the definition domain
of ŝt,r is lattice for every (t, r). Therefore, the definition domains of ϕ∗

t (ŝ),
ψt(ŝ,γ, d) and ψt,r(ŝ, d) are also lattice. By construction, starting from state st,
decision γt at time (t, 0) and with the same demand realizations dt,0 to dt,R−1,
the states st+1,0 and ŝt+1,0 generated with (7) to (11) and with (23) to (28)
are equivalent. Consequently, we can compute state st,r from ŝt,r and use the
same linear cost functions ϕ∗

t,r and ψt,r. We prove by recurrence on time (t, r)
using Theorem 2.(2,3,5,6) and starting from the EoH costs ϕ∗

T,0 = 0 that the
cost functions ψt,r and ϕ∗

t,r are L�-convex. We can thus replace states st,r by
ŝt,r in Algorithm 1 and use a binary search to find the optimal decisions.

Theorem 3. Without setup costs, Algorithm1 computes an optimal online pol-
icy in O

(
T · R4 · D4

max · log[Dmax · R]2
)

time.

Proof. We follow the same lead as in Theorem 1, but the decision space size is
O(log[Dmax · R]2). ��
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5 Offline Heuristic

A naive approach to compute an optimal offline policy is to consider every possi-
ble purchasing plan. The time complexity grows then exponentially with R and
Dmax, as will be shown in Sect. 6. In this section, we propose an offline heuristic
based on the online algorithm from Sect. 4. We first use the same states st,r as
in Algorithm 1, and show afterward how to efficiently compute the offline policy.

We denote by ϕ∗[k1, k2, uα](sk1) the expected cost of an optimal offline policy
from state sk1 at period k1 to EoH so that k1 and k2 are the first two placements
and so that the container fleet size after purchasing at period k1 is uα. We
compute a policy along with its expected cost, so our objective is equivalent to
computing the expected cost of the optimal policy. We denote by ϕ∗[k2](sk2) the
optimal offline policy cost from state sk2 at period k2 to EoH. The policy ϕ∗[k2]
is so that the container fleet size after purchasing at period k2 is the same for
each starting state sk2 at period k2. We only consider values of uα lower than
the fleet size after purchasing at period k2, as otherwise there is no purchasing at
period k2 while we pay the unnecessary cost Csetup(k2). Given the costs ϕ∗[k2],
we can compute ϕ∗[k1, k2, uα] using backward dynamic programming.

For a fixed k1, there are two values k∗
2(k1) > k1 and u∗

α(k1) inducing an
optimal policy with cost ϕ∗[k1] := ϕ∗ [k1, k∗

2(k1), u
∗
α(k1)] from period k1 to EoH.

If a state sk1 at time (k1, 0) starts with a higher fleet size than u∗
α(k1), this state

is excluded from the search as it can not be attained from an optimal policy.
However, as it will be shown in our simulations, different values of Sk1 at

period k1 may lead to different best values of k2(k1) and uα(k1). When using
a Markov decision process, we thus need the probability distribution of Sk1

at period k1 to find k∗
2(k1). Contrary to [8] and [11], the optimal solution after

purchasing period k1 depends therefore on the optimal solution before purchasing
time k1. The state probability distribution at period k1 can only be derived
from an optimal policy up to period k1. But in order to get it, we need the
expected cost ϕ[k1](sk1) for each state sk1 at period k1, which we actually want
to compute.

Our heuristic neglects the influence of the state sk1 on the optimal con-
tainer fleet size after period k1. Hence, we approximate the optimal container
fleet size u∗

α(k1) after purchasing and the next purchasing time k∗
2(k1) as the

cost minimizing values u′
α(k1) and k′

2(k1) when starting from the reference state
s′

k1
:= [0, 0, 0] at time (k1, 0). We would like u′

α(k1) and k′
2(k1) to be close to

u∗
α(k1) and k∗

2(k1). Then, for each other state sk1 , we set uk1 := xk1 + yk1 + zk1 ,
αk1(sk1) := u′

α(k1) − uk1 and compute the optimal order size βk1 given u′
α(k1)

and k′
2(k1). Since we are only computing a suboptimal solution, we use the

notation ϕ instead of ϕ∗. Our hybrid policy computes ϕ[k1, k2] from ϕ[k2], and
deduce k′

2(k1) and u′
α(k1). The optimal solution is approximated by:

ϕ[k1] := ϕ [k1, k′
2(k1), u

′
α(k1)] (29)

Our algorithm is initialized with the EoH costs:

∀s, ϕ[T ](s) = 0 (30)
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Without loss of generality, we can assume that some containers are purchased
at period 0. To relax this assumption, we add a dummy period −1 with zero
demand, zero manufacturer holding cost and infinite supplier holding costs. We
now explain how to efficiently compute ϕ[k1, k2] from ϕ[k2] using backward pro-
gramming and the L�-convexity. For k2 ∈ [1, T ] and given cost ϕ[k2], we define
φ′[k1, k2](s) as the expected cost of the optimal policy starting from state s at
time (k1, 1) up to EoH without purchasing containers before period k2 and so
that the expected cost from state sk2 at period k2 up to EoH is ϕ[k2](sk2).

Lemma 3. Consider a period k2 and suppose that the costs ϕ[k2] are known and
L�-convex. Then, the costs φ′[k1, k2] for all k1 ∈ [0, k2 − 1] are also L�-convex
and can be computed altogether in O

(
T · R4 · D4

max · log[R · Dmax]
)

time.

Proof. For a fixed k2, all φ′[k1, k2] can be computed altogether with a single
backward dynamic program starting from ϕ[k2] up to time (k1, 1), with O(R ·T )
iterations. Since we are not purchasing any container while computing φ′[k1, k2],
we prove using the same reasoning and the same states ŝt,r as in Sect. 4, that the
cost of all φ′[k1, k2] are L�-convex. By Lemma 2, the state space is O(R3 · D3

max)
and the decision space is O(R · Dmax). Due to the L�-convexity, we get the best
ordering size in O (log[R · Dmax]) time. With the same reasoning as Theorems 1
and 3, the total complexity is O

(
T · R4 · D4

max · log[R · Dmax]
)
. ��

Lemma 4. Consider periods k1 and k2 and suppose that the costs φ′(k1, k2)
are known and L�-convex. Then the costs ϕ[k1] are also L�-convex and can be
computed in O

(
T · R3 · D4

max · log[R · Dmax]
)

time.

Proof. The policy relative to ϕ[k1] already includes the setup cost Csetup(k1),
thus the computation of the costs ϕ[k1] only consider linear costs and the
L�-convex cost functions φ′(k1, k2). Using the same reasoning as in Lemma 3,
the cost ϕ[k1, k2, uα](ŝ) is L�-convex for each state ŝ and every k1, k2, uα.
We compute k′

2(k1) and u′
α(k1) using a binary search on the purchasing and

ordering decisions over a single time step and a single state, which takes
O(T ·Dmax · log[R ·Dmax]2) time. We then compute ϕ[k1] := ϕ[k1, k′

2(k1), u
′
α(k1)]

for O(R3 · D3
max) states and with a binary search for the order size, which takes

O(R3 ·D4
max · log[R ·Dmax]) time. The total complexity is O

(
T ·R3 ·D4

max · log[R ·
Dmax]

)
. ��

Proposition 2. Every cost φ′(k1, k2) for 0 ≤ k1 < k2 ≤ T is L�-convex and can
be computed altogether in O

(
T 2 · R3 · D4

max · log[R · Dmax]
)

time.

Proof. This proposition is proven by recurrence. For k2 = T , the costs ϕ(T ) = 0
are L�-convex. Therefore the costs φ′(k1, T ) for k1 ∈ [0, T − 1] are L�-convex
and we compute them them O

(
T · R4 · D4

max · log[R · Dmax]
)

time. Consider now
a value of k2 ∈ [1, T − 1] and suppose that for all k4 ∈ [k2 + 1, T ] and all
k3 ∈ [0, k2], the cost φ′(k3, k4) is known and L�-convex. In particular, the cost
φ′(k2, k′(k2)

)
is L�-convex, and by Lemma 4 ϕ(k2) is L�-convex and computed

in O
(
T · R4 · D4

max · log[R · Dmax]
)

time. By Lemma 3, for all k1 ∈ [0, k2 − 1],
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the costs φ′(k1, k2) are also L�-convex and take O
(
T · R4 · D4

max · log[R · Dmax]
)

time to compute. We conclude that all costs φ′(k1, k2) for 0 ≤ k1 < k2 ≤ T can
be computed altogether in O

(
T 2 · R4 · D4

max · log[R · Dmax]
)

time. ��

Algorithm 2. Offline Heuristic Algorithm
ϕ∗

T (s) := 0 for all s;
for period k from T − 1 to 0 do

Compute φ′[k, k + 1] from ϕ[k + 1];
for period t from k − 1 to 0 do

Compute φ′(t, k + 1) from φ′(t + 1, k + 1);

Compute k′
2(k) and u′

α(k) from {φ′[k, k2], k2 > k};
Compute ϕ(k) from φ′[k, k′

2(k)] and u′
α(k);

return ϕ(0)[0, 0, 0];

Theorem 4. Algorithm2 computes an offline policy with the time complexity
O

(
T 2 · R4 · D4

max · log[R · Dmax]
)
.

Proof. This theorem follows directly from Proposition 2 and Lemma 4. ��

6 Computational Study

In this section, we simulate and compare the efficiency of our offline heuristic
with several algorithms taken as reference. Our objective is to compare the per-
formance of our heuristic policy to a very slow optimal offline solution and to a
fast and simple approximation. We use a virtual data set in order to highlight
the strengths and weaknesses of our algorithms.

6.1 Reference Algorithms

First of all, we compute an optimal offline policy as following. For each pur-
chasing plan, the purchasing costs are fixed, so the cost functions are L�-
convex and the optimal ordering decisions can be found using a binary search
as described in Sect. 4. Under fixed purchasing plan, the value of zt and αt

can be disregarded, so with the same reasoning as in Theorem 3, it then takes
O

(
T · R3 · D3

max · log[Dmax · R]
)

time to compute the optimal ordering policy.
We then iterate over every possible purchasing. Since the maximum fleet size
is O(R · Dmax), there are in total O(RT · DT

max) possible purchasing plans. In
our simulations, we denote this optimal offline algorithm by Opt-F. Since the
complexity of the optimal offline policy is exponential, we can only compute it
for very small test instances. For bigger instances, we consider the optimal online
policy from this paper, which is at least as good as the optimal offline policy.

On the other side, we compare the performance of Algorithm2 to a simple
offline heuristic. This simple heuristic computes the best policy while avoiding
disposables at all costs. As a consequence, the order size follows immediately
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from the supplier stock. This simple algorithm is meaningful in our simulation
where the support of each demand variable is a small interval. We note that
this algorithm can be adapted to a bigger demand space by approximating the
largest demand value by a quantile. We use an algorithm similar to the Wagner-
Within algorithm [8] to deduce the purchasing plan from these minimum fleets,
in O(T 2) time. A forward dynamic program computes the expected cost of the
policy. Since the fleet size is known for every period, we only need two state
parameters so the complexity is O(T · R3 · D3

max). In our simulations, we denote
this simple algorithm by NoDis.

6.2 Simulations

As pointed out by Özen et al. [12], Markov decision process based algorithms
are slow in practice and cannot be used for big test instances. They develop a
Markov decision process with a single state parameter, a single time step per
period and one ordering decision per period. Using a binary search to find the
optimal order, their algorithm already takes a few hours for a time horizon as
small as T = 18 periods. For this reason, our simulations only consider a short
time horizon T ≤ 15, an aggregation of the time steps R = 3 and relatively small
demand values. We set transportation delays as Lord = 1 and Ldel = 2, so that
every period contains a time step before demand arrival and a time step with
late demand. The asymmetry Lord = Ldel − 1 of the delays is a consequence
of how we defined them. Indeed, suppose that a transport takes a little less
that one time step. Empty containers depart at the beginning of a step and
arrive before its end, while full packages depart during the step and arrive to the
manufacturer during the next time step, hence after container ordering; finally
we get Lord = 1 but Ldel = 2. We consider stationary costs, and write the vector
of costs C := [Cman, Csup, Cdis, Csetup, Ccont]. We model the demand variability
as a binomial distribution B(n, p).

Table 1 shows the expected costs (rounded to an integer) and the running
times (in seconds) of the considered algorithms on very small instances. In this

Table 1. Simulation 1: C := [2, 6, 30, 200, 50], D(t, r) → 3 · t + B(2, 1/2)

T = 3 T = 4 T = 5 T = 6 T = 7 T = 8 T = 9 T = 10 T = 15

Algo.1 cost 1080 1946 2816 3832 5022 6335 7679 9147

Algo.1 time 0.4 s 2.5 s 11.0 s 37.6 s 104 s 243 s 521 s 1015 s

Opt-F cost 1080 1946 2816 (3832) (9147)

Opt-F time 0.1 s 20.0 s 2514 s

Algo.2 cost 1236 1946 2816 3832 5035 6336 7728 9147 17672

Algo.2 time 0.0 s 0.2 s 0.5 s 1.7 s 3.4 s 6.8 s 12.7 s 22.0 s 208 s

NoDis cost 2244 3300 4482 5880 7280 8822 10366 12052 21352

NoDis time 0. s 0. s 0. s 0. s 0. s 0. s 0. s 0. s 0.1 s
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Table 2. Simulation 2: T = 4, D(t, r) → 2 · t + B(2, 1/2)

Algo.1 Opt-F Algo.2 NoDis

Running time 0.7 s 53.4 s 0.1 s 0 s

Cost for C := [3, 6, 50, 100, 50] 1816 1816 1816 2476

Cost for C := [3, 6, 150, 10, 50] 2046 2055 2136 2316

Cost for C := [3, 6, 1500, 0, 50] 3510 3547 3639 3636

first simulation the maximum demand value Dmax(T ) := 3 · T + 2 increases
linearly with T . As a consequence, even for T = 5 it takes more than 40 min
to compute the optimal offline policy. We note that the online policy does not
scale very well, due to the absence of a convexity structure. Up to now, we
did not find any way to accelerate the computation without losing optimality.
In this experiment, policies generated by Algorithm 2 are optimal or close to
optimal. Moreover, our offline heuristic computes much better solutions than
the simple algorithm ‘NoDis’. However, the running time of our algorithm still
increases much faster, and is not suited for instances where the demand can go
above 50. We note that for T = 3, Algorithm 2 generates a suboptimal solution.
Consequently, the best values u′

k1+1 and k′
2(k1) corresponding to the reference

state [0, 0, 0] are not equal to the optimal values u∗
k1+1 and k∗

2(k1).
We believe that our offline heuristic performs well for reasonable system

costs. However, Algorithm 2 may perform poorly when the optimal offline policy
purchases new containers at nearly every period. Indeed, our reference state
[0, 0, 0] deciding on the best fleet size underestimates the required container fleet,
because it neglects the value of Xt and Zt at purchasing time. The approximation
error increases when purchasing times get closer to each others. Table 2 presents
a simulation with increasing disposable costs and decreasing setup costs, which
leads to a worse and worse performance of Algorithm 2. In the last instance of this
second simulation, with costs C = [3, 6, 1500, 0, 50], Algorithm 2 gets very high
costs when purchasing at consecutive periods, so the generated policy does not
purchase containers at period 2, contrary to the other algorithms. We conclude
that the reference state should be adapted to the system costs.

7 Conclusion

In this paper, we study the purchasing and repositioning of containers in a
closed-loop supply chain with a stochastic demand at every time step and a
periodic backward flow of empty containers. This model can be seen as a lot-
sizing problem where the purchased items are containers coming back for reuse
after a known duration. We state that the flow of empty containers is an opera-
tional decision that must be dynamically taken, while container purchasing is a
tactical decision that can be decided at the beginning of the time horizon. We
extend two of the three strategies described by Bookbinder and Tan [9] to a con-
tainer management process. Our optimal online algorithm dynamically decides
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whether to purchase containers or not. Our offline algorithm sets a purchasing
plan at the beginning of the time horizon and dynamically sends empty con-
tainers to the supplier. This offline heuristic neglects the impact of the state at
purchasing time, allowing us to divide the problem into L�-convex sub-problems
without setup cost. The algorithm has been shown to perform well for reason-
able costs. The static-dynamic strategy from [9] fixes the purchasing times and
decides later on the actual quantities. We estimate that this third strategy is not
fundamental in a container management process, so we postpone its analysis to
a future study. Another future research is to develop heuristics to make our algo-
rithms fast enough for large test instances. In particular, we are interested into
alternatives to our reference state and state space aggregation methods. A last
interesting study would be to find efficient myopic ordering policies to get more
insight on how the containers should be balanced between consecutive weeks.
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Abstract. Container stowage planning is a complex task in which mul-
tiple objectives have to be optimized while ensuring that the stowage
rules as well as the safety and balance requirements are observed. Most
algorithms for solving the problem are comprised of 2 parts: a container-
location selection mechanism and a constraint evaluation engine. The
former selects one or more container-location pairs for allocation itera-
tively and the latter evaluates whether the selected container-location
pairs violate any of the constraints. We observe that, using the same
selection mechanism, the order in which the constraints are evaluated
can have significant impact on the overall efficiency. We propose Sequen-
tial Sample Model (SSM) as an improvement over the existing Random
Sample Model (RSM) for analysis of the problem. We present and eval-
uate several strategies in optimizing the constraint evaluation engine.
We show how to achieve the optimal constraint ordering with respect to
SSM. However, such ordering requires perfect information on the con-
straint tests which is impractical. We present alternative strategies and
show empirically that their efficiencies are close to the optimum. Exper-
iments show that, when compared to an arbitrary ordering, an average
of 2.42 times speed up in the evaluation engine can be achieved.

Keywords: Maritime logistics · Stowage plans · Optimization · Heuris-
tic algorithms · Markov model

1 Introduction

Stowage planning is the task of assigning suitable stowage locations to the load-
ing containers such that the profit is maximized while observing the safety and
balance requirements. There are multiple factors affecting the overall profit. For
instance, uneven distribution of workloads across the bays may cause the ship
to stay at the port for an extended period of time. Apart from paying more
port charges [1], the ship will have less margin in voyage time to the next port.
Hence, the ship has to sail at a greater speed to meet the deadline and thus
increases the fuel cost and increases emission [16]. Moreover, additional complex
stowage rules, such as dangerous goods (DGs) segregation rules [4] as well as ship
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strength and stability consideration [14,23], increases the difficulty in achieving
an evenly distributed workload.

The problem is conventionally solved manually by the ship planners. The
loading lists are usually made available to the ship planners just hours before the
ships arrival at the next destination port. An initial plan needs to be sent to the
port planners for further optimizations before committing. Thus, the planners
are constantly under tremendous pressure to meet the deadlines. The increased
deployment of mega-scale vessels with more than 18,000 TEUs (Twenty-foot
Equivalent Units) capacity [16] has made the task exceedingly challenging. As
a result, automated stowage planning has become a trend. Since computer gen-
erated solutions may still require additional manual modifications, it is ideal to
generate a plan within a 10-min time bound [17] and as quickly as possible.

While most studies improve the efficiency of the stowage planning algorithm
by reducing and pruning the search space, we consider an alternative approach in
this paper. We observe that the constraint evaluation engine is the core for most
container stowage planning algorithms. By reducing the time spent in evaluating
constraints, we can improve the efficiency of a stowage planning algorithm.

The rest of the paper is organized as follows. In Sect. 2, we briefly review
existing results on automated stowage planning and constraint test optimization.
In Sect. 3, we present Random Sample Model (RSM) and State-based Sequential
Sample Model (SSM) to study the problem. We also present how to achieve the
optimum efficiency w.r.t. SSM. A window-based approach for estimating the
constraint evaluation cost is also presented. In Sect. 4, we present the empirical
results on the efficiency of the strategies studied in this paper. We also show
the impact of window size on the effectiveness in improving the efficiency. We
conclude the paper in Sect. 5.

2 Related Works

The container stowage optimization problem, which is also known as the Master
Bay Plan Problem, was shown to be NP-hard in [6]. Since it is computationally
challenging to obtain an optimal solution, many studies are conducted to devise
near optimal solutions, rather than the optimum, to the problem. The existing
approaches for solving the problem can mainly be divided into the following
three categories: (i) mixed integer programming (MIP) based, e.g., [5,9]; (ii)
meta-heuristics based, e.g., [2,3,13], and (iii) heuristics based, e.g., [2,21].

For safety concerns, a stowage plan is only feasible when none of the con-
straint is violated. As such, constraint tests must be present in certain stages of a
stowage planning algorithm. From this, we may generalize the structure of most
stowage algorithms as a combination of a container-location selection mechanism
and a constraint evaluation engine (c.f. Fig. 1). The container-location selection
mechanism may select one or more pairs of container-location assignments for
considerations and these assignments are checked by the evaluation engine for
feasibility. On one extreme, the container-location mechanism does not perform
any filtering and hence the algorithm evaluates all possible assignments of the
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Fig. 1. Flow chart of a stowage planning algorithm. The container-location pair selec-
tion mechanism and the constraint evaluation engine form the core of most stowage
planning algorithms. Some approaches include the hydrostatic limits in the constraint
evaluation engine, while some others do not, and the preliminary solution is modified
to meet the hydrostatic limits in a later phase.

containers. On the other extreme, the constraint evaluation engine is fully merged
with the selection mechanism to prune out all infeasible assignments from being
considered by the algorithm. Nevertheless, when more than one tests need to be
run during a certain stage of the algorithm, the order in which the tests are run
may have impact on the overall efficiency of the algorithm.

In this paper, we consider an algorithm that employs a 2-phase approach
for stowage planning that is comprised of an allocation phase followed by an
adjustment phase [12,14,15,23]. In the first phase, only hard-constraints (e.g. slot
type match, DG segregations, weight limit, etc.) are considered. In the second
phase, the preliminary solution from the first phase is improved by a combination
of swapping containers of equivalent classes and ballast tank adjustments to meet
the strength and stability constraints (e.g. trim, list, bending moment, shear
force, etc.). Through experiments, we find that the time spent in constraint
evaluation attributes to 96 % of the overall time spent in the allocation phase.
This presents a huge opportunity for optimizing the efficiency of the algorithm.

In the constraint evaluation engine, a container-location pair is evaluated
against an ordered set of tests in a sequential manner. Each test is composed of
a set of related criteria. For instance, a test could be checking the stack weight
limit, or checking the segregation among the DGs. The constraint evaluation
returns false if the container-location pair is rejected by at least one of the
tests. The order in which the tests are evaluated could have significant impact
on the total costs incurred. For instance, suppose that we are given three tests
(φ1, φ2, φ3) with evaluation costs of 1000, 100, and 10 respectively. Assume that
for the current iteration, both φ1 and φ2 return “True” while φ3 return “False”.
If we evaluate the sequence in the given order of (φ1, φ2, φ3), then the cost
incurred would be 1110. However, if we evaluate φ3 first, then the cost incurred
is 10, which is significantly less than the default order. Of course, we may not
know in advance which tests would return “False” and hence the problem is
usually studied with a probabilistic framework.
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The constraint test optimization has been studied under different themes and
has been extended for various scenarios, such as tests with precedence require-
ments [11], tests with one-sided errors [7], etc. In [19], Ünlüyurt presented a
survey of the test order optimization problem. Test order optimization has appli-
cations in diagnostic based processes like cargoes inspections [8,10,22], regres-
sion testing for software engineering [18], and the design of screening procedures
[11]. It has also been applied in the machine learning domain for improving the
reaction time of classification algorithms [20].

3 Constraint Ordering

Previous studies in optimizing the constraint evaluation order considered the case
where the samples (container-location pair) are evaluated in a random order.
We observe that, in practice, most existing stowage algorithms will evaluate
the samples in certain pre-ordered manner. This leads to a recurring pattern
both in the constraint evaluation result and the computational time incurred in
evaluating the constraint tests. Hence, we propose the State-based Sequential
Sample Model (SSM) as a refinement over the existing Random Sample Model
(RSM). We show how to achieve a near-optimal efficiency under SSM. We also
present a moving window scheme for capturing the recurrence of the evaluation
cost and also estimating the actual cost.

3.1 Preliminaries

A constraint test sequence is comprised of a set of constraint tests, and is
denoted by Φ = {φ1, φ2, φ3, ..., φN}. A test φi requires certain cost ci to eval-
uate, and the cost is the computational time to run the test in the case of
stowage algorithms. Since the costs may change over time, the average cost is
usually used for analysis of the problem. The tests may be evaluated in any
permutation. In particular, a strategy X may evaluate the tests in the order
ΦX(t) =

(
φX
1 (t), φX

2 (t), φX
3 (t), ..., φX

N (t)
)

at time t, where the ordering is a per-
mutation of the set Φ.

Conventionally, the constraint order optimization problem is studied by con-
sidering that a randomly selected sample is evaluated at the constraint evaluation
engine. A sample in this context refers to a container-location pair. In the fol-
lowing, we describe the Random Sample Model (RSM), and Fig. 2(a) shows the
schematic of RSM.

Definition 1. Random Sample Model describes a scenario in which a ran-
domly selected sample is evaluated by the constraint evaluation engine. Under
this model, a constraint test φi may evaluate to “True” with probability p(φi),
and to “False” with probability 1 − p(φi) = f(φi).

Since the costs and probabilities of “False” do not change over time under RSM,
we drop the time parameter in the expressions in this section. With RSM, we
may calculate the expected cost of evaluating a sequence as follows:
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Fig. 2. (a) Schematic of random sample model. A constraint test evaluates to “True”
or “False” probabilistically. The constraint test evaluation is oblivious of the container
allocation process. (b) Schematic of State-based Sequential Sample Model. The con-
straint test has inner states composed of Ti and Fi. When the test is in the Ti state,
it will always return “True”. Similarly, it returns “False” when it is in the Fi state.
After evaluating each sample, the test may change state between Ti and Fi with the
specified probabilities pTTi , pTFi , pFTi , pFFi .

Definition 2. The expected cost of evaluating a sequence using a strategy X
is given by

E[C(ΦX)] = cX
1 + pX

1 cX
2 + pX

1 pX
2 cX

3 + pX
1 pX

2 pX
3 cX

4 (1)

+ ... + pX
1 pX

2 ...pX
N−1c

X
N

where cX
i is the cost of the constraint test at index i as dictated by the strategy

X, and pX
i is the probability of the constraint test at index i as dictated by the

strategy X returning “True”.

The goal of constraint test optimization is to order the constraint tests such that
the expected computational cost of evaluating a set of container-location pairs
against the constraint test sequence is minimized.

Cost-Effective First (CE) Strategy

Definition 3. The cost effectiveness of a constraint test is given by the expres-
sion θ(φi) = f(φi)

costφi
, which is the ratio of “False” probability to the cost of eval-

uating the test.

It was shown in [7] that, ordering the constraint tests in non-increasing order
of cost-effectiveness achieves the lowest expected evaluation cost among all pos-
sible permutations w.r.t. RSM, i.e., ΦCE =

(
φCE
1 , φCE

2 , φCE
3 , ..., φCE

N

)
such that

θ(φCE
i ) ≥ θ(φCE

j ) for i < j.
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3.2 Sequential Sample Model and Dynamic Ordering Strategies

RSM assumed that the samples arrive at the evaluation engine in a random
order. However, in practice we observed certain recurring patterns in the test
evaluation result, as shown in Fig. 3(a).
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Fig. 3. (a) An example of recurring pattern for evaluating multiple samples against a
single constraint test from real historical log of constraint evaluations. A “True” result
is usually followed by a series of “True” before turning into a series of “False” and vice
versa. (b) Comparison of average cost and actual evaluation costs. The average cost is
an over- or under-estimation of the true cost most of the times.

The ‘recurring’ pattern can be explained by considering, for example, the
stack weight limit constraint test. The test checks if adding the container to
the stack at which candidate location resides will exceed the specified stack
weight limit. As the stowage planning algorithm plans on a stack-by-stack basis,
when the stack is low, the test result is usually “True”. This means that it
is safe to place the container at the candidate location without violating the
stack weight limit. Testing additional containers at the same location is likely
to yield the same “True” result, which leads to a chain of “True”. However, as
more containers are allocated onto the stack, it becomes much more likely to
violate the stack weight limit. Once the limit is exceeded, the test evaluates to
“False” until the stowage algorithm moves on to another stack. This leads to
the observed repeating pattern of a long chain of “True”s followed by another
chain of “False”s. With this observation, we consider reordering the constraint
test sequence dynamically.

Recent First (RF) Strategy. An obvious strategy is to move the recently
violated constraint test to the front of the sequence at each time step. This is
because a test that returned “False” previously is likely to return “False” on
the next sample. The RF strategy orders the constraint test sequence in the
following manner:

ΦRF (t + 1) = (φRF
k (t), φRF

1 (t), φRF
2 (t), ..., φRF

k−1(t), φ
RF
k+1(t), ..., φ

RF
N (t))

where k is the index of the first test that evaluates to “False” at time t.
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However, a recently violated constraint test could be very costly to evaluate,
leading to a high expected cost despite the high probability of the test return-
ing “False”. In addition, repeatedly moving constraint tests to the front may
destroy any initial ordering of the sequence very quickly. When combined with
the ‘recurring’ pattern described earlier, this may be detrimental for the case
where the tests are pre-sorted in certain manner (such as CE strategy).

State-Based Sequential Sample Model and State-Based (SB) Strategy.
While RF strategy does not require much information about the tests, it does
not offer guarantees on the expected evaluation cost. Thus, we propose the State-
based Sequential Sample Model (SSM) as an alternative to the Random Sample
Model to model the test behaviour and to analyse the expected evaluation cost.

Definition 4. State-based Sequential Sample Model describes a scenario in
which the samples from an instance of stowage planning are evaluated sequen-
tially by the constraint evaluation engine. A constraint test φi is modelled by a
Markov Chain with two states, namely Ti and Fi. Only one state can be active
at a time. The evaluation result of the constraint test is determined by the cur-
rently active state. If the state is Ti, then the evaluation result will be “True”,
and similarly Fi state for “False”. After evaluating each sample, the state may
change as follows:

state (φi(t + 1)) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

Ti with prob pTTi
if state (φi(t)) = Ti

Fi with prob pTFi
if state (φi(t)) = Ti

Ti with prob pFTi
if state (φi(t)) = Fi

Fi with prob pFFi
if state (φi(t)) = Fi

(2)

Figure 2(b) shows a schematic of SSM. The state transition mechanism in SSM
is for modelling the strings of repeated “True” or “False” results observed in
practice. For instance, in the stack weight limit example described previously,
moving from the bottom of a stack to the top of the stack may correspond to
a state change from Ti to Fi, and a state change from Fi to Ti occur when the
stowage algorithm moves to a different stack.

With the sequential sample model, we can get a more precise estimation of
“False” probabilities, and thus enable the ordering of constraint tests dynami-
cally based on their dynamic cost-effectiveness.

Definition 5. The dynamic cost-effectiveness of a constraint test φi at time
t is given by θ̂(φi(t)) = f̂(φi(t))

cost(φi(t))
, where f̂(φi(t)) denotes the state-dependent

probability of constraint test φi evaluating to “False” at time t, and is given by

f̂(φi(t)) =

{
pTFi

if state(φi(t)) = Ti

pFFi
otherwise

(3)

At any time t, the SB strategy orders the constraint tests in non-increasing (or
decreasing) order of dynamic cost-effectiveness such that θ̂(φSB

i (t)) ≥ θ̂(φSB
j (t))

for i < j. We show that the SB strategy is optimal with respect to SSM.
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Proposition 1. Suppose that we are given a constraint test sequence Φ = {φ1,
φ2, ..., φN} that follows SSM where the states of the constraint tests are known
at time t. If the sequence is ordered dynamically using the SB strategy then
E[C(ΦSB)] ≤ E[C(ΦX)] for any other strategy X in the next time step.

Proof. The proposition can be proved by using the technique as shown
in [7,12]. ��

State-Estimation-Based (SEB) Strategy. While it is desirable to use the
SB strategy since it guarantees optimum expected evaluation cost w.r.t. SSM,
it is not always possible to know the real state of the constraint tests. This is
because the constraint evaluation engine always stops evaluating the rest of the
tests as soon as a “False” test is found, while the real state of a test can be
determined only after evaluating the test. Figure 4 shows an example.

Fig. 4. An example of the states of the constraint tests. The evaluation stops at φi

because the first “False” result has been seen. The states of the remaining tests cannot
be determined as they are not evaluated.

In order to tackle this problem, we revise the constraint evaluation engine
as follows. To evaluate a given sample (container-location pair), the evaluation
engine will proceed as usual and start evaluating the sequence of tests until
the first “False” is encountered. After that, instead of stopping immediately,
the evaluation engine continues and uses a low cost operation to estimate the
“False” probabilities of the remaining tests in the sequence. The estimated state-
dependent “False” probabilities for the next time step are calculated as follows:

f̃(φi(t + 1)) =

⎧
⎪⎨

⎪⎩

pTFi
if φi returned “True” at t

pFFi
if φi returned “False” at t

f̃(φi(t))pFFi
+ (1− f̃(φi(t)))pTFi

if φi is not evaluated at t

(4)

We note that if a constraint test is not evaluated consecutively for a sufficiently
large number of rounds, f̃(φi(t)) will converge to a constant f(φi). This also
means that, if we lose track of the state of a constraint test, the constraint test
model falls back to RSM. In the following, we prove the convergence of f̃(φi(t)).

Proposition 2. Suppose that we are given the state transitions in the following
form, [

p̃(φi(t + 1))
f̃(φi(t + 1))

]
=

[
pTTi

pFTi

pTFi
pFFi

] [
p̃(φi(t))
f̃(φi(t))

]
(5)
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where p̃(φi(t)) = 1 − f̃(φi(t)). For sufficiently large τ , f̃(φi(τ)) converges to
certain value fi = pTFi

pTFi
+pFTi

.

Proof. The proposition can be proved by applying the stationary condition for
a Markov chain. ��

With the changes in the “False” probabilities, the estimated dynamic cost-
effectiveness is then given by θ̃(φSEB

i (t)) = f̃(φSEB
i (t))

cost(φSEB
i (t))

.
Similar to the SB strategy, the constraint test sequence is always sorted

according to the estimated dynamic cost-effectiveness. Algorithm 1 describes
the revised constraint evaluation engine for the SEB strategy. In Line 11, the
algorithm updates the f̃(φSEB

i (t)) of the constraint tests that are not evaluated
in the current round by using Eq. (4).

Algorithm 1. SEB constraint evaluation engine.

Data: Constraint test sequence ΦSEB(t), container r, location l
Result: TRUE if all constraints are satisfied, FALSE if at least one constraint

is violated.
1 i ←0 ;
2 violated ←FALSE ;
3 while (i < numConstraint) ∧ (!violated) do
4 result ←evaluate(φSEB

i (t), r, l) ;
5 i ← i + 1 ;
6 if result = FALSE then
7 violated ←TRUE ;

8 while i < numConstraint do
9 update(φSEB

i (t)) ;
10 i ← i + 1 ;

11 ΦSEB(t + 1) ←sort ΦSEB(t) in non-increasing order of θ̃(φSEB
i (t)) ;

12 return !violated ;

3.3 Dynamic Cost Estimation

Windowed Cost Effectiveness (WCE) Strategy. While the average cost
assumption simplifies the analysis and is easier to implement, we notice that
in practice, the average cost may be an over- or under- estimation of the true
cost incurred in evaluating the constraints. Figure 3(b) shows an example of the
actual evaluation cost vs. the average cost. The imprecise estimation may lead
to the tests not being evaluated in the ideal order as shown in Proposition 1.

We note that, however, the actual evaluation cost can only be obtained after
evaluating the sample. Moreover, we observe that the costs also display similar
‘recurring’ patterns (despite the presence of spikes) as that of test results (T/F)
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shown in Fig. 3(a). To capture this, we apply a moving window heuristic to
reduce the gap between the estimated cost and actual evaluation cost. For each
constrain test φi, we use two windows WTi

= {wT1 , wT2 , ..., wTL
} and WFi

=
{wF1 , wF2 , ..., wFL

} with length L to store the historical evaluation costs for
the Ti and Fi states respectively. Initially, the windows are fully filled with the
average cost (or the state-based average cost). Subsequently, after a sample is
evaluated, the corresponding window is updated with the new cost. The average
of each window can be maintained efficiently with a circular buffer.

The size of the windows may affect the sensitivity of the estimated cost. In
the extreme case, a window of infinite length is not reacting to any changes in
the costs and is the same as using the average cost; while a window of unit
length is too sensitive to the minor changes in the costs and may not be a good
indicator of the subsequent costs.

With the moving window cost estimation, we can then compute the windowed
cost-effectiveness of a test as follows:

θ̄(φi(t)) =
f̃(φi(t))
c̄(φi(t))

=
f̃(φi(t))

(1 − f̃(φi(t)))c̄T (φi(t)) + f̃(φi(t))c̄F (φi(t))
(6)

where c̄T (φi(t)) and c̄F (φi(t)) denote the average costs from the windows WTi

and WFi
respectively, and the denominator calculates the expected cost of the

next iteration.
The expression c̄(φi(t)) = (1 − f̃(φi(t)))c̄T (φi(t)) + f̃(φi(t))c̄F (φi(t)) in

Eq. (6) may appear counter-intuitive as the expected cost is used instead of
c̄F (φi(t)), the average cost in the F -state. We elaborate in more detail in the
following. To simplify the expressions, we write c̄i as a shorthand of c̄(φi(t)), and
similarly for f̃i, p̃i, c̄T

i , and c̄F
i . As a result of generalizing the costs to T - and

F - states specific, the expected cost of evaluating a sequence as given in Eq. (1)
is generalized to the following:

E[C(Φ)] = f̃1c̄
F
1 + p̃1

(
c̄T
1 + Expected cost of φ2 and beyond

)
(7)

= f̃1c̄
F
1 + p̃1

(
c̄T
1 + f̃2c̄

F
2 + p̃2(c̄T

2 (8)

+ Expected cost of φ3 and beyond))

= f̃1c̄
F
1 + p̃1f̃2c̄

F
2 + p̃1p̃2f̃3c̄

F
3 + ... + p̃1p̃2...p̃N−1f̃N c̄F

N (9)

p̃1c̄
T
1 + p̃1p̃2c̄

T
2 + p̃1p̃2p̃3c̄

T
3 + ... + p̃1p̃2...p̃N−1p̃N c̄T

N

= (f̃1c̄F
1 + p̃1c̄

T
1 ) + p̃1(f̃2c̄F

2 + p̃2c̄
T
2 ) + p̃1p̃2(f̃3c̄F

3 + p̃3c̄
T
3 ) + ... (10)

+ p̃1p̃2...p̃N−1(f̃N c̄F
N + p̃N c̄T

N )
= c̄1 + p̃1(c̄2) + p̃1p̃2(c̄3) + p̃1p̃2...p̃N−1(c̄N ) (11)

In Eq. (7), the expected cost of evaluating a sequence is defined recursively. If
the test φi returns “False”, then only the T-costs of the tests before φi and the
F-cost of φi are incurred; otherwise, the expected cost is the sum of T-cost of
φi and the expected cost of evaluating test from φi+1 onwards. In Eq. (8) we
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expand the expression in one more layer as an example. In Eq. (9), we show the
expressions when they are fully expanded. In Eq. (10), we group the expressions
according to the cost terms. In Eq. (11), we replace the expressions f̃ic̄

F
i + p̃ic̄

T
i

with c̄i. At this point, one may observe that the resultant expression is almost
the same as Eq. (1). Then the optimality of the tests ordered following the WCE
strategy can be proved similarly as shown in [7,12].

4 Experiments

We conducted experiments on data obtained from real stowage planning
instances to compare the effectiveness of the test reordering strategies. For
each container-location pair evaluated by the constraint evaluation engine, we
recorded the computational costs1 and the outcome of each constraint test with-
out stopping at the first “False”. The collected data is then divided into training
set and evaluation set respectively. The training set is used to obtain the model
parameters pi, fi, cost, and the transition probabilities. The parameters are
used for constructing the test case generator as well as input for the strategies
to reorder the test sequence. By using the historical log of all of the constraint
evaluation results and computational costs, we can replay the results to simulate
the constraint evaluation engine and compare the effectiveness of the strategies
in reducing the computational costs.

The simulation results are compared in Fig. 5. The training set and evaluation
set are each composed of real data from 244 different instances of stowage plan-
ning problem respectively. Each instance is composed of iterations of constraint
evaluations. As shown in the figure, the SB and SEB strategies are consistently
the best while RF comes next. The dynamic reordering strategies consistently
outperform the static CE strategy except in the generated set.

Next, we evaluate the effect of window length on the speed-up achieved by the
WCE strategy. The speed-up achieved by a strategy X is defined as the total
cost incurred by the RND strategy divided by the total cost incurred by the
strategy X. We experimented with window sizes from 10 to 100 with an interval
of 10. The results are shown in Fig. 6(a). Two peaks can be observed from the
figure at window lengths 30 and 60 respectively. This observation suggests that
the constraint tests may have a periodicity of multiples of 30.

We compare the overall speed up achieved by the strategies in Fig. 6(b). Since
the best empirical window length is 30 for WCE, we only show the speed up result
for WCE(30). The total costs are the sum of the evaluation costs in all instances,
including the training set, evaluation set, and generated sets. We note that, as
the dynamic strategies also introduce re-ordering overhead after evaluating each
sample, we also compare the speed up achieved when taking the overhead into
consideration. For SB, SEB, and WCE strategies, the overhead is significant
because of the sorting operation introduced at each step (the test sequence is
1 The experiments are written in Java language and conducted on HP Z400 Work-

station with Intel(R) Xeon(R) CPU W3565 @3.20 GHz (8CPUs); 12288 MB RAM;
64-bit Windows 7.
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evaluation engine by different reordering strategies. The RND strategy randomly per-
mutes the test sequence once at the beginning. The column labelled ‘Generated’ are the
accumulated cost for evaluating 10,000,000 iterations of constraint tests whose results
are generated by using the model parameters learnt from the training set. The SB and
SEB strategies are consistently the best while the RF strategy comes next.
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Fig. 6. (a) The effect of window lengths on the speedup achieved by WCE strategy. Two
peaks can be observed from the figure at window lengths 30 and 60 respectively. (b)
Comparison of speed up achieved by the strategies. Dark grey bars represent the speed
up achieved by each strategy without considering the logic overhead while the light
grey bars represent the speed up with logic overhead introduced. Without considering
the logic overhead introduced by the dynamic strategies, SB and WCE(30) achieves
the best speed ups, while SEB is very close to WCE(30). With the logic overhead, SB
is still the best strategy while SEB is ranked slightly behind RF.

comprised of 29 constraint tests). Without considering the re-ordering overhead
introduced by the dynamic strategies, SB and WCE achieves the best speed ups
at 2.69 and 2.46 speed up respectively. With the re-ordering overhead, SB is still
the best strategy while SEB is ranked slightly behind RF, at 2.30, 1.95, and
2.17 times speed up respectively. While RF appears promising, it does not offer
any theoretical guarantee and may be sensitive to the correlation between the
costs and “False” probabilities of the tests. Moreover, if the tests have higher
evaluation costs, the overhead induced by SB, SEB, and WCE strategies will be
insignificant.
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5 Conclusion

We have presented the State-based Sequential Sample Model (SSM) which is an
improvement over RSM in modelling the constraint test procedure. For SSM, as
it is unrealistic to assume full knowledge about the states of the constraint tests,
we showed how to modify the optimal strategy SB to produce a near optimal
strategy SEB. We showed empirically that SEB performs nearly as well as SB
and achieves a speed up of 2.42, as compared to the random ordering strategy.

By improving the efficiency of the constraint evaluation engine, we also
improve the efficiency of the stowage planning algorithm. As a result, we may
now generate a good feasible stowage plan with comparable quality to that of the
human planners in around 3 min time. For detailed descriptions of the stowage
algorithm, the reader may refer to [12,14,15,23].

We note that, while the efficiency of the constraint evaluation engine may also
be improved by simply running the tests in parallel, there may be cases where
the number of tests to be conducted is more than the available parallelism. In
such cases, we may still need to determine the order in evaluating the constraint
tests.

We focused on describing the constraint test optimization in the theme of
automated stowage planning problem. However, the technique described can
be applied to problems in other domains as well. Most heuristics for solving
combinatorial optimization problem explore the search space in certain manner,
which may result in the recurring constraint violation patterns as observed in the
stowage algorithm we considered, and thus our results can be applied directly.

Lastly, the evaluation costs need not necessarily be computational cost. For
instance, to check if a cargo contains illegal substances, a series of tests (x-
ray detectors, gamma-ray detectors, various sensors, etc.) can be conducted
[8,10,22]. Each test incurs a different cost and has a different probability of suc-
cess. The test reordering strategies may be adapted to such scenario to reduce
the time and monetary cost to detect violating substance.
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Abstract. Train load planners are confronted with complex practical
considerations during the booking and planning process. In order to opti-
mally utilize the available loading space, train capacity is monitored in
terms of available length and weight while accounting for the urgency
with which load units must be sent. Furthermore, the execution of the
load plan by the terminal operator must be performed efficiently to min-
imize total handling costs. The contribution of this paper is threefold.
First, current literature on train load planning is reviewed based on three
main groups of factors influencing the load plan composition. Second, a
static model is developed to introduce a number of practical constraints
from the viewpoint of the network operator. Finally, the model is adapted
to reflect the planning environment of a real-life case study.

Keywords: Train load planning · Intermodal transportation · Con-
tainer terminals · Rail transportation

1 Introduction

Railway transportation is strongly supported by the European Commission [18]
as a means to stimulate intermodal transportation. By significantly raising the
efficiency and capacity of rail transport over long distances, intermodal rail-road
freight transport can be encouraged [9]. One factor determining the railway sys-
tem capacity concerns the load capacity per train [8]. However, on-train capacity
utilization did not receive much research attention yet in comparison to route
and network capacity [23]. For a review on service network design, the reader is
referred to [17]. Improved capacity utilization per train can increase rail freight
volumes, and consequently the overall railway system capacity utilization, with-
out adding expensive network capacity. Therefore, it is important to determine
which load units will be loaded, and on which location on the train, to maximize
the train’s loading degree and minimize costs per load unit.

The train load planning problem is situated at the operational decision level
and is related to two types of decision makers, the terminal operator and the
network operator. The terminal operator is responsible for transshipment from
one mode to another, and focuses on the efficient allocation of resources such
c© Springer International Publishing Switzerland 2016
A. Paias et al. (Eds.): ICCL 2016, LNCS 9855, pp. 193–208, 2016.
DOI: 10.1007/978-3-319-44896-1 13
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as minimizing handling costs. The transshipment process increases the chain
lead time and total transportation cost. Hence, it needs to be executed fast and
efficiently [20]. The second decision maker involved is the network operator, who
often deals with a large variety of wagon and load unit types. This increases the
complexity of train load planning [20]. Given a number of outbound load units,
available wagons and their corresponding characteristics, the network operator’s
train planner typically has to establish a feasible train load plan.

Intermodal transport companies often perform the assignment of load units
to a specific location on an intermodal train manually. Automation of this task
can assist train planners in their decision process. It results in cost savings by
increasing the number of load units assigned and consequently, decreasing costs
per load unit, and by avoiding costs for the removal of a wagon and its cargo
transfer due to excess axle loads at certain measure points. Moreover, impor-
tant time savings can be gained in the planning process. Finally, it can have a
significant influence on the time and energy spent on handling load units [16].

A lot of research has already been conducted on crane and storage planning in
container terminals. An overview of literature on container terminals is provided
in [22], and is updated in [21]. Train loading is part of the land-side operations
in a container terminal, but has not been discussed extensively so far [16].

The remainder of this paper is organized as follows. In Sect. 2 a literature
review of all factors influencing the train load planning problem is provided.
Current research is classified to identify the factors considered in each model. In
Sect. 3, a train load planning model is presented from the viewpoint of the net-
work operator which owns and manages its own trains, introducing additional
characteristics of a real-life train planning environment. The model is able to
handle wagons with a third bogie at its center, while previous models only con-
sidered two bogies. Next, it is expanded with practical constraints that train
planners are confronted with, such as trains stopping at an intermediate termi-
nal before arriving at the final destination terminal. Load units can have flexible
destinations. Therefore, preferences for being unloaded at the intermediate or
final terminal are determined by the distance between the unload terminal and
the load unit’s final destination in order to minimize the amount of kilometers
traveled on the road. The model including these additional practical constraints
is tested for a real-life case study. Preliminary experimental results are presented
in Sect. 4. Finally, Sect. 5 identifies opportunities for future research.

To the best of our knowledge, this paper is the first to include weight restric-
tions in case of wagons with three bogies, and to assign wagons to fixed des-
tinations, with flexible destination terminals for load units depending on the
proximity of the unload terminal to the load unit’s final destination.

2 Factors Influencing the Load Plan

A major contribution to the development of the train loading problem has been
provided by Corry and Kozan [16], who developed a realistic model which can be
extended to various specific environments. Furthermore, Bruns and Knust [11]
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are the first - and currently still the only - to adopt continuous weight restrictions
in a train load planning problem. Both works [11,16] laid the groundwork for
realistic train load planning problems. Recently, the optimization of train load
planning has been integrated with optimization of other operational decisions in
an intermodal seaport terminal. It is first introduced by [2], who simultaneously
optimize crane and storage planning. The overview in this section discusses both
types of problems, namely problems focusing on pure train load planning and
problems integrating train load planning with crane and storage planning.

The composition and revision of train load plans is influenced by three groups
of factors. Formulations can be distinguished by their defined performance mea-
sures (Sect. 2.1). Furthermore, train load planning is restricted due to charac-
teristics inherent to the train components and operational constraints related to
the specific environment in which train loading takes place (Sect. 2.2). Section 2.3
introduces the influence of the planning environment on the load plan.

2.1 Performance Indicators

Objectives of train load planning problems in current literature can be divided
into four categories. An overview is presented in Table 1. An important measure
for the network operator to define its performance is the train utilization or
loading degree. It can be expressed in number of load units, total weight or length
of the load units, and the urgency for getting each load unit at its destination.
This objective can be implemented in two ways. On the one hand, the number
of load units assigned can be maximized, where a large number of load units
serves as input. On the other hand, a fixed number of load units can be used as
input, which all must fit on the train using the least possible number of wagons.

The terminal operator aims at minimizing costs of handling operations at the
terminal during execution of the load plan. Corry and Kozan [16] divide handling
into three components: double handling, carry travel and pin changes. Double
handling occurs when a load unit is not directly transferred from the truck to
a wagon, which means that excess handling occurs [14]. It is only considered in
cases in which loading and unloading are executed simultaneously. In these cases
uncertainty exists about the occurrence of double handling for each load unit,
because truck arrivals and move sequences of handling material are uncertain. As
inbound load units are unloaded, slots become vacant. Consequently, the prob-
ability of double handling for outbound load units which are assigned to these
slots but did not arrive yet by truck becomes zero. Another definition of double
handling may be unloading a loaded load unit. Carry travel or handling equip-
ment travel corresponds to the transportation cost from the storage position
to the assigned location on the train [11]. Uncertainty about this performance
indicator exists if not all load units arrive before loading starts. Furthermore,
each load unit is fixed on a wagon by means of four pins, which must be aligned
with castings located at certain points on load units [16]. Changing the pin posi-
tions of a wagon is labor-intensive and occurs when the pin positions from the
inbound wagons do not satisfy the pins needed to lock an outbound load unit
on the wagon. In that case, set-up costs occur.
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A third performance indicator is related to the weight distribution of the train
[14]. A good weight distribution may reduce the wear of the brakes. It is optimal if
the distance from the center-of-mass to the front of the train is minimized, which
implies a minimal amount of empty space between consecutive load units.

The fourth category aims at minimizing two types of unproductive move-
ments. Rehandles or reshuffles are unproductive movements required in multi-
level stacking areas when the load unit to be picked up is not on top of the
stack. This can be reduced by performing non-sequential or backward empty
crane movements when loading the train, which is a second type of unproduc-
tive operations [5].

The categories of objectives are combined using a weighted sum in all
available train load planning research. To our knowledge, no paper applies multi-
objective optimization to the problem. Furthermore, the minimization of unpro-
ductive moves is only considered in combination with problems which integrate
train load planning optimization with crane and storage planning. Handling cost
minimization is mainly aimed at in pure train load planning problems. No fur-
ther patterns seem to exist with respect to fixed combinations of objectives.
However, optimization of the weight distribution has not been considered in
recent, realistic problems.

Table 1. Objectives for the train load planning problem
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2.2 Characteristics of Train Components and Other Operational
Constraints

Train component characteristics restrict loading possibilities. As defined by
Corry and Kozan [14], a load plan provides an assignment of load units to
slots on a train, where each slot equals one load unit length. Load units can
be divided into three types: trailers, containers and swap bodies [11]. Each load
unit is further characterized by its length, commercial value or urgency and
loaded weight.

Trains can only carry a limited weight and length. They consist of a number
of wagons of a specific length and tare wagon weight. Each wagon has a limited
weight, and a limited draw gear capacity, which means that the mass that is
allowed to trail behind the wagon is limited [15]. Each wagon is restricted to a
finite number of possible loading patterns or configurations [16]. They specify
how many and which types of load units can be loaded on a wagon, and the
maximum weights per slot and wagon are limited based on the allowed axle
loads. Every change in the configuration implies a set-up cost for changing pin
positions [11]. Bruns and Knust [11] suggest two options to limit axle loads.
The first option models weight distributions discretely. It is based on loading
pattern descriptions provided by wagon manufacturers, as is most common in
practice. For the second option, axle loads are calculated based on continuous
weight distributions instead of using a set of fixed allowed patterns. The authors
also mention two ways of categorizing load units into types. The first approach
considers length-types, where each length-type corresponds to exactly one load
unit length. The second approach is based on fixation-types. Load units with the
same fixation-type may have various lengths, as long as they fit the same wagon
pin configuration. This implies variable overhangs for load units belonging to one
fixation type. Finally, some papers mention the possibility of double stacking, in
which more than one load unit can be stacked on a single slot [11,16]. However,
in Europe this is not allowed due to the presence of low bridges and tunnels and
electrical wires above the rails.

Depending on the operational environment, additional constraints must be
satisfied. Certain types of dangerous goods must be separated by a minimum
distance, or at least they cannot be located next to each other on the same
wagon. A train can have more than one destination. In that case, wagons must
be grouped per destination. Load units carrying refrigerated goods must be
attached to wagons with power supply. Moreover, the train height may be limited
for some routes due to the fact that trains pass low bridges on their route [15].
Finally, incompatibilities between certain load units and wagons may exist [13].

Corry and Kozan [13] mention that some factors might conflict with the
minimization of double handling, such as the weight distribution of the train,
the wagon axle load, the separation of dangerous goods and the train height limit,
as well as aspects related to container handling, such as the travel of equipment
and changes in the pin configuration. The authors stress the fact that it may be
beneficial to incur carry travel if it results in improvements in double handling
or weight distribution [14].
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An overview of all train component characteristics and other operational
constraints included in problems formulated in current literature is provided in
Table 2. Factors influencing the load plan which are related to the train compo-
nents are now well-established. However, pure train load planning models did not
yet focus on a longer planning horizon, accounting for the urgency with which
load units must be shipped, whereas models integrating train load planning with
crane and storage planning do not add specific operational constraints. Finally,
the draw gear capacity is only considered in one paper [15].

Table 2. Train component characteristics and other operational constraints
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2.3 The Planning Environment

In practice, train load planning starts with the first booking of a load unit on a
train. More load units are assigned to the train until no feasible load plan can be
established by adding another load unit, which marks the last booking and the
end of the booking process. When the load plan is finalized, it is communicated
to the terminal operator and loading starts. In the meantime load units arrive
at the terminal until closing time. The process ends just before train departure,
when all load units are loaded onto the train.

Train load planning can be categorized into one out of three types of planning
environments. An overview is presented in Table 3. Static plans are used when
terminals receive all load units before the loading process starts, the train is
initially empty and all information is known with certainty. A static load plan
can also be used as a guide in the booking process each time a load unit is
booked to check if enough capacity is available [15]. Problems integrating train
load planning with crane and storage planning are all static, as is more common
in seaport terminals, and are not shown in the overview.

However, Caris et al. [12] mention that intermodal transport has grown into
a dynamic research field. Uncertain events can occur in the last hours of the
planning process and between the moment the load plan is sent to the terminal
operator and train departure. They are related to the train planning envi-
ronment and make the load planning a dynamic process. An initial load plan is
established before loading starts, after which revisions can occur. These revisions
may be necessary whenever certain events arise that change the suitability of the
current load plan [14]. More urgent transport orders can emerge, planned load
units might not arrive in time at the terminal and information on the type of load
unit may be updated. Moreover, the quality of the input data differs depending
on the moment of planning [10]. Real weights can differ from the initial data,
wagons can be damaged and thus cannot be used temporarily and overhangs
can change in comparison with available data. Input data adaptations and the
occurrence of unexpected events trigger revisions to the load plan, complicating
the load planning process.

Another type of dynamic planning occurs when unloading and loading are
performed simultaneously, the train is initially not empty and load units arrive
while loading [13]. In that case it is assumed that all load units are booked
and known in advance. It is related to the environment in which terminal
operations are performed to execute the load plan. Arrival times of trucks at the
terminal are random (within a predefined time window) and thus uncertain. It
is impossible to pre-plan train loading and still minimize handling time, because
uncertainty exists about the occurrence of double handling. Outbound load units
may arrive faster than inbound load units are unloaded. Consequently, a number
of outbound load units must be stored in a temporary storage area. Hence, when
a truck arrives to collect or deliver a load unit or a load unit is being unloaded
from a train (in which case free space becomes available), the load plan is revised.

In conclusion, automation of the load planning process can support train
planners by providing a load plan, and by optimizing the capacity utilization of
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Table 3. Static and dynamic train load planning problems

Authors Static Dynamic

Terminal operations Train planning operations

Uncertainty related Uncertainty about information

to loading operations on load units

Feo and Gonzalez-Vélarde (1995)[19] •
Corry and Kozan (2006) [14] • •
Corry and Kozan (2004) [13] •
Corry and Kozan (2006) [15] •
Corry and Kozan (2008) [16] • •
Aggoun et al. (2011) [1] •
Bruns and Knust (2012) [11] •
Bruns et al. (2014) [10] •

the train. Moreover, automated train load plans can be used in an environment
in which load units are all available before loading, as is for example often the
case in seaport terminals. Furthermore, load plans can offer the decision maker a
support tool incorporating real-time, integrated information in such a way that
he can make fast decisions [14]. Moreover, the type of operator deciding on the
train load plan determines the way in which a train load plan is constructed and
revised. The network operator focuses on optimizing capacity utilization of the
available trains and managing dynamics during the booking process, whereas the
terminal operator minimizes handling costs with a given number of load units
and dynamically revises the load plan with this cost minimization as a driver.

3 Model Formulation

The model in this paper takes the viewpoint of a network operator who owns
and manages its own trains. The focus is on the composition of load plans during
the planning process, not on its execution by terminal equipment. Consequently,
the performance measures will be based on optimizing train utilization with a
given number of wagons. A static model is presented, adding factors which are
taken into account by train planners of Move Intermodal, an intermodal trans-
portation company with activities throughout Europe. One of its most important
activities concerns the intermodal rail-road connection between Belgium and the
Netherlands on the one hand, and two unload terminals in the North of Italy on
the other hand.

3.1 Base Model

The mathematical formulation builds on the third IP model of Bruns and Knust
[11], which is the only train load planning problem considering axle loads as
continuous functions. This provides more flexibility as not all weight configura-
tions must explicitly be defined, and has proven to lead to smaller run times.
However, our formulation is based on load unit length-type categorizations
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instead of fixation types. Moreover, realistic elements are added to the model
based on observations of a real-life train planning department. The objective
function is also adapted. The loading degree is maximized by maximizing the
total length of all load units assigned to the train, while priority is given to
urgent load units. Only if a load unit requires shipping on that train to arrive
in time at its destination, more importance is attached to the load unit than to
assigning more load units. Moreover, the model is able to account for wagons
with a third bogie at the wagon center. In that case, the tare wagon weight is
distributed over all three axes: 50 % over the center bogie, and 25 % over the
front and rear bogie. This differs from existing models in which only wagons
with two axles are considered. It results in the following formulation:

Sets and indices
I = {1, ..., n} = set of load units with index i

J = {1, ...,m} = set of wagons with index j

R = {1, ..., r} = set of wagon types with index r

τj = wagon type of wagon j, where τj ∈ R

κr = set of physical configurations for wagons of type r, with index k

Sjk = set of all possible slots of configuration k for wagon j, with index s

Parameters
li = length of load unit i

gi = weight of load unit i, tare load unit weight included
pi = urgency of load unit i

wj = tare wagon weight of wagon j

G = train weight limit, tare wagon weights wj included
Wj = wagon weight limit for wagon j

γτj
= maximum feasible payload for the bogies of wagon type τj ,
which is the same for each bogie of a single wagon

dτj
= distance between two adjacent bogies for wagon type τj

eks
τj

= distance between the center of the load unit and the front
of the bogie for slot s in configuration k for wagon type τj

αijks

{
= 1, if load unit i fits onto slot s of wagon j in configuration k

= 0, otherwise

zj

{
= 1, if wagon j has two bogies
= 0, if wagon j has three bogies

Variables
aj = payload on bogie a for wagon j

bj = payload on bogie b for wagon j
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cj = payload on bogie c for wagon j, only if it has three bogies

yjk

{
= 1, if configuration k is chosen for wagon j

= 0, otherwise

xijks

{
= 1, if load unit i is assigned to slot s in configuration k of wagon j

= 0, otherwise

max
∑

i∈I

∑

j∈J

∑

k∈κτj

∑

s∈Sjk

(li + pi) · xijks (1)

subject to
∑

j∈J

∑

k∈κτj

∑

s∈Sjk

xijks ≤ 1 ∀i ∈ I (2)

∑

i∈I

xijks ≤ 1 ∀j ∈ J, k ∈ κτj
, s ∈ Sjk (3)

∑

k∈κτj

yjk = 1 ∀j ∈ J (4)

xijks − αijks · yjk ≤ 0 ∀i ∈ I, j ∈ J, k ∈ κτj
, s ∈ Sjk

(5)

aj =
∑

i∈I

∑

k∈κτj

∑

s∈Sjk

gi ·
dτj

− eks
τj

dτj

· xijks +
wj

2
∀j ∈ J, zj = 1 (6)

bj =
∑

i∈I

∑

k∈κτj

∑

s∈Sjk

gi ·
eks

τj

dτj

· xijks +
wj

2
∀j ∈ J, zj = 1 (7)

aj =
∑

i∈I

∑

k∈κτj

2∑

s=1

gi ·
dτj

− eks
τj

dτj

· xijks +
wj

4
∀j ∈ J, zj = 0 (8)

bj =
∑

i∈I

∑

k∈κτj

2∑

s=1

gi ·
eks

τj

dτj

· xijks

+
∑

i∈I

∑

k∈κτj

4∑

s=3

gi ·
dτj

− eks
τj

dτj

· xijks +
wj

2
∀j ∈ J, zj = 0 (9)

cj =
∑

i∈I

∑

k∈κτj

4∑

s=3

gi ·
eks

τj

dτj

· xijks +
wj

4
∀j ∈ J, zj = 0 (10)

aj ≤ γτj
∀j ∈ J (11)

bj ≤ γτj
∀j ∈ J (12)

cj ≤ γτj
∀j ∈ J (13)
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aj − 3 · bj ≤ 0 ∀j ∈ J (14)
bj − 3 · aj ≤ 0 ∀j ∈ J (15)
bj − 3 · cj ≤ 0 ∀j ∈ J (16)
cj − 3 · bj ≤ 0 ∀j ∈ J (17)
∑

i∈I

∑

k∈τj

∑

s∈Sjk

gi · xijks ≤ Wj ∀j ∈ J (18)

∑

i∈I

∑

j∈J

∑

k∈κτj

∑

s∈Sjk

gi · xijks +
∑

j∈J

wj ≤ G (19)

xijks ∈ {0, 1} ∀i ∈ I, j ∈ J, k ∈ κτj
, s ∈ Sjk

(20)

yjk ∈ {0, 1} ∀j ∈ J, k ∈ κτj
(21)

The utilization of the available length is maximized while accounting for the
urgency of each load unit (1). Each load unit can be assigned to at most one slot
(2), and a slot can only carry one load unit (3). Constraint (4) guarantees that
a single configuration per wagon is chosen. Furthermore, a load unit can only be
assigned if the slot in a chosen configuration fits its dimensions, as indicated by
(5). The payload of each bogie is determined by (6) and (7) for wagons with two
bogies, and by (8)–(10) for wagons with three bogies. It is assumed that wagons
with three bogies can carry at most four load units, two at each side of the
center bogie. In case a configuration with only two slots is chosen, one at each
side of the center, indices s = 1 and s = 3 are used. The payloads are limited
in (11)–(13). Constraints (14)–(17) ensure that the payloads on each bogie are
balanced relative to the adjacent bogies. Furthermore, the allowed wagon weight
is limited by (18). The total train weight is limited by (19). Finally, (20) and
(21) define the domain of the decision variables.

3.2 Adding Practical Considerations

In this section, additional practical constraints are added to the model, based on
the problem context of the company. Trains leaving Belgium or the Netherlands
have two destinations, an intermediate destination and a final destination. The
first f wagons of the train are decoupled at terminal u, while the remaining
ones continue to terminal v. Because of a weight restriction on the railway path
between destination u and v, the total train weight limit is lower for the path
between the intermediate rail stop and the final destination. In this case, Eq.
(19) must be replaced by two separate restrictions (22) and (23), where the
sum of both maximum weights, Gu and Gv, constitutes the overall train weight
limit. The destination of each wagon j is indicated with Dj . Consequently, the
following restriction is added to the problem, where Gu and Gv are the train
weight limit for respectively the first f wagons, unloaded at the intermediate
terminal, and all other wagons, unloaded at the final terminal.
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∑

i∈I

∑

j∈J,≤f

∑

k∈τj

∑

s∈Sjk

gi · xijks +
∑

j∈J,j≤f

wj ≤ Gu (22)

∑

i∈I

∑

j∈J,j>f

∑

k∈τj

∑

s∈Sjk

gi · xijks +
∑

j∈J,j>f

wj ≤ Gv (23)

Due to the destination grouping of wagons, load units should be grouped
per destination. This can be accomplished by assigning a destination preference
λij to each load unit, indicating the preference for assigning the load unit to a
wagon j with destination Dj . These preferences can be based on the proximity of
the unload terminal to the load unit’s final destination. To assign as much load
units as possible to their preferred destination, a maximization of the number of
load units assigned to wagons unloaded at their preferred location is added to
the objective function, as in (24). Clearly, preference values should be carefully
weighted against the other elements in the objective function.

max
∑

i∈I

∑

j∈J

∑

k∈τj

∑

s∈Sjk

(li + pi + λij) · xijks (24)

4 Experimental Case Study

In current literature, data is produced based on real-life characteristics of load
units, wagons and configurations in the United States [19], Australia [13–16],
Germany [10,11] or Italy [2–7]. As no benchmark instances are available, in this
paper, input data and parameter values are set after analysis of load units trans-
ported from Belgium to two locations in Northern Italy. Practical considerations
(Sect. 3.2) are added to the base model to perform numerical experiments. Pri-
ority parameters indicating the urgency with which each load unit must arrive
at its destination split load units into three classes: urgent load units, load units
with a one-day margin, and non-urgent load units. As urgent load units must
always be assigned to a location on the train, their priority value is set very
large. No priority is given to non-urgent load units. Furthermore, priority values
(pi) for load units with one day slack are set equal to the parameter value (λij)
for load units being assigned to their preferred destination.

The wagon set is fixed to a representative composition, consisting of 3 wagons
for the intermediate terminal and 19 wagons for the final terminal. The model
is tested for three types of instances, consisting of 50, 75 or 100 load units
respectively. It is realistic for train planners to have 50 load units available to
assign to one specific train. Instances of 75 and 100 load units are considered to
simulate the possibility to add load units available for future trains and account
for a longer term planning horizon, if this implies an increased train utilization.
For each type of instance, 30 instances are randomly sampled by selecting load
units from a pool of load units with their characteristics as they were historically
shipped. After discussion with practitioners, it is assumed that on average 44 load
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units can be assigned to the wagon set, consisting of approximately 25 urgent
load units. Load units with a margin of one day on their ultimate departure
date constitute around 17 load units. The remaining train slots are filled with
other available load units. The absolute numbers are converted to percentages
in function of the total number of available load units in each instance type, as
shown in Table 4, such that on average 25 urgent load units and 17 less urgent
load units are available.

