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Abstract. The transition towards an electricity grid based on renewable
energy production induces fluctuation in electricity generation. This chal-
lenges the existing electricity grid design, where generation is expected
to follow demand for electricity. In this paper, we propose a multi-agent
based Virtual Power Plant design that is able to balance the demand
of energy-intensive, industrial loads with the supply situation in the
electricity grid. The proposed Virtual Power Plant design uses a novel
inter-agent, multi-objective, multi-issue negotiation mechanism, to coor-
dinate the electricity demands of industrial loads. Coordination hap-
pens in response to Demand Response events, while considering local
objectives in the industrial domain. We illustrate the applicability of our
approach on a Virtual Power Plant scenario with three simulated green-
houses. The results suggest that the proposed design is able to coordinate
the electricity demands of industrial loads, in compliance with external
Demand Response events.

1 Introduction

The transition towards an electricity production based on renewable energy, chal-
lenges the electricity infrastructure. Maintaining a balance between supply and
demand is crucial, and fluctuations from electricity production must be handled.
To this end, consumer participation in Demand Response (DR) programs offers
a cheap and carbon friendly solution [3]. In DR programs, consumers are offered
incentive, in the form of variable electricity prices or direct payments, to change
their consumption pattern [7]. To overcome capacity constraints on DR markets,
the coordinated actions of multiple consumers can be exposed through a Virtual
Power Plant (VPP) [9].

Literature contain numerous proposals for VPP designs. In general, these
approaches can be categorized either as centralized- or distributed approaches.
Centralized approaches such as the ones proposed by Ruiz et al. [11], Binding
et al. [1] and Molderink et al. [8] rely on direct load control of consumers, which
scales poorly for larger virtual power plants. Further, this deprives consumers of
their autonomy. To overcome these limitations, distributed approaches coordinate
consumers represented as autonomous agents. Kok et al. [5], Kulasekara et al. [6],
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Zhang et al. [13] and Ramchurn et al. [10] contains examples of such approaches.
But to our knowledge, existing literature does not account for the fact, that con-
sumers are often complex entities, with several objectives negotiating over several
issues.Under these circumstances, several local objectivesmust be pursued by each
consumer while adhering to global requirements presented by DR events.

To this end, we propose a multi-agent based VPP design, which uses a
novel inter-agent multi-objective multi-issue (MOMI) negotiation mechanism to
achieve a group objective among self-interested agents. Agents represent complex
consumer domains, and the group objective is defined by DR events received by
a VPP entity. The design has been implemented in a software application used
to simulate a VPP containing three greenhouses, which are coordinated towards
various DR events. The results show that the electricity consumption of the
greenhouses can be coordinated in accordance with received DR events, without
violating their production requirements, when sufficient flexibility is available in
the greenhouses.

The remainder of the paper is organized as follows. In Sect. 2 we present the
proposed multi-agent based VPP design. This is followed by a description of
a VPP scenario in Sect. 3. Section 4 describes experimental results and finally
Sect. 5 draws conclusions.

2 Model for an Multi-agent Based VPP

We propose a multi-agent based VPP design, in which the complex nature of
consumer domains is recognized. The design consists of an Aggregator-agent who
negotiates with a number of Load-agents. The purpose of the negotiation is to
agree on an electricity profile for each of the Load-agents. The electricity profile
describes planned consumption (or, production) for a consumer domain across a
VPP-specific period of time. When combined, the electricity profiles of all con-
sumer domains should adhere to requests for DR services received as DR events.
In this context, the Aggregator-agent is a coordinating entity that receives DR
events, and the Load-agents represent consumer domains. The Aggregator-agent
may form bilateral negotiations with Load-agents. When this happens, the Load-
agent will provide an electricity demand profile to the Aggregator-agent. The
Aggregator-agent initiates negotiation with the Load-agents by calculating elec-
tricity allocation profiles. These form a combined electricity profile that adheres
to the received DR event. Further, the allocations for each Load-agent is as close
to the electricity demand profiles as possible. The Aggregator-agent will then
inform the Load-agents of the suggestions for electricity allocation profiles, and
Load-agents will respond with a revised electricity demand profile. This process
is repeated until the Aggregator-agent and Load-agents reach consensus on allo-
cation - or the negotiation reaches a specified time-limit.

