
Development of an Unsteady Shock-Fitting
Technique for Unstructured Grids

Aldo Bonfiglioli, Renato Paciorri, Lorenzo Campoli,
Valentina De Amicis, and Marcello Onofri

Introduction

When shock-capturing schemes are used to model the inter-

action of shock waves with compressible turbulence or

sound waves, the discretisation errors generated along the

captured shock wave can severely degrade the fidelity of the

flow simulation within the entire shock-downstream

region [10, 13]. These limitations appear to be rooted in

the fundamental ingredients of shock-capturing

discretisations, namely the existence of intermediate shock

points, located in between the pre- and post-shock states,

that are a mere numerical artefact and have nothing to do

with the true internal structure of the shock-wave [2]. This

observation points to a fundamental weakness of the shock-

capturing paradigm, so that it is not surprising that the author

of [13] concludes that:

These limitations . . .. can only be overcome by some form of

shock-fitting.

Shock-fitting algorithms on structured grids, which still

nowadays find their way in compressible DNS, see e.g. [16],

are either limited to simple flow configurations, when the

boundary shock-fitting approach is used, or require ad hoc

differencing formulae in the vicinity of the fitted shock,

when the floating shock-fitting approach is adopted. The

latter approach, although more versatile than the former

from a topological point of view, becomes algorithmically

very complex when high order schemes are used, see,

e.g., [14].

In the attempt to relieve most of the algorithmic

difficulties encountered by shock-fitting methods when

used on structured grids, the authors have recently developed

an unstructured, shock-fitting algorithm capable of

simulating steady flows in two [9, 11, 12] and three [5]

spatial dimensions. The unstructured, shock-fitting

algorithm has features of both the boundary and floating

variants of the shock-fitting technique that had been pro-

posed and used in the structured-grid framework over the

last 50 years: the fitted shocks are treated as interior

boundaries of zero thickness that are free to float throughout

a triangular/tetrahedral mesh that covers the entire computa-

tional domain and locally adapts to follow the shock motion.

The Rankine–Hugoniot jump relations are used to compute

the Lagrangian motion of the discontinuities and an unstruc-

tured, vertex-centred, shock-capturing solver is used to

discretise the governing PDEs in the smooth regions of the

flow-field.

The aforementioned methodology has recently [6] being

further developed to make it capable of dealing with

un-steady flows. This can be accomplished by addressing

three fundamental issues: (1) the shock-capturing code must

be made capable of working in an Arbitrary Lagrangian

Eulerian (ALE) setting; (2) the temporal accuracy of the

Lagrangian shock motion must be raised to second order;

and (3) the algorithm must be capable of automatically

detecting changing flow topologies, such as those that may

occur when a shock meets another shock or a solid wall. The

first two issues have already been addressed in [6]. In this

article we will demonstrate the current capabilities of the

proposed technique by reporting the simulation of a shock–

vortex interaction; moreover, we will also show a prelimi-

nary calculation that addresses the issue of changing flow

topologies.
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Numerical Method

The unstructured shock-fitting algorithm consists of two key

ingredients: (1) a local re-meshing technique that constructs

a time-dependent mesh in which the fitted discontinuities are

internal boundaries of zero thickness and (2) an algorithm

for solving the Rankine–Hugoniot jump relations that pro-

vide the Lagrangian velocity of the discontinuity and an

updated set of dependent variables within the downstream

side of the fitted shock.

More precisely, in two space dimensions, the fitted shock

fronts are made of polygonal curves, i.e., a connected series

of line segments (which we call the shock edges) that join

the shock points. These shocks are free to move throughout a

background triangular mesh that covers the entire computa-

tional domain (see Fig. 1a). At a given time level n, a local,

constrained Delaunay triangulation is applied in the

neighbourhood of the shock front to ensure that the edges

that make up the shock front are also part of the triangular

grid that covers the entire computational domain (see

Fig. 1b). The shock speed w and shock-downstream state

are computed by solving the Rankine–Hugoniot jump

relations within each of the shock points. Using the shock

speed w and the shock normal n that are available within

each shock point, the fitted shock front is moved in a

Lagrangian manner, as shown in Fig. 1c. As described

in [6], a second-order-accurate temporal integration of the

shock trajectory is obtained using a predictor–corrector

scheme.

In smooth regions of the flow-field, the vertex-centred,

shock-capturing solver described in [3] is used to discretise

the ALE formulation of the governing PDEs. An ALE for-

mulation is needed because the triangular cells that abut on

the shock front have at least one of their nodes that moves

with the shock, thus deforming the cell. This is

schematically shown in Fig. 1c where dashed lines are

used to show the edges of the triangular cells when the

shock front is at time level n and solid lines to show the

same sides when the shock has reached time level n + 1.

Further algorithmic details concerning the un-steady,

shock-fitting algorithm can be found in [6].

Numerical Results

In this article attention is payed to the effects that different

practices used to simulate shock-waves produce on the solu-

tion quality within those smooth regions of the flow field that

are located downstream of the modelled shock-waves.

Therefore, a mathematical model (the Euler equations)

describing the dynamics of an inviscid, perfect gas, is

deemed adequate for the purpose.