Table 4. Input data

Instance type

1 2 3

Number of load units 50 75 100

Average percentage of urgent load units 50 33 25

Average percentage of load units with 1 day slack 25 23 17

Average percentage of non-urgent load units 25 44 58

The model is solved using CPLEX. In order to reflect the real-time environ-
ment in which train planners make decisions, a time limit of 20 min is imposed.
Results are presented in Table 5.

Table 5. Results

Instance type

1 2 3

Instances solved to optimality 12 5 1

Solution time (s) Mean (all) 773.2 1085.8 1166.4

Std Dev (all) 540.1 303.3 186.8

Mean (only optimal) 132.6 512.6 177.3

Std Dev (only optimal) 151.8 417.1 0.0

Number of load units assigned Mean 43.2 43.7 44.3

A Total length (ft) Mean 1,469.8 1,526.8 1,530.7

B Urgent load units Mean 51,111 47,203.7 50,716.7

C Destination preferences Mean 413 419 424

D Objective value Mean 52,994 49,150 52,671

In total, 72 out of 90 instances are not solved to optimality, but all with an
optimality gap of less than 0.3 %. If more load units are used as input, the overall
average run times become slower and less instances are solved to optimality
within the time limit. On average, the instances with 75 load units generate the
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lowest objective value, which may be explained due to the fact that slightly less
urgent load units are available (23.5 load units on average due to randomness)
for this instance type. With respect to the total length of all load units assigned,
the model performs well on average, taking into account the fact that each train
has an available loading length of 1590 ft. Looking at the destination preferences,
on average only 1 to 2 load units per instance are not assigned to their preferred
destination for the currently used preference values. Furthermore, the aim of 44
load units on each train is reached, with an average between 43 and 44 load
units for all instance types, indicating that the model performs equally well as
the current manual train load planning in the case study.

Results indicate that the model can be used in practice to compose static
load plans, or even on a tactical level to analyze and adapt the ideal wagon set
composition. However, a number of instances exists in each category for which
the optimal solution is not found within the time limit, whereas train planners
in this case study require a train load plan to be generated very fast. They want
to know immediately if changes to the load plan provide a feasible train load
plan. The findings suggest that the exact model’s run times are not always fast
enough to provide real-time decision support for train planners. Adding a longer
planning horizon with more available load units provides more options for train
planners to find a train load plan with a higher utilization, at the cost of larger
computation times.

5 Conclusions and Future Work

In this paper, practical considerations are added to the train load planning prob-
lem to reflect realistic characteristics of the train load planning task, such as the
urgency with which load units must be sent to their destination and the flexi-
ble routing of load units to one out of two terminals. The model further deals
with wagons with three bogies. In this paper, parameter values assigned to each
objective are determined arbitrarily based on preliminary testing and analysis of
real data. For example, equal importance is attached to destination preferences
as to assigning load units with one day slack. However, the relationship between
the load unit urgency and its destination preference should be set carefully. Fur-
ther research will examine the interaction between the objectives and will focus
on fine-tuning priority values and destination preferences, after performing addi-
tional experiments and further discussions with practitioners. Finally, for some
instances run times are too large to provide a train load plan in a short amount
of time, as required by practitioners. Consequently, it may be interesting to fur-
ther analyze the model to determine factors influencing run times the most and
maybe turn to heuristics to solve the problem.
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Abstract. In order to improve the competitive position and efficiency
level of intermodal transport, consolidation of freight flows is often sug-
gested. Bundling networks require cooperation between multiple partners
in the intermodal transport chain. In this context, the question rises how
benefits may be allocated fairly among the participants in the cooper-
ation. A great deal of scientific literature reports on the behavior of
allocation methods in collaborations between shippers or carriers mak-
ing use of unimodal road transport. However, research on cost or savings
allocation methods in intermodal transport is scarce. Moreover, since
various types of vessels with differing price structures may be consid-
ered in intermodal barge transport, the application of allocation mech-
anisms is not so straightforward compared to a unimodal environment.
The main contribution of this paper is thus to provide a first insight in
the complexity of sharing cost savings fairly amongst shippers who bun-
dle freight flows in order to reach economies of scale in intermodal barge
transport. By applying three different allocation methods, a comparison
is made between simple and straightforward allocation mechanisms and
more advanced techniques based on cooperative game theory. Special
attention is also paid to the stability of the found solutions. The situa-
tion of three-, four- and five-partner coalitions is investigated, both for
partners with an equal and an unequal amount of shipments. For these
six situations, the case of a common barge trajectory and a common end
terminal are studied.

Keywords: Cost allocation · Consolidation · Intermodal transporta-
tion · Shipper collaboration

1 Introduction

Policy makers at European as well as regional levels express the need to stimulate
intermodal transport chains [8]. Macharis and Bontekoning [14] define intermodal
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transport as the combination of at least two modes of transport in a single trans-
port chain, without a change of container for the goods, with most of the route trav-
elled by rail, inland waterway or ocean-going vessel and with the shortest possible
initial and final journeys by road. A growing market share for intermodal transport
should mean a shift towards more environmental friendly transport modes, less
congestion and a better accessibility of seaports. In order to improve the compet-
itive position and efficiency level of intermodal transport, consolidation of freight
flows is often suggested as it creates denser freight flows and leads to economies of
scale.

Multiple research efforts have been undertaken to investigate bundling net-
works in intermodal transport. The basic idea is to consolidate loads for efficient
long-haul transportation (e.g. by rail, inland waterway barge or ocean-going ves-
sel), while taking advantage of the efficiency of local pickup and delivery opera-
tions by truck [1]. Kreutzberger [11] analyzes in which transport landscape which
bundling network types ensure the lowest operational cost and which of the low-
est cost bundling networks may be competitive with unimodal road transport.
Kreutzberger and Konings [12] propose a new concept to bundle the container
hinterland transport flows of the seaports of Rotterdam and Antwerp in order
to increase the size of trainloads, the service frequency or the network connec-
tivity and hence to improve the cost performance and quality of rail hinterland
transport. Caris et al. [4] point out that the analysis of bundling networks for
intermodal barge transport is necessary to further integrate inland waterways
in the intermodal supply chain. Bundling networks in intermodal barge trans-
port, which are the focus of our paper, have been studied amongst others by
[5,6,10]. Braekers et al. [3] present a decision support tool for bundling freight
in a corridor network in intermodal barge transport. Barge operators, logistic
service providers or shipping lines that want to offer regular roundtrip barge
services between a number of ports located along the same waterway may use
this model to determine vessel capacity and frequency of these roundtrips. Van
Lier et al. [22] discuss bundling of freight activities at the operational level.
Shippers attain scale economies and a better utilization of transport equipment
through consolidation of freight inside a loading unit. The cost of freight trans-
port may be decreased by raising the fill rate of loading units. This may on the
one hand reduce the costs of pre- and end-haulage by road or on the other hand
increase the attractiveness of intermodal freight transport for further continental
distribution.

Bundling networks require cooperation between multiple partners in the
intermodal transport chain. Questions rise which type of bundling network is
manageable and how benefits may be allocated among the participants in the
cooperation. While economies of scale are an obvious advantage for the consol-
idation of freight flows as a whole (as opposed to the sum of the stand-alone
costs of the partners), the benefits for a single partner are not always clear.
Cruijssen et al. [7] suggest incentive alignment as a crucial facilitator for hori-
zontal cooperation in transport and logistics. Realigning the benefits and burdens
among the partners results in an individual responsibility for the attainment of
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overall coalition profitability. One such realignment mechanism is the fair divi-
sion of cooperation related costs or savings in such a manner that partners are
induced to behave according to the collaborative goal. A great deal of scien-
tific literature reports on the behavior of cost or savings allocation methods in
collaborations between shippers or carriers making use of unimodal road trans-
port. A structured overview of allocation mechanisms applied in a unimodal
road collaboration context can be found in Verdonck et al. [24]. In intermodal
barge transport various types of vessels with differing price structures may be
considered for the bundling network. As such, applying the allocation meth-
ods which have been thoroughly studied in a unimodal road context is not so
straightforward in an intermodal environment. Moreover, research on cost or
savings allocation methods in intermodal transport is scarce. To the best of our
knowledge, the only scientific contributions which study allocation mechanisms
in intermodal transport are [19,20]. Both papers apply game theoretic methods
to allocate costs fairly in a cooperative intermodal project consisting of terminal
operating companies bundling freight. No studies have yet been performed on
allocation methods for collaboration between shippers making use of intermodal
barge transport. In addition, as game theoretic allocation mechanisms may raise
questions from partnering companies about mathematical complexity and fair-
ness transparency, this paper applies two additional allocation techniques to the
intermodal freight bundling problem. The main contribution of our research is
thus to provide a first insight in the complexity of sharing cost savings fairly
amongst shippers who bundle freight flows in order to reach economies of scale
in intermodal barge transport.

The remainder of this paper is organized as follows. In Sect. 2 the current
research field of allocation methods proposed for collaborations in unimodal
transport is discussed. Next, Sect. 3 presents a case study in which shippers coop-
erate to bundle their freight flows and make use of intermodal barge transport.
Three different allocation methods are applied to provide clarity in the alloca-
tion of cost savings among the participants. In this way, a comparison is made
between simple and straightforward allocation methods and more advanced tech-
niques based on cooperative game theory. Finally, conclusions are formulated.

2 Collaborative Cost Allocation

As the goal of a logistics cooperation is to increase the participants’ efficiency
and since collaboration often results in additional profits or cost savings, a great
deal of scientific literature on unimodal collaborative logistics devotes its research
attention to the identification of efficient allocation schemes. Dividing the coali-
tion costs or savings in a fair manner constitutes a key issue, since the proposed
allocation mechanism should induce partners to behave according to the collab-
orative goal and may improve cooperation stability.

Verdonck et al. [24] provide a structured review of allocation mechanisms
applied in unimodal horizontal collaborations distinguishing between (1) propor-
tional sharing mechanisms, (2) allocation mechanisms using game theory con-
cepts and (3) allocation techniques designed to cope with additional cooperation
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properties. Firstly, the most commonly used profit or cost division mechanism in
practice is the proportional allocation method [13]. In this case, the collaborative
profit is allocated to the cooperating organizations equally, on the basis of, among
others, their individual cost level or the volume they have to transport as a con-
sequence of their engagement in the cooperation [24]. A detailed description and
a numerical application of two proportional allocation methods can be found in
Sects. 3.3 and 3.4 respectively. Secondly, a logistics cooperation clearly matches
the structure of a cooperative game. Collaborating partners share and consoli-
date freight and receive or make payments in return. This cooperation process
results in an allocation of benefits or costs to each participant that may be con-
sidered equivalent to the outcome of a cooperative game. A well-known allocation
method based on the foundations of game theory is the Shapley [18] value. This
value allocates to each participant the weighted average of his contributions to
all (sub)coalitions, assuming the grand coalition is formed one company at a
time [24]. A detailed theoretical description and a numerical application of the
classic Shapley value to our intermodal freight bundling case can be found in
Sects. 3.3 and 3.4 respectively. A more complex allocation mechanism supported
by game theory is the nucleolus. This profit or cost sharing procedure, developed
by Schmeidler [17], has the distinct property of minimizing the maximal excess,
which constitutes the difference between the total cost of a coalition and the sum
of the costs allocated to its participants. Finally, several authors have developed
distinct, more intuitively clear allocation mechanisms that account for certain
specific cooperation characteristics, some of them partly based on game theory
ideas [24]. Tijs and Driessen [21] discuss three allocation techniques based on
the division of the total collaborative costs in separable and non-separable costs.
Frisk et al. [9] and Liu et al. [13] create profit sharing mechanisms with the goal
of finding a stable allocation that minimizes the largest relative difference in
cost savings between any pair of cooperating partners. Özener and Ergun [16]
develop allocation mechanisms ensuring that, among others, existing partners
do not loose savings when an additional company joins the collaboration.

The overview provided in the previous paragraph demonstrates that a wide
range of possible allocation mechanisms exists. As each method has its spe-
cific benefits and drawbacks, it remains ambiguous which technique(s) could
guarantee stability and sustainability in an intermodal freight bundling context.
Moreover, the only scientific contributions which study allocation mechanisms
in intermodal transport are [19,20] applying game theoretic methods to allocate
costs fairly in a cooperative intermodal project consisting of terminal operating
companies bundling freight. For this reason, a comparative analysis, applying
three different allocation mechanisms to a case study, is performed in Sect. 3.
A comparison is made between two simple and straightforward cost allocation
methods often used in practice and one more advanced technique based on coop-
erative game theory. In addition, special attention is paid to the stability of the
found solutions. In this way, we are the first to provide insight in the complexity
of sharing cost savings fairly amongst shippers who bundle freight flows in order
to reach economies of scale in intermodal barge transport.
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3 Case Study

The case study is carried out within the framework of the Aggregate-
Disaggregate-Aggregate (ADA) model of Ben-Akiva and de Jong [2], an activity-
based freight transportation model. The ADA-model is originally developed for
the Netherlands but the concepts have also been applied to Flanders [15]. In
Sect. 3.1 the generation of the freight flows, based on the ADA-model and used
in the case study, is illustrated. For clarification purposes, an example of a Total
Logistic Cost (TLC) calculation is given in Sect. 3.2. In Sect. 3.3 the selected
allocation methods are explained in detail and in Sect. 3.4 numerical results are
presented.

3.1 Freight Flows

In the freight transportation model for Flanders, the 308 communities of
Flanders are used as zones. The model starts from the production-consumption
(PC)-flows per NSTR category between the different zones. The NSTR classifica-
tion is a standard goods classification for transport statistics, which is often used
in Europe. In a first step, the disaggregation step, the PC-flows are disaggregated
to firm-to-firm flows, based on the number of producers of the commodity in the
first zone, the number of consumers of the commodity in the second zone and
the fraction of actually realized links between senders and receivers of the two
zones. Next, all possible transport chains for every firm-to-firm flow are built and
the Total Logistic Cost (TLC) is calculated for each transport chain. An aver-
age shipment size (based on the NSTR category) is used to build the transport
chains. The TLC function exists of an ordering cost, an inventory cost, a capital
cost of the goods in transport and in inventory and a transport cost. The trans-
port cost is split into several components: a variable cost based on the distance
of the links traveled, a transshipment cost between different transport modes
and a loading and unloading cost. The TLC is used to determine the optimal
transfer points for chains which use several transport modes and to determine
the best transport chain(s) for a given firm-to-firm flow. In Sect. 3.2, the TLC
calculations and the necessary data are described in more detail.

In the remainder of this paper, all ‘road–inland waterways–road’ transport
chains of the transportation model are considered and the options for bundling
are studied. In the terminology of Woxenius [25], our case may be considered a
corridor bundling strategy, which appears to be most suited in an intermodal
barge context. Two possible bundling options are taken into account: chains
which have the entire barge trajectory in common and chains which have one
terminal in common. In Sect. 3.4, results of a numerical example are presented.
First, the total logistic cost is calculated when several firm-to-firm flows are
consolidated. Next, the collaborative cost savings realized by consolidating, as
opposed to the sum of the stand-alone costs of the partnering shippers, are
divided using the methods described in Sect. 3.3.
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3.2 Total Logistic Cost Calculations

In this section, an example of a TLC calculation is given for the transport of
goods of NSTR-category 1 (agricultural goods) between Antwerp and Kortrijk,
two Belgian cities. As stated earlier, only the road–inland waterways–road trans-
port chains are considered in this paper. The data, necessary for the calculations
is shown in Table 1. Using the terminals from Deurne and Wielsbeke leads to
the lowest TLC, resulting in a main haulage distance of 128.25 km and a pre-
and end-haulage by truck of 9.9 and 14.75 km respectively.

Table 1. Notation and data

Symbol Description Value

o Order cost 55 e

Q Yearly demand (in ton) 664 tonnes

q Shipment size (in ton) 68.4 tonnes

Dph Distance pre-haulage 9.9 km

Dmh Distance main-haulage 128.25 km

Deh Distance end-haulage 14.75 km

TCr Transport cost road 1 e/km

TCiww Transport cost inland waterways 6 e/km

Capiww Capacity inland waterways 1000 tonnes

Lr Cost to (un)load road 2 e/ton

Liww Cost to (un)load inland waterways 0.4 e/ton

d Interest rate (per year) 4%

v Value of goods 672 e/ton

w Warehouse cost 20%

First the number of shipments per year z is calculated and rounded up to
the next integer number. Next, the order cost, the transport cost, the capital
cost of goods in transit, the inventory cost and the capital cost of inventory
are calculated. For detailed calculations on all cost components, the reader is
referred to [15].

3.3 Applied Cost Allocation Methods: Description, Calculation and
Properties

This section describes the three cost allocation techniques selected for their appli-
cation in the case study. Details are provided on their theoretical foundation,
calculation approach and fairness properties.

The reasons for choosing the proportional, decomposition and Shapley
method are the following. Up to now only game theoretic methods have been
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applied to allocate costs fairly in a cooperative intermodal network [19,20]. The
most prevalent solution concepts within cooperative game theory are the Shapley
value and the nucleolus. The preference for the Shapley value may be explained
by its ease of calculation. However, basic game theoretic mechanisms may raise
questions about mathematical complexity, applicability, fairness transparency
and stability in practice. As such, the importance of convenient implementation
and interpretation in practice favors the use of the proportional and decomposi-
tion methods. In addition, in this way a comparison can be made between simple
and straightforward allocation mechanisms and more advanced techniques based
on cooperative game theory.

The notation used in this section is explained in Table 2. The grand coalition
N coincides with all participating shippers i in the cooperation, while a coalition
S denotes a subset of collaborators. When a coalition S collaborates, they realize
a certain amount of collaborative costs which can be captured using the function
c(S). As such, the benefits or cost savings generated by a coalition S,∀S ⊆ N ,
denoted by v(S), are equivalently calculated as

∑
i∈S c(i) − c(S). Each consid-

ered allocation method assigns a cost ci or a savings amount yi to coalition
participant i [24].

Table 2. Notation

i, j Individual partner

N Grand coalition

S Subcoalition

c(N), c(S) Cost of a coalition

c(i) Stand-alone cost of partner i

v(N), v(S) Cost savings of a coalition

ci Cost allocated to partner i

yi Savings allocated to partner i

Cost allocations satisfy a variety of properties desirable in the context of a
logistics collaboration. Table 3, based on Vanovermeire [23] and Verdonck et al.
[24], provides an outline of allocation characteristics satisfied by the Shapley
value and the applied proportional mechanisms.

Proportional Allocation Based on Volume. In practice, the most com-
monly used profit or cost division mechanism is the proportional allocation
method [13]. In this case, the collaborative profit is allocated to the cooper-
ating organizations equally, on the basis of their stand-alone cost or the volume
they have to transport as a consequence of their engagement in the cooperation.
The reason for the widespread use of the proportional allocation technique lies
in the fact that it is easy to understand, compute and implement. However, it
does not guarantee long-term collaboration stability as it is possible that an
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Table 3. Fairness properties satisfied by proportional and Shapley allocations

Property Proportional (volume & trajectory links) Shapley

Group rationality (Efficiency) 1 � �
Individual rationality 2 �
Anonymity (Symmetry) 3 �
Stability 4

Dummy 5 �
Additivity 6 �
1 The total cooperative cost is shared as the grand coalition forms:

∑
i∈N ci = c(N)

2 No carrier pays more than his stand-alone cost: ci ≤ c({i}), ∀i ∈ N
3 The identity of the participants does not change the resulting allocation, each
partner gains the same amount when cooperating in the same way with fellow orga-
nizations: c(S ∪ i) = c(S ∪ j) → ci = cj
4 No single participant or subcoalition of participants of the collaboration would
benefit from leaving the grand coalition:

∑
i∈S ci ≤ c(S) and

∑
i∈N ci = c(N)

5 Participants, who add zero benefits to the coalition they join, should not be allo-
cated a share of the collaborative savings
6 The cost allocation of a combination of several separate coalitions is equal to the
sum of the separate allocation values of these coalitions: c(i + j) = c(i) + c(j)

individual partner leaves the partnership considering the fact that he may gain
more when operating on an individual basis [13,24].

The proportional allocations computed in our case study are volume based.
This volume is expressed as the number of shipments zi per year that each
coalition partner i requires along the same trajectory. Total collaborative savings
are weighted with each participant’s volume as follows:

yi = wi ∗ v(N) ∀i ∈ N (1)

with wi = zi∑
i∈N zi

.

Decomposition Method. A second gain sharing mechanism especially suited
for intermodal freight transport is based on a decomposition of the total trajec-
tory in common links of the participants. A volume based proportional alloca-
tion, as described in the previous paragraph, is then applied on each of these links
separately. For example, in a cooperation between three shippers A, B and C,
the total transport chain may be divided in two common links. On the first com-
mon link shippers A and B bundle their freight. On the second link, the freight
of all three participants is consolidated. The proportional allocation method will
share collaborative savings on the first link between shippers A and B according
to their number of shipments. Along the second link, coalition savings will be
shared proportionally according to the number of shipments of participants A,
B and C respectively.



Cost Allocation in Intermodal Freight Bundling 217

Shapley Value. To allow a comparison of relatively simple and intuitive propor-
tional methods with more complex game-theoretic allocation methods, we chose
Shapley as our third allocation mechanism. The Shapley value [18] allocates to
each participant the weighted average of his contributions to all (sub)coalitions,
assuming the grand coalition is formed one company at a time. The Shapley
allocation to participant i can be mathematically expressed as:

ci =
∑

S⊆N\{i}

(|S| − 1)!(|N | − |S|)!
|N |! [c(S ∪ i) − c(S)] (2)

with |.| denoting the number of participants in the considered (sub)coalition. The
Shapley value provides a unique allocation with characteristics that are beneficial
in the context of a logistics cooperation, as visualized in Table 3. However, the
Shapley value has an important disadvantage, namely that this allocation may
not lead to a stable collaboration [9,13,24].

3.4 Results

The firm-to-firm flows of Sect. 3.1 are now bundled in order to calculate the
collaborative savings of this bundling as opposed to the sum of the stand-alone
costs of the partnering shippers. First, the total logistic cost of the bundled
situation is determined. Next, the collaborative savings are shared among the
participants of the coalition using the three methods described in Sect. 3.3. In
the next paragraph, the experimental design is explained. Then, an example is
given of how the sharing of the collaborative savings is determined for the three
different allocation methods. Finally, the results of the experiment are described.

Experimental Design. In this paper, a first insight is provided in the com-
plexity of sharing collaborative cost savings fairly amongst shippers who bundle
freight flows in order to reach economies of scale in intermodal barge transport.
The impact of the number of partners, the equality of partners and the common
trajectory is examined. The situation of three, four and five partners is inves-
tigated, both for partners with an equal and an unequal amount of shipments.
For these six situations, the case of a common barge trajectory and a common
end terminal are studied.

First, it is assumed that only one type of vessel is available. As a consequence,
bundling always leads to a higher fill rate and therefore, to a lower transport
cost. In this case, important properties of cost allocation methods as individual
rationality and stability are always satisfied. Next, a second type of vessel (with
a higher capacity and a higher cost) is introduced, which adds more realistic
characteristics of intermodal barge transport to the problem. In this context,
attention is paid to the properties of the allocation methods.

Example: Collaborative Gain Sharing Among Partners. In this example,
firm-to-firm flows which use the same end terminal for their barge transport are
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Table 4. Example: situation before bundling

Firm-to-firm flow Shipments Stand-alone TLC

Zaventem-Antwerpen 3 8461e

Mechelen-Antwerpen 17 20792e

Aalst-Antwerpen 7 13112e

bundled. Three flows are used: Zaventem-Antwerpen (partner A), Mechelen-
Antwerpen (partner B) and Aalst-Antwerpen (partner C). The barge trajectory
that is followed is Brussel-Vilvoorde-Willebroek-Deurne. The goods from Aalst
start their barge transport in Brussel, the goods from Zavemtem start their barge
transport in Vilvoorde and the goods from Mechelen start their barge transport
in Willebroek. All goods end the barge transport in Deurne. The number of
shipments and the stand-alone cost for each partner is given in Table 4.

The barge trajectory can be divided in three parts for this example: Brussel-
Vilvoorde, Vilvoorde-Willebroek and Willebroek-Deurne. The first part, Brussel-
Vilvoorde, is only used by the flow Aalst-Antwerpen and no bundling can take
place on that part. The second part, Vilvoorde-Willebroek, is used by two
partners: three shipments can be bundled for this part of the trajectory, the
four residual shipments of Aalst-Antwerpen cannot be bundled. The third part,
Willebroek-Deurne, is used by all three partners: three shipments can be bun-
dled for the three partners, an additional four shipments can be bundled for
two partners (Aalst-Antwerpen and Mechelen-Antwerpen) and ten shipments of
Mechelen-Antwerpen cannot be bundled. The total logistic cost for this situation
equals 40311e and the total gain is 2055e.

Using the proportional allocation method, the total savings amount is divided
over the partners based on the number of shipments of each partner. This results
in a benefit of 228e for partner A, 1294e for partner B and 533e for partner
C. With the decomposition method, the cost savings amount is calculated for
each part of the barge trajectory separately. In this example, the barge trajec-
tory can be divided in three parts: Brussel-Vilvoorde, Vilvoorde-Willebroek and
Willebroek-Deurne. The first part, Brussel-Vilvoorde, is only used by the flow
Aalst-Antwerpen so no bundling can take place on this part. In the second part,
Vilvoorde-Willebroek, two participants can bundle freight. The benefit of 278e
is allocated to these two partners based on their number of shipments. In the
last part of the trajectory, Willebroek-Deurne, the shipments of the three part-
ners can be bundled. The benefit of 1777e earned on this part of the trajectory
is again divided over the three partners based on their respective number of
shipments. To determine the Shapley value for each partner, Eq. (2) is used. In
this way, each participant is allocated the weighted average of his contributions
to all possible (sub)coalitions. The results of applying the three cost allocation
methods to the example are shown in Table 5.
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Table 5. Example: cost allocation results (in e)

Firm-to-firm flow Stand-alone Proportional Decomposition Shapley

Zaventem-Antwerpen 8461 8233 8180 7967

Mechelen-Antwerpen 20792 19498 19673 20081

Aalst-Antwerpen 13112 12580 12457 12263

Table 6. Results: common barge trajectory, equal partners (in e)

Firm-to-firm flow Stand-alone Proportional Shapley

3 partners Gent-Antwerpen 22452 17896 17896

Aalst-Antwerpen 23695 19139 19139

Brugge-Antwerpen 24174 19618 19618

4 partners Gent-Antwerpen 22452 17327 17327

Aalst-Antwerpen 23695 18570 18570

Brugge-Antwerpen 24174 19049 19049

Gent-Antwerpen 22452 17327 17327

5 partners Gent-Antwerpen 22452 16985 16985

Aalst-Antwerpen 23695 18228 18228

Brugge-Antwerpen 24174 18707 18707

Gent-Antwerpen 22452 16985 16985

Brugge-Antwerpen 24174 18707 18707

Results. The results of the experiments with only one vessel type are summa-
rized in Tables 6, 7, 8 and 9. Tables 6 and 7 present the results of the case of a
common barge trajectory. Tables 8 and 9 visualize the results of the case of a
common end terminal. As in the example described above, first the stand-alone
cost (the cost without bundling) is given. Next, the results after bundling are
provided for each partner using the proportional allocation method, the decom-
position method and the Shapley value.

When all partners share the complete barge trajectory, the decomposition
method is not applied since the barge trajectory does not have to be split up in sep-
arate links. If the partners are equal in size (Table 6), the proportional allocation
method and the Shapley value lead to the same results. If the partners are unequal
in size (Table 7), the Shapley value favors the smaller partners of the coalition,
i.e. more benefit is granted to the smaller partners Aalst-Antwerpen and Brugge-
Antwerpen. These conclusions are valid for three, four and five partners.

When the partners only share the same end terminal, the three allocation
methods presented in Sect. 3.3 can be applied. If the partners are equal in size,
the results of the decomposition method are equal to the results of the Shapley
value (Table 8). Compared to the proportional allocation method, decomposition
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Table 7. Results: common barge trajectory, unequal partners (in e)

Firm-to-firm flow Shipments Stand-alone Proportional Shapley

3 partners Gent-Antwerpen 23 33330 27972 29344

Aalst-Antwerpen 7 14573 12942 12295

Brugge-Antwerpen 14 24174 20912 20188

4 partners Gent-Antwerpen 23 33330 27268 29100

Aalst-Antwerpen 27 14573 12728 12051

Brugge-Antwerpen 14 24174 20484 19943

Gent-Antwerpen 6 12718 11137 10522

5 partners Gent-Antwerpen 23 33330 26798 28978

Aalst-Antwerpen 7 14573 12585 11929

Brugge-Antwerpen 14 24174 20198 19821

Gent-Antwerpen 6 12718 11014 10400

Brugge-Antwerpen 5 12159 10739 10206

Table 8. Results: common end terminal, equal partners (in e)

Firm-to-firm flow Stand-alone Proportional Decomposition Shapley

3 partners Zaventem-Antwerpen 12466 11420 11312 11312

Mechelen-Antwerpen 11792 10747 10963 10963

Aalst-Antwerpen 13112 12067 11959 11959

4 partners Zaventem-Antwerpen 12466 11208 11100 11100

Mechelen-Antwerpen 11792 10535 10859 10859

Aalst-Antwerpen 13112 11855 11747 11747

Zaventem-Antwerpen 12466 11208 11100 11100

5 partners Zaventem-Antwerpen 12466 11211 11038 11038

Mechelen-Antwerpen 11792 10538 10797 10797

Aalst-Antwerpen 13112 11858 11685 11685

Zaventem-Antwerpen 12466 11211 11038 11038

Mechelen-Antwerpen 11792 10538 10797 10797

and Shapley favor partners that take part in more links of the barge trajectory,
i.e. more benefit is granted to Zaventem-Antwerpen and Aalst-Antwerpen both
taking part in two bundled links. If the partners are unequal in size, the three
cost allocation methods lead to different results (Table 9). Compared to the
proportional allocation method, the decomposition method favors partners that
take part in more bundled links. Comparing the results of the Shapley value
to those of the decomposition method for three partners, the partners taking
part in more bundled parts are even more in favor. However, these participants
are coincidentally also the smaller participants in the coalition and previous
results already revealed the benefit of Shapley for smaller participants. When an
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Table 9. Results: common end terminal, unequal partners (in e)

Firm-to-firm flow Shipments Stand-alone Proportional Decomposition Shapley

3 partners Zaventem-Antwerpen 3 8461 8233 8180 7967

Mechelen-Antwerpen 17 20792 19498 19673 20081

Aalst-Antwerpen 7 13112 12580 12457 12263

4 partners Zaventem-Antwerpen 3 8461 8102 8033 7876

Mechelen-Antwerpen 17 20792 18760 19198 19741

Aalst-Antwerpen 7 13112 12276 12114 11868

Zaventem-Antwerpen 9 14484 13408 13200 13062

5 partners Zaventem-Antwerpen 3 8461 8081 8003 7849

Mechelen-Antwerpen 17 20792 18639 19024 19685

Aalst-Antwerpen 7 13112 12226 12043 11812

Zaventem-Antwerpen 9 14484 13344 13108 13005

Mechelen-Antwerpen 5 9988 9355 9468 9295

analogue comparison is made for coalitions established between 5 partners, we
can improve our insights and conclude that the Shapley value especially favors
the smaller partners. For example, the two flows from Zaventem to Antwerpen
both benefit from the Shapley value compared to the decomposition method but
the smaller flow (three shipments) is much more rewarded by the Shapley value
than the larger flow (nine shipments). When comparing the results for the two
flows from Mechelen to Antwerpen, the results are even more distinct: although
this flow only takes part in one bundled link, the Shapley value leads to favoring
results compared to the proportional allocation method for the smaller partner
(five shipments). For the larger partner (17 shipments) the Shapley value grants
the least benefit of all three cost allocation methods to this partner.

Until now, only one vessel type is used in the experiments and as a conse-
quence, bundling always leads to a lower transport cost. Therefore, important
properties of cost allocation methods as individual rationality and a stable coop-
eration are always satisfied. To illustrate the use of the cost allocation methods
when more vessel types are available, the same experiments are repeated but
with a shipment size of 273.6 tonnes. In this case, four and five partners can
only bundle their freight if another type of vessel is used since the initial type
of vessel has a capacity of only 1000 tonnes. The second type of vessel that is
introduced in the case study has a capacity of 2000 tonnes and a transport cost
of 9e per kilometer. The results for the experiments with two vessel types are
summarized in Tables 10, 11, 12 and 13. Tables 10 and 11 present the results of
the case of a common barge trajectory. Tables 12 and 13 visualize the results of
the case of a common end terminal.

Compared to the results of the experiments with one vessel type, two impor-
tant differences can be observed. First, when the coalition is extended from three
to four partners, all partners have a higher allocated cost due to the use of the
second (and more expensive) vessel type. When the coalition is extended from
four to five partners, the extra costs of the second vessel type are spread over
more partners and thus the cost allocated to each partner is lower than in the
case of four partners. When comparing the results of five partners with those of
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Table 10. Results: common barge trajectory, equal partners, two vessel types (in e)

Firm-to-firm flow Stand-alone Proportional Shapley

3 partners Gent-Antwerpen 34789 33487 33487

Aalst-Antwerpen 36091 34790 34790

Brugge-Antwerpen 36593 35291 35291

4 partners Gent-Antwerpen 34789 33569 33569

Aalst-Antwerpen 36091 34871 34871

Brugge-Antwerpen 36593 35373 35373

Gent-Antwerpen 34789 33569 33569

5 partners Gent-Antwerpen 34789 33422 33422

Aalst-Antwerpen 36091 34725 34725

Brugge-Antwerpen 36593 35226 35226

Gent-Antwerpen 34789 33422 33422

Brugge-Antwerpen 36593 35226 35226

Table 11. Results: common barge trajectory, unequal partners, two vessel types (in e)

Firm-to-firm flow Shipments Stand-alone Proportional Shapley

3 partners Gent-Antwerpen 6 41188 39724 40049

Aalst-Antwerpen 2 29067 28579 28416

Brugge-Antwerpen 4 36593 35617 35454

4 partners Gent-Antwerpen 6 41188 40142 40344

Aalst-Antwerpen 2 29067 28718 28701

Brugge-Antwerpen 4 36593 35896 35739

Gent-Antwerpen 2 28388 28040 28022

5 partners Gent-Antwerpen 6 41188 39907 40310

Aalst-Antwerpen 2 29067 28640 28554

Brugge-Antwerpen 4 36593 35739 35592

Gent-Antwerpen 2 28388 27961 27876

Brugge-Antwerpen 2 29282 28855 28770

three partners, it depends on the experiment and the partner considered whether
the allocated cost is less than in the case with three partners. Therefore, it is
important to look at the stability of these results. The second major difference is
that the Shapley value now leads to allocation values differing from the decom-
position method for the case of a common end terminal with equal partners.
This can be explained by the fact that the Shapley value rewards partners that
contribute most to the collaborative goal. Since the partner Aalst-Antwerpen has
to perform the first part of the barge trajectory alone with the more expensive
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Table 12. Results: common end terminal, equal partners, two vessel types (in e)

Firm-to-firm flow Stand-alone Proportional Decomposition Shapley

3 partners Zaventem-Antwerpen 28020 27722 27691 27691

Mechelen-Antwerpen 27810 27511 27573 27573

Aalst-Antwerpen 28467 28168 28137 28137

4 partners Zaventem-Antwerpen 28020 27740 27706 27709

Mechelen-Antwerpen 27810 27529 27588 27622

Aalst-Antwerpen 28467 28186 28195 28155

Zaventem-Antwerpen 28020 27740 27706 27709

5 partners Zaventem-Antwerpen 28020 27725 27679 27673

Mechelen-Antwerpen 27810 27514 27561 27586

Aalst-Antwerpen 28467 28171 28169 28130

Zaventem-Antwerpen 28020 27725 27679 27673

Mechelen-Antwerpen 27810 27514 27561 27586

Table 13. Results: common end terminal, unequal partners, two vessel types (in e)

Firm-to-firm flow Shipments Stand-alone Proportional Decomposition Shapley

3 partners Zaventem-Antwerpen 1 25023 29944 24925 24858

Mechelen-Antwerpen 5 36432 36040 36098 36224

Aalst-Antwerpen 2 28467 28310 28272 28213

4 partners Zaventem-Antwerpen 1 25023 24957 24943 24984

Mechelen-Antwerpen 5 36432 36105 36149 36248

Aalst-Antwerpen 2 28467 28336 28351 28264

Zaventem-Antwerpen 3 30983 30788 30744 30691

5 partners Zaventem-Antwerpen 1 25023 24940 24924 24931

Mechelen-Antwerpen 5 36432 36019 36056 36224

Aalst-Antwerpen 2 28467 28302 28314 28206

Zaventem-Antwerpen 3 30983 30736 30688 30634

Mechelen-Antwerpen 2 27790 27625 27640 27627

vessel type, its cost savings compared to the non-collaborative scenario become
negative. As such, this partner has to make the most profound changes in its
transport activities. The Shapley value accounts for this contribution by reward-
ing this partner with a higher share in the collaborative savings.

To identify whether the cost allocations defined for the studied cases with
two vessel types guarantee cooperation stability, compliance of the proportional,
decomposition and Shapley solutions with individual, subgroup and group ratio-
nality is verified. Analyzing cost allocations over all cases reveals that stability of
the grand coalition is guaranteed in all three-partner collaborations. If the grand
coalition is stable, then no subgroup of partner companies has the incentive to
leave the grand coalition and be better off acting alone. In contrast, none of the
four-partner coalitions are stable. As the shipment sizes considered in our case
result in a lot of unused capacity for the more expensive vessel type, collaborat-
ing becomes detrimental for the partnering shippers. Stability of the five-partner
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coalitions depends on the equality of the partners. When collaborating shippers
are equal in terms of shipment sizes the grand coalition is stable. The remark
needs to be made here, however, that for the case of a common end terminal
other allocation mechanisms besides Shapley, proportional and decomposition
are needed to define a stable solution. A possible alternative may be the Equal
Profit Method, developed by [9]. Collaborations set up between five shippers
with different shipment sizes do not guarantee long-term stability in our case
study.

4 Conclusions

Policy makers at European as well as regional levels express the need to stimu-
late intermodal transport chains. In order to improve the competitive position
and efficiency level of intermodal transport, consolidation of freight flows is often
suggested. Bundling networks requires cooperation between multiple partners in
the intermodal transport chain. In this context, question rises how benefits may
be allocated fairly among the participants in the cooperation. A great deal of sci-
entific literature reports on the behavior of allocation methods in collaborations
between shippers or carriers making use of unimodal road transport. In inter-
modal barge transport various types of vessels with differing price structures
may be considered for the bundling network. As such, applying the allocation
methods which have been thoroughly studied in a unimodal road context is not
so straightforward in an intermodal environment. Moreover, research on cost or
savings allocation methods in intermodal transport is scarce. The main contri-
bution of our paper is thus to provide a first insight in the complexity of sharing
cost savings fairly amongst shippers who bundle freight flows in order to reach
economies of scale in intermodal barge transport. By applying three different
allocation methods, a comparison is made between simple and straightforward
allocation mechanisms and more advanced techniques based on cooperative game
theory.

First, the situation of one vessel type is studied. When the partners in the
coalition share the complete barge trajectory, there is no difference in apply-
ing the proportional allocation method and the decomposition method. The
Shapley value leads to the same result as the proportional allocation method
if the partners of the coalition are equal. If the partners of the coalition are
unequal, the Shapley value leads to different results and favors the smaller part-
ners in the coalition. When the partners of the coalition only share a common
end terminal, the barge trajectory is divided in minimum three parts with dif-
ferent bundling for each part. In that case, the decomposition method always
leads to other results than the proportional allocation method. The decomposi-
tion method favors the partners in the coalition that take part in more bundled
parts of the barge trajectory. The Shapley value leads to the same results as
the decomposition method if the participants in the coalition are equal. If the
partners in the coalition are unequal, the Shapley value again favors the smaller
partners in the coalition. When only one vessel type is used, bundling always
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leads to a lower transport cost. Therefore, important properties of cost allocation
methods as individual rationality and a stable cooperation are always satisfied.

Next, the experiments are elaborated with a second vessel type. In this sit-
uation, bundling does not always lead to a lower transport cost, which makes
it important to look at the stability of these results. Analyzing cost allocations
over all cases reveals that stability of the grand coalition is guaranteed in all
three-partner collaborations. In contrast, none of the four-partner coalitions are
stable. Stability of the five-partner coalitions depends on the equality of the part-
ners. When collaborating shippers are equal in terms of shipment sizes the grand
coalition is stable. However, for the case of a common end terminal other allo-
cation mechanisms besides Shapley, proportional and decomposition are needed
to define a stable solution. Collaborations set up between five shippers with
different shipment sizes do not guarantee long-term stability in our case study.
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16. Özener, O., Ergun, O.: Allocating costs in a collaborative transportation procure-
ment network. Transp. Sci. 42(2), 146–165 (2008)

17. Schmeidler, D.: Nucleolus of a characteristic function game. Siam J. Appl. Math.
17(6), 1163–1170 (1969)

18. Shapley, L.: A value for n-person games. In: Kuhn, H., Tucker, W. (eds.) Contribu-
tions to the Theory of Games, pp. 31–40. Princeton University Press, New Jersey
(1953)

19. Soons, D.: The determination and division of benefits among partners of a hor-
izontal cooperation in transportation. Master’s thesis, TU/e School of industrial
engineering (2011)

20. Theys, C., Dullaert, W., Notteboom, T.: Analyzing cooperative networks in inter-
modal transportation: a game-theoretic approach. In: Nectar Logistics and Freight
Cluster Meeting. Delft, The Netherlands (2008)

21. Tijs, S., Driessen, T.: Game theory and cost allocation problems. Manage. Sci.
32(8), 1015–1028 (1986)

22. Van Lier, T., Caris, A., Macharis, C.: Sustainability SI: bundling of outbound
freight flows: analyzing the potential of internal horizontal collaboration to improve
sustainability. Netw. Spat. Econ. 16(1), 277–302 (2016)

23. Vanovermeire, C.: Horizontal collaboration in logistics: Increasing efficiency
through flexibility, gain sharing and collaborative planning. Ph.D. thesis, Univer-
sity of Antwerp (2014)

24. Verdonck, L., Beullens, P., Caris, A., Ramaekers, K., Janssens, G.: Analysis of
collaborative savings and cost allocation techniques for the cooperative carrier
facility location problem. J. Oper. Res. Soc. (2016, in Press)

25. Woxenius, J.: Generic framework for transport network designs: applications and
treatment in intermodal freighttransport literature. Transp. Rev. 27(6), 733–749
(2007)



Service and Transfer Selection for Freights
in a Synchromodal Network
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Abstract. We study the problem of selecting services and transfers in
a synchromodal network to transport freights with different characteris-
tics, over a multi-period horizon. The evolution of the network over time
is determined by the decisions made, the schedule of the services, and the
new freights that arrive each period. Although freights become known
gradually over time, the planner has probabilistic knowledge about their
arrival. Using this knowledge, the planner balances current and future
costs at each period, with the objective of minimizing the expected costs
over the entire horizon. To model this stochastic finite horizon optimiza-
tion problem, we propose a Markov Decision Process (MDP) model. To
overcome the computational complexity of solving the MDP, we pro-
pose a heuristic approach based on approximate dynamic programming.
Using different problem settings, we show that our look-ahead approach
has significant benefits compared to a benchmark heuristic.

Keywords: Synchromodal planning · Anticipatory planning · Inter-
modal transport · Approximate dynamic programming

1 Introduction

We consider the problem of selecting services and transfers in a synchromodal
network, to transport freights from their origin to their destination, while mini-
mizing costs over a multi-period horizon. In a synchromodal setting, all freights
are booked “mode-free”, meaning that there are no restrictions for selecting a
transportation mode or deciding the number transfers among the intermodal ter-
minals. The network operator is able to decide over all services in the network
even if they are not its own. However, the flexibility in selecting services and
transfers is encumbered by various time restrictions, such as service schedules
and freight time-windows, and by the variability in the arrival of freights over
time. In this paper, we study how these challenges can be tackled, heuristically,
in order to solve this stochastic and finite horizon optimization problem.

In synchromodal planning, it is possible to change the transportation plan to
bring a freight from its origin to its destination, at any point in time. Even though
the planner might have a complete plan at a given moment, only the first part
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of such a plan is implemented. The next decision moment, the planner has the
flexibility to change the original plan if necessary. Consequently, there are three
types of decisions each day: (i) transport a freight to its final destination, (ii)
transport a freight to an intermediate terminal, and (iii) postpone the transport
of a freight. All types of decisions incur some form of costs. The first and the
second type incur direct costs, which are costs realized by the services required
for the transportation of a freight. The third type has direct costs only in case
of holding costs. Since the problem is to minimize costs over a multi-period
horizon, the second and third type also incur future costs, which are costs that
are incurred on a posterior moment within the horizon. Future costs depend on
the new arriving freights and their characteristics (which are uncertain) and the
known transportation mode characteristics (e.g., schedules, capacity, etc.). The
optimal balance between direct and future costs guarantees the best performance
over the horizon. However, anticipating future costs is challenging.

Fig. 1. Time evolution and planning example of service and transfer selection

Decisions are influenced by two types of time restrictions. The first type cor-
responds to the durations and schedules of services and transfers. As an example,
consider Fig. 1, which shows a possible plan spanning 5 days using both train
and barge. In this example, barges have a duration of 2 days, and the train
between Terminals 3 and 4 departs on even days. The second type corresponds
to the time-window of freights, which limit the feasible transportation services
and transfers, and thus the feasible decisions. In addition to the time restric-
tions, the variability in the number of freights that arrive each day and their
characteristics (i.e., origin, destination, time-window), also influence the deci-
sions. Although freights and their characteristics are unknown beforehand, there
is probabilistic information about their arrival. Every day, the planner must con-
sider all these characteristics and select which freights use the services available
that day, balancing direct and future costs.
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The objective of this paper is twofold: (i) to design a model and look-ahead
solution method that capture all problem characteristics and their effect on the
planning objective, and (ii) to explore the use of look-ahead decision methods
under several settings. We model the decision problem and the evolution of the
network using a Markov Decision Process (MDP) model. With this model, the
optimal trade-off between the three types of decisions, over time and under uncer-
tain demand, can be obtained. However, solving MDP models become unman-
ageable as problem instances grow larger. To overcome this, we use Approx-
imate Dynamic Programming (ADP), a framework that uses parts from the
MDP model and iteratively estimates future costs. ADP combines simulation,
optimization, and statistical techniques to solve an MDP heuristically.

The remainder of this paper is organized as follows. In Sect. 2, we briefly
mention the relevant literature and specify our contribution to it. In Sect. 3, we
introduce the MDP model. In Sect. 4, we explain our ADP solution approach. In
Sect. 5, we test various designs within the ADP algorithm, and provide a com-
parison with benchmark heuristics. Finally, we close in Sect. 6 with conclusions
and insights for further research.

2 Literature Review

In this section, we focus our attention on the literature about planning problems
in dynamic and flexible intermodal transportation networks. It is our goal to
provide an overview of the advantages and limitations of related work, i.e. possi-
ble solution methods. Extensive literature reviews about this area and thorough
explanation of modeling and solution approaches can be found in [2,14].

Synchromodal planning is the proactive organization and control of inter-
modal transportation services based on the latest information available [14]. In
such a planning paradigm, decision methods must balance the demand with all
available services and intermodal transfers each time new information becomes
known [13]. Although research about synchromodal planning methods is on its
infancy, several studies show how existing methods for intermodal transport
planning can be extended to such problem settings [16] and how significant
gains can be achieved in practice [9,16].

In intermodal transport planning, Dynamic Service Network Design (DSND)
problems are the closest to the synchromodal planning problems. DSND involves
the selection of transportation services and modes for freights, where at least
one feature of the network varies over time [14]. Due to the time-space nature
of DSND problems, graph theory and mathematical programming approaches
are commonly used in this area. However, these approaches have computational
limitations for large and complex time-evolving problem instances [15], which are
characteristics common to synchromodality [13]. To overcome these limitations,
additional designs, such as decomposition algorithms [5], receding horizons [6],
and model predictive control [10], are necessary. These additional designs are
less suitable for including probabilistic information in the decisions, which may
explain why most DSND studies assume deterministic demand [14] even though
the need to incorporate stochastic demand has been recognized [7].
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To incorporate stochasticity in DSND approaches, techniques such as sce-
nario generation [3,7], two-stage stochastic programming [1,8], and Approximate
Dynamic Programming (ADP) [4,11] have been used. Although these approaches
perform better than their deterministic counterpart, they have limitations when
considering synchromodal planning. In the scenario generation technique, plans
do not change as new information becomes available. In the two-stage stochas-
tic programming approach, explicit probabilistic constraints and high computa-
tional requirements limit their applicability to large instances. In ADP, a proper
design and validation of the approximation algorithm is crucial and challenging.
Nevertheless, ADP allows generic modeling of complex, time-revealing, stochas-
tic networks and a fast response time for updating plans.

To summarize, DSND research provides a useful base for synchromodal plan-
ning. Considering all challenges and opportunities mentioned before, we believe
that our contribution to the literature about stochastic DSND problems and
synchromodal planning has three key points. First, we design an MDP model
and solution method based on ADP that capture all problem characteristics
and their effect on the planning objective. Second, we explore the use of such a
look-ahead approach, under different problem settings, and provide design and
validation insights. Third, we compare the ADP approach against an advanced
sampling procedure and specify further research directions based on the insights.

3 Optimization Model

In this section, we present our optimization model. Following the DSND conven-
tion, we begin presenting the network parameters using a directed graph. Then,
we present the MDP model for our stochastic planning problem.

3.1 Input Parameters

We define a directed graph Gt = (Nt,At), where t ∈ T = {0, 1, 2, . . . , Tmax − 1}
represents the finite planning horizon (i.e., Tmax decision periods), Nt represents
the set of all nodes at time t, and At represents the set of all directed arcs at time
t. In the remainder of the paper, we refer to a time period t as a day, although
it is important to note that time can be discretized in any arbitrary interval.
Also in the remainder of the model description, all notation and formulations
indexed by t correspond to that day. Nodes Nt represent physical locations where
freight can begin or end transportation, i.e., origins, intermodal terminals, and
destinations. We denote the set of origin nodes as NO

t , the set of destination
nodes as ND

t , and the set of intermodal terminal nodes as N I
t . These three sets

are mutually exclusive, make up the set of all nodes, and are all indexed with i, j
and d. Note that this separation of the node sets applies to the model, but not
necessarily to the problem instance. For example, an intermodal terminal which
receives arriving freights will be modeled both as an origin and terminal node,
with all services between these two nodes properly adjusted. Arcs At represent
all transportation services in the network. Similar to the node classification,
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we classify the arcs into three types. The set of arcs between an origin and an
intermodal node is denoted as AO

t =
{
(i, j)|i ∈ NO

t and j ∈ N I
t

}
. The set of arcs

between two intermodal terminal nodes is denoted as AI
t =

{
(i, j)|i, j ∈ N I

t

}
.

The set of arcs between an origin or an intermodal node, and a destination, is
denoted as AD

t =
{
(i, d)|i ∈ NO

t ∪ N I
t and d ∈ ND

t

}
.

We make three modeling assumptions with respect to the services between
different types of locations. First, we assume that services beginning at an ori-
gin, i.e., AO

t , as well as services ending in a destination, i.e., AD
t , are avail-

able every day and are realized by truck. This assumption corresponds to the
usual pre- and end-haulage operations in an synchromodal network. Second, we
assume that services between two intermodal terminals, i.e., AI

t, are done by
high-capacity modes and never by truck. Although this is a simplification of
the network, trucks between intermodal terminals are rarely used. If the prob-
lem instance requires it, a truck service between two intermodal terminals can
be modeled using “dummy” nodes for the respective terminals, with other arcs
properly adjusted. Third, we assume there is at most one service between two
intermodal terminal nodes. Just as before, multiple services between two inter-
modal terminals can be modeled using more than one pair of nodes representing
those terminals. Note that the services between two intermodal terminals are not
necessarily the same every day to represent the schedules for the high-capacity
modes.

Services in the network have their starting and ending location modeled
as nodes within Gt. For the service between two intermodal terminals (i, j) ∈
AI

t, there is a maximum capacity Qi,j,t measured in number of freights. For
all services involving an origin or a destination, we assume that there is an
unlimited number of trucks. All services (i, j) ∈ At have a service duration of
LA

i,j,t days, which lasts at least one day. All transfer and handling operations
at each location i ∈ Nt have a duration of LN

i,t days. To measure the total
time required for the service between two locations, we define the parameter
Mi,j,t = LN

i,t +LA
i,j,t +LN

j,t. We assume that traveling directly to a destination by
truck is always faster than going through an intermodal terminal, i.e., LA

i,d,t <

minj∈N I
t

{
Mi,j,t + LA

j,d,t

}
,∀(i, d) ∈ AD

t . This assumption works in a similar way
as the triangle inequality in routing problems. All relevant costs from a service
(i, j) ∈ At are captured in the cost function Ci,j,t. This means that, although
pre- and end-haulage decisions, as well as freight handling decisions, are outside
the scope of the planner, their costs can be captured with the function Ci,j,t.

Each day t, freights with different attributes become known to the planner.
These freights are characterized by an origin i ∈ NO

t , a destination d ∈ ND
t , a

release day r ∈ Rt = {0, 1, 2, . . . , Rmax
t }, and a time-window length k ∈ Kt =

{0, 1, 2, . . . ,Kmax
t }, where Rmax

t and Kmax
t are the maximum release day and

time-window length, respectively, that a freight can have. Note that the absolute
due-day is k days after r. Even though new freights and their characteristics are
only known until they arrive, there is probabilistic knowledge about their arrival.
In between two consecutive days t− 1 and t, a total of f ∈ N freights arrive into
the system with probability pFf,t. A freight that arrives has origin i ∈ NO

t with
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probability pOi,t, destination d ∈ ND
t with probability pDd,t, release-day r ∈ Rt

with probability pRr,t, and time-window length k ∈ Kt with probability pKk,t.

3.2 MDP Model

In this section, we transform the problem horizon, constraints, and objective into
the building blocks of an MDP: stages, state, decision, transition, and optimality
equations. The stages of the MDP are defined by t ∈ T . The state St consists of
all freights in the network and their characteristics. To model these freights, we
introduce the variable Fi,d,r,k,t ∈ Z

+ that represents the number of freights at
location i ∈ NO

t ∪ N I
t , that have destination d ∈ ND

t , release day r ∈ R′
t, and

time-window length k ∈ Kt; and define the state St as seen in (1). The state
space is denoted as S, i.e., St ∈ S.

St = [Fi,d,r,k,t]∀i∈NO
t ∪N I

t ,d∈ND
t ,r∈R′

t,k∈Kt
(1)

Note that we use a new set R′
t for the release days. The release day definition

at origin nodes remains the same. The release day at an intermodal terminal,
however, is now used to represent the days “left” for a freight to arrive at that
node. For example, if a released freight is sent to an intermodal terminal j
on a barge whose total service duration is four days, this freight will appear
the day after it was sent, as a freight with r = 3 at location j. This new set,
which is defined as R′

t =
{

0, 1, 2, . . . ,max
{

Rmax
t ,max(i,j)∈AI

t
Mi,j,t

}}
, allows

us to model multi-day durations of services without the need of remembering
decisions from more than one day ago, i.e., to be more computationally efficient.
Note that, in case no total service duration is larger than Rmax

t , then Rt = R′
t.

Time-window lengths k still model the number of days after the release-day r,
within which the freight has to be at its final destination. We will elaborate more
on the evolution of the network over time later on in this section.

At each stage, the planner must decide how many released freights to trans-
port and to postpone, for all locations. Remind that, in a synchromodal network,
only the first part of the plan to transport a freight to its destination is imple-
mented at each decision moment. Consequently, at every stage, the decision to
transport a freight can be either to send it directly to its final destination, or
to send it to an intermodal terminal. To model this decision, we introduce the
variable xi,j,d,k,t ∈ Z

+, which represents the number of freights having destina-
tion d ∈ ND

t and time-window length k ∈ Kt that are transported from location
i to location j using service (i, j) ∈ At. Thus, the decision vector xt consists of
all transported freights in the network, as seen in (2a).

xt = [xi,j,d,k,t]∀(i,j)∈At,d∈ND
t ,k∈Kt

(2a)

s.t.
∑

j∈N I
t ∪{d}

xi,j,d,k,t ≤ Fi,d,0,k,t, ∀i ∈ NO
t ∪ N I

t , d ∈ ND
t , k ∈ Kt (2b)
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xi,d,d,LA
i,d,t,t

≥ Fi,d,0,LA
i,d,t,t, ∀(i, d) ∈ AD

t , k ∈ Kt (2c)

xi,j,d,k,t = 0, ∀(i, j) ∈ At, d ∈ ND
t , k ∈ Kt|k < Mi,j,t + Mj,d,t (2d)

∑

d∈ND
t

∑

k∈Kt

xi,j,d,k,t ≤ Qi,j,t, ∀(i, j) ∈ AI
t (2e)

The decision xt depends on the state St and the feasible decision space Xt,
which has four constraints. First, the number of freights transported from one
location to all other locations cannot exceed the number of released freights
available at the start location, as seen in (2b). Second, released freights whose
time-window length is as long as the duration of direct transport (i.e., trucking)
must be transported using this service, as seen in (2c). Third, freights whose
time-window length is smaller than the duration of the shortest path between
an intermodal terminal and their destination cannot be transported via that
terminal, as seen in (2d). Fourth, transport between two intermodal terminals
cannot exceed the capacity of the long-haul vehicle, as seen in (2e).

After making a decision xt−1, but before entering the state St, new freights
become known to the planner. We represent new freights with origin i ∈ NO

t ,
destination d ∈ ND

t , release day r ∈ Rt, and time-window length k ∈ Kt, by
F̃i,d,r,k,t. We denote the vector of all new freights that arrive between stages t−1
and t by Wt, as seen in (3). This vector represents the exogenous information
(i.e., new random freights) that became known between stages t − 1 and t.

Wt =
[
F̃i,d,r,k,t

]

∀i∈NO
t ,d∈ND

t ,r∈Rt,k∈Kt

(3)

The evolution of the network over time is influenced by decisions, exogenous
information, and various time relations. We represent this evolution by using
a transition function SM , as seen in (4a). The general idea of SM is to define
the freights at St using only the previous-stage decision xt−1 and the exogenous
information Wt. Although decisions can span more than one day (i.e., when the
duration of a service is longer than a day), we use freight release days (i.e., new
set R′

t) and time-window lengths to avoid remembering a decision for more than
one stage. When freights are not transported, they remain at the same location
and their release days and time-window lengths decrease. However, when freights
are transported from a given location i to an intermodal terminal j, they are
modeled as freights whose release day increases and their time-window length
decreases in line with the total duration of transport Mi,j,t. To model all these
relations, SM classifies freight variables Ft,i,d,r,k into seven categories, as shown
in (4b)–(4h). To exemplify in detail the workings of these categories, consider
(4c). These constraints apply to released freights at an intermodal terminal i with
destination d and time-window length k. These freights are the result of three
types of freights: (i) released freights in the same terminal, from the previous
stage, that had the same destination, that had one additional day in the time-
window, and that were not transported to any other node (i.e., Ft−1,i,d,0,k+1 −∑

j∈At
xt−1,i,j,d,k+1); (ii) freights in the same node, from the previous stage,

that had the same destination, that had a release-day of one, and that had the
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same time-window length (i.e., Ft−1,i,d,1,k); and (iii) freights that arrived from
other locations to i, that have the same destination, whose total duration of
transportation was one period, and whose time-window length was k + Mj,i,t at
the moment of the decision xt−1 (i.e.,

∑
j∈At|Mj,i,t=1 xt−1,j,i,d,k+Mj,i,t

). All other
constraints work in a similar fashion.

St = SM (St−1, xt−1,Wt)
s.t. (4a)

Ft,i,d,0,k = Ft−1,i,d,0,k+1 −
∑

j∈At

xt−1,i,j,d,k+1 + Ft−1,i,d,1,k + F̃t,i,d,0,k,

∀i ∈ NO
t , d ∈ ND

t , k + 1 ∈ Kt (4b)

Ft,i,d,0,k = Ft−1,i,d,0,k+1 −
∑

j∈At

xt−1,i,j,d,k+1 + Ft−1,i,d,1,k

+
∑

j∈At|Mj,i,t=1

xt−1,j,i,d,k+Mj,i,t
,

∀i ∈ N I
t , d ∈ ND

t , k + 1 ∈ Kt (4c)

Ft,i,d,0,Kmax
t

= Ft−1,i,d,1,Kmax
t

+ F̃t,i,d,0,Kmax
t

,

∀i ∈ NO
t , d ∈ ND

t (4d)

Ft,i,d,r,k = Ft−1,i,d,r+1,k + F̃t,i,d,r,k,

∀i ∈ NO
t , d ∈ ND

t , r + 1 ∈ Rt|r ≥ 1, k ∈ Kt (4e)

Ft,i,d,r,k = Ft−1,i,d,r+1,k +
∑

j∈At|Mj,i,t=r+1

xt−1,j,i,d,k+Mj,i,t
,

∀i ∈ N I
t , d ∈ ND

t , r + 1 ∈ R′
t|r ≥ 1, k ∈ Kt (4f)

Ft,i,d,|R′
t|,k =

∑

j∈At|Mj,i,t=|R′
t|+1

xt−1,j,i,d,k+Mj,i,t

∀i ∈ N I
t , d ∈ ND

t , k ∈ Kt, (4g)

Ft,i,d,Rmax
t ,k = F̃t,i,d,Rmax

t ,k,

∀i ∈ NO
t , d ∈ ND

t , k ∈ Kt (4h)

The goal is to minimize the total costs over a multi-period horizon, consid-
ering all possible states that can occur each day, and considering the stochastic
arrival of freight. To do so, we define a policy π as a function that maps each
possible state St ∈ S to a decision xπ

t ∈ Xt. Consequently, the objective is to
determine the policy π from the set of all policies Π that minimizes the expected
costs over the planning horizon, given an initial state S0, as seen in (5):

min
π∈Π

E

⎡

⎣
∑

t∈T
Ct (xπ

t ) =
∑

t∈T

∑

(i,j)∈At

⎛

⎝Ci,j,t ·
∑

d∈ND
t

∑

k∈Kt

xπ
i,j,d,k,t

⎞

⎠

∣∣∣∣∣∣
S0

⎤

⎦ (5)
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To solve this stochastic and sequential optimization problem, we transform (5)
into the Bellman’s equations (6). In these equations, the expected next-stage
cost is computed using the value of the next-stage state St+1 (obtained using
SM ), the decision xπ

t , a realization of the exogenous information ω ∈ Ωt+1, and
the associated probability p

Ωt+1
ω . The solution to all recursive equations of (6),

e.g., through backward induction, provide the optimal policy for the MDP.

Vt (St) = min
xπ

t ∈Xt

⎛

⎝Ct (xπ
t ) +

∑

ω∈Ωt+1

pΩt+1
ω · Vt+1

(
SM (St, x

π
t , ω)

)
⎞

⎠,∀St ∈ S (6)

However, solving the Bellman equations (6) for large problems is computationally
challenging. The state space S, decision space Xt, and the realizations of the
exogenous information in Ωt grow larger with an increasing size of the problem
instance. Due to these three “curses of dimensionality” [12], our MDP model
is solvable only for tiny problem instances. Notwithstanding, the MDP model
serves as a base for our ADP approach.

4 Solution Approach

Our solution approach is based on ADP, which is a heuristic solution method
for MDP models that uses various constructs and algorithmic strategies. Its
main idea is to replace the expected next-stage costs in (6) by a Value Func-
tion Approximation (VFA), and to update this function via a simulation of the
exogenous information. This update procedure is done iteratively, as shown in
Fig. 2, with the end result being the approximated values of the solution to the
Bellman’s equations, and thus a policy π. Certainly, the choice of (i) VFA, (ii)
the update procedure, and (iii) the number of iterations, has an influence on
the performance, i.e., solution quality and computational time. In the follow-
ing paragraphs we describe the choices we make and indicate their expected
performance.

Fig. 2. Overview of the ADP algorithm

In our ADP approach, the expectation of future costs in (6) is replaced by an
value function approximation V

n

t (Sx,n
t ), where Sx,n

t is the so-called post-decision
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state, i.e., the state after a decision has been made but before the new exogenous
information becomes known. As seen in (7), this construct avoids specifying all
realizations of the exogenous information Ωt.

V n
t (Sn

t ) = min
xπ

t ∈Xt

(
Ct (xπ

t ) + V
n

t (Sx,n
t )

)
(7)

To avoid the large state space, the optimality equation in (7) is solved for one
state at each stage, starting from the initial state S0. The transition from one
state to the next uses a sample from Ωt+1, obtained through a Monte Carlo
simulation, and the transition function SM defined in (4a). This process is per-
formed for the entire planning horizon, and repeated for N iterations, hence the
superscript n in the approximate value function and post-decision state.

The general outline of an ADP algorithm can be found in Fig. 4.7, page 141,
of the book of [12]. We now focus on two designs (i.e., variations) we propose for
that algorithm. Our first design uses a commonly proposed ADP setup. We use
basis functions for V

n

t (Sx,n
t ) and the non-stationary least squares method for

updating this function. A basis function φa(Sx,n
t ) is a quantitative characteristic

of a given feature a of a post-decision state Sx,n
t that describes, to some extent,

the value of that post-decision state. Examples of features in our problem are the
number of freights for a given destination and the number of freights at a given
intermodal terminal. Given a set of features A, the approximated next-stage
costs in (7) are the result of the product between the basis function φa(Sx,n

t )
and the weight θn

a,t for each feature a ∈ A, as seen in (8).

V
x,n

t (Sx,n
t ) =

∑

a∈A
θn

a,tφa (Sx,n
t ) (8)

The weight θn
a,t depends on the iteration n because it is updated after each

iteration, using observed costs, to improve future cost estimates. We use a Non-
stationary Least Squares (NLS) method for updating these weights since it gives
more emphasis to the recent observation than to the previous one. This emphasis
is necessary at early iterations, where initial conditions might bias the approx-
imation and the result of the ADP approach. The weights θn

a,t, for all a ∈ A,
are updated each iteration n using the observed error (i.e., difference between
the next-stage estimate from the previous iteration V

n−1

t−1

(
Sx,n

t−1

)
and the cur-

rent estimate v̂n
t ), the value of all basis functions φa (Sx,n

t ), the optimization
matrix Hn, and the previous weights θn−1

a,t , as seen in (9). For a comprehensive
explanation on the NLS method, we refer to [12].

θn
a,t = θn−1

a,t − Hnφa (Sx,n
t )

(
V

n−1

t−1

(
Sx,n

t−1

)
− v̂n

t

)
(9)

The first design considers downstream costs only through a one-step estimate.
Since estimates can be off, especially in early iterations, it might be beneficial
to look ahead more than one step. To do this, our second design builds on the
first one and uses two additional constructs. First, we add a valid inequality
to the decision space Xt as follows. If a direct service for a freight between
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its origin and its destination is cheaper than going from its origin to a given
intermodal terminal and subsequently to its destination, we prevent this freight
from going to that intermodal terminal when its time-window length allows only
a direct service after the intermodal terminal. Second, we add another estimate
to V

n

t (Sx,n
t ), as seen in (10). In this new approximate value function, C

n

t (Sx,n
t )

is an estimate of the downstream cost obtained simulating a fixed rule for the
remaining of the horizon, under different demand realizations, and α is a weight
to balance the use of basis functions and simulations for V

n

t (Sx,n
t ).

V
x,n

t (Sx,n
t ) = α

∑

a∈A
θn

a,tφa (Sx,n
t ) + (1 − α) C

n

t (Sx,n
t ) (10)

At last, the output of our two ADP designs are the weights θN
a,t. The resulting

policy π maps state St ∈ S to decision xπ
t as seen in (11).

xπ
t = arg min

⎛

⎝Ct (xπ
t ) +

∑

a∈A(Sx
t )

θN
a,tφa (Sx

t )

⎞

⎠ (11)

5 Numerical Experiments

In this section, we explore the value of our ADP designs through a series
of numerical experiments. Using three small instances, we compare the costs
achieved by our ADP approach against a benchmark policy and an advance sam-
pling procedure. The benchmark policy mimics a planning approach commonly
used in practice. The sampling procedure extends the benchmark policy with a
methodology commonly considered in the literature. The section is divided as
follows. First, we introduce our experimental setup. Second, we show, analyze,
and discuss the results of our experiments.