The agent decision logic is modeled as a multi-objective, multi-issue (MOMI)
negotiation using a genetic algorithm (GA). Agents may have several objectives
and address several issues, and the GA will query each objective with suggestions
for issue values. This can be perceived as a mediator-based negotiation, where
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the GA assumes a man-in-the-middle position towards a set of objectives, rep-
resented by concerns, who negotiate over a set of issues. The mediator proposes
values for issues, in the form of contracts, to the concerns. Each concern defines
a cost function, which will yield a cost as a function of a contract and a target
vector. This cost describes the degree to which a proposed contract adheres to
the objective represented by the concern, at the time of the proposal. The use
of cost functions means that concerns will seek to reduce the distance between
a contract and its target vector. Here, the concern may select a subset of values
from the contract and manipulate them, in order to make them comparable to
its target vector. This means that the mediator has incomplete information: The
mediator has knowledge of the concerns and - after querying - the cost they asso-
ciate with a specific contract. It does not have knowledge of the cost function of
the concern or the value of its target vector. The use of a GA means that con-
tract proposals will initially be random within limits defined by the issues. The
mediator will create a vector for each contract containing costs for each concern.
Using the Pareto criteria, the mediator then creates and evolves a Pareto set
of contract proposals based on their cost vectors. Evolution happens through
genetic operations (crossover and mutation) on the contracts. The evolution of
the Pareto set continues, until a time-limit, or a given number of evolutions, is
reached. This concludes local optimization and enables the mediator to select a
contract from the Pareto set, in order to provide a proposal in the inter-agent
negotiation. To this end, mediators use concern’s priority: A concern’s priority is
given by a value of either 0, 1 or 2. The lower the value, the higher the priority.
These priorities are used to classify mission critical Domain Concerns (DCs) in
priority 0, Representation Concerns (RCs) in priority 1, and non-mission critical
DCs in priority 2. DCs are used by the agent to represent local objectives where
RCs represent objectives of agents, with which it is negotiating. The concept is
illustrated in Fig. 1.

A selection criteria based on maximizing social benefit [4] is then used recur-
sively on the priority groups to select the best contract. This means that all
contracts from priority 0 that yield the same social benefit, are evaluated for
all concerns in priority 1 and so on. The priority based selection scheme will
guarantee the selection of a contract, that satisfies concerns with a higher pri-
ority before it considers concerns with lower priority. After selecting a con-
tract, a mediator will update target vectors of all RCs representing its agent.

Fig. 1. Concept of bilateral negotiation between agents in agent decision logic



316 A. Clausen et al.

This initiates the next round of inter-agent negotiation, and the process contin-
ues until a final number of negotiation rounds is reached or the allocated time
for inter-agent negotiation expires. This design enures, that agents may mutu-
ally influence each other without violating mission-critical, local objectives. This
design enables a differentiation between DCs and RCs: The mediator can pri-
oritize local objectives over objectives, which represent external agents. This is
necessary to avoid a self-enforcing feedback loop between an opponent agent and
its RCs, during inter-agent negotiation. In agent terminology, this ensures that
agents act truthful, and not based on external bias. Once the inter-agent nego-
tiation terminates, the Pareto set in each agent contains one or more contracts,
with maximum social benefit for both mission-critical DCs and RCs, iff there
are no conflicts between the Aggregator-agent and Load-agents. However, in case
of a conflict, no such contract exist. To solve this conflict, a choice can be made
to prioritize the Aggregator-agent, in order to guarantee compliance with DR
events, or to prioritize Load-agents, to ensure successful operation of consumer
domains (or compromises in between these extremes). This topic is outside the
scope of this paper.

3 Case Study

In our case study, we have created a VPP using the design presented in section
Sect. 2. The VPP is implemented with a single Aggregator-agent and four Load-
agents who simulate consumers. These consumers resemble commercial green-
house growers, who play an important role in the production of ornamental
pot plants and vegetables in Northern Europe. These are ideal candidates for
VPPs, as they constitute complex process domains, where maintaining an opti-
mal growth climate for plants requires intensive energy use and continuous
supervision of different climate parameters such as CO2 levels, temperature and
humidity.

3.1 Load-Agent Decision Logic

Each Load-agent has been configured with a single issue, namely the Light Plan-
issue. Further, each Load-agent has a mission-critical Production DC (PDC ) at
priority 0, which reflects production needs, as well as a non-mission critical
Energy Reducing DC (ERDC) at priority 2. Various other concerns could have
been included to reflect that the photosynthesis process is influenced by vari-
ous climate concerns such as CO2, air temperature, and humidity. However, as
the MOMI negotiation concept used has previously been shown to handle such
scenarios [12], we have chosen to include only the PDC, in order to simplify
the explanation of our approach. Finally, each Load-agent has a single RC, the
Aggregator Agent RC (AARC ), which represents the Aggregator-agent.

