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Abstract. Cyber-physical systems are often hybrid consisting of both
discrete and continuous subsystems. The continuous dynamics in cyber-
physical systems could be noisy and the environment in which these
stochastic hybrid systems operate can also be uncertain. We focus on
multimodal hybrid systems in which the switching from one mode to
another is determined by a schedule and the optimal finite horizon control
problem is to discover the switching schedule as well as the control inputs
to be applied in each mode such that some cost metric is minimized over
the given horizon. We consider discrete-time control in this paper. We
present a two step approach to solve this problem with respect to convex
cost objectives and probabilistic safety properties. Our approach uses a
combination of sample average approximation and convex programming.
We demonstrate the effectiveness of our approach on case studies from
temperature-control in buildings and motion planning.

1 Introduction

Hybrid systems can be used to model cyber-physical systems with both discrete
and continuous components. Determining a low-cost strategy to control a hybrid
system to complete an objective while satisfying a set of safety constraints is a
common design challenge in cyber-physical systems. Further, the system dynam-
ics are often noisy in practice due to inherent uncertainty in physical plant as
well as modeling approximations. This can cause the system to violate any qual-
itative Boolean constraints under extreme situations which happen with very
low probability. For example, an autonomous airborne vehicle might have noisy
dynamics due to air drag in strong winds. Hence, only a probabilistic safety
guarantee of not colliding with obstacles is possible. Furthermore, the safety
constraints themselves could have uncertainty. For example, the obstacle map
perceived by an autonomous vehicle could be noisy due to sensor inaccuracies or
due to the presence of other mobile agents whose position is only approximately
known. Several other applications such as efficient energy management of build-
ings and robot-assisted surgery share these characteristics due to uncertainties
in process dynamics, sensor data and environment state. These uncertainties, in
addition to the mixed continuous and discrete nature of multimodal hybrid sys-
tems, make the task of determining an optimal control strategy for the system
extremely challenging.
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In this paper, we address this challenge and present a novel approach to the
synthesis of low-cost control for stochastic linear hybrid systems. We focus on
hybrid systems with linear dynamics and a fixed time horizon. The synthesized
controller is a discrete-time controller. Our approach uses chance constrained
programming [37] to find a low-cost control strategy while satisfying probabilis-
tic safety constraints. Directly solving the chance constrained programs using
standard single-shot sampling techniques is impractical for hybrid systems due
to the large dimension of the optimization problem. Further, sampling based
approaches do not provide any guarantees on satisfaction of constraints, and
thus, the generated system might violate probabilistic safety requirements. We
split the task of synthesizing optimal control for hybrid systems into two steps.
The first step uses constant control approximation and sampling over a small
parameter space to determine a low-cost mode sequence and the schedule for
switching between different modes in the sequence. The second step synthesizes
control inputs in each mode to optimally connect the entry and exit states in each
mode. The chance constrained program in the second phase is reduced to a prob-
abilistically conservative but efficiently solvable convex program. This theoretical
reduction is key to making our approach practical and scalable. The proposed
approach provides a balance between efficiency and optimality (demonstrated
through case-studies) while guaranteeing the satisfaction of probabilistic safety
properties, and we apply it to a set of case studies from temperature control in
buildings and motion planning under uncertainty for autonomous vehicles.

2 Related Work

Automated synthesis of controllers for continuous and hybrid dynamical systems
has been widely studied [4,14,44]. Synthesis of continuous controllers and dis-
crete switching logic controllers for noise-free hybrid systems [5,17,19,27,38]
is also an active area of research. The control of stochastic systems has
been extensively investigated beginning with the work of Pontryagin [33] and
Bellman [7]. Its applications include optimal guidance for spacecrafts [3] and
flight-simulators [6]. Probabilistic reachability of discrete-time stochastic hybrid
systems has also been studied [10,24,34,36]. The focus has been on the safety
problem where the goal is to determine a control policy that maximizes the
probability of remaining within a safe set during a finite time horizon [2].
This safe control problem is reformulated as a stochastic optimal control
problem with multiplicative cost for a controlled Markov chain. Dynamic pro-
gramming is then used to solve this problem. The solution to value iteration
equations obtained using the dynamic programming approach cannot be writ-
ten out explicitly. In practice, the safety problem is solved using approximation
methods. Under appropriate continuity assumptions on the transition probabil-
ities that characterize the stochastic hybrid systems dynamics, [1] proposes a
numerical solution obtained by standard gridding scheme that asymptotically
converges as the gridding scale approaches zero. The computation burden asso-
ciated with this approach makes it less scalable and not applicable to realistic



