
Chapter 4
Adaptive Control of Switched Nonlinear
Systems

4.1 Background and Motivation

It has been shown in [1–5] that the adaptive backstepping technique is a power-
ful tool which has been widely used to solve some complex optimization prob-
lems and applied in the fields of industry and engineering. Recently, many adaptive
backstepping-based control methods have been used in switched nonlinear systems;
see, for example, [6–10] and the references therein. The authors in [11] solved the
problem of adaptive stabilization for a class of uncertain switched nonlinear sys-
tems whose non-switching part consists of feedback linearizable dynamics. In [12],
the authors investigated the problem of adaptive stabilization for a class of switched
nonlinearly parameterized systems where the solvability of the adaptive stabilization
problem for subsystems is unnecessary.

It is well known that the stability of a switched system under arbitrary switching
can be guaranteed if a CLF exists for all subsystems [13]. Therefore, CLF has been
extensively used for control synthesis of switched linear systems [14–17]. Recently,
there have been some results on the global stabilization problem for switched nonlin-
ear systems in strict-feedback form under arbitrary switchings by using the backstep-
ping technique [9, 18].Meanwhile, [19] investigated the global stabilization problem
for a class of switched nonlinear systems in p-normal form by the so-called power
integrator backstepping design method.

In practice, uncertainties inevitably exist in many practical systems. In recent
years, some attentions has been paid to both general nonlinear systems and switched
nonlinear systems with uncertainties, but most of the obtained results require that
the uncertainties should satisfy some additional conditions. However, in many cases,
we cannot get the knowledge of system uncertainty a priori, which can only be
described by completely unknown functions. In this case, the excellent approxima-
tion capability of neural networks (or fuzzy logic systems) has been explored in the
literature to tackle the corresponding control problems for either switched systems
or non-switched systems. Thus, many significant results have been proposed. To
list a few, the authors in [20] investigated the control problem of nonlinear pure-
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feedback systems with unknown nonlinear functions by using the implicit function
theorem and NN approximation. The adaptive tracking control problem for a class
of uncertain nonlinear strict-feedback systems is solved by [21] using fuzzy logic
system approximation. A practical design method is developed by [22] for cooper-
ative tracking control of higher-order nonlinear systems with a dynamic leader. For
a class of switched uncertain nonlinear systems without the measurements of the
system states, the problem of adaptive neural tracking control via output-feedback
was solved in [23] by using a novel switched filter.

However, few results on adaptive tracking control have been developed for
lower triangular switched nonlinear systems with completely unknown uncertain-
ties. On the other hand, most system models of the above-mentioned results about
adaptive control for switched nonlinear systems are in the strict-feedback form
that limits applications of the results to more general switched nonlinear sys-
tems. Therefore, considering the adaptive tracking control for switched nonstrict-
feedback nonlinear systems with completely unknown uncertainties is more reason-
able. In this chapter, the adaptive tracking control problem is investigated for both
strict-feedback and nonstrict-feedback switched nonlinear systems with completely
unknown uncertainties.

Notations: In this chapter, the notations are standard. Rn denotes the n-dimensional
Euclidean space, the notation ‖·‖ refers to the Euclidean vector norm. R+ is the set
of all nonnegative real numbers. For positive integers 1 ≤ i ≤ n, 1 ≤ j ≤ m, we
also denote Ξi,max = max{Ξi, j : 1 ≤ j ≤ m}, Ξi,min = min{Ξi, j : 1 ≤ j ≤ m}. C i

stands for a set of functions with continuous i th partial derivatives. For a givenmatrix
A (or vector v), AT (or vT ) denotes its transpose, and Tr{A} denotes its trace when
A is a square. K represents the set of functions: R+ → R

+, which are continuous,
strictly increasing and vanishing at zero; K∞ denotes a set of functions which is of
classK and unbounded.

4.2 Adaptive Control of Switched Strict-Feedback
Nonlinear Systems

4.2.1 Problem Formulation and Preliminaries

Consider a class of switched nonlinear systems in the following form,

ẋi = gi,σ (t)xi+1 + fi,σ (t)(x̄i ), i = 1, 2, . . . , n − 1,

ẋn = gn,σ (t)uσ(t) + fn,σ (t)(x̄n),

y = x1, (4.1)

where x̄i := (x1, x2, . . . , xi )T ∈ R
i , i = 1, 2, . . . , n is the system state, y is the

system output; σ(t) : [0,+∞) → M = {1, 2, . . . ,m} is the switching signal;
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uk ∈ R is the control input of the kth subsystem, For any i = 1, 2, . . . , n and
k = 1, 2, . . . ,m, fi,k(x̄i ) is an unknown smooth nonlinear function representing the
system uncertainty, and gi,k is a positive constant.

Our control objective is to design state-feedback controllers such that the output
of system (4.1) tracks a given time-varying signal yd(t) within a bounded error and
all the signals of the closed-loop systems remain bounded under arbitrary switchings.

Assumption 4.1 The tracking target yd(t) and its time derivatives up to the nth order
are continuous and bounded.

In the controller design and stability analysis procedure, fuzzy logic systems
will be used to approximate the unknown functions. Therefore, the following useful
concept and lemma are first recalled.

Fuzzy logic systems include some IF-THEN rules, and the i th IF-THEN rule is
written as

Ri : If x1 is F
i
1 and ... and xn is F

i
n then y is Bi ,

where x = [x1, x2, ..., xn]T ∈ R
n , and y ∈ R are the input and output of the fuzzy

logic systems, respectively. Fi
1, F

i
2, ..., F

i
n and Bi are fuzzy sets in R. By using

the strategy of singleton fuzzification, the product inference and the center-average
defuzzification, the fuzzy logic system can be formulated as

y(x) =

N∑

i=1
wi

n∏

j=1

μFl
j
(x j )

N∑

i=1

⎡

⎣
n∏

j=1

μFl
j
(x j )

⎤

⎦

,

where N is the number of IF-THEN rules;wi is the point at which fuzzy membership
function μBi (wi ) = 1. Let

si (x) =
n∏

j=1

μFl
j
(x j )/

N∑

i=1

⎡

⎣
n∏

j=1

μFl
j
(x j )

⎤

⎦ , S(x) = [s1(x), . . . , sN (x)]T

and W = [w1,w2, . . . ,wN ]T . Then the fuzzy logic system can be rewritten as

y = WT S(x), (4.2)

If all memberships are chosen as Gaussian functions, the following lemma holds.

Lemma 4.1 [24] Let f (x) be a continuous function defined on a compact set
Ω.Then, for a given desired level of accuracy ε > 0, there exists a fuzzy logic
system (4.2) such that

sup
x∈Ω

∣
∣ f (x) − WT S(x)

∣
∣ ≤ ε.
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Remark 4.1 Lemma 4.1 plays a key role in the following design procedure and it
indicates that any given real continuous function f (x) can be represented by the
linear combination of the basis function vector S(x) within a bounded error ε. That
is, f (x) = WT S(x) + δ(ε), |δ(ε)| ≤ ε. It is noted that 0 < ST S ≤ 1.

4.2.2 Main Results

In this section, we present an adaptive fuzzy control scheme for system (4.1) via the
backstepping technique. In Sect. 3.1, a detailed design procedure was given. In each
step, a commonvirtual control functionαi should be designed by using an appropriate
common Lyapunov function Vi , and the control law uk is finally designed.

