Chapter 17
Parallelization of Sparse Matrix Kernels
for Big Data Applications

Oguz Selvitopi, Kadir Akbudak and Cevdet Aykanat

17.1 Introduction

There is a growing interest in scientific computing community for big data analyt-
ics. Recent approaches aim to benefit the big data analytics with the methods and
techniques that are very common in the mature field of optimization for high perfor-
mance computing (HPC) [20]. These efforts rely on the observation that graphs often
constitute the spine of the data structures used in analyzing big data (as data is almost
always sparse), and the adjacency list representation of a graph actually corresponds
to a sparse matrix. Hence, analysis operations on big data can be expressed in terms of
basic sparse matrix kernels. For example, the popular graph mining library PEGA-
SUS (A Peta-Scale Graph Mining System) [17] uses an optimized sparse matrix
vector multiplication kernel, called GIM-V, as the basic operation in several graph
mining algorithms such as PageRank, spectral clustering, finding connected compo-
nents, etc. This work focuses on efficient parallelization of two other important sparse
kernels on distributed systems: sparse matrix—matrix multiplication (SpGEMM) of
the form C = AB and sparse matrix—dense matrix multiplication (SpMM) of the
form Y = AX.

SpGEMM kernel finds its application in a wide range of domains such as
finding all-pair shortest paths (APSP) [11], finite element simulations based on
domain decomposition (e.g., finite element tearing and interconnect (FETT) [13]),
molecular dynamics (e.g., CP2K [10]), computational fluid dynamics [19], climate

O. Selvitopi - K. Akbudak - C. Aykanat (&)

Department of Computer Engineering, Bilkent University, 06800, Cankaya,
Ankara, Turkey

e-mail: aykanat@cs.bilkent.edu.tr

URL: http://www.cs.bilkent.edu.tr

O. Selvitopi
e-mail: reha@cs.bilkent.edu.tr

K. Akbudak
e-mail: kadir@cs.bilkent.edu.tr

© Springer International Publishing AG 2016 367
F. Pop et al. (eds.), Resource Management for Big Data Platforms,
Computer Communications and Networks, DOI 10.1007/978-3-319-44881-7_17

368 O. Selvitopi et al.

simulation [25], and interior point methods [6]. These applications necessitate
efficient large-scale parallelization in order to obtain shorter running times for
processing today’s rapidly growing “Big Data”. There exist several software pack-
ages that provide SpGEMM computation for distributed-memory architectures such
as Trilinos [15] and Combinatorial BLAS [7]. Trilinos uses one-dimensional (1D)
partitioning of input matrices. Matrices A and C are stationary, whereas matrix B is
communicated in K stages for a parallel system with K processors. This algorithm
corresponds to replicating B matrix among K processors in K stages. Combinatorial
BLAS uses the parallel matrix multiplication algorithm (SUMMA [30]) based on
dense matrices. The motivation of Combinatorial BLAS is large-scale graph analytic
for “Big Data”. It also contains scalable implementations of kernel operations such
as sparse matrix—vector multiplication (SpMV) and subgraph extraction. Recently,
a matrix-partitioning method based on two-constraint hypergraph partitioning is
proposed in [3] for reducing total message volume during outer-product—parallel
SpGEMM. [3] is known to be the first work that proposes to preprocess the sparsity
patterns of the matrices in order to reduce parallelization overheads. In [3], it is also
proposed that the input and output matrices can be simultaneously partitioned.

SpMM is also an important kernel and many graph analysis techniques such as
centrality measures use it as a building block. Apart from its popularity in block
methods in linear algebra [14, 22, 23], it is also a very basic kernel in graph analysis
as several works pointed out its relation to graph algorithms [2, 8§, 17, 24, 28]. In
these methods, the dimensions of the dense matrices X and Y are usually very small
compared to the dimensions of the sparse matrix A. The importance of this kernel
is also acknowledged by vendors Intel MKL [1] and Nvidia cuSPARSE [21], being
realized respectively for multi-core/many-core and GPU architectures.

Our contributions in this work are centered around partitioning models to effi-
ciently parallelize these two kernels on distributed systems. In order to do so we aim
at reducing communication overheads. The proposed model for the SpGEMM ker-
nel aims to reduce total message volume while the proposed model for the SpMM
kernel consists of two phases and it strives for reducing both total and maximum
message volume. The experiments on up to 1024 processes show that scalability can
be drastically improved using the proposed models.

The rest of the paper is organized as follows: Section 17.2 describes the SpGEMM
kernel and the proposed model for parallelization. Section 17.3 describes the SpMM
kernel and the two-phase methodology to achieve parallelization. Section 17.4
presents our experiments separately for these two kernels and Sect. 17.5 concludes.

17.2 Parallelization of the SpGEMM Kernel

We investigate efficient parallelization of the SpGEMM operation on distributed-
memory architectures. The communication overhead and imbalance on computa-
tional loads of processors become significant bottleneck in large-scale parallelization.
Thus, we propose an intelligent matrix-partitioning method that achieve reducing

17 Parallelization of Sparse Matrix Kernels for Big Data Applications 369

total message volume while maintaining balance on computational loads of proces-
sors in outer-product-based parallelization of the SpGEMM operation.

