
Chapter 5
Adaptive Control of Switched Stochastic
Nonlinear Systems

5.1 Background and Motivation

The last chapter discussed adaptive control design methods for switched nonlinear
systems with uncertainties. However, the system structures considered in the last
chapter are somewhat simple, which greatly limits the applications of the results in
practice.

It is well known that stochastic disturbance is inevitably encountered in practi-
cal systems. Therefore, control of stochastic systems with or without switching has
become an active research field and received much attention recently, see, e.g., [1–
5] and the references therein. The authors in [6] considered global stabilization for
high-order stochastic nonlinear systems with stochastic integral input-to-state sta-
bility inverse dynamics. The moment stability and sample path stability of switched
stochastic linear systems were investigated in [7]. In [8] dissipativity-based sliding
mode control for switched stochastic linear systems was adopted. Stabilization prob-
lems for stochastic nonlinear systems with Markovian switching were studied in [9].
The pth moment exponential stability and global asymptotic stability in probabil-
ity for a class of switched stochastic nonlinear retarded systems with asynchronous
switching were solved in [10].

Moreover, dead-zone characteristics are encountered in many physical compo-
nents of control systems. They are particularly common in actuators, such as hy-
draulic servovalves and electric servomotors. They also appear in biomedical sys-
tems. The system model is more realistic and reliable when the dead-zone nonlin-
earities are taken into consideration.

On the other hand, since the input-to-state stability (ISS) property was proposed
in [11], it has rapidly become an important tool to investigate the stability problem of
nonlinear systems. In view of the crucial importance of ISS, it is natural to introduce
this concept to switched nonlinear systems. In this chapter, we consider some control
problems of switched high-order nonlinear systems. Some complex dynamics such
as stochastic disturbances, uncertainties, dead-zone nonlinearities and input-to-state
stability inverse dynamics are considered in the systems under investigations. The
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considered mathematical models can provide a good description of a large number
of practical switched nonlinear systems.

Notation R denotes the n-dimensional space, Rn is the set of all nonnegative real
numbers. C i stands for a set of functions with continuous i th partial derivatives. For
a given matrix A (or vector v), AT (or vT ) denotes its transpose, and Tr{A} denotes
its trace when A is a square.K represents the set of functions:R+ → R

+, which are
continuous, strictly increasing and vanishing at zero;K∞ denotes a set of functions
that is of class K and unbounded. In addition, ‖·‖ refers to the Euclidean vector
norm. R denotes the n-dimensional space, R+ denotes the set of all nonnegative
real numbers, and R

∗ = {q ∈ R
+ : q ≥ 1 is an odd integer}. C i denotes a set

of all functions with continuous i th partial derivatives. For a given matrix A (or
vector v), AT (or vT ) denotes its transpose, and Tr{A} denotes its trace when A is a
square.K denotes the set of all functions:R+ → R

+, which are continuous, strictly
increasing and vanishing at zero;K∞ denotes a set of functions that are of classK
and unbounded. In addition, ‖·‖ refers to the Euclidean vector norm.

5.2 Adaptive Tracking Control for Switched Stochastic
Nonlinear Systems with Unknown Actuator Dead-Zone

5.2.1 Problem Formulation and Preliminaries

Consider the following switched stochastic nonlinear system in nonstrict-feedback
form.

dxi = (gi,σ (t)xi+1 + fi,σ (t)(x))dt + ψT
i,σ (t)(x)dw,

1 ≤ i ≤ n − 1,

dxn = (gn,σ (t)vσ(t) + fn,σ (t)(x))dt + ψT
n,σ (t)(x)dw,

vσ(t) = Dσ(t)(uσ(t)),

y = x1, (5.1)

where x = (x1, x2, . . . , xn)T ∈ R
n is the system state, w is an r -dimensional

independent standard Brownian motion defined on the complete probability space(
Ω,F , {Ft }t≥0 , P

)
withΩ being a sample space,F being a σ -field, {Ft }t≥0 being

a filtration, and P being a probability measure, and y is the system output; σ(t) :
[0,∞) → M = {1, 2, . . . ,m} represents the switching signal; vσ(t), uσ(t) ∈ R

are the actuator output and input. For any i = 1, 2, . . . , n and k ∈ M, fi,k(x) :
R

n → R, ψi,k : Rn → R
r are locally Lipschitz unknown nonlinear functions and

gi,k are positive known constants.
The nonsymmetric dead-zone nonlinearity is considered in the chapter, which is

defined as the form in [12]:
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vk = Dk(uk) =
⎧
⎨

⎩

mrk (uk − brk ), uk ≥ brk
0, −blk < uk < brk
mlk (uk + blk ), uk ≤ −blk

(5.2)

Here, mrk > 0 and mlk > 0 represent the right and the left slopes of the dead-zone
characteristic. brk > 0 and blk > 0 stand for the breakpoints of the input nonlinearity.

It is assumed that the nonsymmetric dead-zone nonlinearity can be reformulated
as:

vk = D
′
k(uk) + ιk, (5.3)

where D
′
k(uk) is a smooth function, ιk is the error between Dk(uk) and D

′
k(uk) with|ιk | ≤ ῑk .

Moreover, we have

vk = uk + (D
′
k(uk) − uk + ιk)

= uk + η
′
k(uk) + ιk, (5.4)

where η
′
k(uk) = D

′
k(uk) − uk is an unknown function.

The controller can be designed as

uk = uck − uφk . (5.5)

Then (5.4) can be rewritten as

vk = uck + η
′
k(uk) − uφk + ιk . (5.6)

where uφk is the compensator of dead-zone nonlinearity and uck is a main controller
of system (5.1).

Our control objective is to design a state-feedback controller such that the output
of system (5.1) can track a given time-varying signal yd(t), and the problem of the
actuator dead-zone can be solved. The following assumptions are supposed to be
true.

Assumption 5.1 The tracking target yd(t) and its time derivatives up to nth order
y(n)
d (t) are continuous and bounded; it is further assumed that |yd(t)| ≤ d.

Assumption 5.2 There exist strictly increasing smooth functions φi,k(·), ρi,k(·) :
R+ → R+ with φi,k(0) = ρi,k(0) = 0 such that for i = 1, 2, . . . , n and k ∈ M,

| fi,k(x)| ≤ φi,k(‖x‖). (5.7)
∣
∣ψi,k(x)

∣
∣ ≤ ρi,k(‖x‖). (5.8)

Remark 5.1 The increasing properties of φi,k(·), ρi,k(·) imply that if ai , bi
≥ 0, for i = 1, 2, . . . , n, then φi,k(

∑n
i=1 ai ) ≤ ∑n

i=1 φi,k(nai ), ρi,k(
∑n

i=1 bi ) ≤∑n
i=1 ρi,k(nbi ). Notice that φi,k(s), ρi,k(s) are smooth functions, and φi,k(0) =
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ρi,k(0) = 0. Therefore, there exist smooth functions hi,k(s), ηi,k(s) such that
φi,k(s) = shi,k(s), ρi,k(s) = sηi,k(s) which results in

φi,k

⎛

⎝
n∑

j=1

a j

⎞

⎠ ≤
n∑

j=1

na jhi,k(na j ). (5.9)

ρi,k

⎛

⎝
n∑

j=1

b j

⎞

⎠ ≤
n∑

j=1

nb jηi,k(nb j ). (5.10)

We use the radial basis function (RBF) neural networks to approximate any a real
function f (Z) over a compact set ΩZ ⊂ R

q . For arbitrary ε̄ > 0, there exists a
neural network WT S(Z) such that

f (Z) = WT S(Z) + ε(Z), ε(Z) ≤ ε̄, (5.11)

where Z ∈ ΩZ ⊂ Rq , W = [w1,w2, . . . ,wl ]T is the ideal constant weight vector,
and S(Z) = [s1(Z), s2(Z), . . . , sl(Z)]T is the basis function vector, with l > 1
being the number of the neural network nodes and si (Z) being chosen as Gaussian
functions; i.e., for i = 1, 2, . . . , l,

si (Z) = exp

[−(Z − μi )
T (Z − μi )

ζ 2
i

]
, (5.12)

where μi = [μi1, μi2, . . . , μiq ]T is the center vector, and ζi is the width of the
Gaussian function.

Definition 5.1 For any given V (xi , t) ∈ C 2,1 associated with system (5.1), define
the differential operator L as follows;

L V = ∂V

∂t
+ ∂V

∂xi
Fi,k + 1

2
Tr

{
ψT
i,k

∂2V

∂x2i
ψi,k

}
, (5.13)

where Fi,k = gi,k xi+1 + fi,k(x).

Definition 5.2 The trajectory {x(t), t ≥ 0} of switched stochastic system (5.1) is
said to be semi-globally uniformly ultimately bounded (SGUUB) in the pth moment,
if for some compact setΩ ∈ R

n and any initial state x0 = x(t0), there exist a constant
ε > 0, and a time constant T = T (ε, x0) such that E(|x(t)|p) < ε, for all t > t0+T .
Especially, when p = 2, it is usually called SGUUB in mean square.
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Lemma 5.1 ([13])Suppose that there exist aC2,1 function V (x, t) : Rn×R
+ → R

+,
two constants c1 > 0 and c2 > 0, classK∞ functions ᾱ1 and ᾱ2 such that

{
ᾱ1(|x |) ≤ V (x, t) ≤ ᾱ2(|x |)
L V ≤ −c1V (x, t) + c2

for all x ∈ R
n and t > t0. Then, there is an unique strong solution of system (5.1)

for each x0 ∈ R
n, that satisfies

E[V (x, t)] ≤ V (x0)e
−c1t + c2

c1
, ∀t > t0

Lemma 5.2 ([14]) For any ξ ∈ R and � > 0, the following inequality holds:

0 ≤ |ξ | − ξ tanh

(
ξ

�

)
≤ δ�, (5.14)

with δ = 0.2785.

