
Real-Time Synthesis is Hard!

Thomas Brihaye1, Morgane Estiévenart1, Gilles Geeraerts2, Hsi-Ming Ho1(B),
Benjamin Monmege3, and Nathalie Sznajder4

1 Université de Mons, Mons, Belgium
{thomas.brihaye,morgane.estievenart,hsi-ming.ho}@umons.ac.be

2 Université libre de Bruxelles, Brussels, Belgium
gigeerae@ulb.ac.be

3 Aix Marseille Univ, CNRS, LIF, Marseille, France
benjamin.monmege@lif.univ-mrs.fr

4 Sorbonne Universités, UPMC, LIP6, Paris, France
nathalie.sznajder@lip6.fr

Abstract. We study the reactive synthesis problem (RS) for specifica-
tions given in Metric Interval Temporal Logic (MITL). RS is known to
be undecidable in a very general setting, but on infinite words only; and
only the very restrictive BResRS subcase is known to be decidable (see
D’Souza et al. and Bouyer et al.). In this paper, we sharpen the decidabil-
ity border of MITL synthesis. We show RS is undecidable on finite words
too, and present a landscape of restrictions (both on the logic and on the
possible controllers) that are still undecidable. On the positive side, we
revisit BResRS and introduce an efficient on-the-fly algorithm to solve it.

1 Introduction

The design of programs that respect real-time specifications is a difficult problem
with recent and promising advances. Such programs must handle thin timing
behaviours, are prone to errors, and difficult to correct a posteriori. Therefore,
one road to the design of correct real-time software is the use of automatic
synthesis methods, that build, from a specification, a program which is correct
by construction. To this end, timed games are nowadays recognised as the key
foundational model for the synthesis of real-time programs. These games are
played between a controller and an environment, that propose actions in the
system, modelled as a plant. The reactive synthesis problem (RS) consists, given a
real-time specification, in deciding whether the controller has a winning strategy
ensuring that every execution of the plant consistent with this strategy (i.e., no
matter the choices of the environment) satisfies the specification. As an example,
consider a lift for which we want to design a software verifying certain safety
conditions. In this case, the plant is a (timed) automaton, whose states record

More technical details and proofs can be found in the full version of this paper [8].
This work has been supported by The European Union Seventh Framework Pro-
gramme under Grant Agreement 601148 (Cassting) and by the FRS/F.N.R.S. PDR
grant SyVeRLo.

c© Springer International Publishing Switzerland 2016
M. Fränzle and N. Markey (Eds.): FORMATS 2016, LNCS 9884, pp. 105–120, 2016.
DOI: 10.1007/978-3-319-44878-7 7

106 T. Brihaye et al.

the current status of the lift (its floor, if it is moving, the button on which
users have pushed. . .), as well as timing information regarding the evolution
in-between the different states. On the other hand, the specification is usually
given using some real-time logic: in this work, we consider mainly specifications
given by a formula of MITL [2], a real-time extension of LTL. Some actions in
the plant are controllable (closing the doors, moving the cart), while others
belong to the environment (buttons pushed by users, exact timing of various
actions inside intervals, failures. . .). Then, RS asks to compute a controller that
performs controllable actions at the right moments, so that, for all behaviours
of the environment, the lift runs correctly.

In the untimed case, many positive theoretical and practical results have
been achieved regarding RS: for instance, when the specification is given as
an LTL formula, we know that if a winning strategy exists, then there is one
that can be described by a finite state machine [17]; and efficient LTL synthesis
algorithms have been implemented [3,13]. Unfortunately, in the real-time setting,
the picture is not so clear. Indeed, a winning strategy in a timed game might
need unbounded memory to recall the full prefix of the game, which makes
the real-time synthesis problem a hard one. This is witnessed by three papers
presenting negative results: D’Souza and Madhusudan [12] and Bouyer et al. [4]
show that RS is undecidable (on finite and infinite words) when the specification
is respectively a timed automaton and an MTL formula (the two most expressive
formalisms in Fig. 1). More recently, Doyen et al. show [11] that RS is undecidable
for MITL specifications over infinite words; but leave the finite words case open.

When facing an undecidability result, one natural research direction consists
in considering subcases in order to recover decidability: here, this amounts to
considering fragments of the logic, or restrictions on the possible controllers.
Such results can also be found in the aforementioned works. In [12], the authors
consider a variant of RS, called bounded resources reactive synthesis (BResRS)
where the number of clocks and the set of guards that the controller can use are
fixed a priori, and the specification is given by means of a timed automaton. By
coupling this technique with the translation of MITL into timed automata [7],
one obtains a 3-EXPTIME procedure (in the finite and infinite words cases).
Unfortunately, due to the high cost of translating MITL into timed automata and
the need to construct its entire deterministic region automaton, this algorithm
is unlikely to be amenable to implementation. Then, [4] presents an on-the-fly
algorithm for BResRS with MTL specifications (MTL is a strict superset of MITL),
on finite words, but their procedure runs in non-primitive recursive time.

Hence, the decidability status of the synthesis problem (with MITL require-
ments) still raises several questions, namely: (i) Can we relax the restrictions
in the definition of BResRS while retaining decidability? (ii) Is RS decidable on
finite words, as raised in [11]? (iii) Are there meaningful restrictions of the logic
that make RS decidable? (iv) Can we devise an on-the-fly, efficient, algorithm
that solves BResRS in 3-EXPTIME as in [12]? In the present paper, we provide
answers to those questions. First, we consider the additional IRS, BPrecRS and
BClockRS problems, that introduce different levels of restrictions. IRS requests