The Light Plan-issue defines values on the form ln = [l1,n, l2,n, · · · , lt,n] where
n is the Load-agent. This means that each contract in the Load-agent will contain
a vector with values on this form. The values of elements in this vector depend
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on the nature of the Load-agent - or rather, the load that the issue represents
in the Load-agent. For simplicity, loads are assumed to be either on or off in the
following, yielding lx,n ∈ {0, 1}, which means that this value maps to the state
of the actuator - not its consumption.

The PDC reflects the need for artificial growth light to the plants. Specifically,
the target vector of the PDC represents the amount of photo-synthetically active
radiation (PAR) in MolSqrMeter, required to achieve the production goal. In this
case then, the target vector is a scalar defined as gn ∈ R.

The contribution from artificial growth light varies across the day. That is, the
contribution is marginal when the sun shines whereas the contribution is signif-
icant in hours with cloudy weather - or after sunset/before sunrise. To this end,
the PDC is supplied with a coefficient vector defined as vn = [v1,n, v2,n, · · · , vt,n]
where vx,ninR. The coefficient vector represents the estimated amount of pho-
tosynthesis obtained from artificial light in each hour. This is used by the PDC
to calculate the PAR contribution for a given contract C as hn =

∑t
i(vi,n ∗ li,n),

where ln ∈ C. The PDC then returns a cost, qn, defined by the absolute differ-
ence between gn and hn, qn = |gn −hn|. The coefficient vector changes over time
as a result of the underlying estimates changing. This means that the nature
of the cost space created as a function of contracts and the PDC target vec-
tor, changes over time. This again means that the relation between the PDC
and other concerns changes over time, as this relation is forged solely based on
costs returned by concerns to contracts. Hence, no assumption about relations
between concerns can be made.

The AARC compares suggestions for allocations made by the VPP towards
contracts suggested by the mediator in the Load-agent. Each AARC has a target
vector f n = [f1,n, f2,n, · · · , ft,n], which is the current electricity allocation made
in the Aggregator-agent for that particular Load-agent. This means, that the
target vector of the AARC changes as the inter-agent negotiation progresses. As
the Load Plan-issues represents an actuator, the task of the AARC is to convert
actuation values into an electricity consumption, which can be compared towards
its target vector. The AARC maps off-hours to a consumption of 0 MWh and on-
hours to a consumption of 1 MWh. The 1 MWh then corresponds to the installed
effect of the lamps in the greenhouse, in which the Load-agent reside. Essentially,
this means that the AARC has a coefficient vector of 1’s, which are multiplied on
value suggestions for the Light Plan-issue. Had the installed effect been different,
this would be reflected by the coefficient vector of the AARC. Multiplying the
coefficient vector of the AARC with values for the Light Plan-issue, yields a
vector dn = [d1,n, d2,n, · · · , dt,n]. The AARC calculates the cost, qn of a contract
as the absolute difference of each element in fn and dn, - qn =

∑t
i |fi,n − di,n|.

The ERDC is included to have Load-agents generate baselines, which adhere
to the assumption of being energy efficient. The cost function of ERDC returns
a value, which corresponds to the sum of elements in ln, defined as qn =

∑t
i li,n,

which means that use of more artificial light returns a higher cost. Implementing
the ERDC as a non-mission critical DC means that the Load-agent will favor
adhering to requests of the Aggregator-agent over achieving energy efficiency.
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3.2 Aggregator-Agent Decision Logic

The Aggregator-agent contains three Electricity Allocation-issues, which rep-
resent allocations for Load-agents as well as seven concerns: one mission criti-
cal Load Management DC (LMDC ) which represents DR events in the MOMI
negotiation, and two Load Agent RCs (LARCs) for each Load-agent. The logic
behind using two RCs for each Load-agent is that allocations of electricity do not
attribute the same contribution to the Load-agent, if it is moved from one slot
to another. By having two RCs representing a single Load-agent, a distinction
between temporal allocation of electricity and the amount of electricity allocated
can be made. This means that a profile, in which electricity allocation has been
shifted, is preferred over one, in which the electricity allocation has been reduced.
If the Load-agent was represented by only one RC in the Aggregator-agent, a
profile which time shifts an allocation would yield a higher cost, than one which
simply reduces the allocation made to the Load-agent.

