Chapter 5
Adaptive Control of Switched Stochastic
Nonlinear Systems

5.1 Background and Motivation

The last chapter discussed adaptive control design methods for switched nonlinear
systems with uncertainties. However, the system structures considered in the last
chapter are somewhat simple, which greatly limits the applications of the results in
practice.

It is well known that stochastic disturbance is inevitably encountered in practi-
cal systems. Therefore, control of stochastic systems with or without switching has
become an active research field and received much attention recently, see, e.g., [1—
5] and the references therein. The authors in [6] considered global stabilization for
high-order stochastic nonlinear systems with stochastic integral input-to-state sta-
bility inverse dynamics. The moment stability and sample path stability of switched
stochastic linear systems were investigated in [7]. In [8] dissipativity-based sliding
mode control for switched stochastic linear systems was adopted. Stabilization prob-
lems for stochastic nonlinear systems with Markovian switching were studied in [9].
The p'" moment exponential stability and global asymptotic stability in probabil-
ity for a class of switched stochastic nonlinear retarded systems with asynchronous
switching were solved in [10].

Moreover, dead-zone characteristics are encountered in many physical compo-
nents of control systems. They are particularly common in actuators, such as hy-
draulic servovalves and electric servomotors. They also appear in biomedical sys-
tems. The system model is more realistic and reliable when the dead-zone nonlin-
earities are taken into consideration.

On the other hand, since the input-to-state stability (ISS) property was proposed
in [11], it has rapidly become an important tool to investigate the stability problem of
nonlinear systems. In view of the crucial importance of ISS, it is natural to introduce
this concept to switched nonlinear systems. In this chapter, we consider some control
problems of switched high-order nonlinear systems. Some complex dynamics such
as stochastic disturbances, uncertainties, dead-zone nonlinearities and input-to-state
stability inverse dynamics are considered in the systems under investigations. The
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96 5 Adaptive Control of Switched Stochastic Nonlinear Systems

considered mathematical models can provide a good description of a large number
of practical switched nonlinear systems.

Notation R denotes the n-dimensional space, R" is the set of all nonnegative real
numbers. 6" stands for a set of functions with continuous i" partial derivatives. For
a given matrix A (or vector v), AT (or v7') denotes its transpose, and Tr{A} denotes
its trace when A is a square. .7 represents the set of functions: Rt — R, which are
continuous, strictly increasing and vanishing at zero; %5, denotes a set of functions
that is of class .# and unbounded. In addition, ||-|| refers to the Euclidean vector
norm. R denotes the n-dimensional space, R denotes the set of all nonnegative
real numbers, and R* = {g € Rt : ¢ > 1 is an odd integer}. %" denotes a set
of all functions with continuous i" partial derivatives. For a given matrix A (or
vector v), AT (or v7) denotes its transpose, and Tr{A} denotes its trace when A is a
square. # denotes the set of all functions: Rt — R, which are continuous, strictly
increasing and vanishing at zero; %5, denotes a set of functions that are of class %2
and unbounded. In addition, |-|| refers to the Euclidean vector norm.

5.2 Adaptive Tracking Control for Switched Stochastic
Nonlinear Systems with Unknown Actuator Dead-Zone

5.2.1 Problem Formulation and Preliminaries

Consider the following switched stochastic nonlinear system in nonstrict-feedback
form.

dxi = QiowXit1 + frow )t + ¥/ ()dw,
1<i<n-—1,
dx, = (8nom)Vow) + fuomx))dt + Iﬁlg(;)(x)dW,
Vo(t) = Do) (s (),
y =Xy, (5.1)

where x = (x1, x2,...,x,)7 € R* is the system state, w is an r-dimensional
independent standard Brownian motion defined on the complete probability space
(82, F.{F};=0 . P) with £2 being a sample space, .7 being a o -field, {.%} - being
a filtration, and P being a probability measure, and y is the system output; o (¢) :
[0,00) = M = {1,2,...,m} represents the switching signal; vy, Usr) € R
are the actuator output and input. Forany i = 1,2,...,nand k € M, fix(x) :
R" — R, ¥ : R" — R" are locally Lipschitz unknown nonlinear functions and
gi k are positive known constants.

The nonsymmetric dead-zone nonlinearity is considered in the chapter, which is
defined as the form in [12]:
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my, (uk - brk)s Ug = brk
Vi = Dk(uk) = 0, _blk < Up < brk (52)
my (ug + by), ux < —by,

Here, m,, > 0 and m;, > O represent the right and the left slopes of the dead-zone
characteristic. b,, > 0and b;, > 0 stand for the breakpoints of the input nonlinearity.
It is assumed that the nonsymmetric dead-zone nonlinearity can be reformulated

as:
v = D () + . (5.3)

where D,’( (uy) is a smooth function, t is the error between D, (i) and D,; (uy) with
ltel < 4.
Moreover, we have

vi = ug + (D, (g) — ug + )
= u + () + u, (5.4)

where n;{(uk) = D,;(uk) — uy, is an unknown function.
The controller can be designed as

Up = U, — Ug,. (5.5)
Then (5.4) can be rewritten as
Vi = U, + n}((uk) — Ug, + . (5.6)

where ug, is the compensator of dead-zone nonlinearity and u,, is a main controller
of system (5.1).

Our control objective is to design a state-feedback controller such that the output
of system (5.1) can track a given time-varying signal y,(¢), and the problem of the
actuator dead-zone can be solved. The following assumptions are supposed to be
true.

Assumption 5.1 The tracking target y,(¢) and its time derivatives up to n’* order
yl(in) (t) are continuous and bounded; it is further assumed that |y, (¢)| < d.

Assumption 5.2 There exist strictly increasing smooth functions ¢; (), p;ix(-) :
R*™ — R with ¢, 4 (0) = p; x(0) = O such thatfori =1,2,...,nand k € M,

| fix )] < ix(lx]D). (5.7)
Vi k()] < prrCllxl). (5.8)

Remark 5.1 The increasing properties of ¢;x(-), pix(-) imply that if a;,b;

> 0,fori = 1,2,...,n, then ¢, >/ a;) < D_, dix(nay), pix(Ci_; bi)
Z?:l pik(nb;). Notice that ¢; ;(s), p;x(s) are smooth functions, and ¢; ;(0)

1A
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pix(0) = 0. Therefore, there exist smooth functions h;(s), n;x(s) such that
Gik(s) = sh; 1 (s), pirx(s) = sn;x(s) which results in

Dik Zaj SZnajhi,k(naj). (5.9)
j=1 j=1

pis | D b | <D nbiniinb)). (5.10)
j=1 j=1

We use the radial basis function (RBF) neural networks to approximate any a real
function f(Z) over a compact set £2; C RY. For arbitrary ¢ > 0, there exists a
neural network W7 S(Z) such that

f(Z) =WT'S(Z) +e(2), e(Z) <&, (5.11)

where Z € 2, C RY, W = [wy, wa, ..., w;]T is the ideal constant weight vector,
and S(Z) = [s1(2), 52(Z),... ,s:(Z)]T is the basis function vector, with [ > 1
being the number of the neural network nodes and s;(Z) being chosen as Gaussian
functions; i.e., fori =1,2,...,1,

—(Z —u)"(Z — i)
5i(Z) = exp [ 2 “, (5.12)
where w; = [, mi2y .-, Miq]T is the center vector, and ¢; is the width of the

Gaussian function.