In Sect. 17.2.1, the outer-product-based parallelization of the SpGEMM oper-
ation is presented. We present the hypergraph model for this outer-product-based
parallelization in Sect. 17.2.2. Section 17.2.3 describes how to decode a hypergraph
partition as a matrix partition.

17.2.1 Outer-Product—Parallel SpGEMM Algorithm

We consider the SpGEMM computation of the form C = AB. Here, A and B denote
the input matrices, and C denotes the output matrix, where all of these matrices are
sparse.

Outer-product—parallel SpPGEMM operation uses 1D columnwise and 1D rowwise
partitioning of the input A and B matrices, respectively, as follows:

B,
R R B,
A=AP=[AAy---Ag] and B=PB=| _ |. 17.1)

By
In Eq. (17.1), K denotes the number of parts, which is in turn equal to the number
of processors of the parallel system, P denotes the permutation matrix obtained from
partitioning. The same permutation matrix is used for reordering columns of matrix A
and rows of matrix B so that outer products are performed without any computation.
According to the input matrix partitioning given in Eq. (17.1), the SpGEMM

computation is performed in two steps. The first step consists of local outer-product
computations performed as follows by each processor P:

C*" = AyBy where k=1,2,....K.

The second step consists of summing low-rank C* matrices, which incur communi-
cation. The following operation is performed by all processors as follows:

C=C'"+C?>+..-+C¥ where k=1,2,...,K.

17.2.2 Hypergraph Model

We propose a hypergraph partitioning (HP) based method to reduce the total mes-
sage volume that occur in the second step of the outer-product—parallel SpGEMM
algorithm (Sect. 17.2.1) while maintaining balance on computation loads of outer

370 O. Selvitopi et al.

products performed by processors in the first step of the parallel algorithm. The
objective in this partitioning is to cluster columns of matrix A and rows of matrix
B that contribute to the same nonzeros of matrix C into the same parts as much as
possible. In other words, the outer-product computations that contribute to the same
C-matrix nonzeros are likely to be performed by the same processor without any
communication.

We model an SpGEMM instance C= AB as a hypergraph 7 (C, A, B) =
(7, A).V contains a vertex v, for each outer product of xth column of A with xth
row of B. v, represents the task of computing this outer product without any com-
munication in the first step of the parallel Sp)GEMM algorithm given in Sect. 17.2.1.
/" contains a net (hyperedge) n; ; for each nonzero ¢; ; of C. Net n; ; connects the
vertices representing the outer products producing scalar partial results for ¢; ;. That
is,

Pins(n; ;) = {vy : x € cols(aj) A x € rows(b, ;)} U {v; ;}.

Here, cols(a;) denotes the column indices of nonzeros in row i (a;), whereas
rows (b, ;) denotes the row indices of nonzeros in column j (b, ;). Hence, n, ;
represents the summation operation of scalar partial results to obtain final result of
¢;,j in the second step of the SpPGEMM algorithm. Each vertex v, € 7 is associated
with a weight w(v,) as follows:

w(vy) = [Nets(vy)l,

where Nets(v,) denotes the set of nets that connect vertex v,. This vertex weight
definition encodes the amount of computation performed for the outer products. Each
netn; ; € /4 is associated with a unit weight, i.e.,

W(n,‘,j) =1.

This net weight definition encodes the multi-way relation between the outer products
regarding a single nonzero ¢; ;.

17.2.3 Decoding Hypergraph Partitioning as Matrix
Partitioning

A vertex partition I1(?") = {#1, %5, ..., Pk} can be used to obtain a conformal
columnwise and rowwise partition of A and B. Thatis, v, € ¥; is decoded as assign-
ing the outer product of xth column of A with xth row of B to processor Py. If all
the pins of n; ; reside in the same part % (i.e., the net is uncut), the summation
operation regarding c; ; is performed locally by Py. Otherwise, it means that the net
is cut and this summation operation is assigned to one of those processors that yield

17 Parallelization of Sparse Matrix Kernels for Big Data Applications 371

a scalar partial result for ¢; ;. Hence, IT induces a 1D partition of A and B, and a 2D
nonzero-based partition of C.

In the proposed HP-based method, the partitioning constraint used while obtaining
IT corresponds to maintaining balance on computational loads of processors. Each
cut net incurs communication of scalar partial results. The amount of communication
due to a nonzero ¢; ; is equal to one less of the number of parts in which n; ; has
pins. This in turn corresponds to one less of the number of processors that send scalar
partial results to the processor responsible for ¢; ;. Thus the partitioning objective
of minimizing the cutsize according to “connectivity-1” metric [9] corresponds to
minimizing the total message volume.