On Optimal Control of Stochastic Linear Hybrid Systems 71

situations. This problem is partially alleviated in [22] where neural approxi-
mation of the value function is used to mitigate the curse of dimensionality
in approximate value iteration algorithm. The goal of these techniques is not
optimization of a cost function against probabilistic constraints but instead, the
maximization of the probability of staying within a safety condition described
by deterministic constraints.

An approximate linear programming solution to the probabilistic invariance
problem for stochastic hybrid systems is proposed in [29]. In [12], the authors
approximate the constraints in a feedback linearized model of an aircraft so
as to make them convex, thereby enabling on-line usage of model predictive
control. While we also extract a convex problem, it is based not on approximation
of constraints but rather on a practical assumption on the probability bound
in safety constraints. In [35], the authors propose a randomized approach to
stochastic MPC, for linear systems subject to probabilistic constraints that have
to be satisfied for all the disturbance realizations except with probability smaller
than a given threshold. At each time step, they solve the finite-horizon chance-
constrained optimization problem by first sampling a random finite number of
disturbance realizations, and then replacing the probabilistic constraints with
hard constraints associated with these extracted realizations only. In this work,
we avoid the computationally expensive step of sampling a large number of
disturbance realizations or constraints used in these approaches.

The optimization of control for satisfaction of probabilistic constraints can
be naturally modeled as chance constrained programs [11,30]. It has been used
in various engineering fields that require reasoning about uncertainty such as
chemical engineering [25] and artificial intelligence [41]. A detailed survey of
existing literature on chance constrained programming and different approaches
to solve this problem is given in [37]. Our work relies on solving the chance
constrained finite-horizon control problem for the case of uncertainty modeled
as Gaussian distribution and continuous dynamics in different modes of hybrid
system restricted to being linear. One of the key challenge to this problem arises
from evaluating an integral over a multivariate Gaussian. There is no closed form
solution to this problem. A table lookup based method to evaluate this integral
is possible for univariate Gaussians but the size of the table grows exponentially
with the number of variables. Approximate sampling techniques [8,25,26] and
conservative bounding methods [9,39] have been proposed to solve this problem.
While the number of samples required in sampling techniques grow exponentially
with the number of Gaussian variables, the conservative approach also suffers
from increased approximation error with an increase in the number of variables.

A conservative ellipsoidal set bounding approach is used to satisfy chance
constraints in [39]. This approach finds a deterministic set such that the state
is guaranteed to be in the set with a certain probability. An alternative app-
roach based on Boole’s inequality is proposed in [9,31]. Bounding approaches
tend to be over-conservative such that the true probability of constraint vio-
lation is far lower than the specified allowable level. Further, these approaches
have been applied only in the context of optimal control of continuous dynamical
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systems. A two-stage optimization approach is proposed in [32] for continuous
dynamical systems. Our work uses a hybrid approach of combining sampling
and convex programming to find a low cost control of hybrid systems. The sam-
pling approach allows decomposition of hybrid control problem into a set of
continuous control problems by finding the right switching points. The convex
programming provides a scalable efficient solution to finding control parame-
ters for the continuous control problem. This ensures that we achieve a good
trade-off between optimization and scalability while guaranteeing satisfaction of
probabilistic specifications. The use of statistical verification and optimization
techniques for synthesis have also been explored in recent literature [43]. Auto-
matic synthesis of controllers from chance-constraint signal temporal logic [18]
for dynamical systems have also been proposed in literature.

