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In contemporary heat transport theory (ever since Maxwell’s
paper [1]) it is widely accepted in the literature that only for

stationary and weakly non-stationary temperature fields the

constitutive equation assumes that a temperature gradient

∇T instantaneously produces heat flux q according to the

Fourier law

qðx, tÞ ¼ �κ∇Tðx, tÞ: ð1Þ

Combining this equation with the energy conservation law

the usual parabolic heat conduction equation is given. Heat

conduction mechanisms can be classified via the tempera-

ture dependence of the coefficient κ � Tν. There are three

different cases of thermal conductivity, normal heat conduc-

tion which obeys the Fourier law (ν ¼ 0), slow (ν > 0) and

fast heat conduction � 2 < ν < 0.

In plasma physics if the temperature range is between 105

and 108 K, then the coefficient of the heat conductivity

κ depends on the temperature and density of the material.

The heat conductivity is usually assumed to have the follow-

ing power dependence κ ¼ κ0T
νvμ where v ¼ 1/ρ is the

specific volume the coefficient κ0 and the exponents ν, μ
depend on the heat conduction mechanism [2]. With radia-

tion heat conduction one has 4 � ν � 6, 1 � μ � 2; with

electron heat conduction and fully ionized plasma ν ¼ 5/

2, μ ¼ 0. For magnetically confined non-neutral plasma the

classical heat conduction coefficient is the following [3]

κ � c1ffiffiffi
T

p ln½c2T3=2�. Parabolic thermal wave theory is based

on this approach [2, 4]. In plasmas heat conduction is

strongly coupled to flow properties which we will not con-

sider in the following. The linear parabolic theory predicts

infinite speed of propagation which is known as the “paradox

of heat conduction” (PHC). The following two theories

resolve this contradiction.

However, if the time scale of local temperature variation

is very small, Eq. (1) is replaced by

qðx, tþ τÞ ¼ �κ∇Tðx, tÞ ð2Þ

where τ is called the thermal relaxation time. This is a

thermodynamic property of the materials which was deter-

mined experimentally for large number of materials.

Although τ turns out to be very small in many instances,

e.g. is of order of picoseconds for most metals, there are

several materials where this is not the case, most notably

sand (21 s), H acid (25 s), NaHCO3 (29 s), and biological

tissue (1–100 s) [5].

Unlike the Fourier’s heat conduction law, this constitutive
equation is non-local in time. The desired local character can

be restored with the Taylor expansion of q by time which is

usually truncated at the first order, namely

qðx, tÞ þ τ
∂qðx, tÞ

∂t
¼ �κ∇Tðx, tÞ: ð3Þ

This is the well-known Cattaneo heat conduction law [6], the

second term on the left-hand side is known as the “thermal

inertia.” (Unfortunately, this form is not Galilean invariant,

and gives a paradoxical results if the media is in motion, this

problem was eliminated in by [7].) Combining this constitu-

tive equation with the energy conservation yields the hyper-

bolic telegraph heat conduction equation where τ and κ are

constants. Hyperbolic equations usually ensure finite propa-

gation velocity. Unfortunately, telegraph equations have no

self-similar solutions which would be a desirable physical

property. In the work of [8] a non-autonomous telegraph-

type heat conduction equation is presented with self-similar
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non-oscillating compactly supported solutions. A review

with a large number of physical models of heat waves can

be found in [5, 9]. A recent work on the speed of heat waves

was published by Makai [10].

Our starting point is the following:

qt ¼ � q

τ
� κ

τ
Tr, ð4Þ

c0Tt ¼ �qr �
q

r
: ð5Þ

The first equation of the system is the generalized

Fourier–Cattaneo heat conduction law and the second one

is the energy conservation condition for the radial coordi-

nate. The heat flux q ¼ q(r, t) and the temperature depen-

dence T ¼ T(r, t) have radial coordinate and time

dependence. The subscripts r and t notate the partial

derivatives with respect to the radial coordinate and the

time, respectively. (From now on we investigate the radial

coordinate of a cylindrical symmetric problem as spatial

dependence.) The parameter c0 ¼ ρ c where ρ is the mass

density and c is the specific heat. Second order effects such

as compressibility are neglected (ρ and are c constants dur-

ing the process).

