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8.1 Introduction

While cloud computing has become one of the most prevailing paradigms for big
data applications, many legacy scientific applications are still struggling to leverage
this new paradigm. One challenge for scientific big data applications to be deployed
on the cloud lies in the storage subsystem. Popular file systems such as HDFS [1]
are designed for many workloads in data centers that are built with commodity
hardware. Nevertheless, many scientific applications deal with a large number of
small files [2]—aworkload that is notwell supported by the data parallelism provided
by HDFS. The root cause to the storage discrepancy between scientific applications
and many commercial applications on cloud computing stems from their original
design goals. Scientific applications assume their data to be stored in remote parallel
file systems, and cloud platforms provide node-local storage available on each virtual
machine.

This chapter shares our views on how to design storage systems for scientific big
data applications on the cloud. Based on the literature and our own experience on big
data, cloud computing, and high-performance computing (HPC) in the last decade,
we believe that cloud storage would need to provide the following three essential
services for scientific big data applications:
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1. Scalable metadata accesses. Conventional centralized mechanisms for man-
aging metadata on cloud computing, such as GFS [3] and HDFS [1], would not
suffice for the extensive metadata accesses of scientific big data applications.

2. Optimized data write. Due to the nature of scientific big data applications,
checkpointing is the de facto approach to achieve fault tolerance. This implies that
the underlying storage system is expected to be highly efficient on data write as
checkpointing itself involves frequent data write.

3. Localized file read. When a failure occurs, some virtual machines (VM) need
to restart. Instead of transferring VM images from remote file systems, it would be
better to keep a local copy of the image and load it from the local disk if at all possible.

In order to justify the above arguments,we analyze four representativefile systems.
Twoof themare originated fromcloud computing (S3FS [4],HDFS [1]). S3FS is built
on top of the S3 storage offered byAmazonEC2 cloud as a remote shared storagewith
the added POSIX support with FUSE [5]. HDFS is an open-source clone of Google
File System (GFS [3]) without POSIX support. The other two file systems were
initially designed for high-performance computing (Ceph [6], FusionFS [7, 8]). Ceph
employs distributed metadata management and the CRUSH [9] algorithm to balance
the load. FusionFS is first introduced in [10] and supports several unique features
such as erasure coding [11], provenance [12], caching [13, 14], compression [15,
16], and serialization [17]. This study involves two test beds: a conventional cluster
Kodiak [18] and a public cloud Amazon EC2 [19].

The remainder of this chapter is organized as follows. Section 8.2 discusses the
scalability of metadata accesses. We present the design and performance of achiev-
ing optimized file write and localized file read in Sects. 8.3 and 8.4, respectively.
Section 8.5 details a real system that employs the proposed design principles as well
as unique features in caching, compression, GPUs, provenance, and serialization.
We review important literature in big data systems and HPC systems in Sect. 8.6 and
finally conclude this chapter in Sect. 8.7.

8.2 Scalable Metadata Accesses

State-of-the-art distributed file systems on cloud computing, such as HDFS [1], still
embrace the decade-old design of a centralized metadata server. The reason of such a
design is due to the workload characteristic in data centers. More specifically, a large
portion of workloads in data centers involve mostly large files. For instance, HDFS
has a default 64 MB chunk size (typically 128MB though), which implicitly implies
that the target workload has many files larger than 64 MB; HDFS is not designed
or optimized for files smaller than 64 MB. Because many large files are expected,
the metadata accesses are not intensive and one single metadata server in many
cases is sufficient. In other words, a centralized metadata server in the conventional
workloads of cloud computing is not a performance bottleneck.

The centralized design of metadata service, unfortunately, would not meet the
requirement of many HPC applications that deal with a larger number of
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Fig. 8.1 Metadata performance comparison

concurrent metadata accesses. HPC applications are, in nature, highly different than
those conventionally deployed on cloud platforms. One of the key differences is file
sizes. For instance, Welch and Noer [20] report that 25–90% of all the 600 million
files from 65 Panasas [21] installations are 64 KB or smaller. Such a huge number of
small files pose a significantly higher pressure to the metadata server than the cloud
applications. A single metadata server would easily become the bottleneck in these
metadata-intensive workloads.

A distributed approach to manage metadata seems to be the natural choice for
scientific applications on the cloud. Fortunately, several systems (for example, [6,
7]) have employed this design principle. In the remainder of this section, we pick
FusionFS and HDFS as two representative file systems to illustrate the importance of
a distributed metadata service under intensive metadata accesses. Before discussing
the experiment details, we provide a brief introduction of the metadata management
of both systems.