5.2.2 Main Results

Based on the backstepping technique, a control design and stability analysis proce-
dure is presented in this section. For i = 1, 2, . . . , n − 1, define a common virtual
control function αi as

αi = 1

gi,min

[
−

(
λi + 3

4

)
zi − 1

2a2i
z3i θ̂ S

T
i Si

]
, (5.15)

where λi , ai > 0 are design parameters, gi,min = min{gi,k : k ∈ M}, zi is the
new state variable after the coordinate transformation: zi = xi − αi−1, α0 = yd .
θ̂ is an unknown constant that is specified later. Si = Si (Xi ) is the basis function

vector. Xi = [x̄ Ti ,
¯̂
θi , ȳ

(i)
d ]T with x̄i = [x1, x2, . . . , xi ]T , ¯̂

θi = [θ̂1, θ̂2, . . . , θ̂i ]T ,
ȳ(i)
d = [yd , ẏd , . . . , y(i)

d ]T . The z-system is obtained as

dzi = (gi,k xi+1 + fi,k − L αi−1)dt +
⎛

⎝ψi,k −
i−1∑

j=0

∂αi−1

∂x j
ψ j,k

⎞

⎠

T

dw, 1 ≤ i ≤ n − 1

dzn = (gn,kvk + fn,k − L αn−1)dt +
⎛

⎝ψn,k −
n−1∑

j=0

∂αn−1

∂x j
ψ j,k

⎞

⎠

T

dw, (5.16)

where the differential operator L is defined in Definition 5.1; L αi−1 is given by:
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L αi−1 = ∂αi−1

∂θ̂

˙̂
θ +

i−1∑

s=1

∂αi−1

∂xs
( fs,k + gs,k xs+1)

+
i−1∑

s=0

∂αi−1

∂y(s)
d

y(s+1)
d + 1

2

i−1∑

p,q=1

∂2αi−1

∂xp∂xq
ψT

p,kψq,k . (5.17)

Consider the following common stochastic Lyapunov function candidate

V =
n∑

i=1

1

4
z4i + 1

2r1
θ̃2 + 1

2r2
ϑ̃2, (5.18)

where r1, r2 > 0 are design parameters; θ and ϑ are specified later. θ̂ and ϑ̂ stand
for the estimations of θ and ϑ , respectively; θ̃ = θ − θ̂ , ϑ̃ = ϑ − ϑ̂ .

Lemma 5.3 From the coordinate transformations zi = xi − αi−1, i = 1, 2, . . . , n,

α0 = yd , the following results hold,

‖x‖ ≤
n∑

i=1

|zi | ϕi (zi , θ̂ ) + d, (5.19)

where ϕi (zi , θ̂ ) = 1
gi,min

[(λi + 3
4 ) + 1

2a2i
z2i θ̂ S

T
i Si ] + 1, for i = 1, 2, . . . , n − 1, and

ϕn = 1.

Proof From Assumption 5.1 and (5.15), one can get that

‖x‖ ≤
n∑

i=1

|xi |

≤
n∑

i=1

(|zi | + |αi−1|)

≤
n∑

i=1

|zi | + yd +
n−1∑

i=1

(
1

gi,min
[(λi + 3

4
) + 1

2a2i
z2i θ̂ S

T
i Si ]

)
|zi |

≤
n∑

i=1

|zi | ϕi (zi , θ̂ ) + d.

The proof of Lemma 5.3 is completed here. �

The L V can be given by



5.2 Adaptive Tracking Control for Switched Stochastic … 101

L V =
n−1∑

i=1

{

z3i

(

fi,k + gi,k xi+1 −
i−1∑

s=0

∂αi−1

∂y(s)
d

y(s+1)
d − ∂αi−1

∂θ̂

˙̂
θ

−
i−1∑

s=1

∂αi−1

∂xs
( fs,k + gs,k xs+1) − 1

2

i−1∑

p,q=1

∂2αi−1

∂xp∂xq
ψT

p,kψq,k

⎞

⎠

+ 3

2
z2i

∥∥
∥∥∥∥
ψi,k −

i−1∑

j=0

∂αi−1

∂x j
ψ j,k

∥∥
∥∥∥∥

2⎫
⎬

⎭
+ z3n

(

fn,k + gn,kvk −
n−1∑

s=0

∂αn−1

∂y(s)
d

y(s+1)
d

−
n−1∑

s=1

∂αn−1

∂xs
( fs,k + gs,k xs+1) − ∂αn−1

∂θ̂

˙̂
θ − 1

2

n−1∑

p,q=1

∂2αn−1

∂xp∂xq
ψT

p,kψq,k

⎞

⎠

− 1

r1
θ̃

˙̂
θ + 3

2
z2n

∥∥∥∥∥
∥
ψn,k −

n−1∑

j=0

∂αn−1

∂x j
ψn,k

∥∥∥∥∥
∥

2

− 1

r2
ϑ̃

˙̂
ϑ

=
n∑

i=1

{

z3i

(

fi,k −
i−1∑

s=1

∂αi−1

∂xs
fs,k −

i−1∑

s=0

∂αi−1

∂y(s)
d

y(s+1)
d −

i−1∑

s=1

∂αi−1

∂xs
gs,k xs+1

− ∂αi−1

∂θ̂

˙̂
θ − 1

2

i−1∑

p,q=1

∂2αi−1

∂xp∂xq
ψT

p,kψq,k

⎞

⎠ + 3

2
z2i

∥∥∥∥∥
∥
ψi,k −

i−1∑

j=0

∂αi−1

∂x j
ψ j,k

∥∥∥∥∥
∥

2⎫
⎬

⎭

− 1

r1
θ̃

˙̂
θ − 1

r2
ϑ̃

˙̂
ϑ +

n−1∑

i=1

z3i gi,k xi+1 + z3ngn,kvk . (5.20)

By resorting to Assumption 5.2 and Lemma 5.3, one has that

z3i ( fi,k −
i−1∑

s=1

∂αi−1

∂xs
fs,k(x))

= − z3i

i∑

s=1

∂αi−1

∂xs
fs,k(x)

≤3

4
nz4i

i∑

s=1

(
∂αi−1

∂xs

) 4
3

+
i∑

s=1

n∑

l=1

z4l φ̄
4
s,k(zl, θ̂ ) + ∣∣z3i

∣∣
i∑

s=1

∣∣∣∣
∂αi−1

∂xs

∣∣∣∣φs,k((n + 1)d),

(5.21)

where φ̄4
s,k(zl , θ̂ ) = 1

4 (n + 1)4ϕ4
l (zl , θ̂ )h4s,k((n + 1)|zl |ϕl(zl , θ̂ )), ∂α0

∂xi
= 0 and

∂αi−1

∂xi
= −1.

Then, the following inequality can be obtained,
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3

2
z2i

∥∥∥
∥∥∥
ψi,k −

i−1∑

j=0

∂αi−1

∂x j
ψ j,k

∥∥∥
∥∥∥

2

≤ 9

8
i2(n + 1)2nz4i +

n∑

l=1

z4l ρ̄
4
i,k(zl, θ̂ ) +

i−1∑

j=1

n∑

l=1

z4l ρ̄
4
j,k(zl , θ̂ )

+ 9

8
i2(n + 1)2nz4i

i−1∑

j=1

(
∂αi−1

∂x j
)4 + 9

8
i2(n + 1)2z4i l

−2
i i ρ4

i,k((n + 1)d)

+
i∑

j=1

l2i j + 9

8
i2(n + 1)2z4i

i−1∑

j=1

(
∂αi−1

∂x j
)4l−2

i j ρ4
j,k((n + 1)d), (5.22)

where li j is a positive constant, and
∂α0
∂x j

= 0 because α0 = yd , and

− 1

2
z3i

i−1∑

p,q=1

∂2αi−1

∂xp∂xq
ψT

p,kψq,k

≤ (i − 1)
i−1∑

s=1

n∑

l=1

z4l ρ̄
4
s,k(zl, θ̂ )

+ 1

8
(n + 1)2nz6i

i−1∑

s=1

i−1∑

j=1

(
∂2αi−1

∂xs∂x j

)2

+ 1

2
(n + 1)

∣∣z3i
∣∣
i−1∑

s=1

i−1∑

j=1

∣∣∣
∣
∂2αi−1

∂xs∂x j

∣∣∣
∣ ρ

2
s,k((n + 1)d), (5.23)

where ρ̄4
s,k(zl , θ̂ ) = 1

2 (n+1)4ϕ4
l (zl, θ̂ )η4

s,k((n+1)|zl |ϕl(zl , θ̂ )), s = 1, 2, . . . , i −1.
Substituting (5.21), (5.22) and (5.23) into (5.20) gives that

L V ≤
n∑

i=1

3

4
nz4i

i∑

s=1

(
∂αi−1

∂xs

) 4
3

+
n∑

i=1

i∑

s=1

n∑

l=1

z4l φ̄
4
s,k(zl, θ̂ )

+
n∑

i=1

∣∣z3i
∣∣

i∑

s=1

∣∣∣
∣
∂αi−1

∂xs

∣∣∣
∣φs,k((n + 1)d) +

n∑

i=1

i−1∑

s=1

n∑

l=1

(i − 1)z4l ρ̄
4
s,k(zl, θ̂ )

+
n∑

i=1

i−1∑

s=1

i−1∑

j=1

1

8
(n + 1)2nz6i

(
∂2αi−1

∂xs∂x j

)2

+
n∑

i=1

i−1∑

s=1

i−1∑

j=1

1

2
(n + 1)