17.3 Parallelization of the SpMM Kernel

We consider the SpMM operation of the form ¥ = AX, where A is an n X n sparse
matrix and X and Y are n x s dense matrices. Whatever the context, SpMM often
reveals itself as an expensive operation and hence parallelization of this kernel must
be handled with care in order to squeeze the best performance out of it. In this
regard, communication metrics centered around volume play a crucial role. Assuming
Y = AX s performed in a repeated/iterative manner, where the elements of X change
in each iteration and the elements of A remain the same, the partitions on X and Y
matrices should be conformable in order to avoid unnecessary communication during
the parallel operations.

In a system with K processors, we consider the problem of obtaining a rowwise
partition of A, where processor Py stores the submatrix blocks Az, for 1 < ¢ < K,
where size of Ay is n; x ny These submatrix blocks form the row stripe R, and
Py is held responsible for computing Y; = R X. Since Py only stores Xy, it needs
to receive the corresponding elements of X from other processors to compute Y.
This necessitates point-to-point communication between processors. This scheme is
called one-dimensional row-parallel algorithm and it consists of the following steps
for any processor P, with 1 <k < K:

1. For each off-diagonal block Ay, for 1 < £ < K, with at least one nonzero in it,
Py sends the respective elements of X; to processor Py. If a;; is a nonzero in this
off-diagonal block, then jth row of X need to be communicated.

2. Perform computations on local submatrix Ay, using X. Local computations do
not necessitate communication. Yy is first set with the result of this computation.

3. For each off-diagonal block Ay, for I < £ < K, with atleast one nonzero in it, Py
receives the respective elements of X from Py in order to perform computations
on the respective nonlocal submatrix block. Y; is updated with the results of
nonlocal computations and its final value is computed.

372 O. Selvitopi et al.

Then, with some possible dense matrix operations that involve Y, new X is computed
and used in the upcoming iteration. A local submatrix block is simply the diagonal
block owned by the respective processor (A,), whereas nonlocal submatrix blocks
are the off-diagonal ones (A, with k % £). As hinted above, computations involv-
ing local submatrix blocks can be carried out without communication, whereas the
computations involving nonlocal ones may necessitate communication if they are
nonempty. In the following sections, we describe how to distribute these three matri-
ces to processors via a hypergraph partitioning model that minimizes total commu-
nication volume and another model that reduces maximum volume applied on top
of the former, hence able to address two important communication cost metrics that
contain message volume.

In order to parallelize the SpMM kernel, we utilize the concept of an atomic task,
which signifies the smallest computational granularity that cannot further be divided,
hence, an atomic task shall be executed by a single processor. In SpMM, the atomic
task is defined to be the multiplication of row a; , with whole X. The result of this
multiplication are the elements of row y; .. In the hypergraph model, the atomic tasks
are represented by vertices.

17.3.1 Hypergraph Model

In the hypergraph model 57 = (¥, /"), the vertices represent the atomic tasks of
computing the multiplication of rows of A with X, i.e., v; € V represents a; . X.
Note that v; also represents the row a; , as well as the computations associated with
this row. The computational load of this task is the number of multiply-and-add
operations. The weight of v; is assigned the computational load associated with the
corresponding multiplication, i.e.,

wvi) = nnz(a;,) - nnz(X).

The dependencies among the computational tasks are captured by the nets. For each
row of X, there exists a net n; in the hypergraph and it captures the dependency of
the computational tasks to the row j of X. In other words, n; connects the vertices
corresponding to the tasks that need row j of X in their computations. Hence, the
vertices connected by n; are given by

Pins(nj) = {v; : a;; #0}.

n; effectively represents column j of A as well. Note that | Pins(n;)| = nnz(as),
where nnz(-) denotes the number of nonzeros in a row or column of matrix. Since the
number of elements in a row of X is s, n; is associated with a cost ¢(n ;) proportional
to s. In other words,

c(nj) =s.

17 Parallelization of Sparse Matrix Kernels for Big Data Applications 373

This quantity signifies the number of elements required by the computational tasks
corresponding to the vertices in Pins(n;). As a result, there are m vertices, n nets
and nnz(A) pins in 7. This model is a simple extension of the model used for sparse
matrix vector multiplication [9].

17.3.2 Partitioning and Decoding

The formed hypergraph ¢ = (7, .4") is then partitioned into K vertex parts to
obtain IT = {¥1, ..., Pk }. Without loss of generality, the set of rows corresponding
to the vertices in % and the respective computations involving these rows are assigned
to processor P;. A net n; in the cut necessitates communication of the elements of
row j of X and this communication operation involves the processors corresponding
to the parts in the connectivity set of this net. Specifically, if ¥, € A(n;) is the
owner of row j of X, then it needs to send this row to the remaining processors,
i.e., to each processor Py such that ¥, € A(n;) — {#}, amounting to a volume of
s+ (|A(n;)| — 1), s being the number of elements in row j. An internal net does not
necessitate communication as all the rows corresponding to the vertices connected by
this net belong to the same processor. The objective of minimizing cutsize according
to the connectivity metric [9] in the partitioning hence encodes the total volume of
communication. The constraint of maintaining balance on the vertex part weights
corresponds to maintaining balance on the computational loads of the processors.