Real-Time Synthesis is Hard! 107

the controller to be a timed automaton. BPrecRS and BClockRS are further
restrictions of IRS where respectively the set of guards and the set of clocks of
the controller are fixed a priori. Thus, we consider the following hierarchy of

problems: RS ⊇ IRS ⊇ BPrecRS
BClockRS

⊇ BResRS. Unfortunately, while IRS, BPrecRS

and BClockRS seem to make sense in practice, they turn out to be undecidable
both on finite and infinite words—an answer to points (i) and (ii). Our proofs are
based on a novel encoding of halting problem for deterministic channel machines.
By contrast, the undecidability results of [4] (for MTL) are reductions from the
same problem, but their encoding relies heavily on the ability of MTL to express
punctual constraints like ‘every a event is followed by a b event exactly one
time unit later’, which is not allowed by MITL. To the best of our knowledge,
our proofs are the first to perform such a reduction in a formalism that disal-
lows punctual requirements—a somewhat unexpected result. Then, we answer
point (iii) by considering a hierarchy of syntactic subsets of MITL (see Fig. 1)
and showing that, for all these subsets, BPrecRS and BClockRS (hence also IRS
and RS) remain undecidable, on finite and infinite words. Note that the undecid-
ability proof of [12] cannot easily be adapted to cope with these cases, because
it needs a mix of open and closed constraints; while we prove undecidable very
weak fragments of MITL where only closed or only open constraints are allowed.
All these negative results shape a precise picture of the decidability border for
real-time synthesis (in particular, they answer open questions from [4,9,11]).
On the positive side, we answer point (iv) by devising an on-the-fly algorithm
to solve BResRS (in the finite words case) that runs in 3-EXPTIME. It relies on
one-clock alternating timed automata (as in [4], but unlike [12] that use timed
automata), and on the recently introduced interval semantics [7].

2 Reactive Synthesis of Timed Properties

Let Σ be a finite alphabet. A (finite) timed word1 over Σ is a finite word σ =
(σ1, τ1) · · · (σn, τn) over Σ×R

+ with (τi)1�i�n a non-decreasing sequence of non-
negative real numbers. We denote by TΣ� the set of finite timed words over Σ.
A timed language is a subset L of TΣ�.

Timed Logics. We consider the reactive synthesis problem against various real-
time logics, all of them being restrictions of Metric Temporal Logic (MTL) [14].
The logic MTL is a timed extension of LTL, where the temporal modalities are
labelled with a timed interval. The formal syntax of MTL is given as follows:

ϕ := � | a | ϕ ∧ ϕ | ¬ϕ | ϕUIϕ

where a ∈ Σ and I is an interval over R
+ with endpoints in N ∪ {+∞}.

We consider the pointwise semantics and interpret MTL formulas over timed
words. The semantics of a formula ϕ in MTL is defined inductively in the usual
1 In order to keep the discussion focused and concise, we give the formal definitions

for finite words only. It is straightforward to adapt them to the infinite words case.

108 T. Brihaye et al.

TAMTL

coFlat-MTLSafety-MTL MITL ECL

MITLns MITL[U0,∞] = ECLfut

MITLns[U0,∞] MITL[♦∞]

MITLns[♦∞]

Open-MITLns[♦∞] Closed-MITLns[♦∞]

Closed-MITL

Open-MITL

Fig. 1. All the fragments of MITL for which BPrecRS and BClockRS are undecidable
(hence also RS and IRS). A → B means that A strictly contains B.

way. We recall only the semantics of U: given σ = (σ1, τ1) · · · (σn, τn) ∈ TΣ�,
and a position 1 � i � n, we let (σ, i) |= ϕ1UIϕ2 if there exists j > i such that
(σ, j) |= ϕ2, τj − τi ∈ I, and (σ, k) |= ϕ1, for all i < k < j.

With ⊥ := ¬�, we can recover the ‘next’ operator ©Iϕ := ⊥UIϕ, and we
rely on the usual shortcuts for the ‘finally’, ‘globally’ and ‘dual-until’ operators:
♦Iϕ := �UIϕ, �Iϕ := ¬♦I¬ϕ and ϕ1

˜UIϕ2 := ¬((¬ϕ1)UI(¬ϕ2)). We also use
the non-strict version of the ‘until’ operator ϕ1UIϕ2, defined as ϕ2∨(ϕ1∧ϕ1UIϕ2)
(if 0 ∈ I) or ϕ1 ∧ ϕ1UIϕ2 (if 0 /∈ I). This notation yields the corresponding non-
strict operators ♦ϕ and �ϕ in the natural way. When the interval I is the entire
set of the non-negative real numbers, the subscript is often omitted. We say that
σ satisfies the formula ϕ, written σ |= ϕ if (σ, 1) |= ϕ, and we denote by L(ϕ)
the set of all timed words σ such that σ |= ϕ.

We consider mainly a restriction of MTL called MITL (for Metric Interval
Temporal Logic), in which the intervals are restricted to non-singular ones. We
denote by Open-MITL the open fragment of MITL: in negation normal form, each
subformula ϕ1UIϕ2 has either I open or inf(I) = 0 and I right-open, and each
subformula ϕ1

˜UIϕ2 has I closed. Then, a formula is in Closed-MITL if it is the
negation of an Open-MITL formula. By [7], Open-MITL formulas (respectively,
Closed-MITL formulas) translate to open (closed) timed automata [15], i.e., all
clock constraints are strict (non-strict). Two other important fragments of MTL
considered in the literature consist of Safety-MTL [16], where each subformula
ϕ1UIϕ2 has I bounded in negation normal form, and coFlat-MTL [5], where the
formula satisfies the following in negation normal form: (i) in each subformula
ϕ1UIϕ2, if I is unbounded then ϕ2 ∈ LTL; and (ii) in each subformula ϕ1

˜UIϕ2,
if I is unbounded then ϕ1 ∈ LTL.

For all of these logics L, we can consider several restrictions. The restriction
in which only the non-strict variants of the operators (♦, �, etc.) are allowed
is denoted by Lns. The fragment in which all the intervals used in the formula
are either unbounded, or have a left endpoint equal to 0 is denoted by L[U0,∞].
In this case, the interval I can be replaced by an expression of the form ∼ c,
with c ∈ N, and ∼ ∈ {<,>,�,�}. It is known that MITL[U0,∞] is expressively
equivalent to ECLfut [18], which is itself a syntactic fragment of Event-Clock Logic

Real-Time Synthesis is Hard! 109

(ECL). Finally, L[♦∞] stands for the logic where ‘until’ operators only appear in
the form of ♦I or �I with intervals I of the shape [a,∞) or (a,∞).