∣∣z3i
∣∣ ρ2

s,k((n + 1)d)

∣∣∣∣
∂2αi−1

∂xs∂x j

∣∣∣∣
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+
n∑

i=1

{
9

8
i2(n + 1)2nz4i +

n∑

l=1

z4l ρ̄
4
i,k(zl, θ̂ ) +

i−1∑

j=1

n∑

l=1

z4l ρ̄
4
j,k(zl, θ̂ )

+ 9

8
i2(n + 1)2nz4i

i−1∑

j=1

(
∂αi−1

∂x j

)4

+ 9

8
i2(n + 1)2z4i l

−2
i i ρ4

i,k((n + 1)d) +
i∑

j=1

l2i j

+ 9

8
i2(n + 1)2z4i

i−1∑

j=1

(
∂αi−1

∂x j

)4

l−2
i j ρ4

j,k((n + 1)d)

⎫
⎬

⎭

+
n∑

i=1

z3i

(

−
i−1∑

s=0

∂αi−1

∂y(s)
d

y(s+1)
d − ∂αi−1

∂θ̂

˙̂
θ −

i−1∑

s=1

∂αi−1

∂xs
gs,k xs+1

)

+
n−1∑

i=1

z3i gi,k xi+1 + z3ngn,kvk − 1

r1
θ̃

˙̂
θ − 1

r2
ϑ̃

˙̂
ϑ. (5.24)

Define Ui,k as

Ui,k =
i∑

s=1

|∂αi−1

∂xs
|φs,k((n + 1)d)

+ 1

2
(n + 1)

i−1∑

s=1

i−1∑

j=1

∣∣∣∣
∂2αi−1

∂xs∂x j

∣∣∣∣ ρ
2
s,k((n + 1)d). (5.25)

By using Lemma 5.2 one has

∣∣z3i
∣∣Ui,k ≤ z3i Ui,k tanh(

z3i Ui,k

�i,k
) + δ�i,k . (5.26)

Note that
n−1∑

i=1

z3i gi,k xi+1 =
n−1∑

i=1

z3i gi,k zi+1 +
n−1∑

i=1

gi,k z
3
i αi , (5.27)

Therefore, one has

n∑

i=1

i∑

s=1

n∑

l=1

z4l φ̄
4
s,k(zl, θ̂ ) =

n∑

i=1

z4i

n∑

s=1

(n − s + 1)φ̄4
s,k(zi , θ̂ ),

n∑

i=1

(i − 1)
i−1∑

s=1

n∑

l=1

z4l ρ̄
4
s,k(zl, θ̂ ) =

n∑

i=1

z4i

n−1∑

s=1

(n − s)(i − 1)ρ̄4
s,k(zi , θ̂ ),

n∑

i=1

i∑

j=1

n∑

l=1

z4l ρ̄
4
j,k(zl, θ̂ ) =

n∑

i=1

z4i

n∑

j=1

(n − j + 1)ρ̄4
j,k(zi , θ̂ ).
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For any i = 1, 2, . . . , n and k ∈ M , define f̄i,k as

f̄i,k = 3

4
nzi

i∑

s=1

(
∂αi−1

∂xs

) 4
3

+ zi

n∑

s=1

(n − s + 1)φ̄4
s,k(zi , θ̂ )

+ zi

n−1∑

s=1

(n − s)(i − 1)ρ̄4
s,k(zi , θ̂ ) +

i−1∑

s=1

i−1∑

j=1

1

8
(n + 1)2nz3i

(
∂2αi−1

∂xs∂x j

)2

+ 9

8
i2(n + 1)2zi

i−1∑

j=1

(
∂αi−1

∂x j

)4

l−2
i j ρ4

j,k((n + 1)d)

+ zi

n∑

j=1

(n − j + 1)ρ̄4
j,k(zi , θ̂ ) + 9

8
i2(n + 1)2nzi

+ 9

8
i2(n + 1)2zi l

−2
i i ρ4

i,k((n + 1)d) + 9

8
i2(n + 1)2nzi

i−1∑

j=1

(
∂αi−1

∂x j

)4

−
i−1∑

s=0

∂αi−1

∂y(s)
d

y(s+1)
d − ∂αi−1

∂θ̂

˙̂
θ −

i−1∑

s=1

∂αi−1

∂xs
gs,k xs+1

+Ui,k tanh(
z3i Ui,k

�i,k
) + gi,k zi+1, (5.28)

with zn+1 = 0.
Substituting (5.6) and (5.26)–(5.28) into (5.24) yields that

L V ≤
n−1∑

i=1

z3i ( f̄i,k + gi,kαi ) + z3n f̄n,k + z3ngn,k(uck + η
′
k − uφk + ιk)

− 1

r1
θ̃

˙̂
θ − 1

r2
ϑ̃

˙̂
ϑ +

n∑

i=1

⎛

⎝δ�i,k +
i∑

j=1

l2i j

⎞

⎠ . (5.29)

By exploring the neural networks’ approximation capability andYoung’s inequal-
ity, one can get the following inequalities.
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z3i f̄i,k = z3i W
T
i,k Si,k + z3i εi,k

≤ 1

2a2i
z6i

∥∥Wi,k

∥∥2 STi,k Si,k + a2i
2

+ 3

4
z4n + ε̄4i,k

4
,

≤ 1

2a2i
z6i θi S

T
i Si + a2i

2
+ 3

4
z4i + ε̄4i

4
, (5.30)

z3n(η
′
k + ιk) = z3nW

T
η,k Sη,k + z3n(εη,k + ιk)

≤ 1

2a2η
z6nϑηS

T
η Sη + a2η

2
+ 3z4n + ε̄4η

4
, (5.31)

where θi,k = ∥∥Wi,k

∥∥2, ϑη,k = ∥∥Wη,k

∥∥2, θi = max{θi,k : k ∈ M}, ϑη = max{ϑη,k :
k ∈ M}, ∣∣εi,k

∣∣ ≤ ε̄i ,
∣∣εη,k + ιk

∣∣ ≤ ε̄η.
Substituting (5.30) and (5.31) into (5.29) gives

L V ≤
n−1∑

i=1

z3i

(
z3i θi
2a2i

STi Si + gi,kαi

)
+ z3n

(
z3nθn
2a2n

STn Sn + gn,kuck

)

+ z3ngn,k

(
1

2a2η
z3nθηS

T
η Sη − uφk

)

+ gn,k

(
a2η
2

+ 3

4
z4n + ε̄4η

4

)

+
n∑

i=1

(
2a2i + 3z4i + ε̄4i

4

)
− 1

r1
θ̃

˙̂
θ − 1

r2
ϑ̃

˙̂
ϑ +

n∑

i=1

⎛

⎝δ�i +
i∑

j=1

l2i j

⎞

⎠ , (5.32)

where �i := max{�i,k, k ∈ M}.
Design the virtual control function as

αi = 1

gi,min

[
−

(
λi + 3

4

)
zi − 1

2a2i
z3i θ̂ S

T
i Si

]
, (5.33)

where θ̂ = ∑n
i=1 θ̂i is the estimation of θ ; λi > 0 is a design parameter.

The actual actuator input is given as

uk = uck − uφk , (5.34)

where

uck = 1

gn,k

[
−

(
λn + 3

4

)
zn − 1

2a2n
z3n θ̂ S

T
n Sn

]
, (5.35)

uφk =
(

λη + 3

4

)
zn + gn,max

2a2ηgn,k
z3nϑ̂STη Sη, (5.36)
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λn , λη, an , aη > 0 are design parameters, gn,max = max{gn,k ,k ∈ M}, gn,min =
min{gn,k ,k ∈ M}, ϑ̂ is the estimation of ϑ .

The adaptive laws can be designed as

˙̂
θ =

n∑

i=1

r1
2a2i,min

z6i S
T
i Si − β1θ̂ , (5.37)

˙̂
ϑ = gn,maxr2

2a2η,min

z6n S
T
η Sη − β2ϑ̂ . (5.38)

Then, one can get from (5.32)–(5.38) that

L V ≤ −
n∑

i=1

λi z
4
i − ληz

4
n + gn,k

(
a2η
2

+ ε̄4η

4

)

+
n∑

i=1

(
a2i
2

+ ε̄4i

4

)
+ β1

r1
θ̃ θ̂

+ β2

r2
ϑ̃ ϑ̂ +

n∑

i=1

⎛

⎝δ�i +
i∑

j=1

l2i j

⎞

⎠ . (5.39)

It is clear that

θ̃ θ̂ = θ̃ (θ − θ̃ ) ≤ −1

2
θ̃2 + 1

2
θ2, (5.40)

ϑ̃ ϑ̂ = ϑ̃(ϑ − ϑ̃) ≤ −1

2
ϑ̃2 + 1

2
ϑ2. (5.41)

Combining (5.39) with (5.40) and (5.41) yields that

L V ≤ −
n∑

i=1

λi z
4
i − β1

2r1
θ̃2 − β2

2r2
ϑ̃2 + gn,k

(
a2η
2

+ ε̄4η

4

)

+
n∑

i=1

(
a2i
2

+ ε̄4i

4

)

+
n∑

i=1

⎛

⎝δ�i +
i∑

j=1

l2i j

⎞

⎠ + β1θ
2

2r1
+ β2ϑ

2

2r2

≤ − p0V + q0, (5.42)

where λn := λn + λη, p0 = min{4λi , β1, β2 : 1 ≤ i ≤ n}, q0 = ∑n
i=1(

a2i
2 + ε̄4i

4 ) +
∑n

i=1

(
δ�i + ∑i

j=1 l
2
i j

)
+ β1θ

2

2r1
+ β2ϑ

2

2r2
+ gn,k(

a2η
2 + ε̄4η

4 ).