Aforementioned formulation strives for reducing total communication volume.
However, the high volume overhead of SpMM kernel makes another related volume-
related metric maximum communication volume also important, which we
address next.

17.3.3 A Volume-Balancing Extension for SpMM

The formulation used to balance the volume loads of processors is based on a hyper-
graph model. This model was used to address multiple communication cost metrics
regarding one- and two-dimensional sparse matrix vector multiplication success-
fully [26, 27, 29]. Although the main objective of this model is to reduce the latency
overhead by aiming to minimize total message count, another important aspect of it
is to maintain a balance on communication volume. In our case, i.e., for SpMM, the
latter proves to be more crucial. Note that maintaining a balance on volume loads of
processors corresponds to providing an upper bound on the same metric. We extend
this model for SpMM. For this model, it is assumed a partition information is inher-
ent, such as the one obtained in the previous section—which is also utilized for this
model.

Using the partitioning information IT = {1, ..., ¥} obtainedon 7 = (¥, .¥"),
we form another hypergraph 7€ = (¥, 4) to summarize the communication

374 O. Selvitopi et al.

operations due to this partitioning. Recall that a net n; necessitates communication
if it is cut in I7. This communication operation is represented by a vertex in €. In
other words, there exists a vertex ij € ¥ € for each cut net n j € N

VE =05 1Ay > 1)

There exists a net n< € #°C for each processor corresponding to the parts in /7.
Hence, there are K nets in #C. VJC is connected to each net corresponding to the

processor that participate in the communication operation represented by vf. Hence,
Nets(v$) = {n : % € A(ny)}.

The vertices connected by n,f correspond to the communication operations that P;
participates in
Pins(n,f) = {vjC : Pins(n;) NV # 0} U v?.

Net ;. connects another vertex v$, which is fixed to %, in partitioning and later
used to decode the assignment of communication operations to processors. Here, the
important point is the assignment of vertex weights in 7€ as they signify the volume
incurred in communication operations. The volume incurred in communicating a row
Jj of X is already described in the previous section and here the vertex weight is set
accordingly to this quantity

w(v) =s- (|A@m)| — 1.

The nets are assigned unit costs
c(n§) =1.

Now consider a partition 7 C={y¥cC,. .., ”I/KC } of €. This vertex partition
induces a distribution of communication operations, where the responsibility of the
communication operations represented by the vertices in ”f/kc are assigned to proces-
sor P, without loss of generality. A net njc in the cut necessitates messages between
the respective processors. In other words, if the fixed vertex v? connected by this
net is in part %,C, this implies P, will receive a message from each of the processors
corresponding to the vertex parts in A(njc) - {”//kc}. Hence, the number of messages
incurred by this net is equal to |A(njc) - {“//kc}|, which can be at most K — 1 as there
are K vertex parts. In the partitioning, the objective of minimizing cutsize according
to the connectivity metric [9] hence encodes the total message count. As a part weight
indicates the amount of volume that the respective processor is responsible for, the
constraint of maintaining balance corresponds to maintaining balance on the volume
loads of the processors, and thus bounding the maximum volume.

17 Parallelization of Sparse Matrix Kernels for Big Data Applications 375

With the partitioning of .77, we address total volume and with the partitioning
of €, we address total message count and maximum volume. By making use
of respective models, we are able to address communication cost metrics that are
important for SpMM.

17.4 Experiments

17.4.1 SpGEMM

17.4.1.1 Dataset

We include sparse matrices from Stanford Network Analysis Project (SNAP) [18] and
the Laboratory for Web Algorithmics (LAW) [4, 5]. These matrices are downloaded
from the University of Florida Sparse Matrix Collection [12] and their properties
are given in Table 17.1. These matrices commonly represent the adjacency matrices
of road networks or web-related graphs such as relations between products, etc.
On such graphs, APSP algorithms can be used to find distances among the entities
according to a predetermined metric. In this work, we only consider squaring the
original adjacency matrix once, as a representative of the APSP algorithm [11].

Table 17.1 Properties of input and output matrices

Matrix Input matrices Output
matrix
Number of nnz in row | nnz in column
rows columns | nonzeros | avg| max | avg| max nnz
Road networks
belgium_osm 1,441,295 | 1,441,295 3,099,940 | 2 10 2 10 5,323,073
luxembourg_osm| 114,599 | 114,599 | 239,332 | 2 2 393,261
netherlands_osm | 2,216,688 | 2,216,688 | 4,882,476 | 2 2 8,755,758
roadNet-CA 1,971,281 | 1,971,281 | 5,533,214 | 3 12 3 12 12,908,450
roadNet-PA 1,090,920 | 1,090,920 | 3,083,796 | 3 9 3 9 7,238,920
roadNet-TX 1,393,383 | 1,393,383 | 3,843,320| 3 12 3 12 8,903,897
Web-related graphs
144 144,649 | 144,649 | 2,148,786| 15 | 26 15 | 26 10,416,087
amazon-2008 735,323 | 735,323 | 5,158,388 | 7 10 7 1,076 25,366,745
amazon0505 410,236 | 410,236 | 3,356,824 | 8 10 8 2,760 16,148,723
amazon0601 403,394 | 403,394 | 3,387,388 8 10 8 2,751 16,258,436

nnz: number of nonzeros

376 O. Selvitopi et al.
17.4.1.2 Experimental Setup

In order to verify the validity of the proposed parallelization method, an SpGEMM
code is implemented and run on a BlueGene/Q system, named Juqueen. For partition-
ing the hypergraphs, PaToH [9] is used with default parameters except the allowed
imbalance ratio, which is set to be equal to 10 %.