Definition 5.1 For any given V (x;, 1) € ¢! associated with system (5.1), define
the differential operator . as follows;

v v 1 a4
= : (5.13)

LYV = —+ —Fu+ =Triv,,—5¥
3  ox, v Vi axfl//”‘

where F; i = gixXit1 + fix(x).

Definition 5.2 The trajectory {x(¢),# > 0} of switched stochastic system (5.1) is
said to be semi-globally uniformly ultimately bounded (SGUUB) in the p'" moment,
if for some compact set £2 € R” and any initial state xo = x (), there exist a constant
& > 0,and atime constant T = T (e, xo) such that E(|x(¢)|?) < &, forallt > 1o+ T.
Especially, when p = 2, it is usually called SGUUB in mean square.
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Lemma 5.1 ([13]) Suppose that there exista Cz’lfunction Vix,t): R* xRt — RT,
two constants ¢y > 0 and ¢; > 0, class Ky, functions &, and &, such that

ai(lx]) < Vx,t) <ax(x])
LV < —c1V(x,t)+c

forall x € R" and t > ty. Then, there is an unique strong solution of system (5.1)
or each xo € R", that satisfies
h R", that sat

E[V(x. D] < Ve + 2.V > 1,

€1

Lemma 5.2 ([14]) For any & € R and w > 0, the following inequality holds:

0 < |£] — £ tanh (i) < sw, (5.14)
w

with § = 0.2785.

5.2.2 Main Results

Based on the backstepping technique, a control design and stability analysis proce-
dure is presented in this section. Fori = 1,2, ...,n — 1, define a common virtual
control function ¢; as

! [ (,\ +3) ! 3ésTS} (5.15)
o = — i = VZ2i — —=7%; i Qi .
&i,min 4 211,'2 o

where A;, a¢; > 0 are design parameters, g;min = min{g;x : k € M}, z; is the
new state variable after the coordinate transformation: z; = x; — o;—1, %9 = Yg.
6 is an unknown constant that is specified later. S; = S;(X i) is the basis function
vector. X; = [, 6, 317 with & = [x, x2, ..., 517, 6 = [61,6s,...,6,]",
3 = [ya, Ya, - -, v"17. The z-system is obtained as

i—1 .

T
00{,'71 .
dzi = (gikXi+1 + fik — Lai—)dt + | Yix — Z Yik| dw, 1<i<n-—1

dax
j=0 =

T
n—1
oy, —
dzn = (gnkvk + fuk — Lan—1)dt + (%,k - Z Il 1/fj,k> dw, (5.16)

0x;
j=0

where the differential operator .Z is defined in Definition 5.1; Zw;_; is given by:
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0
D‘ZO{,]— (;llg Z

i—1
aal 1 (H—l) 1 82(11',1 T
+Z (s) Z ax,0%, Vi Va.k- (5.17)
P

1 1 - 1 .
V=) -4+ —0>+_—v2 5.18
235 50 G189

where ry, r, > 0 are design parameters; ¢ and ¥ are specified later. 6 and 9 stand
for the estimations of 6 and ¥, respectively; 6 = 6 — 6,9 =0 — 0.

Lemma 5.3 From the coordinate transformations z; = x; —o;—1, i = 1,2, ..., n,
oy = Y4, the following results hold,

Il < D 1zl @iz, 0) + d. (5.19)

i=l1

where ¢;(2i,0) = Z=[(hi + ) + 522708 S+ 1, fori = 1,2,....,n — 1, and
on = L.

Proof From Assumption 5.1 and (5.15), one can get that
bl < > Ixi]
i=I
< Z(|zi| +lei1)

§Z|z,|+yd+2(

sZ|z,-|<p,-(z,~,é>+d.

i=1

(i +2) + —— 265781 1241
P T g2t )

l min

The proof of Lemma 5.3 is completed here. |

The £V can be given by
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n—1 i—1
oo 1 daj_1 A
LV = E [Zl3 (f,k + gikXit1 — E Wy[(f+ ) —F0
i=1 s=0 d

a6

i—1

i—1
oy 1 oy
- § 9%, (fs,k +gs,kxs+1) - 5 E w;kwq,k
s=1

Py 0x,0x,

. 2
i—1 n—1

3, oy N 01 (541
+ 2Zl %,k ]Z:(; 8Xj wj,k +Zn fn,k‘i‘gn,kvk g{; ayg(;) Ya

n—1

305,, 1 80[,, 1A 1 « 8201,,,1
—Z — (o oton) = —5=0 = 5 3 S Vs
30 2~ g

n i—1 9o i—1 Jar i—1 9o
i—1 i—1 1 i—1
= ' {Z? (flk - z 3;5 Sfsx — Z ay’(x) yc(ls+ ) z a;x 85, kXs+1

i=1 s=1 s=0 d s=1
i1 2
aOli_l A 1 < d oi—1 1 3 2 aC(l 1
- ——6—= Y Wak | + 52 ||k — Z Vi
90 2 st 9x,0x4 2 =
n—1
~ L0 LB+ 3 i + 2l (5.20)

r I el

By resorting to Assumption 5.2 and Lemma 5.3, one has that

i—1

5 (fir — z 32&—1
s=1 S
_Z3Z
da;
_4nz42( gxsl) +ZZZI¢Y1((ZI,9)+|Z

s=1 I=1

k(X))

1d),

(5.21)

where ¢!, (z1. 0) = L + Do} O + Dlzilei(a, 6), % = 0 and
daj_y =1

[Then, the following inequality can be obtained,
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2

wtk_zaal llﬂjk

Jj=0

i—1 n

< —12(n + 1)?nz! + ZZZ oz, 6) + ZZZZp, (@1, 0)

j=1i=1

9 2L o 9
+ 2i%n+ 1)’ Z(%)“ + 2120+ D Pl (1 4+ D)

X
j=1 /

i i—1
9 . 80[,',
+ § I+ §l2(n + 1%z} z (le)“zi, Pt ((n+ D), (5.22)
j=1 j=1

where /;; is a positive constant, and a"‘” = 0 because oy = y,4, and

1, < %
T ol 9x,0x, VoaVak
i—1 n
<G=1D > 768 0)
s=1 I=1
i—1 i—1
3206 1
1 2 6 !
S »Y )
s=1 j=1
i—1 i—1 820[
+ (n+1>yz3yzz S| pli((n + D), (5.23)
s=1 j=1

where 5 (21, 0) = 3(n+ Do}, O)f (0 + Dlzilon(z, 6)),s = 1,2, .., i— 1.
Substituting (5.21), (5.22) and (5.23) into (5.20) gives that