HDFS, as a clone of the Google File System [3], has a logically1 single metadata
server (i.e., namenode).The replication of the namenode is for fault tolerance rather
than balancing the I/O pressure. That is, all the metadata requests are directed to the
single namenode—a simple, yet effective design decision for the cloud workloads.
FusionFS is designed to support extremely high concurrency of metadata accesses.
It achieves this goal by dispersing metadata to as many nodes as possible. This
might be overkill for small- to medium-scale applications, but is essential for those
metadata-intensive workloads that are common in scientific applications.

On Amazon EC2, we compare the metadata performance of all four file systems,
i.e., FusionFS, S3, HDFS, and CephFS. The workload we use is asking each client to
write 10,000 empty files to the according file system. Results are reported in Fig. 8.1.

There are a few observations worth further discussing. First, HDFS outperforms
other peers on four nodes and scales well toward 16 nodes. And yet, its scalability
is not as good as FusionFS, whose metadata throughput is significantly higher than

1because it gets replicated on multiple nodes, physically.
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HDFS although the former delivers a lower throughput on four nodes. Second, S3
scales well but is hardly competitive compared to other systems because only with 64
nodes its performance becomes comparable to others on four nodes. Third, CephFS’s
scalability is poor even from 4 to 16 nodes. Even worse, its performance is degraded
when scaling from 16 to 64 nodes.

8.3 Optimized Data Write

Data write is one of the most common I/O workloads in scientific applications due
to their de facto mechanism to achieve fault tolerance—checkpointing. Essentially,
checkpointing asks the system to periodically persist its memory states to the disks,
which involves a larger number of data writes. The persisted data only need to be
loaded (i.e., read) after a failure occurs in a completely nondeterministic manner. As
the system is becoming increasingly larger, the time interval between consecutive
checkpoints is predicted to be dramatically smaller in future systems. [22] From
storage’s perspective, cloud platform will have to provide highly efficient data write
throughput for scientific applications.

Unfortunately, HDFS could hardly provide optimized data write due to the meta-
data limitation discussed in Sect. 8.2. Figure 8.2 shows the write throughput of
FusionFS and HDFS on Kodiak. Similarly to the metadata trend, the write through-
put of HDFS also suffers poor scalability beyond 128 nodes.

Another option in cloud platforms is the remote shared storage. It usually provides
a unified interface and scalable I/O performance for applications. One example is
the S3 storage on Amazon EC2 cloud. S3 does not only provide a set of API but also
leverages FUSE [5] to serve as a fully POSIX-compliant file system named S3FS.
Therefore S3FS is becoming a popular replacement of the conventional remote shared
file systems [23, 24] in HPC.

Fig. 8.2 Write throughput of FusionFS and HDFS are compared
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Fig. 8.3 Scalable write
throughput on Amazon EC2

We compare all the file systems in discussion so far on the same testbed, i.e.,
m3.large instance on Amazon EC2. The experiment is in modest scale, from four
nodes to 16 nodes, and to 64 nodes in a weak-scaling manner. That is, every node
works on the same amount of data—in this case, writing a hundred of 100 MB files
to the respective file system.

FromFig. 8.3we observe that all these systems scalewell up to 64 nodes. Note that
HDFSandS3were designed for data centers and cloud computing,whileCephFS and
FusionFS targeted at scientific applications and high-performance computing.While
CephFS is relatively slower than others, FusionFS performs faster comparatively to
HDFS and S3 on Amazon EC2 even though FusionFS was not originally designed
for data centers.With FusionFS as an example, we believe in the near future a gradual
convergence, from the perspective of storage and file system, is emerging between
communities of cloud computing and high-performance computing.

We also compare these systems with respect to different file sizes, as shown in
Fig. 8.4. Our results show that starting from 1 MB, file size affects little to the write
performance on all systems. However, we observe two dramatical extremes on 1 KB

Fig. 8.4 Write throughput of different file sizes
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files: HDFS achieves an impressing overall throughput on these small files while S3
is extremely slow. This indicates that for applications where small files dominate,
HDFS is in favor with regards to performance.

8.4 Localized File Read

File read throughput is an important metric and is often underestimated since a lot of
effort is put on data write as discussed in Sect. 8.3.When a VM is booted or restarted,
the image needs to be loaded into the memory and this is becoming a challenging
problem in many cloud platforms [25, 26]. Therefore a scalable read throughput is
highly desirable for the cloud storage, which urges us to revisit the conventional
architecture where files are typically read from remote shared file systems. In HPC
this means that the remote parallel file system such as GPFS and Lustre, and in cloud
platforms such as Amazon EC2 it implies the remote S3 storage, or the S3FS file
system.