5.1 Experimental Setup

For the three instances, we use a network containing a single origin, three inter-
modal terminals, and three destinations over a planning horizon of 15 days.
Each day, there are three services between the intermodal terminals, with capac-
ities and durations as shown in Fig. 3. The fixed costs of these services are of
CF

1,2 = CF
2,3 = 100 and CF

1,3 = 150. The variable costs range between 36 and
44, and are equal to the Euclidean distance between the terminals in a plane of
100× 50 distance units, as shown to scale in Fig. 3. In addition, every day there
is a direct service between the origin and the terminals, between the origin and
the destinations, and between the terminals and the destinations; and they all
have duration of one day. There are no fixed costs for the direct services, and
the variable cost range varies between 241 and 927, and are equal to ten times
the Euclidean distance between the two locations they connect. The number of
freights that arrives each day varies between f = {0, 1, ..., 4}, with probabil-
ity pFf as shown in Fig. 3. In the three instances, each freight has destination
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d ∈ {4, 5, 6} with probability pDd as shown in Fig. 3, and is always released (i.e.,
pR0 = 1). Each freight has a time-window length k = {1, 2, . . . , 5} with proba-
bility pKk according to the instances considered. In instances where freights have
short time-windows, there are not many feasible options for transportation and
almost none for postponement. In instances with large time-windows, the oppo-
site occurs. To test the value of look-ahead decisions, we create instances with
different time-window length distributions, as shown in Fig. 3.

Fig. 3. Network characteristics for the test instances

Using these instances, we test four planning methods: a benchmark heuristic,
our two ADP designs (named ADP 1 and ADP 2), and an advance sampling
procedure. The set of features A consists of all state variables and a constant of
1. The weight α for ADP 2 is defined as α = max {25/ (25 + n − 1) , 0.05} and
the sampling method is the same as the advance sampling procedure introduced
in the next paragraph. The number of iterations is set to 100 and the NLS para-
meters used are those recommended by [11]. Although these settings achieved a
fast convergence of the ADP algorithm in our tests, the resulting approximate
value functions (i.e., policy) is heuristic and not necessarily optimal.

The benchmark heuristic strikes for a balance between using the intermodal
services efficiently (consolidate as many freights as possible) and the postpone-
ment of freight. It consists of fours steps: (i) define the shortest and second
shortest path for each freight to its final destination, without considering fixed
costs for services between terminals, (ii) calculate the savings between the short-
est and second shortest path and define these as savings of the first intermodal
service used in the shortest path, (iii) sort all freights in non-decreasing time-
window length, i.e., closest due-day first, and (iv) for each freight in the sorted
list, check whether the savings of the first intermodal service of its shortest path
are larger than the fixed cost for this service; if so, use this service for the freight,
if not, postpone the transport of the freight. Naturally, all capacities, durations,
and time-windows must be checked while doing these steps.

The sampling procedure consists of three steps: (i) enumerate all feasible
decisions, (ii) for each feasible decision, estimate future costs by sampling, in a
Monte Carlo fashion and using common random numbers across the decisions,
realizations of the exogenous information for the remainder of the planning hori-
zon, and simulating the use of the benchmark heuristic for making decisions with
these samples, and (iii) choose the decision with the lowest sum of direct and
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estimated future costs. Although heavily computationally intensive (i.e., not
applicable to larger instances), this procedure exploits the benefits of looking-
ahead in decision making.

The tests are done using ten test states in each instance. To define these states
for each instance, we do a simulation of the benchmark heuristic, beginning with
an empty state, for a horizon of 15 days. We save the state at the end of the
horizon. We replicate this procedure 10,000 times, and choose the ten states that
were observed the most. For each of the test states, we simulate each planning
method 100 times, using common random numbers across the methods. Note
that these 100 simulation replications are different from the 100 iterations of the
ADP algorithm. Thus, we test the ADP approach in two phases: (i) learning
phase through 100 iterations and (ii) simulation phase of using the resulting
policy in (11) for 100 replications.

5.2 Experimental Results and Discussion

First, we analyze Instance I1. This is the most flexible test instance since all
freights have a time-window length of 5 days when they arrive. The results are
shown in Table 1. We show the costs for the benchmark heuristic, and the relative
savings, as a percentage, of the other planning methods when compared to the
benchmark. In addition, we show the number of freights of each test state and
the computational time. The computational time (in seconds) is given as the
total simulation time for the 100 replications of the 15-day horizon.

Table 1. Results for Instance I1

State Total Benchmark ADP 1 ADP 2 Sampling

Freights Solution Time (s) Solution Time (s) Solution Time (s) Solution Time (s)

1 4 12221 0.92 −13.6% 29.94 −33.9% 101.31 −43.3% 688.29

2 7 14684 0.94 −12.8% 52.06 −32.7% 96.67 −39.9% 1687.18

3 5 13042 0.92 −13.1% 31.68 −27.5% 81.46 −41.5% 827.15

4 6 13863 0.94 −12.3% 32.99 −25.9% 81.42 −39.0% 832.67

5 6 13863 0.91 −12.0% 108.62 −30.0% 111.21 −42.3% 1356.80

6 6 13863 0.94 −10.4% 102.12 −31.3% 67.58 −42.9% 1317.73

7 5 13042 0.94 −12.6% 40.26 −23.4% 81.99 −41.5% 893.59

8 4 12221 0.92 −14.7% 37.44 −25.0% 78.41 −38.9% 547.66

9 2 10579 0.94 −14.9% 31.72 −29.9% 45.13 −42.4% 611.18

10 5 13042 1.01 −11.2% 30.81 −32.9% 42.92 −40.6% 727.28

On average, ADP 1 achieves savings of 12.8 %, ADP 2 of 29.2 %, and the
sampling procedure of 41.2 % when compared to the benchmark heuristic. All
three methods that explicitly look-ahead in their decisions perform better than
the benchmark that does so only implicitly. The sampling method performs the
best, at a higher computational expense (more than 10 times the computational
time of ADP, and 1000 times the one of the benchmark, on average). For large
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instances, or even small ones where time is discretized into smaller intervals,
this method would not be applicable. ADP 2 performs second best, at a higher
computational expense during the learning phase than ADP 1 (965 s instead
of 116, on average). However, during the actual decision making for the entire
planning horizon, both ADP designs have similar computational time (50 and
79 s, on average, respectively, for I1). ADP 1 lowest savings indicate that a one-
step look-ahead is not sufficient for a good solution. Furthermore, the difference
between the two ADP designs suggests that further research that explicitly con-
siders a few stages in advance, such as rolling-horizon procedures within the
ADP framework, can improve performance significantly.

The average results across the test states of I2 and I3 are shown in Table 2.
Note that each instance has its own set of test states, which differs from the other
instances. Furthermore, note that I2 and I3 have significantly less flexibility than
I1 due to their time-window length, only 40 % and 0.05 % of arriving freights can
use any intermodal connection, respectively.

Table 2. Average results for Instance I2 and I3

Instance Benchmark ADP 1 ADP 2 Sampling

Solution Time (s) Solution Time (s) Solution Time (s) Solution Time (s)

I2 11078 0.88 −5.2% 10.52 −9.8% 13.89 −31.2% 217.19

I3 12874 1.01 2.9% 3.19 0.4% 2.31 −3.3% 36.95

The larger savings from all look-ahead methods in I1 and I2, compared to
I3, indicate that the more flexibility there is, the better it is to look-ahead when
making decisions. In I2, similar results to I1 are achieved, but with significantly
less cost savings. In I3, the benchmark heuristic performs better than the ADP
approach, and the sampling achieves small savings. In most states of I3, the
only feasible option (time-wise) for freights is to use a direct service via truck.
In such a setting, decision making methods that focus on current costs, such
as the benchmark heuristic, perform well since there are hardly consolidation
opportunities to anticipate for. However, a robust ADP design should be able to
learn such a policy, as the sampling method seems to do. In a sensitivity analy-
sis (results not shown), we observed that the number of iterations and the NLS
parameters had a small impact on the solution quality, compared to the impact
of different approximate value functions (e.g., more basis functions, the sam-
pling method, etc.). In a similar way, the different approximate value functions
had a significant difference in computational time during the learning phase,
but not during the decision-making phase. Further research on adaptations of
the approximating function of future costs within the ADP algorithm, such as
aggregates, hierarchical functions and state representatives, is necessary.
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6 Conclusions

We developed an MDP model and an ADP algorithm for selecting services and
transfers for freights in a synchromodal network. With the MDP model, the opti-
mal balance between transporting and postponing freights, in different locations
of the network, over time, and under uncertain demand, can be achieved. With
the ADP algorithm, the computational burden of the MDP model is reduced
while preserving all of its modeling functionalities.

Through numerical experiments, we explored the value of using look-ahead
decisions in our planning problem and reflected on the value and the limitations
of our ADP designs. We observed that the more time-window flexibility and
number of freights there are, the better the look-ahead methods perform. We also
observed that the two methods that look-ahead more than one stage performed
better than the standard one-step look-ahead ADP approach. Further research
about ADP designs that explicitly consider a few stages in advance (e.g., rolling
horizon, sampling, approximate policy iteration) and other, possibly non-linear,
value function approximations, are relevant for synchromodal planning.
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Abstract. We propose a revenue management (RM) model for the net-
work capacity allocation problem of an intermodal barge transportation
system. Accept/reject decisions are made based on a probabilistic mixed
integer optimization model maximizing the expected revenue of the car-
rier over a given time horizon. Probability distribution functions are used
to characterize future potential demands. The simulated booking sys-
tem solves, using a commercial software, the capacity allocation problem
for each new transportation request. A conventional model for dynamic
capacity allocation considering only the available network capacity and
the delivery time constraints is used as alternative when analyzing the
results of the proposed model.

Keywords: Revenue management · Network capacity allocation · Inter-
modal barge transportation · Probabilistic mixed integer model

1 Introduction

Barge transportation offers a competitive alternative for freight transporta-
tion, complementing the traditional road and rail modes. Moreover, considered
as sustainable, environment-friendly and economical, barge transportation has
been identified as instrumental for modal shift and the increased use of inter-
modality in Europe [3]. Yet, studies targeting barge transportation are scarce,
(e.g., [4,6–8,11,14]), the ones considering the intermodal context being even
more rare (e.g., [13,15,17,18]). An important and recent review of the scientific
literature on multimodal freight transportation planning can be found in [12].

Revenue Management (RM ), broadly used in passenger transportation to
manage trip prices and bookings (e.g., [1]), has been identified as a desirable
feature for freight transportation, including barge intermodal services [15]. RM
is expected to provide freight carriers with tools to better manage revenues
c© Springer International Publishing Switzerland 2016
A. Paias et al. (Eds.): ICCL 2016, LNCS 9855, pp. 243–257, 2016.
DOI: 10.1007/978-3-319-44896-1 16
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and enhance service by, in particular, tailoring the service levels and tariffs to
particular classes of customers. In [16], the authors study revenue management
in synchromodal container transportation to increase the revenue of the trans-
portation providers. In their study, several delivery types are provided by car-
riers. Each type of delivery is associated with a fare class, characterized by a
specific price and a specific due time. In [9], authors propose a cost-plus-pricing
strategy to determine the price of delivery types in the context of intermodal
(truck, rail and barge) freight transportation. The price associated with each
delivery type is the sum of the operational cost and the targeted profit margin.
The price of a delivery type depends on its urgency as well. Different scenarios,
i.e., self-transporting, subcontracting, and a mix of the two are studied, with
different operational costs and targeted profit margins. However, in both [9,16],
only one type of customers, who sign long-term contracts with the carriers, is
considered. Consequently, no accepting or rejecting decision is made during the
operational phase. In [10], customers are classified into two categories: contract
sale (large shippers, which might be considered regular) customers, and free sale
(scattered shippers) customers. A two-stage stochastic optimal model is then
proposed to maximize the revenue. In the first stage, the revenue is maximized
serving contract sale customers only. In the second stage, the slot capacity after
serving contract sale customers is used to serve the scattered shippers customers
through a dynamic pricing method for price settling and an inventory control
method for slot allocation applied jointly in each period of free sale. The explo-
ration of RM-related issues in freight transportation is still at the very early
stages, however, as illustrated by the reviews related to air cargo operations [5],
railway transportation [1], and container synchromodal services [15].

We aim to contribute to the field by proposing a RM model to address the net-
work capacity allocation problem of an intermodal barge transportation system.
As intermodal barge and rail systems share a number of characteristics, e.g.,
scheduled services, limited transport capacity (resource) and uncertain future
demands, the approach is inspired by the work of [2] where the authors develop
a model to dynamically allocate the rail capacity at operational level. In defin-
ing the revenue management problem for barge transportation we induce novel
features to our modeling, however: we adapt it for the barge transportation
space-time network, we enrich it by introducing different categories of customers
with the definition of specific treatment for each of them, including particular
accept/reject rules. An important feature offered by the new modeling lays in the
proposal of a negotiation process based on the optimisation model when deal-
ing with rejected demands, as explained in more details further on. Customers
are classified into different categories as follows. Regular customers, who sign
long-term contracts with the carriers/providers, must be satisfied and thus all
these regular category of demands have to be accepted. On the other hand, the
so called spot-market customers, who request transportation less frequently and
on an irregular basis, may be rejected if needed. The accept/reject mechanism
is settled according to an estimation of the profitability of each new incom-
ing demand, given the availability of service capacities at the time of decision.
In order to better consider customer behavior specificities, those spot-market
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customers are further classified into partially-spot customers, who would accept
their requests to be partially accepted, and fully-spot customers, whose requests
must be either accepted as a whole or not accepted at all. These acceptance rules
are introduced and used in the new RM model (through specific decision vari-
ables). Moreover, based on the customer differentiation, and on the associated
acceptance rules, different mechanisms are set out in a new negotiation process
model which is implemented and used when dealing with rejected demands. At
the authors best knowledge, this is the first contribution proposing to intro-
duce RM techniques, e.g., price differentiation and customer classification, at
the operational level planning of barge transportation activities.

The application of RM strategies requires a booking system to manage trans-
port requests, and the capability to forecast future demands. In our case, the
simulated booking system performs an accept/reject decision for each new trans-
port request, based on the results of the proposed optimization model maximiz-
ing the expected revenue of the carrier over a given time horizon. In case of
acceptance, the corresponding optimal routing is also provided by the optimiza-
tion. Probability distribution functions are used to characterize future potential
demands for transportation and, thus, the proposed optimization model takes
the form of a probabilistic mixed integer program (MIP). A commercial solver
is used to address this model. Simulation is used to analyze the performance of
the proposed optimization model and RM strategies, through comparisons with
a conventional dynamic capacity allocation model considering only the available
network capacity and the delivery time constraints.

The remainder of this paper is organized as follows. We briefly describe the
network capacity allocation problem and the considered RM concepts and strate-
gies for intermodal barge transportation in Sect. 2. The proposed RM model is
introduced in Sect. 3. Simulation and numerical results are discussed and ana-
lyzed in Sect. 4. We conclude in Sect. 5.

2 Problem Characterization

We first briefly present the general problem of dynamic capacity allocation for
barge transportation. The mechanisms of the booking system are then discussed,
together with the proposed RM strategies. The associated notation is identified
as well.

2.1 Dynamic Capacity Allocation Problem

Consolidation-based carriers, such as those operating barge services, plan and
schedule their operations for the “next season” with the goal of jointly maxi-
mizing the revenue and satisfying the forecast regular demand, through efficient
resource utilization and operations. Transport requests fluctuate greatly dur-
ing actual operations, however, in terms of origins, destinations, volumes, etc.,
not to speak of those unforeseen demands the carrier will try to accommodate.
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The capability to answer customer expectations of the transport network is con-
sequently continuously changing as well, together with its efficiency and prof-
itability. Setting up some form of advanced booking system is the measure gen-
erally adopted to handle this complex situation.

Transport booking requests are traditionally answered on a first-come first-
serve (FCFS) basis. Moreover, a transport request is (almost) always accepted
provided the network currently has the capability to satisfy both the volume and
the delivery time specified by the customer. This has the unwanted consequence
that requests coming at a latter time might not be accepted, even though they
present the potential to generate a higher revenue, due to a lack of transport
capacity, resulting in the loss of additional revenue for the carrier.

RM-based booking systems operate according to different principles. The
booking system considered in this paper manages the transport capacity, and the
decision to accept or reject a new demand, considering a set of potential future
demands characterized by different fare classes. To make the final decision, the
acceptance and rejection of the current demand are compared by optimizing
the estimated total revenue of all demands, current and potential future ones.
Therefore, in our model, a current transport request may be rejected if it appears
less profitable compared with the estimated profit of future demands competing
for the transport capacity. The resource is then reserved for the future demands,
expecting a higher total revenue. On the other hand, when the booking system
accepts the current transport request and more than one possible routing exist,
a “better” capacity allocation plan can be obtained by considering the future
demands. That is, the capacity available in the future might more closely match
future demands, increasing the possibility of acceptance and the generation of
additional revenue.

We formulate the dynamic capacity allocation problem on a space-time net-
work over a time interval composed of 1, ..., T time instants. The nodes of the
G = (NIT , A) network are obtained by duplicating the representation of the
physical terminals at all time instants, i.e., a node n(i, t) ∈ NIT specifies the
physical terminal i and the time instant t.

A set of already-selected services, each with given schedule, route and capac-
ity, provides transportation among the nodes in NIT . Note that, in this research,
we assume that services have already been scheduled at the tactical planning level
(i.e., when the Scheduled Service Network Design problem is solved) and are not
to be rescheduled at the operational level. The capacities of scheduled services
are also fixed since vehicles are already assigned to services and no extra-vehicles
are considered to be available upon request. A service s ∈ S is characterized by
its transport capacity cap(s) and set of legs η(s). Leg l ∈ η(s) represents a path
between two consecutive stops of service s, and is characterized by its origin
and destination terminals, o(l), d(l) ∈ NIT , with the respective departure tdep(l)
and arrival tavl(l) times. Let s(l) and cap(l) = cap(s(l)) identify the service it
belongs to and its capacity, and define cap avl(l), the residual capacity of leg l
after having routed the already accepted demands.
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The set of arcs A is then made up of the sets AL and AH representing the
transport and holding arcs, respectively. Set AL is composed of all the defined
service legs, while AH arcs link two representations of the same terminal at
two consecutive time periods. Holding arcs represent the possibility of demand
flows to wait at their respective origins or at intermediate terminals during their
journey, to be picked up by services passing by at later periods.

2.2 RM Strategy

Revenue Management groupes together a set of concepts and techniques aimed
to better integrate customer behavior knowledge into the optimal capacity allo-
cation models. For instance, different fares are applied to well differentiated
products/services and different market segments are identified and used with
the overall objective to maximise expected revenue. To define RM strategies
for barge transportation systems, we introduce customer classification and price
differentiation.

Customers are classified into three categories according to the business rela-
tionship: regular customers (R), who sign long-term contracts with the carrier or
whom the carrier trusts; partially-spot customers (P), who contact the carrier
infrequently and do not require that all their demand be accepted; fully-spot
customers (F), who also require service irregularly but their demand must be
accepted as a whole or not at all.

Let k̃ be the current booking request. Let D(k̃) be the set of demands
accepted before the arrival of k̃, and K(k̃) the set of forecasted future demands
with direct interactions in time with k̃. A transport request d̃ ∈ D(k̃)∪K(k̃)∪ k̃
is then characterized by the volume to be transported in TEUs, vol(d̃); the ori-
gin and destination terminals, o(d̃) and d(d̃), respectively; the time tres(d̃) it is
submitted to the booking system; the time tavl(d̃) it becomes available at its ori-
gin terminal and the corresponding anticipation time, Θ(d̃) = tavl(d̃) − tres(d̃);
the due time (latest delivery time) tout(d̃) and the requested delivery time
Δ(d̃) = tout(d̃) − tavl(d̃); the unit tariff f(d̃) according to the fare class of the
demand (defined bellow); and the category cat(d̃) of customers (R, P or F). Note
that a future demand k is considered to be part of the set of potential future
demands K(k̃) when it has “direct interactions” with the current booking request
k̃, which is true when the two time conditions are satisfied:

– tres(k) > tres(k̃)
– [tavl(k), tout(k)] ∩ [tavl(k̃), tout(k̃)] �= ∅.

Let V MAX(k) be the maximum volume a future demand request k ∈ K(k̃)
may take, and Pk(x) the discrete probability distribution function indicating the
probability that a given value 0 ≤ x ≤ V MAX(k) occurs.

We define four fare classes for any pair of terminals in the physical network
(and the distance separating them) as the combination of Θ(d̃), early or late
booking, and Δ(d̃), slow or fast delivery requested. A demand with the highest
fare class thus corresponds to a late booking and fast delivery request, while
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a demand with the lowest fare class corresponds to an early booking and slow
delivery request.

The proposed RM strategy for barge transportation is then to examine each
new transport request, k̃, and decide on its acceptance, and routing through the
network for accepted ones, by considering its feasibility and profitability, given
the current status of the network and an estimation of future demands. The
former means that currently there is sufficient capacity and time to satisfy k̃.
The latter indicates that the expected total revenue given the acceptance of
k̃ is at least not worse than the one corresponding to rejecting it, taking into
account the potential future demands. The model of Sect. 3 is used to make these
decisions.

A rejected request has no influence on the transport network. Similarly, the
potential future demands are only used to calculate the expected total revenue,
and do not impact the status of the network.

3 The Formulation

We now present the Revenue Management decision model that is to be solved
for every arriving request for transportation k̃. The decision variables are:

– ξ(k̃): accept or reject k̃, where ξ(k̃)
• equals 1 when cat(k̃) = R,
• varies within [0, 1] when cat(k̃) = P,
• takes the value 0 or 1 when cat(k̃) = F;

– v(k̃, a): volume of demand k̃ on arc a;
– maxvol(k): maximum volume available on the network (at the decision time)

to serve the potential future demand k ∈ K(k̃);
– v(k, a): volume of the potential future demand k ∈ K(k̃) on arc a.

Obviously, ξ(d) and v(d, a) variables are fixed on all arcs for the already accepted
demands, which we denote d, d ∈ D(k̃).

The objective function of the model with respect to the current demand
k̃ maximizes the sum of its corresponding revenue and the expected revenue
computed on the basis of future demand forecasts:

max (f(k̃) · ξ(k̃) · vol(k̃) + φ) (1)

where

φ =
∑

k∈K(k̃)

f(k)
maxvol(k)∑

x=0

xPk(x) (2)

Following [2], φ is linearized by introducing additional binary decision vari-
ables ykj for each potential future demand k, where the integer-valued j takes all
the values between 1 and V MAX(k). Note that V MAX(k) represents the max-
imum possible volume of a booking request, which translates mathematically,
in terms of probability distribution, as Pk(j) = 0 when j ≥ V MAX(k) + 1.
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The binary decision variables ykj are defined to be equal to 1, if no more than
volume j of capacity is available on the network to serve the potential future
demand k and 0 otherwise. In order to make this definition consistent, for each
future demand k, at most one of the variables ykj may take the value 1 (since
this will correspond to the maximum capacity available on the network to serve
that specific demand). Thus, the objective function becomes:

max (f(k̃) · ξ(k̃) · vol(k̃) +
∑

k∈K(k̃)

f(k)
∑

1≤j≤V MAX(k)

ykj

j∑

x=0

(xPk(x))) (3)

since maxvol(k) is defined as follows:

maxvol(k) =
∑

1≤j≤V MAX(k)

jykj (4)

with ∑

1≤j≤V MAX(k)

ykj ≤ 1 (5)

and
ykj ∈ {0, 1}. (6)

Following this definition, note that the optimal value of maxvol(k) is com-
puted (4) as a result of the optimisation problem. Thus, this optimal value
is obtained when maximizing the expected revenue corresponding to current
demand k̃ on the network, taking into account the entire remaining available
capacity and the overall profitability of the whole set of potential future demands
on that specific time window.

The constraints of the model are the usual flow conservation relations at
nodes and the capacity restrictions imposed by the service network. The latter
take the form defined by (7) for each service leg

∑

k∈K(k̃)

v(k, a) + v(k̃, a) ≤ cap avl(a), ∀a ∈ AL (7)

while the flow conservation constraints for all nodes n(i, t) ∈ NIT are:

∑
a∈A+(n(i,t))

v(k̃, a) −
∑

a∈A−(n(i,t))

v(k̃, a) =

⎧⎪⎨
⎪⎩

ξ(k̃)vol(k̃) if (i, t) = o(k̃)

0 if (i, t) �= o(k̃), (i, t) �= d(k̃)

−ξ(k̃)vol(k̃) if (i, t) = d(k̃)

(8)
and

∑
a∈A+(n(i,t))

v(k, a) −
∑

a∈A−(n(i,t))

v(k, a) =

⎧⎪⎨
⎪⎩

maxvol(k) if (i, t) = o(k)

0 if (i, t) �= o(k), (i, t) �= d(k)

−maxvol(k) if (i, t) = d(k)

(9)
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where A+(n(i, t)) and A−(n(i, t)) stand for the sets of incoming and outgoing
arcs, respectively, of node n(i, t) ∈ NIT .

Finally, the constraints defining the range of the decision variables are:

ξ(k̃) =

⎧
⎪⎨

⎪⎩

1, if cat(k̃) = R

[0, 1], if cat(k̃) = P

{0, 1}, if cat(k̃) = F

(10)

v(k̃, a) ≥ 0, ∀a ∈ A (11)

v(k, a) ≥ 0, ∀k ∈ K(k̃), ∀a ∈ A. (12)

4 Simulation, Numerical Results and Analysis

To validate the proposed RM model, we use computer simulation. We simulate
the sequential arrival of current demands as an iterative process. For each ran-
domly generated demand, we run and solve the optimization problem and use the
optimal decision to accept/reject the demand to update accordingly the status
of the network in terms of remaining available capacity. Then, a new iteration
is performed. The demand forecasts are considered to be known and given at
the beginning of the simulation process. Several scenarios are used to test and
validate the proposed model. We first set up a scenario with scarce resources and
a very limited number of origin-destination (OD) pairs of transport requests. By
using this scenario, we analyse the impact of different price ratios applied when
different fares are introduced, corresponding to different classes of booking and
delivery delays required by the customers. A second scenario, with a more com-
prehensive problem setting in terms of number of services, number of possible
OD pairs of demands is devised. This second scenario is settled to discuss the
performance of the RM model with respect to different levels of transportation
capacity on the network, as well as with respect to the accuracy of demand fore-
casts. Based on the second scenario, possible strategies of negotiation when a
demand is rejected are equally considered and numerical results analyzed. The
remaining of this section is organised as follows. We briefly introduce the sce-
narios setting for the simulation in Sect. 4.1. We then illustrate and analyze the
numerical results in Sect. 4.2.

4.1 Scenarios Setting

For all scenarios, four consecutive terminals, i.e., A, B, C and D, are considered
to be located along the inland waterway with travel times for barges between any
two consecutive terminals assumed to be the same. As for the service travel times,
all the scheduled stops of a service (including at its origin and destination), are
assumed to have identical durations as well, these delays corresponding to the
time consumption for operations at port (e.g., loading/unloading containers).
The maximum capacity of services is identical within one set of experiments but
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is varied from one scenario to another. The residual capacities of service legs
are sequentially updated according to the accepted demands and their optimal
routing. Holding arcs of containers at terminals have unlimited capacity.

Let us recall that any current demand k̃ is characterized by its tres(k̃), vol(k̃),
o(k̃), d(k̃), tavl(k̃), tout(k̃), f(k̃) and cat(k̃). We discretize the time so that no
more than one reservation request (tres(k̃)) may arrive at each time instant dur-
ing the simulation; vol(k̃) is a discrete random value between 0 and VMAX (the
same maximum volume is assumed for any demand) following a given probabil-
ity distribution function; vol(k̃) = 0 indicates that there is no booking request
for the current time instant. The origin-destination pair, thus the values of o(k̃)
and d(k̃), are uniformly generated out of the set of possible OD correspond-
ing to a scenario. Both anticipation Θ(k̃) and delivery time Δ(k̃) are randomly
selected from a predefined pool of possible values, following the uniform distri-
bution; the generation of the latter is equally related to the distance between
the o(k̃) and the d(k̃) of the demand. The tavl(k̃) and tout(k̃) are then computed
accordingly. Thresholds for the anticipation and delivery time are predefined
to split the demands into early/late reservation and slow/fast delivery types,
respectively. For a given distance of an OD, a basic fare p is predefined. The
unit transportation price (per container) is then defined as f(k̃) = p · rΘ · rΔ,
where rΘ and rΔ are the anticipation ratio and the delivery ratio respectively.
Their corresponding values for early reservation and slow delivery are both set
to 1, the others being integer values (factors) greater than one, corresponding to
larger fares charged on high contribution demands requesting higher quality-of-
service transportation. Finally, cat(k̃) is randomly generated among R, P and F
following the uniform distribution.

For each current demand k̃, the corresponding set of potential future demands
is generated following the same generation procedure, except for its volume.
Indeed, since the objective function is defined based on the mathematical expec-
tation of the potential revenue of future demands, this computation is performed
considering all the possible volumes (from 0 to VMAX), weighted by their prob-
abilities. The summation is bounded, however, by the maximum available capac-
ity (at decision time) on the network to satisfy each specific future demand k
(maxvol(k)). Following the same idea, note that the categories (i.e., R, P or F)
of future demands are not needed either when generating the potential future
demands. By doing so, an estimated value of the expected revenue is obtained
by simulation and used to make the decision of accepting or rejecting the current
demand k̃.

For all the scenarios in the simulation, a FCFS accept/reject policy is con-
ducted as comparison. No potential future demands are considered for the FCFS
model. A current demand k̃ is accepted when at least one feasible route exists
in the space-time network, without considering the expected revenue and hence,
without considering its profitability.

The characteristics of the first scenario are:

– Length of the simulated time horizon is 300 time instants;
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– There are 15 identical services defined, starting every 20 time instants, from
A to D with an intermediate stop at B;

– 3 different ODs are considered: AB, BD and AD;
– Different experiments are conducted, with different values of the anticipation

ratio (rΘ) for late reservation and the values of the delivery ratio (rΔ) for fast
delivery: 1, 2, 3 and 4.

The characteristics of the second scenario are:

– Length of the simulated time horizon is 600 time instants;
– There is a total of 30 services running on the network, 15 in each direction:

from A to D and from D to A; they all stop at all terminals;
– All 12 possible ODs are considered;
– Different experiments are conducted, with different capacities of services: 5,

10 and 20 (TEUs);
– Different experiments are conducted, based on different forecast accuracies:

good accuracy, underestimation, overestimation.

4.2 Numerical Results and Analysis

The results obtained when running experiments on the first scenario are illus-
trated in Fig. 1. Figure 1(a) presents the ratio between the total revenue obtained
with the RM model and the total revenue obtained with the FCFS policy, corre-
sponding to different price ratios. Figure 1(b) presents the corresponding ratios
of the number of nonprofitable rejected requests over the total number of rejected
requests when applying the RM model. On the horizontal axis, r indicates the
value of the anticipation ratio (rΘ) for late reservation and the value of the deliv-
ery ratio (rΔ) for fast delivery; they are considered to have both the same value r.
As expected, better revenue is always obtained by applying the RM model when
compared with the FCFS policy. When we increase the price ratio r, the differ-
ence in profitability of low-fare compared to high-fare demands grows as well.
A low-fare demand, which has a feasible routing in the transport network, has
then a higher chance to be less profitable compared to a potential future high-
fare demand (even if its probability to occur is low) and consequently will be
rejected or not fully accepted. Therefore, as shown in Fig. 1(b), when we increase
the price ratio r, more demands are rejected because of this economic discrim-
ination (nonprofitability). Consequently, a boost in revenue, as illustrated in
Fig. 1(a) is obtained when we increase the anticipation and delivery price ratios.

Note that, even without any price differentiation, the RM model still gener-
ates better solutions in terms of total revenue (Fig. 1(a), when r = 1). In fact, the
consideration of future demands equally aids in finding the best routing solution
when a demand is accepted. This better routing makes room in the space-time
network for potentially infeasible future demands, and hence convert them to
feasible, which is transformed accordingly into extra revenue.

The ratios between total revenues generated when applying the RM model
and when applying the FCFS policy within the second scenario are presented in
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Fig. 1. Effect of price differentiation on revenue (a) and on rejected requests (b)

Table 1. To examine the sensitivity of the RM model to bad forecast accuracy
situations, we conduct three different simulations related to the accuracy of the
demand forecasts, in terms of volume. In these simulations, if the arrival process
of demands to the booking system follows the same probability distribution
function as considered in the objective function of the RM model, we say the
demand forecast is accurate (Real:Estimate = 1.0). Real:Estimate = 1.5 indicates
the demands are underestimated by a factor of 0.67, while Real:Estimate = 0.5
indicates that the demands are overestimated by a factor of 2. The behavior of
the RM model with respect to different levels of maximum service capacity is
also studied. The values 20, 10 and 5 TEUs for the maximum service capacities
are used in three independent sets of experiments.

As expected, the RM model generates higher total revenue than FCFS when
the demand forecast is accurate. However, even when demands are not coming
as expected, RM model still defeats its competitor. The only exception happens
in the simulation when the demands are overestimated and the service capac-
ity is relatively high: the two models generate the same total revenue. The good
performance of the RM model is found to overcome the influence of underestima-
tion which implies more booking requests than expected, which can be relatively
interpreted as a scarce resource situation. Another observation from Table 1 is
that the less network capacity we have, the better the RM model responds.
Therefore, the best revenue ratio (1.7196) is obtained when the resource is scarce
and the demand forecast is accurate.

The reason why the RM model generates better solutions can be as follows:
fully or partially denying demands (due to the different customer categories)
create the possibility of saving the precious resource for more profitable (due to
higher contribution fares) future demands; to accept a demand, the best routing
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Table 1. Total revenue of RM/FCFS

Service Cap.= 20 Service Cap. = 10 Service Cap.= 5

Real:Estimate = 1.0 1.0483 1.0531 1.7196

Real:Estimate = 1.5 1.0093 1.0391 1.0655

Real:Estimate = 0.5 1 1.0093 1.0282

Table 2. Number of rejected demands of RM/FCFS

Service Cap.= 20 Service Cap. = 10 Service Cap.=5

Real:Estimate = 0.5 1/1 14/16 59/60

Real:Estimate = 1.0 17/25 76/82 143/151

Real:Estimate = 1.5 70/74 207/220 266/280

is decided by taking into account the potential future demands. Consequently,
the better routing of current demand may convert some of the potentially infea-
sible future demands into feasible demands.

Due to the introduction of RM techniques, less demands are rejected com-
pared with FCFS. As shown in Table 2, the number of rejected demands when
applying the RM model, is always less than the corresponding number of rejected
demands with the FCFS policy. Given the same level of accuracy of demand
forecast, less demands are rejected with higher network capacity. However, the
difference between the two competitors is slight. For the RM model, almost one
third of the denied transport requests correspond to regular (R) customers.

Therefore, we design another set of simulations including a negotiation phase
with the rejected R category customers. Three different strategies, Nego RM,
Nego FCFS and Nego PP, are integrated with the proposed RM approach. Once
a demand from an R customer is rejected, the negotiation phase is triggered. Both
Nego RM and Nego FCFS strategies then consider that rejected R demand as a
P demand. However, the former tries to fit this demand in the transport network
considering estimated future demands (RM model), while the later tries to accept
this demand on the transport network in a greedy manner (FCFS model). Instead
of changing the category of the demand, the Nego PP strategy still treats an R
customer as regular. In order to transport it, the delivery delay of this demand
is extended and a lower unit price is charged (as penalty). For all the tests, a
FCFS policy is also carried on as comparison. The effect of different negotiation
strategies for rejected R type demands on the total revenue and the percentage
of successful negotiation is illustrated in Table 3.

In Table 3, Price Ratio indicates the tested values of both rΘ late reserva-
tion and rΔ fast delivery. Revenue/FCFS indicates the ratio of total revenue
obtained by RM model with (or without) negotiation phase related to FCFS,
and Successful Nego shows the percentage of successful negotiation correspond-
ing to each strategy. Even combined with negotiation, RM model still generates
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Table 3. Effect of different negotiation strategies for rejected R customers

Price Ratio Nego. Strategies Revenue/FCFS Successful Nego. (%)

r = 2 RM 1.1477 0

Nego RM 1.1868 15.25

Nego FCFS 1.1849 16.67

Nego PP 1.0543 53.52

r = 3 RM 1.1493 0

Nego RM 1.6227 16.39

Nego FCFS 1.5365 31.88

Nego PP 1.2772 54.29

r = 4 RM 1.7394 0

Nego RM 1.7533 11.11

Nego FCFS 1.7436 16.67

Nego PP 1.3500 53.13

better solutions than FCFS. For a given price ratio, Nego RM always generates
slightly better solutions, in terms of total revenue, compared with Nego FCFS.
On the other hand, the latter always has better performance in negotiation than
the former. Therefore, carriers can choose the appropriate strategies according
to the requirements of their regular customers. In case that R customers have
a relative loose constraint on the delivery time, Nego PP succeeds more than
50 % in the negotiation process for all tested price ratios. One may argue that
there exists other possible ways to compensate; we do not claim the proposed
negotiation strategies are the best solutions. Instead, we put the emphasis on
the fact that with the proposed RM approach, we offer to the carriers a panel
of possible ways to simultaneously increase the satisfaction of regular customers
and make more revenue. Different negotiation strategies may be adopted based
on different types of behavior characterizing regular customers.

5 Conclusions

In this paper, we present a Revenue Management (RM) approach for dynamic
capacity allocation of the intermodal barge transportation network. A new model
is proposed considering the RM strategies. According to the business relation-
ship, customers are classified into three categories, whose transport requests are
accordingly treated differently. A price policy, related to the booking anticipa-
tion and delivery type, is also applied to differentiate the products. We conduct
a set of experiments to validate the RM approach. Compared with the first-come
first-serve (FCFS) based booking strategy, the RM model always generates bet-
ter total revenue, even with inaccurate demand forecast. Another observation
is that facing scarce resource (small transport capacity), the RM model easily
outscores its competitor, and this trend grows when resource levels decrease.
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We also discuss a set of possible negotiation strategies combined with the pro-
posed RM model and conclude that with slightly lower total revenue the decision
support still offers the possibility to better satisfy loyal (regular) customers and
generate more revenue compared with FCFS. Encouraged by these preliminary
results, we are considering to study how the penalty or compensation for the
denied regular demands should be further integrated into the new RM model
proposed.
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Abstract. LOcation Routing Exploration (LORE) is a decision support
tool for addressing location, routing and location-routing problems. In
this paper the LORE tool will be presented, and its main characteristics
addressed. Among the main features of the tool is the ability to support
a variety of problems currently being studied in the location and routing
literature (due to the proposed data structure), and the graphical user
interface (GUI). The data structure will be presented being provided an
explanation on how it can support related problems. The GUI main goal
is not only to aid the solution-finding process but also to foster greater
insight into the problem(s) at hand. To that extent, the GUI, developed
to fit the target user’s profile and intended tasks, is presented, namely
data input and visualization features.

1 Introduction

An efficient logistics system is of the utmost importance for the competitiveness
of today’s organizations. When designing logistics systems, cost-effectiveness is
often the main focus [23,26], where main cost components concern location of
facilities and transportation (distribution from facilities to customers). These are
decisions that have an enormous impact on the effectiveness of logistics systems
and consequently on the complete supply chain [2]. Making correct choices con-
cerning location and distribution (henceforth named routing) is therefore critical
[1]. In such semi-structured decisions, decision support systems (DSS) may play a
big role, as they can handle a large number of parameters and relationships and
lessen the effect of unknown or changing parameters/relationships [11]. How-
ever, the overall complexity of these decisions, and the specifics of each case
under study, makes difficult the task of developing an effective decision support
tool (DST); despite a relevant and potentially impactful research effort.

In operations research (OR) such logistics decisions have been addressed in
a set of well-defined problems. For comprehensive reviews and taxonomies on
c© Springer International Publishing Switzerland 2016
A. Paias et al. (Eds.): ICCL 2016, LNCS 9855, pp. 261–274, 2016.
DOI: 10.1007/978-3-319-44896-1 17
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these specific problems the reader is referred to [16] for location problems, [7] for
vehicle routing problems (VRP), and [15,19] for the integrated location-routing
problem (LRP). These have shown to be NP-hard in most scenarios.

DSTs for these problems are typically faced with the lack of knowledge of the
models from users (usually decision makers with no such technical expertise).
Therefore, having models and algorithms with good performance is often not
enough. The exploration of the solution finding process and the solution presen-
tation are equally important. For fostering greater insight, and allowing better
judgements and decisions, these tools should be easy to understand, navigate,
and interact with.

The development of DSSs (and DSTs) has been fairly active in several areas
(for surveys and related concepts see [8,12,25]). Several tools can currently be
found addressing VRPs (some of the most recent are [17,22]) and location prob-
lems (e.g. [3,20]). Concerning the integrated location-routing approach, only
three works have addressed it, namely [4,10,14]. All of these are restricted to
specific variants of the problem (e.g. the single-objective capacitated LRP in
[14]). Given that the LRP has several variants with a lot of potential real-life
applications, new tools must be developed to address (possibly several of) these
problems. The applicability of such tools is further increased by the fact that
LRPs can be simplified to address, separately, location and routing problems.

The development and availability of such DSTs may help both decision mak-
ers and researchers. The former, by allowing obtaining scientifically-supported
solutions and easily testing alternative solutions, thus improving the quality of
decisions. The latter, by: (a) aiding the process of gathering data; (b) reducing
the time to obtain (real-world) instances; (c) enabling visualizing the inner-
workings of developed models and algorithms; and (d) enabling improving the
functioning of models and algorithms (e.g. helping tuning parameters).

Moreover, such tools may represent a step forward to creating a common
decision making process across different organisation levels (location is typically
handled at a strategic level, while routing is operational), signalled in [12] as a
big research challenge.

This paper presents a decision tool for location, routing and location-routing
problems. The tool is able to support several variants of the LRP, having great
concerns on usability aspects. The remaining sections are organized as follows.
Section 2 addresses the tool architecture, data structure, and supported prob-
lems, providing a brief description on how the data structure can support closely
related problems. Solving integrated logistics problems is addressed in Sect. 3. In
Sect. 4 the graphical user interface (GUI) and its main functionalities concerning
data input and visualizations are presented. Finally, concluding remarks and an
outlook on future work are given in Sect. 5.

2 LORE Architecture, Data Structure, and Supported
Problems

The developed tool, LORE, has an open and modular architecture, allowing func-
tionality to be easily added, updated or removed. The three main components of
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the proposed architecture are: the data structure, the supported problems, and
the user interface. These can be seen in Fig. 1, where interaction with other appli-
cations, input and output features, and algorithm integration are also depicted.

Fig. 1. LORE architecture with its main components

In order to solve instances from various types of LRPs the tool must be able
to support several distinct data. Due to the complexity of the data to support, a
data structure had to be defined, having the following characteristics: (a) flexible,
for easily supporting future developments and file format evolutions, while main-
taining compatibility; (b) being able to hierarchically structure all the needed
data, making it easier to interpret and maintain; and (c) being able to reflect
its structure directly on the files obtained/generated by the tool, facilitating
integration of new algorithms and interaction with other applications.

For these reasons, the data structure created for the tool is defined in XML
Schema, a standard language for defining an XML document structure. Concern-
ing the XML file format, its characteristics, advantages and disadvantages, the
reader is referred to, for example, [27]. Full detail concerning data/file structures
of the tool can be found in [13].

Although the proposed tool is mainly directed at supporting location-routing
decisions it is also able to support simplifications of the problem, namely: the
facility location problem and the VRP. Regarding LRPs, the currently used
data structure enables supporting single and multi-objective approaches for (the
reader is referred to [15] for further explanation of these LRP variants): round-
trip location problem; capacitated LRP (CLRP); location-arc routing problem;
plant-cycle location problem; travelling salesman location problem; stochastic
LRP; transportation-location problem; many-to-many LRP; and multi-level (or
multi-echelon) LRP.
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This set of supported problems can be, in some cases, easily adapted to fit
other well-known problems. For example, if the CLRP has only one possible
depot location it becomes a capacitated VRP (CVRP), or the multi-depot VRP
when several possible depot locations with no depot installation costs exist.
Likewise, if the CLRP considers only direct links between depots and clients,
rather than routes, it is equivalent to the discrete location-allocation problem.

Therefore, the data structure of the proposed tool can support location, rout-
ing, and integrated location-routing decisions (as they share the same elements,
namely, clients, depots, and vehicles). Moreover, editing features of the GUI
(which use the same input/visualization approach for all the problems) allow
maintaining all the data required for these decisions. By addressing these deci-
sions simultaneously it becomes possible to analyse logistics systems and deter-
mine which problem type(s) correspond(s) to a better approach for a specific
scenario.

3 Solving Integrated Logistics Problems

Defining a logistics network often requires analysing different options regarding
logistics decisions and how they affect each other. As follows, a process for solving
integrated logistics problems (using the tool), corresponding information flow
and generated data structure will be presented. For a better understanding,
Fig. 2 can be used alongside the description of the process.

Fig. 2. Solution-finding process, corresponding information flow and data structure

For the correct characterization of the problem several data is required, which
can be obtained manually or using geographical tools (e.g. using google maps
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API [9]). This corresponds to the input data of the problem, possibly requiring
some validation, which is stored after the XML declaration (as seen in Fig. 2,
area A).

For data validation, graphical representations may play an important role.
Features such as overlapping maps, changing visualizations, etc. often make
interpreting information easier for users. To this end, input data must be com-
bined with other visualization-related data. In Fig. 2 we can see an arrow pointing
to where this information is obtained in the data structure (area B).

Solutions for the characterized problem can now be obtained. Concerning
solution-finding approaches, even though the tool embeds several algorithms for
the aforementioned problems, running other algorithms is possible without them
being embedded into the tool. By simply obeying to the data structure, algo-
rithms need only to import and export the necessary data files. Note that time
required for the DST to obtain solutions is related to the algorithms’ ability to
solve the problem or the used commercial software (for mixed-integer program-
ming).

Users can afterwards visualize and analyse solutions; corresponding data is
added to the last section of the data structure (Fig. 2, area C). All of the obtained
data can be exported to an XML file.

The last step of the process, scenario testing, may require significant changes
to the original data, possibly to the point where the addressed problem has
changed. The following example shows such a decision-making scenario.

Suppose a decision maker, e.g. a goods manufacturer, intends finding the
most cost efficient way to distribute products from the production facility to the
clients (Fig. 3, left). Often this is handled as a distribution problem and a CVRP
solution is sought. However, as the production facility is considerably far from
clients, current routing costs are high. A natural analysis would be considering
opening other facilities nearer to clients, shifting the analysis to a CLRP scenario,
where location costs (costs of opening and operating new facilities) have to be
taken into account simultaneously, providing a more integrated view of logistic
costs (Fig. 3, centre).

This analysis can go further in depth, testing several scenarios, for example:
considering intermediary warehouses between the factory and the clients (becom-
ing a multi-level LRP – Fig. 3, right); or considering additional objectives such
as minimizing delivery time. This step-by-step and scenario testing analysis is
made possible in the proposed tool, as the different problems are supported and
several options for comparing solutions are made available.

4 Graphical User Interface and Main Functionalities

For developing effective interfaces the profile of target users must be taken into
account. This was also the case for the proposed tool, where the user (typically
a decision maker) will be, in general, someone with: higher education, not nec-
essarily with a background on modelling and optimization; good knowledge of
the problem at hand or experience in real-world logistics systems design; at least
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Fig. 3. Graphical representation of a logistic system analysed as a CVRP (left), CLRP
(centre), and multi-level LRP (right). Production facility numbered one is fixed; the
remaining production facilities as well as warehouses are being considered for installa-
tion. Lines connecting clients, facilities and warehouses represent vehicle routes

reasonable computer literacy; knowledge of (Web) map applications; and who
may use the tool infrequently.

For this user profile, the information provided should neither be technical
data regarding the used methods nor its validation. Instead, the focus should
be on providing a usable interface, where the main usability goal should be
easy and efficient access to solutions and ease to learn and remember [6,24].
The profile of the target users, the task they intend to perform using this DST,
and usability principles (e.g. consistency, compatibility, familiarity, feedback,
robustness, etc.) [6] were taken into consideration during the design of the tool.
The tool was developed for Windows operating systems, and implemented in
extensible application markup language (XAML) with C# as code-behind.

The main objective behind the development of this tool is to allow obtain-
ing, editing and visualizing data, solving instances of the supported problems
and visualizing the corresponding results. To that end, the following main func-
tionalities are provided:

– input/edit data for defining the problem
– interact with web map servers (WMS), for obtaining and visualizing online

geographical data
– obtain solutions and visualize them either through numeric or graphical rep-

resentation
– visually compare different solutions
– allow user input in the solution obtaining process
– save/export data to easily understandable XML files.
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The conceptual model of the GUI is organized around a main window, with
all functionalities accessible through the toolbar or the menu, in a way eas-
ily understandable by users. This conceptual model, based on the information
flow and similar map applications, aims allowing an easy and efficient access
to solutions, and comprises three main sections (Fig. 4): a toolbar for accessing
main functionalities; a left-hand expandable panel for editing/displaying data
regarding the problems (with tabs for its elements, namely, Clients, Depots and
Vehicles); and a visualization area showing graphical representation of the prob-
lems elements and information about the maps.

Fig. 4. Graphical user interface of the LORE tool

Buttons in the toolbar enable assessing several functionalities, which are
grouped into: standard features (Open, Save, Save as, Print, etc.), map navi-
gation options (Import map, Pan, Zoom out/in, Zoom to fit, Hide map), data
visualization options (Objects size, Display labels/images, View required ser-
vice), and user input options (Fix arc in solution, Import solution). These are
also available through the menu bar thus providing greater flexibility and sup-
porting users with different system experience and/or performing different tasks.

The left-hand expandable panel allows editing/displaying data regarding the
elements in the problem (clients, depots and vehicles) using a data grid. This
panel is most useful when inserting large quantities of data; expanding it enables
working with a bigger data grid.
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The visualization area, which will be addressed in detail further on, allows
seeing the problem elements and information about the maps. Finally, the status
bar displays data regarding the used algorithm (name and time needed to obtain
the current solution), as well as the objective function(s) value(s) of the currently
visualized solution.

The development of the GUI also took into consideration the guidelines
defined by Microsoft for Windows desktop applications [18]. Additionally, the
GUI was subjected to informal tests of adaptation to real target users; then, a
formal usability evaluation was made (evaluation results can be found in [13]).

The following sections will address in detail the functionalities provided by
the proposed DST, how to use them, and the adopted visualization solutions.

4.1 Data Input and Graphical Representations

The data allowing defining the problem is the following: data of the clients
requiring service; data regarding the depots to install or already installed; data
of the available vehicles; and matrix of distances between clients and depots.

This data can be obtained/maintained directly on the map visualization area
(Fig. 5) or using the data grid on the left-hand panel. Using the former option
the inserted/edited element coordinates are directly obtained/changed (changing
coordinates is possible using drag-and-drop of the graphical representation of
the element) popping up a form to collect/edit the remaining data. The latter
option, the data grid, is most suitable when working with large amounts of data.
Numerical and graphical representations are provided and dynamically updated
regardless of the used input method.

Concerning the vehicles and distance matrix, data entry/editing can only be
done using the data grid and dedicated forms. Numerical feedback is provided
accordingly and is complemented with visual representations once a solution is
obtained, where routes are drawn in the map visualization area.

Another data input option made available is interacting with WMSs. Servers
complying with the OpenGIS Web Map Service Interface standard [21] allow
obtaining maps and other information layers in geo-referenced images. Using this
option users can easily obtain map coordinates of clients and depots, and corre-
sponding pairwise distances. Additionally, other information can be obtained in
map layers, possibly combining different online servers (e.g. road network, satel-
lite imagery, important infrastructures, etc.). The LORE tool currently supports
interaction with the OpenGIS standard compliant Demis WMS [5], allowing to
pan and zoom any area of the world map and obtain the requested imagery and
geographical information (Fig. 6).

Concerning graphical representations, besides the standard ones provided for
the different elements involved (circles and squares, respectively for clients and
depots, with corresponding labels and images), other representations and the
map image can be imported by users. As superimposing elements’ representa-
tions onto the map may lead to confusions, their colour, opacity and size may
be changed. Additionally, users can access other views, such as the service-based
view which displays, for each client, a circle with radius directly proportional
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Fig. 5. Data input using the map visualization area

Fig. 6. Obtaining map information from the Demis WMS. The map image on the
right was obtained by performing zoom in on the area inside the dashed rectangle of
the left-side map image.

to its required service. This view helps users identify clients with higher service
values, providing an additional layer of information to the map visualization
area.

Finally, for fully evaluating the different elements in the map users can use
several navigation options, such as: pan, zoom out/in, and zoom to fit. Note
that the graphical representation of vehicle routes is only made available once
solutions are obtained, which will be presented as follows.
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4.2 Obtaining and Visualizing Solutions

Solutions can be obtained by importing a solution file – complying with the
tool’s data structure – or by executing the imbedded algorithms. The import
option allows obtaining solution data from other sources (e.g. optimization soft-
ware, other non-embedded algorithms), where the proposed tool can be used for
inserting, editing and/or visualizing data. Alternatively, as several algorithms
are imbedded in the tool, solutions can be obtained directly. Moreover, several
runs of the same algorithm can be performed (as most rely on randomness),
allowing easily obtaining several solutions and facilitating the scenario testing
phase.

As several types of problems are supported, it may be difficult for users to
correctly identify the problem which they are addressing. For this reason, by
default the tool abstracts the user from the choice of the type of problem (and
consequently from the algorithms to use); still, the user is allowed to change
it (Fig. 7, left). After the type of problem and corresponding model has been
obtained, users must define the desired objective(s) and algorithm (a list of
imbedded algorithms able to solve the specific model is shown to users; as seen
in Fig. 7, right).

Fig. 7. Choice and configuration of the type of problem (left) and algorithm (right)

After obtaining solutions, an overview of their data, namely algorithm used,
time to obtain them, and objective function values, are shown in a control panel
(Fig. 8, left); also allowing restoring and comparing previously obtained solu-
tions. For accessing full solution data, a solution data panel is made available to
users (Fig. 8, right). This panel shows, for a given solution, the following data:
total objective function value, depots to install, vehicles capacity, and route
tracing. By using modeless dialog boxes [18], both control and data panels allow
easily changing focus between the panel and the main window. This is generally
useful as a correct analysis often requires obtaining solutions and comparing
them continuously.

Solutions can also be represented graphically in the map visualization area
(main window). This can be seen in Fig. 9, left, where vehicle routes linking
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Fig. 8. Solution control panel displaying obtained solutions (left) and solution data
panel displaying in tree view all the data of the selected solution (right)

clients and depots are represented using coloured lines; each route with a dif-
ferent colour for easier interpretation. Users can also visually compare different
solutions at the same time, as corresponding route links are overlaid with an
offset (Fig. 9, right). This comparison may also prove useful in identifying route
links that are common to “good” solutions, which can be removed from the prob-
lem in order to reduce its size and difficulty. Looking at the solution comparison
provided on the right-hand side of Fig. 9, this procedure could be performed, for
example, in clients 26, 31, 28, 3, 36 and 35 (top-right), which are linked sequen-
tially in all of the solutions. The following could be done: (1) replace the set of
links by a single fixed link between clients 26 and 35 (fixed links are explained
in the following paragraph); (2) aggregate into these two clients the required
service of the remaining intermediate clients; and (3) remove the intermediate
clients from the problem.

Finally, users can capitalize on their experience and/or knowledge of the
problem under analysis or even add additional constraints, actively contributing
to the solution-finding process. For example, they can use fixed links, i.e., links
that must appear in solutions, forcing any newly obtained solution to include
them. This can be used when some clients have to be serviced in a predetermined
order or when a link must be traversed by a vehicle. Figure 9, left, depicts a fixed
link between clients 3 and 20 (graphically represented with a padlock), forcing
them to be serviced sequentially.

5 Conclusion

In this paper the LORE tool, a DST developed to address location, routing
and location-routing decisions is presented (accessible at: http://lore.web.ua.
pt/). The tool’s architecture, data structure, supported problems, and GUI are
addressed. The data structure is based on XML and allows supporting several

http://lore.web.ua.pt/
http://lore.web.ua.pt/
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Fig. 9. Solution graphical representation (left) and visually comparing three different
solutions (right)

logistics problems, enabling access to online geographic data through WMSs.
The tool’s GUI and proposed visualizations allow the exploration of the solution-
finding process in a way easily understandable by target users.

The profile of target users (who may not have specific knowledge on the used
methods) as well as the tasks they have to perform were taken into consider-
ation in the development of visualization and interaction solutions. The users
interface’ usability was a major concern in the development of the tool, intend-
ing practitioners with moderate computer literacy to be able to obtain good
solutions to integrated logistics problems without much learning effort.

As future work we identify the incorporation of inventory decisions in the tool,
providing new challenges from two points of view: the supported problems (with
additional data and increasingly difficult to solve) as well as from a visualization
point of view (requiring developing dedicated visualizations, e.g., for depicting
and interacting with 3D cargos).

Concluding, the proposed LORE tool, by providing a seamless view of loca-
tion and routing problems, may improve the insight and judgment of decision
makers, possibly helping them make better logistics decisions.
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Abstract. This paper addresses the two-echelon location routing problem with
simultaneous pickup and delivery (2E-LRPSPD). The 2E-LRPSPD deals with
optimally locating primary and secondary facilities, and integrating goods dis-
tribution from depots and collection from customers and secondary depots. To
the best of our knowledge there is no previous study on this problem. We
propose two mixed integer programming formulations for the 2E-LRPSPD.
While the first formulation is a two-index node-based formulation, the second
one is a two-index flow-based formulation. Moreover, a family of valid
inequalities are adapted from the literature to strengthen the formulations. In
order to evaluate the performances of the formulations and valid inequalities, we
conduct an experimental study on the instances derived from the literature. The
computational results show that the flow-based formulation produces better
lower bounds than the node-based formulation on small and medium-size
problems.

Keywords: Two-Echelon location routing problem � Simultaneous pickup and
delivery � Integer programming

1 Introduction

Globalization makes competitive environment conditions harder. Companies share a
significant part of their budget for logistics costs. Therefore, they want to decrease
logistic costs by optimizing their distribution network. Location of depots and distri-
bution of goods from depots to customers are the main elements in the design of a
distribution system. In most of the studies, it is assumed that customers served directly
from depots. In practice, customers may have demand less than truckload, so distri-
bution is done through routes. Determining the location of depots and forming routes
from depots to customers are both hard combinatorial problems. These two problems
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handled separately for years. In literature, it is shown that the cost efficient design of
distribution systems can be obtained by considering location and vehicle routing
decisions together. The progress in optimization techniques make possible to integrate
these problems and the problem is named as Location-Routing Problem (LRP) in lit-
erature [17]. The LRP is the problem of determining the location of facilities and the
routes of the vehicles for serving the customers under some constraints such as facility
and vehicle capacities, route length, etc. to satisfy demands of all customers and to
minimize total cost including routing costs, vehicle fixed costs, facility fixed costs and
facility operating costs. The LRP can be applied in food and drink distribution, military
equipment location, parcel delivery and telecommunication network design [8].
Comprehensive reviews about the LRP can be found in [4, 11, 12] or [17].

Recently researchers linked logistics, freight distribution and traffic management
and generate the idea of city logistics. This notion can be defined as strategical, tactical
or operational planning of freight flows in city. Distributing directly from main depots
to final customers is not practical so the need for intermediate facilities arises. In this
kind of distribution system, main depots serve intermediate depots and intermediate
depots serve final customers. One of the problems arising from this distribution system
is Two-Echelon Location-Routing Problem (2E-LRP). Figure 1 provides a represen-
tation of 2E-LRP. Components of two-echelon freight distribution systems are primary
facilities, primary vehicles, secondary facilities, secondary vehicles and customers.
Primary facilities are high capacitated facilities and located far from customers. At
primary facilities customer demands are loaded on primary vehicles. Each primary
vehicle visits one or more secondary facilities. Secondary facilities to be located are
low capacitated facilities used for transshipment operations. At this facilities, freights
coming from primary facilities on primary vehicles are transferred to low capacitated
secondary vehicles. Secondary vehicles are suitable for city transportation operations.
Each secondary vehicle visits one or more customers. Customers are end points; each
customer is served by exactly one secondary vehicle. At each echelon, routes start and
end at same facility [2].

To solve the 2E-LRP mixed integer programming models and a heuristic algorithm
based on Tabu Search were developed by Boccia et al. [1]. Nguyen et al. [13]

Fig. 1. Two echelon Location-Routing problem representation (Source: [2])
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developed a hybrid metaheuristic combining GRASP and evolutionary/iterated local
search. Nikbakhsh and Zegordi [16] presented a 4-index mathematical model for two
echelon location routing problem with soft time windows, moreover they developed a
heuristic algorithm for the problem. Contardo et al. [3] developed a two-index math-
ematical model and a branch and cut algorithm. They also use adaptive
large-neighborhood search to reach better solutions in a short time. Nguyen et al. [14]
described four constructive heuristics and two GRASP based metaheuristics. Meta-
heuristics include a learning process, variable neighborhood descent and path relinking
heuristics. Nguyen et al. [15] proposed a multi start iterated local search for the
problem and three greedy heuristics to obtain an initial solution. Govindan et al. [5]
developed a multi-objective optimization model for 2E-LRP with time windows. They
also aimed to reduce costs caused by carbon footprint and greenhouse gas emissions.
They designed a method which includes a multi-objective hybrid approach called
MHPV. This method is a hybrid of multi-objective particle swarm optimization and
adapted multi-objective variable neighborhood search. It is also important to note that
two-echelon problems are also seen in telecommunication systems. Some recent studies
in this area are given in [10, 19].

In general form of 2E-LRP, customers have only delivery demands. However, in
practice, customers can have pickup and delivery demands and they often request that
both demands should be met at the same time. In this study we define a variant of the
2E-LRP named as Two Echelon Location-Routing Problem with Simultaneous Pickup
and Delivery (2E-LRPSPD). To the best of our knowledge, there is no previous study
on the 2E-LRPSPD in the literature. The 2E-LRPSPD applications can be seen in a
number of reverse logistics contexts. The beverage industry is one of the application
areas. Firms are responsible for both distributing the beverages and collecting the
empty bottles for reusing. Bottles are transported from primary facilities to secondary
facilities and from secondary facilities to stores, and empty bottles collected while
distribution. Another example is the grocery store chain. Products are transported from
primary facilities to secondary facilities on pallets and from secondary facilities to
stores and empty pallets are returned to secondary facilities. The 2E-LRPSPD deals
with determining the location of secondary facilities and the routes of the vehicles at
the first echelon for serving the secondary facilities, at the second echelon for cus-
tomers under some constraints such as facility and vehicle capacities, route length, etc.
to satisfy demands of all customers and to minimize the total cost including routing
costs, vehicle fixed costs, facility fixed costs and facility operating costs. It should be
noted that a variant of this problem, called as the two-echelon multi-products
location-routing problem with pickup and delivery (LRP-MPPD-2E), has been studied
in [18]. The LRP-MPPD-2E considers multi-product, one or more secondary facilities
in the same route and pickup or delivery demands. Thus, the LRP-MPPD-2E differs
from the 2E-LRPSPD with these aspects.

By using strong mathematical formulations, efficiency of exact methods such as
branch and cut, branch and price can be improved. Besides, strong formulations can be
used in matheuristics and yields better results. Therefore, as a first step to solve the
2E-LRPSPD, we propose two polynomial-size Mixed Integer Programming
(MIP) formulations. These new formulations have been derived from the formulations
developed by [9] for the LRP with Simultaneous Pick-up and Delivery (LRPSPD).
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While the first formulation is a node-based formulation, the second one is a flow-based
formulation. Moreover, we adapt a family of valid inequalities from the literature to
strengthen the formulations. In order to evaluate the performances of the formulations
and valid inequalities, we conduct an experimental study on the instances derived from
the literature. This study presents the comparative results of performances of mixed
integer models. Computational results show that flow-based formulation performs
better than node-based formulation in terms of generating tight lower bounds on small
and medium-size problems.

The rest of this paper is organized as follows. Problem description and proposed
formulations are given in Sect. 2. The adopted valid inequalities presented in Sect. 3.
Computational results are reported in Sect. 4. Finally, conclusion and suggestions for
the future research directions are discussed in Sect. 5.

2 Problem Description and Mathematical Formulations

This section presents two new mixed integer mathematical formulations for the
2E-LRPSPD. Formulations have been formed based on the formulations developed by
[9] for the LRPSPD. The 2E-LRPSPD can be defined formally as follows: Let G = (N,
A) be a complete directed network where N ¼ NC [ND [ 0f g is the set of vertices in
which NC represents the customers, ND represents the secondary facilities and “0”
represents the primary facility. While N1 is the set of vertices in the first echelon ðN1 ¼
0f g[NDÞ;N2 is the set of vertices in the second echelon ðN2 ¼ NC [NDÞ. A ¼
i; jð Þ : i; j 2 Nf g is the set of arcs, and to each arc (i, j) is associated a nonnegative cost

(distance) cij and triangular inequality holds (i.e., cij þ cjk � cik). A capacity CDt and a
fixed cost FDt are associated with each possible secondary facility node t 2 ND. At each
echelon there is unlimited number of homogeneous vehicles with known capacities
CV1;CV2ð Þ and fixed operating cost FV1;FV2ð Þ. In the 2E-LRPSPD, each customer
l 2 NC requires a given quantity to be delivered dlð Þ and picked-up plð Þ. The
2E-LRPSPD consists of locating secondary facilities and finding a set of routes such that;

• At the first echelon each route starts and ends at the primary facility,
• At the second echelon each route starts and ends at the same secondary facility,
• Each secondary facility is visited exactly once by exactly one primary vehicle,
• Each customer is visited exactly once by exactly one secondary vehicle,
• The total vehicle load in any arc does not exceed the capacity of the vehicle,
• The total location, vehicle costs for secondary facilities, and routing costs are

minimized.