By using Lemma 5.1, we have

dE[V (t)]
dt

≤ −p0E[V (t)] + q0; (5.43)

Then, the following inequality holds
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0 ≤ E[V (t)] ≤ V (0)e−p0t + q0
p0

, (5.44)

where V (0) = ∑n
j=1

z2j (0)

4 + 1
2r1

θ̃ (0)2+ 1
2r2

ϑ̃(0)2. Equation (5.44) implies that all the
signals in the closed-loop system are bounded in probability. In particular, we have

E[|zi |4] ≤ 4q0
p0

, t → ∞. (5.45)

Now, we are ready to provide our main result in the following theorem.

Theorem 5.1 Consider the closed-loop system (5.1) with unknown nonsymmetric
actuator dead-zone (5.2). Suppose that for 1 ≤ i ≤ n, k ∈ M, the packaged
unknown functions f̄i,k can be approximated by neural networks in the sense that
the approximation error εi,k are bounded. Under the state feedback controller (5.34)
and the adaptive laws (5.37), (5.38), the following statements hold,

(i) All the signals of the closed-loop z-system (5.17) are SGUUB in the fourth
moment and

P

{

lim
t→∞

n∑

i=1

E[|zi |4] ≤ 4q0
p0

}

= 1.

(ii) The output y of the closed-loop system (5.1) can be almost surely regulated
to a small neighborhood of the target signal.

Proof It is not difficult to complete the proof by using the above developments. �

5.2.3 Simulation Results

In this section, an example about the control of a ship manoeuvring system are used
to illustrate the effectiveness of the obtained results.

The shipmaneuvering systemcan be described by the followingNorrbin nonlinear
model [15].

Tσ(vs )ḣ + h + ασ(vs )h
3 = Kσ(vs )δ + φT

σ(vs )(ψ, h, δ)w,

where Tσ(vs ) is the time constant, h = ψ̇ denotes the yaw rate, ψ stands for the
heading angle, ασ(vs ) is the Norrbin coefficient, Kσ(vs ) represents the rudder gain, δ is
the rudder angle and w stands for an r -dimensional independent standard Brownian
motion, φσ(vs )(ψ, h, δ) : R

3 → R
3×r is an unknown function, and σ(vs) is the

switching signal that satisfies:

σ(vs) =
⎧
⎨

⎩

1, 0 < vs ≤ vL
2, vL < vs ≤ vM
3, vM < vs ≤ vT
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vL , vM , vT represent the value of low speed, middle speed and top speed, respec-
tively.

A simplifiedmathematicalmodel of the rudder systemcan be described as follows,

TE,σ (vs )δ̇ + δ = KE,σ (vs )δE,σ (vs ),

where TE,σ (vs ) represents the rudder time constant, δ stands for the actual rudder
angle, KE,σ (vs ) denotes the rudder control gain and δE,σ (vs ) is the rudder order.

Let x1 = ψ , x2 = h, x3 = δ, vσ(vs ) = δE,σ (vs ); we can get the following switched
nonlinear system model with actuator dead-zone to describe the dynamic behavior
of the ship with low speed, middle speed and high speed, respectively.

dx1 = x2dt,

dx2 = ( fσ(vs ) + bσ(vs )x3)dt + φT
σ(vs )dω,

dx3 =
(

− 1

TE,σ (vs )
x3 + KE,σ (t)

TE,σ (vs )
vσ(vs )

)
dt,

vσ(vs ) = D(uσ(vs ))

where fσ(vs ) = − 1
Tσ(vs )

x2 − τσ(vs )

Tσ(vs )
x32 , bσ(vs ) = Kσ(vs )

Tσ(vs )
.

The vessel data comes from a ship that has a length overall of 160.9 m. vL = 3.7
m/s, K1 = 32 s-1, T1 = 30 s, τ1 = 40 s2, TE,1 = 4 s, KE,1 = 2; vM = 7.5 m/s,
K2 = 11.4 s-1, T2 = 63.69 s, τ2 = 30 s2, TE,2 = 2.5 s, KE,2 = 1; vT = 15.3
m/s, K3 = 5.1 s-1, T3 = 80.47 s, τ3 = 25 s2, TE,3 = 1 s, KE,3 = 0.72. The initial
conditions are x1(0) = 2, x2(0) = −0.05, x3(0) = 0.03, θ̂ (0) = 10, ϑ̂(0) = 1.
We construct the basis function vectors S1, S2, S3 and Sη using 11, 15, 21 and
48 nodes, the centers μ1, μ2, μ3, μη evenly spaced on [−1.5, 4.5] × [−3, 4] ×
[−10, 8], [−5, 4] × [−30, 20] × [−0.5, 5.5], [−5.5, 8] × [−12, 25] × [−0.1, 2]
and [−10, 2]×[−60, 2]×[−0.2, 10.5], and the widths ζ1 = 1.2, ζ2 = 2.2, ζ3 = 2,
ζη = 1.8. The design parameters are a1 = a2 = a3 = aη = 10, r1 = 2, r2 = 10,
β1 = 0.5, β2 = 0.1, λ1 = λ2 = λ3 = 5, and λη = 3. The desired trajectory is
yd = 10 sin 0.08t .

According to Theorem 5.1, the adaptive laws ˙̂
θ , ˙̂

ϑ and the control laws uck , uφk

are chosen, respectively, as

˙̂
θ =

3∑

i=1

0.01z6i S
T
i Si − 0.5θ̂ ,

˙̂
ϑ = 0.036z63S

T
η Sη − 0.1ϑ̂,

uck = 1

g3,k
[−5.75z3 − 0.005z33θ̂ S

T
3 S3],

uφk = 3.75z3 + 0.00057

g3,k
z33ϑ̂STη Sη,
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where uk = uck − uφk , z1 = x1 − yd , z2 = x2 − α1, z3 = x3 − α2 and α1, α2 are
given by

α1 = −5.75z1 − 0.005z31θ̂ S
T
1 S1,

α2 = −92z2 − 0.08z32θ̂ S
T
2 S2.

In order to give the simulation results, we assume that

vk = D(uk) =
⎧
⎨

⎩

10(uk − 50), uk ≥ 50
0, −60 < uk < 50
20(uk + 60), uk ≤ −60

and φ1 = 0.5x1 sin x2x3, φ2 = 0.25x21 x2 cos x2, φ3 = 0.1x1x3. The simulation
results are shown in Figs. 5.1–5.4. Figure 5.1 depicts the responses of system output
ψ and target signal yd . Figure5.2 shows the trajectories of adaptive laws. Figure5.3
demonstrates the responses of D(uck ) (without dead-zone compensation controller)
and D(uck − uφk ) (with dead-zone compensation controller) and Fig. 5.4 illustrates
the evolution of the switching signal. From Fig. 5.1, it can be seen that the output
ψ can track the target signal yd within a small bounded error. On the other hand,
Fig. 5.3 proves that the dead-zone nonlinearity can be compensated by uφk .

5.2.4 Conclusions

The tracking control problem for a class of stochastic switched nonlinear systems
under arbitrary switchings has been investigated, where the unknown nonsymmetric
actuator dead-zone is taken into account. A state feedback controller is designed
for the systems under consideration. It is shown that the target signal can be almost
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Fig. 5.2 The responses of
adaptive laws
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surely tracked by the system output within a small bounded error, and the tracking
error is SGUUB in 4th moment.

5.3 Adaptive Neural Control for Switched Stochastic
High-Order Uncertain Nonlinear Systems with SISS
Inverse Dynamic

5.3.1 Problem Formulation and Preliminaries

Here, we consider the following stochastic switched high-order nonlinear systems
with SISS inverse dynamic,

dζ = f0,σ (t) (ζ, x1) dt + ψT
0,σ (t) (ζ, x1) dω,

dxi = (
gi,σ (t)(ζ, x)x pi

i+1 + fi,σ (t)(ζ, x)
)
dt + ψT

i,σ (t) (ζ, x) dω, i = 1, 2, . . . , n − 1,

dxn =
(
gn,σ (t)(ζ, x)u pn

σ(t) + fn,σ (t)(ζ, x)
)
dt + ψT

n,σ (t) (ζ, x) dω,

y = x1, (5.46)

where ζ ∈ R
r are immeasurable stochastic inverse dynamics; x = (x1, x2, . . . , xn)T

∈ R
n and y ∈ R are the system state and output, respectively; pi is a positive

odd integer and ω is an m-dimensional standard Wiener process defined on the
complete probability space

(
Ω,F , {Ft }t≥0 , P

)
with Ω being a sample space, F

being a σ -field, {Ft }t≥0 being a filtration, and P being a probability measure; σ(t) :
[0,+∞) → M = {1, 2, . . . ,m} is the switching signal; uk ∈ R is the control input
of the k-th subsystem; f0,k : R

r × R → R
r , ψ0,k : R

r × R → R
m×r ; For any

i = 1, 2 . . . , n and k = 1, 2, . . . ,m, fi,k : Rr × R
n → R, ψi,k : Rr × R

n → R
m

are unknown nonlinear functions assumed to be locally Lipschitz with fi,k(0) = 0,
ψi,k(0) = 0, and gi,k : Rr × R

n → R is a strictly either positive or negative known
function.

Remark 5.2 System (5.46) reduces to the well-known normal form when pi = 1,
ζ = 0 and m = 1. In the case that pi > 1, ζ = 0 and m = 1, the Jacobian
linearization of the system is neither controllable nor feedback linearizable. This
makes the control design very challenging. To solve this problem, Lin and Qian [16]
proposed a fruitful deterministic technique: adding a power integrator. Subsequently,
many excellent results are proposed based on the adding a power integrator technique,
see, e.g., [17–19] and the references therein.