4.2.2.1 Adaptive Control Design Under Multiple Adaptive Laws

In this subsection, a systemic control design procedure under multiple adaptive laws
is presented. Design the control laws as

uk = − 1

gn,k

(
θ̂n

2ζ 2
n,min

zn + λnzn + zn
2

)

, (4.3)

where ζn,k and λn are positive design parameters, ζn,min = min{ζn,k : k ∈ M}, θ̂n is
the estimation of θn = ∥

∥Wn,max

∥
∥2
,Wn,max = max{Wn,k : k ∈ M} andWn,k is used in

fuzzy logic systemWT
n,k Sn,k(x) to approximate the unknown function f̂n,k(x). f̂n,k(x)

is specified in the proof of Theorem 4.1.
The adaptive laws are defined as the solution to the following differential equa-

tions, ˙̂
θi = ri

2ζ 2
i,min

z2i − βi θ̂i , (4.4)

where ri , ζn,k and βi are positive design parameters, ζn,min = min{ζn,k : k ∈ M},
and the choice of θ̂ j (0), j = 1, 2, . . . , n are required to satisfy θ̂ j (0) ≥ 0 such that
θ̂ j ≥ 0. Now, we state one of our main results as follows.

Theorem 4.1 Consider the closed-loop system (4.1) with the controllers (4.3) and
the adaptive laws (4.4). For 1 ≤ i ≤ n, k ∈ M, there exists WT

i,k Si,k(x) such that

supx∈Ω

∣
∣
∣ f̂i,k(x) − WT

i,k Si,k(x)

∣
∣
∣ ≤ εi,k in the sense that the approximation error εi,k

is bounded, and all the initial values of θ̂i satisfy θ̂i (0) ≥ 0. Then, the tracking error
and closed-loop signals are bounded.

Proof For 1 ≤ i ≤ n − 1, we define the common virtual control functions as αi

which are required to be in the form:

http://dx.doi.org/10.1007/978-3-319-44830-5_3
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αi (Xi ) = − 1

gi,min

(
θ̂i

2ζ 2
i,min

+ λi + 1

2

)

zi , (4.5)

where ζi,k is a positive design parameter, ζi,min = min{ζi,k : k ∈ M}, gi,min =
min{gi,k : k ∈ M}, λi = gi,max + ci , gi,max = max{gi,k : k ∈ M} and ci is a
positive constant. θ̂i is the estimation of θi = ∥

∥Wi,max

∥
∥2

where Wi,max = max{Wi,k :
k ∈ M} and Wi,k is used in fuzzy logic system WT

i,k Si,k(x) to approximate the

unknown function f̂i,k(x). Xi = [x̄ Ti ,
¯̂
θi , ȳ

(i)
d ]T with x̄ Ti = [x1, x2, . . . , xi ]T , ¯̂

θi =
[θ̂1, θ̂2, . . . , θ̂i ]T , ȳ(i)

d = [yd , ẏd , . . . , y(i)
d ]T and ȳ(i)

d being the i th derivative of yd .

Step 1. Denote z1 = x1 − yd , z2 = x2 − α1. Consider a Lyapunov function
candidate as

V1 = 1

2
z21. (4.6)

For any k ∈ M, the derivative of V1 is given by

V̇1 = z1(g1,kα1 + g1,k z2 + f1,k − ẏd)

= z1(g1,kα1 + g1,k z2 + f̂1,k), (4.7)

where f̂1,k = f1,k − ẏd . By Lemma 4.1, the following equation can be obtained,

f̂1,k = WT
1,k S1,k(X1) + δ1,k(X1),

∣
∣δ1,k(X1)

∣
∣ ≤ ε1,k . (4.8)

Remark 4.2 It should be pointed out that the fuzzy logic system is used to approxi-
mate the redefined unknown nonlinear function f̂1,k that includes the unknown func-
tion f1,k and the derivative of the desired output rather than the unknown function
f1,k only.

Substituting (4.8) into (4.7), one gets that

V̇1 = g1,k z1α1 + g1,k z1z2 + z1W
T
1,k S1,k(z1) + z1δ(z1)

≤ g1,k z1α1 + g1,k z1z2 + 1

2ζ 2
1,k

z21
∥
∥W1,k

∥
∥2

+ ζ 2
1,k + ε21,k

2
+ 1

2
z21, (4.9)

where ζ1,k is a positive design parameter.
A feasible virtual control function can be constructed as

α1 = − 1

g1,min

(
θ̂1

2ζ 2
1,min

+ λ1 + 1

2

)

z1, (4.10)

where λ1 = g1,max + c1 with c1 being a positive constant.
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By substituting (4.1) into (4.9), one has

V̇1 ≤ −λ1z
2
1 +

(∥
∥W1,k

∥
∥2

2ζ 2
1,k

− g1,k θ̂1
2g1,minζ

2
1,min

)

z21 + ζ 2
1,k + ε21,k

2
+ g1,k z1z2. (4.11)

Step 2. Let z3 = x3 − α2, and choose

V2 = V1 + 1

2
z22. (4.12)

For any k ∈ M, the time derivative of V2 is given by

V̇2 = V̇1 + z2(g2,kα2 + g2,k z3 + f2,k − α̇1)

= V̇1 + z2(g2,kα2 + g2,k z3 + f̂2,k), (4.13)

where f̂2,k = f2,k − α̇1, α̇1 = ∂α1
∂x1

ẋ1 + ∂α1

∂θ̂1

˙̂
θ1 + ∑1

i=0
∂α1

∂y(i)
d

y(i+1)
d .

By Lemma 4.1, the following equation can be obtained,

f̂2,k = WT
2,k S2,k(X2) + δ2,k(X2),

∣
∣δ2,k(X2)

∣
∣ ≤ ε2,k . (4.14)

Substituting (4.14) into (4.13), yields that

V̇2 = V̇1 + g2,k z2α2 + g2,k z2z3 + z2(W
T
2,k S(z2) + δ2,k(z2))

≤ V̇1 + g2,k z2α2 + g2,k z2z3 + 1

2ζ 2
2,k

z22
∥
∥W2,k

∥
∥2 + ζ 2

2,k + ε22,k

2
+ 1

2
z22, (4.15)

where ζ2,k is a positive design parameter.
Design the virtual control function α2 as

α2 = − 1

g2,min

(
θ̂2

2ζ 2
2,min

+ λ2 + 1

2

)

z2, (4.16)

where λ2 = g2,max + c2 with c2 being a positive constant.
Then, one can get from (4.11), (4.15) and (4.16) that

V̇2 ≤
2∑

j=1

{

−λ j z
2
j + ζ 2

j,k + ε2j,k

2
+ g j,k z j z j+1 +

(∥
∥Wj,k

∥
∥2

2ζ 2
j,k

− g j,k θ̂ j

2g j,minζ
2
j,min

)

z2j

}

.