$V<Z—nz42(aal ]) —G—ZZZZ[ Yk(z;,@)

i=1 s=1 [=1
+Z|z3|z ¢Yk((n+1>d>+222(l—Dz,psk(zl,e)
n i—1 i—1 2
i—1
#3033 s et (£

i=1 s=1 I=1
i=1 s=1 j=1

30[, 1

n i—1i-1

+ZZZ (n+ D) |2}| p2((n + l)d)‘

i=1 s=1 j=1
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+ Z {—zz(n + Dz + Zzl 0; bz, 0) + ZZZI Pix(s 6)

j=1I=1
2P0+ 1 2 1) 9200+ 122+ D) + iz%
8 i —~ axj 8 i Mik = ij
i—1
92 2 4 91\ 2
- 1)z z d
+s’(”+”'§1 v, Pt ((n + Dd)
n i—1 i—1
oa;_ (s+1) daj_1 A oa;
+ ZZ? (_Z 5 Vd 0 — Z 8s.kXs+1
i=1 s=0 ayt(i) 80 s=1 ax&
n—1
1 ~x 1~z
+ 22 gk + ggnavi — —00 — 9. (5.24)
i=1 2
Define U, ; as
U i|a°”‘1 b4 (1 + 1))
ik = 5 n
Jk — 8)6‘ k
i—1 i—1 8 "
+ = (n+l)z il ,ovk((n+1)d). (5.25)
s=1 j=1
By using Lemma 5.2 one has
]z]Uk<zUktanh(’ Yiky | s (5.26)
Wi k

Note that

n—1

n—1
Zz?gi,kxi+1 ZZ 8ikZit1 + Zgz K20 (5.27)
i=1

Therefore, one has

ZZZZZ Ak(Zz,@)—ZZ Z('l S+1)¢Ak(Z,,9)

i=1 s=1 [=1

Z(z —1) ZZZZ Pz, 0) = Z ;‘im — )i — Dpt (i 0),

s=1 [=1 i=1 s=1

Z Z Zz?ﬁj{k(z/, 9) = Zz? Z(n —j+ DAL ).
i=1  j=I

i=1 j=I I=1
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For any i = 1,2,...,nandkeM,deﬁnefi,k as

ftk — 3nZz Z (%) +Zz Z(n -85+ 1)¢vk(zl’9)

s=1

n—1 i—1 i—1 2
_ 0%
2 D =) = DA )+ 2> 0 L+ ng] (8 axi)
s=1 s=1 j=1

i—1

+ giz(n + 1% Y (80""1) 17203 ((n + D)

0x;
j=1 J

n . 9
i —Jj+Dpt (i, 0) + =i 1)*nz;
+z ;(n J+ Do (i 0) + 5 (n+ 1)nz
i—1

9. _ 9. doi1\*
+ glz(n + D2zl (0 + Dd) + glz(n +1)%nz Y ( )

0x;
j=1 J

i—1
80[1 1 (S+1) 80[1 1/\ Ba, 1
- Z 3y PRORC! 20 Z 8s.kXst1

Uik
+ U, x tanh( - =) + i kZi+1s (5.28)
ik

with Int+l1 = 0.
Substituting (5.6) and (5.26)—(5.28) into (5.24) yields that

n—1
LV <D 7 (fik + giki) + 2o fuk + 8kl + 1y — g, + 1)
i=l
99 + D | smiw+ D1 | - (5.29)
i=1 j=1

By exploring the neural networks’ approximation capability and Young’s inequal-
ity, one can get the following inequalities.
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37 3y T 3
Z; fi,k =Z; Wi,kSi-k + Z;€ik

1 6 2 T a'2 3 4 él4k
< — 8| Wik |* ST Sis + == + 2zt K
— zaizzt || k || i,kik + 2 + 4Zn + 4
6 T 3 -4
< —z60;S Si+—+ - — 5.30
< 55265, + 2 5 +4 o T (5.30)

Zi(n;{-i-tk):z W kS k+Z (8nk+tk)
1 a’ 3zn+§4
<—ZG1.9 STS + 14 =1

, 531
= 242" 2 4 ©31)

where 6; ; = || Wi k 2, Py = || Wik H2 0; = max{0;; : k € M}, ¥, = max{v, :
K <€ Enk T l| = é’l'
Substituting (5.30) and (5.31) into (5.29) gives

3

On
LV < Z ( STS + g ka,) +z,31 (ZZ" > STS +g,1,kuck)

1 a; 3., &
+Z3gnk _ZQS S +gnk _71+ Z + —
n8k\ 2a2 W5 tgaty

(202434 EY 1ax 1 ii .
Ly (MR ) — b+ > (s D8 ) 5.3
i=1 i=1 j

where @; := max{w;, k € M}.
Design the virtual control function as

1 3 1 54
= A+ )z — —268Ts; |, 5.33
* &i,min |: ( * 4) ‘ 2‘112 K ' :| ( )

where 6 = > 6; is the estimation of 6; A; > O is a design parameter.
The actual actuator input is given as

Up = Ue, — Ug,, (5.34)
where
_ ! o 2 L 6s7s (5.35)
o = 8n.k "4 i 2a 2 n O On | ’
= (5, 42 2 Sm 357 (5.36)
u¢k - n 4 Zn 2a2g Zn n 2N .
n&nk
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106
Ans Ay, Gn, a; > 0 are design parameters, g, max = max{g, .k € M}, gy min =

min{g, .k € M}, B is the estimation of .
The adaptive laws can be designed as

n
A r 6 T A
0= 6ST'S, — B0, 5.37
izll 2ai2min N /31 ( )
5= 8 ‘;“"” 5878, — Bod. (5.38)
a
n,min
Then, one can get from (5.32)—(5.38) that
" 2 g " ra? & Bi ~
V<—>xn A . ! 7 <4 206
& ; z nZ+gk(2+4 +;(2+4)+r1
2 ~ A
+ =90 + Swi + > 12 (5.39)
L2 Z
It is clear that
U . 1o 1,
99:9@—0)§—§9+§9, (5.40)
U N 1-, 1
0&:0@9—&)5—§ﬂ?+—ﬁ? (5.41)

Combining (5.39) with (5.40) and (5.41) yields that
2 4 n -4

L5 B2 <> 4 & ai | &

— " — - 4+ L

+g k( + )25+

Bz
LV <— > Az
Z 2r1 Zr 2 P
/319 /32192
Sw; 12
+Z i +Z 5t o
=—poV + qo. (5:42)
where A, := A, + Ay, po = min{4x;, By, B2 : 1 <i=<n},q= ZL,(% + %) +
St (oo + X ) + 57 + B2 G+ D).
By using Lemma 5.1, we have
(5.43)

dE[V
% —poE[V(H)] + qo;

Then, the following inequality holds
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0< E[V(H)] < VO)e ™ + 22 (5.44)

Po

2 ~ ~
where V(0) = 3_, % 4 ;L5(0)2 + ,-9 (0). Equation (5.44) implies that all the

signals in the closed-loop system are bounded in probability. In particular, we have

4
Ellz1 < 2 ¢ > . (5.45)
Po

Now, we are ready to provide our main result in the following theorem.

