
Coalition Structure Formation Using Anytime
Dynamic Programming

Narayan Changder1(B), Animesh Dutta1, and Aditya K. Ghose2

1 National Institute of Technology, Durgapur, West Bengal, India
narayan.changder@gmail.com, animeshnit@gmail.com

2 University of Wollongong, Wollongong, NSW 2522, Australia
aditya@uow.edu.au

Abstract. The optimal coalition structure generation is an important
problem in multi-agent systems that remains difficult to solve. This paper
presents a novel anytime dynamic programming algorithm to compute
the optimal coalition structure. The proposed algorithm can be inter-
rupted, and upon interruption, uses heuristic to select the largest val-
ued coalition from each subproblem of size x and picks the rest of the
unassigned agent from other subproblem of size n − x, where n is the
total number of agents. We compared the performance of our algorithm
against the only existing proposal in the literature for the optimal coali-
tion structure problem that uses anytime dynamic programming using
9 distinct datasets (each corresponding to a different distribution). The
empirical evaluation shows that our algorithm always generates better
or, at least, as good a solution as the previous anytime dynamic pro-
gramming algorithm.
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1 Introduction

The optimal coalition structure generation is an interesting research problem
in Multi-Agent Systems (MAS). This problem is interesting to MAS community
due to its important applications and its computational challenges. The problem
is challenging because of exponential growth of coalition structures when number
of agents grows linearly. It is proved that optimal coalition structure generation
problem is NP- complete [15]. Agents cooperate on issues of their common
interest. Given a set of autonomous agents and a value to each subset of agents.
One of the main challenges is to create disjoint groups of autonomous agents that
cooperate in order to achieve their individual goal or to maximize the total payoff
of the system. This complex research process is known as Coalition Structure
Formation (CSF) process.

Coalition Structure Formation is important in many real world applications
such as in e-commerce, customers can form a group/coalition to buy some prod-
uct in bulk and can get a price discounts for bulk purchasing [18]. In distributed
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sensor network, sensors are grouped to make a coalition and work together to
track targets of interest [2]. Several delivery companies may agree together and
can form coalition to make profit by reducing the transportation costs [14]. To
determine an optimal way in which agents must co-operate to get the maximum
payoff from the system is a computationally hard problem. In simplest terms, a
coalition is a group of agents with a common interest who agree to work together
towards a common goal. A cooperative game is best choice to model such a sce-
nario. Here, cooperative game is defined by n agents (or players), where the set
of agents is denoted as A = {a1, a2, . . . , an}. Any non empty subset of A is called
as coalition, where value of each coalition C is given by a characteristic function
v(.). Furthermore, a collection of pairwise disjoint coalitions is called a “coali-
tion structure” provided that all the agents are present in coalition structure.
Formally, this complex procedure of coalition structure formation is defined as
follows:

Definition 1. Given a set of agents A = {a1, a2, . . . , an}, a Coalition Struc-
ture (CS) over A is a partitioning of the agents into different coalitions
{C1, C2, . . . , Ck}, where k is called size of coalition structure i.e. k = |CS|.
Such that it satisfies the following constraints:

1. Cj �= ∅ , j = {1, 2, . . . , k}
2. Ci ∩ Cj = ∅ for all i �= j and

3.
k⋃

i=1

Ci = A

For example, in a multi-agent system consisting of three agents A = {a1, a2, a3},
we have total seven possible coalitions:

{{a1}, {a2}, {a3}, {a1, a2}, {a1, a3}, {a2, a3}, {a1, a2, a3}}
The set of all coalitions structures over A is denoted as ΠA

ΠA = {{a1}, {a2, a3}}, {{a3}, {a1, a2}}, {{a2}, {a1, a3}}{{a1}, {a2}, {a3}},

{{a1, a2, a3}}
Now it is observed that the optimal coalition structure and complete partition
of a set of agents are same. We are now ready to state our optimization problem
formally.