Symbolic Transition Systems. Let X be a finite set of variables, called clocks.
The set G(X) of clock constraints g over X is defined by: g := � | g ∧ g | x �� c,
where �� ∈ {<,�,=,�, >}, x ∈ X and c ∈ Q

+. A valuation over X is a mapping
ν : X → R

+. The satisfaction of a constraint g by a valuation ν is defined in the
usual way and noted ν |= g, and �g� is the set of valuations ν satisfying g. For
t ∈ R

+, we let ν + t be the valuation defined by (ν + t)(x) = ν(x) + t for all
x ∈ X. For R ⊆ X, we let ν[R ← 0] be the valuation defined by (ν[R ← 0])(x) =
0 if x ∈ R, and (ν[R ← 0])(x) = ν(x) otherwise.

Following the terminology of [4,12], a granularity is a triple μ = (X,m,K)
where X is a finite set of clocks, m ∈ N \ {0}, and K ∈ N. A constraint g is μ-
granular if g ∈ G(X) and each constant in g is of the form α

m with an integer α �
K. A symbolic alphabet Γ based on (Σ,X) is a finite subset of Σ×Gatom

m,K (X)×2X ,
where Gatom

m,K (X) denotes all atomic (X,m,K)-granular clock constraints (i.e.,
clock constraints g such that �g� = �g′� or �g� ∩ �g′� = ∅, for every (X,m,K)-
granular clock constraint g′). Such a symbolic alphabet Γ is said μ-granular. A
symbolic word γ = (σ1, g1, R1) · · · (σn, gn, Rn) over Γ generates a set of timed
words over Σ, denoted by tw(γ) such that σ ∈ tw(γ) if σ = (σ1, τ1) · · · (σn, τn),
and there is a sequence (νi)0�i�n of valuations with ν0 the zero valuation, and for
all 1 � i � n, νi−1 +τi −τi−1 |= gi and νi = (νi−1 +τi −τi−1)[Ri ← 0] (assuming
τ0 = 0). Intuitively, each (σi, gi, Ri) means that action σi is performed, with
guard gi satisfied and clocks in Ri reset.

A symbolic transition system (STS) over a symbolic alphabet Γ based on
(Σ,X) is a tuple T = (S, s0,Δ, Sf) where S is a possibly infinite set of locations,
s0 ∈ S is the initial location, Δ ⊆ S×Γ ×S is the transition relation, and Sf ⊆ S
is a set of accepting locations (omitted if all locations are accepting). An STS
with finitely many locations is a timed automaton (TA) [1]. For a finite path
π = s1

b1−→ s2
b2−→ · · · bn−→ sn+1 of T (i.e., such that (si, bi, si+1) ∈ Δ for all

1 � i � n), the trace of π is the word b1b2 · · · bn, and π is accepting if sn+1 ∈ Sf .
We denote by L(T) the language of T , defined as the timed words associated to
symbolic words that are traces of finite accepting paths starting in s0. We say
that a timed action (t, σ) ∈ R

+ × Σ is enabled in T at a pair (s, ν), denoted
by (t, σ) ∈ EnT (s, ν), if there exists a transition (s, (σ, g,R), s′) ∈ δ such that
ν + t |= g. The STS T is time-deterministic if there are no distinct transitions
(s, (σ, g1, R1), s1) and (s, (σ, g2, R2), s2) in Δ and no valuation ν such that ν |= g1
and ν |= g2. In a time-deterministic STS T = (S, s0, δ, Sf), for all timed words
σ, there is at most one path π whose trace γ verifies σ ∈ tw(γ). In that case,
we denote by δ(s0, σ) the unique (if it exists) pair (s, ν) (where s ∈ S and ν is
a valuation) reached after reading σ ∈ tw(γ).

Example 1. A time-deterministic TA P with a single clock x is depicted in Fig. 2.
Intuitively, it accepts all timed words σ of the form w1w2 · · · wn where each wi

is a timed word such that (i) either wi = (b, τ); (ii) or wi is a sequence of a’s

110 T. Brihaye et al.

q0 q1 q2

b, x := 0 a, x � 1 a, x > 1, x := 0

a, x := 0

b, x := 0

a, x > 1, x := 0

a, x � 1

b, x := 0

(a) �0 �1

b a

a, z := 0

b, z = 1
(b)

Fig. 2. (a) A time-deterministic STS P with X = {x}. Instead of depicting a transition
per letter (a, g, R) (with g atomic), we merge several transitions; e.g., we skip the guard,
when all the possible guards are admitted. x := 0 denotes the reset of x. (b) A time-
deterministic STS T . It is a controller to realise ϕ = �(a ⇒ ♦�1b) with plant P.

(starting at time stamp τ) of duration at most 1; and wi+1 is either of the form
(b, τ ′), or of the form (a, τ ′) with τ ′ − τ > 1.

Reactive Synthesis with Plant. To define our reactive synthesis problems,
we partition the alphabet Σ into controllable and environment actions ΣC and
ΣE . Following [4,12], the system is modelled by a time-deterministic TA P =
(Q, q0, δP , Qf), called the plant2. Observe that the plant has accepting locations:
only those runs ending in a final location of the plant will be checked against
the specification. We start by recalling the definition of the general reactive
synthesis family of problems (RS) [10,11]. It consists in a game played by the
controller and the environment, that interact to create a timed word as follows.
We start with the empty timed word, and then, at each round, the controller
and the environment propose timed actions to be performed by the system—
therefore, they must be firable in the plant P—respectively (t, a) and (t′, b), with
t, t′ ∈ R

+, a ∈ ΣC and b ∈ ΣE . The timed action with the shortest3 delay (or
the environment action if the controller decides not to propose any action) is
performed, and added to the current play for the next round. If both players
propose the same delay, we resolve the time non-deterministically.

On those games, we consider a parameterised family of reactive synthesis
problems denoted RSb

s(F), where s ∈ {u, d}; b ∈ {�, ω}; and F is one of the
formalisms in Fig. 1. An instance of RSb

s(F) is given by a specification S ∈ F and
a plant P, which are interpreted over finite words when b = � and infinite words
when b = ω. The timed language L(S) is a specification of desired behaviours
when s = d and undesired behaviours when s = u. Then, RSb

s(F) asks whether
there exists a strategy for the controller such that all the words in the outcome
of this strategy are in L(S) (or outside L(S)) when we consider desired (or
undesired) behaviours (when s = ω, the definition of L(S) must be the infinite
words one). If this is the case, we say that S is (finite-word) realisable for the
problem under study. For example, RSω

u(MITL) is the reactive synthesis problem
2 We assume that for every location q and every valuation ν, there exists a timed

action (t, σ) ∈ R
+ × Σ and a transition (q, (σ, g, R), q′) ∈ δP such that ν + t |= g.