Shock–Vortex Interaction

This first test case consists in the interaction between a

stationary shock and a vortex and provides a useful testbed

for comparing shock-capturing versus shock-fitting. It has

been frequently reported in the literature, not only as a code

verification case [1, 15], but primarily as a tool for under-

standing the fundamental mechanisms [7, 8] that account for

noise generation due to the interaction between a shock-

wave and a turbulent flow.

A uniform, supersonic stream, characterised by a shock-

upstream Mach number (or vortex strength) Ms ¼ 1. 21,

carries a vortex, from the left to the right of the computa-

tional domain (the rectangle 0, 2L½ � � 0, L½ � ), towards a

stationary normal shock. At the initial time, t ¼ 0, the vortex

is centred in xv ∕ L, yv ∕ Lð Þ ¼ 0:5, 0:5ð Þ and the shock is

located 0. 2L downstream of the vortex centre. We have

used the same vortical structure of [1] with the following

parametric setting: r0 ∕ L ¼ 0.05, α ¼ 0. 204, ε ¼ 0. 21,

which gives a vortex Mach number, Mv ¼ 0. 3.

Downstream Upstream

Shock 
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Fig. 1 Shock-fitting: schematic illustration of some of the algorithmic ingredients. (a) Background mesh. (b) “Shock-fitted” mesh.

(c) Shock-motion and cell deformation
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The topological pattern that arises once the vortex

impinges on the shock depends upon the shock and vortex

strengths [7]: weak shock–vortex interactions are those that

do not exhibit any shock reflection and strong shock–vortex

interactions those that feature reflected and diffracted

shocks; a Mach reflection is expected for the (Ms ¼ 1.21,

Mv ¼ 0.3) couple used in the present numerical calculation.

A qualitative comparison between the two different

shock-modelling practices is presented in Fig. 2, which

shows pressure and entropy iso-contours computed using

both shock-capturing and shock-fitting. The governing

PDEs are discretised using the explicit, Lax-Wendroff

(LW) scheme in the shock-fitting calculation and the

implicit (dual time-stepping) MM-PG-LDA scheme [4] in

the shock-capturing calculation. Both schemes are formally

second-order-accurate in space and time.

The pressure iso-contours reveal that the shock-fitting

calculation, Fig. 2a, is free from the oscillations that arise

along the main shock in the shock-capturing calculation,

Fig. 2b. Oscillations are visible in the shock-fitting calcula-

tion near the Mach reflection, because only the main shock is

fitted, whereas the reflected shocks are captured using a

non-monotone scheme, such as the LW.

The entropy iso-contours shown in Fig. 2 turn out to be

particularly revealing in highlighting the differences

between the two shock-modelling practices. Indeed, the

shock-fitting solution, Fig. 2c, shows entropy variations

only in the region where the vortex impinges on the shock;

these entropy gradients are caused by the spatially variable

oblique shock angle and hence shock intensity. By contrast,

spurious entropy disturbances are present in the shock-

capturing solution, Fig. 2d, also in regions where the shock

is straight. These disturbances are convected downstream

and pollute the entire shock-downstream region.

Regular Reflection Over a Wedge

In order to start developing the capability to treat the topo-

logical changes that can occur in unsteady flows, we have

considered the flow originated by a planar shock that

impinges on a 58∘ wedge, as shown in Fig. 3. As a conse-

quence of this interaction, when the planar shock overtakes

the corner of the wedge, a new curved shock and a regular

reflection appear. This new shock and the regular reflection,

along with the original planar shock, give rise to a new shock

topology that affects the subsequent evolution of the flow-

field.

In the numerical simulation, the topological changes are

introduced shortly after the planar shock has overtaken the

corner. This is achieved by adding a shock which is initially

made up of only three shock points (see the central frame of

Fig. 3): two are located along the boundaries and the third

one inside the flow-field; the reflected and the incident

shocks are joined in a reflection point. The shape of the

curved shock and the states of these new shock points are

computed using simple analytical relations obtained from

the reflection of isentropic waves. Starting from this

Fig. 2 Shock–vortex interaction (Ms ¼ 1. 21, Mv ¼ 0. 3): pressure and entropy iso-contours at t ¼ 0. 5. (a) Pressure, shock-fitting. (b) Pressure,
shock-capturing. (c) Entropy, shock-fitting. (d) Entropy, shock-capturing
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approximate solution, the shock-fitting algorithm is anyway

capable of correctly evolving the solution based on this new

topology: this is clearly shown in the right frame (Fig. 3).

Conclusions

The shock-fitting technique for unstructured grids that the

authors have been developing over the last few years has

been successfully applied to two- and three-dimensional

steady flows featuring interacting shocks; in the present

paper it has been applied to unsteady flows characterised

by changing shock topologies. In all applications tested so

far, this new technique has shown huge potential benefits

with respect to the shock-capturing approach and a reduced

algorithmic complexity with respect to the shock-fitting

techniques developed in the 1970s and 1980s within the

structured grid framework.
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Fig. 3 Regular reflection: frames corresponding to increasing time
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