(4.17)

Step i. Let zi+1 = xi+1 −αi , and assume that we have finished the first i − 1 (2 ≤
i ≤ n) steps. That is, for the following collection of auxiliary (z1, . . . , zi−1)-
equations
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ż j = g j,k x j+1 + φ j,k(X j ), j = 1, . . . , i − 1, (4.18)

where

φ j,k(X j ) = f j,k(x̄ j ) −
j−1∑

l=1

∂α j−1

∂xl
ẋl −

j−1∑

l=1

∂α j−1

∂θ̂l

˙̂
θl −

j−1∑

l=0

∂α j−1

∂y(l)
d

y(l+1)
d . (4.19)

We have a set of common virtual control functions as (4.5). A common Lyapunov
function can be designed as

Vi−1 = 1

2

i−1∑

j=1

z2j . (4.20)

For any k ∈ M, the time derivative of Vi−1 satisfies

V̇i−1 ≤
i−1∑

j=1

{

−λ j z
2
j + ζ 2

j,k + ε2j,k

2
+ g j,k z j z j+1

+
(∥

∥Wj,k

∥
∥2

2ζ 2
j,k

− g j,k θ̂ j

2g j,minζ
2
j,min

)

z2j

}

, (4.21)

where ζ j,k is a positive design parameter.
Choose

Vi = Vi−1 + 1

2
z2i . (4.22)

Analogous to the procedures above, the following inequality can be obtained

V̇i ≤
i∑

j=1

{

−λ j z
2
j + ζ 2

j,k + ε2j,k

2
+ g j,k z j z j+1

+
(∥

∥Wj,k

∥
∥2

2ζ 2
j,k

− g j,k θ̂ j

2g j,minζ
2
j,min

)

z2j

}

. (4.23)

Step n. By repeatedly using the inductive argument above, a common Lyapunov
function, a common virtual control function and state-feedback controllers are cho-
sen, respectively, as

Vn =
n∑

j=1

{
1

2
z2l + 1

2r j
θ̃2
j

}

, (4.24)

αn−1 = − 1

gn−1,min

(
θ̂n−1

2ζ 2
n−1,min

zn−1 + λn−1zn−1 + zn−1

2

)

, (4.25)
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uk = − 1

gn,k

(
θ̂n

2ζ 2
n,min

zn + λnzn + zn
2

)

, (4.26)

where θ j = ∥
∥Wj,max

∥
∥2

, θ̃ j = θ j − θ̂ j ( j = 1, 2, . . . , n) are the error between θ j

and its estimation θ̂ j .
For any k ∈ M, the time derivative of Vn satisfies

V̇n ≤
n−1∑

j=1

{

−λ j z
2
j + g j,k z j z j+1 + ζ 2

j,k + ε2j,k

2
− 1

r j
θ̃ j

˙̂
θ j

+
(∥

∥Wj,k

∥
∥2

2ζ 2
j,k

− g j,k θ̂ j

2g j,minζ
2
j,min

)

z2j

}

− λnz
2
n

+ ζ 2
n,k + ε2n,k

2
− 1

rn
θ̃n

˙̂
θn +

(∥
∥Wn,k

∥
∥2

2ζ 2
n,k

− θ̂n

2ζ 2
n,min

)

z2n, (4.27)

where λ j = g j,max + c j , and c j is a positive constant.
Substituting (4.4) into (4.27) gives that

V̇n ≤
n−1∑

j=1

{

−λ j z
2
j + g j,k z j z j+1 + ζ 2

j,k + ε2j,k

2
+ 1

r j
β j θ̃ j θ̂ j

+
(∥

∥Wj,k

∥
∥2

2ζ 2
j,k

− g j,k θ̂ j

2g j,minζ
2
j,min

− θ̃ j

2ζ 2
j,min

)

z2j

}

− λnz
2
n + ζ 2

n,k + ε2n,k

2
+ 1

rn
βn θ̃n θ̂n +

(∥
∥Wn,k

∥
∥2

2ζ 2
n,k

− θn

2ζ 2
n,min

)

z2n

≤
n∑

j=1

{

−λ j z
2
j + ζ 2

j,k + ε2j,k

2
+ 1

r j
β j θ̃ j θ̂ j

}

+
n−1∑

j=1

g j,k z j z j+1. (4.28)

It is not difficult to see that

n−1∑

j=1

g j,k z j z j+1 ≤ g j,max

n∑

j=1

z2j , (4.29)

and

θ̃ j θ̂ j = θ̃ j (θ j − θ̃ j ) ≤ −1

2
θ̃2
j + 1

2
θ2
j . (4.30)
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One can get from (4.28), (4.29) and (4.30) that

V̇n ≤
n∑

j=1

{

−c j z
2
j − 1

2r j
β j θ̃

2
j

}

+
n∑

j=1

{
ζ 2
j,max + ε2j,max

2
+ 1

2r j
β jθ

2
j

}

. (4.31)

Let a0 = min{2c j , β j : 1 ≤ j ≤ n}, b0 = ∑n
j=1{ 1

2r j
β jθ

2
j + ζ 2

j,max+ε2j,max

2 }. One has

V̇n ≤ −a0Vn + b0. (4.32)

According to the comparison principle, one gets

Vn(t) ≤
(

Vn(0) − b0
a0

)

e−a0t + b0
a0

, t ≥ 0. (4.33)

Inequality (4.33) indicates that all the signals in the closed-loop system are
bounded. In particular, we have

lim
t→∞ |z1| ≤

√
2b0
a0

. (4.34)

The proof is completed here. �

4.2.2.2 Adaptive Control Design Under One Adaptive Law

In this subsection, a controller design approach with one adaptive law is presented.
The control laws are chosen as

uk = − 1

gn,k

(
θ̂

2ζ 2
n,min

zn + λnzn + zn
2

)

, (4.35)

where ζn,k and λn are positive design parameters, ζn,min = min{ζn,k : k ∈ M}, θ̂ is
the estimation of θ = ∑n

i=1

∥
∥Wi,max

∥
∥2
, Wi,max = max{Wi,k : k ∈ M} and Wi,k is

used in fuzzy logic systemWT
i,k Si,k(x) to approximate the unknown function f̂i,k(x).

The adaptive law is defined as the solution to the following differential equation:

˙̂
θ =

n∑

j=1

r

2ζ 2
j,min

z2j − βθ̂, (4.36)

where r , ζ j,k and β are positive design parameters, ζ j,min = min{ζ j,k : k ∈ M} and
the choice of θ̂ (0) is required to satisfy θ̂ (0) ≥ 0 such that θ̂ ≥ 0.
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Next, we give another main result of the chapter.

Theorem 4.2 Consider the closed-loop system (4.1) with the controllers (4.35) and
the adaptive laws (4.36). For 1 ≤ i ≤ n, k ∈ M, there exists WT

i,k Si,k(x) such that

supx∈Ω

∣
∣
∣ f̂i,k(x) − WT

i,k Si,k(x)

∣
∣
∣ ≤ εi,k in the sense that the approximation error εi,k is

bounded, and the initial value of θ̂ satisfies θ̂ (0) ≥ 0. Then, the tracking error and
closed-loop signals are bounded.

Proof For 1 ≤ i ≤ n − 1, define the common virtual control functions αi as:

αi (Xi ) = − 1

gi,min

(
θ̂

2ζ 2
i,min

+ λi + 1

2

)

zi , (4.37)

where ζi,k is a positive design parameter, ζi,min = min{ζi,k : k ∈ M}, gi,min =
min{gi,k : k ∈ M}, λi = gi,max + ci , gi,max = max{gi,k : k ∈ M} and ci is a positive
constant. θ̂ is the estimation of θ = ∑n

i=1

∥
∥Wi,max

∥
∥2

, Xi = [x̄ Ti , θ̂ , ȳ(i)
d ]T where

x̄ Ti = [x1, x2, . . . , xi ]T , ȳ(i)
d = [yd , ẏd , . . . , y(i)

d ]T and ȳ(i)
d being the i th derivative

of yd .
Consider a common Lyapunov function

V =
n∑

j=1

1

2
z2j + 1

2r
θ̃2, (4.38)

where θ̃ = θ − θ̂ is the error between θ and its estimation θ̂ .
For any k ∈ M, the time derivative of V satisfies

V̇ =
n−1∑

i=1

zi (gi,kαi + gi,k zi+1 + fi,k − α̇i−1)

+ zn(gn,kuk + fn,k − α̇n−1) − 1

r
θ̃

˙̂
θ

=
n−1∑

i=1

zi (gi,kαi + gi,k zi+1 + f̂i,k)

+ zn(gn,kuk + f̂n,k) − 1

r
θ̃

˙̂
θ (4.39)

where f̂i,k = fi,k − α̇i−1, α̇i−1 = ∑ j−1
l=1

∂α j−1

∂xl
ẋl + ∂α j−1

∂θ̂

˙̂
θ + ∑ j−1

l=0
∂α j−1

∂y(l)
d

y(l+1)
d .