Theorem 5.1 Consider the closed-loop system (5.1) with unknown nonsymmetric
actuator dead-zone (5.2). Suppose that for 1 < i < n, k € M, the packaged
unknown functions ﬁ,k can be approximated by neural networks in the sense that
the approximation error €; ;. are bounded. Under the state feedback controller (5.34)
and the adaptive laws (5.37), (5.38), the following statements hold,

(i) All the signals of the closed-loop z-system (5.17) are SGUUB in the fourth

moment and
pliim ST Bzt < 22t 21
t—00 — ! - Po

(ii) The output y of the closed-loop system (5.1) can be almost surely regulated
to a small neighborhood of the target signal.

Proof 1t is not difficult to complete the proof by using the above developments. [

5.2.3 Simulation Results

In this section, an example about the control of a ship manoeuvring system are used
to illustrate the effectiveness of the obtained results.

The ship maneuvering system can be described by the following Norrbin nonlinear
model [15].

Towph + b+ do)h® = Ko)8 + @2, (W, b, S)w,

where T, is the time constant, & = v denotes the yaw rate, ¥ stands for the
heading angle, oy, is the Norrbin coefficient, K, ,,) represents the rudder gain, § is
the rudder angle and w stands for an r-dimensional independent standard Brownian
motion, @y (¥, h,8) : R3 — R is an unknown function, and o (vy) is the
switching signal that satisfies:

1,0<v, <vp
o(vy) =12, vp <vy Svy
3, vy <vy <r
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VL, Vi, vr represent the value of low speed, middle speed and top speed, respec-
tively.
A simplified mathematical model of the rudder system can be described as follows,

TE,O’(Vl\-)S +46= KE,U(VN)SE,U(VS)?

where Tg (., represents the rudder time constant, 6 stands for the actual rudder
angle, K 5(v,) denotes the rudder control gain and 8¢ 4, is the rudder order.

Letx; =¥, xo = h, X3 =6, Vo(v,) = 0£,60,,); We can get the following switched
nonlinear system model with actuator dead-zone to describe the dynamic behavior
of the ship with low speed, middle speed and high speed, respectively.

dx| = x»dt,
dxy = (fowy) + bow)x3)dt + ¢1, do,

1
dxz = (— X3+ a$:10 Va(vj)) dt,
TE,U(LV) TE o (vs)

Vo, = Do)

To(vs) +-3 Koy

where fg(vS = _Ta:; Xy — Too, )xz, ba(vs) = T

The vessel data comes from a ship that has a length overall of 160.9 m. v, = 3.7
l’Il/S, 1—328 T1—3OS'L']—4OS TE1—4SK51—2 vM—75m/s
Ky =114, Th =63.69s, 10 =30s% Tpgo =25s, Kgo = 1;vp = 153
m/s, Ky = 5.1 s, Ts = 80.47 s, 73 = 25 52, Tesz = 1s, Kgs = 0.72. The initial
conditions are x1(0) = 2,x,(0) = —0.05,x3(0) = 0.03,0(0) = 10,9(0) =
We construct the basis function vectors S;, S, S3 and S, using 11, 15, 21 and
48 nodes, the centers 11, w2, (3, i, evenly spaced on [—1.5, 4.5] x [-3, 4] x
[—10, 8], [-5, 4] x [-30, 20] x [—0.5, 5.5], [-5.5, 8] x [—12, 25] x [—0.1, 2]
and [—10, 2] x [—60, 2] x [—0.2, 10.5], and the widths ¢; = 1.2, = 2.2, 43 = 2,
¢y, = 1.8. The design parameters are a; = a, = a3 = a, = 10, r; =2, r, = 10,
B1 =05, 8 =011 =i = A3 =5, and A, = 3. The desired trajectory is
vq = 10sin 0.08¢. o

According to Theorem 5.1, the adaptive laws 0 s # and the control laws Ue,, Ug,
are chosen, respectively, as

0.01z887'S; — 0.56,

D>
Il
'Mw

i=1

= 0.03625S, S, — 0.19,

1 35T
E[—575Z3 — 0005Zg9S3 S3]’

g, =3.7523 +

Uey,

0.00057

83,k

39808,
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where uy = ue, —ug,, 21 = X1 — Y4, 20 = X2 — @1, 23 = x3 — o and oy, @y are
given by

ay = —5.75z; — 0.005z30S] Sy,
@y = —92z, — 0.0823057 S,.

In order to give the simulation results, we assume that

10(u; — 50), ug > 50
vi=D(ur) =10, —60 < uy <50
20(uy + 60), uy < —60

and ¢; = 0.5x; sinxyx3, ¢y = O.25x12x2 cos xp, ¢3 = 0.1xyx3. The simulation
results are shown in Figs. 5.1-5.4. Figure 5.1 depicts the responses of system output
Y and target signal y,. Figure 5.2 shows the trajectories of adaptive laws. Figure 5.3
demonstrates the responses of D(u,,) (without dead-zone compensation controller)
and D(u., — ug,) (with dead-zone compensation controller) and Fig. 5.4 illustrates
the evolution of the switching signal. From Fig.5.1, it can be seen that the output
Y can track the target signal y,; within a small bounded error. On the other hand,
Fig.5.3 proves that the dead-zone nonlinearity can be compensated by ., .

5.2.4 Conclusions

The tracking control problem for a class of stochastic switched nonlinear systems
under arbitrary switchings has been investigated, where the unknown nonsymmetric
actuator dead-zone is taken into account. A state feedback controller is designed
for the systems under consideration. It is shown that the target signal can be almost

Fig. 5.1 Tracking 10 Py : —
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‘ \
\
5 '/ 5 /
!: \‘ /
k! \ H
0 i !I
\ J
\ !
X \ /
\ /
\ /
\ /
10 N/
0 20 40 60 80 100

Time(sec)



110

Fig. 5.2 The responses of
adaptive laws

Fig. 5.3 The responses of
D(u¢, —ug,) and D(uc,)

Fig. 5.4 The response of
switching signal
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surely tracked by the system output within a small bounded error, and the tracking
error is SGUUB in 4/ moment.

5.3 Adaptive Neural Control for Switched Stochastic
High-Order Uncertain Nonlinear Systems with SISS
Inverse Dynamic

5.3.1 Problem Formulation and Preliminaries

Here, we consider the following stochastic switched high-order nonlinear systems
with SISS inverse dynamic,

dt = foow & x1)dt + Y0 5 (&, x1) do,
d-xi = (gi,o'(t)(gv-x)-xip_:_] + fi,a(t)(;vx)) dt + ’ﬁ{o—(;) (;v-x) da)9 i = 1a 29 cee, o — 17

ity = (8n.0 (& DLy + oo &) d + U] ) (€ 6) do,
y=1x, (5.46)

where { € R” are immeasurable stochastic inverse dynamics; x = (x1, x2, ..., x)T
€ R" and y € R are the system state and output, respectively; p; is a positive
odd integer and w is an m-dimensional standard Wiener process defined on the
complete probability space (£2, .7, {.Z},;=¢ . P) with £2 being a sample space, .7
being a o-field, {-#;},>( being a filtration, and P being a probability measure; o (t) :
[0, +00) - M = {1, 2, ..., m} is the switching signal; u; € R is the control input
of the k-th subsystem; fox : R" x R — R", Yo : R" x R — R™; For any
i=12...,nandk =1,2,....m, fiy RO xXR" > R, ¢, : R" xR" - R"
are unknown nonlinear functions assumed to be locally Lipschitz with f; ;(0) = 0,
Yik(0) =0,and g; x : R x R" — R is a strictly either positive or negative known
function.