As abaseline algorithm, we implemented a binpacking-based method which only
considers computational load balancing. This method adapts the best-fit-decreasing
heuristic used in K -feasible binpacking problem [16]. The outer-product tasks are
assigned to one of K bins in decreasing order of the number of scalar multiplications
incurred by the outer products. The best-fit criterion is assigning the task to the
minimally loaded bin, whereas the capacity constraint is not used in this method.

17.4.1.3 Results

The performances of the proposed HP-based method and the baseline binpacking-
based method are compared in terms of speedups in Figs. 17.1 and 17.2. As seen
in these figures, in all cases, the proposed HP-based method performs substantially
better than the baseline method. Thus, this improvement verifies the benefit of reduc-
ing total message volume. As seen in the figures, the parallel efficiency of HP-based
method remains above 20 % in almost all instances.

1742 SpMM

17.4.2.1 Dataset

We test 10 matrices for SpMM. The properties of these matrices are given in
Table 17.2. These sparse matrices are also from Stanford Network Analysis Project
(SNAP) [18] and the Laboratory for Web Algorithmics (LAW) [4, 5], and they are all
downloaded from the University of Florida Sparse Matrix Collection [12]. A com-
mon operation that can be performed on these matrices for any kind of graph analysis
is the execution of the breadth-first search from multiple sources. This corresponds
to multiple SpMM iterations.

17.4.2.2 Experimental Setup

We tested our model for SpMM on SuperMUC supercomputer, which runs IBM
System x iDataPlex servers. A node on this system consists of two Intel Xeon Sandy
Bridge-EP processors clocked at 2.7 GHz and has 32 GB of memory. The communi-
cation interconnect is based on Infiniband FDR10.

17 Parallelization of Sparse Matrix Kernels for Big Data Applications 377

GO HP V-V Binpacking‘

o

600 200
150
400
100
200 50
i L] of VTT—F—p—V
o F— v V—
128 256 512 1024 128 256 512 1024
800
-
600
600 s
400
400
300
200 200
100
o W e NV 0 — V\V
128 256 512 1024 128 256 512 1024
600 600
500 500
400 400
300 300
200 200
100 100
- v ey of V— v V———v
128 256 512 1024 128 256 512 1024

Fig. 17.1 Speedup curves comparing performances of the proposed and baseline SPGEMM algo-
rithms on road networks

We test two models in our experiments. This first is the plain hypergraph partition-
ing for SpMM described in Sects. 17.3.1 and 17.3.2. This model aims at only reducing
communication volume and is abbreviated with HP. The second model we test is the
one that extends the HP as described in Sect. 17.3.3. This model aims at reduc-
ing communication volume and balancing communication volume in two separate
phases and is abbreviated with HPVB. The dimension of the dense matrices is used as

378

400

300

200

100

400

300

200

100

O. Selvitopi et al.

GO HPF ¥ B'mpacking‘

200

150

100

50 M‘/Iﬂf-‘g\v
v”g’/‘K_V o
128 256 512 1024 128 256 512 1024
2

400

300

200

100
128 256 512 1024 128 256 512 1024

Fig. 17.2 Speedup curves comparing performances of the proposed and baseline Sp)GEMM algo-
rithms on web link matrices

Table 17.2 Properties of matrices tested for SpMM

Name Kind #rows/cols #nonzeros

amazon_2008 Amazon book 735,323 5,158,388
similarity graph

amazon(0312 Amazon product 400,727 3,200,440
co-purchasing network

eu-2005 crawl of the .eu 862,664 19,235,140
domain

roadNet-CA road network 1,971,281 5,533,214

roadNet-PA road network 1,090,920 3,083,796

roadNet-TX road network 1,393,383 3,843,320

333SP car mesh 3,712,815 22,217,266

asia_osm road network 11,950,757 25,423,206

coPapersCiteseer citation network 434,102 32,073,440

coPapersDBLP citation network 540,486 30,491,458

17 Parallelization of Sparse Matrix Kernels for Big Data Applications 379

s = 5. SpMM kernel is repeated in a loop for certain number of times and a warming
up phase is included for healthier timing. We test for K € {64, 128, 256, 512, 1024}
processors.

17.4.2.3 Partitioning and Runtime Results

We present the partitioning and runtime results in Table 17.3 for K = 512 and K =
1024. There are two communication cost metrics we consider and display in the table:
total volume, indicated via “TV” column and volume load imbalance as percent,
indicated via “VI (%)” column. Communication volume is in terms of communicated
words and volume imbalance is on the send volumes of processors. The time of a
single SpMM obtained by the two compared methods is given under the “runtime”
column and it is in terms of microseconds. The lower runtimes for a specific test case
are indicated via bold text.