2.1 Node Based Formulation (M1 Node)

In the M1 node formulation, the additional variables are defined on the nodes of the
graph and subtour elimination and vehicle capacity restrictions are modeled using
Miller–Tucker–Zemlin (MTZ) constraints. Thus, the M1 node formulation includes
lifted version of these constraints given in [6, 7], respectively. In the M1 node,
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xij ¼
1; if a primary vehicle travels directly from node i to node j at first echelon

0; otherwise

�
ð8i; j 2 N1Þ

hlm ¼ 1; if a sec ondary vehicle travels directly from node l to nodem at sec ond echelon

0; otherwise

�
ð8l;m 2 N2Þ

at ¼
1; if depot t is opened

0; otherwise

�
ð8t 2 NDÞ

wmt ¼
1; if customer m is assigned to sec ondary facility t

0; otherwise

�
ð8m 2 NC; 8t 2 NDÞ

Additional variables:
Ut: delivery load on primary vehicle just before having serviced sec ondary facility

t, 8t 2 ND

Vt: pickup load on primary vehicle just after having serviced sec ondary facility t,
8t 2 ND

Um: delivery load on sec ondary vehicle just before having serviced customer m,
8m 2 NC

Vm: pickup load on sec ondary vehicle just after having serviced customer m,
8m 2 NC

Dt: delivery demand of sec ondary facility t, 8t 2 ND

Pt: pickup demand of sec ondary facility t, 8t 2 ND

The node-based formulation, M1 node, is as follows:
Formulation (M1 node)

Min
X
i2N1

X
j2N1

cijxij þ
X
t2ND

FV1x0t þ
X
l2N2

X
m2N2

clmhlm þ
X
t2ND

FDtat þ
X
t2ND

X
m2NC

FV2htm

ð1Þ

s:t:
X
j2N1

xjt ¼ at 8t 2 ND ð2Þ

X
j2N1

xji �
X
j2N1

xij ¼ 0 8i 2 N1 ð3Þ

Uj � Ui þCV1xij �CV1 � Dj 8i; j 2 ND; i 6¼ j ð4Þ

Dt �Ut 8t 2 ND ð5Þ

Ut �CV1 8t 2 ND ð6Þ

Dt ¼
X
m2Nc

wmtdm 8t 2 ND ð7Þ

X
m2Nc

wmtdm �CDtat 8t 2 ND ð8Þ
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Vt � Ve þCV1xte �CV1 � Pe 8t; e 2 ND; t 6¼ e ð9Þ

Pt �Vt 8t 2 ND ð10Þ

Vt �CV1 8t 2 ND ð11Þ

Ut þVt � Dt �CV1 8t 2 ND ð12Þ

Pt ¼
X
m2Nc

wmtpm 8t 2 ND ð13Þ

X
m2Nc

wmtpm �CDtat 8t 2 ND ð14Þ

X
m2N2

hlm ¼ 1 8l 2 NC ð15Þ

X
m2N2

hlm�
X
m2N2

hml ¼ 0 8l 2 N2 ð16Þ

X
t2ND

wmt ¼ 1 8m 2 NC ð17Þ

hmt �wmt 8t 2 ND; 8m 2 Nc ð18Þ

htm �wmt 8t 2 ND; 8m 2 Nc ð19Þ

hlm þwlt þ
X

e2ND;e 6¼t

wme � 2 8l;m 2 NC; l 6¼ m; 8t 2 ND ð20Þ

Um � Ul þCV2hlm þðCV2 � dl � dmÞhml �CV2 � dl 8l;m 2 NC; l 6¼ m ð21Þ

Vm � Vl þCV2hlm þðCV2 � pl � pmÞhml �CV2 � pm 8l;m 2 NC; l 6¼ m ð22Þ

dl þ
X

m2Nc;l6¼m

hlmdm � Ul 8l 2 NC ð23Þ

Ul �CV2 � ðCV2 � dlÞ
X
t

hlt 8t 2 ND;8l 2 Nc ð24Þ

pl þ
X

m2NC ;l6¼m

pmhml �Vl 8l 2 NC ð25Þ

Vl �CV2 � ðCV2 � plÞ
X
t2ND

htl 8l 2 NC ð26Þ

Ul þVl � dl �CV2 8l 2 NC ð27Þ
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xij 2 0; 1f g 8i; j 2 N1 ð28Þ

wmt 2 0; 1f g 8m 2 ND; 8l 2 NC ð29Þ

at 2 0; 1f g 8t 2 ND ð30Þ

hlm 2 0; 1f g 8l;m 2 N2 ð31Þ

Um;Vm;Ut;Vt;Dt;Pt � 0 8t 2 ND; 8m 2 NC ð32Þ

where preliminary set hlm ¼ 0 whenever max ðdl þ dmÞ; ðpl þ pmÞ; ðdm þ plÞf g[CV2,
8l;m 2 NC; l 6¼ m. This restriction guarantees that any incompatible customer pair
whose total demand is greater than the vehicle capacity does not appear in the same
route.

Objective function (1) minimizes the total system cost including transportation
costs, secondary facility and vehicle fixed costs for both echelons. While constraints
(2)–(14) are defined for the first echelon, (15)–(27) are defined for the second echelon.
Constraints (2) ensure that each opened secondary depot must be visited exactly once.
Constraints (3) guarantee that the number of entering and leaving arcs to each node are
equal. Constraints (4) are flow inequalities for delivery demands, eliminate sub tours
and guarantee that delivery demand of each secondary facility is satisfied. Constraints
(5) and (6) are bounding constraints for Ut. Constraints (7) define Dt, which is equal to
total delivery demand of customers that assigned to secondary facility t. Constraints (8)
guarantee that the total delivery load on any secondary facility do not exceed the
corresponding secondary facility capacity. Constraints (9) are flow inequalities for
pickup demands, eliminate sub tours and guarantee that pickup demands of each
secondary facility are satisfied. Constraints (10) and (11) are bounding constraints for
Vt. Constraints (12) imply that the total load on any arc does not exceed the primary
vehicle capacity. Constraints (13) define Pt, which is equal to total pickup demand of
customers that assigned to secondary facility t. Constraints (14) guarantee that the total
pickup load on any secondary facility do not exceed the corresponding secondary
facility capacity. Constraints (15) ensure that each customer must be visited exactly
once, constraints (16) guarantee that the number of entering and leaving arcs to each
node are equal. Constraints (17) ensure that each customer must be assigned to only
one secondary facility. Constraints (18)–(20) forbid the illegal routes which do not start
and end at the same depot. Constraints (21) are flow inequalities for delivery demands
and eliminate sub tours and guarantee that delivery demand of each customer is sat-
isfied. Constraints (22) are flow inequalities for pickup demands and they eliminate sub
tours and guarantee that pickup demand of each customer is satisfied. Constraints
(23)–(26) are bounding constraints for the additional variables. Constraints (27) imply
that the total load on any arc does not exceed the vehicle capacity. Finally, constraints
(28)–(32) are known as integrality constraints.
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2.2 Flow Based Formulation (M2 Flow)

In the M2 flow, the additional variables are defined on the arcs of the graph. Definitions
of additional variables are given below:

Additional variables:
Uij: demand to be delivered to sec ondary facilities routed after node i and

transported in arc (i, j) if a vehicle travels directly from node i to node j,
8i; j 2 N1; otherwise 0

Vij: demand to be picked up from sec ondary facilities routed up to node i (including
node i) and transported in arc (i, j) if a vehicle travels directly from node i to
node j,8i; j 2 N1; otherwise 0

Uml: demand to be delivered to customers routed after nodem and transported in arc
(m, l) if a vehicle travels directly from node m to node l, 8m; l 2 N2; otherwise 0

Vml: demand to be picked up from customers routed up to node m (including node m)
and transported in arc (m, l) if a vehicle travels directly from node m to node l,
8m; l 2 N2; otherwise 0

The flow-based formulation, M2 flow, is as follows:
Formulation (M2 flow)
Min (1),
s.t. (2), (3), (7), (8), (13)–(20) andX

j2N1

Ujt�
X
j2N1

Utj ¼ Dt 8t 2 ND ð33Þ

X
j2N1

Vtj�
X
j2N1

Vjt ¼ Pt 8t 2 ND ð34Þ

Uij þVij �CV1xij 8i; j 2 N1; i 6¼ j ð35ÞX
t2ND

U0t ¼
X
m2NC

dm ð36Þ

X
t2ND

Ut0 ¼ 0 ð37Þ

X
t2ND

Vt0 ¼
X
t2ND

pm ð38Þ

X
t2ND

V0t ¼ 0 ð39Þ

Uij �CV1xij 8i 2 ND; 8j 2 N1 ð40Þ
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Vij �CV1xij 8i 2 N1; 8j 2 ND ð41ÞX
m2N2

Uml�
X
m2N2

Ulm ¼ dl 8l 2 NC ð42Þ

X
m2N2

Vlm�
X
m2N2

Vml ¼ pl 8l 2 NC ð43Þ

Ulm þVlm �CV2hlm 8l;m 2 N2; l 6¼ m ð44ÞX
m2NC

Utm ¼
X
m2NC

wmtdm 8t 2 ND ð45Þ

X
m2NC

Umt ¼ 0 8t 2 ND ð46Þ

X
m2NC

Vmt ¼
X
m2NC

wtmpm 8t 2 ND ð47Þ

X
m2NC

Vtm ¼ 0 8t 2 ND ð48Þ

Ulm �ðCV2 � dlÞhlm 8l 2 NC; 8m 2 N2 ð49Þ

Vlm �ðCV2 � pmÞhlm 8l 2 N2; 8m 2 NC ð50Þ

Ulm � dmhlm 8l 2 N2; 8m 2 NC ð51Þ

Vlm � plhlm 8l 2 NC; 8m 2 N2 ð52Þ

Uij;Vij � 0 8i; j 2 N1 ð53Þ

Ulm;Vlm � 0 8l;m 2 N2 ð54Þ

where preliminary set hlm ¼ 0 whenever max ðdl þ dmÞ; ðpl þ pmÞ; ðdm þ plÞf g[CV2,
8l;m 2 NC; l 6¼ m as in the M1 node. Constraints (33) and (34) are flow conservation
constraints for secondary facility delivery and pickup demands, respectively, and they
both eliminate sub tours. Constraints (35) imply that the total load on any arc does not
exceed the vehicle capacity. Constraints (36) ensure that the total delivery load dis-
patched from primary facility equals to the total delivery demand of customers. Con-
straints (37) guarantee that the total delivery load returning to the primary facility must
be equal to zero. Constraints (38) ensure that the total pick up load entering primary
facility equals to the total pickup demand of customers. Constraints (39) guarantee that
the total pick up load dispatched from primary facility must be equal to zero. Con-
straints (40) and (41) are bounding constraints for the additional variables. Constraints
(42) and (43) are flow conservation constraints for delivery and pick up demands,
respectively, and they both eliminate sub tours. Constraints (44) imply that the total

Two Echelon Location Routing Problem with Simultaneous Pickup and Delivery 283



load on any arc does not exceed the vehicle capacity. Constraints (45) ensure that the
total delivery load dispatched from each opened secondary facility equals to the total
delivery demand of customers, which are assigned to the corresponding secondary
facility. Constraints (46) guarantee that the total delivery load returning to the opened
secondary facilities must be equal to zero. Constraints (47) ensure that the total pick up
load entering each opened secondary facility equals to the total pick up demand of
customers, which are assigned to the corresponding secondary facility. Constraints (48)
guarantee that the total pick up load dispatched from each opened secondary facility
must be equal to zero. Constraints (49)–(52) are bounding constraints for the additional
variables. Finally, Constraints (53) and (54) are integrality constraints.

3 Families of Valid Inequalities

In this section, we describe several families of valid inequalities which are used to
strengthen the linear relaxation of a mathematical model. In this study, six valid
inequalities, which are adopted from [9] developed for LRPSPD, are used to strengthen
the formulations. We added these valid inequalities to the formulations introduced in
the Sect. 2 in order to strengthen their linear programming relaxation. Three of the
valid inequalities are polynomial sized and rest of them are exponential sized.

The first polynomial sized family of valid inequalities (55) and (56) bounds below
the number of routes originating from primary facility and secondary facilities,
respectively. X

t2ND

x0t � r2E�LRPSPD NDð Þ ð55Þ

X
t2ND

X
m2NC

hmt � r2E�LRPSPD NCð Þ ð56Þ

where r2E�LRPSPD NDð Þ ¼ max
P

m2NC

dm;
P

m2NC

pm

 !
=CV1

& ’
; r2E�LRPSPD NCð Þ ¼

max
P

m2NC

dm;
P

m2NC

pm

 !
=CV2

& ’
and �d e is the smallest integer bigger than �.

The following inequality bounds from below the number of opened secondary
facilities. X

t2ND

at � amin ð57Þ

where amin ¼ min
S�N0

jSj Pk2S CDk �max d NCð Þ; p NCð Þð Þ��� �
which enforces that the

number of opened depots must satisfy the minimum requirement. amin value can be
obtained as follows; sort secondary facilities according to non-increasing order of their
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capacity, then the first S secondary facility satisfying
P

k2S CDk �max d NCð Þ; p NCð Þð Þ
are selected as opened secondary facility set.

Exponential sized inequalities are used for only second echelon. First two
exponential-size inequalities are based on the generalized large multi star
(GLM) inequalities which have been originally proposed for the VRP.

X
l2S

X
m2NC=S

hlm � 1=CV2

X
l2S

dl þ
X
l2S

X
m2NC=S

dm hlm þ hmlð Þ
0
@

1
A 8S�NC; S 6¼ ; ð58Þ

X
l2S

X
m2NC=S

hlm � 1=CV2

X
l2S

pl þ
X
l2S

X
m2NC=S

pm hlm þ hmlð Þ
0
@

1
A 8S�NC; S 6¼ ; ð59Þ

The last exponential-size valid inequality guarantees that the number of vehicles vis-
iting a set of customers is not less than the corresponding lower bound.X

l;mð Þ2S
hlm � Sj j � r2A�YSETDARP Sð Þ 8S�NC; S� 2 ð60Þ

where r2A�YSETDARP Sð Þ is calculated as in constraint (55) and (56).
The exponential-size constraints are added by using a suitable separation algorithm

which works based on creating candidate set for violation of the valid inequality and
iteratively adding a single suitable node to the set.

4 Computational Results

This section presents the results from our computational experiments that investigate
the effects of valid inequalities on the formulations. Our experimental study consists in
solving LP relaxations of the formulations with the state-of-the-art LP/MIP solver
GAMS 24.1.3/CPLEX 12 on Intel® Core i7-4770 3.40 GHz equipped with 8 GB
RAM computer. Firstly, we give a brief information about the test problems then
continue with computational results.

4.1 Test Problems

Since this study is the first considering 2E-LRPSPD, we derive its test problems from
2E-LRP test sets using demand separation approaches proposed by Salhi and Nagy
[20]. Two test sets consisting small and medium sized problems are generated for the
2E-LRPSPD. These are derived from [15]. Test sets have 5 or 10 satellites and 25 or 50
customers. Capacity of the first echelon vehicles are 750 or 850 units; second echelon
vehicles are 100 or 150 units. Demands follow normal distribution with mean 15 and
variance 25. Customer locations follow either a normal distribution or a multi-normal
distribution. The distances between nodes are Euclidean distances but for the first
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echelon, distances are doubled. Since pickup and delivery demands for the customers
are needed, we utilize demand separation approaches of [20]. In Salhi and Nagy’s
approach, a ratio ri ¼ minðxi=yi; yi=xiÞ, is calculated for each customer i. In this
equation xi and yi are the coordinates of the customers. Delivery and pickup demands
are generated as di ¼ ri � qi and pi ¼ qi � di respectively where qi is the original
demands of the customers. This type of problem is called as X and another type of
problem Y is generated by exchanging the delivery and pickup demands of every other
customer. As a result, 24 different test instances are generated considering types of
demand separation X and Y.

4.2 Effects of the Valid Inequalities

In order to investigate the effects of valid inequalities on the formulations, lower bound
improvement percentage (LBI%) is considered for each instance. The LBI% is the gap

Table 1. Effects of the valid inequalities on the node-based formulation (lower bound
improvement %)

Test Set (55), (56) (55), (56), (57) (55), (56), (57), (58), (59) All

25-5MN X 49.10 49.10 54.12 60.19
Y 46.70 46.70 51.10 57.66

25-5MNb X 22.57 22.57 24.39 27.77
Y 23.49 23.49 25.23 28.78

25-5N X 63.41 63.41 65.80 68.29
Y 57.96 57.96 59.79 62.09

25-5Nb X 74.51 74.51 76.14 81.32
Y 68.20 68.20 69.55 74.78

50-5MN X 27.65 27.65 28.70 31.84
Y 28.31 28.31 29.34 32.04

50-5MNb X 15.59 25.75 26.79 30.83
Y 15.14 22.54 23.38 27.48

50-5N X 38.06 48.06 49.73 50.71
Y 38.04 47.17 49.02 50.76

50-5Nb X 42.88 51.45 51.50 52.49
Y 41.23 47.48 47.52 48.21

50-10MN X 25.56 25.56 26.39 29.33
Y 25.33 25.33 25.81 27.96

50-10MNb X 16.63 27.56 27.80 30.48
Y 16.13 23.69 23.88 27.47

50-10 N X 13.71 24.96 26.39 28.05
Y 12.57 20.87 21.75 24.24

50-10Nb X 21.96 33.24 33.57 34.92
Y 17.13 27.79 28.05 29.40

Average 33.41 38.06 39.41 42.38

286 E.A. Demircan-Yildiz et al.



between linear programming relaxation objective values (ZLB
Or ) and (ZLB

VI ) of the original
problem and original problem with valid inequalities, respectively, and it is calculated
by Eq. (61).

LBI% ¼ 100 � ZLB
VI � ZLB

Or

ZLB
Or

� �
ð61Þ

In Tables 1 and 2, effects of the valid inequalities on node- and flow- based formu-
lations are presented. The first column in the tables shows the name of test set. The rest
of the columns show the lower bound improvement obtained by solving the LP
relaxations of the mathematical model with the valid inequalities written on captions.

Table 2. Effects of the valid inequalities on the flow-based formulation (lower bound
improvement %)

Test Set (55), (56) (55), (56), (57) (55), (56), (57), (58), (59) All

25-5MN X 30.91 30.91 30.91 40.40
Y 29.76 29.76 29.76 43.90

25-5MNb X 22.14 22.14 22.14 26.38
Y 23.23 23.23 23.23 27.25

25-5N X 37.29 37.29 37.29 41.65
Y 35.36 35.36 35.36 40.48

25-5Nb X 45.99 45.99 45.99 58.07
Y 36.96 36.96 36.96 49.07

50-5MN X 11.71 11.71 11.71 17.02
Y 11.41 11.41 11.41 17.48

50-5MNb X 6.54 11.55 11.55 18.30
Y 6.05 9.83 9.83 16.16

50-5N X 14.16 20.32 20.32 25.30
Y 14.12 19.77 19.77 26.01

50-5Nb X 13.29 20.07 20.07 24.81
Y 9.33 14.49 14.49 19.47

50-10MN X 10.94 10.94 10.94 14.70
Y 10.54 10.54 10.54 14.17

50-10MNb X 6.20 12.65 12.65 17.37
Y 4.89 9.88 9.88 14.46

50-10N X 6.90 8.80 8.80 13.70
Y 6.68 7.85 7.85 12.47

50-10Nb X 9.69 20.41 20.41 29.64
Y 7.76 15.75 15.75 24.74

Average 17.16 19.90 19.90 26.38
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As seen on tables, valid inequalities have significant effects on both formulations to
obtain tight bounds. Successive inclusion of the valid inequalities improves lower
bounds for M1 node by 42.38 % and M2 flow by 26.38 % on the average. Observing
the tables, we conclude that introducing inequality (55) and (56) improves lower
bounds by 33.41 % for M1 node, by 17.16 % for M2 flow. Inequality (57) yields
4.65 % lower bound improvement for M1 node, 2.74 % for M2 flow. It is also
interesting to note that inequality (58) and inequality (59) leads to a slight improvement
on the lower bounds 1.35 % for M1 node and no improvement for M2 flow. When we
compare the effects of valid inequalities it can be said that inclusion of the inequality
(60) gives better lower bound improvements for both of the formulations. It is seen
from the tables that LBI%s on M2 flow are lower than those of M1 node. The reason
behind this is that original M2 flow produces better lower bounds than M1 node. This
result is also consistent with the literature. As a result, flow-based formulation can be
used to develop new exact solution procedures such as branch and cut, etc.

5 Conclusion

In this study two-echelon location routing problem with simultaneous pickup and
delivery, 2E-LRPSPD, is proposed. The problem includes pickup and delivery activ-
ities at each echelon. Moreover, secondary facilities and all vehicles are capacitated. As
a first step to solve the 2E-LRPSPD, two mixed integer mathematical formulations are
proposed for the problem; one is node based the other is flow based.

Six valid inequalities adapted from literature and used to reach strong bounds.
While three of the valid inequalities is polynomial sized, others are exponential sized.
Computational experiments have been conducted to evaluate the effects of valid
inequalities in terms of lower bound improvement. The results show that the valid
inequalities improve the lower bounds for both formulations. However, their impact on
M1 node is more significant and also M2 flow produces better lower bounds than M1
node.

For further researches there are several directions. New valid inequalities can be
developed for tighter lower bounds and exact algorithms such as branch and cut can be
developed to obtain optimal or near-optimal solutions.
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Abstract. Optimal transportation plans for fleets with electric-powered
vehicles (EPVs) differ substantially from plans generated for fleets with
combustion-powered vehicles (CPVs). The main reasons for this differ-
ence are the reduced range and payload of EPVs (compared to CPVs) as
well as their increased efficiency. In this paper, transportation plans for
CPVs and EPVs which must not be recharged during route fulfillment
are analyzed by computational experiments. The advantages of CPVs
with respect to totally driven distances, number of used vehicles and the
ability to generate feasible plans are opposed to the advantages of EPVs
with respect to CO2 emissions. Additionally it is shown that the spe-
cific drawbacks of CPVs and EPVs can be mitigated by exploiting the
flexibility of a fleet which is composed of both, EPVs and CPVs.

Keywords: Vehicle routing · Electric-powered vehicles versus
combustion-powered vehicles · Mixed vehicle fleet · Energy consump-
tion · Reduction of CO2 emissions · Adaptive large neighborhood search

1 Motivation and Problem Description

The usage of electric-powered vehicles (EPVs) for cargo transportation brings
about new challenges for research on transportation planning [8]. One of the
challenges which are frequently accepted by the research community is the small
range (operating distance) of EPVs, which is caused by the limited battery
capacity. The scarce energy capacity of EPVs either allows only short vehicle
routes, or alternatively and in contrast to combustion-powered vehicles (CPVs),
detours to recharging stations become necessary, see [12]. Furthermore, the pay-
load of EPVs is reduced due to the high weight of the batteries. Compared to
CPVs of the same size (with respect to gross weight), an increased number of
EPVs is needed for fulfilling a given set of transportation tasks. Consequently,
the proportion between fixed and variable costs is changing. That is why research
on the fleet size and the utilization of mixed vehicle fleets require new specific
investigations, e.g. [3]. Altogether, new tour planning methods considering the
specific characteristics of EPVs are required.
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Few trucking companies have recently started using EPVs (see e.g. [19]).
Of course, they do not replace all CPVs of their fleet by EPVs. In fact, they
use EPVs tentatively for getting experience in applying electric power for cargo
transport on roads. That is why EPVs usually are not used in fleets consisting
exclusively of EPVs. They mostly are part of a mixed fleet composed of vehi-
cles with electric traction and conventional, i.e. combustion-powered, vehicles.
Furthermore, EPVs nowadays are almost exclusively used for local traffic on
short-distance routes. Apart from some exceptions, trucking companies operate
EPVs in that way that they avoid recharging during their routes. Exceptions
refer to planning situations where EPVs can be recharged during the service
time at customer locations. However, this requires precise agreements and coop-
eration between the trucking companies and the operators of customer locations.
Detours to charging stations are avoided since the extra traveling distance and,
even more important, the loss of time would be very costly. The usage of recharg-
ing stations is excluded in our paper since for local transport recharging on tour
would be economically useless due to the driver wages which have to be paid for
the time when drivers and vehicles are idle.

Out of the above reasons and in contrast to most research on vehicle rout-
ing for EPVs, we assume that recharging will only be done at the depot of the
trucking company. That is why the tour lengths of routes planned for EPVs have
to be adapted to the maximum range which can be driven by an EPV without
recharging. Moreover, it might even happen that there is no feasible transporta-
tion plan for fulfilling a given set of transportation tasks with a homogeneous
fleet of EPVs since some distances between customer locations are simply too
long for EPVs. Since we are considering routes which have to be completed by one
driver within one day, the tour length is additionally limited for any vehicle type
by the maximum permissible daily driving time prescribed by EC-regulations.

EPVs are more energy-efficient than CPVs. However, one of the major draw-
backs of EPVs is that their capabilities are more restrictive than those of CPVs;
e.g. EPVs have a lower range and a lower payload. Consequently, using EPVs
instead of CPVs leads to a reduction of the solution space for routing and
scheduling. This means that the solution quality may decrease, and e.g. in case
of distance minimization, the total travel distance of the vehicles will increase.
However, the amount of increase of travel distances is not known in advance
without knowing the characteristics of the deployed vehicles and transportation
tasks at hand. Anyway, increased travel distances of EPVs will in turn cause
increased energy consumption. That is why this paper is focusing on the follow-
ing research questions:

1. What is the effect of the reduced range and payload of EPVs (compared to
CPVs) on the travel distances and on the feasibility of transportation plans?

2. What is the amount of energy reduction or emission reduction reachable by
using EPVs instead of using CPVs?

3. Can the typical strengths of EPVs (low energy consumption) and CPVs (high
range and payload) be exploited by a fleet which is composed of both, EPVs
and CPVs?
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For investigating Question 1, transportation plans for test instances with
short transportation distances are considered and the traveling distances
obtained by these transportation plans are opposed for CPVs on the one hand
and EPVs on the other hand. Then, the transportation distances are stepwise
stretched or compressed in order to explore the impact of traveling distances on
transportation plans; and the demands regarding transportation tasks are also
modified in order to see the impact of capacity limitations of the vehicles.

For answering Question 2, transportation plans for CPVs and EPVs are com-
pared with respect to the average values for energy consumption and CO2 emis-
sions. For CPVs, it is widely accepted that the following Eq. (1) is a good and rea-
sonably simplified approximation for the expected energy consumption of a truck k
carrying payload of weight qij from a location i to a location j with dij representing
the travel distance for the non-stop travel between i to j [5,6,17].

Fk = ak · dij + bk · qij · dij (1)

In Eq. (1), ak denotes the energy consumption of a CPV k per 100 km while bk
denotes the vehicle specific energy consumption per ton payload and 100 km. In
this paper, Eq. (1) is also applied for estimating the expected energy consumption
for EPVs. Of course, the values for ak and bk substantially differ for CPVs and
EPVs. Since EPVs make use of recuperation of energy whenever it is possible, the
difference between energy consumptions of EPVs and CPVs is strongly sensitive
to the type of use of EPVs.

Nevertheless, for an averaged prediction of the energy consumption which
has to restrict to ex-ante parameters of vehicle operation, Eq. (1) can be applied
to EPVs in the same way as to CPVs. For comparing the emissions of CPVs and
EPVs, the generated problem instances which have been solved for answering
Question 1 are reconsidered and evaluated with respect of the energy consump-
tion of vehicles. Question 3 will be investigated by allowing fleets with both,
EPVs and CPVs, to be used for tour fulfillment.

Light-Duty and Medium-Duty trucks are frequently used in distribution logis-
tics, and within this class of trucks, vehicles with 7.5 tons gross weight and those
with 18 tons gross weight are very popular and widely-used. The truck market
has offered many products for these vehicles types. Moreover, there are man-
ufacturing companies which offer EPVs of 7.5 tons gross weight (e.g. [20]) and
of 18 tons gross weight (e.g. [21]). Table 1 shows the specific characteristics of
CPVs and EPVs of a size of 7.5 tons gross weight and 18 tons gross weight (c.f.
[18,21,22]). The energy consumption declared by the manufacturers for EPVs
is adjusted to two different modes of usage: city traffic and overland traffic. The
lower value for energy consumption in Table 1 refers to city traffic while the
higher value refers to overland traffic. For the EPV with 18 tons gross weight,
the manufacturer only announces values for the weight and energy consumption
of a chassis without platform. In Table 1, it is assumed that a platform with a
weight of 4 tons is supplemented to the chassis (with a weight of 5 tons). The
values for payload and energy consumption are adapted accordingly.

The remainder of the paper is structured as follows. Section 2 introduces
the vehicle routing problem with time windows and limitations for energy
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Table 1. Characteristics of CPVs and EPVs

Vehicle type CPV-7.5 to EPV-7.5 to CPV-18 to EPV-18 to

→ Practical example UPS-P80 UPS-P80E IVECO Stralis E-FORCE

Traction

→Engine Diesel Electric Diesel Electric

→Energy content 70 l 62 kWh 200 l 2 × 120 kWh

→Maximal range 450 km 130 km 1,200 km 350 km

Weights

→Empty weight 3.5 to 4 to 9 to 12 to

→Payload 4 to 3.5 to 9 to 6 to

Energy consumption (per 100 km)

→ Empty vehicle 13 l 40–44 kWh 18 l 73.3–80 kWh

→ Loaded vehicle 16.2 l 60–63 kWh 24 l 90–95 kWh

consumption (VRPTW-EC). To generate near optimal transportation plans for
the VRPTW-EC an Adaptive Large Neighborhood Search (ALNS) is used. The
ALNS is presented in Sect. 3. Section 4 presents the results of computational
experiments and derives answers for the research questions 1 to 3. Finally the
paper closes with a summary of the findings.

2 Mathematical Model

The mathematical formulation for the VRPTW-EC is built by extending the
traditional VRP-formulation (see [2]). The main extensions are:

– the implementation of time windows for customers
– the implementation of tour length restrictions (regarding traveled time and

energy consumption)
– the consideration of different types of vehicles (regarding capacity, tour length

restrictions and energy consumption)

The VRPTW-EC is described by the following mathematical model (c.f. [16]):

Indices:

i, j locations: i, j ∈ I where 0 and n + 1 represent the depot, I ={0, ..., n + 1}
k vehicles: k ∈ K where k describes the vehicle parameters, K = {1, ..,m}

Parameters:

dij travel distance between locations i and j
tij time for traveling from location i to j (tij = dij/v where v represents the

average traveling speed)
αj time window starting time of customer j
βj time window ending time of customer j
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sj service time of customer j
qj demand of customer j
Qk capacity of vehicle k
Tk maximum tour length of vehicle k (regarding travel time)
ak energy consumption of the empty vehicle k per kilometer
bk energy consumption for the load of vehicle k per ton and kilometer
Ek maximum energy content for vehicle k (regarding liters of diesel or kWh)

Variables:

qijk cargo of vehicle k traveling between locations i and j
tj service starting time at location j
yjk =1 if customer j is served by vehicle k,

=0 otherwise
xijk =1 if vehicle k serves location j immediately after serving location i,

=0 otherwise

minimize z =
∑

k∈K

∑

(i,j)∈I×I

dij · xijk, (2)

subject to:
∑

j∈I\{0}
x0jk = 1, ∀k ∈ K, (3)

∑

i∈I\{n+1}
xi,n+1,k = 1, ∀k ∈ K, (4)

∑

i∈I

xihk −
∑

j∈I

xhjk = 0, ∀k ∈ K,h ∈ I \ {0, n + 1}, (5)

∑

k∈K

yjk = 1, ∀j ∈ I \ {0, n + 1}, (6)

∑

j∈I

qj · yjk ≤ Qk, ∀k ∈ K, (7)

ti + si + tij − Tk · (1 − xijk) ≤ tj , ∀k ∈ K, (i, j) ∈ I × I, (8)
αi ≤ ti ≤ βi, ∀i ∈ I, (9)

∑

i∈I

qijk −
∑

i∈I\{0,n+1}
qjik = qj · yjk, ∀k ∈ K, j ∈ I \ {0, n + 1} (10)

qijk − Qk · xijk ≤ 0, ∀k ∈ K, (i, j) ∈ I × I (11)
∑

(i,j)∈I×I

tij · xijk ≤ Tk, ∀k ∈ K, (12)

∑

(i,j)∈I×I

dij · (ak · xijk + bk · qijk) ≤ Ek, ∀k ∈ K, (13)

qijk ≥ 0, ∀k ∈ K, (i, j) ∈ I × I (14)
ti ≥ 0, ∀i ∈ I, (15)

xijk ∈ {0, 1}, ∀k ∈ K, (i, j) ∈ I × I, (16)
yjk ∈ {0, 1}, ∀k ∈ K, j ∈ I. (17)
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The Objective (2) minimizes the tour length. Constraints (3), (4) and (5) are
the flow constraints. Whereas constraints (3) require that each vehicle has to
leave the starting depot 0, constraints (4) dictate that all vehicles have to reach
the duplicated depot n + 1 at the end of the tours. Constraints (5) observe that
each customer is reached and left by the same vehicle. Constraints (6) ensure
that all customers are assigned to one vehicle which means that yjk is equal
to the value obtained by summarizing xijk for all customers i. The amount of
demand must not exceed the vehicles’ capacity (constraints (7)). Constraints
(8) are an adaption of the sub-tour elimination restrictions described in [7] and
set the service starting time for all nodes. The time windows are restricted by
constraints (9). Constraints (10) are responsible for balancing the flow of goods.
These equations allow the determination of the amount of cargo flow on each
edge. Constraints (11) inhibit any transportation on unused edges. Otherwise
it would be possible that the demanded quantities take paths differing from
those of the vehicles. Since we consider daily planning for distribution logistics,
the maximum tour length is restricted due to the maximum operation times of
drivers. Whereas the constraints (12) limit the tour length regarding the travel
time, constraints (13) restrict the amount of energy available for tours. The
transport of negative payload is excluded by constraints (14) and negative times
are excluded by constraints (15). Finally, constraints (16) and (17) define the
domains of the decision variables.

3 Solution Method

To solve the VRPTW-EC we propose a modified ALNS. The ALNS was intro-
duced by Ropke and Pisinger (see [9,11]). It proposes improving an initial solu-
tion (i.e. transportation plan) by a ruin and recreate strategy (c.f. [13]). In an
iterative approach a feasible transportation plan is destroyed by a removal oper-
ator and repaired by an insertion operator until a certain stop criterion is met
(e.g. maximal number of iterations). To investigate large solution spaces, an
ALNS uses several removal and insertion operators that reshuffle up to 40 % of
all transportation tasks per iteration. Thereby an adaptive procedure guides the
selection of the removal and insertion operators. To deal with local optima, sim-
ulated annealing (SA) is used, where better solutions are always accepted and
worse solutions are accepted with a predefined probability [4].

3.1 Procedure of ALNS

Algorithm 1 visualizes the procedure of an ALNS. The procedure of the ALNS
starts with the generation of an initial transportation plan s (line 1). Typically,
this initial transportation plan results from a construction heuristic. In our case,
the initial transportation plan is generated by a savings algorithm (c.f. [1]), where
customers are merged to vehicle routes based on savings of travel distances.

The initial transportation plan s is stored as the actual best known solu-
tion sBest (line 2); and the start temperature of the SA is determined (line 3).
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Algorithm 1. Procedure of ALNS

1 Generation of initial transportation plan s;
2 sBest := s;
3 T := T0;
4 for i ← 0 → itmax do
5 s′ ← s;
6 Choose a random value for q in the range [q1, q2];
7 Choose a removal and an insertion operator by a roulette wheel selection;
8 Remove q transportation tasks from s′ by removal operator ;
9 Reinsert removed transportation tasks in s′ by insertion operator ;

10 if fs′ < fsBest then
11 sBest ← s′;
12 end

13 if random[0, 1] < e− fs−f
s′

T then
14 s ← s′;
15 end
16 T := T · ς;
17 Adjust probabilities for roulette wheel selection;

18 end
19 return sBest;

Afterward, the improvement heuristic is applied in an iterative approach (lines
4–18) until a certain number of iterations itmax is reached. In each iteration the
ALNS modifies the initial solution s, so that a new neighbor solution s′ is devel-
oped. Thereby, customers are removed from the current transportation plan and
reinserted into the remaining transportation plan. To increase the diversity of
the improvement heuristic a randomly chosen number q of transportation tasks
in the range [q1, q2] is reshuffled in each iteration (line 6). Simultaneously, a
removal operator and an insertion operator are chosen randomly by a roulette
wheel selection, where the probability to select an operator depends on its per-
formance in earlier iterations (line 7). Whereas the well-known operators worst
removal, random removal, and shaw removal [14] as well as new sequence removal
are available, the used insertion operators are different versions of the regret-k
heuristics [10] with and without a noise factor (c.f. [11]). The removal operators
remove q transportation tasks from the initial transportation plan (line 8); and
the insertion operators reinsert those transportation tasks in the transportation
plan (line 9).

A neighborhood solution s′ is accepted as new best solution, if its objective
value fs′ improves the objective value of the best known solution fsBest (line
10–12). To avoid stucking in local optima, an SA supervises the accepting of
a neighborhood solution s′ as new initial solution s, where a solution with a
higher objective value is accepted always as new initial solution and a worse
solution is accepted with a probability (line 13–15). Furthermore, in each itera-
tion the temperature T is reduced by a cooling rate ς = (0, 1) (line 16), and the
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probabilities for the roulette wheel selection are adjusted (line 17; c.f. [11]).
Finally, the best transportation plan is returned (line 19).

3.2 Modifications to ALNS

The modifications made to the ALNS refer to the adaptation of removal oper-
ators. The shaw removal was originally provided for the pick-up and delivery
problem, where the idea is preferably to remove similar transportation tasks. To
suit the VRPTW-EC, the shaw removal is slightly modified. Our version of the
shaw removal rates the similarity γ(ij) of a transportation task i to a randomly
chosen transportation task j �= i based on Eq. (18). Thereby, the features dis-
tance between the transportation tasks dij , the similarity of the time windows
(|αi − αj |, |βi − βj |) and the demands (|qi − qj |) are considered. All terms of
Eq. (18) are normalized to values between (0, 1]; i.e. the terms are divided by
the specific maximal values. Furthermore, the individual terms are extended by
weights δ1, δ2, and δ3. To increase the flexibility, the weights for the individual
function terms are randomly re-chosen in the range [0, 10] for each using of the
shaw removal.

γ(ij) = δ1 ·
(

dij
dmax

)
+ δ2 ·

(
|αi − αj | + |βi − βj |

αmax + βmax

)
+ δ3 ·

(
|qi − qj |
qmax

)
(18)

Since the problem described by the VRPTW-EC has the special feature to
consider heterogeneous fleets of vehicles, removal operators that force the use of
different vehicles are worth investigating. That is why we introduced the sequence
removal. It removes connected parts of tours from transportation plans, in order
to enable the assignment of these parts to small vehicles. Overall, we propose
three versions of the sequence removal, where one of the following strategies is
randomly chosen for each application of the sequence removal:

– remove all transportation tasks of a random tour
– remove all transportation tasks after a random edge of a random tour
– remove all transportation tasks after the edge with the highest distance of a

random tour

Regardless of which version of the sequence removal is used the procedure
is repeated until at least q transportation tasks are removed from the initial
transportation plan.

4 Computational Experiments

The effects of using either EPVs or CPVs for vehicle routing are demonstrated
for vehicles of different size. Based on the vehicle characteristics shown in Table 1,
the experiments presented in this section are performed for vehicles with 7.5 tons
gross weight and for vehicles with 18 tons gross weight. CPVs and EPVs behave
differently with respect to the energy needed to fulfill a set of transportation
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tasks. In case of EPVs the energy consumption needed for traveling strongly
depends on the type of application. Especially, it is to a high degree dependent
on the traffic and road conditions relevant for fulfilling transportation tasks,
and most typical for EPVs, the average travel efficiency (i.e. the energy con-
sumption per travel distance) in urban traffic deviates a lot from the aver-
age efficiency reachable for overland traffic. Actually, the efficiency of EPVs
in overland traffic is much lower than the efficiency in city traffic while for
CPVs the difference between city and overland traffic is not generally signifi-
cant. That is why we differentiate between three types of vehicle usage: CPV
(V C), EPV in city traffic (V EC), and EPV in overland traffic (V EO). Each type
of vehicle usage is considered for vehicles of 7.5 tons gross weight and 18 tons
gross weight. Altogether we consider six types of vehicle utilization in Table 2:
V C(7.5), V EC(7.5), V EO(7.5), V C(18), V EC(18), V EO(18).

Table 2 shows the values for the parameters ak (energy consumption of the
empty vehicle k per kilometer) and bk (energy consumption for the load of vehi-
cle k per ton and kilometer) for the above six types of vehicle utilization. These
parameter values are derived from Table 1 by taking the energy consumption per
100 Km for the empty vehicle and the loaded vehicles as basis. In case of EPVs,
the declaration for average energy consumption announced by the manufacturers
of these vehicles varies considerably between a lower bound and an upper bound.
That is why we take the values declared for the lower bound as the value for
V EC , and the declared upper bound as the value for V EO. Note that, although
the energy consumption of EPVs in overland traffic is always higher than the
energy consumption in city traffic, the value of the proportionality factor bk (i.e.
the increase of consumption per ton and km) is lower for overland traffic than for
city traffic. This is caused by the values announced by the manufacturers for the
average lower and upper bounds for fuel consumption and the values derived for
empty and full vehicles Additionally to the parameters for energy consumption,
Table 2 shows for all six vehicle types the values for the parameters Ek (energy
content for vehicle k regarding tank volume or battery capacity) and Tk (maxi-
mum tour length for vehicle k in km). The duration of daily tours is restricted
by the EC-regulations for maximum driving times and by the regulations for
working hours. That is why an upper limit for the sum of driving times and
service times is statutory for daily trips of vehicles. We include the limitation on
tour durations by restricting the maximum possible tour length (sum of trav-
eled distances). Since we assume that smaller vehicles usually handle local tours
with many stops and larger vehicles will execute larger tours with less stops, we
fix the maximum tour length to 450 km for 7.5-ton-vehicles and to 500 km for
18-ton-vehicles. For EPVs the maximum tour length is additionally limited due
to their limited battery capacity.

The generation of test instances is based on the adaptation of the well-known
Solomon instances [15]. In order to adjust the customers’ demands to the capacity
of the used vehicles and to adjust the tour lengths to the maximal range of
the vehicles, a demand-factor and a length-factor are introduced. The demand-
factor linearly and uniformly increases the demands of all customers occurring in
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Table 2. Considered vehicle types

V C(7.5) V EC(7.5) V EO(7.5) V C(18) V EC(18) V EO(18)

ak 0.13 0.4 0.44 0.18 0.73 0.8

bk 0.8 × 10−5 0.571 × 10−5 0.543 × 10−5 0.667 × 10−5 0.278 × 10−5 0.25 × 10−5

Ek 70 62 62 200 240 240

Tk 450 450 450 500 500 500

Table 3. Characteristics of test sets

S-1 S-2 S-3 S-4 S-5 S-6 S-7 S-8 S-9

Demand-factor 20 20 20 30 30 30 50 50 50

Length-factor 0.5 1.0 2.0 2.0 3.0 4.0 2.0 3.0 4.0

Vehicle size 7.5 to 7.5 to 7.5 to 18 to 18 to 18 to 18 to 18 to 18 to

the original Solomon instances. The length-factor linearly stretches all distances
between any location pair. Additionally, the durations of the time windows of
the Solomon instances are stretched according to the length-factor applied to
the traveling distances. The values of the demand- and the length-factor are
modified within a reasonable scope in order to investigate the effects of varying
distances and weights on differently sized CPVs and EPVs. Altogether, nine test
sets S-1 to S-9 have been generated (see Table 3).

In our computational experiments, the nine test sets of Table 3 are solved for
each of the following scenarios for vehicle utilization:

– (A) homogeneous fleet of CPVs
– (B) homogeneous fleet of EPVs (city traffic)
– (C) homogeneous fleet of EPVs (overland traffic)
– (D) fleet of CPVs and EPVs (city traffic)
– (E) fleet of CPVs and EPVs (overland traffic)

The scenarios (D) and (E) are implemented by using a homogeneous fleet of
CPVs for solving the test sets S-1 to S-9 and subsequently replacing CPVs in
the obtained solutions by EPVs whenever it is possible. A CPV can be replaced
by an EPV if the tour assigned to that CPV is not too long for the range of
the EPV respectively its payload is not exceeded. Furthermore, the test sets S-2,
S-4, and S-7 are solved by considering various heterogeneous fleets of CPVs and
EPVs.

All instances were solved by the ALNS described in Sect. 3 with a maximum
of 50,000 iterations. The ALNS was implemented in a C++-application and
computed on a Windows 7 PC (i7-2600 processor with 3.4 GHz, 16 GB RAM).
The results obtained for the utilization scenarios (A), (B), and (C) are presented
in Table 4.
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To establish comparability among the energy consumption of CPVs and
EPVs, both, diesel consumption and electricity consumption, are converted into
the resulting values for Tank to Wheel (T2W) emissions and Well to Wheel
(W2W) emissions. Whereas, the T2W rates the CO2 emissions of the energy
consumed by the vehicle, the W2W also rates the CO2 emissions of the energy
production. For CPVs applies that one liter diesel accords with 2.629 kg CO2

emissions for T2W respectively 3.168 kg CO2 emissions for W2W [18]. Simul-
taneously, one kWh equates 0.542 kg CO2 emissions for T2W and 0.57 kg CO2

emissions for W2W [23].
The entries in Table 4 show that the test sets with the lowest of the provided

length-factors (0.5 in test set S1, 2.0 in test set S-4, and 2.0 in test set S-7) per
fixed demand-factor and fixed vehicle size could always be solved for all three
scenarios (A), (B) and (C). In case of vehicles with 7.5 tons gross weight and a
demand-factor of 20 (i.e. test set S-2), all three scenarios are also solvable for a
length factor with the value 1.0. All other test sets are only solvable for scenario
(A), i.e. for using CPVs. Averaged over all test sets which are solvable for all
scenarios, the number of used vehicles increases by 17 % respectively 18 % in
case that CPVs are replaced by EPVs in city traffic respectively overland traffic.
Moreover, the total travel distance increases by 10.0 % respectively 10.8 %. On
the opposite side, the amount of T2W emissions decreases by 13 % respectively
by 6 % if the values of [18,23] are used for calculating the T2W-values for CPVs
and EPVs. However, for one of the test sets (S-7) the total amount of emis-
sions even increases if for overland transport CPVs are replaced by EPVs. The
average values for distance decrease and emission increase in Table 4 (i.e. 13 %
respectively 6 %) have to be opposed to the fact that, according to the values of
[18,23], replacing a travel distance of an empty 7.5 tons respectively 18 tons CPV
by a travel distance of a corresponding EPV would imply an emission reduction
33.4 % respectively 12.2 %.

Table 5 shows the results for mixed vehicle fleets in case of city traffic (sce-
nario (D)). In scenario (D), the solutions of scenario (A) are modified by replac-
ing CPVs by EPVs as much as possible. For each test set we consider the situa-
tion that 0, 2, 4, or an unlimited number (∞) of EPVs are available for replacing
CPVs. The quotient (u/a) in Table 5 denotes the number u of actually used EPVs
divided by the number a of available EPVs.

In contrast to the results of the scenarios (B) and (C) with homogeneous
electric-powered fleets (see Table 4), all test sets of Table 5 can be solved by using
the mixed fleets considered in Table 5 since there are always enough CPVs avail-
able in the scenarios shown in Table 5. Increasing the number of available EPVs
has the effect that an increased number of EPVs actually are used. However,
averaged over all test cases, only one-third of the available EPVs are deployed
since in all other cases the generated routes are too energy-consumptive for
EPVs. Anyway, using mixed fleets according to Table 5 for fulfilling the routes
which have been generated for a homogeneous fleet of CPVs, has the advan-
tage that on the one hand all test sets can be solved successfully and on the
other hand the CO2 emissions can be reduced compared to a pure CPV-fleet.
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Table 4. Results of test sets for scenarios (A), (B), (C)

Test sets Scenario Solvable Vehicle (num) Length (km) Energy consumption T2W (kg) W2W (kg)

(l) (kWh)

S-1 (A) Yes 10.61 533.54 76.22 — 200.39 239.19

(B) Yes 11.41 561.77 — 271.77 147.30 154.91

(C) Yes 11.41 562.53 — 292.64 158.61 166.81

S-2 (A) Yes 10.66 1,068.20 160.93 — 423.09 505.00

(B) Yes 11.78 1,141.86 — 548.77 297.43 312.80

(C) Yes 12.13 1,173.51 — 602.06 326.32 343.17

S-3 (A) Yes 11.34 2,228.96 316.00 — 830.75 991.60

(B) No — — — — — —

(C) No — — — — — —

S-4 (A) Yes 9.36 2,019.45 402.70 — 1,058.69 1,263.66

(B) Yes 10.77 2,137.87 — 1,709.16 926.37 974.22

(C) Yes 10.86 2,150.40 — 1,840.14 997.36 1,048.88

S-5 (A) Yes 9.64 3,037.05 601.97 — 1,582.57 1,888.97

(B) No — — — — — —

(C) No — — — — — —

S-6 (A) Yes 10.75 4,315.00 844.26 — 2,219.56 2,649.28

(B) No — — — — — —

(C) No — — — — — —

S-7 (A) Yes 11.30 2,229.15 457.31 — 1,202.27 1,435.04

(B) Yes 14.95 2,595.36 — 2,106.52 1,141.73 1,200.72

(C) Yes 14.95 2,596.40 — 2,251.06 1,220.75 1,283.10

S-8 (A) Yes 11.36 3,338.90 684.59 — 1,799.78 2,148.24

(B) No — — — — — —

(C) No — — — — — —

S-9 (A) Yes 11.70 4,605.03 937.19 — 2,463.89 2,940.90

(B) No — — — — — —

(C) No — — — — — —

If the number of available EPVs which are available for substituting CPVs is
unrestricted (i.e. a = ∞ in Table 5), then the total T2W emissions for all consid-
ered test sets are reduced by 3.2 % compared to the strict usage of CPVs only.
The values shown in Table 5 refer to the usage of EPVs in city traffic. In case
of overland traffic (scenario (E)) the averaged values of the columns of Table 5
deviate in the following way: the average number of used EPVs (u) is decreasing
by 8.4%; and the value for T2W emissions is increasing by 0.9%.

Since the objective of all vehicle routing experiments in this paper is given
by the minimization of traveling distances, the objective values and the optimal
solutions do not depend on the fact whether CPVs or EPVs are used. However,
since CPVs are more flexible with respect to range and payload, there will be
many routes which are only executable by CPVs. That is why mixed fleets
should be investigated more intensively. Table 6 shows the results of additional
experiments on mixed fleets for the test sets S-2, S-4 and S-7. The additional
experiments are restricted to the above test sets since these test sets are the only
ones of Table 4 which can always be solved for the homogeneous scenarios (B)
and (C); i.e. an arbitrary combination of CPVs and EPVs will always be able
to fulfill all given transportation tasks of the test instances occurring in these
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Table 5. Results of test sets for scenario (D)

Test sets EPVs (u/a) Energy consumption T2W W2W

(l) (kWh) (kg) (%) (kg) (%)

S-1 0/0 76.22 — 200.39 — 239.19 —

1.84/2 61.74 49.47 189.14 (−5.66) 221.95 (−7.27)

3.07/4 53.50 77.43 182.62 (−8.77) 212.03 (−11.24)

5.77/∞ 39.86 120.46 170.08 (−13.92) 193.74 (−17.57)

S-2 0/0 160.93 — 423.09 — 505.00 —

1.71/2 135.72 81.59 401.02 (−5.30) 472.39 (−6.56)

2.84/4 121.17 128.64 388.27 (−8.22) 453.55 (−10.19)

5.02/∞ 101.40 186.91 367.90 (−12.37) 424.75 (−15.13)

S-3 0 / 0 316.00 — 830.75 — 991.60 —

1.07/2 300.94 49.72 818.13 (−1.50) 972.70 (−1.88)

1.27/4 299.00 55.94 816.38 (−1.67) 970.14 (−2.09)

1.32/∞ 298.47 57.58 815.89 (−1.72) 969.43 (−2.15)

S-4 0/0 402.70 — 1, 058.69 — 1, 263.66 —

1.43/2 342.45 245.92 1, 033.58 (−2.32) 1, 214.77 (−3.79)

2.48/4 299.53 421.08 1, 015.69 (−3.92) 1, 179.95 (−6.39)

5.96/∞ 202.22 896.12 963.13 (−8.07) 1, 088.35 (−12.61)

S-5 0 / 0 601.97 — 1, 582.57 — 1, 888.97 —

1.36/2 536.23 286.23 1, 555.13 (−1.72) 1, 835.58 (−2.81)

2.30/4 495.61 433.98 1, 538.17 (−2.75) 1, 802.58 (−4.48)

3.60/∞ 457.84 588.02 1, 522.36 (−3.64) 1, 771.87 (−5.94)

S-6 0/ 0 844.26 — 2, 219.56 — 2, 649.28 —

1.18/2 791.42 215.50 2, 197.45 (−1.00) 2, 606.32 (−1.62)

1.64/4 773.71 287.75 2, 190.04 (−1.32) 2, 591.91 (−2.15)

1.86/∞ 767.50 313.06 2, 187.43 (−1.41) 2, 586.86 (−2.29)

S-7 0/0 457.31 — 1, 202.27 — 1, 435.04 —

1.11/2 423.32 138.78 1, 188.13 (−1.11) 1, 407.48 (−1.81)

1.66/4 406.35 208.04 1, 181.06 (−1.62) 1, 393.72 (−2.65)

2.68/∞ 381.73 308.53 1, 170.78 (−2.29) 1, 373.17 (−3.74)

S-8 0/0 684.59 — 1, 799.78 — 2, 148.24 —

1.14/2 641.22 176.99 1, 781.71 (−0.95) 2, 113.04 (−1.55)

1.63/4 621.23 258.58 1, 773.36 (−1.36) 2, 096.81 (−2.21)

2.21/∞ 604.10 328.44 1, 766.20 (−1.67) 2, 082.88 (−2.72)

S-9 0/0 937.19 — 2, 463.87 — 2, 940.90 —

0.7/2 910.35 109.50 2, 452.66 (−0.43) 2, 919.09 (−0.69)

0.88/4 904.05 135.20 2, 450.02 (−0.52) 2, 913.97 (−0.84)

1.0/∞ 900.80 148.44 2, 448.66 (−0.56) 2, 911.32 (−0.91)
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Table 6. Results for a heterogeneous fleet of CPVs and EPVs

Test sets CPVs avail. CPVs (num) EPVs (num) Length (km) T2W W2W

(kg) (%) (kg) (%)

S-2 20 10.66 0.00 1,068.20 423.09 — 505.00 —

10 9.16 1.55 1,068.45 405.11 (−4.25) 478.39 (−5.27)

9 8.68 2.05 1,066.89 398.49 (−5.81) 468.93 (−7.14)

8 7.89 2.88 1,070.69 390.54 (−7.69) 456.83 (−9.54)

7 6.91 3.88 1,072.97 377.67 (−10.74) 437.65 (−13.34)

6 5.96 4.86 1,077.60 368.63 (−12.87) 423.75 (−16.09)

5 4.98 5.88 1,079.41 356.88 (−15.45) 406.26 (−19.55)

S-4 20 9.36 0.00 2,019.45 1, 058.69 — 1, 263.66 —

10 7.88 1.61 2,022.40 1, 037.96 (−1.96) 1, 222.35 (−3.27)

9 7.46 1.95 2,024.94 1, 031.59 (−2.56) 1, 208.80 (−4.34)

8 7.02 2.36 2,023.13 1, 025.40 (−3.14) 1, 197.87 (−5.21)

7 6.50 2.95 2,019.73 1, 013.83 (−4.24) 1, 177.26 (−6.84)

6 5.77 3.61 2,022.29 1, 005.94 (−4.98) 1, 160.62 (−8.15)

5 4.91 4.68 2,033.29 995.16 (−6.00) 1, 136.52 (−10.06)

S-7 20 11.30 0.00 2,229.15 1, 202.27 — 1, 435.04 —

10 9.77 1.59 2,229.13 1, 181.42 (−1.73) 1, 394.66 (−2.81)

9 8.96 2.55 2,245.63 1, 176.26 (−2.16) 1, 379.22 (−3.89)

8 8.00 3.88 2,271.42 1, 172.01 (−2.52) 1, 362.87 (−5.03)

7 7.00 5.09 2,302.29 1, 163.77 (−3.20) 1, 337.30 (−6.81)

6 6.00 6.63 2,331.64 1, 158.40 (−3.65) 1, 317.84 (−8.17)

5 5.00 7.79 2,364.04 1, 153.14 (−4.09) 1, 296.70 (−9.64)

test sets. In contrast to Table 5, where the number a (available EPVs for the
test cases of Table 4) is introduced and stepwise increased, Table 6 shows the
effects of decreasing the limit of available CPVs on the test cases of Table 4. In
this case the vehicle routing algorithm is forced to use EPVs due to the lack
of available CPVs. Like in Table 5, the first line for each scenario in Table 6 is
equal to the first line of that same scenario in Table 4 since there are enough
CPVs available for generating the same solutions as for Scenario (A). As shown in
Table 6, stepwise decreasing the number of available CPVs has the effect that the
total travel distances are increasing while the emissions are decreasing. In case of
city traffic a limitation to five CPVs implies an increment of travel distances by
1.0 %, 0.7 %, 6.0 % and a decline of emissions by 15.5 %, 6.0 %, 4.1 % for test sets
S-2, S-4, S-7 respectively. The values of Table 6 can be opposed to corresponding
values for homogeneous electric-powered fleets for city traffic (Scenario (B) of
Table 4). For Scenario (B) the growth of travel distances compared to a pure fleet
of CPVs (Scenario (A)) is 9.8 %, 5.8 %, and 16.4 % and the reduction of emissions
is 29.7 %, 12.5 %, and 5.0 %. This clearly shows the potential of a mixed fleet to
reduce the emissions tremendously while the travel distances are only increasing
slightly. In case of overland traffic, the results for using mixed fleets for the test
sets S-2, S-4 and S-7 are similar to the results for city traffic. Compared to city
traffic, the overland travel distances increase by 0.1% and the T2W emissions
increase by 1.5%.
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5 Conclusion

The main contributions of our paper are (i) the comparison of EPVs and CPVs
(ii) by considering not only the reduced range but also the reduced payload of
EPVs and (iii) analyzing the benefits of mixed fleets consisting of EPVs and
CPVs. The analysis of the experiments presented in this paper clearly measures,
demonstrates and contrasts the specific strengths of CPVs and EPVs. Moreover
it could be shown that the drawbacks of CPVs and EPVs can be mitigated by
deploying a mixed fleet consisting of electric-powered as well as combustion-
powered trucks.

References

1. Clarke, G., Wright, W.: Scheduling of vehicles from a central depot to a number
of delivery points. Oper. Res. 12(4), 568–581 (1964)

2. Dantzig, G.B., Ramser, J.H.: The truck dispatching problem. Manage. Sci. 6(1),
80–91 (1959)

3. Hiermann, G., Puchinger, J., Ropke, S., Hartl, R.F.: The electric fleet size and mix
vehicle routing problem with time windows and recharging stations. Eur. J. Oper.
Res. 252, 995–1018 (2016)

4. Kirkpatrick, S., Gelatt, C.D., Vecchi, M.P.: Optimization by simmulated annealing.
Science 220(4598), 671–680 (1983)

5. Kopfer, H.W., Kopfer, H.: Emissions minimization vehicle routing problem in
dependence of different vehicle classes. In: Kreowski, H.-J., Scholz-Reiter, B.,
Thoben, K.-D. (eds.) Dynamics in Logistics, pp. 49–58. Springer (2013)

6. Kopfer, H.W., Schönberger, J., Kopfer, H.: Reducing greenhouse gas emissions of
a heterogeneous vehicle fleet. Flex. Serv. Manuf. J. 26(1–2), 221–248 (2014)

7. Miller, C.E., Tucker, A.W., Zemlin, R.A.: Integer programming formulation of
traveling salesman problems. J. ACM 7(4), 326–329 (1960)

8. Pelletier, S., Jabali, O., Laporte, G.: Goods distribution with electric vehicles:
review and research perspectives. cirrelt.ca [PDF] (2014)

9. Pisinger, D., Ropke, S.: A general heuristic for vehicle routing problems. Comput.
Oper. Res. 34(8), 2403–2435 (2007)

10. Potvin, J.-Y., Rousseau, J.-M.: A parallel route building algorithm for the vehicle
routing and scheduling problem with time windows. Eur. J. Oper. Res. 66(3),
331–340 (1993)

11. Ropke, S., Pisinger, D.: An adaptive large neighborhood search heuristic for the
pickup and delivery problem with time windows. Transp. Sci. 40(4), 455–472 (2006)

12. Schneider, M., Stenger, A., Goeke, D.: The electric vehicle-routing problem with
time windows and recharging stations. Transp. Sci. 48(4), 500–520 (2014)

13. Schrimpf, G., Schneider, J., Stamm-Wilbrandt, H., Dueck, G.: Record breaking
optimization results using the ruin and recreate principle. J. Comput. Phys. 159(2),
139–171 (2000)

14. Shaw, P.: Using constraint programming and local search methods to solve vehicle
routing problems. In: Maher, M.J., Puget, J.-F. (eds.) CP 1998. LNCS, vol. 1520,
pp. 417–443. Springer, Heidelberg (1998)

15. Solomon, M.M.: Algorithms for the vehicle routing and scheduling problems with
time window constraints. Oper. Res. 35(2), 254–265 (1987)



Vehicle Routing for Fleets with Electric- and Combustion-Powered Vehicles 305

16. Vornhusen, B., Kopfer, H.: Emission vehicle routing problem with split delivery
and a heterogeneous vehicle fleet. Comput. Logistics 9335, 76–90 (2015)

17. Xiao, Y., Zhao, Q., Kaku, I., Xu, Y.: Development of a fuel consumption opti-
mization model for the capacitated vehicle routing problem. Comput. Oper. Res.
39(7), 1419–1431 (2012)

18. O.V.: So ermitteln Sie den CO2-Fußabdruck. Verkehrs Rundschau 51-52/2010.
Verlag Heinrich Vogel

19. O.V.: Wie Machen sich Ihre Elektro-LKW in der Praxis? Verkehrs Rundschau
46/2015. Verlag Heinrich Vogel

20. http://www.electric-trucks.de/umruestung/lkw-7-5t.html. Accessed 11 Apr 2016
21. http://eforce.ch/wp/wp-content/uploads/2013/06/E FORCE Fact Sheet E 2015.

pdf. Accessed 11 Apr 2016
22. http://efa-s.de/Eigene%20Dateien/UPS%20Datenblatt%20englisch.pdf. Accessed

11 Apr 2016
23. https://www.ffe.de/download/wissen/186 Basisdaten Energietraeger/Basisdaten

von Energietraegern 2010.pdf. Accessed 11 Apr 2016

http://www.electric-trucks.de/umruestung/lkw-7-5t.html
http://eforce.ch/wp/wp-content/uploads/2013/06/E_FORCE_Fact_Sheet_E_2015.pdf
http://eforce.ch/wp/wp-content/uploads/2013/06/E_FORCE_Fact_Sheet_E_2015.pdf
http://efa-s.de/Eigene%20Dateien/UPS%20Datenblatt%20englisch.pdf
https://www.ffe.de/download/wissen/186_Basisdaten_Energietraeger/Basisdaten_von_Energietraegern_2010.pdf
https://www.ffe.de/download/wissen/186_Basisdaten_Energietraeger/Basisdaten_von_Energietraegern_2010.pdf


The Bi-Objective k-Dissimilar Vehicle
Routing Problem

Sandra Zajac(B)

Logistics Management Department, Helmut-Schmidt-University,
Holstenhofweg 85, 22043 Hamburg, Germany

sandra.zajac@hsu-hh.de

Abstract. This paper deals with the k-dissimilar vehicle routing prob-
lem in which a set of k dissimilar alternatives for a Capacitated Vehicle
Routing Problem (CVRP) has to be determined for a single instance.
The tradeoff between minimizing the longest routing alternative and
maximizing the minimum dissimilarity between two routing alternatives
is investigated. Since short vehicle routings tend to be similar to each
other, a conflict of objectives arises. The developed heuristic approach
approximates the Pareto set with respect to this tradeoff using a dis-
similarity metric based on a grid. The method is tested on benchmark
instances of the CVRP and findings are reported.

Keywords: Bi-objective · k-dissimilar vehicle routing problem · Pareto
set approximation

1 Introduction

In the k-dissimilar Vehicle Routing Problem (kd-VRP) k distinct vehicle routing
alternatives (abbreviated as routings) need to be determined for a single instance
of the capacitated vehicle routing problem. The CVRP is a well-studied problem
in which all customers are visited exactly once, all vehicles begin and end at the
depot, and the capacity limit of each vehicle is respected. In other words, an alter-
native Xk to the kd-VRP is a set which contains k distinct routing alternatives
xi with i = 1, . . . , k. The kd-VRP has several practical applications, i.e. in the
context of congested networks [1,10] and transporting dangerous goods [1,6,13]
or within the cash-in-transit sector [18]. In the latter application, significant
amounts of money need to be delivered or picked up from a set of customers. As
a result, a serious risk of robbery arises. A potential approach to decrease this
risk is to generate spatially dissimilar vehicle routing alternatives. By periodi-
cally changing the routes to dissimilar ones, the unpredictability of the actually
driven routes can be increased which in turn can reduce the risk of robbery.

In the CVRP, solution quality is typically measured as the total distance
travelled by all vehicles. Comparably, an alternative to the kd-VRP, denoted as
a set of k routings or a k-routing alternative, is evaluated by the distance of the
longest routing in the set [18]. Typically, short vehicle routing alternatives are
c© Springer International Publishing Switzerland 2016
A. Paias et al. (Eds.): ICCL 2016, LNCS 9855, pp. 306–320, 2016.
DOI: 10.1007/978-3-319-44896-1 20
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similar to each other. As a result, there is a conflict of objectives – the kd-VRP is
inherently a bi-objective problem. Thus, (1) the minimization of the distance of
the longest routing and (2) the maximization of the lowest dissimilarity between
two routing alternatives in the set Xk is considered.

This contribution presents a heuristic approach to approximate the Pareto set
of the kd-VRP. To the best of our knowledge, the generation of the Pareto set for
the bi-objective kd-VRP has not been studied before in literature. The remainder
of the paper is organized as follows: First, Sect. 2 gives a short literature overview
on the kd-VRP and related problems while Sect. 3 presents and discusses selected
dissimilarity metrics before the used metric is introduced. After a brief problem
description in Sect. 4, Sect. 5 explains the suggested solution approach for the bi-
objective kd-VRP. Finally, computational results for the data set of Christofides
et al. [3] of the CVRP are reported and analysed in Sect. 6. A short summary
concludes the paper in Sect. 7.

2 Literature Review

The kd-VRP is a rather recent problem which was formally introduced by
Talarico et al. [18]. The authors consider the CVRP to be a subproblem of
the kd-VRP where k dissimilar routings need to be selected. The aim is to min-
imize the cost of the worst routing alternative in the set of k routings while
satisfying a similarity threshold. An initial routing alternative is improved for
a given number of times by local search. Then, if the routing alternative satis-
fies a similarity threshold, it is accepted into the current k-routing alternative.
Otherwise, the iterative penalty method (IPM), introduced in [9], is applied to
increase the costs of all edges which the best found routing alternative shares
with the already included routing alternatives. The procedure continues until the
current set contains k routing alternatives which satisfy the similarity constraint
and then restarts for a given number of iterations.

Results showed that this method can quickly generate an acceptable k-
routing alternative. However, routing alternatives are not saved during the
process and need to be recalculated over again. It is therefore possible that
the algorithm gets stuck in a local optimum with respect to the k-routing alter-
native. Another approach is to determine a candidate set beforehand from which
k dissimilar routing alternatives are extracted. In this case, the kd-VRP is seen
as a subset selection problem [1]. Obviously, special attention needs to be paid
to the inclusion of both short and dissimilar routing alternatives since these
crucially influence the quality of the obtained k routings. This idea has been
studied for the closely related k-dissimilar path problem (kd-PP) [1,6,10]. Here,
a set of k distinct paths from a given origin to a destination node has to be
determined [1,6,9,10,12,13]. To ensure the quality of the candidate set, both an
algorithm to generate a certain number of shortest paths (solving the k shortest
path problem [19]) as well as the IPM method may be applied [1,13]. To the
best of our knowledge, only Mart́ı et al. [13] treated the maximization of the dis-
similarity between two paths explicitly as an additional second objective in the
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kd-PP. More precisely, the authors examine the tradeoff between minimizing the
average path costs and maximizing the average dissimilarity between a pair of
paths in a k-paths alternative. A greedy randomized adaptive search procedure
approximates the efficient frontier and the authors study it with some measures
in multi-objective optimization.

Other problems related to the kd-VRP include the disjoint path problem in
which a number of edge-disjoint or vertex-disjoint paths is sought [17]. This
problem is extended into the temporal dimension in the m-peripatetic vehicle
routing problem [14]. These alternative routings, however, might be unacceptably
costly and overachieve what is required by the decision maker. The kd-VRP
therefore can be seen as a generalization of these problems allowing for some but
not total dissimilarity between routing alternatives. Finally, a complementary
problem to the kd-VRP is the k-similar vehicle routing problem in which a
number of k routings need to be found that are close to a given baseline routing
alternative [16].

