
Verifying Real-Time Properties of Multi-agent
Systems via SMT-Based Bounded

Model Checking

Agnieszka M. Zbrzezny(B) and Andrzej Zbrzezny

IMCS, Jan D�lugosz University, Al. Armii Krajowej 13/15,
42-200 Czȩstochowa, Poland

{agnieszka.zbrzezny,a.zbrzezny}@ajd.czest.pl

Abstract. We present a satisfiability modulo theories based bounded
model checking (SMT-based BMC) method for timed interpreted sys-
tems (TIS) and for properties expressible in the existential fragment
of a Real-Time Computation Tree Logic with epistemic components
(RTECTLK). We implemented the standard BMC algorithm and evalu-
ated it for two multi-agent systems: a timed train controller system and
a timed generic pipeline paradigm. We used the Z3 solver.

1 Introduction

The formalism of interpreted systems (IS) was introduced in [8] to model multi-
agent systems (MAS) [19], which are intended for reasoning about the agents’
epistemic and temporal properties. The formalism of timed interpreted systems
(TIS) [22] extends IS to make the reasoning possible about not only temporal
and epistemic properties, but also about real-time aspects of MASs. The previ-
ous ten years in the area of MASs have seen significant research in verification
procedures, which automatically evaluate whether a MAS reaches its intended
specifications.

Model checking [4] is an automatic verification technique for concurrent sys-
tems such as: digital systems, distributed systems, real time systems, multi-
agent systems, communication protocols, cryptographic protocols, concurrent
programs, and many others. To be able to check automatically whether the sys-
tem satisfies a given property, one must first create a model of the system, and
then describe in a formal language both the created model and the property.

One of the main technique here is symbolic model checking [4]. Unfortunately,
because of the agents’ intricate nature, the practical applicability of model check-
ing is firmly limited by the “state-space explosion problem” (i.e., an exponential
growth of the system state space with the number of agents). To reduce this
issue, various techniques, including the SAT- and BDD-based bounded model
checking (binary decision diagrams based BMC) [10,15,18], have been advanced.

Partly supported by National Science Centre under the grant No. 2014/15/N/
ST6/05079.

c© Springer International Publishing Switzerland 2016
M. Baldoni et al. (Eds.): PRIMA 2016, LNAI 9862, pp. 149–167, 2016.
DOI: 10.1007/978-3-319-44832-9 9

150 A.M. Zbrzezny and A. Zbrzezny

These have been effective in permitting users to handle bigger MASs, however
it is still hard to check MASs with numerous agents. The point of this paper
is to help beat this inadequacy by employing SMT-solvers (i.e., satisfiability
modulo theories tools for deciding the satisfiability of formulae in a number of
theories) [2].

Bounded model checking for multi-agent systems is a symbolic model check-
ing method designed for finding counterexamples, and whose main idea is
to consider a model curtailed to a specific depth to search for an execution
(or a set of executions) of a system under consideration of some length k, which
constitutes a counterexample for a tested property. It uses a reduction of the
problem of truth of a temporal formula [6] (an epistemic formula [8], doxas-
tic formula [12], and deontic formula [14]) in a model of MAS to the problem
of satisfiability of formulae. The reduction is achieved by a translation of the
transition relation and a translation of a given property to a quantifier-free first-
order formula. It should be emphasised that for a given temporal logic, bounded
model checking is mainly used to disprove safety properties and to prove liveness
properties.

A version of the SAT-based BMC method for specifications expressed in
RTECTLK, and MASs modelled by interleaved interpreted systems (the inter-
preted system with the asynchronous semantics (interleaving semantics)), in
which agents have time-limits or other explicit timing constraints to accomplish
intended goals, has been published in [21].

The original contributions of the paper are as follows. First, we propose a
SMT-based BMC technique for TIS and for RTECTLK. Second, we report on the
implementation of the proposed BMC method as a new module of a verification
system, and evaluate it experimentally by means of a modified generic pipeline
paradigm [17] and a modified train controller system.

We do not compare our results with other model checkers for MASs,
e.g. MCMAS [13] or MCK [9], simply because they do not support the
RTECTLK language and the timed interpreted systems.

Scheme of the Paper. The rest of the paper is organised as follows. In the
next section we briefly present the theory of the timed interpreted systems and
the RTECTLK language. In Sect. 3 we present our SMT-based BMC method
and an example of translation to SMT. In Sect. 4 we experimentally evaluate
the performance of our SMT-based BMC encoding. We conclude with a brief
discussion in Sect. 5.

2 Preliminaries

Timed Interpreted Systems (TIS) were proposed in [22] to extend interpreted
systems (ISs) in order to make possible reasoning about real-time aspects of
MASs. In the formalism of interpreted systems, each agent is characterised by
a set of local states and by a set of local actions that are performed following a
local protocol. Given a set of initial states, the system evolves in compliance with
an evolution function that determines how the local state of an agent changes

Verifying Real-Time Properties of Multi-agent Systems 151

as a function of its local state and of the other agents actions. The evolution of
all the agents local states describes a set of runs and a set of reachable states.
These can be used to interpret formulae involving temporal operators, epistemic
operators to reason about what agents know.

2.1 Timed Interpreted Systems

Let IN be a set of natural numbers, and IN+ = IN\{0}. We assume a finite set
X of variables, called clocks. Each clock is a variable ranging over a set of non-
negative natural numbers. For x ∈ X, ��∈ {<,≤,=, >,≥}, c ∈ IN we define a set
of clock constraints over X, denoted by C(X), The constraints are conjunctions
of comparisons of a clock with a time constant c from the set of natural numbers
IN, generated by the following grammar:

cc := true | x �� c | cc ∧ cc.

A clock valuation v of X is a total function from X into the set of natural
numbers. The set of all the clock valuations is denoted by INX. For X

′ ⊆ X, the
valuation which assigns the value 0 to all clocks is defined as: ∀x∈X′v′(x) = 0
and ∀x∈X\X′v′(x) = v(x). For v ∈ INX, succ(v) is the clock valuation of X that
assigns the value v(x) + 1 to each clock x. A clock valuation v satisfies a clock
constraint cc, written as v |= cc, iff cc evaluates to true using the clock values
given by v.

Let A = {1, . . . , n} denote a non-empty and finite set of agents, and Ev
be a special agent that is used to model the environment in which the agents
operate, and AP =

⋃
i∈A∪{Ev} APi be a set of atomic formulae, such that

APi1

⋂
APi2 = ∅ for all i1, i2 ∈ A ∪ {Ev}.