3 Problem Definition

In this section, we formally define the problem of finding optimal finite time hori-
zon control for discrete-time stochastic hybrid systems where the mode switches
are controlled by a schedule. Let us consider a hybrid system consisting of m
modes. A finite parametrization of such a system assuming piecewise constant
control input sequence yields the following: xk+1 = Ajxk + Bjuk + Cjwk, where
j = j1 . . . jM denotes modes from the set ji ∈ [1,m], xk ∈ Rnx is the system
state in nx dimensions, uk ∈ Rnu denotes the nu control inputs and wk ∈ Rnw

denotes nw dimensional Gaussian noise vector wk ∼ N (0, Σw). M is the upper
bound on the number of mode switches. Further, the control inputs lie in a
convex region Fu, that is,

Fu �
Ng∧

i=1

(gT
i u ≤ ci);

∧

k

uk ∈ Fu

where Fu is represented as the intersection of Ng half-planes. The state variables
are restricted to be in a convex safe region Fx with a specified probability lower-
bound. This restriction to safe region being convex can be lifted using standard
branch and bound techniques [32].

Fx �
Nh∧

i=1

(hT
i x ≤ bi); Pr(

∧

k

xk ∈ Fx) ≥ 1 − αx

where hT
i x ≤ bi is i-th linear inequality defining the convex region and the

constant αx determines the probabilistic bound on violating these constraints.
The dynamics in each mode of the hybrid systems is described using stochastic
differential equations. The time spent in each mode is called the dwell-time of
that mode. The sum of the dwell times must be equal to the fixed time horizon
τ . The dwell-times, τ̂ = τ1τ2 . . . τM , can also be restricted to a convex space.
The synthesized control needs to be minimized with respect to a convex cost
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function f(x, u) over the state variables and the control inputs. Since the system
is stochastic, the optimization goal is to minimize the expected cost E[f(x, u)].

The corresponding chance constrained optimization problem is as follows:

min
m1..mM ,u1..uτ ,τ1..τM

Ew,x0 [f(x1..xτ , u1..uτ−1)] subject to

(1) xk+1 = Akxk + Bkuk + Ckwk for 0 ≤ k < τ where Ak = Amj ,Bk = Bmj ,Ck = Cmj

for

j−1∑

i=1

τi ≤ k <

j∑

i=1

τi, 1 < j ≤ M, and Ak =Am1 ,Bk =Bm1 ,Ck = Cm1 , for 0 ≤ k < τ1

w ∼ N (0, Σw), x0 ∼ N (xmean
0 , Σx0), m1 . . . mj is mode sequence and

M∑

i

τi = τ

(2)

Ng∧

i=1

gT
i uk ≤ ci and

Nl∧

i=1

(lTi τ̂ ≤ di) where gT
i , ci, di are given constants.

(3) Pr(

Nh∧

i=1

hT
i xk ≤ bi) ≥ 1 − αx for all 0 ≤ k ≤ τ where hi, bi are given constants.

The minimization is done with respect to following parameters:

• the sequence of modes m1 . . . mM ,
• the control parameters u1 . . . uτ ,
• the vector of dwell-times in each mode τ̂ = 〈τ1 . . . τM 〉.

The following observations highlight the challenges in solving the stochastic
optimization problem described above.

• Firstly, the overall system dynamics is nonlinear due to the discrete switching
between different linear systems.

• Second, the probabilistic safety constraint is not convex even when the dis-
tribution is assumed to be Gaussian. Standard sampling approach [20,37] to
solving such stochastic optimization problem requires sampling in O(nxτm)
dimensions to compute the multidimensional integral needed to evaluate
Pr(∧kxk ∈ Fx) even for a fixed mode sequence.

Thus, solving such a non-convex stochastic optimization problem with a large set
of optimization parameters is not tractable. We address these challenges using
mode-sequence discovery technique previously proposed in literature [15,19] and
a novel two-level optimization approach presented in Sect. 4. Sample average
approximation is used for coarse-level exploration to determine the dwell-times
of each mode. The problem of synthesizing optimal control in each mode is
reduced to a convex program, which in turn can be solved efficiently.

Illustrative Example Application. We consider temperature control in two
interconnected zones where the control objective is to maintain zone temper-
atures within a comfort range and minimize a quadratic cost function of the
control inputs. Let Ck be the aggregate thermal capacitance of the k-th zone,
Ra

1 and Ra
2 represent the thermal resistance of zone walls isolating zone air from
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outside, Toa be the outside ambient temperature, R be the thermal resistance
of the walls separating both zones, T1 and T2 be the perceived air tempera-
ture of the two zones, and P1 and P2 represent the disturbance load of the two
zones induced by solar radiation, occupancy, electrical devices etc. The inputs
uh
1 and uh