Definition 2. The value of any coalition structure CS is defined by

V (CS) =
∑

Ci∈CS

(v(Ci))

Generally, the goal of the coalition structure formation problem is to find the
coalition structure which maximizes social welfare by finding an optimal coalition
structure CS∗ ∈ ΠA.

CS∗ = arg maxCS∈ΠAV (CS)
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The number of coalition structure increases exponentially as the number of
participating agent increases linearly (for example, using 25 agents, there are
total 4638590332330743949 coalition structures). The total number of coalition
structure for n agents is also known as nth Bell number and denoted as Bn [5],
satisfies αnn/2 ≤ Bn ≤ nn for some positive constant α. Hence, we can not
directly enumerate all the coalition structure in polynomial time.

In Multi-agent systems there are often time limits to get the solution of the
problem, and after deadline is over the result becomes useless. The applicability
of coalition structure formation problem in multi-agent settings with hard time
constraint requires that the result must comes before the time limit is over.

There are two popular techniques available for coalition structure for-
mation including dynamic programming [19] and anytime search algorithms
[8,12,13,16]. The advantage of dynamic programming is that it gives optimal
result without enumerating all the coalition structures. However, the biggest
disadvantage is that it needs to be run to completion to provide optimal solu-
tion. Hence, this method is not a good choice when the time required to produce
optimal solution is larger than the time available to the agents. In multi-agent
settings without hard time limits, dynamic programming algorithm is efficient
to solve many real life problem instances. However, in other circumstances with
strict deadline and short execution time, we need an alternative approaches.

Against the research aims outlined above, this paper makes the following
contributions to the coalition structure formation problem.

– We proposed anytime dynamic programming algorithm for coalition struc-
ture formation. Our anytime dynamic programming is an extension of basic
dynamic programming [19] for coalition structure formation.

– Anytime dynamic programming needs a good heuristic to solve the problem.
The proposed algorithm uses an inexpensive greedy approach to choose a good
answer from the remaining possible solutions. The experimental result shows
that our greedy strategy works well.

– We compared our algorithm empirically with the existing anytime dynamic
program [16] for 9 different data distributions and result shows that our algo-
rithm occasionally fails to produce good result for certain data distributions
but for most of the distribution it always generates better or, at least, as
good solution as previous algorithm [16]. We experiments our algorithm for
16 agents and averaged the runtime over 40 runs for each experiment.

Our anytime dynamic programming is a shifted paradigm of traditional dynamic
programming for coalition structure formation problem. To help the reader for
understanding how our anytime dynamic programming algorithm works, we
explain the traditional dynamic programming algorithm [19] followed by our
novel anytime dynamic programming algorithm to compute the optimal coali-
tion structure.
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2 The DP Algorithm

The first dynamic program to solve coalition structure formulation problem is
proposed by Yin Yeh [19]. The approach used is shown in Algorithm 1.

Algorithm 1. Dynamic Programming algorithm

Input: Set of all possible non- empty subsets of n agents (2n − 1) . The value of any
coalition C is v(C). If no v(C) is specified then v(C) = 0
Output: Optimal coalition structure CS∗(n)
1: for i = 1 to n do
2: for C ⊆ A, where |C| = i do � A is set of n agents
3: Vt(C) ← v(C)
4: Pt(C) ← {C}
5: for C′ ⊂ C do � for every possible way of splitting C into two halves
6: if Vt(C

′) + Vt(C \ C′) > v(C) then
7: Vt(C) ← Vt(C

′) + Vt(C \ C′)
8: Pt(C) ← {C′, C \ C′}
9: end if

10: end for
11: end for
12: end for
13: CS∗ ← {A}
14: for C ∈ CS∗ do
15: if Pt(C) �= {C} then
16: CS∗ ← (CS∗/C, Pt(C))
17: Go to line 14 and start with the new CS∗

18: end if
19: end for
20: Return CS∗(n)