As seen in the table, HPVB obtains significant improvements over HP in com-
munication volume load imbalance. At K = 512 processors, it achieves up to 8 x
improvement and at K = 1024 processors it achieves up to 9x improvement. It

Table 17.3 Partitioning and runtime results for SpMM for K = 512 and K = 1024

K Matrix TV VI (%) Runtime (us)
HP HPVB HP HPVB HP HPVB
512 | amazon-2008 563,327 | 800,380 |209 61 1855 1195
amazon(0312 324,433 | 447,455 | 155 56 1340 948
eu-2005 320,741 428,054 438 57 1205 751
roadNet-CA 33,764 51,524 120 37 275 266
roadNet-PA 29,944 45,996 83 34 124 120
roadNet-TX 28,901 44,124 120 37 181 177
333SP 132,105 |207,317 |95 31 713 729
asia_osm 10,149 15,517 451 58 1213 1236
coPapersCiteseer | 832,267 1,078,184 | 159 50 2489 1724
coPapersDBLP | 1,863,018 | 2,240,814 | 128 48 3860 3082
1024 | amazon-2008 649,869 908,269 |197 57 1977 1049
amazon(0312 383,068 | 518,843 | 168 181 1310 1132
eu-2005 485,614 |623,844 |479 92 1325 1174
roadNet-CA 52,915 81,568 111 36 125 128
roadNet-PA 44,564 69,284 121 34 71 65
roadNet-TX 44,288 67,460 134 40 158 160
333SP 208,154 324,505 |73 31 395 374
asia_osm 17,971 27,222 523 58 530 504
coPapersCiteseer | 1,021,506 | 1,277,537 | 213 55 1797 959
coPapersDBLP | 2,112,593 | 2,522,300 | 233 52 3737 1959

380 O. Selvitopi et al.

amazon-2008 amazon0312
3500 1800
1700
__ 3000 — 1600
[} (9]
3 2 1500
=) =}
= 2500 ~ 1400
£ £
£ 2000 £ 1300
5 S 1200
1500 © 1100
1000
1000 900
64 128 256 512 1024 64 128 256 512 1024
Number of processors Number of processors
coPapersCiteseer coPapersDBLP
10000 14000
12000
__ 8000 —
9 $ 10000
(%] (%]
3 6000 2 8000
£ £
S 4000 5 6000
5 5
E 2 4000
2000
2000
0 0
64 128 256 512 1024 64 128 256 512 1024
Number of processors Number of processors

Fig. 17.3 Runtimes for SpMM

increases total volume compared to HP, causing an increase up to 57 and 56 % at
512 and 1024 processors, respectively. However, the reduction in maximum volume
proves to be more vital for performance as HPVB almost always performs superior
to HP as seen from the runtimes. Out of 20 instances at K = 512 and K = 1024
processors, HPVB obtains lower runtimes in 16 of them.

We present the obtained speedups in four test matrices in Fig. 17.3. As seen
from the figure HPVB scales better than HP as its performance usually gets better
compared to HP with increasing number of processors.

17.5 Conclusion

We described efficient parallelization of two important sparse matrix kernels for dis-
tributed systems that frequently occur in big data applications: sparse matrix—matrix
multiplication and sparse matrix—dense matrix multiplication. For these two kernels,
we proposed partitioning models in order to reduce the communication overheads and
hence improve scalability. Our experiments show that efficient parallel performance

17

Parallelization of Sparse Matrix Kernels for Big Data Applications 381

for big data analysis on distributed systems requires careful data partitioning models
and methods that are capable of exploiting certain communication cost metrics.

Acknowledgments This work was supported by The Scientific and Technological Research Coun-
cil of Turkey (TUBITAK) under Grant EEEAG-115E212. This article is also based upon work from
COST Action IC1406 (cHiPSet).

References

10.
11.

12.

13.

14.

Intel math kernel library (2015). https://software.intel.com/en-us/intel-mkl

. Agarwal, V., Petrini, F., Pasetto, D., Bader, D.A.: Scalable graph exploration on multicore

processors. In: Proceedings of the 2010 ACM/IEEE International Conference for High Per-
formance Computing, Networking, Storage and Analysis, SC "10, pp. 1-11. IEEE Computer
Society, Washington, DC, USA (2010). doi:10.1109/SC.2010.46

. Akbudak, K., Aykanat, C.: Simultaneous input and output matrix partitioning for outer-product—

parallel sparse matrix-matrix multiplication. SIAM J. Sci. Comput. 36(5), C568-C590 (2014).
doi:10.1137/13092589X

Boldi, P., Rosa, M., Santini, M., Vigna, S.: Layered label propagation: a multiresolution
coordinate-free ordering for compressing social networks. In: Srinivasan S., Ramamritham
K., Kumar A., Ravindra M.P,, Bertino E., Kumar R. (eds.) Proceedings of the 20th Interna-
tional Conference on World Wide Web, pp. 587-596. ACM Press (2011)