Definition 5.3 For any given V (xi , t) ∈ C 2,1 associated with system (5.46), define
the differential operator L as follows,
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L V = ∂V

∂t
+ ∂V

∂xi
Fi,k + 1

2
Tr

{
ψT
i,k

∂2V

∂x2i
ψi,k

}
, (5.47)

where Fi,k = gi,σ (t)(ζ, x)x pi
i+1 + fi,σ (t)(ζ, x).

Assumption 5.3 The sign and the upper bound of function gi,k for 1 ≤ i ≤ n and
k ∈ M, are known, and without loss of generality, it is assumed that

0 < di ≤ gi,k(ζ, x) ≤ d̄i ,

where di and d̄i stand for the lower and upper bound values of gi,k(ζ, x), respectively.

Assumption 5.4 For 1 ≤ i ≤ n and k ∈ M, there exists aC 2 function V0(ζ ), which
is positive definite and proper, such thatL V0 ≤ −λ0ζ

4 + λ̄0x
p+3
1 , where λ0 and λ̄0

are positive constants.

Lemma 5.4 Let p ∈ R
∗ and x, y be real-valued functions. There exists a constant

c > 0 such that ∣∣x p − y p
∣∣ ≤ c |x − y| ∣∣(x − y)p−1 + y p−1

∣∣ .

Lemma 5.5 Suppose that there exists a C 2,1 function V (x, t) : Rn × R
+ → R

+,
two constants c1 > 0, c2 > 0, and K∞ functions c̄1, c̄2 such that

{
c̄1(|x |) ≤ V (x, t) ≤ c̄2(|x |)
L V (x, t) ≤ −c1V (x, t) + c2

for all x ∈ Rn and t > t0. Then, there is an unique strong solution for each x0 ∈ R
n

and it satisfies:

E[V (x, t)] ≤ V (x0)e
−c1t + c2

c1
, ∀t > t0.

In the following control design procedure, radial basis function (RBF) neural
networks are used to approximate a continuous real function f (X). For arbitrary
ε > 0, there exists a neural network WT S(X) such that

f (X) = WT S(X) + δ(X), δ(X) ≤ ε,

where X ∈ ΩX ⊂ R
q is the input vector with q dimension, S(X) = [s1(X), s2

(X), . . . , sl(X)]T is the basis function vector, and W = [w1,w2, . . . ,wl ]T is the
ideal constant weight vector with l > 1 being the number of the neural network
nodes, and si (X) are chosen as Gaussian functions; i.e., for i = 1, 2, . . . , l,

si (X) = exp

(
− (X − μi )

T (X − μi )

ζ 2
i

)
,

where ζi is the width of the Gaussian function, and μi = [μi1, μi2, . . . , μiq ]T is the
center vector.
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Lemma 5.6 Consider the Gaussian RBF networks. Let ρ := 1
2 mini �= j ||μi − μ j ||;

then an upper bound of ||S(X)|| is taken as

||S(X)|| ≤
∞∑

k=0

3q(k + 2)q−1e−2ρ2k2/ζ 2 := D.

It has been proven in [20] that the constant D in Lemma 5.6 is a limited value and is
independent of the variable X .

5.3.2 Main Results

In the following, the adaptive tracking control design is carried out by using a standard
backstepping procedure. Firstly, define p = maxi=1,...,n{pi }. The following lemma
is also given.

Lemma 5.7 Suppose that the Lyapunov function

V (ξ1, . . . , ξn) =
n∑

i=1

ξ
p−pi+4
i

p − pi + 4

is positive-definite and proper, satisfying

L V ≤ −
n∑

i=1

ξ
p+3
i + φ. (5.48)

Then, the following inequality holds

L V ≤ −a0V + b0,

where
a0 = min

(
φ(pi−1)/(p+3)

)
, b0 = (n + 1)φ.

Proof Let a = φ1/(p+3) and b = ξi . Then, by using Young’s inequality

a pi−1bp−pi+4 ≤ pi − 1

p + 3
a p+3 + p − pi + 4

p + 3
bp+3

≤ a p+3 + bp+3,

which implies that

− ξ
p+3
i ≤ −φ(pi−1)/(p+3)ξ

p−pi+4
i + φ. (5.49)
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Substituting (5.49) into (5.48) yields that

L V ≤ −
n∑

i=1

φ(pi−1)/(p+1)ξ
p−pi+4
i + (n + 1)φ.

The proof of Lemma 5.7 is completed here. �

Step 1: Define the variable z1 = x1. Then, consider the following Lyapunov
function candidate

V1 = ζ 4

4
+ z p−p1+4

1

p − p1 + 4
.

It follows from (5.47) and Assumption 5.4 that

L V1 = −λ0ζ
4+ λ̄0z

p+3
1 +z p−p1+3

1

(
g1,k x

p1
2 + f1,k

)+ p − p1 + 3

2

∥∥ψ1,k

∥∥2 z p−p1+2
1 ,

(5.50)
where f1,k and

∥∥ψ1,k

∥∥2 are unknown. Then, two neural networksW1,k S1 andΦ1,k P1,k
are used to approximate the unknown function f1,k and the norm

∥∥ψ1,k

∥∥ such that
for any given ε1,k > 0 and τ1,k > 0,

f1,k = WT
1,k S1,k(X1) + δ1,k(X1),

∥∥ψ1,k

∥∥2 = ΦT
1,k P1,k(X1) + δ̄1,k(X1),

where X1 := [ζ T , xT ]T ∈ Rr+n ,
∣∣δ1,k(X)

∣∣ ≤ ε1,k , δ̄1,k(X1) ≤ τ1,k .
One can get from the Young’s inequality and Lemma 5.6 that

z p−p1+3
1 f1,k

= z p−p1+3
1 (WT

1,k S1,k(X1) + δ1,k(X1))

≤ p − p1 + 3

p + 3
l

p+3
p−p1+3

1 z p+3
1

∥∥W1,k

∥∥
p+3

p−p1+3
∥∥S1,k

∥∥
p+3

p−p1+3 + p1
p + 3

l
− p+3

p1
1

+ p − p1 + 3

p + 3
η

p+3
p−p1+3

1 z p+3
1 + p1

p + 3
η

− p+3
p1

1 ε
p+3
p1

1,k

≤ l
p+3

p−p1+3

1 z p+3
1

∥
∥W1,k

∥
∥

p+3
p−p1+3

∥
∥S1,k

∥
∥

p+3
p−p1+3 + η

p+3
p−p1+3

1 z p+3
1 + l

− p+3
p1

1 + η
− p+3

p1
1 ε

p+3
p1

1,k

≤ z p+3
1

(
l

p+3
p−p1+3

1 θ1D
p+3

p−p1+3

1 + η
p+3

p−p1+3

1

)
+ b1, (5.51)

where l1, η1 > 0 are design parameters; ‖S1‖ ≤ D1; θ1 := max
{∥∥W1,k

∥∥(p+3)/(p−p1+3) : k ∈ M}; b1 = l−(p+3)/p1
1 + η

−(p+3)/p1
1 ε

(p+3)/p1
1 .

Moreover, one has that
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∥∥ψ1,k

∥∥2 z p−p1+2
1

= z p−p1+2
1

(
ΦT

1,k P1,k(X1) + δ̄1,k(X1)
)

≤ z p−p1+2
1 ΦT

1,k P1,k + z p−p1+2
1 δ̄1,k

≤ p − p1 + 2

p + 3
ξ

p+3
p−p1+2

1 z p+3
1

∥∥Φ1,k

∥∥
p+3

p−p1+2
∥∥P1,k

∥∥
p+3

p−p1+2 + p1 + 1

p + 3
ξ

− p+3
p1+1

1

+ p − p1 + 2

p + 3
m

p+3
p−p1+2

1 z p+3
1 + p1 + 1

p + 3
m

− p+3
p1+1

1 τ
p+3
p1+1

1,k

≤ z p+3
1

(
ξ

p+3
p−p1+2

1 ϕ1Q
p+3

p−p1+2

1 + m
p+3

p−p1+2

1

)
+ b̄1, (5.52)

where ξ1, m1 > 0 are design parameters; ‖P1‖ ≤ Q1; b̄1 = ξ
−(p+3)/(p1+1)
1 +

m−(p+3)/(p1+1)
1 τ

(p+3)/(p1+1)
1 ; ϕ1 = max{∥∥Φ1,k

∥∥(p+3)/(p−p1+2) : k ∈ M}.
Substituting (5.51) and (5.52) into (5.50), yields that

L V1 ≤ − λ0ζ
4 + λ̄0z

p+3
1 + g1,k z

p−p1+3
1 x p1

2 + z p+3
1

(
l

p+3
p−p1+3

1 θ1D
p+3

p−p1+3

1 + η
p+3

p−p1+3

1

)

+ z p+3
1

(
1

2
(p − p1 + 3)ξ

p+3
p−p1+2

1 ϕ1Q
p+3

p−p1+2

1 + 1

2
(p − p1 + 3)m

p+3
p−p1+2

1

)
+ b̃1,

(5.53)

where b̃1 := b1 + 0.5(p − p1 + 3)b̄1.
Then, the common virtual control function can be designed as

α1 = − z1

{
1

d1

(
λ̄1 + l

p+3
p−p1+3

1 θ̂1D
p+3

p−p1+3

1 + 1

2
(p − p1 + 3)ξ

p+3
p−p1+2

1 ϕ̂1Q
p+3

p−p1+2

1

+ η
p+3

p−p1+3

1 + 1

2
(p − p1 + 3)m

p+3
p−p1+2

1

)} 1
p1

= − z1β1, (5.54)

where θ̂1, ϕ̂1 are the estimations of θ1, ϕ1 respectively; λ̄1 > 1 + λ̄0 is a positive
design parameter; d1 is defined in Assumption 5.3.