A timed interpreted system is a tuple

TIS = ({Li, Acti,Xi, Pi,Vi, Ii, ιi}i∈A∪{Ev}, {ti}i∈A, {tEv}),

where:

– Li is a non-empty set of locations of the agent i,
– ιi ⊆ Li is a non-empty set of initial locations,
– Acti is a non-empty set of possible actions of the agent i, Act = Act1 × . . . ×

Actn × ActEv is the set of joint actions,
– Xi is a non-empty set of clocks,
– Pi : Li → 2Acti is a protocol function,
– ti : Li × LEv × C(Xi) × 2Xi × Act → Li is a (partial) evolution function for

agents,
– tEv : LEv × C(XEv) × 2XEv × Act → LEv is a (partial) evolution function for

environment,
– Vi : Li → 2APi is a valuation function assigning to each location a set of

atomic formulae that are assumed to be true at that location,
– Ii: Li → C(Xi) is an invariant function, that specifies the amount of time the

agent i may spend in a given location.

152 A.M. Zbrzezny and A. Zbrzezny

It is assumed that locations, actions and clocks for the environment are “pub-
lic”, which means that all the agents know a current location, an action, and a
clock valuation of the environment.

We also assume that if εi ∈ Pi(�i), then ti(�i, �Ev, cci,X, (a1, . . . , an, aEv)) =
�i for ai = εi, any cci ∈ C(Xi), and any X ⊆ Xi. Each element t of ti is denoted by
<�i, �Ev, cci,X

′, a, �′
i >, where �i is the source location, �′

i is the target location,
a is an action, cc is the enabling condition for ti, and X

′ ⊆ Xi is the set of clocks
to be reset after performing t. An invariant condition allows the TIS to stay at
the location � as long as the constraint Ii(�i) is satisfied. The guard cc has to be
satisfied to enable the transition.

2.2 Timed Model

For a given TIS let the symbol S =
∏

i∈A∪{Ev}(Li × INXi) denote the
non-empty set of all global states. Moreover, for a given global state s =
((�1, v1), . . . , (�n, vn), (�Ev, vEv)) ∈ S, let the symbols li(s) = �i and vi(s) = vi

denote, respectively, the local component and the clock valuation of agent
i ∈ A ∪ {Ev} in s. Now, for a given TIS we define a timed model (or a model) as
a tuple M = (Act, S, ι, T,V), where:

– Act = Act1 × . . . × Actn × ActEv is the set of all the joint actions,
– S =

∏
i∈A∪{Ev}(Li × INXi) is the set of all the global states,

– ι =
∏

i∈A∪{Ev}(ιi × {0}Xi) is the set of all the initial global states,
– V : S → 2AP is the valuation function defined as V(s) =

⋃
i∈A∪{Ev} Vi(li(s)),

– T ⊆ S × (Act ∪ {τ}) × S is a transition relation defined by action and time
transitions. For ã ∈ Act:

1. action transition: (s, ã, s′) ∈ T (or s
ã−→ s′) iff for all i ∈ A∪{Ev}, there exists

a local transition ti(li(s), cci,X′, ã) = li(s′) such that vi(s) |= cci ∧ I(li(s))
and v′

i(s
′) = vi(s)[X′ := 0] and v′

i(s
′) |= I(li(s′)) (vi(s)[X′ := 0] denotes the

clock valuation which assigns 0 to each clock in X
′ and agrees with vi(s) over

the rest of the clocks.
2. time transition (s, τ, s′) ∈ T iff for all i ∈ A ∪ {Ev}, li(s) = li(s′) and

v′
i(s

′) = vi(s) + 1 and v′
i(s

′) |= I(li(s′)).

A path π in M is a sequence π = (s0, s1, . . .) of states such that (s0, τ, s1) ∈ T
holds and for each i > 0, either (si, ãi, si+1) ∈ T or (si, τ, si+1) ∈ T , and if
(si, ãi, si+1) ∈ T holds, then (si+1, τ, si+2) ∈ T holds.

Observe that the above definition of the path ensures that the first transi-
tion is the time one, and between each two action transitions at least one time
transition appears.

The set of all the paths starting at s ∈ S is denoted by Π(s), and the
set of all the paths starting at an initial state is denoted by Π =

⋃
s0∈ι Π(s0).

Moreover, for a ∈ Act∪{τ}, we sometimes write s
a−→ s′ instead of (s, a, s′) ∈ T .

Eventually, for s ∈ S and a ∈ Act ∪ {τ}, the set of direct a-successors of s is

Verifying Real-Time Properties of Multi-agent Systems 153

defined as: Post(s, a) = {s′ ∈ S|s a−→ s′}, and the set of direct successors of s
is defined as Post(s) =

⋃
a∈Act∪{τ} Post(s, a).

Given a TIS, one can define for any agent i the indistinguishability relation
∼i⊆ S × S as follows: s ∼i s′ iff li(s′) = li(s) and vi(s′) = vi(s).

We assume the following definitions of epistemic relations: ∼E
Γ

def
=

⋃
i∈Γ ∼i,

∼C
Γ

def
= (∼E

Γ)+ (the transitive closure of ∼E
Γ), ∼D

Γ

def
=

⋂
i∈Γ ∼i, where Γ ⊆ A.

2.3 Abstract Model

The set of all the clock valuations is infinite which means that a model has an
infinite set of states. We need to abstract the proposed model before we can apply
the bounded model checking technique. Let ci be the largest constant appearing
in any enabling condition or state invariants of agent i, and v, v′ ∈ IN|X| be two
clock valuations. We say that v �i v′ iff the following condition holds for each
x ∈ Xi:

v(x) > ci and v′(x) > ci or v(x) ≤ ci and v′(x) ≤ ci and v(x) = v′(x).

Next, we define the relation � as follows: v � v′ iff v �i v′, for every i ∈
A∪{Ev}. Obviously, � is an equivalence relation. It is easy to see that equivalent
clock valuations satisfy the same clock constraints that occur in TIS. Basing on
this observation one can define the abstract model for TIS. Namely, let IDi =
{0, . . . , ci + 1}, and ID =

⋃
i∈A∪{Ev} IDXi

i . For any v ∈ ID let us define the
successor succ(v) of v as follows: for each x ∈ X,

succ(v)(x) =

⎧
⎨

⎩

v(x) + 1, if x ∈ Xi and v(x) ≤ ci,

v(x), if x ∈ Xi and v(x) > ci.