The way dynamic programming works is by manipulating two tables — par-
tition table Pt[C] and value table Vt[C]. For example in Table 1, C = {1, 2},
in this case Pt[C] = Pt[{1, 2}] = {1}{2} and Vt[C] = Vt[{1, 2}] = 70. For any
coalition C ⊆ A it calculates value of Pt[C] and Vt[C] as follows. First, coalition
C is split into two halves in all possible ways and computes the highest welfare
with the original welfare v(C) of coalition C. If it finds best splitting which gives
highest welfare, stores the splitting into Pt[C] otherwise stores coalition C into
Pt[C] without splitting1 coalition C. Suppose coalition C split into two coalitions
as {C ′, C ′′} then it is evaluated as Vt[C ′] + Vt[C ′′]. In other words it check

v(C) < Vt[C ′] + Vt[C ′′]

Note that v(C) is the original input values to all coalitions whereas Vt[C ′] and
Vt[C ′′] is previously computed value of coalition C ′ and C ′′. To compute Vt[C]
the algorithm must first evaluates all the Vt[ ] values of the subsets of C. Below
Table 1 shows an example how to compute Pt and Vt with 4 agents A = {1, 2, 3, 4}
1 If the coalition contains single agent, we do not need to split it anymore.
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Table 1. Example of DP program with 4 agents

Size C v(C) All splitting by DP Pt Vt

1 {1} 30 v[{1}] = 30 {1} 30

{2} 40 v[{2}] = 40 {2} 40

{3} 25 v[{3}] = 25 {3} 25

{4} 45 v[{4}] = 45 {4} 45

2 {1,2} 50 v[{1, 2}] = 50, v{1}+ v{2} = 70 {1}{2} 70

{1,3} 60 v[{1, 3}] = 60, v{1}+ v{3} = 55 {1, 3} 60

{1,4} 80 v[{1, 4}] = 80, v{1}+ v{4} = 75 {1, 4} 80

{2,3} 55 v[{2, 3}] = 55, v{2}+ v{3} = 65 {2}{3} 65

{2,4} 70 v[{2, 4}] = 70, v{2}+ v{4} = 85 {2}{4} 85

{3,4} 80 v[{3, 4}] = 80, v{3}+ v{4} = 70 {3, 4} 80

3 {1,2,3} 90 v[{1, 2, 3}] = 90, v{1}+ v{2, 3} = 95 {2}{1, 3} 100

v{2}+ v{1, 3} = 100, v{3}+ v{1, 2} = 95

{1,2,4} 120 v[{1, 2, 4}] = 120, v{1}+ v{2, 4} = 115 {1, 2, 4} 120

v{2}+ v{1, 4} = 110, v{4}+ v{1, 2} = 115

{1,3,4} 100 v[{1, 3, 4}] = 100, v{1}+ v{3, 4} = 110 {1}{3, 4} 110

v{3}+ v{1, 4} = 105, v{4}+ v{1, 3} = 105

{2,3,4} 115 v[{2, 3, 4}] = 115, v{2}+ v{3, 4} = 120 {2}{3, 4} 120

v{3}+ v{2, 4} = 110, v{4}+ v{2, 3} = 110

4 {1,2,3,4} 140 v[{1, 2, 3, 4}] = 140, v{1}+ v{2, 3, 4} = 150 {1}{2, 3, 4} 150

v{2}+ v{1, 3, 4} = 150, v{3}+ v{1, 2, 4} = 145

v{4}+ v{1, 2, 3} = 145, v{1, 2}+ v{3, 4} = 120

v{1, 3}+ v{2, 4} = 145, v{1, 4}+ v{2, 3} = 145

To compute the value Vt for coalition of size x, algorithm need to calculates
Vt values for all the coalition of size 1, 2, . . . , x − 1. Whenever the algorithm
determines all the entries of Pt and Vt the optimal coalition structure CS∗ can
be computed recursively as shown in Table 1. Algorithm looks for grand coalition
structure {1, 2, 3, 4} and checks it is more beneficial to split {1, 2, 3, 4} into {1}
and {2, 3, 4}. Similarly by looking at coalition {2, 3, 4} algorithm finds it is more
beneficial to split {2, 3, 4} into {2} and {3, 4}. As a result, the optimal solution
is {{1},{2},{3,4}}. The running time of algorithm is calculated as follows. there
are total