It follows from (5.53) and (5.54) that

L V1 ≤ − λ0ζ
4 − (λ̄1 − λ̄0)z

p+3
1 + g1,k z

p−p1+3
1

(
x p1
2 − α

p1
1

)

+ l
p+3

p−p1+3

1 θ̃1D
p+3

p−p1+3

1 z p+3
1 + 0.5(p − p1 + 3)ξ

p+3
p−p1+2

1 ϕ̃1Q
p+3

p−p1+2

1 z p+3
1 + b̃1,

(5.55)

where θ̃1 = θ1 − θ̂1, ϕ̃1 = ϕ1 − ϕ̂1.

Step 2: Denote z2 = x2 − α1, and define dα1 as
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dα1 =
⎛

⎝
n∑

j=1

∂α1

∂x j

(
g j,k x

p2
j+1 + f1,k

)
+ ∂α1

∂θ̂1

˙̂
θ1 + ∂α1

∂ϕ̂1

˙̂ϕ1

⎞

⎠ dt + ∂α1

∂x1
ψT

1,kdω

= ā1dt + ∂α1

∂x1
ψT

1 dω, (5.56)

where ˙̂
θ1 and ˙̂ϕ1 will be specified later, xn+1 := u will given at final step.

Choose the Lyapunov function as

V2 = V1 + z p−p2+4
2

p − p2 + 4
.

Then, L V2 is given by

L V2 ≤ − λ0ζ
4 − (λ̄1 − λ̄0)z

p+3
1 + g1,k z

p−p1+3
1

(
x p12 − α

p1
1

)

+ l
p+3

p−p1+3

1 θ̃1D
p+3

p−p1+3

1 z p+3
1 + 0.5(p − p1 + 3)ξ

p+3
p−p1+2

1 ϕ̃1Q
p+3

p−p1+2

1 z p+3
1 + b̃1

+ z p−p2+3
2

(
g2,k x

p2
3 + f2,k − ā1

)
+ p − p2 + 3

2

∥
∥∥
∥ψ2,k − ∂α1

∂x1
ψ1,k

∥
∥∥
∥
2
z p−p2+2
2 .

(5.57)

By using Lemma 5.4 and Young’s inequality, one can obtain that

∣∣∣g1,k z
p−p1+3
1 (x p1

2 − α
p1
1 )

∣∣∣

≤ c1d̄1
∣∣
∣z p−p1+3

1

∣∣
∣ |z2|

∣∣
∣z p1−1

2 + (z1β1)
p1−1

∣∣
∣

≤ c1d̄1
p − p1 + 3

p + 3
z p+3
1 + c1d̄1

p1
p + 3

z p+3
2 + c1d̄1

p + 2

p + 3
z p+3
1

+ c1d̄1
1

p + 3
z p+3
2 β

(p1−1)(p+3)
1

≤ z p+3
1 + z p+3

2

(
1 + β

(p1−1)(p+3)
1

)

= z p+3
1 + z p+3

2 β̄1, (5.58)

where β̄1 = 1+β
(p1−1)(p+1)
1 ; c1 is chosen as 1/2d̄1; d̄1 is defined in Assumption 5.3.

Substituting (5.58) into (5.57), gives that

L V2 ≤ −λ0ζ
4 − (λ̄1 − λ̄0 − 1)z p+3

1 + z p+3
2 β̄1 + l

p+3
p−p1+3

1 θ̃1D
p+3

p−p1+3

1 z p+3
1

+ 1

2
(p − p1 + 3)ξ

p+3
p−p1+2

1 ϕ̃1Q
2p+6

p−p1+2

1 z p+3
1 + b̃1 + z p−p2+3

2

(
g2,k x

p2
3 + f̄2,k

)

+ 1

2
(p − p2 + 3) ψ̄2,k z

p−p2+2
2 , (5.59)
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where f̄2,k = f2,k − ᾱ1, ψ̄2,k :=
∥∥∥ψ2,k − ∂α1

∂x1
ψ1,k

∥∥∥
2
. Then, neural networks

WT
2,k S2,k(X2) and ΦT

2,k P2,k(X2) are used to approximate the unknown functions f̄2,k
and ψ̄2,k such that for any given ε2,k > 0 and τ2,k > 0,

f̄2,k = WT
2,k S2,k(X2) + δ2,k(X1),

ψ̄2,k = ΦT
2,k P2,k(X2) + δ̄2,k(X1),

where X2 := [ζ T , xT , θ̂1, ϕ̂1]T ∈ Rr+n+2,
∣∣δ2,k(X2)

∣∣ ≤ ε2,k , δ̄2,k(X2) ≤ τ2,k .
Similar to the procedure in (5.51), one can obtain that

z p−p2+3
2 f2,k

= z p−p2+3
2 (WT

2,k S2,k(X2) + δ2,k(X2))

≤ p − p2 + 3

p + 3
l

p+3
p−p2+3

2 z p+3
2

∥
∥W2,k

∥
∥

p+3
p−p2+3

∥
∥S2,k

∥
∥

p+3
p−p2+3 + p2

p + 3
l
− p+3

p2
2

+ p − p2 + 3

p + 3
η

p+3
p−p2+3

2 z p+3
2 + p2

p + 3
η

− p+3
p2

2 ε
p+3
p2

2,k

≤ l
p+3

p−p2+3

2 z p+3
2

∥∥W2,k

∥∥
p+3

p−p2+3
∥∥S2,k

∥∥
p+3

p−p2+3 + η
p+3

p−p2+3

2 z p+3
2 + l

− p+3
p2

2 + η
− p+3

p2
2 ε

p+3
p2

2,k

≤ z p+3
2

(
l

p+3
p−p2+3

2 θ2D
p+3

p−p2+3

2 + η
p+3

p−p2+3

2

)
+ b2, (5.60)

where l2, η2 > 0 are design parameters, θ2 := max{∥∥W2,k

∥
∥(p+3)/(p−p2+3) : k ∈ M},

b2 = l−(p+3)/p2
2 + η

−(p+3)/p2
2 ε

(p+3)/p2
2 .

Using a similar way to (5.52), one gets that

ψ̄2,k z
p−p2+2
2

= z p−p2+2
2

(
ΦT

2,k P2,k(X2) + δ̄2,k(X2)
)

≤ z p−p2+2
2 ΦT

2,k P2,k + z p−p2+2
2 δ̄2,k

≤ p − p2 + 2

p + 3
ξ

p+3
p−p2+2

2 z p+3
2

∥∥Φ2,k

∥∥
p+3

p−p2+2
∥∥P2,k

∥∥
p+3

p−p2+2 + p2 + 1

p + 3
ξ

− p+3
p2+1

2

+ p − p2 + 2

p + 3
m

p+3
p−p2+2

2 z p+3
2 + p2 + 1

p + 3
m

− p+3
p2+1

2 τ
p+3
p2+1

2,k

≤ z p+3
2

(
ξ

p+3
p−p2+2

2 ϕ2Q
p+3

p−p2+2

2 + m
p+3

p−p2+2

2

)
+ b̄2, (5.61)

where ξ2, m2 > 0 are design parameters; b̄2 = ξ
− p+3

p2+1

2 + m
− p+3

p2+1

2 τ
p+3
p2+1

2 ; ϕ2 =
max{∥∥Φ2,k

∥∥
p+3

p−p2+2 : k ∈ M}; P2(X2) and τ2(X2) represent the basis function vector
and the estimation error of ϕ2.
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Design the common virtual control function as

α2 = −z2

{
1

d2

(
β̄1 + λ2 + l

p+3
p−p2+3

2 θ̂2D
p+3

p−p2+3

2 + 1

2
(p − p2 + 3)ξ

p+3
p−p2+2

2 ϕ̂2Q
p+3

p−p2+2

2

+η
p+3

p−p2+3

2 + 1

2
(p − p2 + 3)m

p+3
p−p2+2

2

)} 1
p2

= −z2β2, (5.62)

where θ̂2, ϕ̂2 are the estimation of θ2 andϕ2 respectively;λ2 > 1 is a design parameter;
d2 is defined in Assumption 5.3.

By substituting (5.60)–(5.62) into (5.59), one has

L V2

≤ −λ0ζ
4 − (λ̄1 − λ̄0 − 1)z p+3

1 − λ2z
p+3
2 + g2,k z

p−p2+3
2 (x p2

3 − α
p2
2 )

+
2∑

j=1

(
l

p+3
p−p j+3

j θ̃ j D
p+3

p−p j+3

j z p+3
j + 0.5(p − p j + 3)ξ

p+3
p−p j+2

j ϕ̃ j Q
p+3

p−p j+2

j z p+3
j + b̃ j

)
,

where b̃ j := b j + 0.5(p − p j + 3)b̄ j , θ̃ j = θ j − θ̂ j , ϕ̃ j = ϕ j − ϕ̂ j , j = 1, 2.
Step i: Suppose at step i (3 ≤ i ≤ n − 1) that, there is a set of virtual control

functions α3, . . . , αn−1, defined by

αi = ziβi , zi = xi+1 − αi (5.63)

and assume that a set of unknown nonlinear functions f̄i,k and ψ̄i,k can be approx-
imated by neural networks WT

i,k Si,k(Xi ) and ΦT
i,k Pi,k(Xi ) for any given εi,k > 0,

τi,k > 0.

f̄i,k = WT
i,k Si,k(Xi ) + δi,k,

∣∣δi,k(Xi )
∣∣ ≤ εi,k,

ψ̄i,k = ΦT
i,k Pi,k(Xi ) + δ̄i,k,

∣∣δ̄i,k(Xi )
∣∣ ≤ τi,k,

where Xi := [ζ T , xT , θ̂1, . . . , θ̂i , ϕ̂1, . . . , ϕ̂i ]T ∈ Rr+n+2i .
A straightforward calculation gives that