We compare the read performance of all the file systems on the m3.large instance
of Amazon EC2. Similarly, we scale the experiment from four nodes to 16 nodes,
and to 64 nodes in a weak-scaling manner. Every node read a hundred of 100 MB
files from the respective file system. Figure 8.5 shows that all these systems scale
well up to 64 nodes.

We also compare the systems of interest with respect to their block sizes. In
Fig. 8.6, we let each system read different number of files of various sizes, all on
64 Amazon EC2 m3.large instances. For example, “1k–100KB” means the system
writes 1,000 files of 100 KB.

We observe that for all systems, once the file size is 1 MB and beyond, the read
throughput is relatively stable, meaning the I/O bandwidth is saturated. We also note
that S3 performs significantly worse than others for files of size 1 KB, although it
quickly catches up others at 10 KB and beyond. This suggests that S3 would not be
an ideal medium for applications where small files dominate.

Fig. 8.5 Scalable read
throughput on Amazon EC2
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Fig. 8.6 Read throughput of various file sizes

8.5 Put It Altogether: The FusionFS Filesystem

In the previous three sections we discuss three main design criteria for the next-
generation HPC storage system on the cloud. This section will present a real system,
namely FusionFS, that implements all the aforementioned designs as well as its
unique features such as cooperative caching, GPU acceleration, dynamic compres-
sion, lightweight provenance, and parallel serialization.

8.5.1 Metadata Management

FusionFS has different data structures for managing regular files and directories. For
a regular file, the field addr stores the node where this file resides. For a directory,
there is a field filelist to record all the entries under this directory. This filelist field
is particularly useful for providing an in-memory speed for directory read such as
“ls/mnt/fusionfs”. Nevertheless, both regular files and directories share some com-
mon fields, such as timestamps and permissions, which are commonly found in
traditional i-nodes.

The metadata and data on a local node are completely decoupled: a regular file’s
location is independent of its metadata location. This flexibility allows us to apply
different strategies to metadata and data management, respectively. Moreover, the
separation between metadata and data has the potential to plug in alternative com-
ponents to metadata or data management, making the system more modular.

Besides the conventional metadata information for regular files, there is a special
flag in the value indicating if this file is being written. Specifically, any client who
requests to write a file needs to set this flag before opening the file, and will not reset
it until the file is closed. The atomic compare-swap operation supported by DHT
[27, 28] guarantees the file consistency for concurrent writes.

Another challenge on the metadata implementation is on the large-directory per-
formance issues. In particular, when a large number of clients write many small files
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on the same directory concurrently, the value of this directory in the key-value pair
gets incredibly long and responds extremely slowly. The reason is that a client needs
to update the entire old long string with the new one, even though the majority of the
old string is unchanged. To fix that, we implement an atomic append operation that
asynchronously appends the incremental change to the value. This approach is simi-
lar to Google File System [3], where files are immutable and can only be appended.
This gives us excellent concurrent metadata modification in large directories, at the
expense of potentially slower directory metadata read operations.

8.5.2 File Write

Before writing to a file, the process checks if the file is being accessed by another
process. If so, an error number is returned to the caller. Otherwise the process can do
one of the following two things: If the file is originally stored on a remote node, the
file is transferred to the local node in the fopen() procedure, after which the process
writes to the local copy. If the file to be written is right on the local node, or it is a
new file, then the process starts writing the file just like a system call.

The aggregate write throughput is obviously optimal because file writes are asso-
ciated with local I/O throughput and avoids the following two types of cost: (1) the
procedure to determine towhich node the datawill bewritten, normally accomplished
by pinging the metadata nodes or some monitoring services, and (2) transferring the
data to a remote node. It should be clear that FusionFS works at the file level, thus
chunking the file is not an option. Nevertheless, we will support chunk-level data
movement in the next release of FusionFS. The downside of this file write strategy
is the poor control on the load balance of compute node storage. This issue could
be addressed by an asynchronous re-balance procedure running in the background,
or by a load-aware task scheduler that steals tasks from the active nodes to the more
idle ones.

When the process finishes writing to a file that is originally stored in another node,
FusionFS does not send the newly modified file back to its original node. Instead,
the metadata of this file is updated. This saves the cost of transferring the file data
over the network.

8.5.3 File Read

Unlike file write, it is impossible to arbitrarily control where the requested data reside
for file read. The location of the requested data is highly dependent on the I/O pattern.
However, we could determine which node the job is executed on by the distributed
workflow system such as Swift [29]. That is, when a job on node A needs to read
some data on node B, we reschedule the job on node B. The overhead of rescheduling
the job is typically smaller than transferring the data over the network, especially
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for data-intensive applications. In our previous work [30], we detailed this approach,
and justified it with theoretical analysis and experiments on benchmarks and real
applications.