Values for the Electricity Allocation-issues represent hourly electricity allo-
cation, for each of the Load-agents across a day. The issue values are defined as
vectors, on the form en = [e1,n, e2,n, · · · , et,n], where t is the number of slots,
n is the Load-agent, to which the allocation maps and ex,nin {0, 1} is the allo-
cation size. The definition of the values that ex,n can take on depends on the
minimum and maximum consumption of the industrial process as well as the
steps in which the consumption of a given process can be regulated.

The LMDC enables the VPP to offer Load Management (LM) actions
towards external parties. LM encompass the actions load shedding, valley filling
and load shifting [2]. In peak clipping, load is reduced in one slot of an electricity
profile, as opposed to valley filling, in which load is increased in a slot. Finally,
load shifting is a combination of these actions, where load is moved from one
slot to one (or several) other(s). The LMDC negotiates over the summarized
value of all Electricity Allocation-issues, defined as y =

∑t
n en, to ensure that

the combined allocation adheres to incoming DR events. It has a target vector
p = [p1, p2, · · · , pt] which is defined by the DR event. That is, the DR event
contains a target vector for the LMDC. As the Aggregator-agent has knowledge
of the electricity profile of each Load-agent, before starting negotiation with
these, it is fair to assume, that the Aggregator-agent can propagate this as an
aggregated baseline electricity profile to an external party. This enables exter-
nal parties to create DR events with target vectors as altered versions of the
initial, aggregated baseline electricity profile of the VPP. The cost function of
the LMDC returns a value, which corresponds to the absolute difference of each
element in y and p, formally defined as qn =

∑t
i |yi − pi|.

The concern LARCtime negotiates over the Electricity Allocation-issue, rep-
resenting allocation for its Load-agent. Each LARCtime has a target vector
dn = [d1,n, d2,n, · · · , dt,n], which represents the electricity demand profile of
the Load-agent. The value of this vector changes over time, as the inter-agent
negotiation progresses. Again, this is due to the bilateral negotiation between
the Aggregator-agent and the Load-agent. The cost function of each LARCtime

returns a value, which corresponds to the absolute difference of each element in
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en and dn, defined as qn =
∑t

i |ei,n − di,n|. The concern LARCsum works in a
similar way, except this concern is solely concerned with the amount of electric-
ity allocation - and not the time at which it is allocated. The cost function of
each LARCsum returns a value, which corresponds to absolute difference of the
accumulated values of elements in en and dn, defined as qn = |∑t

i ei,n−∑t
i di,n|.

4 Experiments and Results

We consider 4 sets of experiments based on the scenario in Sect. 3. The first
experiment serves as a baseline case, to validate that Load-agents will be allo-
cated their requested demand, in case of no DR event. The three subsequent
experiments map to each of the LM actions described in Sect. 3. Each of the
PDCs were given a target vector of 400 MolSqrMeter. This number reflects that
each Load-agent needs to reach a certain light sum, in order to achieve the
required plant growth. Each PDC x is assigned a coefficient vector vx as shown
in (1), (2), and (3), which varies between the Load-agents, to reflect varying con-
ditions in each of the domains. For the purpose of illustration, the coefficients
vectors share the property that they yield a single optimal schedule with respect
to energy efficiency, in order to reach the goal of 400 MolSqrMeter.

v1 = [25 0 25 25 25 25 50 50 50 100 50 25 50 25 25 25 25 25 25 50 25 25 25 25] (1)

v2 = [25 0 25 25 25 25 25 25 25 25 50 100 50 50 50 25 50 50 25 25 25 25 25 25] (2)
v3 = [25 0 25 25 50 50 25 25 50 100 50 50 25 25 25 25 25 25 50 25 25 25 25 25] (3)

The most energy efficient schedules for the Load-agents are used as baselines,
which are shown in (4),(5) and (6) and the aggregated baseline profile of the
three Load-agents is shown in (7). In a real-life scenario, the baseline would be
deducted live, as this knowledge is present in the target vectors of the LARC’s
in the VPP.

d1 = [0 0 0 0 0 0 1 1 1 1 1 0 1 0 0 0 0 0 0 1 0 0 0 0] (4)

d2 = [0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 0 1 1 0 0 0 0 0 0] (5)
d3 = [0 0 0 0 1 1 0 0 1 1 1 1 0 0 0 0 0 0 1 0 0 0 0 0] (6)
dagg = [0 0 0 0 1 1 1 1 2 2 3 2 2 1 1 0 1 1 1 1 0 0 0 0] (7)