L Vi

≤ −λ0ζ
4 − (λ̄1 − λ̄0 − 1)z p+3

1 −
i−1∑

j=2

(λ j − 1)z p+3
j

− λi z
p+3
i + gi,k z

p−pi+3
i (x pi

i+1 − α
pi
i )

+
i∑

j=1

(

l
p+3

p−p j+3

j θ̃ j
∥
∥S j

∥
∥

p+3
p−p j+3 z p+3

j + 0.5(p − p j + 3)ξ
p+3

p−p j+2

j ϕ̃ j
∥
∥Pj

∥
∥

p+3
p−p j+2 z p+3

j + b̃ j

)

,

(5.64)
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where θ̃ j = θ j − θ̂ j , ϕ̃ j = ϕ j − ϕ̂ j ; [θ̂ j , ϕ̂ j ] is the estimation of

[θ j , ϕ j ] : = max{∥∥Wj,k

∥∥
p+3

p−p j+3 ,
∥∥Φ j,k

∥∥
p+3

p−p j+2 : k ∈ M};
b̃ j = b j + 0.5(p − p j + 3)b̄ j ,

b j = l
−(p+3)/p j

j + η
−(p+3)/p j

j ε
(p+3)/p j

j

and b̄ j = ξ
−(p+3)/(p j+1)
j + m

−(p+3)/(p j+1)
j τ

(p+3)/(p j+1)
j .

Step n: Let zn = xn − αn−1, define dαn−1 as

dαn−1 =
⎛

⎝
n∑

j=1

∂αn−1

∂x j

(
g j,k x

p2
j+1 + f j,k

)
+

n−1∑

j=1

∂αn−1

∂θ̂ j

˙̂
θ j +

n−1∑

j=1

∂αn−1

∂ϕ̂ j

˙̂ϕ j

⎞

⎠ dt

+
n−1∑

j=1

∂αn−1

∂x j
ψT

j,kdω

= ān−1dt +
n−1∑

j=1

∂αn−1

∂x j
ψT

j,kdω.

where xn+1 := u is provided later.
We construct the Lyapunov function as

Vn = Vn−1 + z p−pn+4
n

p − pn + 4
.

By using (5.64), L Vn is given by

L Vn (5.65)

≤ −λ0ζ
4 − (λ̄1 − λ̄0 − 1)z p+3

1 −
n−2∑

j=2

(λ j − 1)z p+3
j (5.66)

− λn−1z
p+3
n−1 + gn−1,k z

p−pn+3
n−1 (x pn−1

n − α
pn−1
n−1 )

+
n−1∑

j=1

(
l

p+3
p−p j+3

j θ̃ j D
p+3

p−p j+3

j z p+3
j + 0.5(p − p j + 3)ξ

p+3
p−p j+2

j ϕ̃ j Q
p+3

p−p j+2

j z p+3
j + b̃ j

)

+ z p−pn+3
n

(
gn,ku

pn + f̄n,k
) + p − pn + 3

2
ψ̄n,k z

p−pn+2
n , (5.67)

where f̄n,k = fn,k − ᾱn−1, ψ̄n,k =
∥∥∥ψn,k − ∑n−1

i=1
∂αn−1

∂xi
ψi,k

∥∥∥
2
. Then, neural networks

WT
n,k Sn,k(Xn) andΦT

n,k Pn,k(Xn) are used to approximate unknown functions f̄n,k and
ψ̄n,k such that for any given εn,k > 0 and τn,k > 0,
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f̄n,k = WT
n,k Sn,k(Xn) + δn,k(Xn),

ψ̄n,k = ΦT
n,k Pn,k(Xn) + δ̄n,k(Xn),

where Xn := [ζ T , xT , θ̂1, . . . , θ̂n, ϕ̂1, . . . , ϕ̂n]T ∈ Rr+3n ,
∣∣δn,k(Xn)

∣∣ ≤ εn,k ,
δ̄n,k(Xn) ≤ τn,k .

Similar to (5.60) and (5.61), one has

z p−pn+3
n f̄n,k ≤ z p+3

n

(
l

p+3
p−pn+3
n θnD

p+3
p−pn+3
n + η

p+3
p−pn+3
n

)
+ bn,

z p−pn+3
n ψ̄n,k ≤ z p+3

n

(
ξ

p+3
p−pn+2
n ϕnQ

p+3
p−pn+2
n + m

p+3
p−pn+2
n

)
+ b̄n, (5.68)

where ln, ηn, ξn, mn > 0 are design parameters; θn := max{∥∥Wn,k

∥∥(p+3)/(p−pn+3) :
k ∈ M}; bn = l

− p+3
pn

n + η
− p+3

pn
n ε

p+3
pn

n , ϕn := max{∥∥Φn,k

∥∥(p+3)/(p−pn+2) : k ∈ M};
b̄n = ξ

−(p+3)/(pn+1)
n + m−(p+3)/(pn+1)

n τ
(p+3)/(pn+1)
n .

Furthermore, it is not hard to get that

∣∣∣gn−1,k z
p−pn+3
n−1 (x pn−1

n − α
pn−1
n−1 )

∣∣∣

≤ cn−1d̄n−1

∣∣
∣z p−pn−1+3

n−1

∣∣
∣ |zn|

∣∣z pn−1−1
n + (zn−1βn−1)

pn−1−1
∣∣

≤ cn−1d̄n−1
p − pn−1 + 3

p + 3
z p+3
n−1 + cn−1d̄n−1

pn−1

p + 3
z p+3
n + cn−1d̄n−1

p + 2

p + 3
z p+3
n−1

+ cn−1d̄n−1
1

p + 3
z p+3
n β

(pn−1−1)(p+3)
n−1

≤ z p+3
n−1 + z p+3

n

(
1 + β

(pn−1−1)(p+3)
n−1

)

= z p+3
n−1 + z p+3

n β̄n−1, (5.69)

where β̄n−1 = 1 + β
(pn−1−1)(p+1)
n−1 , cn−1 is chosen as 1/2d̄n−1, and d̄n−1 is defined in

Assumption 5.3.
Substituting (5.68) and (5.69) into (5.67), the following inequality can be obtained.

L Vn (5.70)

≤ −λ0ζ
4 − (λ̄1 − λ̄0 − 1)z p+3

1 −
n−1∑

j=2

(λ j − 1)z p+3
j + z p+3

n β̄n−1

+
n−1∑

j=1

(
l

p+3
p−p j+3

j θ̃ j D
p+3

p−p j+3

j z p+3
j + 0.5(p − p j + 3)ξ

p+3
p−p j+2

j ϕ̃ j Q
p+3

p−p j+2

j z p+3
j

)
+

n∑

j=1

b̃ j

+ z p+3
n

(
l

p+3
p−pn+3
n θnD

p+3
p−pn+3
n + η

p+3
p−pn+3
n + 0.5(p − pn + 3)ξ

p+3
p−pn+2
n ϕnQ

p+3
p−pn+2
n
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+ 0.5(p − pn + 3)m
p+3

p−pn+2
n

)
+ z p−pn+3

n gn,ku
pn . (5.71)

Design the controller u as

u = − zn

{
1

dn

(
λn + β̄n−1 + l

p+3
p−pn+3
n θ̂nD

p+3
p−pn+3
n + η

p+3
p−pn+3
n

+ 0.5(p − pn + 3)ξ
p+3

p−pn+2
n ϕ̂nQ

p+3
p−pn+2
n + 0.5(p − pn + 3)m

p+3
p−pn+2
n

)} 1
pn

= − znβn, (5.72)

where θ̂n is the estimation of θn; λn > 1 is a positive design parameter; dn is defined
in Assumption 5.3.

It follows from (5.71) and (5.72) that

L Vn ≤ (5.73)

− λ0ζ
4 −

n∑

j=1

(λ j − 1)z p+3
j

+
n∑

j=1

(
l

p+3
p−p j+3

j θ̃ j D
p+3

p−p j+3

j z p+3
j + 0.5(p − p j + 3)ξ

p+3
p−p j+2

j ϕ̃ j Q
p+3

p−p j+2

j z p+3
j + b̃ j

)

(5.74)

where λ1 := λ̄1 − λ̄0.
Last Step: Choose the final Lyapunov function as

V = Vn +
n∑

j=1

(
1

2r j
θ̃2
j + 1

2r̄ j
ϕ̃2
j

)
(5.75)

where r j is a positive design parameter.
L V is given by

L V ≤ (5.76)

− λ0ζ
4 −

n∑

j=1

(λ j − 1)z p+3
j −

n∑

j=1

(
1

r j
θ̃ j

˙̂
θ j + 1

r̄ j
ϕ̃ j

˙̂ϕ j

)

+
n∑

j=1

(
l

p+3
p−p j+3

j θ̃ j D
p+3

p−p j+3

j z p+3
j + 0.5(p − p j + 3)ξ

p+3
p−p j+2

j ϕ̃ j Q
p+3

p−p j+2

j z p+3
j + b̃ j

)
.