In the following we shall suppose that the heat conduction

coefficient and the thermal relaxation depend on temperature

in the following way:

κ ¼ κ0T
ω, τ ¼ τ0T

�E: ð6Þ

The κ0 and τ0 are real numbers with the proper physical

dimensions. Now our dimensionless system reads

qt ¼ �TEq� TEþωTr, ð7Þ

Tt ¼ �qr �
q

r
: ð8Þ

There are various phenomenological heat conduction laws

available for all kind of solids, without completeness we men-

tion somewell-known examples. For pure metals according to

[11] (P. 275 Eq. (3)) the Wiedemann–Franz law the thermal

conductivity is proportional with the electrical conductivity σ
times the temperature κ ¼ σ L T. The proportionality constant
L is the so-called Lorentz number with the approximate

numerical value of2:44� 10�8 WΩ K�2. For exact numerical

data for various metals see [12]. The relaxation time τ is

proportional to the heat conduction coefficient divided by the

temperature. For metals with impurities the thermal resistivity

(inverse of the thermal conductivity) is κ�1 ¼ AT2 + BT�1

where A and B can be obtained from microscopic calculation

based on quantum mechanics [11] (P. 297 Eq. (11)).

A hard-sphere model for dense fluids from [13] derives a

relation where the heat flux q(x, t) ¼ a∇T(x, t) + q2(x, t)

which certainly means a nonlinear heat propagation process.

For the heat conduction in nanofluid suspensions [14] derives

the κ � c/(T2 � T1) law with additional time dependence.

Another exotic and very promising new materials are the

carbon nanotubes which have exotic heat conduction

properties. Small et al. [15] performed heat conductivity

measurements and found that at low temperatures there are

two distinct regimes κ(T) � T2.5 (T < 50 K) and κ(t) � T2

(50 < T < 150 K). Beyond this regime there is a deviance

from this quadratic temperature dependence and the maxi-

mum κ value lies at 320 K. Above this value—at

large temperatures—there is a κ(T ) � 1/T dependence

according to [16]. Additional nanoscale systems (like silicon

films, or multiwall carbon nanotubes) have exotic tempera-

ture dependent heat conduction coefficients as well, for more

see [17]. For encased graphene the heat conduction coeffi-

cient is κ � T β where 1.5 < β < 2 at low temperature

(T < 150 K) [18]. A recent review of thermal properties of

graphene and nanostructured carbon materials can be

found in [19].

Our model is presented to describe the heat conduction of

any kind of solid state without additional restrictions, there-

fore room or even higher temperature can be considered with

large negative ω exponents.

Even from these examples we can see that it has a need to

investigate the general heat conduction problem, where the

coefficients have general power law dependence.

We look for the solutions of (7) and (8) in the most

general self-similar form

T ¼ t�αf ðηÞ, q ¼ t�δgðηÞ: ð9Þ

For a better transparency in the following we introduce a

new variable η ¼ r
tβ, where α, β, δ are all real numbers.

The similarity exponents α, δ, and β are of primary phys-

ical importance since α, δ represent the rate of decay of the

magnitude T or q, while β is the rate of spread (or contraction
if β < 0 ) of the space distribution as time goes on.

Self-similar solutions exclude the existence of any single

time scale in the investigated system.

We substitute (9) into (7) and (8). It can be checked that

α ¼ 1

ωþ 1
, β ¼ 1

2ðωþ 1Þ , δ ¼ 2ωþ 3

2ðωþ 1Þ , E ¼ ωþ 1:

ð10Þ

We can obtain the following ordinary differential equation

(ODE) system for the shape functions f and g the following

ordinary differential equation (ODE) system

δgþ βηg
0 ¼ gf ωþ1 þ f 2ωþ1f

0
, ð11Þ
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ðηgÞ0 ¼ βðη2f Þ0 ð12Þ

where prime means derivation with respect to η.
The first lucky moment is that (12) relates f and g in a

simple way

g ¼ βηf ð13Þ

if the α ¼ 2β universality relation is fulfilled.

Note that we can immediately read how the self-similar

solutions of the temperature distribution T and the heat flux q

depend on ω

T ¼ t
�1
ωþ1f

r

t
1

2ðωþ1Þ

� �
, q ¼ t

2ωþ3
2ðωþ1Þg

r

t
1

2ðωþ1Þ

� �
: ð14Þ

The parameter dependence of the complete heat conduction

coefficient and relaxation time can be expressed viaω as well

κ ¼ κ0t
�ω
ωþ1f ω

r

t
1

2ðωþ1Þ

� �
, τ ¼ κ0t

�1f ωþ1 r

t
1

2ðωþ1Þ

� �
: ð15Þ

Recall that ω > �1. These are already very informative and

useful relations to investigate the global properties of the

solutions, note that such kind of analysis are available

for large number of complex mechanical and flow

problems [20].