Remark 5.2 System (5.46) reduces to the well-known normal form when p; = 1,
¢ = 0and m = 1. In the case that p; > 1, ¢ = 0 and m = 1, the Jacobian
linearization of the system is neither controllable nor feedback linearizable. This
makes the control design very challenging. To solve this problem, Lin and Qian [16]
proposed a fruitful deterministic technique: adding a power integrator. Subsequently,
many excellent results are proposed based on the adding a power integrator technique,
see, e.g.,[17-19] and the references therein.

Definition 5.3 For any given V (x;, ) € ¢! associated with system (5.46), define
the differential operator .Z as follows,
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1 2
ZV:BV aVv [1/[ a

Foi+-Tr ,ka

oV, v , 5.47
ar T ax T2 Zw"} (547

where Fix = i o) (&, X)X/ + fiow(C, X).

Assumption 5.3 The sign and the upper bound of function g; ; for 1 <i < n and
k € M, are known, and without loss of generality, it is assumed that

0<d, <gx(,x) <d,

where d; and d; stand for the lower and upper bound values of g; (¢, x), respectively.

Assumption 5.4 Forl <i <nandk € M, there exists a €” functlon Vo(¢), which
is positive definite and proper, such that £V, < —Aolt + on 1 Where Ao and X
are positive constants.

Lemma 5.4 Let p € R* and x, y be real-valued functions. There exists a constant
¢ > 0 such that
[x? = yP| < clx =yl |x = )P+ yP 7

Lemma 5.5 Suppose that there exists a €' function V(x,t) : R" x Rt — R¥,
two constants ¢; > 0, ¢; > 0, and H, functions ¢, ¢, such that

ci(lxl) = Vix, 1) < ca(lxl)
LV, t) < —c1V(x, 1)+

forall x € R" and t > ty. Then, there is an unique strong solution for each x, € R"
and it satisfies:

E[Vx.0] < Vix)e ™" + 2, Vi > 1.
Ci

In the following control design procedure, radial basis function (RBF) neural
networks are used to approximate a continuous real function f(X). For arbitrary
e > 0, there exists a neural network W7 S(X) such that

FX) =W'S(X) +8(X), 8(X) <e,

where X € £2x C RY is the input vector with ¢ dimension, S(X) = [s;(X), 52

(X),...,s;(X)]7 is the basis function vector, and W = [wy, wa, ..., w;]T is the
ideal constant weight vector with / > 1 being the number of the neural network
nodes, and s; (X) are chosen as Gaussian functions; i.e., fori = 1,2,...,1,
(X — )" (X — i)
51(X) = exp (— 2 ,

where ¢; is the width of the Gaussian function, and w; = [@;1, iz, .- -, ,uiq]T is the
center vector.
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Lemma 5.6 Consider the Gaussian RBF networks. Let p := %mini# i — wjlls
then an upper bound of ||S(X)|| is taken as

oo
ISCOI < D 3qk +2)1 e 2K/ .= p.
k=0

It has been proven in [20] that the constant D in Lemma 5.6 is a limited value and is
independent of the variable X.

5.3.2 Main Results

In the following, the adaptive tracking control design is carried out by using a standard
backstepping procedure. Firstly, define p = max,;—; __,{p;}. The following lemma
is also given.

.....

Lemma 5.7 Suppose that the Lyapunov function

n EP*Pi+4
V... &) =)

—~'p—-pi+4

is positive-definite and proper, satisfying
n
2V <-> " ¢ (5.48)
i=1

Then, the following inequality holds
RA% < _aOV + b()a

where
ag = min (PP [py = (n + ).

Proof Leta = ¢'/**3 and b = &;. Then, by using Young’s inequality
qPi—lpp—pt4 < Pi— lap+3 Y t4

~ p+3 p+3
Sa[?+3+bp+3’

b17+3

which implies that

_ gip+3 < —pP=D/(p+d) éi”_p’+4 +¢. (5.49)
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Substituting (5.49) into (5.48) yields that

LV < _Z¢(ﬂ;—1)/(p+l)§il’—l’r+4 +(n+ .

i=1
The proof of Lemma 5.7 is completed here. (]

Step I: Define the variable z; = x;. Then, consider the following Lyapunov

function candidate
ZP*P] +4
1

Vi = + —
l p—p1+4

ENESS

It follows from (5.47) and Assumption 5.4 that
PV, = —A p+3 p—p1t3 p— pl +3 p—pr142
1= =gt + oz 7 + 2 (1ax?" + fir) + ——— |vis| 2 :
(5 50)
where f; ; and || Yk || are unknown. Then, two neural networks W, ; Sy and @ 4 Py «

are used to approximate the unknown function f ; and the norm || Y1k || such that
for any given &) ; > 0 and 7 > O,

Sk = WlT,kSLk(Xl) + 61,4 (X1),
2 —_
[¥i]|” = @, PLa(X1) + 81.6(X1),

where X :=[¢7, xT]" € R, |8 4 (X)| < &1.4, $1.6(X1) < Tis.
One can get from the Young’s inequality and Lemma 5.6 that

Ry W

= PP WS k(X)) + 814 (X))
_ +3 ,

< Lfllpfmﬂzf-w “ Wl,k H#ﬁ:& ” Sl, = p1+z + " 3[
P p
— _|_ 3 ,f“ _17;#3 p;%»}

T p pl—’i_l?’ 7711 p1+3zlp+3+ 1_7;3771 P1 Elfllc

e L el O [ e e N A

< Zf+3 (lp p]+39 Dpp;rliz + n,y ;,11) +b1, (5.51)

where [;, n; > 0 are design parameters; |S;|| < D;; 6, := max
(p+3)/(p—p1+3) —(p+3 —(p+3 +3
{” Wik “ P p=n ke M)ib =1 (p+3)/p1 +n (p )/Plé‘;P )/p1

Moreover, one has that
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||W1k||2 P
=z (¢1TkP1,k(X1)+(§1,k(X1))

2 - 23
<ZP pi+ ¢T P],k+zf i+ 5]’k

— _pt3 _ 43
< p T;ZEIPQ)I+ZZIP+3 ||®l,k||#+]3+2 HP]. = m+z + Pl:?)lé_ P+
p p
— +2 % +1 - !;+3 p+3
P pil:; mll p1+-Z{7+3+ l;1+3m1 11+1_E1[:}<+1
13 pt3 p+3 p+3
< Z‘f (Slpm+2 (pl lp—pl+2 + m p— 1’1*2) + b] , (5.52)

where &, m; > 0 are design parameters; |P| < Qi; by = sl_(p+3)/(p‘+” +

- 3)/(p—p142
(p+3)/(111+1) (p+3)/(m+1) Lo = max{”@ ”(17+ )/ (p—p1+2) k€ M).