(5.77)
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The adaptive laws are defined as the solutions to the following differential equa-
tions

˙̂
θ j = r j l

p+3
p−p j+3

j D
p+3

p−p j+3

j z p+3
j − Bj θ̂ j ,

˙̂ϕ j = 1

2
(p − p j + 3)r̄ jξ

p+3
p−p j+2

j Q
p+3

p−p j+2

j z p+3
j − B̄ j ϕ̂ j , (5.78)

where j = 1, 2, . . . , n, Bj , B̄ j > 0 are design parameters.
This, together with (5.77), means that

L V ≤ −λ0ζ
4 −

n∑

j=1

(λ j − 1)z p+3
j +

n∑

j=1

Bj θ̂ j θ̃ j

r j
+

n∑

j=1

B̄ j ϕ̂ j ϕ̃ j

r̄ j
+

n∑

j=1

b̃ j . (5.79)

Notice that

θ̃ j θ̂ j = θ̃ j (θ j − θ̃ j ) ≤ −1

2
θ̃2
j + 1

2
θ2
j ,

ϕ̃ j ϕ̂ j = ϕ̃ j (ϕ j − ϕ̃ j ) ≤ −1

2
ϕ̃2
j + 1

2
ϕ2
j , (5.80)

By using (5.79), (5.80) and Lemma 5.7, one has

L V ≤ − λ0ζ
4 −

n∑

j=1

(
(λ j − 1)z p+3

j + Bj

2r j
θ̃2
j + B̄ j

2r̄ j
ϕ̃2
j

)

+
n∑

j=1

(
Bj

2r j
θ2
j + B̄ j

2r̄ j
ϕ2
j + b̃ j

)

≤ − q0V + q1,

where q0 = min{(p − pi + 4)(λ j − 1)φ(pi−1)/(p+3), Bj , B̄ j , 2λ0 : 1 ≤ j ≤ n},
φ = ∑n

j=1(
Bj

2r j
θ2
j + B̄ j

2r̄ j
ϕ2
j + b̃ j ), q1 = (λ j − 1)(n + 1)φ.

According to Lemma 5.5, we have that

E[V (x, t)] ≤ V (x0)e
−q0t + q1

q0
, ∀t ≥ 0, (5.81)

which indicates that all the signals in the closed-loop system are bounded. The design
is completed here. Next, we address our main result.

Theorem 5.2 For 1 ≤ i ≤ n, k ∈ M assume that all the unknown nonlinear
functions f̄i,k and ψ̄i,k can be approximated by neural networks in the sense that
the approximation errors are bounded, and all the initial values of θ̂i and ϕ̂i satisfy
θ̂i (0) ≥ 0 and ϕ̂i (0) ≥ 0, respectively. Then, under the state feedback controller
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(5.72) and the adaptive laws (5.78), the equilibrium at the origin of the closed-loop
system is boundedly stable in probability and

P

{

lim
t→∞

(
|ζ |4
4

+
n∑

i=1

|zi |p−pi+4

p − pi + 4

)

≤ q1
q0

}

= 1.

Proof It is not difficult to complete the proof by the above discussions, and thus we
omit the proof here.

In the following, a corollary is given by using only two adaptive laws.

Corollary 5.1 For 1 ≤ i ≤ n, k ∈ M assume that all the unknown nonlinear
functions f̄i,k and ψ̄i,k can be approximated by neural networks in the sense that
the approximation errors are bounded, and all the initial values of θ̂i and ϕ̂i satisfy
θ̂i (0) ≥ 0and ϕ̂i (0) ≥ 0, respectively.Consider the following controller andadaptive
laws:

u = − zn

{
1

dn

(
λn + β̄n−1 + l

p+3
p−pn+3
n θ̂D

p+3
p−pn+3
n + η

p+3
p−pn+3
n

+ 1

2
(p − pn + 3)ξ

p+3
p−pn+2
n ϕ̂Q

p+3
p−pn+2
n + 0.5(p − pn + 3)m

p+3
p−pn+2
n

)} 1
pn

,

˙̂
θ =

n∑

j=1

rl
p+3

p−p j+3

j D
p+3

p−p j+3

j z p+3
j − Bθ̂ ,

˙̂ϕ =1

2

n∑

j=1

(p − p j + 3)r̄ξ
p+3

p−p j+2

j Q
p+3

p−p j+2

j z p+3
j − B̄ϕ̂,

where λn > 1, l j , ξ j , mn, ηn, r , B , r̄ , B̄ > 0 are positive design parameters,
θ̂ = ∑n

j=1 θ̂ j , ϕ̂ = ∑n
j=1 ϕ̂ j . Then, the equilibrium at the origin of the closed-loop

system is boundedly stable in probability and

P

{

lim
t→∞

(
|ζ |4
4

+
n∑

i=1

|zi |p−pi+4

p − pi + 4

)

≤ q1
q0

}

= 1.

Proof It should be pointed out that θ̂ ≥ θ̂ j ≥ 0, ϕ̂ ≥ ϕ̂ j ≥ 0, j = 1, . . . , n.
Therefore, we can use θ̂ and ϕ̂ instead of θ̂ j and ϕ̂ j in (5.54), (5.62), (5.63) and (5.72).
In (5.75), the parameters θ̃ j and ϕ̃ j in Lyapunov function V should be rewritten as θ̃

and ϕ̃. The detailed proof is omitted here because it is similar to the one of Theorem
5.2. �
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5.3.3 Simulation Results

An example with two controllers (multiple adaptive laws and two adaptive laws
respectively) is presented in the following to demonstrate the effectiveness of our
main results.

Consider the following switched stochastic high-order nonlinear systems with
SISS inverse dynamics:

∑

1
=

⎧
⎪⎨

⎪⎩

dζ = f0,1 (ζ, x1) dt + ψT
0,1 (ζ, x1) dω,

dx1 = [
g1,1(ζ, x1, x2)x

p1
2 + f1,1(ζ, x1, x2)

]
dt + ψT

1,1 (ζ, x1, x2) dω,

dx2 = [
g2,1(ζ, x1, x2)u p2 + f2,1(ζ, x1, x2)

]
dt + ψT

2,1 (ζ, x1, x2) dω,

∑

2
=

⎧
⎪⎨

⎪⎩

dζ = f0,2 (ζ, x1) dt + ψT
0,2 (ζ, x1) dω,

dx1 = [
g1,2(ζ, x1, x2)x

p1
2 + f1,2(ζ, x1, x2)

]
dt + ψT

1,2 (ζ, x1, x2) dω,

dx2 = [
g2,2(ζ, x1, x2)u p2 + f2,2(ζ, x1, x2)

]
dt + ψT

2,2 (ζ, x1, x2) dω,

where g1,1, f1,1, ψ1,1, g2,1, f2,1, ψ2,1, g1,2, f1,2, ψ1,2, g2,2, f2,2, and ψ2,2 are all
completely unknown functions; p1 = 3, p2 = 5. First, a controller under multiple
adaptive laws is designed by Theorem 5.2. The initial conditions are ζ(0) = 1
x1(0) = 0.5, x2(0) = −0.5 and θ̂1(0) = 2, θ̂2(0) = 3.5, ϕ̂1(0) = 3, ϕ̂2(0) = 4. The
controller parameters are chosen as: λ1 = λ2 = 5, l2 = l2 = η1 = η2 = ξ1 = ξ2 =
m1 = m2 = 4, r1 = r2 = r̄1 = r̄2 = 1, B1 = B2 = B̄1 = B̄2 = 0.1. We apply
three nodes for each input dimension ofWT

1 S1,WT
2 S2, ΦT

1 P1 and ΦT
2 P2. Therefore,

each of them contains 81 nodes with centers spaced evenly in the interval [−0.5,
0.5] × [−0.5, 0.5] × [−0.5,0.5] × [−0.5,0.5], and the widths still being equal to
2.5. Second, a controller under two adaptive laws is designed by Corollary 5.1 with
same conditions except θ̂ (0) = 3, ϕ̂(0) = 4, r = 1, B = 0.1.

In order to give the simulation results, it is assumed that f0,1 = −15ζ + 0.1x21 ,

ψ0,1 = (
ζ 2 + 0.3x41

)1/2
, g1,1 = sin(x1x2+ζ )+2, f1,1 = x1x2+ζ ,ψ1,1 = sin(x1x2+

ζ ), g2,1 = cos(x1 + x22 + ζ ) + 2, f2,1 = x1x22 + ζ sin ζ , ψ2,1 = x1 cos x2 + ζ 2;

Fig. 5.5 Responses of
system states by using
multiple adaptive laws
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Fig. 5.6 Responses of the
multiple adaptive laws
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Fig. 5.7 Response of
switching signal
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Fig. 5.8 Responses of
system states by using two
adaptive laws
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f0,2 = −13ζ + 0.3x21 , ψ0,2 = (
0.17ζ 2 + 0.13x41

)1/2
, g1,2 = sin(x21 + x2 + ζ ) + 2,

f1,2 = x21 x2 + ζ 2, ψ1,2 = sin(x1 + x2) + ζ 3, g2,2 = cos(x1x22 + ζ ) + 2, f2,2 =
x1x2 + ζ cos ζ , ψ2,2 = x1 sin(x1x2) + ζ 2.

The simulation results based on Theorem 5.2 are shown in Figs. 5.5, 5.6 and 5.7,
respectively. Figure5.5 depicts the responses of system states. The trajectories of
adaptive laws are shown in Figs. 5.6, and 5.7 describes the switching signal. From
Fig. 5.5, it can be seen that all the system states eventually converge to a small neigh-
borhood of the origin. The simulation results based on Corollary 5.1 are shown in
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Fig. 5.9 Responses of two
adaptive laws
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Fig. 5.10 Response of
switching signal
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Figs. 5.8, 5.9 and 5.10, respectively. It can be seen that all the system states eventually
converge to a small neighborhood of the origin by using only two adaptive laws.

5.3.4 Conclusions

The adaptive neural control for a class of stochastic high-order switched nonlinear
systems with SISS inverse dynamic is studied. An adaptive neural control algorithm
is proposed. It can be shown that the equilibrium at the origin of the closed-loop
system is BIBO stable in probability.
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