For 1 ≤ i ≤ n, the following equation can be obtained by using Lemma 4.1.

f̂i,k = WT
i,k Si,k(Xi ) + δi,k(Xi ),

∣
∣δ2,k(Xi )

∣
∣ ≤ εi,k . (4.40)
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Substituting (4.36) and (4.37) into (4.39), one has

V̇ ≤ β

r
θ̃ θ̂ +

n−1∑

j=1

{

−λ j z
2
j + g j,k z j z j+1 + ζ 2

j,k + ε2j,k

2

+
(∥

∥Wj,k

∥
∥2

2ζ 2
j,k

− g j,k θ̂

2g j,minζ
2
j,min

− θ̃

2ζ 2
j,min

)

z2j

}

− λnz
2
n + ζ 2

n,k + ε2n,k

2
+

(∥
∥Wn,k

∥
∥2

2ζ 2
n,k

− θ

2ζ 2
n,min

)

z2n

≤ β

r
θ̃ θ̂ +

n∑

j=1

{

−λ j z
2
j + ζ 2

j,k + ε2j,k

2

}

+
n−1∑

j=1

g j,k z j z j+1. (4.41)

The rest of proof is omitted here as it is similar to (4.29)–(4.34). �

4.2.3 Simulation Results

In this section, an example is provided to demonstrate the effectiveness of our main
results.

Consider the following switched nonlinear system

ẋ1 = g1,σ (t)x2 + f1,σ (t),

ẋ2 = g2,σ (t)uσ(t) + f2,σ (t),

y = x1,

yd = sin t, (4.42)

where g1,1 = 2, g1,2 = 1, f1,1 = x1, f1,2 = sin x1, g2,1 = 2, g2,2 = 1, f2,1 =
x1x2, f2,2 = x1x22 . First, the controllers under multiple adaptive laws are designed
by Theorem 4.1. The initial conditions are x1(0) = 0.05, x2(0) = 0.05, and
θ̂1(0) = θ̂2(0) = 0. We choose c1 = 2, c2 = 1, r1 = 10, r2 = 3, β1 = β2 =
0.02, ς1,1 = 0.25, ς1,2 = 3, ς2,1 = 0.5, ς2,2 = 1.8. Second, the controllers
under one adaptive law is designed by Theorem 2, and the initial conditions are
x1(0) = 0.05, x2(0) = 0.05, θ̂ (0) = 0. We choose c1 = 2, c2 = 1, r = 12, β =
0.025, ς1,1 = 0.25, ς1,2 = 3, ς2,1 = 1.5, ς2,2 = 1.8. The objective is to design the
controllers uk such that y can track a desired trajectory yd under arbitrary switchings.

According to Theorem 4.1, the adaptive laws θ̂1, θ̂2 and the control law uk are
chosen, respectively, as
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˙̂
θ1 = r1

2ζ 2
1,1

z21 − β1θ̂1,
˙̂
θ2 = r2

2ζ 2
2,1

z22 − β2θ̂2,

u1 = − 1

g2,1

(
θ̂2

2ζ 2
2,1

z2 + λ2z2 + z2
2

)

,

u2 = − 1

g2,2

(
θ̂2

2ζ 2
2,1

z2 + λ2z2 + z2
2

)

,

where z1 = x1 − yd , z2 = x2 − α1, λ2 = c2 + g2,1. The virtual control function α1

is given by

α1 = − 1

g1,2

(
θ̂1

2ζ 2
1,1

z1 + λ1z1 + z1
2

)

,

where λ1 = c1 + g1,1. The controller design based on Theorem 4.1 is completed
here. In the next, another design according to Theorem 2 is presented.

According to Theorem 4.2, an adaptive law θ̂ and the control law u1, u2 are
chosen, respectively, as

˙̂
θ = r

2ζ 2
1,1

z21 + r

2ζ 2
2,1

z22 − βθ̂,

u1 = − 1

g2,1

(
θ̂

2ζ 2
2,1

z2 + λ2z2 + z2
2

)

,

u2 = − 1

g2,2

(
θ̂

2ζ 2
2,1

z2 + λ2z2 + z2
2

)

,

where z1 = x1 − yd , z2 = x2 − α1, λ2 = c1 + g2,1.
The virtual control function α1 is given as

α1 = − 1

g1,2

(
θ̂

2ζ 2
1,1

z1 + λ1z1 + z1
2

)

,

where λ1 = c1 + g1,1.
The simulation results are shown in Figs. 4.1, 4.2, 4.3 and 4.4, respectively.

Figure4.1 shows the system output y and reference signal yd . Figure4.2 depicts
the response of the tracking error y − yd . Figure4.3 illustrates the trajectory of the
adaptive law. Figure4.4 demonstrates the evolution of the switching signal. From
Figs. 4.1, 4.2 and 4.3, it can be seen that the output y of both controllers can track
the target signal yd well, and all the closed-loop signals remain bounded.
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Fig. 4.1 Tracking performances

Fig. 4.2 Responses of the
tracking error y − yd
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4.2.4 Conclusions

The tracking control problem for switched strict-feedback nonlinear systems with
completely unknown nonlinear functions is given. The application of the adaptive
backstepping technique is extended to a class of switched nonlinear systems with
unknown uncertainties. The stability analysis shows that the designed controllers can
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Fig. 4.3 Responses of the adaptive laws

Fig. 4.4 Switching signal
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ensure all the closed-loop signals remain bounded, and the system output converges
to a small neighborhood of the reference signal.
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4.3 Adaptive Control of Switched Nonstrict-Feedback
Nonlinear Systems

4.3.1 Problem Formulation and Preliminaries

In this section, the following nonlinear switched system in nonstrict-feedback form
is considered:

ẋi = gi,σ (t)xi+1 + fi,σ (t)(x) + wi,σ (t), 1 ≤ i ≤ n − 1

ẋn = gn,σ (t)uσ(t) + fn,σ (t)(x) + wn,σ (t)

y = x1 (4.43)

where x = (x1, x2, . . . , xn)T ∈ R
n is the system state, y is the system output;

σ(t) : [0,∞) → M = {1, 2, . . . ,m} is the switching signal; uk ∈ R is the control
input of the k-th subsystem. For any i = 1, 2, . . . , n and k ∈ M, fi,k(x) are unknown
smooth nonlinear functions satisfying locally Lipschitz conditions, gi,k are positive
constants, and wi,k is the bounded external disturbance of the system.

Our control objective is to design state-feedback controllers such that the output
of system (4.43) tracks a given time-varying signal yd(t) and all the signals of the
closed-loop systems remain bounded under arbitrary switchings.

Assumption 4.2 The tracking target yd(t) and its time derivatives up to the nth order
are continuous and bounded. It is further assumed that there exists a positive constant
d such that |yd | ≤ d.

Assumption 4.3 There exist strictly increasing smooth functions φi,k(.)s : R+ →
R

+ with φi,k(0) = 0 such that for i = 1, 2, . . . , n − 1, k ∈ M,

| fi,k(x)| ≤ φi,k(‖x‖).