(
n
k

)
coalition of size k over the n agents and each of them requires O(2k)

time
n∑

k=1

(
n

k

)

O(2k)

According to the binomial theorem, we have

(x + y)n =
n∑

k=0

(
n

k

)

xn−kyk
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Now, take x = 1 and y = 2

(1 + 2)n =
n∑

k=0

(
n

k

)

xn−kyk

Hence we get bound as:

n∑

k=1

(
n

k

)

O(2k) = O(3n)

Having described how DP operates, we will now describes how to get a good
solution after DP completes kth iteration.

3 Anytime Dynamic Programming

An anytime algorithm is an algorithm that can return a valid solution to a
problem even if it is interrupted at any time before it ends. Our algorithm uses
two heuristics.

1. At runtime it calculates coalition structures by greedily adding all
the singleton coalition i.e. {(a1), (a2), . . . (an)} and grand coalition {(a1,
a2, a3, . . . , an)}, then it selects better of two as initial solution.

2. After algorithm completes kth iteration2, it chooses all the largest valued
coalition from each of the subproblem of sizes n, n − 1, n − 2 . . . 3, 2, 13 and
rest of the unassigned agent/agents are picked from the subproblem of sizes
0, 1, 2, . . . , n − 3, n − 2, n − 1. Note that whatever be the coalition of sizes
1, 2, . . . k, it has already been stored in optimal way. The intuition behind
this greedy strategy is as follows: Since the algorithm is stopped before the
completion, for example, if it stops after kth iteration and it might be the
case that there is some large valued coalition in rest of the coalition with
sizes k + 1, k + 2, . . . n

Now, the DP algorithm starts and it solves all the incremental subproblems
of size 1, 2, . . . k. If run to completion, it returns optimal solution. If the algo-
rithm stops prematurely, the better of the initial solution and current iterative
solution using above heuristic is returned. The pseudo-code of algorithm is given
in Algorithm 2. The algorithm works as follows: In line 1, algorithm creates an
initial solution using grand coalition and singleton coalitions, then it picks one
amongst them which gives maximum social welfare. The algorithm chooses sin-
gleton coalition because it is not clear about the relationships among agents.
If the domain happens to be super-additive, the optimal coalition structure is
obviously grand coalition.

2 After kth iteration algorithm solves all the subproblem of size 1, 2, . . . , k.
3 We pick the largest valued coalition of size n, because if Cmax = n, then it contains

optimal solution.
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Algorithm 2. Anytime Dynamic Programming algorithm

Input: Set of all possible non-empty subsets of n agents (2n − 1). The value of any
coalition C is v(C). If no v(C) is specified then v(C) = 0 and Cmax is the maximum
number of iteration
Output: Good coalition structure CS∗(n)
1: CS∗

initial= max{∑n
i=1 v(ai), v(a1, a2, . . . , an)} � Calculate initial solution by

using grand coalition and singleton coalitions.
2: for i = 1 to Cmax do
3: for C ⊆ A, where |C| = i do � A is set of n agents
4: Vt(C) ← v(C)
5: Pt(C) ← {C}
6: for C′ ⊂ C do � for every possible way of splitting C into two halves
7: if Vt(C

′) + Vt(C \ C′) > v(C) then
8: Vt(C) ← Vt(C

′) + Vt(C \ C′)
9: Pt(C) ← {C′, C \ C′}

10: end if
11: end for
12: end for
13: end for
14: Maximum ← 0
15: for i = n to 1 do � Heuristic is used to pick largest valued coalition for each

subproblem
16: X ← C| max C∈Ci(Vt(C)) � Ci is the coalitions of size i
17: Y ← U \ Xa � U is the set of all agents and Y is the unassigned agents

belongs to coalition of sizes n − i.
18: Tempvalue ← Vt(X) + Vt(Y ) � for any coalition C ∈ {X, Y }, if |C| > Cmax,

then it uses v(C) value.
19: if Tempvalue > Maximum then
20: Maximum ← Tempvalue

21: CSTemp ← {X, Y }
22: end if
23: end for
24: CS∗(n) ← Best of CS∗

initial and CSTemp

a Each time X is considered, Y is the complement.