. Boldi, P, Vigna, S.: The WebGraph framework I: compression techniques. In: Proceedings of

the Thirteenth International World Wide Web Conference (WWW 2004), pp. 595-601. ACM
Press, Manhattan (2004)

Boman, E., Devine, K., Heaphy, R., Hendrickson, B., Heroux, M., Preis, R.: LDRD report:
Parallel repartitioning for optimal solver performance. Tech. Rep. SAND2004-0365, Sandia
National Laboratories, Albuquerque, NM (2004)

Bulug, A., Gilbert, J.R.: Parallel sparse matrix-matrix multiplication and indexing: implemen-
tation and experiments. SIAM J. Sci. Comput. (SISC) 34(4), 170-191 (2012). doi:10.1137/
110848244; http://gauss.cs.ucsb.edu/~aydin/spgemm_sisc12.pdf

Bulug, A., Madduri, K.: Parallel breadth-first search on distributed memory systems. In: Pro-
ceedings of 2011 International Conference for High Performance Computing, Networking,
Storage and Analysis, SC 11, pp. 65:1-65:12. ACM, New York, NY, USA (2011). doi:10.
1145/2063384.2063471; http://doi.acm.org/10.1145/2063384.2063471

Catalyurek, U.V., Aykanat, C.: Hypergraph-partitioning-based decomposition for parallel
sparse-matrix vector multiplication. IEEE Trans. Parallel Distrib. Syst. 10(7), 673—693 (1999)
CP2K: CP2K home page (Accessed at 2015). http://www.cp2k.org/

D’Alberto, P., Nicolau, A.: R-kleene: A high-performance divide-and-conquer algorithm for
the all-pair shortest path for densely connected networks. Algorithmica 47(2),203-213 (2007).
doi:10.1007/s00453-006-1224-z

Davis, T.A., Hu, Y.: The University of Florida sparse matrix collection. ACM Trans. Math.
Softw. (TOMS) 38(1), 1 (2011)

Dostdl, Z., Hordk, D., Kucera, R.: Total FETI-an easier implementable variant of the FETI
method for numerical solution of elliptic PDE. Commun. Numer. Meth. Eng. 22(12), 1155—
1162 (2006)

Feng, Y., Owen, D., Peri, D.: A block conjugate gradient method applied to linear sys-
tems with multiple right-hand sides. Comput. Meth. Appl. Mech. Eng. 127(14), 203-
215 (1995). http://dx.doi.org/10.1016/0045-7825(95)00832-2; http://www.sciencedirect.com/
science/article/pii/0045782595008322

https://software.intel.com/en-us/intel-mkl
http://dx.doi.org/10.1109/SC.2010.46
http://dx.doi.org/10.1137/13092589X
http://dx.doi.org/10.1137/110848244
http://dx.doi.org/10.1137/110848244
http://gauss.cs.ucsb.edu/~aydin/spgemm_sisc12.pdf
http://dx.doi.org/10.1145/2063384.2063471
http://dx.doi.org/10.1145/2063384.2063471
http://doi.acm.org/10.1145/2063384.2063471
http://www.cp2k.org/
http://dx.doi.org/10.1007/s00453-006-1224-z
http://dx.doi.org/10.1016/0045-7825(95)00832-2
http://www.sciencedirect.com/science/article/pii/0045782595008322
http://www.sciencedirect.com/science/article/pii/0045782595008322

382

15.

16.

17.

18.

19.

20.

21.
22.

23.

24.

25.

26.

27.

28.

29.

30.

O. Selvitopi et al.

Heroux, M.A., Bartlett, R.A., Howle, V.E., Hoekstra, R.J., Hu, J.J., Kolda, T.G., Lehoucq, R.B.,
Long, K.R., Pawlowski, R.P., Phipps, E.T., et al.: An overview of the Trilinos project. ACM
Trans. Math. Softw. (TOMS) 31(3), 397-423 (2005)

Horowitz, E., Sahni, S.: Fundamentals of Computer Algorithms. Computer Science Press
(1978)

Kang, U., Tsourakakis, C.E., Faloutsos, C.: Pegasus: A peta-scale graph mining system imple-
mentation and observations. In: Proceedings of the 2009 Ninth IEEE International Conference
on Data Mining, ICDM °09, pp. 229-238. IEEE Computer Society, Washington, DC, USA
(2009). doi:10.1109/ICDM.2009.14

Leskovec, J., Krevl, A.: SNAP Datasets: Stanford large network dataset collection. http://snap.
stanford.edu/data (2014)

Marion-Poty, V., Lefer, W.: A wavelet decomposition scheme and compression method
for streamline-based vector field visualizations. Comput. Graphics 26(6), 899-906
(2002). doi:10.1016/S0097-8493(02)00178-4; http://www.sciencedirect.com/science/article/
pii/S0097849302001784