Substltutlng (5 51) and (5.52) into (5.50), yields that

p+3 p+3 P43
by +3 +3 —p1+3 —p1+3 —p1+3
A7 E—)»0§4+)L0Z +gizy X+ 2 (ll' RO DT )

_pt3 _p+3 p+3

1 -
+2 ( (P—p1+3E 00"+ < (P p1+3)m| "'“) + by,
(5.53)

where by := by + 0.5(p — p1 + 3)by.
Then, the common virtual control function can be designed as

1 p+3 p+3 p+3 p+3
by P—p1+3 A p—p1+3 p—p1+2 A P—p1+2
ap=—z1{—\ M+ 6D —(P p1+3)E" P
d
=1
1

p+3 p+3 ﬁ
+ "+ (p pi+3)m” ”‘”)}

=—2z71P1, (5.54)

where él, ¢ are the estimations of 6, ¢, respectively; o> 1+ )_Lo is a positive
design parameter; d, is defined in Assumption 5.3.
It follows from (5.53) and (5.54) that

LV <—hott — (0 — )_LO)Z‘I’Jr3 + gl,ka_p'Jr3 (x3" —af")
—}-llp_p;li}@ Dp p|+z p+3 +0. 5(]7 i+ 3)51,7 pp+|%+2 ~ p [7|+2 p+3 “l‘bl,
(5.55)

where 6, = 6, — 01, §1 = ¢1 — @1
Step 2: Denote z; = x, — a1, and define do; as
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" day doyp 2 dag day
day = Z o, (gj,kxfil + fl,k) + v + 35,7 dt + a—xlwfkdw

3
= aydt + 2Ly do, (5.56)
Bxl

where 6, and él will be specified later, x,,.1 := u will given at final step.
Choose the Lyapunov function as

—p2+4
Vo=V +

e
Then, £V, is given by
sz 3 —pi+3
LV <=t = Gy =R+ gl T (X§' f’l)

_p+3 p+3 3 _pt3 p+3 3
lp 1)|+39 Dp 1)|+3 P+ 10.5(p — p1+3)$] p1+2~ le P1+2 P+ —I—b]

2
—p2+3 _ P pz +3 o —p2+2
+25 Pt (gz,kxf2 + fo.k —al) +—FF Hlﬁ o Wl,kH 7Y pte,
(5.57)
By using Lemma 5.4 and Young’s inequality, one can obtain that
‘glqsz—mﬁ(xm _ am)‘
< ad [zl [ + @por !
- P—pi+3 54 B P s -P+2 pis
<cdi——z, " +cd Z di——z
141 T3 G 1 lp 3% 141 370
+ed ZP+3 (P1=1)(p+3)
141 + 3 2 ,3
p+3 +Z§+3 (1 +ﬂ{p1—l)([)+3))
= Zf” +257B (5.58)

where 8| = 1+ ,131(”‘71)(”1); c1 is chosen as 1/2d; d is defined in Assumption 5.3.
Substituting (5.58) into (5.57), gives that

_p+3 p+3
p+3 p+3 35 -+ pt3
fV2< )\,(){ —()\.1—)\.0—1)Z +Z2 ﬂl"‘lp” GDI ! Z]
p+3 2p+6

+ (p P + 3)&111 I’lJr2 ~ P P12 I’+3 +b +Zz p—p2+3 (g2’kx§72 + f_‘z,k)

1 -
+5 (= P2t 3 Vs P2 (5.59)
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_ _ ) 2
where fox = for — a1, Yop = sz,k — ‘%‘I/fl,k H . Then, neural networks

W{ £ 52,k(X>) and CD{ « P2,k (X>) are used to approximate the unknown functions fz’k
and 1}2,;( such that for any given &, > O and 1o > O,

b= W{ksz,k(xz) + 82,1 (X1),
Yok = Py Pri(X2) + 624(X1),

where X5 := [¢T,x7, 81, ¢117 € R™+"+2, 82,6 (X2)| < €200 $24(X2) < Tog.
Similar to the procedure in (5.51), one can obtain that

p—p2+3
z5 Fox

= 2P W $04(Xa) + 82,4(X2))

3
P—P2+3 ) e e - R
< o 3 [R3E Zéﬂr ” Wz,k‘ ,,7,,2+3 ” Sz,k| =t o 312 7
p+3 43 p+3
n P—P2+3 s o3 L —rs e
p+3 2 Ty
p+3 _pt3 _pt3  p+3
< lp*sz p+3 ” W2 = ,;2+3 ” SZk = ])2+3 4 np pz+% p+3 +l 2 + 1, 2 8217]2{
13 p+3 p+3
213 a3 123
<z (l’ T, DI gl ) + by, (5.60)

where [, 1, > 0 are design parameters, 6, := max{ || Wk || P/ (p=pot3) ke M},

—(p+3 —(p+3 +3
b2:l2(p )/pz+n2(p )/ngép )Pz

Using a similar way to (5.52), one gets that

1//2 Zp pa+2
=z P2 (D1, Poi(X2) + 824(X2))

+2 £ T +23
Zl’ P2 @ P2k+Zp P2 52]{

_ _p+3 +3 +3 —pt3
_P P2+25pfpz+z P30 | 7nE | p #ﬁurp”lg ZE
= 2 22 2,k 2,k 2
p+3 p+3
p+3 +3 p+3
P— D2+ 2mn—[ﬁz+2ZP+3 + P2+ 1m7172+1 I!2+1
=z "M 2 2 2.k
p+3 p+3
3 p+3 p+3 p+3
P —pa+2 —py+2 p—pr+2
< 2 ( 2F P2 © 2p 2 +ml P2 ) +b2, (561)
_ p+3 _ pt3 p+3
. T py+1 1 1
where &, my > 0 are design parameters; by = & ™" +m, ", ¢ =

p+3
max{H Dk | =t ke M}; P,(X3) and 12(X;) represent the basis function vector
and the estimation error of ¢,.
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Design the common virtual control function as
1 _pt3 _pt3 1 _pt3 . p+3 .
a = —22 [d_ (:31 + A+ 0,DITT 4 - (P P2 +3)E 9.0,
4,

_p+3 . _p+3 . %
+nl’ P2+ + (p p2+3)mn P2+2 )]

= —2p, (5.62)
where éz, ¢, are the estimation of 6, and ¢ respectively; A, > 1isadesign parameter;
d, is defined in Assumption 5.3.

By substituting (5.60)—(5.62) into (5.59), one has
LV,
<=2l = (A — Ao — l)zer3 Azzp+3 + g2k zé’prH(xp2 —ad?)

p+3 p+3 p+3 _pt3

+Z(””9D”” 4050 —py +3E TG00 'f+3+51),
j=1

where 5/‘ = bj + 05(p — Pj + 3)[;]‘, éj = 9.,‘ - éj, ¢j =@Q; — (ﬁj, ] =1,2.
Step i: Suppose at step i (3 < i < n — 1) that, there is a set of virtual control
functions a3, .. ., ®,_1, defined by

o =ziBi, 7 = Xig1 — & (5.63)
and assume that a set of unknown nonlinear functions f; ; and v, can be approx-
imated by neural networks W. lk(X ) and <D P; x(X;) for any given ;; > 0,
Tix > 0.

fir = WIS (X)) + 8ix,
Vik = P Pic(Xi) + 8.