Indeed, remote readings are not always avoidable for some I/O patterns such as
merge sort. In merge sort, the data need to be joined together, and shifting the job
cannot avoid the aggregation. In such cases, we need to transfer the requested data
from the remote node to the requesting node.

8.5.4 Hybrid and Cooperative Caching

When the node-local storage capacity is limited, remote parallel filesystems should
coexist with FusionFS to store large-sized data. In some sense, FusionFS is regarded
as a caching middleware between the main memory and remote parallel filesystems.
We are interested in what placement policies (i.e., caching strategies) are beneficial
to HPC workloads.

Our first attempt is a user-level caching middle where on every compute node,
assuming a memory-class device (for example, SSD) is accessible along with a
conventional spinning hard drive. That is, each compute node is able to manipulate
data on hybrid storage systems. The middleware, named HyCache [14], speeds up
HDFS by up to 28%.

Our second attempt is a cooperative caching mechanism across all the compute
nodes, called HyCache+ [13]. HyCache+ extends HyCache in terms of network
storage support, higher data reliability, and improved scalability. In particular, a
two-stage scheduling mechanism called 2-Layer Scheduling (2LS) is devised to
explore the data locality of cached data on multiple nodes. HyCache+ delivers two
orders of magnitude higher throughput than the remote parallel filesystems, and 2LS
outperforms conventional LRU caching by more than one order of magnitude.

8.5.5 Accesses to Compressed Data

Conventional data compression embedded in filesystems naively applies the com-
pressor to either the entire file or every block of the file. Both methods have limita-
tions on either inefficient data accesses or degraded compression ratio. We introduce
a new concept called virtual chunks, which enable efficient random accesses to the
compressed files while retaining high compression ratio.

The key idea [16] is to append additional references to the compressed files so
that a decompression request could start at an arbitrary position. Current system
prototype [15] assumes the references are equidistant, and experiments show that
virtual chunks improve random accesses by 2× speedup.
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8.5.6 Space-Efficient Data Reliability

The reliability of distributed filesystems is typically achieved through data replica-
tion. That is, a primary copy serves most requests, and there are a number of backup
copies (replicas) that would become the primary copy upon a failure.

One concern with the conventional approach is its space efficiency; for example,
two replicas imply poor 33% space efficiency. On the other hand, erasure coding has
been proposed to improve the space efficiency; unfortunately it is criticized on its
computation overhead. We integrated GPU-accelerated erasure coding to FusionFS
and report the performance in [11]. Results showed that erasure coding could improve
FusionFS performance by up to 1.82×.

8.5.7 Distributed Data Provenance

The traditional approach to track application’s provenance is through a centralized
database. To address this performance bottleneck on large-scale systems, in [31]
we propose a lightweight database on every compute node. This allows every par-
ticipating node to maintain its own data provenance, and results in highly scalable
aggregate I/O throughput. Admittedly, an obvious drawback of this approach is on the
interaction among multiple physical databases: the provenance overhead becomes
unacceptable when there is heavy traffic among peers.

To address the above drawback, we explore the feasibility of tracking data prove-
nance in a completely distributedmanner in [12].We replace the database component
by a graph-like hashtable data structure, and integrate it into the FusionFS filesystem.
With a hybrid granularity of provenance information on both block- and file-level,
FusionFS achieves over 86% system efficiency on 1,024 nodes. A query interface is
also implemented with small performance overhead as low as 5.4% on 1,024 nodes.

8.5.8 Parallel Serialization

We have explored how to leverage modern computing systems’ multi-cores to
improve the serialization and deserialization speed of large objects. [17] Rather
than proposing new serialization algorithms, we tackle the problem from a system’s
perspective. Specifically, we propose to leverage multiple CPU cores to split a large
object into smaller sub-objects, so to be serialized in parallel. While data parallelism
is not a new idea in general, it has never been applied to data serialization and poses
new problems. For instance, serializing multiple chunks of a large object incurs addi-
tional overhead such as metadata maintenance, thread and process synchronization,
resource contention. In addition, the granularity (i.e., the number of sub-objects)
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is a machine-dependent choice: the optimal number of concurrent processes and
threads might not align with the available CPU cores.

