
Chapter 6
Output Tracking Control of Constrained
Switched Nonlinear Systems

6.1 Background and Motivation

Control systems often suffer from various limits or constraints in the operation
space [1, 2], that may arise out of performance requirements or physical constraints
imposed on the system by its environmental regulations. For instance, the restor-
ing torque of an aircraft certainly has a maximum value, as has the armature of a
DC motor [3]. If the constraints are destroyed during operation, then serious conse-
quences causing performance degradation, hazards or system damage will happen.
Therefore, tackling constraints in control design has attracted much attention from
various fields in science and engineering.

In the study of constrained linear or nonlinear systems, different approaches have
been presented over the last a few years. To handle both state and input constraints
in linear systems, many techniques have been developed (see, e.g., [4–6]), most of
which are based on the notions of set invariance and admissible set control [7, 8].
Model Predictive Control that represents an effective control design methodology
for handling both constraints and performance issues has been investigated in [9,
10]. In addition, reference governors have also been proposed to tackle the problem
of constraints for nonlinear systems in [11]. The approaches mentioned above are
numerical in nature or depend heavily on computationally intensive algorithms to
solve the control problems.

It is worth pointing out that Barrier Lyapunov Functions (BLFs), which have been
proposed in [12, 13], can be used to handle constraints. In the method, output con-
straints are handled directly during the controller design procedure. The proposed
design procedure is flexible and can handle bounded uncertainties in the system.
However, a resulting problem is that the constructed asymmetric BLF is of a switch-
ing type, a C1 function. Consequently, the subsequent stabilizing functions must be
of a high power. Furthermore, p-times differentiable unbounded functions are first
introduced in [14] to handle the output tracking error constraints for a class of nonlin-
ear systems in a lower triangular form. The advantage of the p-times differentiable
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130 6 Output Tracking Control of Constrained Switched Nonlinear Systems

unbounded function method is that in the controller design procedure, switching is
not needed despite the asymmetrical limit range.

Note that control problems for switched systemswith constraints have been inves-
tigated recently. Time optimal control for a class of integrator switched systems with
state constraints was considered in [15]. A predictive control framework for a class
of nonlinear switched systems subject to state and control constraints was presented
in [16].

In this chapter, we aim at the problem of output tracking control for a class of
constrained nonlinear switched systems in lower triangular form. By ensuring bound-
edness of the employedBLFs in the closed-loop,we assure that the constraints are not
exceeded. Under the simultaneous domination assumption, we construct continuous
feedback controllers for the switched system, which render that asymptotic output
tracking is achieved, the limits are not transgressed and all closed-loop signals keep
bounded. Moreover, we also explore the use of p-times differentiable unbounded
functions to deal with asymmetric output constraints.

Notations:Weuse the following notations throughout this chapter.R+ denotes the
set of nonnegative real numbers,Rn represents the n-dimensional real Euclidean vec-
tor space and ‖ • ‖ stands for the Euclidean vector norm. For positive integers i, j , we
also denote x̄i = [x1, x2, . . . , xi ]T ,z̄i = [z1, z2, . . . , zi ]T ,zi : j = [zi , zi+1, . . . , z j ]T ,

ỹdi = [yd , y(1)
d , y(2)

d , . . . , y(i)
d ]T , b̃(i)

1 = [b1,b(1)
1 , b(2)

1 , . . . , b(i)
1 ]T and b̃(i)

2 = [b2, b(1)
2 ,

b(2)
2 , . . . , b(i)

2 ]T , respectively.

6.2 Barrier Lyapunov Functions-Based Control Design

6.2.1 Problem Formulation and Preliminaries

Consider a class of switched nonlinear systems described by:

ẋ1 = f σ(t)
1 (x1) + x2,

· · ·
ẋi = f σ(t)

i (x̄i ) + xi+1,

· · ·
ẋn−1 = f σ(t)

n−1 (x̄n−1) + xn,

ẋn = f σ(t)
n (x̄n) + gσ(t)(x̄n)u,

y = x1, (6.1)

where x1, x2, . . . , xn are the states, u = [u1, u2, . . . , uq ]T ∈ R
q and y ∈ R are the

input and output, respectively. σ(t) is the switching signal, which takes its values
in a finite set Im = {1, 2, . . . ,m} where m > 1 is the number of subsystems. ∀i =
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1, 2, . . . , n and k = 1, 2, . . . ,m; functions f ki , gk are smoothwith gk(x̄n) �= 0,∀x̄n ∈
Rn. The output is required to satisfy certain constraints that are specified later.

For system (6.1), we design a feedback controller by using the information of all
the states and a desired trajectory yd(t) such that limt→∞(y(t) − yd(t)) = 0 under
arbitrary switchings.

The control objective is to solve the output tracking control problem guaranteeing
all closed-loop signals to be bounded without exceeding the constraints.

To avoid the violation of the constraints, we employ a BLF with the following
definition.

Definition 6.1 ([13]) A BLF is a scalar function V (x), defined with respect to the
system ẋ = f (x) on an open region D containing the origin, that is continuous,
positive definite, has continuous first-order partial derivatives at every point of D,
has the propertyV (x) → ∞ as x approaches the boundary of D, and satisfies V (x) ≤
b,∀t ≥ 0 along the solution ẋ = f (x) for x(0) ∈ D and some positive constant b.

It is worth pointing out that the Lyapunov function V (x) in Definition 6.1 can be
extended to be time-varying when the constraints are time-varying.

The following lemma that establishes a result of barrier function is first proposed
for the subsequent developments.

Lemma 6.1 For any positive constants bi , i = 1, 2, . . . , n, let Z = {z̄n ∈ R
n :

|zi | < bi , i = 1, . . . , n} ⊂ R
n be an open set. Consider the switched system:

˙̄zn = hσ(t)(t, z̄n), (6.2)

where σ(t) is the same as in (6.1); hi : R+ × Z → R
n is piecewise continuous in t

and locally Lipschitz in η, uniformly in t , onR+ × Z. We assume that the state of the
system (6.2) does not jump at the switching instants. Let Zi = {zi ∈ R : |zi | < bi } ⊂
R. Suppose that there exist functions Vi : zi → R+, i = 1, 2, . . . , n continuously
differentiable and positive definite in their respective domains, such that

Vi (zi ) → ∞, as zi → −bi or zi → bi . (6.3)

Let V (z̄n) =
n∑

i=1
Vi (zi ) and zi (0) ∈ Zi . If the inequality

V̇ (z̄n) = ∂V (z̄n)

∂ z̄n
hi (t, z̄n) < 0, ∀z̄n �= 0, i ∈ Im (6.4)

holds, then under arbitrary switchings, zi (t) ∈ Zi ,∀t ∈ [0,∞).

Proof The conditions on hi and the trajectory of the system (6.2) is continuous at the
switching instants ensuring the existence and uniqueness of a maximal solution z̄n(t)
on the time interval [0, τmax). This implies that V (z̄n(t)) exists for ∀t ∈ [0, τmax).
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From the fact that zi (0) ∈ Zi and Vi (zi (0)), i = 1, 2, . . . , n are known, we have
that V (zn(0)) exists. Since V (z̄n) is positive definite and V̇ (z̄n) < 0, therefore we

obtain that V (z̄n(t)) < V (z̄n(0)) for ∀t ∈ [0, τmax). Because V (z̄n) =
n∑

i=1
Vi (zi ) and

the fact that Vi (zi ) are positive functions, it is clear that each Vi (zi ) is also bounded
for ∀t ∈ [0, τmax). Thus, we conclude from (6.3) that zi �= −bi and zi �= bi . Given
−bi < zi (0) < bi , we know that zi (t) remains in the set Zi for ∀t ∈ [0, τmax).

Therefore, there is a compact subset K ⊆ Z such that the maximal solution of
(6.2) satisfies z̄n(t) ∈ K for ∀t ∈ [0, τmax). As a direct consequence of [38, p.481
Proposition C.3.6], we can infer that z̄n(t) ∈ K is established for ∀t ∈ [0,∞). It
follows that |zi (t)| ∈ Zi ,∀t ∈ [0,∞). In addition, it is clear that V (z̄n) is a com-
mon Lyapunov function for the system (6.2), then the result holds under arbitrary
switchings. �

Lemma 6.2 (Barbalat’s Lemma) Consider a differentiable function h(t). If limt→∞
h(t) is finite and ḣ(t) is uniformly continuous, then limt→∞ ḣ(t) = 0.

6.2.2 Control Design for Full State Constraints

We consider the full state constraints in the following; that is, for system (1), xi (t)
is required to remain in the set |xi | ≤ ci ,∀t ≥ 0, where ci are positive constants, for
all i = 1, 2, . . . , n. The controller is designed to achieve asymptotic output tracking
while ensuring that the full state constraints are not violated.

First, the following assumptions are used in the backstepping design procedures.

Assumption 6.1 For any c1 > 0, there exist positive constants B0, B0, A0, B1, B2,

. . . , Bn satisfying max{B0, B0} ≤ A0 < c1 such that the desired trajectory yd(t)
and its time derivatives satisfy −B0 ≤ yd(t) ≤ B0, |ẏd(t)| < B1, |ÿd(t)| < B2, . . . ,

|y(n)
d (t)| < Bn,∀t ≥ 0.

Assumption 6.2 The functions gk(x̄n) = [gk,1(x̄n), gk,2(x̄n), . . . , gk,q(x̄n)],
k = 1, 2, . . . ,m are known. Furthermore, for ∀ j ∈ {1, 2, . . . , q}, assume that
mink∈{1,2,...,m} gk, j (x̄n) ≥ 0,∀xn ∈ R

n ormaxk∈{1,2,...,m} gk, j (x̄n) ≤ 0,∀xn ∈ R
n . For

ease of analysis, denote

M = { j ∈ {1, 2, . . . , q}|mink∈{1,2,...,m}gk, j (x̄n) ≥ 0},
F = { j ∈ {1, 2, . . . , q}| j /∈ M}. (6.5)

In what follows, the control design is proposed based on the simultaneous domi-
nation assumption with a barrier function in each step of the backstepping procedure.