3 Dissimilarity Metrics

For the kd-VRP, a metric needs to be defined which measures the dissimilarity
between routing alternatives. Typically, it is standardized between 0 (completely
similar alternatives) and 1 (completely dissimilar alternatives). An obvious app-
roach is to either use the number or the length/costs of the shared edges between
two routing alternatives [1,10,18]. Let rι

xi
(rγ

xj
) be the ιth (γth) route of routing

alternative xi (xj) with ι = 1, . . . , I and γ = 1, . . . , Γ . Talarico et al. [18] define
an edge-based dissimilarity metric δ(xi, xj) for the kd-VRP as follows:

δ(xi, xj) = 1 − max
ι=1,...,I,
γ=1,...,Γ

1
2

[
csh(rι

xi
, rγ

xj
)

c(rι
xi

)
+

csh(rι
xi

, rγ
xj

)
c(rγ
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]
(1)

where csh(rι
xi

, rγ
xj

) represents the length of the edges shared between the two
routes, while c(rι

xi
) and c(rγ

xj
) are the respective total route costs. Thus, the

metric sets the dissimilarity of two routing alternatives xi and xj to be the min-
imum found dissimilarity value comparing every route of xi to every route of xj .
Note that this formulation strongly discourages identical routes. Consider the
case where a customer is located far away from a cluster of customers and/or
has a high demand. It might be very uneconomical if not infeasible to approach
this customer together with other customers in a single trip. The dissimilarity
between many short routing alternatives will be 0 and dissimilarities of other
route pairs are disregarded. Moreover, edge-based dissimilarity metrics can gen-
erate alternatives which are not spatially dispersed [13] as the following example
demonstrates. Let the vertices A, B and C lie on a straight line in the given
order. Now assume that a route in one routing alternative contains edge A − B
and B − C while a route in another routing alternative uses edge A − C and
C − B. If these two routes are compared, an edge-based dissimilarity metric
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Fig. 1. Determination and intersections of two buffer zones.

yields 1 since no edges are shared. Thus, it does not take the spatial proximity
between A − B − C and A − C − B into account.

Of course, spatially dissimilar routing alternatives are not relevant in all
practical contexts. If the purpose of generating dissimilar solutions is to, for
instance, increase reliability in a telecommunications network, it is indeed irrel-
evant if the used links are spatially close to each other. However, in the context
of cash-in-transit operations, there is a high chance that robbers observe a cer-
tain geographical area which urges to take spatially close edges into account.
In literature, several dissimilarity metrics have been developed which incorpo-
rate spatial information [6,12,13]. Our metric is based on the intuitive spatial
dissimilarity metric of Dell’Olmo et al. [6]. The authors generate k dissimilar
paths in the context of hazardous goods transportation. The dissimilarity of the
alternative paths helps in distributing the associated risk fairly on the impacted
population. For a dissimilarity metric, the concept of a buffer zone is introduced
which is determined by moving a circle of a predetermined radius w along the
path whose center is the vehicle itself (see Fig. 1). Obviously, the metric heavily
depends on w. In the case of hazardous material transportation, w can be set
as the average impact area in which the population is put at risk in case of an
accident. More generally, w is a problem input parameter and depends on the
decision maker’s definition of spatial similarity. Note that this metric implicitly
includes the case of common edges between two routing alternatives.

In this paper, the computation of the intersection area of buffer zones is
facilitated by introducing a grid with a size of n × n grid units. In order to
get a good approximation of the overlapping buffer zones, n has to be set high
enough. However, the higher the n, the more computation time is necessary. Let
uv
1 and uv

2 be the coordinates of location v in the Euclidean plane. Let further
umin
1 (umin

2 ) and umax
1 (umax

2 ) be the minimum and maximum of all coordinates
of the locations in a given data set. Each grid unit is unambiguously identified
by a horizontal and a vertical index η and θ and denoted g(η, θ). Then, a direct
grid unit is determined by:

g(η, θ) = g

(⌊(
uv
1 − umin

1

umax
1 − umin

1

)⌋
· n,

⌊(
uv
2 − umin

2

umax
2 − umin

2

)⌋
· n

)
(2)

Here, a location may lie on a border of multiple grid units. In that case, multiple
direct grid units are associated. In addition, the location is linked to all those
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Fig. 2. Associated grid units with routing alternatives x1 and x2 as well as shared grid
units between x1 and x2 from left to right.

grid units which lie within its buffer zone with radius w. Let nsh(xi, xj) be the
total number of shared grid units between the routing alternatives xi and xj .
Let further n(xi) and n(xj) be the total number of grid units of the respective
routing alternative. The dissimilarity between two routings is defined by:

δ(xi, xj) = 1 − 1
2

[
nsh(xi, xj)

n(xi)
+

nsh(xi, xj)
n(xj)

]
(3)

Figure 2 illustrates the approach. First, for each routing alternative xi ∈ Xk the
associated grid units are identified. Then, the number of common grid units is
determined and the dissimilarity can be computed. In this example, there are 99
and 111 grid units linked to x1 and x2, respectively. With 84 common grid units
the dissimilarity calculation yields δ(x1, x2) = 1 − 1

2 ·
(
84
99 + 84

111

)
= 0.19738.

4 Problem Description

A graph G = (V,E) is given with V as the set of vertices with demand Dv

for each vertex v ∈ V and E the set of edges with associated lengths ce for
e ∈ E. Let Q further be the vehicle’s capacity. The lth k-routing alternative Xkl

is feasible if all contained routing alternatives are feasible. In other words, they
belong to the set of feasible routing alternatives Ω, so xi ∈ Ω ∀xi ∈ Xkl. Further,
Xkl needs to contain exactly k distinct routings (see e.g. [11] for a mathematical
formulation of the CVRP). The objective is to find an approximation P̂ of the
true Pareto set which contains Pareto optimal k-routing alternatives with respect
to maximum distance F1(Xkl) and minimum dissimilarity F2(Xkl). X∗

kl is called
efficient or non-dominated if there is no other Xkm such that F1(X∗

kl) > F1(Xkm)
while F2(X∗

kl) ≤ F2(Xkm) or F1(X∗
kl) ≥ F1(Xkm) while F2(X∗

kl) < F2(Xkm).
Moreover, k > 1 is required since the kd-VRP reduces to a CVRP for k = 1
which leaves F2(Xkj) as a meaningless objective. More specifically, F1(Xkl) is
determined as follows:

F1(Xkl) = max
xi∈Xkl

c(xi) − ζ

ζ
where c(xi) =

∑

e∈xi

ce ∀xi ∈ Xkl (4)
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We assume that the decision maker will only accept a k-routing alternative if
the difference between the distance of the longest routing in Xkl to the distance
ζ of the best found routing alternative in the given instance is within reasonable
limits. Based on Eq. 3, the second objective F2(Xkl) is computed as the minimum
dissimilarity value found comparing all routings xi and xj in Xkl:

F2(Xkl) = min
xi,xj∈Xkl,i �=j

δ(xi, xj) (5)

The bi-objective kd-VRP can then be formulated as:

(bi-objective kd-VRP) min F1(Xkl)
max F2(Xkl)
s.t. xi ⊂ Ω ∀i ∈ {1, . . . , k}

(6)

5 Solution Approach

5.1 Generating the Candidate Set

The candidate set CS needs to contain both short as well as dissimilar routing
alternatives in order to get a good approximation of the Pareto set. First, the
focus lies on the length of the routing alternatives. An initial routing alternative
xi is generated by the Savings approach [4] which is improved by a variable neigh-
bourhood descent (VND). To decrease the distance inside a route, the intra-tour
operators 2-Opt [5] and 3-Opt [2] are used. The inter-tour operators 2-Exchange
[15] and 3-Exchange [8] swap two and three customers, respectively, between two
different tours. Moreover, the inter-tour operator Relocate [15] repositions a cus-
tomer from one route to another. All moves are only accepted if an improvement
regarding the distance of the routing alternative has been detected. The gener-
ated routing xi is included into CS if its distance deviation from ζ is smaller
or equal to α1. If it is smaller than ζ, the list Lζ which contains all routing
alternatives with length ζ is updated. Additionally, routing alternatives need to
be removed from CS if their distance deviations to the updated ζ now exceed
α1. In that way, only high-qualitative routing alternatives are admitted to CS
in the first step which, however, may be very similar to each other. The proce-
dure restarts from a perturbed solution in order to escape local optima until a
maximum number of iterations is met. Specifically, a randomly chosen routing
xi ∈ Lζ is perturbed by removing q% routes. In any case, at least two routes are
removed in order to break up clusters of customers. Then, a new trip is opened.
Starting from a base node, which is initially the depot, its NN nearest neigh-
bours are identified which have been previously removed and whose (individual)
inclusion in the currently considered trip satisfies the capacity constraint. If the
NN -candidate list is not empty, a customer is randomly chosen out of it, added
to the trip and becomes the next base node. Otherwise, a new trip is opened.
This procedure repeats until all customers are assigned.

Since it is likely that the routing alternatives found so far are rather similar
to each other, the focus is now laid upon finding dissimilar routings to them as
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Algorithm 1. Get dissimilar routing alternatives
input: The α1 shortest routing alternatives

1 repeat
2 Reset CPen to C
3 repeat
4 xi ← Perturb
5 xi ← VND
6 if c(xi) < ζ or else

(
Øδ(CS, xi) ≥ Øδ(CS) and also c(xi) < α2

)
then

7 Add xi to CS
8 if c(xi) ≤ ζ then Lζ ← Update, ζ ← c(xi)
9 Exit loop

10 else
11 CPen ← Penalize with β
12 end

13 until maximum number of penalizations met

14 until maximum number of iterations met

shown in the pseudo code of Algorithm 1. After applying the perturbation move
and VND, it is again checked if the current routing alternative xi is accepted into
CS, that is if its distance is shorter than ζ. If this does not hold, it is admitted
if its distance deviation to ζ is not higher than α2. Additionally, the average
dissimilarity between all routing alternatives in CS must not decrease when xi is
included. α2 is used to prevent excessively long routings in CS. The restriction
helps to focus on the relevant part of the Pareto front and facilitates the selection
decision due to the relative smaller size of the Pareto set. Obviously, the higher
the α2, the more the true Pareto front becomes covered. Moreover, if α2 is
set to (positive) infinity, the distance of a routing alternative has no influence
on the acceptance in this stage of the algorithm. If the routing alternative is
not accepted, a penalized distance matrix CPen – which builds on the original
distance matrix C – is updated by using a penalization function based on the
iterative penalty method [9]. Let c(e) be the current length of edge e, nimp(e) be
the number of impacted grid units of e, n(e) be the number of total linked grid
units of e and β be the penalization factor. Then, the length c(e) is updated to
c∗(e) according to:

c∗(e) = c(e) ·
[
1 + β · nimp(e)

n(e)

]
(7)

Thereby those grid units are considered as “impacted” that xi shares with all
routing alternatives in CS. The search continues with a perturbation move and
with VND in which CPen is used. This guides the algorithm to routing alterna-
tives which raise the average dissimilarity in the candidate set. CPen is reset to
C after maximum Penmax penalization moves. The described procedure repeats
for a number of iterations and then returns the final candidate set.
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Algorithm 2. Extracting an approximation of P

input: Candidate set CS
1 repeat

2 Generate initial k-routing alternative Xkl from RCLs and RCLd

3 Xkl ← Swap(Xkl,RA), no deterioration in objectives, prefer distance

4 P̂ ← Update
5 Xkl ← Swap(Xkl,RA), no deterioration in objectives, prefer dissimilarity

6 P̂ ← Update
7 randomly choose sequence F1 → F2 or F2 → F1

8 repeat
9 Xkl ← Swap(Xkl,RCL), improve first chosen objective

10 P̂ ← Update
11 Xkl ← Swap(Xkl,RCL), improve second chosen objective

12 P̂ ← Update

13 until no further improvements found

14 until maximum number of iterations met

5.2 Determining an Approximation of the Pareto Set

The candidate set is now used to obtain the approximated Pareto set P̂ as
described in the pseudo code of Algorithm 2. The first routing alternative to be
included in the k-routing alternative Xkl is chosen pursuing F1(Xkl). Then, it
is randomly chosen if the focus lies on F1(Xkl) or F2(Xkl) until Xkl contains k
routing alternatives. If F1(Xkl) is minimized, a solution xi is randomly chosen
from a restricted candidate list RCLs containing the r shortest alternatives in
CS. When pursuing F2(Xkl), a routing alternative from RCLd is included which
consists of the r routing alternatives exhibiting the highest dissimilarities to
xi ∈ Xkl in the worst case.

Now routing alternatives are swapped between Xkl and CS\Xkl until it is
not possible anymore to improve F1(Xkl) without deteriorating F2(Xkl) and vice
versa. Then, the focus of the exchanges first lies on decreasing the longest dis-
tance in Xkl. When again no further improving swaps are possible, it is checked
if the k-routing alternative can be included into the Pareto set. This is possible
if it is not already contained in P̂ and if a dominance check is passed – that is if
it is not dominated by any other k-routing alternative in P̂ . If another k-routing
alternative becomes dominated by Xkl, it is removed. The maximum distance
in the k-routing alternative decreases if the excluded routing is the longest and
solely the longest in the set and the current routing alternative is shorter than
F1(Xkl). Simultaneously, the minimum dissimilarity of this routing alternative
to the remaining routing alternatives in Xkl is not allowed to be smaller than
F2(Xkl). The same effort towards a Pareto optimal k-routing alternative is sub-
sequently done with a focus on dissimilarity. In order to improve F2(Xkl), one
of those routing alternatives has to be excluded from Xkl, which was part of the
routing pair with lowest dissimilarity in Xkl and thus was determining F2(Xkl).
The minimum dissimilarity in the k-routing alternative will increase if (1) the
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remaining dissimilarity is truly higher than F2(Xkl) and (2) the minimum dis-
similarity of the current routing alternative to the remaining routing alternatives
in Xkl also exceeds F2(Xkl). Moreover, the distance of the included routing alter-
native has to be maximum F1(Xkl). In both cases, a single swap may not be
enough to improve the objective function values. In order to allow improvements
“into the right direction”while avoiding cycling, it is prohibited to consider the
last swap partners for a new exchange.

In the next step, it is checked if routing alternatives can be exchanged
between Xkl and RCLs or Xkl and RCLd so that F1(Xkl) decreases disregard-
ing the consequences for F2(Xkl) and vice versa. Thereby, it is randomly chosen
which objective is followed first. In order to reduce the longest distance in the
k-routing alternative, a random routing alternative is chosen from RCLs\Xkl.
This routing is swapped with a routing which is currently the longest one in the
set and results in the highest increase in the dissimilarity objective. After each
exchange, the inclusion in P̂ is checked until no further improving swaps regard-
ing distance are possible. While pursuing the dissimilarity objective, first RCLd

is identified for each potentially to be excluded routing alternative. Then, it is
tested if those routing alternatives have a dissimilarity higher than F2(Xkl). If
so, a swap is made and P̂ is updated. The separate optimization of the respective
objectives continues until no further improvements can be made. The algorithm
then restarts from a newly constructed k-routing alternative for a number of
iterations and returns P̂ .

6 Experimental Investigation

The solution approach has been coded in Visual Basic .NET and was tested
on the instances CMT1-CMT5 and CMT11-CMT12 of Christofides et al. which
include between 50 and 199 customers [3]. Two types of instances need to be
distinguished: While the customers’ locations in CMT1-CMT5 follow a random
distribution, customers in CMT11-CMT12 appear in clusters. Moreover, the
depot in CMT11 is not located in the geographical centre of all locations. First,
the effects of the problem input parameters on the solution of the problem are
discussed. Secondly, the impact of the heuristic parameters on solution qual-
ity is investigated for k = 3 and the best heuristic parameter configuration is
determined. To evaluate the solutions, the hypervolume indicator [20,21] is used
which shows how well the Pareto front is covered. Following [7], the objective
function values are normalized so that the hypervolumes assume values between
0 and 1 with 1 being the best possible coverage. The reference point is chosen
in such a way that each k-routing alternative in the approximated Pareto set
contributes to the hypervolume. Lastly, the results for all instances and varying
k are presented.

6.1 Impact of Problem Input Parameters

The problem input parameters comprise the number of routing alternatives k,
the size of the grid matrix n × n and the similarity range w. The higher the k,
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the more k-routing alternatives can be extracted from a given size of CS. More
specifically, there are

(|CS|
k

)
distinct subsets which contain k routing alternatives.

Taking |CS| = 100 as an example, there are 4,950 subsets with k = 2 elements,
161,700 subsets with k = 3 elements, 3,921,225 subsets with k = 4 elements
and already 75,287,520 subsets with k = 5 elements. However, it is difficult to
predict the number of Pareto optimal k-routing alternatives. The evaluation of
a routing alternative with respect to dissimilarity always depends on the routing
alternatives to which it is compared which makes it problematic to estimate
bounds for the kd-VRP. The higher the n, the more differences in terms of
dissimilarity can be identified between pairs of routing alternatives. However,
this is also linked to a higher number of grid units per edge on average which
leads to a higher computational burden. For the computational study, n = 100
is chosen which is equivalent to 10,000 grid units in total. The total number
of grid units is reasonably high while allowing to test for different parameter
configurations. w depends on the decision maker’s definition of spatial similarity.
The smaller the w, the more the dissimilarity metric resembles an edge-based one
which means that the less other non-common edges are considered as (partly)
similar. However, for a high w many edges could be regarded as completely
similar to each other.

6.2 Impact of Heuristic Parameters

Table 1 gives an overview of the tested heuristic parameters of a full factorial
experiment for k = 3, w = 1, n = 100 and α2 = 0.3. Here, α2 can be seen as
a problem input parameter since it represents the permitted upper bound on
the distance of a routing alternative. For the perturbation move, based on [18],
q = 40% and NN = 5 is assumed. Further 5,000 iterations each are allocated
for determining short routing alternatives, dissimilar routing alternatives and an
approximation of the Pareto set.

Table 1. Tested heuristic parameters

Parameter Values No. of values Best setting

α1 0.1, 0.2, 0.3 3 0.2

β 0.1, 0.3, 0.5 3 0.5

Penmax 10, 20, 30 3 20

r 20, 50, 100 3 20

α1 ensures a high quality in CS in terms of distance in the beginning of
the algorithm. The idea is that by searching for routing alternatives which are
dissimilar to short ones also shorter k-routing alternatives can be found. Thus,
longer routing alternatives are only accepted into CS if a dissimilarity constraint
is satisfied to avoid including longer routing alternatives which are too similar
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to already included ones. The smaller the α1, the shorter and more similar the
routing alternatives will tend to be on average after this procedure. Hence, the
average dissimilarity in the candidate set, and thus the acceptance requirement,
might be initially lower. Another result is a lower number of routing alternatives
in CS after this stage of the algorithm. The computational study confirmed
these theoretical considerations and revealed an increase in the hypervolume by
2.42% from α1 = 0.1 to α1 = 0.2 which then remained stable. A higher α1 is
accompanied by a rise in computation time. More specifically, the computation
time increases by 62 min between α1 = 0.1 and α1 = 0.2 and by 11 min between
α1 = 0.2 and α1 = 0.3. This can be explained by a steady rise in the total number
of routing alternatives in CS from 3,359 (α1 = 0.1) to 5,851 (α1 = 0.3). Moreover,
a higher α1 increases the number of accepted short routing alternatives in the
first procedure while decreasing the number of dissimilar routing alternatives in
the second one. This can be traced back to the higher average dissimilarity in CS
for larger α1 which also evokes an increase in the number of average penalization
moves from 2.7 to 3.5 as well as in the number of maximum penalization moves
per accepted routing alternative from 17.7 to 18.5.

In order to obtain dissimilar routing alternatives in CS, a penalization is
applied as described in Sect. 5.1. Clearly, the design of the penalization function
is difficult and leads to various discussions, especially about the magnitude of β
[1]. A low β will tend to change the current routing alternative only marginally
and therefore generate more similar routing alternatives. A high β could lead
faster to dissimilar routing alternatives which however might not meet the α2-
requirement. The lower the β, the more penalization moves could be necessary in
order to find a routing alternative which satisfies the dissimilarity requirement.
This in turn leads to a smaller number of alternatives in CS. On the contrary,
the quality of CS might be improved with respect to dissimilarity. Generally, the
higher the Penmax, the stronger an incentive is given to the algorithm to search
deeper for dissimilar alternative routings. Thus, Penmax can be seen as the
intensification duration while β could be called intensification strength. More-
over, the more penalization repetitions are applied, the more CPen may differ
from C so that the perturbation does not yield a routing alternative nearby a
local optimum with respect to CPen anymore. Additionally, the routing alterna-
tives could change so much during the course of penalization moves that CPen

does not reflect the shared grid units between the current routing alternative
and the routing alternatives in CS in a reasonable way any longer.

The experiments showed that the maximum hypervolume was found for
Penmax = 20 while the lowest was determined for Penmax = 10. There is no
clear relationship between the choice of β and Penmax. The results identified
β = 0.3 as the best option assuming Penmax = 10, β = 0.5 for Penmax = 20 and
β = 0.1 for Penmax = 30 which shows the discussed interdependencies between
β and Penmax. It has to be noted that for Penmax = 30 and β = 0.1, only
around 4 routing alternatives were accepted after 20 penalization moves or more
while 28 were accepted for penalization moves between 10 and 20 and the major-
ity, 1, 710 routing alternatives, were already admitted applying 10 penalization
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moves or less. For β = 0.5, the average number of performed penalization repe-
titions per accepted routing alternative were around 2.9 for Penmax = 10, 3.27
for Penmax = 20 and 3.22 for Penmax = 30 with each maximum 10, 18.17 and
21.11 average penalization moves. This means that a low number of penalization
moves often is enough to increase the average dissimilarity in CS for the given
parameter configuration, possibly due to an easier acceptance of new routing
alternatives in the beginning when the average dissimilarity in CS is still low.
In other words, the actually applied penalization moves increase in the course
of the procedure. Taking a randomly selected run for CMT2 as an example, on
average 0.85 penalization moves were used for the first 1,000 accepted routing
alternatives into CS, 1.63 moves for the next 1,000, and 2.15 for the last 164.

During the extraction of P̂ , the restricted candidate sets RCLs and RCLd of
size r are used. The restricted candidate sets help to focus on promising swap
partners that are routing alternatives with a low distance or a high dissimilarity.
The larger the r, the longer but more dissimilar the RCLs will tend to be while
the opposite applies to RCLd. Moreover, this leads to a more strongly randomized
approach. While RCLs is a static set once CS is determined, the composition
of RCLd always depends on to which routing alternatives it is compared and
thus needs to be recalculated frequently. The experiments revealed r = 20 as
the best choice with respect to hypervolume. Thus, it is worthwhile to focus on
the shortest/most dissimilar routing alternatives. In fact, increasing r leads to a
steady decrease in the hypervolume of 0.8124 to 0.8094 and to 0.804.

6.3 Results for Various Instances and Varying k

In this subsection, the results for the best configuration for k = 3 averaged
over all instances are presented. Figure 3 shows the shortest k-routing alterna-
tives found for CMT3 and CMT12 in a run using the best configuration. These
instances both contain 101 nodes in total but differ strongly in structure.

While in CMT3 the routing alternatives do not seem to vary at the first
glance, for CMT12 it can be observed that the routing alternatives differ pri-
marily in long edges. On the one hand, this could be explained by a w which is
set “too high” with respect to the small distances between customers within a
cluster. Since many edges within the cluster are regarded as similar to each other,
the algorithm does not have an incentive to change those: It is not rewarded by
a higher dissimilarity but possibly penalized by an increased distance instead.
On the other hand, it has to be noted that short edges are also always associ-
ated with a lower number of grid units and therefore have a lower impact on
the total dissimilarity of one routing alternative to another. In other words, by
using the grid metric the algorithm clearly prefers changing long edges which are
connected with a higher number of grid units. In the context of cash-in-transit
operations, larger edges are often associated with a longer time spent traversing
an edge. This in turn is linked to a higher robbery risk so the grid metric is
suitable in this context. Nevertheless, if using different edges within a cluster is
desired, w could be set smaller. This, however, contradicts our understanding of
w as a problem input parameter. Besides, (positive) weights on the grid units
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Fig. 3. The shortest k-routing alternatives for CMT3 (top) and CMT12 (bottom).

located in clusters could be imposed. Lastly, note that the routing alternatives
are considered as dissimilar to each other although they contain some identical
routes.

Using the best configuration found for k = 3 on the basis of the hypervolume
indicator, Table 2 finally shows the average hypervolume, the average number
of k-routing alternatives in P̂ , the average computation time in minutes as well
as the best and average deviations of the shortest k-routing alternative to the
respective best known CVRP alternatives for the given instances for varying k.
Taking the hypervolume as an indicator, the algorithm successfully achieved a
high coverage of the true Pareto front in all instances. As assumed, an increase
in the number of found Pareto optimal k-routing alternatives can be observed
for increasing k. However, no relation can be detected to the hypervolumes of
the instance, to the gaps of the shortest k-routing alternatives to the best known
solutions as well as to the running time. Generally, we do not notice a rise of
|P̂ | but of the computation time for instances with a higher number of nodes
for a specific k. This can be explained by a higher number of edges and thus
more possibilities to find different routing alternatives. More specifically, 67%
of the computation time averaged over all instances is needed to determine the
candidate set from which only 3 % are used to obtain short routing alternatives
and 97 % are attributed to increasing the average dissimilarity in CS. Going
from CMT1 to CMT5 a rise in the gaps is observed which is partially due to
the growing problem size. However, although CMT11 contains more nodes than
CMT12, there is consistently a higher gap for CMT12. This again shows that
the structure of the underlying instances clearly plays a role in the solution of
the kd-VRP.
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Table 2. Results of the benchmark instances for varying k [3].

Instance CMT1 CMT2 CMT3 CMT4 CMT5 CMT11 CMT12

(no. of nodes) (51) (76) (101) (151) (200) (121) (101)

k=2

Average hypervolume 0.78456 0.82795 0.79428 0.79808 0.78898 0.87667 0.78768

Average of |P̂ | 27 29 25 22 27 40 28

Average running time [in mins] 34 101 118 179 253 91 58

Percentage best gap 0 1.62 3.61 8.37 9.13 0 1.02

Percentage average gap 0.47 2.84 4.48 9.55 10.11 0.25 1.28

k=3

Average hypervolume 0.81048 0.87099 0.83036 0.79544 0.84325 0.88545 0.77912

Average of |P̂ | 56 48 52 50 53 98 52

Average running time [in mins] 51 114 130 198 263 72 65

Percentage best gap 0.06 2.22 3.88 8.43 9.67 0.23 1.29

Percentage average gap 0.51 3.12 4.84 9.96 10.3 0.29 1.65

k=4

Average hypervolume 0.83655 0.82017 0.79475 0.79835 0.85556 0.84745 0.76792

Average of |P̂ | 103 63 82 69 66 213 80

Average running time [in mins] 53 144 146 195 264 77 81

Percentage best gap 0.06 2.35 4.2 9.33 9.53 0.08 1.49

Percentage average gap 0.51 3.37 5.00 10.09 10.31 0.23 1.9

k=5

Average hypervolume 0.79105 0.82463 0.82273 0.81627 0.87211 0.84897 0.75907

Average of |P̂ | 135 90 110 90 79 269 110

Average running time [in mins] 41 154 164 252 278 127 101

Percentage best gap 0.25 1.91 4.47 9.45 10.48 0.1 1.68

Percentage average gap 1.29 3.24 5.46 10.43 10.77 0.27 2.6

7 Conclusions

This paper deals with the bi-objective version of the k-dissimilar vehicle routing
problem in which k distinct vehicle routing alternatives need to be determined.
The objectives comprise minimizing the distance of the longest routing alterna-
tive and maximizing the lowest dissimilarity between two routing alternatives in
a set of k routing alternatives. Our contributions to this problem are manifold.
First, a way to simplify the spatial dissimilarity metric of Dell’Olmo et al. [6] is
presented. Further, an approach to approximate the Pareto set of Pareto optimal
k-routing alternatives is proposed with respect to the two criteria which, to the
best of our knowledge, has not been investigated before in literature. Moreover,
the impact of the problem input parameters as well as of the heuristic parame-
ters on the benchmark instances of Christofides et al. [3] is studied. The obtained
results are promising and reveal that the proposed algorithm is able to obtain a
good coverage of the Pareto set. Future research needs to focus on the analysis
of the interdependencies in the kd-VRP and on the development of strategies to
further increase the quality of the candidate set.
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Abstract. In this paper, we describe a branch-and-price algorithm for
the capacitated vehicle routing problem with 2-dimensional loading con-
straints and a virtually unlimited number of vehicles. The column gener-
ation subproblem is solved heuristically through variable neighborhood
search. Branch-and-price is used when it is not possible to add more
attractive columns to the current restricted master problem, and the
solution remains fractional. In order to accelerate the convergence of the
algorithm, a family of valid dual inequalities is presented. Computational
results are provided to evaluate the performance of the algorithm and to
compare the different branching strategies proposed.

Keywords: Vehicle routing · Loading constraints · Branch-and-price ·
Computational study

1 Introduction

In the recent years, the number of contributions related to vehicle routing prob-
lems with loading constraints has increased significantly. These problems com-
bine the well-known Capacitated Vehicle Routing Problem (CVRP) with the 2-
or 3-dimensional bin packing problem (2L-CVRP and 3L-CVRP, respectively).

The 2L-CVRP addressed in this paper can be defined in a complete directed
graph composed by one depot and a set of customers. The demand of each
customer is composed by two-dimensional and rectangular items, with distinct
height and width. We consider a homogeneous and virtually unlimited fleet. Each
vehicle has a two-dimensional rectangular loading surface. The objective of the
2L-CVRP consists in finding a set of routes that minimize the transportation
costs, while satisfying the following constraints:
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(C1) each route starts and it ends at the depot;
(C2) each customer has to be visited exactly once;
(C3) items have a fixed orientation, and thus, they cannot be rotated in the

loading area;
(C4) items must fit in the loading area, without overlapping;
(C5) (sequential constraints) when visiting a given customer, unloading their

items must be performed in a straight movement, while keeping the edges
of items parallel to the edges of the loading area, without rearranging items
from other customers.

The first exact method described in the literature for the 2L-CVRP is due to
Iori et al. [6]. The authors proposed a branch-and-cut approach for the 2L-CVRP.
Initially, the integer programming model is solved without considering loading or
capacity-cut constraints. In what concerns the capacity-cut constraints, separa-
tion procedures are then applied. These procedures consist in heuristic methods
for the minimum-cut problem that are used to find violated inequalities. When
an integer solution is obtained, the feasibility of the packing is verified through
a branch-and-bound algorithm.

There are several column generation based approaches for different variants
of the vehicle routing problem. In contrast, approaches relying on column gen-
eration for the 2L-CVRP remain very rare. To the best of our knowledge, the
first column generation formulation for the 2L-CVRP was presented in [1]. The
authors proposed a branch-and-cut-and-price algorithm whose subproblem deals
only with area and capacity constraints. For this purpose, an elementary short-
est path problem is solved by considering the area and the capacity as resources.
Then, valid inequalities are added to the master problem in order to ensure the
loading feasibility of the routes.

Another column generation approach for the 2L-CVRP was suggested in [11].
Two general approaches were developed. In the first approach, each column that
is inserted corresponds to a feasible solution according to the loading constraints.
When no more columns can be added to the restricted master problem, branch-
and-bound is used in order to obtain an integer solution. In the second approach,
the packing feasibility of the routes is checked only after column generation
and branch-and-bound have been applied. If there are routes that violate the
loading constraints, the corresponding columns are removed from the restricted
master problem. For both approaches, and in order to solve the subproblem, four
heuristics are successively applied in order to derive one solution with negative
reduced cost. If they fail, the label correcting algorithm [3] is used instead.

For the 3L-CVRP, a column generation algorithm was proposed in [9]. Two
methods were described to solve the pricing subproblem. The first one consists
in relaxing the loading constraints, and hence in solving an elementary shortest
path problem with resource constraints related to the volume and capacity of
the vehicle. For this purpose, the authors resort to a label correcting algorithm
proposed in [3]. If a given route is not feasible, then customers are successively
removed until a valid solution is found or until the reduced cost becomes positive.
The second method relies on a greedy heuristic method, which aims to generate a
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list of feasible routes corresponding to a negative reduced cost, even though there
is not any route corresponding to the minimum reduced cost. The procedure
consists in creating, for each node, a list of customers that are linked to that
node. These lists are ordered by the increasing order of cost of the arcs. For
each customer linked to the depot, a route will be iteratively built by adding
the nearest neighbor, and ensuring that loading constraints are satisfied, until
reaching the depot.

Junqueira et al. [7] proposed the first formulation for the 3L-CVRP based
on an extension of the time-dependent formulation for the Travelling Salesman
Problem. Additional constraints are considered such as vertical load stability,
multi-drop situations and load bearing. These constraints arise frequently in
real-world situations. To evaluate the performance of their approach, the authors
conducted a set of computational experiments on randomly generated instances.
They concluded that their approach was able to solve satisfactorily medium-
size instances of the problem, but that it found serious difficulties for large-size
instances.

In [5], the authors describe an exact method for the 2L- and 3L-CVRP based
on the branch-and-cut approach proposed by Iori et al. in [6]. Again, a relaxed
version of the integer programming model for these problems is solved at an
initial stage. Concerning the routing component, multiple separation procedures
are applied right after obtaining the solution of the relaxed version, including
capacity inequalities, framed capacity inequalities, multistar inequalities, among
others. Moreover, when no more cuts are found, separation procedures concern-
ing the packing are applied. These procedures consist in eliminating the routes
that are not satisfying the loading constraints. Two main strategies are applied.
The first strategy is applied right after reaching an integer solution provided by
the branch-and-bound, by verifying the feasibility of each route included in the
solution. On the contrary, the second strategy does not require the execution
of the branch-and-bound, since it relies on a procedure to find infeasible routes
from non-integer solutions.

The lack of column generation approaches for the 2L-CVRP strongly moti-
vated the work presented in this paper. We suggest a branch-and-price algorithm
for this problem with a variable neighborhood search approach to solve the sub-
problem. We aim to contribute with new features such as different partition
strategies of the branching tree. We also suggest a family of valid cuts that may
accelerate the convergence of the algorithm.

This paper is organized as follows. In Sect. 2, we present a column genera-
tion model for the 2L-CVRP and we define the pricing subproblem. The overall
approach of the branch-and-price algorithm is described in Sect. 3. The dual
inequalities developed for this problem are presented in Sect. 4, while several
branching rules are described in Sect. 5. In Sect. 6, computational results of this
approach are presented and discussed. Finally, some conclusions are drawn in
Sect. 7.
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2 Integer Programming Formulations for the 2L-CVRP

2.1 A Compact Formulation

In this section, we describe a compact integer programming formulation for the
2L-CVRP proposed originally by Iori et al. in [6]. This formulation will be used in
the sequel to define our reformulated column generation model. Let G = (V,A)
be a complete directed graph where V represents a set of n + 1 nodes, and A
the set of arcs. The set V includes the depot (denoted by 0) and a set N of n
customers. We assume that the fleet is homogeneous with a virtually unlimited
number of vehicles. Additionally, let σ represent the bijection which defines the
order by which the customers are visited, and Σ(S) the collection of sequences
σ in which (S,σ) is a feasible route. The set of arcs in a route (S,σ) is defined by
A(S, σ). The formulation has binary variables xij , which takes the value 1 if the
arc (i, j) is used by one vehicle, and 0 otherwise. To travel through an arc (i, j),
there is a cost cij . Additionally, let δ+(i) be the set of customers j adjacent to
i such that (i, j) ∈ A, and δ−(i) the set of customers j adjacent to i such that
(j, i) ∈ A. The formulation of Iori et al. [6] states as follows.

min
∑

(i,j)∈A

cijxij (1)

subject to
∑

j∈δ+(i)

xij = 1,∀i ∈ N, (2)

∑

j∈δ+(i)

xij −
∑

j∈δ−(i)

xji = 0,∀i ∈ V, (3)

∑

(i,j)∈A(S,σ)

xij ≤ |S| − 1 ∀(S, σ) such that σ /∈ Σ(S), (4)

xij ∈ {0, 1},∀(i, j) ∈ A. (5)

Constraints (2) ensure that each customer is visited exactly once. Flow conser-
vation is represented through the constraints (3). The constraints (4) are named
by the authors as the infeasible path constraints. They ensure the loading fea-
sibility of the route considering the constraints (C3) to (C5) referred to above,
since all the infeasible routes are forbidden in the solution.

2.2 A Column Generation Model

Master Problem. A column generation model for the 2L-CVRP can be
obtained from (1)–(5) by applying a Dantzig-Wolfe decomposition [2] in which
the constraints (2) remain in the master problem, while the others define the
pricing subproblem. Note that the convexity constraints are omitted since the
fleet is homogeneous and virtually infinite. Let Ω be the set of all the feasible
routes, i.e. the set of all the extreme points. The columns (or decision variables)
of the master problem are denoted by λr, with r ∈ Ω. Hence, a variable λr

taking the value 1 means that the corresponding route is part of the solution.
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Each route r has an associated cost cr, and it can be described by a vector
(a1r, a2r, . . . , anr)T where each coefficient air takes value 1 if customer i (i ∈ N)
is visited in route r (r ∈ Ω), and 0 otherwise. The resulting reformulated model
is a set partitioning problem which is defined as follows.

min
∑

r∈Ω

crλr (6)

subject to
∑

r∈Ω

airλr = 1,∀i ∈ N, (7)

λr ∈ {0, 1},∀r ∈ Ω. (8)

Pricing Subproblem. The pricing subproblem defined through the constraints
(3) and (4) of (1)–(5) corresponds to an Elementary Shortest Path Problem with
Resource and Sequential Constraints (ESPPRSC). The ESPPRSC consists in
finding a shortest path without cycles that starts and ends at the depot such
that the 2-dimensional loads of the visited customers fit in the vehicle in such a
way that the sequential constraints described in Sect. 1 are satisfied. The costs
of the arcs in the underlying graph depend on the dual values associated to a
solution of the Linear Programming (LP) relaxation of (6)–(8). In each iteration
of the algorithm, the costs of the arcs in the subproblem will be updated. There-
fore, finding the shortest path corresponds to find the route with the minimum
reduced cost.

Let πi (i ∈ N) be the dual variables associated to each constraint of type
(7). The expression of the reduced cost c′

r for a given route r ∈ Ω is given by:
c′
r = cr −

∑
i∈N πiair.

To solve the subproblem, we resort to the Variable Neighborhood Search
(VNS) algorithm for the ESPPRSC, described in [10]. To the best of our knowl-
edge, this algorithm was the first approach for the ESPPRSC, and it relies on
constructive procedures to generate feasible solutions. These methods consist in
different strategies to place an item while satisfying the sequential constraints,
using bottom-left and level packing approaches. A VNS algorithm is used in
order to search for improved solutions, and it explores different neighborhood
structures, which are divided in routing and in packing neighborhoods. Several
variants were tested through the combination of the distinct constructive strate-
gies with the VNS algorithm.

3 Outline of the Algorithm

Generally, the master problem is initialized with a restricted set of decision
variables. For this reason, in the literature it is usual to denominate the master
problem as Restricted Master Problem (RMP). The RMP is initialized with a
subset of columns, which correspond to a subset of valid routes. In order to build
this subset, three strategies are used. The first strategy consists in the generation
of single customer routes. One route is created for each customer, and only that
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Fig. 1. Outline of the algorithm

customer is visited. The second strategy relies on the insertion of dual valid
inequalities to be presented in Sect. 4. Finally, the third strategy consists in the
use of a meta-heuristic to derive routes with a high percentage of used space in
the vehicle. In this sense, we resort to the VNS for the ESPPRSC [10] that is also
used to solve the subproblem, as referred to above. In order to generate routes
with a compact layout, the costs of all arcs are set at -1. The solution provided
by the VNS algorithm will consist in a route with a desirable compact layout
and the corresponding column will be added to the RMP. Then, the arcs of the
inserted route will take a very high cost, and the process is repeated according
to a parameter ninit. An artificial variable was also added to the initial subset
of columns.

After the RMP initialization, dual information is provided to the subproblem,
which will seek for attractive columns. If there is any attractive column, then it
will be added to the RMP. The procedure is repeated until no more attractive
columns are found by the subproblem. If an integer solution is found, the algo-
rithm stops, returning the obtained solution. Otherwise, a branch-and-bound
procedure is performed within a partial enumeration algorithm (Sect. 5.3), using
branching rules to be presented in Sects. 5.1 and 5.2. The overall approach is
outlined in Fig. 1.

4 Stabilization Strategies

Despite the effectiveness of column generation algorithms, they usually exhibit
a slow convergence rate with solutions that improve only very slightly at the



A Branch-and-Price Algorithm for the 2L-CVRP 327

last iterations of the procedure. This phenomenon is also known as long tail
convergence. Some strategies are commonly used to improve the convergence.
One of the most promising consists in restricting the dual space by enforcing the
so-called dual cuts. In this section, we explore a family of cuts for the particular
case of the 2L-CVRP. Our cuts are based on the fact that a route corresponds
to a sequence of visits, and hence it should be possible to replace a customer
i ∈ N by another customer j ∈ N (i �= j) in the position of the route provided
that:

(D1) the number of items of customer j is less than or equal to the number of
items of customer i;

(D2) the area of one item of customer i can be used to place at most one item
of customer j, without exceeding the height and width of the former item;

(D3) all the items of customer j can be placed in the vehicle satisfying the
previous condition.

From a primal standpoint, the idea behind these three conditions is that the
loading area of the vehicle, which is occupied with items of customer i, can be
used to place the items of customer j. The primal interpretation of the associated
dual cuts is that a customer i satisfying the above conditions can be replaced by
a customer j in any feasible route without breaking the feasibility of the resulting
route. However, since this replacement can take place in any feasible route that
is in the RMP, one does not know a priori what will be the associated cost. To
ensure that the computed cost cope with all the possible situations, and hence
that the related dual cut is feasible, we compute the cost of the resulting route
by considering the worst possible case. Let c̄ij be the cost difference between the
two less costly arcs that are incident to i and the two higher costly arcs that
are incident to j. Let i1 and i2 be, respectively, the first and the second nearest
customers to customer i. Let j1 and j2 be, respectively, the first and second
customer which are more far from j. Thus, c̄ij = cj1,j + cj2,j − ci1,i − ci2,i. The
following proposition shows that the corresponding dual cut is indeed a valid
dual inequality.

Proposition 1. Let πi and πj be the dual variables of constraints (7) of the
RMP associated to customers i and j, respectively. If the customers i and j
satisfy the conditions (D1)–(D3) referred to above, the following inequalities are
valid dual cuts for the 2L-CVRP:

−πi + πj ≤ c̄ij , ∀i, j ∈ N, i �= j.

Proof. The proof is based on the results obtained by Macedo et al. [8] for the
vehicle routing problem with different service constraints. It starts by establishing
valid conditions in the dual space, and then it demonstrates, by contradiction, that
the validity conditions are not obeyed for a cut that is invalid in the dual space.

Let Ω be the set of columns corresponding to the routes. Then,
∑

m∈N

amr ≤ cr,∀r ∈ Ω. (9)
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In the optimal solution, customer i is associated to exactly one route. Let
Ar = (a1r, . . . , 1, . . . , 0, . . . , amr)T with a unit coefficient in row i. This route
has a reduced cost equal to zero. Therefore, according to the reduced cost
expression, cr =

∑
m∈N πmamr. Let s be another route such that As =

(a1s, . . . , 0, . . . , 1, . . . , ams)T , i.e., ais = 0 and ajs = 1, and all the other coeffi-
cients equal to the ones in Ar. Then, cs − cr ≤ c̄ij . If there is a cut which is not
valid, then, −πi + πj > c̄ij . Thus, −πi + πj > cs − cr. Consequently, −πi + πj >
cs −

∑
m∈N πmamr. Since −πi + πj = −

∑
m∈N πmamr +

∑
m∈N πmams, then,∑

m∈N ams > cs, not satisfying (9). ��

From the primal standpoint, each dual inequality can be interpreted as the use of
the space left by items of customer i to place the items of customer j. It is worth
noting that applying this procedure gives rise to a route which is necessarily
feasible: all the packing constraints are obeyed since the placed items fit within
the space of the removed items. Consequently, the unloading sequence of other
items remains unchanged and the sequential constraints are satisfied.

5 Branch-and-Price

In order to derive an integer solution, it can be necessary to combine the branch-
and-bound approach with the column generation algorithm. At the root of the
branching tree, the LP relaxation of the reformulated model is provided. Thus,
branching constraints are introduced. At nodes from lower levels of the branching
tree, new columns may be needed, as many as required to solve the LP relax-
ation of that node. This integrated method is denominated by branch-and-price.
The branching constraints are usually based on the original problem, preventing
deadlock situations that could arise if branching is performed in the decision
variables of the RMP.

5.1 Branching Rules Based on a Single Variable

In the following, we present the branching strategies based on single arcs. Each
arc is in fact a variable of the original formulation. Therefore, the structure of
the pricing subproblem is not affected by the new branching constraints that
appear in the RMP, and hence, its complexity remains unchanged.

(BB1.1) Among all the arcs of the solution, the one that has the highest frac-
tional flow is selected to branch on, i.e.,

(i′, j′) = arg max(i,j)∈A{xij | xij �= 0, xij �= 1}. (10)

This rule aims to explore the branching tree guided by the solution provided
by the LP relaxation of the RMP.

(BB1.2) Among all arcs with fractional flow, the one that has the lowest cost
is selected,

(i′, j′) = arg min(i,j)∈A {cij | xij �= 0, xij �= 1} . (11)

This rule aims to fix the arcs by the increasing order of cost.
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(BB1.3) Among all routes of the LP solution, the one that visits more cus-
tomers is selected; from the set of arcs traversed by this route, the arc that has
the highest fractional flow is selected. The selected route will have expectably
a layout with good quality since it includes a high number of customers. Since
the loading component is the most critical in the 2L-CVRP, the aim is to fix
the flow on the arcs belonging to these type of routes.

(BB1.4) Among all arcs that are incident to the depot, the one that has the
highest fractional flow is selected. If there are no arcs satisfying this condition,
then rule (BB1.1) is applied. This rule aims to fix the values of the arcs that
leaves the depot, i.e. the origin of the flow.

5.2 Branching Rules Based on Sets of Variables

Using the branching rules based on a single variable may lead to a branching
tree with high depth. Alternatively, one may branch on the flow of a subset of
arcs instead. In these cases, a set of original variables is selected for branching.
The sum of their flows is used to define the branch, with an expectably greater
impact in the solution. In the sequel, we describe the rules used to select those
arcs.

(BB2.1) Among the set of routes of the solution, the one that has the highest
fractional value is selected. The sum of the flow in the arcs traversed by this
route is computed. Let r be the selected route and Pr be the sequence of
arcs traversed in route r. In one branch it is imposed that

∑
(i,j)∈Pr

xij ≥⌈∑
(i,j)∈Pr

xij

⌉
, while in the other branch the following constraint is applied:

∑
(i,j)∈Pr

xij ≤
⌊∑

(i,j)∈Pr
xij

⌋
. Guided by the solution provided by the LP

relaxation of the RMP, this rule aims to explore the branching tree by fixing
the sum of the flow of the arcs belonging to routes with highest fractional
value.

(BB2.2) Among the set of arcs of the solution, a subset of arcs with the highest
flow is selected. Let A′ ⊂ A be that subset, whose cardinality is a parameter
(marcs = |A′|). Then a binary branching is performed by imposing in one
branch that

∑
(i,j)∈A′ xij ≥

⌈∑
(i,j)∈A′ xij

⌉
, while in the other branch it is

provided that
∑

(i,j)∈A′ xij ≤
⌊∑

(i,j)∈A′ xij

⌋
.

(BB2.3) Among the set of arcs of the solution, a subset of arcs with the lowest
flow is selected. Then, the branching is performed with the same branching
constraints presented in rule (BB2.2).

(BB2.4) Among the set of routes of the solution, the one that has more visited
customers is selected. The branching is performed with the same branching
constraints presented in rule (BB2.1).

5.3 Combining the Branching Rules for Partial Enumeration

Taking into account the set of branching rules, it is necessary to define how
to apply and combine them, and, in this sense, which strategies are used to
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explore the nodes of the branching tree. All of them rely on a depth-first search
strategy for choosing the node of the branching tree to explore. Whenever it
is not possible to dive down a given node, the search continues at the upper
level of the branching tree. This happens when the LP relaxation of the RMP
associated to the node is infeasible. It is worth noting that it is not possible
to leave unexplored a node when the value of the LP relaxation of the RMP is
greater than the value of the incumbent solution. This is due to the fact that
the solution provided by the RMP relies on column generation based heuristic.
In the following, we describe the three strategies implemented.

(Single rule) Branch-and-price is performed using only one branching rule.
This means that in a given node, whenever there are no attractive columns
and the solutions remains fractional, the search space is divided into two
distinct search spaces according to the selected branching rule. With this
strategy, a different branching tree is derived for each branching rule.

(Random strategy) At a given node of the branching tree, if the solution
remains fractional, branching is performed by selecting randomly one of the
rules described above. This strategy ensures a greater diversity of the divided
search spaces at each node of the branching tree.

(Sequential strategy) In this strategy, the branching rules are explored by
the order they were presented, i.e., according to a sequence from (BB1.1)
to (BB2.4). Each branching rule is used by nmax iterations, as long as there
is no improvement of the incumbent solution. When nmax is reached, the
following branching rule is selected. Once the last branching rule (BB2.4) is
used after nmax iterations without improvement of the incumbent solution,
the process is repeated from the first branching rule (BB1.1).

6 Computational Results

To evaluate and compare the performance of the different enumeration algo-
rithms presented in Sect. 5.3, we conducted a set of preliminary computational
experiments on 25 instances of the 2L-CVRP proposed in [4,6]. This set is
described in Table 1, where m represents the number of customers while it cor-
responds to the number of items. The name and the class of each instance is
also provided. Note that the number of the class corresponds to the maximum
number of items for each customer. The instances of class 1 are considered as
pure CVRP instances, since each customer demands a single item with height
and width equal to one unit. The height and the width of each vehicle for all
instances are, respectively, 40 and 20 units. The algorithms were coded in C++,
and the tests were run on an Intel Xeon Processor E5-1620 v3 with 3.50 GHz
and 64 GB of RAM.

6.1 Preliminary Computational Experiments

In the preliminary tests, we imposed a time limit of 300 s in the LP relaxation
of the RMP, and a time limit of 1800 s in the branch-and-price. The parameters
ninit, marcs and nmax are set at 50, 10 and 10, respectively.
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Table 1. Set of instances

Instance Name Class m it Instance Name Class m it

1 E016-03m 1 15 15 14 E051-05e 4 50 134

2 E016-03m 2 15 24 15 E051-05e 5 50 157

3 E016-03m 3 15 31 16 E076-08s 1 75 75

4 E016-03m 4 15 37 17 E076-08s 2 75 112

5 E016-03m 5 15 45 18 E076-08s 3 75 154

6 E026-08m 1 25 25 19 E076-08s 4 75 198

7 E026-08m 2 25 40 20 E076-08s 5 75 236

8 E026-08m 3 25 61 21 E151-12b 1 150 150

9 E026-08m 4 25 63 22 E151-12b 2 150 225

10 E026-08m 5 25 91 23 E151-12b 3 150 298

11 E051-05e 1 50 50 24 E151-12b 4 150 366

12 E051-05e 2 50 82 25 E151-12b 5 150 433

13 E051-05e 3 50 103

In Table 2, we report on the average results for the 10 strategies described
in Sect. 5.3, namely the Single Rule (SR), the Random Strategy (RS) and the
Sequential Strategy (SS). There is always an integer incumbent solution, which
is initialized with a single customer route for each customer. The meaning of the
columns in Table 2 is the following:

– Inst : number of the instance according to Table 1;
– IOPT : number of the instances (according to column Inst) in which the algo-

rithm was able to achieve solutions that are better than the initial incumbent;
– spLP : average number of subproblems solved before branching;
– colsLP : average number of generated columns during the LP relaxation of the

RMP;
– spBB : average number of subproblems solved in the branch-and-price;
– colsBB : average number of generated columns in the branch-and-price;
– nodBB : average number of branching nodes generated during branch-and-

price, excluding the root;
– zLP average cost of the LP solution;
– zOPT value of the best solution achieved.

The obtained results show that strategies based only on one rule (SR) lead
to cost value in the LP solution similar to the ones obtained with random and
sequential schemes. Considering the values obtained with branch-and-price, the
strategies SR (BB1.2) and SR (BB2.4) provide better average values. Not sur-
prisingly, these strategies are also the ones providing a higher number of instances
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Table 2. Computational results for the preliminary set of experiments

Inst IOPT spLP colsLP spBB colsBB nodBB zLP zOPT

SR (BB1.1) 1 to 5 1; 2; 4; 5 46 44 74 64 10 281,09 343

6 to 10 6; 8 63 61 111 101 10 530,64 976

11 to 15 11; 15 71 69 171 164 6 1016,76 2000

16 to 20 16 82 80 243 240 3 1523,21 3015

21 to 25 21 81 79 422 421 1 3737,07 5998

avg. 69 67 204 198 6 1417,75 2466

SR (BB1.2) 1 to 5 1; 2; 3; 4; 5 40 38 101 91 11 282,47 298

6 to 10 6; 7; 8; 9; 10 62 60 80 74 6 535,88 549

11 to 15 11 75 73 187 184 3 977,48 2001

16 to 20 16 82 80 250 248 2 1511,51 3012

21 to 25 21 81 79 424 423 1 3705,37 5997

avg. 68 66 208 204 5 1402,54 2371

SR (BB1.3) 1 to 5 1; 2 45 43 31 9 22 277,21 461

6 to 10 6 63 61 63 42 20 530,04 1129

11 to 15 11 75 73 150 142 8 986,43 2006

16 to 20 16 82 80 235 233 2 1547,96 3008

21 to 25 21 82 80 418 417 1 3722,53 5997

avg. 69 67 179 169 11 1412,83 2520

SR (BB1.4) 1 to 5 1; 2; 3; 4; 5 44 42 23 19 4 278,87 278

6 to 10 6; 8; 9; 10 62 60 99 91 8 541,77 663

11 to 15 11 73 71 166 160 6 1023,62 2001

16 to 20 16 82 80 237 234 3 1501,04 3011

21 to 25 21 81 79 421 420 1 3749,97 5997

avg. 69 67 189 185 4 1419,05 2390

SR (BB2.1) 1 to 5 1; 2; 3; 4; 5 47 45 49 43 6 277,67 282

6 to 10 6; 7; 8; 10 65 63 118 110 8 533,56 695

11 to 15 11 77 75 196 191 5 999,07 2006

16 to 20 16 83 81 232 228 3 1529,20 3010

21 to 25 21 82 80 405 404 1 3773,60 5998

avg. 71 69 200 195 5 1422,62 2398

SR (BB2.2) 1 to 5 1; 2; 4; 5 44 42 70 62 7 279,99 343

6 to 10 6 59 57 126 121 5 530,78 1127

11 to 15 11 74 72 199 197 3 1000,01 2007

16 to 20 16 82 80 269 267 2 1523,10 3012

21 to 25 21 82 80 417 417 1 3722,49 5996

avg. 68 66 216 213 4 1411,27 2497

(Continued)
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Table 2. (Continued)

Inst IOPT spLP colsLP spBB colsBB nodBB zLP zOPT

SR (BB2.3) 1 to 5 1; 2; 4 46 44 72 68 4 280,50 404

6 to 10 6 59 57 145 141 4 544,71 1132

11 to 15 11 75 73 208 205 2 987,18 2001

16 to 20 16 83 81 263 262 1 1518,59 3014

21 to 25 21 81 79 425 424 1 3729,47 5997

avg. 69 67 222 220 2 1412,09 2510

SR (BB2.4) 1 to 5 1; 2; 3; 4; 5 46 44 83 74 10 283,91 299

6 to 10 6; 7; 8; 9; 10 64 62 116 106 10 531,53 549

11 to 15 11 77 75 178 175 3 999,46 2001

16 to 20 16 82 80 255 253 2 1534,11 3012

21 to 25 21 81 79 425 425 1 3737,81 5998

avg. 70 68 211 206 5 1417,36 2372

RS 1 to 5 1; 2; 4 47 45 68 63 4 277,82 403

6 to 10 6; 9 62 60 133 128 6 524,79 972

11 to 15 11 74 72 189 185 3 985,05 2008

16 to 20 16 81 79 250 248 2 1513,53 3012

21 to 25 21 81 79 430 429 1 3742,99 5996

avg. 69 67 214 211 3 1408,83 2478

SS 1 to 5 1; 2; 3; 4; 5 45 43 76 67 9 283,12 285

6 to 10 6 62 60 119 109 9 541,35 1130

11 to 15 11 75 73 167 160 7 977,43 2004

16 to 20 16 82 80 243 241 3 1528,39 3012

21 to 25 21 82 80 419 418 1 3798,95 5998

avg. 69 67 205 1969 6 1425,81 2486

where the best solution is better than the initial incumbent (instances 1–11, 16,
and 21). The number of generated columns tends to be greater for instances with
a higher number of customers. In these instances, it is more difficult to achieve
a solution better than the incumbent. Therefore, the branching continues giv-
ing rise to larger branching trees. However, within strategy SR (BB1.1), it was
possible to update the incumbent for instance 15, which has 50 customers and
more than 150 items. The strategy SR (BB1.3) leads to the worst average cost
values. Indeed, with the exception of the pure CVRP instances, the algorithm
was able to update the initial incumbent only for instance 2. Similar results were
found by strategy SR (BB2.3). Finally, results concerning the random strategy
and sequential strategy (RS and SS) lead to similar results.

6.2 Second Set of Computational Experiments

Considering the preliminary results, we conducted a second set of computa-
tional experiments. For this purpose, we considered three subset of instances.
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We selected the instances with 15, 50 and 150 customers, in order to build a set
of instances with different sizes. Additionally, the time limit for the LP relax-
ation was increased to 450 s, and the branch-and-price duration was set at a
maximum of 3600 s. The values of the remaining parameters were not modified.
In Table 3, we present the set of computational experiments for the second set
of experiments. In this table, we use the same columns defined in Sect. 6.1, and
the additional notation:

– tPP : average computing time for the initialization of the RMP (in seconds);
– tLP : average computing time for the LP relaxation (in seconds);
– tBB : average computing time for the branch-and-price phase (in seconds);
– ttot: average total computing time (in seconds).

The obtained results for strategy SR (BB1.1) show an average improvement
in the cost of the best solution achieved for instances 1 to 5 (roughly 17 %), when
compared with the preliminary tests. For the remaining instances, the values are
very close to those obtained in the preliminary tests for the same strategy. Similar
improvements were found within strategy SR (BB1.2) for instances 11 to 15,
reaching an average improvement of roughly 12,69 %. The values for strategy
SR (BB1.3) are very similar to those obtained in the preliminary phase. The
strategy SR (BB2.1) presents the worst average values concerning instances
with 15 customers, but presents important improvements for the instances with
50 customers (roughly 14 %). The strategy SR (BB2.3) leads to an average
improvement of 12,17 % when considering 15 customers. For instances with a
greater number of customers, the average improvement is less significant.

7 Conclusions

In this work, a branch-and-price approach for the capacitated vehicle routing
problem with 2-dimensional loading constraints is presented. The master prob-
lem relies on a set partitioning formulation, while the subproblem corresponds
to an elementary shortest path problem with loading constraints. The overall
approach includes the generation of valid dual inequalities in order to accelerate
the convergence. Different branching strategies were implemented and tested.
We conducted an extensive set of computational experiments using benchmark
instances from the literature. The obtained results provided solutions which are
clearly better than the initial incumbent for small size instances. However, for
instances with a greater number of customers, the algorithm tends to have more
difficulty in finding integer solutions with acceptable values.
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Abstract. This paper considers the static bicycle repositioning problem
(SBRP), which deals with optimally re-balancing bike sharing systems
(BSS) overnight, i.e. using service vehicles to move bikes from (nearly)
full stations to (nearly) empty stations. An exhaustive literature survey
comparing existing models is presented, and a new and improved math-
ematical formulation for the SBRP is proposed. The model is tested on
a number of instances generated based on data from a real BSS.

1 Introduction

As urbanization proceeds throughout the world, public decision makers are look-
ing for effective, affordable, and environmentally friendly means of transporta-
tion. Bike sharing fulfills these criteria for short distance traveling within city
centres, and consequently bike sharing is getting increased attention from both
governments and the public. Currently there are 948 cities with an active Bike
Sharing System (BSS) and 273 with a system under planning or construction
[10]. Figure 1 shows the expansion of bike sharing over the recent years, expressed
as number of cities in the world with a public BSS. For an extensive review of
the historical development of BSSs, the reader is referred to [9,24,35].

Bike sharing is a public system for automatic or semi-automatic lending of
bicycles for use within a restricted time period and area. A bike can be lent
at one station and delivered at another. Note that during the night most non-
automatic systems are either closed or in limited use. For the system to function
well, it is crucial that there are bikes available at a station when someone wants
to pick up a bike and that there are free slots available when someone wants
to return one. To achieve this, most BSSs use service vehicles to re-balance the
system, i.e. to move bikes from (nearly) full stations to (nearly) empty stations.
This paper studies the logistics of the service vehicles used to re-balance the
system overnight.

The planning problems arising from BSSs are divided into three levels in
accordance with [37]; a strategic, a tactical, and an operational level, as illus-
trated in Fig. 2. The strategic level contains problems that arise when designing
the system, e.g. determining the optimal number of bikes and locations of sta-
tions. On the tactical level the objective is to find an optimal distribution of
c© Springer International Publishing Switzerland 2016
A. Paias et al. (Eds.): ICCL 2016, LNCS 9855, pp. 337–351, 2016.
DOI: 10.1007/978-3-319-44896-1 22
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Fig. 1. Worldwide development in number of cities with a public BSS, 2000–2014 [10]

bikes between the stations at a specific time, while finding optimal routes for
the service vehicles to re-balance the system is the objective at the operational
level.

It is common to divide the operational level in two: static and dynamic
problems. In line with [31], the problems are named static bicycle reposition-
ing problem (SBRP) and dynamic bicycle repositioning problem (DBRP). The
SBRP is typically used for overnight balancing, when the demand forecast for the
operating period is not considered; the problem is static and deterministic. To
describe the SBRP we introduce the concept of states, i.e. a distribution of bikes
throughout the system, expressed as a specific number of bikes at each station.
The optimal state is the desired distribution of bikes at the end of the planning
period, i.e. early in the morning, while the initial state is the distribution at
the beginning of the planning period, i.e. late in the evening. After solving the
model, we get the final state. The difference between the final state and optimal
state is called deviation. All stations and vehicles have restricted capacities, and
the fleet of service vehicles may be either homogeneous or heterogeneous. For
every vehicle, a complete route and the number of bikes to pick up or deliver
at each station must be decided. Hence the SBRP can be classified as a static
many-to-many one-commodity pickup and delivery problem with selective pick-
ups and selective deliveries, in accordance with [3]. The DBRP is on the other
hand used for intraday re-balancing, as the demand during the operating time
is taken into account. Hence, the DBRP is both dynamic and stochastic.

In this paper we focus on the SBRP. In the literature survey, we identify
a need for a new formulation of the problem including more real-life aspects

Fig. 2. Planning levels of BSS optimization
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important for system planners. Our contributions are (1) to present an exhaus-
tive literature survey on the SBRP, including a systematic comparison of the
existing models, and (2) to propose a new mathematical model of the problem
that captures more real-life aspects. We also propose symmetry-breaking con-
straints and valid inequalities to tighten the formulation. The model is tested on
a number of test instances based on data from a real BSS.

Section 2 provides the literature survey on the SBRP, while a new mathe-
matical model for the SBRP is introduced in Sect. 3. A computational study is
presented in Sect. 4 and concluding remarks are given in Sect. 5.

2 Literature Survey

In this literature survey we focus on the static bicycle repositioning problem
(SBRP). For studies on the strategic level, we refer to [16,23,33] that determine
the number of stations and their locations, and to [15] that finds the optimal
number of bikes in the system and the number of slots at each station. At the
tactical level we can refer to [30,34,38] for analyses of the placement of bikes,
while [20] studies the detection of broken bikes in the system. There are also a
number of studies regarding the DBRP, see for example [1,4,5,7,21,26,27,32,39].
An overview of planning problems arising in shared mobility systems, for example
a bike-sharing system, is given in [22].

The SBRP was first studied in [2]. They describe the system using graph
theory. The objective is to move bikes along the arcs so each station is per-
fectly re-balanced at minimal cost. One of the main findings is that the SBRP
is NP-hard. In [6], the work from [2] is continued. An optimization model is
presented, but shows to be hard to solve, so they relax the problem by removing
the sequential dimension and solve it using a branch-and-cut (B&C) algorithm.

In [31], two different mixed integer programming formulations are introduced;
an arc-indexed and a time-indexed. The objective is to minimize a weighted
sum of the stations’ penalty costs for deviations and the operating cost. The
authors conclude that the arc-indexed model provides the best results for most
instances, but the time-indexed formulation is easier to adapt to the DBRP. Valid
inequalities and dominance rules are proposed to strengthen the formulations.

The arc-indexed formulation from [31] is enhanced in [14,19], both proposing
methods for solving larger instances. In [19], the formulation is simplified by
allowing only one vehicle, stating that a station is either a pickup or delivery
station and assuming that each station only can be visited once. The objective
is to minimize a penalty function depending on the number of bikes at each
station. The authors present a construction heuristic used to generate an initial
solution followed by a tabu search. On the other hand, the model is expanded
in [14] by using a three-step algorithm. In the first step, stations are clustered
using a saving heuristic. In the second step, vehicles are assigned to clusters,
while the routes for each vehicle are determined in the third step.

The SBRP is represented using a complete directed graph in [28,29]. Fur-
ther, several metaheuristics are presented and tested. The authors conclude that
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Variable Neighborhood Search (VNS) yields the best results on instances of
moderate size, while a PILOT/GRASP hybrid turns out to be superior on large
instances. A neighborhood search is also used in [17]. Two formulations for the
SBRP are also developed; a routing model and a step model, both incorporated
in a Large Neighborhood Search (LNS). The routing model uses an arc-indexed
formulation, while the step model allocates all station visits to routes.

In [34], the SBRP is solved in combination with the tactical level problem of
finding the optimal states. The routes from the SBRP must satisfy the service
level requirements from an inventory problem. The objective is to minimize the
maximal route length, hence it is formulated as a makespan problem. To solve
the model the authors propose a cluster first route second heuristic.

Four possible formulations of the SBRP are tested and discussed in [8]. To
handle the exponential number of subtour eliminating constraints, a B&C algo-
rithm is proposed in addition to both valid inequalities and separation proce-
dures. The authors conclude that the subtour elimination and separation tech-
niques proposed by [18] for the 1-PDTSP give the best computational results.

A decomposition method is introduced in [36], consisting of a request gen-
eration algorithm and a bike request scheduling problem (BRSP). The request
generation algorithm uses various data to generate repositioning requests.
A request includes the location and number of bikes to be picked up or delivered,
a time window and an importance weight. The BRSP determines which requests
to execute and assigns them to vehicles. The objective is to minimize the total
weight of rejected requests.

The objective of the SBRP-model in [27] is to maximize the number of re-
balanced stations, only allowing pickup and delivery of full truckloads of bikes.
The authors use a heuristic that solves the one-vehicle problem for each vehicle.

In [13], the SBRP is decomposed using a Benders decomposition scheme. The
subproblem determines the pickup and delivery quantities along a fixed route
of station visits, while the master problem finds new routes visiting all stations
with too few or too many bikes. In a later study, [12], the authors use insights
from [13] to solve the SBRP formulation from [6]. Whilst [6] could only find
heuristic solutions for realistically sized instances, the method from [12] yields
optimal solutions.

Table 1 shows a comparison of the main characteristics of the SBRP models
in the studies surveyed above, as well as some key information about the solution
methods. Note that the mathematical model proposed in Sect. 3 is also included
in the table. The numbers in the top row correspond to the numbers in Table 2.

From the table it becomes evident that half of the studies solve the problem
with only one service vehicle, even though most problems of realistic size use
several. Note that many articles use clustering algorithms. By assigning each
cluster to a vehicle, the SBRP could be solved once for each vehicle. Among
the studies allowing multiple vehicles, two assume the fleet to be homogeneous.
Half of the studies allow multiple visits to a station, while the other half does
not. When the deviation between the optimal and initial state is larger than the
vehicle capacity, allowing multiple visits to each station seems most reasonable.
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Table 2. Articles overview for Table 1

1 Benchimol et al. [2] 8 Sörensen and Dilip [36]

2 Chemla et al. [6] 9 Gaspero et al. [17]

3 Raviv et al. [31] 10 Erdoğan et al. [13]

4 Rainer-Harbach et al. [28,29] 11 Erdoğan et al. [12]

5 Schuijbroek et al. [34] 12 O’Mahony and Shmoys [27]

6 Ho and Szeto [19] 13 Forma et al. [14]

7 Dell’Amico et al. [8] 14 Espegren et al. (this study)

Five studies assume that there is no time usage or cost associated with the
loading and unloading operations at the stations, three use an average time and
five studies let the time usage depend on the number of bikes handled. Note that
none of the studies take traffic congestion into account, but presume the driving
time between two stations to be constant. Just one study, [27], allows only full
truckloads.