In order to overcome these challenges and better understand whether the pro-
posed approach could improve the performance of data serialization of large objects,
we provide detailed analysis on the system design, for example, how to determine
the sub-object’s granularity for optimal performance and how to ensure that the
performance gain is larger than the cost. To demonstrate the effectiveness of our pro-
posed approach, we implemented a system prototype called parallel protocol buffers
(PPB)by extending awidely usedopen-source serializationutility (Google’s Protocol
Buffers [32]). We have evaluated PPB on a variety of test beds: a conventional Linux
server, the Amazon EC2 cloud, and an IBM Blue Gene/P supercomputer. Experi-
mental results confirm that the proposed approach could significantly accelerate the
serialization process. In particular, PPB could accelerate the metadata interchange
3.6× faster for FusionFS.

8.6 Related Work

Conventional storage in HPC systems for scientific applications are mainly remote to
compute resources. Popular systems include GPFS [23], Lustre [24], PVFS [33]. All
these systems are typically deployed on a distinct cluster from compute nodes. The
architecture with separated compute- and storage-resources, which was designed
decades ago, has shown its limitation for modern applications that are becoming
increasingly data-intensive [7].

Cloud computing, on the other hand, is built on the commodity hardware where
local storage is typically available for virtual computing machines. The de facto
node-local file system (Google File System [3], HDFS [1]), however, can be hardly
leveraged by scientific applications out of the box due to the concerns on small
file accesses, POSIX interface, and so forth. Another category of storage in the
cloud is similar to the conventional HPC solution—a remote shared storage such
as Amazon S3. A POSIX-compliant file system built on S3 is also available named
S3FS [4]. Unfortunately its throughput performance usually becomes a bottleneck
of the applications and thus limits its use in practice.

Fortunately, researchers havemade a significant amount of effort [34, 35] to bridge
the gap between two extremes (HPC and cloud computing) of storage paradigms,
particularly in terms of scalability [36]. We observe more and more node-local and
POSIX-compliant storage systems (Ceph [6], FusionFS [7]) being tested on the
cloud.

We will briefly review the unique features provided by FusionFS as follows.
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8.6.1 Filesystem Caching

To the best of our knowledge,HyCache is thefirst user-level POSIX-compliant hybrid
caching for distributed file systems. Some of our previous work [30, 37] proposed
data caching to accelerate applications by modifying the applications and/or their
workflow, rather than at the filesystem level. Other existing work requires modifying
OS kernel, or lacks of a systematic caching mechanism for manipulating files across
multiple storage devices, or does not support the POSIX interface. Any of the these
concerns would limit the system’s applicability to end users. We will give a brief
review of previous studies on hybrid storage systems.

Some recent work reported the performance comparison between SSD and HDD
in more perspectives [38, 39]. Hystor [40] aims to optimize of the hybrid storage of
SSDs and HDDs. However it requires to modify the kernel which might cause some
issues. A more general multitiering scheme was proposed in [41] which helps decide
the needed numbers of SSD/HDDs and manage the data shift between SSDs and
HDDs by adding a “pseudo device driver,” again, in the kernel. iTransformer [42]
considers the SSD as a traditional transient cache in which case data needs to be
written to the spinning hard disk at some point once the data is modified in the SSD.
iBridge [43] leverages SSD to serve request fragments and bridge the performance
gap between serving fragments and serving large sub-requests. HPDA [44] offers a
mechanism to plug SSDs into RAID in order to improve the reliability of the disk
array. SSD was also proposed to be integrated to the RAM level which makes SSD
as the primary holder of virtual memory [45]. NVMalloc [46] provides a library to
explicitly allow users to allocate virtual memory on SSD. Also for extending virtual
memory with Storage Class Memory (SCM), SCMFS [47] concentrates more on
the management of a single SCM device. FAST [48] proposed a caching system to
pre-fetch data in order to quicken the application launch. In [49] SSD is considered
as a read-only buffer and migrate those random-writes to HDD.

A thorough review of classical caching algorithms on large-scale data-intensive
applications is recently reported in [50]. HyCache+ is different from the classical
cooperative caching [51] in that HyCache+ assumes persistent underlying storage
and manipulates data at the file level. As an example of distributed caching for dis-
tributed file systems, Blue Whale Cooperative Caching (BWCC) [52] is a read-only
caching system for cluster file systems. In contrast, HyCache+ is a POSIX-compliant
I/O storage middleware that transparently interacts with the underlying parallel file
systems. Even though the focus of this chapter lies on the 2-layer hierarchy of a local
cache (e.g., SSD) and a remote parallel file system (e.g., GPFS [23]), the approach
presented in HyCache+ is applicable to multitier caching architecture as well. Mul-
tilevel caching gains much research interest, especially in the emerging age of cloud
computing where the hierarchy of (distributed) storage is being redefined with more
layers. For example, Hint-K [53] caching is proposed to keep track of the last K
steps across all the cache levels, which generalizes the conventional LRU-K algo-
rithm concerned only on the single-level information.
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There are extensive studies on leveraging data locality for effective caching. Block
Locality Caching (BLC) [54] captures the backup and always uses the latest local-
ity information to achieve better performance for data deduplication systems. The
File Access corRelation Mining and Evaluation Reference model (FARMER) [55]
optimizes the large-scale file system by correlating access patterns and semantic
attributes. In contrast, HyCache+ achieves data locality with a unique mix of two
principles: (1) write is always local, and (2) read locality depends on the novel 2LS
mechanism which schedules jobs in a deterministic manner followed by a local
heuristic replacement policy.