3 Observe that this is different from [4,12], where the environment can always prevent
the controller from playing, even by proposing a longer delay. We claim our definition
is more reasonable in practice but all proofs can be adapted to both definitions.

Real-Time Synthesis is Hard! 111

where the inputs are a formula of MITL and a plant, which are interpreted
over the infinite words semantics, and where the MITL formula specifies the
behaviours that the controller should avoid. Unfortunately, the variants RS are
too general, and a winning strategy might require unbounded memory:

Example 2. Consider the alphabet Σ = ΣC �ΣE with ΣC = {b} and ΣE = {a},
a plant P accepting TΣ�, and the specification defined by the MTL formula
ϕ = �

(

(a ∧ ♦�1a) ⇒ ♦=1b
)

. Clearly, a winning strategy for the controller is to
remember the time stamps τ1, τ2, . . . of all a’s, and always propose to play action b
one time unit later (note that if the environment blocks the time to prevent
the controller from playing its b, the controller wins). However this requires to
memorise an unbounded number of time stamps with a great precision.

Restrictions on RS. In practice, it makes more sense to restrict the winning
strategy of the controller to be implementable by an STS, which has finitely many
clocks (and if possible finitely many locations). Let us define formally what it
means for an STS T = (S, s0, δ) to control a plant P. We let TΣ�

T ,P be the set
of timed words consistent with T and P, defined as the smallest set containing
the empty timed word, and closed by the following operations. Let σ be a word
in TΣ�

T ,P , with (q, νP) = δP(q0, σ), T = 0 if σ = ε, and (c, T) ∈ Σ × R
+ be the

last letter of σ otherwise. Then, we extend σ as follows:

– either the controller proposes to play a controllable action (t, b), because it cor-
responds to a transition that is firable both in the controller and the plant. This
action can be played (σ is extended by (b, T + t)), as well as any environment
action (t′, a) with t′ � t (the environment can overtake the controller). For-
mally, if δ(s0, σ) = (s, ν) is defined and EnT (s, ν) ∩EnP(q, νP)∩(R+×ΣC) �= ∅:
for all (t, b) ∈ EnT (s, ν)∩EnP(q, νP)∩ (R+×ΣC), we let σ · (b, T + t) ∈ TΣ�

T ,P
and σ · (a, T + t′) ∈ TΣ�

T ,P for all t′ � t and a ∈ ΣE such that (t′, a) ∈
EnP(q, νP).

– Or the controller proposes nothing, then the environment can play all its
enabled actions. Formally, if δ(s0, σ) = (s, ν) is defined and EnT (s, ν) ∩
EnP(q, νP) ∩ (R+ × ΣC) = ∅ and EnP(q, νP) ∩ (R+ × ΣE) �= ∅, we let
σ · (a, T + t′) ∈ TΣ�

T ,P for all (t′, a) ∈ EnP(q, νP) ∩ (R+ × ΣE).
– Otherwise, we declare that every possible future allowed by the plant is valid,

i.e., we let σ · σ′ ∈ TΣ�
T ,P for all σ · σ′ ∈ L(P). This happens when the

controller proposes only actions that are not permitted by the plant while the
environment has no enabled actions; or when the controller lost track of a
move of the environment during the past.

Then, the MTL implementable reactive synthesis problem IRS�
d(MTL) (on finite

words and with desired behaviours) is to decide, given a plant P and a speci-
fication given as an MTL formula ϕ, whether there exists a set of clocks X, a
symbolic alphabet Γ based on (Σ,X), and a time-deterministic STS T over Γ
such that TΣ�

T ,P ∩ L(P) ⊆ L(ϕ) ∪ {ε}.4

4 Empty word ε is added for convenience, in case it is not already in L(ϕ).

112 T. Brihaye et al.

While the definition of IRS�
d(MTL) is more practical than that of RS�

d(MTL), it
might still be too general because the clocks and symbolic alphabet the controller
can use are not fixed a priori. In the spirit of [4,12], we define three variants
of IRS. First, the MTL bounded-resources synthesis problem BResRS�

d(MTL) is a
restriction of IRS�

d(MTL) where the granularity of the controller is fixed: given an
MTL formula ϕ, and a granularity μ = (X,m,K), it asks whether there exists a
μ-granular symbolic alphabet Γ based on (Σ,X), and a time-deterministic STS
T over Γ such that TΣ�

T ,P ∩ L(P) ⊆ L(ϕ) ∪ {ε}. Second, the less restrictive
MTL bounded-precision synthesis problem BPrecRS�

d(MTL) and MTL bounded-
clocks synthesis problem BClockRS�

d(MTL) are the variants of IRS where only
the precision and only the number of clocks are fixed, respectively. Formally,
BPrecRS�

d(MTL) asks, given an MTL formula ϕ, m ∈ N, and K ∈ N\{0}, whether
there are a finite set X of clocks, an (X,m,K)-granular symbolic alphabet Γ
based on (Σ,X), and a time-deterministic STS T over Γ such that TΣ�

T ,P ∩
L(P) ⊆ L(ϕ) ∪ {ε}. BClockRS�

d(MTL) is defined similarly with an MTL formula
ϕ, and a finite set of clocks X (instead of m, K) as input.

While we have defined IRS, BPrecRS, BClockRS and BResRS for MTL require-
ments, and in the finite words, desired behaviours case only, these definitions
extend to all the other cases we have considered for RS: infinite words, unde-
sired behaviours, and all fragments of MTL. We rely on the same notations as
for RS, writing for instance BPrecRS�

u(MITL) or BClockRSω
d (coFlat-MTL), etc.

Example 3. Consider the instance of IRS�
d(MITL) where the plant accepts TΣ�

and the specification is ϕ = �(a ⇒ ♦�1b). This instance is negative (ϕ is not
realisable), since, for every time-deterministic STS T , (a, 0) ∈ TΣ�

T ,P but is not
in L(ϕ). However, if we consider now the plant P in Fig. 2(a), we claim that the
STS T with one clock z depicted in Fig. 2(b) realises ϕ. Indeed, this controller
resets its clock z each time it sees the first a in a sequence of a’s, and proposes
to play a b when z has value 1, which ensures that all a’s read so far are followed
by a b within 1 time unit. The restrictions enforced by the plant (which can be
regarded as a sort of fairness condition) ensure that this is sufficient to realise ϕ
for IRS�

d(MITL). This also means that ϕ is realisable for BPrecRS�
d(MITL) with

precision m = 1 and K = 1; for BClockRS�
d(MITL) with set of clocks X = {z};

and for BResRS�
d(MITL) with granularity μ = ({z}, 1, 1).