Now, one can define the abstract model as a tuple M̂ = (Act, Ŝ, ι̂, T̂ , V̂),
where Ŝ =

∏
i∈A∪{Ev}(Li × IDXi

i) ι̂ = ι, V̂ = V|
̂S , and T̂ ⊆ Ŝ × (Act ∪ {τ}) × Ŝ

is a transition relation defined by action and time transitions. For ã ∈ Act:

1. action transition: (ŝ, ã, ŝ′) ∈ T̂ iff ∀i∈A∃φi∈C(Xi)∃X
′
i⊆Xi

(ti(li(ŝ), φi,X
′
i, ã) =

li(ŝ′) and vi |= φi∧I(li(ŝ)) and v′
i(ŝ

′) = vi(ŝ)[X′
i := 0] and v′

i(ŝ
′) |= I(li(ŝ′)))

2. time transition: (ŝ, τ, ŝ′) ∈ T̂ iff ∀i∈A∪{Ev}(li(ŝ) = li(ŝ′)) and vi(ŝ) |= I(li(ŝ))
and succ(vi(ŝ)) |= I(li(ŝ))) and ∀i∈A(v′

i(ŝ
′) = succ(vi(ŝ′))) and (v′

Ev(ŝ′) =
succ(vEv(ŝ))).

Given the abstract model one can define for any agent i the indistinguisha-
bility relation ∼i⊆ Ŝ × Ŝ as follows: ŝ ∼i ŝ′ iff li(ŝ′) = li(ŝ) and vi(ŝ′) = vi(ŝ).

In the following paragraph and in the following two lemmas we assume that
M is the timed model for a timed interpreted system TIS, and M̂ is the abstract
model for M such that for each i ∈ A ∪ {Ev}, max(IDi) = ci.

It is easy to see that for each v ∈ INX there exist unique u ∈ ID such that
u � v. Indeed, for x ∈ Xi let u(x) = v(x) if v(x) ≤ ci, and u(x) = ci + 1

154 A.M. Zbrzezny and A. Zbrzezny

otherwise. Clearly, u � v. It is also easy to see that for each v ∈ INX and u ∈ ID,
v � u implies succ(v) � succ(u).

The following two lemmas state that the timed and the abstract model for
TIS are trace-equivalent. Both the lemmas can be proven by straightforward
induction on j.

Lemma 1. For each path π in M there exist a path π̂ in M̂ such that ∀j ≥
0 π̂(j) � π(j).

Lemma 2. For each path π̂ in M̂ there exist a path π in M such that ∀j ≥
0 π(j) � π̂(j).

In fact it is easy to prove that the timed model and the abstract model
for TIS are bisimulation-equivalent. Let us recall from [1] the definition of a
bisimulation. Let Mi = (Acti, Si, ιi, Ti,Vi), i = 1, 2 be timed models.

Definition 1. Let Mi = (Acti, Si, ιi, Ti,Vi), i = 1, 2 be timed models. A bisim-
ulation for (M1,M2) is a binary relation R ⊆ S1 × S2 such that

– for every s ∈ ι1, there exists s2 ∈ ι2 such that (s1, s2) ∈ R, and for every
s2 ∈ ι2, there exists s1 ∈ ι such that (s1, s2) ∈ R

– for all (s1, s2) ∈ R it holds:
1. V(s1) = V(s2)
2. if s′

1 ∈ Post(s1) then there exists s′
2 ∈ Post(s2) with (s′

1, s
′
2) ∈ R

3. if s′
2 ∈ Post(s2) then there exists s′

1 ∈ Post(s1) with (s′
1, s

′
2) ∈ R.

M1 and M2 are bisimulation-equivalent (bisimilar for short), if there exists a
bisimulation R for (M1,M2).

For a given timed model M and the abstract model M̂ of M let us define
a binary relation R ⊆ S × Ŝ in the following way: (s1, s2) ∈ R iff s1 � s2.
Obviously, R is a bisimulation for (M,M̂). As a result from this fact we obtain
the following lemma.

Lemma 3. Let M be a timed model and M̂ be the abstract model of M. Then,
M and M̂ are bisimilar.

2.4 RTECTLK

Multi-agent Systems (MAS) formalisms are typically built on extensions of com-
putational tree logic (CTL). For the purposes of this paper we consider spec-
ifications given in the RTECTLK language built from a set of propositional
formulae p ∈ AP, and a set of agents i ∈ A. An existential fragment of the soft
real-time CTL (RTECTL) [7] is a propositional branching-time temporal logic
with bounded operators, which was introduced to permit specification and rea-
soning about time-critical correctness properties. The RTECTLK [21] language
is an epistemic soft real-time computation tree logic that is the fusion [3] of the
two underlying languages: RTECTL and S5n for the knowledge operators [8].

Verifying Real-Time Properties of Multi-agent Systems 155

Syntax of RTECTLK. Let AP be a set of atomic formulae, A a set of agents,
and I be an interval in IN of the form: [a, b) and [a,∞), for a, b ∈ IN. Hereafter by
left(I) we denote the left end of the interval I, i.e., left(I) = a, and by right(I)
the right end of the interval I, i.e., right([a, b)) = b − 1 and right([a,∞)) = ∞.

Let p ∈ AP, i ∈ A, and Γ ⊆ A. The set of RTECTLK formulae is defined
by the following grammar:

ϕ := true | false | p | ¬p | ϕ ∧ ϕ | ϕ ∨ ϕ | EXϕ | E(ϕUIϕ) | EGIϕ |
Kiϕ | DΓ ϕ | EΓ ϕ | CΓ ϕ

UI and GI are the operators, resp., for bounded “Until” and “Always”. The
formula EGIα is read as “there exists a computation such that α always holds in
the interval I” and the formula E(αUIβ) is read as “there exists a computation
such that β holds in the interval I at least in one state and always earlier α
holds”. The other basic bounded temporal operators can be introduced as usual:

E(αRI β)
def
= E(β UI (α ∧ β)) ∨ EGIβ, EFIα

def
= E(trueUIα).

Ki is the operator dual for the standard epistemic modality Ki (“agent i knows”),
so Kiα is read as “agent i does not know whether or not α holds”. Similarly, the
modalities DΓ ,EΓ ,CΓ are the diamonds for DΓ ,EΓ ,CΓ representing distributed
knowledge in the group Γ , “everyone in Γ knows”, and common knowledge
among agents in the group Γ .

Semantics of RTECTLK. As the semantics for the timed model and the
semantics for the abstract model are identical we shall present only the semantics
for the abstract model. Let M̂ = (Act, Ŝ, ι̂, T̂ , V̂) denote the abstract model.
An abstract path π̂ in the abstract model is a sequence ŝ0

b1−→ ŝ1
b2−→ ŝ2

b3−→ . . .
of transitions such that for each i > 1, bi ∈ Act ∪ {τ} and b1 = τ and for
each two consecutive transitions at least one of them is a time transition. The
set of all the abstract paths starting at ŝ ∈ Ŝ is denoted by Π̂(ŝ), and the
set of all the abstract paths starting at an abstract initial state is denoted by
Π̂ =

⋃
ŝ0∈ι̂ Π̂(ŝ0).

