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Introduction

The purpose of this work is applying the MGFM [1], an

effective multi-material treating technique, to decouple the

fluid elastic-perfectly plastic solid interaction in the Eulerian

coordinate system. The key element of the method is solving

the multi-material Riemann problem defined at the interface.

But the feature of solid strength, the resistance of the mate-

rial to shear distortion, which makes it different from the

fluid, will result in a leading elastic wave and a trailing

plastic wave propagating simultaneously in the solid

medium when it is under certain strong impact and compli-

cate the fluid-solid interface wave analysis [2].

To deal with the multi-material interaction, approaches

used are classified into two categories in general. Front

capturing is rather apt to handle large deformation problems

and relatively straightforward to extend to high dimensions

[3–6]. However, numerical inaccuracies and nonphysical

oscillations are inevitable. In contrast, front tracking can

impose accurate boundary conditions at the interface, but

entanglement of the Lagrangian meshes and quite complex

extension to high dimensions come to its drawbacks

[7, 8]. To combine the advantages of front capturing and

front tracking, Fedkiw proposed a non-oscillatory Eulerian

approach to treat the multi-material interface named the

ghost fluid method (GFM) [9]. GFM considers the situations

that pressure and velocity are continuous across the inter-

face. However, when pressure and velocity suffer a sudden

jump, for example, a strong shock impacting on the inter-

face, the results will be unacceptable. To handle the interac-

tion correctly in this case, Liu et al. modified the original

GFM via solving a multi-material Riemann problem at the

interface instead of pressure and velocity assignment and

entropy extrapolation used in GFM. MGFM works effec-

tively and efficiently in various multi-material applications,

even in very challenging problems. Compared with other

prevalent techniques, the immersed boundary method (IBM)

and its variation like immersed interface method (IIM)

employed to decouple the fluid-structure interaction (FSI),

which needs to add forcing terms to the governing equations

at the moving immersed boundary, MGFM is more conve-

nient and direct by solving the Riemann problem. Hybrid

method of smoothed particle hydrodynamics (SPH) method

and finite element method (FEM) also has taken attempt to

high-velocity impact problem. But the shortages of low

resolution for the SPH side and inability of large mesh

distortion for the FEM side are inescapable, whereas finite

difference (FD)-based MGFM can achieve high-resolution

and large distortion instinctively.

Governing Equations

The governing equations for the one-dimensional compress-

ible fluid are the Euler equations [10], neglecting the effects

of body forces, viscous stresses, and heat conductivity:

∂U
∂t

þ ∂F Uð Þ
∂x

¼ 0;

where

U ¼
ρ
ρu
E

0
@

1
A, F Uð Þ ¼

ρu
ρu2 þ p
Eþ pð Þu

0
@

1
A:

Here, the variables are the density ρ, the x-direction velocity

u, the pressure p, and the total energy per unit volume E. For

closure of the above systems, equations of state are required.

The γ� law for the compressible gas is
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p ρ; eð Þ ¼ γg � 1
� �

ρe;

where γg is the specific heat ratio for the particular gas and is
set equal to 1.4 for the air. The Tait equation of state for the

compressible water is

p ρ; eð Þ ¼ γw � 1ð Þρe� γw B� Að Þ;

where A, B, and the specific heat ratio for water γw are

constants, A ¼ 105 Pa, B ¼ 3:31� 108 Pa, and γw ¼ 7:15.

The one-dimensional governing equations to describe the

elastic-perfectly plastic solid [11–13] are

∂V
∂t

þ ∂G Vð Þ
∂x

¼ 0;

where

V ¼
ρ
ρu
E

0
@

1
A, G Vð Þ ¼

ρu
ρu2 � σx
E� σxð Þu

0
@

1
A:

Here, σx is the total stress in the x-direction. The total stress

is decomposed into two parts, the hydrostatic component

p and the deviatoric component sx associated with the resis-

tance of the material to shear distortion:

σx ¼ �pþ sx:

And the hydrostatic pressure is assumed to equip with the

“stiffened-gas” equation of state:

p ρ; eð Þ ¼ c20 ρ� ρ0ð Þ þ γs � 1ð Þρe;

where c0 is the unshocked sound speed, ρ0 is the reference

density, and γs is the Grüneisen gamma. The von Mises yield

condition is imposed to judge the material status. The solid is

in the elastic region if the von Mises yield condition is

satisfied:

s2x �
2

3
Y0

� �2

:

Here, Y0 is the yield strength of the material in simple

tension. Hooke’s law is utilized to describe the elastic rela-

tionship:

_p ¼ K
_ρ

ρ
, _s x ¼ 2μ _ε x þ 1

3

_ρ

ρ

� �
;

where K is the bulk modulus, μ is the shear modulus, and _ε x

is the strain rate in the x-direction. If the von Mises yield

condition is violated, perfectly plastic flow occurs:

sx ¼ �2

3
Y0:

Note that the material yields in tension if sx > 0 and in

compression if sx < 0.