Denote z1 = x1 − yd and zi = xi − φi−1, i = 2, . . . , n. Consider the Lyapunov
function candidate:
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V i (z̄i ) =
i∑

l=1

Vl(zl), Vi (zi ) = 1

2
log

b2i
b2i − z2i

, i = 1, 2, . . . , n, (6.6)

where φi−1, i = 2, . . . , n stand for virtual controls, log (•) denotes the natural log-
arithm of •, b1 = c1 − A0 and bi , i = 2, . . . , n are positive constants. It is easy to

know that V n(z̄n) =
n∑

i=1
Vi (zi ) is positive definite and continuously differentiable in

the set |zi | < bi for all i = 1, 2, . . . , n.
Step 1. Consider the following collection of auxiliary first-order subsystems.

ż1 = f k1 (x1) + x2 − ẏd , k = 1, 2, . . . ,m. (6.7)

With the candidate Lyapunov function V1(z1) and taking x2 as the virtual control,
we say that these first-order subsystems are simultaneously dominant if there exists
a differentiable feedback law φ1(x1, z1, ỹd1) = φ∗

1 (x1, yd) + ẏd such that, along the
solutions of the subsystems in (6.7),

V̇ (z1) = z1 ż1
b21 − z21

= z1(φ∗
1 (x1, yd) + f k1 (x1))

b21 − z21
< 0, ∀z1 �= 0, k = 1, 2, . . . ,m.

(6.8)

Define

dk
1 (x1, z1, ỹd1) = z1(φ∗

1 (x1, yd) + f k1 (x1))

b21 − z21
, k = 1, 2, . . . ,m. (6.9)

With V1(z1), the control design for the first step is completed if a simultaneously
dominating feedback law x2 = φ1(x1, z1, ỹd1) is found.

Step i (for i = 2, . . . , n − 1). Consider the collection of auxiliary i th-order sub-
systems:

ż1 = f k1 (x1) + z2 + φ∗
1 (x1, yd),· · ·

żi = f ki (x̄i ) + xi+1 −
i−1∑

j=1

∂φi−1

∂x j
(x j+1 + f kj (x̄ j )) −

i−1∑

j=0

∂φi−1

∂y( j)
d

y( j+1)
d ,

k = 1, 2, . . . ,m.

(6.10)

With the candidateLyapunov functionV i (z̄i ) and taking xi+1 as the virtual control,
we say that the i th-order subsystems are simultaneously dominatable if there exists
a continuously differentiable feedback law xi+1 = φi (x̄i , z̄i , ỹdi ) such that, along the
solutions of the subsystems in (6.10),
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V̇ i (z̄i ) = z1 ż1
b21 − z21

+
i∑

j=2

z j ż j

b2j − z2j
=

i∑

j=1

dkj (x̄ j , z̄ j , ỹd j ) < 0, ∀z̄i �= 0, k = 1, 2, . . . ,m,

(6.11)

where, for j = 2, . . . , i,

dk
j (x̄ j , z̄ j , ỹd j ) = z j

[
z j−1

b2j−1 − z2j−1

+ 1

b2j − z2j

(

φ j + f kj (x̄ j ) (6.12)

−
j−1∑

l=1

∂φ j−1

∂xl
(xl+1 + f kl (x̄l)) −

j−1∑

l=0

∂φ j−1

∂y(l)
d

y(l+1)
d

)]

. (6.13)

With the constructed V i (z̄i ), the control design for the i th step is completed if a
simultaneously dominating feedback law xi+1 = φi (x̄i , z̄i , ỹdi ) is found.

By using repeatedly the inductive argument above, we say that the subsystems of
(6.1) are simultaneously dominant if the control design for the (n − 1)th step can be
completed. Then, we construct a controller for the final step.

Step n. The derivative of V n(z̄n) in (6.6) along the trajectory of the kth subsystem
is

V̇ n = z1 ż1
b21 − z21

+
n∑

i=2

zi żi
b2i − z2i

=
n−1∑

i=1

dk
i (x̄i , z̄i , ỹdi ) + zn

[
zn−1

b2n−1 − z2n−1

+ 1

b2n − z2n

(

f kn (x̄n )

+ gk(x̄n)u −
n−1∑

j=1

∂φn−1

∂x j
(x j+1 + f kj (x̄ j )) −

n−1∑

j=0

∂φn−1

∂y( j)
d

y( j+1)
d

)
⎤

⎦

=ak(x̄n, z̄n, ỹdn ) + bk(x̄n, z̄n, ỹdn )u, (6.14)

where

ak(x̄n, z̄n, ỹdn ) =
n−1∑

i=1

di,k(x̄i , z̄i , ỹdi ) + zn

[
zn−1

b2n−1 − z2n−1

+ 1

b2n − z2n

(

f kn (x̄n )

−
n−1∑

j=1

∂φn−1

∂x j
(x j+1 + f kj (x̄ j )) −

n−1∑

j=0

∂φn−1

∂y( j)
d

y( j+1)
d

)
⎤

⎦ , (6.15)

bk(x̄n, z̄n, ỹdn ) = zn
b2n − z2n

gk(x̄n). (6.16)
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In view of the above discussions and the simultaneous domination condition, a
controller for systems (6.1) can be established:

u(x̄n, z̄n, ỹdn ) = [u1(x̄n, z̄n, ỹdn ), u2(x̄n, z̄n, ỹdn ), . . . , uq(x̄n, z̄n, ỹdn )]T , (6.17)

where

u j =

⎧
⎪⎨

⎪⎩

mini∈{1,2,...,m}
{
pi, j (x̄n, z̄n, ỹdn )

}
, i f zn > 0,

maxi∈{1,2,...,m}
{
pi, j (x̄n, z̄n, ỹdn )

}
, i f zn < 0, f or j ∈ M,

0, i f zn = 0,

(6.18)

and

u j =

⎧
⎪⎨

⎪⎩

maxi∈{1,2,...,m}
{
pi, j (x̄n, z̄n, ỹdn )

}
, i f zn > 0,

mini∈{1,2,...,m}
{
pi, j (x̄n, z̄n, ỹdn )

}
, i f zn < 0, f or j ∈ F,

0, i f zn = 0,

(6.19)

with

pk(x̄n, z̄n, ỹdn ) = [
pk,1(x̄n, z̄n, ỹdn ), pk,2(x̄n, z̄n, ỹdn ), . . . , pk,q(x̄n, z̄n, ỹdn )

]T

=
{

−bk(x̄n, z̄n, ỹdn )
max{ak (x̄n ,z̄n ,ỹdn )+bk (x̄n ,z̄n ,ỹdn )bTk (x̄n ,z̄n ,ỹdn ),0}

bk (x̄n ,z̄n ,ỹdn )bTk (x̄n ,z̄n ,ỹdn )
, i f zn �= 0,

0, i f zn = 0.
(6.20)

Lemma 6.3 Consider switched system (6.1). Suppose that the subsystems of (6.1)
are simultaneously dominatable. Then, the continuous controller (6.17) can be con-
structed such that, along the solutions of all the closed-loop subsystems,

V̇ n(z̄n) < 0, ∀z̄n �= 0, (6.21)

where V n(z̄n) is the Lyapunov function obtained in (6.6).

Proof For the sake of simplicity, we rewrite the system (6.1) as

˙̄xn = f̂k (x̄n) + ĝk (x̄n) u, k ∈ Im . (6.22)

In what follows, we will show that, ∀k = 1, 2, . . . ,m,

∂V n(z̄n)

∂ z̄n
( f̂k(x̄n) + ĝk(x̄n)u(x̄n, z̄n, ỹdn ))

=ak(x̄n, z̄n, ỹdn ) + bk(x̄n, z̄n, ỹdn )u(x̄n, z̄n, ỹdn ) < 0, ∀z̄n �= 0, (6.23)

where u(x̄n, z̄n, ỹdn ) is the controller presented in (6.17).
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For simplicity, we shall omit the dependence on x̄n, z̄n and ỹdn for functions
wherever no confusion will be caused. 1. Consider zn = 0. In this case, bk = 0, u =
0, and

ak + bku = ak < 0, k = 1, 2, . . . ,m. (6.24)

2. Consider zn > 0. In this case, by the definitions of (6.18) and (6.19), we have

u j =
{
mini∈{1,2,...,m}

{
pi, j

}
, j ∈ M,

maxi∈{1,2,...,m}
{
pi, j

}
, j ∈ F.

(6.25)

If j ∈ M, then bk, j ≥ 0. Therefore, we have bk, j u j = bk, j mini∈{1,2,...,m}
{
pi, j

} ≤
bk, j pk, j . Similarly, if j ∈ F , we have bk, j u j ≤ bk, j pk, j . Therefore,

ak + bku = ak +
∑

i∈M
bk,i ui +

∑

j∈F
bk, j u j ≤ ak +

q∑

j=1

bk, j pk, j

= ak + bk pk =
{−bkbTk , i f ak + bkbTk ≥ 0
ak, i f ak + bkbTk < 0

< 0, k = 1, 2, . . . ,m. (6.26)

3. Consider zn < 0. Similarly, in this case we can show that

u j =
{
maxi∈{1,2,...,m}

{
pi, j

}
, j ∈ M,

mini∈{1,2,...,m}
{
pi, j

}
, j ∈ F.

(6.27)

and

ak + bkuk < 0, k = 1, 2, . . . ,m. (6.28)

Therefore, we conclude that, ∀k = 1, 2, . . . ,m, (6.23) is true. Thus, V n(z̄n) is a
common Lyapunov function for all subsystems of (1). �

Based on the above discussions, we are now in a position to give the following
result.