The studies by [2,6,8,12,13,34] minimize the time and/or cost associated
with repositioning the bikes. In these studies, the solutions are only valid if
the number of deviations is zero, i.e. the system is perfectly re-balanced. The
remaining studies use objective functions that in various ways minimize the
number of deviations.

All but two studies [2,36] include computational experiments on either the-
oretical or real instances. The majority use some kind of heuristics to solve the
instances. All studies that use exact methods fail to find the optimal solution
when the problem size increases and only yield upper and lower bounds. Since the
problems include binary and/or integer variables, a common approach is to use
B&C algorithms. The cuts can be generated using inequalities from [18] or using
Benders decomposition [12]. Popular heuristics are tabu search and VNS/LNS.
In [14] the problem is decomposed, and one part is solved by a heuristic and
another part using exact methods.

The studies using a time-variable do not need subtour eliminating constraints.
Among the remaining articles, the Miller-Tucker-Zemlin (MTZ) formulation [25]
is widely used to avoid subtours, while three studies, [8,12,13], eliminate subtours
using separation algorithms and cuts.

3 Mathematical Formulation

In this section, we propose a new mathematical model for the SBRP. The objec-
tive of the model is to minimize a weighted combination of the total deviation
in the number of bikes at each station from the optimal state at the time limit
and the time used. We assume a heterogeneous fleet of service vehicles that start
and finish their routes empty at the depot. Several vehicles can visit the same
station and a single vehicle can visit the same station several times. We presume



The Static Bicycle Repositioning Problem 343

Table 3. Notation used in the mathematical formulation

Sets

N Set of stations, indexed by i, j

V Set of vehicles, indexed by v

Mi Set of possible visits at station i, indexed by m, n

Parameters

TD
ij Driving time between stations i and j

TP Time used for parking a vehicle

TH Handling time used for loading or unloading a bike

T Time limit for operation of service vehicles

Qv Capacity of vehicle v

Ji 1 if station i is a pickup station, and −1 if it is a delivery station

α Weight on deviations in the objective function relative to time usage

A Maximum number of station visits for a vehicle

Ii Initial state, number of bikes at station i

Oi Optimal state, number of bikes at station i

Variables

ximjnv 1 if vehicle v is driving directly from station visit (i, m) to station visit (j, n), 0 otherwise

fijv Total number of bikes carried by vehicle v between stations i and j

qiv Number of bikes either picked up or delivered at station i by vehicle v

yi Final state, number of bikes at station i

uimv The sequence number in which station visit (i, m) is made by vehicle v

the driving time between stations to be constant and independent of the hour.
In addition to the driving time, each vehicle uses a fixed parking time at each
station visit. Time used to load and unload bikes at a station is proportional to
the number of bikes handled plus a given parking time. All stations are defined
as either pickup stations or delivery stations depending on their initial state rel-
ative to their optimal state. It is not possible to pick up bicycles at a delivery
station or deliver them at a pickup station.

Each station i ∈ N has a set of possible visits Mi. Note that the depot
is included in this set. Our formulation uses arc flow variables ximjnv, i ∈ N ,
m ∈ Mi, j ∈ N , n ∈ Mj , v ∈ V indicating whether vehicle v drives from station
visit (i,m) to station visit (j,n) or not, where m and n are the station visit
numbers. The entire notation is presented in Table 3.

min α
∑

i∈N
Ji(yi − Oi)

+ (1 − α)

⎡

⎣
∑

i∈N

∑

m∈Mi

∑

j∈N

∑

n∈Mj

∑

v∈V

(
TD
ij + TP

)
ximjnv +

∑

i∈N

∑

v∈V
THqiv

⎤

⎦ (1)

subject to:
∑

j∈N

∑

n∈Mj

xdvjnv = 1 v ∈ V (2)
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∑

i∈N

∑

m∈Mi

ximd(v+|V|)v = 1 v ∈ V (3)

∑

j∈N

∑

n∈Mj

xjnimv −
∑

j∈N

∑

n∈Mj

ximjnv = 0 i ∈ N\{d},m ∈ Mi, v ∈ V (4)

∑

j∈N

∑

n∈Mj

∑

v∈V
ximjnv ≤ 1 i ∈ N ,m ∈ Mi (5)

∑

j∈N
fjiv + Jiqiv −

∑

j∈N
fijv = 0 i ∈ N , v ∈ V (6)

yi +
∑

v∈V
Jiqiv = Ii i ∈ N (7)

∑

v∈V
qiv − Ji(Ii − Oi) ≤ 0 i ∈ N (8)

fijv −
∑

m∈Mi

∑

n∈Mj

Qvximjnv ≤ 0 i, j ∈ N , v ∈ V (9)

∑

j∈N
fdjv = 0 v ∈ V (10)

∑

i∈N
fidv = 0 v ∈ V (11)

∑

i∈N

∑

m∈Mi

∑

j∈N

∑

n∈Mj

(
TD
ij + TP

)
ximjnv +

∑

i∈N
THqiv ≤ T v ∈ V (12)

uimv − ujnv + (A − 1)ximjnv + (A − 3)xjnimv ≤ A − 2
i, j ∈ N ,m ∈ Mi, n ∈ Mj , v ∈ V (13)

ximjnv ∈ {0, 1} i, j ∈ N ,m ∈ Mi, n ∈ Mj , v ∈ V (14)
fijv ≥ 0, integer i, j ∈ N , v ∈ V (15)
qiv ≥ 0, integer i ∈ N , v ∈ V (16)
yi ≥ 0, integer i ∈ N (17)

uimv ≥ 0, integer i ∈ N ,m ∈ Mi, v ∈ V (18)

The objective function (1) consists of two terms that are to be minimized.
The first term is the deviation in number of bikes between the final state, yi,
and the optimal state, Oi, for all stations. Having too many and too few bikes
are equally penalized. The second term is the total time used to obtain the final
state. Total time corresponds to the sum of driving time, TD

ij , parking time, TP ,
and handling time, TH . By setting α slightly below one, the most effective routes
minimizing the deviation are found.
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Constraints (2) and (3) force the vehicles to start and end at the depot, d.
Symmetry at the depot is handled by stating that vehicle v uses visit numbers
v and v + |V| when leaving and arriving at the depot, respectively. Constraints
(4) ensure that a vehicle that enters a station visit, leaves the same station visit,
while constraints (5) make sure all station visits happen at most once.

The loading and unloading constraints (6) ensure that the flow of bikes into
station i, fjiv, equals the flow out of the station, fijv, plus the net pickup, qiv.
Since the problem is static, only the total net pickup is considered. Constraints
(7) and (8) assign values to the final state, yi. In addition, constraints (8) give
an upper bound on the net pickup at station i by vehicle v, qiv.

The vehicle capacity constraints (9) make sure that a vehicle never carries
more bikes along an arc than the vehicle’s capacity multiplied by the number of
times the arc is traversed. Constraints (10) and (11) state that the service vehicles
must be empty when leaving and returning to the depot. Capacity constraints
for the stations are handled implicitly. The total time spent for each vehicle is
limited to T by constraints (12).

Subtours are handled in constraints (13), similar to the MTZ constraints
[25], but with a strengthening proposed in [11]. Various methods for eliminating
subtours have been tested, and these constraints showed to perform best.

Symmetry breaking constraints remove solutions that are mathematically
different, but practically identical, while adding valid inequalities is a way of
improving the solution of the linear relaxation. Various symmetry breaking con-
straints and valid inequalities have been tested, and the ones presented here are
those found most effective.

∑

j∈N

∑

n∈Mj

∑

v∈V

(
ximjnv − xi(m−1)jnv

)
≤ 0 i ∈ N\{d},m ∈ Mi\{1} (19)

∑

i∈N

∑

m∈Mi

∑

j∈N

∑

n∈Mj

(
TD
ij + TP

) (
ximjnv − ximjn(v+1)

)

+
∑

i∈N
TH

(
qiv − qi(v+1)v

)
≥ 0 v ∈ V \ {|V|}

∣∣∣ Qv = Q(v+1) (20)

Constraints (19) reduce symmetry by handling the station visits, so that they
appear in the right sequence. By introducing constraints (20), symmetry that
occurs when using a homogeneous fleet of service vehicles is reduced.

∑

v∈V
qiv − | (Ii − Oi) |

∑

m∈Mi

∑

j∈N

∑

n∈Mj

∑

v∈V
ximjnv ≤ 0 i ∈ N (21)

∑

v∈V

∑

m∈Mi

∑

n∈Mj

ximjnv +
∑

v∈V

∑

m∈Mi

∑

n∈Mj

xjnimv ≤ 1 i, j ∈ N
∣∣∣Ji = Jj (22)

Constraints (21) force the ximjnv-variables to take values closer to one or zero
in the linear relaxation. For instance, for a station to be perfectly rebalanced,
the sum over the ximjnv-variables associated with that station must equal one.
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In [6] it is shown that the arcs between two stations of similar type need not be
traversed more than once, resulting in constraints (22).

Table 1 includes a comparison of this mathematical model with the models
in previous studies.

4 Computational Study

The mathematical model presented in Sect. 3 has been implemented in Xpress-
IVE 1.24.06 using the Mosel programming language. The computational exper-
iments have been executed on a computer with Intel Core i7-3770 3.40 GHz
processor, 16 GB of RAM and running Windows 7.

4.1 Test Instances

Based on the BSS in Oslo, Norway, six test areas (geographical regions) have
been identified. Details about the areas can be found in Table 4. The areas have
an estimated optimal state for each station and a driving time matrix, TD

ij . A
parking time, TP , set to one minute, is added for each station, while the handling
time for each bike, TH , is set to 30 s. All areas have two service vehicles. For
each area, three instances are created by varying the initial states, while all
other parameters are unchanged. Note that we assume perfect re-balancing for
the third instance in each area, making the instances easier to solve because of
a simpler structure.

Table 4. Test areas

Area |N | Avg. driving time T |V| Cap. v = 1 Cap. v = 2

1 6 2 min 16min 2 10 10

2 8 6 min 30min 2 10 15

3 10 6 min 40min 2 12 12

4 12 5 min 30min 2 10 10

5 14 7 min 45min 2 12 12

4.2 Computational Results

Various parameters in the model affect the computational time; the time limit,
T , the number of stations, |N |, the maximum possible number of visits to each
station, |Mi|, and the number of service vehicles, |V|. Among these, the time
limit and the maximum possible number of visits are studied here.

Figure 3 shows that the computational time peaks when the time limit is set
so that the total deviation is slightly above zero. By only changing the time limit,
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Fig. 3. The computational time depicted for different time limits, T , for instance 4.1,
i.e. the first instance from area 4. The numbers beside the markers indicate the total
deviation between the initial and optimal state in the solution.

the computational time varies from less than one second to more than 35 min.
The same pattern is seen for all instances.

The use of station visit numbers, m,n ∈ Mi, is a new approach for the SBRP,
allowing multiple station visits without a time-index. Though this formulation
has some advantages, both the solution and the computational time depend on
the value of |Mi|, i.e. the maximum possible number of visits to each station.
Each possible station visit (i,m) could be considered a distinct node in the graph.
Hence, adding one element to the set Mi for one station i is equivalent to adding
a node to the graph.

Consequences of using different values for |Mi| are illustrated in Table 5.
The lower bound method is the smallest number of visits to each station to
allow perfect re-balancing, defined as: |Mi| =

⌈
|Ii−Oi|

minv∈V CV
v

⌉
. The lower bound +1

method allows one more visit to each station than the lower bound method. The
upper bound method is defined as |Mi| = |Ii − Oi|. For all our test instances
the total number of deviations at the stations were the same for every method,
independent of |Mi|, hence only improvement in driving time is recorded in the
table. Consequently, the lower bound method is recommended as it yields near
optimal solutions with much less computational effort.

Depending on the input parameters, the mathematical model from Sect. 3
can be solved to optimality for instances of about 15 stations. Combined with
some form of clustering, this could be enough to solve many realistically sized
instances.

4.3 Comparison with Rules of Thumb

Today, in the Oslo BSS, the operators utilize their experience and common sense
to decide the routes and the pickup and delivery quantities. Here, two greedy
rules of thumb are created to imitate the operators behavior. The first rule of
thumb states that the service vehicle should visit the nearest pickup and delivery
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Table 5. Comparison of number of nodes in the graph, computational times, and
quality of solution for three different methods for setting the maximum possible number
of visits, Mi. The improvement in solution is relative to the lower bound method. Note
that the deviation between the initial and optimal state is equal for all methods, hence
improvement in solution only refers to driving time.

Lower bound Lower bound +1 Upper bound

Instance
∑

i∈N
|Mi| Comp.time

∑

i∈N
|Mi| Comp.time Imprv.in sol.

∑

i∈N
|Mi| Comp.time Imprv.in sol.

1.1 6 0.19 s 12 5.60 s 0.0% 24 139.70 s 0.0%

1.2 8 0.34 s 14 1.91 s 0.0% 38 47.40 s 0.0%

1.3 8 0.20 s 14 0.23 s 0.0% 48 >3000 s ≥0.0%

2.1 8 0.64 s 16 697.00 s 0.0% 32 >3000 s ≥0.0%

2.2 9 0.44 s 17 1.51 s 0.0% 46 >3000 s ≥0.0%

2.3 10 0.62 s 18 7.81 s 3.6% 48 462.00 s 3.6%

3.1 10 1.25 s 20 279.50 s 0.0% 56 >3000 s ≥0.0%

3.2 12 7.00 s 22 281.00 s 0.0% 64 >3000 s ≥0.0%

3.3 12 1.25 s 22 74.70 s 0.0% 58 >3000 s ≥0.0%

4.1 12 8.40 s 24 >3000 s ≥0.0% 52 >3000 s ≥0.0%

4.2 15 17.00 s 27 2089.00 s 0.0% 74 >3000 s ≥0.0%

4.3 12 0.40 s 24 20.30 s 3.3% 62 286.50 s 3.3%

5.1 14 69.00 s 28 >3000 s ≥0.0% 70 >3000 s ≥0.0%

5.2 16 15.30 s 30 2708.00 s 0.0% 86 >3000 s ≥0.0%

5.3 16 1.07 s 30 57.70 s 7.7% 106 >3000 s ≥7.7%

Average n/a 8.21 s n/a >814.95 s ≥1.6% n/a >2262.00 s ≥1.6%

stations in sequence, unless it is able to meet the demand at two subsequent
stations of the same type. The vehicle should serve the entire demand of bikes at
the stations, but is restricted by its capacity and the time limit for re-balancing.
The second rule of thumb works quite similar, but the vehicle always goes to the
station with the largest deviation.

A comparison is made between the results obtained with these rules of thumb
and the ones obtained by solving the model from Sect. 3. The comparison is only
made for instances 2.1 and 3.1, and to simplify only one vehicle is used. With
regard to deviations, the SBRP-model finds solutions that are between 20.0 and
56.6 % better than the two rules of thumb. A characteristic for the optimal
solution is that it has less slack in the time restriction than the rules of thumb.

4.4 Practical Use of the Model

Six of the 13 articles listed in Table 1 minimize time usage or cost, given that the
system will be perfectly re-balanced. By assuming zero deviation, several sim-
plifications can be made, and the computational time will decrease significantly,
as indicated in Fig. 3.

It is possible to utilize intervals, rather than a fixed number, to describe the
optimal state. This provides more flexibility to the model, presumably making it
harder to solve, but it may be more realistic. An alternative to use intervals, is
to punish large deviations relatively more than small, for example by punishing
the square of the deviation.
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In addition to serving as a tool for operational planning, the SBRP-model
could be used to support both strategic and tactical decisions. Analyzing changes
in parameter values can be done by re-solving the problem for different values. By
increasing the time limit for re-balancing operations, the number of deviations
could go down. The operator may use this information to decide whether to
expand the time limit or not. To support the decision of whether to acquire or
dispose a service vehicle, the SBRP-model may be used to quantify the effect.
Increased vehicle capacity leads, as expected, to a reduced objective value. At
a certain point, the objective value reaches its lowest point, where the total
deviation is zero or the time limit restricts the objective value from decreasing
further. To compare a change in the objective value with the cost of changing a
parameter, the system operator is referred to a cost-benefit analysis.

5 Concluding Remarks

As the SBRP is a relatively novel problem, a review of the research made on the
topic is missing in the literature. An extensive literature survey, consisting of the
review and systematic comparison of 13 studies, has therefore been conducted.
As can be seen from Table 1, many studies make assumptions that are unrealistic
for most practical problems. We have proposed a new mathematical model for
the SBRP that makes fewer assumptions and allows more possibilities than many
existing models. For instance, this model allows a heterogeneous fleet, multiple
visits to each station, and non-perfect re-balancing.

Since we have focused on the modeling and not on solution algorithms in this
study, we are only able to solve relatively small instances. The model should,
however, provide a good starting point for proposing more advanced solution
methods, for instance as an important part of a clustering algorithm for solving
realistically sized instances.
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16. Garćıa-Palomares, J.C., Gutiérrez, J., Latorre, M.: Optimizing the location of
stations in bike-sharing programs: a GIS approach. Appl. Geogr. 35(1), 235–246
(2012)

17. Gaspero, L., Rendl, A., Urli, T.: Balancing bike sharing systems with constraint
programming. Constraints 21(2), 318–348 (2016)
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Montréal H3C 3J7, Canada

Abstract. Station-based bike sharing systems provide an inexpensive
and flexible supplement to public transportation systems. However, due
to spatial and temporal demand variation, stations tend to run full or
empty over the course of a day. In order to establish a high service level,
that is, a high percentage of users being able to perform their desired
trips, it is therefore necessary to redistribute bikes among stations to
ensure suitable time-of-day fill levels. As available resources are scarce,
the tactical planning level aims to determine efficient master tours peri-
odically executed by redistribution vehicles. We present a service network
design formulation for the bike sharing redistribution problem taking into
account trip-based user demand and explicitly considering service times
for bike pick-up and delivery. We solve the problem using a two-stage
MILP-based heuristic and present computational results for small real-
world instances. In addition, we evaluate the performance of the master
tours for multiple demand scenarios.
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1 Introduction

Station-based bike sharing systems (BSS) enhance the public transportation
system in several cities by offering bike rentals. After registration, users can
perform trips between any pair of stations scattered in the service area. Bike
rentals are usually free of charge for the first (half) hour, additional driving time
incurs fees. Thus, BSS have become a valid and inexpensive approach for the
“last mile” between the metro/bus station and the final destination. For a review
of the history of BSS, see [1].

The percentage of users who can successfully perform desired trips, defining
the service level, is an important measure for the reliability of a BSS. For a high
reliability, a sufficient number of bikes and free bike racks need to be provided
at stations within the day. Still, given spatial and temporal demand variation,
together with different trip purposes such as commuting, leisure and tourism,
ensuring a high service level is a challenging task [2]. For instance, stations near
to working areas run full in the morning peak hour and empty in the afternoon
peak hour. Full and empty stations may negatively affect the service level since
users cannot return or rental bikes at them, respectively. To ensure availability of
bikes and free bike racks when demanded, bikes need to be redistributed among
stations. Resources such as vehicles, fuel and drivers are available to realize
the necessary redistribution operations. Unlimited resources would fulfill user
demand by setting up many redistribution operations with few bikes involved
e.g., see [3]. However, given that due to the offered free-of-charge user trips, the
revenues produced by BSS are limited, the resources available for redistribution
operations are scarce. In fact, redistribution operations incur the most significant
operational costs, putting on risk the bike sharing’s profitability [4].

Information systems provide real-time status of BSS, including fill levels, user
trips, and weather conditions. In addition, external information systems can be
used for supporting the operation of vehicles, see e.g. [5,6]. Although future user
demand is unknown, it is possible to obtain estimates through the analysis of
historical trip data, see e.g. [2]. Outputs of such analyses are used to anticipate
at which time of day the rental or return rate is critical at particular stations.
Although user demand varies between days, days with similar characteristics,
e.g. commute activitiy during workdays in a summer season exhibit very similar
demand patterns. Given these recurring patterns, it makes sense to think about a
“redistribution master plan” indicating how the redistribution vehicles should be
regularly operated and forming the backbone for the operational redistribution
planning.

In recent years, shared mobility systems have attracted a considerable
amount of research regarding e.g. the location of stations, fill level at stations,
user incentives, as well as the car/bike redistributions (for a review, see [7]). The
BSS redistribution problem is related to the traditional inventory routing prob-
lem [8] since at stations, inventory decisions regarding the fill levels are made.
A challenging feature of BSS is that bikes can be moved several times by both
users and distribution vehicles. In the majority of related articles, however, it is
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assumed that repositioning only occurs during the night when user demand and
traffic are considered as negligible; see for example [9–11].

Contrastingly, publications dealing with intra-day bike redistribution are still
scarce. Most of these publications assume perfect knowledge of the user demand
and consider the redistribution decisions in terms of bike flows through a time
space network. They differ, however, in the way of handling user demand and in
the considered objective functions. The approach presented in [12] assumes that
nodes of the time space network can be partitioned into rental and return nodes,
avoiding that both situations occur simultaneously. In other words, the user
demand is not defined in terms of bike flows, but is associated at the nodes of the
time space network as a rental or return request. Bikes are artificially added or
removed when demand is not fulfilled, leading to an imbalance of the number of
bikes in the system. Redistribution costs for operating vehicles are not considered
in this approach. In [13], a multi-objective approach is proposed. User demand
at stations is represented in terms of a expected accumulated demand over time.
The expected unfulfilled demand is counted and penalized. A mismatch between
initial and final fill levels for the given time horizon is also penalized. However,
the initial fill level is not an output of the approach but selected arbitrarily.
In [14], a cluster-first route-second approach is proposed, classifying stations
according to user demand into pick-up or delivery stations. In [3], time-dependent
origin-destination matrices are proposed for the resource allocation problem. The
approach yields station-to-station redistribution decisions without considering
the fact that these need to be performed by vehicles in a connected tour. In
all papers described above, the service times for (un)loading bikes from the
vehicle are neglected or assumed to be constant without regard to the number
of (un)loaded bikes. To sum up, in the current literature, we identify a lack of
properly representing critical issues such as time-dependent bike fill levels, service
times incurred by redistribution decisions and user demand for the (intra-day)
BSS redistribution problem in an optimization-based decision support system.

In this paper, we consider the intra-day BSS redistribution problem at a tac-
tical planning level. At this planning level, the aim is to efficiently use the limited
resources in order to yield a high expected service level for characteristic user
demand patterns, e.g. for a working day in a given season. Redistribution oper-
ations are scheduled in master tours periodically operated by the redistribution
vehicles. It is assumed that master tours are adjusted in an operational planning
level based on the real-time BSS status by adapting the number of redistributed
bicycles and/or by locally changing the route of the vehicle. The BSS redistri-
bution problem can be addressed by service network design formulations [15]
maximizing the service level while taking both vehicle fleet and monetary bud-
get limitations into account. Outputs are the time-dependent fill level at stations
and the necessary master tours to achieve these targeted fill levels.

We make the following contributions: First, we present a mixed-integer lin-
ear programming (MILP) formulation for the service network design of BSS.
The MILP integrates the service level, the time-dependent fill levels, the mas-
ter tours, the redistribution decisions, and the resources used for redistribution
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purpose. Second, based on a “small” real-world BSS, we conduct computational
experiments to test different settings of available resources. Finally, we evaluate
the quality of the master tours under different demand realizations and point to
future research opportunities.

2 Problem Description and Model

The tactical BSS redistribution problem to be considered in this paper can be
viewed as a special variant of a service network design problem. In this section, we
first describe the key elements of this problem: The network underlying the BSS,
the representation of fill levels, the tours conducted by the redistribution vehicle,
the forecast of user demands as well as the service level and the costs incurred by
the redistribution. This description, along with the introduced notation, forms
the basis for the mathematical formulation of the problem as a mixed-integer
linear program presented at the end of this section.

2.1 The Network

The BSS infrastructure is defined on the set N ′ of physical nodes, i.e., the bike
stations, and links connecting them, where the vehicles and users are allowed
to drive. Each station i ∈ N ′ has a capacity of ci bike racks. The vehicles are
parked at the depot {0} ∈ N ′ considered as a station with big capacity and
no bike demand. A total number of b′ bikes are distributed among all stations.
Theft of bikes, as well as damage of bikes or racks at stations, are neglected.
It is supposed that the redistribution vehicles do not realize intermediate stops
in order to simply represent them in terms of the corresponding vehicle paths.
Figure 1 illustrates a small BSS infrastructure with three bike stations, two bikes
allocated at each station, and the depot where a redistribution vehicle is parked.
The solid line represents vehicle paths whereas the dashed lines are potential
user trajectories between stations.

Fig. 1. A small BSS infrastructure.
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Let T be the target time horizon, e.g., a day, discretized into T = {t} =
{0, ..., TMAX } chronologically indexed time points; two adjacent time points rep-
resent one time period. We create a time space network represented by the graph
G = (N ,AU ∪ AV ∪ AH). Each node (i, t) ∈ N represents a physical node
i ∈ N ′ and a time point t ∈ T . Each node (i, t) has a successor, i.e., the next
time realization of the physical node, defined as (i, t + 1), if t < TMAX .

The arc set AU contains the arcs eU = ((i, t), (j, t̄)), t̄ = t + ΔU
ij ,∀i, j ∈

N ′ \ {0},∀t, t̄ ∈ T | t̄ > t, where ΔU
ij is the number of periods a that a user

requires to drive from station i to station j. Each arc eU of the set AU models
the possibility that users realize trips, renting a bike from station i at time
t and returning it at station j at time t̄. The arc set AV contains the arcs
eV = ((i, t), (j, t̄)), t̄ = t + ΔV

ij ,∀i, j ∈ N ′,∀t, t̄ ∈ T | t̄ > t, where ΔV
ij is the

required number of periods that a vehicle needs to drive from station i to j. Each
arc eV of the set AV models the possibility that a redistribution vehicle drives
from physical node i at time t arriving at physical node j and, in the case that a
bike station is located there, serving it until time t̄. If the physical node j is the
depot, the vehicle park there until time t̄. Finally, the arc set AH contains the
arcs eH = ((i, t), (i, t + 1)),∀i ∈ N ′,∀t, t̄ ∈ T | t̄ > t. The arc set AH models
holding arcs, i.e., the possibility that a vehicle, loaded or not, stays in a physical
node from time t to time t̄. Holding arcs allow the vehicle to stay at a station for
additional time in order to service the station with more bikes, if necessary. The
union of both sets AV ∪AH is referred to the set of vehicle arcs. The three type
of arc sets allow bike movements through the time-dependent network. Thus, in
the case that bikes are “moved” by one of these arcs, these bikes are not available
for new purposes from the departure node (i, t), appearing instantaneously at
the destination node (j, t̄).

2.2 The Time-Dependent Fill Levels

Let Iti be the number of bikes at physical node i and time point t including both
the bikes allocated at the station located in i and plus the load of the vehicles
parked in the physical node i at time point t. Immediately after t, bikes can
either be rented by users, transported by vehicles, or stay at the station. The
number of bikes allocated at station i between t and t + 1 is denoted by βt

i ,
whereas the number of free bike racks available at station i from time t until
time t + 1 is denoted by γt

i .
Dealing with the tactical planning level, we assume that the user demand

exhibits similar patterns each day. That means we need to ensure a suitable fill
level at the end of the time horizon, i.e., for the beginning of the new day. For
that, we explicitly stipulate that the absolute value of the mismatch between
the initial and final fill level is not bigger than a value Ψ , i.e., |I0i − ITMAX

i | ≤ Ψ .
Clearly, the closer Ψ is to zero, the more redistribution effort is necessary to
satisfy this condition.
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2.3 The Vehicle Routing and Bike Redistribution Decisions

The size of the vehicle fleet available during the time horizon is denoted by v ∈
Z
+ bounded by a maximal vehicle fleet size VMAX . Each vehicle can transport

a maximal lot size of l bikes. Let ytt̄
ij ∈ Z

+ be a variable capturing the number
of vehicles which implement the corresponding vehicle arc in AV ∪ AH . When
a vehicle arc is implemented, the driver can handle, i.e., pick up or deliver, a
maximal number of δtt̄ij ∈ Z

+ bikes at station j until time t̄. Note that δtt̄ij depends
on the time left after the driving time of the vehicle. The number of picked up
or delivered bikes at station j until time t̄ is denoted by ρt̄j ∈ Z

+ or σt̄
j ∈ Z

+,
respectively. Holding arcs allow the bike handling at stations during several time
periods if it is required. xtt̄

ij ∈ R
+,∀((i, t), (j, t̄)) ∈ AV ∪AH represents the total

load of the vehicle implementing the corresponding vehicle arc eV , i.e., the vehicle
bike flows. In order to avoid symmetries in the optimization model, the presented
formulation operates with a set of aggregated vehicles. Note that assumption is
only suitable when the master tours are implemented by a homogeneous vehicle
fleet.

Fig. 2. Time-space network. One redistribution vehicle operating.

A time-space diagram is showed in Fig. 2 based on the BSS infrastructure pre-
sented above. The vertical axis represents the stations (and the depot), whereas
the horizontal axis represents the time horizon, discretized into 6 time points.
At each node (i, t) the the number of bikes on it, i.e., Iti , is illustrated. The solid
lines represents all the vehicle arcs which describe the master tour operated by
the vehicle. Let suppose that the driver can handle only one bike per time period.
Thus, the vehicle starts from the depot at time point 0, arriving at station 2,
and picking up one bike until time point 1. For loading one additional bike at
the vehicle, the driver has to stay at the station one additional time period, i.e.,
a holding arc is implemented at station 2 between time points 1 and 2. Thus,
at time point 2, two bikes are still on the physical node 2, but now the load of
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the vehicle, whereas the station is actually empty. At time point 2, the vehicle
drives from station 2 to station 1, handling one bike from the load of the vehicle
to the station. To deliver the second bike at the station, a holding arc is imple-
mented again. Now, the loaded vehicle drives from station 2 to station 1, and the
delivering process begins. Finally, the vehicle returns to the depot. Note that for
the sake of clarity, Fig. 2 does not illustrate user trips through the network.

2.4 The Representation of the User Demand

We assume that the demand can be defined in terms of time-dependent origin-
destination matrices representing expected user bike flows. Let ζtt̄ij ∈ Z

+,∀eU ∈
AU be the number of expected user bike flows for the corresponding arc eU . The
decision variable f tt̄

ij ∈ Z
+,∀eU ∈ AU . represents the user bike flows actually

met. An expected user bike flow is only met if there is at least one bike at the
departure station i and time t and at least one free bike rack at the destination
station j and time point t̄. Otherwise, the expected user bike flow is not realized.

Note that this demand representation has some limitations: It is assumed
that users know the status at stations by means of information systems and do
not realize a desired trip if they become aware that the trips cannot successfully
be realized, even if there are stations close to the departure and destination
stations with available bikes and racks. If a user bike flow is met, the bike is only
available again when it is returned at time t̄.

2.5 The Service Level

We defined the service level λ as the percentage of successfully realized demand
trips during a time horizon. The service level is calculated as follows:

λ =

∑
((i,t),(j,t̄))∈AU

f tt̄
ij∑

((i,t),(j,t̄))∈AU
ζtt̄ij

(1)

In order to address out approach with a MILP solver, we consider to maxi-
mize the successful user trips. The coefficient φtt̄

ij may be considered in order to
prioritize particular spatial and temporal demand (see Eq. 2).

max
∑

((i,t),(j,t̄))∈AU

φtt̄
ij · f tt̄

ij (2)

2.6 The Redistribution Costs

Regarding the operational expenses ω, a cost F is associated with each redistrib-
ution vehicle used, a fixed cost ktt̄

ij is incurred if each a vehicle implements an arc
in AV ∪ AH (except the holding arcs when the vehicle stays in the depot) and
a variable cost qti is incurred per picked up or delivered bike at the node (i, t).
Operational expenses are limited by a maximal budget L. The total operational
expenses are calculated as Eq. 3.
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ω = F · v +
∑

((i,t),(j,t̄))∈AV ∪AH

ktt̄
ij · ytt̄

ij +
∑

(i,t)∈N |i�={0,TMAX }
qti ·

(
ρti + σt

i

)
(3)

2.7 The Model

With the notation introduced above, the optimization model reads as follows:

max z =
∑

((i,t),(j,t̄))∈AU

φtt̄
ij · f tt̄

ij (4)

subject to

f tt̄
ij ≤ ζtt̄

ij , ∀((i, t), (j, t̄)) ∈ AU (5)

∑
i∈N ′

I0
i = b′ (6)

It+1
i = It

i −
∑

((i,t),(j,t̄))
∈AU

f tt̄
ij +

∑
((j,t̄),(i,t+1))

∈AU

f t̄,t+1
ji

−
∑

((i,t),(j,t̄))
∈AV ∪AH

xtt̄
ij +

∑
((j,t̄),(i,t+1))

∈AV ∪AH

xt̄,t+1
ji , ∀i ∈ N ′, t < TMAX

(7)

It
i −

∑
((i,t),(j,t̄))

∈AU

f tt̄
ij −

∑
((i,t),(j,t̄))
∈AV ∪AH

xtt̄
ij = βt

i , ∀i ∈ N ′, t < TMAX (8)

ci − βt
i −

∑
((j,t̄),(i,t+1))

∈AU

f t̄,t+1
ji −

∑
((j,t̄),(i,t+1))

∈AV ∪AH

xt̄,t+1
ji = γt

i , ∀i ∈ N ′, t < TMAX (9)

xtt̄
ij ≤ l · ytt̄

ij , ∀((i, t), (j, t̄)) ∈ AV ∪ AH (10)

∑
((i,t),(j,t̄))
∈AV ∪AH

ytt̄
ij =

∑
((j,t̄),(i,t))
∈AV ∪AH

yt̄t
ji, ∀(i, t) ∈ N , t �= {0, TMAX } (11)

v ≤ VMAX (12)

∑
((0,0),(j,t̄))
∈AV ∪AH

y0t̄
0j =

∑
((j,t̄),(0,TMAX ))

∈AV ∪AH

yt̄TMAX
j0 = v (13)

∑
((0,0),(j,t̄))
∈AV ∪AH

x0t̄
0j =

∑
((j,t̄),(0,TMAX ))

∈AV ∪AH

xt̄TMAX
j0 = 0 (14)

ρt
i − σt

i =
∑

((i,t),(j,t̄))
∈AV ∪AH

xtt̄
ij −

∑
((j,t̄),(i,t))
∈AV ∪AH

xt̄t
ji, ∀(i, t) ∈ N , t �= {0, TMAX } (15)
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ρt
i + σt

i ≤
∑

((j,t̄),(i,t))∈AV ∪AH

δt̄tji · yt̄t
ji, ∀(i, t) ∈ N , t �= {0, TMAX } (16)

F · v +
∑

((i,t),(j,t̄))
∈AV ∪AH

ktt̄
ij · ytt̄

ij +
∑

(i,t)∈N |
i�={0,TMAX }

qti · (ρt
i + σt

i

) ≤ L (17)

ITMAX
i − Ψ ≤ I0

i ≤ ITMAX
i + Ψ, ∀i ∈ N ′ (18)

It
i ∈ Z

+, ∀(i, t) ∈ N , βt
i , γ

t
i , ρ

t
i, σ

t
i ∈ Z

+ ∀(i, t) ∈ N , t �= {0, TMAX } (19)

ytt̄
ij ∈ Z

+, xtt̄
ij ≥ 0, ∀((i, t), (j, t̄)) ∈ AV ∪ AH (20)

v ∈ Z
+ (21)

As explained above, the objective function (4) maximizes the service level.
Constraints (5) ensure that the number of realized user trips are not higher than
the expected trips from the demand data. At the beginning of the target time
horizon, all bikes are allocated at the stations (6). Constraints (7) model the
bike flow conservation taking into account the total number of bikes allocated at
each station, user trips and bike relocation activities. The number of allocated
bikes and available free bike racks at a station immediately after a time point
is defined by Eqs. (8) and (9). Equation (10) limit the load of the vehicles. The
design-balanced constraints, that is, the vehicle flow constraints, are presented in
(11). Equation (12) limits the size of the redistribution vehicle fleet. The master
tours needs to start at end from the depot (13) with no bikes on the load (14).
Equation (15) relate the number of picked-up and delivered bikes to the number
of incoming and outgoing of bikes due relocation activities. Equation (16) restrict
the handle time that a driver has to pick up or deliver bikes at a station until
a time point. Constraint (17) models the limitation of the total relocation costs
to the provided budget. Similar fill levels are expected at the beginning and
end of the time horizon (18). Finally, all variables are non-negative, whereas the
decision of implementing vehicle arcs, as well as the size of the vehicle fleet, are
represented as integer variables (19, 20, 21).

3 Computational Experiments

This section presents computational experiments conducted to test our ser-
vice network design formulation based on a “small” real-world BSS. Section 3.1
describe the input data, Sect. 3.2 presents the selected strategies to tackle our
BSS instance, whereas results are reported on Sect. 3.3.
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3.1 Input Data

We use the data of the San Francisco’s BSS “Bay Area” to generate instances.
Although Bay Area covers more cities, we only consider the data of San
Francisco’s service area. As we are interested in days with similar user demand
patterns, we only consider the bike trips recorded during the summer season
2015, i.e., between May and September, excluding weekends. The bike sharing’s
infrastructure, as well as the recorded user trips, are presented and described on
its website http://www.bayareabikeshare.com/ and summarized in Table 1.

Table 1. San Francisco’s Bay Area: instance description

Bike sharing system San Francisco’s Bay Area

Number of stations 35

Min - Max - Avg. bike racks per station 15 - 27 - 19

Year period 01 May - 31 Sep

Avg. trips per day 824

Analyzing the selected trip data, there are around 824 user trips per day out
of which most happen in the morning and afternoon peak hours. In general, the
user trips follow the activity patterns observed in [2]. To obtain a suitable user
bike flow input for our service network design formulation, we aggregate the user
trip data from multiple days to obtain the demand rate for each time-dependent
origin-destination pair corresponding to the user bike flows utilized in the model.
As the mean trip duration is around 12 min, we decided to split the time horizon
into 15-min time intervals. We assume that every user bike flow only takes one
time period.

Figure 3 illustrates the rental and return activity at two Bay Area’s bike
stations. On the left, the San Francisco Caltrain 2 (330 Townsend), a station
next to the train station, presents a high rental activity in the morning peak

Fig. 3. Rental and return activity of two Bay Area’s bike stations. On the left, the San
Francisco Caltrain 2 (330 Townsend). On the right, the Townsend at 7th.

http://www.bayareabikeshare.com/
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hour and a high return activity in the afternoon peak hour. On the right, the
Townsend at 7th, a station located near to work places and shopping centers,
presents the opposite behavior: A high return activity is observed in the morning
peak hour and rental activity in the afternoon peak hour. Both stations exhibit
typical commute activity observed in most BSS. Note, however, that the user
activity at the Caltrain 2 station is clearly higher than at the Townsend at 7th.

After aggregating the data set, we obtain real-valued time-dependent user
bike flows. For a suitable input for out service network design formulation, we
need to generate integer user bike flows based on the real-valued ones. Assuming
a Poisson distribution on the real-valued user bike flows, we generate 100 demand
realizations with integer bike user flows. To obtain the master tours, we run our
MILP with only one of the demand realizations. After that, we evaluate the
quality of the master tours for all demand realizations by fixing the vehicle
movements decisions of this solution and solve the resulting residual formulation
once for each demand realization.

In addition, we use the following parameters: Regarding the redistribution
vehicles, having a vehicle available during the time horizon costs 25 e/day. Based
on the input data used in [15], each vehicle movement costs 0.5e/km, whereas
the bike handling costs are 2e/bike between 8 and 17 h, otherwise 3.5e/bike.
The vehicle speed is 1 m/s, and the service time is 1 min/bike. 665 bikes are
distributed among stations at the beginning of the time horizon. All user bike
flows are weighted with the coefficient φtt̄

ij = 1,∀((i, t), (j, t̄) ∈ AU . Finally, Ψ = 5
is considered as the allowed mismatch between the initial and final fill levels.

3.2 Solution Strategy

Even for small instances, solving the service network design formulation with
standard MILP solvers is not possible within a reasonable amount of computa-
tion time. We propose the following approaches to speed-up the solution. First,
we follow the “Two-phase solution method” proposed in [9]: In a first step, the
integrality constraints for the fill level and bike flow variables are relaxed in
order to obtain vehicle tours with fractional bike flows. In the second step, the
vehicle tour decisions are fixed and the rest of the problem is solved again, now
considering integer fill levels and bike flows.

We test with different number of vehicles by fixing v to 1, 2, or 3. In this first
phase, the monetary budget is considered as unlimited. In the second phase, we
aim at finding the minimal redistribution costs to obtain the optimal service level
from the first phase. Note that it is possible that there exist solutions yielding
the same service level with a fewer use of resources. To check that, we fix the
optimal service level by introducing an additional constraint and select the left
hand side of Eq. 3 as objective function.

The service network design formulation is implemented in Java using the
ILOG Concert Technology to access CPLEX 12.5. An Intel Xeon X7559 CPU at
2 GHz processor with 80 RAM was used to run the experiments. All experiments
were run for a maximal running-time of 10 h per objective function.
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3.3 Results

Table 2 shows the results for the Bay Area instance for different numbers of
available vehicles. With one vehicle, a service level λ of 97.90 % is obtained,
meaning a 7.73 % improvement comparing with a solution where no vehicles are
used. Nevertheless, considering additional vehicles does not increase the service
level significantly. For a second vehicle, only a 0.58 % improvement is achieved in
comparison to the one-vehicle solution. With three vehicles, the expected user
bike flows are almost completely fulfilled. For the service level objective, the
remaining MIP gap after reaching the time limit is always under 2.5 %.

Table 2. Computational results after 10 h running time per objective

Objective MIP gap

v λ ω (e) λ ω

0 90.17 % 0.00 - -

1 97.90 % 293.46 2.39 % 15.73 %

2 98.48 % 306.23 1.54 % 1.62 %

3 99.65 % 403.71 0.35 % 3.04 %

The redistribution cost ω obtained after solving for the cost objective with
a fixed service level from the first phase increases with the number of vehicles.
Interestingly, the second vehicle incurs only 12.77e more cost than the one-
vehicle solution, whereas the redistribution cost increases considerably for the
third vehicle. Note, however, that the results for the cost objective suffer from a
high variation in the remaining MIP gap. In particular for the one-vehicle case,
the solution quality may be improved considerably – the lower bound after the
time limit is 247.31e.

Figure 4 illustrates the number of available bikes βi,t throughout the day for
the two San Francisco stations discussed above, when one vehicle is used. The
San Francisco Caltrain 2 station on the left almost runs full before the morning
peak hour. As expected, a lot of bike rentals means that the stations is almost
empty during the midday – this is not particularly critical since only few rentals
are expected in that time. Moreover, a low fill level is desired before the afternoon
peak hour to enable several bike returns. A significant decrease of the fill level is
observed around 18:00 since bikes are removed from the station by a vehicle. This
avoids that the station runs full, allowing more bike returns later on. Finally,
low activity is observed during the night. The Townsend at 7th displayed on
the right exhibits a completely different pattern. It begins with a low fill level,
running almost full after the morning peak hour due to a large number of bike
returns. In the afternoon peak hour, there is a high decrease of the fill level due
to the large number of rentals. Around 17:00, bikes are delivered to the station
to facilitate additional bike rentals during the evening and to maintain proper
fill levels for the next day.
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Fig. 4. Available number of bikes within the day for the San Francisco Caltrain 2 (330
Townsend) (on the left) and the Townsend at 7th (on the right).

To evaluate the quality of the master tour obtained for a single vehicle and
for a single of set of demand realizations in presence of different demand sce-
narios, we fix the master tour and solve the remaining bike flow problem for
different demand scenarios. The results are depicted in Fig. 5 by means of box-
plots for the service level and redistribution costs obtained. The average service
level is 95.23 %, with a standard deviation of 1.53 %. In fact, for most demand
realizations, the service level lies between 94.00 % and 96.00 %. In fewer cases,
the service level can range between 91 % and 98 %. A notch is used to show
the 95.00 % confidence interval. Regarding the redistribution costs, the mean is
218.33e, with a standard deviation of 44.78e. Most of the redistribution costs
are between 175.00e and 250.00e.

4 Discussion

For the small instances employed in our experiments, using a single redistri-
bution vehicle already leads to a high service level. In fact, given a compara-
bly small number of stations with comparably few bike rentals allows serving
a high percentage of stations during the day with a single vehicle. Depending
on the BSS infrastructure and daily rentals, however, more vehicles can have a
more significant impact on achieving a higher service level. Moreover, consider-
ing the redistribution costs is critical to evaluate the quality of the solutions.
For instance, the amount of redistribution costs associated with a given vehicle
gives an indication on its utilization which may help to decide if the extra vehicle
is actually necessary. We also observe that good fill level decisions consider the
final fill level at stations, i.e., the initial fill level for the next time horizon. For
instance, a station with several rental request each morning should dispose with
a suitable number of bikes before the morning peak hours. This condition needs
to be modeled explicitly in the service network design formulation.

Regarding the solution process, no optimal solution was found after the
given running time. As for most service network design formulations, the design-
balanced constraints necessary to set up the master tours are challenging for a
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Fig. 5. Box plots of service level and redistribution costs under different demand real-
izations with fixed vehicle movements.

standard MILP solver [16]. In fact, even solving the linear programming relax-
ation is very time-consuming and moreover only yields a weak lower bound for
the optimal integer solution. Instances from bigger BSS with of hundreds of sta-
tions are not tractable using the MILP-based solution approach presented above.
Alternative solution approaches are necessary to tackle bigger instances in an
acceptable running-time. Heuristic search techniques should contribute to select
a reduced but promising set of vehicle arcs to set up master tours.

Finally, our experiments show that the master tours are effective under differ-
ent demand scenarios with similar characteristics for the selected BSS instance.
Thus, master tours can support short-term operational redistribution decisions
dealing with real-time fill levels and user demand as discussed by [5].

5 Conclusions

In this paper, we present a novel service network design formulation for the bike
sharing redistribution problem. The model aims at obtaining master tours for the
redistribution vehicles and bike redistribution operations in order to establish
time-of-day-dependent station fill levels maximizing the service level. Our model
uses a trip-based representation of user demand and explicitly considers the
time needed for bike pick-up and delivery operations. The decision maker can
evaluate the benefits of using different numbers of redistribution resources in
order to make an informed trade-off between redistribution costs and service
level. For example, our computational experiments show that for certain numbers
of vehicles, an additional vehicle does not significantly improve the service level.

Taking a tactical planning perspective, we assume perfect knowledge of the
user bike flows for the whole time horizon, i.e., a “deterministic” case. In our
experiments presented in this paper, evaluated the performance of these master
tours for multiple demand scenarios. In future work, we consider to explicitly
model demand variations in our service network design formulation to obtain
more robust master tour decisions. In addition, we aim at developing solution
approaches to be able to tackle instances with a large number of stations.
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Abstract. Inefficient urban freight transport has a negative impact on
both livability in cities and profit margins in the supply chain. Urban
logistics schemes, consisting of governmental policies and company initia-
tives, attempt to address these problems. However, successful schemes are
difficult to realize due to the divergent objectives of the agents involved in
urban logistics. Traditional optimization techniques fall short when eval-
uating schemes, as they do not capture the required change in behavior of
autonomous agents. To properly evaluate schemes, we develop an agent-
based simulation framework that assesses the interaction between five
types of autonomous agents. Compared to existing studies in this field,
we contribute by (i) explicitly including company-driven initiatives, and
(ii) adopting a supply chain-wide perspective. We illustrate the working
of our framework by testing a number of schemes on a virtual network.

Keywords: Urban logistics · Agent-based simulation · Logistics
schemes

1 Introduction

The need to organize urban freight transport in an efficient manner is becoming
increasingly important. Projections indicate a strong growth in the population
of urban areas (both relatively and in an absolute sense) [21], resulting into
a larger demand for goods. Other trends affecting urban freight transport are
e-commerce, just-in-time approaches at retailers, higher dispersion of delivery
locations, and increased service levels (e.g., shorter lead times, narrow delivery
slots) [2,5]. As a result, shippers and carriers need to deal simultaneously with
increasing shipment frequencies and decreasing order volumes, making it diffi-
cult for individual agents to transport goods efficiently [7]. As a result, trucks
are often forced to carry low volumes and make inefficient delivery tours. This
inefficiency contributes to external costs such as congestion, emissions, and noise
hindrance, thereby negatively affecting the quality of life in urban areas. Further-
more, it reduces the profitability of the agents in the supply chain. In response
to these developments, there is a strong interest in city logistics initiatives. Such
initiatives, commonly called schemes, consist of one or more forms of company-
driven change and governmental policies, with the aim to improve efficiency
c© Springer International Publishing Switzerland 2016
A. Paias et al. (Eds.): ICCL 2016, LNCS 9855, pp. 369–383, 2016.
DOI: 10.1007/978-3-319-44896-1 24
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and/or reduce external costs [3]. Urban consolidation centers (UCCs) have a
central role in most schemes, facilitating order bundling and efficient last-mile
distribution. In Fig. 1, we give an example of the typical network setting that
we consider. Since agents that handle large volumes often have access to the
economies of scale and expertise to optimize their transport processes, our focus
is on agents that handle small volumes, who are affected the most by the afore-
mentioned trends.

Shipper CarrierReceiver UCC

Urban area

Line-haul transport Last-mile distributionFirst-mile pickup

Pickup area

Fig. 1. Example of a network with a UCC facilitating last-mile distribution

Despite the eminent need for better organizing urban logistics, the vast
majority of schemes fail after a short life-span [8]. A key reason for this is that
the involved agents typically have divergent objectives, making it difficult to
find solutions to which all agents are willing to commit [4]. Administrators often
attempt to generate commitment by providing financial incentives in the form
of subsidies [22]. However, such solutions are often not sustainable once the sub-
sidies are halted. Another problem is that schemes are often implemented with
little preliminary analysis, thereby not adequately evaluating their system-wide
impact [16]. Finally, studies often focus solely on the processes within the city
boundaries, while last-mile distribution accounts for a small part of the sup-
ply chain. As such, they ignore the impact of upstream decisions. Of particular
importance is the allocation of slack in the chain; holding freight early in the
supply chain may improve vehicle fill rates, but reduces flexibility for the UCC
in last-mile distribution. In our framework, we explicitly address these aspects.

A key success factor for urban logistics schemes is the right combination of
company involvement and governmental policies [8]. Agents must be willing to
permanently change their behavior, without requiring an ongoing external cash
flow. Traditional optimization techniques may be used to find viable system-wide
solutions, yet these are not guaranteed to be stable when depending on multiple
decision makers. Furthermore, it is difficult to evaluate the impact of combining
multiple measures into a scheme. Agent-based simulation studies are suitable
to evaluate such schemes, as they are capable of monitoring and altering the
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behavior of autonomous agents under conditions that can be flexibly adjusted
[20]. With this study, we provide an agent-based simulation framework to eval-
uate the effectiveness of urban logistics schemes that include both governmental
policies and company-driven initiatives.

2 Literature Review

For recent literature reviews on urban logistics, we refer to Anand et al. [2] and
Bektaş et al. [4]. These reviews state that most studies focus on describing and
evaluating existing initiatives, rather than optimizing. Only few papers adopt
an operations research perspective [10]; these papers generally address (i) the
positioning of UCCs and (ii) solution methods to one-echelon or two-echelon
routing problems. Most urban logistics initiatives are characterized by the use of
UCCs. Inbound trucks no longer need to enter the city center, but instead unload
at a UCC, which is typically located at the edge of an urban area. Subsequently,
goods can be bundled at the UCC, such that efficient tours can be made for
the last-mile distribution. Furthermore, environment-friendly vehicles can be
dispatched for last-mile distribution. Particularly for independent low-volume,
high-frequency deliveries, UCCs could substantially improve performance.

Browne et al. [8] provide an elaborate overview of real-life UCC projects,
and report that only few initiatives were able to remain in operation for mul-
tiple years. A key success factor is the involvement of commercial parties that
share a common objective. UCCs yield the best results when involving a suf-
ficiently large number of small, independent shippers and retailers, where low-
volume, high-frequency shipments are the norm. Government administrators are
typically required to cover the capital expenses of the UCC. Furthermore, gains
from policies could (partially) cover operational expenses. However, UCCs that
heavily rely on subsidies are unlikely to succeed in the long run, as profit margins
in logistics are too small to absorb a subsidy cut. Generally accepted financial
models do not exist for UCCs [1]; it is often not clear how the costs of the UCC
should be distributed among the administrator, receivers and carriers.

Quak [16] distinguishes four classes of initiatives in urban logistics. First,
he considers improvements within the context of existing operations, in which
he distinguishes between (i) governmental policies and (ii) company-driven ini-
tiatives. Second, he considers improvements that require changing the context
of urban logistics, which he divides in (iii) physical infrastructure initiatives
(including UCCs) and (iv) transport-reorganizing initiatives. Our present work is
primarily focused on the first two classes, as they can be captured by the decision-
making role of agents. Evaluating the latter two classes within our framework
can be done by using various network configurations as input.

We discuss the aforementioned classes of initiatives, starting with govern-
mental policies. To achieve norms on external costs, administrators encourage
or enforce the desired behavior of agents in the supply chain by implementing
policies. Common policies are vehicle access restrictions, time access restrictions,
enforcing a minimum load factor, and road pricing [18]. Such policies typically
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favor small vehicles, e.g., heavy trucks face stricter time windows and higher
costs than delivery vans. Individually, policies are often not enough to achieve
the intended change. Agents should have viable alternatives to change their
behavior, otherwise policies may even have results that oppose the intended
effect [18]. For example, restrictive access times may increase the number of
transport movements, forcing carriers to deploy additional vehicles.

Next, we describe the concept of company-driven change. Companies aim
to increase transport efficiency mainly for economic reasons, but also because
external costs become increasingly important for them. Forms of company-driven
changes are, e.g., joint transportation by a coalition of carriers, deliveries outside
normal delivery hours, or using the UCC as the delivery address [3]. The latter
can be initiated by the receiver or by the carrier. For the carrier, cost savings
(the costs of last-mile distribution are disproportionally high [11]) and legislative
restrictions are the main reasons to use a UCC. For receivers, poor accessibility
by truck and lower receiving costs (due to bundled deliveries) are reasons to
consider delivery via the UCC [24].

Collaboration is notoriously difficult to realize in urban logistics. As the
objectives of the agents in urban logistics are often divergent [4], system-wide
optimization yields little practical insights. Techniques such as multi-criteria,
multi-actor evaluation may yield more insights into the alignment of individual
agents’ objectives and feasible solutions [13]. However, such an evaluation does
not guarantee commitment of the individual agents. Tanaguchi et al. [20] state
that agent-based simulation is the most applicable method to study the behav-
ior of and interaction between the various agents for urban logistics schemes.
Agent-based simulation is not fit to study detailed interactions [4], yet is suit-
able to deduce generic insights on system performance. We mention some notable
agent-based simulation studies in the field of urban logistics. Tamagawa et al.
[19] perform an agent-based simulation, in which they heuristically solve a VRP
and iteratively update the actions of the agents. They test the effects of road
pricing and truck bans. Van Duin et al. [22] focus on the financial model and
environmental impact of UCCs, taking into account UCC service fees, road pric-
ing, and subsidies. Wangapisit et al. [25] evaluate the use of consolidation centers
by imposing parking constraints and providing subsidies to carriers.

The contribution of our evaluation framework is twofold. First, we take into
account the transport process outside the city. As last-mile distribution accounts
for only part of the transport process, a narrow perspective does not properly
assess the decisions made by shippers and carriers. Second, we explicitly include
various forms of cooperation between companies, while existing studies tend to
have a strong focus on testing governmental policies. As practice shows that suc-
cessful schemes require both policies and commitment from companies, a frame-
work including both aspects is essential for proper evaluation of these schemes.

3 Framework Design

In this section, we outline the design of our agent-based simulation framework.
We start by describing the roles of the agent types in Sect. 3.1. In Sect. 3.2, we
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formally define the state of the system, based on which we define the objective
functions for each agent type and the corresponding performance indicators in
Sect. 3.3. In Sect. 3.4, we discuss various policies for operational decision-making
(e.g., dispatching, routing) during the simulation. Finally, Sect. 3.5 assesses the
use of scenario analysis to incorporate tactical and strategic decisions (e.g., coali-
tion forming, governmental policies) into the framework.

3.1 Agent Types

We design our agent-based simulation framework such that it can simultane-
ously evaluate company-driven initiatives and governmental policies. We focus
on supply chains for a single city; extension of the framework to multiple cities
is relatively straightforward. In such a context, harmonization of local policies
and consolidation on the line haul are noteworthy challenges [16]. In our simu-
lation, decisions are made at discrete moments in time. Five types of agents are
distinguished: receivers, shippers, carriers, the UCC operator, and the adminis-
trator. We proceed to briefly describe their roles; Fig. 2 summarizes the array
of actions, monetary flows and information flows between the agents. We note
that the real-life counterparts of the agents are not necessarily rational decision-
makers, particularly when large changes in behavior are required. However, the
simulation results yield insights into the behavioral effects of real-life agents, as
such providing directions for change.

The receivers have a demand that is subject to some (stochastic) process,
and they may order from multiple suppliers at a single decision moment. They
order at fixed decision moments (e.g., twice per week); we assume that their
ordering pattern already takes into account factors such as internal consolida-
tion, storage costs, and stockouts. When ordering, receivers specify a delivery
windows. Receivers can opt to select the UCC as their fixed delivery address.
The shippers act on incoming orders, and hire carriers to transport orders.
As carriers charge relatively less for higher volumes, shippers have an incen-
tive to bundle multiple orders before shipping. However, the shippers should
dispatch the orders in time, such that the carrier is able to meet the delivery
windows. Line-haul carriers pick up goods at the shippers, and transport them
either directly to the receivers or to the UCC. They may outsource the last-
mile distribution to the UCC when this yields a financial benefit or is enforced
by regulation. The carrier uses a price function based on volume and line-haul
distance (i.e., the distance between cities, ignoring distance variations due to
routing) that reflects economies of scale. In the typical setting we study, a dis-
patched truck will visit multiple cities during a single tour, yet we focus on a
single city only. Consequently, the load destined for the city is generally much
less than the truck’s capacity. The UCC receives incoming goods, and is respon-
sible for the last-mile distribution. At the UCC, orders from various carriers can
be bundled, and may be temporarily held to account for future consolidation
opportunities. Finally, the administrator can implement governmental policies
to influence the behavior of agents. Since such policies are typically implemented
for a longer time, we do this on a scenario basis. The financial gains stemming
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Fig. 2. Actions and interactions for all agent types

from these policies may be redistributed to subsidize agents; to keep the scheme
sustainable we do not allow for external cash flows.

3.2 System State

In this section, we provide the notation required to define the state of the system
and the actions of agents. Let T = {0, 1, . . . , T} be the set of discrete decision
moments upon which agents can make decisions. Typically, the time between two
decision moments will correspond to several hours, e.g., one decision moment in
the morning, one in the afternoon, and one in the evening.

Let C be the set of carriers, R the set of receivers, and S the set of shippers.
We assume a single UCC. The network is comprised by a vertex set V and a set
of arcs A. Vertex set V is defined as V = VR ∪VS ∪VC ∪VH , i.e., the set consists
of subsets of locations of receivers, shippers, carriers and the UCC. As we have
a single UCC, we have VH = {vucc}. A vertex in VC indicates the starting point
of a carrier, i.e., its home depot. Every arc a ∈ A connects a vertex pair (va, v′

a).
Let F = { 1

y , 2
y , . . . , 1} (with integer y > 1) be the set of possible order volumes,

expressed in terms of the capacity of the smallest vehicle (e.g., a delivery van).
Based on the UCC dispatching problem defined by Van Heeswijk et al. [23], we
define an order as a request to ship a certain load, with an order type being a
unique combination of the delivery window [te, tl], the current position of the
order v ∈ V, (which indicates the agent responsible for handling the order at the
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current decision moment t), the receiver r ∈ R, the carrier c ∈ C ∪ H (the UCC
can be a carrier from the perspective of the receiver), the shipper s ∈ S, the order
volume f ∈ F , and an indicator γ ∈ {0, 1} that specifies whether delivery takes
place via the UCC (γ = 1 sets the UCC as the delivery address for the carrier).
The indicator γ can be specified either by the receiver (as a tactical decision) or
by the carrier (as an operational decision); the agent specifying the index might
incur a subsidy for this. We use It,te,tl,v,r,c,s,f,γ to denote the number of orders of
a specific type. Not all indices are required by every agent for decision-making.
For instance, the receiver will not specify which carrier delivers the order; this
index is left blank until specified by the shipper. Furthermore, decisions may also
transform order types, e.g., when the carrier decides to deliver via the UCC. The
generic notation is applicable to all agents. We denote the number of orders per
order type in the system at time t as It = [It,te,tl,v,r,c,s,f,γ ]∀te,tl,v,r,c,s,f,γ . In some
form, every agent is faced with a dispatch decision based on It. Using generic
notation, we denote the number of orders per order type dispatched at time t as

xt = [xt,te,tl,v,r,c,s,f,γ ]∀te,tl,v,r,c,s,f,γ ,

subject to

xt,te,tl,v,r,c,s,f,γ ≤ It,te,tl,v,r,c,s,f,γ ∀te, tl, v, r, c, s, f, γ,

xt,te,tl,v,r,c,s,f,γ ∈ N ∀te, tl, v, r, c, s, f, γ.

Both shippers and the UCC decide on the set of orders to dispatch at decision
moment t, we denote these actions as xshp

t,vs,s and xucc
t,vucc respectively. The order

of a receiver (based on the demand at time t) is described by xt,vr,r, while the
shipment of the carrier is given by xt,vc,c.

We proceed with the notation required to denote routes. Let Qc denote the set
of vehicles operated by carrier c. A vehicle q ∈ Qc has a vehicle capacity ψc,q ∈
R≥1, a line-haul travel speed τ lh

c,q ∈ R>0, and a last-mile travel speed τ lm
c,q ∈ R>0.

To ease the notation, we assume that all routes starting at t are completed at
t+1. For the same reason, we do not explicitly include the pickup tour. We denote
a route started by vehicle q of carrier c at time t as δcar

t,c,q = {δcar,lh
t,c,q , δcar,lm

t,c,q }, with
the components referring to line-haul transport (lh) and last-mile distribution
(lm) respectively. This distinction is used to assign distinct properties (e.g., fuel
usage, road pricing, driver wage) to the associated travel distances dlh and dlm.
We let Δcar

t,c denote the set of routes for carrier c at decision moment t, and use
Δucc

t to describe the set of routes for the UCC. The UCC only has to deal with
last-mile distribution, such that δucc

t,q = {δucc,lm
t,q }. We use Δt = [Δcar

t,c ,Δucc
t ]∀c to

denote all routes starting at time t.
The system state at t is given by [It,Δt]; this description provides all infor-

mation required for decision making and computing the performance indicators.

3.3 Objective Functions and Key Performance Indicators

In this section, we provide the objective functions and Key Performance Indi-
cators (KPIs) of the agents. We start by introducing some notation required
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to describe the price- and cost functions. For a variety of parameters and vari-
ables, we use the superscript hd to refer to costs for handling operations (e.g.,
(un)loading by the driver), rc for receiving (e.g., lost work time, allocating
goods), sp for shipping (e.g., lost work time, loading operations), and sb for
income from subsidies. In our description, we restrict ourselves to subsidies for
using the UCC. Price functions P describe the income of agents and cost func-
tions C describe their expenses. The used order volumes depend on the context
of the function. For example, the volume transported by carrier c′ at time t
to the UCC is given by ft,vc′ ,c′,γ|γ=1 =

∑
∀te,tl,r,s,f xt,te,tl,vc′ ,r,c′,s,f,1 · f . Other

volumes are computed in a similar manner, using the corresponding subscripts.
For the carriers and UCCs, handling costs depend on the subsets of locations

visited. A shipment may involve subsets of shippers S ′ ⊆ S and receivers R′ ⊆
R ∪ H, this information is embedded in the route description. Note that the
UCC is a receiver from the perspective of the carrier. The symbol α – with the
appropriate sub- and superscripts – refers to a fixed price- or cost component;
similarly, the symbol β refers to a variable price- or cost component. In Table 1,
we provide price- and cost functions for corresponding to the agent’s actions; for
notational convenience we formulate all functions linearly. For the same purpose,
we assume that carriers use homogenous fleets. Definitions are kept at a generic
level; we define the objective functions of the actors and illustrating the main
cost- and price components, without introducing excessive notational complexity.

Having defined the price- and cost functions, we now introduce the objective
functions for the agents. The outcomes of these objective functions serve as KPIs
for the agents. Although agents aim to optimize over the full planning horizon,
they make periodic decisions based on incomplete information.

The objective of the shipper is to minimize the sum of transportation- and
shipping costs. Shippers can influence these costs by selecting the set of orders to
ship at every decision moment (denoted by xshp

t,vs,s), and by selecting the cheapest
carrier c ∈ C for the shipment.

min
∑

t∈T

(
Cshp,tr

t,s (ft,vs,c,s, d
lh) + Cshp,sp

t,s (ft,vs,c,s)
)

.

The objective of the UCC is to maximize profit, which is determined by the
price charged by the UCC, subsidy income, receiving costs, and transport costs.
To influence their profit, they select a subset of orders to dispatch xucc

t,vucc , and a
corresponding route set Δucc

t :

max
∑

t∈T

(
Pucc,sb

t (ft,vucc) + Pucc,rec,tr
t (ft,vr,r,γ|γ=1) + Pucc,car,tr

t (ft,vc,c,γ|γ=1)

− Cucc,rc
t (ft,vucc) − Cucc,tr

t (ft,vucc , dlm,R′)
)

.

Carriers attempt to maximize profit (determined by the transport price, sub-
sidy income, transport costs, and outsourcing costs) by selecting the route set
Δcar

t,c that minimizes costs at every decision moment. In addition, carriers can
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Table 1. Price and cost functions for all decision-making agents

setoNnoitcnuF

Receiver (rec)

P rec,sb
t,r (ft,vr,r,γ|γ=1) = αrec,sb

r + βrec,sb
r · ft,vr,r,γ|γ=1 Income subsidies

(if r selects UCC)
Crec,rc

t,r (ft,vr,r,c) = αrec,rc
r + βrec,rc

r · ft,vr,r,c Costs receiving shipment

Crec,lm
t,r (ft,vr,r,γ|γ=1) = P ucc,tr

t (ft,vr,r,γ|γ=1) Costs outsourcing UCC
Shipper (shp)

Cshp,tr
t,s (ft,vs,c,s, d

lh) = P tr
t,c(ft,vs,c,s, d

lh) Costs transportation

Cshp,sp
t,s (ft,vs,c,s) = αshp,sp

s + βshp,sp
s · ft,vs,c,s Costs shipping

Carrier (car)

P car,sb
t,c (ft,vc,c,γ|γ=1) = αcar,sb

c + βcar,sb
c · ft,vc,c,γ|γ=1 Income subsidies

(if c selects UCC)

P car,tr
t,c (ft,vc,c, d

lh) = αcar,tr
c + βcar,tr

c · ft,vc,c · dlh Price shipping

Ccar,tr
t,c (dlh, dlm, S ′, R′) = αcar,tr

c + βcar,lh
c · dlh+ Costs full transport

βcar,lm
c · dlm + βcar,hd

c · |S ′ ∪ R′|
Ccar,lm

t,c (ft,vc,c, d
lh, S ′) = αcar,lm

c + βcar,lh
c · dlh+ Costs outsourcing UCC

βhd
c · |S ′| + P ucc,tr

t (ft,vc,c)
UCC (ucc)

P ucc,sb
t (ft,vucc) = αucc,sb + βucc,sb · ft,vucc Income subsidies

P ucc,rec,tr
t (ft,vr,r,γ|γ=1) = βucc,rec,tr · ft,vr,r,γ|γ=1 Price distribution

(if r selects UCC)

P ucc,car,tr
t (ft,vc,c,γ|γ=1) = βucc,car,tr · ft,vc,c,γ|γ=1 Price distribution

(if c selects UCC)
Cucc,rc

t (ft,vucc) = αucc,rc + βucc,rc · ft,vucc Costs receiving

Cucc,tr
t (ft,vucc , dlm, R′) = βucc,lm · ft,vucc · dlm+ Costs distribution

βucc,hd · |R′|

choose whether they perform the full transport themselves, or they can decide
to outsource last-mile transport to the UCC. For the latter decision, the carri-
ers compare the costs of outsourcing (minus the subsidy income) to performing
the last-mile distribution itself, selecting the cheapest solution. Their objective
function is given by

max
∑

t∈T

(
P car,tr

t,c (ft,vc,c, d
lh) − min

(
Ccar,tr

t,c (dlh, dlm,S ′,R′),

(
Ccar,lm

t,c (ft,vc,c, d
lh,S ′) − P car,sb

t,c (ft,vc,c,γ|γ=1)
)))

.