2 represent the two heating agents in both zones. The model of system
dynamics is given by the following equations:

C1Ṫ1 = uh
1 +

Toa − T1

Ra
1

+
T2 − T1

R
+ P1

C2Ṫ2 = uh
2 +

Toa − T2

Ra
2

+
T1 − T2

R
+ P2

The system operates in four modes: M1,M2,M3,M4. M1 is the mode when
the zones are occupied and the heater is off, M2 is the mode when the zones are
occupied and the heater is on, M3 is the mode when the zones are unoccupied
and the heater is on, and M4 is the mode when the zones are unoccupied and
the heater is off. We couple the heaters together to reduce the number of modes.
The parameters P1 and P2 are assumed to be identical and their values are:
P{1,2} = Pconst+Pocc in M1,M2 and P{1,2} = Pconst in M3,M4. The control
inputs u1

h and u2
h are non-negative and lie in the [0.5, 8 kW ] range in modes M2

and M3, defined by the physical constraints when the heaters are on. The control
inputs are 0 in modes M1 and M4 when the heaters are off. The parameter values
are based on data gathered from Doe library building in UC Berkeley [40]. The
outside temperature Toa is set using the weather information at UC Berkeley and
the uncertainty in prediction is Gaussian distributed with one standard deviation
of σToa

= 0.71 ◦C. The variable occupancy load Pocc is a Gaussian distribution
with mean 10 kW and standard deviation 0.63 kW . Thus, the uncertainty in
this example is due to the deviation of outside temperature from the weather
prediction, and the variation in occupancy load. The goal of the controller is to
maintain the perceived zone temperature T between 18 and 28 degrees Celsius
when the zones are unoccupied and between 21 and 25 degrees Celsius when the
zones are occupied. The zones are occupied from 7 AM to 5 PM every day, and
the zones are unoccupied for the remaining 14 h. The corresponding optimization
problem is as follows for the mode sequence M1,M2,M3,M4:

min
u,τ1,τ2,τ3,τ4

EP[

τ−1∑

k=0

uT
k uk] subject to

the state xk = (T1, T2) at k-th step is restricted by the dynamics equations presented

earlier, x0 = [22, 22], τ1 + τ2 = 10, τ3 + τ4 = 14, P r(xk ∈ Fx) ≥ 1 − αx, uk ∈ Fu

u = [uh
1 ; uh

2 ], w = [P1; P2; Toa], Fx = [18, 28]2 in M1, M2 and Fx = [21, 25]2 inM3, M4,

Fu = [0.5, 8]2in M2, M3 and [0, 0]2 in M1, M4 modes
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Param Value Param Value Param Value Param Value

C1 1.1e4 J/◦C C2 1.3e4 J/◦C R1 41.67 ◦C/W R2 35.71 ◦C/W

R 35.00 ◦C/W Δt 0.5 hr τ 48 ε 10−4

αx 0.05 τ 48 σToa 0.71 u1
h, u2

h(on) [0.5, 8] kW

Pconst 0.1 kW Pocc N (10, .6) kW

4 Synthesis Approach

First, we perform a high level design space exploration of control space by fix-
ing the control input in each mode to be a constant which intuitively repre-
sents the average input. The number of optimization parameters reduce from
O(τ + M) to O(M) and since the number of modes in the switching sequence
M is usually much smaller than the time horizon τ , we can now use sample
average approximation techniques coupled with existing greedy techniques for
finding mode sequence to solve the optimization problem in the first step. We
use the entry and exit states discovered at the end of the first step to formulate
decomposed chance-constrained problems for each mode of the system. We prove
that these decomposed problems can be conservatively approximated as convex
optimization problems, and thus, solved efficiently. Convexity ensures that any
local minimum of the decomposed problems is also a global minimum. We now
describe each of these two steps in detail.