Theorem 6.1 Consider the closed-loop system (6.1), (6.17) under Assumptions 6.1–
6.2. Let Ai be an upper bound for φi in compact set Ωi :

Ai ≥ sup
(x̄i ,z̄i ,ỹdi )∈Ωi

∣
∣φi

(
x̄i , z̄i , ỹdi

)∣
∣ , i = 1, . . . , n − 1, (6.29)
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where Ωi = {x̄i ∈ Ri , z̄i ∈ Ri , ỹdi ∈ Ri+1 : ∣∣x j

∣
∣ ≤ Dz j + A j−1,

∣
∣z j

∣
∣ ≤ Dz j , |yd | <

A0, |y( j)
d | ≤ Bj , j = 1, . . . , i}, Dz j = b j

√

1 − Πn
k=1(b

2
k−z2k (0))

Πn
k=1b

2
k

, i = 1, . . . , n − 1.

Given that the following conditions are satisfied,
(1) ci+1 > Ai + bi+1 holds for ∀i = 1, 2, . . . , n − 1.
(2) The initial conditions z̄n(0) belong to the set Ωz0 = { z̄n ∈ Rn : |zi | < bi ,

i = 1, . . . , n }.
Under arbitrary switching signals, closed-loop system (1) has the following prop-

erties:
(i) The signals zi (t), i = 1, 2, . . . , n, remain in the compact set Ωz = {z̄n ∈ Rn :

|zi | < Dzi , i = 1, 2, . . . , n}.
(ii) xi (t) remains in the set Ωx = {x̄n ∈ Rn : |xi | < Dzi + Ai−1 < ci , i = 1,

. . . , n}, ∀t ≥ 0; i.e., the full state constraints are never violated.
(iii) All closed-loop signals are bounded.
(iv) The output tracking error z1(t) asymptotically converges to zero, i.e., y(t) →

yd(t) as t → ∞.

Proof (i) By V̇ n < 0, it is clear that V n(t) < V n(0),∀t ≥ 0. Because z2i (0) < b2i

from condition (2), we have that V n(0) <
n∑

i=1

1
2 log

b2i
b2i −z2i (0)

, which means

1

2
log

b2i
b2i − z2i

<

n∑

i=1

1

2
log

b2i
b2i − z2i (0)

(6.30)

for i = 1, . . . , n. Because log a + log b = log ab, we rewrite (6.30) as

log
b2i

b2i − z2i
< log

Πn
i=1b

2
i

Πn
i=1

(
b2i − z2i (0)

) (6.31)

for i = 1, . . . , n. Furthermore, we obtain from Lemma 1 that b2i − z2i (t) > 0,∀t ≥
0. Then, (6.31) is equivalent to |zi (t)| < Dzi ,∀t ≥ 0.

(ii) Because |z1 (t)| < Dz1 < c1 − A0, we obtain

|x1 (t)| < Dz1 + |yd (t)| < c1 − A0 + |yd (t)| . (6.32)

Noting that |yd (t)| < A0, we thus conclude from Assumption 6.1 that |x1 (t)| <

Dz1 + A0 < c1,∀t ≥ 0.
To show that |x2 (t)| < c2, we first verify that there exists a positive con-

stant A1 such that |φ1 (t)| ≤ A1,∀t ≥ 0.Because |x1 (t)| < Dz1 + A0, |z1 (t)| ≤ Dz1
and |ẏd (t)| ≤ B1, it is clear that

(
x1(t), z1(t), ỹd1 (t)

) ∈ Ω1, and thus, the stabi-
lizing function φ1 is bounded because it is a continuous function. As a result,
sup(x1,z1,ỹd1)∈Ωi

∣
∣φ1

(
x1, z1, ỹd1

)∣
∣ exists, and an upper bound A1 can be found. Then,

we can see from |z2 (t)| ≤ Dz2 < b2 that
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|x2 (t)| ≤ Dz2 + |φ1 (t)| < b2 + |φ1 (t)| . (6.33)

Since |φ1 (t)| < A1, therefore we deduce that |x2 (t)| ≤ Dz2 + A1 < b2 + A1 <

c2,∀t ≥ 0.
We can get that |xi+1 (t)| ≤ ci+1, i = 2, . . . , n − 1, after verifying that there

exist positive constants Ai such that |φi (t)| ≤ Ai ,∀t ≥ 0. Because |xi (t)| ≤ Dzi +
Ai−1, |zi (t)| ≤ Dzi and

∣
∣
∣y(i)

d (t)
∣
∣
∣ ≤ Yi , it is clear that

(
x̄i (t), z̄i (t), ỹdi (t)

) ∈ Ωi , and

thus, the stabilizing function φi is bounded because it is a continuously differen-
tiable function. As a result, we have that sup(x̄i ,z̄i ,ỹi )∈Ωi

|φi (x̄i , z̄i , ỹi )| exists, and an
upper bound Ai can be found. Then, from |zi+1 (t)| ≤ Dzi+1 < bi+1, we can show
that |xi+1 (t)| < Dzi+1 + |φi (t)| < bi+1 + |φi (t)|. Because |φi (t)| ≤ Ai , therefore
we have that |xi+1 (t)| < Dzi+1 + Ai < bi+1 + Ai < ci+1,∀t ≥ 0.

(iii) By virtue of the boundedness of x̄n, z̄n, ỹdn , it is clear that stabilizing functions
φi (x̄i , z̄i , ỹi ) and control un

(
x̄n, z̄n, ỹdn

)
are bounded. Therefore, all closed-loop

signals are bounded.
(iv) Based on the fact that x̄i (t), z̄i (t), i = 1, 2, . . . , n are bounded, it can be

obtained that V̈ is bounded, which means that V̇ is uniformly continuous. Then, by
Lemma 6.2, we obtain that zi (t) → 0 as t → 0. Because z1(t) = x1(t) − yd(t) and
y(t) = x1(t), we finally have y(t) → yd(t) as t → ∞. �

6.2.3 Control Design for Time-Varying Output Constraints

In this section, we consider the case that the output is required to satisfy −c̄1 (t) <

y (t) < c̄2(t),∀t ≥ 0,where c̄1(t), c̄2 (t) are positive-valued time-varying functions.
By incorporating an appropriate barrier function in the backstepping design, we show
that the output constraints are not violated at any time and asymptotic output tracking
is realized while ensuring boundedness of all closed-loop signals.

Assumption 6.3 There exist positive constants K i
l , i = 0, 1, . . . , n, l = 1, 2 such

that the time-varying functions c̄l (t) and their time derivatives satisfy c̄l (t) ≤
K 0

l , c̄
(i)
l (t) ≤ K i

l , i = 1, 2, . . . , n, l = 1, 2,∀t ≥ 0.

Assumption 6.4 There exist functions Bl : R+ → R
+ satisfying Bl(t) < c̄l(t), l =

1, 2,∀t ≥ 0 and positive constants Bi
l , i = 1, 2, . . . , n such that the desired trajec-

tory yd(t) and its time derivatives satisfy−B1(t) ≤ yd(t) ≤ B2(t),−Bi
1 < y(i)

d (t) <

Bi
2, i = 1, 2, . . . , n,∀t ≥ 0.

Lemma 6.4 For any positive constants a0, b0, let Π = {ξ ∈ R : −a0 < ξ < b0} ⊂
R and X = R

v × Π ⊂ R
v+1 be open sets. Consider the switched system:

η̇ = hσ(t)(t, η), (6.34)

where η := [ξ, z] ∈ X, z ∈ R
v, σ(t) is the same as in (1), and hi : R+ × X → R

v+1

is piecewise continuous in t and locally Lipschitz in η, uniformly in t , on R+ × X.
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We also assume that the state of the switched system (6.34) does not jump at switch-
ing instants. Suppose that there exist functions V1 : Π → R+ and V2 : Rv → R+
continuously differentiable and positive definite in their individual domains, such
that

V1 (ξ) → ∞, as ξ → −a0 or ξ → b0, (6.35)

γ1 (‖z‖) ≤ V2(z) ≤ γ2 (‖z‖) , (6.36)

where γ1 and γ2 are class K∞ functions. Let V (η) = V1 (ξ) + V2 (z), and ξ (0)
belong to the set (−a0, b0). If the inequality

V̇ (η) = ∂V (η)

∂η
hi (t, η) < 0, ∀η �= 0, i ∈ Im (6.37)

holds, then under arbitrary switchings, ξ (t) remains in the open set (−a0, b0),∀t ∈
[0,∞).

Proof The proof is similar to Lemma 6.1. �
Noting that the output constraints are asymmetric and time-varying, we construct the
following asymmetric barrier function, which explicitly depends on time.

V1(z1(t), b1(t)) = 1

2
(1 − q(z1(t))) log

b21(t)

b21(t) − z21(t)
+ 1

2
q(z1(t)) log

b22(t)

b22(t) − z21(t)
,

(6.38)

where z1 = x1 − yd , b1 (t) = c̄1 (t) − B1 (t) and b2 (t) = c̄2 (t) − B2 (t) are the con-
straints on z1; that is, we require −b1(t) < z1(t) < b2(t), and

q (•) =
{
0, i f • ≤ 0 ,

1, i f • > 0.
(6.39)

Lemma 6.5 The Lyapunov function candidate V1 in (6.38) is positive definite and
C1 in the set (−b1(t), b2 (t)).

Proof For −b1(t) < z1 (t) < b2(t), we have that V1 ≥ 0 and V1 = 0 if and only
if z1 (t) = 0. This means that V1 is positive definite. Furthermore, V1 is piece-
wise smooth among intervals z1 (t) ∈ (−b1(t), 0] and z1 (t) ∈ (0, b2(t)). Noting
that lim

z1→0−
dV1
dz1

= lim
z1→0+

dV1
dz1

= 0, we conclude that V1 is C1. This completes the

proof. �
Then, to remove the explicit dependence on time in (6.38), we use a coordinate
transformation:

ξ1 = z1 (t)

b1 (t)
, ξ2 = z1 (t)

b2 (t)
, ξ = (1 − q(z1))ξ1 + q(z1)ξ2. (6.40)
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Therefore, we can rewrite V1 in (6.38) as

V1(ξ) = 1

2
log

1

1 − ξ 2
. (6.41)

It is clear that V1(ξ) is positive definite and continuously differentiable in the set
|ξ | < 1.