While HyCache+ presents a pure software solution for distributed cache, some
orthogonal work focuses on improving caching from the hardware perspective.
In [56], a hardware design is proposed with low overhead to support effective shared
caches in multicore processors. For shared last-level caches, COOP [57] is proposed
to only use one bit per cache line for re-reference prediction and optimize both local-
ity and utilization. The REDCAP project [58] aims to logically enlarge the disk cache
using a small portion of main memory, so that the read time could be reduced. For
Solid-StateDrive (SSD), a newalgorithmcalled lazy adaptive replacement cache [59]
is proposed to improve the cache hit and prolong the SSD lifetime.

Power-efficient caching has drawn a lot of research interests. It is worth mention-
ing that HyCache+ aims to better meet the need of high I/O performance for HPC
systems, and power consumption is not the major consideration at this point. Nev-
ertheless, it should be noted that power consumption is indeed one of the toughest
challenges to be overcome in future systems. One of the earliest work [60] tried to
minimize the energy consumption by predicting the access mode and allowing cache
accesses to switch between the prediction and the access modes. Recently, a new
caching algorithm [61] was proposed to save up to 27% energy and reduce the mem-
ory temperature up to 5.45 ◦Cwith negligible performance degradation. EEVFS [62]
provides energy efficiency at the file system level with an energy-aware data layout
and the prediction on disk idleness.

While HyCache+ is architected for large-scale HPC systems, caching has been
extensively studied in different subjects and fields. In cloud storage, Update-batched
Delayed Synchronization (UDS) [63] reduces the synchronization cost by buffering
the frequent and short updates from the client and synchronizing with the underlying
infrastructure in a batch fashion. For continuous data (e.g., online video), a new
algorithm called Least Waiting Probability (LWP) [64] is proposed to optimize the
newly definedmetric called userwaiting rate. In geoinformatics, themethodproposed
in [65] considers both global and local temporal-spatial changes to achieve high cache
hit rate and short response time.

The job scheduler proposed in this work takes a greedy strategy to achieve the
optimal solution for the HyCache+ architecture. A more general, and more dif-
ficult, scheduling problem could be solved in a similar heuristic approach [66,
67]. For an even more general combinatorial optimization problem in a network,
both precise and bound-proved low-degree polynomial approximation algorithms
were reported in [68, 69]. Some incremental approaches [70–72] were proposed to
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efficiently retain the strong connectivity of a network and solve the satisfiability
problem with constraints.

8.6.2 Filesystem Compression

While the storage system could be better designed to handle more data, an orthog-
onal approach is to address the I/O bottleneck by squeezing the data with com-
pression techniques. One example where data compression gets particularly popular
is checkpointing, an extremely expensive I/O operation in HPC systems. In [73], it
showed that data compressionhad thepotential to significantly reduce the checkpoint-
ing file sizes. If multiple applications run concurrently, a data-aware compression
scheme [74] was proposed to improve the overall checkpointing efficiency. Recent
study [75] shows that combining failure detection and proactive checkpointing could
improve 30% efficiency compared to classical periodical checkpointing. Thus data
compression has the potential to be combined with failure detection and proactive
checkpointing to further improve the system efficiency. As another example, data
compression was also used in reducing the MPI trace size, as shown in [76]. A small
MPI trace enables an efficient replay and analysis of the communication patterns in
large-scale machines.

It should be noted that a compression method does not necessarily need to restore
the absolutely original data. In general, compression algorithms could be categorized
into to two groups: lossy algorithms and lossless algorithms. A lossy algorithm
might lose some (normally a small) percentage of accuracy, while a lossless one
has to ensure the 100% accuracy. In scientific computing, studies [77, 78] show
that lossy compression could be acceptable, or even quite effective, under certain
circumstances. In fact, lossy compression is also popular in other fields, e.g. the
most widely compatible lossy audio and video format MPEG-1 [79]. This section
presents virtual chunks mostly by going through a delta-compression example based
on XOR, which is a lossless compression. It does not imply that virtual chunks
cannot be used in a lossy compression. Virtual chunk is not a specific compression
algorithm, but a system mechanism that is applicable to any splittable compression,
no matter if it is lossy or lossless.