For the group of epistemic modalities we also define the following. If Γ ⊆ A,
then ∼E

Γ

def
=

⋃
i∈Γ ∼i, ∼C

Γ

def
= (∼E

Γ)+ (the transitive closure of ∼E
Γ), and ∼D

Γ

def
=⋂

i∈Γ ∼i.
A RTECTLK formula ϕ is true in the abstract model M̂ (in symbols M̂ |=

ϕ) iff M̂, ŝ0 |= ϕ for some ŝ0 ∈ ι̂ (i.e., ϕ is true at some abstract initial state of
the abstract model M̂). For every ŝ ∈ Ŝ the relation |= is defined inductively
as follows:

– M̂, ŝ |= p iff p ∈ V̂(ŝ),
– M̂, ŝ |= ¬p iff p �∈ V̂(ŝ),
– M̂, ŝ |= α ∧ β iff M̂, ŝ |= α and M̂, ŝ |= β,

156 A.M. Zbrzezny and A. Zbrzezny

– M̂, ŝ |= α ∨ β iff M̂, ŝ |= α or M̂, ŝ |= β,
– M̂, ŝ |= EXα iff (∃π̂ ∈ Π̂(ŝ))(M̂, π̂(1) |= α),
– M̂, ŝ |= E(αUIβ) iff (∃π̂∈Π̂(ŝ))(∃m∈ I)[M̂, π̂(m) |= β

and (∀j <m)M̂, π̂(j) |= α],
– M̂, ŝ |= EGIα iff (∃π̂ ∈ Π̂(ŝ)) such that (∀m ∈ I)[M̂, π̂(m) |= α],
– M̂, ŝ |= Kiα iff (∃ŝ′ ∈ Ŝ)(ŝ ∼ ŝ′ and M̂, ŝ′ |= α),
– M̂, ŝ |= Y α iff (∃ŝ′ ∈ Ŝ)(ŝ ∼ ŝ′ and M̂, ŝ′ |= α), where Y ∈ {DΓ ,EΓ ,CΓ },

and ∼∈ {∼D
Γ ,∼E

Γ ,∼C
Γ }.

We end the section by defining the notions of validity and the model checking
problem. Namely, a RTECTLK formula ϕ is valid in M̂ (denoted M̂ |= ϕ) iff
M̂, ι̂ |= ϕ, i.e., ϕ is true at the abstract initial state of the abstract model M̂.
The model checking problem asks whether M̂ |= ϕ.

From the fact that the timed model and the abstract model for TIS are
bisimulation-equivalent it follows that the same formulae are true in both the
models.

We state the following theorem:

Theorem 1. Let M be the timed model, ϕ an RTECTLK formula, and M̂ be
the abstract model of M. Then, M |= ϕ iff M̂ |= ϕ.

3 SMT-based Bounded Model Checking

In this section we present an outline of the bounded semantics for RTECTLK
and define a SMT-based BMC for RTECTLK, which is based on the BMC
encoding presented in [21]. The main difference between the SAT-based encod-
ing and the SMT-base encoding is the representation of symbolic states, and
symbolic actions. In effect, the SMT-based encoding is the generalisation of the
propositional encoding.

RTECTLK formulae can be checked by BMC on an abstract model instead of
on the original model. The model checking for this class of formulae is decidable.
The complexity of standard SMT-based BMC is double exponential [5].

The SMT-based BMC is based on the notion of the bounded semantics, the
definition of which requires the concept of k-paths and loops.

3.1 Bounded Semantics

Let M̂ = (Act, Ŝ, ι̂, T̂ , V̂) be an abstract model and k ≥ 0. A k-path π̂k in M̂ is
a finite sequence of abstract states (ŝ0, . . . , ŝk) such that (ŝj , ŝj+1) ∈ T̂ for each
0 ≤ j < k. By Π̂k(ŝ) we denote the set of all the k-paths starting at ŝ in M̂,
and Π̂k =

⋃
ŝ∈̂S Π̂k(ŝ). A k-path π̂k is a (k, l)-loop iff π̂k(l) = π̂k(k) for some

0 ≤ l < k; note that (k, l)-loop π̂ generates the infinite path of the following
form: ζ · θω with ζ = (π̂(0), . . . , π̂(l − 1)) and θ = (π̂(l), . . . , π̂(k − 1)). Since in
the bounded semantics we consider finite prefixes of paths only, the satisfiability

Verifying Real-Time Properties of Multi-agent Systems 157

of all the temporal operators depends on whether a considered k-path is a loop.
Thus, as customary, we introduce a function loop : Π̂k → 2IN, which identifies
these k-paths that are loops. The function is defined as: loop(π̂k) = {l | 0 ≤ l < k
and π̂k(l) = π̂k(k)}.

Definition 2. Given are a bound k ∈ IN, an abstract model M̂, and RTECTLK
formulae α, β. M̂, ŝ |= kα denotes that α is k−true at the abstract state ŝ of
M̂. The relation |= k is defined inductively as follows:

– M̂, ŝ |= ktrue, M̂, ŝ � |= kfalse,
– M̂, ŝ |= kp iff p ∈ V̂(ŝ),
– M̂, ŝ |= k¬p iff p �∈ V̂(ŝ),
– M̂, ŝ |= kα ∨ β iff M̂, ŝ |= kα or M̂, ŝ |= kβ,
– M̂, ŝ |= kα ∧ β iff M̂, ŝ |= kα and M̂, ŝ |= kβ,
– M̂, ŝ |= kEXα iff k > 0 and (∃π̂ ∈ Π̂k(ŝ))M̂, π̂(1) |= kα,
– M̂, ŝ |= kE(αUIβ) iff (∃π̂ ∈ Π̂k(ŝ))(∃0 ≤ m ≤ k)(m ∈ I and M̂, π(m) |= kβ

and (∀0 ≤ j < m)M̂, π̂(j) |= kα),
– M̂, ŝ |= kEGIα iff (∃π̂ ∈ Π̂k(ŝ))((k ≥ right(I) and (∀j ∈ I) M̂, π̂(j) |= kα)

or (k < right(I) and (∃l ∈ loop(π̂))(∀min(left(I), l) ≤ j < k) M̂, π̂(j) |=
kα)),

– M̂, ŝ |= kY α iff (∃π̂ ∈ Π̂k(ι̂))(∃0 ≤ j ≤ k)(M̂, π(j) |= kα and ŝ ∼ π̂(j)),
where Y ∈ {Ki,DΓ ,EΓ ,CΓ } and ∼∈ {∼i,∼D

Γ ,∼E
Γ ,∼C

Γ }.