Mattson, T., Bader, D., Berry, J., Buluc, A., Dongarra, J., Faloutsos, C., Feo, J., Gilbert, J.,
Gonzalez, J., Hendrickson, B., Kepner, J., Leiserson, C., Lumsdaine, A., Padua, D., Poole, S.,
Reinhardt, S., Stonebraker, M., Wallach, S., Yoo, A.: Standards for Graph Algorithm Primitives.
ArXiv e-prints (2014)

NVIDIA Corporation: CUSPARSE library (2010)

O’Leary, D.P.: The block conjugate gradient algorithm and related methods. Linear Algebra
Appl. 29(0), 293-322 (1980). http://dx.doi.org/10.1016/0024-3795(80)90247-5; http://www.
sciencedirect.com/science/article/pii/0024379580902475. Special Volume Dedicated to Alson
S. Householder

O’Leary, D.P.: Parallel implementation of the block conjugate gradient algorithm. Paral-
lel Comput. 5(12), 127-139 (1987). http://dx.doi.org/10.1016/0167-8191(87)90013-5; http://
www.sciencedirect.com/science/article/pii/0167819187900135. Proceedings of the Interna-
tional Conference on Vector and Paralle] Computing-Issues in Applied Research and Devel-
opment

Sariyuce, A.E., Saule, E., Kaya, K., Catalyurek, U.V.: Regularizing graph centrality compu-
tations. J. Parallel Distrib. Comput. 76(0), 106-119 (2015). http://dx.doi.org/10.1016/j.jpdc.
2014.07.006; http://www.sciencedirect.com/science/article/pii/S0743731514001282. Special
Issue on Architecture and Algorithms for Irregular Applications

Sawyer, W., Messmer, P.: Parallel grid manipulations for general circulation models. In: Parallel
Processing and Applied Mathematics. Lecture Notes in Computer Science, vol. 2328, pp. 605—
608. Springer, Berlin (2006)

Selvitopi, O., Aykanat, C.: Reducing latency cost in 2D sparse matrix partitioning models.
Parallel Comput. 57, 1-24 (2016). http://dx.doi.org/10.1016/j.parco.2016.04.004; http://www.
sciencedirect.com/science/article/pii/S0167819116300138

Selvitopi, R.O., Ozdal, M.M., Aykanat, C.: A novel method for scaling iterative solvers: avoid-
ing latency overhead of parallel sparse-matrix vector multiplies. IEEE Trans. Parallel Distrib.
Syst. 26(3), 632-645 (2015). doi:10.1109/TPDS.2014.2311804

Shi, Z., Zhang, B.: Fast network centrality analysis using gpus. BMC Bioinf. 12(1), 149 (2011).
doi:10.1186/1471-2105-12-149

Ucar, B., Aykanat, C.: Encapsulating multiple communication-cost metrics in partitioning
sparse rectangular matrices for parallel matrix-vector multiplies. SIAM J. Sci. Comput. 25(6),
1837-1859 (2004). doi:10.1137/S1064827502410463

Van De Geijn, R.A., Watts, J.: Summa: scalable universal matrix multiplication algorithm.
Concurrency-Pract. Experience 9(4), 255-274 (1997)

http://dx.doi.org/10.1109/ICDM.2009.14
http://snap.stanford.edu/data
http://snap.stanford.edu/data
http://dx.doi.org/10.1016/S0097-8493(02)00178-4
http://www.sciencedirect.com/science/article/pii/S0097849302001784
http://www.sciencedirect.com/science/article/pii/S0097849302001784
http://dx.doi.org/10.1016/0024-3795(80)90247-5
http://www.sciencedirect.com/science/article/pii/0024379580902475
http://www.sciencedirect.com/science/article/pii/0024379580902475
http://dx.doi.org/10.1016/0167-8191(87)90013-5
http://www.sciencedirect.com/science/article/pii/0167819187900135
http://www.sciencedirect.com/science/article/pii/0167819187900135
http://dx.doi.org/10.1016/j.jpdc.2014.07.006
http://dx.doi.org/10.1016/j.jpdc.2014.07.006
http://www.sciencedirect.com/science/article/pii/S0743731514001282
http://dx.doi.org/10.1016/j.parco.2016.04.004
http://www.sciencedirect.com/science/article/pii/S0167819116300138
http://www.sciencedirect.com/science/article/pii/S0167819116300138
http://dx.doi.org/10.1109/TPDS.2014.2311804
http://dx.doi.org/10.1186/1471-2105-12-149
http://dx.doi.org/10.1137/S1064827502410463

	17 Parallelization of Sparse Matrix Kernels for Big Data Applications
	17.1 Introduction
	17.2 Parallelization of the SpGEMM Kernel
	17.2.1 Outer-Product--Parallel SpGEMM Algorithm
	17.2.2 Hypergraph Model
	17.2.3 Decoding Hypergraph Partitioning as Matrix Partitioning

	17.3 Parallelization of the SpMM Kernel
	17.3.1 Hypergraph Model
	17.3.2 Partitioning and Decoding
	17.3.3 A Volume-Balancing Extension for SpMM

	17.4 Experiments
	17.4.1 SpGEMM
	17.4.2 SpMM

	17.5 Conclusion
	References