4.1 Mode Sequence and Optimal Dwell Times

Mode deletion or insertion from an initial guess of mode sequence has been used
in [16,19,21] to synthesize the mode sequence for optimal control of hybrid sys-
tems. We use a similar approach here. We adopt addition of modes proposed in
[16] because it performed better experimentally that other techniques. Theoret-
ical guarantees of this approach with requisite assumptions on the dynamics can
be found in [16]. The approach begins with a mode sequence initialization which
can be just the initial mode as a single-mode sequence. New modes are greedily

Initialize mode sequence m0 with an initial guess or the initial state if no
guesses are available, and i = 0, done = false;
while i <= M and done = false do

For each length(mi) + 1 possible insertion position in the sequence mi,
create a new sequence mijk by adding mode j to the position k ;
Pick m∗ = mijk with the lowest cost fixedModeOpt(mijk) for all j, k;
if fixedModeOpt(m∗) < fixedModeOpt(mi) then

i = i + 1;mi = m∗;
else

done = true ;
end

end

Algorithm 1. Mode Sequence Selection Using Iterative Insertion [16]
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added to the sequence if they reduce the cost. This is continued till either we
reach the maximum number of modes allowed in the sequence or addition of new
modes does not reduce the cost. Let fixedModeOpt(m) denote the cost obtained
for a given fixed mode sequence m , the mode insertion algorithm uses O(Mm)
calls to the optimization routine computing fixedModeOpt to find the low cost
mode sequence as shown below.

In order to compute fixedModeOpt, we modify the chance constrained pro-
gram presented in Sect. 3 by fixing the mode sequence and setting the control
inputs in each mode to be a constant. The revised cost metric for schedule
switched system:

minuμ
1 ..uμ

M ,τ1..τM
Ew,x0 [f(x1..xτ , u1..uτ−1)]

where τi denotes the dwell-time in the i-the mode of the fixed sequence and ui

denotes the constant control input for that mode. The dimension of the opti-
mization problem has been reduced from O(τ + M) to O(M). We can now
use sample average approximation to solve this optimization problem. This is a
standard technique to solve nonlinear stochastic optimization problems. We only
sketch the approach here, and details can be found in textbooks on stochastic
optimization [20,37]. The overall idea in sample average approximation is to use
sampling followed by deterministic optimization. The chance constrained formu-
lation presented earlier can be translated to the standard form:

minx∈X f(x) subject to Pr{G(x, ζ) ≤ 0} ≥ 1 − α [CCP ]

where ζ are the random variables representing noise parameters and dwell time
for externally controlled hybrid systems, and only noise parameters for schedule
controlled systems, f is the optimization function and x includes all the variables
being optimized: the control variables for externally controlled hybrid systems,
and the control variables and dwell times for the schedule controlled systems.
Monte Carlo sampling can be used to generate N samples ζ1, . . . , ζN , and let
q̂N (x) denote the proportional of samples with G(x, ζj) > 0 in the sample. The
sample average approximation of the chance constrained problem has the fol-
lowing form:

minx∈X f(x) subject to q̂N (x) ≤ ε [SAA]

The above problem is a deterministic optimization problem which can be solved
using nonlinear optimization routines in packages such as CPLEX and Gurobi.
The following theorem from [23] relates the solution of this deterministic problem
to the original stochastic version.

Theorem 1 [23]. The solution to sample average approximation of the chance
constrained problem in Equation SAA approaches the solution of the original
problem in Equation CCP with probability 1 as the number of samples (N)
approaches infinity, provided the set X is compact, the cost function f is con-
tinuous and G(x, ·) is measurable.
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Thus, sufficiently sampling the initial states and the noise parameters yields
approximately optimal control parameters u and dwell times in each mode τi.
We now describe how the synthesized control parameters and dwell times can
be used to obtain the entry and exit states for each mode of the stochastic
hybrid system. Since the dynamics is linear, repeated multiplication of the system
matrices (described in [39]) can be used to lift the system dynamics to the
following form: xk = Akx0 + BkUk + CkWk where Uk = [u0u1 . . . uk−1]T is
obtained using the sample average approximation technique described above,
Wk = [w0w1 . . . wk−1]T is the vector of Gaussian noise, and the initial state x0

is a Gaussian distribution. Hence, xk is Gaussian with mean and variance given
by: xμ

k = Akxμ
0 + BkUk + CkW

μ
k , Σxk

= AkΣx0A
T
k + CkΣWk

C
T
k .

The cumulative time Ti is the sum of time spent in modes upto i-th mode
in the fixed mode sequence, that is, Ti =

∑i
j=1 τj for j ≥ 1 and T0 = 0. The

entry-state ini and exit-states outi for each mode i with dwell time τi, are:
ini = xTi−1 and outi = xTi

. Thus, the entry-state ini and exit-state outi are
also Gaussian distributions. We denote their respective means as inμ

i , outμ
i , and

the variances as Σini
, Σouti

.