To simulate DR events, three target vectors were created for the LMDC,
based on the aggregated baseline profile in (7). These can be seen in (9), (10)
and (11) respectively. The baseline target vector shown in (8) is equal to dagg, as
we want each Load-agent to be provided with the most energy efficient allocation,
in case of no LM request. The subsequent target vectors were defined by altering
the baseline goal according to the LM actions peak clipping, load shifting and
valley filling. Obviously, the target vector of the LMDC is defined by the DR
event in a real life setting.

pbaseline = [0 0 0 0 1 1 1 1 2 2 3 2 2 1 1 0 1 1 1 1 0 0 0 0] (8)

ppeak clip = [0 0 0 0 1 1 1 1 2 2 2 2 2 1 1 0 1 1 1 1 0 0 0 0] (9)
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pvalley fill = [0 0 0 0 1 1 1 1 2 2 3 2 2 1 1 1 1 1 1 1 0 0 0 0] (10)

pload shift = [0 0 0 0 1 1 1 1 2 2 2 2 2 1 1 1 1 1 1 1 1 0 0 0] (11)

Each experiment was executed with a generation limit of 500, which was
empirically found to ensure convergence in the local negotiation. Each experi-
ment was repeated 30 times to remove influence of randomness from the GA,
as recommended by [14]. In order for the design of the proposed mechanism
to be successful, the experiments should show that adherence to incoming DR
events is made with minimal impact on the Load-agents. That is, each Load-
agent should be allocated their demand - or as close to it as possible. When
the correct amount of allocation is available (in case of a load shift), no conflict
should exist between Load-agents and the Aggregator-agent.

The results of the baseline experiment is shown in Fig. 2. Here we see that the
aggregated demand profile corresponds to the one in (7). Figure 3 shows the result
of a peak clipping experiment, in which the LMDC in the Aggregator-agent will
enforce a peak clipping request of 1 MW. To do so, a single Load-agent must be
forced to compromise its electricity demand by 1 MW. As can be seen, one Load-
agent is allocated 1 MW less than it demands in slot 11. This leads to an inter-
agent negotiation conflict as expected. The Load-agent, which is being forced to
compromise, is observed to change over the 30 experiments. However, the aggre-
gated profiles remain the same for all experiments. In the valley filling experiment,
a single Load-agent must increase its consumption. As in the peak clipping experi-
ments, this leads to a conflict, as it forces one of the Load-agents to exceed the goal
of its PDC in time slot 16. The results are shown in Fig. 4. Again, the Load-agent
selected for an increase varies throughout the experiments. Lastly, Fig. 5 shows

Fig. 2. Result of baseline experiment. Numbers behind legend map to Load-agents

Fig. 3. Result of peak clipping experiment. Numbers behind legend map to Load-agents
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Fig. 4. Result of valley filling experiment. Numbers behind legend map to Load-agents

Fig. 5. Result of load shifting experiment. Numbers behind legend map to Load-agents

the results of the load shifting experiment, where a Load-agent must shift its con-
sumption. We observed that the aggregated load is shifted as expected, increasing
its consumption in slots 16 and 21 in return for a reduction in slot 11. An impor-
tant note here is, that the Load-agent making a shift, is compensated in a way,
which ensures that it reaches its production goal. In a real-life scenario this could
mean, that the Aggregator-agent would first have to shed load, and then gradually
increase compensation, until the conflict is solved.

5 Conclusion

Flexibility in electricity consumption on the consumer side can help to maintain
balance between supply and demand, in electricity grids with high penetration of
wind- and solar power. In this paper, we propose a multi-agent based design of a
VPP that is able to integrate energy-intensive industrial loads in DR programs.
We propose a novel inter-agent multi-objective multi-issue (MOMI) negotia-
tion mechanism to coordinate the individual electricity consumption of several
industrial loads towards received DR events. In this way, a VPP may expose
an aggregated load profile which conforms to electricity market requirements.
Our design handles DR events by performing LM in the form of peak clipping,
valley filling, and load shifting on aggregates of industrial loads. We illustrate
how the proposed design will adhere to DR events, without violating production
requirements of the industrial domains, in cases where sufficient electricity is
available. Further we show, how allocation of electricity follows demand from
the industrial domains, to the best degree possible. Based on the present proof
of concept, we plan to extend the model to handle conflicts which can arise in
cases of insufficient electricity.
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