Now, consider the Lyapunov function candidate:

V i (ξ, z̄2:i ) = V1(ξ) +
i∑

l=2

Vl(zl), Vi (zi ) = 1

2
z2i , i = 2, 3, . . . , n, (6.42)

where zi = xi − φi−1, i = 2, . . . , n, and φ1 = (1 − q(z1))φ1
1(x1, ξ1, z1, b̃

(1)
1 , ỹd1) +

q(z1)φ2
1(x1, ξ2, z1, b̃(1)

2 , ỹd1), φ j = φ j (x̄ j , ξ1, ξ2, z̄ j , b̃
( j)
1 , b̃( j)

2 , ỹd j ), j = 2, . . . ,
n − 1 are the virtual controls.

Using the backstepping design technique in Sect. 6.3, we can then get

dk1 (6.43)

= (1 − q(z1))
ξ1(φ

1
1 + f k1 (x1) − ẏd − ξ1ḃ1)

b1(1 − ξ21 )
+ q(z1)

ξ2(φ
2
1 + f k1 (x1) − ẏd − ξ2ḃ2)

b2(1 − ξ22 )
.

dk2 (6.44)

= (1 − q(z1))z2

(
ξ1

b1(1 − ξ21 )
+ φ2 + f k2 (x̄2) − ∂φ1

∂t
− ∂φ1

∂x1
(x2 + f k2 (x̄2)) −

1∑

l=0

∂φ1

∂yld
yl+1
d

)

+ q(z1)z2

(
ξ2

b2(1 − ξ22 )
+ φ2 + f k2 (x̄2) − ∂φ1

∂t
− ∂φ1

∂x1
(x2 + f k2 (x̄2)) −

1∑

l=0

∂φ1

∂yld
yl+1
d

)

,

dkj (6.45)

= z j

⎛

⎝z j−1 + φ j + f kj (x̄ j ) − ∂φ j−1

∂t
−

j−1∑

l=1

∂φ j−1

∂xl
(xl+1 + f kl (x̄l )) −

j−1∑

l=0

∂φ j−1

∂yld
yl+1
d

⎞

⎠ .

k = 1, 2, . . . ,m, j = 3, 4, . . . , n − 1. (6.46)

and

ak =
n−1∑

i=1

di,k + zn

(

zn−1 + f kn (x̄n) − ∂φn−1

∂t
(6.47)

−
n−1∑

j=1

∂φn−1

∂x j
(x j+1 + f kj (x̄ j )) −

n−1∑

j=0

∂φn−1

∂y( j)
d

y( j+1)
d

)

,

bk = zng
k(x̄n). (6.48)
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We design the following controller for the system (6.1).

u(x̄n, ξ1, ξ2, z̄n, b̃
(n)
1 , b̃(n)

2 , ỹdn )

=[u1(x̄n, ξ1, ξ2, z̄n, b̃(n)
1 , b̃(n)

2 , ỹdn ), u2(x̄n, ξ1, ξ2, z̄n, b̃
(n)
1 , b̃(n)

2 , ỹdn ), . . . ,

uq(x̄n, ξ1, ξ2, z̄n, b̃
(n)
1 , b̃(n)

2 , ỹdn )]. (6.49)

Applying Lemma 6.3, we can conclude that V̇ n(ξ, z̄2:n) < 0,∀(ξ, z2:n)T �= 0
along the solutions of closed-loop system (6.1).

Based on the above discussions, we can obtain the following theorem.

Theorem 6.2 Consider the switched system (6.1) under Assumptions 6.2–6.4. If
the subsystems are simultaneously dominatable with the controller (6.49), then
the closed-loop system (6.1) has the following properties under arbitrary switch-
ing, where the initial conditions are z̄n (0) ∈ Ωz0 = {z̄n ∈ Rn : −b1 (0) < z1 (0) <

b2 (0)}.
(i) The signals ξ1(t), ξ2 (t) and zi (t), i = 1, 2, . . . , n are bounded, for ∀t ≥ 0, as

follows.

−√
1 − e−2Vn(0) < ξ1(t) < 0,

0 ≤ ξ2(t) <
√
1 − e−2Vn(0),

−b1 (t) < −Dz1(t) < z1(t) < Dz1(t) < b2 (t) ,

‖z̄2:n(t)‖ <
√
2Vn (0),

(6.50)

where Dz1(t) = b1 (t)
(
1 − e−2Vn(0)

) 1
2 , Dz1(t) = b2 (t)

(
1 − e−2Vn(0)

) 1
2 .

(ii) The output y(t) remains in the set Ωy = {y ∈ R : −c̄1 (t) < −b2 (t) −
B2(t) < y(t) < b1 (t) + B1(t) < c̄2(t)}; i.e., the output constraints are never vio-
lated.

(iii) All closed-loop signals are bounded.
(iv) The output tracking error asymptotically converges to zero; i.e., y (t) →

yd (t) as t → ∞.

Proof (i) Applying Lemma 6.4 yields that |ξi (t)| < 1, i = 1, 2, from which we
have that −b1 (t) < z1(t) < b2(t),∀t ≥ 0. Furthermore, it follows from V n (t) <

V n(0),∀t ≥ 0, that

V n (0) >

⎧
⎨

⎩

log b21(t)
b21(t)−z21(t)

, −b1 (t) < z1 (t) < 0,

log b22(t)
b22(t)−z21(t)

, 0 ≤ z1 (t) < b2 (t) .
(6.51)

Then, we get that

z21 (t) <

⎧
⎨

⎩

b21 (t)
(
1 − e−2V n(0)

)
,−b1 (t) < z1 (t) < 0,

b22 (t)
(
1 − e−2V n(0)

)
, 0 ≤ z1 (t) < b2 (t) .

(6.52)
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This implies that z1 (t) > −b1 (t)
(
1 − e−2V n(0)

) 1
2
for negative z1 (t), and z1 (t) <

b2 (t)
(
1 − e−2V n(0)

) 1
2
for nonnegative z1 (t). Therefore, it is obvious that−Dz1 (t) <

z1 (t) < Dz1(t),∀t ≥ 0.

Similarly, from the fact that 1
2

n∑

j=2
z2j (t) ≤ V n(0), we can obtain that |z2:n (t)| ≤

√
2V n(0), ∀t ≥ 0.
(ii) Because y (t) = z1 (t) + yd ,−Dz1 (t) < z1 (t) < Dz1(t), and |yd (t)| ≤

Bl(t), l = 1, 2,∀t ≥ 0. Then, we can conclude that

−Dz1 (t) − B1(t) < z1 (t) + yd(t) < Dz1 (t) + B2(t). (6.53)

Dz1 (t) < b1 (t) and Dz1 (t) < b2 (t), therefore we know that

Dz1 (t) + yd (t) < b1 (t) + B1(t) = c̄1(t),

Dz1 (t) + yd (t) < b2 (t) + B2(t) = c̄2 (t) . (6.54)

Hence, we can deduce that y (t) ∈ Ωy,∀t ≥ 0.
(iii) From (i), we know that the error signals z1 (t) , z2(t), . . . , zn (t) are bounded.

The boundedness of z1 (t) and yd (t) implies that the state x1 (t) is bounded. From
(6.38), we see that ḃi (t) are bounded, because ˙̄ci (t) ≤ K 1

i and |ẏd (t)| ≤ B1
i , i =

1, 2, where K 1
i and B1

i are some positive constants. Therefore, the virtual control
φ1 is also bounded. This leads to the boundedness of x2 (t), because x2 = z2 + φ1.
Furthermore, it is not hard to check that all variables of continuous function φ2 are
bounded, and thus we get that φ2 is bounded. This leads to the boundedness of state
x3 (t), because x3 = z3 + φ2. Following the same procedures, one can know that each
φi , for i = 3, . . . , n − 1, is bounded. Hence, the boundedness of state xi+1 (t) can be
ensured.With x̄n (t) and z̄n (t) being bounded, and−b1 (t) < z1 (t) < b2(t),∀t ≥ 0,
wededuce that the control u (t) is bounded. Thus, all closed-loop signals are bounded.

(iv) Let d1 = dk
1 , k = 1, 2, . . . ,m, which is differentiable in the set |ξ | < 1.

Because |ξ (t)| < 1,∀t ≥ 0 from Lemma 6.1, we can integrate both sides of V̇ n =
ak + bku with the controller (6.49) to obtain

lim
t→∞

∫ t

0
d1 (τ ) dτ < V (0) < ∞,∀k = 1, 2, . . . ,m. (6.55)

Meanwhile, one can also derive from dk
1 that ḋ1 (t) is bounded, which implies that

d1 (t) is uniformly continuous. By Lemma 6.2, one can get that d1 (t) → 0, as t →
∞,whichmeans ξi (t) → 0, as t → ∞, because ξi (t) = z1 (t) /bi (t) and bi (t) >

0, i = 1, 2,∀t ≥ 0. Subsequently, one can obtain z1 (t) → 0, as t → ∞. There-
fore, we finally have y(t) → yd(t), as t → ∞. �
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6.2.4 Simulation Results

In this section, two examples are presented to demonstrate the effectiveness of the
obtained results.

Consider the following switched nonlinear system,

ẋ1 = gσ(t)
1 (x1) x2,

ẋ2 = f σ(t)
2 (x̄2, d (t)) + gσ(t)

2 (x̄2) uσ(t),

y = x1, (6.56)

whereσ : [0,+∞) → {1, 2}, g11 (x1) = g21 (x1) = 1, f 12 (x̄2, d (t)) = θx22 , θ ∈ [0.4,
0.8], f 22 (x̄2, d (t)) = x2 cos

(
2x1x22

)
. The control objective is to design a state feed-

back controller such that the output x1 of the system can track the given signal
yc = 0.2, and does not destroy a symmetric constraint L = L = 0.25.