3 BPrecRS and BClockRS are Undecidable

Let us show that all the variants of BPrecRS and BClockRS are undecidable,
whatever formalism from Fig. 1 we consider for the specification. This entails
that all variants of RS and IRS are undecidable too (in particular RS�

d(ECL)
which settles an open question of [11] negatively). To this aim, we show unde-
cidability on the weakest formalisms in Fig. 1, namely: coFlat-MTL, Safety-MTL,
Open-MITLns[♦∞] and Closed-MITLns[♦∞]. Similar results have been shown for
MTL (and for Safety-MTL as desired specifications) in [4] via a reduction from
the halting problem for deterministic channel machines, but their proof depends

Real-Time Synthesis is Hard! 113

crucially on punctual formulas of the form �(a ⇒ ♦=1b) which are not express-
ible in MITL. Our original contribution here is to adapt these ideas to a formalism
without punctual constraints, which is non-trivial.

Deterministic Channel Machines. A deterministic channel machine (DCM)
S = 〈S, s0, shalt,M,Δ〉 can be seen as a finite automaton equipped with an
unbounded fifo channel, where S is a finite set of states, s0 is the initial state,
shalt is the halting state, M is a finite set of messages and Δ ⊆ S×{m!,m? | m ∈
M}×S is the transition relation satisfying the following determinism hypothesis:
(i) (s, a, s′) ∈ Δ and (s, a, s′′) ∈ Δ implies s′ = s′′; (ii) if (s,m!, s′) ∈ Δ then it
is the only outgoing transition from s.

The semantics is described by a graph G(S) with nodes labelled by (s, x)
where s ∈ S and x ∈ M� is the channel content. The edges in G(S) are defined
as follows: (i) (s, x) m!−−→ (s′, xm) if (s,m!, s′) ∈ Δ; and (ii) (s,mx) m?−−→ (s′, x)
if (s,m?, s′) ∈ Δ. Intuitively, these correspond to messages being written to or
read from the channel. A computation of S is then a path in G(S). The halting
problem for DCMs asks, given a DCM S, whether there is a computation from
(s0, ε) to (shalt, x) in G(S) for some x ∈ M�.

Proposition 1 ([6]). The halting problem for DCMs is undecidable.

It should be clear that S has a unique computation. Without loss of generality,
we assume that shalt is the only state in S with no outgoing transition. It follows
that exactly one of the following must be true: (i) S has a halting computation;
(ii) S has an infinite computation not reaching shalt; (iii) S is blocking at some
point, i.e., S is unable to proceed at some state s �= shalt (with only read outgoing
transitions) either because the channel is empty or the message at the head of
the channel does not match any of the outgoing transitions from s.

Finite-Word Reactive Synthesis for MITL. We now give a reduction from
the halting problem for DCMs to RS�

d(MITL). The idea is to devise a suitable
MITL formula such that in the corresponding timed game, the environment and
the controller are forced to propose actions in turn, according to the semantics of
the DCM. Each prefix of the (unique) computation of the DCM is thus encoded
as a play, i.e., a finite timed word. More specifically, given a DCM S, we require
each play to satisfy the following conditions:

C1 The action sequence of the play (i.e., omitting all timestamps) is of the
form NilC� s0a0s1a1 · · · where NilC is a special action of the controller and
(si, ai, si+1) ∈ Δ for each i � 0.

C2 Each si comes with no delay and no two write or read actions occur at the
same time, i.e., if (ai, τ)(si+1, τ

′)(ai+1, τ
′′) is a substring of the play then

τ = τ ′ and τ < τ ′′.
C3 Each m? is preceded exactly 1 time unit (t.u.) earlier by a corresponding m!
C4 Each m! is followed exactly 1 t.u. later by a corresponding m? if there are

actions that occur at least 1 t.u. after the m! in question.

114 T. Brihaye et al.

To this end, we construct a formula of the form Φ ⇒ Ψ where Φ and Ψ are
conjunctions of the conditions that the environment and the controller must
adhere to, respectively. In particular, the environment must propose si’s accord-
ing to the transition relation (C1 and C2) whereas the controller is responsible for
proposing {m!,m? | m ∈ M} properly so that a correct encoding of the writing
and reading of messages is maintained (C2, C3, and C4). When both players obey
these conditions, the play faithfully encodes a prefix of the computation of S, and
the controller wins the play. If the environment attempts to ruin the encoding,
the formula will be satisfied, i.e., the play will be winning for the controller. Con-
versely, if the controller attempts to cheat by, say, reading a message that is not
at the head of the channel, the environment can pinpoint this error (by propos-
ing a special action Check←) and falsify the formula, i.e., the play will be losing
for the controller. In what follows, let ΣE = S ∪ {Check←,Check→,Lose,NilE},
ΣC = {m!,m? | m ∈ M} ∪ {Win,NilC}, ϕE =

∨

e∈ΣE
e, ϕC =

∨

c∈ΣC
c,

ϕS =
∨

s∈S s, ϕW =
∨

m∈M m!, ϕR =
∨

m∈M m? and ϕWR = ϕW ∨ ϕR. Let
us now present the formulas ϕ1, ϕ2, . . . and ψ1, ψ2, . . . needed to define Φ and Ψ .

We start by formulas enforcing condition C1. The play should start from s0,
alternate between E-actions and C-actions, and the controller can win the play if
the environment does not proceed promptly, and vice versa for the environment:

ϕ1 = ¬
(

NilCU(ϕE ∧ ¬s0)
)

ψ1 = ¬
(

NilCU(ϕC ∧ ¬NilC)
)

ϕ2 = ¬♦(ϕE ∧ ©�1ϕE) ψ2 = ¬♦(ϕC ∧ ©�1ϕC)

ϕ3 = ¬♦(ϕWR ∧ ©Win) ψ3 = ¬♦(ϕS ∧ ¬shalt ∧ ©Lose) .