Remark 4.3 The increasing property of φi,k(.)means that if ai ≥ 0, i = 1, 2, . . . , n,

then φi,k(
∑n

i=1 ai ) ≤ ∑n
i=1 φi,k(nai ). Note that φi,k(s) is a smooth function, and

φi,k(0) = 0. Therefore, there exists a smooth function pi,k(s) such that φi,k(s) =
spi,k(s), which gives that

φi,k

(
n∑

i=1

ai

)

≤
n∑

i=1

nai pi,k(nai ). (4.44)

In the control design procedure, radial basis function (RBF) neural networks are
used to approximate a continuous function f (X) on a compact set Ω ∈ Rq . For any
ε > 0, there exists a neural network ΦT P(X) such that

sup
x∈Ω

∣
∣ f (X) − ΦT P(X)

∣
∣ ≤ ε, (4.45)
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where P(X) = [p1(X), p2(X), . . . , pl(X)]T is the basis function vector, Φ =
[φ1, φ2, . . . , φl ]T is the ideal constant weight vector with l > 1 being the number of
the neural network nodes and pi (X) are chosen as the form:

pi (X) = exp

(−(X − μi )
T (X − μi )

ζ 2
i

)

, (4.46)

where ζi is the width of the Gaussian function, and μi = [μi1, μi2, . . . , μiq ]T is the
center vector.

Remark 4.4 The readers may refer to [25] for more details about neural networks.
Inequality (4.45) indicates that any given real continuous function f (X) can be
represented by the linear combination of the basis function vector P(X) within a
bounded error ε.

Lemma 4.2 For any ξ ∈ R and � > 0, the following inequality holds,

0 ≤ |ξ | − ξ tanh

(
ξ

�

)

≤ δ� (4.47)

where δ = 0.2785.

4.3.2 Adaptive Control Design Based on Neural Networks

In this section, a backstepping-based adaptive control design procedure is presented.
For the i th subsystem, define a common virtual control function αi as

αi (Xi ) = − zi
g
i

(
λi + l2i + η2

i θ̂ P
T
i (Xi )Pi (Xi )

)
. (4.48)

where λi , li and ηi are positive design parameters; g
i

= min{gi,k, k ∈ M}; θ̂ is
the estimation of θ which is an unknown constant and is specified later; Xi =
(x̄ Ti , yd , ẏd , . . . , y

(i)
d , θ̂ )T , x̄i = (x1, x2, . . . , xi )T ; Pi (Xi ) represents the basis func-

tion of the i th neural network system. Subsequently, a set of the variable change
of coordinates is defined as zi = xi − αi−1. Then, the z-system after coordinate
transform is that

żi = gi,k xi+1 + fi,k(x) + wi,k − α̇i−1, 1 ≤ i ≤ n − 1

żn = gn,kuk + fn,k(x) + wn,k − α̇n−1 (4.49)

where α0 = yd .
For i = 1, 2, . . . , n − 1, the time derivative of αi−1 is given by
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α̇i−1 =
i−1∑

s=1

∂αi−1

∂xs
( fs,k + gs,k xs+1 + ws,k) +

i−1∑

s=1

∂αi−1

∂θ̂

˙̂
θ +

i−1∑

s=0

∂αi−1

∂y(s)
d

y(s+1)
d

(4.50)

where
∑0

s=1
∂αi−1

∂xs
( fs,k + gs,k xs+1 + ws,k) = 0, and

∑0
s=1

∂αi−1

∂θ̂

˙̂
θ = 0.

The controller can be chosen as

u = − zn
g
n

(
λn + l2n + η2

n θ̂ P
T
n (Xn)Pn(Xn)

)
, (4.51)

where λn, ln and ηn are positive design parameters; g
n

= min{gn,k, k ∈ M}; Xn =
(x̄ Ti , yd , ẏd , . . . , y

(n)
d , θ̂ )T ; Pn(Xn) represents the basis function vector of the nth

neural network system.
The adaptive law is designed as

˙̂
θ =

n∑

i=1

rη2
i z

2
i P

T
i Pi − βθ̂ (4.52)

where r and β are positive design parameters.

Lemma 4.3 For the variable transformations zi = xi − αi−1, i = 1, 2, . . . , n, the
following inequality holds,

‖x‖ ≤
n∑

i=1

|zi | ϕi (θ̂) + d (4.53)

where α0 = yd , ϕi (θ̂) = 1
g
i

(
−(λi + l2i ) − η2

i θ̂ P
T
i (Xi )Pi (Xi )

)
+ 1, i = 1, 2, . . . ,

n − 1,and ϕn = 1.

The main result is given in the following theorem.

Theorem 4.3 Consider the closed-loop system (4.43) with the controller (4.51) and
the adaptive law (4.52). For 1 ≤ i ≤ n, k ∈ M, assume that all the unknown
nonlinear functions f̄i,k(x) are approximated by neural networks in the sense that
the approximation error εi,k is bounded. Then, for bounded initial conditions, the
target signal can be tracked within a small bounded error and other closed-loop
signals remain bounded.

Proof Consider the common Lyapunov function candidate as

V = 1

2

n∑

i=1

z2i + 1

2r
θ̃2 (4.54)

where r > 0 is a design parameter.
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The time derivative of V is given by

V̇ =
n−1∑

i=1

zi ( fi,k + gi,k xi+1 + w1,k − α̇i−1)

+ zn( fn,k + gn,ku + wn,k − α̇n−1) − 1

r
θ̃

˙̂
θ (4.55)

where α0 = yd.

By using (4.50), the following inequality can be obtained,

V̇ =
n−1∑

i=1

zi

{

fi,k + gi,k xi+1 + wi,k −
i−1∑

s=0

∂αi−1

∂y(s)
d

y(s+1)
d

−
i−1∑

s=1

∂αi−1

∂xs
( fs,k + gs,k xs+1 + ws,k) − ∂αi−1

∂θ̂

˙̂
θ

}

+ zn

{

fn,k + gn,ku + wn,k −
n−1∑

s=0

∂αn−1

∂y(s)
d

y(s+1)
d

−
n−1∑

s=1

∂αn−1

∂xs
( fs,k + gs,k xs+1 + ws,k) − ∂αn−1

∂θ̂

˙̂
θ

}

− 1

r
θ̃

˙̂
θ

=
n∑

i=1

zi

{

fi,k −
i−1∑

s=1

∂αi−1

∂xs
fs,k

}

+
n−1∑

i=1

zi
{
gi,k xi+1 + wi,k

−
i−1∑

s=0

∂αi−1

∂y(s)
d

y(s+1)
d −

i−1∑

s=1

∂αi−1

∂xs
(gs,k xs+1 + ws,k) − ∂αi−1

∂θ̂

˙̂
θ

}

+ zn

{

gn,ku + wn,k −
n−1∑

s=0

∂αn−1

∂y(s)
d

y(s+1)
d − ∂αn−1

∂θ̂

˙̂
θ

−
n−1∑

s=1

∂αn−1

∂xs
(gs,k xs+1 + ws,k)

}

− 1

r
θ̃

˙̂
θ (4.56)

By using Assumption 4.3, Lemma 4.3 and Remark 4.3, one has

zi

(

fi,k −
i−1∑

s=1

∂αi−1

∂xs
fs,k(x)

)

= −zi

i∑

s=1

∂αi−1

∂xs
fs,k(x) ≤

i∑

s=1

|zi ∂αi−1

∂xs
| ∣∣ fs,k(x)