Fluid-Solid Riemann Solver

Suppose that the fluid and the elastic-perfectly plastic solid

are located at the left and right sides of the interface, respec-

tively; thus, the one-dimensional fluid elastic-perfectly plas-

tic solid Riemann problem in the vicinity of the interface can

be given as, in the Euler-Euler coordinate system,

∂U
∂t

þ ∂F Uð Þ
∂x

¼ 0, with Ujt¼0 ¼ UL for x < x0,

∂V
∂t

þ ∂G Vð Þ
∂x

¼ 0, with Vjt¼0 ¼ VR for x > x0:

8><
>:

Here, x0 is the interface location. UL and VR are the initial

constant conservation vectors of the fluid and the solid

media. For one-dimensional gas-gas or gas-water multi-

material Riemann problem, study finds that the solution

structure is similar to the pure gas Riemann problem [14].

In this case, the contact discontinuity is exactly the multi-

material interface, and there will be one nonlinear wave,

either shock wave or rarefaction wave, transmitting in each

medium. However, because of the different behavior within

the elastic region and the perfectly plastic region of the solid

model, it could be two nonlinear waves, a leading elastic

wave and a trailing plastic wave of the same type that

propagate in the solid medium when the solid is undergoing

elastic up to perfectly plastic deformation. To simulate the

high-speed impact problem, we concentrate the case that

both the nonlinear waves are shock waves when the solid

is under compression. Thus, the solution structure of the

fluid elastic-perfectly plastic Riemann problem consists of

five constant states (UL, U* L, V* R, V2, VR), where V2 is the

state at the elastic limit in the solid. Otherwise, the solution

structure consists of four states (UL, U* L, V* R, VR)

connected by three elementary waves when the solid is

undergoing elastic deformation. In any event, the wave in

the left fluid can be either a shock wave or a rarefaction wave

and the waves in the right solid are always shock waves. The

core part of the multi-material Riemann solver is the compu-

tational method of the pressure p* L in fluid and the total

stress σ* R in solid.

Proposition 1

The solution of pressure p* L in fluid and total stress σ* R in

solid for the fluid elastic-perfectly plastic solid Riemann

problem is given by the root of the algebraic equation:
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h �σIð Þ�f L p*L;WLð Þ þ gR �σ*R,WRð Þ þ uR � uL ¼ 0;

with�σI�p*L ¼ �σ*R. And fL( p* L, WL) is given by one of

the following expressions:

f SL
��
g=w

p*L;WLð Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p*L � pLð Þ 1

ρL
� 1

ρ*Ljg=w

 !vuut , if p*L > pL;

f RL
��
g
p*L;WLð Þ ¼

2aLjg
γg � 1

p*L
pL

� �γg�1

2γg � 1

2
4

3
5, if p*L < pL;

f RL
��
w
p*L;WLð Þ ¼ 2aLjw

γw � 1

p*L þ B� A

pL þ B� A

� �γw�1

2γw � 1

" #
, if p*L < pL:

Here superscripts “S” and “R” stand for the shock wave and

the rarefaction wave, respectively. Subscripts “g” and “w”
are short for the gas and the water. And gR �σ*R,WRð Þ is

given by one of the following two expressions:

gE
R

��
sld

�σ*R,WRð Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
σR � σ*Rð Þ 1

ρR
� 1

ρ*Rjsld

 !vuut , if σ2

< σ*R < σR;

gPER
��
sld

�σ*R,WRð Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
σR � σ2ð Þ 1

ρR
� 1

ρ2jsld

 !vuut

þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
σ2 � σ*Rð Þ 1

ρ2
� 1

ρ*Rjsld

 !vuut :

if σ*R < σ2 < σR

Here subscript “E” denotes that the elastic shock wave is

generated in the solid medium, while “PE” denotes that both
the elastic and plastic shock waves are generated in the solid

medium. Besides, subscripts “sld” are the abbreviation of

solid.