Both players must also comply to the semantics of S:

ϕ4 =
∧

(s,a,s′)∈Δ
b/∈{s′,Check←,Check→}

¬♦(s ∧ ©a ∧ © © b) ψ4 =
∧

s �=shalt

∀s′ (s,a,s′)/∈Δ

¬♦(s ∧ ©a) .

Once the encoding has ended, both players can only propose Nil actions:

ϕ5 = ¬♦
(

(shalt ∨ Check← ∨ Check→ ∨ Lose ∨ Win) ∧ ♦(ϕE ∧ ¬NilE)
)

ψ5 = ¬♦
(

(shalt ∨ Check← ∨ Check→ ∨ Lose ∨ Win) ∧ ♦(ϕC ∧ ¬NilC)
)

.

For condition C2, we simply state that the environment can only propose
delay 0 whereas the controller always proposes a positive delay:

ϕ6 = ¬♦(ϕWR ∧ ©>0ϕE) ψ6 = �(ϕS ∧ ¬shalt ∧ ©ϕWR =⇒ ©>0ϕWR) .

Let us finally introduce formulae to enforce conditions C3 and C4. Note that
a requirement like ‘every write is matched by a read exactly one time unit later’
is easy to express in MTL, but not so in MITL. Nevertheless, we manage to
translate C3 and C4 in MITL by exploiting the game interaction between the
players. Intuitively, we allow the cheating player to be punished by the other.
Formally, to ensure C3, we allow the environment to play a Check← action after

Real-Time Synthesis is Hard! 115

any m? to check that this read has indeed occurred 1 t.u. after the corresponding
m!. Assuming such a Check← has occurred, the controller must enforce:

ψ← =
∨

m∈M

♦
(

m! ∧ ♦�1(m? ∧ ©Check←) ∧ ♦�1(m? ∧ ©Check←)
)

.

Now, to ensure C4, the environment may play a Check→ action at least 1 t.u.
after a write on the channel. If this Check→ is the first action that occurs more
than 1 t.u. after the writing (expressed by the formula ψ→

fst), we must check that
the writing has been correctly addressed, i.e., there has been an action exactly
1 t.u. after, and this action was the corresponding reading:

ψ→
fst = ♦(ϕW ∧ ♦<1θ

→
1 ∧ ♦�1θ

→
0)

ψ→ = ¬♦(ϕW ∧ ♦<1θ
→
1 ∧ ♦>1θ

→
0) ∧ ψ←[Check→/Check←]

where ψ←[Check→/Check←] is the formula obtained by replacing all Check←

with Check→ in ψ←, θ→
0 = ϕWR ∧©Check→ and θ→

1 = ϕWR ∧©ϕS ∧© © θ→
0 .

In the overall, we consider:

ϕ7 =
∧

m∈M

¬♦(m! ∧ ©Check←)

ψ7 = (♦Check← ⇒ ψ←) ∧
(

(♦Check→ ∧ ψ→
fst) ⇒ ψ→)

.

Now let Φ =
∧

1�i�7 ϕi, Ψ =
∧

1�i�7 ψi and Ω = Φ ⇒ Ψ .

Proposition 2. Ω is finite-word realisable if and only if either (i) S has a
halting computation, or (ii) S has an infinite computation not reaching shalt.5

Proof (Sketch). If (i) or (ii) is true, Ω can be realised by the controller faithfully
encoding a computation of S. If E proposes Check← or Check→, the play will
satisfy ψ7. Otherwise, if S has an infinite computation not reaching shalt, the
play can grow unboundedly and will satisfy all ψ’s, hence Ω.

Conversely, if S is blocking, then Ω is not realisable. Indeed, either the con-
troller encodes S correctly, but then at some point it will not be able to propose
any action, and will be subsumed by the environment that will play Lose. Or
the controller will try to cheat, by (1) inserting an action m? not matched by
a corresponding m! 1 t.u. earlier, or (2) writing a message m! that will not be
read 1 t.u. later. For the first case, the environment can then play Check← right
after the incorrect m?, and the play will violate ψ←, hence ψ7 and Ω. For the
second case, the environment will play Check→ after the first action occurring 1
t.u. after the unfaithful m! and the play will violate ψ→. ��

Now let Ω′ = Φ ⇒ Ψ ∧ �(¬shalt), i.e., we further require the computation
not to reach shalt. The following proposition can be proved almost identically.
5 Observe that the proof does not require any plant (or uses the trivial plant accept-

ing TΣ�). This entails undecidability of the ‘realisability problem’, which is more
restrictive than RS�

d and another difference with respect to the proof in [4].

116 T. Brihaye et al.

Proposition 3. Ω′ is finite-word realisable if and only if S has an infinite com-
putation not reaching shalt.

Corollary 1. S has a halting computation if and only if Ω is finite-word real-
isable but Ω′ is not finite-word realisable.

It follows that if RS�
d(MITL) is decidable, we can decide whether S has a halting

computation. But the latter is known to be undecidable. Hence:

Theorem 1. RS�
d(MITL) is undecidable.

Theorem 1 and its proof are the core results from which we will derive all other
undecidability results announced at the beginning of the section.

Remark 1. One may show that RSω
d is undecidable for formulas of the form Φ ⇒

Ψ where Φ and Ψ are conjunctions of Safety-MTL[U0,∞] formulas by rewriting
ϕi’s and ψi’s. This answers an open question of [9].