8k (X)) < &g
ik (X))| < Ti

where Xi = [{T, sz élv L) éiv (ﬁl» e (ﬁi]T S Rr+l’l+2i.
A straightforward calculation gives that

LV
< —no¢* = (= %o — D" - Z(A, )+

—)»zzp+ + g pi+ (xz+1 aiﬂi)

p p/+3 3 p+% nllt3 7,’&3” p+3 =
(7 15, 17 05— 5y 367 g, |2 TR 2 15,
Jj=1

(5.64)
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where 0, = 0; — 0, §; = ¢; — ¢;; [0;, $;] is the estimation of

= max(| W, | 757 0,77 <k e b

]:
b; =b; +0.5(p — p; +3)b;,
b;

l —(p+3)/p; +1 (PH)/P/ ;P+3)/P/

[0j7 (p]

I - 3 1 — 41 11
and b; = & WDy PRV ED 0D D,

J
Step n: Let z, = x,, — a1, define do,,_| as

n—1

n—1
90,1 oy, 14 day—1
doty s = (7402 + f£ix) + 6+ > Tl ) di
1 Z ox; Jik /+1 Jik Z 30, Z 39, 4

Jj=l1 j=1 7 j=1
-1

where x, 1 := u is provided later.
We construct the Lyapunov function as

P Pnt4
Vio=Vioi + ———
p—pnt4d
By using (5.64), £V, is given by
LV, (5.65)
n—2
< —hot* = i —ho— D =0, — P (5.66)
j=2
— 12 gk e — )

n—1 pH3 P43 _p3

+Z<"M@D”’” P 05(p— py+ DE TG00 " "*3+b)

j=1

p—pnt3-

+ 2077 (gt + fu) + sl (5.67)

where fo 1 = fox — -1, Vni = ) Yk — D) ! "“” ‘1//, H Then, neural networks

p kSn, (X)) and q§n’ « Pnk(X,) are used to approxnnate unknown functions fn, r and
Y.k such that for any given ¢, > 0 and 7,4 > 0,
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fn,k = WyZ?kSn,k(Xn) + Sn,k(Xn)’
&n,k = (pr{kpn.k(xn) + gn,k(Xn)v

Where Xn = [;-T, -xT7 él! ey énv @1: ey @n]T S Rr+3n’ |8nk(Xn)| =< 8!1,](’
‘Sn,k(Xn) = Tnk-
Similar to (5.60) and (5.61), one has

p+3 P+3 p+3
ZP l’n+3f p+3 lﬁ Vn+39 D/l 3 4 n’f*puﬁ + bns

p+3 p+3 p+3
—pnt3.7 3 —pn+2 —pn+2 on+2 -
TP < 28T (&”’*%Qr’i” +my ’*)+bn, (5.68)

- +3)/(p—pa+3
where L, 1, &, m, > 0 are design parameters; 6, := max{|| W, . |"” p=pit3)
_pH3 _p+3 p43

n on 3 —pnt2
keM} b, =1, 4+n "e&™, on :—max{”(P ||(p+)/(pp+):keM};
(p+3)/(pat+1) —(P+3)/(Pn+|) (p+3)/(pa+1)
=& +m, A :

Furthermore, it is not hard to get that

Gno1 izl TP (e —afi]‘)‘
g —pn—1 43 -1 n—1—"
= Cnfldnfl prp l+ ‘|Zn| ‘an : l+ (anlﬁnfl)p : 1|
= P—pn1+3 < Pn = DF2
= Cnfldn71# p+3 + ¢ ldn lp:_3 p+3 + Cnfldnfl p T+ 3Zyljf:
- 1
3 ( n— _1)( +3)
+Cn71dn71m15+ Bl
p+3 +Zp+3 (1 +ﬁ<pn 1—1>(p+3))
LT (5.69)

where 8,1 = 1 + ﬂé’f’l’ﬁl)(pﬂ), a1 is chosen as 1/2d,_;, and d,_; is defined in
Assumption 5.3.

Substituting (5.68) and (5.69) into (5.67), the following inequality can be obtained.

2LV, (5.70)

< —xo¢* = (ki — Ao — l)Zp+3 Z(?» p+3 + 2738,

n—1 P43

+Z( PR DIT PR 05— py 8,00 W) 25
j=1 j=1

p+3 _p+3

p+3
+ Z5+3 (lnpan Gnanfan +1 p l>n+'4 +0. 5(p Pn+ S)é_—np Pn+2 ©n Q;*Prﬁrz
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p+3

+0.5(p — pu+ 3>m) + 2l g . (5.71)

Design the controller u as

1 p+3 P43
u=-2z, [d ()\' +,3n 1 +lﬁ ﬂn+39 Dp pn+3 + 771;) pnt3

=“n

p+3 ,Ln
£ 05— put DET G084 05(p pn+3>m”""“)}

= — 2B, (5.72)

where é,, is the estimation of 6,,; A,, > 1 is a positive design parameter; d,, is defined
in Assumption 5.3.
It follows from (5.71) and (5.72) that

LV, < (5.73)
+3

— ot =D (= D

j=1

_p3 p+z [7+3
+Z( PTG, DT R L 05(p— py 4 3ET g, 00 "+3+b)

j=1
(5.74)

where A; := A — Aq.
Last Step: Choose the final Lyapunov function as

(1, 1
V=V, —07+ —¢; 5.75
+J§(% : +2,,j¢,) (575)
where r; is a positive design parameter.
£V is given by
ZV < (5.76)
n n . 1 .
3 ~
_A0§4_Z(Aj—1)zj.’+ _Z( 0;0; + f—go,goj)
j=1 =1 N
n p+3 p+3 p+3 p+‘4
—pit3 x —p ;13 —p; p;
+z(ljp pjt Qij{ Ppjt Zf+3+0-5([7_[7j+3)5j[ pj+ ]QPI p+3+b)
j=1

(5.77)
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The adaptive laws are defined as the solutions to the following differential equa-
tions

. p+3
A

p+3
p—pj+3 p—rj+3 _p+43 N
09_]' r]lj D. Z; —B]‘Qj,

J 'J
p+3 p+3 5 3
X p i p—p i+ =N
j = —(p pi+3FE QI — Bigy, (5.78)
where j =1,2,...,n, Bj, L_?j > ( are design parameters.