Line 2–13 is same as dynamic programming. Cmax is the iteration limit of
proposed algorithm. The incremental subproblem of size 1 to Cmax are solved
exactly with dynamic programming. After the iteration limit Cmax reached, all
the coalition of size 1 to Cmax are already solved and results are stored in table
Pt and Vt. Note that if Cmax = n, it will return optimal solution.

Line 15–18 is used for greedy heuristic after the iteration limit Cmax is
reached. The heuristic used here is to pick up the largest valued coalition with
size n, n − 1, n − 2, . . . , 1 and pick the rest of the unassigned agents with sizes
0, 1, 2, . . . n − 14

4 If size of coalition X is 0 then the value of the coalition X = 0.
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Line 19–22 is to keep track of highest valued coalition structure found till now.
Line 24 compares the best of initial solution and the solution using greedy

approach used after the iteration limit Cmax.

Example 1. Consider the example used in Table 2. Suppose that the iteration
limit Cmax = 2. All the coalition of size 1, . . . 2 are solved and stored in the table
after the iteration limit Cmax = 2 is reached.

At first the algorithm creates initial solution as follows:

CS∗
initial = Max{{v(1, 2, 3, 4)}

︸ ︷︷ ︸
Value=140

, {v(1) + v(2) + v(3) + v(4)}
︸ ︷︷ ︸
value=30+40+25+45=140

}

Table 2. Example of DP program with 4 agents with Cmax = 2

Size C v(C) All splitting by DP Pt Vt

1 {1} 30 v[{1}] = 30 {1} 30

{2} 40 v[{2}] = 40 {2} 40

{3} 25 v[{3}] = 25 {3} 25

{4} 45 v[{4}] = 45 {4} 45

2 {1,2} 50 v[{1, 2}] = 50, v{1} + v{2} = 70 {1}{2} 70

{1,3} 60 v[{1, 3}] = 60, v{1} + v{3} = 55 {1, 3} 60

{1,4} 80 v[{1, 4}] = 80, v{1} + v{4} = 75 {1, 4} 80

{2,3} 55 v[{2, 3}] = 55, v{2} + v{3} = 65 {2}{3} 65

{2,4} 70 v[{2, 4}] = 70, v{2} + v{4} = 85 {2}{4} 85

{3,4} 80 v[{3, 4}] = 80, v{3} + v{4} = 70 {3, 4} 80

3 {1,2,3} 90

{1,2,4} 120

{1,3,4} 100

{2,3,4} 115

4 {1,2,3,4} 140

Hence, our initial solution CS∗
initial is any of them because they gives same

value.
Next, algorithm picks the maximum valued coalition with sizes 4 and it is

the grand coalition {1, 2, 3, 4} with value 140.
Now, algorithm picks the maximum valued coalition of size 3, which is the

coalition {1, 2, 4} with value 120. Then algorithm chooses the rest of unassigned
agent from coalition of size 1, which is the coalition {3} with value 25. Total
value of coalition structure {1, 2, 4}{3} is 120 + 25 = 145.

Next, maximum valued coalition {2, 4} of size 2 is picked up and rest of
unassigned agents is picked up from coalition of size 2. Total value of coalition
structure is {2, 4}{1, 3} is 85 + 60 = 145.
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At last maximum valued coalition {4} of size 1 is picked up and rest of
unassigned agents form coalition of size 3 is picked up. Total coalition value is
{4}{1, 2, 3} = 45 + 90 = 135.