∣
∣
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≤
i∑

s=1

|zi ∂αi−1

∂xs
|φs,k(‖x‖)

≤
i∑

s=1

n∑

j=1

|zi ∂αi−1

∂xs
||z j |φ̄s,k(|z j |ϕ j (θ)) +

i∑

s=1

|zi ∂αi−1

∂xs
|φs,k(d)

≤
i∑

s=1

n∑

j=1

1

2
z2i

(
∂αi−1

∂xs

)2

+
i∑

s=1

n∑

j=1

1

2
z2j φ̄

2
s,k(|z j |ϕ j (θ))

+
i∑

s=1

|zi ∂αi−1

∂xs
|φs,k(d) (4.57)

where φ̄s,k(|z j |ϕ j (θ)) = ϕ j (θ)hs,k(|z j |ϕ j (θ)).
Substituting (4.57) into (4.56) yields that

V̇ ≤
n∑

i=1

i∑

s=1

n∑

j=1

1

2
z2i

(
∂αi−1

∂xs

)2

+
n∑

i=1

i∑

s=1

n∑

j=1

1

2
z2j φ̄

2
s,k(|z j |ϕ j (θ)) +

n∑

i=1

i∑

s=1

|zi ∂αi−1

∂xs
|φs,k(d)

+
n−1∑

i=1

zi

{

gi,k xi+1 + wi,k −
i−1∑

s=0

∂αi−1

∂y(s)
d

y(s+1)
d

−
i−1∑

s=1

∂αi−1

∂xs
(gs,k xs+1 + ws,k) − ∂αi−1

∂θ̂

˙̂
θ

}

+ zn

{

gn,ku + wn,k −
n−1∑

s=0

∂αn−1

∂y(s)
d

y(s+1)
d − ∂αn−1

∂θ̂

˙̂
θ

−
n−1∑

s=1

∂αn−1

∂xs
(gs,k xs+1 + ws,k)

}

− 1

r
θ̃

˙̂
θ (4.58)

One can obtain that

n∑

i=1

i∑

s=1

n∑

j=1

1

2
z2j φ̄

2
s,k(|z j |ϕ j (θ)) =

n∑

i=1

z2i

n∑

s=1

q(n, s)φ̄2
s,k(|z j |ϕ j (θ)) (4.59)

where q(n, s) = (n−(s−1))
2 .

By using Lemma 4.2, the following inequality holds for �i,k > 0,
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i∑

s=1

|zi ∂αi−1

∂xs
|φs,k(d) ≤ zi Zi tanh

(
zi Zi

�i,k

)

+ δ�i,k (4.60)

where Zi = ∑i
s=1 |zi ∂αi−1

∂xs
|φs,k(d).

It follows from (4.58)–(4.60) that

V̇ ≤
n∑

i=1

z2i

i∑

s=1

n

2

(
∂αi−1

∂xs

)2

+
n∑

i=1

z2i

n∑

s=1

q(n, s)φ̄2
s,k(|z j |ϕ j (θ))

+
n∑

i=1

zi Zi tanh

(
zi Zi

�i,k

)

+
n∑

i=1

δ�i,k +
n−1∑

i=1

zi

{

gi,k xi+1 + wi,k

−
i−1∑

s=0

∂αi−1

∂y(s)
d

y(s+1)
d −

i−1∑

s=1

∂αi−1

∂xs
(gs,k xs+1 + ws,k) − ∂αi−1

∂θ̂

˙̂
θ

}

+ zn

{

gn,ku + wn,k −
n−1∑

s=0

∂αn−1

∂y(s)
d

y(s+1)
d − ∂αn−1

∂θ̂

˙̂
θ

−
n−1∑

s=1

∂αn−1

∂xs
(gs,k xs+1 + ws,k)

}

− 1

r
θ̃

˙̂
θ

=
n∑

i=1

zi

{

zi

i∑

s=1

n

2

(
∂αi−1

∂xs

)2

+ zi

n∑

s=1

q(n, s)φ̄2
s,k(|z j |ϕ j (θ))

+ Zi tanh

(
zi Zi

�i,k

)

−
n−1∑

s=1

∂αn−1

∂xs
(gs,k xs+1 + ws,k)

− ∂αi−1

∂θ̂

˙̂
θ −

i−1∑

s=0

∂αi−1

∂y(s)
d

y(s+1)
d + wi,k

}

+
n−1∑

i=1

zi gi,k xi+1 + zngn,ku − 1

r
θ̃

˙̂
θ +

n∑

i=1

δ�i,k (4.61)

Note that
n−1∑

i=1

zi gi,k xi+1 =
n−1∑

i=1

zi gi,k zi+1 +
n−1∑

i=1

zi gi,kαi (4.62)

and define

f̄i,k =zi

i∑

s=1

n

2

(
∂αi−1

∂xs

)2

+ zi

n∑

s=1

q(n, s)φ̄2
s,k(|z j |ϕ j (θ))
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+ Zi tanh

(
zi Zi

�i,k

)

−
n−1∑

s=1

∂αn−1

∂xs
(gs,k xs+1 + ws,k)

− ∂αi−1

∂θ̂

˙̂
θ −

i−1∑

s=0

∂αi−1

∂y(s)
d

y(s+1)
d + wi,k + gi−1,k zi−1 (4.63)

where g0 = 0 and z0 = 0.
Substituting (4.62) and (4.63) into (4.61) gives that

V̇ ≤
n−1∑

i=1

zi ( f̄i,k + gi,kαi ) + zn( f̄n,k + gn,kuk) +
n∑

i=1

δ�i,k − 1

r
θ̃

˙̂
θ (4.64)

The neural network ΦT
i,k Pi,k is utilized to approximate the unknown function f̄i,k

such that for any given ε̄i,k > 0,

f̄i,k = ΦT
i,k Pi,k(Xi ) + εi,k(Xi ) (4.65)

where Xi = (x̄ Ti , yd , ẏd , . . . , y
(i)
d , θ̂1, θ̂2, . . . , θ̂i )

T ,
∣
∣εi,k

∣
∣ ≤ ε̄i,k, εi,k denotes the

approximation error. Thus, for i = 1, 2, . . . , n,

zi f̄i,k = ziΦ
T
i,k Pi,k(Xi ) + ziεi,k(Xi )

≤ η2
i

2
z2i

∥
∥Φi,k

∥
∥2

PT
i,k Pi,k + 1

2η2
i

+ l2i,k
2
z2i + ε2i,k

2l2i,k

≤ η2
i z

2
i θi P

T
i Pi + l2i z

2
i + ε̄2i

l2i
+ 1

η2
i

(4.66)

where ηi , li > 0, θi,k = ∥
∥Φi,k

∥
∥2
, θi = max{θi,k : k ∈ M}, Pi (Xi ) and ε̄i (Xi )

represent the basis function vector and the estimation error belongs to θi .

The feasible virtual control functions, adaptive laws and controllers are designed,
respectively, as

αi = − zi
g
i

(
λi + l2i + η2

i θ̂i P
T
i Pi

)
(4.67)

˙̂
θi = riη

2
i z

2
i P

T
i Pi − βi θ̂i (4.68)

uk = − zn
g
n

(
λn + l2n + η2

n θ̂n P
T
n Pn

)
(4.69)

where for i = 1, 2, . . . , n, λi , ri , βi are positive design parameters, and θ̂i is the
estimation of θi .