Some frameworks are proposed as middleware to allow applications call high-
level I/O libraries for data compression and decompression, e.g., [80–82]. None
of these techniques take consideration of the overhead involved in decompression
by assuming the chunk allocated to each node would be requested as an entirety.
In contrast, virtual chunks provide a mechanism to apply flexible compression and
decompression.

There is much previous work to study the file system support for data compres-
sion. Integrating compression to log-structured file systems was proposed decades
ago [83],which suggested ahardware compression chip to accelerate the compressing
and decompressing. Later, XDFS [84] described the systematic design and imple-
mentation for supporting data compression in file systems with BerkeleyDB [85].
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MRAMFS [86] was a prototype file system to support data compression to leverage
the limited space of nonvolatile RAM. In contrast, virtual trunks represent a general
technique applicable to existing algorithms and systems.

Data deduplication is a general inter-chunk compression technique that only stores
a single copy of the duplicate chunks (or blocks). For example, LBFS [87] was a
networked file system that exploited the similarities between files (or versions of
files) so that chunks of files could be retrieved in the client’s cache rather than
transferring from the server. CZIP [88] was a compression scheme on content-based
naming that eliminated redundant chunks and compressed the remaining (i.e., unique)
chunks by applying existing compression algorithms. Recently, the metadata for the
deduplication (i.e., file recipe) was also slated for compression to further save the
storage space [89].While deduplication focuses on inter-chunk compressing, virtual
chunk focuses on the I/O improvement within the chunk.

Index has been introduced to data compression to improve the compressing and
query speed, e.g., [90, 91]. The advantage of indexing is highly dependent on the
chunk size: large chunks are preferred to achieve high compression ratios in order
to amortize the indexing overhead. Large chunks, however, would cause potential
decompression overhead as explained earlier in this chapter. Virtual chunk over-
comes the large-chunk issue by logically splitting the large chunks with fine-grained
partitions while still keeping the physical coherence.

8.6.3 GPU Acceleration

Recent GPU technology has drawn much research interest of applying these many-
cores for data parallelism. For example, GPUs are proposed to parallelize the XML
processing [92]. In high-performance computing, a GPU-aware MPI was proposed
to enable the inter-GPU communication without changing the original MPI inter-
face [93]. Nevertheless, GPUs do not necessarily provide superior performance;
GPUs might suffer from factors such as small shared memory and weak single-
thread performance as shown in [94]. Another potential drawback of GPUs lies in
the dynamic instrumentation that introduces runtime overhead. Yet, recent study [95]
shows that the overhead could be alleviated by information flow analysis and sym-
bolic execution. In this paper, we leverage GPUs in key-value stores—a new domain
for many-cores.

8.6.4 Filesystem Provenance

As distributed systems become more ubiquitous and complex, there is a growing
emphasis on the need for tracking provenance metadata along with file system meta-
data. A thorough review is presented in [96]. Many Grid systems like Chimera [97]
and the Provenance Aware Service Oriented Architecture (PASOA) [98] provide
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provenance tracking mechanisms for various applications. However these systems
are very domain-specific and do not capture provenance at the filesystem level. The
Distributed Provenance Aware Storage System (DPASS) tracks the provenance of
files in a distributed file system by intercepting filesystem operations and sending
this information via a netlink socket to user-level daemon that collects provenance in
a database server [99]. The provenance is however, collected in a centralized fashion,
which is a poor design choice for distributed file systems meant for extreme scales.
Similarly in efficient retrieval of files, provenance is collected centrally [100].

PASS describes global naming, indexing, and querying in the context of sensor
data [101], which is a challenging problem also from system’s perspective [36].
PA-NFS [102] enhances NFS to record provenance in local area networks but does
not consider distributed naming explicitly. SPADE [103] addresses the issue using
storage identifiers for provenance vertices that are unique to a host and requiring
distributed provenance queries to disambiguate vertices by referring to them by the
host on which the vertex was generated as well as the identifier local to that host.

Several storage systems have been considered for storing provenance. ExS-
PAN [104] extends traditional relational models for storing and querying provenance
metadata. SPADE supports both graph and relational database storage and querying.
PASS has explored the use of clouds [101]. Provbase uses Hbase to store and query
scientificworkflow provenance [105]. Further compressing provenance [104], index-
ing [106] and optimization techniques [107] have also been considered. However,
none of these systems have been tested for exascale architectures. To give adequate
merit to the previous designs, we have integrated FusionFS with SPADE as well as
considered FusionFS’s internal storage system for storing audited provenance.