A RTECTLK formula ϕ is valid in an abstract model M̂ with a bound k
(denoted M̂ |= kϕ) iff M̂, ι̂ |= kϕ, i.e., ϕ is k−true at the abstract initial state
of the abstract model M̂. The bounded model checking problem asks whether
M̂ |= kϕ.

By straightforward induction on the length of a RTECTLK formula ϕ we
can show that the following lemmas hold.

Lemma 4. Given are a bound k ≥ 0, an abstract model M̂, and a RTECTLK
formula ϕ. Then, the following implication holds: M̂, ŝ |= kϕ implies M̂, ŝ |= ϕ,
for each ŝ in M̂.

Lemma 5. Given are an abstract model M̂, a bound k = |M̂| (where |M̂|
denotes the number of states in the abstract model M̂), and a RTECTLK formula
ϕ. Then, the following implication holds: for each ŝ in M̂, if M̂, ŝ |= ϕ, then
there exists k ≥ 0 such that M̂, ŝ |= kϕ.

The following theorem states that there exists a bound such that bounded
semantics is equivalent to the unbounded one, which means that the model
checking problem (M̂ |= ϕ) can be reduced to the bounded model checking
problem (M̂ |= kϕ). Its proof follows from Lemmas 4 and 5.

Theorem 2. Let M̂ be an abstract model and ϕ a RTECTLK formula. Then, the
following equivalence holds: M̂ |= ϕ iff there exists k ≥ 0 such that M̂ |= kϕ.

158 A.M. Zbrzezny and A. Zbrzezny

The reduction of RTECTLK to the quantifier-free first-order formula allows
us to use efficient SMT solvers to perform model checking. A function f̂k that
gives a bound on the number of k-paths of M̂, which are sufficient to validate a
given RTECTLK formula is defined in [21].

By straightforward induction on the length of a RTECTLK formula ϕ we
can show that ϕ is k−true in M̂ if and only if ϕ is k−true in M̂ with a number
of k−paths reduced to f̂k(ϕ).

3.2 The Translation of RTECTLK to the Quantifier-Free
First-Order Formulae

Now we present our translation of a RTECTLK formula into a quantifier-free
first-order formula. Given are a model M̂ = (Act, Ŝ, ι̂, T̂ , V̂), a RTECTLK
formula ϕ, and a bound k ≥ 0. It is well known that the main idea of the
BMC method consists in translating the bounded model checking problem, i.e.,
M̂ |= kϕ, to the problem of checking the satisfiability of the following proposi-
tional formula:

[M̂, ϕ]k := [M̂ϕ,ι̂]k ∧ [ϕ]
̂M,k

The formula [M̂ϕ,ι̂]k constrains the fk(ϕ) symbolic k-paths to be valid k-paths of
M̂, while the formula [ϕ]

̂M,k
encodes a number of constraints thatmust be satisfied

on these sets of k-paths for ϕ to be satisfied. Once this translation is defined, check-
ing satisfiability of a RTECTLK formula can be done by means of a SMT-solver.

Let i ∈ A ∪ {Ev}. In order to define the formula [M̂, ϕ]k we proceed as fol-
lows. We assume that each abstract global state ŝ ∈ Ŝ of M̂ is represented by a
valuation of a symbolic global state w = ((u1, v1), . . . , (un, vn), (uEv, vEv)) that
consists of symbolic local states and each symbolic local state wi is a pair (ui, vi) of
individual variables ranging over the natural numbers, in which the first element
represents a location of the agent i, and the second represents the clocks valua-
tion. Each joint action a ∈ Act is represented by a valuation of a symbolic action
a = (a1, . . . , an, aEv) that consists of symbolic local actions and each symbolic local
action ãi is an individual variable ranging over the natural numbers.

In order to define the formula [M̂, ϕ]k we proceed as follows. A finite sequence
(w0, . . . ,wk) of symbolic states is called a symbolic k-path. Since, in general, we
may need to consider more than one symbolic k-path, we introduce a notion
of the j-th symbolic k-path, which is denoted by (w0,j , . . . ,wk,j), where wi,j

are symbolic states for 0 ≤ j < fk(ϕ) and 0 ≤ i ≤ k. Note that the exact
number of necessary symbolic k-paths depends on the checked formula ϕ, and
it can be calculated by means of the function fk [21]. We define the following
quantifier-free first-order formulae:

– Iŝ(w) - it encodes the abstract global state ŝ of the abstract model M̂;
– Hi(wi, w

′
i) - it encodes equality of two local states, such that wi = w′

i for
i ∈ A ∪ {Ev};

– Ti(wi, (ã, δ), w′
i) - it encodes the local evolution function of agent i;

Verifying Real-Time Properties of Multi-agent Systems 159

– A(a) - it encodes that each symbolic local action ai of a has to be executed
by each agent in which it appears;

– T (w, (a, δ),w′) := A(a) ∧
∧

i∈A∪{Ev} Ti(wi, (a, δ), w′
i);

– Let πj denote the j-th symbolic k-path, i.e. the sequence of symbolic transi-

tions: w0,j
a1,j ,δ1,j−→ w1,j

a2,j ,δ2,j−→ . . .
ak,j ,δk,j−→ wk,j .

Thus, given the above, we can define the formula [M̂ϕ,ι̂]k as follows:

[M̂ϕ,ι̂]k :=
∨

s∈ι̂

Is(w0,0) ∧
̂fk(ϕ)∨

j=1

w0,0 = w0,j ∧
̂fk(ϕ)∧

j=1

k−1∧

i=0

T (wi,j , (ai,j , δi,j),wi+1,j)

where wi,j and ai,j are, respectively, symbolic states, symbolic actions for 0 ≤
i ≤ k and 1 ≤ j ≤ fk(ϕ).

The formula [ϕ]M,k encodes the bounded semantics of the RTECTLK for-
mula ϕ, and it is defined on the same sets of individual variables as the for-
mula [Mϕ,ι]k. Moreover, it uses the auxiliary quantifier-free first-order formulae
defined in [20].

Furthermore, following [20], our formula [ϕ]M,k uses the following auxiliary
functions gl, gr, gμ, hU

k , hG
k which were introduced in [23], and which allow us

to divide the set A ⊆ Fk(ϕ) = {j ∈ IN | 1 ≤ j ≤ fk(ϕ)} into subsets necessary
for translating the sub-formulae of ϕ.