Substituting these relations back to Eq. (11) after some

algebra we arrive at the following nonlinear first-order ODE

df

dη2
β2η2 � f 2ωþ1
� � ¼ βf

2
½f ωþ1 � ð2β þ 1Þ�: ð16Þ

Put y ¼ η2 and x ¼ f. With this notation Eq. (16) becomes

linear for y(x) (this is the second lucky moment of investiga-

tion):

dy

dx
¼ yðxÞ � 4ðωþ 1Þ2x2ωþ1

x½ðωþ 1Þxωþ1 � ω� 2� : ð17Þ

Plainly, f � 0 is a solution toEq. (16). If y(x) the solution of
Eq. (17) is strictly monotonic, then so is the inverse function

f ¼ x and no discontinuity. However if y(x) is not monotonic

on some interval (x1, x2) and has a turning point at x0ε(x1, x2),
then the inverse ( f ¼ x) has sense on [0, y(x)] only. One sets

f ¼ 0 for y > y(x0) and the discontinuity a y(x0) is apparent.

The analytical investigation of the linear equation (17) is in

general easier than of Eq. (16). In some cases (for some ωs)
one can have more explicit or almost explicit solutions.

There are two examples:

The first case is for ω ¼ 0, (α ¼ 1, β ¼ 1/2, δ ¼ 3/2,

ε ¼ 1).

This example was studied by Wilhelm and Choi [21] in

some detail. The correspondingODE (17) reads y0 ¼ (y� 4x)/

x(x� 2) which has a solution y ¼ 8þ ½ðx� 2Þ=x�1=2½c1 � 8ln

ð ffiffiffi
x

p þ ffiffiffiffiffiffiffiffiffiffiffi
x� 2

p Þ� where c1 is a constant.
It is clear that must be x 	 2 and y(x) is monotonic for

x > 2 until x0 where y ¼ 0. This means that x(y) exists and
monotonic on some interval [0, y0], x(y0) ¼ 2; for y 	 y0
we have x(y) ¼ 0 so the discontinuity. For a better under-

standing Fig. 1a presents the graph of solution of Eq. (17)

through the point (3, 0.5). The inverse of this function for

x > 2 is shown in Fig. 1b (the nonzero part). The solid line

is a solution through the f(0) ¼ 10.8 point. Figure 2 presents

the shock-wave propagation of the temperature distribution

T(r, t) for ω ¼ 0.

The second case is for ω ¼ �1/2, (α ¼ 2, β ¼ 1, δ ¼ 2,

ε ¼ 1/2).

Now Eq. (17) takes the form of dy
dx ¼ 2ðy� 1Þ=

½xð ffiffiffi
x

p � 3Þ�. It can be checked that y ¼ c2x
�2/3(x1/2 � 3)4/3

is a solution for any c2 > 0. Take c2 ¼ 1. The function y(x)

is monotonic on (0, 9), y(9) ¼ 0. Returning to original

variables we have f ¼ 9/[(η2)3/4 + 1]2 (which is plainly less

than 9!) According to Eq. (14) temperature and heat flux

distributions are

T ¼ 9t

ðr3=2 þ t3=2Þ2 , q ¼ 9r

ðr3=2 þ t3=2Þ2 : ð18Þ

These solutions are not discontinuous. Analytical and

numerical calculus suggest that ω ¼ �1/2 is a critical

exponent: for� 1 < ω � �1/2 the solutions are continuous,

for ω > �1/2 the shocks always appear.

In Summary

We presented a hyperbolic model for heat conduction in

solids where the relaxation time and heat conduction coeffi-

cient is a power law function of time. There are basically two

different regimes available for different power laws.

For 1 < ω � �1/2 the solutions are continuous for all

positive time and radial coordinate, for ω > �1/2 the

solutions are only continuous on a finite and closed [0: η0]
interval and have a finite jump at the endpoint η0. For

physical interpretation of our results we presented numerous

materials and solid state systems with temperature depen-

dent heat conduction coefficients.
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The paper is dedicated to Annabella Barna who was born

on 20th of December 2011.
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