Proposition 2

When the solid undergoes elastic up to perfectly plastic

compression from the initial nonpressure and nonstress

state, the hydrostatic pressure and deviatoric stress in V2

region are given by

p2 ¼
KY0

2μ
, sx2 ¼ �2

3
Y0:

Modified Ghost Fluid Method

To treat the fluid elastic-perfectly plastic solid interaction

numerically, MGFM is applied to handle with the real-time

multi-material interface at certain time tn. Assuming that the

computation of the whole domain has updated to nth time tn

and the left and right media are distinguished by the inter-

face xnI , the goal is to obtain the results of the whole compu-

tational domain at the next time level tnþ1. Before standard

numerical schemes are used for each medium, defining the

ghost cells status is crucial to implement GFM-based

approach. In another word, to solve the following left and

right medium systems

∂U
∂t

þ ∂F Uð Þ
∂x

¼ 0, with Ujt¼tn ¼
U real

L

��
t¼tn

, x < xnI ,

U ghost
L

���
t¼tn

, x > xnI ;

(

∂V
∂t

þ ∂G Vð Þ
∂x

¼ 0, with Vjt¼tn ¼
V ghost
R

���
t¼tn

, x < xnI ,

V real
R

��
t¼tn

, x > xnI :

(

Ughost
L and Vghost

R have to be defined primarily and prop-

erly. Ureal
L and Vreal

R are exactly the conservative values at the

particular real fluid and solid cells of the left and right media,

respectively. Ughost
L are the conservative vectors at additional

right-end fluid cells of left medium that need to be defined.

Similarly, Vghost
R are the conservative vectors at additional

left-end ghost solid cells of right medium that need to be

defined.

As the MGFM is applied to treat the multi-material

interfaces, the fluid elastic-perfectly plastic solid Riemann

problem at time tn is described as

∂U
∂t

þ ∂F Uð Þ
∂x

¼ 0, with Ujt¼tn ¼ UIL for x < xnI ,

∂V
∂t

þ ∂G Vð Þ
∂x

¼ 0, with Vjt¼tn ¼ VIR for x > xnI :

8><
>:

where UIL and VIR are the values at the nodes next to the

interface. Since the exact fluid-solid Riemann solver has

been proposed, the ghost fluid and ghost solid statuses can

be defined directly as

pghost
L ¼ p*L, u

ghost
L ¼ uI, ρ

ghost
L ¼ ρ*L;

pghost
R ¼ p*R, u

ghost
R ¼ uI, ρ

ghost
R ¼ ρ*R, s

ghost
xR ¼ sx*R:

For two-dimensional MGFM implementation, level set

method is included to track the boundary as the zero level

of ϕ, and signed distance function ϕ is advected by solving

the level set equation:
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ϕt þ uϕx þ vϕy ¼ 0;

for separate material region, together with the reinitia-

lization equation:

ϕt þ S ϕ0ð Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ϕ2
x þ ϕ2

y � 1

q� 	
¼ 0:

After the interfaces are identified, it is straightforward to

extend the one-dimensional MGFM algorithm to two

dimensions along x- and y-directions approximately, and

the tangential components at ghost fluid and solid nodes

are copied from the inside real fluid nodes to avoid smearing

out the jump in tangential components due to the numerical

dissipation.

Numerical Results

MGFM is utilized to decouple the two-dimensional fluid

elastic-perfectly plastic solid interaction in the following

numerical test. A 1000 m/s semi-infinite long water-jet

flow impacting on a semi-infinite aluminum target

surrounded by static standard atmosphere in two dimensions.

The entire computational domain is a square region

x� y2 �0:02, 0:02½ � � �0:02, 0:02½ �, comprising a rectan-

gle region x� y2 �0:02, 0:00½ � � �0:006, 0:006½ � for the

semi-infinite long jet flow and a rectangle region x� y2
0:00; 0:02½ � � �0:02, 0:02½ � for the aluminum target at

beginning time t ¼ 0. A total of 400 � 400 uniform

grid points are distributed in the whole computational

domain. The nondimensional initial conditions for the

left jet flow are uL ¼ 100:0, vL ¼ 0:0, pL ¼ 1:0, ρL ¼ 1:0,

while those for right solid target are uR ¼ vR ¼ 0:0, pR ¼
1:0, ρR ¼ 2:7, sxR ¼ syR ¼ sxyR ¼ 0:0. The nondimensional

parameters of the equation of state for the right solid target

are ρ0 ¼ 2:71, c0 ¼ 538:0, γs ¼ 2:67, K ¼ 740, 000:0, μ ¼
265, 000:0, Y0 ¼ 3000:0. The time step is set to be

0.0000001 and the terminal time is 0.00003. As shown in

Fig. 1, an elastic shock wave and a rather strong plastic wave

form in the solid medium and a shock wave reflect back from

the interface in the jet flow. The high-velocity impact results

in a relative large deformation at the interfaces. The solid

shock speeds are faster than that of the water, which can be

observed apparently in the test.

Conclusions

In this paper, we propose the one-dimensional fluid elastic-

perfectly plastic solid Riemann solver. It is rooted in the

MGFM algorithm to decouple the fluid-solid interaction.

Numerical experiments are carried out to test the perfor-

mance of the simulation in two dimensions. The numerical

method works effectively to simulate the high-speed impact

problem with multi-material interfaces in the Eulerian coor-

dinate system.
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