Definition 3 (Translation of RTECTLK Formulae). Let ϕ be a
RTECTLK formula, and k ≥ 0 a bound. We define inductively the translation of
ϕ over path number n ∈ Fk(ϕ) starting at symbolic state wm,n as shown below.

- [EXα][m,n,A]
k := (1) wm,n = w0,min(A) ∧ [α][1,min(A),gs(A)]

k , if k > 0
(2) false, otherwise,

- [E(αUIβ)][m,n, A]
k := wm,n = w0,min(A) ∧

∨k
i=0([β][i,min(A),hU(A,k,fk(β))(k)]

k

∧In(i, I) ∧
∧i−1

j=0[α][j, min(A),hU(A,k,fk(β))(j)]
k),

- [EGIα][m,n,A]
k := wm,n = w0,min(A)∧

(1)
∧right(I)

j=left(I)[α][j,min(A),hG(A,k)(j)]
k , if right(I) ≤ k

(2)
∨k−1

l=0 (wk,min(A) = wl,min(A)

∧
∧k−1

j=min(left(I),l)[α][j,min(A),hG(A,k)(j)]
k), otherwise,

- [Kiα]
[m,n,A]

k := Iι(w0,min(A)) ∧
∨k

j=0([α][j,min(A),gs(A)]
k

∧Hi(wm,n,wj,min(A)))
- [DΓ α]

[m,n,A]

k := Iι(w0,min(A)) ∧
∨k

j=0([α][j,min(A),gs(A)]
k

∧
∧

i∈Γ Hi(wm,n,wj,min(A))),
- [EΓ α]

[m,n,A]

k := Iι(w0,min(A)) ∧
∨k

j=0([α][j,min(A),gs(A)]
k

∧
∨

i∈Γ Hi(wm,n,wj,min(A))),
- [CΓ α]

[m,n,A]

k := [
∨k

j=1(EΓ)jα][m,n,A]
k .

160 A.M. Zbrzezny and A. Zbrzezny

The theorem below states the correctness and the completeness of the pre-
sented translation. It can be proven by induction on the structure of the given
RTECTLK formula.

Theorem 3. Let M̂ be an abstract model, and ϕ a RTECTLK formula. For
every k ∈ IN, M̂ |= kϕ if, and only if, the quantifier-free first-order formula
[M̂, ϕ]k is satisfiable.

4 Experimental Results

In this section we experimentally evaluate the performance of our SMT-based
BMC encoding for RTECTLK over the TIS semantics. We have conducted the
experiments using two benchmarks that are no yet widely used in the multi-
agent community: the timed generic pipeline paradigm (TGPP) TIS model [22]
and the timed train controller system (TTCS) TIS model [22]. We would like to
point out that both benchmarks are very useful and scalable examples.

TGPP. The abstract model of TGPP involves n+2 agents: Producer producing
data within the certain time interval ([a, b]) or being inactive, Consumer receiving
data within the certain time interval ([c, d]) or being inactive within the certain
time interval ([g, h]), a chain of n intermediate Nodes which can be ready for
receiving data within the certain time interval ([c, d]), processing data within
the certain time interval ([e, f]) or sending data, and the environment Ev. The
weights are used to adjust the cost properties of Producer, Consumer, and of
the intermediate Nodes.

Each agent of the scenario can be modelled by considering its local states, the
local actions, the local protocol, the local evolution function, the local weight
function, the local clocks, the clock constraints, the invariants, and the local
valuation function. Figure 1 shows the local states, the possible actions, and
the protocol, the clock constraints, invariants and weights for each agent. Null
actions are omitted in the figure. For environment, we shall consider just one
local state: LEv = {·}. The set of actions for Ev is ActEv = {εEv}. The local
protocols of Ev is the following: PEv(·) = ActEv. The set of clocks of Ev is
empty, and the invariant function is IEv(·) = {∅}.

Given Fig. 1, the local evolution functions of TGPP are straightforward
to infer. Moreover, we assume the following set of propositional variables:
AP = {ProdReady, ProdSend, ConsReady, ConsFree} with the follow-
ing definitions of local valuation functions: V̂P (ProdReady) = {ProdReady},
V̂P (ProdSend) = {ProdSend}; V̂C(ConsReady) = {ConsReady},
V̂C(ConsFree) = {ConsFree}.

Let Act = ActP ×
∏n

i=1 ActNi
× ActC × ActEv, with ActP =

{Produce, Send1, εP }, ActC = {Startn+1, Consume, Sendn+1, εC}, ActNi
=

{Starti, Sendi, Sendi+1, P roci, εNi
}, and ActEv = {εEv} defines the set of joint

actions for the scenario. For ã ∈ Act let actP (ã) denotes an action of Producer,
actC(ã) denotes an action of Consumer, actNi

(ã) denotes an action of Node i,

Verifying Real-Time Properties of Multi-agent Systems 161

Fig. 1. The TGPP system

and actEv(ã) denotes an action of environment Ev. We assume the following
local evolution functions:

– tP (ProdReady, ·, x0 ≥ a, ∅, ã) = ProdSend, if actP (ã) = Produce;
– tP (ProdSend, ·, true, {x0}, ã) = ProdReady, if actP (ã) = Send1 and

actNi
(ã) = Send1;

– tC(ConsStart, ·, true, {xn+1}, ã) = ConsReady, if actC(ã) = Startn+1;
– tC(ConsReady, ·, xn+1 ≥ c, {xn+1}, ã) = ConsFree, if actC(ã) = Sendn+1

and actNn
(ã) = Sendn+1;

– tC(ConsFree, ·, xn+1 ≥ g, {xn+1}, ã) = ConsReady, if actC(ã) = Consume.

The set of all the global states Ŝ for the scenario is defined as the
product (LP × ID|XP |

P) ×
∏n

i=1(LNi
× ID|XNi

|
Ni

) × (LC × ID
|XLC

|
LC

) × LEv.
The set of the initial states is defined as ι̂ = {s0}, where s0 =
((ProdReady, 0), (Node1Start, 0), . . . , (NodenStart, 0), (ConsStart, 0), (·)).

The specifications we consider are as follows:

– ϕ1 = EF[0,∞)(ProdSend ∧EG[a,∞)KCKP (Received)), where a = 2n + 1 and
n ≥ 1 – states that it is not true that if Producer produces a product, then
ultimately in a or more steps, Consumer knows that Producer does not know
that Consumer has the product.

– ϕ2 = EF[0,∞)KP (ProdSend ∧ EF[0,4)(Received)) – expresses that it is not
true that Producer knows that if he produces a product, then always within the
next three steps later Consumer does not have the product.