4.2 Mode Tuning and Optimal Control Inputs

Given the entry and exit state distributions ini and outi, and the dwell time τi

for each mode i, the goal of second step is to find control inputs u such that the
trajectory in mode i starts from ini and exits at outi with minimum cost and
satisfies the probabilistic safety constraint. We define a new distance between
two states d(xi, xj) = (xμ

i −xμ
j )(xμ

i −xμ
j )T +(Σxi

−Σxj
)(Σxi

−Σxj
)T . We revise

the original cost metric f by adding the distance of the state reached at the end
of trajectory from the specified exit state to the cost. The revised cost metric is
f + Md where the constant M is set high enough to force the end state of the
trajectory to be the exit state. Both f and d are convex functions over the same
domain, and hence the revised cost is also convex. We can now formulate the
chance constrained problem for the second step of mode tuning. For each mode,
mode tuning is done separately. The chance constrained program for a mode i
is as follows:

min
uTi−1 ...uTi−1

Ew,x0 [f(xTi−1 . . . xTi
, uTi−1 . . . uTi−1) + Md(xTi

, outi)] subject to

1. xk+1 = Akxk + Bkuk + Ckwk 2.

Ng∧

i=1

gT
i uk ≤ ci

3. P r(
Nh∧

i=1

hT
i xk ≤ bi) ≥ 1 − αx for all Ti−1 ≤ k < Ti

Next, we show that the above chance constrained problem can be solved
using convex programming by a conservative approximation of the probabilistic
constraints as long as the violation probability bound αx < 0.5, that is, the prob-
abilistic constraint is required to be satisfied with a probability more than 0.5.
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This assumption is very reasonable in many applications where the system is
expected to be mostly safe. In practice, the violation probability bounds αx are
often close to zero.

The key challenge in solving the above chance constraint program is due to
constraint (3). The probabilistic safety constraint is not convex. But we show how
to approximate it as a convex constraint. Firstly, let yik denote the projection
of xk on the i-th constraint, that is, yik = hT

i xk. A,B,C are fixed matrices
for dynamics in a given mode. Since xk is Gaussian distribution, yik is also a
Gaussian distribution with the following mean and variance:

yμ
ik = hT

i Akxμ
0 + hT

i BkUk + hT
i CkW

μ
k = hT

i

t−1∑

i=0

At−i−1Bui + hT
i Atxμ

0

Σyik = hT
i AkΣx0A

T
k hi + hT

i CkΣWkC
T
k hi = hT

i (

k−1∑

i=0

AiΣx0(A
T )i + AkΣwk (AT )k)hi

Thus, the probabilistic constraint can be rewritten as:

3′. P r(
Nh∧

i=1

yik ≤ bi) ≥ 1 − αx for all Ti−1 ≤ k < Ti

We can use Boole’s inequality [31] to conservatively bound the above proba-
bilistic constraint. The probability of union of events is at most the sum of the

probability of each event, that is, Pr(
Nh∨

i=1

yik > bi) ≤
Nh∑

i=1

Pr(yik > bi). Thus,

3
′′

. Pr(

Nh∧

i=1

yik ≤ bi)=1 − Pr(

Nh∨

i=1

yik > bi) ≥ 1 −
Nh∑

i=1

Pr(yik > bi) = 1 −
Nh∑

i=1

(1 − Pr(yik ≤ bi))

The above constraint can be now decomposed into univariate probabilistic con-
straints.

3.1 Pr(yik ≤ bi) ≥ 1 − αik
x for all Ti−1 ≤ k < Ti, 1 ≤ i ≤ Nh

3.2
Nh∑

i=1

αik
x ≤ αx for all Ti−1 ≤ k < Ti

We can show that the univariate probabilistic constraints over Gaussian vari-
ables in 3.1 is a linear constraint if the violation probability bound is smaller
than 0.5.

Lemma 1. Pr(yik ≤ bi) ≤ 1 − αik
x for a Gaussian variable yik and αik

x < 0.5 is
a linear constraint.