Now, compare initial solution CS∗
initial with present greedy solution and finds

that the maximum value it gives is 145 with coalition structure {2, 4}{1, 3}.
The final coalition structure is {2}{4}{1, 3} because we see that {2, 4} is stored
as {2}{4}. Note that algorithm could also choose {1, 2, 4}{3} as final coalition
structure because it also gives value 145.

4 Anytime Property of Proposed Algorithm

The anytime property is also satisfied by proposed algorithm

i) Monotonicity— the quality of the result is a nondecreasing function of
computation time. In general proposed algorithm is monotonic.
Proof— The algorithm is clearly monotonic. Suppose we have n agents
in the system. For this scenario we have problem sizes of 1, 2, . . . , n. With
problem size i, all the coalition contains i number agents. Suppose, maximum
valued coalition in problem size i is Mi. Let algorithm interrupted after kth

iteration. Now, all the coalition of sizes 1, 2, . . . k are already solved. In this
case the maximum valued coalition structure is computed as follows:

max∀i∈[1,2,...,k,k+1,...n]{v(Mi) + v(U \ Mi)}
where U is the set of all agents. The largest valued coalition in problem size
k is Mk. If maximum valued coalition structure contains any of the coalition
with problem sizes 1, 2 . . . , k, then in (k + 1)th iteration this value must
be the same as the value generated in kth iteration or greater because the
values generated in (k + 1)th iteration is depends on the values generated in
1, 2, . . . , k iteration.

ii) Preemptability— the algorithm can be suspended and resumed with mini-
mal overhead. Proposed algorithm is clearly preempt-able. After the iteration
limit is reached, algorithm needs to check the largest valued coalition from
each subproblem of size x, where x ∈ [1, n] and fetch the remaining unas-
signed agents from subproblem of sizes n − x, where n is the total number
of agents. This procedure takes O(n) time.

5 Evaluating Proposed Algorithm

In this section we describe the environment on which algorithms have been
tested.

5.1 Experimental Setup

To calculate the time performance, we repeat each experiment 40 times and
averaged the runtime. The algorithms are implemented in Python (Version:3.4),
compiled in IDE Pycharm, and the experiments were run on a Intel(R) Core(TM)
i5-4690 CPU, running at 3.50 GHz under Windows 7 operating system (64 bit).
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5.2 Dataset Generation

The NP-complete problems are intractable but there is no conclusive proof. We
cannot deny the possibility that NP-complete problem is solvable in polynomial
time. Intractable in the sense that there is no polynomial time algorithm for
that problem which gives correct result. That means every algorithm for coali-
tion structure formation is imperfect because we know this is an NP-complete
problem. One way to validate or compare imperfect algorithm for NP hard com-
binatorial optimization problem is to run them on typical problem instances and
see how often they fail. The word imperfect means that there is some input for
which the algorithm fails to give the correct result. Any imperfect algorithm is
usefull if they do not fail too often. With this in mind, we compare proposed
algorithm with existing anytime dynamic programming [16] using different value
distributions. Specifically, we consider the following distributions.

i) Uniform— as studied by Larson and Sandholm [6]: for all coalition C ∈
2A − 1, v(C) ∼ U(a, b), where a = 0 and b = |C|

ii) Modified Uniform— as proposed by Service and Adams [17]. The value
of each coalition C is drawn uniformly v(C) ∼ U(a, b), where a = 0 and
b = 10 × |C|., next a random number r is generated r ∼ U(0, 50) and is
added to the coalition value v(C) with probability 0.2.

iii) Normal— as studied by Rahwan et al. [12] every coalition value is drawn
from v(C) ∼ N(μ, σ2), where μ = 10 × |C| and σ = 0.1

iv) Modified Normal— as proposed by Rahwan et al. [10]. The value of each
coalition C is first drawn v(C) ∼ N(a, b), where a = 10× |C| and b = 0.01,
next a random number r is generated r ∼ U(0, 50) and is added to the
coalition value v(C) with probability 0.2.