This, together with (5.77), means that

" " Bed I Boc
2V = —ngt =05 =0T+ > L > ";’{‘p’ +375;. (5.79)

j=1 j=1 J j=1 7 j=1
Notice that
6;6; =0,6; —6;) < 192+192
27 T
U B 1, 1,
$i0; = 9i(@; = ¢)) = —50; + 5¢;. (5.80)

By using (5.79), (5.80) and Lemma 5.7, one has

! B: -, B
LV < —rlt — A= DB Zlgry L2
= 0; Z (( j )Z] + 2)‘] j + 27] (pJ

j=1
+Z( —Lo? + 5 ¢J+b)
=—qoV +aqi,

where go = min{(p — p; + H(A; — NP V/P+TI B B 2% 1 1 < j < n},
¢ =31 (3202 + 0 + b)) a1 = Oy — D+ D9,
According to Lemma 5.5, we have that

N v > o, (5.81)

q0

E[V(x,1)] < V(xo)e ™ +

which indicates that all the signals in the closed-loop system are bounded. The design
is completed here. Next, we address our main result.

Theorem 5.2 For 1 < i < n,k € M assume that all the unknown nonlinear
functions f,;k and ;. can be approximated by neural networks in the sense that
the approximation errors are bounded, and all the initial values of 6; and @; satisfy
éi (0) > 0 and ¢;(0) > 0, respectively. Then, under the state feedback controller
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(5.72) and the adaptive laws (5.78), the equilibrium at the origin of the closed-loop
system is boundedly stable in probability and

4 n | p—pit4
P 1im (55 +> U I 18 ey
o\ 4 Hp-—pit+4] T

Proof 1t is not difficult to complete the proof by the above discussions, and thus we
omit the proof here.

In the following, a corollary is given by using only two adaptive laws.

Corollary 5.1 For 1 < i < n,k € M assume that all the unknown nonlinear
functions fix and Vi can be approximated by neural networks in the sense that
the approximation errors are bounded, and all the initial values of 6; and § ©; satisfy
6;(0) > Oand @i (0) > 0, respectively. Consider the following controller and adaptive
laws:

1 p+3 p+3 p+3
B [d (A + B LD g

—n

ri3 p+3 s an
—(P P+ DETTP0T +0.5(p — pu+ 3)m’§1m+2)] ,

. n p+3 p+3
A p—p;+3 p—p;+3 3 A
0=>"rl]"" D" — BY,
j=1
1 ﬁ+32 p+32 3
A p—pj+ p—pj+t2 _p+ 5 A
¢ =5 E(p pj+3rs; 7 Q; 7 i — By,

where X, > 1,1;, &, m,, n,, v,B,r, B > 0 are positive design parameters,

6 = Z] | é Q= Z;zl @;. Then, the equilibrium at the origin of the closed-loop
system is boundedly stable in probability and

4 p—pit4
P{hm(m +Z|z| ) q1] N
=00 p—pit+4

Proof 1t should be pointed out that 6 > é >0,¢0>¢;, =20, j=1,...,n
Therefore, we can use & and ¢ instead of 9 and ¢ in (5.54), (5.62), (5.63) and (5.72).

In (5.75), the parameters 9 and ¢; in Lyapunov function V should be rewritten as 6

and ¢. The detailed proof is omitted here because it is similar to the one of Theorem
5.2. O
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5.3.3 Simulation Results

An example with two controllers (multiple adaptive laws and two adaptive laws
respectively) is presented in the following to demonstrate the effectiveness of our

main results.
Consider the following switched stochastic high-order nonlinear systems with

SISS inverse dynamics:

d¢ = fou (&, x1)dt + Y5, (&, x1) do,

Z — Vdx = [g11(¢. x1, x2)x8" + fia(C, x1, x2)|dt + 9] | (¢, x1,x2) do,
1

dxy = 821, x1, x)u” + fo.1(¢, x1, x2) | dt + Y1, (£, x1, x2) dw,

d¢ = for (¢, x)dt + 9§, (¢, x1) do,
E — Vdxy = [g120¢. x1, x)x8" + fi2(8, x1, x2)|dt + ], (£, x1, x2) do,
2

dxy = [822(. X1, x)uP> + (¢, x1, x2) | dt + Y], (£, X1, x2) dw,

where g1.1, fi.1, Y11, &2.15 2.1, Y21, 812, f1,25 Y12, 82,2, f22, and Yrp > are all
completely unknown functions; p; = 3, p, = 5. First, a controller under multiple
adaptive laws is designed by Theorem 5.2. The initial conditions are {(0) = 1
x1(0) = 0.5, x2(0) = —0.5 and 6,(0) = 2, 6,(0) = 3.5, $1(0) = 3, $»(0) = 4. The
controller parameters are chosen as: Ay = Ay =5, L =h=nm=m =& =& =
mp; = mjp =4,r1 =n :I_‘l =f2 = 1,B| = B2 = B] = Bz =01Weapply
three nodes for each input dimension of W' S, W) S, ®[ P, and & P,. Therefore,
each of them contains 81 nodes with centers spaced evenly in the interval [—0.5,
0.5] x [-0.5, 0.5] x [-0.5,0.5] x [—0.5,0.5], and the widths still being equal to
2.5. Second, a controller under two adaptive laws is designed by Corollary 5.1 with
same conditions except é(O) =3,¢(00=4,r=1,B=0.1.

In order to give the simulation results, it is assumed that fy; = —15¢ + 0.1xf,
Yo = (¢2 +0-3x?)1/2’gl,1 = sin(x1x2+¢)+2, fi1 = x1x2+¢, Y11 = sin(xx+
), g1 = cos(x; +x3 4+ &) +2, o1 = x1x5 + ¢sing, Yo = xjcosxy + ¢

Fig. 5.5 Responses of

. 1
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multiple adaptive laws A ;
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Fig. 5.6 Responses of the 20 =
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adaptive laws s
0 ‘.I:‘_"-'-"-‘--t,-‘-‘.‘-‘-.-
05}
'
-1
'
155
'
'
25 [
0 0.1 0.2 0.3 0.4 0.5 0.6
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for = —130 +0.3x2, Yo = (0.17¢2 + 0.13xH ", g1 = sin(x? + x2 + £) + 2,
fia = xi{xa + 8%, Ya = sin(n + x2) + &7, g2 = cos(xixy + &) + 2, fan =
X1X2 + ¢ cos¢, Yoo = x;sin(xjx) + {2.

The simulation results based on Theorem 5.2 are shown in Figs.5.5, 5.6 and 5.7,
respectively. Figure5.5 depicts the responses of system states. The trajectories of
adaptive laws are shown in Figs.5.6, and 5.7 describes the switching signal. From
Fig.5.5, it can be seen that all the system states eventually converge to a small neigh-
borhood of the origin. The simulation results based on Corollary 5.1 are shown in
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Fig. 5.9 Responses of two
adaptive laws

Fig. 5.10 Response of
switching signal
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Time(sec)
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1.5
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Time(sec)
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Figs.5.8,5.9 and 5.10, respectively. It can be seen that all the system states eventually
converge to a small neighborhood of the origin by using only two adaptive laws.

5.3.4 Conclusions

The adaptive neural control for a class of stochastic high-order switched nonlinear
systems with SISS inverse dynamic is studied. An adaptive neural control algorithm
is proposed. It can be shown that the equilibrium at the origin of the closed-loop
system is BIBO stable in probability.
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