Proof. yik is a Gaussian random variable. So,

Pr(yik ≤ bi) ≤ 1 − αik
x iff yμ

ik ≥
√

2Σyik
erf−1(1 − 2αik

x )
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when αik
x < 0.5. erf−1 is the inverse of error function erf for Gaussian distribu-

tion: erf(x) = 2/
√

π
∫ x

0
e−t2dt. From Eq. 2, Σyik

does not depend on uk. So, the
right-hand side of the inequality can be computed using Maclaurin series or a look-
up table beforehand. Let this value be some constant δik. From Eq. 1, the left-hand
side yμ

ik is linear in the control inputs ui. So, the probabilistic constraint is equiv-
alent to the following linear constraint: hT

i

∑t−1
i=0 At−i−1Bui + hT

i Atxμ
0 ≥ δik 
�

Theorem 2. If αx < 0.5, then the conservative chance-constrained formulation
above can be solved as a deterministic convex program.

Proof.
Nh∑

i=1

αik
x ≤ αx and αik

x are probability bounds and hence, must be non-

negative. Consequently, αik
x < 0.5 for all i, k if αx < 0.5. Consequently, all

constraints in (3.1) are linear constraints using Lemma 1. We can conservatively
choose αik

x = αx/Nk and the overall optimization problem becomes a convex
optimization problem which can be optimally solved using deterministic opti-
mization techniques. 
�

In practice correctness constraints are modelled as likely probabilistic con-
straints with probability at least 0.5, and hence αi,j < 0.5.

Thus, solving a convex program yields the control inputs for each mode of
the hybrid system such that the cost is minimized and the system dynamics
starts from the entry state and ends in the exit state found in the first step of
our approach. Although our approach uses convex programming in the second
step, we can not make guarantees of global optimality for the overall control
synthesized by our approach. Nonetheless, the proposed method in this section
presents a more systematic alternative to existing sampling based approaches
for solving a very challenging problem of designing optimal control for stochastic
hybrid systems as illustrated in Sect. 5.

5 Case Studies

In this section, we present results on two other case-studies in addition to the
example application presented in Sect. 3. We use quadratic costs in the case-
studies and so, we can compare results obtained using the proposed method with
the results obtained by using probabilistic particle control [8] for mode selection
followed by linear quadratic Gaussian (LQG) control [42] to generate the control
inputs for each mode. But in general, the proposed approach (CVX) can be
used with any convex cost function while LQG control based approach (LQG)
are applicable only when the cost is quadratic. We consider three metrics for
comparison: the satisfaction of probabilistic constraints, the cost of synthesized
controller and the runtime of synthesis.
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5.1 Two Zone Temperature Control

In Fig. 1, we compare the quality of control obtained using our approach and
that obtained directly from sampling. The comparison is done using 100 different
simulation runs of the system. The proposed approach (CVX) took 476 s to
solve this problem while the LQG took 927 s. The controller synthesized by
CVX satisfies the probabilistic constraint with a probability of 98.9 % which is
greater than required 95 %. On the other hand, the controller synthesize using
LQG satisfied the probabilistic constraint with a probability of 92 %. Further,
we observe that the proposed approach is able to exploit switching between the
heater being on and off when the zones are occupied to produce a more efficient
controller with 0.92 times the cost of controlled obtained using sample average
approximation.

(a) Using Our Approach CVX (b) Using LQG

Fig. 1. System behavior: Temperature vs Time

5.2 HVAC Control

The HVAC system is used to maintain air quality and temperature in a building.
It consists of air handling units (AHUs) and variable air volume (VAV) boxes
(see [28] for details). The temperature dynamics for a single zone is:

Tk+1 =
q=2∑

q=0

(p1,qT
oa
k−q + p2,qRk−q) + p3(T s

k − Tk)ṁk +
q=2∑

q=0

(p4,qTk−q) + p6 + pocc

where Tk is the temperature of the zone at time k, ṁk is the supply air mass flow
rate, T s

k is the supply air temperature, Rk denotes the solar radiation intensity
and pocc denotes the noise due to occupancy. All parameters were taken from
the model in [28]. The system dynamics can be linearized by introducing deter-
ministic virtual inputs us

k = ṁkT s
k and uz

k = ṁkTk. The goal is to minimize
power consumed by the HVAC system while ensuring temperature stays within
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Fig. 2. Schematics of HVAC showing AHU and VAV

(a) Runtime (b) Cost (c) Probability of violation

Fig. 3. Comparison between proposed approach (CVX) and LQG for 1–5 zones

comfortable range. The probabilistic safety property modeling the comfort con-
straints is the same as Sect. 3. We scale the example from just a single zone to
five zones. CVX consistently outperforms LQG in terms of cost and runtime. It
is probabilistically more conservative. We compare the runtime, controller cost
and probability of violation obtained through 100 simulations in Fig. 3 (Fig. 2).