Due to the symmetric constraint L = L = 0.25, one can set z1 = Ψ (x1d ,−0.25,
0.25) = tan[2π(x1 − 0.2)] and V1(z1) = 1

2 z
2
1. By using the proposed method, the

common stabilizing function φ1(z1) can be obtained for each subsystem at the initial
step:

φ1(z1) = −z1

[

1 + 2

2πsec2[2π(x1 − 0.2)]
]

. (6.57)

Next, set z2 = x2 − φ1(z1), and V 2(z2) = 1
2 z

2
1 + 1

2 z
2
2 is theCLF for system (6.56).

We can give the following state feedback controller.

u (z̄2) = −z2

[

1.6πsec2 [2π(x1 − 0.2)] +
(

1 + 2

2πsec2 [2π(x1 − 0.2)]

)4

+
(

1 + 2

2πsec2 [2π(x1 − 0.2)]

)2

(1 + x22 ) + (1 + x22 )
1
2

+
(

1 + 2

2πsec2 [2π(x1 − 0.2)]

)

+ 1

]

. (6.58)

Choose the initial values as x1 (0) = 0.449, x2 (0) = −2.2. Figure6.1 demon-
strates that asymptotic tracking performance can be achieved under a randomly gen-
erated switching signal inFig. 6.2. FromFig. 6.3, it canbe seen that the output tracking
error x1d converges to zero while remaining in the set (−0.25, 0.25). Finally, the state
response of the p-times differentiable unbounded function z1 = tan[2π(x1 − 0.2)]
is shown in Fig. 6.4 demonstrating the validity of the designed state feedback con-
troller (6.58).
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Fig. 6.1 Output tracking for the desired signal yd = 0.2
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Fig. 6.2 The given switching signal for the system (6.56)

6.2.5 Conclusions

Based on the BLF approach, a control design method for constrained nonlinear
switched systems in lower triangular form has been developed to achieve the out-
put tracking objective. By guaranteeing the boundedness of the BLF in the closed-
loop, the restrictions are not transgressed. Furthermore, asymptotic output tracking is
achieved without violating the constraints, and all closed-loop signals are bounded.
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Fig. 6.3 The state response of the output tracking error x1d
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Fig. 6.4 The state response of the p-times differentiable unbounded function z1

In particular, the issue of output tracking control with full state constraints and
asymmetric time-varying output constraints are considered for switched nonlinear
systems.
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6.3 p-Times Differentiable Unbounded Functions-Based
Control Design

6.3.1 Problem Formulation and Preliminaries

Consider uncertain switched nonlinear systems with the following lower triangular
form,

ẋ1 = gσ(t)
1 (x1) x2,

ẋi = f σ(t)
i (x̄i , d(t)) + gσ(t)

i (x̄i ) xi+1, i = 2, 3, . . . , n − 1,

ẋn = f σ(t)
n (x̄n, d(t)) + gσ(t)

n (x̄n) uσ(t),

y = x1, (6.59)

where x1, x2, . . . , xn are system states, y is the output; σ(t) is the switching signal,
which takes its values in a finite set Im = {1, 2, . . . ,m} and m > 1 is the number
of subsystems; d(t) is an unknown piecewise continuous disturbance belonging to a
known compact set Ω ∈ Rs ; uk ∈ R is the control input of the k-th subsystem. For
∀i = 1, 2, . . . , n and k = 1, 2, . . . ,m, functions f ki (x̄i , d(t)) and gki (x̄i ) are known
and smooth with 0 < g ≤ gki (x̄i ) ≤ ḡ, where g and ḡ are positive constants. As
commonly assumed in the literature, the Zeno behavior for all types of switching
signals is not considered. In addition, we assume that the state of system (6.59) is
continuous at switching instants.

Remark 6.1 For non-switched nonlinear systems, the structure of (6.59) has been
widely investigated (see, e.g., [12, 14, 17–19]). For switched nonlinear systems,
the considered system structure of (6.59) was restricted to the design of stabilizing
controllers [20–23].

Here, we consider the following output-constrained tracking control problem.

The output-constrained tracking control problem: For the system (6.59) under
arbitrary switchings, design state feedback controllers to ensure the output of system
(6.59) to track a given constant reference signal yc such that:

(1) Asymptotic tracking is achieved; i.e.,

lim
t→∞(y(t) − yc) = 0. (6.60)

(2) The output tracking error is confined to be a pre-specified limit range; i.e.,

− L ≤ y(t) − yc ≤ L (6.61)
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for all t ≥ t0 ≥ 0, where L and L are strictly positive constants. If L = L , the con-
straint (6.61) is referred to as a symmetric constraint. If L �= L , the constraint (6.61)
is referred to as an asymmetric constraint.

(3) All signals of the closed-loop system (6.59) are bounded.
The following assumptions are needed to develop the main results.

Assumption 6.5 For i = 2, 3, . . . , n,

∣
∣ f ki (x̄i , d(t))

∣
∣ ≤ (|x2|+ · · · +|xi |)μk

i (x̄i ) ,∀k ∈ Im, (6.62)

where μi,k (x̄i ) is a set of known non-negative smooth functions.

Assumption 6.6 At t0, there exist strictly positive constants L1 < L and L1 < L
such that

− L1 ≤ x1d(t0) ≤ L1, (6.63)

where x1d(t0) = x1(t0) − yc is the initial output tracking error.

Two definitions and two relevant lemmas are addressed in the following for later
use.

Definition 6.2 ([2]) A scalar function h(x, a, b) is said to be a p-times differentiable
step function if it satisfies the following properties.

(1) h(x, a, b) = 0, ∀ − ∞ < x ≤ a,

(2) h(x, a, b) = 1, ∀b ≤ x < +∞,

(3) 0 < h(x, a, b) < 1, ∀x ∈ (a, b),
(4) h(x, a, b) is p times differentiable with respect to x ,
(5) h′(x, a, b) > 0, ∀x ∈ (a, b),
(6) h′(x, a, b) ≥ δ1(ρ1) > 0, ∀x ∈ (a + ρ1, b − ρ1) with 0 < ρ1 < b−a

2 ,

where p is a positive integer, x ∈ R, a and b are constants such that a < 0 <

b, h′(x, a, b) = ∂h′(x,a,b)
∂x , and δ1(ρ1) is a positive constant depending on the pos-

itive constant ρ1. Moreover, if the function h(x, a, b) is infinite times differentiable
with respect to x , then it is said to be a smooth step function.

Lemma 6.6 ([14]) Let the scalar function h(x, a, b) be defined as

h(x, a, b)=
∫ x
a f (τ − a) f (b − τ)dτ
∫ b
a f (τ − a) f (b − τ)dτ

(6.64)

where a and b are constants such that a < 0 < b, and the function f (y) is defined
below:

f (y) = 0, i f y ≤ 0,

f (y) = g(y), i f y > 0, (6.65)
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where g(y) is a single-valued function satisfying the following properties,
(a) g(τ − a) f (b − τ) > 0, ∀τ ∈ (a, b),
(b) g(τ − a) f (b − τ) ≥ δ2(ρ2) > 0, ∀τ ∈ (a + ρ2, b − ρ2), with 0 < ρ2 <

b−a
2 ,

(c) g(y) is p times differentiable with respect to y, and limy→0+ ∂k g(y)
∂ yk = 0, k =

1, 2, . . . , p − 1, with p being a positive integer, and δ2(ρ2) is a positive constant
depending on the positive constant ρ2. Then, the function h(x, a, b) is a p-times
differentiable step function. Furthermore, if g(y) in (6.65) is replaced by g(y)=e−1/y ,
then property (4) in Definition 6.2 is replaced by (4)′; i.e., h(x, a, b) is a smooth step
function.

Definition 6.3 ([2]) A function Ψ (x, a, b) is said to be a p-times differentiable
unbounded function if it holds the following properties.

(1) x = 0 ⇔ Ψ (x, a, b) = 0,
(2) limx→a−Ψ (x, a, b) = −∞, limx→b+Ψ (x, a, b) = ∞,

(3) Ψ (x, a, b) is p times differentiable with respect to x , for all x ∈ (a, b),
(4) Ψ

′
(x, a, b) > 0, ∀x ∈ (a, b),

(5) Ψ
′
(x, a, b) ≥ δ3(ρ3) > 0, ∀x ∈ (a + ρ3, b − ρ3), with 0 < ρ3 < b−a

2 ,

where p is a positive integer, a and b are constants such that a < 0 < b,Ψ
′
(x, a, b) =

∂Ψ (x,a,b)
∂x , and δ3(ρ3) is a positive constant depending on the positive constant ρ3.

Furthermore, if p = ∞, then the functionΨ (x, a, b) is said to be a smoothunbounded
function.

Lemma 6.7 ([2]) Let the scalar function Ψ (x, a, b) be defined as

Ψ (x, a, b) = Ψ̄ (ϕ(x, a, b)) − Ψ̄ (ϕ(0, a, b)), (6.66)

where the function ϕ(x, a, b) is defined as follows.

ϕ(x, a, b) = ε(2h(x, a, b) − 1) (6.67)

with ε being a positive constant, and h(x, a, b) being the p-times differentiable step
functions in Definition 6.2. The function Ψ̄ (ξ) is such that

(1) ξ = 0 ⇔ Ψ̄ (ξ) = 0,
(2) limξ→−ε−Ψ̄ (ξ) = −∞, limξ→ε+Ψ̄ (ξ) = ∞,

(3) Ψ̄ (ξ) is p times differentiable with respect to ξ , for all ξ ∈ (−ε, ε),

(4) Ψ̄
′
(ξ) > 0, ∀ξ ∈ (−ε, ε),

(5) Ψ̄
′
(ξ) > δ4(ρ4) > 0, ∀ξ ∈ (a + ρ4, b − ρ4), with 0 < ρ4 < b−a

2 ,

where Ψ̄
′
(ξ) = ∂Ψ̄ (ξ)

∂ξ
> 0,∀ξ ∈ (−ε, ε), and δ4(ρ4) is a positive constant depending

on the positive constant ρ4. Then the function Ψ (x, a, b) is a p-times differentiable
unbounded function. Moreover, if h(x, a, b) is a smooth step function, then the func-
tion Ψ (x, a, b) is a smooth unbounded function.