For the receivers and the administrator, we do not explicitly define an objective
function, as these agents do not make operational decisions in our framework.
The performance of the receiver is measured as the sum of receiving costs. These
depend on the tactical decision whether delivery takes place via the UCC. If the
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receiver does not mandate delivery via the UCC, its costs are given by
∑

t∈T

∑

c∈C∪H
Crec,rc

t,r (ft,vr,r,c).

If the receiver mandates deliveries via the UCC, the receiver pays the UCC for
last-mile delivery, but incur lower receiving costs due to receiving bundled orders
from only one carrier. The costs for the receiver are then given by:

∑

t∈T
Crec,rc

t,r (ft,vr,r) + Crec,lm
t,r (ft,vr,r) − P rec,sb

t,r (ft,vr,r).

The performance of the administrator is measured with the following KPIs:
(i) the number of vehicles per type that enter the urban area, (ii) the total
distance covered within the urban area per vehicle type, (iii) the income from
policies minus the provided subsidies, and (iv) the emission levels for CO2, SO2,
NOx, and particulate matter (PM). The first two KPIs indirectly capture effects
such as noise hindrance and the contribution to road congestion. The third KPI
should be a nonnegative number for a financially sustainable scheme.

3.4 Decision-Making Policies

All agents aim to optimize their own objective functions. In our dynamic environ-
ment, the corresponding operational decision problems are subject to incomplete
information. Exact solution methods for stochastic models usually require an
unfeasibly large computational effort, which is why we typically resort to heuris-
tic solutions in agent-based simulation. Various policies can be used to tackle the
operational decision problems. The specific policies to be used in the simulation
are selected based on the instance, and are chosen as simulation settings. For an
overview of the possible decisions per agent type, we refer to Fig. 2.

Both shippers and the UCC are faced with the decision when to dispatch
accumulated orders. Minkoff [14] describes this problem class as the Delivery
Dispatching Problem (DDP). Typical solutions for the DDP are fixed policies
based on (i) a threshold on accumulated volume and (ii) the elapsed service
time. In our simulation, the dispatching decision is more complicated, as orders
are subject to distinct delivery windows, and subsets of orders are periodically
dispatched. Orders may be held in inventory for a limited time, anticipating
future order arrivals for better consolidation opportunities. Dispatch decisions
can be significantly improved when taking into account expected future costs
[23]. For this DDP variant, methods such as scenario sampling or stochastic
modeling are suitable methods to estimate future costs.

Carriers, as well as the UCC, are required to solve a vehicle routing problem
(VRP). An abundant amount of studies has been performed on many variants
of the VRP. We refer to Cattaruzza et al. [9] and Kim et al. [12] for recent
overviews of VRP solution methods in urban logistics; these methods pay par-
ticular attention to aspects such as regulations, emissions, and delivery windows.
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As we split the decision problems into a periodic dispatch decision and a vehi-
cle routing problem, solution methods for the static VRP can be applied. To
establish credibility of the simulation model with the stakeholders involved, it is
sensible to incorporate algorithms similar to the ones used in practice.

3.5 Scenario Analysis

To embed tactical and strategic decisions – requiring commitment on the longer
term – into our framework we make use of scenario analysis: measures are given
as input to the simulation. In our discussion of scenario analysis, we again refer
to the classification of Quak [16]. Governmental policies are typically described
by forms of road pricing, parking fees, zone access, and time access restrictions.
Such policies are incorporated in the framework by (i) setting constraints as
network input, (ii) defining conditional costs and conditions for transport via the
urban network, and (iii) specifying allocation rules for possible redistribution in
the form of subsidies. Next, we discuss company-driven initiatives. To evaluate
measures such as adjusting the fleet or selecting the UCC as the delivery address
by the receiver, the characteristics of the agent can be adjusted. Cooperation
initiatives are incorporated into the framework as follows. First, the members
of the coalition should be specified. Second, the action space of the coalition
needs to be defined, including rules for the allocation of tasks to agents. Third,
a single objective function must be specified for the coalition. Stable solutions
require that the coalitional profit is at least equal to the sum of individual
profits of the coalition members. Fourth – as coalitions require rational agents
that are willing to cooperate – an appropriate gain-sharing mechanism should
be incorporated. Such mechanisms can drawn from the field of cooperative game
theory; a comprehensible overview is provided by Osborne & Rubinstein [15].

Finally, physical infrastructure- and transport-reorganizing initiatives are
incorporated by modifying the network and may entail, e.g., positioning the
UCC or including special transport lanes for licensed vehicles. It is important
that the applied routing algorithms properly take into account such restrictions.

The reliability of the simulation results depends on the scenario input data,
which may be subject to high variability. For a complete simulation study, we
would propose to first establish a reliable range for each parameter, and subse-
quently apply a fractional factorial design. Such a design only uses the values
corresponding to the range bounds, thereby (i) focusing on the main (interaction)
effects of measures, and (ii) providing high-level sensitivity analysis. Afterward,
more detailed analysis can focus on promising schemes.

4 Computational Study

To briefly illustrate the working of our framework, we test a few urban logistics
schemes. We implemented the framework as a discrete-event simulation model
in Delphi XE6. We represent the city by a virtual 10× 10 km grid, with 1 UCC
located at the edge of the grid, 3 carriers, 10 shippers, and 20 receivers (agents of
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the same type are identical). Network properties are chosen to sufficiently reflect
flexibility and diversity. The line-haul distance between shippers and receivers is
100 km. We consider a planning horizon with 500 decision moments, and perform
5 replications per scenario. A warmup period of 10 time units ensures reaching
a steady state. At every decision moment, receivers have a demand between
0 and 5 orders, with order sizes ranging between 0.05 and 0.20 of the capacity
of a delivery van. The earliest delivery time varies between 0 and 2 time units;
the length of the delivery window varies between 1 and 4 time units. Order
properties are generated stochastically, and are subject to uniform distributions.

In Table 2, we show the used vehicle properties. Vehicle capacities and aver-
age emission values are obtained from Boer et al. [6], using capacities for volu-
minous goods and 2020 engine standards. The UCC uses large vans (> 2 ton),
the line-haul carriers deploy medium-sized trucks (10–20 ton). For the delivery
van, we deduce costs per hour and vehicle speeds from Roca-Riu et al. [17].
We multiply these costs with 1.5 for medium-sized trucks. We set the transport
price charged by the carrier to a fixed shipment fee of e35 and a variable cost of
e1.5 per km. The UCC charges a volume-based price of e100 per van-load, and
incurs receiving costs of e20 for every incoming truck. For receivers and shippers,
we set receiving- and shipping costs at e5 per vehicle, respectively.

Table 2. Vehicle properties for carriers (truck) and UCC (delivery van)

Vehicle type Large van > 2 ton Truck 10–20 ton

Capacity (ton) 1.2 8

Speed line-haul (km/hour) 50 50

Speed urban area (km/hour) 25 25

Handling costs (e/receiver) 7.9 7.9

Costs line-haul (e/km) 0.83 1.24

Costs urban (e/km) 1.35 2.03

CO2 (g/km) 299.5 943

SO2 (mg/km) 2.3 7.2

NOx (g/km) 0.55 3.1

PM2.5 (mg/km) 42 56

We now describe the used decision methods. Shippers only dispatch the set
of accumulated orders when it contains an urgent order, and holds the shipment
otherwise. To obtain the expected future costs for the UCC, we use a one-step
lookahead policy. We sample 5 random order arrivals, for which we compute the
expected future costs per action. We select the dispatch action that minimizes
the sum of direct costs and lookahead costs. Finally, to solve the routing problems
of the carriers and the UCC, we use the cheapest insertion algorithm. Tactical
decisions include selection of the UCC by the receiver, forming a carrier coalition,
setting parking costs, and subsidizing the UCC.
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Table 3. Performance of all agent types under various urban logistics schemes.

Scheme Measures Net income(×103 e) External costs

A B C D E Receiver Shipper Carrier UCC Admin Admin

1 No No No No No −0.6 −12.9 32.9 0.0 0.0 o

2 Yes No No No No −0.4 −12.9 40.0 −24.9 0.0 ++

3 No Yes No No No −2.1 −12.9 50.8 −24.2 0.0 ++

4 No No Yes No No −0.2 −12.9 67.1 0.0 0.0 +

5 Yes No No Yes Yes −0.4 −12.9 40.2 5.0 −28.2 ++

6 Yes No Yes No No −0.3 −12.9 68.5 −11.5 0.0 +

7 Yes No Yes Yes No −0.4 −12.9 67.9 −12.0 1.3 +

8 Yes No Yes Yes Yes −0.4 −12.9 68.0 0.3 3.0 +

We test the following measures: (A) carriers may deliver via the UCC (oper-
ational decision), (B) receivers mandate delivery via the UCC (scenario input),
(C) carriers form a coalition (scenario input), using the Shapley value as a
gain-sharing mechanism, (D) parking costs (e3 per stop, only for trucks), and
(E) volume-based subsidy to the UCC (e70 per full van-load). Based on these
measures, we compose and test eight urban logistics schemes. With these
schemes, we aim to show how both individual and combined measures affect
system performance. In Table 3, we show the results of the agent types for all
schemes, stating the financial performance and an indicator for the external
costs. Agents that are negatively affected by a scheme (compared to Scheme 1)
are marked in bold. The results underline the difficulty to find feasible schemes.
Individual measures often fail to generate the required commitment from all
agents. The funding of the UCC is particularly complex. The correct balance
between subsidies and policy income must be found; if carriers mostly deliver
via the UCC, the income stemming from parking costs may be insufficient to
support the UCC. For the tested instance, the existence of the carrier coali-
tion is required to obtain sufficient income from parking costs. We highlight the
results of Scheme 8, which significantly cuts emissions (CO2 by 47.5 %, SO2 by
47.4 %, NOx by 53.1 %, and PM by 30.2 %), reduces the number of trucks in the
city center by 60 %, and reduce the overall urban transport distance (by both
trucks and vans) by 20 %. Although many measures have the potential to reduce
external costs, the challenge remains to combine them into a feasible scheme.

5 Conclusion

Although the need for improving urban freight transport is widely recognized,
existing initiatives often fail due to a lack of commitment by the actors involved.
In this study, we designed an agent-based simulation framework to evaluate a
wide array of urban logistics schemes. We defined the roles of five agent types,
and described their actions, monetary streams, and information streams. For
every agent type, we specified KPIs to measure the system performance. To
reflect the practice of urban logistics – where we must align the interests of
multiple actors – every agent is an autonomous decision maker. As such, we assess
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the behavior and performance of every agent type. Agents rationally optimize
their operational decisions during the simulation, whereas tactical and strategical
decisions are embedded by means of scenario analysis.

As practice indicates that schemes combining both governmental policies and
company-driven initiatives yield the best results, we designed the framework such
that both aspects are well represented. The urban consolidation center (UCC)
has a key role in our framework, as it facilitates both consolidation and the
deployment of designated delivery vehicles against lower (external) costs. Fur-
thermore, we included governmental policies such as road pricing, zone access
and parking costs; gains stemming from these measures can be used to subsi-
dize agents in a closed-loop scheme. To define company-driven initiatives, we
described collaboration between carriers, as well as various kinds of interaction
between the companies and the UCC. Another distinctive feature of our frame-
work is that we explicitly took into account the effect of line-haul transport
on the last-mile distribution, rather than focusing only on the last mile. With
our simulation framework, we can measure the impact of schemes on financial
performance and external costs, and verify whether autonomous actors could
commit to such a scheme in the long run.

References

1. Allen, J., Browne, M., Woodburn, A., Leonardi, J.: The role of urban consolidation
centres in sustainable freight transport. Transp. Rev. 32(4), 473–490 (2012)

2. Anand, N., Quak, H., van Duin, R., Tavasszy, L.: City logistics modeling efforts:
trends and gaps - a review. Procedia Soc. Behav. Sci. 39, 101–115 (2012)

3. Anderson, S., Allen, J., Browne, M.: Urban logistics - how can it meet policy
makers sustainability objectives? J. Transp. Geogr. 13(1), 71–81 (2005)
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Abstract. This paper presents a novel Mixed Integer Linear Programming
(MILP) model for the operational planning of an oil transportation system
characterized by a straight multiproduct pipeline with dual purpose terminals
that could represent facility input or output. It is based on a continuous repre-
sentation in both time and volume scales and is capable of meeting all opera-
tional constraints related to product sequencing, mass balances and pipeline
loading/unloading operations. Contrary to previous approaches, the model
allows an intermediate node and the previous segment to simultaneously inject
material in the pipeline. Computational results and data are reported.

Keywords: Transportation � MILP � Pipeline networks � Continuous
representation

1 Introduction

Compared with other transportation modes (rail, road tankers and coastal vessels),
liquid pipelines provide an economic mode of transportation for refined petroleum
products when large quantities have to be moved over large distances. Pipelines must
always be full, meaning that a volume of material must be pushed into a segment in
order to pump out the same amount at the other extremity, not necessarily of the same
product. The main goal of pipeline scheduling is to ensure that oil products will be
available to the customer at the right time, preferably at the lowest cost. This paper is
concerned with a pipeline system that must distribute a number of petroleum products
from multiple refineries to several distribution centers.

Research on the operational planning of pipeline networks has used mixed integer
linear programming (MILP) or non-linear programming (MINLP) and consider the
time representation as either discrete or continuous. Discrete approaches divide the
planning horizon into time intervals of equal and fixed duration [5, 11], whereas the
continuous representation relaxes such assumption by determining interval length as
part of the optimization, [1, 3, 4, 6–8, 10, 12]. Cafaro et al. [2] presented a two-level
approach based on continuous time MILP for detailed scheduling of real world pipeline
system with dual purpose stations. The model is able to handle simultaneous injections
and deliveries during any pumping operation. Mostafaei et al. [9] developed a single
level MILP formulation to solve the problem. The approach meets the same targets
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with a reduced number of pumping operations and a lower makespan. Both approaches
assume that at any time, each segment of the pipeline can receive material from either
the previous segment or the tank farm at the segment origin. To overcome this limi-
tation and address more realistic pipeline operations, this paper introduces a monolithic
MILP framework for operational scheduling that is capable of handling interacting
pumping runs, in which a pipeline segment can simultaneously receive product from its
upstream segment and the dual purpose station at its origin.

The remainder of the paper is structured as follows: Following the problem state-
ment in Sect. 2, we present, in Sect. 3, a novel MILP formulation for scheduling oil
products distribution through a multi-source pipeline network. The validity of the
proposed model is tested using three case studies, leading to the results in Sect. 4.
Finally, we give the conclusions in Sect. 5.

2 Problem Statement

This paper takes into account a real world pipeline system. Figure 1 depicts a sche-
matic representation of the pipeline configuration. The straight pipeline system consists
of a set of segments with single or dual purpose stations in between. Refineries act as
input nodes that send product batches to the pipeline that are destined to reach the
output terminals. The goal is to determine the size and sequence of the new batches to
inject in order to minimize unmet product demand at the output terminals and the
number of pumping runs. The time horizon is fixed and the following restrictions
apply: (1) pipeline segments are always full, (2) a pumping operation involves at most
one batch injection and removal at each node and (3) pipeline segments operate in
single flow direction, from left to right in the diagrams, with the flow rate belonging to
a given acceptable range.

3 Mathematical Formulation

The proposed model can be regarded as a generalization of the mathematical model
recently introduced by Mostafaei et al. [9] for the scheduling of multi-source pipeline
systems. The model involves six major sets: (a) composite pumping runs K (b) pipeline

Crude oil pipeline
Input node N1

Output node N2

N3 (Dual purpose station)

N4 N5

B1,P1B2,P2B2,P2B3,P4B3,P4B5, P5

Empty lot B4

Seg 1
Seg 2 Seg 3 Seg 4

Output nodes (depots)

Fig. 1. Straight pipeline system with multiple intermediate nodes
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segments d 2 D with segment d connecting nodes Nd and Ndþ 1 (c) product batches
I ¼ i1; i2; . . .f g traveling inside the pipeline during the planning horizon; (d) new
batches Inew to be injected ðInew�IÞ; (e) product batches Id�I ðId ¼ Ioldd [ Inewd Þ to
passing segment d; with Ioldd indicating the batches initially inside segment d and Inewd
denoting the batches to be transferred to segment d within the planning horizon; (f) oil
products P ¼ fp1; p2; . . .pjPjg: The parameters and decision variables are shown in
Tables 1 and 2.

Table 1. List of parameters

Parameter Description

hmax Horizon length (measured in hours)
ST Starting time of the first composite run (h)
vsd;min=vsd;max Minimum/ maximum flow rate in the segment d (m3/h)
vdd;min=vdd;max Minimum/maximum injection rate at the input node d (m3/h)
vpp;d Maximum delivery rate of product p to output terminal d (m3/h)
Vd Volume of segment d (m3)
Rd;min=Rd;max Minimum/maximum batch sizes injected from the input node d (m3)
Sd;max Minimum batch size transferred to segment d (m3)
Dd;min=Dd;max Minimum/maximum batch sizes diverted to the output node d (m3)
IWi;d Size of old batch i in segment d (m3)
Demp;d Demand of product p at output terminal d (m3)
Qp;d Inventory of product p at input terminal d (m3)
cb Unit backorder cost ($/m3)
fc Fixed cost for performing a pumping run ($/run)

Table 2. List of variables

Variables Description

STk Starting time of composite pumping run k (h)
Lk Length of composite pumping run k (h)
Lk;d Length of operation kd (h)
Ri;k;d Volume of batch i injected during operation kd (m3)
Di;k;d Volume of batch id diverted to output node d during run k (m3)
RPi;p;k;d Volume of batch i containing product p injected during operation kd (m3)
DPi;p;k;d Volume of batch ip diverted to output node d during run k (m3)

Si;k;d Size of batch id�1 transferred to segment d during run k (m3)
Wi;k;d Size of batch id at the end of composite run k (m3)
Fi;k;d Upper coordinate of batch id at the end of composite run k (m3)
Bp;d Unsatisfied demand of product p at output terminal d (m3)
wi;k;d 1 if a portion of batch i is injected during operation kd ; 0 otherwise
zk 1 if pipeline is active during composite run k; otherwise 0
xi;k;d 1 if batch id is diverted to output terminal d through run k; 0 otherwise
ui;k;d 1 if batch id�1 is transferred to segment d through run k; 0 otherwise
vk;d 1 if segment d is active through run k; 0 otherwise
yi;p 1 if batch i conveys product p; 0 otherwise
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Pipeline Loading from Input Nodes. Binary variable wi;k;d is equal to 1 if pumping
run k performed at input node d (input operation kdÞ injects batch i into segment d:
Eq. (1) states that at most one batch can be injected by a pumping run. Let
non-negative continuous variable Fi;k;d give the upper coordinate of batch i in segment
d (batch idÞ at the end of run k: Batch id can receive product from input node d only if
the lower coordinate of i (upper coordinate of iþ 1) at the end of the previous run k
with respect to segment d is equal to zero, i.e. Fiþ 1;k�1;d ¼ 0, see Eq. (2). Furthermore,
its upper coordinate must have reached the end of the previous segment, Fi;k�1;d�1 ¼
Vd�1; leading to Eq. (3). The volume of batch i injected into the pipeline ðRi;k;dÞ must
be within given lower and upper bounds, Eq. (4). Similarly, the duration of input
operation kd; given by continuous variable Lk;d; must be within a range calculated
dividing the injected volume ðRi;k;dÞ by the minimum and maximum processing rates in
the segment, see Eq. (5).

X

i2Id
wi;k;d � 1; 8k 2 K; d 2 D; ð1Þ

Fiþ 1;k�1;d �Vdð1� wi;k;dÞ; 8i 2 Id; k 2 K; d 2 D; ð2Þ

Fi;k�1;d�1 �Vd�1wi;k;d; 8i 2 Id; k 2 K; d 2 D; ð3Þ

Rd;minwi;k;d �Ri;k;d �Rd;maxwi;k;d; 8i 2 Id; k 2 K; d 2 D; ð4Þ
X

i2Id

Ri;k;d

vdd;max
� Lk;d �

X

i2Id

Ri;k;d

vdd;min
; 8k 2 K; d 2 D: ð5Þ

Each batch consists of at most a single product p; imposed by Eq. (6). If new batch
i is injected into the pipeline during the time horizon, it will convey a product and vice
versa, Eq. (7). The continuous variable RPi;p;k;d; indicating the volume of product p
contained in batch i pumped during input operation kd; will be equal the initial size of
batch i; Eqs. (8–9). Besides, the total volume of product p pumped from an input
terminal d cannot be greater than Qp;d; a known datum denoting the inventory level of
product p at input terminal d; Eq. (10).

X

p2P
yi;p � 1; 8i 2 I; ð6Þ

X

p2P
yi;p �

X

d2D

X

k2K
wi;k;d � jKj

X

p2P
yi;p; 8i 2 Inew; ð7Þ

X

k2K
RPi;p;k;d � jKjRd;maxyi;p; 8i 2 Id ; p 2 P; d 2 D; ð8Þ

X

p2P
RPi;p;k;d ¼ Ri;k;d; 8i 2 Id; k 2 K; d 2 D; ð9Þ
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X

i2Id

X

k2K
RPi;p;k;d �Qp;d; 8p 2 P; d 2 D: ð10Þ

Pipeline Unloading to Output Nodes. Being binary variable xi;k;d equal to 1 if
pumping run k directs batch id into depot d; Eq. (11) allows for at most one batch
discharged during composite run k: Discharge to depot d can happen only if the upper
coordinate at time STk satisfies Fi;k�1;d ¼ Vd : It is translated into Eq. (12). Equa-
tion (13) then limits the amount discharged Di;k;d to the given range of values. If batch
id conveys product p; the size of product p contained in batch id discharged to depot d
ðDPi;p;k;dÞ will be equal to Di;k;d; otherwise DPi;p;k;d is set to zero, Eq. (15). To meet
demand during the scheduling horizon, the size of batches containing product p
diverted into depot d should be as large as Demp;d ; known data standing for total
demand of depot dp: The unsatisfied demand Bp;d in Eq. (16) is penalized in the
objective function.

X

i2Id
xi;k;d � 1; 8k 2 K; d 2 D; ð11Þ

Fi;k�1;d �Vdxi;k;d; 8i 2 Id ; k 2 K; d 2 D; ð12Þ

Dd;minxi;k;d �Di;k;d �Dd;maxxi;k;d; 8i 2 Id; k 2 K; d 2 D; ð13Þ
X

p2P
DPi;p;k;d ¼ Di;k;d; 8i 2 Id; k 2 K; d 2 D; ð14Þ

X

k2K
DPi;p;k;d � jKjDd;maxyi;p; 8i 2 Id ; p 2 P; d 2 D; ð15Þ

X

i2Id

X

k2K
DPi;p;k;d þBp;d �Demp;d; 8p 2 P; d 2 D: ð16Þ

On the other hand, due to operation rules, some oil products cannot be discharged to
certain depots at full pressure and so:

X

i2Id
DPi;p;k;d � vpp;dLk; 8p 2 P; k 2 K; d 2 D: ð17Þ

Moving Material from Segment d–1 to d. Binary variable ui;k;d is equal to 1 if
pumping run k inputs batch id�1 into segment d: As before, at most one batch can enter
segment d during run k; Eq. (18). During the execution of composite run k; a portion of
batch id�1 can be transferred into segment d only if its upper coordinate at time STk
touches the end of segment d � 1; Eqs. (19)–(20). Constraint (21) acts as an upper
bound on the material simultaneously transferred from batch id to segment dþ 1 and
output terminal d:
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X

i2Id�1

ui;k;d � 1; 8k 2 K; d 2 Dðd� 2Þ; ð18Þ

Fi;k�1;d�1 �Vd�1ui;k;d ; 8i 2 Id�1; k 2 K; d 2 Dðd� 2Þ; ð19Þ

Dd;minui;k;d � Si;k;d � Sd;maxui;k;d ; 8i 2 Id�1; k 2 K; d 2 Dðd� 2Þ; ð20Þ

Si;k;dþ 1 þDi;k;d �Wi;k�1;d þRi;k;d þ Si;k;d ; 8i 2 Id; k 2 K; d 2 D: ð21Þ

Interacting Pumping Operations. Interacting pumping operations between the input
node d (at the start of segment d) and segment d � 1; also feeding d; are possible only
if the same batch is involved, see Eq. (22).

X

i02Id�1;i0 [ i

ui0;k;d þwi;k;d � 1; 8i 2 Id; k 2 K; d 2 Dðd� 2Þ: ð22Þ

No material can be transferred from batch i0ði0 [ iÞ to segment dþ 1 when a pumping
run belonging to composite run k discharges some materials from batch id to depot d:
Thus,

X

i02Id ;i0 [ i

ui0;k;dþ 1 þ xi;k;d � 1; 8i 2 Id; k 2 K; d 2 D: ð23Þ

Timing Constraints. Let Lk give the length of composite run k: If run k is executed at
the input node located at the start of segment d, then the two duration variables must
have the same values:

Lk;d � Lk � Lk;d þ hmaxð1�
X

i2Id
wi;k;dÞ; 8k 2 K; d 2 D: ð24Þ

The duration of all runs must be lower than the planning horizon ðhmaxÞ :
X

k2K
Lk � hmax: ð25Þ

The starting time of composite run k must be greater than the starting time of the
previous run plus its duration:

STk � STk�1 � Lk�1; 8k 2 Kðk� 2Þ: ð26Þ

STk ¼ ST ; k ¼ firstðKÞ: ð27Þ
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Tracking Batch Size and Location. Wi;k;d is the size of batch id at the end of com-
posite pumping run k: Its value is given by Eqs. (28)–(29):

Wi;k;d ¼ Wi;k�1;d þRi;k;d þ Si;k;d � Di;k;d � Si;k;dþ 1; 8i 2 Id; k 2 K; d 2 D; ð28Þ

Wi;k;d ¼ IWi;d; 8i 2 Ioldd ; d 2 D; k ¼ firstðKÞ: ð29Þ

The upper coordinate of batch id at time STkþ 1 is the volume between the origin of
segment d and the interface between batches id and ðiþ 1Þd :

Fi;k;d ¼
X

i0 � i;i02Id
Wi0;k;d 8i 2 Id; k 2 K; d 2 D: ð30Þ

Mass Balances. Since pipeline segments are always full, the total volume of products
entering segment d due to run k must be equal to the amount leaving the segment.

X

i2Id�1

Si;k;d þ
X

i2Id
Ri;k;d ¼

X

i2Id
Di;k;d þ

X

i2Id
Si;k;dþ 1; 8k 2 K; d 2 D: ð31Þ

Flow Rate Limitation. Binary variable vk;d is equal to 1 if there is a flow motion in
segment d during run k and its value satisfies the following Eqs:

X

i2Id
wi;k;d � vk;d; 8k 2 K; d 2 D; ð32Þ

X

i2Id
xi;k;d � vk;d; 8k 2 K; d 2 D; ð33Þ

vk;d � vk;d�1 þ
X

i2Id
wi;k;d; 8k 2 K; d 2 Dðd� 2Þ; ð34Þ

X

i2Id�1

ui;k;d � vk;d ; 8k 2 K; d 2 Dðd� 2Þ : ð35Þ

Due to operational rules, flow rate in an active segment is kept in the feasible range,
where vsd;min and vsd;max are the minimum and maximum rates in segment d,
respectively:

vsd;minLk � Smax;dð1� vk;dÞ�
X

i2Id
Ri;k;d þ

X

i2Id�1

Si;k;d � vsd;maxLk; 8k 2 K; d 2 D:

ð36Þ
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Objective Function. The objective function is to meet product demand at the depots
while keeping the number of pumping runs at a minimum:

minz ¼
X

d2D

X

p2P
cb� Bp;d þ

X

k2K
fc� zk; ð37Þ

where the binary variable zk satisfies the following Eqs:

zk �
X

i2Id
wi;k;d; 8k 2 K; d 2 D: ð38Þ

zk�1 � zk; 8k 2 Kðk� 2Þ : ð39Þ

4 Results and Discussion

Three examples are solved to illustrate the capabilities of the new continuous-time
formulation for the short-term scheduling of multi-source pipeline systems, one of them
involving an industrial case study. All MILP problems were solved by GAMS/CPLEX
12.6 in parallel deterministic mode (using up to 4 threads) on an Intel i5-4210U
(2.7 GHz) CPU with 6 GB of RAM running Windows 7 (64-bit).

Remark: To determine the optimal number of pumping operations, we start with a
few injections and then increase the number one by one. The procedure is repeated until
no better optimum is discovered.

Example 1. This example is similar to one presented by Mostafaei et al. [9], in which a
pipeline connects three input nodes (N1–N3) to three depots (N2–N4). The first line of
Fig. 2 depicts pipeline topography and its initial state at time ST = 0 h. Product sup-
plies and demands at pipeline terminals are listed in Table 3. The horizon length is
168 h and the flow rate at every pipeline segment should not surpass 1.4 volumetric
units per hour (v.u/h). Besides, the following values for parameters are used: Rd;min ¼
Dd;min ¼ 10; Rd;max ¼ Dd;max ¼ Sd;max ¼ 40; cb = 200 and fc = 100.

The optimal operational schedule for Example 1 is presented in Fig. 2 and was
found in 3.23 CPUs. Shown in Fig. 2 are: batch sizes inside the segments, size of batch
injections at input nodes (arrows pointing down), size of batches transferred to depots
(upward-pointing arrows), and volume transferred between segments in interacting
pumping runs (horizontal colored arrows). Composite runs k1 and k4 feature interacting
pumping runs. Through composite run k1 (see the second line of Fig. 2) 40 v.u of
product P4 and 10 v.u of product P1 are simultaneously injected into the pipeline from
input nodes N1 and N3, respectively, and at the same time 10 v.u of product P1 owing
to the pumping operation at node N1, is entering segment N3–N4. On the other hand,
30 v.u of product P4 and 20 v.u of product P1 are simultaneously transferred into the
output depots N2 and N4 respectively. Through the careful coordination among input
and output operations, product demands at depots are fully satisfied within 121.41 h,
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almost 2 days short of the planning horizon. The model includes 1568 constraints and
1241 variables, of which 227 are binary.

Example 2. Example 2 is a real world case study [9] and concerns the scheduling of an
Iranian oil products pipeline with a length of 345 km connecting two inputs (N1, N3) to
three output terminals (N2, N3, N4). The pipeline can be divided in three segments with
node N3 being a dual purpose node (see the top of Fig. 3). The acceptable flow rate
ranges, given in (m3/h), are the following: [80, 400] for segments N1–N2 and N2–N3
and [80, 320] for segment N3–N4. The maximum unloading rate for products P3 and P4
at depot N2 is 200 m3/h. Product supply and demand for a planning horizon of four days
are given in Table 4. Each composite run has a fixed cost of $1200, while backorder
costs 200 $/m3. Other data can be found in [9].

The optimal pipeline schedule allowing for interacting pumping runs is shown in
Fig. 3 and was found in just 3.127 CPUs (see Table 5). The first line of Fig. 3 shows
the pipeline situation at the starting time of the planning horizon i.e. at time ST = 0 h,
while the next lines represent the pipeline status at the end of the composite runs. The
pipeline schedule consists of 8 pumping runs from the two input nodes that are
arranged in 4 composite runs ( Kj j = 4). Composite runs k2, k3 and k4 feature inter-
acting pumping runs, in which the last segment is fed by both dual purpose node N3

Fig. 2. Pipeline schedule for Example 1.

Table 3. Product supplies and demands for Example 1.

Product Supplies (v.u) Demands
(v.u)

N1 N2 N3 N2 N3 N4

P1 100 - 40 80 - 60
P2 - 20 - - - 20
P3 20 - 10 - - -
P4 40 - - 40 20 10
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and segment N2–N3. Pipeline segments are kept active and demands are fully satisfied
within 85.77 h, 10.23 h below the planning horizon length.

To show the improvements based on both operational performance and computa-
tional cost, Example 2 has been also solved using the MILP model recently introduced
by Mostafaei et al. [9] that is not capable of handling interacting runs. The best pipeline
schedule with non-interacting runs is given in Fig. 4. It includes 7 composite and 14
output operations at input nodes. The model size and the optimal operation cost for
example 2 are listed in Table 5. The results confirm that the proposed MILP model
finds a better schedule, improves all key performance indicators and leads to much
better pipeline operation.
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Example 3. This example is considered in Cafaro et al. [2] and concerns the
scheduling of an oil products pipeline with a length of 900 km connecting three inputs
(N1, N2, N3) to four output terminals (N3, N4, N5, N6). Cafaro et al. [2] considered a
horizon length of 700 h, but here we reduce the time horizon to 250 h. Product supply
and demand is given in Table 6. The flow rate in every active segment should be kept
between 400 and 800 m3/h. Besides, the following values for parameters are used:
Rd;min ¼ Dd;min ¼ 20; 000; Rd;max ¼ Dd;max ¼ Sd;max ¼ 40; 000; cb = 200 and
fc = 1000.

By setting Kj j = 9 and solving the proposed MILP model to optimality, the solution
is found in 3650.23 s of CPU and presents a total cost of $4,009,000 of which
$4,000,000 corresponds to backorder cost. By adding just one more element to set K,
product demands at depots are fully satisfied, but the solution CPU time increases from
3650.23 s to 8654.12 s (see Table 7).

Table 4. Product supplies and demands for Example 2.

Product Supplies (m3) Demands (m3)
N1 N3 N2 N3 N4

P1 - - - - 9,200
P2 - 3,000 - - 7,350
P3 14,200 9,000 10,940 - -
P4 15,100 - 4,650 4,400 -
P5 5,000 4,500 - - 7,450
P6 - - - - -

Table 5. Computational results for Example 2.

Case Kj j CPU
(s)

Cont.
vars

Bin.
vars

Eqs Makespan (h) Obj. fun ($)

Mostafaei
et al. [12]

7 12.36 1478 242 1,677 96.00 8,400

Proposed
model

4 3.127 866 155 993 85.77 4,800

Table 6. Product supplies and demands for Example 3.

Product Supplies (m3) Demands (m3)
N1 N2 N3 N3 N4 N5 N6

P1 20,000 60,000 - 40,000 20,000 - -
P2 40,000 60,000 - 60,000 20,000 20,000 -
P3 - - - - 20,000 20,000 -
P4 - 40,000 - 40,000 - - 20,000
P5 - - 40,000 - - - 40,000
P6 - - 80,000 - 20,000 - 20,000
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5 Conclusion

A monolithic continuous-time MILP model for the scheduling of multi-product pipe-
line networks was developed. It can be applied to straight pipeline networks featuring
multiple input and output terminals, including dual-purpose stations. Contrary to pre-
vious approaches, the model is capable of handling interacting pumping runs, signif-
icantly reducing the number of pumping operations and the makespan. The model was
successfully applied to a real world case study.
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Abstract. Air traffic is growing, putting increasing stress to airports and air
traffic control. The introduction of optimized approaches, based on mathematical
optimization paradigms for planning and real time control, can be a possible
solution to this issues. We investigate the practical setting of an advanced
optimization algorithm in a real-life setting of a major airport where traffic is
diverse, belonging to multiple companies. We compare to the incumbent
practice (based on First Come First Served) in order to determine a gap with
optimized solutions computed by advanced algorithms. Those are based on a job
shop scheduling model and solved by a commercial solver.
This paper analyses the benefit for the involved operators of such approaches

by associating a monetary cost/benefit to operations. Cooperative game theory
tools have been used in the analysis. In particular, we use the Shapley value to
determine the fair distribution of the costs based on the marginal improvement
that the optimization of the traffic belonging to any airline brought to the system.
The main conclusions of this study are the determination of the superior per-
formance in terms of minimising the delay experienced by the whole airport,
which reaches more than 25 %. The benefit allocation gives share of benefits
more insightful than a simple proportional approaches based on share of traffic,
or share of delay. The practical implications of the analysis with regard to
variety in benefits as well as possible implementations by the different operators
and companies are also analysed.

Keywords: Air traffic control � Collaborative decision making � Game theory �
Aircraft scheduling problem

1 Introduction

The growth of aviation industry has continued unabated through the last decade, almost
doubling its revenue from 369 billion USD to 746 billion USD as of 2014. However,
with limited scope of expanding the infrastructure and high level of competition, the
margins of profit have been very thin, almost less than 3 % (IATA 2015; Clayton and
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Hilz 2015). To increase overall profitability, it is necessary to improve the operational
efficiency of the aviation operation, while balancing competition and cooperation
amongst the airlines. Those ideas lead to the concept of Collaborative Decision Making
(CDM): sharing information between all stakeholders and Air Traffic Control (ATC), to
take better decisions at system level. CDM implies and necessitates fairness.

Within the issues raised in CDM, this paper addresses the evaluation of an
advanced optimization algorithm to solve the aircraft scheduling problem at a major
European Airport, Schiphol (AMS). This is a crucial theoretical step in view of the
current design and specifications for CDM. In fact, the long term implications of CDM
in terms of actual improvements, possible setups, and impact of design choices are
being partially investigated now before the design and implementation of such systems.
A further contribution is the analysis of the output to derive implications on possible
collaborations of the stakeholders (airlines), and their impact on the performance of the
system. More in detail, instances have been created using real traffic data from the
Terminal Control Area (TCA) of Schiphol. Updated schedules compatible with safety
regulations of departing and arriving aircraft within the AMS-TCA are computed by
modelling the problem using the Mixed Integer Linear Programming (MILP) formu-
lation of (Samà et al. 2013, 2014) and using IBM ILOG CPLEX MIP 12.0 to solve it.
The gap between the optimized solution and the commonly applied
First-Come-First-Served (FCFS) solution identifies the surplus for the system. Since a
lot of stakeholders are involved in the airport operation, we evaluated whether the said
algorithm could be universally acceptable by all the airlines, as globally optimal and
fair, or not. A game theoretical study was setup based on a cooperative game between
the airlines; concept such as core and Shapley value identify a mechanism for the
allocation of the benefits and its economical and performance implications. This paper
quickly goes through a short literature review, model definition, and a description of
the computational experiences, ending with the extension of those ideas for a further
research.

2 Scientific Literature and Stakeholders Analysis

Due to the limited capacity in air traffic networks and the difficulties and high costs
building new airport resources often requires, aviation authorities seek better methods
to improve operational efficiency during daily air traffic operations (Ball et al. 2007).
Currently, the order in which multiple aircraft use common airport resources and their
timing is often decided according to the FCFS principle (see Samà et al. 2014 for an
overview of different objective functions and a review of the practice). In the literature,
when dealing with a single airport, different aspect of its management are considered:
some works deal with airport ground movements, spanning from the ground delay
program (Ball et al. 2010b) to the taxiway planning (Clare and Richards 2011); others
focus on the management of landing and taking-off procedures (Bennell et al. 2011). In
particular, when dealing with the Aircraft Scheduling Problem (ASP), different
approaches have been considered to solve it, ranging from applications of queuing
theory (Bäuerle et al. 2007) to travelling salesman (Luenberger 1988) to heuristics and
exact approaches (D’Ariano et al. 2015; Samà et al. 2016). This paper considers the
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problem modelled as a job shop scheduling problem (Beasley et al. 2000; Carr et al.
1998) since it is able to represent many of the constraints which characterize the ASP,
allowing a microscopic model able to incorporate the finer information compliant with
safety regulations. In particular, we consider the problem of scheduling landing and
taking-off aircraft both when using air (holding circles, air segments, common glide
path) and ground resources (runways, taxiways).

The management of air traffic operations interests a variety of stakeholders, namely
airlines, ATC, airports. Fairness, i.e. avoiding any systematic advantage to any player,
is an important aspect in ATC since the benefits that each player/stakeholder gets
depend on a variety of factors and always commensurate with the investments each
player makes to the whole cause. The study of fairness in air traffic operations has a
long tradition, starting from the seminal papers of (Bertsimas and Gupta 2009, 2015;
Bertsimas et al. 2011). Allowing for more collaboration (Soomer and Franx 2008)
proposed taking the airlines preference as a parameter in the optimization algorithm to
ensure a more inherent fairness. This might lead to the situation that any algorithm used
is perceived as fair since the airline decide which aircraft to prioritise, but this assumes
a high volume of operations for each airline, whereas, in reality this was not the case.

Game theoretical approaches have been proposed by (Skowron and Rzadca 2014)
and used for analysing fairness in a collaborative environment of resource allocation.
The concept of cooperative game theory has been used in the aviation industry,
although for a differently framed problem, focusing on the role of runways as bottle-
necks (Littlechild and Owen 1973). We also resort to cooperative game theory, par-
ticularly the Shapley value is used to find the unique imputation of the collective global
surplus (Shapley 1953). This is a procedure which assigns a unique distribution (among
the players) of a total surplus generated by the coalition of all players. This means that
every player contributes to a common fund to utilize common resources, and even-
tually, depending on the marginal contribution each player makes to the group as a
whole, they each receive the benefits.

We quickly review in what follows the stakeholders and their interrelation. Those
findings are based on study of policy papers and interviews, and the application of two
tools from research methodology literature in order to characterise the test case and
evaluation of the same. The first one is stakeholders’ analysis which involved enu-
merating all the involved stakeholders and their respective interests. This step was
qualitative in nature and was fairly high level interpretation of interests of various
players. The following list illustrates the primary stakeholders and their respective
interest along with their involvement in the modelling and analysis of this paper.

1. ATC – It is considered the problem owner and ATC is interested in running smooth
and safe operations and in identifying the motivation for a coalition and consensus
in policy, owing to CDM and importance of fairness.

2. Airline Companies – They are affected the most by the used policy, with direct
impact on their revenue stream; thus they are the most interested in the inherent
fairness of the policy as well as the resulting social optimal scenario.

3. Infrastructure manager– The primary objective of the infrastructure manager – in our
case, Schiphol group, is to ensure smooth and efficient operation in order to maintain
the attractiveness of Schiphol as a hub resulting in improved revenue stream.
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4. National Civil Aviation Authorities – The civil aviation authorities are not affected
directly or operationally by the proposed policy, however they want to maintain the
attractiveness of national airports, including Schiphol, and hence want a social
optimal solution.

5. Passengers – The interest of the passengers can be considered as a combination of
all the above mentioned factors. Although they are a financial contributor to the
system and are affected most by the operational variation, they don’t have much
voice in the policy formulation part. However, since government is a major player
in aviation sector, it can be assumed that the socially optimal solution would benefit
them as well.

The proposed policy has to primarily ensure the smooth, efficient and safe operation a
airport and conditional on the above standards being met, come up with scheduling
policies that is socially optimal i.e. fair to all the affected stakeholders in terms of
revenue stream. This is a result of the fact that the objectives of different stakeholders
are not perfectly aligned with each other.

The second qualitative analysis tool used in this paper is the XLRM framework.
The XLRM framework structures the analysis around key uncertainties, options,
metrics and models. This is a useful analytical tool because it represents, at a glance,
the whole process flow of the project. By identifying, the above mentioned parameters,
it is easier to execute and evaluate any process. Also, it is helpful while negotiating the
decision strategy with the stakeholders. The XLRM model can be described having the
following properties:

1. Exogenous (X) Uncertainties – These are a set of factors which affect the ability to
achieve a certain objective.

2. Response (R) Packages/Policy Levers – Management strategies available to the
agents which can be used to achieve the defined objective.

3. Models –Models to produce metrics of performance (M) for each strategy (L) in the
face of ensembles of uncertainties (X).

4. Performance Metrics – These are the outputs of interest which reflect the decision
maker’s goals.

The 4 concepts can be schematically reported as follows:

A final scheme summarizing the two objectives is reported in Fig. 1.

3 Methodology

The ATC’s objective is to ensure the efficient operation of the airport while adhering to
the defined security and safety standards. So, the ATC always looks for the global
optimal solution irrespective of its impact on the other agents (FAA). This also
translates to the airport being an efficient node in the network of neighbouring airports.
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The airline’s objective is to minimize delay and maximize flexibility while the airport’s
objective is to maximize its revenue. These objectives are not exactly aligned with each
other. As mentioned above, the first step to negate the non-alignment and improve
efficiency globally is the CDM practice (CDM/FAA 2015). Since information sharing
is the underlying principle supporting CDM, this sets the stage for necessitating fair-
ness in the system; an agent sharing information for the global benefit would expect the
system to be fair and beneficial to it and pay the cost of the information.

In this paper we model the ASP using the MILP formulation of (Samà et al. 2014),
which is based on the alternative graph model (Mascis and Pacciarelli 2002), a gen-
eralization of the disjunctive graph formulation for job shop scheduling problems (Roy
and Sussman 1964). Each job represents a single aircraft and each operation the
traversing of a TCA resource (air segments, holding circles, runways, taxiways) by an
aircraft. The sequencing of aircraft operations is modelled using fixed constraints.
Holding and scheduling decisions are modelled using pairs of alternative (or disjunc-
tive) constraints. To each pair of alternative constraints is associated a binary variable
xkjhi. Holding decisions state if a certain number of holding circles are to be performed.
A scheduling decision states the order in which two aircraft use a common resource.
The objective function considered in this work is the minimization of the average delay
regarding operations of specific interest. In particular, delays are computed for all
aircraft at runways and for landing aircraft also at the TCA entrance.

Let F and A be the set of fixed and alternative constraints, ti the starting time of
operation i, with i = 1, …, m. We also introduce two special operations, identified by 0
and *, and which represent the start and end of the schedule. This latter is used to
compute the final delay of each aircraft, and thus the total objective function. More-
over, wij is the minimum time separation between the start time of operations i and j,

Fig. 1. Stakeholder analysis at Schiphol airport, based on Lempert (2012)
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dk and zk the due date time and the delay associated to an operation k, the ASP is
introduced:

min
1
Kj j

X Kj j
K¼1

zk

s:t:
tv�tu �wuv 8 u; vð Þ 2 F
tj�tk þMð1� xkjhiÞ�wkj

ti�th þMxkjhi �whi
8 k; jð Þ; ðh; iÞð Þ 2 A

zk�tk � � dk 8 k; �ð Þ 2 F
zk � 0
xkjhi 2 0; 1f g
Once a feasible solution for the ASP has been computed, it has to be evaluated in

terms of the benefits it is able to bring to the overall system. Such benefits have then to
be proportionally distributed to all the players involved.

From this point of view, the application of advanced automatic scheduling
approaches will generate a surplus for the system, which corresponds to a decrease in
delays penalties and costs. The next question then is how this surplus for the all system
can be translated in a surplus for each single participant and stakeholder in the system.
This is a typical problem in supply chain, and organization of complex systems, where
parties have a partially cooperative behaviour. This might result in reluctance in giving
advantages to competitors, and interest in having private advantage, while the
advantages are related to some form of collaboration with a competitor (Von Neumann
and Morgenstern 1953).

The interaction of all players related to operations in ATC and TCA can be
modelled as a cooperative game with the stakeholders having various strategies and
objectives, and can, together, decide whether to implement any system or not. We
model this scenario from the point of ATC, with ATC dispensing the decision with
respect to scheduling and the airlines, as they stand to expect changes in operational
finance, as the players. A game, in the context of Game Theory, is a scenario where all
the involved actors have strategic interests in a particular outcome. Each of the players
has their individual objective which they want to fulfil, by choosing a set of strategies,
but are bound by some operational constraints. The result has some quantitative out-
come (profit or loss). The goal is to determine the most profitable strategies. In
cooperative games, players can determine together a strategy, which will bring bigger
benefits. The problem is then how to redistribute the benefit among all players. The
value of a group of player is determined by the gap between the status quo (in this case
the FCFS solution) and the optimized solution where some players are together. The
more players are joining this coalition, the larger the benefits. In other words; the
players joining the coalition can benefit from the optimization results, while those not
joining the coalition are following the orders and times as provided by the FCFS
algorithm. The problem is then who is “accountable” or “responsible” for the improved
service performance and related benefits. To ensure a fair outcome with regard to the
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benefits achieved, the concept of core in game theory is important. The ratio of
expenditure incurred by the airlines must be commensurate with the ratio of the
decisions going in their favour in an aggregated manner i.e. the savings in delay due to
algorithm. This corresponds to computing the Shapley Value /p vð Þ of each player p in
the game (Shapley 1953), defined mathematically as

/p vð Þ ¼
X

S�Nfpg

Sj j! n� Sj j � 1ð Þ!
n!

ðv S [ pf gð Þ � v Sð ÞÞ

where S represents the subset of players, n the number of players and v the value of the
coalition, i.e. the benefits for the system in terms of delays. The Shapley Value has a set
of desirable properties, making a game design desirable, like efficiency, symmetry,
linearity, and zero players, which ensure t is the fairest manner of redistributing the
surplus from the coalition. Using the Shapley value in a financial framework ensures
redistribution of benefits to players with unequal size and importance, while mini-
mizing the cost of the airlines in any specific time horizon.

4 Test Case

This study was conducted at Amsterdam Schiphol Airport. First, traffic data of arrivals
and departures within the AMS-TCA has been collected from public sources. The TCA
has been divided into various sections, with an associated traversing time, according to

Fig. 2. Airport operations (top) and Schiphol airport (bottom, source: Wikipedia)
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the published safety regulations. Four different classes of aircraft are considered, for the
purposes of minimal safe separation according to safety regulations. We considered
three hours of operations on an average day of traffic: this translates into 226 airplanes
(117 departing, 109 arriving) and 42 companies, of which five are considered explicitly
as players, having more than five flights in the considered time window. The general
scheme of resources and operations is reported in Fig. 2 (top), while Fig. 2 (bottom)
reports a map of the airport, with the five runways and the terminal building.

(a) (short haul arrival flights) 

(b) (long haul arrival flights) 

(c) (departing flights) 

-2000     0                           6000 sec

-5000                 0                      5000 sec

-500     0                                2000 sec

Fig. 3. Recorded statistics and probability distributions used for traffic.
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A set of delayed instances has been further generated, by considering a deviation
between actual times of arrival/departure and the plan. This is calculated based on
realized operations over five days of operations, and fitted to three different
Three-parameter Weibull probability distributions: long haul flight arrival, short haul
flight arrivals, and departures. Figure 3(a–c) reports the three distributions for short
haul arrivals, long haul arrivals and departing flights respectively, over the variation in
entrance time (expressed in seconds) reported on the x-axis.

Those distributions generate a set of 10 instances of variations in arrival/departure
times for all airplanes in the network. On average the traffic is 140 s ahead of schedule,
with 48 % of the planes delayed. The average delay is 547 s, and the maximum
considered reaches up to 3000 s. The traffic at the airport is analysed by considering
individually each of the five major companies, selected based on their traffic share,
while for the remaining 37 it is assumed they can be considered as a unified con-
glomerate. The share of traffic handled by those six players is reported graphically in
Fig. 4. It is remarkable how the majority of the traffic belongs to a single company. The
main message depicted in the picture is that the distribution of traffic is diverse across
players, ranging from only 2 % to 50 %; this diversity should be taken into account
while redistributing the benefits.

The operations at the airport have then been modelled using the MILP formulation
presented in Sect. 3 and solved using alternatively the FCFS rule and the IBM ILOG
CPLEX MIP 12.0 solver, with a computation time up to 5 min for any instance.

Fig. 4. Share of companies with regard to traffic.
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5 Results

Table 1 reports the performance gap between the solution computed using the FCFS
rule and the optimized solution found by CPLEX. Column 1 shows the solving
approach considered, Column 2 the value of the objective function of the solution
found, i.e. the average delay for the air traffic, expressed in seconds, Column 3 the
approximate economic value connected to those performances, approximate by a fixed
value of delay cost per minute. It relates to a cost, the lower the better. In this paper,
this value has been fixed at 100 EUR per minute per aircraft (Ball et al. 2010a). Each
row presents average values on the 10 instances studied. On each solution, the delays
for each airline are computed as the total delays of the aircraft belonging to that
company. The savings realized due to the proposed system results in a global surplus of
savings for the system, with a reduction in terms of delays going well beyond 25 %.
The game theoretical study is targeting how this benefit can be redistributed to the
stakeholders.

Figure 5 analyses for each company its share of severely delayed traffic. More
precisely, Fig. 5 reports the division among the different companies of the aircraft
which have been delayed in the optimized solution more than 5 min. It is already
evident how the different companies suffer to different extents these delays. This is
provoked by a variety of effects. Those include the different amount of short haul/long
haul/departing flights, which have different delay distributions, slack in planning,
capacity available at the time at which operations are planned, and further stochastic
effects. Some companies, namely company number 3 and 5, are not suffering at all
from large delays while company number 2, despite a traffic share of only 5 %, counts
more than 40 % of the all traffic delayed more than 5 min. The picture gives a rough
impression of the actual delays, as much traffic is delayed, by an amount smaller/larger
than the 5 min thresholds. Once a threshold is determined, a similar analysis and
pictures could be presented. The main message depicted in the picture is again that the
distribution of delays is diverse also across players, varying from 0 to 43 %. Again, this
diversity should be taken into account while redistributing the benefits.

Table 2 reports the performance obtained in redistributing the benefits from the
ASP (optimized) solution to the players considered using the Shapley Value. Columns
2–7 reports for each company the results for the performance indicator of each row. In
particular, Row 1 states the company the values refer to; Row 2 the average delay
suffered by the company aircraft in the optimized solutions, expressed in seconds. Row
3 reports the computed benefit/cost associated to each company, based on the Shapley
value of the cooperative game. In particular, the values reported identify the benefit

Table 1. Gap between FCFS and optimized operations

Solving approach Average delay (sec) Approx Economic value (EUR)

FCFS 43.04 16211
CPLEX 31.42 11834
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(savings) which can be realized due to the proposed system being implemented by
monetizing the delays resulting in a global surplus of savings for the system.

We also report graphically the share of benefits based on the Shapley allocation in
Fig. 6. The main goal of this figure is to provide a direct comparison between the share
of flights, share of delays, and the share of benefits. The division of benefits is more
equilibrated than the share of flights (Fig. 3) as well as delayed traffic (Fig. 4). This is
one principal advantage of the complex framework here developed.

6 Practical Implications and Possible Implementation

The practical implications of the proposed framework target a few directions, here
summarized.

Collaborative decision making
Providing data for collaborative decision making, together with smart algorithms,

might allow a reduction in delays at airport level going beyond 25 %, and limited
adjustments in operational setup. The adaptation of published algorithms to additional
airport with varying traffic is proven at least at the level of a laboratory experiments,
provided that operations can be described by discrete operations.

Fig. 5. Companies operating the traffic delayed more than 5 min.

Table 2. Performances, analysed per company

Company 1 2 3 4 5 6

Average delay (sec) 28.7 39.5 4 34.6 12.1 38.3
Benefit allocation (EUR) 1184 605 507 473 473 1144
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Stakeholder power and equity/fairness of operations
The computational experiments practically underline the discrepancy between share

of traffic, delays and benefits from the introduction of an optimized traffic control
approach. A complex scheme to redistribute the benefits, based on game theoretical
approach is thus necessary. The determination of the power of the stakeholders based
on a single operational descriptor might not be a complete assessment of the impact of
the stakeholder on operations (capacity usage and delay propagation), as well as the
impact of operations on the stakeholders (delays suffered)

Perspective development at airports
The implementation of an advanced mechanism and implementation needs support

from many stakeholders, which include the companies (which face less delays) as well
as the airport system, which can use more efficiently the available capacity, as well as
traffic controllers, which can benefit from optimized solutions computed within a small
computation time. The benefits identified by the game theoretical analysis here can be
translated to economic benefits for each of those categories. An integrated optimization
of operations, analysed by a similar game theoretical approach, can determine the
power and economic benefits to be associated to collaborative decision making.

7 Conclusion

The application of an optimized approach to solve the air traffic control (ATC) problem
in at a major airport Terminal control area (TCA) shows a potential superior perfor-
mance in terms of minimizing the delay experienced by the whole airport. The gap
between FCFS and the optimized algorithm reach up to 25 %, in terms of average
delay, at system level. While looking for system optimum performance, the

Fig. 6. Division of the benefits associated to the Shapley value, per company.
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performance of individual airlines depends on a variety of factors, which include at
least the amount of traffic, its organization in peak or off-peak moments, and the
amount of slack in the planning, the delays experienced currently. This complexity
justified the application of a game theoretical framework to determine the redistribution
of the extra benefits throughout all players, which turned out to be more equilibrated
than what the share of traffic or share of delays might have suggested in first instance.
The implications of the development of collaborative decision making are also pointed
out. It is possible to study in detail the financial agreements between the airlines and
Schiphol to align the actual financial transactions with the benefits coming from the
usage of advanced scheduling approaches, based on collaborative decision making
principles. In general, it is possible to identify dominant players whose individual
(local) performance affects the global performance, and subsets of companies which
together would have enough power to pull all other operators towards support of
advanced ATC approaches.

Future research should investigate a variety of directions which have been only
identified in this preliminary study. A larger scale assessment should include more
airports, more traffic, longer time horizons and more possibility for rescheduling and
rerouting of aircraft. All those developments would result in heavy computational
burden which would require developments of advanced algorithms. The possibility of
representing explicitly the different objectives of the stakeholders in some (decom-
posed) optimization problem would include some game theoretical aspect already in
the optimization problem, for an integrated perspective, otherwise a larger study of
more players and coalitions could clarify the benefit of a variety of minor players which
are now aggregated. The game theoretical approach could be further developed by
proving under specific assumption the convexity and existence of a core, for abstract
and practical cases, and its implications towards the allocation and the economic
benefits of the parties. Moreover, the concept of fairness and optimality in traffic
management is pertinent to a variety of other fields, such as railway systems (Corman
et al. 2015) and currently approached via priorities, which are straightforward exten-
sions of FCFS principles (see for instance Corman et al. 2011). Thus large possibilities
for improvement would be available in that sense.
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Abstract. This work has the objective of simulating an elevator system, using
SIMIO software. Firstly, two different approaches, and its implementation, will
be explained and compared: Vehicle vs. Entity. After selecting the
Entity-approach, due to its more flexible processes and the limitations of the
Vehicle-approach, it will be used to conduct the simulation experiments. The
purpose is to evaluate the impact of dwell time - time in which the elevator
remains stopped, allowing for clients to enter and exit - in the performance of the
system. That will be achieved analysing the impact on the total time - spent by
clients from placing a call until reaching its destination - number of clients inside
the system and waiting for the elevator, waiting time, elevator occupation and
number of elevator movements. The analysis of the results indicates that, for the
properties defined, the best time for the elevator to stay with its doors open is
around 10 seconds.

Keywords: Elevator � Lift � Management systems � Intelligent objects �
Modelling � SIMIO � 3D simulation � Case study

1 Introduction

The most typical objective of an elevator system is to move people and cargo in a
vertical way. In the elevator industry, changing the entire elevator system - or simply
the algorithm - has high costs associated and can imply system inoperability for some
time. The heart of any elevator system is its elevator management system, which
decides what will be the next elevator movement through its algorithm, based on
various inputs. A simple algorithm for only one elevator, as in the studied case, can be
described as follows (Setchi 2010):

• Move in a certain direction, up or down, stopping at all floors where there are calls
or destinations;

• Change its direction when there are no calls or destinations at floors beyond the
current floor in the current direction, or when it reaches the last floor, changing from
going down to going up when it reaches the bottom floor, or changing from going
up to going down when it reaches the upper floor;

• Stop, in case there are no calls or destinations in the system.
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One of the main advantages of simulating a system is the possibility to change it in a
virtual way and measure the consequences, before physically changing it, with all the
investments involved. These measurements allow management to take decisions based
on data. Decision making based on simulation data will help management deciding
what system to implement, or elevator companies deciding what parameters should be
defined. One of these parameters is the dwell time, which is the time that the elevator
remains stopped, with its doors open to allow clients to enter or exit it.

This paper describes a simulation model of an elevator system, developed in the
discrete event simulation tool SIMIO; Pegden (2007). The basis of this work was a
hospital located on the north of Portugal. Two different approaches were addressed and
compared. Afterwards, one of the approaches was used to conduct simulation exper-
iments and analyse the obtained data.

The remainder of this paper is organized as follows: First, in Sect. 2, a literature
review will be presented, addressing the selected simulation tool for this problem.
Afterwards, in Sect. 3, two different approaches for modelling the system in question
will be presented. The analysis of the obtained results on one of the approaches will be
discussed and lastly, in Sect. 5 the main conclusions will be withdrawn, along with
some future work.

2 Literature Review

Most recent models of elevator group management systems (e.g. Destination Dispatch)
had, in their genesis, tests and data retrieved from using computing simulation. One
simulation tool that outstands in the elevator industry is the software Elevate® (Barney
and Al-Sharif 2015), which allows to simulate and analyse elevator traffic, with support
for different configurations and applications, e.g. two floor elevators, an elevator sys-
tem with different speeds and different attending floors (“About Elevate” 2016). This
software runs on Windows™ and was developed by the London-based company Peters
Research. Another innovation by this company is the software Elevate Live™, which
allows checking the status of the elevator management system in real time (“About
Elevate Live” 2016).

This software is not the only simulation tool used in the elevator industry, but it is
one of the most referred and promoted. But, taking into account the will to share
information, the intellectual property protection and the maintenance of market
advantage, companies of this industry tend to not reveal which tools are used.

But the need and use of simulation in this field is real (Barney and Al-Sharif 2015;
Hakonen and Siikonen 2009; Zhang and Zong 2014), because elevator models can
reach high levels of complexity. Taking, for instance, the Shanghai Tower, where
hundreds of elevators travel vertically, with certain restrictions and different purposes,
the level of complexity associated to this system becomes obvious.

The number of simulation tools is very large. Thus, its comparison is important.
However, most scientific works related to this subject “analyse only a small set of tools
and usually evaluating several parameters separately avoiding to make a final judge-
ment due to the subjective nature of such task” (Dias et al. 2007).

412 M. Henriques et al.



Hlupic and Paul (1999) compared a set of simulation tools, distinguishing between
users of software for educational purpose and users in industry. In his turn, Hlupic
(2000) developed “a survey of academic and industrial users on the use of simulation
software, which was carried out in order to discover how the users are satisfied with the
simulation software they use and how this software could be further improved”. Dias
et al. (2007) and Pereira et al. (2011) comparing a set of tools based on popularity on
the internet, scientific publications, WSC (Winter Simulation Conference), social
networks and other sources, claim: “Popularity should never be used alone otherwise
new tools, better than existing ones would never get market place, and this is a generic
risk, not a simulation particularity” (Dias et al. 2007); however, a positive correlation
may exist between popularity and quality, since the best tools have a greater chance of
being more popular. According to the authors, the most popular tool is ARENA, Kelton
et al. (2009), and the good classification of SIMIO is noteworthy. Based on these
results, Vieira et al. (2014) compared both tools taking into consideration several
factors. This latter paper is also a good source of information for researcher and
practitioners, since it compares SIMIO with the most popular tool (ARENA), giving
some basic examples.

SIMIO has two main levels for modelling. The simpler one, called ‘Facility’, is
suitable for practitioners without computer science background, where one can create
models in a building-block approach over a physical layout, providing a realistic 3D
animation. The second level, called ‘Process’, enables the creation of detailed beha-
viour using logical flow charts to specify virtually anything.

Processes, once created, can be used anywhere in the ‘Facility’ level. Moreover,
processes can be “attached” to Entities (objects) to enabling them to react actively and
autonomously. This behaviour pushes SIMIO “living” objects to agents. It is contro-
versial to consider SIMIO objects as intelligent, once such term has a connotation to
support logical programming and self-learning ability.

Another relevant capability is the support for object class hierarchy, allowing the
extension of existing objects rather than creating from scratch.

SIMIO was the chosen tool for this project. It is based on intelligent objects
(Sturrock and Pegden 2010; Pegden 2007; Pegden and Sturrock 2011). These “are built
by modellers and then may be used in multiple modelling projects. Objects can be
stored in libraries and easily shared” (Pegden 2013). Unlike other object-oriented
systems, in SIMIO there is no need to write any programming code, since the process
of creating a new object is completely graphic (Pegden and Sturrock 2011; Pegden
2007; Sturrock and Pegden 2010). The activity of building an object in SIMIO is
identical to the activity of building a model. In fact, there is no difference between an
object and a model (Pegden 2007; Pegden and Sturrock 2011). A vehicle, a customer or
any other agent of a system are examples of possible objects and, combining several of
these, one can represent the components of the system in analysis. Thus, a SIMIO
model looks like the real system (Pegden and Sturrock 2011; Pegden 2007). This can
be very useful, particularly while presenting the results to someone unfamiliar to
simulation.

In SIMIO, the model logic and animation are built in a single step (Pegden and
Sturrock 2011; Pegden 2007). This makes the modulation process very intuitive
(Pegden and Sturrock 2011). Moreover, the animation can also be useful to reflect the
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changing state of the object (Pegden 2007). In addition to the usual 2D animation,
SIMIO also supports 3D animation as a natural part of the modelling process (Sturrock
and Pegden 2010). To switch between them the user only needs to press a specific key
(Sturrock and Pegden 2010). Moreover, SIMIO provides a direct link to Google
Warehouse (Pegden and Sturrock 2011).

SIMIO offers two basic modes for executing models: interactive and experimental.
In the first it is possible to watch the animated model, which is useful for building and
validating the model. In the second, it is possible to define properties of the model that
can be changed (Sturrock and Pegden 2010).

3 Comparison of Different Implementation Approaches

To elucidate the need of building the two approaches and its comparison, it is beneficial
to explain them individually, their common points and the disadvantages and advan-
tages of each approach. This matter will be addressed in the present chapter.

The use of a SIMIO standard object to transport entities has the advantage of being
already developed, and thus the user only needs to place it and edit some properties.
However, to model more complex situations can become a hard task. The use of an
entity to overcome this situation implies a higher initial effort. Nonetheless, once this
has been surpassed, the user will be able to model its own transportation logic. The
choice that has to be made, between using the standard Vehicle object, or an Entity, is
not an obvious one. In this sense, this chapter will analyse both alternatives.

The model facility has some equal parts between the two approaches implemented,
as their objective is common: simulate an elevator. Both facilities are composed by
seven floors, named from floor 1 to floor 7. Each floor has its own source, creating
entity clients through a random exponential expression. The ground floor has a separate
property than the upper floors, allowing different scenarios simulation, like: up-peak,
down-peak and mixed movements, common on elevator passenger traffic (Barney and
Al-Sharif 2015). Each source is linked to a series of central nodes by a path, guiding
clients to the place where they will wait for the elevator to pick them up. Once a client
is sent out of the elevator to its destination floor, it will be transferred to a node linked
by a path to a final sink, where each client is destroyed.

3.1 Vehicle Approach

The Vehicle approach consists of using the Vehicle object from the standard SIMIO
library. Among other properties, the user can specify load capacity, unload time and
task selection methods; however, trying to shift the Vehicle from its standard behaviour
can be a complex task. This approach has two sides, one based on processes and
another based on parameters. Both are used to model client and elevator behaviour.

To start, client behaviour has to be modelled. In this sense, a destination node,
representing his or her destination floor, is randomly assigned to each client. This
destination node is chosen from a list, which is individual to each node. These options
are selected inside the source parameters.
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Afterwards, all clients will travel through a Path object that will take them to a
TransferNode, where they will wait for the elevator. It should be stressed that the
‘Allow Passing’ property of these Paths, must be set to false, in order to ensure that no
overtaking occurs and that a queue of waiting clients is formed. Moreover, the ‘Ride
On Transport’ property of each TransferNode must be set to true to obligate clients to
wait for the Vehicle and seize it. In this approach, the node where the clients wait for
the elevator is the same where the elevator travels, to ensure that the Vehicle can pick
the waiting clients.

The major benefit of this approach consists on the automatic transfer of clients from
the waiting node to the elevator, since the native Vehicle object was designed
specifically for this purpose: transporting people or goods. The transfer steps,
responsible for transferring the clients onto the Vehicle, are defined within the Vehicle
model, being hidden from the common user. A downside of this aspect is the inability
to see and change the processes that allow such automated actions to a more suitable
one, according to the needs of the specific system intended to implement.