Consider that too many adaptive parameters (θ̂1, . . . , θ̂n) can cause the problem
of over-parameterization. Set r1 = r2 = · · · = rn = r, β1 = β2 = · · · = βn = β,
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and define θ = ∑n
i=1 θi , θ̂ = ∑n

i=1 θ̂i . The adaptive laws (4.68) can be changed as
follows

˙̂
θ =

n∑

i=1

˙̂
θi =

n∑

i=1

(
rη2

i z
2
i P

T
i Pi − βθ̂i

)

=
n∑

i=1

rη2
i z

2
i P

T
i Pi − βθ̂ . (4.70)

Then, the stabilizing functions, the adaptive law and controllers can be designed as
(4.48), (4.52) and (4.51) respectively.

Substituting (4.48), (4.51) and (4.52) into (4.62) one has

V̇ ≤ −
n∑

i=1

λi z
2
i +

n∑

i=1

β

r
θ̃ θ̂ +

n∑

i=1

(
ε̄2i

l2i
+ 1

η2
i

+ δ�i

)

(4.71)

where �i = max{�i,k, k ∈ M}.
It is true that

θ̃ θ̂ = θ̃ (θ − θ̃ ) ≤ −1

2
θ̃2 + 1

2
θ2 (4.72)

Then, (4.71) can be rewritten as

V̇ ≤ − 1

2

n∑

i=1

(

2λi z
2
i + β

r
θ̃2

)

+
n∑

i=1

(
ε̄2i

l2i
+ 1

η2
i

+ δ�i + β

2r
θ2

)

≤ − a0V + b0 (4.73)

where a0 = min{2λi , β : 1 ≤ i ≤ n} and b0 = ∑n
i=1(ε̄

2
i / l

2
i + 1/η2

i + δ�i + β

2r θ
2).

Furthermore

V (t) ≤
(

V (0) − b0
a0

)

e−a0t + b0
a0

(4.74)

which means that all the signals in the closed-loop system are bounded. In particular,
we have

lim
t→∞ |z1| ≤

√
2b0
a0

The proof is completed here. �
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Fig. 4.5 Ship manoeuvring
system

4.3.3 Simulation Results

In this section, the simulation studies for the ship manoeuvring systems shown in
Fig. 4.5 are carried out to illustrates the effectiveness of our results.

L : length of ship

N : moment component on body relative to z-axis

r : yaw rate

v : speed of ship

vx : forward velocity in x-axis

vy : drift velocity along y-axis

β : drift angle

x, y : force components on body

ψ : yaw angle

δ : rudder angle

The shipmaneuvering systemcan be described by the followingNorrbin nonlinear
model,

T ḣ + h + τh3 = K δ + ω, (4.75)

where T is the time constant, h = ψ̇ denotes the yaw rate, ψ stands for the heading
angle, τ is the Norrbin coefficient, K represents the rudder gain, δ is the rudder angle
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and ω stands for the outside disturbances. The value of τ can be determined via a
spiral test. The ship’s dynamic parameters are basically determined by its size and
shape, and may vary with operational conditions such as ship speed, draft, trim, and
water depth.

A simplified mathematical model of the rudder system can be described as:

TE δ̇ + δ = KEδE , (4.76)

where TE represents the rudder time constant, δ stands for the actual rudder angle,
KE denotes the rudder control gain and δE is the rudder order.

Let x1 = ψ , x2 = h, x3 = δ; one has

ẋ1 = x2,

ẋ2 = f + bx3 + ω,

ẋ3 = − 1

TE
x3 + KE

TE
δE , (4.77)

where f = − 1
T x2 − τ

T x
3
2 is an unknown nonlinear function, b = K

T .

Note that some parameters of the aforementioned system will change when the
speed of the ship changes. We adopt the following switched model to depict the
dynamic behavior when the ship is at low speed, medium speed and high speed,
respectively.

ẋ1 = x2,

ẋ2 = fσ(v)(x2) + bσ(v)x3 + ωσ(v),

ẋ3 = − 1

TE,σ (v)
x3 + KE,σ (v)

TE,σ (v)
δE,σ (v), (4.78)

where fσ(v)(x2) = − 1
Tσ(v)

x2 − τσ(v)

Tσ(v)
x32 , bσ(v) = Kσ(v)

Tσ(v)
and σ(v) is the switching signal

that satisfies:

σ(v) =
⎧
⎨

⎩

1, 0 < v ≤ vL
2, vL < v ≤ vM
3, vM < v ≤ vT

where vL , vM , vT represent the value of low speed, medium speed and top speed,
respectively.

The vessel data comes from a ship that is listed in Table4.1. The controller para-
meters are chosen as those in Table4.2. Furthermore, the outside disturbances are:
w1 = 0.01 sin t ; w2 = 0.015 cos t ; w3 = 0.013 sin t . We construct the basis func-
tion vectors P1, P2 and P3 using 7, 15 and 27 nodes, the centers μ1, μ2 and μ3

evenly spaced on [−3, 3]×[−4, 1]×[−2, 2], [−0.5, 3.5]×[−4, 4]×[−8, 8] and
[−4, 4] × [−30, 10] × [−0.5, 3.5], and the widths ζ1 = 2, ζ2 = 2.5, and ζ3 = 2,
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Table 4.1 Model parameters of ship maneuvering system

v = 3.72 m/s (low speed) v = 7.5 m/s (medium speed) v = 15.3 m/s (high speed)

Parameter Value Parameter Value Parameter Value

L (m) 160.9 L 160.9 L 160.9

K1 (s−1) 0.32 K2 0.114 K3 0.051

T1 (s) 30 T2 63.69 T3 80.47

τ1 (s2) 40 τ2 30 τ3 25

TE,1 (s) 4 TE,2 2.5 TE,3 1

KE,1 2 KE,2 1 KE,3 0.72

Table 4.2 Controller parameters

Parameter λ1 λ2 λ3 l1 λ2 λ3 r

Value 2 3 5 12 14 10 0.01

Parameter η1 η2 η3 g
1

g
2

g
3

β

Value 8 10 12 1 6.3×10−4 0.4 0.1

respectively. The initial conditions are x1(0) = x2(0) = x3(0) = 0.02, θ̂ (0) = 1 and
the target signal is yd = 10 sin 0.05t.

To illustrate the effectiveness of the proposed controller, comparison results are
presented. The first one uses existing results in [26] and our results, respectively, to
control the system when the ship is at a constant speed: low speed. The other one
uses existing results [26] and our results respectively to control the system when the
ship switches among different speeds.

According to (4.51) and (4.52), the adaptive law θ̂ and the control law uk are
chosen, respectively, as

˙̂
θ =

3∑

i=1

rη2
i z

2
i P

T
i Pi − βθ̂

= 0.64z21P
T
1 P1 + z22P

T
2 P2 + 1.44z23P

T
3 P3 − 0.1θ̂

uk = − z3
g
3

(
λ3 + l23 + η2

3 θ̂ P
T
3 P3

)

= −2.5z3
(
105 + 144PT

3 P3
)

where z1 = x1 − yd , z2 = x2 − α1, z3 = x3 − α2.

The virtual control functions α1 and α2 are given by

α1 = − z1
g
1

(
λ1 + l21 + η2

1 θ̂ P
T
1 P1

)

= −z1(146 + 64θ̂ PT
1 P1)
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α2 = − z2
g
2

(
λ2 + l22 + η2

2 θ̂ P
T
1 P1

)

= −1.6 × 103 × z2
(
199 + 100θ̂ PT

2 P2
)

Figures 4.6, 4.7 and 4.8 show the comparison results by using the existing method
in [26] and our approach, respectively. It can be seen that both methods can ensure
the target signal is tracked within a small bounded error.