Remark 6.2 For Lemma 6.6, it can be seen that several functions satisfy properties
(a)–(c) of the function g(y), such as g(y)=yp, g(y)= tanh(y)p, g(y)= arctan(yp),
etc.
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Remark 6.3 In Definition 6.3, if a= −b, then many p-times differentiable
unbounded functions can be obtained. An example is the function tan(− π

2a x). If
a �= −b, it is difficult to give a p-times differentiable unbounded function. How-
ever, we can construct a p-times differentiable unbounded function by using the
p-times differentiable step function in Definition 6.2 with Lemma 6.7. For example,
Ψ (x, a, b)= tan[π

2 (2h(x, a, b) − 1)] − tan[π
2 (2h(0, a, b) − 1)].

Lemma 6.8 ([18]) For any positive real numbers c, d and any real-valued function
ρ(x, y) > 0,

|x |a |y|d ≤ a

a + d
ρ(x, y) |x |a+d + d

a + d
ρ−a/d(x, y) |y|a+d . (6.68)

Lemma 6.9 ([24]) (Barbalat’s Lemma) Consider a differentiable function h(t). If
limt→∞ h(t) is finite and ḣ(t) is uniformly continuous, then limt→∞ ḣ(t) = 0.

6.3.2 Main Results

In what follows, a systematic design procedure for output-constrained tracking con-
trol of the system (6.59) is presented by using the CLF approach and the p-times
differentiable unbounded functions in Definition 6.3.

First, give a coordinate transformation:

z1 = Ψ (x1d , a, b), (6.69)

where x1d = x1 − yc = y − yc is the output tracking error, Ψ (x1d , a, b) is a p-times
differentiable unbounded function with p ≥ n − 1, and the constants a and b are
chosen such that

− L ≤ a < −L1, L1 < b ≤ L̄. (6.70)

On the basis of the properties of Ψ (x1d , a, b) presented in Definition 6.3, it is
clear that if we design a control input u ensuring limt→∞z1(t) = 0 and keeping all
signals of the corresponding closed-loop system bounded for a bounded z1(t0), then
the output-constrained tracking control problem of system (6.59) is solved. Note that
z1(t0) is bounded under the constants a and b in (6.70), the assumption on the initial
output tracking error in (6.63), and the properties of the function Ψ (x1d , a, b) listed
in Definition 6.3.

Differentiating both sides of (6.69) in conjunction with system (6.59), we can
rewrite them as

ż1 = Ψ ′(x1d , a, b)gσ(t)
1 (x1) x2,

ẋi = f σ(t)
i (x̄i , d(t)) + gσ(t)

i (x̄i )xi+1, i = 2, 3, . . . , n − 1,
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ẋn = f σ(t)
n (x̄n, d(t)) + gσ(t)

n (x̄n)u,

y = x1, (6.71)

Next, the steps of designing controllers are given below.
Step 1.Choose V1(z1) = 1

2 z
2
1 and let z2 = x2 − φ1(z1),where φ1(z1) is the com-

mon stabilizing function to be designed.
The derivative of V1(z1) is

V̇1 (z1) = z1Ψ ′(x1d , a, b)gk1 (x1) (z2 + φ1(z1)). (6.72)

Choose the common stabilizing function as

φ1(z1) = z1

[

−1

g
(((n − 2)/Ψ ′(x1d , a, b) + 1)g + n/Ψ ′(x1d , a, b))

]

. (6.73)

Substituting (6.73) into (6.72) yields that

V̇1 (z1) = − z21Ψ
′(x1d , a, b)

gk1 (x1)

g

n

Ψ ′(x1d , a, b)

− z21Ψ
′(x1d , a, b)

gk1 (x1)

g

(
(n − 2)

Ψ ′(x1d , a, b)
+ 1

)

g

+Ψ ′(x1d , a, b)gk1 (x1) z1z2
≤ − nz21 − (Ψ ′(x1d , a, b) + n − 2)gz21

+Ψ ′(x1d , a, b)gk1 (x1) z1z2, (6.74)

where the coupling term Ψ ′(x1d , a, b)gk1 (x1) z1z2,∀k ∈ Im can be canceled by fol-
lowing the steps below.

Step 2. Let z3 = x3 − φ2(z̄2), where φ2(z̄2) is the common stabilizing function
to be designed.

Choose V 2(z̄2) = V1(z1) + 1
2 z

2
2, and then the time derivative of V 2(z̄2) can be

given by

V̇ 2 (z̄2) = − nz21 − (Ψ ′(x1d , a, b) + n − 2)ḡz21

+ z2

(

f k2 (x̄2, d(t)) − ∂φ1(z1)

∂z1
ż1 + gk2 (x̄2) x3

)

+Ψ ′(x1d , a, b)gk1 (x1) z1z2
≤ −nz21 − (Ψ ′(x1d , a, b) + n − 2)ḡz21

+ ḡΨ ′(x1d , a, b) |z1z2| + ∣
∣z2Φ

k
2 (z̄2, d(t))

∣
∣

+ gk2 (x̄2) (z3 + φ2 (z̄2)), (6.75)
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where Φk
2 (z̄2, d(t)) = f k2 (x̄2, d(t)) − ∂φ1(z1)

∂z1
�k
1 (z̄2) , �k

1 (z̄2) = gk1 (x1) (z2 + φ1

(z1)),∀k ∈ Im .

Furthermore, one has
∣
∣ f k2 (x̄2, d(t))

∣
∣ ≤ |x2| μk

2 (x̄2) ≤ (|z1| + |z2|)μ̂k
2 (z̄2) ,∀k ∈

Im, where μ̂k
2 (z̄2) are a set of smooth non-negative functions. It means that

∣
∣Φk

2 (z̄2, d(t))
∣
∣ ≤ (|z1| + |z2|)μ̃k

2 (z̄2) , (6.76)

where μ̃k
2 (z̄2) are a set of smooth non-negative functions, ∀k ∈ Im .

According to Lemma 6.8 and (6.76), it holds that |z1z2| ≤ z21 + z22ϕ̃2(z̄2), | z2Φk
2

(z̄2, d(t))| ≤ z21 + z22ϕ̃
k
2(z̄2),∀k ∈ Im, where ϕ̃2 (z̄2) ≥ 1, ϕ̃k

2 (z̄2) ≥ 1 are some
smooth functions. Thus, we get that

V̇ 2 (z̄2) = − nz21 − (n − 2)ḡz21 − ḡΨ ′(x1d , a, b)z21 + z21
+ ḡΨ ′(x1d , a, b)z21 + ḡΨ ′(x1d , a, b)z22ϕ̃2 (z̄2)

+ z22ϕ̃
k
2 (z̄2) + gk2 (x̄2) z2φ2 (z̄2) + gk2 (x̄2) z2z3

≤ − (n − 1)z21 − (n − 2)ḡz21 + z22ϕ
k
2 (z̄2)

+ḡΨ ′(x1d , a, b)z21 + gk2 (x̄2) z2φ2 (z̄2)

+ gk2 (x̄2) z2z3
≤ − (n − 1)z21 − (n − 2)ḡz21 + z22ϕ

max
2 (z̄2)

+ gk2 (x̄2) z2φ2 (z̄2) + gk2 (x̄2) z2z3, (6.77)

where ϕmax
2 (z̄2) ≥ ϕk

2 (z̄2) = ḡΨ ′(x1d , a, b)ϕ̃2 (z̄2) + ϕ̃k
2(z̄2),∀k ∈ Im is a smooth

function.
Design the common stabilizing function as

φ2(z̄2) = z2

[

−1

g
(ϕmax

2 (z̄2) + (n − 2)ḡ + (n − 1))

]

. (6.78)

Substituting (6.78) into (6.77) yields that

V̇ 2 (z̄2) ≤ −(n − 1)z21 − (n − 2)ḡz21 + z22ϕ
max
2 (z̄2)

−gk2 (x̄2)

g
z22ϕ

max
2 (z̄2) − gk2 (x̄2)

g
(n − 2)ḡz22

−gk2 (x̄2)

g
(n − 1)z22 + gk2 (x̄2) z2z3

≤ −(n − 1)(z21 + z22) − (n − 2)ḡ(z21 + z22)

+gk2 (x̄2) z2z3, (6.79)

where the coupling term gk2 (x̄2) z2z3 can be canceled by the following steps.
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Step i. Let zi+1 = xi+1 − φi (z̄i ), where φi (z̄i ) is a common stabilizing function
to be designed.

Assume that the first i − 1 (2 ≤ i ≤ n) steps are finished, that is, for the following
auxiliary (z1, . . . , zi−1)-equations:

ż j = Φk
j (z̄ j , d(t)) + gkj

(
x̄ j
)
x j+1, j = 1, . . . , i − 1, (6.80)

where Φk
j (z̄ j , d(t)) = f kj (z̄ j , d(t)) −

j−1∑

l=1

∂φ j−1(z̄ j−1)

∂zl
�k
l (z̄l−1), we have a set of com-

mon stabilizing functions (6.73), (6.78) and

φ j (z̄ j ) = z j

[

−1

g
(ϕmax

j

(
z̄ j
) + (n − j)ḡ + (n − j + 1))

]

, (6.81)

where 3 ≤ j ≤ i − 1, such that there exists a CLF for system (6.80),

V i−1(z̄i−1) = V1(z1) + 1

2

i−1∑

l=2

z2l , (6.82)

and the time derivative of V i−1(z̄i−1) fulfills V̇ i−1 (z̄i−1) ≤ −(n − i + 2)(z21 + · · · +
z2i−1) − (n − i + 1)ḡ(z21 + · · · + z2i−1) + gki−1 (x̄i−1) zi−1zi .