v) Beta — The value of each coalition C is drawn as v(C) ∼ |C| ×
Beta (α, β), where α = β = 0.5.

vi) Gamma— The value of each coalition C is drawn as v(C) ∼ |C| ×
Gamma (x, θ), where x = θ = 2

vii) Agent-based Uniform— as proposed by Rahwan et al. [10], each of the
agent ai is assigned a random power pi ∼ U(0, 10), reflecting its average
performance over all coalitions. Then for all coalition C in which agent ai

appears, the actual power of ai in C is determined as pC
i ∼ U(0, 2 × pi)

and the coalition value is calculated as the sum of all the members power
in that coalition. That is, ∀C, v(C) =

∑
ai∈C pC

i .
viii) Agent-Based Normal— as proposed by Tomasz Michalakn et al. [7],

each of the agent ai is assigned a random power pi ∼ N(10, 0.01). Then
for all coalition C in which agent ai appears, the actual power of ai in C
is determined as pC

i ∼ N(pi, 0.01) and the coalition value is calculated as
the sum of all the member’s power in that coalition. That is, ∀C, v(C) =∑

ai∈C pC
i .

ix) Normally Distributed Coalition Structures (NDSC)— as proposed
by Rahwan et al. [13], value of each coalition C is drawn as v(C) ∼
N(μ, σ2), where μ = |C| and σ =

√|C|.
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In the comparison graph shown in Figs. 1 and 2, we call our algorithm as
PADP (Proposed Anytime Dynamic Programming) and the algorithm proposed
by Service and Adams [16] is denoted as ADP (anytime dynamic programming).

6 Performance

In order to evaluate the proposed algorithm we implemented it in the Python
programming (Version: 3.4) language and tested the behavior of coalition struc-
ture formation problem. As our benchmark we use the algorithm presented in
[16]. We selects algorithm in [16] because according to our knowledge, it is the
only available coalition structure formation algorithm using anytime dynamic
programming. Here we present experimental results on the behaviors of PADP
and ADP [16], considering in particular solution quality and runtime perfor-
mances. We tested both the algorithms for 16 agents and compare it with the
increasing iteration limit of basic dynamic programming. For each of the above
distributions, we plotted the termination times of both algorithms for each itera-
tion with 16 agents. Here, time is measured in seconds, and plotted on a log scale
and similarly solution is also plotted on a log scale. Figure 1 shows the resulting
performances of both algorithms with respect to solution obtained. The results
show that if proposed algorithm is interrupted before running to completion,
it may still return a solution with relatively high quality than the algorithm
proposed by Service and Adams [16]. Specifically, we find that.

i) Except Normal and Agent based normal distribution our proposed algorithm
always produces better solution as compared to previous algorithm [16]. The
results are shown in Fig. 1a, 1b, 1e, 1f, 1g, 1i.

ii) With Normal and Agent based normal distribution (shown in Fig. 1c, 1h)
both algorithm performances are same in terms of solution quality, because
of the fact that, under these distribution, the optimal solution mainly con-
sisted of the singleton coalitions.

iii) With Modified Uniform, Normal, Beta and Agent-based Normal distribu-
tions,(shown in Fig. 1b, 1c, 1e, 1i) PADP takes very less time to produce
near optimal solution.

iv) With Modified Normal distribution, PADP fails to produce better result for
first n/2 iterations, after that it always produce better result than ADP.

In terms of runtime, results show that the proposed algorithm runs little
bit faster for first few iterations and after that both algorithms running time is
same. The runtime comparison is given in Fig. 2.

7 Related Work

The current research work on coalition structure formation can be classified into
three categories [8].
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Fig. 1. Solution quality of proposed algorithm and ADP

1. Anytime algorithms— It permits premature termination (i.e., before the
optimal solution has been found) but at the same time it provides guarantees
on the quality of the solution. One of the disadvantage of anytime algorithm
in coalition formation mechanism is that they all requires, in the worst case
to check all coalition structures. Hence, time required is O(nn).