Figures4.6, 4.7, 4.8, 4.9, 4.10 and 4.11 depict the comparison results by using the
existing method in [26] and our method under different speeds, and Fig. 4.12 gives
the switching evolution among different speeds. From Figs. 4.9 and 4.10, it can be
seen that the existing results in [26] cannot guarantee a good tracking performance

Fig. 4.6 Tracking
performances under a
constant speed. yd is the
target signal; ψ1 and ψ2
represent the outputs by
using existing results in [26]
and our results respectively
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Fig. 4.7 Responses of
tracking errors under a
constant speed. ψ1 − yd and
ψ2 − yd stand for the
tracking error by using
existing results in [26] and
our results respectively
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Fig. 4.8 Responses of
adaptive laws under a
constant speed. θ̂1, θ̂2 and θ̂3
denote the adaptive laws by
existing results in [26]; θ̂
represents the adaptive law
by our results
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Fig. 4.9 Tracking
performances under
switched speeds. yd is the
target signal; ψ1 and ψ2
represent the outputs by
using existing results in [26]
and our results respectively
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under switched speeds. However, our method can still ensure the target signal is
tracked within a small bounded error. Figure4.11 indicates that the adaptive law’s
number in our results is less than the one in [26].
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Fig. 4.10 Responses of
tracking errors under
switched speeds. ψ1 − yd
and ψ2 − yd stand for the
tracking error by using
existing results in [26] and
our results respectively
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Fig. 4.11 Responses of
adaptive laws under switched
speeds. θ̂1, θ̂2 and θ̂3 denote
the adaptive laws by existing
results in [26]; θ̂ represents
the adaptive law by our
results
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4.3.4 Conclusions

The problem of adaptive neural tracking control for a class of switched uncertain
nonlinear systems in nonstrict-feedback form is investigated. The stability analysis
in indicates that the designed controllers can ensure that the target signal can be
tracked with a small bounded error and the stability of the system can be kept under
arbitrary switchings.
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Fig. 4.12 Responses of
switching signal

0 50 100 150
0.5

1

1.5

2

2.5

3

3.5

Time(sec)

Sw
itc

hi
ng

 si
gn

al

References

1. Miao B, Li T, Luo W (2013) A DSC and MLP based robust adaptive NN tracking control for
underwater vehicle. Neurocomputing 111:184–189

2. Peng Z, Wang D, Zhang H, Lin Y (2015) Cooperative output feedback adaptive control of
uncertain nonlinear multi-agent systems with a dynamic leader. Neurocomputing 149, Part
A(0):132–141

3. Xu B, Zhang Y (2015) Neural discrete back-stepping control of hypersonic flight vehicle with
equivalent prediction model. Neurocomputing 154:337–346

4. Ye J (2008) Tracking control for nonholonomic mobile robots: Integrating the analog neural
network into the backstepping technique. Neurocomputing 71(16C18):3373–3378

5. Yu J, Chen B, Yu H, Lin C, Ji Z, Cheng X (2015) Position tracking control for chaotic perma-
nent magnet synchronous motors via indirect adaptive neural approximation. Neurocomputing
156:245–251

6. Cai M, Xiang Z (2015) Adaptive neural finite-time control for a class of switched nonlinear
systems. Neurocomputing 155:177–185

7. Li Y, Tong S, Li T (2015) Adaptive fuzzy backstepping control design for a class of pure-
feedback switched nonlinear systems. Nonlinear Anal Hybrid Syst 16:72–80

8. Long L, Zhao J (2015) Adaptive fuzzy tracking control of switched uncertain nonlinear systems
with unstable subsystems. Fuzzy Sets Syst. doi:10.1016/j.fss.2015.01.006

9. MaR, Zhao J (2010)Backstepping design for global stabilization of switched nonlinear systems
in lower triangular form under arbitrary switchings. Automatica 46:1819–1823

10. Yang W, Tong S (2015) Output feedback robust stabilization of switched fuzzy systems with
time-delay and actuator saturation. Neurocomputing. doi:10.1016/j.neucom.2015.02.072

11. ChiangM, FuL (2014)Adaptive stabilization of a class of uncertain switched nonlinear systems
with backstepping control. Automatica 50(8):2128–2135

12. Long L, Wang Z, Zhao J (2015) Switched adaptive control of switched nonlinearly parameter-
ized systems with unstable subsystems. Automatica 54:217–228

13. Vu L, Liberzon D (2005) Common Lyapunov functions for families of commuting nonlinear
systems. Syst control lett 54:405–416

14. Briat C, Seuret A (2012) Convex dwell-time characterizations for uncertain linear impulsive
systems. IEEE Trans Autom Control 57:3241–3246

15. Briat C, Seuret A (2013) Affine minimal and mode-dependent dwell-time characterization for
uncertain switched linear systems. IEEE Trans Autom Control 58:1304–1310

http://dx.doi.org/10.1016/j.fss.2015.01.006
http://dx.doi.org/10.1016/j.neucom.2015.02.072


94 4 Adaptive Control of Switched Nonlinear Systems

16. Liberzon D (2003) Switching in systems and control. Springer, Heidelberg
17. Margaliot M, Langholz G (2003) Necessary and sufficient conditions for absolute stability: the

case of second-order systems. IEEE Trans Circuits Syst I Fundam Theory Appl 50:227–234
18. Wu JL (2009) Stabilizing controllers design for switched nonlinear systems in strict-feedback

form. Automatica 45:1092–1096. doi:10.1016/j.automatica.2008.12.004
19. Long L, Zhao J (2012) Control of switched nonlinear systems in p-normal form using multiple

Lyapunov functions. IEEE Trans Autom Control 57:1285–1291
20. Ge S, Wang C (2002) Adaptive NN control of uncertain nonlinear pure-feedback systems.

Automatica 38(4):671–682
21. Chen B, Liu X, Liu K, Lin C (2009) Direct adaptive fuzzy control of nonlinear strict-feedback

systems. Automatica 45(6):1530–1535
22. Zhang H, Lewis FL (2012) Adaptive cooperative tracking control of higher-order nonlinear

systems with unknown dynamics. Automatica 48(7):1432–1439
23. LongL, Zhao J (2014)Adaptive output-feedback neural control of switched uncertain nonlinear

systems with average dwell time. IEEE Trans Neural Networks Learn Syst PP(99):1
24. Wang L, Mendel JM (1992) Fuzzy basis functions, universal approximation, and orthogonal

least-squares learning. IEEE Trans Neural Networks 3:807–814
25. Liu X, Ho DW, Yu W, Cao J (2014) A new switching design to finite-time stabilization of

nonlinear systems with applications to neural networks. Neural Networks 57:94–102
26. Yuan L,WuH (2011) Simulation and design of fuzzy sliding-mode controller for ship heading-

tracking. J Marine Sci Appl 10(1):76–81

http://dx.doi.org/10.1016/j.automatica.2008.12.004

	4 Adaptive Control of Switched Nonlinear Systems
	4.1 Background and Motivation
	4.2 Adaptive Control of Switched Strict-Feedback Nonlinear Systems
	4.2.1 Problem Formulation and Preliminaries
	4.2.2 Main Results
	4.2.3 Simulation Results
	4.2.4 Conclusions

	4.3 Adaptive Control of Switched Nonstrict-Feedback Nonlinear Systems
	4.3.1 Problem Formulation and Preliminaries
	4.3.2 Adaptive Control Design Based on Neural Networks
	4.3.3 Simulation Results
	4.3.4 Conclusions

	References