Choosing V i (z̄i ) = V i−1(z̄i−1) + 1
2 z

2
i , then we can derive that

V̇ i (z̄i ) ≤ −(n − i + 2)(z21 + · · · + z2i−1)

−(n − i + 1)ḡ(z21 + · · · + z2i−1)

+zi (Φk
i (z̄i , d(t)) + gki (x̄i ) xi+1)

+gki−1 (z̄i−1) zi−1zi
≤ −(n − i + 2)(z21 + · · · + z2i−1)

−(n − i + 1)ḡ(z21 + · · · + z2i−1)

+ḡ |zi−1zi | + ∣
∣zi (Φk

i (z̄i , d(t))
∣
∣

+gki (z̄i ) ziφi (z̄i ) + gki (z̄i ) zi zi+1, (6.83)

where Φk
i (z̄i , d(t)) = f ki (z̄i , d(t)) −

i−1∑

l=1

∂φl−1(z̄l−1)

∂zi
�k
l (z̄l−1), ∀k ∈ Im .

Similar to Step 2, one has |zi−1zi | ≤ z21 + · · · + z2i−1 + z2i ϕ̃i (z̄i ),
∣
∣ziΦk

i (z̄i ,
d(t))| ≤ z21 + · · · + z2i−1 + zki ϕ̃

k
i (z̄i ),∀k ∈ Im, where ϕ̃i (z̄i ) ≥ 1, ϕ̃k

i (z̄i ) ≥ 1 are
some smooth functions. Therefore, we can arrive at
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V̇ i (z̄i ) ≤ −(n − i + 2)(z21 + · · · + z2i−1)

−(n − i + 1)ḡ(z21 + · · · + z2i−1)

+ḡ(z21 + · · · + z2i−1) + z21 + · · · + z2i−1

+z2i ϕ̃
k
i (z̄i ) + ḡz2i ϕ̃i (z̄i ) + gki (x̄i ) ziφi (z̄i )

+gki (x̄i ) zi zi+1

≤ −(n − i + 1)(z21 + · · · + z2i−1)

−(n − i)ḡ(z21 + · · · + z2i−1)

+z2i ϕ
max
i (z̄i ) + gki (x̄i ) ziφi (z̄i )

+gki (x̄i ) zi zi+1, (6.84)

where ϕmax
i (z̄i ) ≥ ϕk

i (z̄i ) = ḡϕ̃i (z̄i ) + ϕ̃k
i (z̄i ),∀k ∈ Im are some smooth functions.

Design the common stabilizing function as

φi (z̄i ) = zi

[

−1

g
(ϕmax

i (z̄i ) + (n − i)ḡ + (n − i + 1))

]

. (6.85)

Then, substituting (6.85) into (6.84) yields that

V̇ i (z̄i ) ≤ −(n − i + 1)(z21 + · · · + z2i−1)

−(n − i)ḡ(z21 + · · · + z2i−1) + z2i ϕ
max
i (z̄i )

−gki (x̄i )

g
z2i ϕ

max
i (z̄i ) − gki (x̄i )

g
(n − i)ḡz2i

−gki (x̄i )

g
(n − i + 1)z2i + gki (x̄i ) zi zi+1

≤ −(n − i + 1)(z21 + · · · + z2i )

−(n − i)ḡ(z21 + · · · + z2i ) + gki (x̄i ) zi zi+1, (6.86)

where the coupling term gki (x̄i ) zi zi+1 can be canceled by the following steps.
Step n. Repeating the procedures above, it is straightforward to see that there

exists a CLF of system (6.59)

V n(z̄n) = V1(z1) + 1

2

n∑

l=2

z2l . (6.87)

Then, we can explicitly design an individual controller for each subsystem

uk(z̄n) = zn

[

− 1

gn,k
(ϕn,k (z̄n) + 1)

]

,∀k ∈ Im (6.88)
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such that

V̇ n (z̄n) ≤ −(z21 + · · · + z2n). (6.89)

Remark 6.4 In fact, we can also design a common state feedback controller for the
system (6.59) as

u(z̄n) = zn

[

−1

g
(ϕmax

n (z̄n) + 1)

]

, (6.90)

where ϕmax
n (z̄n) ≥ ϕk

n (z̄n) = ḡϕ̃n (z̄n) + ϕ̃k
n (z̄n) is a smooth function. It can be seen

that (6.90) can be extended from (6.88), which illustrates the less conservativeness
of the controller to be developed.

Based on the above discussions, we now provide the main result.

Theorem 6.3 Suppose that Assumption 6.5 holds. The output-constrained tracking
controller for system (6.59) under arbitrary switching can be designed as (6.88), and
the output tracking error x1d(t) locally exponentially converges to zero.

Proof (i) Forward completeness. From (6.89) and Ψ ′(x1d , a, b) > 0 for all x1d(t) ∈
(a, b), noticing Property (6.58) of the function Ψ (x1d , a, b) in Definition 6.3, one
obtains that

V̇ n ≤ 0 ⇒ V n(t) ≤ V (t0),∀t ≥ t0 ≥ 0. (6.91)

This means that

n∑

i=1

zi (t) ≤
n∑

i=1

zi (t0) (6.92)

for all t ≥ t0 ≥ 0. Under the initial condition specified in (6.61), and the choice of
the constants a and b in (6.70), the right-hand side of (6.92) is bounded. This means
that the left-hand side of (6.92) must be bounded. Boundedness of the left-hand side
of (6.92) implies that all zi , i = 1, 2, . . . , n are bounded. Because |z1(t)| is bounded
for all t ≥ t0 ≥ 0, the output tracking error x1d(t) never reaches its boundary values
a and b; i.e., x1d(t) ∈ (a, b) for all t ≥ t0 ≥ 0. This together with (6.70), L1 < L and
L1 < L (Assumption 6.2) implies that x1d(t) is always in its constraint range, i.e. L <

x1d(t) < L for all t ≥ t0 ≥ 0. Boundedness of all xi , i = 1, 2, . . . , n follows from the
boundedness of all zi , and smooth property of all functions f ki (x̄i , d(t)), gki (x̄i ) and
Ψ (x1d , a, b). Boundedness of all xi , i = 1, 2, . . . , n also denotes that the closed-loop
system (6.55) is forward complete.

(ii)Asymptotic convergence.Noting that xi (t), zi (t), i = 1, 2, . . . , n are bounded,

it is not hard to deduce that V̈ n(z̄n) is bounded, which gives that ˙̄Vn(z̄n) is uni-
formly continuous. Then, we get from Lemma 6.9 that limt→∞zi (t) = 0, i =
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1, 2, . . . , n. Therefore, it follows from Property (6.55) of function Ψ (x1d , a, b). that
limt→∞x1d(t) = 0.

(iii) Local exponential convergence of the output tracking error x1d(t). It follows
from (6.89) that

Vn(t) ≤ Vn(t0)e
−(t−t0),∀t ≥ t0. (6.93)

One can get from (6.93) that

|z1(t)| ≤ √
2Vn(t0)e

− 1
2 (t−t0),∀t ≥ t0, (6.94)

which implies that z1(t) locally exponentially converges to 0. Now, with the help
of Taylor expansion of function Ψ (x1d , a, b) around x1d = 0 and noticing Property
(6.59) of the function h(x1d , a, b), Property (6.60) of the function Ψ (x1d , a, b), and
the construction of the function Ψ (x1d , a, b) (see Lemma 6.7), it can be shown that
there exists a strictly positive constant δ5(ρ5) depending on the positive constant ρ5

with 0 < ρ5 < b−a
2 such that

|Ψ (x1d(t), a, b)| ≥ δ5(ρ5) |x1d(t)| ,∀t ≥ t1, (6.95)

where the time instance t1 > t0.By definition z1(t) = Ψ (x1d(t), a, b), a combination
of (6.93) and (6.95) gives

|x1d(t)| ≤
√
2Vn(t0)e− 1

2 (t−t0)

δ5(ρ5)
,∀t ≥ t1, (6.96)

which shows the local exponential convergence of x1d(t) to 0. �

Remark 6.5 When the output-constrained tracking control problem is considered, it
is required that |x1| be absent in Assumption 6.5, and thus f k1 (x1) cannot appear in
x1-equation of system (6.59), k = 1, 2, . . . ,m. It seems that Assumption 6.1 appears
to be conservative. However, if the stabilization problem is considered, |x1| can be
presented in Assumption 6.5, which leads to: f k1 (x1) exists in the x1-equation of (1),
k = 1, 2, . . . ,m. We give the design procedures for the stabilization problem in the
next section.

In what follows, we consider the robust state-constrained stabilization problem
for the following uncertain switched nonlinear system,

ẋi = f σ(t)
i (x̄i , d(t)) + gσ(t)

i (x̄i ) xi+1, i = 1, 2, . . . , n − 1,

ẋn = f σ(t)
n (x̄n, d(t)) + gσ(t)

n (x̄n) uσ(t), (6.97)

where all functions are smooth with fi,k(0, d(t)) = 0 for all d(t) ∈ Ω and 0 < g <

gi,k(x̄i ) ≤ ḡ, g, ḡ are positive constants, respectively, i = 1, 2, . . . , n,∀k ∈ Im .



156 6 Output Tracking Control of Constrained Switched Nonlinear Systems

The robust state-constrained stabilization problem: For system (6.97) under arbi-
trary switching, design state feedback controllers for all subsystems to ensure that:

(1) System (6.97) is asymptotically stabilizable.
(2) The state x1 is within a pre-specified limit range; i.e.,

− L ≤ x1 ≤ L (6.98)

for all t ≥ t0 ≥ 0, where L and L are strictly positive constants.
(3) All signals of the closed-loop system (6.97) are bounded.
In addition, it is assumed that the following conditions hold.

Assumption 6.7 For i = 1, 2, . . . , n,

∣
∣ f ki (x̄i , d(t))

∣
∣ ≤ (|x1|+|x2|+ · · · +|xi |)μk

i (x̄i ) ,∀k ∈ Im, (6.99)

where μk
i (x̄i ) are a set of known non-negative smooth functions.