BPrecRSand BClockRSfor Safety-MTL, coFlat-MTL, and MITL. In the proof of
Proposition 2, if S actually halts, the number of messages present in the channel
during the (unique) computation is bounded by a number N . It follows that
the strategy of C can be implemented as a bounded-precision controller (with
precision (m,K) = (1, 1) and N clocks) or a bounded-clocks controller (with
precision (m,K) = (1

N , 1) and a single clock). Corollary 1 therefore holds also
for the bounded-precision and bounded-clocks cases, and BPrecRS�

d(MITL) and
BClockRS�

d(MITL) are undecidable. By further modifying the formulas used in
the proof of Proposition 2, we show that the undecidability indeed holds even
when we allow only unary non-strict modalities with lower-bound constraints and
require the constraints to be exclusively strict or non-strict, hence BPrecRS�

d and
BClockRS�

d are undecidable too on Open-MITLns[♦∞] and Closed-MITLns[♦∞].
This entails undecidability in the undesired specifications case because the nega-
tion of an Open-MITLns[♦∞] is a Closed-MITLns[♦∞] formula and vice-versa.
Finally, we can extend our proofs to the infinite words case, hence:

Theorem 2. RSb
s(L), IRSb

s(L), BPrecRSb
s(L) and BClockRSb

s(L) are undecidable
for L ∈ {Open-MITLns[♦∞],Closed−MITLns[♦∞]}, s ∈ {u, d} and b ∈ {�, ω}.
This result extends the previous undecidability proofs of [11] (RSω

d (ECL) is unde-
cidable), and of [12] (IRS�

d(TA) and IRS�
u(TA) are undecidable). In light of these

previous works, our result is somewhat surprising as the undecidability proof
in [12] is via a reduction from the universality problem for timed automata, yet
this universality problem becomes decidable when all constraints are strict [15].

Finally, it remains to handle the cases of Safety-MTL and coFlat-MTL. Con-
trary to the case of MTL, the infinite-word satisfiability problem is decidable for
Safety-MTL [16] and the infinite-word model-checking problem is decidable for
both Safety-MTL [16] and coFlat-MTL [5]. Nevertheless, our synthesis problems
remain undecidable for these fragments. In particular, the result on Safety-MTL
answers an open question of [4] negatively:

Theorem 3. RSb
s(L), IRSb

s(L), BPrecRSb
s(L) and BClockRSb

s(L) are undecidable
for L ∈ {Safety-MTL, coFlat-MTL}, s ∈ {u, d} and b ∈ {�, ω}.

Real-Time Synthesis is Hard! 117

4 Bounded-Resources Synthesis for MITL Properties

We have now characterised rather precisely the decidability border for MITL
synthesis problems. In light of these results, we focus now on BResRS�

d(MITL)
(since MITL is closed under complement, one can derive an algorithm for
BResRS�

u(MITL) from our solution). Recall that the algorithm of D’Souza and
Madhusudan [12], associated with the translation of MITL into TA [2] yields a
3EXPTIME procedure for these two problems. Unfortunately this procedure is
unlikely to be amenable to efficient implementation. This is due to the transla-
tion from MITL to TA and the need to determinise a region automaton, which
is known to be hard in practice. On the other hand, Bouyer et al. [4] present a
procedure for BResRS�

d(MTL) (which can thus be applied to MITL requirements).
This algorithm is on-the-fly, in the sense that it avoids, if possible to build a full
automaton for the requirement; and thus more likely to perform well in practice.
Unfortunately, being designed for MTL, its running time can only be bounded
above by a non-primitive recursive function. We present now an algorithm for
BResRS�

d(MITL) that combines the advantages of these two previous solutions: it
is on-the-fly and runs in 3EXPTIME. To obtain an on-the-fly algorithm, Bouyer
et al. use one-clock alternating automata (OCATA) instead of TA to represent
the MITL requirement. We follow the same path, but rely on the newly intro-
duced interval-based semantics [7] for these automata, in order to mitigate the
complexity. Let us now briefly recall these two basic ingredients.

OCATA and Interval Semantics. Alternating timed automata [16] extend
(non-deterministic) timed automata by adding conjunctive transitions. Intu-
itively, conjunctive transitions spawn several copies of the automaton that run
in parallel from the target states of the transition. A word is accepted iff all
copies accept it. An example is shown in Fig. 3, where the conjunctive transition
is the hyperedge starting from �0. In the classical semantics, an execution of
an OCATA is a sequence of set of states, named configurations, describing the
current location and clock valuation of all active copies. For example, a prefix
of execution of the automaton in Fig. 3 would start in {(�0, 0)} (initially, there
is only one copy in �0 with the clock equal to 0); then {(�0, 0.42)} (after let-
ting 0.42 time units elapse); then {(�0, 0.42), (�1, 0)} (after firing the conjunctive
transition from �0), etc. It is well-known that all formulas ϕ of MTL (hence, also
MITL) can be translated into an OCATA Aϕ that accepts the same language
[16] (with the classical semantics); and with a number of locations linear in the
number of subformulas of ϕ. This translation is thus straightforward. This is the
key advantage of OCATA over TA: the complexity of the MITL formula is shifted
from the syntax to the semantics—what we need for an on-the-fly algorithm.

Then; in the interval semantics [7], valuations of the clocks are not points
anymore but intervals. Intuitively, intervals are meant to approximate sets of
(punctual) valuations: (�, [a, b]) means that there are clock copies with valuations
a and b in �, and that there could be more copies in � with valuations in [a, b].
In this semantics, we can also merge two copies (�, [a1, b1]) and (�, [a2, b2]) into
a single copy (�, [a1, b2]) (assuming a1 � b2), in order to keep the number of

118 T. Brihaye et al.

�0 �1

b

a y := 0

a

y � 1, b

Fig. 3. An OCATA (with single clock y) accepting the language of �(a ⇒ ♦�1b).

clock copies below a fixed threshold K. It has been shown [7] that, when the
OCATA has been built from an MITL formula, the interval semantics is sufficient
to retain the language of the formula, with a number of copies which is at most
doubly exponential in the size of the formula.

Sketch of the Algorithm. Equipped with these elements, we can now sketch
our algorithm for BResRS�

d(MITL). Starting from an MITL formula ϕ, a plant P
and a granularity μ = (X,m,K), we first build, in polynomial time, an OCATA
A¬ϕ accepting L(¬ϕ). Then, we essentially adapt the technique of Bouyer et al.
[4], relying on the interval semantics of OCATA instead of the classical one. This
boils down to building a tree that unfolds the parallel execution of A¬ϕ (in the
interval semantics), P and all possible actions of a μ-granular controller (hence
the on-the-fly algorithm). Since the granularity is fixed, there are only finitely
many possible actions (i.e., guards and resets on the controller clocks) for the
controller at each step. We rely on the region construction to group the infinitely
many possible valuations of the clocks into finitely many equivalence classes that
are represented using ‘region words’ [16]. The result is a finitely branching tree
that might still have infinite branches. We stop developing a branch once a global
configuration (of A¬ϕ, P, and the controller) repeats on the branch. By the region
construction and the interval semantics, this will happen on all branches, and we
obtain a finite tree of size at most triply exponential. This tree can be analysed
(using backward induction) as a game with a safety objective for the controller:
to avoid the nodes where P and A¬ϕ accept at the same time. The winning
strategy yields, if it exists, a correct controller.