– ϕ3 = EF[0,∞)KP (ProdSend∧EF[n,n+4)(Received)) – states that it is not true
that Producer knows that if he produces a product, then always within interval
[n, n + 4) Consumer does not have the product.

162 A.M. Zbrzezny and A. Zbrzezny

Fig. 2. The TTCS system

TTCS. The TTCS consists of n (for n ≥ 2) trains T1, . . . , Tn, each one using its
own circular track for travelling in one direction and containing its own clock xi,
together with controller C used to coordinate the access of trains to the tunnel
through all trains have to pass at certain point, and the environment Ev. There is
only one track in the tunnel, so trains arriving from each direction cannot use it in
this same time. There are signals on both sides of the tunnel, which can be either
red or green. All trains notify the controller when they request entry to the tunnel
or when they leave the tunnel. The controller controls the colour of the displayed
signal, and the behaviour of the scenario depends on the values δ and Δ (Δ > δ+3
makes it incorrect - the mutual exclusion does not hold) (Fig. 2).

Controller C has n + 1 states, denoting that all trains are away (state 0),
and the numbers of trains, i.e., 1, . . . , n. Controller C is initially at state 0. The
action Starti of train Ti denotes the passage from state away to the state where
the train wishes to obtain access to the tunnel. This is allowed only if controller
C is in state 0. Similarly, train Ti synchronises with controller C on action
approachi, which denotes setting C to state i, as well as outi, which denotes
setting C to state 0. Finally, action ini denotes the entering of train Ti into the
tunnel. For environment, we shall consider just one local state: LEv = {·}. The
set of actions for Ev is ActEv = {εEv}. The local protocols of Ev is the following:
PEv(·) = ActEv. The set of clocks of Ev is empty, and the invariant function is
IEv(·) = {∅}.

Verifying Real-Time Properties of Multi-agent Systems 163

The set of all the global states Ŝ for the scenario is defined as the product
∏n

i=1(LTi
×ID|XTi

|
Ti

)×(LC ×ID
|XLC

|
LC

)×LEv. The set of the initial states is defined
as ι̂ = {s0}, where s0 = (away1, 0), . . . , (awayn, 0), (0, 0), (·).

Moreover, we assume the following set of propositional variables: AP =
{tunnel1, . . . , tunneln} with the following definition of local valuation functions
for i ∈ {1, . . . , n}: V̂Ti

(tunneli) = {tunneli}.
Let Act =

∏n
i=1 ActTi

× ActC × ActEv, with ActC = {start1, . . . , startn,
approach1, . . . , approachn, in1, . . . , inn, out1, . . . , outn}, ActTi

=
{start1, . . . , startn, approach1, . . . , approachn, in1, . . . , inn, out1, . . . , outn}, and
ActEv = {εEv} defines the set of joint actions for the scenario. For ã ∈ Act let
actTi

(ã) denotes an action of Traini, actC(ã) denotes an action of Controller,
and actEv(ã) denotes an action of environment Ev.

We assume the following local evolution functions for i ∈ {1, . . . , n}:
tTi

(awayi, ·, true, {xi}, ã) = tryi, if actTi
(ã) = starti and actC(ã) = starti;

tTi
(tryi, ·,Δ > xi, {xi}, ã) = waiti, if actTi

(ã) = approachi and actC(ã) =
approachi; tTi

(waiti, ·, xi > 6, {∅}, ã) = tunneli, if actTi
(ã) = ini and actC(ã) =

ini; tTi
(tunneli, ·, true, {∅}, ã) = awayi, if actTi

(ã) = outi and actC(ã) = outi.
The specifications we consider are as follows:

– ϕ4 = EF[0,∞)(KTrain1(InTunnel1 ∧ EG[2,∞)(¬InTunnel1))) – states that it
is not true that it is always the case that agent Train 1 knows that whenever
he is in the tunnel, it will be in the tunnel once again within a bounded period
of steps, i.e., within n steps for n ≥ 2.

– ϕ5 = EF[0,∞)(InTunnel1 ∧ KTrain1(EG[1,n+2)(
∧n

i=1(¬InTunneli)))) –
expresses that it is not true that it is always the case that if Train 1 is in
the tunnel, then he knows that either he or other train will be in the tunnel
during the next n + 1 steps.

All the above formulae are true in the model for TTCS.

4.1 Performance Evaluation

We have performed our experiments on a computer equipped with I7-3770
processor, 32 GB of RAM, and the operating system Linux with the kernel 4.5.1.
Our SMT-based and SAT-based BMC algorithms are implemented as stand-
alone programs written in the programming language C++. We used the state of
the art SMT-solver Z3 [16] (https://github.com/Z3Prover). All the benchmarks
together with instructions on how to reproduce our experimental results can be
found at the web page http://tinyurl.com/smt4tis-rtectlk.

TGPP. The number of considered k-paths for the formula ϕ1 is equal to 10 for
n = 1 and 4 · (n + 1) for n > 1; for the formula ϕ2 is equal to 6 for n = 1 and
4 · n for n > 1; for the formula ϕ3 is equal to 6 for n = 1, 3 · n, if n is an even
number, and 3 · n if n is an odd number.

From Fig. 3 one can observe that the SMT-BMC is able to verify the formula
ϕ1 for TGPP with 20 nodes, the formula ϕ2 for TGPP with 20 nodes, and the
formula ϕ3 for TGPP with 8 nodes,

https://github.com/Z3Prover
http://tinyurl.com/smt4tis-rtectlk

164 A.M. Zbrzezny and A. Zbrzezny

 0

 2000

 4000

 6000

 8000

 10000

 12000

 14000

 16000

1 2 3 4 5 6 7 8 10 12 14 16 18 20

T
im

e
in

 s
ec

.

Number of Nodes

Total time usage for a TGPP ϕ1, ϕ2, ϕ3

ϕ1
ϕ2
ϕ3

 10

 100

 1000

 10000

1 2 3 4 5 6 7 8 10 12 14 16 18 20

M
em

or
y

in
 M

B

Number of Nodes

Memory usage for a TGPP ϕ1, ϕ2, ϕ3

ϕ1
ϕ2
ϕ3

Fig. 3. TGPP with n nodes.

TTCS. The number of considered k-paths for both the formulae is equal to 7.
From Fig. 4 one can observe that the SMT-BMC is able to verify the formulae

ϕ4 and the formulae ϕ5 for TTCS with 550 trains.

4.2 Performance Evaluation Summary

The experimental results show that the SMT-BMC is sensitive to scaling up
the size of the benchmarks. As one can see from the line charts in Figs. 3 and 4
showing the total time and the memory consumption for all the tested properties,
the experimental results confirm that our new SMT-based BMC for TIS and for
RTECTLK is promising.