Assumption 6.8 The p-times differentiable unbounded function in Definition 6.2
satisfies

Ψ (x, a, b) = x[1 + χ(x)], (6.100)

where χ(x) is a non-negative smooth function.

Similar to Theorem 6.3, we apply a coordinate transformation:

z1 = Ψ (x1, a, b), (6.101)

where Ψ (x1, a, b) is a p-times differentiable unbounded function with p ≥ n − 1.
Differentiating both sides of (6.101) in conjunction with system (6.97), one can

rewrite them in the form:

ż1 = Ψ ′(x1, a, b)( f σ(t)
1 (x1, d(t)) + gσ(t)

1 (x1) x2),

ẋi = f σ(t)
i (x̄i , d(t)) + gσ(t)

i (x̄i )xi+1, i = 2, 3, . . . , n − 1,

ẋn = f σ(t)
n (x̄n, d(t)) + gσ(t)

n (x̄n)uσ(t), (6.102)

Step 1.Choose V1(z1) = 1
2 z

2
1 and let z2 = x2 − φ1(z1),whereφ1(z1) is the com-

mon stabilizing function to be designed.
The derivative of V1(z1) is given by

V̇1 (z1) = Ψ ′(x1, a, b)z1[ f k1 (x1, d(t)) + gk1 (x1) (z2 + φ1(z1))]
= Ψ ′(x1, a, b)z1 f

k
1 (x1, d(t))

+Ψ ′(x1d , a, b)z1g
k
1 (x1) (z2 + φ1(z1))

≤ Ψ ′(x1, a, b)|z1Φk
1 (x1)|

+Ψ ′(x1d , a, b)z1g
k
1 (x1) (z2 + φ1(z1)), (6.103)
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where Φk
1 (x1) = f k1 (x1, d(t)),∀k ∈ Im .

Under Assumptions 6.5 and 6.8, one can find that

∣
∣ f k1 (x1, d(t))

∣
∣ ≤ |x1|μk

1 (x1) ≤ |z1|μ̂k
1 (z1) ,∀k ∈ Im, (6.104)

where μ̂k
1 (z1) are a set of smooth non-negative functions.

Then, we can get that

∣
∣z1Φ

k
1 (z1)

∣
∣ ≤ z21ϕ̃

k
1 (z1) ,∀k ∈ Im . (6.105)

where ϕ̃k
1 (z1) ≥ 1,∀k ∈ Im is a smooth function.

Then, one can see that

V̇1 (z1) ≤ z21Ψ
′(x1, a, b)ϕ̃k

1 (z1)

+z1Ψ
′(x1, a, b)gk1 (x1) (z2 + φ1(z1))

≤ z21Ψ
′(x1, a, b)ϕ̃max

1 (z1)

+z1Ψ
′(x1, a, b)gk1 (x1) (z2 + φ1(z1)), (6.106)

where ϕ̃max
1 (z1) ≥ ϕ̃k

1 (z1) ≥ 1,∀k ∈ Im is a smooth function.
The common stabilizing function is designed as

φ1(z1) = z1

[

− 1

g
(ϕ̃max

1 (z1) + ((n − 2)/Ψ ′(x1, a, b) + 1)g

+n/Ψ ′(x1, a, b))

]

. (6.107)

Substituting (6.107) into (6.106), one can get that

V̇1 (z1) = z21Ψ
′(x1, a, b)ϕ̃max

1 (z1)

−z21Ψ
′(x1, a, b)

gk1 (x1)

g
ϕ̃max
1 (z1)

−z21Ψ
′(x1, a, b)

gk1 (x1)

g

n

Ψ ′(x1, a, b)

−z21Ψ
′(x1, a, b)

gk1 (x1)

g

(
(n − 2)

Ψ ′(x1, a, b)
+ 1

)

g

+Ψ ′(x1, a, b)gk1 (x1) z1z2
≤ −nz21 − (Ψ ′(x1, a, b) + n − 2)gz21

+Ψ ′(x1, a, b)gk1 (x1) z1z2, (6.108)

where the coupling term Ψ ′(x1, a, b)gk1 (x1) z1z2,∀k ∈ Im can be canceled by using
the steps below.
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Similar to the procedures in the above section, we design the individual controllers
for the subsystems as

uk(z̄n) = zn

[

− 1

gn,k
(ϕn,k (z̄n) + 1)

]

, k ∈ Im (6.109)

such that

V̇ n (z̄n) ≤ −(z21 + · · · + z2n). (6.110)

Now, we give the following result focusing on robust state-constrained stabiliza-
tion problem of system (6.97).

Theorem 6.4 Suppose that Assumptions 6.6–6.8 are satisfied; then the robust state-
constrained stabilization problem of system (6.97) under arbitrary switchings can
be solved by the controller in (6.109).

Proof The proof is similar to the one of Theorem 6.3. �

6.3.3 Simulation Results

In this section, the following example is provided to illustrate the effectiveness of
the proposed results.

Consider the switched nonlinear system:

⎧
⎨

⎩

ẋ1 = f σ(t)
1 (x1) + x2,

ẋ2 = f σ(t)
2 (x̄2) + gσ(t) (x̄2) u,

y = x1, σ (t) : [0,∞) → {1, 2},
(6.111)

where f 11 (x1) = 0, f 12 (x̄2) = 3x21 x
3
2 , f 21 (x1) = 2x1 − 0.4, f 22 (x̄2) = x1x2

(
1 + x21

)
,

g1(x̄2) = [− sin2
(
x31 + 2x2

)
, 1.4 − cos(x1x2)

]
, g2(x̄2) = [− 4x41 x

2
2 , 1.2

]
. The

objective is enable y (t) to track the desired trajectory yd = 0.2 subject to asymmetric
time-varying output constraints −(0.2 + 0.1 cos(t)) < y (t) < 0.7 + 0.1 cos (t) .

According to Assumption6.4, we choose B1 (t) = 0.1 + 0.1 cos(t) and B2 (t) =
0.3 + 0.1 cos(t). Based on (6.38), we can get an asymmetric barrier Lyapunov func-
tion:

V1 = (1 − q (z1)) log
0.09

(
0.09 − z21

) + q (z1) log
0.16

(
0.16 − z21

) . (6.112)

Defining z1 = x1 − 0.2, one can see that φ1 = (1 − q(z1))(−2z1 − z1(0.09 −
z21)) + q(z1)(−2z1 − z1(0.16 − z21)) is a dominating feedback law for the auxiliary
first-order subsystems. In that scenario
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d1
1 = (1 − q(z1))(−z21) + q(z1)(−z21),

d2
1 = (1 − q(z1))

(

−z21 − 2z21(
0.09 − z21

)

)

+ q(z1)

(

−z21 − 2z21(
0.16 − z21

)

)

.

(6.113)

Define z2 = x2 − φ1. Then, V 2 = V1 + 1
2 z

2
2 is continuously differentiable and

positive definite when−0.3 < z1(t) < 0.4. Furthermore, V 2 is a common Lyapunov
function for the two subsystems in (6.111). For k = 1, 2, let

ak = (1 − q(z1))(d
k
1 + z2

(
z1

0.09 − z21
+ f k2 (x̄2) − ∂φ1

∂x1
(x2 + f k1 (x̄1))

)

+ q(z1)(d
k
1 + z2

(
z1

0.16 − z21
+ f k2 (x̄2) − ∂φ1

∂x1

(
x2 + f k1 (x̄1)

)
)

,

bk = z2g
k (x̄2) . (6.114)

It is clear that M = {2}, F = {1}. From (6.49), we can obtain the controller:

u = [u1, u2]T (6.115)

with

u1 =
⎧
⎨

⎩

maxi∈{1,2}
{
pi,1

}
, i f z2 > 0

mini∈{1,2}
{
pi,1

}
, i f z2 < 0

z2 = 0, i f z2 = 0
(6.116)

and

u2 =
⎧
⎨

⎩

mini∈{1,2}
{
pi,2

}
, i f z2 > 0

maxi∈{1,2}
{
pi,2

}
, i f z2 < 0

z2 = 0, i f z2 = 0
(6.117)

where

pk = [
pk,1, pk,2

] =
{

−bTk
max{ak+bkbTk ,0}

bkbTk
, i f z2 �= 0,

0, i f z2 �= 0.
(6.118)

Given x1 (0) = −0.05 and x2 (0) = −2.2, Fig. 6.5 shows that asymptotic out-
put tracking performance is achieved and the output stays within the set (−0.2 −
0.1cos(t), 0.7 + 0.1cos (t))when the Lyapunov function obtained in (6.112) is used.
The switching signal for switched system (6.111) is shown in Fig. 6.6. Moreover,
given different initial values of z1, Fig. 6.7 indicates that the error z1 converges
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to 0 while remaining in the set (−0.4 − 0.1cos(t), 0.5 + 0.1cos(t)), ∀t ≥ 0. The
phase portraits of z1 and z2 are depicted in Fig. 6.8, from which we can see that
the error z1(t) does not transgress its barriers as long as its initial value satisfies
−0.3 < z1(0) < 0.4.

0 1 2 3 4 5 6 7 8
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x 1

Fig. 6.5 Output tracking for the desired signal yd = 0.2

0 1 2 3 4 5 6 7 8

1

2

Time/s

σ
(t)

Fig. 6.6 The switching signals for the switched system (6.111)
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Fig. 6.7 Tracking error z1 for various initial values satisfying −0.3 < z1(0) < 0.4
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Fig. 6.8 Phase portraits of z1, z2 for the closed-loop system (6.111)

6.3.4 Conclusions

The problems of robust output-constrained tracking control and state-constrained
stabilization for uncertain switched nonlinear systems in lower triangular form
have been respectively studied. In the proposed approach, the p-times differentiable
unbounded functions are introduced and incorporated in output tracking error trans-
formations to convert the problem of controlling the switched systems with output
tracking error constraints to a new problem of regulating the converted systems with-
out a constraint. The backstepping technique is resorted to design controllers for the
transformed systems.
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