Experimental Results. We have implemented our procedure in Java, and
tested it over a benchmark related to a scheduling problem, inspired by an
example of [9]. This problem considers n machines, and a list of jobs that must

Table 1. Experimental results on the scheduling problem: realisable instances on the
left, non-realisable on the right.

T n # clocks exec. time (sec) / #nodes
1 1 0 46 / 52
1 1 1 199 / 147
1 1 2 4,599 / 1,343
2 2 1 2,632 / 645
2 2 2 18,453 / 2,358
3 3 1 182,524 / 2,297
3 3 2 >5min
4 4 0 54,893 / 667
4 4 1 >5min

T n # clocks exec. time (sec) / #nodes
2 1 0 77 / 84
2 1 1 824 / 311
2 1 2 3,079 / 1,116
3 2 1 17,134 / 1698
3 2 2 >5min
4 3 0 10,621 / 540
4 3 1 >5min

Real-Time Synthesis is Hard! 119

be assigned to the machines. A job takes T time units to finish. The plant
ensures that at least one time unit elapses between two job arrivals (which are
uncontrollable actions). The specification asks that the assignment be performed
in 1 time unit, and that each job has T time units of computation time. We tested
this example with T = n, in which case the specification is realisable (no matter
the number of clocks, which we make vary for testing the prototype efficiency),
and with T = n + 1, in which case it is not. Table 1 summarises some of our
results.

These results show that our prototypes can handle small but non-trivial exam-
ples. Unfortunately—as expected by the high complexities of the algorithm—they
do not scale well. As future works, we will rely on the well-quasi orderings defined
in [4] to introduce heuristics in the spirit of the antichain techniques [13]. Sec-
ond, we will investigate zone-based versions of this algorithm to avoid the state
explosion which is inherent to region based techniques.

References

1. Alur, R., Dill, D.L.: A theory of timed automata. T.C.S. 126(2), 183–235 (1994)
2. Alur, R., Feder, T., Henzinger, T.A.: The benefits of relaxing punctuality. J. ACM

43(1), 116–146 (1996)
3. Bohy, A., Bruyère, V., Filiot, E., Jin, N., Raskin, J.-F.: Acacia+, a tool for LTL

synthesis. In: Madhusudan, P., Seshia, S.A. (eds.) CAV 2012. LNCS, vol. 7358, pp.
652–657. Springer, Heidelberg (2012)

4. Bouyer, P., Bozzelli, L., Chevalier, F.: Controller synthesis for MTL specifications.
In: Baier, C., Hermanns, H. (eds.) CONCUR 2006. LNCS, vol. 4137, pp. 450–464.
Springer, Heidelberg (2006)

5. Bouyer, P., Markey, N., Ouaknine, J., Worrell, J.: The cost of punctuality. In: LICS
2007, pp. 109–120. IEEE (2007)

6. Brand, D., Zafiropulo, P.: On communicating finite state machines. J. ACM 30,
323–342 (1983)

7. Brihaye, T., Estiévenart, M., Geeraerts, G.: On MITL and alternating timed
automata. In: Braberman, V., Fribourg, L. (eds.) FORMATS 2013. LNCS, vol.
8053, pp. 47–61. Springer, Heidelberg (2013)

8. Brihaye, T., Estiévenart, M., Geeraerts, G., Ho, H.-M., Monmege, B., Sznajder,
N.: Real-time synthesis is hard! (full version) (2016). arXiv:1606.07124

9. Bulychev, P.E., David, A., Larsen, K.G., Li, G.: Efficient controller synthesis for a
fragment of MTL0,∞. Acta Informatica 51(3–4), 165–192 (2014)

10. de Alfaro, L., Faella, M., Henzinger, T.A., Majumdar, R., Stoelinga, M.: The ele-
ment of surprise in timed games. In: Amadio, R.M., Lugiez, D. (eds.) CONCUR
2003. LNCS, vol. 2761, pp. 144–158. Springer, Heidelberg (2003)

11. Doyen, L., Geeraerts, G., Raskin, J.-F., Reichert, J.: Realizability of real-time
logics. In: Ouaknine, J., Vaandrager, F.W. (eds.) FORMATS 2009. LNCS, vol.
5813, pp. 133–148. Springer, Heidelberg (2009)

12. D’Souza, D., Madhusudan, P.: Timed control synthesis for external specifications.
In: Alt, H., Ferreira, A. (eds.) STACS 2002. LNCS, vol. 2285, pp. 571–582. Springer,
Heidelberg (2002)

13. Filiot, E., Jin, N., Raskin, J.-F.: An antichain algorithm for LTL realizability. In:
Bouajjani, A., Maler, O. (eds.) CAV 2009. LNCS, vol. 5643, pp. 263–277. Springer,
Heidelberg (2009)

http://arxiv.org/abs/1606.07124

120 T. Brihaye et al.

14. Koymans, R.: Specifying real-time properties with metric temporal logic. Real-
Time Syst. 2(4), 255–299 (1990)

15. Ouaknine, J., Worrell, J.B.: Universality and language inclusion for open and closed
timed automata. In: Maler, O., Pnueli, A. (eds.) HSCC 2003. LNCS, vol. 2623, pp.
375–388. Springer, Heidelberg (2003)

16. Ouaknine, J., Worrell, J.: On the decidability and complexity of metric temporal
logic over finite words. LMCS 3(1), 1–27 (2007)

17. Pnueli, A., Rosner, R.: On the synthesis of an asynchronous reactive module. In:
Ausiello, G., Dezani-Ciancaglini, M., Ronchi Della Rocca, S. (eds.) ICALP 1989.
LNCS, vol. 372, pp. 652–671. Springer, Heidelberg (1989)

18. Raskin, J.-F.: Logics, automata and classical theories for deciding real time. Ph.D.
thesis, FUNDP (Belgium) (1999)

	Real-Time Synthesis is Hard!
	1 Introduction
	2 Reactive Synthesis of Timed Properties
	3 BPrecRS and BClockRS are Undecidable
	4 Bounded-Resources Synthesis for MITL Properties
	References