Verifying Real-Time Properties of Multi-agent Systems 165

Fig. 4. TTCS with n trains.

5 Conclusions

We have proposed the SMT-based BMC verification method for model check-
ing RTECTLK properties interpreted over the timed interpreted systems. We
have provided a preliminary experimental results. The experimental results show
that the SMT-based BMC method is worth of interest. We would like to use
other SMT-solvers in our implementations and compare experimental results.
The BMC for RTECTLK and for TISs may also be performed by means of
Ordered Binary Diagrams (OBDD) and SAT. This will be explored in the future.

The module will be added to the model checker VerICS [11].

166 A.M. Zbrzezny and A. Zbrzezny

References

1. Baier, C., Katoen, J.-P.: Principles of Model Checking. MIT Press, Cambridge
(2008)

2. Barrett, C., Sebastiani, R., Seshia, S., Tinelli, C.: Satisfiability modulo theories
(chap. 26). In: Biere, A., Heule, M.J.H., van Maaren, H., Walsh, T. (eds.) Hand-
book of Satisfiability. Frontiers in Artificial Intelligence and Applications, vol. 185,
pp. 825–885. IOS Press, Amsterdam (2009)

3. Blackburn, P., de Rijke, M., Venema, Y.: Modal logic. In: Cambridge Tracts in
Theoretical Computer Science, vol. 53. Cambridge University Press (2001)

4. Clarke, E.M., Grumberg, O., Peled, D.A.: Model Checking. MIT Press, Cambridge
(1999)

5. Clarke, E., Kroning, D., Ouaknine, J., Strichman, O.: Completeness and complexity
of bounded model checking. In: Steffen, B., Levi, G. (eds.) VMCAI 2004. LNCS,
vol. 2937, pp. 85–96. Springer, Heidelberg (2004)

6. Emerson, E.A.: Temporal and modal logic (chap. 16). In: van Leeuwen, J. (ed.)
Handbook of Theoretical Computer Science, vol. B, pp. 996–1071. Elsevier Science
Publishers, Amsterdam (1990)

7. Emerson, E.A., Mok, A.K., Sistla, A.P., Srinivasan, J.: Quantitative temporal rea-
soning. Real-Time Syst. 4(4), 331–352 (1992)

8. Fagin, R., Halpern, J.Y., Moses, Y., Vardi, M.Y.: Reasoning About Knowledge.
MIT Press, Cambridge (1995)

9. Gammie, P., van der Meyden, R.: MCK: model checking the logic of knowledge.
In: Alur, R., Peled, D.A. (eds.) CAV 2004. LNCS, vol. 3114, pp. 479–483. Springer,
Heidelberg (2004)

10. Jones, A.V., Lomuscio, A.: Distributed BDD-based BMC for the verification
of multi-agent systems. In: Proceedings of the 9th International Conference on
Autonomous Agents and Multiagent Systems (AAMAS 2010), pp. 675–682. IFAA-
MAS (2010)

11. Kacprzak, M., Nabialek, W., Niewiadomski, A., Penczek, W., Pólrola, A., Szreter,
M., Woźna, B., Zbrzezny, A.: VerICS 2007 - a model checker for knowledge and
real-time. Fundamenta Informaticae 85(1–4), 313–328 (2008)

12. Levesque, H.: A Logic of implicit and explicit belief. In: Proceedings of the 6th
National Conference of the AAAI, pp. 198–202. Morgan Kaufman, Palo Alto (1984)

13. Lomuscio, A., Qu, H., Raimondi, F.: MCMAS: a model checker for the verifica-
tion of multi-agent systems. In: Bouajjani, A., Maler, O. (eds.) CAV 2009. LNCS,
vol. 5643, pp. 682–688. Springer, Heidelberg (2009)

14. Lomuscio, A., Sergot, M.: Deontic interpreted systems. Stud. Logica. 75(1), 63–92
(2003)

15. Mȩski, A., Penczek, W., Szreter, M., Woźna-Szcześniak, B., Zbrzezny, A.: BDD-
versus SAT-based bounded model checking for the existential fragment of linear
temporal logic with knowledge: algorithms and their performance. Auton. Agents
and Multi-agent Syst. 28(4), 558–604 (2014)

16. de Moura, L., Bjørner, N.S.: Z3: An efficient SMT solver. In: Ramakrishnan, C.R.,
Rehof, J. (eds.) TACAS 2008. LNCS, vol. 4963, pp. 337–340. Springer, Heidelberg
(2008)

17. Peled, D.: All from one, one for all: on model checking using representatives.
In: Courcoubetis, C. (ed.) CAV 1993. LNCS, vol. 697, pp. 409–423. Springer,
Heidelberg (1993)

Verifying Real-Time Properties of Multi-agent Systems 167

18. Penczek, W., Lomuscio, A.: Verifying epistemic properties of multi-agent systems
via bounded model checking. Fundamenta Informaticae 55(2), 167–185 (2003)

19. Wooldridge, M.: An Introduction to Multi-agent Systems, 2nd edn. Wiley, Hoboken
(2009)

20. Woźna-Szcześniak, B.: SAT-based bounded model checking for weighted deontic
interpreted systems. In: Correia, L., Reis, L.P., Cascalho, J. (eds.) EPIA 2013.
LNCS, vol. 8154, pp. 444–455. Springer, Heidelberg (2013)

21. Woźna-Szcześniak, B., Zbrzezny, A., Zbrzezny, A.: The BMC method for the exis-
tential part of RTCTLK and interleaved interpreted systems. In: Antunes, L.,
Pinto, H.S. (eds.) EPIA 2011. LNCS, vol. 7026, pp. 551–565. Springer, Heidelberg
(2011)

22. Woźna-Szcześniak, B., Zbrzezny, A.: Checking EMTLK properties of timed inter-
preted systems via bounded model checking. Studia Logica, 1–38 (2015)

23. Zbrzezny, A.: Improving the translation from ECTL to SAT. Fundamenta Infor-
maticae 85(1–4), 513–531 (2008)

	Verifying Real-Time Properties of Multi-agent Systems via SMT-Based Bounded Model Checking
	1 Introduction
	2 Preliminaries
	2.1 Timed Interpreted Systems
	2.2 Timed Model
	2.3 Abstract Model
	2.4 RTECTLK

	3 SMT-based Bounded Model Checking
	3.1 Bounded Semantics
	3.2 The Translation of RTECTLK to the Quantifier-Free First-Order Formulae

	4 Experimental Results
	4.1 Performance Evaluation
	4.2 Performance Evaluation Summary

	5 Conclusions
	References