5.3 Motion Planning

We consider motion planning for an autonomous underwater vehicle moving
described in [13] with two modes: move and turn. The heading in the mode
move is constant while the propeller maintains a constant speed in the mode
turn. In practice, the heading and speed control are not perfect and we model
the uncertainty using Gaussian distribution. The system dynamics in the two
modes: move and turn, are: ε1,2 = N (0.5, 0.01), ε3 = N (0.02, 0.002), 0 ≤
v ≤ 10 in the mode move; pk is the control input. ε1,2 = N (0.2, 0.01), ε3 =
N (0.01, 0.002) 0 ≤ ω ≤ 0.5 in the mode turn; qk is the control input.
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(a) Obstacle Map 1 (b) Obstacle Map 2

Fig. 4. Motion planning

We consider two different obstacle maps shown in Fig. 4. We require that the
system state is out of obstacle zone with a probability of 95 %. The trajectory
synthesized by our approach is shown in blue and the one synthesized by sample
average approximation is shown in red. We simulate the system 200 times to test
the robustness of paths. For the first obstacle map, the trajectories synthesized by
both approaches are close to each other. LQG is able to synthesize this trajectory
in 38 s compared to 98 s taken by our approach. For the second obstacle map,
our approach takes 115 s but LQG computes a probabilistically unsafe trajectory
even after 182 s.

6 Conclusion

In this paper, we proposed a two-step approach to synthesize low-cost control
for stochastic hybrid system such that it satisfies probabilistic safety properties.
The first step uses sample average approximation to find switching sequence of
modes and the dwell-times. The second step is used to tune the control inputs in
each mode using convex programming. The experimental evaluation illustrates
the effectiveness of our approach.
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37. Prékopa, A.: Stochastic Programming, vol. 324. Springer Science & Business
Media, New York (2013)

38. Sastry, S.S.: Nonlinear Systems: Analysis, Stability, and Control. Interdisciplinary
Applied Mathematics. Springer, New York (1999). Numrotation dans la coll. prin-
cipale

39. Van Hessem, D., Scherer, C., Bosgra, O.: LMI-based closed-loop economic opti-
mization of stochastic process operation under state and input constraints. In:
2001 Proceedings of the 40th IEEE Conference on Decision and Control, vol. 5,
pp. 4228–4233. IEEE (2001)

40. Vichik, S., Borrelli, F.: Identification of thermal model of DOE library. Technical
report, ME Department, Univ. California at Berkeley (2012)

41. Vitus, M.P., Tomlin, C.J.: Closed-loop belief space planning for linear, Gaussian
systems. In: ICRA, pp. 2152–2159. IEEE (2011)

42. Xue, D., Chen, Y., Atherton, D.P.: Linear feedback control: analysis and design
with MATLAB, vol. 14. SIAM (2007)

43. Zhang, Y., Sankaranarayanan, S., Somenzi, F.: Statistically sound verification and
optimization for complex systems. In: Cassez, F., Raskin, J.-F. (eds.) ATVA 2014.
LNCS, vol. 8837, pp. 411–427. Springer, Heidelberg (2014)

44. Zhu, F., Antsaklis, P.J.: Optimal control of switched hybrid systems: a brief survey.
Discrete Event Dyn. Syst. 23(3), 345–364 (2011). ISIS


	On Optimal Control of Stochastic Linear Hybrid Systems
	1 Introduction
	2 Related Work
	3 Problem Definition
	4 Synthesis Approach
	4.1 Mode Sequence and Optimal Dwell Times
	4.2 Mode Tuning and Optimal Control Inputs

	5 Case Studies
	5.1 Two Zone Temperature Control
	5.2 HVAC Control
	5.3 Motion Planning

	6 Conclusion
	References