Contrary to the nodes for clients, which have only one direction: pointing towards
the Vehicle, the destination nodes could not be modelled as nodes mutually travelled
by clients and the elevator itself, otherwise, the elevator would leave its natural vertical
path and enter the final path to the sinks. If the nodes were separated by networks other
difficulties would arise, namely transferring the clients out of the elevator, when the
automated transfers would not occur, thus needing the same process step and a separate
node to transfer the client to as implemented. To overcome this, the central nodes -
where clients wait for the elevator - and the out nodes - where clients reach their final
path to destination - are physically separated. To make the final transfer from the
central nodes to the out nodes, a process was created to each central node, being
triggered whenever a client enters that specific central node. Such process is illustrated
below in Fig. 1.

The first Decide step protects the process from being executed by the Vehicle, as
the Vehicle also crosses the central nodes. The following Decide step verifies if the
client entered on the current floor. In an affirmative result, the process ends and the
client continues waiting for the elevator; if the result is False - meaning that the current
node is its destination, since it was transferred out of the vehicle - the Transfer step will
transfer the client from the central node to the correspondent out node. Finally, the out
node is connected through a path to a sink, responsible for destroying the client.

Fig. 1. Process to transfer clients out of the elevator
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The Vehicle object, in its default state, displays some difficulties answering elevator
calls. When the vehicle is in movement, it answers firstly the destination of those inside
its ride, ignoring calls from clients that are waiting on floors that the vehicle passes
through. The vehicle only lets clients enter its ride in two occasions: when it stops to
leave out a client inside its own ride, or when its ride is empty and starts receiving seize
requests from clients waiting, first answering the oldest request, instead of the nearest.

To bypass the aforementioned difficulties and adapt the Vehicle to the current
objective, some properties of the Vehicle can be edited, namely:

• Initial Ride Capacity: Specifies the capacity of the elevator;
• Task Selection Strategy: Defines the strategy to select the next task;
• Dwell Time: Defines the time the vehicle will wait, whenever it has to load/unload

clients;
• Routing Type: Specifies how the vehicle will decide its next movement, either

following a fixed route, or a route based on client demand. The first option sets the
Vehicle to a predefined route, e.g. a milk run, whilst the later regulates the Vehicle
depending on client requests.

When this last property is set on ‘on demand’, it is possible to manipulate two more
properties inside ‘resource logic’: ‘ranking rule’ and ‘dynamic selection rule’. These
two properties are responsible for ordering the requests when they are placed, and
allow to dynamically select the next call to answer, respectively.

As such, the selected expression for the property ‘ranking rule’ is the origin of the
client, which orders the queue based on the originated floor; and the property ‘dynamic
selection rule’ is set to ‘DirectDistanceTo.Object(Candidate.Object)’. ‘Candidate’
refers to the client which is requesting a pick-up, and the main expression returns the
distance between the Vehicle and the client. As this later expression is dynamic, it is
independent of the previous expression and resulting queue. This decision occurs in the
moment when the Vehicle is available to be seized. These expressions are native
SIMIO functions.

It can be stated that the elevator modelled as a SIMIO Vehicle object is simple to
conceive, relying mostly on native properties and few and simple process steps.
Notwithstanding, it still requires prior knowledge on the Vehicle properties being
edited, e.g. ‘dwell time’ or ‘resource logic’.

However, even after changing the ‘resource logic’, while testing the simulation
model, the aforementioned limitations were still noticed. Furthermore, the dynamic rule
to select the next request to answer was not always respected, choosing to answer the
request of the client that was waiting the longest, even if the floor difference was
between the top and bottom floor, also ignoring all clients in the middle.

Another way to order client requests and Vehicle decision is through priority. That
is, a priority level has to be given to each client that performs a request to the Vehicle,
e.g. going from high priority to the closest client, and lowest priority to the client that is
further away from the elevator. This strategy would require a dynamic calculation of
the priority level each time the elevator moves, as the distance from the elevator to the
client changes with each movement. This strategy could be implemented through the
same properties under ‘resource logic’, facing the same issues as the strategy applied
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and mentioned above; or it could be implemented through robust and complex pro-
cesses, erasing the major advantage of a Vehicle approach: simplicity.

As concluding remarks, a Vehicle approach is simple, but it is very limited and
does not fulfil all the needs and requirements of an elevator system, even through new
processes it was not possible to change the Vehicle route in the way intended, as it has
its own ‘logic’ behind it. Furthermore, if a change in the algorithm of the elevator
system is needed, the change is very limited and unpredictable, as all the Vehicle
built-in processes are hidden from the common user. All these limitations would
decrease the number of applications which the model could be used to simulate and
experiment, and even the importance of itself. All these limitations and factors con-
tributed to the selection of the elevator as an entity, as it would be further demonstrated.

3.2 Entity Approach

Opting for this approach will imply the construction of a SIMIO object, similar to the
Vehicle one, from scratch. This approach implies that all actions are modelled in a
detailed way. Thus, this section is divided in processes executed by the client and by
the elevator.

1. Client Processes

Each client, after being created in the source, runs on the entrance path and, upon
arrival at the central node of its floor of origin, will execute the process in Fig. 2.

This process is responsible for ensuring that each client waits for the elevator, calls
the elevator, enters it when the elevator is on the same floor as the client, and the client
gets out of the elevator onto the last path into the sink of the destination floor. Upon
executing this process, the client will be stopped, in order to obligate him or her to wait
for the elevator to answer the call that will be placed. This is achieved by setting the
speed property to zero. Thereafter each client will verify if the elevator is positioned at
the same floor he or she is. While waiting for the elevator, the client will change two
data structures of the model: one array representing the number of calls on each floor,

Fig. 2. Process executed by clients
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and another array that records the time on which calls are made. Both indexes corre-
spond to the floor where the call was placed.

When the elevator is in the same floor as the client, it stops and opens its doors, the
client is transferred from the central node to a ride station inside the entity and both
aforementioned arrays are reinitialized and updated. While inside the elevator the client
is kept in a step of the process, waiting to arrive at its floor destination. It is ensured the
client leaves the elevator at the right floor by checking a variable of the entity - that
stores the id of the destination floor - and comparing it with the index of the floor at
which the elevator currently is.

2. Elevator Processes

The approach in question consists of modelling the elevator as an entity, but, apart
from giving it the behaviour of a typical elevator - the algorithm - it is necessary to
create the object and place it in the right location. To this end, the two first steps of the
process represented on Fig. 3 do that.

After those two initial steps, the overall process is an infinite loop responsible for
the management system of the elevator, meaning that these steps are responsible for
deciding the next elevator movement and will be run for the entire period of the
simulation in a closed perpetual loop. Note that the next destination of the elevator will
always avoid making direction changes, thus giving priority to floors with calls in the
same direction it is traveling. First, the elevator verifies if there are calls registered on
the system, through the array mentioned above. If there are no calls registered, the
elevator will decide its next destination based on the destination of each client riding it.
If there are calls, the elevator then analyses the time in which they were made, thus
giving priority to clients that made the calls sooner. After having decided on the next
destination, the elevator will be kept on a wait step until its doors are closed and thus it
is ready to initiate its trip. To ensure the elevator stops at all floors which have calls

Fig. 3. Main process of the elevator
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registered or a client wanting to exit, the process represented in Fig. 4 is executed,
whenever the elevator arrives at a given node that represents a floor.

In this process, the elevator will firstly analyse if it has arrived on the floor which
was assigned to it as a destination. If the node in question is not its destination floor, the
elevator will then analyse if there are calls on that node - ensuring that it still has
capacity to hold additional clients - or if any client inside it wants to exit at that node. If
the current node is the elevator destination, has a call placed, or is the destination of a
client inside the elevator, the next steps will ensure that the elevator stops, and will
model the time that the elevator is kept with its doors open (dwell time), allowing for
clients to exit or to enter the elevator. Afterwards, an event will be fired to indicate that
the elevator can resume its trip, allowing the process represented in Fig. 3 to continue
its loop. In this regard, communication between these two processes is necessary and
ensured, since both processes are executed in parallel.

3.3 Final Remarks

The complexity of the model using an Entity as an elevator is evidenced by the size of
the developed processes and by their relation, where a process executes another pro-
cess. Moreover, a process can trigger an event which was holding a token in another
process, ensuring the communication among entity clients, entity elevator and
processes.

The behaviour of an elevator was modelled with success and its behaviour was
taken farther than what was achieved in the approach using the SIMIO Vehicle. In this
sense, the approach chosen to conduct simulation experiments was the Entity approach.
Figure 5 shows the elevator modelled as an entity in SIMIO. The animation in 3D
represents an advantage when interacting with the model and/or showing it to others.

4 Results

Once the model was developed and validated, data was retrieved from it, in order to get
relevant information that would lead to conclusions about the developed model. One of
the major benefits of using SIMIO is the possibility of conducting simulation

Fig. 4. Process executed by the elevator whenever it arrives to a new floor
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experiments on a model. A simulation experiment allows for executing a set of sce-
narios with different values for the model properties, and the impact of those changes
on the model KPIs (Key Performance Indicators). In the present model, dwell time is
the main model property in study, being changed from 1 to 20 seconds. Other prop-
erties were implemented and can be analysed in future studies, such as: capacity of the
elevator and different arrival rates of clients per floor.

The dwell time is crucial to the total time of a client (waiting time plus travel time)
because if it is increased, it increases the probability of clients entering the elevator at a
floor, thus diminishing client waiting time on the current floor; but will also increase
the waiting time of clients on other floors. If this time is decreased, the probability of
clients entering the elevator at each stop decreases and the elevator will move more,
thus decreasing the waiting time on other floors. A balance between these two possi-
bilities needs to be found. In order to have a good representation of the impact of this
property on all KPIs, the value will vary from 1 to 20 seconds. To note that a value of
dwell time with a good performance on a specific KPI, e.g. average client total time, at
up-peak time can have a bad performance on a mixed or down-peak movement of
clients, as calls can be placed in a more focused area of the building, e.g. the ground
floor, or can be spread across all floors. The main focus was, therefore, to analyse the
impact of dwell time in the system performance, namely the following established KPI:

• Average total time in the system, per client: sum of waiting time and travel time for
the clients;

• Average elevator occupation (or load): number of clients riding the elevator;

Fig. 5. 3D view of the model during its runtime
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• Elevator movements: number of movements executed by the elevator in the sim-
ulation runtime;

• Average number of clients in the system: sum of clients waiting for the elevator
with the ones already riding it;

• Average number of clients waiting: number of clients that are waiting for the
elevator on all floors;

• Average waiting time per client;

In order to ensure that the results do not contain irrelevant data, as a result of the time
needed for the system to achieve a “full-operating status”, it is very important to define
an accurate warm-up period. In this context, a warm-up period of 3600 seconds was
defined because, on the several tests conducted, it was found that from this time on, the
KPI values achieved a more stable status. Furthermore, 10 replications were used to
ensure that different random number seeds are used. The simulation time in the
experiments was 24 hours.

Figure 6 represents the evolution of the average total time in system per client, as a
function of dwell time. Dwell time is displayed in seconds, in all graphics, while
average total time is in minutes.

For dwell time of 1 to 4 seconds, an increase of the average total time per client was
observed, due to less time that the clients have to enter the elevator. The lower average
total time values are seen in the 10 to 15 seconds band, rounding 3 minutes between
the 11 and 15 seconds of dwell time. After this value, an ascend curve is seen due to
the increase of time in which the elevator is stopped at the same floor, thus not traveling
to attend other calls, increasing waiting time on other floors.

Average waiting time is a performance measure which affects the average total time
and is responsible for the perception of the system quality on clients using it. Figure 7
presents the obtained results for the evolution of the average waiting time per client as a
function of the dwell time.

Fig. 6. Total time in system per client as a function of dwell time
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The lower values are located on 4 to 6 seconds of dwell time, and the maximum is
reached in 15 seconds. The graphic in Fig. 8 shows variation of the average number of
waiting clients on all floors.

A dwell time of 1 to 5 seconds results in the highest values on clients waiting for
the elevator, and from 20 seconds onwards, the curve returns to an ascending state. It is
in the 7 to 18 seconds band that the average number of waiting clients remains below
10. The lowest values of this KPI are reached on the 11 to 16 s band, where values
close to an average of 5 to 6 clients waiting are shown.

Figure 9 shows the evolution of the total number of clients in the system as a
function of the elevator dwell time. As previously stated, the values of this KPI should
be the result of the sum of the total number of clients waiting with the load of the
elevator. As can be seen, the values indicated by the above graph match the sum of the
average number of clients riding the elevator (average occupation) and the average
number of clients waiting.

The KPIs analysed until this point focus more on the side of the user of the elevator.
However, other perspectives, as the power consumption of an elevator, do not

Fig. 7. Waiting time per client as a function of dwell time

Fig. 8. Number of waiting clients on all floors as a function of dwell time
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necessarily react in the same way to a change of the dwell time of an elevator. In this
sense, the consumption of the elevator was also analysed. The power consumption of
an elevator system is very important, especially considering many of those systems are
free of charge. There are two factors influencing this expense: number of movements
and elevator occupation. The smaller the movements, the less energy will be consumed.
But elevator occupation is not linear, meaning it is related to the difference in weight
between the elevator cabin (including the weight carried) and counterweight, which
each one is placed on each end of the cables of an elevator system. The weight
difference between these two masses is the momentum the elevator engine has to
provide, as in every movement one of these masses is going down, and with its
gravitational force helps reducing the amount of torque the engine has to provide in
order to move the cables and hoist the other mass. The weight of the cabin and the
counterweight depend on the system installed, client demand and other design deci-
sions. So, it is not possible to directly relate these two factors without knowing the
system itself, but it seems correct to say that the closer it is to 40 % of the cabin
maximum load, the less power will be consumed. This claim comes from the general
calculation method of counterweights in the elevator industry, essential for reducing the
engine effort to hoist the cabin and to maintain traction on all the cables (McCain
2007).

Figure 10 shows the number of elevator movements and its average load as
functions of the dwell time. It is difficult to say the exact point on which the system will
be more efficient. But it is possible to refer a band on which the system will be more
efficient. That band probably lays between 8 to 15 seconds, due to less movements -
which are less than 1/3 of the highest value registered, with a low dwell time - and the
load on the elevator reaches up to 30 to 40 % of its maximum load. For this decision, it
was considered that the counter-weight of the elevator is calculated for an elevator with
40 % of its load – situation in which it consumes less energy to perform its movements.

Fig. 9. Number of clients inside the system as a function of dwell time
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5 Conclusions

An elevator system was modelled in SIMIO - a recently developed discrete simulation
tool. The simulation model was based on a hospital located in the north of Portugal.
The tool was chosen due to its similarities to ARENA - the most used simulation tool
worldwide - since they were developed by the same authors. Moreover, it fully sup-
ports 3D animation, which results in very appealing simulation models, which also
contributes to a better understanding of the system in its execution.

Two implementation approaches to model the elevator behaviour were consid-
ered. First, the entity was modelled using a SIMIO built-in object, whose purpose is to
transport entities from one location to another. This approach enabled a fast
basic-modelling of the system, since the standard behaviour is already defined by the
transporter. However, it proved to be complex to model different strategies for the
elevator. Moreover, different problems with this approach were identified, for instance
the elevator would always give priority to customers on board rather than stopping to
allow new entrances on the way. Possible workarounds to this problem would require
mathematical expressions and as such, modelling different behaviours in the vehicle
would be very complex. On the other hand, modelling the elevator as an entity was
very challenging, since all the behaviour had to be developed from scratch. Never-
theless, when its modelling was finished, it proved to be more flexible than the first
approach, since it could be easily added different strategies to the elevator. In this sense,
the model with the elevator modelled as an entity was the one used to conduct sim-
ulation experiments. One of the great advantages of using this approach is that it allows
different strategies of the elevator to be incorporated. To the study in question, the only
strategy modelled was to give priority to the closest floors with clients with higher
waiting times. Different strategies, such as the milk run strategy could easily be
implemented.

Fig. 10. Number of elevator movements and its average occupation as functions of dwell time
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In this analysis phase, the only parameter analysed was the dwell time, which is the
time that the elevator keeps its doors opened to allow new entrances. In future studies,
other properties, such as different arrival rates of clients to the elevator, or the capacity
of the elevator, could be analysed. To evaluate the performance of the system, the
following Key Performance Indicators (KPI) were defined: average total time; average
occupation; number of elevator movements; average of waiting clients on all floors and
average waiting time.

In the beginning of this study, the authors thought the optimum value for the dwell
time was around 5 seconds. However, the final analysis of the multiple KPI, indicates
that the option would be to use a dwell time of around 10 seconds. It was found that
within this time frame of dwell time a balance between all the KPI could be achieved.
Different goals of the management system, may lead to the adoptions of other dwell
times.

By re-using previously defined SIMIO objects in other models, this elevator model
could be used on other future research. For instance, in multiple elevators, where ETD
(Estimated Time to Destination) or other algorithms could be implemented. Further-
more, the power consumption of the elevator could also be quantified.
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Abstract. In order to differentiate from competitors in terms of cus-
tomer service, warehouses accept late orders while providing delivery
in a quick and timely way. This trend leads to a reduced time to pick
an order. The objective of this research is to simulate and evaluate the
interaction between several storage, batching, zone picking and routing
policies in order to reduce the order picker travel distance. The value of
integrating these four operation policy decisions is proven by a real-life
case study. A full factorial ANOVA provides insight into the interactions
between storage, batching, zoning, and routing policies. The results of the
study clearly indicate that warehouses can achieve significant benefits by
considering storage, batching, zone picking, and routing policies simul-
taneously. Awareness of the influence of an individual policy decision
on the overall warehouse performance is required to manage warehouse
operations, resulting in enhanced customer service.

Keywords: Order picking · Storage · Order batching · Zone picking ·
Routing · Warehouse policies interactions

1 Introduction

As customer markets globalize, supply chains are increasingly depending on effi-
cient and effective logistical systems to distribute products across a large geo-
graphical area. Warehouses are important parts of supply chains, and therefore
warehouse operations need to work in an efficient and effective way. A warehouse
can be defined as a facility where activities of receiving, storage, order picking,
and shipping are performed [9].

Order picking management, in particular organizing efficient and flexible
order picking systems, has been identified as an important and complex plan-
ning operation. In order to differentiate from competitors in terms of customer
service, warehouses accept late orders from customers while providing delivery
in a quick and timely way. By accepting late orders, the remaining time to pick
c© Springer International Publishing Switzerland 2016
A. Paias et al. (Eds.): ICCL 2016, LNCS 9855, pp. 427–442, 2016.
DOI: 10.1007/978-3-319-44896-1 28
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an order is reduced. Furthermore, the order behavior of customers has changed
from ordering few and large orders to many orders consisting of only a lim-
ited number of order lines [6]. The changed order behavior can be ascribed to
upcoming e-commerce markets and forces warehouses to handle a larger number
of orders, while order picking time has shortened.

Four operational policy decisions can be distinguished with respect to order
picking: storage location assignment, order batching, zone picking, and routing.
In this paper several policies for each decision are considered and potential inter-
actions between these decisions are investigated in order to manage order picking
operations more efficiently. While the number of publications dealing with one
specific order picking policy decision is extensive [6,9], only a limited number
of researchers examine different decisions simultaneously (e.g. [12,13,15,17]),
even though the efficiency of different order picking policy decisions seems to be
interdependent [9]. The effect of zoning in combination with other order picking
decisions, such as storage, routing and batching, has received especially little
research attention. Therefore, the study’s main objective is to analyze storage,
batching, zoning, and routing in order to minimize the distance traveled by order
pickers, with particular emphasis on the relation between these four order pick-
ing decisions. To the best of our knowledge, this study is the first to analyze
the interaction of the four main operational order picking policy decisions (i.e.
storage, batching, zoning, and routing).

The main contribution of this paper is the integration of storage, order batch-
ing, zone picking, and routing in order to improve order picking activities of a
real-life warehouse. Furthermore, insights into the interactions between the four
operational policy decisions are provided by performing a full factorial analysis
of variance (ANOVA). It determines the impact of storage location assignment,
order batching, zone picking, and routing on the distance traveled by order pick-
ers, as well as the relation between each of the four order picking policy decisions.

The remainder of the paper is organized as follows. Section 2 is devoted to
describe the context of the problem. In Sect. 3, the case study and the assump-
tions linked to the case are described. Subsequently, the experimental design
is presented in Sect. 4, followed by the empirical results of the real-life case in
Sect. 5. Managerial implications of this study are discussed in Sect. 6. Finally,
Sect. 7 is devoted to the concluding remarks and future research directions.

2 Problem Context

Order picking as a warehouse function arises because goods are received in large
volumes and customers order small volumes of different products. Each customer
order is composed of one or more order lines, with every order line representing a
single stock keeping unit (SKU) [6]. In order to manage order picking operations,
warehouse managers are confronted with four operational decisions, in particular
storage location assignment, order batching, zone picking, and routing.

The storage location assignment problem can be defined as determining the
physical location at which incoming products are stored. One way to obtain a
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more efficient order picking process is to allocate fast moving products to storage
locations closely located to the depot, rather than randomly assigning SKUs to
storage locations. As traveling in a warehouse is often the dominant factor in
order picker’s activities, the travel distance reduction resulting from turnover
based storage location assignment policies, will contribute to a more efficient
order picking process. A turnover based storage assignment policy defines prod-
uct classes by some measure of demand frequency of the product. Within-aisle
storage, where all products in a pick aisle belong to the same class, across-aisle
storage, where each product class is located across several pick aisles, diago-
nal storage, where product classes are located with respect to the depot, and
perimeter storage where product classes are located around the perimeter of the
warehouse are frequently used policies to locate the product classes in the order
picking area [17].

Furthermore, batch picking, instead of picking each order separately, allows
warehouses to handle a larger number of orders in shorter time windows. By
picking multiple orders in a single picking tour, the order picker travel distance
per order will be reduced. The order batching problem is concerned with deciding
on rules defining which orders to combine on a pick list in order to minimize the
order picker travel distance. The most straightforward algorithm for creating
pick lists is a priority rule based algorithm, in which orders are prioritized and
assigned to pick lists based on their priority (e.g. first-come-first-served (FCFS)).
Seed algorithms generate batches by selecting an initial seed order (e.g. select
the smallest order), after which unassigned customer orders are added to the
seed order according to an order congruency rule (e.g. add an order such that
the number of additional pick locations is minimal). Three other order batching
heuristics can be distinguished: savings algorithms, data mining approaches, and
metaheuristics. The reader is referred to [11] for an extensive overview of order
batching algorithms.

Another practice of moving to a more efficient order picking process is divid-
ing a warehouse into different smaller areas, being order picking zones. In con-
trast to strict order picking, in which order pickers are allowed to retrieve SKUs
in the entire order picking area, each order picker is assigned to a single zone
and responsible for picking all SKUs of an order belonging to this zone. As a
consequence each order picker travels in a pre-specified part of the warehouse
and thus travel time will be reduced. The assignment of items to different zones
is mainly based on physical properties of products such as size and weight. Other
allocation policies that may be considered are based on product demand proper-
ties, such as customer type and order frequency. If order integrity is violated (i.e.
customer orders are split into separate pick lists), additional sorting activities
are required to consolidate orders after retrieving the SKUs [14].

Finally, the purpose of considering routing policies is to sequence the items
on the pick list in order to reduce the order picker travel distance. The problem
of routing order pickers in a warehouse is mainly solved by using heuristics. The
routing problem cannot be solved to optimality for every warehouse layout within
reasonable computation times. A growing number of picking aisles, or larger pick
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lists result in fast increasing computing times. Furthermore, optimal routes may
seem illogical to order pickers, resulting in deviations from the specified optimal
routes. As an alternative to the optimal route, several more straightforward rout-
ing heuristics are proposed in the literature, including aisle-by-aisle, traversal or
S-shape, return, midpoint, and largest gap. The aisle-by-aisle routing policy is
the most straightforward routing method, where order pickers visit every pick
aisle containing at least one pick location through the entire length. Traversal
routes are closely related to aisle-by-aisle routes. Order pickers only traverse
every subaisle (i.e. the part of a pick aisle that is within one warehouse block)
containing at least one pick location through the entire length. Another straight-
forward routing policy is the return strategy, where order pickers enter and leave
each aisle containing at least one pick location from the same end. A midpoint
routing policy extends the return strategy by requiring the order picker to return
if he reaches the aisle midpoint. At the midpoint, the order picker returns and
leaves the aisle from the same end as he entered the aisle. The largest gap strat-
egy is similar to the midpoint strategy except that a picker enters an aisle only
as far as the start of the largest gap within an aisle, instead of the midpoint.
The largest gap is defined as the maximum distance between any two adjacent
pick locations within a single aisle, or the maximum distance between an aisle
end and a pick location [16,18].

Previous research has focused on either storage, batching, zoning, or routing.
The number of studies analyzing interactions between these operational ware-
house policies are limited. Several simulation studies analyze combinations of two
operational order picking policies (e.g. storage–routing [16,17], zoning–batching
[21], and routing–batching [3,4,20]), while [2,12,13,15] investigate the combina-
tion of storage, batching, and routing policies. This paper differs from previous
studies by analyzing the four main operational policy decisions simultaneously.

3 Case Study

In order to analyze the effect of integrating storage, batching, zoning, and rout-
ing, real-life data are used. The case study is based on a large warehouse located
in Belgium. The warehouse stores approximately 90.000 SKUs on a surface of
30.000 m2. In accordance with the large majority of order picking systems in
Western Europe, the warehouse is fully manually operated. Automated picking
systems are only useful in case of valuable, small and delicate products [6]. These
kind of products are limited in the warehouse under consideration.

Strict order picking is currently applied in combination with random storage
location assignment. Customer orders are transformed into pick lists according to
the FCFS rule. Order pickers follow the aisle-by-aisle routing policy to retrieve
all items on the pick list. The policy combination of random storage, FCFS
batching, strict order picking, and aisle-by-aisle routing is used as benchmark
in order to evaluate other storage, batching, zoning, and routing policies. As
discussed before, choosing the optimal combination of different order picking
policies is crucial for warehouse managers in order to minimize the distance
traveled by order pickers and consequently reduce the order throughput time.
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Fig. 1. Warehouse layout

The warehouse under consideration is shown in Fig. 1. The traditional
multiple-block warehouse layout is frequently used in practice [17], making
results of the study easily transferable to other warehouses. Furthermore, cross
aisles have proven to result in significant efficiency benefits [18]. Besides tra-
ditional warehouse layouts with parallel pick aisles and straight middle aisles,
alternative warehouse layouts, such as fishbone designs, can improve the order
picking performance in case of a small number of items on the pick list [1]. As the
batch capacity is limited to 26 orders in our problem setting, the fishbone design
will likely be outperformed by the traditional warehouse layout. The warehouse
in the simulation experiment has the following properties:

– The order picking area is divided into two warehouse blocks, each consisting
of 16 picking aisles. The picking aisles are two-sided and wide enough for two-
way travel. However, crossing the aisle is required in order to pick items from
both sides of the same aisle, as the aisle width is 2.7 m. The dimensions of the
aisles, as well as the warehouse block configuration and the zone configuration
(in case zone picking is applied) are shown on Fig. 1.

– Order picking is completed manually using a picking vehicle with a capacity
of 26 orders.

– Each picking tour starts and ends at the decentralized depot. The depot is
marked as D in the bottom left corner of Fig. 1.
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– A sort-while-pick strategy is used, maintaining order integrity, so that no
downstream sorting is required. The picking vehicle is able to sort 26 different
orders during a pick tour.

– All storage locations have an equal size.

In order to evaluate the order picking policies, the average travel distance is
used as performance criterion. The average travel speed in both cross aisles
and pick aisles is assumed to be equal. So, minimizing the distance traveled by
order pickers is equivalent to minimizing the average travel time of order pickers,
reducing the required labor hours for picking a particular number of orders.
Order pickers are assumed to be able to traverse the aisles in both directions
and to be able to change direction within the aisles.

4 Experimental Design

The objective of this research is to reduce the order picker travel distance, which
results in a more efficient order picking process, by simulating and evaluating
combinations of storage, batching, zone picking, and routing policies. Simultane-
ously analyzing storage location assignment, order batching, zone picking, and
routing policies using a factorial design provides insights into the impact of each
operational order picking decision on the distance traveled by order pickers, as
well as into the relation between the operational order picking decisions. In the
experiments of this paper five different storage location assignment policies, two
order batching policies, five zone picking policies, as well as five routing policies
are analyzed. The four factors and their associated factor levels are summarized
in Table 1. The baseline scenario of this experiment is indicated in italic.

Besides randomly assigning SKUs to storage locations, four turnover based
storage location assignment policies are simulated, in particular across-aisle
assignment, within-aisle assignment, diagonal assignment and assigning SKUs
across the perimeter of the order picking area. Within each product class, in case
of turnover based storage location assignment, each SKU is randomly assigned
to only one storage location.

The currently used FCFS batching policy actually results in a random cre-
ation of pick lists in terms of travel distance, as FCFS batching does not take the
location of SKUs in the order picking area into account. A seed order batching

Table 1. Experimental factor setting

Factor Factor levels (number of levels)

Storage (S) Random; across-aisle; within aisle; diagonal; perimeter (5)

Batching (B) FCFS ; seed (2)

Zone picking (Z) Strict ; 2 zones (CT); 2 zones (PF); 4 zones (CT); 4 zones (PF) (5)

Routing (R) Aisle-by-aisle; traversal; return; largest gap; optimal (5)

CT = storage zone assignment based on customer type
PF = storage zone assignement based on pick frequency
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algorithm is used as an alternative to create batches. The order that requires
the smallest number of picking aisles to visit, is selected as seed order. Next,
the order that minimizes the number of additional aisles to visit in the route is
added to the pick list. This algorithm is repeated until the batch contains 26
orders. Subsequently a new seed order is selected. The combination of this seed
order selection rule and this accompanying order selection rule have yielded good
results for different storage location assignment and routing policies [12,13].

Strict order picking is compared to four zone picking policies. Both the num-
ber of zones as well as the storage zone assignment policy should be determined
in case of zone picking. In the simulation experiments, the warehouse is divided
into either two or four order picking zones, and SKUs are assigned to order pick-
ing zones based on customer type (CT) or pick frequency (PF). This results in
four additional zone picking policies.

In addition to the aisle-by-aisle routing heuristic, the travel distance for return,
traversal, largest gap, and the optimal route is computed. As the routing prob-
lem cannot be solved to optimality for a multiple-block warehouse in reasonable
computing times, the Lin-Kernighan-Helsgaun (LKH) heuristic for the traveling
salesman problem (TSP) is used to approximate the optimal route [10]. The LKH
heuristic has shown to provide excellent results, both in a general TSP context, and
in the context of routing order pickers in a warehouse. Theys et al. [19] reported an
average optimality gap of 0.1 % for different warehouse settings.

To sum up, the simulation experiment consists of 250 possible combinations
of policies (i.e. five storage location assignment policies × two batching policies
× five zone picking policies × five routing policies). To reduce the stochastic
effect from order generation, 30 replications per policy combination are per-
formed, resulting in 7,500 observations. During each replication, all combinations
of storage, batching, zoning and routing are tested on the same 1,690 randomly
generated orders. Order sizes follow an exponential distribution with mean of
2.65 order lines. This factorial setting results in a 5× 2× 5× 5 full factorial
design.

The results of the simulation experiments are analyzed by a full factorial
ANOVA. The assumptions under which the ANOVA F statistic is reliable, are
independent observations, homogeneity of variance, as well as normally distrib-
uted observations. For each replication, all combinations of storage, batching,
routing and zoning are simulated on the same randomly generated orders in
order to stress the effects of policy decisions. Consequently, the 7,500 obser-
vations are not independently and a repeated measures ANOVA with storage,
batching, routing, and zoning as within-subjects factors is required to analyze
the main and interaction effects of the policy decisions [5]. Since the homogeneity
assumption is violated, the F-test Type I error rate increases. The Greenhouse-
Geisser (G-G) correction of the degrees of freedom is used to compensate for
the increased F-test type I error rate. The G-G adjustment is the most conser-
vative correction to compensate for the violation of sphericity [5,8]. In order to
ensure the last ANOVA assumption (i.e. normality), the experimental design
is balanced. The F statistic is quite robust to violations of normality when
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group sizes are equal [5]. In the simulation experiments in this paper, a balanced
5 × 2 × 5 × 5 full factorial repeated measures ANOVA, with storage, batching,
zoning, and routing as the within-subjects factors, is used to prove the value of
studying the four operation policy decisions in an integrated manner.

5 Empirical Results

First, results of the repeated measures ANOVA are discussed in Sect. 5.1. Sub-
sequently, the impact of each individual operational order picking policy deci-
sion, as well as the interaction effects between policy decisions are analyzed in
Sects. 5.2 and 5.3 respectively.

5.1 ANOVA Results

In order to get a first insight into the results of the simulation experiments, the
route lengths of the different factor combinations are analyzed by a 5× 2× 5× 5
full factorial repeated measures ANOVA on average travel distance. The results
of the repeated measures ANOVA are shown in Table 2. The first three columns
show the sum of squares, the G-G degrees of freedom and the resulting mean
square for the main and interactions effects, as well as for the residuals. The
last two columns are devoted to the F statistic and the p-value for testing the
statistical significance of storage, batching, zoning, and routing, as well as all
interactions between the four operational policy decisions.

Table 2 indicates that the main effects of storage location assignment, order
batching, zoning and routing are statistically significant. This means that there
is a significant difference between the five storage location policies, the two order
batching policies, the five zoning policies, as well as the five different routing poli-
cies on the average distance traveled by order pickers, respectively. The decision
on which storage, which batching, which zoning, and which routing policy to use
does influence the average route length.

Furthermore, Table 2 shows that all factors in the simulation experiment are
significantly interacting with each other. All of the six two-way interactions,
all three-way interactions, as well as the four-way interaction between storage,
batching, zoning and routing are statistically significantly different form zero.
As three out of the four factors in the experiment contain five levels, the 30
replications give rise to a large number of observations. Null hypotheses are
much easier rejected with a large number of factor levels and a large number
of observations because of a greater probability that one of the factor levels is
interacting with another factor level [7]. However, the ANOVA shows strong
statistically effects, both for the main effects and the interaction effects. Given
the significance of the effects, the main and interaction effects are examined in
more detail in the next sections.
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Table 2. 5× 2× 5× 5 full factorial repeated measures ANOVA on average travel dis-
tance

Sum of squares df Mean square F p-value

Main effects

Storage (S) 26,895,933,301 2.91 9,237,614,573 13,853.95 0.000

Batching (B) 181,937,289,935 1.00 181,937,289,935 284,683.12 0.000

Zoning (Z) 358,908,254,822 2.57 139,604,086,655 60,486.02 0.000

Routing (R) 79,222,871,786 2.18 36,318,042,321 229,618.82 0.000

Two way interaction

S×B 11,070,135 3.27 3,383,774 11.14 0.000

S×Z 16,831,331,146 7.61 2,211,840,545 3,526.56 0.000

S×R 8,595,751,592 7.03 1,222,476,423 11,468.01 0.000

B×Z 16,416,356,030 2.91 5,634,479,183 9,634.53 0.000

B×R 5,391,003,315 2.74 1,966,180,751 47,170.76 0.000

Z×R 12,905,574,845 6.00 2,152,147,805 18,137.89 0.000

Three way interaction

S×B × Z 621,242,209 8.43 73,716,968 179.82 0.000

S×B × R 505,815,157 8.47 59,717,570 1,132.60 0.000

S×Z × R 6,383,449,026 13.79 463,008,935 2,894.19 0.000

B×Z × R 703,844,710 6.98 100,770,162 1,642.05 0.000

Four way interaction

S×B × Z×R 478,689,655 15.11 31,682,633 330.12 0.000

Residuals

Between subjects 330,171,235 29.00 11,385,215

Within S 56,300,343 84.44 666,786

Within B 18,533,524 29.00 639,087

Within Z 172,078,430 74.56 2,308,039

Within R 10,005,553 63.26 158,167

Within S×B 28,813,836 94.87 303,705

Within S×Z 138,409,444 220.68 627,196

Within S×R 21,736,707 203.91 106,599

Within B×Z 49,413,333 84.49 584,821

Within B×R 3,314,322 79.51 41,682

Within Z×R 20,634,248 173.90 118,655

Within S×B×Z 100,189,592 244.39 409,950

Within S×B×R 12,951,295 245.63 52,726

Within S×Z×R 63,962,727 399.82 159.979

Within B×Z×R 12,430,509 202.55 61,369

Within S×B×Z×R 42,053,031 438.16 95,977

Total 716,889,475,792 7,499.00
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5.2 Main Effect of Storage, Batching, Routing and Zone Picking

Table 3 summarizes the average route length in meters for each operational policy
decision over all combinations with other policies, as well as the relative difference
between each order picking policy and the average best performing policy within
each operational decision area. Additionally, the statistical significance of all lev-
els of the different experimental factors are analyzed using a Bonferroni t-test. The
Bonferroni method seems to be the most robust technique in terms of power and
control of the Type I error rate for evaluating multiple hypotheses [7]. The test
results are summarized in Table 4. If two order picking policies are listed in the
same subset in Table 4, differences fail to be statistically significant. The simula-
tion results of storage location assignment policies, order batching policies, routing
policies and zoning policies are discussed independently below.

The within-aisle storage location assignment policy is on average the best
performing method for assigning SKUs to individual storage locations, followed
by the diagonal and across-aisle storage policy. Except for the perimeter storage
location assignment policy, all turnover based storage policies (i.e. within-aisle,
across-aisle, and diagonal) are able to outperform the random assignment of
SKUs to storage locations. These three turnover based storage policies are in the
three top subsets in Table 4 and result in statistically significantly shorter travel
distances compared to the random and perimeter storage location assignment
policy. Random and respectively perimeter assignments yield on average 14.3 %

Table 3. Average travel distance for each operational order picking policy (in meter)

Storage Mean Batching Mean Zoning Mean Routing Mean

[1] Within-aisle 25,831.1 Seed 23,016.4 4 zones (CT) 19,916.0 Optimal 22,814.0

Diagonal 26,220.9 FCFS 32,866.9 4 zones (PF) 24,577.2 Traversal 26,945.9
Gap over [1] (%) 1.5 30.0 19.0 15.3

Across-aisle 27,283.4 Mean 27,941.6 2 zones (CT) 25,355.3 Largest gap 27,035.7
Gap over [1] (%) 5.3 21.5 15.6

Random 30,142.2 2 zones (PF) 29,489.9 Return 31,405.2
Gap over [1] (%) 14.3 32.5 27.4

Perimeter 30,230.6 Strict 40,369.7 Aisle-by-aisle 31,507.4
Gap over [1] (%) 14.6 50.7 27.6

Mean 27,941.6 Mean 27,941.6 Mean 27,941.6

Table 4. Post hoc multiple Bonferroni t-test for each operational policy decision on
average travel distance (familywise error rate = 0.01)

Storage Batching Zoning Routing

Within-aisle Seed 4 zones (CT) Optimal
Diagonal FCFS 4 zones (PF) Traversal
Across-aisle 2 zones (CT) Largest gap
Random 2 zones (PF) Return
Perimeter Strict Aisle-by-aisle
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and 14.6 % larger route lengths compared to the best performing method. These
two storage policies form a single subset in the Bonferroni t-test, indicating that
the average travel distance is on average not statistically significantly different.

Two subsets are composed by evaluating the two batching policies (Table 4),
giving evidence that the mean route length is statistically significantly different
for each order batching policy. Simulations show that the seed order batching
policy on average results in 30 % shorter route lengths compared to FCFS batch-
ing (Table 3). This result is rather obvious as the seed rules take the product
locations of each order into account in composing pick lists, while FCFS batching
results in a random composition of pick lists in terms of travel distances.

The policy of dividing the warehouse into order picking zones outperforms
the strict order picking policy. The average travel distance halves when changing
from strict order picking to the best performing zone picking policy, i.e. the
customer type storage zone assignment in which the order picking area is divided
into four order picking zones. All sixteen picking aisles can be visited in a single
pick tour in case of strict order picking, while a maximum of either eight or four
aisles should be entered if the warehouse is respectively divided into two or four
order picking zones. So each order picker only traverses a small part of the order
picking area in order to retrieve all items on the pick list.

Tables 3 and 4 show that the optimal routing policy results in the smallest
average distance traveled by order pickers. The optimal routing procedure is
in the top performing subset as items on the pick list are sequenced in order
to minimize the route length. The optimality gap for the four routing heuris-
tics (i.e. traversal, largest gap, return, and aisle-by-aisle) is on average 15.3 %,
15.6 %, 27.4 %, and 27.6 % respectively. The results of the simulation experiments
show statistically significant differences between all routing policies. However,
the average route length difference between traversal and largest gap, as well as
the mean difference between return and aisle-by-aisle are rather limited. Return
and aisle-by-aisle routes are the most straightforward and worst performing rout-
ing heuristics. The traversal routing policy outperforms the aisle-by-aisle heuris-
tic, because the traversal routing policy allows order pickers to leave an aisle in
the middle cross-aisle, which results in shorter routes. The largest gap heuristic
extends the return routing policy by requiring the order picker to return as he
reaches the largest gap within an aisle. Consequently, largest gap routes outper-
form routes in which the order picker always returns to the middle cross-aisle.

5.3 Interaction Effects

The results of the simulation experiments are graphically illustrated in Fig. 2,
disaggregated into combinations of storage location assignment policies, order
batching policies, zoning policies, and routing policies. The interaction plot shows
all two-way interactions between the four operational order picking policies. The
lines on the graph illustrate the average travel distance for a particular order
picking policy combination. The three graphs in the first column show the aver-
age travel distance in function of the different storage location assignment poli-
cies per batching, zoning and routing policy in the respective first, second and
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third graph of the first column. The graphs in the three remaining columns
illustrate the average route length in function of the different batching, zoning
and routing policies in an equivalent way. Most lines on the graphs converge and
some even cross. For example, the lines of the aisle-by-aisle routing heuristic and
the return policy are crossing on the graph illustrating the interaction between
batching and routing, while the return, traversal, and largest gap routing heuris-
tic converge when changing from the FCFS to the seed batching policy. The
converging and crossing lines are in accordance with the results of the ANOVA
in Table 2, indicating that there are strong interactions between the different
operational order picking decisions.

The significant interactions between the different order picking policies orig-
inate from the fact that some combinations of warehouse policies yield excellent
performances (e.g. perimeter storage assignment in combination with largest gap
routing), while other combinations result in large average travel distances (e.g.
FCFS batching in combination with return routing). From Fig. 2, the combi-
nation of the perimeter storage policy and the largest gap routing policy is an
example of a well performing combination. Since fast moving SKUs are stored
along the periphery of the warehouse blocks and the largest gap routes tend to
follow the periphery of the warehouse, this combination of order picking policies
outperforms other combinations of routing heuristics and perimeter storage loca-
tion assignment. Aisle-by-aisle, traversal, as well as return routes show a strong
increase in travel distance in combination with the perimeter storage compared
to other storage location assignment policies.

Combinations of the straightforward routing policies (i.e. aisle-by-aisle and
return) with FCFS batching appear to be inefficient. FCFS batching, which
in fact results in a random creation of batches, generates pick lists with SKUs
located in a large number of aisles and SKUs are diffused within each aisle. Aisle-
by-aisle routes can work efficiently only if the number of aisles to be visited is
minimized, while return routes aim to minimize the travel distance within a
pick aisle. This results in a large travel distance when combining FCFS batching
with either the aisle-by-aisle or return routing policy. The average route length
difference between FCFS and seed batching is much larger when combined with
aisle-by-aisle and return routing compared to other routing methods.

In addition to some excellent performing and some inefficient combinations,
the statistically significant interaction can be further explained by the fact that
shifting from a bad performing factor level to a good performing level within
the same factor results in much smaller performance benefits when other order
picking policies are already efficiently performed compared to the situation in
which other order picking policies on average result in large travel distances.
For example the effect of different storage location assignment policies is not
consistent over all levels of zoning. By dividing the warehouse into order picking
zones, the effect of shifting to a more efficient storage policy on the route length
is reduced compared to the strict order picking policy. The reason for this signif-
icant interaction term can be found in the smaller area that is crossed by order
pickers to retrieve all items on the pick list in case of two or four order picking
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Fig. 2. Average travel distance in meter for each combination of storage, batching,
zoning and routing policy
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zones, as well as in case of turnover based storage location assignment. Zoning
policies as well as storage policies aim to increase the density of SKUs retrieved
in each aisle. Consequently, the performance impact resulting from changing the
storage policy is far greater in combination with strict order picking, compared
to other zone picking policies.

6 Managerial Implications

The results of the simulation experiments show the importance of storage, batch-
ing, zoning, and routing decisions in order to manage order picking activities
efficiently. This section discusses the practical implications of this research for
warehouse managers.

Compared to the benchmark (i.e. strict order picking in combination with ran-
dom storage assignment, FCFS batching, and aisle-by-aisle routing), all proposed
combinations perform better. Over the 30 replications, the benchmark results in
an average travel distance of 58, 983.89 m. The order picking process can be per-
formed 76.9 % more efficiently by dividing the warehouse into four order picking
zones in combination with customer type zone assignment, within-aisle storage
location assignment, seed batching, and optimal routing. This combination results
in a mean route length of 13, 608.14 m. As the simulation experiments have focused
on operational order picking policy decisions only, the proposed combinations are
rather easy to implement and result in large performance benefits.

We should note that maintaining order integrity can not be generalized to all
warehouses as not all warehouses can divide their orders across customer types.
However, even when SKUs are assigned to zones base on pick frequency, the
average route length can be reduced with 72.6 % compared to the benchmark.
The mean route length for pick frequency zone assignment is minimized in com-
bination with four zones, within-aisle storage location assignment, seed batching,
and optimal routing, and results in an average travel distance of 16, 147.10 m.

In addition, the study of storage, batching, zone picking, and routing poli-
cies allows warehouse managers to determine the relations between order picking
policies. The simulations provide insights into some excellent performing com-
binations (e.g. 2 zones (CT) and seed batching), as well as several inefficient
policy combinations (e.g. FCFS batching and return routing). Furthermore, all
main effects as well as all interaction effects have proven to be statistically sig-
nificant. This implicates that warehouse managers should consider decisions on
storage, batching, zoning, and routing simultaneously in order to minimize the
distance traveled by order pickers and consequently reduce the order through-
put time. Warehouse managers should be aware of the strong relations between
order picking policies in order to optimize the overall warehouse performance.

7 Conclusions

The delivery of e-commerce markets forces warehouses to handle a growing num-
ber of orders in shorter time windows. Awareness of the influence of an individual
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warehouse operation on the overall warehouse performance is required to manage
warehouse operations, resulting in enhanced customer service.

In this paper, the relation between storage, batching, zone picking, and rout-
ing policies is studied for the first time. The results of the study clearly indicate
that warehouses can achieve significant benefits by considering storage, batching,
zone picking, and routing policies simultaneously. The combination of within-
aisle storage, seed batching, zone picking (4 zones and customer type zone assign-
ment), and the optimal route results in the lowest route length. As traveling is
the dominant factor in order picking operations, the order picking process can
be performed more efficiently. As a result, warehouse managers can either reduce
the number of order pickers or reduce the customer order throughput time.

The simulation results of our study contribute to both practitioners and aca-
demic research. The evaluation of an extensive range of order picking policies
helps warehouse managers to reduce the order throughput time. The simulated
order picking policies can be easily implemented and immediately result in signif-
icant performance benefits. This paper is limited to the four main order picking
policy decisions. However in future research, these order picking policies could be
enlarged to other operational decisions, such as workforce planning decisions and
alternative zone configurations. Furthermore, simulating other warehouse layouts
may allow us to achieve higher practical and managerial relevance. Enlarging the
simulation experiment will provide insight into more warehouse policy interac-
tions, helping warehouse managers to further reduce the order throughput time,
which can result in faster deliveries.
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1. Çelik, M., Süral, H.: Order picking under random and turnover-based storage poli-
cies in fishbone aisle warehouses. IIE Trans. 46(3), 283–300 (2014)

2. Chen, C.M., Gong, Y., de Koster, R.B., van Nunen, J.A.: A flexible evaluative
framework for order picking systems. Prod. Oper. Manag. 19(1), 70–82 (2010)

3. Chen, T.L., Cheng, C.Y., Chen, Y.Y., Chan, L.K.: An efficient hybrid algorithm
for integrated order batching, sequencing and routing problem. Int. J. Prod. Econ.
159, 158–167 (2015)

4. Cheng, C.Y., Chen, Y.Y., Chen, T.L., Yoo, J.J.W.: Using a hybrid approach based
on the particle swarm optimization and ant colony optimization to solve a joint
order batching and picker routing problem. Int. J. Prod. Econ. 170(Part C), 805–
814 (2015)

5. Cohen, B.H., Welkowitz, J., Lea, R.B.: Introductory Statistics for the Behavioral
Sciences, 7th edn. Wiley, Hoboken (2011)

6. De Koster, R.B.M., Le-Duc, T., Roodbergen, K.J.: Design and control of warehouse
order picking: a literature review. Eur. J. Oper. Res. 182(2), 481–501 (2007)

7. Field, A.: Discovering Statistics Using IBM SPSS Statistics. SAGE, London (2013)



442 T. van Gils et al.

8. Geisser, S., Greenhouse, S.W.: An extension of box’s results on the use of the f
distribution in multivariate analysis. Ann. Math. Stat. 29(3), 885–891 (1958)

9. Gu, J., Goetschalckx, M., McGinnis, L.F.: Research on warehouse operation: a
comprehensive review. Eur. J. Oper. Res. 177(1), 1–21 (2007)

10. Helsgaun, K.: An effective implementation of the Lin-Kernighan traveling salesman
heuristic. Eur. J. Oper. Res. 126(1), 106–130 (2000)

11. Henn, S.: Algorithms for on-line order batching in an order picking warehouse.
Comput. Oper. Res. 39(11), 2549–2563 (2012)

12. Ho, Y.C., Tseng, Y.Y.: A study on order-batching methods of order-picking in
a distribution centre with two cross-aisles. Int. J. Prod. Res. 44(17), 3391–3417
(2006)

13. Ho, Y.C., Su, T.S., Shi, Z.B.: Order-batching methods for an order-picking ware-
house with two cross aisles. Comput. Ind. Eng. 55(2), 321–347 (2008)

14. Jane, C.C., Laih, Y.W.: A clustering algorithm for item assignment in a synchro-
nized zone order picking system. Eur. J. Oper. Res. 166(2), 489–496 (2005)

15. Petersen, C.G., Aase, G.: A comparison of picking, storage, and routing policies in
manual order picking. Int. J. Prod. Econ. 92(1), 11–19 (2004)

16. Petersen, C.G., Schmenner, R.W.: An evaluation of routing and volume-based
storage policies in an order picking operation. Decis. Sci. 30(2), 481–501 (1999)

17. Roodbergen, K.J.: Storage assignment for order picking in multiple-block ware-
houses. In: Manzini, R. (ed.) Warehousing in the Global Supply Chain, pp. 139–
155. Springer, London (2012)

18. Roodbergen, K.J., de Koster, R.B.M.: Routing methods for warehouses with mul-
tiple cross aisles. Int. J. Prod. Res. 39(9), 1865–1883 (2001)
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Abstract. Competitive advantage of make-to-order manufacturing companies
is highly dependent on their capability to offer short delivery times and on time
delivery. This calls for effective production and materials flow control – a core
part of production logistics. This paper applies discrete simulation to study the
delivery performance of a make-to-order manufacturing system configured as a
general flow shop, when operated under two card-based material flow control
mechanisms: CONWIP and GKS. The influence of two lot splitting strategies on
the performance of these mechanisms is also evaluated. Results show that GKS
clearly outperforms CONWIP and that splitting strategies have a positive impact
on the performance of both mechanisms. GKS also showed to be particularly
robust to the variation of the number of production authorisation cards used.
This, together with the fact that the card-based mechanisms require little data
handling and simplify production control, makes GKS attractive for practical
application in make-to-order companies.

Keywords: CONWIP � GKS � Lot splitting � MTO � Simulation

1 Introduction

Production and materials flow control are important functions of production logistics.
Production logistics fundamentally pursues high delivery capability and reliability with
minimum logistic and production costs [12]. Delivery capability expresses the degree
to which a company can commit itself to customer desired delivery dates. Delivery
reliability, on the other hand, expresses the extent to which the order due dates are met.
To achieve this, production and materials flow control must organize and manage the
entire production and material flow, from the acquisition of raw materials to the
delivery of end products to customers, ensuring that each machine or workstation of the
production system is fed with the right jobs at the right time.
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Card-based materials flow control mechanisms such as the Generic Kanban Sys-
tems (GKS) [4] and CONstant Work-In-Process (CONWIP) [14] can be simple and yet
effective means of controlling production and materials flow. Such mechanisms have
been proposed as alternatives to the Toyota Kanban system (TKS), which do not
typically apply to the make-to-order (MTO) and high-variability production: the former
as a way of applying Kanbans (i.e. production authorization cards) to control pro-
duction and materials flow in dynamic environments; the latter as a simplified alter-
native to TKS for the MTO production.

Chang and Yih [4] compared these mechanisms in a pure flow shop. GKS was
shown to be more flexible in that by manipulating the number of kanbans at each
workstation the performance of GKS could be improved beyond that achieved by
CONWIP. To the best of our knowledge no study was carried out on the influence of
lot splitting on the performance of these two material flow control mechanisms, neither
were them evaluated for manufacturing systems more suited to satisfy demand under
MTO. Thus, this research work gives a contribution to fill this research gap, using
discrete event simulation to model and analyse the performance of a general flow shop
under MTO production, when operated by these two card-based materials flow control
mechanisms. In particular, the following research questions are addressed:

1. How materials flow control mechanisms perform in the context of make-to-order
and general flow shops?

2. How lot splitting impacts the performance of these mechanisms?

Lot splitting allows accelerating the flow of work by splitting job lots into sublots.
The basic idea is not to process the whole job at one workstation and then move them
to the next, but to move smaller quantities (sublots) to the next workstation as soon as
they are completed. This may result in the overlapping of operations, shortening
throughput times and thus improved logistic performance, as pointed out by Jacobs and
Bragg [9] and Wagner and Ragatz [15], among others. It also reduces the amount of
storage space as well as the capacity of material handling equipment required. Chang
and Chiu [3] and Cheng et al. [5] make comprehensive literature reviews on lot
streaming, i.e. lot splitting for operations overlapping.

The remainder of the paper is organized as follows. In Sect. 2, we present the
simulation study carried out, including the simulation model, the experimental set-up
and the performance measures considered. In Sect. 3, we discuss the results of the
simulation study, and finally, in Sect. 4 of the paper, we summarize key results and
managerial implications.

2 Simulation Study

A discrete event computer simulation model was developed using Arena® software to
model the system under study and carry out experimentation towards answering the
above research questions.
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2.1 Simulation Model

In this study, we consider a six-stage general flow shop (GFS) manufacturing system
with one workstation in each processing stage. The GFS is seen as a more realistic
model of the flow structure of job shops than pure job shop [6, 13]. A representation of
the GFS used in the study is shown in Fig. 1, while Table 1 summarises the charac-
teristics of the simulation model.

As customer orders arrive to the manufacturing system, their operation times and
due dates are established. It is assumed that all orders are accepted and enough raw
materials inventory is always available. Orders’ inter-arrival times follow an expo-
nential distribution with mean 0.647 time units. The inter-arrival times when combined
with the orders routings and operations times will result in an average utilisation of
90 % at all workstations. This is adopted in our model once it is a utilization level that
usually is aimed at in practice and it allows having a good insight on the performance
behaviour of the production control mechanisms tested.

Market driven due dates are set by adding a uniformly distributed time allowance to
order arrival time. In this study, the allowance varies between 35 and 55 time units. The
minimum value was set to cover a minimum shop floor throughput time corresponding
to a planned operation lead time of 5 time units plus an allowance for the pool waiting

Workstation of stage i  WSi 

Allowed materials’ flow direction  

Legend: 

WS1 WS2 m- WS6 WS5m- WS4WS3

Release 

Pre-shop 
Pool 

Orders’ 
arrival 

Fig. 1. The material flow structure of a general flow shop with six workstations (adapted from
[2])

Table 1. Job and shop characteristics

Shop configuration General flow shop; no re-entrant flows
No. of workstations 6
Workstation capacities All equal and constant over time
Workstation utilisation 90 %
Inter-arrival times Exponentially distributed; mean = 0.647 time units
No. of operations per job Discrete uniformly distributed [1, 6] operations
Job or order size (quantity) Discrete uniformly distributed [1, 4] units
Unit processing times 2-Erlang, mean of 0,4 time units; truncated at 1.6 time units
Set-up time Sequence independent, included in the processing times
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time. The maximum value was chosen in order to get a good perception of the relative
performance of the control strategies on tardy jobs. This leads to approximately 18 %
of orders being tardy under immediate release if lot splitting is not applied. To reflect
the environment where customers demand unique or small quantities of products, the
order quantity is randomly generated according to a discrete uniform distribution
between one and four product units.

Customer orders, here also referred as jobs, can be split into sublots of equal size,
which can be processed separately in the manufacturing system. The number of pos-
sible sublots in each job is directly related with the job size, i.e. the order quantity.
Thus, the number of sublots for each job equals the order quantity and therefore, there
are jobs with different number of sublots, varying from one to four.

In our simulation model, the processing times of operations of each product unit are
drawn from a truncated 2-Erlang distribution with a mean of 0.4 time units and a
maximum of 1.6 time units. These are then multiplied by the job size, i.e. order
quantity, to obtain the processing time of each job operation. Additionally, the fol-
lowing assumptions are adopted:

• Workstations capacity remains constant over time and no breakdowns have been
modelled.

• Set-up times are assumed to be sequence-independent and included in the operation
processing times.

• Distances and transportation times between workstations and between production
stages are assumed to be negligible.

• Information of production control events and production control cards are trans-
mitted instantly.

The simulation model presented here was kept simple and the values of system
parameters were set to ensure easy and correct interpretation of the effects of the
experimental factors as a contribution for the understanding of the performance
behaviour of material flow control mechanisms when applied to the widely used in
practice general flow shop manufacturing system configuration.

2.2 Materials Flow Control: Order Release and Dispatching

Materials flow control, an important part of production logistics, addresses two main
production control functions: order release and priority dispatching. Order release
determines the time and the orders to be released to the system, authorizing production
to start. Release decisions are usually based on the orders’ urgency and on their
influence on the current shop floor situation [8]. Priority dispatching selects the job or
the sublot to be processed next at a workstation that becomes free, from those waiting
in workstations’ queues.

In the manufacturing system considered, an arriving order immediately flows into a
pre-shop pool, waiting its release to the system, i.e. to shop floor, for processing. This
means that orders are not immediately released to the system as they arrive. Rather,
they wait until release required conditions are met. The controlled release, associated to
the use of a pre-shop pool, is expected to reduce the level of work-in-process (WIP) in
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the system and allow better control over the flow of work or materials through the
system. Orders in the pool are sequenced for release according to their urgency, i.e., a
planned release date (Eq. 1), and are released under the control of two possible
card-based materials flow control mechanism: CONWIP (CONstant-Work-In-Process)
and GKS (Generic Kanban System).

sj ¼ dj �
X

k2Rj
bk ð1Þ

Where:

sj is the planned release date of job j;
dj is the due date of job j;
bk is the lead time at workstation k;
Rj is the set of workstations in the routing of job j.

Lead times at each workstation are fixed at 5 time units based on the throughput
times observed in preliminary simulation runs of this study;

In both CONWIP and GKS mechanisms the cards, which are used for authorizing
production, are not part or product number specific and therefore can be acquired, for
production and materials flow control purposes, by any job in the pre-shop pool waiting
release. CONWIP cards are all identical, i.e. of the same type, but GKS cards are not:
they are workstation specific.

Cards for each sublot of a job are attached to the job at release. Detached cards from
jobs are sent back to the pre-shop pool, where they can be attached to new production
job when released into the system. CONWIP cards, as many as the number of sublots,
are attached to the job at release and detached when the job (or a sublot, when lot
splitting is performed), completes processing at its last production stage. GKS works in
different way. Since GKS cards are associated to each workstation, then GKS cards
from each workstation in the routing of the job are attached to the job at release and
detached, and sent back for new releases, when the job or each one of the sublots,
depending on the splitting policy used (see Sect. 2.3), completes its operation at the
corresponding workstation.

The role of priority dispatching is a very moderate one when order release control is
applied, because the choice among jobs is limited due to short queues [1]. Thus, in this
study, shop floor dispatching is based on the first-come-first-served (FCFS)
priority-dispatching rule that supports the natural flow of the orders through the shop,
stabilizing operation throughput times.

2.3 Control Policy - Lot Splitting

Regarding lot splitting three alternative policies are analysed to determine whether
splitting should be considered or not and when, i.e. before or after release to the shop
for processing:

• Policy P0: The job (or order) is not split, and thus released to the shop floor and
processed as a whole.

Improving Production Logistics Through Materials Flow Control 447



• Policy P1: The job (or order) is split before release and split sublots are released in
an independent manner to the shop floor.

• Policy P2: The job (or order) is released as a whole and then split in sublots on the
shop floor for independent processing.

2.4 Experimental Design and Performance Measures

The experimental factors and simulated levels of the study are summarised in Table 2.
Two material flow control mechanisms, namely CONWIP and GKS, are applied to
release jobs from the pre-shop pool to the shop floor. Both were tested at five card
counts, i.e. number of production authorisation cards, and for the three lot-splitting
policies referred above. Thus, 30 simulation cases are tested (2 release mecha-
nisms � 5 card counts � 3 lot splitting policies). Each test case runs 100 replicates.
The time horizon for a simulation case is 13 000 time units and only data of the last 10
000 time units are collected, i.e., a warm-up period of 3 000 time units is considered.

The number of production authorisation cards is an experimental factor in our
study. CONWIP uses a single-type production authorisation card. GKS, on the other
hand, requires one card type per workstation. We define the number of cards per
workstation to be different in GKS. The number of cards at workstations two to six
equals those of workstation one multiplied by the workstation number. We adopt this
on the assumption that cards for downstream workstations of the GFS are likely to
remain longer in the system than for upstream workstations and because we have a
balanced GFS with identical workstation throughput times.

Concerning system performance, two types of criteria are used: (1) the ability to
deliver orders (jobs) on time, and (2) the ability to provide short delivery times. To
measure performance with regard to the former, the percentage of tardy jobs and the
standard deviation of lateness are recorded. To measure performance with regard to the
latter, the shop throughput time and the total throughput time are used. The shop
throughput time refers to the time that elapses between job release and job completion.
The total throughput time is the shop throughput time plus the job delay in the pre-shop
pool. Note that a job is not completed until all the lots that belong to it are fully
processed. Thus we can define the synchronization time of a job as the time that elapses
between the completion of the first and last lot of the job.

Table 2. Experimental factors and levels

Experimental factor Levels

Material flow control mechanisms CONWIP GKS
Lot splitting policies P0 P1 P2
Number of production authorisation cards 5 levels of WIP restriction
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3 Simulation Results and Discussion

Here we present and discuss the results of the simulation study described in the pre-
vious section. Section 3.1 studies the impact of the CONWIP and GKS mechanisms
under lot splitting policy P1. A detailed analysis of results under the three policies, P0
to P2, is given in Sect. 3.2.

Fig. 2. Release results of release methods for: (a) percentage of tardy jobs; (b) total throughput
time; (c) standard deviation of lateness.

Improving Production Logistics Through Materials Flow Control 449



3.1 Impact of Release Methods on Performance

Figure 2(a)–(c) plot the percentage of tardy jobs, total throughput time, and the stan-
dard deviation of lateness, respectively, against the shop throughput time for the two
material flow control mechanisms. By comparing plotted curves, we can determine
their performance differences for different values of card counts. A marker on a curve is
the result of simulating a release method at a specific card count. Five card counts have
been simulated.

Additionally, we also collect and show results for immediate release (IMR) as it
was used as a base line for performance comparisons in this study. Immediate release
means that when orders arrive they are immediately released to the shop floor without
any restriction. The number of production authorisation cards decrease along the curve
from right to left, leading to less work-in-process, i.e. less jobs on the shop floor, and
therefore, according to Little’s law [11], to lower shop throughput time.

As expected, IMR results in the highest level of shop throughput time. Accom-
panying an initial reduction in the number of cards available at the pre-shop pool is a
reduction in the percentage of tardy jobs and also on the total throughput time for GKS.
However, CONWIP behaves in a different way. In fact, for this mechanism, reducing
the number of cards immediately leads to deterioration, i.e. to an increase of all per-
formance measures. Germs and Riezebos [7] already concluded about the lack of
balancing capability of CONWIP, expressed by the increase of total throughput time
when CONWIP cards are continuously restricted. This is not the case in GKS. GKS
clearly outperforms CONWIP and IMR for the percentage of tardy jobs, total
throughput time and standard deviation of lateness. This can be explained by the better
workload balancing capability that results from GKS controlling workload in each
workstation of the system.

We can also see that the GKS performance starts deteriorating only for very low
levels of card counts. This makes GKS more robust to changes in the number of card
comparatively to CONWIP, which can be seen as an attractive feature for practical
application.

3.2 Impact of the Lot Splitting Policy

Figure 3(a)–(d) plot the percentage of tardy jobs, total throughput time, standard
deviation of lateness and the synchronisation time, respectively, against the shop
throughput time for different combinations of the experimental factors.

It can be observed that splitting policies P1 and P2 perform better than the
non-splitting Policy P0. This confirms our expectations that splitting jobs decrease
throughput times through operations overlapping. This is independent of the material
flow control mechanism applied, i.e. GKS or CONWIP.

Comparing splitting policies P1 and P2 it can be seen that policy P2 leads to better
percentage of tardy jobs and total throughput time than P1. However, this is obtained at
the cost of a higher standard deviation of lateness. This behaviour can be explained by
the fact that releasing jobs without first splitting them requires a larger number of cards
to be available at release. This means that larger jobs have a less streamlined release
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than smaller jobs, i.e. sometimes they can be release in due time and sometimes they
cannot, due to the shortage of cards. This tends increase the standard deviation of
lateness. This problem is mitigated by policy P1 that splits jobs before release. In this
case, a single card per sublot is required, not the whole set of cards for a job, therefore
facilitating the release of large jobs. However, this creates another problem, as we can
see from Fig. 3(d): once lots are released independently they have to wait for each
other after processing, to gather for the sublots of each job, increasing therefore the
synchronization delay. This problem is more expressive under GKS than under
CONWIP. This behaviour of the synchronization delay is the main reason why policy
P1 performs worse than P2 in terms of tardy jobs and job throughput time. One
explanation for the severe effects of policy P1, on the synchronization delay under GKS
is the need to have available the right cards from the right workstations required by the
sublot routing. This tends to make the time interval for the release of all lots of the same
job to be highly extended in relation to the case of policy P2, which releases the whole
job at the same point in time.

4 Conclusions and Managerial Implications

This study on production logistics compares two card-based material flow control
mechanisms GKS and CONWIP when applied to a make-to-order manufacturing
system configured as a general flow shop. GKS was shown to outperform CONWIP in

Fig. 3. Performance results for the impact of the splitting policy for: (a) percentage of tardy
jobs; (b) total throughput time; (c) standard deviation of lateness and (d) synchronization time.
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terms of the percentage of tardy jobs, system throughput time and standard deviation of
lateness. It was also shown to be highly robust to the number of production autho-
rization cards used to run the system. In fact, it sustained high levels of performance for
a range of different numbers of cards used. This behaviour lends itself to practical
application of the GKS. The reason for the good performance of GKS is its load
balancing capability over workstations of the manufacturing system. This quality is not
shared by the CONWIP system.

Lot splitting policies have shown to have a positive impact on both CONWIP and
GKS performance. Better performance behaviour of GKS in relation to CONWIP was
also verified under lot splitting.

We see some important managerial implications of this study. The main one is that
under make-to-order and systems configured as general flow shop, card-based mech-
anisms can be used to achieve high levels of performance in terms of (1) the ability to
deliver orders on time, and (2) the ability to provide short delivery times, particularly
when combined with lot splitting policies. The use of these mechanisms has the
advantages of requiring little data handling and allowing easy visual control of the flow
of materials, which can be seen as attractive attributes for practical applications.

Although general flow shops have much in common to real world manufacturing
systems’ configurations, future research is planned to verify if the performance beha-
viour of the control strategies tested still applies under different shop configurations and
manufacturing settings, e.g. considering set-up times since these have been proved to
have an impact on throughput times as batch sizes change [10].
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