2. Design-to-time algorithms— This type of algorithm guarantees to return
an optimal solution but to do so, it must run on completion. That is they can
not produce intermediate result like anytime algorithms.

3. Heuristics algorithms—This type of algorithm sacrifices quality guaran-
tees of solution for speed. The main drawback of this type algorithm is that
it is impossible to verify the quality of generated solution.

The optimal coalition structure can be generated by using dynamic programming
algorithm [19] in O(3n) time, however it is impractical for moderate size of
inputs.
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Fig. 2. Time performance of proposed algorithm and ADP

The state-of-the-art Improved Dynamic Programming (IDP) [9] algorithm is
improved version of [19] it is improved by Rahwan and Jennings [9] to enhance
the usability of dynamic programming. Their approach is not to evaluate some
unnecessary splitting. The author shows that their approach is empirically faster
and uses less memory, but still worst case runtime is O(3n). The main drawback
of this approach is it does not have anytime properties.

Due to the high complexity of dynamic programming many researchers are
developing anytime algorithm which allow quality suboptimal solution very
faster. Many anytime coalition structure formation algorithm operates on the
space of all coalition structures, between ω(nn) to O(nn) [15]. Sandholm et al.
[15] proposes first anytime algorithm for coalition structure formation problem.
They proved that to provide a bound on the quality of the solution algorithm
needs to check at-least 2n−1 coalition structures. Their approach uses coalition
structure graph, where nodes in the graph are coalition structures and edges
between nodes are splitting(or mergers) of coalition structure.
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On the other hand the algorithm proposed by Dang and Jenning [3] also used
the coalition structure graph representation as Sandholm et al. [15], they define
and search a particular graph subsets and shown that their technique empirically
generate tighter quality guarantee’s than Sandholm et al. [15]. Moreover, several
researchers developed anytime algorithms that searches the space of coalition
structure graph in different ways [3,8,13].

Rahwan and Jennings [13] have not used coalition structure graph. They
use a totally new representation of coalition structures space based on integer
partitions and shown that their approach empirically gives high quality solutions
than any other previous anytime algorithms. Their approach is called anytime
IP algorithm.

The algorithm in [8], called IDP-IP, it combines positive sides of IDP and
anytime IP algorithm and avoids their weakness.

Service and Adams [16] proposed an anytime dynamic programming (ADP)
to solve coalition structure formation problem. Their approach is to first create
a greedy solution in O(2n) time by greedily adding the coalition of largest value,
out of unassigned agents. Next, dynamic programming is used to solve the prob-
lem with sizes 1, 2, . . . k. If run to completion, it gives optimal result. Otherwise,
it will produce better of greedy solution and current iterative solution.

In this paper, we raised the question of how to achieve high quality solutions
to the coalition structure formation problem (see e.g. [11] for a survey of the
problem), especially when the search execution times to find solutions are very
limited. Motivated by the observations in [1,16], we developed our algorithm
and compared it empirically with ADP [16]. In search of creating an anytime
algorithm for coalition structure formation we choose dynamic programming
as basic tool because it is the algorithm available with lowest worst case time
complexity O(3n).

8 Conclusion

Coalition structure formation is a computationally hard, combinatorial prob-
lem in multi-agent systems. This work represents a new anytime dynamic pro-
gramming for solving coalition structure formation and has been compared with
previous anytime dynamic programming algorithm [16]. The backbone of both
algorithms are dynamic programming but they used different heuristics to get
the solution.

Both the algorithm use preprocessing to make a greedy solution before
dynamic program starts. The preprocessing phase of ADP [16] runs in O(2n)
and the preprocessing phase of our proposed algorithm runs in O(n). In most of
the input distribution, proposed algorithm performs well than ADP [16].
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