8.6.5 Data Serialization

Many serialization frameworks are developed to support transporting data over dis-
tributed systems. XML [108] represents a set of rules to encoding documents or
text-based files. Another format, namely JSON [109], is treated as a lightweight
alternative to XML in web services and mobile devices as well. While XML and
JSON are the most widely used data serialization format for text-based files, binary
format is also gaining its popularity. A binary version of JSON is available called
BSON [110]. Two other famous binary data serialization frameworks are Google’s
Protocol Buffers [32] and Apache Thrift [111]. Both frameworks are designed to
support lightweight and fast data serialization and deserialization, which could sub-
stantially improve the data communication in distributed systems. The key differ-
ence between Thrift and Protocol Buffers is that the former has the built-in support
for RPC.

Many other serialization utilities are available at the present. Avro [112] is used by
Hadoop for serialization. Internally, it uses JSON [109] to represent data types and
protocols and improves the performance of the Java-based framework. Etch [113]
supports more flexible data models (for example, trees), but it is slower and generates
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larger files. BERT [114] supports data format compatible with Erlang’s binary serial-
ization format. Message Pack [115] allows both binary data and non UTF-8 encoded
strings. Hessian [116] is a binary web service protocol that is 2× faster than the Java
serialization with significantly smaller compressed data size. ICE [117] is a middle-
ware platform that supports object-oriented RPC and data exchange. CBOR [118] is
designed to support extremely small message size.

None of the aforementioned systems, however, support data parallelism. Thus
they suffer the low efficiency problem when multiple CPU cores are available par-
ticularly when the data is large in size. PPB, on the other hand, takes advantage of
the idle cores and leverage them for parallelizing the compute-intensive process of
data serialization

Many frameworks are recently developed for parallel data processing. MapRe-
duce [119] is a programming paradigm and framework that allows users to process
terabytes of data over massive-scale architecture in a matter of seconds. Apache
Hadoop [120] is one of the most popular open-source implementations of MapRe-
duce framework. Apache Spark [121] is an execution engine which supports more
types of workload than Hadoop and MapReduce.

Several parallel programming models and paradigms have been existing for
decades.MessagePassing Interface (MPI) a standard formessages exchange between
processes. It greatly reduces the burden from developers who used to consider
detailed protocols in multiprocessing programs and tries to optimize the perfor-
mance in many scenarios. The major implementation includes MPICH [122] and
Open MPI [123]. OpenMP [124] is a set of compiler directives and runtime library
routines that enable the parallelization of code’s execution over shared memory mul-
tiprocessor computers. It supports different platforms and processor architectures,
programming languages, and operating systems. Posix Threads (Pthread) is defined
as a set of C programming types and function calls. It provides standardized pro-
gramming interface to create and manipulate threads, which allow developers to take
full advantage of the capabilities of threads. Microsoft’s Parallel Patterns Library
(PPL) [125] gives an imperative programming model that introduces parallelism to
applications and improves scalability.

Numerous efforts have been devoted to utilizing or improving data parallelism in
cluster and cloud computing environment. Jeon et al. [126, 127] proposed adaptive
parallelization and prediction approaches for search engine query. Lee et al. [128]
presented how to reduce data migration cost and improve I/O performance by incor-
porating parallel data compression on the client side. Klasky et al. [129] proposed
a parallel data-streaming approach with multi-threads to migrate terabytes of scien-
tific data across distributed supercomputer centers. Some work [130–133] proposed
data-parallel architectures and systems for large-scale distributed computing. In [134,
135], authors exploited the data parallelism in a program by dynamically executing
sets of serialization codes concurrently.

Unfortunately, little study exists on data parallelism for data serialization, mainly
because large messages are usually not the dominating cost by convention. PPB [17]
for the first time identifies that large message is a challenging problem from our
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observations on real-world applications at Google. We hope our PPB experience
could provide the community insights for designing the next-generation data serial-
ization tools.

8.7 Conclusion

This chapter envisions the characteristics of future cloud storage systems for scien-
tific applications that used to be running on HPC systems. Based on the literature and
our own FusionFS experience, we believe the key designs of future storage system
comprise the fusion of compute and storage resources as well as completely distrib-
uted data manipulation (both metadata and data), namely (1) distributed metadata
accesses, (2) optimized data write, and (3) localized file read.

To make matters more concrete, we then detail the design and implementation of
FusionFS, whose uniqueness lies in its highly scalable metadata and data throughput.
We also discuss its integral features such as cooperative caching, efficient accesses
to compressed data, space-efficient data reliability, distributed data provenance, and
parallel data serialization. All the aforementioned features enable FusionFS to nicely
bridge the storage gap between scientific big data applications and cloud computing.
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